
Oracle® Cloud
Using the REST Adapter with Oracle
Integration 3

F45599-32
January 2025

Oracle Cloud Using the REST Adapter with Oracle Integration 3,

F45599-32

Copyright © 2022, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Diversity and Inclusion viii

Related Resources ix

Conventions ix

1 Understand the REST Adapter

REST Adapter Capabilities 1-1

Capabilities When Configuring a Trigger Connection to Expose an Integration as a
REST API 1-1

Capabilities When Configuring an Invoke Connection to Consume External REST APIs 1-4

REST Adapter Restrictions 1-7

Swagger/OpenAPI Restrictions 1-9

Publish Restrictions 1-9

Consume Restrictions 1-9

REST Adapter Use Cases 1-10

Workflow to Create and Add a REST Adapter Connection to an Integration 1-12

2 REST Adapter Concepts

Authentication Support 2-1

Authenticate Requests for Invoking Oracle Integration Flows 2-1

About Requests to Invoke Integrations 2-2

About OAuth 2.0 Grants 2-4

Use OAuth 2.0 Grants in Identity Domain Environments 2-10

Use OAuth 2.0 Grants in Oracle Identity Cloud Service Environments 2-30

Authentication Types 2-51

Role-Based Connections 2-52

Extensibility Support for Multiple OAuth Providers 2-52

REST API Support 2-53

Oracle Cloud Infrastructure REST API Support with the OCI Signature Version 1
Security Policy 2-53

iii

On-Premises REST API Support with the Agent 2-53

OpenAPI Support 2-54

Support of Polymorphic Constructs for OpenAPI Connectivity 2-54

allOf Keyword Pattern Support 2-54

oneOf Keyword Pattern Support 2-63

anyOf Keyword Pattern Support 2-76

Support for OpenAPI Documents with External References 2-85

Support for Publishing Interfaces for Oracle Integration Flows as OpenAPI Documents 2-86

Consumption of OpenAPI Multipart for JSON and Form Data 2-86

Attachment Support 2-86

Multipart Attachment Support for Trigger and Invoke Connections 2-87

Support for application/octet-stream MIME Attachment (Binary) Payloads 2-91

Header, Token, Query Parameter, and Array Support 2-92

Standard and Custom Header Support 2-93

Nonstandard JWT Token Support 2-93

RFC 3986 Support for Encoding Query Parameters 2-94

Homogenous Multidimensional Array Support in JSON Documents 2-95

Heterogeneous JSON Array Support 2-96

Swagger Support 2-97

REST Endpoint Metadata and a Swagger Link to a REST Metadata Description 2-97

Mapper Connectivity Properties Support 2-98

Set REST Adapter Connectivity Properties in the Mapper 2-98

REST Endpoint Support 2-102

Support for Dynamic REST Endpoints 2-102

Configuration Parameters 2-103

Cross-Origin Resource Sharing (CORS) Support 2-104

Cross-Origin Resource Sharing (CORS) 2-104

Complex Schema Support 2-105

Complex Schema Support 2-106

Resource Principal Session Token Support 2-107

JWT Assertion Support for Outbound Invocations 2-107

3 Create a REST Adapter Connection

Prerequisites for Creating a Connection 3-1

Create a Connection 3-9

Configure Connection Properties for Invoke Connections 3-10

Configure Connection Security 3-12

Variations of JWT Usage by Service Providers 3-20

Configure the Endpoint Access Type 3-24

Test the Connection 3-25

iv

Upload a Certificate to Connect with External Services 3-26

4 Add the REST Adapter Connection to an Integration

Add the REST Adapter as a Trigger Connection 4-1

REST Adapter Trigger Basic Information Page 4-2

REST Adapter Trigger Resource Configuration Page 4-2

REST Adapter Trigger Request Parameters Page 4-4

REST Adapter Trigger Request Page 4-5

REST Adapter Trigger Request Header Page 4-7

REST Adapter Trigger CORS Configuration Page 4-8

REST Adapter Trigger Response Page 4-9

REST Adapter Trigger Response Header Page 4-11

REST Adapter Trigger Operations Page 4-12

REST Adapter Trigger Operation Selection Page 4-13

Summary Page 4-13

Add the REST Adapter as an Invoke Connection 4-13

REST Adapter Invoke Basic Information Page 4-14

REST Adapter Invoke Request Parameters Page 4-15

REST Adapter Invoke Request Page 4-16

REST Adapter Invoke Request Headers Page 4-18

REST Adapter Invoke Response Page 4-20

REST Adapter Invoke Response Header Page 4-22

REST Adapter Invoke Operation Selection Page 4-23

Summary Page 4-24

5 Implement Common Patterns Using the REST Adapter

Connect to an Endpoint that Requires a Content-Length Header to Be Sent 5-2

OAuth-Protected Patterns 5-4

Configure the REST Adapter to Consume a REST API Protected with OAuth Custom
Two Legged Token-Based Authentication 5-4

Configure the REST Adapter to Consume a REST API Protected with OAuth Custom
Three Legged Flow Token-Based Authentication 5-11

Configure the REST Adapter to Consume a REST API Protected with OAuth 1.0 One-
Legged Authentication 5-16

Allow Client Applications to Consume an Integration Exposed as an OAuth-Protected
REST API 5-17

REST API Consumption Patterns 5-17

Configure the REST Adapter to Consume a REST API Protected with the API Key 5-18

Configure the REST Adapter to Consume an External REST API with No Metadata
Described in a Document 5-19

Configure a REST Adapter to Consume a REST API that Expects Custom HTTP
Header Properties 5-22

v

Configure the REST Adapter to Consume an Amazon Web Services (AWS) REST API 5-23

JSON Content Patterns 5-24

Allow JSON Numbers with High Precision and Scale 5-24

Map JSON when the REST Adapter Request is Configured with multipart/form-data 5-25

JSON to XML Special Character Conversion 5-25

Send an Empty JSON Object 5-26

Copy Element Names as Values in JSON 5-28

Use JSON Objects With Single Elements Within an Array 5-29

OpenAPI Document Patterns 5-29

Publish REST-Based Integrations as OpenAPI Documents 5-29

Consume and Publish OpenAPI Documents with Multipart/Mixed and Multipart/Form-
Data 5-30

Best Practices for Invoking REST Endpoints 5-32

Override the Endpoint URI/Host Name for an External REST API at Runtime 5-32

Map to Construct the Payload for an External REST API that Accepts multipart/form-data as
the Content Type 5-33

Implement an Integration in which to Send an Incoming Message with a Base64-Encoded
String to an External REST API that Accepts a Multipart Attachment 5-35

Pass the Payload as URL-Encoded Form Data 5-36

Implement an Integration to Send a PDF/CSV Document Downloaded from an SFTP Server
to an External REST API that Accepts Only application/octet-stream as the Content Type 5-37

Configure the REST Adapter to Expose an Integration as a REST API 5-41

Enter q as a Standard HTTP Query Parameter with the Query as a Value 5-42

Configure Oracle Integration to Call Oracle Cloud Infrastructure Functions with the REST
Adapter 5-42

Configure a REST Adapter Trigger Connection to Work Asynchronously 5-44

Create a Keystore File for a Two-Way, SSL-Based Integration 5-45

Access Oracle Cloud Infrastructure Service Resources Using RPST 5-56

Invoke a Service Provider API with a JWT Assertion 5-59

6 Troubleshoot the REST Adapter

ORABPEL-15235 Translation Failure Error Occurrence 6-2

Failed REST Adapter Invoke Connection Retries Three Times Every 30 Seconds with a 504
Timeout Error 6-2

Troubleshoot RPST and OCI Service Invocation Security Policy Issues 6-3

Multipart Form-Data Endpoint Invocation Fails When Media Type is null 6-4

Convert a Private Key from PKCS8 to RSA (PKCS1) Format for the OCI Signature Version 1
Security Policy 6-5

HTTP Error Response for Pre-20.4.2 Connections is Not Compliant with the OpenAPI
Specification 6-5

REST Services that Return Multiple Successful Responses 6-7

Error Handling with the REST Adapter 6-7

REST Service Invoked by the REST Adapter Returns a 401 Unauthorized Status Response 6-10

vi

Configuration Limitation of Ten Pages in the Adapter Endpoint Configuration Wizard 6-10

Keys with Null Values During JSON Transformation are Removed 6-11

Large Sample JSON File Processing with Special Characters 6-11

SSL Certification Troubleshooting Issues 6-12

Fault and Response Pipeline Definitions in Basic Routing Integrations 6-12

Empty Arrays Are Not Supported in Sample JSON Files 6-14

Invoke Endpoint URI Must Match the Base URI + Resource URI in REST Adapter 6-14

JD Edwards Form Service Invocation with the REST Adapter Causes APIInvocation Error 6-14

REST Adapter Data is Only Saved When You Click Next 6-15

Convert XML to a JSON Document 6-15

Supported Special Characters in JSON Samples 6-16

content-type is Missing for an Asynchronous Flow 6-16

REST URLs Exceeding 8251 Characters Fail 6-17

Send a "null" Value Instead of "" for Any Specific Key in JSON Through the REST Adapter 6-17

7 REST Adapter Samples

Build an Integration that Exposes the REST API Using the REST Adapter 7-1

vii

Preface

This guide describes how to configure this adapter as a connection in an integration in Oracle
Integration.

Note:

The use of this adapter may differ depending on the features you have, or whether
your instance was provisioned using Standard or Enterprise edition. These
differences are noted throughout this guide.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
This guide is intended for developers who want to use this adapter in integrations in Oracle
Integration.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://support.oracle.com/portal/ or visit Oracle
Accessibility Learning and Support if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

Preface

viii

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
See these Oracle resources:

• Oracle Cloud at http://cloud.oracle.com
• Using Integrations in Oracle Integration 3

• Using the Oracle Mapper with Oracle Integration 3

• Oracle Integration documentation on the Oracle Help Center.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

http://cloud.oracle.com

1
Understand the REST Adapter

Review the following conceptual topics to learn about the REST Adapter and how to use it as a
connection in integrations in Oracle Integration. A typical workflow of adapter and integration
tasks is also provided.

Topics:

• REST Adapter Capabilities

• REST Adapter Restrictions

• REST Adapter Use Cases

• Workflow to Create and Add a REST Adapter Connection to an Integration

REST Adapter Capabilities
The REST Adapter can expose integrations as REST APIs by configuring a REST Adapter
connection as a trigger. The REST Adapter can also consume any external REST API by
configuring a REST Adapter connection as an invoke. This section identifies the capabilities of
the REST Adapter when used as a trigger or invoke connection.

Note:

The REST Adapter treats all endpoints as they are exposed. The REST Adapter
does not filter or change any of the APIs exposed by the application to which you are
connecting. If there is a native adapter for the application to which you are
connecting, use that adapter instead. If you choose to use the REST Adapter instead
of the native adapter, the API restrictions and deprecation policies apply as specified
in the respective application’s documentation.
To connect to the Oracle HCM Cloud SOAP APIs, see Oracle HCM Cloud Adapter
Capabilities.

• Capabilities When Configuring a Trigger Connection to Expose an Integration as a REST
API

• Capabilities When Configuring an Invoke Connection to Consume External REST APIs

Capabilities When Configuring a Trigger Connection to Expose an
Integration as a REST API

The REST Adapter provides the following capabilities when configured as a trigger connection
to expose an integration as a REST API. When configured as a trigger connection, the REST
Adapter lets your integration receive inbound messages from an application.

• Expose REST Endpoints

• Upload Payload Formats

1-1

• Configure Endpoint Properties

• Enforce Incoming Message and Attachment Size Limitations

• Support Multipart/Mixed and Multipart/Form-Data Types

• Support Swagger

• Expose Standard and Custom HTTP Headers

Expose REST Endpoints

You can expose a REST endpoint that can accept the request and process it asynchronously.

Upload Payload Formats

You can upload the following:

• Complex XML schema definitions as a zipped archive to define data definitions for XML
content during REST Adapter configuration. See Complex Schema Support.

• Sample XML documents to define data definitions for XML content during REST Adapter
configuration. The following XML documents are supported for schema generation:

– XML with no namespace.

– XML with a homogenous namespace.

– XML files up to 3 MB in size.

• Schemas with simpleTypes having the restriction facet enabled. Both named and
anonymous types are supported.

Configure Endpoint Properties

You can configure the following:

• Relative resource URI.

• HTTP methods GET, PUT, POST, DELETE, and PATCH.

• Template and query parameters.

• Request/response payload.

– Supports JSON, XML, binary (inline and unstructured), and URL-form-encoded
payloads.

– Supports homogenous JSON arrays including top-level arrays.

– Supports multidimensional JSON arrays (see Homogenous Multidimensional Array
Support in JSON Documents).

• REST APIs exposed using the REST Adapter are secured using Basic Authentication,
OAuth token-based authentication, and JWT-based authentication.

• REST APIs implement the HTTPS protocol, thereby enforcing all incoming requests to
have transport level security.

• Multiple operation entry points with different resource URIs and HTTP actions/verbs. Each
operation represents a different pick action branch in a single integration. This feature
eliminates the need to create multiple integrations (each with a separate resource URI and
verb) to perform different operations. See Receive Requests for Multiple Resources in a
Single REST Adapter Trigger Connection of Using Integrations in Oracle Integration 3.

• REST APIs exposed using the REST Adapter to be CORS-compliant (see Cross-Origin
Resource Sharing (CORS)).

Chapter 1
REST Adapter Capabilities

1-2

• Sample cURL syntax generation on the Summary page of the Adapter Endpoint
Configuration Wizard for the configuration options that you have selected during REST
Adapter connection configuration, such as security policy, headers, parameters, and so on.
See Summary Page.

Enforce Incoming Message and Attachment Size Limitations

Support is provided for the following:

• Ensures that incoming (trigger) message requests without attachments do not exceed the
size limit. See Service Limits in Provisioning and Administering Oracle Integration 3.

Messages with attachments (for example, multipart/mixed and multipart/form-data) are not
subject to this constraint. If the size of the structured message (for example, XML/JSON)
exceeds the size limit, an HTTP error code message is returned to the client: 413 Request
entity too large.

• Ensures that incoming (trigger) JSON attachments do not exceed the size limit. If the size
of the JSON attachment exceeds the limit, an HTTP error code message is returned to the
client: 413 Request entity too large. See Service Limits in Provisioning and
Administering Oracle Integration 3.

• Ensures that incoming (trigger) structured message payload requests (any content-type
header containing JSON, XML, HTML, YAML, or YML) from a client do not exceed the size
limit. If the size of the structured message exceeds these values, an HTTP error code
message is returned to the client: 413 Request entity too large.

See Service Limits in Provisioning and Administering Oracle Integration 3.

Support Multipart/Mixed and Multipart/Form-Data Types

Support is provided for the following:

• Consumption and publication of OpenAPI with multipart/mixed and multipart/form-data in
REST Adapter trigger connections. See Consume and Publish OpenAPI Documents with
Multipart/Mixed and Multipart/Form-Data.

• Multipart attachments (content-types: multipart/mixed, and multipart/form-data) in request/
response messages while creating an integration to expose a REST endpoint that accepts
incoming request messages with multipart attachments and/or sends responses with
multipart attachments (see Multipart Attachment Support for Trigger and Invoke
Connections).

Support Swagger

Automatic production of a Swagger 2.0–compliant document for REST APIs exposed using the
REST Adapter is supported. This document describes the metadata for the generated REST
APIs.

Expose Standard and Custom HTTP Headers

Standard and custom HTTP headers to model an integration are supported to expose standard
and custom HTTP header properties to Oracle Integration for downstream processing (see
Standard and Custom Header Support).

Chapter 1
REST Adapter Capabilities

1-3

Capabilities When Configuring an Invoke Connection to Consume External
REST APIs

The REST Adapter provides the following capabilities when configured as an invoke
connection to consume external REST APIs. When configured as an invoke connection, the
REST Adapter sends messages to a target application endpoint.

• Enforce Outgoing Message and Attachment Size Limitations

• Publish OpenAPI Documents

• Invoke Oracle Cloud Infrastructure REST APIs

• Connect to Private Resources

• Consume REST APIs

• Invoke Amazon Web Services (AWS)

• Configure Endpoint Properties

• Upload Payload Formats

• Support Multipart/Mixed and Multipart/Form-Data Types

• Support Resource Principal Session Tokens

• Support JWT Client and User Assertions

• Expose Standard and Custom HTTP Headers

• Invoke Co-located REST APIs

• Dynamically Change Endpoints

Enforce Outgoing Message and Attachment Size Limitations

Support is provided for the following:

• Ensures that responses containing attachments for outbound REST requests do not
exceed 1 GB. These attachments can be multipart/mixed, multipart/form-data, or
application/octet-stream. If the attachment exceeds 1 GB, an HTTP error code message is
returned: 413 Request entity too large

• Ensures that outgoing (invoke) messages returning an unstructured payload (multipart-
formdata and binary/octed-stream) from a client do not exceed the size limit.

• Ensures that outgoing (invoke) messages returning structured message payloads (any
content-type header containing JSON, XML, HTML, YAML, or YML) to a client do not
exceed the size limit.

See Service Limits in Provisioning and Administering Oracle Integration 3.

Publish OpenAPI Documents

You can publish REST-based integrations as OpenAPI documents. OpenAPI support is
available when configuring the REST Adapter as an invoke connection. You provide a link to
the OpenAPI document to publish or consume.

OpenAPI support enables you to perform the following tasks:

• – Publish an OpenAPI document describing an Oracle Integration REST endpoint. You
can invoke the REST endpoint with the published document using a REST client such
as postman.

Chapter 1
REST Adapter Capabilities

1-4

See Publish REST-Based Integrations as OpenAPI Documents.

– Consume an OpenAPI document using the REST Adapter.

OpenAPI-defined headers are automatically supported except for the standard headers
that are currently disabled in the Adapter Endpoint Configuration Wizard.

Invoke Oracle Cloud Infrastructure REST APIs

You can invoke Oracle Cloud Infrastructure REST APIs such as Oracle functions, streaming,
storage and so on as an integral part of Oracle Integration integration flows.

Connect to Private Resources

You can connect to private resources that are in your virtual cloud network (VCN) with a private
endpoint. See Connect to Private Resources in Provisioning and Administering Oracle
Integration 3 and Configure the Endpoint Access Type. This type of connection does not use
the connectivity agent. The REST Adapter does not support private endpoints with trigger
connections. Only invoke connections are supported.

Consume REST APIs

Support is provided for the following:

• Consuming any REST API described using Swagger 2.0/RAML/OpenAPI documents and
the Oracle Metadata Catalog. The REST Adapter can automatically discover and present
the available resources and operations present in the documents for configurations. The
metadata regarding operation-specific request and response messages available in the
document is automatically made available for mapping and other activities.

• Consuming external REST APIs that are not described using Swagger/RAML/OpenAPI
documents. You can declaratively specify the HTTP method and the sample JSON
document/XML schema for describing the shape of the request and response messages.

• Consuming REST APIs protected using HTTP Basic Authentication, OAuth Client
Credentials (two-legged flow), OAuth Resource Owner Password Credentials (two-legged
flow), OAuth Authorization Code Credentials (three-legged flow), OAuth Custom Three
Legged Flow, OAuth Custom Two Legged Flow, OAuth 1.0a One Legged Authentication,
Amazon Web Services (AWS) Signature Version 4, and Oracle Cloud Infrastructure (OCI)
Signature Version 1. There is also support for consuming APIs that are unprotected.

• Consuming external REST APIs that are protected using transport level security. The
REST Adapter supports one-way SSL and two-way SSL. Oracle Integration supports a
certificate management user interface to upload public certificates for external APIs that
are protected either using lesser known certifying authorities (CA) or self-signed
certificates.

• Consuming external REST APIs hosted on a two-way SSL server requiring client side
(Oracle Integration) identity. Oracle Integration provides support for exchanging the client
side identity with the server hosting the external API.

Invoke Amazon Web Services (AWS)

You can invoke external REST endpoints supporting the Amazon Web Services (AWS)
Signature Version 4 authentication type. You can use the Amazon Web Services (AWS)
Signature Version 4 security policy with the connectivity agent for scenarios in which you need
to invoke AWS APIs hosted in an on-premises environment.

Configure Endpoint Properties

You can configure the following (see Configuration Parameters):

Chapter 1
REST Adapter Capabilities

1-5

• Relative resource URI.

• HTTP methods GET, PUT, POST, DELETE, and PATCH.

• Template and query parameters.

• Request/response payload:

– Supports JSON, XML, binary (inline and unstructured), and URL-form-encoded
payloads.

– Supports homogenous JSON arrays.

– Supports multidimensional JSON arrays (see Homogenous Multidimensional Array
Support in JSON Documents).

– Supports delivery of form parameters as part of a request body.

• Sample cURL syntax generation on the Summary page of the Adapter Endpoint
Configuration Wizard for the configuration options that you have selected during REST
Adapter connection configuration, such as security policy, headers, parameters, and so on.
See Summary Page.

Upload Payload Formats

Support is provided for uploading the following:

• Sample XML documents to define the data definition for XML content during REST
Adapter configuration. The following XML documents are supported for generating the data
definition:

– XML with no namespace.

– XML with a homogenous namespace.

– XML files up to 3 MB in size.

• Sample JSON documents to define data definitions during REST Adapter configuration.

• Complex XML schema definitions as a zipped archive to define data definitions for XML
content during REST Adapter configuration (see Complex Schema Support).

• Schemas with simpleTypes having the restriction facet enabled. Both named and
anonymous types are supported.

Support Multipart/Mixed and Multipart/Form-Data Types

Support is provided for the following:

• Multipart attachments (content-type: multipart/mixed, and multipart/form-data) in request/
response messages in an integration while sending a request to an external REST
endpoint that accepts incoming request messages with multipart attachments and/or sends
responses with multipart attachments (see Multipart Attachment Support for Trigger and
Invoke Connections).

Support Resource Principal Session Tokens

You can use the Resource Principal Session Token (RPST). RPST enables an Oracle
Integration instance (the resource) to authenticate itself with and consume Oracle Cloud
Infrastructure services, such as Oracle Cloud Infrastructure Functions, Oracle Cloud
Infrastructure Object Storage, Oracle Cloud Infrastructure Vision, and more. See Resource
Principal Session Token Support and RPST and OCI Service Invocation Security Policy Use.

Chapter 1
REST Adapter Capabilities

1-6

Support JWT Client and User Assertions

JWT client and user assertions with the OAuth Client Credentials are supported using the JWT
Client Assertion security policy and the OAuth using the JWT User Assertion security policy.
JWT assertions enable you to invoke a service provider that does not regard an OAuth client
secret as secure. Trust is established with a key pair exchange instead of a client secret. See
JWT Assertion Support for Outbound Invocations and Invoke a Service Provider API with a
JWT Assertion.

Expose Standard and Custom HTTP Headers

Support is provided for the following:

• Accessing and setting standard and custom HTTP headers exposed by external REST
APIs (see Standard and Custom Header Support).

• Using extensibility support to access plurality of OAuth 2 providers (see Standard and
Custom Header Support).

Invoke Co-located REST APIs

You can invoke co-located REST APIs in an optimized manner.

The Oracle Integration runtime determines if the endpoint being invoked is co-located by
checking if the endpoint URL has a load balancer address. If the endpoint URL has a load
balancer address, the endpoint is considered co-located and the HTTP request is optimized by
accessing the service locally using the non-SSL HTTP protocol.

Dynamically Change Endpoints

You can dynamically change the (invoke) outbound endpoint configuration (see Support for
Dynamic REST Endpoints).

REST Adapter Restrictions
Note the following REST Adapter restrictions.

• The REST Adapter does not support private endpoints with trigger connections. Only
invoke connections are supported. Attempting to use a trigger connection results in the
following error:

Connection with PrivateEndpoint access type is not supported for trigger.
Please choose a valid
access type for the trigger.

• The OCI Service Invocation security policy does not work in cloud tenancies that are not
enabled for identity domains. If you don't know your cloud tenancy status, ask your
administrator.

• Transport Layer Security (TLS) version 1.3 is not supported.

• REST endpoints can be protected using two-way SSL or mutual TLS authentication
(mTLS). The REST Adapter supports accessing these endpoints. Authorization endpoints
that procure and manage OAuth access tokens are also REST endpoints. However, these
endpoints are not certified for use with the REST Adapter connection when protected using
two-way SSL.

Chapter 1
REST Adapter Restrictions

1-7

• Two-way SSL is not supported for calls to external services through the connectivity agent.
Two-way SSL requires direct connectivity from Oracle Integration without the connectivity
agent.

• The maximum permissible limit for JSON file samples is 100 KB.

• Plain/text content-type can be sent or received as unparsed content by the REST Adapter
using the raw payload option.

• Consuming external REST APIs that are protected using NTLM or digest token-based
authentication are not supported.

• When configuring the REST Adapter to work with the on-premises connectivity agent on
the Connections page, only the Basic Authentication, OAuth Client Credentials, OAuth
Resource Owner Password Credentials, OAuth Custom Two Legged Flow, and No
Security Policy security policies in the Security Policy list are supported.
The following security policies in the Security Policy list are not supported for use with the
connectivity agent:

– AWS Signature Version 4

– OAuth Authorization Code Credentials

– OAuth Custom Three Legged Flow

– API Key Based Authentication

– OAuth 1.0 One Legged Authentication

– OCI Signature Version 1

See On-Premises REST API Support with the Agent.

• The REST Adapter automatically encodes the value of query parameters before invoking a
service. The REST Adapter has no way of knowing if you have already encoded a query
parameter. Ensure that you assign unencoded values to query parameters. Assigning
encoded values leads to double encoding.

For example, assume query parameter q has the following value:

q=a+b

This may mean that the value of q was intended to be a b, but was encoded by the user.

The intention may also have been to send a+b, which must be URL-encoded as a%2Bb
before sending.

• Polymorphic constructs are not supported when publishing OpenAPIs.

• Unicode characters in the range of \u0000 to \u001F are control characters and are not
allowed in JSON elements.

• You can customize the response status. However, this is not shown as part of the Swagger
contract because runtime overrides are not known as part of the interface.

• HTTP response status cannot be customized under the following conditions:

– If the request is asynchronous one way. This is because the response status is always
201.

– Errors that occur during trigger request/response handling are reported using a
predefined error code.

– Basic routing integrations (map my data integrations) don't allow fault handling and
error responses in such scenarios.

Chapter 1
REST Adapter Restrictions

1-8

– If the HTTP response status is set to 204, the response is sent back without any
content.

• If you use the OAuth 1.0 One Legged Authentication security policy for integrations with
Oracle NetSuite, ensure your REST Adapter connections use HMAC-SHA256 or HMAC-
SHA1. If you need to make an update, integration reactivation is not required. See
Configure Connection Security.

Note:

There are overall service limits for Oracle Integration. A service limit is the quota or
allowance set on a resource. See Service Limits.

Swagger/OpenAPI Restrictions
Not all Swagger constructs are understood by the REST Adapter. Note the following limitations
when publishing and consuming Swagger/OpenAPI.

Publish Restrictions
Note the following publish restrictions for the REST Adapter.

• Polymorphic constructs are not supported when publishing OpenAPIs.

• Endpoints created using REST Adapter trigger connections are described using a Swagger
and openAPI definition. REST endpoints having an XML request/response are not
correctly described. Clients must not rely on the Swagger/openAPI definition.

• Each REST Adapter trigger connection endpoint is published as a Swagger document. The
Swagger document usually has a single resource and verb.
However, in the case of multiple verbs and resources, the Swagger document has multiple
resources or paths in Swagger and multiple verbs for each resource.

• While OpenAPI lets you define dictionaries types where the keys are strings, dictionary
types are not supported in Oracle Integration.

• Only JSON payload is supported for publishing. XML payload is not supported.

Consume Restrictions
The REST Adapter as a client can be configured with a Swagger definition based on which it
can discover and list the existing resource. However, some Swagger operations cannot
currently be correctly consumed by the REST Adapter:

• Only three multipart combinations are supported for consumption:

– One or many file upload body parts and any number of plain text fields using multipart/
form-data

– One or many file upload body parts and one JSON body part using multipart/form-data

– One or many file upload body parts and one JSON body part using multipart/mixed

• Content of JSON must be an object

• XML

• Top-level array

• Raw/application/octet-stream

Chapter 1
REST Adapter Restrictions

1-9

• External REST APIs that are described using OpenAPI 3.0

• Swagger documents of external REST APIs that have metadata regarding content types
such as multipart/form-data, multipart/mixed, and application/octet-stream

• REST Adapter invoke connections cannot consume Swagger documents with recurring
nested structures. For example:

Employee → payroll → item (line 1, line2)
Manager → payroll → item (line 3, line4)

In such a case, the Swagger parser caches the first definition of item and uses that
causing incorrect manager schema. This issue is addressed, but the fix is currently not
enabled due to backward compatibility.

REST endpoints that do not have a request or a response cannot be consumed using a
Swagger-based connection or using the local integration. If an error appears after
initializing the local integration or the Adapter Endpoint Configuration Wizard with a
Swagger-based connection, check the limitations on consumption of certain Swaggers.

Note these additional restrictions:

• The missing server URL for the OpenAPI specification is resolved from the OpenAPI host
port. If the server URL is missing from the OpenAPI specification, the base URL is
resolved from the domain/host:port of the OpenAPI URL where the OpenAPI specification
is hosted. For an example, the target endpoint is resolved using the host and port where
the OpenAPI specification is hosted as follows:

http(s)://host:port/path-from-openapi

• Headers/custom headers must be added manually and are not discovered from the
OpenAPI specification.

• Connectivity agent limitations:

– Swagger API consumption does not work with the connectivity agent.

– OpenAPI consumption does not work with the connectivity agent.

• If a Swagger or OpenAPI specification defines multiple success responses, Oracle
Integration uses the responses based upon the following criteria:

– Oracle Integration first looks for a success response (200).

– If the definition does not contain a 200 response, Oracle Integration looks for a
response definition with default.

– If default is not defined, Oracle Integration looks for a response with a 201 definition.

In each category, Oracle Integration first uses the response corresponding to
application/json. Otherwise, Oracle Integration uses the first response in the list of
responses for the status code.

REST Adapter Use Cases
The REST Adapter can be used to implement the following categories of use cases.

• Modernize the Existing Capability

• Shape the API Based on a Client Application's Needs

• Provide a Coarse-Grained API Based on a Client Domain's Needs

Chapter 1
REST Adapter Use Cases

1-10

• No Application Adapter for an External REST API

• Convert an Unmanaged API into an OAuth2–Protected API

Note:

When you provision a new instance of Oracle Integration, several sample integrations
are automatically included. Many of these samples are configured with the REST
Adapter. These fully designed samples help you get up and running quickly and
show you how easy it is to activate, invoke, and monitor an integration between
endpoints. See Running the Sample Integrations of Using Integrations in Oracle
Integration 3.

Modernize the Existing Capability

There are scenarios in which partners or in-house client applications can consume only REST
APIs. The capability is exposed through non-HTTP interfaces such as JDBC. Or the capability
is exposed as a SOAP API. For example, status of the orders may reside in an on-premises
database that must be retrieved using a SQL query. You can build an integration that retrieves
order status and exposes it as a REST API by configuring the REST Adapter connection as a
trigger.

Shape the API Based on a Client Application's Needs

There are scenarios in which partners or in-house or channel-specific client applications
warrant only a very small subset of information compared to what is exposed by back end data
sources. For example, the Get Order SOAP operation exposed by the back end Oracle ERP
Cloud application can return several hundred attributes, while the client applications may need
less than one-tenth of that. You can build an integration that consumes the SOAP service to
retrieve the order details and exposes them as a REST API by configuring the REST Adapter
connection as a trigger. The response message for this new REST API can reflect only the
needed set of attributes by the client applications. The mapping of data from the back end
SOAP service to the REST API-specific response message is performed only for the subset of
attributes.

Provide a Coarse-Grained API Based on a Client Domain's Needs

There are scenarios in which the partners or in-house or channel-specific client applications
warrant an API that may not be exposed at the same level of granularity by back end systems.
For example, you want to expose an API to your partners for creating a sales order in your
application. However, the sales order application may need multiple service invocations for
creating one order. Exposing a single API for creating an order to partners abstracts the
internal implementation details. You can accomplish this by developing an integration that can
send multiple service invocations to the back end systems and expose them as a single REST
API by configuring the REST Adapter connection as a trigger.

No Application Adapter for an External REST API

Even though Oracle Integration delivers many adapters for facilitating integration with specific
applications, there are still several applications/capabilities for which specific adapters are
missing. In other situations, an integration can be built to invoke these external REST APIs by
configuring the REST Adapter connection as an invoke.

Chapter 1
REST Adapter Use Cases

1-11

Convert an Unmanaged API into an OAuth2–Protected API

Applications with unprotected APIs or APIs protected using user credentials generally are
difficult to expose publicly. While an unprotected API can be misused, an API protected using
user credentials requires a higher level of trust with the client. Also, a change in user
credentials implies that the client applications also need to update the credentials. You can
create an integration that invokes such APIs and exposes them through a REST Adapter
connection configured as a trigger, which is protected using OAuth 2.

Workflow to Create and Add a REST Adapter Connection to an
Integration

You follow a very simple workflow to create a connection with an adapter and include the
connection in an integration in Oracle Integration.

Step Description More Information

1 Create the adapter connections for
the applications you want to
integrate. The connections can be
reused in multiple integrations and
are typically created by the
administrator.

Create a REST Adapter Connection

2 Create the integration. When you
do this, you add trigger and invoke
connections to the integration.

Understand Integration Creation and Best Practices and
Add the REST Adapter Connection to an Integration

3 Map data between the trigger
connection data structure and the
invoke connection data structure.

Map Data in Using Integrations in Oracle Integration 3

4 (Optional) Create lookups that map
the different values used by those
applications to identify the same
type of object (such as gender
codes or country codes).

Manage Lookups in Using Integrations in Oracle
Integration 3

5 Activate the integration. Manage Integrations in Using Integrations in Oracle
Integration 3

6 Monitor the integration on the
dashboard.

Monitor Integrations During Runtime in Using Integrations
in Oracle Integration 3

7 Track payload fields in messages
during runtime.

Assign Business Identifiers for Tracking Fields in Messages
and Track Integration Instances in Using Integrations in
Oracle Integration 3

8 Manage errors at the integration
level, connection level, or specific
integration instance level.

Manage Errors in Using Integrations in Oracle Integration 3

Chapter 1
Workflow to Create and Add a REST Adapter Connection to an Integration

1-12

2
REST Adapter Concepts

The following sections describe REST Adapter capabilities in more detail.

Topics:

• Authentication Support

• REST API Support

• OpenAPI Support

• Attachment Support

• Header, Token, Query Parameter, and Array Support

• Swagger Support

• Mapper Connectivity Properties Support

• REST Endpoint Support

• Cross-Origin Resource Sharing (CORS) Support

• Complex Schema Support

• Resource Principal Session Token Support

• JWT Assertion Support for Outbound Invocations

Authentication Support
The following sections describe REST Adapter authentication capabilities in more detail.

Topics:

• Authenticate Requests for Invoking Oracle Integration Flows

• Authentication Types

• Role-Based Connections

• Extensibility Support for Multiple OAuth Providers

OAuth 2.0 is the industry-standard protocol for authorization. See OAuth 2.0.

Authenticate Requests for Invoking Oracle Integration Flows
Integrations support multiple authentication methods suited to different applications and use
cases. The adapters used as a trigger connection to stand up the endpoints/listener for a
specific integration can support one or multiple authentication methods.

The following sections discuss the use cases, pros and cons, prerequisites, and instructions
necessary for sending a request for each of the supported authentication methods.

Topics:

• About Requests to Invoke Integrations

2-1

https://oauth.net/2/

• About OAuth 2.0 Grants

• Use OAuth 2.0 Grants in Identity Domain Environments

• Use OAuth 2.0 Grants in Oracle Identity Cloud Service Environments

See OAuth Grant Types.

About Requests to Invoke Integrations
All integrations using this adapter as a trigger connection are protected by default using HTTP
Basic Authentication and OAuth token-based authentication.

You currently can authenticate your requests to invoke integrations in either of the following
ways:

• Using HTTP Basic Authentication by sending the credentials of the user (that is, created in
Oracle Identity Cloud Service) through the HTTP authorization header

• Sending an OAuth access token in the header while invoking an Oracle Integration
endpoint after acquiring the access token from Oracle Identity Cloud Service that serves as
the OAuth authorization provider

You must have the ServiceUser role in Oracle Identity Cloud Service to invoke integrations.

Invoke Integration Endpoints Using HTTP Basic Authentication

This authentication method allows the credentials belonging to an Oracle Integration user to
send the request to invoke an integration. You must create this user in the Oracle Integration
identity provider Oracle Identity Cloud Service and ensure that the user was granted the role
for invoking an integration.

The user can be:

• Human - representing a business user such as a sales representative, technician, or any
other person for invoking an integration

• Nonhuman - representing a service integration account used by an external client
application for invoking an integration

Even though it's easy to implement the authentication scheme, this is the least secure way to
send a request to Oracle Integration for invoking an integration. Also, Oracle Integration
doesn't recommend this authentication scheme.

In addition, the customer must ensure the credentials, when reset, are provided to the client
application that invokes the integration to ensure a new set of credentials are being used from
then on.

Assign appropriate user(s) to the various Oracle Integration roles. For standard/production
configurations, use the ServiceUser role. (See Oracle Integration Roles in Provisioning and
Administering Oracle Integration 3.)

1. From the menu on the Oracle Cloud Infrastructure home page, select Identity &
Security, then select Federation.

2. In the Federation table, click OracleIdentityCloudService.

3. In the Oracle Identity Cloud Service Console field, click the URL.

4. Click the applications page icon.

Chapter 2
Authentication Support

2-2

https://oauth.net/2/grant-types/

5. Click the application.

6. To assign a user, go to the Application Roles section of Oracle Identity Cloud Service.

7. Make a request to trigger an endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Basic <base64-encoded username:password>'

Invoke Integration Endpoints Using OAuth Token-Based Authentication

This authentication scheme allows the external client to acquire a token that is also sent as
part of the request sent to invoke an integration.

The most important step for an application in the OAuth flow is how the application receives an
access token (and optionally a refresh token). A grant type is the mechanism used to retrieve
the token. OAuth defines several different access grant types that represent different
authorization mechanisms.

Applications can request an access token to access protected endpoints in different ways,
depending on the type of grant type specified in the Oracle Identity Cloud Service application.
A grant is a credential representing the resource owner's authorization to access a protected
resource.

The following sections discuss the various grant types and their pros/cons, along with
instructions on how to configure the specific grant type.

Chapter 2
Authentication Support

2-3

About OAuth 2.0 Grants
There are several OAuth 2.0 grant types you can use in Oracle Integration. Review the
following information to identify the grant type to use for your use case.

Chapter 2
Authentication Support

2-4

Grant Type About the Grant Type Use Cases and Risks

JWT user assertion

(recommended)

A user assertion is a user token
that contains identity information
about the user. The user can
either represent a human or a
service integration account
created for identifying a specific
calling application.

The user assertion is used
directly as an authorization grant
to obtain an access token. The
client details are provided either
as an authentication header in
the request or as a client
assertion.

The user assertion grant is more
secure than the resource owner
password credentials grant
because the user’s credentials
are never exposed.

The user assertion workflow:

• Is used with confidential
clients. The OAuth clients are
trusted to assert a user/
service integration account
identity on behalf of the user/
service integration account.

• The resource owner's
credentials (Oracle
Integration user) are never
accessible to the client
application. It just uses the
assertion of the resource
owner.

• It isn’t redirection-based. It
takes a request only from the
client application to the
authorization server. The
user is not redirected
between interfaces to
authorize the request.

This user assertion grant works
as follows:

• The client requests an
access token by providing a
user assertion. The client
details are provided either as
an authentication header in
the request or as a client
assertion.

• The OAuth service
authenticates the client and,
if valid, supplies an access
token.

The JWT user assertion
characteristics are as follows:

This grant is used by applications
that want to programmatically
invoke integrations without any
user intervention.

The client application
impersonates the user by sending
the user assertion to Oracle
Identity Cloud Service while
requesting token access. An
access token is returned in the
user context.

The user can either represent a
human or a service integration
account created for identifying a
specific calling application.

Oracle Integration recommends
the use of this grant for acquiring
an OAuth access token by the
applications that must
programmatically start the
integration without any user
intervention.

Risks
Carefully use this grant (only with
first party/trusted clients) because
it allows for trivial impersonation
to more highly privileged
accounts on services.

Usage
See Prerequisites for JWT User
Assertions.

Chapter 2
Authentication Support

2-5

Grant Type About the Grant Type Use Cases and Risks

• Does not require the client to
have knowledge of user
credentials.

• There is no browser-based
end user interaction.

• A refresh token is allowed.
• An access token is in the

context of the end user.
In this OAuth flow:

• A user attempts to access a
client application by sending
a generated user assertion.

• The client application
requests an access token,
and often a refresh token, by
providing a user assertion or
a third-party user assertion.

• The Oracle Identity Cloud
Service authorization server
returns the access token to
the client application.

• The client application uses
the access token in an API
call to invoke the integration.

Chapter 2
Authentication Support

2-6

Grant Type About the Grant Type Use Cases and Risks

Authorization code The authorization code grant type
is used by web and mobile
applications. It differs from most
of the other grant types by first
requiring the application to launch
a browser to begin the
integration. At a high level, the
integration consists of the
following steps:

• The application opens a
browser to send the user to
the OAuth server.

• The user sees the
authorization prompt and
approves the application
request.

• The user is redirected back
to the application with
authorization code in the
query string.

• The application exchanges
the authorization code for an
access token.

The authorization code has the
following characteristics:

• Does not require the client to
have knowledge of user
credentials.

• Is a browser-based end user
interaction.

• A refresh token is allowed.
• An access token is in the

context of the end user.
In this OAuth flow:

• A user clicks a link in a web
server client application to
request access to protected
resources.

• The client application
redirects the browser to the
Oracle Identity Cloud Service
authorization endpoint with a
request for an authorization
code:

oauth2/v1/authorize
• The

Oracle Identity Cloud Service
authorization server returns
an authorization code to the
client application through a
browser redirect after the
resource owner gives
consent.

• The client application
subsequently exchanges the

This grant is used by the
applications such as web portals
and mobile applications involving
user interactions that may end up
invoking the integrations. In this
type of use case, the user signing
in to the web portal/mobile
application explicitly provides the
consent by authenticating against
Oracle Integration to let their
application start the integration.

Usage
See Prerequisites for
Authorization Code.

Chapter 2
Authentication Support

2-7

Grant Type About the Grant Type Use Cases and Risks

authorization code for an
access token, and often a
refresh token.

• The
Oracle Identity Cloud Service
authorization server returns
the access token to the client
application.

• The client application uses
the access token in an API
call to invoke the integration.

Client credentials The client uses its client
credentials (or other supported
means of authentication) to
request an access token when
requesting access to protected
resources:
• Under its control
• Those of another resource

owner that have been
previously arranged with the
authorization server

Only confidential clients must use
this grant type.

In this OAuth flow:

• The client authenticates with
the authorization server and
requests an access token
from the token endpoint.
Because client authentication
is used as the authorization
grant, no additional
authorization request is
required.

• The authorization server
authenticates the client and,
if valid, issues an access
token.
If the request fails client
authentication or is invalid,
the authorization server
returns an error response.

This grant is typically used by
clients to obtain an access token
outside of the context of a user
(for example, to access resources
about themselves rather than to
access a user's resources).

Usage
See Prerequisites for Client
Credentials.

Chapter 2
Authentication Support

2-8

Grant Type About the Grant Type Use Cases and Risks

Resource owner password
credential (ROPC)

(not recommended)

The resource owner’s password
credentials (that is, the user
name and password) can be used
by the OAuth client directly as an
authorization grant to obtain an
access token.
The resource owner password
credentials grant type is suitable
for cases where the resource
owner has a trust relationship
with the OAuth client.
When using the resource owner
password credentials grant, the
user provides the credentials
(user name and password)
directly to the application. The
application then uses the
credentials to obtain an access
token from the OAuth token
service.
The resource owner password
credentials grant is a grant
workflow where the client
application, together with its client
identifier and secret, sends the
user name and password in
exchange for an access token.
Instead of the user having to log
in and approve the authorization
request in a web interface, the
user can enter the user name and
password in the client application
user interface directly. This
workflow has different security
properties than other OAuth
workflows. The primary difference
is that the user’s password is
accessible to the application. This
requires a strong trust of the
application by the user.
The resource owner password
credentials grant has the
following characteristics:
• The client is required to have

knowledge of user
credentials.

• Is not a browser-based end
user interaction.

• A refresh token is allowed.
• An access token is in the

context of the end user.
In this OAuth flow:
• The user clicks a link in the

client application requesting
access to protected
resources.

• The client application
requests the resource

This grant can be used by
applications that want to
programmatically invoke the
integration without any user
intervention.

Use this grant only with trusted
first-party clients that securely
handle user credentials.

Even though this grant type can
be used by client applications to
acquire an OAuth access token to
use for sending the request to
invoke an integration in a
programmatic manner, Oracle
Integration does not recommend
the resource owner password
credential grant because of the
following risks:

Risks
• This grant type carries a

higher risk than other grant
types because it maintains
the password anti-pattern
this protocol seeks to avoid.
The client can abuse the
password or the password
can unintentionally be
disclosed to an attacker (for
example, through log files or
other records kept by the
client).

• The application can request
a scope with complete
access to user resources
once it possesses the
password credential.

• Passwords expire.
• This grant is currently in a

deprecated state.
Usage
See Prerequisites for Resource
Owner Password Credentials.

Chapter 2
Authentication Support

2-9

Grant Type About the Grant Type Use Cases and Risks

owner's user name and
password.

• The user logs in with their
user name and password.

• The client application
exchanges those credentials
for an access token, and
often a refresh token, from
the Oracle Identity Cloud
Service authorization server.

• The Oracle Identity Cloud
Service authorization server
returns the access token to
the client application.

• The client application uses
the access token in an API
call to invoke the integration.

Use OAuth 2.0 Grants in Identity Domain Environments
To use an OAuth 2.0 grant type with this adapter in an identity domain environment of Oracle
Integration, you must perform the following prerequisites.

• Access the Identity Domain

• Prerequisites for Client Credentials and Resource Owner Password Credentials

• Prerequisites for JWT User Assertion

• Prerequisites for Authorization Code

Access the Identity Domain

• Log in to the Oracle Cloud Infrastructure Console with your identity domain administrator
credentials.

1. In the navigation pane, click Identity & Security.

2. Click Domains.

3. Select your compartment.

4. Click the identity domain.

Chapter 2
Authentication Support

2-10

5. In the navigation pane, click Integrated applications.
This is the location at which you create the client application for your grant type.

Prerequisites for Client Credentials and Resource Owner Password Credentials

To trigger the integration with OAuth, a client application is required. The prerequisites for the
client credentials and resource owner password credentials grant types are very similar.

• Configure the client application

• Add roles to the client application

Configure the client application

1. Click Add application.

2. Select Confidential Application, then click Launch workflow.

Chapter 2
Authentication Support

2-11

3. Enter a name. The remaining fields on this page are optional and can be ignored.

4. Click Next.

5. In the Client configuration box, select Configure this application as a client now.

6. Select the grant type to use:

a. For client credentials, select Client credentials in the Allowed grant types section.

b. For resource owner password credentials, select Resource owner and Refresh token
in the Allowed grant types section.

Chapter 2
Authentication Support

2-12

7. Complete the following steps for either grant type:

a. Leave the Redirect URL, Post-logout redirect URL, and Logout URL fields blank.

b. For Client type, ensure that Confidential is selected.

c. Bypass several fields and scroll down to the Token issuance policy section.

d. Select Specific in the Authorized resources section.

e. Click the Add Resources check box.

f. Click Add scope.

g. Find the Oracle Integration application for your instance, and click .

h. Select the two scopes appended with the following details:

• urn:opc:resource:consumer::all

• ic/api/

i. Click Add.
The scopes are displayed in the Resources section.

Chapter 2
Authentication Support

2-13

j. Ignore the Add app roles check box. This selection is not required.

k. Click Next, then click Finish.

The details page for the client application is displayed.

8. Click Activate, and then Activate application to activate the client application for use.

9. In the General Information section, note the client ID and client secret values. These
values are required for the third-party application that is communicating with the identity
domain.

Add roles to the client application

1. In the navigation pane, click Oracle Cloud Services.

2. Select the specific application corresponding to the Oracle Integration instance.

3. In the navigation pane, click Application roles.

4. If configuring the client credentials grant type, select the following:

a. Expand ServiceInvoker, then click Manage next to Assigned applications.

Chapter 2
Authentication Support

2-14

b. Click Show available applications.

c. Select the application you just created and click Assign, then click Close.

5. If configuring the resource owner password credentials grant type, select the following:

a. Expand ServiceInvoker, then click Manage next to either Assigned users or
Assigned groups. For example, if you click Assigned users:

Chapter 2
Authentication Support

2-15

b. Click Show available users.

c. Select the user and click Assign, then click Close.

6. Validate the client application for the grant type you are using.

a. For the client credentials grant type:

i. Fetch the access client to make an access token request with the client
credentials.

##Syntax
curl -i -H 'Authorization: Basic <base64Encoded clientid:secret>' -
H 'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=client_credentials&scope=<app scope>'
###where
<base64-clientid-secret> - Base 64 encode clientId:ClientSecret
<app scope> - Scope added while creating application in client
configuration section (Ends with urn:opc:resource:consumer::all)

##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request
POST https://<identity_domain_host>/oauth2/v1/token -d
'grant_type=client_credentials&scope=https://<Resource APP
Audience>urn:opc:resource:consumer::all'

Where Identity_Domain_Service_Instance is the value in the Domain URL field.

ii. Capture the access_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600
}

iii. Use the access_token in the authorization header to invoke the trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

Chapter 2
Authentication Support

2-16

b. For the resource owner password credentials grant type:

i. To fetch the access client, make a request with the user name and password in the
payload.

##Syntax
curl -i -H 'Authorization: Basic <base64Encoded_clientid:secret>' -
H 'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=password&username=<user-
name>&password=<password>&scope=<App_Scope>%20offline_access'

###where
<base64-clientid-secret> - Base 64 encode clientId:ClientSecret
<username> - user for token needs to be issued (must be in
serviceinvoker role).
<password> - password for above user
<app_scope> - Scope added while creating application in client
configuration section (Ends with urn:opc:resource:consumer::all)
##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request
POST https://<identity_domain_host>/oauth2/v1/token -d
'grant_type=password&username=sampleUser&password=SamplePassword&sco
pe=https://
<Resource_APP_Audience>urn:opc:resource:consumer::all%20offline_acce
ss'

ii. Capture the access_token and refresh_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": "AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSpzc="
}

iii. Use the access_token in the authorization header to invoke the Oracle Integration
trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

iv. To update the access token, use the refresh token and make a request.

v. Capture the access_token and refresh_token from the response for further use.

curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=<refresh_token>'

##Example

Chapter 2
Authentication Support

2-17

curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request
POST https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=AQAgY2MzNjVlOTVhOTRh...vM5S0
MkrFSpzc='

Prerequisites for JWT User Assertion

• Generate the key

• Configure the client application

• Add a certificate as a trusted partner

• Generate the JWT user assertion

• Validate the client application

Generate the key

You must first generate the key to import when you configure the client application for the JWT
user assertion.

1. Generate the self-signed key pair.

keytool -genkey -keyalg RSA -alias <your_alias> -keystore <keystore_file> -
storepass <password> -validity 365 -keysize 2048

##example
keytool -genkey -keyalg RSA -alias assert -keystore sampleKeystore.jks -
storepass samplePasswd -validity 365 -keysize 2048

2. Export the public key for signing the JWT assertion.

keytool -exportcert -alias <your_alias> -file <filename> -keystore
<keystore_file> -storepass <password>

##example
keytool -exportcert -alias assert -file assert.cer -keystore
sampleKeystore.jks -storepass samplePasswd

This should show a success message e.g. Certificate stored in file
<assert.cer>

3. Convert the keystore to P12 format.

keytool -importkeystore -srckeystore <filename> -srcstorepass <password> -
srckeypass <password> -srcalias <your_alias> -destalias <your_alias> -
destkeystore <destFileName> -deststoretype PKCS12 -deststorepass
<password> -destkeypass <password>

##example
keytool -importkeystore -srckeystore sampleKeystore.jks -srcstorepass
samplePasswd -srckeypass samplePasswd -srcalias assert -destalias assert -
destkeystore assert.p12 -deststoretype PKCS12 -deststorepass samplePasswd -
destkeypass samplePasswd

Chapter 2
Authentication Support

2-18

This should show a success message e.g. Importing keystore
sampleKeystore.jks to assert.p12...

4. Export the private key from the P12 keystore.

openssl pkcs12 -in <destFileName> -nodes -nocerts -out <pem_file>

##example
openssl pkcs12 -in assert.p12 -nodes -nocerts -out private_key.pem

This should show a success message: MAC verified OK

Configure the client application

To trigger the integration with OAuth, a client application is required.

1. Click Add application.

2. Select Confidential Application, and click Launch workflow.

3. Enter a name. The remaining fields on this page are optional and can be ignored.

4. Click Next.

5. In the Client configuration box, select Configure this application as a client now.

6. For JWT user assertions, select JWT assertion and Refresh token in the Allowed grant
types section.

Chapter 2
Authentication Support

2-19

7. Complete the following steps for the grant type:

a. Leave the Redirect URL, Post-logout redirect URL, and Logout URL fields blank.

b. In the Client type section, select Trusted.

c. Upload the certificate created in section Generate the key. This action adds the
certificate as a trusted partner.

d. Bypass several fields and scroll down to the Token issuance policy section.

e. Select Specific in the Authorized resources section.

f. Click the Add Resources check box.

g. Click Add scope.

h. Find the Oracle Integration application for your instance, and click .

i. Select the two scopes appended with the following details:

• urn:opc:resource:consumer::all

• ic/api/

Chapter 2
Authentication Support

2-20

j. Click Add.
The scopes are displayed in the Resources section.

k. Ignore the Add app roles check box. This selection is not required.

l. Click Next, then click Finish.
The details page for the client application is displayed.

m. Click Activate, and then Activate application to activate the client application for use.

n. In the General Information section, note the client ID and client secret values. These
values are required for the third-party application that is communicating with the
identity domain.

8. In the navigation pane, click Oracle Cloud Services.

9. Select the specific application corresponding to the Oracle Integration instance.

10. In the navigation pane, click Application roles.

11. Expand ServiceInvoker, then click Manage next to either Assigned users or Assigned
groups. For example, if you click Assigned users:

Chapter 2
Authentication Support

2-21

12. Click Show available users.

13. Select the user and click Assign, then click Close.

Add a certificate as a trusted partner

In addition to importing the signing certificate into the client application, you are also required
to include the certificate as a trusted partner certificate.

1. In the navigation pane, click Settings.

Chapter 2
Authentication Support

2-22

2. Click Trusted partner certificates.

3. Click Import certificate to upload the certificate created in section Generate the key.

Generate the JWT user assertion

1. Generate the JWT user assertion using the generated private key and simple Java code.

Note:

You can use the https://github.com/jwtk/jjwt library to generate the user assertion.
There are many libraries listed at https://jwt.io/ for multiple technologies.

Sample:
header:
{
"alg": "RS256",
"typ": "JWT",
"kid": "assert"
}

payload:
{
"sub": "ssaInstanceAdmin",
"jti": "8c7df446-bfae-40be-be09-0ab55c655436",

Chapter 2
Authentication Support

2-23

https://github.com/jwtk/jjwt
https://jwt.io/

"iat": 1589889699,
"exp": 1589909699,
"iss": "d702f5b31ee645ecbc49d05983aaee54",
"aud": "https://identity.oraclecloud.com/"
}

Where:

• sub specifies the user name for whom user assertion is generated.

• jti is a unique identifier

• iat is issued (epoch seconds).

• exp is the token expiry (epoch seconds).

• iss is the client ID.

• aud must include the identity domain audience https://identity.oracle.com/. The
signing algorithm must be RS256.

• kid specifies the key to use to verify the signature. Therefore, it must match with the
uploaded certificate alias.

Validate the client application

1. Once you generate the JWT user assertion, generate the access token as follows.

##Syntax
curl -i -H 'Authorization: Basic <base64Encoded clientid:secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --request
POST https://<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-
type%3Ajwt-bearer&assertion=<user assertion>&scope=<app_scope>'

###where
grant type - urn:ietf:params:oauth:grant-type:jwt-bearer
<base64-clientid-secret> - Base 64 encode clientId:ClientSecret
<user assertion> - User assertion generated
<app scope> - Scope added while creating application in client
configuration section (Ends with urn:opc:resource:consumer::all)

2. Capture the access_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600
}

3. Use an access_token in the authorization header to invoke the Oracle Integration trigger
endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

Prerequisites for Authorization Code

• Configure the client application

Chapter 2
Authentication Support

2-24

• Validate the Oracle Integration application and user roles

• Validate the client application

Configure the client application

To trigger the integration with OAuth, a client application is required.

1. Click Add application.

2. Select Confidential Application. then click Launch workflow.

3. Enter a name. The remaining fields on this page are optional and can be ignored.

4. Click Next.

5. In the Client configuration box, select Configure this application as a client now.

6. Select the grant type to use:

a. For authorization code, select Refresh token and Authorization code in the Allowed
grant types section.

Chapter 2
Authentication Support

2-25

b. In the Redirect URL field, enter the redirect URL of the client application. After user
login, this URL is redirected to with the authorization code. You can specify multiple
redirect URLs. This is useful for development environments in which you have multiple
instances, but only one client application due to licensing issues.

Note:

If you don't know the following information, check with your administrator:

• If your instance is new or upgraded from Oracle Integration Generation 2
to Oracle Integration 3.

• The complete instance URL with the region included (required for new
instances).

For
Connections…

Include the Region
as Part of the
Redirect URL?

Example of Redirect URL to Specify…

Created on new
Oracle Integration
3 instances

Yes. https://
OIC_instance_URL.region.ocp.oracleclou
d.com/icsapis/agent/oauth/callback

Created on
instances
upgraded from
Oracle Integration
Generation 2 to
Oracle Integration
3

No.
This applies to both:

• New connections
created after the
upgrade

• Existing
connections that
were part of the
upgrade

https://
OIC_instance_URL.ocp.oraclecloud.com/
icsapis/agent/oauth/callback

c. In the Client type section, click Confidential.

d. Select Specific in the Authorized resources section.

Chapter 2
Authentication Support

2-26

e. Click the Add Resources check box.

f. Click Add scope.

g. Find the Oracle Integration application for your instance, and click .

h. Select the two scopes appended with the following details:

• urn:opc:resource:consumer::all

• ic/api/

i. Click Add.
The scopes are displayed in the Resources section.

j. Ignore the Add app roles check box. This selection is not required.

k. Click Next, then click Finish.
The details page for the client application is displayed.

l. Click Activate, and then Activate application to activate the client application for use.

m. In the General Information section, note the client ID and client secret values. These
values are required for the third-party application that is communicating with the
identity domain.

Validate the Oracle Integration application and user roles

1. In the navigation pane, click Oracle Cloud Services.

Chapter 2
Authentication Support

2-27

2. Select the specific application corresponding to the Oracle Integration instance.

3. In the navigation pane, click Application roles.

4. Expand ServiceInvoker, then click Manage next to either Assigned users or Assigned
groups. For example, if you click Assigned users:

5. Click Show available users.

6. Select the user and click Assign, then click Close.

Validate the client application

1. To fetch the authorization code, make the following request from the browser.

##Syntax
GET https://<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/authorize?client_id=<client-
id>&response_type=code&redirect_uri=<client-redirect-
uri>&scope=<app_scope>%20offline_access&nonce=<nonce-

Chapter 2
Authentication Support

2-28

value>&state=<unique_value>

###where
<client-id> - ID of Client application generated.
<client-redirect-uri> - Redirect URI, in client application.
<app_scope> - scope added while creating application in client
configuration. (Ends with urn:opc:resource:consumer::all)
nonce - Optional, unique value to mitigate replay attacks
state - Recommended, Opaque to IDCS. Value used to maintain state
between the request and the callback
##Example
GET https://<identity_domain_host>/oauth2/v1/authorize?
client_id=<clientID>&response_type=code&redirect_uri=https://
app.getpostman.com/oauth2/callback&scope=https://
<Resource_APP_Audience>urn:opc:resource:consumer::all%20offline_access&nonc
e=121&state=12345544

2. If the user is not already logged in, you are challenged to authenticate your user
credentials. (For authentication, the user assigned the ServiceInvoker role must be used.)
After authentication is successful, the client URL is redirected to with the authorization
code and state added to the URL.

##Response URL
https://<redirect_URL>?code=<code_value>=&state=<state_value>

###Client should validate state received is same as one sent in request.

3. Capture the code value from the above response and make the following request to get the
access token.

##Syntax
curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request POST
https://<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=authorization_code&code=<authz-
code>&redirect_uri=<client-redirect-uri>

###where
<base64-clientid-secret> - BAse 64 encode clientId:ClientSecret
<authz-code> - code value received as response on redirect.
<client-redirect-uri> - Redirect URI, in client application.

##Example
curl -i -H 'Authorization: Basic MDMx..NGY1' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST https://
<identity_domain_host>/oauth2/v1/token -d
'grant_type=authorization_code&code=AQAg...3jKM4Gc=&redirect_uri=https://
app.getpostman.com/oauth2/callback

4. Capture the access_token and refresh_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600,

Chapter 2
Authentication Support

2-29

 "refresh_token": "AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSpzc="
}

5. Use the access_token in the authorization header to invoke the Oracle Integration trigger
endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

6. To update the access token, use the refresh token and make the request.

7. Capture the access_token and refresh_token from a response for further use.

curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request POST
https://<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=<refresh_token>'

##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/oauth2/v1/
token -d
'grant_type=refresh_token&refresh_token=AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSpz
c='

Use OAuth 2.0 Grants in Oracle Identity Cloud Service Environments
To use an OAuth 2.0 grant type with this adapter in an Oracle Identity Cloud Service
environment of Oracle Integration, you must perform the following prerequisites.

Note:

The following instructions apply only to cloud tenancies that still use Oracle Identity
Cloud Service. Most cloud tenancies have been migrated to identity domains, which
require different configuration instructions. See Use OAuth 2.0 Grants in Identity
Domain Environments. If you are unsure of your environment, check with your
administrator.

• Prerequisites for All Grants

• Prerequisites for JWT User Assertion

• Prerequisites for Authorization Code

• Prerequisites for Resource Owner Password Credentials

• Prerequisites for Client Credentials

Prerequisites for All Grants

Perform the following tasks for each grant type you use.

• Obtain the Oracle Identity Cloud Service URL.

Chapter 2
Authentication Support

2-30

1. Go to the URL for your Oracle Integration instance.
For example, if your Oracle Integration instance is https://myhost.example.com/ic/
home, when you go to that URL, you are redirected to a URL such as:

 https://idcs-c2881.identity.myhost.example.com/ui/v1/signin

2. Replace /signin with /adminconsole to access Oracle Identity Cloud Service.
For example:

https://idcs-c2881.identity.myhost.example.com/ui/v1/adminconsole

You'll be prompted to sign in again to the Oracle Identity Cloud Service Console.

3. Log in to the Oracle Identity Cloud Service Console with your identity domain
administrator credentials.

• Check the Oracle Integration application in Oracle Identity Cloud Service.
When an Oracle Integration instance is provisioned, an Oracle Identity Cloud Service
application is created for that Oracle Integration instance. The application name is
OICINST_service_instance_name.

1. Log in to the Oracle instance to get the service instance name.

https://myhost.example.com/ic/home

2. Log in to Oracle Identity Cloud Service to get the application.

3. Go to Applications and find the application with the above name to access the
application.

Alternatively, you can find the application through the Oracle Cloud Dashboard. When you
click the IDCS Application link on the details page of the Oracle Integration instance (for
this example, named OIC), it opens the Oracle Identity Cloud Service application for
Oracle Integration that is already created.

Prerequisites for JWT User Assertion

Perform the following tasks.

• Validate the Oracle Integration application and user roles.

1. Verify that the Is Refresh Token Allowed option is enabled for the Oracle Identity
Cloud Service application.

Chapter 2
Authentication Support

2-31

2. Check under the Configuration > Resources section of the application. Note also that
there is a special scope predefined (urn:opc:resource:consumer::all), which can
trigger integrations using OAuth.

3. Add the appropriate users to the various Oracle Integration roles. For standard/
production configurations, use the ServiceUser role. (See Oracle Integration Service
Roles in Provisioning and Administering Oracle Integration 3.)

4. To assign the user, go to the Application Roles section of the application.

• Generate the key:

Chapter 2
Authentication Support

2-32

1. Generate the self-signed key pair.

keytool -genkey -keyalg RSA -alias <your_alias> -keystore
<keystore_file> -storepass <password> -validity 365 -keysize 2048

##example
keytool -genkey -keyalg RSA -alias assert -keystore sampleKeystore.jks -
storepass samplePasswd -validity 365 -keysize 2048

2. Export the public key for signing the JWT assertion.

keytool -exportcert -alias <your_alias> -file <filename> -keystore
<keystore_file> -storepass <password>

##example
keytool -exportcert -alias assert -file assert.cer -keystore
sampleKeystore.jks -storepass samplePasswd

This should show a success message e.g. Certificate stored in file
<assert.cer>

3. Convert the keystore to P12 format.

keytool -importkeystore -srckeystore <filename> -srcstorepass
<password> -srckeypass <password> -srcalias <your_alias> -destalias
<your_alias> -destkeystore <destFileName> -deststoretype PKCS12 -
deststorepass <password> -destkeypass <password>

##example
keytool -importkeystore -srckeystore sampleKeystore.jks -srcstorepass
samplePasswd -srckeypass samplePasswd -srcalias assert -destalias
assert -destkeystore assert.p12 -deststoretype PKCS12 -deststorepass
samplePasswd -destkeypass samplePasswd

This should show a success message e.g. Importing keystore
sampleKeystore.jks to assert.p12...

4. Export the private key from the P12 keystore.

openssl pkcs12 -in <destFileName> -nodes -nocerts -out <pem_file>

##example
openssl pkcs12 -in assert.p12 -nodes -nocerts -out private_key.pem

This should show a success message: MAC verified OK

• Configure the client application:
To trigger the integration with OAuth, a client application is required.

1. In the Oracle Identity Cloud Service Console, go to the Applications section to create
a new application that allows you to trigger an integration with OAuth.

Chapter 2
Authentication Support

2-33

2. Click Add.

3. Select Confidential Application.

4. Complete the Details page, and go to the Client page.

5. On the Client page, select Configure this application as a client now and add the
following.

a. Select Client Credentials and JWT Assertion for the Allowed Grant Types.

Chapter 2
Authentication Support

2-34

b. In the Security section, select Trusted Client and upload the certificate created in
the previous section (Generate the key - Step 2).

c. Select Specific in the Authorized Resources section.

d. Click Add Scope under the Resources section.

e. Find the Oracle Integration application, and click >.

Chapter 2
Authentication Support

2-35

f. Add the scope containing urn:opc:resource:consumer::all, and click >.

The scope containing urn:opc:resource:consumer::all is added.

g. Save your changes.

6. Click through the remaining wizard pages without making changes and save the
application.

7. Activate the application for use.

• Add a certificate as a trusted partner:
Even though you imported the signing certificate in the application, Oracle Identity Cloud
Service requires you to also have the certificate as a trusted partner certificate. Upload the
certificate created in the previous section. (See Generate the key - Step 2.)

Chapter 2
Authentication Support

2-36

• Generate the JWT user assertion:

1. Generate the JWT user assertion using the generated private key and simple Java
code.

Note:

You can use the https://github.com/jwtk/jjwt library to generate the user
assertion. There are many libraries listed at https://jwt.io/ for multiple
technologies.

Sample:
header:
{
"alg": "RS256",
"typ": "JWT",
"kid": "assert"
}

payload:
{
"sub": "ssaInstanceAdmin",
"jti": "8c7df446-bfae-40be-be09-0ab55c655436",
"iat": 1589889699,
"exp": 1589909699,
"iss": "d702f5b31ee645ecbc49d05983aaee54",
"aud": "https://identity.oraclecloud.com/"
}

Where:

– sub specifies the user name for whom user assertion is generated.

– jti is a unique identifier

– iat is issued (epoch seconds).

– exp is the token expiry (epoch seconds).

– iss is the client ID.

– aud must include the Oracle Identity Cloud Service audience https://
identity.oracle.com/. The signing algorithm must be RS256.

– kid specifies the key to use to verify the signature. Therefore, it must match with the
uploaded certificate alias in Oracle Identity Cloud Service.

• Validate the client application:

1. Once you generate the JWT user assertion, generate the Oracle Identity Cloud
Service access token as follows.

##Syntax
curl -i -H 'Authorization: Basic <base64Encoded clientid:secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://<IDCS-Service-Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-
type%3Ajwt-bearer&assertion=<user assertion>&scope=<app_scope>'

Chapter 2
Authentication Support

2-37

https://github.com/jwtk/jjwt
https://jwt.io/

###where
grant type - urn:ietf:params:oauth:grant-type:jwt-bearer
<base64-clientid-secret> - Base 64 encode clientId:ClientSecret
<user assertion> - User assertion generated
<app scope> - Scope added while creating application in client
configuration section (Ends with urn:opc:resource:consumer::all)

2. Capture the access_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600
}

3. Use an access_token in the authorization header to invoke the Oracle Integration
trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

Prerequisites for Authorization Code

Perform the following tasks.

• Validate the Oracle Integration application and user roles:

1. Verify that the Is Refresh Token Allowed option is enabled for the Oracle Identity
Cloud Service application.

2. Check the Configuration > Resources section of the application. Note also that there
is a special predefined scope (urn:opc:resource:consumer::all) that permits
triggering of the Oracle Integration integrations using OAuth.

Chapter 2
Authentication Support

2-38

3. Add the appropriate users to the various Oracle Integration roles. For standard/
production configurations, use the ServiceUser role. (See Oracle Integration Service
Roles in Provisioning and Administering Oracle Integration 3.)

4. To assign the user, go to the Application Roles section of the application.

• Configure the client application:
To allow you to trigger the Oracle Integration integration with OAuth, the client application
is required.

1. In the Oracle Identity Cloud Service Console, go to the Applications section to create
a new application that allows you to trigger the Oracle Integration integration with
OAuth.

Chapter 2
Authentication Support

2-39

2. Select Confidential Application.

3. Complete the Details page, and go to the Client page.

4. On the Client page, select Configure this application as a client now and add the
following.

a. Select Refresh Token and Authorization Code for Allowed Grant Types.

Chapter 2
Authentication Support

2-40

b. Set the redirect URL to the URL of the client application. After user login, Oracle
Identity Cloud Service redirects to this URL with the authorization code.

Note:

If you don't know the following information, check with your administrator:

– If your instance is new or upgraded from Oracle Integration
Generation 2 to Oracle Integration 3.

– The complete instance URL with the region included (required for
new instances).

For
Connections…

Include the Region
as Part of the
Redirect URL?

Example of Redirect URL to Specify…

Created on new
Oracle
Integration 3
instances

Yes. https://
OIC_instance_URL.region.ocp.oraclecl
oud.com/icsapis/agent/oauth/callback

Created on
instances
upgraded from
Oracle
Integration
Generation 2 to
Oracle
Integration 3

No.
This applies to both:

– New connections
created after the
upgrade

– Existing
connections that
were part of the
upgrade

https://
OIC_instance_URL.ocp.oraclecloud.com
/icsapis/agent/oauth/callback

c. Select Specific in the Authorized Resources section.

d. Click Add Scope under the Resources section.

Chapter 2
Authentication Support

2-41

e. Find the Oracle Integration application, and click >.

f. Add the scope containing urn:opc:resource:consumer::all, and click >.

The scope containing urn:opc:resource:consumer::all is added.

g. Save your changes.

5. Click through the remaining wizard pages without making changes and save the
application.

6. Activate the application for use.

• Validate the client application:

1. To fetch the authorization code, make the following request from the browser.

##Syntax
GET https://<IDCS-Service-Instance>.identity.oraclecloud.com/oauth2/v1/

Chapter 2
Authentication Support

2-42

authorize?client_id=<client-id>&response_type=code&redirect_uri=<client-
redirect-uri>&scope=<app_scope>%20offline_access&nonce=<nonce-
value>&state=<unique_value>

###where
<client-id> - ID of Client application generated.
<client-redirect-uri> - Redirect URI, in client application.
<app_scope> - scope added while creating application in client
configuration. (Ends with urn:opc:resource:consumer::all)
nonce - Optional, unique value to mitigate replay attacks
state - Recommended, Opaque to IDCS. Value used to maintain state
between the request and the callback
##Example
GET https://<idcs-host>/oauth2/v1/authorize?
client_id=<clientID>&response_type=code&redirect_uri=https://
app.getpostman.com/oauth2/callback&scope=https://
<Resource_APP_Audience>urn:opc:resource:consumer::all%20offline_access&n
once=121&state=12345544

2. If the user is not already logged in, Oracle Identity Cloud Service challenges the user
to authenticate. Oracle Identity Cloud Service checks the user's credentials. (For
authentication, the user assigned the ServiceUser role must be used.)
After authentication is successful, Oracle Identity Cloud Service redirects back to the
client redirect URL with the authorization code and state added to the URL.

##Response URL
https://<redirect_URL>?code=<code_value>=&state=<state_value>

###Client should validate state received is same as one sent in request.

3. Capture the code value from the above response and make the following request to
Oracle Identity Cloud Service to get the access token.

##Syntax
curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request POST
https://<IDCS-Service-Instance>.identity.oraclecloud.com/oauth2/v1/
token -d 'grant_type=authorization_code&code=<authz-
code>&redirect_uri=<client-redirect-uri>

###where
<base64-clientid-secret> - BAse 64 encode clientId:ClientSecret
<authz-code> - code value received as response on redirect.
<client-redirect-uri> - Redirect URI, in client application.

##Example
curl -i -H 'Authorization: Basic MDMx..NGY1' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST https://
<idcs_host>/oauth2/v1/token -d
'grant_type=authorization_code&code=AQAg...3jKM4Gc=&redirect_uri=https:/
/app.getpostman.com/oauth2/callback

Chapter 2
Authentication Support

2-43

4. Capture the access_token and refresh_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": "AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSpzc="
}

5. Use the access_token in the authorization header to invoke the Oracle Integration
trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

6. To update the access token, use the refresh token and make the request to Oracle
Identity Cloud Service.

7. Capture the access_token and refresh_token from a response for further use.

curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request POST
https://<IDCS-Service-Instance>.identity.oraclecloud.com/oauth2/v1/
token -d 'grant_type=refresh_token&refresh_token=<refresh_token>'

##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST https://
IDCS-Service-Instance.identity.oraclecloud.com/oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=AQAgY2MzNjVlOTVhOTRh...vM5S0MkrF
Spzc='

Prerequisites for Resource Owner Password Credentials

Perform the following tasks.

• Validate the Oracle Integration application and user roles:

1. Verify that the Is Refresh Token Allowed option is enabled for the Oracle Integration
Oracle Identity Cloud Service application.

2. Check under the Configuration > Resources section of Applications. Note also that
there is a special predefined scope (urn:opc:resource:consumer::all) that allows the
triggering of integrations with OAuth.

Chapter 2
Authentication Support

2-44

3. Add the appropriate users to the various Oracle Integration roles. For standard/
production configurations, use the ServiceUser role. (See Oracle Integration Service
Roles in Provisioning and Administering Oracle Integration 3.)

4. To assign the user, go to the Application Roles section of the application.

• Configure the client application:
To trigger the integration with OAuth, a client application is required.

1. In the Oracle Identity Cloud Service Console, go to the Applications section to create
a new application that allows you to trigger an integration with OAuth.

Chapter 2
Authentication Support

2-45

2. Click Add.

3. Select Confidential Application.

4. Complete the Details page, and go to the Client page.

5. On the Client page, select Configure this application as a client now and add the
following.

a. Select Resource Owner and Refresh Token for Allowed Grant Types.

Chapter 2
Authentication Support

2-46

b. Select Specific in the Authorized Resources section.

c. Click Add Scope under the Resources section.

d. Find the Oracle Integration application.

e. Add the scope containing urn:opc:resource:consumer::all, and click >.

Chapter 2
Authentication Support

2-47

The scope containing urn:opc:resource:consumer::all is added.

f. Save your changes.

6. Click through the remaining wizard pages without making changes and save the
application.

7. Activate the application for use.

• Validate the client application:

1. To fetch the access client, make a request to Oracle Identity Cloud Service with the
user name and password in the payload.

##Syntax
curl -i -H 'Authorization: Basic <base64Encoded_clientid:secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://<IDCS-Service-Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=password&username=<user-
name>&password=<password>&scope=<App_Scope>%20offline_access'

###where
<base64-clientid-secret> - Base 64 encode clientId:ClientSecret
<username> - user for token needs to be issued (must be in
serviceuser role).
<password> - password for above user
<app_scope> - Scope added while creating application in client
configuration section (Ends with urn:opc:resource:consumer::all)
##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST https://
<idcs_host>/oauth2/v1/token -d
'grant_type=password&username=sampleUser&password=SamplePassword&scope=h
ttps://
<Resource_APP_Audience>urn:opc:resource:consumer::all%20offline_access'

2. Capture the access_token and refresh_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600,

Chapter 2
Authentication Support

2-48

 "refresh_token": "AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSpzc="
}

3. Use the access_token in the authorization header to invoke the Oracle Integration
trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

4. To update the access token, use the refresh token and make a request to Oracle
Identity Cloud Service.

5. Capture the access_token and refresh_token from the response for further use.

curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request POST
https://<IDCS-Service-Instance>.identity.oraclecloud.com/oauth2/v1/
token -d 'grant_type=refresh_token&refresh_token=<refresh_token>'

##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST https://
<IDCS-Service-Instance>.identity.oraclecloud.com/oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=AQAgY2MzNjVlOTVhOTRh...vM5S0MkrF
Spzc='

Prerequisites for Client Credentials

• Configure the client application.

1. In the Oracle Identity Cloud Service Console, go to the Applications section to create
a new application that allows you to trigger an integration with OAuth.

2. Click Add.

3. Select Confidential Application.

4. Complete the Details page, and click Next.

5. On the Client page, select Configure this application as a client now, and complete
the following:

a. Select Client Credentials from the Allowed Grant Types list.

b. Select Specific in the Authorized Resources area of the Token Issuance Policy
section.

c. Click Add Scope under the Resources section.

d. Find the Oracle Integration application, and click >.

Chapter 2
Authentication Support

2-49

e. Add the scope containing urn:opc:resource:consumer::all.

f. Save your changes.

6. Click through the remaining wizard pages without making changes and save the
application.

7. Activate the application for use.

• Add roles to the client application.

1. Go to the Application Roles tab of the Oracle Identity Cloud Service application.

2. Select Assign Applications for the ServiceUser role.

• Validate the client application.

1. Fetch the access client to make an access token request to Oracle Identity Cloud
Service with the client credentials.

##Syntax
curl -i -H 'Authorization: Basic <base64Encoded clientid:secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://<IDCS-Service-Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=client_credentials&scope=<app scope>'

Chapter 2
Authentication Support

2-50

###where
<base64-clientid-secret> - Base 64 encode clientId:ClientSecret
<app scope> - Scope added while creating application in client
configuration section (Ends with urn:opc:resource:consumer::all)

##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST https://
<idcs_host>/oauth2/v1/token -d
'grant_type=client_credentials&scope=https://<Resource APP
Audience>urn:opc:resource:consumer::all'

2. Capture the access_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600
}

3. Use the access_token in the authorization header to invoke the trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

Authentication Types
The REST Adapter supports the following types of authentication:

• For scenarios when the REST Adapter invokes an external REST endpoint:

– Basic Authentication

– OAuth Client Credentials (two-legged flow)

– OAuth Resource Owner Password Credentials (two-legged flow)

– OAuth Authorization Code Credentials (three-legged flow)

– OAuth Custom Three Legged Flow

– OAuth Custom Two Legged Flow

– API Key Based Authentication

– OAuth 1.0 One Legged Authentication

– Amazon Web Services (AWS) Signature Version 4

– Oracle Cloud Infrastructure (OCI) Signature Version 1

– OAuth Client Credentials using JWT Client Assertion

– OAuth using JWT User Assertion

– OCI Service Invocation

• For scenarios when the REST Adapter is used to create a REST endpoint to trigger an
integration:

– Basic Authentication

– OAuth 2.0

Chapter 2
Authentication Support

2-51

– OAuth 2.0 or Basic Authentication

See Configure Connection Security for more information about these security policies.

Role-Based Connections
The REST Adapter is bidirectional. You can configure the REST Adapter depending on the
context in which you want to use the connection.

• Trigger: The REST Adapter is used to create a REST endpoint to trigger an integration.
You select Trigger from the Role list on the Create New Connection dialog. When
configured as a trigger, a base URI is not required. The security policy defined in the
inbound direction accepts credentials configured in the identity domain. Therefore, you are
not required to provide the applicable credentials. When configuring security on the
Connections page, you only provide the security policy that must be attached to the
inbound endpoint. The following security policies are available:

– Basic authentication

– OAuth 2.0

– Basic authentication and OAuth 2.0

Agent configuration is not applicable on a connection with the trigger role.

• Invoke: The REST Adapter is used to invoke external REST endpoints. A base URI and
security configuration for accessing external protected resources are required. You are
prompted for these additional details on the Connections page. You cannot use an invoke
connection on the trigger side.

• Trigger and invoke: The REST Adapter is used in both the trigger and invoke directions of
an integration. This connection requires invoke and trigger values. Basic Authentication
can be used in both trigger and invoke connections.

See Create a Connection.

Extensibility Support for Multiple OAuth Providers
You can use the extensibility framework of the REST Adapter to access the OAuth-protected
resource of endpoints. This framework enables you to access endpoints that have
implemented their own variations of OAuth.

The OAuth standard provides flexibility for endpoints to define specific aspects of their OAuth
flows. For example:

• Create their own properties.

• Decide when to use these properties in an OAuth flow. For example, some custom
properties may be required with the authorization request, while others may be required for
the access token request or for the refresh of the access token after its expiration.

• Decide how to pass these properties in an OAuth flow. For example, whether a property is
passed as a header, query parameter, or payload.

To address these challenges, Oracle Integration provides two custom security policies that
enable you to specify each step in the OAuth flow when you create the REST Adapter
connection:

• OAuth custom two-legged flow: The client application directly interacts with the
authorization server on behalf of a resource owner.

Chapter 2
Authentication Support

2-52

• OAuth custom three-legged flow: The client application redirects the owner to a separate
resource URL where the resource owner authenticates and provides consent for the flow
to continue.

This enables you to adapt to most OAuth framework scenarios and integrate with many third-
party applications without writing additional code.

• During design-time, the access token is obtained, validated, and stored in the CSF. The
security token is also stored in the CSF.

• During runtime, the access token is retrieved, applied, and managed. A valid access token
is applied to the request before invoking the REST endpoint.

Specify the OAuth custom two-legged flow and three-legged flow security policies. See
Configure Connection Security and REST Adapter Use Cases.

Note:

This extensibility feature is an advanced feature, and not for business users. Users of
this feature should use a tool such as postman to configure the necessary properties.

REST API Support
The following sections describe REST Adapter REST API capabilities in more detail.

Topics:

• Oracle Cloud Infrastructure REST API Support with the OCI Signature Version 1 Security
Policy

• On-Premises REST API Support with the Agent

Oracle Cloud Infrastructure REST API Support with the OCI Signature
Version 1 Security Policy

You can call the Oracle Cloud Infrastructure (OCI) REST API by configuring the REST Adapter
connection to use the OCI Signature Version 1 security policy.

OCI signature support in the REST Adapter enables a user to use Oracle Cloud Infrastructure
services. For example, you can create an integration that calls Oracle Cloud Infrastructure to
create a storage bucket.

See Configure Connection Security.

On-Premises REST API Support with the Agent
The REST Adapter-specific connection can be configured to use the connectivity agent to
consume REST APIs that are hosted either on a customer's on-premises network or on a
private cloud, are truly private APIs, and are not exposed as public APIs that can be consumed
over the internet.

Oracle Integration provides the agent framework to enable you to create integrations and
exchange messages between on-premises applications and Oracle Integration. You can
integrate on-premises REST APIs with Oracle Integration with the on-premises connectivity

Chapter 2
REST API Support

2-53

agent. Once you create an agent group and install the on-premises agent, you can create and
configure a REST Adapter connection on the Connections page as follows:

• Select REST API Base URL from the Connection Type list and enter the appropriate URL
in the Connection URL field. No other connection types are supported.

• Select Basic Authentication, OAuth Client Credentials, OAuth Resource Owner
Password Credentials, OAuth Custom Two Legged Flow, or No Security Policy from
the Security Policy list. No other security policies are supported.

• Select the previously-created agent group in the Select an Agent Group dialog.

• Note that the token server cannot be on-premises. If the provider is accessible through the
cloud, you must get the bearer token in the cloud and perform the agent-based request
invocation by setting the authorization header.

For conceptual information about the on-premises agent, see About Creating Hybrid
Integrations Using Oracle Integration. For information about creating an agent group and
installing the on-premises agent, see Manage the Agent Group and the On-Premises
Connectivity Agent.

OpenAPI Support
The following sections describe REST Adapter OpenAPI capabilities in more detail.

Topics:

• Support of Polymorphic Constructs for OpenAPI Connectivity

• Support for OpenAPI Documents with External References

• Support for Publishing Interfaces for Oracle Integration Flows as OpenAPI Documents

• Consumption of OpenAPI Multipart for JSON and Form Data

Support of Polymorphic Constructs for OpenAPI Connectivity
OpenAPI 3.0 provides the allOf, oneOf, and anyOf keywords to use for combining schemas.
You can use these keywords to create a complex schema or validate a value against multiple
criteria. If an OpenAPI document has schemas that use the allOf, oneOf, or anyOf keyword or
a combination of any, Oracle Integration can process those schemas. The following sections
describe the patterns supported by allOf, oneOf, and anyOf in Oracle Integration. Any pattern
not listed should be considered unsupported.

Keyword Description See

allOf Validates the value against all of
the subschemas.

allOf Keyword Pattern Support

oneOf Validates the value against
exactly one of the subschemas.

oneOf Keyword Pattern Support

anyOf Validates the value against any of
the subschemas.

anyOf Keyword Pattern Support

allOf Keyword Pattern Support
Use the allOf keyword to combine and extend model definitions. The allOf keyword takes an
array of object definitions used for independent validation, but together compose a single
object.

Chapter 2
OpenAPI Support

2-54

Note:

The allOf pattern with a subschema being of a simple type is not currently
supported.
Any other patterns not listed in the following sections should also be considered
unsupported.

Oracle Integration supports the following allOf keyword patterns.

• allOf with All Subschemas Defined as $ref

• allOf with All Subschemas Defined Inline

• allOf with a Mix of Inline and $ref Subschemas

• allOf Defined as Item of an Array Type

• allOf Defined as Items of a Top Level Array

• allOf with a Nested allOf Subschema Defined as $ref

• allOf with a Nested allOf Subschema Defined Inline

• allOf with a Nested oneOf Subschema Defined as $ref

• allOf with a Nested oneOf Subschema Defined Inline

• allOf with a Nested anyOf Subschema Defined as $ref

• allOf with a Nested anyOf Subschema Defined Inline

allOf with All Subschemas Defined as $ref

You can use an allOf pattern in which all subschemas are defined as references ($ref). For
this example, there are three subschemas defined as references.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "allOf": [
 {
 "$ref": "#/components/schemas/ItemProperties"
 },
 {
 "$ref": "#/components/schemas/ItemProductionPrivateVO-
item"
 },
 {
 "$ref": "#/components/schemas/ItemProductionPrivateVO-
item-response-forChildren"
 }
]
 }
 }
 }
}

Chapter 2
OpenAPI Support

2-55

allOf with All Subschemas Defined Inline

You can use an allOf pattern in which all subschemas are defined inline. For this example,
there are two subschemas defined inline.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "allOf": [
 {
 "required": [
 "count",
 "hasMore"
],
 "type": "object",
 "properties": {
 "totalResults": {
 "type": "integer",
 "format": "int32"
 },
 "count": {
 "type": "integer",
 "format": "int32"
 },
 "hasMore": {
 "type": "boolean"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "items": {
 "title": "Items",
 "type": "array",
 "description": "The items in the collection.",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-response"
 },
 "x-cardinality": "1"
 }
 }
 }
]
 }
 }
 }
}

Chapter 2
OpenAPI Support

2-56

allOf with a Mix of Inline and $ref Subschemas

You can use an allOf pattern in which the subschemas are defined both as references ($ref)
and inline. For this example, there is one subschema defined as a reference and one
subschema defined inline.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "allOf": [
 {
 "$ref": "#/components/schemas/CollectionProperties"
 },
 {
 "type": "object",
 "properties": {
 "items": {
 "title": "Items",
 "type": "array",
 "description": "The items in the collection.",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-response"
 },
 "x-cardinality": "1"
 }
 }
 }
]
 }
 }
 }
}

allOf Defined as Item of an Array Type

You can use an allOf pattern defined as an item of an array type.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "properties": {
 "repeatingElement": {
 "description": "The items in the collection.",
 "items": {
 "allOf": [
 {
 "$ref": "#/components/schemas/
ItemProperties"
 },
 {
 "$ref": "#/components/schemas/
ItemProductionPrivateVO-item"

Chapter 2
OpenAPI Support

2-57

 }
]
 },
 "title": "repeatingElement",
 "type": "array",
 "x-cardinality": "1"
 },
 "someStringElement": {
 "type": "string"
 }
 },
 "type": "object"
 }
 }
 }
}

allOf Defined as Items of a Top Level Array

You can use an allOf pattern defined as items of a top level array.

{
 "components": {
 "schemas": {
 "Pets": {
 "description": "The items in the collection.",
 "items": {
 "allOf": [
 {
 "$ref": "#/components/schemas/Cat_Type"
 },
 {
 "$ref": "#/components/schemas/Dog_Type"
 }
]
 },
 "title": "Pets",
 "type": "array",
 "x-cardinality": "1"
 }
 }
 }
}

allOf with a Nested allOf Subschema Defined as $ref

You can use an allOf pattern in which another allOf is nested and defined as a reference
($ref).

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "allOf": [
 {

Chapter 2
OpenAPI Support

2-58

 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
patch-item"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
item-patch-request-forChildren"
 }
]
 },
 "ItemRootIccPrivateVO-patch-item": {
 "allOf": [
 {
 "$ref": "#/components/schemas/ItemEffCategoryVO-patch-
item"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
updatableFields"
 }
],
 "title": "Item Extensible Flexfield"
 },
 "ItemRootIccPrivateVO-item-patch-request-forChildren": {
 "type": "object",
 "properties": {
 "ItemEFFBItem__Details__EFFPrivateVO": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-patch-request"
 },
 "x-cardinality": "1"
 }
 }
 }
 }
 }
}

allOf with a Nested allOf Subschema Defined Inline

You can use an allOf pattern in which another allOf is nested and defined as a reference
($ref).

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "allOf": [
 {
 "allOf": [
 {
 "$ref": "#/components/schemas/
ItemEffCategoryVO-patch-item"
 },
 {

Chapter 2
OpenAPI Support

2-59

 "$ref": "#/components/schemas/
ItemRootIccPrivateVO-updatableFields"
 }
],
 "title": "Item Extensible Flexfield"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
item-patch-request-forChildren"
 }
]
 }
 }
 }
}

allOf with a Nested oneOf Subschema Defined as $ref

You can use an allOf pattern in which a referenced subschema is a nested oneOff.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "allOf": [
 {
 "$ref": "#/components/schemas/ItemEffCategoryVO-patch-
item"
 },
 {
 "type": "object",
 "properties": {
 "items": {
 "title": "Items",
 "type": "array",
 "description": "The items in the collection.",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-response"
 },
 "x-cardinality": "1"
 }
 }
 }
]
 },
 "ItemEffCategoryVO-patch-item": {
 "discriminator": {
 "propertyName": "CategoryCode",
 "mapping": {
 "Production": "schemas/ItemProductionPrivateVO-item-
response",
 "ROOT_ICC": "schemas/ItemRootIccPrivateVO-item-
response"
 }
 },

Chapter 2
OpenAPI Support

2-60

 "oneOf": [
 {
 "$ref": "schemas/ItemProductionPrivateVO-item-
response"
 },
 {
 "$ref": "schemas/ItemRootIccPrivateVO-item-response"
 }
]
 }
 }
 }
}

allOf with a Nested oneOf Subschema Defined Inline

You can use an allOf pattern in which a oneOf is nested and defined inline.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "allOf": [
 {
 "$ref": "#/components/schemas/ItemProperties"
 },
 {
 "discriminator": {
 "propertyName": "CategoryCode",
 "mapping": {
 "Production": "#/components/schemas/
ItemProductionPrivateVO-item-response",
 "ROOT_ICC": "#/components/schemas/
ItemRootIccPrivateVO-item-response"
 }
 },
 "oneOf": [
 {
 "$ref": "#/components/schemas/
ItemProductionPrivateVO-item-response"
 },
 {
 "$ref": "#/components/schemas/
ItemRootIccPrivateVO-item-response"
 }
]
 }
]
 }
 }
 }
}

Chapter 2
OpenAPI Support

2-61

allOf with a Nested anyOf Subschema Defined as $ref

You can use an allOf pattern in which a nested anyOf subschema is defined as a reference
($ref).

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "allOf": [
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
patch-item"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
item-patch-request-forChildren"
 }
]
 },
 "ItemRootIccPrivateVO-patch-item": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/ItemEffCategoryVO-patch-
item"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
updatableFields"
 }
],
 "title": "Item Extensible Flexfield"
 },
 "ItemRootIccPrivateVO-item-patch-request-forChildren": {
 "type": "object",
 "properties": {
 "ItemEFFBItem__Details__EFFPrivateVO": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-patch-request"
 },
 "x-cardinality": "1"
 }
 }
 }
 }
 }
}

Chapter 2
OpenAPI Support

2-62

allOf with a Nested anyOf Subschema Defined Inline

You can use an allof pattern in which a nested anyOf subschema is defined inline.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "allOf": [
 {
 "anyOf": [
 {
 "$ref": "#/components/schemas/
ItemEffCategoryVO-patch-item"
 },
 {
 "$ref": "#/components/schemas/
ItemRootIccPrivateVO-updatableFields"
 }
],
 "title": "Item Extensible Flexfield"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
item-patch-request-forChildren"
 }
]
 }
 }
 }
}

oneOf Keyword Pattern Support
Use the oneOf keyword to ensure that the given data is valid against one of the subschemas.

Note:

When using oneOf, the following guidelines are mandatory:

• The discriminator element must be present.

• The discriminator element name must be unique across all subschemas.

Chapter 2
OpenAPI Support

2-63

Note:

The following oneOf keyword patterns are not currently supported.

• oneOf with a subschema being of simple type

• oneOf with a nested oneOf subschema (either defined inline or as $ref)

Any other patterns not listed in the following sections should also be considered
unsupported.

Oracle Integration supports the following oneOf keyword patterns.

• oneOf with All Subschemas Defined as $ref

• oneOf with All Subschemas Defined as Inline

• oneOf with a Mix of Inline and $ref Subschemas

• oneOf with a Subschema Containing Multiple Mappings

• oneOf Defined as Items of an Array Type

• oneOf Defined as Items of a Top Level Array

• oneOf with a Nested allOf Subschema Defined as $ref

• oneOf with a Nested allOf Subschema Defined Inline

• oneOf with a Nested anyOf Subschema Defined as $ref

• oneOf with a Nested anyOf Subschema Defined Inline

oneOf with All Subschemas Defined as $ref

You can use a oneOf pattern in which all subschemas are defined as references ($ref). For
this example, the pet schema can validate against either of two subschemas.

{
 "schemas": {
 "Pet": {
 "discriminator": {
 "propertyName": "pet_type",
 "mapping": {
 "CAT": "#/components/schemas/Cat_Type",
 "DOG": "#/components/schemas/Dog_Type"
 }
 },
 "oneOf": [
 {
 "$ref": "#/components/schemas/Cat_Type"
 },
 {
 "$ref": "#/components/schemas/Dog_Type"
 }
]
 },
 "Cat_Type": {
 "type": "object",
 "required": [

Chapter 2
OpenAPI Support

2-64

 "pet_type"
],
 "properties": {
 "hunts": {
 "type": "boolean"
 },
 "pet_type": {
 "type": "string"
 },
 "age": {
 "type": "integer"
 }
 }
 },
 "Dog_Type": {
 "type": "object",
 "required": [
 "pet_type"
],
 "properties": {
 "bark": {
 "type": "boolean"
 },
 "pet_type": {
 "type": "string"
 },
 "breed": {
 "type": "string",
 "enum": [
 "Dingo",
 "Husky",
 "Retriever",
 "Shepherd"
]
 }
 }
 }
 }
}

oneOf with All Subschemas Defined as Inline

You can use a oneOf pattern in which all subschemas are defined inline. For this example, the
Pet schema can validate against either of two subschemas.

Note:

This pattern is only supported for outgoing messages from Oracle Integration (that is,
either an invoke connection request or a trigger connection response back to a
client).

{
 "schemas": {

Chapter 2
OpenAPI Support

2-65

 "Pet": {
 "discriminator": {
 "propertyName": "pet_type"
 },
 "oneOf": [
 {
 "properties": {
 "age": {
 "type": "integer"
 },
 "hunts": {
 "type": "boolean"
 },
 "pet_type": {
 "type": "string"
 }
 },
 "required": [
 "pet_type"
],
 "type": "object"
 },
 {
 "properties": {
 "bark": {
 "type": "boolean"
 },
 "breed": {
 "enum": [
 "Dingo",
 "Husky",
 "Retriever",
 "Shepherd"
],
 "type": "string"
 },
 "pet_type": {
 "type": "string"
 }
 },
 "required": [
 "pet_type"
],
 "type": "object"
 }
]
 }
 }
}

Chapter 2
OpenAPI Support

2-66

oneOf with a Mix of Inline and $ref Subschemas

Note:

• discriminator mapping is mandatory in this pattern for all subschemas defined
as $ref.

• If more than one subschema is defined as inline, this pattern is only supported for
outgoing messages from Oracle Integration (that is, either an invoke connection
request or a trigger response back to the client).

You can use a oneOf pattern in which the subschemas are defined both as references ($ref)
and inline. For this example, there is one subschema defined as a reference and one
subschema defined inline.

{
 "schemas": {
 "Pet": {
 "discriminator": {
 "propertyName": "pet_type",
 "mapping": {
 "CAT": "#/components/schemas/Cat_Type"
 }
 },
 "oneOf": [
 {
 "$ref": "#/components/schemas/Cat_Type"
 },
 {
 "type": "object",
 "required": [
 "pet_type"
],
 "properties": {
 "bark": {
 "type": "boolean"
 },
 "pet_type": {
 "type": "string"
 },
 "breed": {
 "type": "string",
 "enum": [
 "Dingo",
 "Husky",
 "Retriever",
 "Shepherd"
]
 }
 }
 }
]

Chapter 2
OpenAPI Support

2-67

 },
 "Cat_Type": {
 "type": "object",
 "required": [
 "pet_type"
],
 "properties": {
 "hunts": {
 "type": "boolean"
 },
 "pet_type": {
 "type": "string"
 },
 "age": {
 "type": "integer"
 }
 }
 }
 }
}

oneOf with a Subschema Containing Multiple Mappings

You can use a oneOf pattern in which a subschema contains multiple mappings.

{
 "schemas": {
 "Pet": {
 "discriminator": {
 "propertyName": "pet_type",
 "mapping": {
 "CAT": "#/components/schemas/Cat_Type",
 "DOG": "#/components/schemas/Dog_Type",
 "PUP": "#/components/schemas/Dog_Type"
 }
 },
 "oneOf": [
 {
 "$ref": "#/components/schemas/Cat_Type"
 },
 {
 "$ref": "#/components/schemas/Dog_Type"
 }
]
 },
 "Cat_Type": {
 "type": "object",
 "required": [
 "pet_type"
],
 "properties": {
 "hunts": {
 "type": "boolean"
 },
 "pet_type": {
 "type": "string"

Chapter 2
OpenAPI Support

2-68

 },
 "age": {
 "type": "integer"
 }
 }
 },
 "Dog_Type": {
 "type": "object",
 "required": [
 "pet_type"
],
 "properties": {
 "bark": {
 "type": "boolean"
 },
 "pet_type": {
 "type": "string"
 },
 "breed": {
 "type": "string",
 "enum": [
 "Dingo",
 "Husky",
 "Retriever",
 "Shepherd"
]
 }
 }
 }
 }
}

oneOf Defined as Items of an Array Type

You can use a oneOf pattern defined as items of an array type.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "properties": {
 "Pets": {
 "description": "The items in the collection.",
 "items": {
 "discriminator": {
 "propertyName": "pet_type",
 "mapping": {
 "CAT": "#/components/schemas/Cat_Type",
 "DOG": "#/components/schemas/Dog_Type"
 }
 },
 "oneOf": [
 {
 "$ref": "#/components/schemas/Cat_Type"
 },
 {

Chapter 2
OpenAPI Support

2-69

 "$ref": "#/components/schemas/Dog_Type"
 }
]
 }
 },
 "title": "Pets",
 "type": "array",
 "x-cardinality": "1"
 }
 },
 "type": "object"
 }
 }
}

oneOf Defined as Items of a Top Level Array

You can use a oneOf pattern defined as items of a top level array.

{
 "components": {
 "schemas": {
 "Pets": {
 "description": "The items in the collection.",
 "items": {
 "discriminator": {
 "propertyName": "pet_type",
 "mapping": {
 "CAT": "#/components/schemas/Cat_Type",
 "DOG": "#/components/schemas/Dog_Type"
 }
 },
 "oneOf": [
 {
 "$ref": "#/components/schemas/Cat_Type"
 },
 {
 "$ref": "#/components/schemas/Dog_Type"
 }
]
 },
 "title": "Pets",
 "type": "array",
 "x-cardinality": "1"
 }
 }
 }
}

oneOf with a Nested allOf Subschema Defined as $ref

You can use a oneOf pattern in which allOf is nested and defined as a reference ($ref).

{
 "schemas": {

Chapter 2
OpenAPI Support

2-70

 "Animal": {
 "discriminator": {
 "propertyName": "pet_type",
 "mapping": {
 "CAT": "#/components/schemas/CatPet",
 "DOG": "#/components/schemas/DogPet"
 }
 },
 "oneOf": [
 {
 "$ref": "#/components/schemas/CatPet"
 },
 {
 "$ref": "#/components/schemas/DogPet"
 }
]
 },
 "CatPet": {
 "allOf": [
 {
 "$ref": "#/components/schemas/Pet"
 },
 {
 "$ref": "#/components/schemas/Cat"
 }
]
 },
 "DogPet": {
 "allOf": [
 {
 "$ref": "#/components/schemas/Pet"
 },
 {
 "$ref": "#/components/schemas/Dog"
 }
]
 },
 "Pet": {
 "type": "object",
 "required": [
 "pet_type"
],
 "properties": {
 "pet_type": {
 "type": "string"
 }
 }
 },
 "Dog": {
 "type": "object",
 "properties": {
 "bark": {
 "type": "boolean"
 },
 "breed": {
 "type": "string",

Chapter 2
OpenAPI Support

2-71

 "enum": [
 "Dingo",
 "Husky",
 "Retriever",
 "Shepherd"
]
 }
 }
 },
 "Cat": {
 "type": "object",
 "properties": {
 "hunts": {
 "type": "boolean"
 },
 "age": {
 "type": "integer"
 }
 }
 }
 }
}

oneOf with a Nested allOf Subschema Defined Inline

You can use a oneOf pattern in which the allOf is nested and defined inline.

{
 "schemas": {
 "Animal": {
 "discriminator": {
 "propertyName": "pet_type",
 "mapping": {
 "DOG": "#/components/schemas/DogPet"
 }
 },
 "oneOf": [
 {
 "allOf": [
 {
 "$ref": "#/components/schemas/Pet"
 },
 {
 "$ref": "#/components/schemas/Cat"
 }
]
 },
 {
 "$ref": "#/components/schemas/DogPet"
 }
]
 },
 "DogPet": {
 "allOf": [
 {
 "$ref": "#/components/schemas/Pet"

Chapter 2
OpenAPI Support

2-72

 },
 {
 "$ref": "#/components/schemas/Dog"
 }
]
 },
 "Pet": {
 "type": "object",
 "required": [
 "pet_type"
],
 "properties": {
 "pet_type": {
 "type": "string"
 }
 }
 },
 "Dog": {
 "type": "object",
 "properties": {
 "bark": {
 "type": "boolean"
 },
 "breed": {
 "type": "string",
 "enum": [
 "Dingo",
 "Husky",
 "Retriever",
 "Shepherd"
]
 }
 }
 },
 "Cat": {
 "type": "object",
 "properties": {
 "hunts": {
 "type": "boolean"
 },
 "age": {
 "type": "integer"
 }
 }
 }
 }
}

oneOf with a Nested anyOf Subschema Defined as $ref

You can use a oneOf pattern in which a nested anyOf subschema is defined as a reference
($ref).

{
 "schemas": {
 "Animal": {

Chapter 2
OpenAPI Support

2-73

 "discriminator": {
 "propertyName": "pet_type",
 "mapping": {
 "CAT": "#/components/schemas/CatPet",
 "DOG": "#/components/schemas/DogPet"
 }
 },
 "oneOf": [
 {
 "$ref": "#/components/schemas/CatPet"
 },
 {
 "$ref": "#/components/schemas/DogPet"
 }
]
 },
 "CatPet": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/Pet"
 },
 {
 "$ref": "#/components/schemas/Cat"
 }
]
 },
 "DogPet": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/Pet"
 },
 {
 "$ref": "#/components/schemas/Dog"
 }
]
 },
 "Pet": {
 "type": "object",
 "required": [
 "pet_type"
],
 "properties": {
 "pet_type": {
 "type": "string"
 }
 }
 },
 "Dog": {
 "type": "object",
 "properties": {
 "bark": {
 "type": "boolean"
 },
 "breed": {
 "type": "string",
 "enum": [

Chapter 2
OpenAPI Support

2-74

 "Dingo",
 "Husky",
 "Retriever",
 "Shepherd"
]
 }
 }
 },
 "Cat": {
 "type": "object",
 "properties": {
 "hunts": {
 "type": "boolean"
 },
 "age": {
 "type": "integer"
 }
 }
 }
 }
}

oneOf with a Nested anyOf Subschema Defined Inline

You can use a oneOf pattern in which a nested anyof subschema is defined inline.

 Collapse source
{
 "schemas": {
 "Animal": {
 "discriminator": {
 "propertyName": "pet_type",
 "mapping": {
 "DOG": "#/components/schemas/DogPet"
 }
 },
 "oneOf": [
 {
 "anyOf": [
 {
 "$ref": "#/components/schemas/Pet"
 },
 {
 "$ref": "#/components/schemas/Cat"
 }
]
 },
 {
 "$ref": "#/components/schemas/DogPet"
 }
]
 },
 "DogPet": {
 "allOf": [
 {

Chapter 2
OpenAPI Support

2-75

 "$ref": "#/components/schemas/Pet"
 },
 {
 "$ref": "#/components/schemas/Dog"
 }
]
 },
 "Pet": {
 "type": "object",
 "required": [
 "pet_type"
],
 "properties": {
 "pet_type": {
 "type": "string"
 }
 }
 },
 "Dog": {
 "type": "object",
 "properties": {
 "bark": {
 "type": "boolean"
 },
 "breed": {
 "type": "string",
 "enum": [
 "Dingo",
 "Husky",
 "Retriever",
 "Shepherd"
]
 }
 }
 },
 "Cat": {
 "type": "object",
 "properties": {
 "hunts": {
 "type": "boolean"
 },
 "age": {
 "type": "integer"
 }
 }
 }
 }
}

anyOf Keyword Pattern Support
Use the anyOf keyword to ensure that the given data is valid against any of the subschemas.

Chapter 2
OpenAPI Support

2-76

Note:

The anyOf keyword pattern with a subschema being of simple type is not currently
supported.
Any other patterns not listed in the following sections should also be considered
unsupported.

Oracle Integration supports the following anyOf keyword patterns.

• anyOf with All Subschemas Defined as $ref

• anyOf with All Subschemas Defined Inline

• anyOf with Subschemas Being a Mix of Inline and $ref

• anyOf Defined as Item of an Array Type

• anyOf Defined as Items of a Top Level Array

• anyOf with a Nested anyOf Subschema Defined as $ref

• anyOf with a Nested anyOf Subschema Defined Inline

• anyOf with a Nested allOf Subschema Defined as $ref

• anyOf with a Nested allOf Subschema Defined Inline

• anyOf with a Nested oneOf Subschema Defined as $ref

• anyOf with a Nested oneOf Subschema Defined Inline

anyOf with All Subschemas Defined as $ref

You can use an anyOf pattern in which all subschemas are defined as a reference ($ref).

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/ItemProperties"
 },
 {
 "$ref": "#/components/schemas/ItemProductionPrivateVO-
item"
 },
 {
 "$ref": "#/components/schemas/ItemProductionPrivateVO-
item-response-forChildren"
 }
]
 }
 }
 }
}

Chapter 2
OpenAPI Support

2-77

anyOf with All Subschemas Defined Inline

You can use an anyOf pattern with all subschemas defined inline.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "anyOf": [
 {
 "required": [
 "count",
 "hasMore"
],
 "type": "object",
 "properties": {
 "totalResults": {
 "type": "integer",
 "format": "int32"
 },
 "count": {
 "type": "integer",
 "format": "int32"
 },
 "hasMore": {
 "type": "boolean"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "items": {
 "title": "Items",
 "type": "array",
 "description": "The items in the collection.",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-response"
 },
 "x-cardinality": "1"
 }
 }
 }
]
 }
 }
 }
}

Chapter 2
OpenAPI Support

2-78

anyOf with Subschemas Being a Mix of Inline and $ref

You can use an anyOf pattern with subschemas being a mix of inline and references ($ref).

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/CollectionProperties"
 },
 {
 "type": "object",
 "properties": {
 "items": {
 "title": "Items",
 "type": "array",
 "description": "The items in the collection.",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-response"
 },
 "x-cardinality": "1"
 }
 }
 }
]
 }
 }
 }
}

anyOf Defined as Item of an Array Type

You can use an anyOf pattern defined as an item of an array type.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "properties": {
 "repeatingElement": {
 "description": "The items in the collection.",
 "items": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/
ItemProperties"
 },
 {
 "$ref": "#/components/schemas/
ItemProductionPrivateVO-item"
 }
]

Chapter 2
OpenAPI Support

2-79

 },
 "title": "repeatingElement",
 "type": "array",
 "x-cardinality": "1"
 },
 "someStringElement": {
 "type": "string"
 }
 },
 "type": "object"
 }
 }
 }
}

anyOf Defined as Items of a Top Level Array

You can use an anyOf pattern defined as items of a top level array.

{
 "components": {
 "schemas": {
 "Pets": {
 "description": "The items in the collection.",
 "items": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/Cat_Type"
 },
 {
 "$ref": "#/components/schemas/Dog_Type"
 }
]
 },
 "title": "Pets",
 "type": "array",
 "x-cardinality": "1"
 }
 }
 }
}

anyOf with a Nested anyOf Subschema Defined as $ref

You can use an anyOf pattern in which a nested anyOf subschema is defined as a reference
($ref).

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
patch-item"

Chapter 2
OpenAPI Support

2-80

 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
item-patch-request-forChildren"
 }
]
 },
 "ItemRootIccPrivateVO-patch-item": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/ItemEffCategoryVO-patch-
item"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
updatableFields"
 }
],
 "title": "Item Extensible Flexfield"
 },
 "ItemRootIccPrivateVO-item-patch-request-forChildren": {
 "type": "object",
 "properties": {
 "ItemEFFBItem__Details__EFFPrivateVO": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-patch-request"
 },
 "x-cardinality": "1"
 }
 }
 }
 }
 }
}

anyOf with a Nested anyOf Subschema Defined Inline

You can use an anyOf pattern in which a nested anyOf subschema is defined inline.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "anyOf": [
 {
 "anyOf": [
 {
 "$ref": "#/components/schemas/
ItemEffCategoryVO-patch-item"
 },
 {
 "$ref": "#/components/schemas/
ItemRootIccPrivateVO-updatableFields"
 }

Chapter 2
OpenAPI Support

2-81

],
 "title": "Item Extensible Flexfield"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
item-patch-request-forChildren"
 }
]
 }
 }
 }
}

anyOf with a Nested allOf Subschema Defined as $ref

You can use an anyOf pattern in which a nested allOf subschema is defined as a reference
($ref).

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
patch-item"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
item-patch-request-forChildren"
 }
]
 },
 "ItemRootIccPrivateVO-patch-item": {
 "allOf": [
 {
 "$ref": "#/components/schemas/ItemEffCategoryVO-patch-
item"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
updatableFields"
 }
],
 "title": "Item Extensible Flexfield"
 },
 "ItemRootIccPrivateVO-item-patch-request-forChildren": {
 "type": "object",
 "properties": {
 "ItemEFFBItem__Details__EFFPrivateVO": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-patch-request"
 },
 "x-cardinality": "1"

Chapter 2
OpenAPI Support

2-82

 }
 }
 }
 }
 }
}

anyOf with a Nested allOf Subschema Defined Inline

You can use an anyOf pattern in which a nested allOf subschema is defined inline.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "anyOf": [
 {
 "allOf": [
 {
 "$ref": "#/components/schemas/
ItemEffCategoryVO-patch-item"
 },
 {
 "$ref": "#/components/schemas/
ItemRootIccPrivateVO-updatableFields"
 }
],
 "title": "Item Extensible Flexfield"
 },
 {
 "$ref": "#/components/schemas/ItemRootIccPrivateVO-
item-patch-request-forChildren"
 }
]
 }
 }
 }
}

anyOf with a Nested oneOf Subschema Defined as $ref

You can use an anyOf pattern in which a nested oneOf subschema is defined as a reference
($ref).

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/ItemEffCategoryVO-patch-
item"
 },
 {
 "type": "object",

Chapter 2
OpenAPI Support

2-83

 "properties": {
 "items": {
 "title": "Items",
 "type": "array",
 "description": "The items in the collection.",
 "items": {
 "$ref": "#/components/schemas/itemsV2-
ItemEffCategory-item-response"
 },
 "x-cardinality": "1"
 }
 }
 }
]
 },
 "ItemEffCategoryVO-patch-item": {
 "discriminator": {
 "propertyName": "CategoryCode",
 "mapping": {
 "Production": "schemas/ItemProductionPrivateVO-item-
response",
 "ROOT_ICC": "schemas/ItemRootIccPrivateVO-item-
response"
 }
 },
 "oneOf": [
 {
 "$ref": "schemas/ItemProductionPrivateVO-item-
response"
 },
 {
 "$ref": "schemas/ItemRootIccPrivateVO-item-response"
 }
]
 }
 }
 }
}

anyOf with a Nested oneOf Subschema Defined Inline

You can use an anyOf pattern in which a nested oneOf subschema is defined inline.

{
 "components": {
 "schemas": {
 "ItemRootIccPrivateVO-item-patch-request": {
 "anyOf": [
 {
 "$ref": "#/components/schemas/ItemProperties"
 },
 {
 "discriminator": {
 "propertyName": "CategoryCode",
 "mapping": {
 "Production": "#/components/schemas/

Chapter 2
OpenAPI Support

2-84

ItemProductionPrivateVO-item-response",
 "ROOT_ICC": "#/components/schemas/
ItemRootIccPrivateVO-item-response"
 }
 },
 "oneOf": [
 {
 "$ref": "#/components/schemas/
ItemProductionPrivateVO-item-response"
 },
 {
 "$ref": "#/components/schemas/
ItemRootIccPrivateVO-item-response"
 }
]
 }
]
 }
 }
 }
}

Support for OpenAPI Documents with External References
OpenAPI documents with external references are supported for both HTTP- and HTTPS-based
URLs.

Note the following guidelines:

• The base URL for all references must be the same:

http://dummyhost/resources/openapi/main.json
http://dummyhost/resources/openapi/reference.json

or

https://dummyhost/resources/openapi/main.json
https://dummyhost/resources/openapi/reference.json

• The protocol must be either HTTP or HTTPS for all references. (No redirections for HTTP
to HTTPS or vice versa.)

• The URLs must be unprotected (that is, without authentication).

• The references are supported for both relative and absolute URLs.
Examples of both references are as follows:

Chapter 2
OpenAPI Support

2-85

Absolute Reference Relative Reference

"Request": {
 "$ref": "http://dummyhost/
resources/openapi/
RequestReference.json#/components/
schemas/ReferredSchema"
}

"Request": {
 "$ref": "RequestReference.json#/
components/schemas/ReferredSchema"
}

• The references are supported only at the schema level (not supported at the path level).

• Only the paths associated in the main OpenAPI document are considered. Any paths in
references are ignored.

Support for Publishing Interfaces for Oracle Integration Flows as OpenAPI
Documents

Oracle Integration supports open standards for publishing integration flows and simplifying
consumption of Oracle Integration flows from external systems.

In the same endeavor, the REST Adapter in Oracle Integration has started automatically
publishing OpenAPI documents for all of the Oracle Integration flows that have the REST
Adapter as a trigger connection. OpenAPI has become a de facto standard for describing a
REST API. You can download the OpenAPI documents and use the documents to build the
client applications for consuming the Oracle Integration flow exposed as a REST API.

Consumption of OpenAPI Multipart for JSON and Form Data
Request and response schemas for multipart (with a media type of multipart/form-data or
multipart/mixed) are compliant with the OpenAPI 3.x standard. This enables you to consume
the OpenAPI standard using the REST Adapter as a trigger connection in an integration.

For example, use cases such as the following are supported:

• Consuming an OpenAPI document with endpoints that consume or produce HTML form
data

• Consuming an OpenAPI document with endpoints with a multipart/mixed content type

• Consuming an OpenAPI document with endpoints with multipart/form-data

See Consume and Publish OpenAPI Documents with Multipart/Mixed and Multipart/Form-Data.

Attachment Support
The following sections describe REST Adapter attachment capabilities in more detail.

Topics:

• Multipart Attachment Support for Trigger and Invoke Connections

• Support for application/octet-stream MIME Attachment (Binary) Payloads

Chapter 2
Attachment Support

2-86

Multipart Attachment Support for Trigger and Invoke Connections
The REST Adapter supports multipart attachments for trigger (inbound) and invoke (outbound)
requests.

For example, you can send a review document attachment with the trigger (inbound) REST
Adapter to an invoke (outbound) Adobe eSign or DocuSign for delivery to the downstream
endpoint for signing.

If you want to send attachments from inbound to outbound (in request messages) or to
download attachments from outbound to inbound (in response messages), then for each
attachment you must map the attachmentReference from source to target in the mapper.

If you do not map attachmentReference in the mapper for a request, the outbound REST
Adapter does not receive attachments from the inbound direction (multipart request). Similarly,
if you do not map attachmentReference in the mapper for a response, the inbound REST
Adapter does not receive attachments from the outbound REST Adapter (multipart response).

Understand the data structures of different types of configurations made using the REST
Adapter or any application adapter exposing the REST API (used as a trigger) or consuming
the REST API (used as an invoke).

There are two configuration categories of multipart request and response:

• A - Multipart/mixed or multipart/form-data configured with JSON or XML samples

This configuration uses the attachments schema and payload schema. The payload
schema is derived based on a sample JSON/XML schema provided during configuration in
the Adapter Endpoint Configuration Wizard.

• B - Multipart/form-data with HTML form payload

This configuration uses the attachments schema and a generic schema with a
ParameterList element. The ParameterList element consists of an unbounded
parameter element. Each parameter has a name attribute. The value of the parameter is
set directly to the parameter element. If there are multiple parameters, the parameter
element can be repeated in the mapper. The datatype of the parameter and name is
string.

Note:

This category is used when you select Request is HTML Form in the Request
page of the Adapter Endpoint Configuration Wizard. This is similar for a response
if you select Response is HTML Form in the Response page of the Adapter
Endpoint Configuration Wizard.

Note the following details about both configuration categories:

• Attachments schema

Chapter 2
Attachment Support

2-87

The attachments element has an unbounded attachment element. This configuration
supports receiving (on the source) or sending (on the target) multiple attachments. Each
attachment element has attachmentReference and attachmentProperties.

• The AttachmentReference element contains the location where the attachment has been
staged for access.

The AttachmentProperties element provides metadata about a single attachment:

– The contentId property sets the Content-ID header of the body part. The Content-ID
header sets a unique ID for the body part.

– The contentType property sets the Content-Type header of the body part. For
example, if a PDF file is sent, the contentType property should be application/pdf. If
the source is providing a multipart attachment, this is determined automatically. The
mapper can set/override these values.

– The transferEncoding property sets the Content-Transfer-Encoding header of the
body part. This header's value is a single token specifying the type of encoding:

Content-Transfer-Encoding := "BASE64" / "QUOTED-PRINTABLE" /
 "8BIT" / "7BIT" /
 "BINARY" / x-token

These values are not case sensitive. That is, Base64, BASE64, and bAsE64 are all
equivalent. An encoding type of 7BIT requires that the body is already in a seven-bit,
mail-ready representation. This is the default value (that is, Content-Transfer-
Encoding: 7BIT is assumed if the Content-Transfer-Encoding header field is not
present). See https://www.w3.org/Protocols/rfc1341/5_Content-Transfer-
Encoding.html.

– The partName property sets the fileName of the body part. The attached file/body part
is saved by the target system with this name.

– The contentDisposition property sets the Content-Disposition header of the body
part.

In a multipart/form-data body, the HTTP Content-Disposition is a header to use on
the subpart (that is, the attachment) of a multipart body to provide information about
the field to which it applies. The Content-Disposition header value is generally set to
form-data. The optional directive name and filename can also be used. For example:

Content-Disposition: form-data
Content-Disposition: form-data; name="fieldName"
Content-Disposition: form-data; name="fieldName";
filename="filename.jpg"

– The contentDescription property sets some descriptive information with a given body
part. For example, you can mark an image body as a picture of the Space
Shuttle Endeavor. You can place such text in the Content-Description header field.

– The fileInputHtmlFieldName property sets the name of the part from which the server
must read the file.

Mapper configuration scenarios:

• Both source and target have multipart requests with JSON/XML payload (category A)

The following sample map focuses only on the mapping of attachmentReference to the
target. In this scenario, there is an assumption that only one attachment from the source is

Chapter 2
Attachment Support

2-88

https://www.w3.org/Protocols/rfc1341/5_Content-Transfer-Encoding.html
https://www.w3.org/Protocols/rfc1341/5_Content-Transfer-Encoding.html

being mapped to the target. The mapping of the payload (request-wrapper node) between
the source and target is not shown. You must perform that task.

• The source is multipart/mixed or multipart/form-data with JSON/XML payload (Category A).
The target is multipart/form-data with form fields (Category B)

The following map focuses on mapping of the attributes on the HTML form. There must be
as many parameters in the parameterList as there are fields in the HTML form.

• Creating a reference from base64–encoded content. The source has a base64–encoded
string and the target can be any of the three: multipart/mixed, multipart/form-data with
JSON/XML payload, or multipart/form-data with HTML form payload.

In the inbound payload, the content element is a base64–encoded string. This can be sent
as an attachment in the outbound request.

Since the inbound request is not multipart, but the outbound must be multipart, you must
set multipart-specific properties in the mapper for the outbound direction. The
contentType is set here to image/png, partName is set to picture.png, and
fileInputHtmlFieldName is set to image. The assumption is that the target system is
configured to read from a body part having name="image" in its content disposition. This
is done with the element fileInputHtmlFieldName.

Chapter 2
Attachment Support

2-89

The base64 string can be converted into a reference using XSL function
decodeBase64ToReference and the reference can be assigned to the
attachmentReference element.

• The inbound is an FTP file read operation (nonmultipart) and the outbound is multipart/
mixed with a JSON or XML payload.

Chapter 2
Attachment Support

2-90

Note:

• If the source is not multipart, but the target must be multipart, contentType and
partName must be provided for the target through the mapper.

• The response mapper description is similar to the request mapper.

Several implementation patterns are provided. See Implement Common Patterns Using the
REST Adapter.

Support for application/octet-stream MIME Attachment (Binary) Payloads
A MIME attachment with the content type application/octet-stream is a binary file. Typically,
it is an application or a document that is opened in an application such as a spreadsheet or
word processor. If the attachment has a filename extension associated with it, you may be able
to determine what type of file it is.

For example, an .exe extension indicates a Windows or DOS program (executable), while a
file ending in .doc is probably meant to be opened in Microsoft Word.

The application/octet-stream MIME type is used for unknown binary files. It preserves the
file contents, but requires the receiver to determine file type, for example, from the filename
extension. The Internet media type for an arbitrary byte stream is application/octet-stream.

To use this feature, select the Binary option from the invoke Request/Response page when
configuring the adapter as an invoke. When you select this option, you do not need to provide
a schema because the payload has no structure.

This feature works with the application/octet-stream MIME type and any other type that can
be sent as binary bytes. For example, the REST Adapter can send outbound requests or
process outbound responses using the application/pdf, application/zip, image/jpeg,
image/png, and other formats. Commonly used types shown in the dropdown are:

• application/octet-stream
• application/pdf
• application/msword
• application/zip
• image/jpeg
• image/png
• image/bmp
• image/gif
There is also a text box to provide a type not listed in the dropdown list (for example,
video/mp4 or text/csv).

The following screenshots show how binary payloads can be mapped.

Chapter 2
Attachment Support

2-91

Header, Token, Query Parameter, and Array Support
The following sections describe REST Adapter header, token, query parameter, and array
capabilities in more detail.

Topics:

• Standard and Custom Header Support

• Nonstandard JWT Token Support

• RFC 3986 Support for Encoding Query Parameters

• Homogenous Multidimensional Array Support in JSON Documents

• Heterogeneous JSON Array Support

Chapter 2
Header, Token, Query Parameter, and Array Support

2-92

Standard and Custom Header Support
The REST Adapter supports standard and custom HTTP request and response headers in the
invoke and trigger directions.

• Outbound (Invoke) direction

HTTP headers enable you to use an outbound invocation to specify header properties.
Many REST APIs expect certain properties to be specified in the HTTP headers (similar to
SOAP APIs where you can specify header properties such as the WS address). Use the
standard HTTP headers to specify these properties. You can also use the custom HTTP
headers to specify properties. The REST APIs can expect the client application to pass
properties in the custom headers, which can influence the behavior of the APIs. The
standard and custom HTTP header properties configured in the Adapter Endpoint
Configuration Wizard automatically start appearing in the mapper. You can map the header
properties in the mapper.

• Inbound (trigger) direction

You can expose integration flows as REST endpoints and enable client applications to
populate the properties in the standard and custom headers. You can use these properties
to create routing expressions in your integrations. The standard and custom HTTP header
properties configured in the Adapter Endpoint Configuration Wizard automatically start
appearing in the mapper. You can map the header properties in the mapper. See Create
Routing Paths for Two Different Invoke Endpoints in Integrations and Design an
Application Integration.

Note:

• If you want to send multiple values of a header, use comma separated values
(CSVs). This is considered as one header and one value that consists of:

val1 comma val2 comma val3 ...

The same value is propagated across the mapper and then to the outbound
service. The outbound service must then interpret the CSVs of the header to be
used as multiple values.

• You cannot store multiple headers with the same name. The WSDL can only
store one element with one unique name.

Nonstandard JWT Token Support
The use of nonstandard JWT tokens is supported. The JSON content type is a standard JWT
token, while all other (for example, text or XML) are nonstandard JWT tokens. To fetch
nonstandard JWT tokens from a REST service, use the following regex string.

• Use regex “.*” if the entire content is a JWT token. For this example, the entire content of
the sample HTTP response is JWT token.

HTTP/1.1 200 OK
Date: Wed Jul 4 15:38:53 2012
Connection: Keep-Alive:

Chapter 2
Header, Token, Query Parameter, and Array Support

2-93

Content-Type: text/plain;charset=UTF-8
Content-Length: 148
MTgwNzE5NTY1NToxQkhzQlpaSXM0a21BV3NhbVBIclJOTFM4OGFxU09jNlRTdmFKSmczLVBqVHl
WRF
JwbWYxOFhmcnN6S0N6c3Fzb1JKbEh6U2IwSTdvflVuZWFXVjVmemhJNTJ1YVN6bFdDbTBG

• Use regex “(?:.*?"my_token":")(.*?)(?:".*?)”, if the JWT token is embedded inside a
nonstandard response. For example, my_token is shown in the following sample HTTP
response in which the JWT token is embedded inside a nonstandard response. This regex
consists of a capturing group and noncapturing group. See https://www.regular-
expressions.info/refcapture.html.

HTTP/1.1 200 OK
Date: Wed Jul 4 15:38:53 2012
Connection: Keep-Alive:
Content-Type: text/plain;charset=UTF-8
Content-Length: 286
"name":"raw-jwt"
"my_token":"MTgwNzE5NTY1NToxQkhzQlpaSXM0a21BV3NhbVBIclJOTFM4OGFxU09jNlRTdmF
KSm
czLVBqVHlWRFJwbWYxOFhmcnN6S0N6c3Fzb1JKbEh6U2IwSTdvflVuZWFXVjVmemhJNTJ1YVN6b
FdD
bTBG"
"id":"8353"

RFC 3986 Support for Encoding Query Parameters
The REST Adapter supports encoding query parameters.

The REST Adapter supports encoding query parameters in accordance with RFC 3986
standards. The default behavior is to encode the query parameters following the
application/x-www-form-urlencoded scheme. For most older services that expect query
parameters to be encoded following the application/x-www-form-urlencoded scheme, the
default scheme should work. If you find the target endpoint not behaving correctly with the
default encoding scheme, the REST Adapter can also be configured to strictly follow RFC
3986. A very common scenario in which the default behavior may not be desirable is when the
target service expects space characters encoded as %20 in the query parameters. In this case,
the default behavior is to encode space characters as +. Some new services may also respond
with HTTP 400 (bad data) if query parameters are encoded in the application/x-www-form-
urlencoded scheme. In these cases, you can switch to the RFC 3986 standard and check if
the service responds correctly. To use RFC 3986 (and override the default behavior), perform
the following steps to configure the REST Adapter as an invoke connection (and not as a
trigger connection) in the Adapter Endpoint Configuration Wizard and in the mapper.

1. On the Basic Info page, select the Custom check box for Configure Request Headers.

2. On the Request Headers page, add the x-ics-use-x-www-form-urlencoded custom
header and optionally provide a description.

3. Complete the Adapter Endpoint Configuration Wizard.

4. In the mapper, set the x-ics-use-x-www-form-urlencoded custom header to false.

The REST Adapter automatically encodes all query parameters in accordance with RFC 3986
in the outgoing request for this invoke connection.

Chapter 2
Header, Token, Query Parameter, and Array Support

2-94

https://www.regular-expressions.info/refcapture.html
https://www.regular-expressions.info/refcapture.html
https://tools.ietf.org/html/rfc3986

Homogenous Multidimensional Array Support in JSON Documents
You can select a JSON sample with homogenous multidimensional arrays when configuring
the REST Adapter in the Adapter Endpoint Configuration Wizard.

All JSON messages must be converted to XML before they can be processed by Oracle
Integration at runtime. Semantically, there is no equivalent of multidimensional arrays in XML.
To support multidimensional arrays, intermediate XML elements are generated that denote the
beginning and ending of a nested array. When receiving a JSON message containing
multidimensional arrays, these reserved elements are injected into the generated XML to
denote the beginning and ending of a nested array. While converting XML elements back into
JSON, the injected elements are converted into JSON with nested arrays.

The following JSON document consists of a multidimensional array (@ref "rercordsData”).

{
 "studentData": {
 "fieldNames": ["id","mobile_number"],
 "recordsData": [["21","23"], ["+91123456789", "+91987654321"]],
 "name": "jack"
 },
 "schoolData": {
 "Name": "ABCInternations",
 "StudentNumbers": 1300,
 "Address": "YYY streets Sector-44 India"
 }
}

The sample generated schema XML for the JSON document looks as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>

<ns0:executeResponse xmlns:ns1="http://xmlns.oracle.com/cloud//REST/test/
types"
xmlns:ns0="http://xmlns.oracle.com/cloud//REST/test_REQUEST/types">

<ns1:response-wrapper>
 <ns1:studentData>
 <ns1:fieldNames>id</ns1:fieldNames>
 <ns1:fieldNames>mobile_number</ns1:fieldNames>
 <ns1:recordsData>
 <ns1:nestedArray>
 <ns1:nestedArrayItem>21</ns1:nestedArrayItem>
 <ns1:nestedArrayItem>23</ns1:nestedArrayItem>
 </ns1:nestedArray>
 <ns1:nestedArray>
 <ns1:nestedArrayItem>+91123456789</
ns1:nestedArrayItem>
 <ns1:nestedArrayItem>+91987654321</
ns1:nestedArrayItem>
 </ns1:nestedArray>
 </ns1:recordsData>
 <ns1:name>jack</ns1:name>
 </ns1:studentData>

Chapter 2
Header, Token, Query Parameter, and Array Support

2-95

 <ns1:schoolData>
 <ns1:Name>ABCInternations</ns1:Name>
 <ns1:StudentNumbers>1300</ns1:StudentNumbers>
 <ns1:Address>YYY streets Sector-44 India</ns1:Address>
 </ns1:schoolData>
</ns1:response-wrapper>
</ns0:executeResponse>

Elements in the nested array appear as nestedArray in the mapper and items in the elements
appear as nestedArrayItem. You must map nestedArray as a for-each statement and
nestedArrayItem as a for-each statement.

Heterogeneous JSON Array Support
In JSON, an array is an ordered collection of values that can be of various data types, such as
strings, numbers, objects, arrays, booleans, or null. Homogeneous arrays are simply an
ordered collection of values of the same type, whereas heterogeneous arrays are collections of
disparate types.

Perform the following steps to configure a heterogeneous JSON array in the REST Adapter.

1. Provide sample JSON containing the JSON heterogeneous array in the REST Adapter.
The sample must conform to the following rules:

a. You must enrich the sample JSON payload with an additional metadata node oic-
json-metadata. Provide the JSON path of the heterogeneous array in the sample and
provide the JSON path to the discriminator.

{
"oic-json-metadata": {
 "heterogeneousArrays": [
 {
 "heterogeneousArrayPath": "$.entry",
 "heterogeneousArrayDiscriminatorPath": "$.entry.resourceType"
 }
]
}

b. Ensure the sample JSON is representative and adheres to the following rules:

• All the types expected from the actual payload must be available in the sample.

Chapter 2
Header, Token, Query Parameter, and Array Support

2-96

• Each discriminator must have at least one cell.

• The first cell of a discriminator must be representative.

• Each array type must have more than one cell.

2. Based on the metadata, Oracle Integration identifies the coordinates of heterogeneous
arrays in this document and where to locate their discriminator.
Every cell of the JSON payload having a heterogeneous array must contain the
discriminator value.

3. For the heterogeneous array, an abstract type in the schema is generated. Each cell of the
heterogeneous array is located. For each cell, the discriminator value is extracted and an
extension type is created for the discriminator, which extends the abstract base type.

4. You must extend the base type for the required discriminators and map.
The following types are not currently supported:

• Nested heterogeneous arrays

• Heterogeneous arrays at the top level

• A nested heterogeneous array as an item of an array

• Multiple heterogeneous arrays

Swagger Support
The following sections describe REST Adapter Swagger capabilities in more detail.

Topics:

• REST Endpoint Metadata and a Swagger Link to a REST Metadata Description

REST Endpoint Metadata and a Swagger Link to a REST Metadata
Description

When you activate an integration with a REST Adapter trigger connection, an endpoint
metadata URL link is provided at the top of the Integrations page.

For example:

integration Hello World (1.1.0) was activated successfully.
You can access it via http://host:port/ic/api/integration/v1/flows/rest/
HELLO_WORLD/1.0/metadata.

This link enables you to inspect the shape of the API. The metadata includes additional
information about the endpoint description, the endpoint URI, and the Swagger URI.

Note the following details:

• If you import an IAR file with an endpoint description defined in the inbound (trigger)
direction, update the connection, activate the integration, and access the metadata in a
browser (for example, through a URL similar in structure to the following), the endpoint
description is not shown even though the inbound direction has a description defined.

http://host:port/ic/api/integration/v1/flows/rest/OLD_INTG_DESC/1.0/
metadata

Chapter 2
Swagger Support

2-97

This is expected behavior. The description is stored in a JCA file from which it is read and
displayed. Existing integrations do not have this file. Even after upgrades, the existing
integration does not show the endpoint description. To get the correct description, you
must re-edit the REST Adapter to generate the artifacts again and re-activate the
integration.

• If you attempt to re-edit an imported integration or existing integration in the Adapter
Endpoint Configuration Wizard with a resource URI of /metadata or /metadata/swagger,
you cannot navigate the wizard and receive an error. This is because the /metadata or /
metadata/swagger keywords are reserved.

• If the relative URI has template parameters, then at runtime the value of the relative URI if
resolved to /metadata or /metadata/swagger is treated as reserved for retrieving the
integration metadata. Note the following behavior:

– /{param}: Allowed - The integration cannot be invoked with the value of param as
metadata and returns the metadata page.

– /{param}/swagger: Allowed - The integration cannot be invoked with the value of
param as metadata and returns the Swagger page.

– /metadata/{param}: Allowed - The integration cannot be invoked with the value of
param as Swagger and returns the Swagger page.

• Metadata and Swagger are only served depending on predefined reserve URIs for an
integration. Resources with arbitrary URIs ending with values metadata or swagger are not
confused with the endpoint documentation artifacts.

Mapper Connectivity Properties Support
The following section describes REST Adapter mapper connectivity property capabilities in
more detail.

Topic:

• Set REST Adapter Connectivity Properties in the Mapper

Set REST Adapter Connectivity Properties in the Mapper
You can set REST Adapter connectivity properties in the mapper to propagate additional
information to and from the target endpoint.

• Restrictions

• Connectivity Properties (Trigger Request)

• Connectivity Properties (Trigger Response)

• Connectivity Properties (Invoke Request)

• Connectivity Properties (Invoke Response)

Restrictions

• You can customize the response status. However, this is not shown as part of the Swagger
contract because runtime overrides are not known as part of the interface.

• The HTTP response status cannot be customized for the following conditions:

– If the request is asynchronous one way, the response status is always 201.

Chapter 2
Mapper Connectivity Properties Support

2-98

– Errors occurring during trigger request/response handling are reported using
predefined error codes.

– Basic routing integrations don't allow fault handling. Error response in these scenarios
cannot be customized.

Connectivity Properties (Trigger Request)

You can set the following properties for trigger requests in the mapper.

Property Description

Http Request Method This field contains the method name with which the
REST Adapter trigger endpoint was invoked.

Http Request Uri The absolute endpoint URI of the Oracle
Integration REST Adapter trigger that was invoked
by the client.

Http Request Relative Uri The HTTP request relative URI. This is the relative
URI of the Oracle Integration REST Adapter trigger
REST endpoint.

Http Request Path The HTTP request path. This is the path of the
Oracle Integration REST trigger REST endpoint.

An asterisk in the mapper identifies headers and query and path parameters already sent
along with the incoming request.

Connectivity Properties (Trigger Response)

You can set the following properties for trigger responses in the mapper.

Property Description

Http Response Status The value assigned to this property is sent back as
the HTTP response status code by the Oracle
Integration REST integration.

An asterisk in the mapper identifies headers/content that can be set with the outgoing
response.

Chapter 2
Mapper Connectivity Properties Support

2-99

Connectivity Properties (Invoke Request)

You can set the following properties for invoke requests in the mapper.

Property Description

Absolute Endpoint URI When mapped to a valid URI, the request is routed
to this URI.

Base URI The base URI to which this request is routed. This
is the equivalent of the base connection URL
provided during connection configuration.

Relative URI The relative URI of the resource. This must start
with a /.

URI (Complex) Use one of the following elements to substitute URI
components.

• scheme
• host
• port
• path
• query

Post Query String When the runtime value is true and the HTTP verb
is POST, the query string parameters are sent in
the POST as form parameters. The default value is
false.

Use Form URL Encoding When the runtime value is false, the REST Adapter
uses RFC–3986 compliant encoding to encode the
query parameters. The default value is true (the
equivalent of setting custom header x-ics-use-x-
www-form-urlencoded to false). See RFC 3986
Support for Encoding Query Parameters.

Enforce Empty JSON Object Payload When set to true, sets the body payload to an
empty JSON object. The default value is false. See
Send an Empty JSON Object.

Enforce Absolute Endpoint URI Applies when you map an absolute endpoint URI to
override the value configured in the REST Adapter.
The enforcement of the absolute endpoint URI
means that it does not encode or modify the URI
when submitting it to the target.

Skip Control Characters Use to skip control characters.

An asterisk in the mapper identifies headers and query and path parameters already sent
along with the outgoing request.

Chapter 2
Mapper Connectivity Properties Support

2-100

Connectivity Properties (Invoke Response)

You can set the following properties for invoke responses in the mapper.

Property Description

Http Response Status The HTTP response status returned by the target
endpoint.

Http Response Reason The reason corresponding to the HTTP response
status returned by the target endpoint.

Http Target Endpoint Uri The target endpoint that was invoked to receive this
response.

An asterisk in the mapper identifies headers/content already sent as part of the incoming
response received.

Chapter 2
Mapper Connectivity Properties Support

2-101

REST Endpoint Support
The following sections describe REST endpoint capabilities in more detail.

Topics:

• Support for Dynamic REST Endpoints

• Configuration Parameters

Support for Dynamic REST Endpoints
The REST Adapter enables you to dynamically change the (invoke) outbound endpoint
configuration. This feature is useful in the following scenarios:

• A REST endpoint is required to be invoked dynamically or an endpoint is not known at
design time.

• Multiple REST services must be invoked, all of which accept the same input payload and
return the same response payload as configured for the outbound endpoint. For such
cases, this feature eliminates the need to create multiple connections for invoking each of
these REST endpoints.

To change the endpoint configuration at runtime, you must provide a mapping for one or more
of the various properties under ConnectivityProperties.

For example, the following steps describe how to configure an integration to invoke a REST
endpoint determined at runtime:

1. Create and configure a REST Adapter as an invoke connection.

2. In the target pane of the mapper, expand RestApi under ConnectivityProperties. These
elements are made available automatically through a static schema that is added to the
user-provided schema.

3. Using the source schema in the source pane, create a mapping to AbsoluteEndpointUri
in the target pane. Alternatively, you can also provide a static mapping. The REST Adapter
uses the runtime value provided by this mapping to determine the REST endpoint to which
to route this request.

4. You can similarly provide a source mapping to other target nodes under
ConnectivityProperties. The REST Adapter uses the runtime values provided by these
mappings to dynamically configure the request.

5. Activate and invoke the integration. The REST Adapter now invokes the endpoint URI
determined at runtime.

6. Hover the mouse pointer over these properties in the mapper for a brief description. These
descriptions are also provided below:

• AbsoluteEndpointUri: Represents the absolute endpoint URL that the REST Adapter
invokes. Empty values are ignored. To route the request to an endpoint URL
determined at runtime, provide a mapping for this element. AbsoluteEndpointUri
takes first precedence among other URL-related properties under
ConnectivityProperties.

• BaseUri: The equivalent of the base URL provided during connection configuration. To
substitute only the base URI and keep the rest of the URL the same, provide a
mapping for this element. The mapping is ignored if AbsoluteEndpointUri has a
runtime value.

Chapter 2
REST Endpoint Support

2-102

• RelativeUri: Forms the part of the endpoint URI between BaseUri and ?. This
mapping has no impact if BaseUri has an empty runtime value or
AbsoluteEndpointUri has a runtime value. The runtime value must start with a /.

• Uri: Use the various elements under this node to substitute the specific parts with
runtime values of an endpoint URL.

– Scheme: Provide a mapping if you want to change only the scheme of the
endpoint URL. The only supported values are HTTP and HTTPS.

– Host: Provide a mapping if you want to change only the host of the endpoint URL.

– Port: Provide a mapping if you want to change only the port of the endpoint URL.

– Query: Provide a mapping if you want to change only the query portion of the
endpoint URL. The query portion follows the ?.

– Path: Provide a mapping if you want to change only the path portion of the
endpoint URL. A path is the part of a URI between the hostname and ?.

• Plugin: The various properties under this node impact the way the REST Adapter
invokes the endpoint URL.

– PostQueryString: When the runtime value is true and the HTTP verb is POST,
the query string parameters are sent in the POST as form parameters. The default
value is false.

– UseFormUrlEncoding: When the runtime value is false, the REST Adapter uses
RFC–3986 compliant encoding to encode the query parameters. The default value
is true (the equivalent of setting custom header x-ics-use-x-www-form-
urlencoded to false). See section “RFC 3986 Support for Encoding Query
Parameters” for more information on x-ics-use-x-www-form-urlencoded. The x-
ics-use-x-www-form-urlencoded custom header takes precedence when both
properties are set.

– EnforceEmptyJSONObjectPayload: When set to true, sets the body payload to
an empty JSON object. The default value is false.

Note the following restrictions:

• The request and response schema must be the same as provided during configuration in
the Adapter Endpoint Configuration Wizard.

• Template parameters are not supported while mapping these properties.

• An HTTP verb cannot be changed for the endpoint URL. For example, if the endpoint is
configured to use POST, the outgoing request is a POST even if the endpoint URI changes
at runtime.

• Since the endpoint URL is determined at runtime, there is no facility to test whether the
security credentials provided during connection configuration also work with the new
endpoint URL. If the endpoint URL determined at runtime requires a different authorization
header then the original URL, you may also have to provide a mapping for the
authorization standard header.

Configuration Parameters
You configure the following parameters using the Adapter Endpoint Configuration Wizard to
expose and consume a REST service:

• Relative resource path URI

• HTTP method (actions) to perform

Chapter 2
REST Endpoint Support

2-103

• Template and query parameters

• Request/response message structure

Cross-Origin Resource Sharing (CORS) Support
The following section describes cross-origin resource sharing (CORS) capabilities in more
detail.

Topics:

• Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS)
CORS defines a way in which a browser and server can interact to determine safely whether or
not to allow the cross-origin request. CORS provides for more flexibility than same-origin
requests, but is more secure than simply permitting all cross-origin requests.

Oracle Integration supports CORS in the REST Adapter trigger (inbound) direction. You
configure CORS support in the Adapter Endpoint Configuration Wizard. See REST Adapter
Trigger Resource Configuration Page and REST Adapter Trigger CORS Configuration Page.

CORS is supported by browsers based on the following layout engines:

• Blink- and Chromium-based browsers (Chrome 28, Opera 15, Amazon Silk, Android's 4.4+
WebView, and Qt's WebEngine).

• Gecko 1.9.1 (Firefox 3.5, SeaMonkey 2.0, and Camino 2.1) and above.

• MSHTML/Trident 6.0 (Internet Explorer 10) has native support. MSHTML/Trident 4.0 & 5.0
(Internet Explorer 8 & 9) provide partial support through the XDomainRequest object.

• Presto-based browsers (Opera) implement CORS as of Opera 12.00 and Opera Mobile 12,
but not Opera Mini.

• WebKit (Safari 4 and above, Google Chrome 3 and above, possibly earlier).

The following browsers do not support CORS:

• Camino does not implement CORS in the 2.0.x release series because these versions are
based on Gecko 1.9.0.

• As of version 0.10.2, Arora exposes WebKit's CORS-related APIs, but attempted cross-
origin requests fail.[16].

For CORS to work, you must send an OPTIONS request. Using the XMLHttpRequest object in
Javascript for (Ajax calls) automatically sends the OPTIONS request. If XMLHttpRequest is not
used, then the OPTIONS request must be sent explicitly.

In the following example, an HTML client invokes an Oracle Integration CORS-based endpoint
using XMLHttpRequest.

<html>

<script language="javascript">

var invocation = new XMLHttpRequest();
var url =
"<ics endpoint url>";
// Use postman to generate authCode. Sample is provided below

Chapter 2
Cross-Origin Resource Sharing (CORS) Support

2-104

var authCode = 'Basic <base64encoded authorization string>';

function callOtherDomain(){ if(invocation) {
invocation.open('GET', url, true);
invocation.setRequestHeader('Accept', 'application/json');
invocation.setRequestHeader('X-Cache','aaa');
invocation.setRequestHeader('X-Forwarded-For','fwd1');
invocation.setRequestHeader('Authorization',authCode);
invocation.onreadystatechange = stateChangeEventHandler;
invocation.send();
}
}

function stateChangeEventHandler()
{
// check whether the data is loaded
if (invocation.readyState==4)
 { // check whether the status is ok
 if (invocation.status==200) {
 //alert(invocation.responseText)
document.getElementById("myTextarea").value = invocation.responseText
document.write("hello");
document.write(invocation.responseText);
 }
 else
 {
 alert ("Error Occurred")
 }
 }
}

</script>
<body onload="callOtherDomain()">

<textarea id="myTextarea" name="mytextarea1"></textarea>

</body>
</html>

Some browsers may also have security restrictions such as the same origin policy or a similar
name that prevents using CORS. For example, to access a CORS-enabled endpoint using a
Chrome browser, you may have to start it with web security disabled as follows.

chrome.exe --user-data-dir="C:/Chrome dev session" --disable-web-security

Complex Schema Support
The following section describes REST Adapter complex schema capabilities in more detail.

Topics:

• Complex Schema Support

Chapter 2
Complex Schema Support

2-105

Complex Schema Support
Support is provided for XSDs that can import and include other XSDs. The included XSDs in
the ZIP file can import the XSD from an HTTP location. All XSD files must be added to a ZIP
file and uploaded when configuring the REST Adapter in the Adapter Endpoint Configuration
Wizard.

In the following example, the hierarchy of the ZIP file to upload is as follows:

zipxsd.zip
 first.xsd
 second (folder)
 second.xsd

first.xsd imports second.xsd.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://xmlns.oracle.com/first"
targetNamespace="http://xmlns.oracle.com/first"
 xmlns:tns1="http://xmlns.oracle.com/second">
<xs:import schemaLocation="./second/second.xsd"
targetNamespace="http://xmlns.oracle.com/second"/>
<xs:import schemaLocation="https://example.com/fscmService/ItemServiceV2?
XSD=/xml/datagraph.xsd" targetNamespace="commonj.sdo"/>
<xs:element name="book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="isbn" type="xs:string"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="author" type="tns1:author"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

The contents of second.xsd are as follows.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://xmlns.oracle.com/second"
targetNamespace="http://xmlns.oracle.com/second">
<xs:import schemaLocation="https://example.com/fscmService/ItemServiceV2?
XSD=/mycompany/apps/scm/productModel/items/itemServiceV2/ItemAttachment.xsd"
targetNamespace="http://xmlns.oracle.com/apps/scm/productModel/items/
itemServiceV2/"/>
<xs:complexType name="author">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="address" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
<xs:element name="Admin">
 <xs:complexType>
 <xs:sequence>

Chapter 2
Complex Schema Support

2-106

 <xs:element name="AdminName" type="xs:string"/>
 <xs:element name="AdminAdd" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

Note:

If you are importing from HTTPS locations, ensure that you import the SSL
certificates into Oracle Integration.

Resource Principal Session Token Support
The REST Adapter supports the Resource Principal Session Token (RPST). RPST enables an
Oracle Integration instance (the resource) to authenticate itself with and consume other Oracle
Cloud Infrastructure services, such as Oracle Cloud Infrastructure Functions, Oracle Cloud
Infrastructure Object Storage, Oracle Cloud Infrastructure Vision, and more.

To use RPST, you create a dynamic group and specify a policy in the Oracle Cloud
Infrastructure Console to enable access to Oracle Cloud Infrastructure services. Once these
prerequisites are completed, you simply select the OIC Service Invocation security policy when
configuring the REST Adapter as an invoke connection on the Connections page. No
additional user configuration is required.

See RPST and OCI Service Invocation Security Policy Use.

The RPST authentication process works as follows:

1. You create a policy to grant the Oracle Integration instance access to a specific Oracle
Cloud Infrastructure service or to all Oracle Cloud Infrastructure services in a specific
compartment.

2. The OAuth client credentials flow obtains an Oracle Identity Cloud Service bearer token
that represents the Oracle Integration instance.

3. The Oracle Identity Cloud Service bearer token calls a region-specific token exchange API
to exchange the bearer token for an RPST token. The RPST token is only valid for
resources to which the dynamic group has been granted access by the policy. The token is
valid for one hour.

4. The RPST token is used to sign the request to the Oracle Cloud Infrastructure services
specified in the policy (keyId=rpst_token).

A high-level overview of an integration that calls an Oracle Cloud Infrastructure service is
provided. See Access Oracle Cloud Infrastructure Service Resources Using RPST.

JWT Assertion Support for Outbound Invocations
You may have a business need to invoke a service provider that does not regard an OAuth
client secret as secure. For these scenarios, JWT assertions can be used. JWT assertions
supplement all flavors of OAuth by authenticating the client application without the use of a
client secret.

• Capabilities

Chapter 2
Resource Principal Session Token Support

2-107

• JWT Assertion Authentication Process

Capabilities

Trust is established with a key pair exchange instead of a client secret. No client secrets are
shared. The National Health Service (NHS) and Fast Healthcare Interoperability Resources
(FHIR) are examples of service providers that have moved away from client secret
authentication to JWT assertions. The REST Adapter supports both JWT client and user
assertions in the outbound (invoke) direction with the following security policies on the
Connections page:

• OAuth Client Credentials using JWT Client Assertion

• OAuth using JWT User Assertion

JWT assertions provide the following capabilities:

• Full header and body claims control

• Multiple algorithm support (such as RSA)

• Full customization of form-data payloads (with an option to send the client secret, if
necessary). Some providers don't follow standards to get the access token and prefer to
customize their payloads.

• Session support (refresh token caching and transient access token handling)

• User-access token assertion support

• Support for the different implementations of JWT provided by the following services:

– NHS

– FHIR

– DocuSign

– Adobe eSign

– Microsoft

– Okta

JWT Assertion Authentication Process

The JWT assertion authentication process works as follows:

1. You manually create and upload a private signing key on the Certificates page in Oracle
Integration.

2. You provide JWT header and payload files on the Connections page to formulate the JWT
assertion, including entering the same private signing key name you specified on the
Certificates page.

3. Oracle Integration uses the private signing key name to generate the JWT assertion.

4. The JWT assertion is used to call the access token URI to obtain the access token from
the service provider.

5. The access token is used to call the REST API of the service provider.

A high-level use case is provided that describes how to create an integration with JWT
assertion support. See Invoke a Service Provider API with a JWT Assertion.

Chapter 2
JWT Assertion Support for Outbound Invocations

2-108

3
Create a REST Adapter Connection

A connection is based on an adapter. You define connections to the specific cloud applications
that you want to integrate.

Topics:

• Prerequisites for Creating a Connection

• Create a Connection

• Upload a Certificate to Connect with External Services

Prerequisites for Creating a Connection
You must satisfy the following prerequisites to create a connection with the REST Adapter:

• OAuth Security Policies

• SSL Endpoints

• Amazon Web Services (AWS) REST API Consumption

• OCI Signature Version 1 Security Policy Use

• RPST and OCI Service Invocation Security Policy Use

• JWT Assertions Outbound Use

OAuth Security Policies Use

If you are using one of the OAuth security policies, you must already have registered your
client application to complete the necessary fields on the Connections page. The Basic
Authentication and No Security Policy security policies are exempted.

Before a client application can request access to resources on a resource server, the client
application must first register with the authorization server associated with the resource server.

The registration is typically a one-time task. Once registered, the registration remains valid,
unless the client application registration is revoked.

At registration time, the client application is assigned a client ID and a client secret (password)
by the authorization server. The client ID and secret are unique to the client application on that
authorization server. If a client application registers with multiple authorization servers (for
example, Facebook, Twitter, and Google), each authorization server issues its own unique
client ID to the client application.

@ref: http://tutorials.jenkov.com/oauth2/authorization.html

For OAuth configuration, read the provider documentation carefully and provide the relevant
values.

3-1

SSL Endpoints Use

For SSL endpoints, obtain and upload a server certificate. See Upload a Certificate to Connect
with External Services.

Amazon Web Services (AWS) REST API Consumption

Before you can create a connection that consumes an Amazon Web Services (AWS) REST
API, you must obtain the necessary access and secret keys. See Understanding and Getting
Your Security Credentials.

OCI Signature Version 1 Security Policy Use

To configure the REST Adapter to use the OCI Signature Version 1 security policy on the
Connections page, you must perform several tasks:

• Create an API signing key. You then specify the signing key in Oracle Cloud Infrastructure.

1. Create the signing key in Oracle Cloud Infrastructure using openssl. The key must be
in RSA (PKCS1) format. During creation, you also create a pass phase to protect the
key. Both the key and pass phrase are required when configuring the OCI Signature
Version 1 security policy on the Connections page. See Creating a Key Pair.
If the key downloaded from the Oracle Cloud Infrastructure Console is in PKCS8
format, it must be converted to RSA (PKCS1) format. See Convert a Private Key from
PKCS8 to RSA (PKCS1) Format for the OCI Signature Version 1 Security Policy.

Existing connections already using the OCI Signature Version 1 security policy do not
need to be upgraded because they continue to work.

2. Sign in to the Oracle Cloud Infrastructure Console.

3. Open the navigation menu and click Identity & Security. Under Identity, click Users.
A list of users in your tenancy is displayed.

4. On the Users page, click the link of the user name to use.

5. Scroll down to the API Keys section, and click Add API Key.

6. In the Add API Key dialog, enter the contents of the public key you created, and click
Add.

7. Copy the finger print value generated by Oracle Cloud Infrastructure. You need this
value when configuring the OCI Signature Version 1 security policy on the Connections
page.

• Obtain the tenancy OCID and user OCID details in the Oracle Cloud Infrastructure
Console. When you sign up for Oracle Cloud Infrastructure, Oracle creates a tenancy for
your company, which is a secure and isolated partition within Oracle Cloud Infrastructure
where you can create, organize, and administer your cloud resources.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Open the navigation menu and click Governance & Administration. Under Account
Management, click Tenancy Details.

Chapter 3
Prerequisites for Creating a Connection

3-2

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/creatingkeys.htm

3. In the Tenancy information section, click Show to display the OCID tenancy value.

4. Copy the value. You need this value when configuring the OCI Signature Version 1
security policy on the Connections page.

5. In the header, click the Profile icon and select User Settings.

Note:

You can also open the navigation menu and click Identity & Security, then
under Identity, click Users to access the user profile.

6. Click Show to display the OCID user value.

7. Copy the value. You need this value when configuring the OCI Signature Version 1
security policy on the Connections page.

RPST and OCI Service Invocation Security Policy Use

To use RPST and the OCI Service Invocation security policy, you must satisfy the following
prerequisites.

• Ensure that your cloud tenancy uses identity domains. The OCI Service Invocation security
policy that you select on the Connections page does not work in cloud tenancies that are
not enabled for identity domains. If you are unsure, ask your administrator for details. Your
cloud tenancy does not use identity domains if you observe either of the following:

– In the upper right corner, you select your Profiles icon and don't see an entry for
identity domain.

Chapter 3
Prerequisites for Creating a Connection

3-3

– From the menu, you select Identity & Security and don't see Domains under the
Identity section.

• Create the required dynamic group and assign a policy to that group to allow your Oracle
Integration instance to access Oracle Cloud Infrastructure services, such as Oracle Cloud
Infrastructure Functions, Oracle Cloud Infrastructure Object Storage, Oracle Cloud
Infrastructure Vision, and more. The policy defines the permissions for the dynamic group
and determines which operations the dynamic group can perform on Oracle Cloud
Infrastructure services.

1. Log in to the Oracle Cloud Infrastructure Console.

2. Obtain the client ID of the OAuth application for the Oracle Integration instance.

a. In the upper right corner, select Profile, then click the identity domain.

Chapter 3
Prerequisites for Creating a Connection

3-4

b. In the left navigation pane, click Oracle Cloud Services.

The Oracle Cloud Services page for your domain appears.

c. In the Name column, click your service instance.

d. Scroll down to the General Information section and copy the client ID value to
use to create your dynamic group.

3. Scroll to the breadcrumbs at the top and click Default domain.

4. In the left navigation pane, click Dynamic groups.

5. Click Create Dynamic Group.

6. Enter the following details:

a. In the Name and Description fields, enter values. These fields are required.

Chapter 3
Prerequisites for Creating a Connection

3-5

b. In the Matching Rules section, enter the required rule. The resource ID you
specify must match the client ID of the OAuth application of your Oracle Integration
instance. Ensure that you enclose the value in single quotes. For example:

resource.id = 'client_ID'

7. Scroll to the breadcrumbs at the top and click Identity.

8. In the left navigation pane, click Policies.

9. Click Create Policy.

10. Select the compartment in which to create the policy.

11. Enter the following details:

a. In the Name and Description fields, enter values. These fields are required.

b. In the Policy Builder section, build the required policy for the dynamic group. For
this example, the policy is specified to manage all Oracle Cloud Infrastructure
service resources in the compartment in which your Oracle Integration instance is
located.

allow dynamic-group dynamic_group to manage all-resources in
compartment compartment_name

Where:

– dynamic_group: Is the dynamic group name you specified in Step 5.

Chapter 3
Prerequisites for Creating a Connection

3-6

– compartment_name: Is the compartment in which your Oracle Integration
instance is located.

This enables the Oracle Integration instance associated with the dynamic group to
call any Oracle Cloud Infrastructure services in this particular compartment. The
RPST token is only valid for resources to which the dynamic group has been
granted access using this policy.

JWT Assertions Outbound Use

Perform the following prerequisites to use JWT assertions.

• Manually create a signing key for upload on the Certificates page. See Upload a Certificate
to Connect with External Services.
The service provider typically provides instructions on how to generate the signing keys
and the format. For an example, see Required Keys and OCIDs.

• Create the JWT header and JWT payload JSON files. You upload both files on the
Connections page when configuring the REST Adapter to support JWT assertions. For
example:

Chapter 3
Prerequisites for Creating a Connection

3-7

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs

JWT Header JSON File Example JWT Payload JSON File Example

{
 "alg": "RS256",
 "kid": "cecsassertion"
}

Where:

– alg: The algorithm to use.

– kid: A key identifier that is uniquely-
generated and associated with the uploaded
signing key.

{
 "iss":
"3485233d3fed4fbcb38338e536d399fc",
 "sub":
"3485233d3fed4fbcb38338e536d399fc",
 "aud": "https://
identity.oraclecloud.com/",
 "exp": 1672564057"
}

Where:

– JWT issuer (iss): A unique identifier for the
entity that issued the assertion. This is
typically the entity that holds the key
material used to sign or integrity-protect the
assertion. Examples of issuers are OAuth
clients (when assertions are self-issued) and
third-party security token services. If the
assertion is self-issued, the issuer value is
the client identifier (client_id). If the
assertion was issued by a security token
service (STS), the issuer must identify the
STS in a manner recognized by the
authorization server. The assertion must
contain an issuer.

– JWT subject (sub): The subject typically
identifies an authorized accessor for which
the access token is being requested (that is,
the resource owner or an authorized
delegate). In some cases, this may be a
pseudo anonymous identifier or other value
denoting an anonymous user. When the
client is acting on behalf of itself, the subject
must be the value of the client's client_id.
The assertion must contain a subject.

– JWT audience (aud): A value that identifies
the party or parties to process the assertion.
The assertion must contain an audience that
identifies the authorization server as the
intended audience. The authorization server
must reject any assertion that does not
contain its own identity as the intended
audience (in this case, for Oracle Identity
Cloud Service, https://
identity.oraclecloud.com/).

– Expires at (exp): The time at which the
assertion expires. While the serialization
may differ by assertion format, the time must
be expressed in UTC format with no time
zone component. The assertion must
contain an expires-at entity that limits the
window during which the assertion can be
used. The authorization server must reject
expired assertions (subject to allowable
clock skew between systems). The
authorization server may reject assertions

Chapter 3
Prerequisites for Creating a Connection

3-8

JWT Header JSON File Example JWT Payload JSON File Example

with an expires-at attribute value that is
unreasonably far in the future.

Note:

Carefully review the JWT documentation of your service provider and ensure that
you follow all guidelines required by the service provider to correctly create the
header and payload files. The content of each file varies from one service
provider to another. The REST Adapter supports the different implementations of
JWT provided by the following service providers:

– NHS (See Application-restricted RESTful APIs - signed JWT authentication
and Step 4: Register your public key)

– FHIR (See Using OAuth 2.0 and Standalone Launch)

– DocuSign (See How to get an access token with JWT Grant)

– Adobe eSign (See JWT (Service Account) Authentication)

– Microsoft (See Microsoft identity platform and OAuth 2.0 On-Behalf-Of flow)

– Okta (See Implement OAuth for Okta with a service app and JWT with
private key)

Create a Connection
Before you can build an integration, you must create the connections to the applications with
which you want to share data.

To create a connection in Oracle Integration:

1. In the navigation pane, click Design, then Connections.

2. Click Create.

Note:

You can also create a connection in the integration canvas. See Define Inbound
Triggers and Outbound Invokes.

3. In the Create connection panel, select the adapter to use for this connection. To find the
adapter, scroll through the list, or enter a partial or full name in the Search field.

4. Enter the information that describes this connection.

Element Description

Name Enter a meaningful name to help others find your
connection when they begin to create their own
integrations.

Chapter 3
Create a Connection

3-9

https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-cis2-separate-authentication-and-authorisation#step-4-register-your-public-key
https://fhir.epic.com/Documentation?docId=oauth2§ion=standaloneOauth2Launch
https://fhir.epic.com/Documentation?docId=oauth2§ion=standaloneOauth2Launch
https://developers.docusign.com/platform/auth/jwt/jwt-get-token/
https://developer.adobe.com/developer-console/docs/guides/authentication/JWT/
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://developer.okta.com/docs/guides/implement-oauth-for-okta-serviceapp/
https://developer.okta.com/docs/reference/api/oidc/#jwt-with-private-key
https://developer.okta.com/docs/reference/api/oidc/#jwt-with-private-key

Element Description

Identifier Automatically displays the name in capital letters
that you entered in the Name field. If you modify
the identifier name, don't include blank spaces
(for example, SALES OPPORTUNITY).

Role Select the role (direction) in which to use this
connection (trigger, invoke, or both). Only the
roles supported by the adapter are displayed for
selection. When you select a role, only the
connection properties and security policies
appropriate to that role are displayed on the
Connections page. If you select an adapter that
supports both invoke and trigger, but select only
one of those roles, you'll get an error when you
try to drag the adapter into the section you didn't
select.

For example, assume you configure a connection
for the Oracle Service Cloud (RightNow) Adapter
as only an invoke. Dragging the adapter to a
trigger section in the integration produces an
error.

Keywords Enter optional keywords (tags). You can search
on the connection keywords on the Connections
page.

Description Enter an optional description of the connection.

Share with other projects Note: This field only appears if you are creating
a connection in a project.

Select to make this connection publicly available
in other projects. Connection sharing eliminates
the need to create and maintain separate
connections in different projects.

When you configure an adapter connection in a
different project, the Use a shared connection
field is displayed at the top of the Connections
page. If the connection you are configuring
matches the same type and role as the publicly
available connection, you can select that
connection to reference (inherit) its resources.

See Add and Share a Connection Across a
Project.

5. Click Create.

Your connection is created. You're now ready to configure the connection properties,
security policies, and (for some connections) access type.

Configure Connection Properties for Invoke Connections
Configure connection security to invoke a protected target service with the REST Adapter.

1. Go to the Properties section.

2. Specify the following details.

Chapter 3
Create a Connection

3-10

Element Description

Connection Type Select the type to use:
• REST API Base URL
• Open API (1.0/2.0/3.0) URL

Connection URL Specify the endpoint URL to use based on your selection in the Connection
Type field. The connection URL can be both HTTP and HTTPS.

Note: Do not include a trailing forward slash (/) at the end of the REST API
Base URL or Open API URL.

• REST API Base URL

https://hostname:port/ic/api/integration/v1/flows/rest/
INTEGRATION_NAME/v01

• For Open API (1.0/2.0/3.0) URL:

https://hostname:port/ic/api/integration/v1/flows/rest/
INTEGRATION_NAME/v1/metadata/openapi

TLS Version
(Under Optional
properties.)

If no value is selected, the default value used for outbound connections is
Transport Layer Security (TLS) version 1.3. It's up to your discretion and the
end application's requirements to select either TLS version 1.2 or 1.1 as the
default.

• TLSv1.1
• TLSv1.2
TLSv1 is no longer supported. If you previously configured a connection in a
version prior to Oracle Integration 3 to use TLSv1.1, either update the
connection by not selecting a value for this field or select TLSv1.2.

The TLS protocol provides privacy and data integrity between two
communicating computer applications.

For trigger-only connections, you cannot select a TLS version. Oracle
Integration accepts what it receives as long as it's TLSv1.1 or TLSv1.2.

Enable two way
SSL for
outbound
connections
(Optional)
(Under Optional
properties.)

If you are configuring the REST Adapter for use with a two-way SSL-enabled
server, select Yes.

.

Identity keystore
alias name
(Optional)
(Under Optional
properties.)

Enter the key alias name from the keystore file that you specified when
importing the identity certificate.

The alias name to provide must match the name provided for the private key
entry in the JKS file.

Note:

The Metadata Catalog URL, Swagger Definition URL, and RAML Definition URL
connection types are no longer available. Developers with a REST API that is
described using RAML or the Oracle metadata catalog must take specific
actions. See Differences from Prior Versions of Oracle Integration in What's New
for Oracle Integration 3.

Chapter 3
Create a Connection

3-11

Configure Connection Security
Configure security for your REST Adapter connection by selecting the security policy and
specifying the required details.

1. Go to the Security section.

2. Select the security policy to use. If you selected the Invoke role or the Trigger and Invoke
role during REST Adapter connection creation, the page is refreshed to display various
login credential fields. You must already have created your client application to complete
the necessary fields.
The following security policy restrictions apply when configuring a REST Adapter
connection with the trigger and invoke role on the Connections page:

• If you select Basic Authentication, it can be used as a trigger and an invoke.

• If you select any other security policy, it can only be used as an invoke. Dragging the
connection to the trigger area causes an exception error to be displayed.

• For existing integrations, the above restrictions do not apply when editing the REST
Adapter in the Adapter Endpoint Configuration Wizard.

Note:

The following standard OAuth security policies are implemented to work with
providers that are implemented as illustrated in RFC 6749.

• OAuth Resource Owner Password Credentials

• OAuth Client Credentials

In case the standard policy doesn't work, it is recommended that you use the
OAuth Custom Two Legged or OAuth Custom Three Legged security policy.

• Configure Security Policies for Trigger Connections

• Configure Security Policies for Invoke Connections

Configure Security Policies for Trigger Connections

Selected Security Policy Description Fields

OAuth2.0 • Supports HTTP bearer
authentication.

• The client should send the
OAuth 2.0 bearer token in
the HTTP headers.

See Authenticate Requests for
Invoking Oracle Integration
Flows.

No fields are displayed.

Basic Authentication • Supports HTTP basic
authentication.

• The client should send the
user name/password in the
HTTP headers.

No fields are displayed.

Chapter 3
Create a Connection

3-12

Selected Security Policy Description Fields

OAuth 2.0 or Basic Authentication The client can use any of the
OAuth 2.0 bearer tokens or the
HTTP Basic Authentication
header.

No fields are displayed.

Configure Security Policies for Invoke Connections

Note:

OAuth Authorization Code Credentials, OAuth Custom Three Legged Flow, and
OAuth Custom Two Legged Flow security types, the connection is only successful
after you click the Provide Consent button. Configuring all the details alone is not
sufficient.

Note:

Testing a REST Adapter connection configured with the HTTP basic authentication
security policy and a role connection of Trigger and Invoke or Invoke does not
validate the credentials and simply opens a connection to the provided URL. To
validate the endpoint and credentials, the REST Adapter must invoke an API that is
idempotent.

Selected Security Policy Fields

AWS Signature Version 4

Note: You can use this security
policy with the connectivity agent
for scenarios in which you need to
invoke AWS APIs hosted in an
on-premises environment.

• Access Key — Enter the key obtained when you created your
Amazon security credentials.

• Secret Key — Enter the key obtained when you created your
Amazon security credentials.

• Confirm Secret Key — Enter the key a second time.
• AWS Region — Select the region in which the AWS server is

hosted.
• Service Name — Select the AWS service to which to connect.

Basic Authentication • Username — The name of a user who has access to the
destination web service.

• Password — Enter the password.
• Confirm Password — Reenter the password.

Chapter 3
Create a Connection

3-13

Selected Security Policy Fields

OAuth Client Credentials • Access Token URI — The URL from which to obtain the
access token.

• Client Id — The client identifier issued to the client during the
registration process.

• Client Secret — The client secret.
• Confirm Client Secret — Reenter the client secret.
• Scope — The scope of the access request. Scopes enable you

to specify which type of access you need. Scopes limit access
for the OAuth token. They do not grant any additional
permission beyond that which the user already possesses.

• Auth Request Media Type — The format of the data you want
to receive. This is an optional parameter that can be kept blank.
For example, if you are invoking Twitter APIs, you do not need to
select any type.

• Client Authentication — You can optionally configure OAuth
flows with client authentication. This is similar to the Postman
user interface feature for configuring client authentication.

– Send client credentials as basic auth header: Pass the
client ID and client secret in the header as basic
authentication.

– Send client credentials in body: Pass the client ID and
client secret in the body as form fields.

OAuth Resource Owner
Password Credentials

• Access Token URI — The URL from which to obtain the
access token.

• Client Id — The client identifier issued to the client during the
registration process.

• Client Secret — The client secret.
• Confirm Client Secret — Reenter the client secret.
• Scope — The scope of the access request. Scopes enable you

to specify which type of access you need. Scopes limit access
for the OAuth token. They do not grant any additional
permission beyond that which the user already possesses.

• Auth Request Media Type — The format of the data you want
to receive.

• Username — The resource owner’s user name.
• Password — The resource owner’s password.
• Confirm Password — Reenter the password.
• Client Authentication — You can optionally configure OAuth

flows with client authentication. This is similar to the Postman
user interface feature for configuring client authentication.

– Send client credentials as basic auth header: Pass the
client ID and client secret in the header as basic
authentication.

– Send client credentials in body: Pass the client ID and
client secret in the body as form fields.

Chapter 3
Create a Connection

3-14

Selected Security Policy Fields

OAuth Authorization Code
Credentials

• Client Id — The client identifier issued to the client during the
registration process.

• Client Secret — The client secret.
• Confirm Client Secret — Reenter the client secret.
• Authorization Code URI — The URI from which to request the

authorization code.
• Access Token URI — URI to use for the access token.
• Scope — The scope of the access request. Scopes enable you

to specify which type of access you need. Scopes limit access
for the OAuth token. They do not grant any additional
permission beyond that which the user already possesses.

• Client Authentication — You can optionally configure OAuth
flows with client authentication. This is similar to the Postman
user interface feature for configuring client authentication.

– Send client credentials as basic auth header: Pass the
client ID and client secret in the header as basic
authentication.

– Send client credentials in body: Pass the client ID and
client secret in the body as form fields.

Chapter 3
Create a Connection

3-15

Selected Security Policy Fields

OAuth Custom Three Legged
Flow

See Configure the REST Adapter
to Consume a REST API
Protected with OAuth Custom
Three Legged Flow Token-Based
Authentication to learn more
about this security policy.

• Authorization Request — The client application URL to which
you are redirected when you provide consent. The authorization
server sends a callback to Oracle Integration to obtain an
access token for storage. When you create your client
application, you must register a redirect URI where the client
application is listening.

• Access Token Request — The access token request to use to
fetch the access token. Specify the request using CURL syntax.
For example:

-X POST method -H headers -d string_data
access_token_uri?query_parameters

• Refresh Token Request — The refresh token request to use to
fetch the access token. This request refreshes the access token
if it expires. Specify the request using CURL syntax. For
example

-X POST method -H headers -d string_data
refresh_token_uri?query_parameters

• Sauth_code — Use regex to identify the authorization code.

code
• Saccess_token — Use a regular expression (regex) to retrieve

the access token.

access.[tT]oken
• Srefresh_token — Use regex to retrieve the refresh token.

refresh.[tT]oken
• Sexpiry — Use regex to identify when the access token expires.

expires_in
• Stoken_type — Use regex to identify the access token type.

token.?[tT]ype
• access_token_usage — Specify how to pass the token as

multiple headers or multiple query parameters to access a
protected resource. You cannot pass a mix of headers and
query parameters.

For headers:

-H Authorization: ${token_type} $
{access_token} -H validity: 30000 -H
signature: ok

Chapter 3
Create a Connection

3-16

Selected Security Policy Fields

You can optionally specify quotes for headers:

-H 'Authorization: ${token_type} $
{access_token}' -H 'validity: 30000' -H
'signature: ok'

For query parameters:

?token=$
{access_token}&validity=3000&signature=ok

Chapter 3
Create a Connection

3-17

Selected Security Policy Fields

OAuth Custom Two Legged Flow

See Configure the REST Adapter
to Consume a REST API
Protected with OAuth Custom
Two Legged Token-Based
Authentication to learn more
about this security policy.

• Access Token Request — The access token request to use to
fetch the access token. Specify the request using CURL syntax.
For example:

-X POST method -H headers -d string_data
access_token_uri?query_parameters

• Refresh Token Request — The refresh token request to use to
fetch the access token. This request refreshes the access token
if it expires. Specify the request using CURL syntax. For
example

-X POST method -H headers -d string_data
refresh_token_uri?query_parameters

• Saccess_token — Use regex to identify the access token.

access.[tT]oken
• Srefresh_token — Use regex to identify the refresh token.

refresh.[tT]oken
• Sexpiry — Use regex to identify when the access token expires.

expires_in
• Stoken_type — Use regex to identify the access token type.

token.?[tT]ype
• access_token_usage — Specify how to pass the token as

multiple headers or multiple query parameters to access a
protected resource. You cannot pass a mix of headers and
query parameters.

For headers:

-H Authorization: ${token_type} $
{access_token} -H validity: 30000 -H
signature: ok

You can optionally specify quotes for headers:

-H 'Authorization: ${token_type} $
{access_token}' -H 'validity: 30000' -H
'signature: ok'

For query parameters:

?token=$
{access_token}&validity=3000&signature=ok

Chapter 3
Create a Connection

3-18

Selected Security Policy Fields

API Key Based Authentication

See Configure the REST Adapter
to Consume a REST API
Protected with the API Key to
learn more about this security
policy.

• API Key — Specify the generated API key used to identify the
client making the request.

• Confirm API Key — Reenter the API key.
• API Key Usage — Specify the URI syntax for how to pass the

API key to access a protected resource.

To pass the API key as a query parameter at runtime to access
the protected resource:

?key=${api-key}

To pass the API key as a header at runtime to access the
protected resource.

-H Authorization: Bearer ${api_key}

For example:

-H Authorization: Bearer AASDFADADX

OAuth 1.0 One Legged
Authentication

• Consumer Key — Specify the key that identifies the client
making the request.

• Consumer Secret — Specify the consumer secret that
authorizes the client making the request.

• Confirm Consumer Secret — Specify the secret a second
time.

• Token — Specify the token that accesses protected resource.
• Token Secret — Specify the token secret that generates the

signature for the request.
• Confirm Token Secret — Specify the secret a second time.
• Realm — Specify the realm that identifies the account.
Note: The HMAC-SHA256 signature encryption algorithm is
supported by default and cannot be changed. HMAC-SHA1 is not
supported in Oracle Integration 3.

OCI Signature Version 1 Specify the values you created when satisfying the prerequisites for
using this security policy. See Prerequisites for Creating a
Connection.
• Tenancy OCID — Specify the value you copied from the Oracle

Cloud Infrastructure Console.
• User OCID — Specify the value you copied from the Oracle

Cloud Infrastructure Console.
• Private Key — Click Upload to select the key you created.

Ensure that the key is in RSA (PKCS1) format. If you need to
convert to this format, see Convert a Private Key from PKCS8 to
RSA (PKCS1) Format for the OCI Signature Version 1 Security
Policy.

• Finger Print — Enter the finger print that was generated when
you created the key in the Oracle Cloud Infrastructure Console.

• Pass Phrase — Enter the pass phrase you created when
creating the key.

• Confirm Pass Phrase — Enter the pass phrase a second time.

Chapter 3
Create a Connection

3-19

Selected Security Policy Fields

OAuth Client Credentials using
JWT Client Assertion

Note: This policy is typically used
to invoke application-driven APIs.

• Access token URI — Enter the URL to which to send a request
to obtain the access token. For example:

https://accounts.google.com/o/oauth2/token
• JWT headers in JSON format — Upload the JWT header file in

JSON format.
• JWT payload in JSON format — Upload the JWT payload file

in JSON format.
• JWT private key alias — Enter the JWT private key alias. This

is the same alias you specified when uploading the signing key
certificate on the Certificates page.

• Scope — (Optional) Enter the scopes.
• Access token request — (Optional) Enter the request to obtain

the access token. The format you specify can vary by service
provider. See Variations of JWT Usage by Service Providers.

OAuth using JWT User Assertion

Note: This policy is typically used
on behalf of a user.

• Access token URI — Enter the URL to which to send a request
to obtain the access token. For example:

https://accounts.google.com/o/oauth2/token
• JWT headers in JSON format — Upload the JWT header file in

JSON format.
• JWT payload in JSON format — Upload the JWT payload file

in JSON format.
• JWT private key alias — Enter the JWT private key alias. This

is the same alias you specified when uploading the signing key
certificate on the Certificates page.

• Scope — (Optional) Enter the scopes.
• Access token request — (Optional) Enter the request to obtain

the access token. The format you specify can vary by service
provider. See Variations of JWT Usage by Service Providers.

OCI Service Invocation After selecting this security policy, you are not prompted to specify
any values. Configuration is automatic. However, you must perform
all prerequisites for configuration to succeed.

See RPST and OCI Service Invocation Security Policy Use.

No Security Policy If you select this security policy, no additional fields are displayed.

Variations of JWT Usage by Service Providers
Service providers implement JWT assertions in different ways, including how to specify the
scope value and an access token request value in the Scope and Access token request
fields when configuring the OAuth Client Credentials using JWT Client Assertion or OAuth
using JWT User Assertion security policy on the Connections page.

Chapter 3
Create a Connection

3-20

Service
Provider

Requires
Provide
Consent
?

Scope and Access token request Fields on Connections Page Referenc
e
Docume
ntation

Okta No
curl --location --request POST 'https://$
{yourOktaDomain}/oauth2/v1/token' \
 --header 'Accept: application/json' \
 --header 'Content-Type: application/x-www-form-
urlencoded' \
 --data-urlencode
'grant_type=client_credentials' \
 --data-urlencode 'scope=okta.users.read' \
 --data-urlencode
'client_assertion_type=urn:ietf:params:oauth:client
-assertion-type:jwt-bearer' \
 --data-urlencode
'client_assertion=eyJhbGciOiJSU....tHQ6ggOnrG-
ZFRSkZc8Pw'

Implemen
t OAuth
for Okta
with a
service
app

Okta Yes POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
grant_type=authorization_code&
 code=<id_token>&
 client_id=<client_id>
 client_assertion_type=urn:ietf:params:oauth:client-
assertion-type:jwt-bearer&
 client_assertion=<client_assertion>

JWT with
private
key

NHS no
curl -x post -h "content-type:application/x-www-
form-urlencoded" --data \
"grant_type=client_credentials\
&client_assertion_type=urn:ietf:params:oauth:client
-assertion-type:jwt-bearer\
&client_assertion=<your-signed-jwt>" \
https://api.service.nhs.uk/oauth2/token

Applicatio
n-
restricted
RESTful
APIs -
signed
JWT
authentica
tion

Chapter 3
Create a Connection

3-21

https://developer.okta.com/docs/guides/implement-oauth-for-okta-serviceapp/
https://developer.okta.com/docs/guides/implement-oauth-for-okta-serviceapp/
https://developer.okta.com/docs/guides/implement-oauth-for-okta-serviceapp/
https://developer.okta.com/docs/guides/implement-oauth-for-okta-serviceapp/
https://developer.okta.com/docs/guides/implement-oauth-for-okta-serviceapp/
https://developer.okta.com/docs/guides/implement-oauth-for-okta-serviceapp/
http://server.example.com
https://developer.okta.com/docs/reference/api/oidc/#jwt-with-private-key
https://developer.okta.com/docs/reference/api/oidc/#jwt-with-private-key
https://developer.okta.com/docs/reference/api/oidc/#jwt-with-private-key
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/application-restricted-restful-apis-signed-jwt-authentication

Service
Provider

Requires
Provide
Consent
?

Scope and Access token request Fields on Connections Page Referenc
e
Docume
ntation

NHS Yes
curl --location --request POST 'https://
api.service.nhs.uk/oauth2/token'\
--header 'Content-Type: application/x-www-form-
urlencoded'\
--data-urlencode
'grant_type=urn:ietf:params:oauth:grant-type:token-
exchange'\
--data-urlencode
'subject_token_type=urn:ietf:params:oauth:token-
type:id_token'\
--data-urlencode
'client_assertion_type=urn:ietf:params:oauth:client
-assertion-type:jwt-bearer'\
--data-urlencode 'subject_token={NHS CIS2 ID token}
\
--data-urlencode 'client_assertion={jwt token}

Step 4:
Register
your
public key

User-
restricted
RESTful
APIs -
NHS login
separate
authentica
tion and
authorizati
on

FHIR No
POST https://fhir.epic.com/interconnect-fhir-oauth/
oauth2/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials&client_assertion_type
=urn:ietf:params:oauth:client-assertion-type:jwt-
bearer&client_assertion=<client_assertion>

Using
OAuth 2.0

FHIR Yes
POST https://fhir.epic.com/interconnect-fhir-oauth/
oauth2/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:jwt-
bearer&assertion=[assertion]&client_id=[client_id]

Standalon
e Launch

Chapter 3
Create a Connection

3-22

https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-cis2-separate-authentication-and-authorisation#step-4-register-your-public-key
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-cis2-separate-authentication-and-authorisation#step-4-register-your-public-key
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-cis2-separate-authentication-and-authorisation#step-4-register-your-public-key
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-cis2-separate-authentication-and-authorisation#step-4-register-your-public-key
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://digital.nhs.uk/developer/guides-and-documentation/security-and-authorisation/user-restricted-restful-apis-nhs-login-separate-authentication-and-authorisation
https://fhir.epic.com/Documentation?docId=oauth2§ion=standaloneOauth2Launch
https://fhir.epic.com/Documentation?docId=oauth2§ion=standaloneOauth2Launch
https://fhir.epic.com/Documentation?docId=oauth2§ion=standaloneOauth2Launch
https://fhir.epic.com/Documentation?docId=oauth2§ion=standaloneOauth2Launch

Service
Provider

Requires
Provide
Consent
?

Scope and Access token request Fields on Connections Page Referenc
e
Docume
ntation

Microsoft No
POST /{tenant}/oauth2/v2.0/token HTTP/1.1

Host: login.microsoftonline.com Content-Type:
application/x-www-form-urlencoded

scope=https://graph.microsoft.com/.default
&client_id=97e0a5b7-d745-40b6-94fe-5f77d35c6e05
&client_assertion_type=urn:ietf:params:oauth:client
-assertion-type:jwt-bearer
&client_assertion=<client_assertion>
&grant_type=client_credentials

Microsoft
identity
platform
and the
OAuth 2.0
client
credential
s flow

Microsoft Yes
POST /oauth2/v2.0/token HTTP/1.1 Host:
login.microsoftonline.com/<tenant> Content-Type:
application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:jwt-
bearer&
client_id=<client_id>&
client_assertion_type=urn:ietf:params:oauth:client-
assertion-type:jwt-bearer&client_assertion=
<client_assertion>
&assertion=<assertion>&requested_token_use=on_behal
f_of
&scope=https://graph.microsoft.com/
user.read+offline_access

Microsoft
identity
platform
and
OAuth 2.0
On-
Behalf-Of
flow

DocuSign Yes
curl --data
"grant_type=urn:ietf:params:oauth:grant-type:jwt-
bearer&
assertion=YOUR_JSON_WEB_TOKEN" --request POST
https://account-d.docusign.com/oauth/token

How to
get an
access
token with
JWT
Grant

Adobe No
POST https://ims-na1.adobelogin.com/ims/
exchange/jwt

client_id={api_key_value}&client_secret={client_sec
ret_value}&jwt_token=
{base64_encoded_JWT}

JWT
(Service
Account)
Authentic
ation

Chapter 3
Create a Connection

3-23

http://login.microsoftonline.com
http://2Fgraph.microsoft.com
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://developers.docusign.com/platform/auth/jwt/jwt-get-token/
https://developers.docusign.com/platform/auth/jwt/jwt-get-token/
https://developers.docusign.com/platform/auth/jwt/jwt-get-token/
https://developers.docusign.com/platform/auth/jwt/jwt-get-token/
https://developers.docusign.com/platform/auth/jwt/jwt-get-token/
https://developers.docusign.com/platform/auth/jwt/jwt-get-token/
https://developer.adobe.com/developer-console/docs/guides/authentication/JWT/
https://developer.adobe.com/developer-console/docs/guides/authentication/JWT/
https://developer.adobe.com/developer-console/docs/guides/authentication/JWT/
https://developer.adobe.com/developer-console/docs/guides/authentication/JWT/
https://developer.adobe.com/developer-console/docs/guides/authentication/JWT/

Service
Provider

Requires
Provide
Consent
?

Scope and Access token request Fields on Connections Page Referenc
e
Docume
ntation

Oracle
Identity
Cloud
Service

No
POST <hostname>/oauth2/v1/token

grant_type=client_credentials&client_assertion_type
=urn:ietf:params:oauth:client-assertion-
type:jwt-
bearer&client_assertion=<client_assertion>&scope=<s
cope>

Client/
User JWT
Assertion
in REST
API for
Oracle
Identity
Cloud
Service.

Oracle
Identity
Cloud
Service

No
grant_type=urn:ietf:params:oauth:grant-type:jwt-
bearer&assertion=<user_assertion>&scope=
<scope>&client_assertion_type=urn:ietf:params:oauth
:Aclient-assertion-type:jwt-bearer&
client_assertion=<client_assertion>

Client/
User JWT
Assertion
in REST
API for
Oracle
Identity
Cloud
Service.

Configure the Endpoint Access Type
Configure access to your endpoint. Depending on the capabilities of the adapter you are
configuring, options may appear to configure access to the public internet, to a private
endpoint, or to an on-premises service hosted behind a fire wall.

• Select the Endpoint Access Type

• Ensure Private Endpoint Configuration is Successful

Select the Endpoint Access Type

Select the option for accessing your endpoint.

Option This Option Appears If Your Adapter
Supports ...

Public gateway Connections to endpoints using the public internet.

Private endpoint Connections to endpoints using a private virtual
cloud network (VCN).
Note: To connect to private endpoints, you must
complete prerequisite tasks in the Oracle Cloud
Infrastructure Console. Failure to do so results in
errors when testing the connection. See Connect to
Private Resources in Provisioning and
Administering Oracle Integration 3 and
Troubleshoot Private Endpoints in Using
Integrations in Oracle Integration 3.

Chapter 3
Create a Connection

3-24

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ClientAssertion.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ClientAssertion.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ClientAssertion.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ClientAssertion.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ClientAssertion.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ClientAssertion.html

Option This Option Appears If Your Adapter
Supports ...

Connectivity agent Connections to on-premises endpoints through the
connectivity agent.

1. Click Associate agent group.
The Associate agent group panel appears.

2. Select the agent group, and click Use.

To configure an agent group, you must download
and install the on-premises connectivity agent. See
Download and Run the Connectivity Agent Installer
and About Creating Hybrid Integrations Using
Oracle Integration in Using Integrations in Oracle
Integration 3.

Ensure Private Endpoint Configuration is Successful

• To connect to private endpoints, you must complete prerequisite tasks in the Oracle Cloud
Infrastructure Console. Failure to do so results in errors when testing the connection. See
Connect to Private Resources in Provisioning and Administering Oracle Integration 3.

• When configuring an adapter on the Connections page to connect to endpoints using a
private network, specify the fully-qualified domain name (FQDN) and not the IP address. If
you enter an IP address, validation fails when you click Test.

• IPSec tunneling and FastConnect are not supported for use with private endpoints.

Test the Connection
Test your connection to ensure that it's configured successfully.

1. In the page title bar, click Test. What happens next depends on whether your adapter
connection uses a Web Services Description Language (WSDL) file. Only some adapter
connections use WSDLs.

If Your Connection... Then...

Doesn't use a WSDL The test starts automatically and validates the inputs you provided for the
connection.

Uses a WSDL A dialog prompts you to select the type of connection testing to perform:

• Validate and Test: Performs a full validation of the WSDL, including
processing of the imported schemas and WSDLs. Complete
validation can take several minutes depending on the number of
imported schemas and WSDLs. No requests are sent to the
operations exposed in the WSDL.

• Test: Connects to the WSDL URL and performs a syntax check on
the WSDL. No requests are sent to the operations exposed in the
WSDL.

2. Wait for a message about the results of the connection test.

• If the test was successful, then the connection is configured properly.

• If the test failed, then edit the configuration details you entered. Check for typos and
verify URLs and credentials. Continue to test until the connection is successful.

3. When complete, click Save.

Chapter 3
Create a Connection

3-25

Upload a Certificate to Connect with External Services
Certificates allow Oracle Integration to connect with external services. If the external service/
endpoint needs a specific certificate, request the certificate and then import it into Oracle
Integration.

If you make an SSL connection in which the root certificate does not exist in Oracle Integration,
an exception error is thrown. In that case, you must upload the appropriate certificate. A
certificate enables Oracle Integration to connect with external services. If the external endpoint
requires a specific certificate, request the certificate and then upload it into Oracle Integration.

For the REST Adapter, note the following certificate details for one-way and two-way SSL:

• One-way SSL: Oracle Integration only needs the public certificates of the HTTPS URL.
The certificate must be in .pem or .crt format and uploaded as a trust certificate.

• Two-way SSL: You must add the public certificate of the HTTPS URL. After that, you must
create a JKS certificate with a private key file. You must upload the JKS certificate as an
identity certificate.
Once you upload the identity certificate, you must use an alias on the Connections page.

1. Sign in to Oracle Integration.

2. In the navigation pane, click Settings, then Certificates.
All certificates currently uploaded to the trust store are displayed on the Certificates page.

3. Click Filter to filter by name, certificate expiration date, status, type, category, and
installation method (user-installed or system-installed). Certificates installed by the system
cannot be deleted.

4. Click Upload at the top of the page.
The Upload certificate panel is displayed.

5. Enter an alias name and optional description.

6. In the Type field, select the certificate type. Each certificate type enables Oracle
Integration to connect with external services.

• Digital Signature

• X.509 (SSL transport)

Chapter 3
Upload a Certificate to Connect with External Services

3-26

• SAML (Authentication & Authorization)

• PGP (Encryption & Decryption)

• Signing key

Digital Signature

The digital signature security type is typically used with adapters created with the Rapid
Adapter Builder. See Learn About the Rapid Adapter Builder in Oracle Integration in Using the
Rapid Adapter Builder with Oracle Integration 3.

1. Click Browse to select the digital certificate. The certificate must be an X509Certificate.
This certificate provides inbound RSA signature validation. See RSA Signature Validation
in Using the Rapid Adapter Builder with Oracle Integration 3.

2. Click Upload.

X.509 (SSL transport)

1. Select a certificate category.

a. Trust: Use this option to upload a trust certificate.

i. Click Browse, then select the trust file (for example, .cer or .crt) to upload.

b. Identity: Use this option to upload a certificate for two-way SSL communication.

i. Click Browse, then select the keystore file (.jks) to upload.

ii. Enter the comma-separated list of passwords corresponding to key aliases.

Note:

When an identity certificate file (.jks) contains more than one private
key, all the private keys must have the same password. If the private
keys are protected with different passwords, the private keys cannot be
extracted from the keystore.

iii. Enter the password of the keystore being imported.

c. Click Upload.

SAML (Authentication & Authorization)

1. Note that Message Protection is automatically selected as the only available certificate
category and cannot be deselected. Use this option to upload a keystore certificate with
SAML token support. Create, read, update, and delete (CRUD) operations are supported
with this type of certificate.

2. Click Browse, then select the certificate file (.cer or .crt) to upload.

3. Click Upload.

PGP (Encryption & Decryption)

1. Select a certificate category. Pretty Good Privacy (PGP) provides cryptographic privacy
and authentication for communication. PGP is used for signing, encrypting, and decrypting
files. You can select the private key to use for encryption or decryption when configuring
the stage file action.

a. Private: Uses a private key of the target location to decrypt the file.

Chapter 3
Upload a Certificate to Connect with External Services

3-27

i. Click Browse, then select the PGP file to upload.

ii. Enter the PGP private key password.

b. Public: Uses a public key of the target location to encrypt the file.

i. Click Browse, then select the PGP file to upload.

ii. In the ASCII-Armor Encryption Format field, select Yes or No.

• Yes shows the format of the encrypted message in ASCII armor. ASCII armor
is a binary-to-textual encoding converter. ASCII armor formats encrypted
messaging in ASCII. This enables messages to be sent in a standard
messaging format. This selection impacts the visibility of message content.

• No causes the message to be sent in binary format.

iii. From the Cipher Algorithm list, select the algorithm to use. Symmetric-key
algorithms for cryptography use the same cryptographic keys for both encryption
of plain text and decryption of cipher text. The following supported cipher
algorithms are FIPS-compliant:

• AES128

• AES192

• AES256

• TDES

c. Click Upload.

Signing key

A signing key is a secret key used to establish trust between applications. Signing keys are
used to sign ID tokens, access tokens, SAML assertions, and more. Using a private signing
key, the token is digitally signed and the server verifies the authenticity of the token by using a
public signing key. You must upload a signing key to use the OAuth Client Credentials using
JWT Client Assertion and OAuth using JWT User Assertion security policies in REST Adapter
invoke connections. Only PKCS1- and PKCS8-formatted files are supported.

1. Select Public or Private.

2. Click Browse to upload a key file.
If you selected Private, and the private key is encrypted, a field for entering the private
signing key password is displayed after key upload is complete.

3. Enter the private signing key password. If the private signing key is not encrypted, you are
not required to enter a password.

4. Click Upload.

Chapter 3
Upload a Certificate to Connect with External Services

3-28

4
Add the REST Adapter Connection to an
Integration

When you drag the REST Adapter into the trigger or invoke area of an integration, the Adapter
Endpoint Configuration Wizard appears. This wizard guides you through the configuration of
the REST Adapter endpoint properties.

These topics describe the wizard pages that guide you through configuration of the REST
Adapter as a trigger or invoke in an integration.

Note:

• XML documents passed to a REST endpoint that support the application/XML
content type must comply with the XML schema specified during trigger
(inbound) REST Adapter configuration. When the REST Adapter invokes a target
endpoint, the application/XML response must comply with the XML schema
specified during invoke (outbound) REST Adapter response configuration.

• If the following integrations are imported from one environment to another
(having different host names), then editing the local (child) integration or editing
the REST Adapter in the Adapter Endpoint Configuration Wizard leads to major
changes in the mapper that may require remapping.

– Integrations in which a co-located (child) integration is invoked from a parent
integration. See Invoke a Co-located Integration from a Parent Integration.

– Integrations with a REST adapter using a Swagger-based connection.

Topics:

• Add the REST Adapter as a Trigger Connection

• Add the REST Adapter as an Invoke Connection

Add the REST Adapter as a Trigger Connection
When you drag the REST Adapter into the integration canvas as a trigger connection, the
Adapter Endpoint Configuration Wizard is invoked. Based on your selections in the wizard, the
following pages can be displayed.

Topics

• REST Adapter Trigger Basic Information Page

• REST Adapter Trigger Resource Configuration Page

• REST Adapter Trigger Request Parameters Page

• REST Adapter Trigger Request Page

• REST Adapter Trigger Request Header Page

4-1

• REST Adapter Trigger CORS Configuration Page

• REST Adapter Trigger Response Page

• REST Adapter Trigger Response Header Page

• REST Adapter Trigger Operations Page

• REST Adapter Trigger Operation Selection Page

• Summary Page

REST Adapter Trigger Basic Information Page
Enter the REST Adapter user name and description. You can also select to configure multiple
resources or verbs.

Element Description

What do you want to call your endpoint? Provide a meaningful name so that others can
understand the connection. For example, if you are
creating a source Oracle REST connection, you may
want to name it ExposeFlowAsRESTResource. You
can include English alphabetic characters, numbers,
underscores, and dashes in the name. You cannot
include the following:
• Blank spaces (for example, My REST

Connection)

• Special characters (for example, #;83& or
res(t)4)

• Multibyte characters

What does this endpoint do? Enter an optional description of the endpoint's
responsibilities (for example,This inbound
endpoint exposes this integration flow as
a REST resource).

Select to configure multiple resources or
verbs (maximum 11)

Select to configure multiple operation entry points with
different resource URIs and HTTP actions/verbs, as
necessary. Each operation represents a different pick
action branch in a single integration. The maximum
number of operations (branches) you can create in
one integration is eleven. This feature eliminates the
need to create multiple integrations (each with a
separate resource URI and verb) to perform different
operations.

REST Adapter Trigger Resource Configuration Page
Enter the REST Adapter operation name, relative resource URI, and endpoint action. You can
also select to add query and template parameters or configure a request and/or response for
the endpoint.

Element Description

Provide an operation name Enter an operation name.

What does this operation do? Enter an optional description of the operation's
responsibilities.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-2

Element Description

What is the endpoint’s relative resource
URI?

Specify the relative path associated with the resource.
The path can contain template parameters specified
with curly braces (for example, {order-id}). A
resource is any source of specific information that can
be addressed. The resource path follows a fixed,
prefixed URL appended with the specified relative
path. By default, the URL is prefixed with the following
path:

https://instance_URL/ic/api/
integration/v1/flows/rest/
INTEGRATION_NAME/VERSION

For example, if the integration name is
ExposeFlowAsRESTResource, the URL becomes:

https://instance_URL/ic/api/
integration/v1/flows/rest/
EXPOSEFLOWASRESTRESOURCE

You can override the URL, except for the fixed part at
the beginning:

instance_URL/ic

What action do you want to perform on the
endpoint?

Select a single HTTP action (method) for the endpoint
to perform:
• GET: Retrieves (reads) information (for example,

makes queries). If you select this option, you
cannot configure a request payload for this
endpoint.

• PUT: Updates information.
• POST: Creates information.
• DELETE: Deletes information. If you select this

option, you cannot configure a request payload for
this endpoint.

PATCH: Partially updates existing resources (for
example, when you only need to update one
attribute of the resource).
Note: The PATCH verb does not work with a non-
SSL REST service.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-3

Element Description

Select any options that you want to
configure

Select the options that you want to configure:
• Add and review parameters for this endpoint:

Click to specify the query parameters and view
the template request parameters created as part
of the resource URI for this endpoint. If you select
this option and click Next, the Request
Parameters page is displayed.

• Configure a request payload for this endpoint:
Click to configure the request payload for this
endpoint, including specifying the schema
location and payload type with which you want the
endpoint to reply. You can also select this option if
you want to include an attachment with the
inbound request. If you select this option and click
Next, the Request page is displayed.

• Configure this endpoint to receive the
response: Click to configure the response
payload for this endpoint, including specifying the
schema location and payload type that you want
the endpoint to receive. If you select this option
and click Next, the Response page is displayed.

Configure Request Headers? Select the type of request header to configure:

• Standard: Select to configure standard HTTP
headers for the request message.

• Custom: Select to configure custom HTTP
headers for the request message.

Configure Response Headers? Select the type of response header to configure:

• Standard: Select to configure standard HTTP
headers for the response message.

• Custom: Select to configure custom HTTP
headers for the response message.

Configure CORS (Cross Origin Resource
Sharing)
(available only in the trigger (inbound) direction)

Select to configure CORS parameters for a trigger.
CORS enables restricted resources (for example,.
custom HTTP headers that introduce cross-site Java
scripting security issues) on a web page to be
requested from another domain outside of the domain
from which the resource originated.

REST Adapter Trigger Request Parameters Page
Enter the REST Adapter request parameters for this endpoint.

Element Description

Resource URI Displays the endpoint relative resource URI entered
on the Basic Info page.

Specify Query Parameters Specify query parameters for the REST endpoint.

Click the Add icon to display a row for entering the
parameter name and selecting its data type. For
example, specify state and select a data type of
string.

Click the Delete icon to delete a selected row.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-4

Element Description

Template Parameters Displays the template parameters in the relative
resource URI. Template parameters are based on
details you specified on the Basic Info page and
cannot be edited.

Template parameters must be defined as part of a
path with curly braces around them. For example, the
URL default/customers/{cust-id}/{ship-id
has cust-id and ship-id template parameters. You
can change the data type for the parameters.

Note:
• Any query and template parameters added or

configured are available for mapping in the
mapper and in the actions in integrations.

• Query and template parameter values added in
the URL specified on the Connection page do not
appear in the mapper. Instead, the template and
query parameters must be configured in the
Adapter Endpoint Configuration Wizard for those
parameters to appear in the mapper.

REST Adapter Trigger Request Page
Enter the REST Adapter request payload details for the endpoint.

Element Description

Select the multipart attachment
processing options

Configure the following options based on whether the request is
inbound or outbound.

For inbound (trigger) requests, select the multipart attachment
type to include. This option is only available if you selected the
POST action on the Basic Info page.

• Request is multipart with payload: Select to send
multipart attachments as part of the request along with
JSON or XML content as the payload request.

• Multipart request is of type multipart/form-data with
HTML form payload: Select for the REST endpoint to
accept to configure an HTML form. You must first select the
Request is multipart with payload option before you can
select this option. This selection assumes that the media
type is multipart/form-data.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-5

Element Description

Select the request payload format Note:
• Ensure that the sample JSON or the uploaded XML

schema is representative of the actual runtime messages
exchanged with the endpoint. A mismatch in the structure
or type of runtime messages can result in errors.

• If you upload a schema file without a target namespace, a
surrogate namespace is added to the schema file that all
messages then use:

http://xmlns.oracle.com/cloud/adapter/nxsd/
surrogate

Select the request payload format to use. The request payload
body must be defined by the XSD element that defines the
structure of this representation.

• XML Schema
• JSON Sample: Select this option to use Swagger and

RAML files. JSON sample files of up to 100 KB in size are
supported.

Empty arrays in JSON sample files are not supported. For
information, see Empty Arrays Are Not Supported in
Sample JSON Files. You may need to process large JSON
sample files with special characters before using the
Adapter Endpoint Configuration Wizard. See Large Sample
JSON File Processing with Special Characters.

• XML Sample (Single or No Namespace): Select this
option to use an XML document to generate the schema.

• Binary: Use with payloads that are unstructured and inline
— for example, application/octet-stream. It
preserves the file contents, but requires the receiver to
determine file type, for example, from the filename
extension. The Internet media type for an arbitrary byte
stream is application/octet-stream.

Schema Location Specify the schema file in either of the following ways:
• Click Browse to select the request schema file to use.
• Click <<inline>> to copy and paste the JSON payload or

URL into a text field. Click OK when complete.

Element Select the element that defines the payload structure. This field
is not displayed until you import the request payload file. Once
you browse for and select the schema or JSON sample file, the
schema is displayed automatically. It also displays a
combination box that selects the root element by default.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-6

Element Description

What is the media-type of the
Request Body? (Content-Type
Header)

• XML: Displays the payload in XML format.
• XML (text): Displays the payload in XML text format.
• JSON: Displays the payload in JavaScript Object Notation

(JSON) format.
• URL-encoded: Displays the payload in URL-encoded

format.
• Other Media Type: Select to display the payload in another

format (for example, application/oracle.cloud+json).
You can only specify the media types that end with +json
or +xml. The following media types are supported implicitly
and cannot be configured. At runtime, the request media
type is in the form of an http Content-Type header. The
expected response media type is specified through an
Accept header. Any service can be accessed through
either of these media types.
– Application/XML
– Application/JSON

Select the multipart attachment type for the endpoint to receive.
This field is displayed if you selected the Request is multipart
with payload option in the Select the multipart attachment
processing options field.
• multipart/mixed: Send an XML or JSON payload type with

an attachment. For example, send a PDF document for
review as a link in an email.

• multipart/form-data: Send an XML or JSON payload type
with an attachment. For example, you create an HTML form
to upload and send an image. In the HTML form, the
method is defined as post and the enctype (encoding
type) is defined as multipart/form-data. You can also
send the attachment alone without a payload when using
this attachment type.

REST Adapter Trigger Request Header Page
Enter the REST Adapter request header properties for this endpoint.

Note:

If you specify a custom header name that is the same as a standard header name,
an error occurs. Ensure that you specify unique names for your custom headers.

Specify the standard HTTP request headers to use.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-7

Element Description

Add Standard Request Headers Select the standard HTTP request header to use from the
default dropdown list.
• Click the Add icon to add an additional row, then select the

standard HTTP request header to use from the dropdown
list. Standard headers available for selection include, but
are not limited to, the following:
– Accept: When sent by a client, the Accept header is

published to an integration. This header describes the
preferred format in which the client wants to accept the
request. This allows for the propagation of the header
sent by the client application to Oracle Integration.

– Connection: If a request is sent with the connection
header set, this value is propagated to the integration.

– Content Length: The length of the content is
propagated to Oracle Integration, regardless of content
length. Post translation, this value may not match the
actual content.

– Content-Type: This allows for the propagation of the
header sent by the client application to Oracle
Integration.

– Origin: This header sent as part of the request to a
REST Adapter trigger is propagated to the integration.

• Click the Delete icon to delete the row of a selected
standard HTTP request header.

Note:

HTTP Header Name Perform the following tasks:
• From the list, select the header to use.

Specify the custom HTTP request headers to use.

Element Description

Add Custom Request Headers Perform the following custom request header tasks:
• Click the Add icon to add custom HTTP request headers

and optional descriptions.
• Click the Delete icon to delete the selected custom HTTP

request headers.

Custom Header Name Enter the custom header name.

Custom Header Description Enter an optional description.

REST Adapter Trigger CORS Configuration Page
Enter the REST Adapter CORS configuration properties for this endpoint.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-8

Element Description

Allowed Origins Specify the allowable domains from which to make CORS
requests. Requests coming from these domains are accepted.
Enter an asterisk (*) for all domains to make the requests. Enter
comma-separated values for specific domains to make the
requests (for example, http://localhost:8080 , https://
myhost.example.com:7002).

Allowed Methods The allowed method displayed is based on your selection in the
What action does the endpoint perform? list on the Basic Info
page.

Requests are only accepted from the allowable domains that
perform the allowable actions (methods). You cannot configure
the method name listed in the CORS configuration.

REST Adapter Trigger Response Page
Enter the REST Adapter response payload details for the endpoint.

Element Description

Select the multipart attachment
processing options

Configure the following options based on whether the
request is inbound or outbound.

For inbound (trigger) responses, select the multipart
attachment type to include.

• Response is multipart with payload: Select to receive
the response from the payload.

• Multipart response is of type multipart/form-data
with HTML form payload: Select for the REST
endpoint to accept to configure an HTML form. You must
first select the Response is multipart with payload
option before you can select this option. This selection
assumes that the media type is multipart/form-data.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-9

Element Description

Select the response payload format Note:
• Ensure that the sample JSON or the uploaded XML

schema is representative of the actual runtime
messages exchanged with the endpoint. A mismatch in
the structure or type of runtime messages can result in
errors.

• If you upload a schema file without a target namespace,
a surrogate namespace is added to the schema file that
all messages then use:

http://xmlns.oracle.com/cloud/adapter/
nxsd/surrogate

Select the response payload format to use. The response
payload body must be defined by the XSD element that
defines the structure of this representation.
• XML Schema
• JSON Sample: Select this option to use Swagger and

RAML files. JSON sample files of up to 100 KB in size
are supported.

Empty arrays in JSON sample files are not supported.
For information, see Empty Arrays Are Not Supported in
Sample JSON Files. You may need to process large
JSON sample files with special characters before using
the Adapter Endpoint Configuration Wizard. See Large
Sample JSON File Processing with Special Characters.

• XML Sample (Single or No Namespace): Select this
option to use an XML document to generate the
schema.

• Binary: Use with payloads that are unstructured and
inline — for example, application/octet-stream. It
preserves the file contents, but requires the receiver to
determine the file type, for example, from the filename
extension. The Internet media type for an arbitrary byte
stream is application/octet-stream.

Schema Location Specify the schema file in either of the following ways:

• Click Browse to select the response schema file to use.
• Click <<inline>> to copy and paste the JSON payload

or URL into a text field. Click OK when complete.

Element Select the element that defines the payload structure. This
field is not displayed until you import the response payload
file. Once you browse for and select the schema file, it
displays a combination box that selects the root element by
default.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-10

Element Description

What is the media-type of Response
Body (Accept Header)

Select the payload type with which you want the endpoint to
reply.
• XML: Displays the payload in XML format.
• XML (text): Displays the payload in XML text.
• JSON: Displays the payload in JavaScript Object

Notation (JSON) format.
• Other Media Type: Select to display the payload in

another format (for example, application/
oracle.cloud+json). You can only specify media
types that end with +json or +xml. The following media
types are supported implicitly and cannot be configured.
At runtime, the request media type is in the form of an
http Content-Type header. The expected response
media type is specified through an Accept header. Any
service can be accessed through either of these media
types.
– Application/XML
– Application/JSON

Select the multipart attachment type for the endpoint to
receive. This field is displayed if you selected the Response
is multipart with payload option in the Select the multipart
attachment processing options field.
• multipart/mixed: Send an XML or JSON payload type

with an attachment. For example, send a PDF document
for review as a link in an email.

• multipart/form-data: Send an XML or JSON payload
type with an attachment. For example, you create an
HTML form to upload and send an image. In the HTML
form, the method is defined as post and the enctype
(encoding type) is defined as multipart/form-data.

REST Adapter Trigger Response Header Page
Enter the REST Adapter response header properties for this endpoint.

Note:

If you specify a custom header name that is the same as a standard header name,
an error occurs. Ensure that you specify unique names for your custom headers.

Specify the standard HTTP response headers to use.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-11

Element Description

Add Standard Response Headers Select the standard HTTP response header to use from the
default dropdown list.
• Click the Add icon to add an additional row, then select the

standard HTTP response header to use from the dropdown
list. Standard headers available for selection include, but
are not limited to, the following:
– Content-Type: Enables you to assign the media type

of choice to the response content. The response
content type is not used for processing and is sent as
part of the response during postprocessing.

– Retry After: You can send this header as part of the
response back to the caller.

• Click the Delete icon to delete the row of a selected
standard HTTP response header.

HTTP Header Name Perform the following tasks:
• From the list, select the header to use.

Specify the custom HTTP response headers to use.

Element Description

Add Custom Response Headers Perform the following custom response header tasks:
• Click the Add icon to add custom HTTP response headers

and optional descriptions.
• Click the Delete icon to delete the selected custom HTTP

response headers.

Custom Header Name Enter the custom header name.

Custom Header Description Enter an optional description.

REST Adapter Trigger Operations Page
Review or edit existing operations or add a new operation. Each operation represents a
different pick action branch in a single integration. The maximum number of operations
(branches) you can create in one integration is six. Each entry point can be configured with a
different resource URI and HTTP action/verb, as necessary. This feature eliminates the need to
create multiple integrations (each with a separate resource URI and verb) to perform different
operations. You can expose multiple entry points to a single integration with a pick action that
uses the REST Adapter as the trigger connection.

See Receive Requests for Multiple Resources in a Single REST Adapter Trigger Connection of
Using Integrations in Oracle Integration 3.

Element Description

Operation Displays the operation name entered on the
Resource Configuration page.

Resource Displays the endpoint relative resource URL
selected on the Resource Configuration page.

HTTP Method Displays the action selected on the Resource
Configuration page.

Edit/Delete Select to edit or delete an operation and its
endpoint relative resource URL and action.

Chapter 4
Add the REST Adapter as a Trigger Connection

4-12

Element Description

Add another operation Select to return to the Resource Configuration
page to add another operation name, endpoint
relative resource URL, and action.

REST Adapter Trigger Operation Selection Page
Enter the REST Adapter invoke operation selection parameters for this endpoint.

Element Description

Business Object Select the business object (resource) to use in this
connection.

Operations Select the operation (method) to perform on the
business object in this connection.

Summary Page
You can review the specified adapter configuration values on the Summary page.

Element Description

Summary Displays a summary of the configuration values you defined on previous
pages of the wizard.

The information that is displayed can vary by adapter. For some
adapters, the selected business objects and operation name are
displayed. For adapters for which a generated XSD file is provided, click
the XSD link to view a read-only version of the file.

To return to a previous page to update any values, click the appropriate
tab in the left panel or click Go back.

To cancel your configuration details, click Cancel.

Click generate a sample cURL to generate sample cURL syntax for the
configuration options that you have selected during REST Adapter
connection configuration, such as security policy, headers, parameters,
and so on.

Add the REST Adapter as an Invoke Connection
When you drag the REST Adapter into the integration canvas as an invoke connection, the
Adapter Endpoint Configuration Wizard is invoked. Based on your selections in the wizard, the
following pages can be displayed.

Topics:

• REST Adapter Invoke Basic Information Page

• REST Adapter Invoke Request Parameters Page

• REST Adapter Invoke Request Page

• REST Adapter Invoke Request Headers Page

• REST Adapter Invoke Response Page

• REST Adapter Invoke Response Header Page

Chapter 4
Add the REST Adapter as an Invoke Connection

4-13

• REST Adapter Invoke Operation Selection Page

• Summary Page

REST Adapter Invoke Basic Information Page
Enter the REST Adapter user name, description, relative resource URI, and endpoint action.
You can also select to add query and template parameters or configure a request and/or
response for the endpoint.

Element Description

What do you want to call your endpoint? Provide a meaningful name so that others can
understand the connection. For example, if you are
creating a source Oracle REST connection, you may
want to name it ExposeFlowAsRESTResource. You
can include English alphabetic characters, numbers,
underscores, and dashes in the name. You cannot
include the following:
• Blank spaces (for example, My REST

Connection)

• Special characters (for example, #;83& or
res(t)4)

• Multibyte characters

What does this endpoint do? Enter an optional description of the connection’s
responsibilities (for example,This inbound REST
connection exposes this integration flow
as a REST resource).

What is the endpoint’s relative resource
URI?

Specify the relative path associated with the resource.
The path can contain template parameters specified
with curly braces (for example, {order-id}). A
resource is any source of specific information that can
be addressed. The resource path follows a fixed,
prefixed URL appended with the specified relative
path. By default, the URL is prefixed with the following
path:

http://host:port/integration/flowapi/
rest/INTEGRATION_NAME

For example, if the integration name is
ExposeFlowAsRESTResource, the URL becomes:

http://host:port/integration/flowapi/
rest/EXPOSEFLOWASRESTRESOURCE

You can override the URL, except for the fixed part at
the beginning:

host:port/integrations

Chapter 4
Add the REST Adapter as an Invoke Connection

4-14

Element Description

What action do you want to perform on the
endpoint?

Select a single HTTP action (method) for the endpoint
to perform:
• GET: Retrieves (reads) information (for example,

makes queries). If you select this option, you
cannot configure a request payload for this
endpoint.

• PUT: Updates information.
• POST: Creates information.
• DELETE: Deletes information. If you select this

option, you cannot configure a request payload for
this endpoint.

PATCH: Partially updates existing resources (for
example, when you only need to update one
attribute of the resource).
Note: The PATCH verb does not work with a non-
SSL REST service.

Select any options that you want to
configure

Select the options that you want to configure:
• Add and review parameters for this endpoint:

Click to specify the query parameters and view
the template request parameters created as part
of the resource URI for this endpoint. If you select
this option and click Next, the Request
Parameters page is displayed.

• Configure a request payload for this endpoint:
Click to configure the request payload for this
endpoint, including specifying the schema
location and payload type with which you want the
endpoint to reply. You can also select this option if
you want to include an attachment with the
inbound request. If you select this option and click
Next, the Request page is displayed.

• Configure this endpoint to receive the
response: Click to configure the response
payload for this endpoint, including specifying the
schema location and payload type that you want
the endpoint to receive. If you select this option
and click Next, the Response page is displayed.

Configure Request Headers? Select the type of request header to configure:

• Standard: Select to configure standard HTTP
headers for the request message.

• Custom: Select to configure custom HTTP
headers for the request message.

Configure Response Headers? Select the type of response header to configure:

• Standard: Select to configure standard HTTP
headers for the response message.

• Custom: Select to configure custom HTTP
headers for the response message.

REST Adapter Invoke Request Parameters Page
Enter the REST Adapter request parameters for this endpoint.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-15

Element Description

Resource URI Displays the endpoint relative resource URI entered
on the Basic Info page.

HTTP Method Displays the action to perform on the endpoint that
you selected on the Basic Info page.

Specify Query Parameters Specify query parameters for the REST endpoint.

Click the Add icon to display a row for entering the
parameter name and selecting its data type. For
example, specify state and select a data type of
string.

Click the Delete icon to delete a selected row.

Template Parameters Displays the template parameters in the relative
resource URI. Template parameters are based on
details you specified on the Basic Info page and
cannot be edited.

Template parameters must be defined as part of a
path with curly braces around them. For example, the
URL default/customers/{cust-id}/{ship-id
has cust-id and ship-id template parameters. You
can change the data type for the parameters.

Note:
• Any query and template parameters added or

configured are available for mapping in the
mapper and in the actions in integrations.

• Query and template parameter values added in
the URL specified on the Connection page do not
appear in the mapper. Instead, the template and
query parameters must be configured in the
Adapter Endpoint Configuration Wizard for those
parameters to appear in the mapper.

REST Adapter Invoke Request Page
Enter the REST Adapter request payload details for the endpoint.

Element Description

Select the multipart attachment
processing options

• Request is multipart with payload: Select to send
multipart attachments as part of the request along with
JSON or XML content as the payload request.

• Multipart request is of type multipart/form-data with
HTML form payload: Select to send multipart attachments
as part of the request along with HTML form as the payload
request. You must first select the Response is multipart
with payload option before you can select this option. This
selection assumes that the media type is multipart/form-
data.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-16

Element Description

Select the request payload format Note:
• Ensure that the sample JSON or the uploaded XML

schema is representative of the actual runtime messages
exchanged with the endpoint. A mismatch in the structure
or type of runtime messages can result in errors.

• If you upload a schema file without a target namespace, a
surrogate namespace is added to the schema file that all
messages then use:

http://xmlns.oracle.com/cloud/adapter/nxsd/
surrogate

Select the request payload format to use. The request payload
body must be defined by the XSD element that defines the
structure of this representation.

• XML Schema
• JSON Sample: Select this option to use Swagger and

RAML files. JSON sample files of up to 100 KB in size are
supported.

Empty arrays in JSON sample files are not supported. For
information, see Empty Arrays Are Not Supported in
Sample JSON Files. You may need to process large JSON
sample files with special characters before using the
Adapter Endpoint Configuration Wizard. See Large Sample
JSON File Processing with Special Characters.

• XML Sample (Single or No Namespace): Select this
option to use an XML document to generate the schema.

• Binary: Use with payloads that are unstructured and inline
— for example, application/octet-stream. It
preserves the file contents, but requires the receiver to
determine file type, for example, from the filename
extension. The Internet media type for an arbitrary byte
stream is application/octet-stream. A list of
commonly used types is shown in a dropdown list. You can
select a type from this list or provide a type not listed by
selecting Other Media Type and entering the type in the
text box.

Note: Binary payload support is only available when the
adapter is used as an invoke, not a trigger.

Schema Location Specify the schema file in either of the following ways:
• Click Browse to select the request schema file to use.
• Click <<inline>> to copy and paste the JSON payload or

URL into a text field. Click OK when complete.

Element Select the element that defines the payload structure. This field
is not displayed until you import the request payload file. Once
you browse for and select the schema or JSON sample file, the
schema is displayed automatically. It also displays a
combination box that selects the root element by default.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-17

Element Description

What is the media-type of the
Request Body? (Content-Type
Header)

• XML: Displays the payload in XML format.
• XML (text): Displays the payload in XML text format.
• JSON: Displays the payload in JavaScript Object Notation

(JSON) format.
• URL-encoded: Displays the payload in URL-encoded

format.
• Other Media Type: Select to display the payload in another

format (for example, application/oracle.cloud+json).
You can only specify the media types that end with +json
or +xml. The following media types are supported implicitly
and cannot be configured. At runtime, the request media
type is in the form of an http Content-Type header. The
expected response media type is specified through an
Accept header. Any service can be accessed through
either of these media types.
– Application/XML
– Application/JSON

Select the multipart attachment type for the endpoint to receive.
This field is displayed if you selected the Request is multipart
with payload option.
• multipart/mixed: Send an XML or JSON payload type with

an attachment. For example, send a PDF document for
review as a link in an email.

• multipart/form-data: Send an XML or JSON payload type
with an attachment. For example, you create an HTML form
to upload and send an image. In the HTML form, the
method is defined as post and the enctype (encoding
type) is defined as multipart/form-data. You can also
send the attachment alone without a payload when using
this attachment type.

Send Query Parameter as form-data
in message body

Select if you want to pass URL-encoded form data in the
payload. The values are derived from the query parameters you
defined on the Request Parameters page. However, instead of
submitting the query parameters, they are sent as form data in
the message body with this option selected. This field is only
displayed if you made the following selections in the Adapter
Endpoint Configuration Wizard:
• The POST verb was selected on the Basic Info page.
• The Configure a request payload for this endpoint and

Add and review parameters for this endpoint options
were selected on the Basic Info page.

• Query parameters were specified on the Request
Parameters page.

REST Adapter Invoke Request Headers Page
Enter the REST Adapter request header properties for this endpoint.

Note:

If you specify a custom header name that is the same as a standard header name,
an error occurs. Ensure that you specify unique names for your custom headers.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-18

Specify the standard HTTP request headers to use.

Element Description

Add Standard Request Headers Select the standard HTTP request header to use from the
default dropdown list.
• Click the Add icon to add an additional row, then select the

standard HTTP request header to use from the dropdown
list. Standard headers available for selection include, but
are not limited to, the following:
– Accept: Response processing occurs according to the

static contract defined at design time. The dynamic
value overrides the value sent to the endpoint. The
response returned must match the Accept header
configured at design time. The overridden header must
be a variation of the content length specified at design
time.

– Authorization: The dynamic header value overrides
any authorization performed as part of the security
policy. Track any authorization failures to the given
header property.

– Content Length: The REST Adapter always infers the
content length from the actual content length passed to
the target endpoint. If there is no content, but the target
endpoint expects the content-length header with a
value of 0, then as with all request headers, you can
include the standard HTTP request header from the
Adapter Endpoint Configuration Wizard and assign it a
value of 0 in the mapper. In Oracle Integration 3, a
Content-Length header with a value of 0 is only sent
for PUT and PATCH verbs with no content.

– Content-Type: The dynamic header is not passed to
the translation framework and translation continues
according to the static configuration at design time. At
runtime (post-message processing), the dynamic
header value is sent to the endpoint.

– Origin: You can set the origin request header as part
of the outgoing HTTP request.

• Click the Delete icon to delete the row of a selected
standard HTTP request header.

HTTP Header Name Perform the following tasks:
• From the list, select the header to use.

Specify the custom HTTP request headers to use.

Element Description

Add Custom Request Headers Perform the following custom request header tasks:
• Click the Add icon to add custom HTTP request headers

and optional descriptions.
• Click the Delete icon to delete the selected custom HTTP

request headers.

Custom Header Name Enter the custom header name.

Custom Header Description Enter an optional description.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-19

REST Adapter Invoke Response Page
Enter the REST Adapter response payload details for the endpoint.

Element Description

Resource URI Displays the endpoint relative resource URI entered on the
Basic Info page.

HTTP Method Displays the action to perform on the endpoint that you
selected on the Basic Info page.

Select the multipart attachment
processing options

Configure the following options based on whether the
request is inbound or outbound.

For inbound (trigger) responses, select the multipart
attachment type to include.

• Response is multipart with payload: Select to receive
the response from the payload.

• Multipart response is of type multipart/form-data
with HTML form payload: Select for the REST
endpoint to accept to configure an HTML form. You must
first select the Response is multipart with payload
option before you can select this option. This selection
assumes that the media type is multipart/form-data.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-20

Element Description

Select the response payload format Note:
• Ensure that the sample JSON or the uploaded XML

schema is representative of the actual runtime
messages exchanged with the endpoint. A mismatch in
the structure or type of runtime messages can result in
errors.

• If you upload a schema file without a target namespace,
a surrogate namespace is added to the schema file that
all messages then use:

http://xmlns.oracle.com/cloud/adapter/
nxsd/surrogate

Select the response payload format to use. The response
payload body must be defined by the XSD element that
defines the structure of this representation.
• XML Schema
• JSON Sample: Select this option to use Swagger and

RAML files. JSON sample files of up to 100 KB in size
are supported.

Empty arrays in JSON sample files are not supported.
For information, see Empty Arrays Are Not Supported in
Sample JSON Files. You may need to process large
JSON sample files with special characters before using
the Adapter Endpoint Configuration Wizard. See Large
Sample JSON File Processing with Special Characters.

• XML Sample (Single or No Namespace): Select this
option to use an XML document to generate the
schema.

• Binary: Use with payloads that are unstructured and
inline — for example, application/octet-stream. It
preserves the file contents, but requires the receiver to
determine the file type, for example, from the filename
extension. The Internet media type for an arbitrary byte
stream is application/octet-stream.

Schema Location Specify the schema file in either of the following ways:

• Click Browse to select the response schema file to use.
• Click <<inline>> to copy and paste the JSON payload

or URL into a text field. Click OK when complete.

Element Select the element that defines the payload structure. This
field is not displayed until you import the response payload
file. Once you browse for and select the schema file, it
displays a combination box that selects the root element by
default.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-21

Element Description

What is the media-type of the
Response Body? (Accept Header)

Select the payload type with which you want the endpoint to
reply.
• XML: Displays the payload in XML format.
• XML (text): Displays the payload in XML text.
• JSON: Displays the payload in JavaScript Object

Notation (JSON) format.
• Other Media Type: Select to display the payload in

another format (for example, application/
oracle.cloud+json). You can only specify media
types that end with +json or +xml. The following media
types are supported implicitly and cannot be configured.
At runtime, the request media type is in the form of an
http Content-Type header. The expected response
media type is specified through an Accept header. Any
service can be accessed through either of these media
types.
– Application/XML
– Application/JSON

Select the multipart attachment type for the endpoint to
receive. This field is displayed if you selected the Response
is multipart with payload option.
• multipart/mixed: Send an XML or JSON payload type

with an attachment. For example, send a PDF document
for review as a link in an email.

• multipart/form-data: Send an XML or JSON payload
type with an attachment. For example, you create an
HTML form to upload and send an image. In the HTML
form, the method is defined as post and the enctype
(encoding type) is defined as multipart/form-data.

REST Adapter Invoke Response Header Page
Enter the REST Adapter response header properties for this endpoint.

Note:

If you specify a custom header name that is the same as a standard header name,
an error occurs. Ensure that you specify unique names for your custom headers.

Specify the standard HTTP response headers to use.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-22

Element Description

Add Standard Response Headers Select the standard HTTP response header to use from the
default dropdown list.
• Click the Add icon to add an additional row, then select the

standard HTTP response header to use from the dropdown
list. Standard headers available for selection include, but
are not limited to, the following:
– Content Length: The content length of the response is

propagated to Oracle Integration (regardless of the
length). The response may have been translated and
the actual values may no longer match. This is the
response header corresponding to the original
message.

– Content-Type: The response header is propagated
along with the response to the integration.

– Retry-After: The response header sent by a target
endpoint is returned to the integration.

• Click the Delete icon to delete the row of a selected
standard HTTP response header.

HTTP Header Name Perform the following tasks:
• From the list, select the header to use.

Specify the custom HTTP response headers to use.

Element Description

Add Custom Response Headers Perform the following custom response header tasks:
• Click the Add icon to add custom HTTP response headers

and optional descriptions.
• Click the Delete icon to delete the selected custom HTTP

response headers.

Custom Header Name Enter the custom header name.

Custom Header Description Enter an optional description.

REST Adapter Invoke Operation Selection Page
Enter the REST Adapter invoke operation selection parameters for this endpoint.

Element Description

Business Object Select the business object (resource) to use in this
connection.

Operations Select the operation (method) to perform on the
business object in this connection.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-23

Summary Page
You can review the specified adapter configuration values on the Summary page.

Element Description

Summary Displays a summary of the configuration values you defined on previous
pages of the wizard.

The information that is displayed can vary by adapter. For some
adapters, the selected business objects and operation name are
displayed. For adapters for which a generated XSD file is provided, click
the XSD link to view a read-only version of the file.

To return to a previous page to update any values, click the appropriate
tab in the left panel or click Go back.

To cancel your configuration details, click Cancel.

Click generate a sample cURL to generate sample cURL syntax for the
configuration options that you have selected during REST Adapter
connection configuration, such as security policy, headers, parameters,
and so on.

Chapter 4
Add the REST Adapter as an Invoke Connection

4-24

5
Implement Common Patterns Using the REST
Adapter

You can use the REST Adapter to implement the following common patterns.

Differences Between Implementation Patterns and Recipes

Unclear about the difference between implementation patterns and recipes? Both assets
provide different solutions.

• Implementation patterns describe a common use for this adapter. The pattern can range
from a simple configuration task (such as how to configure a specific security policy for this
adapter) to a high level overview of how to use this adapter in an integration.

• Recipes, known as prebuilt integrations, are preassembled, easily installable, integration
solutions. A recipe contains all the resources required for a specific integration scenario.
The resources include integration flows, adapter connections, lookups, and certificates.
Use a recipe to quickly get started building an integration. See the Recipes and
Accelerators page on the Oracle Help Center.

Topics:

• Connect to an Endpoint that Requires a Content-Length Header to Be Sent

• OAuth-Protected Patterns

• REST API Consumption Patterns

• JSON Content Patterns

• OpenAPI Document Patterns

• Best Practices for Invoking REST Endpoints

• Override the Endpoint URI/Host Name for an External REST API at Runtime

• Map to Construct the Payload for an External REST API that Accepts multipart/form-data
as the Content Type

• Implement an Integration in which to Send an Incoming Message with a Base64-Encoded
String to an External REST API that Accepts a Multipart Attachment

• Pass the Payload as URL-Encoded Form Data

• Implement an Integration to Send a PDF/CSV Document Downloaded from an SFTP
Server to an External REST API that Accepts Only application/octet-stream as the Content
Type

• Configure the REST Adapter to Expose an Integration as a REST API

• Enter q as a Standard HTTP Query Parameter with the Query as a Value

• Configure Oracle Integration to Call Oracle Cloud Infrastructure Functions with the REST
Adapter

• Configure a REST Adapter Trigger Connection to Work Asynchronously

• Create a Keystore File for a Two-Way, SSL-Based Integration

5-1

• Access Oracle Cloud Infrastructure Service Resources Using RPST

• Invoke a Service Provider API with a JWT Assertion

Connect to an Endpoint that Requires a Content-Length Header
to Be Sent

In Oracle Integration 3, invoke connection requests sent to an endpoint default to chunked
encoding. This means no Content-Length header is sent. If your endpoint requires a Content-
Length header, the HTTP response returns a 400 or 411 error. Perform the following steps to
enable a Content-Length header to be sent.

1. Edit the Adapter Endpoint Configuration Wizard for the invoke connection. For example:

2. On the Basic Info page, select the Standard request header check box.

Chapter 5
Connect to an Endpoint that Requires a Content-Length Header to Be Sent

5-2

3. Click through the Adapter Endpoint Configuration Wizard without making changes until you
reach the Edit Request Headers page.

4. In the Standard HTTP Headers section, click Add and select Content-Length from the
list.

5. Click through the remaining pages of the Adapter Endpoint Configuration Wizard without
making changes.

6. On the Summary page, click Finish.

7. Open the mapper in front of the invoke connection for editing.

8. In the Target section, right-click Content Length under Standard HTTP Headers.

Chapter 5
Connect to an Endpoint that Requires a Content-Length Header to Be Sent

5-3

9. Select Create target node.

10. In the Expression Builder at the bottom, set the value to "0". This value is not significant. It
simply enables the REST Adapter to understand that a Content-Length header is required.

11. Exit the mapper and save the integration.

12. Run the integration.

This enables a Content-Length header to be sent to the endpoint.

OAuth-Protected Patterns
You can use the REST Adapter to implement the following common patterns using OAuth
protection.

• Configure the REST Adapter to Consume a REST API Protected with OAuth Custom Two
Legged Token-Based Authentication

• Configure the REST Adapter to Consume a REST API Protected with OAuth Custom
Three Legged Flow Token-Based Authentication

• Configure the REST Adapter to Consume a REST API Protected with OAuth 1.0 One-
Legged Authentication

• Allow Client Applications to Consume an Integration Exposed as an OAuth-Protected
REST API

Configure the REST Adapter to Consume a REST API Protected with
OAuth Custom Two Legged Token-Based Authentication

This section provides an overview of the OAuth Custom Two Legged Flow security policy. This
policy is useful when the Basic Authentication security policy is not sufficient.

Most HTTP services typically use the OAuth authorization framework to protect their
resources. In accordance with the OAuth 2.0 specification, the OAuth 2.0 authorization
framework enables a third-party application to obtain limited access to an HTTP service, either
on behalf of a resource owner by orchestrating an approval interaction between the resource
owner and the HTTP service or by enabling the third-party application to obtain access on its
own behalf.

Chapter 5
OAuth-Protected Patterns

5-4

The REST Adapter enables you to integrate with any REST-enabled service including OAuth
services. To interact with an OAuth endpoint, you must create a one-time reusable connection
on the Connections page of Oracle Integration. Configure the connection with the base URI
and security configuration.

The following security policy options are available on the Connections page for the REST
Adapter.

Each option is applicable in a different context and is used to negotiate and obtain a valid
access token. Read your REST service provider documentation to identify the applicable
policy.

The following section describes a flexible OAuth security policy that can be used in OAuth
custom two legged flows called as an OAuth Custom Two Legged Flow.

OAuth 2.0 specification defines the following OAuth flows:

• OAuth Client Credentials

• OAuth Resource Owner Password Credentials

• OAuth Authorization Code Credentials

• OAuth Implicit Grant Authorization

The OAuth Client Credentials and OAuth Resource Owner Password Credentials options
are categorized as OAuth custom two legged flows because the client application directly
obtains access on its own without the resource owner’s intervention.

An HTTP request is typically sent to the authorization server passing the client application
credentials (note that these are different from the resource owner credentials and can be
obtained by registering the client application with the authorization server), the grant type and
scope, and other required properties. The authorization server responds to this request by
sending an access token, optionally with a token type, an expiry, and sometimes a refresh
token.

Chapter 5
OAuth-Protected Patterns

5-5

The following example describes a sample access token request with Twitter (a popular
microblogging site that supports OAuth2). For more information about Twitter developer
documentation, visit https://dev.twitter.com/oauth/application-only.

POST /oauth2/token HTTP/1.1
Host: api.twitter.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic a3NmM1yRnFweAx==

grant_type=client_credentials

According to the Twitter developer documentation, this request is required to obtain an access
token from Twitter. An HTTP basic authentication header is created by using the client ID and
client secret.

If the request is formatted correctly, the server responds with a JSON-encoded payload. This is
fairly straight forward.

{"token_type":"bearer","access_token":"AAAAAAAAAA"}

The following steps describe the OAuth Custom Two Legged Flow security policy and each
field in the context of this scenario.

Step 1: Configure the Access Token Request

The Access Token Request field is formed using the URI syntax of the HTTP request used to
fetch the access token. The URI syntax resembles cURL but is more basic and only supports
the following options.

Option Value Description Required

-X GET | PUT | POST The HTTP verb in the
access token request.

Yes

-H -H “key: value” Add each header key
value pair as described.
There can be multiple
headers.

No

-d -d ‘data-as-string’ String data enclosed
within single quotes.
Escape any quotes
within the data string.

No

URI Uri (within quotes) - - Yes

Chapter 5
OAuth-Protected Patterns

5-6

https://dev.twitter.com/oauth/application-only

Parameters specified with the -d option should be URL-encoded. For example, assume
client_id is the following value:

qwerty&r=123=&q=asdf

You are required to URL-encode this value using a URL encoder tool. The parameter must be
URL-encoded before composing the -d data. This applies to client_secret and also a scope
or any other additional value you want to put into the overall -d parameter. For example:

client_id = "qwerty&r=123=&q=asdf"

client_secret = "zxcvb&q=12345&=7890"

Access token request:

-X POST -H 'Content-Type: application/x-www-form-urlencoded' -d
'client_secret=zxcvb%26q%3D12345%26%3D7890&grant_type=authorization_code&redir
ect_uri=${redirect_uri}&client_id=qwerty%26r%3D123%3D%26q%3Dasdf'
https://webhook.site/44ffa856-9459-4bb5-b8db-c0ed0d3b227f

If data must be in a query parameter:

-X POST -H 'Content-Type: application/x-www-form-urlencoded'
'https://webhook.site/44ffa856-9459-4bb5-b8db-c0ed0d3b227f?
client_secret=zxcvb%26q%3D12345%26%3D7890&grant_type=authorization_code&redire
ct_uri=${redirect_uri}&client_id=qwerty%26r%3D123%3D%26q%3Dasdf'

Multiple -d options in the OAuth custom two-legged flow security policy can be compressed
into a single -d as follows:

-d "grant_type=client_credentials&client_id=123"

Note:

• Other curl options are not supported.

• The easiest way to build this request is to use a free tool such as postman to
build and validate the HTTP request to obtain an access token and then use the
Generate Code Snippet/Code option to get curl syntax. Remove the curl from
the beginning to get the URI syntax. The following example shows URI syntax:

-X POST -H "Content-Type: application/x-www-form-urlencoded" -H
"Authorization:
Basic a3NmM0J6czJG==" -d 'grant_type=client_credentials'
https://api.twitter.com/oauth2/token

Chapter 5
OAuth-Protected Patterns

5-7

The URI syntax allows you to control the access token request. The following is a typical
access token response.

{
 "access_token": "1-253912-240049694-f85c1d679211c",
 "expires_in": 21599,
 "token_type": "Bearer",
 "refresh_token": "5707efdf04912f53b61cb5ec5dc7f166"
}

Step 2: Parse and Extract Tokens from Access Token Response

Note:

Skip this step if the access token response has properties as highlighted previously.

If the request is good, the authorization server returns an HTTP response with a success
status. The response contains the access token and may also contain several operational
details about the token such as the type of the token, its expiry, and refresh token as described
previously.

By default, the $variables are mapped to property names containing relevant tokens as
follows:

Chapter 5
OAuth-Protected Patterns

5-8

Property Name Default Mapping to a Property
with Name

Example Property Name

$access_token access.[tT]oken access_token
$refresh_token refresh.[tT]oken refresh_token
$expiry expires_in expires_in
$token_type token.?[tT]ype token_type

The default values match the sample response. Therefore, this step is not required and can be
skipped.

However, if the access token response is not standard, then you must define rules to fetch
tokens from the access token response.

For example, assume the access token response is as follows:

{ "access_token": "1-253912-240049694-f85c1d679211c", "expiry": 21599,
"token_type": "Bearer", "extended_token":
"5707efdf04912f53b61cb5ec5dc7f166" }

In this case, the authorization server returns a response, but chooses to specify the expiry and
the refresh token differently. This step is required to map these properties to the variables.

Variable Name Default Mapping to a Property
with Name

Example Property Name

$refresh_token extended_token extended_token
$expiry Expiry Expiry

Variables can be used in the configuration using the ${variable} syntax once a value has
been assigned. For example, $access_token is assigned a value after an access token
request is made. The value of this variable may be useful while specifying the access_token
usage or the refresh_token_request later.

Step 3: Access Token Usage (Important)

Access token usage describes how to pass the access token to access a resource. Enter this
information carefully because this usage governs how Oracle Integration passes the
negotiated access token to the endpoint.

Chapter 5
OAuth-Protected Patterns

5-9

The default value for this field is:

-H Authorization: ${token_type} ${access_token}

At runtime, the values of ${token_type} and ${access_token} are retrieved based on the
fetch rule and passed as an authorization header along with the endpoint request.

The literal value can also be used as follows:

-H API-Token: Bearer ${access_token}

Access Token Usage Description Example

-H Authorization: $
{token_type} $
{access_token}

The access token is passed as a
header at runtime for accessing
the protected resource.

-H Authorization: Bearer
AASDFADADX

?api_key=${access_token}
The access token is passed as a
query parameter at runtime for
accessing the protected resource.

http://someapi.com/
employee?api_key=ASDFADAX

Step 4: Refresh Token Request (Optional)

Some providers provide a mechanism to refresh a given access token. This sort of method is
generally part of a resource owner password credentials (ROPC) flow. However, there have

Chapter 5
OAuth-Protected Patterns

5-10

been instances where you also use this with client credentials even when the specification
says otherwise.

The refresh token request typically takes the refresh token and returns a new access token as
a response along with operational attributes such as the type of token, its expiry, and another
refresh token.

The refresh token request must also be specified in a syntax similar to the access token
request and prescribes to the same rules.

A sample refresh token request is as follows:

-X POST 'https://sample.com/oauth2/token?refresh_token=${refresh_token}
&client_id=[YOUR_CLEINT_ID]&client_secret=[YOUR_CLIENT_SECRET]&grant_type=refr
esh_token'

This request contains a variable that is replaced with the actual value of the current refresh
token at runtime.

See Configure Connection Security.

Configure the REST Adapter to Consume a REST API Protected with
OAuth Custom Three Legged Flow Token-Based Authentication

This section provides an overview of the OAuth Custom Three Legged Flow security policy.

The following steps are performed as part of a typical OAuth authorization code credentials
flow.

Chapter 5
OAuth-Protected Patterns

5-11

Ste
p

Description

1 The user specifies the authorization request URI. The user is redirected by the user agent
(browser) to the authorization URI.

2 The resource owner logs in to authenticate and provide consent to the client application to access
its resources.

3 The authorization server sends a callback request to the client application and sends the
authorization code.

4 The client application extracts the authorization code from the request and uses it to send another
request to the authorization server to get an access token.

5 The authorization server responds to the access token request by sending an access token to the
client application.

6 The client application uses the access token to make requests for protected resources.

This flow is defined in the OAuth specification. However, how to perform each step in the flow
is determined by the authorization server implementing the OAuth flow. There are several
variations to this flow.

• The OAuth provider expects that some query parameters are passed when the user is
redirected to the authorization URI.

• The provider calls the authorization code something else.

• The call for the access token should include the authorization code. However, some
providers may expect it as a header or a query parameter or maybe as part of the data.

Chapter 5
OAuth-Protected Patterns

5-12

• The access token response may also wary. Some providers may return a refresh token (for
example, call it extended_token or something else). Providers are known to return an
expiry, whereas some providers return a JWT token, where the expiry is embedded as a
claim within the token.

• Providers may also declare a custom token type.

• The call to refresh the access token may also vary from provider to provider.

• The call to access resources using the access token may also vary. Providers may expect
it to be a header or a query parameter. Some providers ask the token to be passed as an
authorization header. Few providers expect a custom header, and so on.

The REST Adapter provides a security policy called the OAuth Authorization Code
Credentials Flow. This policy provides a specific implementation of the OAuth as illustrated in
the OAuth specification. For all other cases, OAuth Custom Three Legged Flow can be used
to address these customizations.

Step 1: Configure the Authorization Request

Specify the authorization URI where the resource owner authenticates and provides consent in
the Authorization Request field. The client ID and scope are typically passed as query
parameters with the redirect URI from where the authorization server must send a callback and
the authentication code.

Chapter 5
OAuth-Protected Patterns

5-13

Oracle Integration has a fixed endpoint to receive this callback so you can specify the URI
directly or pass a reference ${refresh_token} that is automatically resolved by the platform.
For example:

https://AUTH_URI?response_type=code&client_id=YOUR_CLIENT_ID &redirect_uri=$
{redirect_uri}&scope=app_scope

Step 2: Configure the Access Token Request

When the resource owner provides consent, the authorization server sends a callback to the
client application along with the authorization code. The next step is for the client application to
send a request for the access token using this authorization code.

If the authorization server returns the authorization code in a property named as anything but
code, you must map the property name with $auth_code.

The access token request is used to make a call for the access token. It is supposed to send
the authorization code that is not resolved until the flow is executed. Therefore, the
authorization code is passed by reference as ${auth_code} in the request.

The rules for creating the access token request remain unchanged from the OAuth Custom
Two legged Flow option.

The Access Token Request value is formed using a URI syntax of the HTTP request used to
fetch the access token. The URI syntax resembles cURL, but it is more basic and only supports
the following options.

Option Value Description Required

-X GET | PUT | POST The HTTP verb in the
access token request.

Yes

-H -H “key: value” Add each header key
value pair as described.
There can be multiple
headers.

No

-d -d ‘data-as-string’ String data enclosed
within single quotes.
Escape any quotes
within the data string.

No

URI Uri (within quotes) - - Yes

Parameters specified with the -d option should be URL-encoded. For example, assume
client_id is the following value:

qwerty&r=123=&q=asdf

You are required to URL-encode this value using a URL encoder tool. The parameter must be
URL-encoded before composing the -d data. This applies to client_secret and also a scope
or any other additional value you want to put into the overall -d parameter. For example:

client_id = "qwerty&r=123=&q=asdf"

client_secret = "zxcvb&q=12345&=7890"

Chapter 5
OAuth-Protected Patterns

5-14

Access token request:

-X POST -H 'Content-Type: application/x-www-form-urlencoded' -d
'client_secret=zxcvb%26q%3D12345%26%3D7890&grant_type=authorization_code&redir
ect_uri=${redirect_uri}&client_id=qwerty%26r%3D123%3D%26q%3Dasdf'
https://webhook.site/44ffa856-9459-4bb5-b8db-c0ed0d3b227f

If data must be in a query parameter:

-X POST -H 'Content-Type: application/x-www-form-urlencoded'
'https://webhook.site/44ffa856-9459-4bb5-b8db-c0ed0d3b227f?
client_secret=zxcvb%26q%3D12345%26%3D7890&grant_type=authorization_code&redire
ct_uri=${redirect_uri}&client_id=qwerty%26r%3D123%3D%26q%3Dasdf'

Multiple -d options in the OAuth Custom Three Legged Flow security policy can be
compressed into a single -d as follows:

-d "grant_type=client_credentials&client_id=123"

Note:

• Other curl options are not supported.

• The easiest way to build this request is to use a free tool such as POSTMAN to
build and validate the HTTP request to obtain an access token and then use the
Generate Code Snippet/Code option to get a cURL syntax. Remove the curl from
the beginning to get the URI syntax. The following example shows the URI
syntax:

-X POST -H "Content-Type: application/x-www-form-urlencoded" -d
'false' 'https://access_token_URI?code=$
{auth_code}&client_id=YOUR_CLIENT_ID&client_secret=YOUR_CLIENT_SECR
ET&redirect_uri=${redirect_uri}&grant_type=authorization_code'

Step 3: Optionally Configure the Refresh Token Request

Similar to an access token request, specify the refresh token request in URI syntax, if the
authorization server supports a refresh.

Step 4: Define the Fetch Rules for Intermediate Tokens

By default, the $variables are mapped to property names containing relevant tokens as
follows:

Property Name Default Mapping to a Property
with Name

Example Property Name

$auth_code code code
$access_token access.[tT]oken access_token
$refresh_token refresh.[tT]oken refresh_token
$token_type token.?[tT]ype token_type

Chapter 5
OAuth-Protected Patterns

5-15

Property Name Default Mapping to a Property
with Name

Example Property Name

$expiry expires_in expires_in

This step is not required and can be skipped.

However, if the access token response is not standard, then you must define rules to fetch
tokens from the access token response.

Step 5: Define the Access Token Usage (Important)

Access token usage describes how to pass the access token to access a resource. Enter this
information carefully because this usage governs how Oracle Integration passes the
negotiated access token to the endpoint.

See Configure Connection Security.

Configure the REST Adapter to Consume a REST API Protected with
OAuth 1.0 One-Legged Authentication

This section provides an overview of the OAuth 1.0 One-Legged Authentication security policy
in the Connections page. This protocol enables web sites or applications (consumers) to
access protected resources from a web service (a service provider) through an API without
requiring you to disclose your service provider credentials to consumers.

Note:

No customization is required in this policy. This is a standard OAuth policy unlike
custom 2-legged and custom 3-legged OAuth policies.

You can use this security policy with service providers such as the following:

• Oracle NetSuite can expose restlets as REST APIs that are protected by OAuth 1.0 One-
Legged Authentication. For example:

https://rest.netsuite.com/app/site/hosting/restlet.nl?script=474&deploy=1

You must be a member of Oracle NetSuite to access this restlet.

This restlet returns a greeting in HTML.

• Twitter accounts can be protected by OAuth 1.0 One-Legged Authentication.

Configure the following fields on the Credentials dialog of the Connections page. These
credentials are provided by the service provider (Oracle NetSuite or Twitter).

Chapter 5
OAuth-Protected Patterns

5-16

• Consumer Key — Specify the key that identifies the client making the request.

• Consumer Secret — Specify the consumer secret that authorizes the client making the
request.

• Token — Specify the token that accesses the protected resource.

• Token Secret — Specify the token secret that generates the signature for the request.

• Realm — Specify the realm that identifies the account.

See Configure Connection Security.

Allow Client Applications to Consume an Integration Exposed as an OAuth-
Protected REST API

Integrations in Oracle Integration configured using the REST Adapter as a trigger are
automatically exposed as OAuth-protected REST resources. These integrations/resources can
be consumed using OAuth access tokens. To access an Oracle Integration endpoint using an
OAuth token, you must first acquire the token.

See Authenticate Requests for Invoking Oracle Integration Flows.

REST API Consumption Patterns
You can use the REST Adapter to implement the following common patterns to consume
REST APIs.

Topics:

• Configure the REST Adapter to Consume a REST API Protected with the API Key

Chapter 5
REST API Consumption Patterns

5-17

• Configure the REST Adapter to Consume an External REST API with No Metadata
Described in a Document

• Configure a REST Adapter to Consume a REST API that Expects Custom HTTP Header
Properties

• Configure the REST Adapter to Consume an Amazon Web Services (AWS) REST API

Configure the REST Adapter to Consume a REST API Protected with the
API Key

This section provides an overview of the API Key-Based Authentication security policy. This
policy enables you to provide secure access to APIs. The resource owner generates an API
key for a given client application with the required authorization and then shares the generated
API key. The client application is then required to pass the API key with the request for
accessing protected resources.

The following steps are performed as part of the API key-based authentication flow.

Step Description

1 The resource owner authenticates and generates
an API key for the given client application.

2 The resource owner shares the generated API key
with the client application.

3 The client application makes a request for a
resource using the API key.

On the Connections page of the REST Adapter, you select API Key Based Authentication.

Chapter 5
REST API Consumption Patterns

5-18

In the API Key Usage field, you specify how the API key is passed with the request for
accessing a resource. Enter this information carefully since this usage governs how the
provided API key is passed to the endpoint. See Configure Connection Security for details.

At runtime, the API key is automatically passed to the endpoint while sending the request.

See Configure Connection Security.

Configure the REST Adapter to Consume an External REST API with No
Metadata Described in a Document

Oracle Integration can integrate with REST APIs that do not publish any service description.
The following example shows how to integrate with these REST APIs. This example uses a
publicly available API that provides carbon intensity data for the United Kingdom.

Note:

The REST Adapter provides support for consuming REST APIs that are described
using the metadata catalog. However, because the metadata catalog as a standard is
not being actively maintained, you are advised to not use the metadata catalog
definition. Many applications have already moved their resource models to the
OpenAPI Specification, which is the preferred metadata description for describing
RESTful APIs. If the metadata catalog happens to be the only metadata definition,
you have the option of directly consuming the target REST API using the request
builder provided out of the box as part of the Adapter Endpoint Configuration Wizard.

The API is described at https://carbon-intensity.github.io/api-definitions/
#intensity. In this example, an integration is modeled to fetch carbon intensity data. Because
the API is not protected, no security configuration is required.

The endpoint URL to invoke can also be invoked using the following CURL command:

curl -X GET https://api.carbonintensity.org.uk/intensity/date -H 'Accept:
application/json'

Chapter 5
REST API Consumption Patterns

5-19

The response is of the form:

{"data":[{"from": "2018-01-20T12:00Z",
 "to": "2018-01-20T12:30Z",
 "intensity": {
 "forecast": 266,
 "actual": 263,
 "index": "moderate"
 }
}]
}

1. Configure a connection by selecting REST API Base URL in the Connection Type field
and providing the base URL of the service in the Connection URL field. See Configure
Connection Properties for Invoke Connections.

Test and save the connection. Generally speaking, the REST API base URL should be the
resource root of a REST API. In this example, the Connection URL field is configured as
https://api.carbonintensity.org.uk.

The following steps describe how to configure the relative REST resource in the Adapter
Endpoint Configuration Wizard.

2. Configure the REST Adapter as an invoke connection. Oracle Integration determines the
target endpoint URL by appending the relative resource URI to the base URL configured
during connection configuration.

3. Provide a relative resource URI of /intensity/date and select the HTTP verb to use
(GET for this example).

In this example, a request payload is not required. Therefore, the corresponding option is
not selected. The same applies for query and template parameters. However, since a
response is expected, the option corresponding to a response is selected. The Adapter
Endpoint Configuration Wizard determines the next page to show based on the options
selected on this page.

Chapter 5
REST API Consumption Patterns

5-20

Because the options corresponding to request payload, request parameters (query and
template parameters), and request headers were not selected, the corresponding pages
are skipped.

4. Select the required payload format and provide a sample JSON, XML, or schema that
represents the payload.

A JSON sample can also be provided using the <<<inline>>> option.

Chapter 5
REST API Consumption Patterns

5-21

5. Complete the rest of the Adapter Endpoint Configuration Wizard.

6. Complete the mappings.

Configure a REST Adapter to Consume a REST API that Expects Custom
HTTP Header Properties

The REST Adapter provides an easy and configurable way to consume an external HTTP
service. You can configure the HTTP verb, resource URI, query and template parameters,
HTTP headers, form parameters, body, and attachments that must be sent as part of the
request.

HTTP headers allow the client and the service to exchange additional information along with
the request or the response. The Internet Assigned Numbers Authority (IANA) maintains a
registry of standard or permanent HTTP request headers that are commonly used for

Chapter 5
REST API Consumption Patterns

5-22

predefined reasons. Along with the standard headers, services can also define custom
proprietary headers for exchanging additional information.

Follow the steps mentioned below to invoke a REST service that expects a custom HTTP
request header.

1. Create a connection with a REST Adapter invoke connection for the target service to
consume.

2. Drag the connection onto the integration canvas.

3. On the Basic Info page, provide the HTTP verb and the relative request URI.

4. Select Custom in the Configure Request Headers section.

The REST Adapter shows a page for you to configure the custom request headers.

5. Define the proprietary header name and provide a brief description of the header.

Upon completion, the REST Adapter exposes the custom header specified above as part
of the adapter request payload.

6. Assign this header a value using an assign action or the mapper. The assigned value is
sent as a custom HTTP header to the target service at runtime.

Configure the REST Adapter to Consume an Amazon Web Services (AWS)
REST API

You can configure the REST Adapter to consume an Amazon Web Services (AWS) REST API
by selecting the AWS Signature Version 4 security policy on the Connections page. AWS
provides a set of global compute, storage, database, analytics, application, and deployment
services for consumption.

1. On the Connections page for the REST Adapter, go to the Properties section. At a
minimum, specify the following details.

2. From the Connection Type list, select REST API Base URL.

3. In the Connection URL field, specify the endpoint URL according to the service you want
to use. The REST Adapter exposes dynamic endpoint support. For example:

https://amazonaws.com

4. Go to the Security section.

5. From the Security Policy list, select AWS Signature Version 4.

6. Specify the following details.

Element Description

Access Key Enter the access key obtained when you created
your Amazon security credentials.

Secret Key Enter the secret key obtained when you created
your Amazon security credentials.

AWS Region Select the region in which the AWS server is
hosted.

Service Name Select the AWS service to which to connect.

Chapter 5
REST API Consumption Patterns

5-23

JSON Content Patterns
You can use the REST Adapter to implement the following common patterns with JSON
content.

Topics:

• Allow JSON Numbers with High Precision and Scale

• Map JSON when the REST Adapter Request is Configured with multipart/form-data

• JSON to XML Special Character Conversion

• Send an Empty JSON Object

• Copy Element Names as Values in JSON

• Use JSON Objects With Single Elements Within an Array

Allow JSON Numbers with High Precision and Scale
For JSON numbers with high precision and scale, Oracle Integration automatically converts the
number to four decimal places. To prevent this conversion, you have several options based on
the adapter you are using.

• For the REST Adapter, you must set the Allow High Precision Numbers connectivity
property in the mapper to allow JSON numbers with high precision and scale.
The default value for this connectivity property is false. Oracle Integration internally
restricts the precision scale to four (decimal places) by default. Set this property to true for
a higher precision scale. Use this property value carefully because undefined precision
does not mean infinite precision.

Chapter 5
JSON Content Patterns

5-24

• For all other adapters that supply a schema for response processing, the following schema
annotation is included.

<xs:schema xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
nxsd:version="JSON" nxsd:allowHighPrecisionNumbers="true">

If you receive a REST response with more than 10 decimal places, Oracle Integration
converts it to XML, but does not round off the values.

If you do not use this schema annotation, the value is rounded off at four decimal places.

Map JSON when the REST Adapter Request is Configured with multipart/
form-data

JSON can be mapped when the REST Adapter request is configured with multipart/form-data
(that is, when the Request is multipart with payload and Multipart request is of type
multipart/form-data with HTML form payload check boxes are selected on the Request
page).

You can send a JSON string as a parameter. The name of the parameter is
jsonInputParameters. The value of the parameter is the JSON string shown below. The value
should be mapped to the parameter node. In general, ParameterList contains a list of
parameters. Each parameter's name goes into parameter > name and its value goes into
parameter.

JSON to XML Special Character Conversion
If the JSON payload has special characters that are not valid in XML, those characters are
replaced by a string when converted from JSON to XML.

For example, assume you have the following JSON payload:{ "_id": { "$oid":
"52cdef7f4bab8bd67529c6f7" } }
You then select the JSON Sample payload format and <<inline>> to copy and paste the
payload into the text field in the Adapter Endpoint Configuration Wizard.

Chapter 5
JSON Content Patterns

5-25

In the mapper, the field $oid is represented with a string value of _0x646c72_oid.

The list of special characters and their corresponding XML conversion strings are as follows:

Special Character Converted Value Represented in the Mapper

" " _0x737063_
"/" _0x736c68_
"\\" _0x626c68_
":" _0x636c6e_
";" _0x73636e_
"(" _0x6c7072_
")" _0x727072_
"&" _0x616d70_
"," _0x636d61_
"#" _0x706e64_
"?" _0x717374_
"<" _0x6c7374_
">" _0x677274_
"start" _0x737472_
"@" _0x617472_
"$" _0x646c72_
"{" _0x6c6362_
"}" _0x726362_
"%" _0x706572_

Send an Empty JSON Object
The REST Adapter can enforce the sending of an empty JSON object ({}) when needed with
the Enforce Empty JSON Object Payload property. Some providers have this requirement in
special cases, such as Concur. When enabled, this property inserts an empty JSON object.

This property is driven by Concur and Oracle Logistics and is disabled by default.
When set to true, the REST call inserts {} into the body regardless of the verb chosen. For
some third party APIs, this is a requirement for certain calls. By default, this property is not
enabled.

The following steps provide a high level overview of how to configure an empty JSON object.

1. Add a REST Adapter as an invoke connection in the integration canvas.

The Adapter Endpoint Configuration Wizard is displayed.

2. On the Basic Info page, select Configure a request payload for this endpoint.

Chapter 5
JSON Content Patterns

5-26

3. On the Request page, select JSON Sample from the Select the request payload format
list, then specify {} as the empty JSON object in the <<<inline>>> link.

4. Open the mapper in front of the REST Adapter.

5. Set the Enforce Empty JSON Object Payload target element to true in the mapper. Use
the JavaScript function true(). You can enter this in the mapper without having to put
quotes around around it. This creates a boolean value of true.

Chapter 5
JSON Content Patterns

5-27

Copy Element Names as Values in JSON
You can copy element names as values in JSON.

JSON Sample XSLT Mapping Explanation

• Input

{

"OutputCollection":
{
 "Collection": [{
 "ID": 1,
 "NAME": "Name"
 },{
 "ID": 11,
 "NAME":
"Name0"
 }]
 }
}

• Output

{
 "items" : [{
 "name" : "ID",
 "value" :
["1"]
 }, {
 "name" : "NAME",
 "value" :
["Name"]
 }, {
 "name" : "ID",
 "value" :
["11"]
 }, {
 "name" : "NAME",
 "value" :
["Name0"]
 }]
}

<xsl:for-each select="/
nstrgmpr:execute/nstrgdfl:request-
wrapper/nstrgdfl:OutputCollection/
nstrgdfl:Collection/*">
 <nstrgdfl:items>
 <nstrgdfl:name>
 <xsl:value-of select="name
()"/>
 </nstrgdfl:name>
 <nstrgdfl:value>
 <xsl:value-of select="current
()"/>
 </nstrgdfl:value>
 </nstrgdfl:items>
</xsl:for-each>

Iterate over child
elements of a
required element.
Capture the
name and value
as required.

Chapter 5
JSON Content Patterns

5-28

Use JSON Objects With Single Elements Within an Array
You can use JSON objects with single elements within an array.

JSON Sample XSLT Mapping Explanation

{
 "parameters": [
 {
 "closeAction":
"closeAction"
 },
 {
 "closeReason":
"closeReason"
 }
]
}

<execute>
 <parameters>
 <closeAction>closeAction</
closeAction>
 </parameters>
 <parameters>
 <closeReason>closeReason</
closeReason>
 </parameters>
</execute>

An array in JSON
is a repeating
element in XML.
An XML element
is an item in a
JSON object.

OpenAPI Document Patterns
You can use the REST Adapter to implement the following common patterns using OpenAPI
documents.

Topics:

• Publish REST-Based Integrations as OpenAPI Documents

• Consume and Publish OpenAPI Documents with Multipart/Mixed and Multipart/Form-Data

Publish REST-Based Integrations as OpenAPI Documents
You can publish an OpenAPI document describing an Oracle Integration REST endpoint and
consume the OpenAPI document using the REST Adapter. This section provides an overview
of the configuration steps.

1. Create a REST Adapter connection. The connection can use any security policy.

2. On the Integrations page, create an application integration.

3. Add the REST Adapter created in Step 1 as the trigger connection.

4. Design the integration.

5. On the Integrations page, activate the integration.

6. Click , then Run to open the Run and configure page for running the integration.

7. Click the Endpoint Metadata value.

This shows a message with a link to the Endpoint URL, Swagger, and Open API
descriptions of the REST endpoint.

8. Click Open API to display the description for this endpoint, including the server to invoke,
the exposed resources, and security details.

Chapter 5
OpenAPI Document Patterns

5-29

9. To invoke the integration, import the document into a client such as postman.

10. Select an resource to invoke, and click Send. For this example, getEmployee is selected.
This matches the selection made on the Operation Selection page of the Adapter Endpoint
Configuration Wizard.

Consume and Publish OpenAPI Documents with Multipart/Mixed and
Multipart/Form-Data

You can consume and publish OpenAPI documents with multipart/mixed and multipart/form-
data in REST Adapter trigger connections. This section describes how to configure this type of
scenario in Oracle Integration.

• Consume an OpenAPI Document with Endpoints that Consume or Produce HTML Form
Data

• Consume an OpenAPI Document with Endpoints with a Multipart/mixed Content Type

• Consume an OpenAPI Document with Endpoints with multipart/form-data

Consume an OpenAPI Document with Endpoints that Consume or Produce HTML Form
Data

1. Create a REST Adapter connection and select the Trigger and Invoke role.

2. In the Connection Properties section, select OpenAPI 1.0/2.0/3.0 URL and specify the
connection URL.

3. Create an application integration.

4. Add a REST Adapter trigger connection.

5. On the Resource Configuration page, select a POST action with Configure a request
payload for this endpoint and Configure this endpoint to receive the response.

6. On the Request page, select Request is multipart with payload and Multipart request
is of type multipart/form-data with HTML form payload.

7. On the Response page, select Request is multipart with payload and Multipart request
is of type multipart/form-data with HTML form payload.

8. Add a second REST Adapter as an invoke connection to call the OpenAPI endpoint.

9. On the Operation Selection page, select /formdata_html from the Resource list to call the
endpoint.

10. In the request mapper between the two REST Adapter connections, map the data sent to
the trigger connection to the outbound request in the invoke connection. The Parameter
List > Parameter > Name element for both the source and target includes the HTML form
data.

Chapter 5
OpenAPI Document Patterns

5-30

11. In the response mapper after the second REST Adapter connection, perform the same
mappings for the response from the outbound call.

12. Configure the business identifier to track the integration during runtime.

13. Save and activate the integration.

14. Invoke the integration and view the results.

Consume an OpenAPI Document with Endpoints with a Multipart/mixed Content Type

1. Create a REST Adapter connection and select the Trigger and Invoke role.

2. In the Connection Properties section, select OpenAPI 1.0/2.0/3.0 URL and specify the
connection URL.

3. Create an application integration.

4. Add a REST Adapter trigger connection.

5. On the Resource Configuration page, select a POST action with Configure a request
payload for this endpoint and Configure this endpoint to receive the response.

6. On the Request page, select the following:

a. Select Request is multipart with payload.

b. Select JSON Sample in the dropdown and supply a valid JSON sample object.

c. Select multipart/mixed.

7. On the Response page, select the following:

a. Select Request is multipart with payload.

b. Select JSON Sample in the dropdown and supply a valid JSON sample object.

c. Select multipart/mixed.

8. Add a second REST Adapter as an invoke connection to call the OpenAPI endpoint.

9. On the Operation selection page, select /mixed_json from the Resource list to call the
endpoint.

10. In the request mapper between the two REST Adapter connections, map the data sent to
the trigger connection to the outbound request in the invoke connection. Contact
Disposition is set to a concrete value of "form-data". It must be form data for multipart
mixed to work. The Mixed Json Post Request and Multipart Mixed Data target node
represents the payload.

11. In the response mapper after the second REST Adapter connection, perform the same
mappings for the response from the outbound call.

12. Configure the business identifier to track the integration during runtime.

13. Save and activate the integration.

14. Invoke the integration and view the results.

Consume an OpenAPI Document with Endpoints with multipart/form-data

1. Create a REST Adapter connection and select the Trigger and Invoke role.

2. In the Connection Properties section, select OpenAPI 1.0/2.0/3.0 URL and specify the
connection URL.

3. Create an application integration.

4. Add a REST Adapter trigger connection.

Chapter 5
OpenAPI Document Patterns

5-31

5. On the Resource Configuration page, select a POST action with Configure a request
payload for this endpoint and Configure this endpoint to receive the response.

6. On the Request page, select the following:

a. Select Request is multipart with payload.

b. Select JSON Sample in the dropdown and supply a valid JSON sample object.

c. Select multipart/form-data.

7. On the Response page, select the following:

a. Select Request is multipart with payload.

b. Select JSON Sample in the dropdown and supply a valid JSON sample object.

c. Select multipart/form-data.

8. Add a second REST Adapter as an invoke connection to call the OpenAPI endpoint.

9. On the Operation selection page, select /formdata_json from the Resource list to call the
endpoint.

10. In the request mapper between the two REST Adapter connections, map the data sent to
the trigger connection to the outbound request in the invoke connection. The Formdata
Json Post Request Multipart Form Data Data target node represents the payload.

11. In the response mapper after the second REST Adapter connection, perform the same
mappings for the response from the outbound call.

12. Configure the business identifier to track the integration during runtime.

13. Save and activate the integration.

14. Invoke the integration and view the results.

Best Practices for Invoking REST Endpoints
Follow these best practices for invoking REST endpoints with the REST AdapterREST
Adapter.

• If you receive errors (for example, 401, 429, or 50x errors) while invoking REST endpoints
with the REST Adapter, ensure that you employ instance retries.

• Client applications should cache the token while invoking OAuth-protected REST
endpoints.

Override the Endpoint URI/Host Name for an External REST API
at Runtime

You can design integrations in Oracle Integration in which you specify an endpoint URI at
runtime to invoke an external REST API. This feature is useful in situations in which the
endpoint of the external REST API is either not known at design time or a decision must be
made by the integration at run time to determine which one of the multiple REST services must
be invoked.

Perform the following steps to configure an integration to invoke a REST endpoint dynamically
using Oracle Integration.

The integration is typically designed with the REST Adapter as an invoke connection. The
connection has either the base URI or the absolute endpoint URI specified in a Swagger

Chapter 5
Best Practices for Invoking REST Endpoints

5-32

document. In either case, the endpoint URI for the external API is derived at design time, and
is static.

In scenarios in which the endpoints are overridden at run time, it is assumed that the APIs
hosted on these endpoints comply with the interface defined for the API at design time.

1. Create and configure a REST Adapter as an invoke connection.

During design time configuration, the interface for the external API is being specified
declaratively: the shape of the request and the response message (if any), the HTTP
method used, and the message exchange pattern (request, response, or one way).

2. In the Target section of the mapper, expand RestApi under ConnectivityProperties.

3. From the Source schema, provide a mapping for AbsoluteEndpointUri.
AbsoluteEndpointUri must be assigned the endpoint URI that has concrete values for the
path/template parameters and any query parameters with values. The REST Adapter
sends the request to the address stored in this property. Alternatively, you can also provide
a static mapping.

4. Activate and invoke the integration. The REST Adapter uses the runtime value provided by
this mapping to determine the REST endpoint to which to route this request.

5. Alternatively, in Step 4, you can map other siblings of AbsoluteEndpointUri. For a finer
control, you can also provide mappings for individual components of the URI by expanding
the URI.

• Scheme: Provide a mapping if you want to change only the scheme of the endpoint
URL. Supported values are HTTP and HTTPS only.

• Host: Provide a mapping if you want to change only the host portion of the endpoint
URL.

• Port: Provide a mapping if you want to change only the port of the endpoint URL.

• Query: Provide a mapping if you want to change only the query portion of the endpoint
URL. A query portion is the one that follows the ? character.

• Path: Provide a mapping if you want to change only the path portion of the endpoint
URL. A path is the part of a URI between the hostname and the ? character.

Map to Construct the Payload for an External REST API that
Accepts multipart/form-data as the Content Type

This section describes the data structures for different types of configurations made using the
REST Adapter or any application adapter exposing the REST API (used as a trigger
connection) or consuming the REST API (used as an invoke connection).

Categories

There are two categories of multipart request (and response):

• multipart/mixed or multipart/form-data configured with a JSON or XML sample

This category shows the attachments schema and payload schema. The payload schema
is derived based on the sample JSON/XML schema provided during Adapter Endpoint
Configuration Wizard configuration.

• multipart/form-data with HTML form payload

This is used when you select Multipart request is of type multipart/form-data with
HTML form payload on the Request page of the Adapter Endpoint Configuration Wizard

Chapter 5
Map to Construct the Payload for an External REST API that Accepts multipart/form-data as the Content Type

5-33

or when you select Multipart request is of type multipart/form-data with HTML form
payload on the Response page for a response. This configuration shows the attachments
schema and a generic schema with a ParameterList element. The ParameterList
element consists of an unbounded element parameter. Each parameter has a name
attribute. The value of the parameter is set directly to the parameter element. If there are
multiple parameters, the parameter element can be repeated in the mapper.

Attachments Schema

The attachments element has an unbounded attachment element. This provides support for
receiving (on the source) or sending (on the target) multiple attachments. Each attachment
element has attachmentReference and attachmentProperties.

The AttachmentReference element contains the location where the attachment has been
staged for access.

The AttachmentProperties element provide metadata about a single attachment. The
attachmentProperties element is used follows:

• The contentId property is used to set the Content-ID header of the body part. The
Content-ID header is used to set a unique ID for the body part.

• The contentType property is used to set the Content-Type header of the body part. For
example, if a PDF file is being sent, the contentType property should be application/pdf.
If the source is providing a multipart attachment, this is determined automatically. The
mapper can set/override these values.

• The transferEncoding property is used to set the Content-Transfer-Encoding header of
the body part. This header's value is a single token specifying the type of encoding, as
enumerated below. Formally:

Content-Transfer-Encoding := "BASE64" / "QUOTED-PRINTABLE" /
 "8BIT" / "7BIT" /
 "BINARY" / x-token

These values are not case sensitive. That is, Base64, BASE64, and bAsE64 are all
equivalent. An encoding type of 7BIT requires that the body is already in a seven-bit, mail-
ready representation. This is the default value; that is, Content-Transfer-Encoding: 7BIT
is assumed if the Content-Transfer-Encoding header field is not present. See https://
www.w3.org/Protocols/rfc1341/5_Content-Transfer-Encoding.html.

• The partName property is used to set the fileName of the body part. The attached file/
bodypart should be saved by a target system with this name.

• The contentDisposition property is used to set the Content-Disposition of the body part.

In a multipart/form-data body, the HTTP Content-Disposition is a header used on the
subpart (that is, attachment) of a multipart body to provide information about the field to
which it applies. The Content-Disposition header value is typically set to form-data. The
optional directive name and filename can be used. For example:

Content-Disposition: form-data
Content-Disposition: form-data; name="fieldName"
Content-Disposition: form-data; name="fieldName"; filename="filename.jpg"

and so on.

• The contentDescription property is used to set some descriptive information with a given
body part. For example, it may be useful to mark an image body as a picture of the

Chapter 5
Map to Construct the Payload for an External REST API that Accepts multipart/form-data as the Content Type

5-34

https://www.w3.org/Protocols/rfc1341/5_Content-Transfer-Encoding.html
https://www.w3.org/Protocols/rfc1341/5_Content-Transfer-Encoding.html

Space Shuttle Endeavor. Such text may be placed in the Content-Description header
field.

• The fileInputHtmlFieldName property lets you set the name of the part from which the
server needs to read the file. This is generally used when there is an HTML form to upload
the file. The file upload input field name is used as a body part name.

Scenario 2 - source is multipart/mixed or multipart/form-data with JSON/XML payload
(Category A). Outbound request multipart/form-data with form fields (Category B)

The following map focuses on mapping the attributes in the HTML form. There should be as
many parameters in the parameterList as there are fields in the HTML form.

Note:

If the source is not multipart and the target must be multipart/form-data with form
fields, you must specify the value for the contentType and partName elements on
the target side.

The fileInputHtmlFieldName element is important to consider if the target endpoint expects
attachments under a specific body part name. The body part name should be specified here.

Scenario 3 - creating a reference from base64–encoded content

In this scenario, the source has a base64-encoded string and the target can be either one of
the three: multipart/mixed or multipart/form-data with JSON/XML payload, or multipart/form-
data with HTML form payload.

In the inbound payload, the content element is a base64-encoded string. This can be sent as
an attachment in the outbound request. The base64 string can be converted into a reference
using XSL function decodeBase64ToReference and the reference can be assigned to the
attachmentReference element as shown below. Since the inbound request is not multipart,
but the outbound must be multipart, you must set some multipart-specific properties in the
mapper for outbound. The contentType is set to image/png, partName is set to picture.png,
and fileInputHtmlFieldName is set to image. The assumption is that the target system is
configured to read from a body part having name="image" in its content disposition. This is
done with the fileInputHtmlFieldName element.

Note:

If the target is multipart/mixed or multipart/form-data using a JSON/XML payload, the
schema of the target also has the schema from JSON/XML, as shown in Scenario 1.
The approach for constructing the outbound request payload is the same.

Implement an Integration in which to Send an Incoming Message
with a Base64-Encoded String to an External REST API that
Accepts a Multipart Attachment

In the inbound payload, the content element is a Base64–encoded string. This can be sent as
an attachment in an outbound request.

Chapter 5
Implement an Integration in which to Send an Incoming Message with a Base64-Encoded String to an External REST API that Accepts a

Multipart Attachment

5-35

The Base64 string can be converted into a reference using XSL function
decodeBase64ToReference. The reference can be assigned to an attachmentReference
element as described in this section.

Since the inbound request is not multipart, but the outbound must be multipart, you must set
some multipart-specific properties in the mapper for the outbound direction.

In the mapper, the contentType element is set to image/png, partName is set to picture.png,
and fileInputHtmlFieldName is set to image.

In this scenario, the assumption is that the target system is configured to read from a body part
having name="image" in its content disposition. This is done through the
fileInputHtmlFieldName element.

Note:

If the target is multipart/mixed or multipart/form-data using a JSON/XML payload, the
schema of the target also has the schema from JSON/XML. The approach for
constructing the outbound request payload is the same.

Pass the Payload as URL-Encoded Form Data
You can pass the payload as URL-encoded form data with the REST Adapter.

1. Add a REST Adapter as an invoke connection in an integration.

The Adapter Endpoint Configuration Wizard is displayed.

2. On the Basic Info page, make the following selections:

a. Select the POST verb.

b. Select the Add and review parameters for this endpoint and Configure a request
payload for this endpoint options.

3. On the Request Parameters page, specify the query parameters and values to use.

Chapter 5
Pass the Payload as URL-Encoded Form Data

5-36

4. On the Request page, scroll to the bottom and select the Send query parameter as form
data in message body checkbox. This enables the query parameters you defined on the
Request Parameters page to be sent as URL-encoded form data in the payload.

Implement an Integration to Send a PDF/CSV Document
Downloaded from an SFTP Server to an External REST API that
Accepts Only application/octet-stream as the Content Type

In an integration, the FTP adapter is only supported as an invoke connection. Implement this
use case by selecting either an Application or Schedule integration on the Integration Style
dialog.

The following example provides a high level overview on how to implement this use case as a
schedule integration.

Chapter 5
Implement an Integration to Send a PDF/CSV Document Downloaded from an SFTP Server to an External REST API that Accepts Only

application/octet-stream as the Content Type

5-37

1. Configure an FTP Adapter with the List Files operation to list files from an SFTP server.

Chapter 5
Implement an Integration to Send a PDF/CSV Document Downloaded from an SFTP Server to an External REST API that Accepts Only

application/octet-stream as the Content Type

5-38

2. Configure a for-each action to iterate through the List Files operation response.

3. Configure a second FTP Adapter with the Read Files operation to read individual files
inside the loop.

Chapter 5
Implement an Integration to Send a PDF/CSV Document Downloaded from an SFTP Server to an External REST API that Accepts Only

application/octet-stream as the Content Type

5-39

4. Configure the FTP Adapter to not specify a structure of the file.

5. Configure a REST Adapter. The reference of the Read Files operation is handed over to
the outbound REST Adapter.

Chapter 5
Implement an Integration to Send a PDF/CSV Document Downloaded from an SFTP Server to an External REST API that Accepts Only

application/octet-stream as the Content Type

5-40

6. Configure the REST Adapter payload as application/octet-stream.

7. Configure the mapper to read individual files in the for-each loop.

a. Perform the following Source to Target mappings:

• $file > File > directory to SyncReadFile > FileReadRequest > directory

• $file > File > filename to SyncReadFile > FileReadRequest > filename

8. Configure the mapper to send the read file to the outbound REST Adapter.

a. Perform the following Source to Target mapping:

• $ReadFile > SyncReadFileResponse > FileReadResponse > ICSFile >
FileReference > to execute > streamReference.

Configure the REST Adapter to Expose an Integration as a
REST API

Oracle Integration provides an easy way to expose an integration as a RESTFul service by
using the REST Adapter as a trigger.

Chapter 5
Configure the REST Adapter to Expose an Integration as a REST API

5-41

1. Create and test a REST Adapter connection with a trigger as the role.

2. Create an integration.

3. Drag the REST Adapter connection as a trigger within the integration canvas.

4. Follow the Adapter Endpoint Configuration Wizard to describe the shape of the RESTful
service.

The REST Adapter can be set up to accept a request on a specific URL path. This path
can have template and query parameters. You can also decide on the HTTP method, the
structure of the request payload, the request headers, and the CORS configuration.
Likewise, you can also specify the response payload and the response headers that must
be sent back to the client.

5. Upon activation, a RESTful service protected using OAuth and HTTP Basic Auth is
created.

A Swagger 2.0–compliant document is automatically produced for REST APIs exposed
using the REST Adapter. This document describes the metadata for the generated REST
APIs. Human-readable HTTP metadata is also produced for the REST endpoint.

Enter q as a Standard HTTP Query Parameter with the Query as
a Value

Many APIs have special handling for the q query parameter according to different schemes,
such as mongoDB query/SCIM/open search, and so on.

The REST Adapter treats q as a standard HTTP query parameter and treats the query
expression as a string value. For example:

• https://host.example.com:7004/resource?q=AssetNumber=AP10001
• GET /ccadmin/v1/products?q=orderLimit lt &maxLimit and startTime gt &startTime
• https://mysite.example.com/services/rest/connect/v1.3/queryResults?

query=SELECT Contact from contract where contact.organization.name=&OrgName;
According to standard HTTP, the query parameter in this case is q and the value is
AssetNumber=AP1000.

Therefore, you are required to pass the query expression as a value to the query parameter
with the name q.

Configure Oracle Integration to Call Oracle Cloud Infrastructure
Functions with the REST Adapter

The REST Adapter can integrate with Oracle Cloud Infrastructure services such as functions
and object storage. As an example, assume you need to convert an existing image in object
storage to a thumbnail format. You can design an integration in which a REST Adapter
connection can take an application/octet-stream for an image, save it to Oracle Cloud
Infrastructure object storage, and send the image to an Oracle Cloud Infrastructure function
that can create a thumbnail and save it back to object storage.

Chapter 5
Enter q as a Standard HTTP Query Parameter with the Query as a Value

5-42

Note:

You can also directly invoke Oracle Cloud Infrastructure functions and object storage
from the integration canvas without using the REST Adapter. See Invoke Oracle
Cloud Infrastructure Functions Directly from an Integration with an OCI Function
Action and Invoke Oracle Cloud Infrastructure Object Storage from an Integration
with an OCI Object Storage Action in Using Integrations in Oracle Integration 3.

The following steps provide a high-level overview of creating this type of integration.

1. Go to Developer Services > Functions in the Oracle Cloud Infrastructure Console, then
click an available Oracle Integration instance to view available functions.

2. In the Invoke endpoint column, view the function endpoint URL to invoke. For this
example, the function is named node-thumbnail. The node-thumbnail function generates
a thumbnail out of an image.

3. Copy the URL. You use this URL to call the function from an integration.

4. Create an integration that accepts an image and generates a thumbnail from that image.
When the integration is invoked, both the original image and the generated thumbnail are
uploaded to the object storage bucket in Oracle Cloud Infrastructure.

5. Configure the REST Adapter as an invoke connection in the integration.

a. On the Basic Info page, configure the REST Adapter invoke connection to handle
request and response payloads.

b. On the Request page, select application/octet-stream as the media type that you
want the endpoint to send (this is a binary input stream).

c. On the Response page, select application/octet-stream as the media type to which
you want the endpoint to reply (this is also a binary input stream).

6. Configure the mapper as follows:

a. Map the source attachmentReference element to the target streamReference for
thumbnail generation.

b. Configure the target AbsoluteEndpointURI element to call the node-thumbnail
function invoke endpoint URL copied in Step 3.

Chapter 5
Configure Oracle Integration to Call Oracle Cloud Infrastructure Functions with the REST Adapter

5-43

7. Design the remaining portions of the integration.

8. Activate and invoke the integration to call the function.

a. On the Integrations page, click

at the far right to show the endpoint URL.

b. Copy the endpoint URL to an application to invoke the integration, such as Postman.

9. Go to Object Storage > Object Storage in the Oracle Cloud Infrastructure Console.

10. Click the object storage bucket instance.

11. Refresh the page and note that the original image (test_image_1.png) and the generated
thumbnail (thumbnail-test_image_1.png) are now both displayed.

Configure a REST Adapter Trigger Connection to Work
Asynchronously

You can configure a trigger REST Adapter connection to work asynchronously in an
integration.

For example, assume you have the following use case:

• A parent scheduled integration that runs every three hours.

• A child integration that is executed many times (for example, 300) in a for-each action of
the parent integration.

To ensure that this use case runs efficiently, configure the child integration to run
asynchronously as follows:

1. Create an application integration for the child integration.

2. Add a REST Adapter as a trigger connection in the integration.

The Adapter Endpoint Configuration Wizard appears.

3. On the Basic Info page of the wizard, ensure that you configure the page as follows. This
ensures that the integration runs asynchronously.

Chapter 5
Configure a REST Adapter Trigger Connection to Work Asynchronously

5-44

• From the What action do you want to perform on the endpoint list, select POST.

• From the Select any options that you want to configure list, do NOT select
Configure this endpoint to receive the response.

4. Complete configuration of the REST Adapter.

5. Design the remaining parts of the integration.

This design ensures that the child integration runs asynchronously.

Create a Keystore File for a Two-Way, SSL-Based Integration
If you need to create an integration that communicates with a two-way, SSL-enabled server,
you must create the keystore file required for establishing an Oracle Integration identity to
facilitate a two-way, SSL-based integration.

To create an integration that consumes external REST APIs hosted on the two-way, SSL-
enabled server, ensure that the server on which the external REST APIs are hosted is enabled
for two-way SSL support. Use Java version 1.8 or higher.

You can obtain the client certificate in a variety of ways. Select the method that is best for your
environment. For example, you can obtain the certificate directly from many certificate
authorities. The steps in this section describe how to generate a certificate signing request
(CSR) and have it signed by a well known certificate authority.

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-45

Note:

• This section describes how to configure Oracle Integration for use in outbound,
two-way SSL integrations. To use Oracle Integration in inbound, two-way SSL
integrations, you can use the Oracle Cloud Infrastructure API Gateway. The
Oracle Cloud Infrastructure API Gateway is integrated with the Oracle Cloud
Infrastructure certificates service. This approach enables you to deliver APIs
implemented with Oracle Integration that enforce client mTLS.

• Two-way SSL is not supported for calls to external services through the
connectivity agent. Two-way SSL requires direct connectivity from Oracle
Integration without the connectivity agent.

• The alias name to provide must match the name provided for the private key
entry in the JKS file.

See this blog and Adding mTLS support to API Deployments.

• Commonly Used Terms and Tools

• Commands to Create a Client Certificate with the keytool Utility

• Example: Create a Client Certificate with the keytool Utility

• Manage Certificates with openSSL

• Certificate Management - Two-Way SSL or mTLS

Commonly Used Terms and Tools

Term Description

Secure socket layer (SSL) and Transport Layer
Security (TLS)

SSL and TLS, its successor, are protocols for
establishing authenticated and encrypted links
between networked computers.

Digital certificate A data file that holds the cryptographic key
provided to an organization or entity by a trusted
authority. A simple analogy is a driver’s license.
The license uniquely identifies the person to whom
it is issued. The license is issued by the DMV, a
trusted authority.

Certificate A public key and private key form a pair used to
encrypt and decrypt data. Public keys can be freely
given to anyone who needs to securely exchange
data. Private keys must never be shared and must
be stored securely. If private keys are listed or
compromised, the issuing certificate authority must
be notified so they can be added to the certificate
revocation list.

Certificate authority (or certification authority) An entity that issues digital certificates. A digital
certificate certifies the ownership of a public key by
the named subject of the certificate.

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-46

https://blogs.oracle.com/cloud-infrastructure/post/announcing-support-for-client-mtls-in-oci-api-gateway
https://docs.oracle.com/en-us/iaas/Content/APIGateway/Tasks/apigatewayaddingmtlssupport.htm

Term Description

Certificate encoding/formats • Privacy Enhanced Mail (PEM): The full
specification of PEM is in RFC 7468. PEM is
the most commonly-used X509 certificate
format. It's a base64-encoded string enclosed
between:-----BEGIN CERTIFICATE-----
and -----END CERTIFICATE-----

• Distinguished Encoding Rules (DER): Binary
Format. Cannot be viewed in an editor.

• Public Key Cryptography Standards (PKCS):
These are a group of public key cryptography
standards devised and published by RSA
Security LLC. See https://
datatracker.ietf.org/wg/pkix/documents/.

TrustStore A password-protected repository for trust or public
certificates. The default location in Java
is $JAVA_HOME/jre/lib/security/cacerts. All
well known certificate authority root and
intermediate certificates are available in the JDK
truststore.

Keystore A password-protected repository to hold client or
private certificates. Since this store holds private
keys, it is imperative that the store resides in a
secure location.

Certificate chain A certificate chain is an ordered list of certificates
ending with the root certificate. For trust to be
established, the entire certificate chain is traversed.
Each certificate is validated by finding the public
key of the next issuing certificate authority or
intermediate certificate authority, until the root
certificate is reached. Certificate chains are usually
cached to validate the certificate locally.

The two most commonly used tools for SSL are the following:

Tool Description

keytool A JDK utility used to perform CRUD operations on
a truststore and keystore and to administer
certificates. All the commands require the
password that was used to create the store.
Consult your Java truststore documentation for the
default password.

openssl This is a robust, commercial-grade, full-featured
toolkit for the TLS and SSL protocols. It is also a
general-purpose cryptography library.

Commands to Create a Client Certificate with the keytool Utility

Commonly used keytool commands are as follows.

Caution:

Replace the italicized variables in the commands below with values appropriate to
your environment.

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-47

https://datatracker.ietf.org/wg/pkix/documents/
https://datatracker.ietf.org/wg/pkix/documents/

Description Command

List the entire contents of the store keytool -list -keystore
path_to_the_keystore

List the contents in the store for a specific alias keytool -list -keystore
path_to_the_keystore -alias alias_name

View the contents of a certificate keytool -printcert -v -file
name_of_the_file

Export a certificate from the store keytool -export -alias alias_name -file
certificate_name -keystore
path_to_the_store

Import a new certificate into the store keytool -import -trustcacerts -file
path_to_the_certificate -alias
alias_name -keystore path_to_the_store

To create a client certificate:

Caution:

Italicized variables indicate placeholder variables for which you must supply particular
values. If you copy the commands below, ensure that you replace the variables
shown in italics with values appropriate to your environment.

1. Go to the Java bin directory.

%JAVA_HOME%/jre/bin

2. Enter the following command to create a JKS keystore to hold the certificates.

keytool -genkey -keyalg RSA -alias alias_name -keystore
identityKeystore.jks -storepass password_for_the_keystore -validity 360 -
keysize 2048

3. When prompted, change the values provided based on your company's security policy.

What is your first and last name?
 [Unknown]: <FQDN>
What is the name of your organizational unit?
 [Unknown]: Your_functional_org
What is the name of your organization?
 [Unknown]: Company
What is the name of your City or Locality?
 [Unknown]: City_name
What is the name of your State or Province?
 [Unknown]: State_name
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=<>, OU=<>, O=<>, L=Redwood Shores, ST=California, C=US correct?
 [no]: yes

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-48

Enter key password for <oicclient>
 (RETURN if same as keystore password):

4. Verify the existence of the JKS keystore file.

ls

5. Create a certificate that is ready to be signed.

keytool -certreq -alias alias_name -keystore name_of_keystore -storepass
password -storetype JKS -file name_of_csr_certificate.csr

6. List the JKS keystore and certificate files in the directory.

ls

7. Validate your CSR file at the following site.

https://ssltools.digicert.com/checker/views/csrCheck.jsp

8. Provide the .csr certificate file to a signing authority. A signed certificate and any root and
intermediate certificates are signed and returned by the authority. A self-signed certificate
can be used for testing, but is not allowed in a production environment.

9. If you have root and intermediate certificates, perform the following substeps. Otherwise,
go to Step 10.

a. If you have a root certificate, enter the following command to import the signed root
certificate.

keytool -import -keystore keystore_name -file path_to_root_certificate -
alias root_alias_name

The following example is what you see when importing the DigiCert root certificate.

Enter keystore password:
Owner: CN=DigiCert Global Root CA, OU=www.digicert.com, O=DigiCert Inc,
C=US
Issuer: CN=DigiCert Global Root CA, OU=www.digicert.com, O=DigiCert
Inc, C=US
Serial number: 83be056904246b1a1756ac95991c74a
Valid from: Thu Nov 09 16:00:00 PST 2006 until: Sun Nov 09 16:00:00 PST
2031
Certificate fingerprints:
 MD5: 79:E4:A9:84:0D:7D:3A:96:D7:C0:4F:E2:43:4C:89:2E
 SHA1: A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
 SHA256:
43:48:A0:E9:44:4C:78:CB:26:5E:05:8D:5E:89:44:B4:D8:4F:96:62:BD:26:DB:25:
7F:89:34:A4:43:C7:01:61
 Signature algorithm name: SHA1withRSA
 Version: 3Extensions:#1: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-49

KeyIdentifier [
0000: 03 DE 50 35 56 D1 4C BB 66 F0 A3 E2 1B 1B C3
97 ..P5V.L.f.......
0010: B2 3D D1 55 .=.U
]
]#2: ObjectId: 2.5.29.19 Criticality=true
BasicConstraints:[
 CA:true
 PathLen:2147483647
]#3: ObjectId: 2.5.29.15 Criticality=true
KeyUsage [
 DigitalSignature
 Key_CertSign
 Crl_Sign
]#4: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 03 DE 50 35 56 D1 4C BB 66 F0 A3 E2 1B 1B C3
97 ..P5V.L.f.......
0010: B2 3D D1 55 .=.U
]
]Trust this certificate? [no]: yes
Certificate was added to keystore

b. If you have an intermediate certificate, enter the following command to import the
signed intermediate certificate.

keytool -import -keystore keystore_name -file
path_to_intermediate_certificate -alias intermediate_certificate_alias

Enter keystore password: replace_with_strong_password
Certificate was added to keystore

10. If you have only a single certificate, enter the following command to import the signed
certificate.

keytool -import -keystore keystore_name -file path_to_signed_certificate -
alias the_same_alias_used_to_create_the_keystore

Enter keystore password: replace_with_strong_password
Certificate was added to keystore

11. Check if all the certificates are in the store.

keytool -list -keystore

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-50

12. Export the public certifcate.

keytool -export -alias certificate_alias -keystore identity_keystore -file
your_public_certificate_filename

Enter keystore password: replace_with_strong_password

13. Export the public certificate to provide to the server.

keytool -export -alias certificate_alias -keystore identityKeystore.jks -
file your_public_certificate_filename
Enter keystore password:
Certificate stored in file your_public_certificate_filename

14. Import the new keystore into Oracle Integration as an X509 identity certificate.

15. List the entire contents of the store.

keytool -list -keystore path_to_the_keystore

Example: Create a Client Certificate with the keytool Utility

This section provides an example of how to create a client certificate. It uses actual file names.
Replace those names with values appropriate to your environment.

1. Enter the following command to create a JKS keystore to hold the certificates.

keytool -genkey -keyalg RSA -alias oicclient -keystore
identityKeystore.jks -storepass replace_with_strong_password -validity 360
-keysize 2048

Where the following values are entered for this example:

• -alias is the oicclient keystore alias.

• -keystore is the identityKeystore.jks keystore file.

2. When prompted, change the values provided based on your company's security policy.

What is your first and last name?
 [Unknown]: Joe Smith
What is the name of your organizational unit?
 [Unknown]: Development
What is the name of your organization?
 [Unknown]: GlobalChips
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: California
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=<>, OU=<>, O=<>, L=Redwood Shores, ST=California, C=US correct?
 [no]: yes

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-51

Enter key password for oicclient
 (RETURN if same as keystore password):

3. Verify the existence of the JKS keystore file.

ls

4. Create a certificate that is ready to be signed.

keytool -certreq -alias oicclient -keystore identityKeystore.jks -
storepass replace_with_strong_password -storetype JKS -file oicclient.csr

Where the following values are entered for this example:

• -alias is the oicclient keystore alias.

• -keystore is the identityKeystore.jks keystore file.

• -file is the oicclient.csr certificate file.

5. List the JKS keystore and certificate files in the directory.

ls
oicclient.csr identityKeystore.jks

6. Validate your .csr certificate file at the following site.

https://ssltools.digicert.com/checker/views/csrCheck.jsp

7. Provide the .csr certificate file to a signing authority. The certificate and any root and
intermediate certificates are signed and returned by the authority. A self-signed certificate
can be used for testing, but is not allowed in a production environment.

8. If you have root and intermediate certificates, perform the following substeps. Otherwise,
go to Step 9.

a. If you have a root certificate, enter the following command to import the signed root
certificate.

keytool -import -keystore identityKeystore.jks -file
DigiCertGlobalRootCA.crt -alias DigiCertCARoot

Where the following values are entered for this example:

• -keystore is the identityKeystore.jks keystore file.

• -file is the DigiCertGlobalRootCA.crt signed root certificate file.

• -alias is the DigiCertCARoot alias.

Enter keystore password: replace_with_strong_password
Owner: CN=DigiCert Global Root CA, OU=www.digicert.com, O=DigiCert Inc,
C=US
Issuer: CN=DigiCert Global Root CA, OU=www.digicert.com, O=DigiCert
Inc, C=US

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-52

Serial number: 83be056904246b1a1756ac95991c74a
Valid from: Thu Nov 09 16:00:00 PST 2006 until: Sun Nov 09 16:00:00 PST
2031
Certificate fingerprints:
 MD5: 79:E4:A9:84:0D:7D:3A:96:D7:C0:4F:E2:43:4C:89:2E
 SHA1: A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
 SHA256:
43:48:A0:E9:44:4C:78:CB:26:5E:05:8D:5E:89:44:B4:D8:4F:96:62:BD:26:DB:25:
7F:89:34:A4:43:C7:01:61
 Signature algorithm name: SHA1withRSA
 Version: 3Extensions:#1: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 03 DE 50 35 56 D1 4C BB 66 F0 A3 E2 1B 1B C3
97 ..P5V.L.f.......
0010: B2 3D D1 55 .=.U
]
]#2: ObjectId: 2.5.29.19 Criticality=true
BasicConstraints:[
 CA:true
 PathLen:2147483647
]#3: ObjectId: 2.5.29.15 Criticality=true
KeyUsage [
 DigitalSignature
 Key_CertSign
 Crl_Sign
]#4: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 03 DE 50 35 56 D1 4C BB 66 F0 A3 E2 1B 1B C3
97 ..P5V.L.f.......
0010: B2 3D D1 55 .=.U
]
]Trust this certificate? [no]: yes
Certificate was added to keystore

b. If you have an intermediate certificate, enter the following command to import the
signed intermediate certificate.

keytool -import -keystore identityKeystore.jks -file
DigiCertGlobalInterCA.crt -alias DigiCertCAInter

Where the following values are entered for this example:

• -keystore is the identityKeystore.jks keystore file.

• -file is the DigiCertGlobalInterCA.crt signed intermediate certificate.

• -alias is the DigiCertCAInter alias.

Enter keystore password: replace_with_strong_password
Certificate was added to keystore

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-53

9. If you have only a single certificate, enter the following command to import the signed
certificate.

keytool -import -keystore identityKeystore.jks -file
my_company_signedcert.pem -alias oiclient

Where the following values are entered for this example:

• -keystore is the identityKeystore.jks keystore file.

• -file is the my_company_signedcert.pem signed certificate.

• -alias is the oiclient alias.

Enter keystore password: replace_with_strong_password
Certificate was added to keystore

10. Check if all the certificates are in the store.

keytool -list -keystore identityKeystore.jks

11. Export the public certificate corresponding to the private identity certificate.

keytool -export -alias oicclient -keystore identityKeystore.jks -file
my_company_signedcert.pem

Where the following values are entered for this example:

• -alias is the oicclient keystore alias.

• -keystore is the identityKeystore.jks keystore file.

• -file is the my_company_signedcert.pem public certificate file.

Enter keystore password: replace_with_strong_password
Certificate stored in file my_company_signedcert.pem

12. Import the new keystore (.jks file) into Oracle Integration as an X509 identity certificate.

13. List the entire contents of the store.

keytool -list -keystore identityKeystore.jks

Manage Certificates with openSSL

Commonly used openssl commands are as follows:

Description Command

Check a certificate openssl x509 -in certificate_name -text
-noout

Get all certificates from a server openssl s_client -connect host:ssl_port
-showcerts

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-54

Description Command

Convert a DER format certificate to PEM format openssl x509 -inform der -in
path_to_DER_certificate -out
path_to_PEM_certificate

Convert a .pfx file to a JKS store keytool -importkeystore -srckeystore
path_to_.pfx_file -srcstoretype pkcs12
-destkeystore path_to_the_jks_file -
deststoretype JKS -srcstorepass
pfx_passwd -deststorepass pfx_passwd

Convert a .jks file to PKCS12 format keytool -importkeystore -srckeystore
path_to_.jks_file -destkeystore
full_path_to_.p12_file-srcstoretype JKS
- deststoretype PKCS12 -deststorepass
pkcs12_store_password

Extract a private key from a .pfx file openssl pkcs12 -info -in
path_to_.pfx_file -nodes -nocerts -out
private_key_file_name

Extract a public certificate from a .pfx file openssl pkcs12 -in path_to_.pfx_file -
out path_to_certificate_file -nokeys

Certificate Management - Two-Way SSL or mTLS

See Debugging SSL/TLS Connections.

To upload an identity certificate:

1. In the navigation pane, select Home > Settings > Certificates.

2. Click Upload.

3. Set the alias name to the alias listed in the keystore for the identity certificate. (Use
keytool -list to see the contents of the keystore.)

4. Make sure the certificate category is set to Identity.

5. Upload the client certificate file in JKS format.

6. Enter the keystore and key passwords used to create the JKS store. If there is a mismatch
in the passwords, Oracle Integration cannot access the identity certificates.

7. Create a new adapter connection (SOAP Adapter or REST Adapter connection) in Oracle
Integration.

8. On the Connections page, select the two-way SSL checkbox and associate the alias
required by the connection to use to complete the SSL connection. This alias must match
the value that was entered in the Upload Certificate dialog.

To test Mutual TLS authentication (mTLS):

1. Test access to the endpoint from the browser first. Import the client certificate in .p12
format into the browser of choice.

2. Enter the endpoint in the browser bar and press Enter. A message is displayed asking you
to use the client certificate that was imported.

3. Follow the prompts in the message. If the certificate is valid, content is loaded in the
browser.

4. If the browser test was successful, test the REST/SOAP adapter connection in Oracle
Integration.

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-55

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/ReadDebug.html

Access Oracle Cloud Infrastructure Service Resources Using
RPST

You can access Oracle Cloud Infrastructure services through use of RPST and the OCI
Service Invocation security policy. This example provides a high level overview of designing an
integration in which a REST Adapter invoke connection configured with the OCI Service
Invocation security policy calls the Oracle Cloud Infrastructure Vision service.

You must complete all prerequisites described in RPST and OCI Service Invocation Security
Policy Use.

1. Create an application integration.

2. Create and configure a REST Adapter trigger connection.

3. Create and configure a REST Adapter invoke connection:

a. Specify the connection type.

b. Specify the URL of the Oracle Cloud Infrastructure service you want to access. (for this
example, the Oracle Cloud Infrastructure Vision service URL is specified). The
absolute URL for the Oracle Cloud Infrastructure service is region-specific.

c. Select the OCI Service Invocation security policy. No other user configuration is
required.

d. Test and save the connection.

4. In the integration canvas, add and configure the REST Adapter trigger connection.

5. In the integration canvas, add and configure the REST Adapter invoke connection. For this
example, a PDF is uploaded to the Oracle Cloud Infrastructure Vision endpoint to identify
the type of document.

a. On the Basic Info page, specify the service endpoint URL (/actions/
analyzeDocument), select the action to perform (POST), and select the request and
response configuration options.

Chapter 5
Access Oracle Cloud Infrastructure Service Resources Using RPST

5-56

b. On the Request page, specify the media type of the request body (JSON) and provide
a JSON request sample.

c. On the Response page, specify the media type of the response body (JSON) and
provide a JSON response sample.

6. Configure the source-to-target mappings between the two connections.

When complete, the integration looks as follows.

Chapter 5
Access Oracle Cloud Infrastructure Service Resources Using RPST

5-57

7. Activate and run the integration.

8. On the Configure and run page, select the PDF to upload to the Oracle Cloud
Infrastructure Vision endpoint in the Body section and click Run.

The Activity Stream panel opens and shows the movement of messages through the
integration. On the Configure and run page, Oracle Cloud Infrastructure Vision detects that
the PDF is an invoice, and responds with the following:

Chapter 5
Access Oracle Cloud Infrastructure Service Resources Using RPST

5-58

Invoke a Service Provider API with a JWT Assertion
You can invoke the API of a service provider using a JWT user or client assertion security
policy in an integration. For this example, a high-level overview is provided of how to call a
simple "hello world" API from a service provider using a JWT assertion.

Note:

This use case describes accessing an API of the National Health Service (NHS). The
content of the JWT header and JWT payload files uploaded are unique to the
standards of the NHS. If accessing an API of a different service provider through a
JWT assertion, ensure that your header and payload files conform to the standards of
that service provider.

1. Manually create a signing key outside of Oracle Integration.

2. In the navigation pane, click Settings, then Certificates.

a. Click Upload.

b. In the Alias name field, enter the alias name. You also specify this alias on the
Connections page when configuring the JWT assertion security policy. For this
example, the following alias is specified.

nhsJwtDemo

c. From the Type list, select Signing key.

d. Click Private.

e. Click Select key file to select the signing key you created previously.

Chapter 5
Invoke a Service Provider API with a JWT Assertion

5-59

f. If the private signing key is encrypted, enter the private signing key password.

3. In the navigation pane, click Design, then Connections.

a. Create a REST Adapter invoke connection, and click Create.

The Connections page is displayed.

b. In the Connection type field, select a connection type.

c. In the Connection URL field, enter the URL of the API to access. For this example, an
NHS URL is provided.

d. From the Security Policy list, select OAuth Client Credentials using JWT Client
Assertion. This selection is typically used for application-driven APIs.

e. In the Access token URI field, specify the access token URI for the service provider.

f. Upload the JWT headers file and JWT payload file.

You create the content in JSON files. The content of both files is specific to the service
provider you want to invoke. For this example, the NHS-formatted header and payload
follow this format:

Chapter 5
Invoke a Service Provider API with a JWT Assertion

5-60

• JWT header file: This file requires an algorithm (alg) and a key identifier (kid) that
is uniquely-generated and associated with the uploaded signing key.

: {
 "alg": "RS256",
 "kid": "AfZ4kopskH4V7oe11tRIBDbe4539fie_P",
 }

• JWT payload file: At a minimum, this file requires the iss (issuer of the claim), sub
(user name subject), aud (audience), and exp (token expiration time) claims and
values (jti is optional). These claims are described in your NHS documentation.
See Access Tokens and Audit (JWT).

 {
 "iss": "1445233d3fgd3fbdb30638r536d129fc",
 "sub": "1445233d3fgd3fbdb30638r536d129fc",
 "aud": "https://dev.api.service.nhs.uk/oauth2/token",
 "exp": 1674594057,
 "jti": "b2cdfckd-3gre-2u2d-4150-2062f10cfbd4"
}

Additional claims, including custom claims, can also be included in both files. See the
documentation provided by the service provider for instructions on how to configure
these files.

g. For the JWT private key alias, enter the same name you specified when uploading the
signing key certificate in Step 1. This name is used to generate the JWT assertion.

h. Click Optional security if you want to specify optional scopes or access token request
values. For this example, none are specified. The way to specify the scope and access
token request values varies from service providers. Some service providers require
values. See Variations of JWT Usage by Service Providers.

i. Test the connection.

You are ready to create an integration that uses this connection to call the NHS API.

4. In the navigation pane, click Design, then Integrations.

5. Create an application integration to call the NHS API and receive an "echo" in response.

6. Design the integration. For example, add and configure a REST Adapter trigger
connection.

Chapter 5
Invoke a Service Provider API with a JWT Assertion

5-61

https://developer.nhs.uk/apis/spine-core/security_jwt.html

7. Add a REST Adapter as an invoke connection to call the NHS API.

a. On the Basic Info page of the Adapter Endpoint Configuration Wizard, specify the
relative resource URI. For this example, a "hello world" API provided by the NHS is
specified. This API calls back to the integration after the JWT token is successfully
validated by the NHS service provider.

b. Select the action to perform.

c. Complete the remaining fields of the wizard.

8. Complete the remaining design of the integration.

When complete, the integration looks as follows:

9. Activate the integration.

10. Hover over the row of the integration on the Integrations page.

11. Select Actions , then select Run.

12. Run the integration.

The activity stream provides details, including the response sent back.

Chapter 5
Invoke a Service Provider API with a JWT Assertion

5-62

In the Configure and run page, the response message indicates that the NHS service
provider validated the token and responded back with a Hello Application! message.

See JWT Assertion Support for Outbound Invocations.

Chapter 5
Invoke a Service Provider API with a JWT Assertion

5-63

6
Troubleshoot the REST Adapter

Review the following topics to learn about troubleshooting issues with the REST Adapter.

Topics:

• ORABPEL-15235 Translation Failure Error Occurrence

• Failed REST Adapter Invoke Connection Retries Three Times Every 30 Seconds with a
504 Timeout Error

• Troubleshoot RPST and OCI Service Invocation Security Policy Issues

• Multipart Form-Data Endpoint Invocation Fails When Media Type is null

• Convert a Private Key from PKCS8 to RSA (PKCS1) Format for the OCI Signature Version
1 Security Policy

• HTTP Error Response for Pre-20.4.2 Connections is Not Compliant with the OpenAPI
Specification

• REST Services that Return Multiple Successful Responses

• Error Handling with the REST Adapter

• REST Service Invoked by the REST Adapter Returns a 401 Unauthorized Status
Response

• Configuration Limitation of Ten Pages in the Adapter Endpoint Configuration Wizard

• Keys with Null Values During JSON Transformation are Removed

• Large Sample JSON File Processing with Special Characters

• SSL Certification Troubleshooting Issues

• Fault and Response Pipeline Definitions in Basic Routing Integrations

• Empty Arrays Are Not Supported in Sample JSON Files

• Invoke Endpoint URI Must Match the Base URI + Resource URI in REST Adapter

• JD Edwards Form Service Invocation with the REST Adapter Causes APIInvocation Error

• REST Adapter Data is Only Saved When You Click Next

• Convert XML to a JSON Document

• Supported Special Characters in JSON Samples

• content-type is Missing for an Asynchronous Flow

• REST URLs Exceeding 8251 Characters Fail

• Send a "null" Value Instead of "" for Any Specific Key in JSON Through the REST Adapter

6-1

ORABPEL-15235 Translation Failure Error Occurrence
If the string length for fields in a JSON payload exceeds 20 MB, a REST Adapter trigger
connection fails with the following error:

ORABPEL-15235 Translation Failure. Failed to translate JSON to XML. String
length (20038094)
exceeds the maximum length (20000000) The incoming data does not conform to
the NXSD schema.
Please correct the problem

As a workaround, remodel your integration to work around this field size restriction. Some
recommendations are:

• Write a file to an external SFTP server for processing outside of Oracle Integration.

• Add an attachment as a stream when invoking the endpoint rather than sending the
content as a Base64-encoded string.

Failed REST Adapter Invoke Connection Retries Three Times
Every 30 Seconds with a 504 Timeout Error

A REST Adapter connection attempting to invoke an external REST service retries three times
approximately every 30 seconds upon receiving a 504 gateway timeout error. This behavior is
by design and cannot be changed.

The REST Adapter is designed to support the following types of retries:

• Three retries for a 504 error (from an external service) for all cases.

• Three retries for 502 and 503 errors (from an external service), but only for GET
operations.

• Three retries for SSL and adapter-marked retryable exceptions (with 500 milliseconds of
sleep between each call).

Chapter 6
ORABPEL-15235 Translation Failure Error Occurrence

6-2

Troubleshoot RPST and OCI Service Invocation Security Policy
Issues

Learn about troubleshooting configuration issues when using the Resource Principal Session
Token (RPST) and the OCI Service Invocation security policy.

Error Cause of Error and Resolution

A 404 Not Found error occurs with the following message:

[CDATA[{\"code\":\"NamespaceNotFound\",\"message\
":\"You do not have authorization to perform
this request,
or the requested resource could not be
found.\"}.The HTTP 404, 404 Not Found, and 404
error message is a Hypertext
Transfer Protocol (HTTP) standard response code,
in computer network communications, to indicate
that the client
was able to communicate with a given server, but
the server could not find the resource that was
requested. Carefully
re-examine the target endpoint that is being
called.]]>

You used the OCI Service
Invocation security policy without
setting the correct policy. For this
example, the Get Object Storage
Namespace operation worked, but
other operations failed because the
policy was not set to access or
modify a compartment.
Set your policy to perform the
required operations. See RPST
and OCI Service Invocation
Security Policy Use.

A 409 Not Found error occurs with the following message:

[CDATA[{"code":"BucketAlreadyExists","message":"E
ither the bucket 'test-rpst-OICServiceInstance-
phx-NoPermission'
in namespace 'axkbv4jfb37h' already exists or
you are not authorized to create it"}.This error
usually indicates that the
request submitted by Oracle Integration Cloud
can not be completed because it conflicts with
some rule already established
by the service. This is usually a functional
error. If the call to the target service using a
cURL request is successful
then contact oracle support with the details.

A policy was created that only lets
you read buckets in a
compartment:

allow dynamic-group
rpst_oic-prod-
phx-123_Dynamic_Group to
read buckets in
compartment oic-dev:pp-
phx-123-comp

If you try to create a bucket in the
compartment, it fails because the
policy is not set to perform the
required operation.

Create a policy that allows you to
write to the bucket. See RPST and
OCI Service Invocation Security
Policy Use.

Chapter 6
Troubleshoot RPST and OCI Service Invocation Security Policy Issues

6-3

Error Cause of Error and Resolution

A 404 Not Found error occurs with the following message:

<!
[CDATA[{\"code\":\"NamespaceNotFound\",\"message\
":\"You do not have authorization to perform
this request, or
the requested resource could not be
found.\"}.The HTTP 404, 404 Not Found, and 404
error message is a Hypertext Transfer
Protocol (HTTP) standard response code, in
computer network communications, to indicate
that the client was able to communicate
 with a given server, but the server could not
find the resource that was requested. Carefully
re-examine the target endpoint
that is being called.]]>

The Get Object Storage
Namespace operation works, but
other operations fail due to the
dynamic group being specified as
follows:

instance.id =
service_instance_ocid

RPST expects the resource ID, not
the instance ID, to be specified.
Specify the resource ID and assign
it the client ID of the OAuth
application of your Oracle
Integration instance when creating
the dynamic group:

resource.id = 'client_ID'

See RPST and OCI Service
Invocation Security Policy Use.

A 404 Not Found error occurs with the following message:

<!
[CDATA[{\"code\":\"NamespaceNotFound\",\"message\
":\"You do not
have authorization to perform this request, or
the requested resource could
not be found.\"}.The HTTP 404, 404 Not Found,
and 404 error message is a
Hypertext Transfer Protocol (HTTP) standard
response code, in computer
network communications, to indicate that the
client was able to communicate
with a given server, but the server could not
find the resource that was
requested. Carefully re-examine the target
endpoint that is being called.]]>

The Get Object Storage
Namespace operation works, but
other operations fail due to the
dynamic group being specified as
follows:

resource.id =
service_instance_OCID

Assign the client ID of the OAuth
application of your Oracle
Integration instance to the resource
ID when creating the dynamic
group:

resource.id = 'client_ID'

See RPST and OCI Service
Invocation Security Policy Use.

Multipart Form-Data Endpoint Invocation Fails When Media Type
is null

Ensure that the attachment properties - attachment content type is mapped with an appropriate
value. The sample documentation for request mapping provides information.

See Map to Construct the Payload for an External REST API that Accepts multipart/form-data
as the Content Type.

Chapter 6
Multipart Form-Data Endpoint Invocation Fails When Media Type is null

6-4

Convert a Private Key from PKCS8 to RSA (PKCS1) Format for
the OCI Signature Version 1 Security Policy

Private keys downloaded from the Oracle Cloud Infrastructure Console are in PKCS8 format.
The OCI Signature Version 1 security policy available with the REST Adapter only supports
reading of the private key in RSA format (PKCS1 format).

If you receive the following error, you must convert the private key from PKCS8 to RSA
(PKCS1) format.

CASDK-0005: A connector specific exception was raised by the application.
java.lang.ClassCastException: org.bouncycastle.asn1.pkcs.PrivateKeyInfo
cannot be cast to org.bouncycastle.openssl.PEMKeyPair;
org.bouncycastle.asn1.pkcs.PrivateKeyInfo cannot be cast to
org.bouncycastle.openssl.PEMKeyPair

1. Convert the private key with the following command:

openssl rsa -in private_key_in_pkcs8_format.pem -out new_converted_file.pem

For example:

openssl rsa -in private_key_pkcs8.pem -out private_key_rsa.pem

An example of a PKCS8-formatted private key file:

-----BEGIN PRIVATE KEY-----
contents
-----END PRIVATE KEY-----

An example of an RSA (PKCS1)-formatted file after the conversion:

-----BEGIN RSA PRIVATE KEY-----
contents
-----END RSA PRIVATE KEY-----

HTTP Error Response for Pre-20.4.2 Connections is Not
Compliant with the OpenAPI Specification

The HTTP error response returned by integrations created prior to release 20.4.2 (November
2020 quarterly release) that include a REST Adapter-based trigger connection does not strictly
conform to the OpenAPI specification.

The error response returned has an o: prefixed to certain keys. For example:

{
 "type" :

Chapter 6
Convert a Private Key from PKCS8 to RSA (PKCS1) Format for the OCI Signature Version 1 Security Policy

6-5

"http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1",
 "title" : "Internal Server Error",
 "detail" : "An internal error occurred while processing the request. Please
see the fault details for the nested error details.",
 "o:errorCode" : "400",
 "o:errorDetails" : [{
 "type" :
"http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5",
 "instance" : "<![CDATA[{}.The HTTP 404, 404 Not Found, and 404 error
message
is a Hypertext Transfer Protocol (HTTP) standard response code, in computer
network communications, to indicate that the client was able to communicate
with a given server, but the server could not find the resource that was
requested.
Carefully re-examine the target endpoint that is being called.]]>",
 "title" : "Not Found",
 "o:errorPath" : "<![CDATA[GET http://api.zippopotam.us/us/9021011
returned a response status of 404 Not Found]]>",
 "o:errorCode" : "404"
 }]
}

With the November 2020 release (20.4.2), the HTTP error response format has been modified
for newly created integrations to be compliant with the OpenAPI specification. The o:
previously prefixed to certain keys has been removed, as shown in the following message.

However, note that all existing, pre-20.4.2 integrations continue to have the same error
response shown above, even when those integrations are modified.

{
 "type" :
"http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1",
 "title" : "Internal Server Error",
 "detail" : "An internal error occurred while processing the request. Please
see the fault details for the nested error details.",
 "errorCode" : "404",
 "errorDetails" : [{
 "type" :
"http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5",
 "instance" : "<![CDATA[{}.The HTTP 404, 404 Not Found, and 404 error
message
is a Hypertext Transfer Protocol (HTTP) standard response code, in computer
network communications, to indicate that the client was able to communicate
with a given server, but the server could not find the resource that was
requested.
Carefully re-examine the target endpoint that is being called.]]>",
 "title" : "Not Found",
 "errorPath" : "<![CDATA[GET http://api.zippopotam.us/us/9021011 returned a
response status of 404 Not Found]]>",
 "errorCode" : "404"
 }]
}

Chapter 6
HTTP Error Response for Pre-20.4.2 Connections is Not Compliant with the OpenAPI Specification

6-6

REST Services that Return Multiple Successful Responses
The REST Adapter can be configured for only a single type of response. A service that returns
multiple responses, even with different HTTP success status codes, is not supported. All
except for the configured response type result in an APIInvocationError. You can catch the
resulting error using a scope action and a fault handler if the fault is not required in the
integration.

Error Handling with the REST Adapter
The REST Adapter uses the following strategy to handle errors in the invoke (outbound) and
trigger (inbound) directions.

Error Handling in the Invoke (Outbound) Direction

The REST Adapter in the invoke (outbound) direction returns a standard APIInvocationError
for any HTTP response that it receives with an error code. In addition, it also produces an
APIInvocationError if a processing error occurs within the REST Adapter while preparing the
request, calling the endpoint, or handling the response.

The format of the APIInvocationError in the mapper is as follows.

Chapter 6
REST Services that Return Multiple Successful Responses

6-7

The errorDetails section contains the actual cause.

You can handle the APIInvocationError with a fault handler in the integration.

Error Handling in the Trigger (Inbound) Direction

The REST Adapter in the trigger (inbound) direction exposes an HTTP endpoint that HTTP
clients can request for using an HTTP request, and returns an HTTP response.

If successful, the REST Adapter returns a success response. The REST Adapter returns an
error response with an HTTP status belonging to the error family of codes depending on the
situation. The following table describes the possible cause and the REST Adapter response.

Chapter 6
Error Handling with the REST Adapter

6-8

Condition HTTP Status Details

Invalid client request 4xx There are several conditions that
can cause client side failures,
including:

• An invalid resource URL
• Incorrect query parameters
• An unsupported method type
• An unsupported media type
• Bad data

Downstream processing errors 5xx All other errors that can occur
within the integration, including:

• An invalid target
• An HTTP error response
• General processing errors

In addition, the REST Adapter also returns an error response with additional details about the
error and possible steps for troubleshooting. The standard error response format is returned
according to the configured response media type. The following is a sample JSON response
structure:

{
 "type" : "http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1",
 "title" : "Internal Server Error",
 "detail" : "An internal error occurred while processing the request. Please
see the fault details for the nested error details.",
 "o:errorCode" : "500",
 "o:errorDetails" : [{
 "type" : "http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html#sec10.4.1",
 "instance" : "{\n \"error_message\" : \"Invalid request. Missing the
'origin' parameter.\",\n \"routes\" : [],\n
 \"status\" : \"INVALID_REQUEST\"\n}\n",
 "title" : "Bad Request",
 "o:errorPath" : "GET http://maps.googleapis.com/maps/api/directions/json?
destination=Montreal returned a response status of
 400 Bad Request",
 "o:errorCode" : "APIInvocationError"
 }]
}

The o:errorDetails section is reserved for the actual cause. The prefix o: included is based
on Oracle standards.

The top portion is used to add any integration-specific details to the fault. This is typically not
necessary, but if you want to control the HTTP status, title, and details, set these values
appropriately. If not entered, sufficient default values are provided by the REST Adapter.

Note:

The REST Adapter returns the downstream errors with a 500 Internal server error
code. You can override these errors and provide a custom error code by assigning an
appropriate value to APIInvocationError/errorCode in the target mapper.

Chapter 6
Error Handling with the REST Adapter

6-9

The suggested mappings to map faults raised by an outbound system to the trigger (inbound)
REST Adapter are as follows:

The top section is left out in this mapping and these are appropriately assigned by the REST
Adapter in the previously described sample.

Unmapped faults are propagated as system faults by Oracle Integration to the inbound REST
Adapter. They may not communicate the appropriate details. Therefore, it is recommended
that you define the fault pipelines.

REST Service Invoked by the REST Adapter Returns a 401
Unauthorized Status Response

If a REST service invoked using the REST Adapter consistently returns a response status of
401 Unauthorized, it may be because the application credentials configured on the
Connections page are no longer valid.

The Connections page does not validate the credentials. Even if the test connection is
successful, it may not be sufficient because the test connection only validates the parameters
defined on the Connections page.

Because the parameters defined on the Connections page are used to call the target endpoint
REST API, which is configured as part of endpoint configuration, it is strongly recommended
that you test the endpoint configuration that uses this connection.

Configuration Limitation of Ten Pages in the Adapter Endpoint
Configuration Wizard

Note the following issue with the REST Adapter multiple resources per endpoint use case in
the Adapter Endpoint Configuration Wizard.

Chapter 6
REST Service Invoked by the REST Adapter Returns a 401 Unauthorized Status Response

6-10

Symptom Workaround Reason

A refresh issue may occur when
configuring multiple verbs and
resources for the REST Adapter
as a trigger connection in the
Adapter Endpoint Configuration
Wizard.

If the wizard does not refresh
while configuring multiple
operations, click Back to return to
a previous page and then press
Next to refresh to the current
page.

The REST Adapter multiple
sources per endpoint use case
requires multiple iterations over
the same sets of pages. This is
currently a technical restriction.

Keys with Null Values During JSON Transformation are
Removed

The REST Adapter removes keys with null values during JSON transformation.

For example, if the following JSON payload is sent to the REST Adapter:

{
"input" : "input",
"val" : null,
"response": "response"
}

Oracle Integration sends the outbound request with the following JSON output.

{
"input" : "input",
"response": "response"
}

If you need the key available at the outbound service, use the following payload:

{
"input" : "input",
"val" : "",
"response": "response"
}

Large Sample JSON File Processing with Special Characters
The sample JSON file is typically large when it has repeating structures. You can purge such
repetitions because the sample only needs to represent the structure and not the instance
document. However, if the JSON file is unusually large and cannot be trimmed, perform the
following the steps:

1. Replace all occurrences of special characters (for example, $) with their corresponding
codes in the sample JSON file. See JSON to XML Special Character Conversion.

2. Use the modified JSON file to complete the configuration.

3. Select the generated schema in the Adapter Endpoint Configuration Wizard.

Chapter 6
Keys with Null Values During JSON Transformation are Removed

6-11

At runtime, incoming instances of JSON documents with keys having special characters are
normalized to suitable XML element names and XML documents having these elements when
serialized are converted to JSON documents with special characters restored in the key
names.

SSL Certification Troubleshooting Issues
For SSL certificate errors, perform the following tasks.

Topics

• Go to the Settings > Certificates tab and upload the server certificate.

• For exception errors that occur when configuring a connection with OAuth Client
Credentials or OAuth Resource Owner Password Credentials:

Carefully review the OAuth documentation and use the Custom Two-Legged security
policy.

• For exception errors that occur when configuring a connection with OAuth Authorization:

Carefully review the OAuth documentation and use the Custom Three-Legged Security
Policy.

Fault and Response Pipeline Definitions in Basic Routing
Integrations

You can define REST Adapter fault and response pipelines in Basic Routing integrations.

The REST Adapter on the trigger (inbound) side exposes an HTTP endpoint that HTTP clients
can request for using an HTTP request, and returns an HTTP response.

If successful, the REST Adapter returns a success response. The REST Adapter returns an
error response with an HTTP status belonging to the error family of codes depending on the
situation. This table describes the possible cause and the REST Adapter response.

Condition HTTP Status Details

Invalid client request 4xx There are several conditions that
can cause client side failures,
including:
• Invalid resource URL
• Incorrect query parameters
• Unsupported method type
• Unsupported media type
• Bad data

Downstream processing errors 5xx All other errors that can occur
within the integration, including:
• Invalid target
• HTTP error response
• General processing errors.

In addition, the REST Adapter also returns an error response with additional details about the
error and possible steps for troubleshooting. The standard error response format is returned

Chapter 6
SSL Certification Troubleshooting Issues

6-12

according to the configured response media type. The following is a sample JSON response
structure:

{
 "type" : "http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1",
 "title" : "Internal Server Error",
 "detail" : "An internal error occurred while processing the request. Please
see the fault details for the nested error details.",
 "o:errorCode" : "500",
 "o:errorDetails" : [{
 "type" : "http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html#sec10.4.1",
 "instance" : "{\n \"error_message\" : \"Invalid request. Missing the
'origin' parameter.\",\n \"routes\" : [],\n
 \"status\" : \"INVALID_REQUEST\"\n}\n",
 "title" : "Bad Request",
 "o:errorPath" : "GET http://maps.googleapis.com/maps/api/directions/json?
destination=Montreal returned a response status of
 400 Bad Request",
 "o:errorCode" : "APIInvocationError"
 }]
}

The errorDetails section is reserved for the actual cause. You must configure the fault
pipelines to map the target faults into this element. The top portion is used to add any
integration-specific details to the fault. This is typically not necessary, but if you want to control
the HTTP status, title, and details, then set these values appropriately. If not entered, sufficient
default values are provided by the adapter.

The suggested mappings to map faults raised by an outbound system to the trigger (inbound)
REST Adapter are as follows:

The top section is left out in this mapping and so these are appropriately assigned by the
adapter in the previously described sample.

Unmapped faults are propagated as system faults by Oracle Integration to the inbound
adapter. They may not communicate the appropriate details. Therefore, it is recommended that
you define the fault pipelines.

Chapter 6
Fault and Response Pipeline Definitions in Basic Routing Integrations

6-13

Note:

Fault pipelines are only available with Basic Map Data integrations.

Empty Arrays Are Not Supported in Sample JSON Files
When configuring the REST Adapter, if a JSON property in the included JSON sample file has
an empty array, you receive the following error message. Note the last part of the message.
Modify the JSON sample file to include a value for the JSON property.

Invoke Endpoint URI Must Match the Base URI + Resource URI
in REST Adapter

While designing the REST Adapter in the Adapter Endpoint Configuration Wizard, carefully
review the contents on the Summary page. The endpoint URI must match the invoke service
URI. If you do not see the necessary values, review your invoke connection and the outbound
service. The base URI in the connection and resource URI in the invoke service must add up
to the endpoint URI.

JD Edwards Form Service Invocation with the REST Adapter
Causes APIInvocation Error

You can receive the following error in the icsServer-diagnostic.log file when invoking JD
Edwards Form Service from an integration in which a REST Adapter is configured as the
invoke connection.

[2016-06-07T02:13:54.346-07:00] [icsServer] [ERROR] []
[oracle.osb.transports.jca] [tid: [ACTIVE].ExecuteThread: '14'
for queue: 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>]

Chapter 6
Empty Arrays Are Not Supported in Sample JSON Files

6-14

[ecid: f23c428c-9247-459c-bb9f-22cbadbeda35-0003651d,0] [APP: Service Bus JCA
Transport Provider] [oracle.soa.tracking.FlowId: 59] [FlowId:
0000LKe8vtD7MAW5Hzw0yf1NGeIK00001c] Error sending bytes to socket:
<genericRestFault><errorCode>500</errorCode><errorPath><![CDATA[POST
http://den60208jems.my_domain.com:9516/jderest/formservice returned a
response status of 500 Internal Server Error]]></errorPath><instance><!
[CDATA[{[[
"message" : "Can not deserialize instance of java.util.ArrayList out of
START_OBJECT token\n at [Source: java.io.StringReader@68f2c85d; line: 1,
column:
218] (through reference chain:
com.oracle.e1.jdemf.FormRequest[\"formInputs\"])", "exception" :
"com.fasterxml.jackson.databind.JsonMappingException",
"timeStamp" : "2016-06-07:03.13.54" }]]></instance></genericRestFault>
]]

This error occurs because the REST Adapter has only one array element. JSON documents
containing arrays in the REST Adapter require at least two array elements for the adapter to
generate a valid XML schema. For example:

"formInputs": ["input1"]

cannot be handled as an array unless another cell is added in the sample JSON:

"formInputs": ["input1", "input2"]

REST Adapter Data is Only Saved When You Click Next
When configuring the REST Adapter in the Adapter Endpoint Configuration Wizard, you must
click Next to save your changes and move to the next page of the wizard. For example, if you
configure details on the Request page, click the tab of the Basic Info page in the left pane, then
click Next to return to the Request page, none of your previous configurations were saved, and
the page is empty.

Convert XML to a JSON Document
You can convert XML to a JSON document. Oracle Integration resolves an XML element with a
number value to XML schema with a type of number, which converts the XML to a JSON
document with a type of number.

For example:

• XML:

<Phone>23249480</Phone>

• Generated XSD:

<element name="phone" type="integer"/>

Chapter 6
REST Adapter Data is Only Saved When You Click Next

6-15

• JSON:

"Phone": 23249480

The workaround is to use a string value for the phone number in the sample XML. The XML
schema generated has a type of string. At runtime, the XML to JSON conversion produces the
desired JSON. For example:

• XML:

<Phone>a23249480</Phone> <!-- modified -->

• Generated XSD:

<element name="phone" type="string"/>

At runtime:

• XML

<Phone>23249480</Phone>

• JSON

"Phone": "23249480"

Supported Special Characters in JSON Samples
The following special characters are supported in JSON samples.

• " " (blank space)

• /

• \\

• ;

• (

•)

• &

• ,

• #

• ?

• <

• >

content-type is Missing for an Asynchronous Flow
The content-type is missing for an asynchronous flow.

Assume you create the following integration:

Chapter 6
Supported Special Characters in JSON Samples

6-16

1. Configure a REST Adapter connection with another Oracle Integration REST endpoint.

2. Configure a trigger REST Adapter and an invoke REST Adapter with an asynchronous
flow.

3. Activate and invoke the integration.

The content-type is missing.

The content-type is ideally not required when the content-length is 0, but content-type
text/plain is added as the default content-type by some layers. Both are correct and
permissible.

REST URLs Exceeding 8251 Characters Fail
The upper limit of characters that work in REST URLs in integrations with the REST Adapter is
8251. If you exceed this limit, a 414 Request-URI Too Large error occurs.

Send a "null" Value Instead of "" for Any Specific Key in JSON
Through the REST Adapter

If you want to send a "null" value instead of "" for any specific key in JSON through the
REST Adapter, you must map "xsi:nil=true" through the mapper for that specific key.

Chapter 6
REST URLs Exceeding 8251 Characters Fail

6-17

7
REST Adapter Samples

You can use the REST Adapter in end-to-end scenarios such as the following:

Topics:

• Build an Integration that Exposes the REST API Using the REST Adapter

Build an Integration that Exposes the REST API Using the REST
Adapter

The REST Adapter can be used in scenarios such as integrating with Twitter. Twitter provides
several REST endpoints for accessing resources. This use case describes how to access a
protected resource from Twitter using the Basic Authentication security policy.

Obtain the Twitter Credentials

1. Obtain the necessary Twitter connection details from the Twitter developer page at https://
dev.twitter.com. These keys are required for configuring the Twitter Adapter on the
Connections page. See Using the Twitter Adapter with Oracle Integration 3 for specific
details.

• Consumer key

• Consumer secret

• Access token

• Access token secret

Configure the Twitter Adapter

1. In the Credentials dialog on the Connections page of Oracle Integration, complete the
following fields with the information obtained from Twitter. Note that the Custom Security
Policy security policy is displayed by default, and cannot be deselected.

• In the Consumer Key field, enter the consumer key.

• In the Consumer Secret field, enter the consumer secret.

• In the Access Token field, enter the access token.

• In the Access Secret field, enter the access token secret.

Configure the REST Adapter

1. In the Connections page of Oracle Integration, complete the following fields.

• In the Connection Properties dialog, select REST API Base URL and specify the
connection URL.

• In the Credentials dialog, select Basic Authentication as the security policy and
specify the applicable user name and password.

7-1

https://dev.twitter.com
https://dev.twitter.com
https://www.oracle.com/pls/topic/lookup?ctx=oic&id=ICSTW-GUID-A7CE3D09-3C89-4DEC-A07F-FA209960B355

Create an Integration

1. Drag a REST Adapter to the trigger side, and configure it as follows:

• Specify the following parameters on the Basic Info page:

– Select the POST action.

– Select Configure a request payload for this endpoint.

– Select Configure this endpoint to receive the response.

• Specify the request schema on the Request page.

• Specify the response schema on the Response page.

2. Drag a Twitter Adapter to the invoke side, and configure it as follows:

• Select the Tweet operation.

3. In the request mapper, configure the appropriate source to target mapping.

4. In the response mapper, configure the appropriate source to target mapping.

Invoke the Integration

1. Invoke the integration from a browser:

https://host:port/integration/flowapi/rest/TWEET/v01/tweet?status=Hi
Twitter from ICS

This posts the request status to Twitter.

2. Log in to the Twitter account.

3. Note the request message and the response message.

Chapter 7
Build an Integration that Exposes the REST API Using the REST Adapter

7-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Understand the REST Adapter
	REST Adapter Capabilities
	Capabilities When Configuring a Trigger Connection to Expose an Integration as a REST API
	Capabilities When Configuring an Invoke Connection to Consume External REST APIs

	REST Adapter Restrictions
	Swagger/OpenAPI Restrictions
	Publish Restrictions
	Consume Restrictions

	REST Adapter Use Cases
	Workflow to Create and Add a REST Adapter Connection to an Integration

	2 REST Adapter Concepts
	Authentication Support
	Authenticate Requests for Invoking Oracle Integration Flows
	About Requests to Invoke Integrations
	About OAuth 2.0 Grants
	Use OAuth 2.0 Grants in Identity Domain Environments
	Use OAuth 2.0 Grants in Oracle Identity Cloud Service Environments

	Authentication Types
	Role-Based Connections
	Extensibility Support for Multiple OAuth Providers

	REST API Support
	Oracle Cloud Infrastructure REST API Support with the OCI Signature Version 1 Security Policy
	On-Premises REST API Support with the Agent

	OpenAPI Support
	Support of Polymorphic Constructs for OpenAPI Connectivity
	allOf Keyword Pattern Support
	oneOf Keyword Pattern Support
	anyOf Keyword Pattern Support

	Support for OpenAPI Documents with External References
	Support for Publishing Interfaces for Oracle Integration Flows as OpenAPI Documents
	Consumption of OpenAPI Multipart for JSON and Form Data

	Attachment Support
	Multipart Attachment Support for Trigger and Invoke Connections
	Support for application/octet-stream MIME Attachment (Binary) Payloads

	Header, Token, Query Parameter, and Array Support
	Standard and Custom Header Support
	Nonstandard JWT Token Support
	RFC 3986 Support for Encoding Query Parameters
	Homogenous Multidimensional Array Support in JSON Documents
	Heterogeneous JSON Array Support

	Swagger Support
	REST Endpoint Metadata and a Swagger Link to a REST Metadata Description

	Mapper Connectivity Properties Support
	Set REST Adapter Connectivity Properties in the Mapper

	REST Endpoint Support
	Support for Dynamic REST Endpoints
	Configuration Parameters

	Cross-Origin Resource Sharing (CORS) Support
	Cross-Origin Resource Sharing (CORS)

	Complex Schema Support
	Complex Schema Support

	Resource Principal Session Token Support
	JWT Assertion Support for Outbound Invocations

	3 Create a REST Adapter Connection
	Prerequisites for Creating a Connection
	Create a Connection
	Configure Connection Properties for Invoke Connections
	Configure Connection Security
	Variations of JWT Usage by Service Providers

	Configure the Endpoint Access Type
	Test the Connection

	Upload a Certificate to Connect with External Services

	4 Add the REST Adapter Connection to an Integration
	Add the REST Adapter as a Trigger Connection
	REST Adapter Trigger Basic Information Page
	REST Adapter Trigger Resource Configuration Page
	REST Adapter Trigger Request Parameters Page
	REST Adapter Trigger Request Page
	REST Adapter Trigger Request Header Page
	REST Adapter Trigger CORS Configuration Page
	REST Adapter Trigger Response Page
	REST Adapter Trigger Response Header Page
	REST Adapter Trigger Operations Page
	REST Adapter Trigger Operation Selection Page
	Summary Page

	Add the REST Adapter as an Invoke Connection
	REST Adapter Invoke Basic Information Page
	REST Adapter Invoke Request Parameters Page
	REST Adapter Invoke Request Page
	REST Adapter Invoke Request Headers Page
	REST Adapter Invoke Response Page
	REST Adapter Invoke Response Header Page
	REST Adapter Invoke Operation Selection Page
	Summary Page

	5 Implement Common Patterns Using the REST Adapter
	Connect to an Endpoint that Requires a Content-Length Header to Be Sent
	OAuth-Protected Patterns
	Configure the REST Adapter to Consume a REST API Protected with OAuth Custom Two Legged Token-Based Authentication
	Configure the REST Adapter to Consume a REST API Protected with OAuth Custom Three Legged Flow Token-Based Authentication
	Configure the REST Adapter to Consume a REST API Protected with OAuth 1.0 One-Legged Authentication
	Allow Client Applications to Consume an Integration Exposed as an OAuth-Protected REST API

	REST API Consumption Patterns
	Configure the REST Adapter to Consume a REST API Protected with the API Key
	Configure the REST Adapter to Consume an External REST API with No Metadata Described in a Document
	Configure a REST Adapter to Consume a REST API that Expects Custom HTTP Header Properties
	Configure the REST Adapter to Consume an Amazon Web Services (AWS) REST API

	JSON Content Patterns
	Allow JSON Numbers with High Precision and Scale
	Map JSON when the REST Adapter Request is Configured with multipart/form-data
	JSON to XML Special Character Conversion
	Send an Empty JSON Object
	Copy Element Names as Values in JSON
	Use JSON Objects With Single Elements Within an Array

	OpenAPI Document Patterns
	Publish REST-Based Integrations as OpenAPI Documents
	Consume and Publish OpenAPI Documents with Multipart/Mixed and Multipart/Form-Data

	Best Practices for Invoking REST Endpoints
	Override the Endpoint URI/Host Name for an External REST API at Runtime
	Map to Construct the Payload for an External REST API that Accepts multipart/form-data as the Content Type
	Implement an Integration in which to Send an Incoming Message with a Base64-Encoded String to an External REST API that Accepts a Multipart Attachment
	Pass the Payload as URL-Encoded Form Data
	Implement an Integration to Send a PDF/CSV Document Downloaded from an SFTP Server to an External REST API that Accepts Only application/octet-stream as the Content Type
	Configure the REST Adapter to Expose an Integration as a REST API
	Enter q as a Standard HTTP Query Parameter with the Query as a Value
	Configure Oracle Integration to Call Oracle Cloud Infrastructure Functions with the REST Adapter
	Configure a REST Adapter Trigger Connection to Work Asynchronously
	Create a Keystore File for a Two-Way, SSL-Based Integration
	Access Oracle Cloud Infrastructure Service Resources Using RPST
	Invoke a Service Provider API with a JWT Assertion

	6 Troubleshoot the REST Adapter
	ORABPEL-15235 Translation Failure Error Occurrence
	Failed REST Adapter Invoke Connection Retries Three Times Every 30 Seconds with a 504 Timeout Error
	Troubleshoot RPST and OCI Service Invocation Security Policy Issues
	Multipart Form-Data Endpoint Invocation Fails When Media Type is null
	Convert a Private Key from PKCS8 to RSA (PKCS1) Format for the OCI Signature Version 1 Security Policy
	HTTP Error Response for Pre-20.4.2 Connections is Not Compliant with the OpenAPI Specification
	REST Services that Return Multiple Successful Responses
	Error Handling with the REST Adapter
	REST Service Invoked by the REST Adapter Returns a 401 Unauthorized Status Response
	Configuration Limitation of Ten Pages in the Adapter Endpoint Configuration Wizard
	Keys with Null Values During JSON Transformation are Removed
	Large Sample JSON File Processing with Special Characters
	SSL Certification Troubleshooting Issues
	Fault and Response Pipeline Definitions in Basic Routing Integrations
	Empty Arrays Are Not Supported in Sample JSON Files
	Invoke Endpoint URI Must Match the Base URI + Resource URI in REST Adapter
	JD Edwards Form Service Invocation with the REST Adapter Causes APIInvocation Error
	REST Adapter Data is Only Saved When You Click Next
	Convert XML to a JSON Document
	Supported Special Characters in JSON Samples
	content-type is Missing for an Asynchronous Flow
	REST URLs Exceeding 8251 Characters Fail
	Send a "null" Value Instead of "" for Any Specific Key in JSON Through the REST Adapter

	7 REST Adapter Samples
	Build an Integration that Exposes the REST API Using the REST Adapter

