
Oracle® Cloud
Using Decisions in Oracle Integration 3

G28051-02
May 2025

Oracle Cloud Using Decisions in Oracle Integration 3,

G28051-02

Copyright © 2025, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Resources vi

Conventions vii

1 Learn About Decision Modeling

What Are Decisions? 1-1

About Decision Model Notation 1-1

About Friendly Enough Expression Language 1-2

Data Types 1-2

Grammar Rules 1-3

Built-In Functions 1-4

String Functions 1-4

List Functions 1-5

Numeric Functions 1-6

Boolean Functions 1-6

Conversion Functions 1-6

List Iteration Expressions Using Keywords 1-7

Date, Time, and Duration Functions 1-7

Conversion Examples 1-7

Arithmetic Operation Examples 1-8

Comparison Operation Examples 1-9

2 Learn About Decisions in Oracle Integration

How to Model Decisions in Oracle Integration? 2-1

Understand the Decision Designer 2-2

Decision Requirement Diagrams 2-2

Decision Designer Components 2-2

Workflow for Using Decision Models in Oracle Integration 2-5

iii

Best Practices for Modeling Decisions 2-6

3 Design Decision Models

Create Decision Models 3-1

Create a New Decision Model 3-1

Import a Decision Model 3-2

Add Decisions 3-2

Define Decision Input and Type 3-4

Create Input Data 3-4

Define Custom Data Types 3-5

Construct a Data Type 3-6

Import a JSON Schema 3-7

Connect Nodes on the Canvas 3-8

Configure a Decision's Logic 3-8

Configure Empty Decisions 3-8

Configure Expressions 3-9

Configure Decision Tables 3-10

About Decision Table Elements 3-10

Specify a Decision Table's Logic 3-25

Configure If / Else Statements 3-26

Configure Functions 3-28

Configure Lists 3-30

Configure Contexts 3-32

Configure Relations 3-34

Configure Loops 3-36

Review and Fix Errors in a Decision 3-39

4 Test and Activate Decision Models

Test a Decision Model 4-1

Expose Decisions as Services 4-1

Activate a Decision Model 4-2

Add a Decision Model to an Integration 4-3

5 Manage Decision Models

Update a Decision Model 5-1

Semantic Versioning Rules 5-2

Clone a Decision Model 5-2

Deactivate a Decision Model 5-2

Edit or View a Decision Model 5-3

iv

Delete a Decision Model 5-3

6 Troubleshoot Decisions

The Option to Activate a Decision Model Is Not Displayed 6-1

Unable to Add a Decision Model to an Integration 6-1

An Input Used in a Decision Is Not Recognized 6-2

v

Preface

This guide describes how to model decisions in Oracle Integration.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
This guide is intended for users who want to model and manage decisions in Oracle
Integration.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://support.oracle.com/portal/ or visit Oracle
Accessibility Learning and Support if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

• Oracle Integration documentation on the Oracle Help Center.

Preface

vi

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

• Oracle Cloud at http://cloud.oracle.com.

Conventions
The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

http://cloud.oracle.com

1
Learn About Decision Modeling

In business workflows, you’ll often be required to create decisions that enable you to automate
policies, computations, and reasoning. Using Oracle Integration, you can model the decisions
for your workflows and drive better outcomes.

Discover what decisions are, the supported decision modeling standard, and the syntax for
defining them.

Topics:

• What Are Decisions?

• About Decision Model Notation

• About Friendly Enough Expression Language

What Are Decisions?
In business contexts, decisions are the fundamental building blocks of operations and strategy.

Business operations are driven by a constant stream of decisions. Whether it's approving loan
applications, deciding on document changes, dispatching emergency services, or calculating
bonus shopping points, each choice is crucial to the operation's success. These decisions can
greatly impact an organization's efficiency and customer satisfaction, making it essential to
have a structured approach to decision-making.

A decision model framework provides such a structure. By employing a decision model
framework, you can articulate a wide spectrum of automated decisions. You can model
decisions as a hierarchical tree of simpler sub-decisions, each easily managed with decision
tables and straightforward expressions, rather than complex production rules.

Oracle Integration utilizes the Decision Model and Notation (DMN) framework to provide a
robust and intuitive decision-modeling capability.

About Decision Model Notation
Decision Model and Notation (DMN), developed by the Object Management Group (OMG), is a
standard for modeling operational decisions.

It enables organizations to visualize, document, and automate complex business logic. DMN
provides a clear representation of decision-making processes based on various inputs, rules,
and considerations. This visual approach facilitates improved understanding, resulting in more
accurate decisions.

Additionally, DMN's XML-based schema provides a standardized format for exchanging
decision models. This enables seamless interoperability between DMN-compliant platforms
and organizations, promoting consistency, reducing errors, and accelerating the development
and deployment of decision services.

Oracle Integration supports the Decision Model and Notation (DMN) standard, version 1.1.

For more information on DMN, see the DMN Specification Document by OMG.

1-1

https://www.omg.org/spec/DMN

About Friendly Enough Expression Language
Decision Model and Notation (DMN) defines Friendly Enough Expression Language (FEEL) to
provide standard executable semantics to all expressions used within a decision model.

In Oracle Integration, you use FEEL to define expressions in the logic of all decision types,
including decision tables.

Explore the FEEL data types, syntax, and various functions supported in Oracle Integration.

• Data Types

• Grammar Rules

• Built-In Functions

• List Iteration Expressions Using Keywords

• Date, Time, and Duration Functions

Data Types
Oracle Integration supports the following FEEL data types for decision input data, expression
values, function arguments, and return values.

FEEL Data Type Notation in Oracle
Integration

Description

number Number FEEL numbers are based on the IEEE 754-2008 Decimal128
format, with 34 decimal digits of precision and rounding
toward the nearest neighbor with ties favoring the even
neighbor. Numbers are a restriction of the XML Schema type
precisionDecimal, and are equivalent to Java BigDecimal
with MathContext DECIMAL128 .

string Text Variable-length sequence of characters italicized or
encapsulated in double quotes.

boolean True or False Logical Boolean (true/false).

date-time Date and Time Calendar date and time combination.

duration Duration Duration in the ISO 8601 date-time format.

Note:

You can extend these basic data types by defining custom data types. See Define
Custom Data Types.

Chapter 1
About Friendly Enough Expression Language

1-2

Grammar Rules
Learn about the syntax for commonly-used FEEL expressions through simple examples. For
the complete definition of FEEL syntax, see Decision Model and Notation (DMN), v1.1.

Arithmetic Expressions

Name FEEL Expression Return Value

Addition (+) 0.15+30 30.15

Subtraction (-) 15-30 -15

Multiplication (*) .20*40.02 8.004

Division (/) 1/50 0.02

Exponentiation (**) 2**3 8

Interval Expressions

Start Value End Value FEEL Expression Return Value

Inclusive Inclusive 15 in [15..30] true

Exclusive Exclusive 15 in (15..30) false

Exclusive Inclusive 30 in (15..30] true

Inclusive Exclusive 30 in [15..30) false

Note:

In decision table input entry and input/output allowed value cells, you can use
intervals or list of intervals to test against the input data.

Comparison Expressions

Name FEEL Expression Return Value

Less than (<) 8<2**3 false

Less than or equal to (<=) 15 in (<=15) true

Equal (=) 8=2**3 true

Greater than (>) 30 in (>30) false

Greater than or equal to (>=) 1/5>=0.20 true

Not equal to (!=) 8!=2**3 false

Note:

In decision table input entry and input/output allowed value cells, you can use
comparison operators to define unary expressions.

Chapter 1
About Friendly Enough Expression Language

1-3

Other Expressions

Name FEEL Expression Return Value

Disjunction (2*2=2**2) or (3*2=3**2) true

Conjunction (2*2=2**2) and (3*2=3**2) false

Negation not(2*2=2**2) false

Note:

In decision table input entry and input/output allowed value cells, you can use
comma-separated list of values to specify disjunction.

Built-In Functions
FEEL includes a library of built-in functions that you can use to define expressions.

Oracle Integration supports the following types of built-in functions in decisions. Additionally, to
assist with expression creation, a list of built-in functions is presented as suggestions when you
click an empty expression field.

• String Functions

• List Functions

• Numeric Functions

• Boolean Functions

• Conversion Functions

String Functions

Name(parameters) Parameter Domain Description Example

string(from) non-null Convert from to a string. string(1.1) = "1.1" string(null) = null

substring(string, start, length) string, number1 Return length (or all)
characters in string, starting
at start position. The first
position is 1, last position is
-1.

• substring("redwood",3) =
"dwood"

• substring("redwood",3,3) =
"dwo"

• substring("redwood", -2, 1) =
"o"

string length(string) string Return length of string. string length("red") = 3

upper case(string) string Return uppercased string. upper case("aBc4") = "ABC4"

lower case(string) string Return lowercased string. lower case("aBc4") = "abc4"

substring before (string,
match)

string, string Return substring of string
before the match in string.

• substring before("redwood",
"wood") = "red"

• substring before("redwood",
"xyz") = ""

substring after (string, match) string, string Return substring of string
after the match in string.

• substring after("redwood",
"dw") = "ood"

• substring after("", "o") = ""

Chapter 1
About Friendly Enough Expression Language

1-4

Name(parameters) Parameter Domain Description Example

replace(input, pattern,
replacement, flags?)

string2 Regular expression pattern
matching and replacement.

replace("abcd", "(ab)|(a)", "[1=$1]
[2=$2]") = "[1=ab] [2=]cd"

contains(string, match) string Does the string contain the
match?

contains("redwood", "de") = false

starts with(string, match) string Does the string start with the
match?

starts with("redwood", "re") = true

ends with(string, match) string Does the string end with the
match?

ends with("redwood", "d") = true

matches(input, pattern,
flags?)

string2 Does the input match the
regexp pattern?

matches("redwood", "^re*w") = true

List Functions

Name(parameters) Parameter Domain Description Example

list contains(list, element) list, any element of the
semantic domain
including null

Does the list contain the
element?

list contains([1,2,3], 2) = true

count(list) list Return size of list. count([1,2,3]) = 3

minimum(list) (list of) comparable
items

Return minimum item. minimum([1,2,3]) = 1

maximum(list) (list of) comparable
items

Return maximum item. maximum([1,2,3]) = 3

sublist(list, start position,
length?)

list, number1, number2 Return list of length (or all)
elements of list, starting with
list[start position]. The first
position is 1, last position is
-1.

sublist([1,2,3], 1, 2) = [2]

append(list, item…) list, any element
including null

Return new list with items
appended.

append([1], 2, 3) = [1,2,3]

concatenate(list…) list Return new list that is a
concatenation of the
arguments.

concatenate([1,2],[3]) = [1,2,3]

concatenate(1,2,3) = [1,2,3]

concatenate([1,2],3) = [1,2,3]

insert before(list, position,
newItem)

list, number1, any
element including null

Return new list with newItem
inserted at position.

insert before([1,3],1,2) = [1,2,3]

remove(list, position) list, number1 The list with item at position
removed.

remove([1,2,3], 2) = [1,3]

reverse(list) list Reverse the list. reverse([1,2,3]) = [3,2,1]

index of(list, match) list, any element
including null

Return ascending list of list
positions containing match.

index of([1,2,3,2],2) = [2,4]

union(list…) list Concatenate with duplicate
removal.

union([1,2],[2,3]) = [1,2,3]

distinct values(list) list Duplicate removal. distinct values([1,2,3,2,1]) = [1,2,3]

flatten(list) list Flatten nested lists. flatten([[1,2],[[3]], 4]) = [1,2,3,4]

sum(list) (list of) numbers Return sum of numbers. sum([1,2,3]) = 6

mean(list) (list of) numbers Return arithmetic mean
(average) of numbers.

mean([1,2,3]) = 2

Chapter 1
About Friendly Enough Expression Language

1-5

Numeric Functions

Name(parameters) Parameter Domain Description Example

number(from, grouping
separator, decimal separator)

number, separator,
decimal notation

Convert from to a number. number("1 000,0", " ", ",") =
number("1,000.0", ",", ".")

decimal(n, scale) number, number1 Return n with given scale. • decimal(1/3, 2) = .33
• decimal(1.5, 0) = 2
• decimal(2.5, 0) = 2

floor(n) number Return greatest integer <= n. • floor(1.5) = 1
• floor(-1.5) = -2

ceiling(n) number Return smallest integer >= n. • ceiling(1.5) = 2
• ceiling(-1.5) = -1

Boolean Functions

Name(parameters) Parameter Domain Description Example

not(negand) boolean Logical negation. • not(true) = false
• not(null) = null

Conversion Functions

Name(parameters) Parameter Domain Description Example

date(from) date string Convert from to a date. date("2012-12-25") -
date("2012-12-24") =
duration("P1D")

date(from) date and time Convert from to a date (set
time components to null).

date(date and
time("2012-12-25T11:00:00Z")) =
date("2012-12-25")

date and time(from) date time string Convert from to a date and
time.

date and
time("2012-12-24T23:59:00") +
duration("PT1M") = date and
time("2012-12-25T00:00:00")

time(from) time string Convert from to time. time("23:59:00") + duration("PT2M")
= time("00:01:00")

time(from) time, date and time Convert from to time (ignoring
date components).

time(date and
time("2012-12-25T11:00:00Z")) =
time("11:00:00")

duration(from) duration string Convert from to a date and
time or years and months
duration.

• date and
time("2012-12-24T23:59:00") -
date and
time("2012-12-22T03:45:00") =
duration("P2DT20H14M")

• duration("P2Y2M") =
duration("P26M")

years and months
duration(from, to)

both are date and time Return years and months
duration between from and to.

years and months
duration(date("2011-12-22"),
date("2013-08-24")) =
duration("P1Y8M")

Chapter 1
About Friendly Enough Expression Language

1-6

List Iteration Expressions Using Keywords
Common list iteration expressions, demonstrating the usage of for, some, every, in, return, and
satisfies keywords.

To assist with expression creation, a list of keywords is presented as suggestions when you
click an empty expression field.

Name(parameters) Description Example

for [item] in [list] return [expression] Iterate over a list. for i in [1,2,3,4] return i*i = [1,4,9,16]

sum (for [item] in [list] return
[expression])

Iterate over a list and return the sum
of iterations.

sum(for i in [1,2,3,4] return i*i) = 30

every [item] in [list] satisfies
[expression]

Test if every item in the list satisfies
the test condition described by the
expression.

• every n in [12,50,51] satisfies n > 5 =
true

• every n in [12,50,51] satisfies n < 50 =
false

some [item] in [list] satisfies
[expression]

Test if at least one of the items in
the list satisfies the test condition
described by the expression.

• some n in [12,50,51] satisfies n > 50 =
true

• some n in [12,50,51] satisfies n > 51 =
false

Date, Time, and Duration Functions
Because FEEL does not support literal representation of date, time, or duration values, you
must use a combination of built-in functions and string or number literals to express these
values.

Built-in functions extract date, time, and duration data from strings or numbers. The following
sections provide examples of common date and time operations using built-in functions:

• Conversion Examples

• Arithmetic Operation Examples

• Comparison Operation Examples

Conversion Examples
Examples in this section demonstrate conversion of number or string literals into date, time, or
duration data types.

Date and Time Data Type Examples

The following examples convert string literals to date or date-time values.

Example Description

date("2012-12-25") Represents the date 2012-12-25 in the YYYY-MM-DD format.

time("23:59:00") Represents the time 23:59:00 in the hh:mm:ss format.

time("23:59:00-08:00") Represents the local time 23:59:00 in the hh:mm:ss format; the local time
is 8 hours behind UTC.

date and time("2012-12-25T11:00:00") Represents the date 2012-12-25 and time 11:00:00 in YYYY-MM-DD and
hh:mm:ss formats, respectively.

Chapter 1
About Friendly Enough Expression Language

1-7

Example Description

date and time("2012-12-25T11:00:00Z") Represents the date 2012-12-25 and time 11:00:00 in YYYY-MM-DD and
hh:mm:ss formats, respectively; "Z" represents UTC time.

Duration Data Type Examples

A few conversion examples using the duration function are listed in the following table.

Example Description

duration("P1DT12H30M") Represents a duration of 1 day, 12 hours, and 30 minutes.

duration("-P120D") Represents a duration of minus 120 days.

duration("PT2000H") Represents a duration of 2000 hours.

duration("P1Y2M3DT10H30M") Represents a duration of 1 year, 2 months, 3 days, 10 hours, and 30
minutes.

Arithmetic Operation Examples
Examples in this section demonstrate arithmetic operations that can be performed on date,
time, or duration data types.

Operator Example Result Description

(+) date("2016-12-25") +
duration("P3Y2M6D")

date("2020-03-02") Returns the date 3 years 2 months
and 6 days after 2016-12-25.

(+) date and time("2016-12-25T12:30:00Z") +
duration("P1Y2M3DT10H30M")

date and
time("2018-02-28T23:0
0:00Z")

Returns the date and time 1 year 2
months 3 days and 10 hours 30
minutes after the date 2016-12-25
and time 12:30:00.

(+) date("2016-12-25") + duration("-
P3Y2M6D")

date("2013-10-19") Returns the date 3 years 2 months
and 6 days before 2016-12-25.

(-) date("2015-12-25") - date("2012-12-25") duration("P1095DT0H0
M0S")

Returns a duration indicating
number of days and time.

(-) date and time("2012-12-25T12:00:00") -
date and time("2015-12-25T11:12:00")

duration("-
P1094DT23H12M0S")

Returns a duration indicating
number of days and time.

(-) date and
time("2012-12-25T12:00:00-08:00") - date
and time("2015-12-25T11:12:00Z")

duration("-
P1094DT15H12M0S")

Returns a duration indicating the
number of days and time between
date and time of two different time
zones.

(-) date("2016-12-25") -
duration("P3Y2M6D")

date("2013-10-19") Returns the date 3 years 2 months
and 6 days before 2016-12-25.

(/) (date("2015-12-25") - date("2012-12-25"))/
duration("P1D")

1095 Returns the number of days
between two dates.

(/) (date and time("2015-12-25T17:00:00") -
date and time("2015-12-25T09:12:00"))/
duration("PT1H")

7.8 Returns the number of hours
between two date and time values.

(/) (date("2015-12-25") - date("2015-12-24"))/
duration("P1Y")

0.00273972602739726
03

Returns the number of years
between two dates.

None years and months
duration(date("2012-12-23") ,
date("2015-12-25"))

duration("-P3Y0M") Returns the years and months
duration between two dates.

Chapter 1
About Friendly Enough Expression Language

1-8

Comparison Operation Examples
Examples in this section demonstrate comparison operations that can be performed on date or
time data types.

Operator Example Result Description

> date("2012-12-25") > date("2015-12-25") false Determines if Date A occurs after
Date B.

> ((date("2015-12-25") - date("2015-11-25")) >
duration("P1Y")

false Determines if Duration A is greater
than Duration B.

Chapter 1
About Friendly Enough Expression Language

1-9

2
Learn About Decisions in Oracle Integration

The Decision feature in Oracle Integration allows you to create decision models that make
business workflows less complex, easier to manage, and more robust in the face of change.

Using the Decision feature in Oracle Integration, you can:

• Create decision models.

• Create decisions and sub-decisions in the models.

• Define the input data and type for decisions.

• Create associated services to use decision models in integrations.

Learn about the decision designer, workflow for using decisions in integrations, and best
practices for modeling decisions.

Topics:

• How to Model Decisions in Oracle Integration?

• Understand the Decision Designer

• Workflow for Using Decision Models in Oracle Integration

• Best Practices for Modeling Decisions

How to Model Decisions in Oracle Integration?
In Oracle Integration, you can model decisions in two ways: within a project or externally.

Prerequisites

To use decisions in Oracle Integration, you must enable Process Automation for your Oracle
Integration instance. Additionally, you must assign the predefined, Process Automation roles
(namely, ServiceDeveloper or ServiceAdministrator) to the required users or groups so that
they can access the Decision feature on your instance. For detailed instructions, see Enable
Process Automation with Oracle Integration 3 in Administering Oracle Cloud Infrastructure
Process Automation.

Ways to Use Decisions

After completing the prerequisites, you can model decisions in Oracle Integration within these
two contexts:

• Projects: You can model decisions in the context of projects using the Decision feature. A
project serves as the central hub for all your automation work, including designing
decisions and integrations. Each project targets a specific business objective. It offers
convenient deployment and unified observability, facilitating teamwork in building,
deploying, and monitoring integrations and decisions. To learn more about projects, see
Get Started with Projects in Using Integrations in Oracle Integration 3.
Use project-based decisions when calling decisions from an integration or external client
application. This guide focuses on how to model decisions in projects. See Design
Decision Models.

2-1

• Process: You can create decision applications in Process. The Process feature in Oracle
Integration enables you to rapidly design, automate, and manage business processes in
the cloud.
Use decision applications when calling decisions from a process application. To create
decision applications, see Model Decisions in Using Oracle Cloud Infrastructure Process
Automation.

Understand the Decision Designer
Learn about the components of the decision designer for building powerful decision models.

Using the decision designer, you can:

• Add decisions to a decision model.

• Define the input data and type for decisions.

• Configure the logic for decisions.

• Create services to use a decision model in integrations.

Topics:

• Decision Requirement Diagrams

• Decision Designer Components

Decision Requirement Diagrams
In the decision designer, you can create decision requirement diagrams (DRD)—in accordance
with DMN standards—to visually represent your decisions.

Oracle Integration currently supports one DRD per decision. The following table lists all the
available DRD components, which you can use to create your decision model.

DRD Component Description Icons

Elements Decision Denotes a node that determines an
output based on its inputs and the
logic it contains.

Input Data Denotes information used as input by
one or more decision elements.

Requirements Information
Requirement

Denotes the flow of information from
an input data or a decision element
to another decision element.

Decision Designer Components
The decision designer features a toolbar, sidebar, canvas, and overview panel to assist you in
creating decisions.

• Toolbar

• Sidebar

• Canvas

• Canvas Overview

Chapter 2
Understand the Decision Designer

2-2

• A Snapshot of the Designer

Toolbar

The toolbar offers basic editing and designer-resizing controls.

Toolbar Icon Name Description

Undo Reverts the last action.

Redo Repeats the last action.

Designer toggle Expands or retracts the decision designer.

Sidebar

The sidebar offers controls to access different aspects of decision modeling. Each of these
controls functions as a toggle, enabling you to view or hide the corresponding panel.

Sidebar Icon Name Description

Palette Opens the diagram palette with the input data
element and all decision types.

From the palette, drag and drop elements onto the
canvas to use them in your diagram.

See Add Decisions and Create Input Data.

Services Opens the Services panel, where you can create
decision services.

See Expose Decisions as Services.

Types Opens the Types panel, where you can define a
new type definition.

See Define Custom Data Types.

Test decision model Opens the Test Decision Model panel.

See Test a Decision Model.

Properties Opens the Properties panel, where you can edit a
node's properties.

Note:

This icon appears on
the sidebar when you
select an input or
decision node on the
canvas, and it opens
the corresponding
properties panel
when clicked.

See Add Decisions and Create Input Data.

Chapter 2
Understand the Decision Designer

2-3

Sidebar Icon Name Description

View or edit decision logic Opens the decision logic page, where you can view
or edit a decision's logic.

Note:

This icon appears on
the sidebar when you
select a decision
node on the canvas,
and it opens the
corresponding logic
page when clicked.

See Configure a Decision's Logic.

Canvas

The decision canvas is the central area where you can create a diagram that represents your
decision model, using the elements in the palette.

Additionally, the canvas provides the following two functions:

Canvas Icon Name Description

Search Searches for a decision node on the canvas using
the name you enter.

Enable highlight mode toggle When enabled, highlights the node you select on
the canvas.

Canvas Overview

The canvas overview panel, located at the bottom-left corner, provides a quick overview of
your entire canvas. You can collapse or expand it as needed.

It contains the following controls:

Canvas Overview
Icon

Name Description

Zoom in Zooms in on the canvas.

Zoom out Zooms out on the canvas.

Reset view Resets the canvas to its default view.

Collapse overview toggle Collapses or expands the Canvas Overview panel.

A Snapshot of the Designer

The following image shows a decision model in the designer, with the Palette panel open.

Chapter 2
Understand the Decision Designer

2-4

Workflow for Using Decision Models in Oracle Integration
Use the following approach as a general guideline to create and use a decision model in
Oracle Integration. After creating a decision model, you must develop an integration to use it.

You may choose to complete some of these steps in any order. Iteratively refine your decision
model as you build it to suit your requirements.

Workflow Table

Order Step More information

1 Create a project To create a decision model, you must create a project in
Oracle Integration. Alternatively, you can use an existing
project.

To create a new project, see Create or Import a Project in
Using Integrations in Oracle Integration 3.

2 Create a decision model Create a decision model, the container for decisions, input
data, and decision services.

See Create Decision Models.

3 Add decisions Add decisions within your model.

See Add Decisions.

4 Define input variables Define the input data and type for your decisions.

See Define Decision Input and Type.

5 Connect nodes on the canvas Connect all nodes on the canvas to visually represent the
decision flow.

Connect Nodes on the Canvas.

Chapter 2
Workflow for Using Decision Models in Oracle Integration

2-5

Order Step More information

6 Configure the logic for
decisions

Configure the logic for each decision node, defining how its
output is derived from its input. You can use Friendly Enough
Expression Language (FEEL) to define expressions across
the decision model.

See Configure a Decision's Logic.

Note:

Add and connect the nodes on
the canvas before configuring
the decision logic. This provides
all the necessary data as
suggestions during the
configuration process.

7 Fix errors in decisions Check each decision for errors and warnings, and resolve
them.

Review and Fix Errors in a Decision.

8 Test the decision model Test the decision model and its decisions to ensure they work
as expected.

See Test a Decision Model.

9 Create decision services Create decision services to complete the configuration of your
decision model.

See Expose Decisions as Services.

10 Activate the decision model Activate the decision model to use it in an integration.

See Activate a Decision Model.

11 Create an integration Create an integration to call the decision model.

See Create Integrations in Using Integrations in Oracle
Integration 3.

12 Add the decision model to the
integration

Using the decision services you created, add the decision
model to the integration.

See Add a Decision Model to an Integration.

Best Practices for Modeling Decisions
For optimal decision model development in Oracle Integration, adhere to these best practices
and recommendations. They improve development, maintenance, and readability of decision
models.

• Adopt a bottom-up approach to develop a decision model. Start by creating the lowest-
level decisions, which provide input to other decisions. Finally, create the main output
decision, which provides the model's result.

• Ensure that only one user edits a decision model at a time to avoid conflicts and preserve
data integrity.

• Add and connect all the nodes on the canvas before configuring the logic within decisions.
This provides all the necessary data as suggestions during the configuration process. See
Connect Nodes on the Canvas.

Chapter 2
Best Practices for Modeling Decisions

2-6

• Use decision tables where possible; they're the preferred form of logic. See Configure
Decision Tables.

• In decision tables, avoid using the First (F) hit policy. This hit policy makes the decision
logic overly reliant on the order of the rules. See About Hit Policies.

• Use functions to apply a decision logic multiple times, for example, while applying a logic to
each element of a list. See Configure Functions.

• Avoid using functions unnecessarily; they make decision models difficult to test and debug.

• Break down a complex, nested expression into simpler expressions.

• Use boxed expressions instead of FEEL expressions, wherever possible, to improve
readability.

• Use nouns or short noun phrases to name each decision and input data (for example,
Student Days, Total Days, Person). Do not use verbs in names.

• Provide a description for each decision to indicate what it accomplishes, for example,
Calculates total days by adding vacation and working days. Make all descriptions
consistent with each other.

Chapter 2
Best Practices for Modeling Decisions

2-7

3
Design Decision Models

Learn how to create a decision model, add decisions, define inputs, and configure logic for
decisions.

Topics:

• Create Decision Models

• Add Decisions

• Define Decision Input and Type

• Connect Nodes on the Canvas

• Configure a Decision's Logic

• Review and Fix Errors in a Decision

Create Decision Models
A decision model is a container for decisions, input data, and decision services.

You can create a new decision model or import one from your local file system.

• Create a New Decision Model

• Import a Decision Model

Note:

To create a decision model, you must first create a project in Oracle Integration.
Alternatively, you can use an existing project. To create a project, see Create or
Import a Project in Using Integrations in Oracle Integration 3.

Create a New Decision Model
Create a decision model from scratch to use in your integrations.

1. Open a project.

a. In the navigation pane, click Projects.

b. Click a project's name.

2. In the left toolbar, click Decision .

3. Create a decision model.

a. In the Decisions box, click Add (if no decision models have been created) or + (if one
or more decision models have been created).

b. In the Add decision panel, click Create.

3-1

c. In the Create decision panel, enter the following information for the decision model,
and click Create.

Field Description

Name Enter a name for the decision model. Make sure the name conveys the
purpose of the model.

Note that you can’t change the name after you create the decision
model.

Identifier Oracle Integration generates this value using the Name value.

Version For a new decision model, the default version is 01.00.0000. You can
revise the version number for subsequent updates.

Description Provide additional information about the decision model.

The decision designer appears, with an Input Data node added to the canvas. See
Understand the Decision Designer.

In the designer, you can:

• Add decisions

• Define input data

• Configure the logic for decisions

• Test your decision model

• Create decision services to implement your decision model

Import a Decision Model
You can import a decision model, saved as a DMN (.dmnx) file, into a project in Oracle
Integration.

1. Open a project.

a. In the navigation pane, click Projects.

b. Click a project's name.

2. In the left toolbar, click Decision .

3. Import a decision model.

a. In the Decisions box, click Add (if no decision models have been created) or + (if one
or more decision models have been created).

b. In the Add decision panel, click Import.

c. In the Import decision panel, click the field to browse for a file or drag and drop a file
into the field. Click Import.

The decision designer appears, where you can edit the imported model. See
Understand the Decision Designer.

Add Decisions
A decision has logical notations, such as decision tables, expressions, if-then-else rules, and
so on. Within your decision model, you can add a decision by selecting the logic type you plan
to use to obtain a specific output.

Within decision models, decisions are classified into two categories:

Chapter 3
Add Decisions

3-2

• Main decision: The output of the main decision provides the result of the decision model.

• Supporting decision: One or more supporting decisions provide input to the main decision.

You can add a decision to your model by dragging one of the decision types from the Palette
panel onto the canvas. After you add a decision, you define its properties and logic.

In the canvas, you can order decisions in several ways. For example, you can create a bottom-
up sequence flow, with the main decision at the top and supporting decisions below it; or a left-
to-right flow, and so on.

To add a decision to your model:

1. In your project, click Decision in the left toolbar to view your decision model.

2. In the Decisions box, point to the decision model you created, click , and click Edit.

3. In the decision designer, click Palette on the sidebar.

4. On the Palette panel, choose one of the following decision types under Decisions.

• Empty decision

• Context

• Decision table

• List

• Expression

• Function

• If / else

• Loop

• Relation

5. Drag the decision type onto the canvas and drop it at the required spot.

6. In the Decision Properties panel that appears, enter the following information for the
decision.

Field Description

Name Enter a unique name for the decision node.

Note:

You can also assign a decision node the same name as a
previously-added decision node. Choose an existing name from

the drop-down list next to the Name field.

However, if you add a particular decision type to the canvas and
select the name of a different type of decision node from the
drop-down list, the node's logic type changes.

Edit Click to edit the decision node's logic. You can also double-click the
node on the canvas to view or edit its logic.

Chapter 3
Add Decisions

3-3

Field Description

Delete Click to delete either the decision node or both the node and its
associated logic. Alternatively, click on a decision node, and select
Delete to remove it from the canvas.

Logic Change the decision node's logic type if required. For example, you can
add an empty decision to the canvas and change its logic from the
properties panel.

Note:

If you select a previously-implemented decision node in the
Name field and change the type in the Logic field, the content
of the previously-implemented node is overwritten.

Description Provide additional information, if any, for the decision node.

Question Add questions for the decision node.

Allowed Answers Add the possible answers for the decision node.

7. Click Close , or click to return to the Palette panel and add another decision.

Changes you make within the decision model are automatically saved and validated.

Define Decision Input and Type
An input data variable is a placeholder for information that is to be supplied to a decision model
when the model is invoked.

The supported data types for input data are text, number, boolean (true or false), date and
time, and duration. See Data Types. You can extend the built-in data types to define custom,
complex data types.

The following topics explain how to create input variables and custom data types.

• Create Input Data

• Define Custom Data Types

Create Input Data
Use built-in or custom data types to create input variables for a decision model.

To create an input data variable:

1. In the decision designer, click Palette on the sidebar.

2. On the Palette panel, select the Input Data element and drag it onto the canvas.

3. In the Input Properties panel that appears, enter the following information for the input data
node.

Chapter 3
Define Decision Input and Type

3-4

Field Description

Name Enter a unique name for the input node.

Note:

You can also assign an input data node the same name as a
previously-added node. Choose an existing name from the

drop-down list next to the Name field.

However, if you add a particular input data type to the canvas
and select the name of a different type of input from the drop-
down list, the input node's type changes.

Delete Click to delete either the input node or both the node and its
associated logic. Alternatively, click on the input node, and select
Delete to remove it from the canvas.

Mode Specify the data type for the input node. The default is set to Text. You can
select one of the built-in data types or choose a custom data type.

To identify the data type as a list, select the Make a list check box.

Note:

If you select a previously-defined variable in the Name field:

• The mode and other details are auto-populated.
• If you change the type in the Mode field, the content of the

previous-defined variable is overwritten.

Allowed Values You can optionally define allowed values to restrict the input variable to
enumerated values or ranges.

Type If you select Other Type in the Mode field, select a previously-defined
custom data type in this field.

Click Show type definition list to view all custom data types defined in
the decision model, or to create a new custom data type. See Define
Custom Data Types.

4. Click Close , or click to return to the Palette panel and add another input node.

Changes you make within the decision model are automatically saved and validated.

Define Custom Data Types
If built-in data types aren’t suitable for an input node in your decision model, you can create a
custom data type.

A custom data type can be a new complex data type or an alias of a built-in data type. Further,
to create a complex data type, you can use a combination of built-in data types or other
complex data types. While configuring an input node, you can assign a custom data type to it
by selecting Other Type in the Mode field. See Create Input Data.

Further, you can define a custom data type in one of the following ways:

• Manually define each custom data type. See Construct a Data Type.

Chapter 3
Define Decision Input and Type

3-5

• Import a JSON sample or schema containing custom data types. See Import a JSON
Schema.

Construct a Data Type
In the decision designer, you can create a custom data type from scratch.

1. Click Types on the sidebar.

2. In the Types panel, click Create new type .

3. In the New Type panel, enter the following information for the type definition.

Field Description

Name Enter a unique name for the type definition.

Mode Specify the data type for the definition. The default is set to Text. You can
select one of the built-in data types or choose to define a complex data
type.

To identify the data type as a list, select the Make a list check box.

Allowed Values If you select the mode as Text, Number, Date and Time, or Duration,
you can optionally define allowed values to restrict the data type definition
to enumerated values or ranges.

Define Type Attributes If you select the mode as Complex, define attributes within the type
definition. See Define Attributes for a Complex Data Type.

The new data type is now displayed in the Types panel, with options to edit or delete it.

4. If required, repeat the steps to add more data types.

Define Attributes for a Complex Data Type
To define a complex data type, you must specify its attributes.

While defining a custom data type, if you select Complex in the Mode field, the Define Type
Attributes section appears.

Define the attributes as follows.

1. Click in the Define Type Attributes section.

A default attribute is added to the table.

2. Click the attribute to select it, and then click Edit .

3. In the Edit Type Attribute panel, enter the following information for the attribute.

Field Description

Name Enter a unique name for the attribute.

Mode Specify the data type for the attribute. The default is set to Text. You can
select one of the built-in data types or choose a custom data type.

To identify the attribute as a list, select the Make a list check box.

Allowed Values You can optionally define allowed values to restrict the attribute definition
to enumerated values or ranges.

Type If you select Other Type in the Mode field, select a previously-defined
custom data type in this field.

Chapter 3
Define Decision Input and Type

3-6

4. Click Back to return to the type-definition panel.

5. To delete an attribute, click the attribute's row, and then click Delete .

Import a JSON Schema
To quickly create a custom data type, import a JSON sample or schema into your decision
model.

Note:

There are certain constraints associated with importing JSON schema files. See
JSON Schema Import Restrictions.

To import a JSON sample or schema containing a custom data type:

1. In the decision designer, click Types on the sidebar.

2. In the Types panel, click Import type .

3. From the drop-down menu, select one of the following options:

• Import from sample: Select to import a JSON sample.

• Import from schema: Select to import a JSON schema.

4. If you select Import from sample, perform these actions in the Create new type panel.

a. Enter a unique name for the type definition.

b. In the Sample section, enter a JSON sample containing the data type. Click Next.

c. Review the generated schema, and click Create.

5. If you select Import from schema, perform these actions in the Create new type panel.

a. Enter a unique name for the type definition.

b. In the Schema section, enter a valid JSON schema containing the data type. Click
Create.

The new data type is now displayed in the Types panel, with options to edit or delete it.

JSON Schema Import Restrictions
Review these restrictions before importing a JSON schema to create custom data types in your
decision model.

• The size of the JSON schema to import cannot exceed 200 KB.

• The JSON schema cannot have fields that exceed 20 levels of nesting.

• The field names in the JSON schema must meet these criteria:

– Start with a letter, underscore, or colon.

– Contain only letters, digits, underscores, hyphens, or periods.

• Oracle Integration supports the creation of data types exclusively from the following
keywords in a JSON schema:

– type

Chapter 3
Define Decision Input and Type

3-7

– format

– items

– enum

– definitions

– properties

– $ref

Keywords not in the list won't work, for example, anyOf, allOf, oneOf, pattern, required,
minLength, maxLength, and regex.

Connect Nodes on the Canvas
After adding decisions and defining input data, connect the nodes on the canvas to visually
represent the decision flow.

An input node can connect to multiple decision nodes. Decision nodes can have one-to-many
and many-to-one relationships between them.

To connect a node to another:

1. Click a node to display its connection arrow .

2. Drag the arrow to the node you want to connect.

3. Repeat these steps to connect all nodes, establishing the complete node graph for your
decision flow.

4. To delete a connection, double-click the arrow.

Configure a Decision's Logic
Configure the logic for a decision node by specifying how its output is derived from its input.

The following topics explain how to configure the logic for each decision type.

• Configure Empty Decisions

• Configure Expressions

• Configure Decision Tables

• Configure If / Else Statements

• Configure Functions

• Configure Lists

• Configure Contexts

• Configure Relations

• Configure Loops

Configure Empty Decisions
While planning your decision model, you can add empty decisions as placeholders.

To add an empty decision to the canvas, see Add Decisions.

Follow these steps to configure the decision's logic:

Chapter 3
Connect Nodes on the Canvas

3-8

1. Click the Empty decision node on the canvas, and then click Decision Properties on
the sidebar.

2. In the Decision Properties panel, update the Logic field to the required logic type.

3. Based on your selection, use the respective configuration procedure to define the logic.
See Configure a Decision's Logic.

Configure Expressions
An expression is a logical notation, defined according to the syntax of FEEL, that evaluates to
a single value. It may consist of one or more operands (such as literals, constants, or
variables) and zero or more operators.

In Oracle Integration, you can use input variables, outputs of other decisions, or built-in
functions to define an expression.

To add an expression decision to the canvas and define its properties, see Add Decisions.

Follow these steps to configure the decision's logic:

1. Double-click the expression node to access its logic editor.

Alternatively, select the node, and click on the sidebar.

2. Click the Enter Expression field to view a suggestion list, containing decision outputs,
variables, functions, and keywords.

3. Define an expression using the suggestions or write your own. Use the FEEL syntax. See
About Friendly Enough Expression Language.

4. To reuse the entire logic definition in another decision, cut or copy it and paste it into the
desired decision. Click in the header and select the required action.

Changes you make within the decision model are automatically saved and validated. Errors
and warnings, if any, are displayed in the editor. Click the error or warning icon to review and
fix them. See Review and Fix Errors in a Decision.

Here are a few examples of simple expressions:

• This expression evaluates an applicant's age. If the age property of the variable applicant
is less than 70, the output of the decision is true, else it is false.

• This expression calculates the area of a circle using a constant and an input variable,
radius.

Chapter 3
Configure a Decision's Logic

3-9

Configure Decision Tables
Decision tables are the notation of choice to model complex logic. Their tabular layout helps
you effectively document all the possible conditions and results of a problem.

To add a decision table to the canvas and define its properties, see Add Decisions.

To learn about different components of a decision table and how to configure them, see the
following topics:

• About Decision Table Elements

• Specify a Decision Table's Logic

About Decision Table Elements
Familiarize yourself with all the elements that constitute a decision table.

The following figure shows an example decision table with all its elements noted:

1. Row and column controls: Add rows and columns.

2. Input header cell: Contains the expression associated with a particular input column, and
lets you specify the allowed values for the column.

3. Hit policy cell: Displays the hit policy selected for the table.

4. Rule: A row within a table.

5. Input entry cell: Contains an input entry.

Chapter 3
Configure a Decision's Logic

3-10

6. Output entry cell: Contains an output entry.

7. Output header cell: Contains the name of the output column, and lets you specify the
allowed values for the column.

8. Add Annotation button: Adds a column for documenting or annotating decision rules.
Annotations aren’t considered as part of the decision logic; they serve as explanatory
notes for designers.

9. Cut, Copy, Paste, and Delete buttons: Cut, copy, paste, or delete rows and columns
within a decision table. However, you cannot:

• Copy a row into a column, and vice versa.

• Copy an input column into an output column or an annotation column, and vice versa.

10. Table Actions menu: Contains options to copy and paste an entire decision table.

Learn about each element in detail and how to use them to configure different parts of a
decision table. See the following topics:

• About Decision Table Input

• About Decision Table Output

• About Rules

• About Hit Policies

About Decision Table Input
An input (also referred to as input clause) to a decision table is represented as a column within
the table. It consists of an input header cell and several input entry cells. A decision table may
have multiple inputs.

• Input Header Cell

• Input Entry Cells

Input Header Cell

The input header cell contains the following two components:

Input expression

In combination with input entries, an input expression determines the value of a particular input
column. It can be a simple test expression, for example, Age>50. You can use input variables,
outputs of other decisions, or built-in functions to define input expressions.

In the decision designer, the expression language used for all expressions, including input
expressions, is friendly enough expression language (FEEL). See About Friendly Enough
Expression Language.

Allowed values

Using this component, you can specify the input entry mode (or type) and the associated
allowed-value constraints for an input column. Click the Mode icon in a header cell to select a
mode or specify allowed values.

However, for an input column, the mode of allowed values (or specific allowed values) are
automatically populated when you specify the input expression for the column. For example, if
an input expression returns Boolean values, allowed values for that column are populated as
true, false.

Chapter 3
Configure a Decision's Logic

3-11

The options you can choose from for changing the mode of allowed values are listed in the
following table. Note that, after you specify the input expression for a column, the type of
allowed values you can toggle between are limited.

Header Cell Modes Description

Auto Use this mode to determine allowed entries for the column based on
the input expression.

This is the default selection for a new input column.

Text Use this mode to restrict entries to text strings. Optionally, you can
specify a particular string or list of strings.

Number Use this mode to restrict entries to numbers. Optionally, you can specify
a particular number, limit, or range.

Date and Time Use this mode to restrict entries to date and time values. Optionally,
you can specify a particular date and time value, limit, or range.

Duration Use this mode to restrict entries to time duration values.

True or False Use this mode to permit only Boolean entries.

Other Type Use this mode to restrict entries to a given custom data type.

Any Use this mode to specify that there are no restrictions on the data type
of entries. Optionally, you can restrict entries to a given value or list of
values.

This is the default selection for an output column.

Advanced Use this mode to permit FEEL expressions and null values as entries.
Optionally, you can specify constraints using FEEL expressions.

Note:

The data type of input entry cells is determined by the data type of the input
expression. Make sure that the type of allowed values you supply is consistent with
the data type of the input column.

Input Entry Cells

In the input entry cells, you enter strings, numbers, Boolean values, date and time values, and
so on, based on the mode selected. If your input expression returns a finite set of values or if
you've provided specific allowed values, an auto-suggest menu appears when you click an
empty input entry cell. Use the suggestions to specify the input entries.

Note:

If the data type of an input entry does not match the data type of the column, or if the
input entry is not among the allowed values, an error is displayed in the decision
table editor.

Mode for input entries

Based on the input expression or allowed values you specify in the header cell, the mode for
entry cells is automatically selected. If required, click the Mode icon in a cell to switch to a

Chapter 3
Configure a Decision's Logic

3-12

different mode. The mode options available to switch are dependent on the data type of the
input expression or the allowed values you've specified.

The following table details all available modes for an input entry cell. Optionally, use the
constraint options available in the Mode editor.

Entry Cell Modes Description

Text Use this mode to enter strings. In this mode, you can enter a string as a
plain literal without double quotes.

Number Use this mode to enter numbers.

Date and Time Use this mode to enter date and time values.

Duration Use this mode to enter time duration values.

True or False Use this mode to enter Boolean values.

Any Use this mode to mark an entry as irrelevant (-).

Advanced Use this mode to enter advanced FEEL expressions and null values.

To learn more about the syntax and examples, see Grammar Rules.

About Decision Table Output
An output (also referred to as output clause) of a decision table is represented as a column
within the table. It consists of an output header cell and several output entry cells. A decision
table may have multiple outputs.

When you create a new decision table, a table with a single output column appears. To add
additional outputs, click the header cell of the existing output column, and click Add Column
After .

• Output Header Cell

• Output Entry Cells

Output Header Cell

The output header cell contains the following two components:

Output label

A decision table's output column is initially titled Output. You can change it to a name of your
choice.

Allowed values

Using this component, you can specify the output entry mode (or type) and the associated
allowed-value constraints for an output column. Click the Mode icon in a header cell to select a
mode or specify allowed values.

The modes available in the output header cell are identical to those available in the input
header cell. See Input Header Cell.

Output Entry Cells

In the output entry cells, you enter the decision table's results for different combinations of
input data.

Chapter 3
Configure a Decision's Logic

3-13

Based on the mode and allowed values you specify in the header cell, an auto-suggest menu
appears when you click an empty output entry cell. Use the suggestions to specify the output
entries.

Mode for output entries

Based on the mode or allowed values you specify in the output header cell, the mode for entry
cells is automatically selected. If required, click the Mode icon in a cell to switch to a different
mode. The mode options available to switch are dependent on the allowed values you've
specified.

An output entry cell offers the same modes as an input entry cell, excluding the Any mode. For
all available modes, see Input Entry Cells. Optionally, use the constraint options available in
the Mode editor.

The following figure shows an example decision table with two output columns. It determines
the home loan interest rates and maximum loan tenures based on whether the customer is
salaried and an existing client of the bank.

To reference a particular output of this multi-output table from another decision, use the
following format: DecisionName.OutputLabel; for example, LoanInterest.BaseRate.

About Rules
Rules are expressed as rows within a decision table. Every rule consists of one or more input
entries and a corresponding output entry.

Generally, a decision table consists of multiple rules. When the input data to the decision table
matches the input entries of a rule, the table's result contains the output entry of the rule.

Chapter 3
Configure a Decision's Logic

3-14

About Hit Policies
The hit policy of a decision table determines the table's output from the output entry cells of
matched rules. A rule is matched when the input data to the decision table matches the input
entries of a rule.

The hit policy cell displays the selected policy for the table. To locate the hit policy cell, see
About Decision Table Elements.

Based on the hit policy, decision tables are classified into the following categories:

1. Single Hit: A single-hit table returns the output of only one rule. In the single-hit category,
Oracle Integration supports the following hit policies:

• Unique (U): Only one of the rules can match.

• Any (A): Multiple rules can match, but all matching rules must have the same output.

• First (F): Multiple rules can match; the output of the first rule that matches is returned.

• Priority (P): Multiple rules can match; the output value that has the highest priority is
returned.

2. Multiple Hit: A multiple-hit table returns the output of multiple rules. In this category,
Oracle Integration supports the following hit policies:

• Collect (C): Multiple rules can match; outputs are returned in a list.

• Collect Sum (C+): Multiple rules can match; the sum of outputs is returned.

• Collect Min (C<): Multiple rules can match; the smallest output value is returned.

• Collect Max (C>): Multiple rules can match; the largest output value is returned.

• Collect Count (C#): Multiple rules can match; the count is returned.

When you create a new table, the Unique (U) hit policy is selected by default. To change the
policy, click the hit policy cell and choose from the available options in the Hit Policy drop-
down list.

Chapter 3
Configure a Decision's Logic

3-15

Note:

If rules within the table do not conform to the selected hit policy, a warning is
displayed in the decision table editor.

Hit Policy Examples

• Single Hit Unique
In a decision table with Unique hit policy, only one rule can match. All rules are
independent of each other, and no overlap is permitted. The decision table returns the
output of the rule that matches.

Here is a decision table created with the Unique hit policy. In this example, for any input
value of temperature, only one rule can match.

Chapter 3
Configure a Decision's Logic

3-16

• Single Hit Any
In a decision table with Any hit policy, multiple rules can match. Overlaps are permitted
only if the matching rules have the same output. The decision table returns the output of
any one of the matching rules. The hit policy is breached if matching rules have different
outputs.

Here is a decision table created with the Any hit policy. In this example, for service years of
11, the second and third rules match. This overlap is allowed because these rules have the
same output. The decision table returns the output of any one of these rules.

Chapter 3
Configure a Decision's Logic

3-17

• Single Hit First
In a decision table with First hit policy, multiple rules with different output entries can
match. The output of the lowest-numbered matching rule is the result of the table.

Here is a decision table created with the First hit policy. In this example, for service years
of 11, the second and third rules match. The decision table returns only the second rule’s
output.

Chapter 3
Configure a Decision's Logic

3-18

• Single Hit Priority
In a decision table with Priority hit policy, multiple rules with different output entries can
match. The priority of output values (in descending order) is specified as a list in the
Allowed Values cell of the output column. The decision table returns the output value that
has the highest priority among outputs of all matching rules.

Here is a decision table created with the Priority hit policy. In this example, the last two
rules match for an input age of 61. The decision table returns the output value that has the
highest priority among these rules, that is, 15. The priority order is defined in the Allowed
Values cell.

Chapter 3
Configure a Decision's Logic

3-19

• Multiple Hit Collect
In a decision table with Collect hit policy, multiple rules with different output entries can
match. The decision table returns outputs of all matching rules in a list.

Here is a decision table created with the Collect hit policy. In this example, two rules match
for service years of 11. The decision table returns output values of these rules in a list, that
is, 10 and 15.

Chapter 3
Configure a Decision's Logic

3-20

• Multiple Hit Collect (Sum)
In a decision table with Collect (Sum) hit policy, multiple rules with different output entries
can match. The decision table returns the sum of outputs of all matching rules.

Here is a decision table created with the Collect (Sum) hit policy. In this example, the last
two rules match for an input age of 61. The decision table returns the sum of output values
of these rules, that is, 25.

Chapter 3
Configure a Decision's Logic

3-21

• Multiple Hit Collect (Min)
In a decision table with Collect (Min) hit policy, multiple rules with different output entries
can match. The decision table returns the smallest output value among all matching rules.

Here is a decision table created with the Collect (Min) hit policy. In this example, the last
two rules match for an input age of 61. The decision table returns the smallest output value
among these rules, that is, 10.

Chapter 3
Configure a Decision's Logic

3-22

• Multiple Hit Collect (Max)
In a decision table with Collect (Max) hit policy, multiple rules with different output entries
can match. The decision table returns the largest output value among all matching rules.

Here is a decision table created with the Collect (Max) hit policy. In this example, the last
two rules match for an input age of 61. The decision table returns the largest output value
among these rules, that is, 15.

Chapter 3
Configure a Decision's Logic

3-23

• Multiple Hit Collect (Count)
In a decision table with Collect (Count) hit policy, multiple rules with different output entries
can match. The decision table returns the count of matching rules.

Here is a decision table created with the Collect (Count) hit policy. In this example, the last
two rules match for an input age of 61. The decision table returns the count of matching
rules, that is, 2.

Chapter 3
Configure a Decision's Logic

3-24

Specify a Decision Table's Logic
Follow these steps to configure logic for a decision table.

1. Double-click a decision table node on the canvas to access its logic editor.

Alternatively, select the node, and click on the sidebar.

2. Specify the hit policy for the table.

a. Click the hit policy cell.

b. In the dialog box that appears, select the required policy. Click Close .

3. Configure expressions for the input columns.

a. In the first input column, click the Enter Expression field to view a suggestion list,
containing decision outputs, input variables, functions, and keywords.

b. Define the expression for the column using the suggestions or write your own.

The Allowed Value cell is automatically populated based on the input expression.

c. Add additional input columns if necessary, and repeat the steps to enter expressions
for all input columns.

To add a new input column, click the header cell of an existing input column and then

click Add Column After .

4. Optionally, enter a name for the output column. It is initially titled Output. You can change
it to a name of your choice.

Chapter 3
Configure a Decision's Logic

3-25

5. Configure allowed values for the output column. Initially, the mode for allowed values is set
to Any .

a. In the output column's header cell, click Any .

b. In the dialog box that appears, perform the following actions:

i. In the Mode field, select the desired allowed value type.

ii. Indicate whether the allowed values should be a single value, a list, or a range.

iii. Specify the permitted values for cell entries of the output column.

iv. Click Close .

6. Add and configure rules (that is, rows of the table).

a. In row 1, double-click the first input entry cell, and select a value from the suggestion
list that appears.

The suggestion list contains allowed values for the column.

b. Similarly, enter values for all cells of the table.

c. To add additional rules (rows), click Add Row After .

7. For other actions that you can perform in the decision table editor, see About Decision
Table Elements.

Changes you make within the decision model are automatically saved and validated. Errors
and warnings, if any, are displayed in the editor. Click the error or warning icon to review and
fix them. See Review and Fix Errors in a Decision.

Configure If / Else Statements
An If / else expression is a logical notation that evaluates a test statement. It executes a
primary expression if the test is true and a secondary expression if the test is not true. You can
also introduce additional test statements using the Add Else If option.

To add an if / else decision to the canvas and define its properties, see Add Decisions.

Follow these steps to configure the decision's logic:

1. Double-click the if-else node to access its logic editor.

Alternatively, select the node, and click on the sidebar.

2. In the if expression field, enter a test expression. Click the field to view a suggestion list,
containing decision outputs, variables, functions, and keywords. You can use these
suggestions to define expressions or write your own using the FEEL syntax. See About
Friendly Enough Expression Language.

3. Configure the logic for the then and else fields. These fields have the expression notation
selected by default.

a. To change the logical notation for a field, click in its row, select Change Value, then
select a different notation from the available options.

b. Configure the logic for the selected notation.

4. Optionally, add additional test statements.

a. Click Add Else If.

New fields labeled else if and then are added above the else field.

Chapter 3
Configure a Decision's Logic

3-26

b. Configure the logic for the new fields. You can change the logical notation for the
newly-added then field.

c. To delete the else if field, click in its row, and click Delete.

5. To copy and paste data to or from a field, click in a field and select the required action.

6. To reuse the entire logic definition in another decision, cut or copy it and paste it into the
desired decision. Click in the header and select the required action.

Changes you make within the decision model are automatically saved and validated. Errors
and warnings, if any, are displayed in the editor. Click the error or warning icon to review and
fix them. See Review and Fix Errors in a Decision.

Here are a few examples of If / else decisions:

• In the following example, the input value of temperature determines the output of the If /
else decision:

• The following example uses an additional test statement, precipitation > 50, through the
else if field to determine the final output:

Chapter 3
Configure a Decision's Logic

3-27

Configure Functions
You can create functions to define specific operations that aren’t available through built-in
functions. In Oracle Integration, decisions created using the function notation return a value
only when invoked from another decision.

To successfully invoke a function from another decision, the number and type of parameters in
the function invocation must match those in the function definition.

Note:

Because a function decision by itself doesn’t return a result, it’s not an output
decision. Therefore, you can’t add function decisions to a decision service.

To add a function decision to the canvas and define its properties, see Add Decisions.

Follow these steps to configure the decision's logic:

1. Double-click the function node to access its logic editor.

Alternatively, select the node, and click on the sidebar.

2. Add parameters to the function.

a. Click Parameters (), and then click Add Parameter .

b. Enter a name for the parameter and select a data type for it. See Data Types.

c. Similarly, add as many parameters to your function as needed.

3. In the Body field, define the function's logic using the parameters you added.

a. Select the required notation for the Body field. Click , select Change Value, then
select a notation from the available options.

The field has the expression notation selected by default.

b. Configure the logic for the selected notation using the parameters defined.

Chapter 3
Configure a Decision's Logic

3-28

c. Additionally, you can move or replicate the Body field's contents between decisions.
Click and select the required action.

4. To reuse the entire logic definition (including parameters) in another decision, cut or copy it
and paste it into the desired decision. Click in the header and select the required action.

Changes you make within the decision model are automatically saved and validated. Errors
and warnings, if any, are displayed in the editor. Click the error or warning icon to review and
fix them. See Review and Fix Errors in a Decision.

The following example demonstrates a function implementation in Oracle Integration. Here, the
function decision contains the logic for regular discounts in the form of a decision table. An
output decision invokes the function decision to calculate the special discount percentage.

A function decision

An output decision invoking the function

Chapter 3
Configure a Decision's Logic

3-29

Configure Lists
A list notation is a vertical list of elements, where each element is an independent logical
notation. The output of a list notation contains outputs of all its elements. You can also invoke
the output of a particular list element from another decision.

To add a list decision to the canvas and define its properties, see Add Decisions.

Follow these steps to configure the decision's logic:

1. Double-click the list node to access its logic editor.

Alternatively, select the node, and click on the sidebar.

2. Click Add item to create a new list item.

An item is created with the expression notation selected by default.

3. To change the logical notation for the list item, click , select Change Value, then select a
different notation from the available options.

Note:

If you add a function as one of the list items, the list notation as a whole doesn’t
return an output. However, you can invoke results of individual list items
throughout the decision model.

4. Configure the logic for the list item according to the selected notation. You can use input
variables or built-in functions to define the logic.

5. Similarly, add as many list items to your decision as needed.

6. Additionally, you can move or replicate a logical notation and its contents between list
items. Click in a list item's row and select the required action.

7. To reuse the entire logic definition in another decision, cut or copy it and paste it into the
desired decision. Click in the header and select the required action.

8. To delete a list item, click in its row and click Delete.

Changes you make within the decision model are automatically saved and validated. Errors
and warnings, if any, are displayed in the editor. Click the error or warning icon to review and
fix them. See Review and Fix Errors in a Decision.

The following example is a list of simple expressions, containing prime numbers that are less
than 10.

Chapter 3
Configure a Decision's Logic

3-30

According to the FEEL syntax, you can also define horizontal lists in expression fields across
all decision types. For example, a list of all prime numbers less than 10 can be defined as:
[2,3,5,7].

In a list of n elements, use <list_name>[n] to invoke the nth element from the beginning of the
list, and use <list_name>[-n] to invoke the nth element from the end of the list. In this example,
to invoke the list entry of 2, you can either use Prime Numbers[1] or Prime Numbers[-4].

Additionally, you can use built-in functions on a list decision within other decisions. For
example, the following expression decision returns the sum of all items in the Prime Numbers
decision.

Chapter 3
Configure a Decision's Logic

3-31

Configure Contexts
A context is a collection of one or more key-value pairs with an optional result field. Each pair
is called a context entry. The key attribute within a context entry acts as an identifier to its
corresponding value attribute.

You can use a context to collectively document all decision logic related to a particular scenario
or entity. Say you need to determine the loan eligibility of an applicant, based on the applicant’s
net monthly income and expense. For this purpose, you can create a decision named Loan
Eligibility using the context notation and add expressions or logic for gross monthly income,
monthly expense, and net monthly income. Then, you can add a result field (within the context)
that evaluates the net income and expense for the loan eligibility, or you can choose to
evaluate these within another decision.

Without a result field, a context decision returns multiple key-value pairs as output. In this case,
you can invoke any context entry from another decision. If you add a result field, the output of
this field is displayed as the context’s output. Here, you can only invoke the context’s result
from another decision.

To add a context decision to the canvas and define its properties, see Add Decisions.

Follow these steps to configure the decision's logic:

1. Double-click the context node to access its logic editor.

Alternatively, select the node, and click on the sidebar.

2. Add entries to the context.

a. Click Add Entry to create a new context entry. A key-value pair is created.

b. In the Key field, enter a unique name or label.

c. Configure the logic for the Expression (value) field. This field has the expression
notation selected by default.

i. To change the logical notation for the value field, click in its row, select Change
Value, then select a different notation from the available options.

Note:

If you add a function as one of the context entries, the context as a whole
doesn’t return a result. However, you can invoke results of individual
context entries throughout the decision model.

ii. Configure the logic for the selected notation. You can use input variables or built-in
functions to define the logic.

d. Similarly, add as many entries to your context as needed.

e. Use the Drag control to reorder the context entries.

3. Optionally, add a result for the context.

a. Click Add Result.

A result field is created with the expression notation selected by default.

b. To change the logical notation for the result field, click in its row, click Change
Value, then select a different notation from the available options.

Chapter 3
Configure a Decision's Logic

3-32

c. Configure the logic for the selected notation.

4. Additionally, you can move or replicate a logical notation and its contents between fields.
Click in a field and select the required action.

5. To reuse the entire logic definition in another decision, cut or copy it and paste it into the
desired decision. Click in the header and select the required action.

6. To delete a field, click in its row and click Delete.

Changes you make within the decision model are automatically saved and validated. Errors
and warnings, if any, are displayed in the editor. Click the error or warning icon to review and
fix them. See Review and Fix Errors in a Decision.

A context decision with a result

The following image shows a context with a result field that determines the loan eligibility of
applicants.

The output of the result field is the context’s output. In this case, the context returns a true or
false regarding an applicant’s loan eligibility. You can reference the context’s result in other
decisions within the model using the context name (for example, Loan Eligibility).

A context decision without a result

The following image shows a context without a result field and an expression decision
referencing multiple context entries to determine the loan eligibility of applicants.

The output of this context is a list containing results of all three context entries. To reference a
particular context entry from another decision, use the format ContextName.EntryKey (for
example, Income.Expenses). Within a context, an entry can only reference entries that are
above it.

• A context without a result:

Chapter 3
Configure a Decision's Logic

3-33

• An output decision calling context entries:

Configure Relations
You can use a relation notation as a convenient shorthand to represent multiple contexts.

A relation decision is a list of similar contexts in a pivoted or transposed layout. In other words,
each column name is the common key attribute for all cell entries under it, which essentially
are the value attributes. For details about contexts and key-value pairs, see Configure
Contexts. In a relation decision, each cell entry is an independent logical notation.

In the output of a relation decision, outputs of all contexts within it are clearly distinguished.
You can also invoke the output of a particular context or context entry from another decision.

To add a relation decision to the canvas and define its properties, see Add Decisions.

Follow these steps to configure the decision's logic:

1. Double-click the relation node to access its logic editor.

Alternatively, select the node, and click on the sidebar.

2. Click Add Column After or Add Row After to add additional rows or columns.

Chapter 3
Configure a Decision's Logic

3-34

3. Name each column in the header row.

4. Enter the data in the cells of the rows below. All cells have the expression notation
selected by default.

a. To change the logical notation for a cell, click the cell, click above the table on the
right, then Change Value, and then select a different notation from the available
options.

Note:

• You cannot insert a decision table within a relation.

• If you add a function as one of the cell entries, the relation as a whole
doesn’t return a result. However, you can invoke results of individual cell
entries or contexts throughout the decision model.

b. Configure the logic for the selected notation within each cell.

5. Additionally, you can move or replicate the data of an entire row to another row, or a
column to another column. Click to select a row or column, click above the table on the
right, and select the required action.

6. To reuse the entire logic definition in another decision, cut or copy it and paste it into the
desired decision. Click in the header and select the required action.

7. To delete a row or column, click it, and then click Delete .

Changes you make within the decision model are automatically saved and validated. Errors
and warnings, if any, are displayed in the editor. Click the error or warning icon to review and
fix them. See Review and Fix Errors in a Decision.

The following image shows a relation decision that contains the inventory information for a
phone brand:

Similar to list notations, use either Phone Inventory[1] or Phone Inventory[-3] to access the
entire context related to black-colored phones. To access all cell entries of a particular column,

Chapter 3
Configure a Decision's Logic

3-35

use the relation name in combination with the column name, for example, Phone
Inventory.Price returns all entries of the Price column. To access a particular context entry (for
example, “700”), use Phone Inventory.Price[3], Phone Inventory.Price[-1], or Phone
Inventory[Color="Rose Gold"].Price.

The following image shows the result of the entire relation decision, which has each context
listed separately:

Configure Loops
Create loops to iterate over lists or arrays. Using the loop logical notation, you can create three
different types of loops, namely For, Some, and Every.

• For: Iterates over a list and returns an array or a list containing the results.

• Some: Checks if at least one list item satisfies the test condition defined by an expression
and returns a Boolean value.

• Every: Checks if every list item satisfies the test condition defined by an expression and
returns a Boolean value.

To add a loop decision to the canvas and define its properties, see Add Decisions.

Follow these steps to configure the decision's logic:

1. Double-click the loop node to access its logic editor.

Alternatively, select the node, and click on the sidebar.

2. Configure a For loop.

a. In the Operation column, choose For in the drop-down menu. In the corresponding
expression field, enter the loop variable.

Chapter 3
Configure a Decision's Logic

3-36

b. In the expression field of the in row, enter the list or array over which to iterate. Click
the field to view a suggestion list, containing decision outputs, variables, functions, and
keywords. You can use these suggestions to define expressions or write your own
using the FEEL syntax. See About Friendly Enough Expression Language.

c. Configure the logic for the return field. The field has the expression notation selected
by default.

i. To change the logical notation for the field, click in its row, select Change
Value, then select a different notation from the available options.

ii. Configure the logic that calculates and returns the result.

d. Optionally, add an additional condition.

i. Click Add Condition.
A new field labeled where is added above the return field.

ii. Enter the expression for the where field.

iii. To delete the where field, click in its row, and click Delete.

3. Configure a Some or Every loop.

a. In the Operation column, choose Some or Every from the drop-down menu. In the
corresponding expression field, enter the loop variable.

b. In the expression field of the in row, enter the list or array over which to iterate. Click
the field to view a suggestion list, containing decision outputs, variables, functions, and
keywords. You can use these suggestions to define expressions or write your own
using the FEEL syntax. See About Friendly Enough Expression Language.

c. Configure the logic for the satisfies field. The field has the expression notation
selected by default.

i. To change the logical notation for the field, click in its row, select Change
Value, then select a different notation from the available options.

ii. Enter a test expression or logic.

4. To copy and paste data to or from a field, click in a field and select the required action.

5. To reuse the entire logic definition in another decision, cut or copy it and paste it into the
desired decision. Click in the header and select the required action.

Changes you make within the decision model are automatically saved and validated. Errors
and warnings, if any, are displayed in the editor. Click the error or warning icon to review and
fix them. See Review and Fix Errors in a Decision.

• The following example shows a simple For loop that returns the squares of list items:

Chapter 3
Configure a Decision's Logic

3-37

• The following decision contains a Some loop that checks if at least one element in the list
is greater than 50:

• The following decision contains an Every loop that checks if every element in the list is
greater than 50:

Chapter 3
Configure a Decision's Logic

3-38

Review and Fix Errors in a Decision
Check each decision in your decision model for errors and warnings. Resolve all issues before
testing and activating the model.

If a decision node contains errors, an error icon appears on the node.

To view and resolve the errors or warnings in a decision:

1. Double-click the node to access its logic editor. Alternatively, select the node, and click
on the sidebar.

In the editor, the total number of errors and warnings are displayed in the top-right corner.

2. To view all errors and warnings, click the error or warning icon. Additionally, for decision
tables, you can see where the errors or warnings occur in the table.

Here's an image showing the errors and warnings for an empty decision table.

Chapter 3
Review and Fix Errors in a Decision

3-39

Image annotation details:

1: The error and warning icons, showing their respective counts.

2: The list of errors and warnings that appears when you click the error or warning icon.

3: The red marker that indicates an error in a specific cell of a decision table.

4: The error information that appears when you mouse over the red marker.

3. Review and fix all errors in each decision of your model. Afterward, you can test and
activate the model.

Chapter 3
Review and Fix Errors in a Decision

3-40

4
Test and Activate Decision Models

After configuring a decision model, test and activate it. You can then add it to an integration.

Topics:

• Test a Decision Model

• Expose Decisions as Services

• Activate a Decision Model

• Add a Decision Model to an Integration

Test a Decision Model
Test your decision model to ensure it works as expected.

1. In the decision designer, click Test Decision Model on the sidebar.

2. In the Test Decision Model panel:

a. Enter the input data manually.

b. Or, use the Mode toggle to switch modes, and enter the input data as a JSON
sample.

c. Click Start Test.

The panel displays the decision model's result.

3. To view the outcome of a specific decision in the model, click the decision's name on the
left.

4. To repeat the test, click Go Back.

Expose Decisions as Services
To call your decision model in integrations, you must add at least one decision service in the
model. A decision service exposes one or more decisions of your model as public REST APIs.

A decision service consists of a set of input data and a set of decisions from a decision model.

Note:

Make sure your decisions are error-free before creating a decision service. Errors in
the decisions propagate to the service you create, and appear in the Services panel.
To fix errors, see Review and Fix Errors in a Decision.

Follow these steps to add a service to your decision model.

1. In the decision designer, click Services on the sidebar.

4-1

2. In the Services panel, click Add new service .

3. In the Add Decision Service panel, enter a name for the decision service and click OK.

The service is created and added to the Services panel.

4. Click the service's name to expand it and enter the necessary data.

a. Click the Output Decisions field, and select the decision to expose through the
service.

b. Similarly, click the Input Data field, and select the input data to expose through the
service.

You can add multiple decisions and input data items to a service.

5. To delete a service, click next to the service name and select Delete.

Here's an example of a decision service's endpoint URL. You can view it in the integration
designer's configuration wizard. See Add a Decision Model to an Integration.

https://<base_url>/decision/api/v1/decision-models/<project_name>-
<decision_model_name>/versions/<decision_model_version>/active/definition/
decision-services/<decision_service_name>

Where:

• base_url: is the base URL of your Oracle Integration instance.

• project_name: is the name of your project in Oracle Integration.

• decision_model_name: is the name of your decision model.

• decision_model_version: is the version of your decision model.

• decision_service_name: is the name of your decision service.

Activate a Decision Model
After configuring a decision model, activate it to use it in an integration.

Prerequisites

Before you activate a decision model, complete the following tasks:

• Fix all errors in your decision model. See Review and Fix Errors in a Decision.

• Create at least one decision service. See Expose Decisions as Services.

Note:

After you complete these tasks, the decision model's state changes from Draft to
Configured. You can verify this on the Decision page of your project. You can
activate a decision model only when it is in the Configured state.

Activate a Decision Model

1. In your project, click Decision in the left toolbar to view the list of decision models.

Chapter 4
Activate a Decision Model

4-2

2. In the Decisions box, point to the configured decision model you want to activate, click ,
and click Activate.

A notification message confirms the successful activation of the decision model. The model's
state changes to Active.

Note:

Within a major version family (for example, 1.x.x), only one decision model can be
active at a time. If version 1.0.0 is active and you activate version 1.0.1, the system
automatically deactivates 1.0.0 and sets 1.0.1 as active. However, multiple versions
of a model can be active simultaneously, provided they belong to different major-
version families (for example, 2.x.x or 3.x.x). For more information on versioning, see
Update a Decision Model.

Add a Decision Model to an Integration
After activating a decision model, add it to your integration at the appropriate point.

You must have created an integration in your project before executing the following steps. To
create an integration, see Create Integrations in Using Integrations in Oracle Integration 3.

1. In your project, click Integration in the left toolbar to view the list of integrations.

2. In the Integrations box, point to the required integration, click , and click Edit.

3. In the integration designer, add the decision model at the required point in your integration.

a. Click Actions to open the Actions panel.

b. From the Call section on the panel, drag the Decision element and drop it onto the
sign that appears when you hover over a connection arrow between elements.

Alternatively, hover over a connection arrow, click the sign that appears, and select the
Decision element from the dialog box.

Note:

If you have not enabled Process Automation for your Oracle Integration instance,
the Decision element is disabled in the integration designer. To enable Process
Automation for your service instance, see How to Model Decisions in Oracle
Integration?.

4. In the Decision Service Configuration Wizard that appears, configure the decision element.

a. On the Basic Info page, provide a unique name and description for the element. Click
Continue.

b. On the Configuration page, enter the following data:

i. Select the decision model to associate with the element.

Chapter 4
Add a Decision Model to an Integration

4-3

Note:

A decision model's name appears in the options only if you have
activated it previously.

ii. Specify the decision model version to use.

iii. Specify the decision service to use.

iv. Click Continue.

c. On the Summary page, review the data you have entered, and click Finish.

You've successfully added and configured a decision element. Now, a corresponding map
element appears on the canvas. To continue configuring your integration, see Map Data in
Using the Oracle Mapper with Oracle Integration 3 and Create Application Integrations in Using
Integrations in Oracle Integration 3.

Chapter 4
Add a Decision Model to an Integration

4-4

5
Manage Decision Models

Effectively manage your existing decision models in your project. Version, clone, edit, or delete
models to keep your workspace up-to-date and organized.

Topics:

• Update a Decision Model

• Clone a Decision Model

• Edit or View a Decision Model

• Deactivate a Decision Model

• Delete a Decision Model

Update a Decision Model
You can update a decision model for various purposes, according to the semantic versioning
rules.

To understand semantic versionining, see Semantic Versioning Rules.

To ensure seamless integration, updating the minor or patch versions of a decision model does
not disrupt the integration flow that references the model. The integration automatically
incorporates these updates when you activate the updated model.

However, for a major version revision of a decision model, you must manually update the
integration to use the new version.

Note:

After versioning a decision model, you must activate the new version for the
integration to pick up the changes. There are limitations regarding the concurrent
activation of versions. See Activate a Decision Model.

Versioning decision models serves the following purposes:

• Change tracking: Allows maintaining a history of changes to your decision model to
review previous versions or revert when necessary.

• Support for multiple scenarios: Enables using different versions to address varying
business automation scenarios.

• Incremental development: Facilitates updating your decision model incrementally as your
business requirements evolve over time.

To version a decision model:

1. In your project, click Decision in the left toolbar to view the list of decision models.

2. In the Decisions box, point to the decision model you want to version, click , and click
Create new version.

5-1

3. In the Create new version panel:

a. Update the Version field with an appropriate number, and add a description if
necessary.

b. Click Version.

A new version of the decision model is created and listed in the Decisions box.

Semantic Versioning Rules
Oracle enforces semantic versioning rules, also known as SemVer, for all decision models.

With semantic versioning, you increment the version numbers in a meaningful and controlled
way. A version number provides a quick explanation of the types of changes that are in the
version.

Oracle Integration supports the following types of updates to decision models.

Type of update Example Guidance

Major version revision 1.2.3 to 2.0.0 The change adds a major new feature and has the
potential to break backward compatibility.

Minor version revision 1.2.3 to 1.3.0 The change adds minor new features while
maintaining backward compatibility.

Patch version revision 1.2.3 to 1.2.4 The change improves quality while maintaining
backward compatibility.

Clone a Decision Model
Clone a decision model to quickly create a base for another use case or to try out changes.

1. In your project, click Decision in the left toolbar to view the list of decision models.

2. In the Decisions box, point to the decision model you want to clone, click , and click
Clone.

3. In the Clone decision panel:

a. Enter a name and description for the model. Update the version if necessary.

b. Click Clone.

A new decision model is created and listed in the Decisions box.

Deactivate a Decision Model
In some cases, the system automatically deactivates decision models, but in other cases, you
need to deactivate them manually when required.

Within a major version family (for example, 1.x.x), only one decision model can be active at a
time. If version 1.0.0 is active and you activate version 1.0.1, the system automatically
deactivates 1.0.0 and sets 1.0.1 as active.

However, you may require to manually deactivate a decision model in specific scenarios, such
as:

• Error mitigation: In case of unforeseen errors, deactivation is a quick way to prevent a
faulty model from impacting business processes. You can edit the model to correct errors
and reactivate it.

Chapter 5
Clone a Decision Model

5-2

• Model replacement: When a new, major version of a decision model is ready for
production, you may need to retire the older version.

• Maintenance: During system maintenance or troubleshooting, you may pause a decision
model to prevent errors from system unavailability.

To deactivate a decision model:

1. In your project, click Decision in the left toolbar to view the list of decision models.

2. In the Decisions box, point to the decision model you want to deactivate, click , and click
Deactivate.

3. In the Deactivate decision dialog, click Deactivate.

A confirmation message appears, indicating that the decision model has been submitted for
deactivation.

Edit or View a Decision Model
You can edit a decision model at any time when it's in the Draft or Configured state. However,
a decision model in the Active state is view-only. To edit an active decision model, you must
either deactivate or version it.

To edit or view a decision model:

1. In your project, click Decision in the left toolbar to view the list of decision models.

2. In the Decisions box, point to the decision model you want to edit or view, click , and
click Edit or View.

The decision designer opens in the edit or view mode, based on what you chose.

Delete a Decision Model
If you don't need a decision model anymore, you can delete it from your project.

You may require to delete a decision model in the following scenarios:

• End of lifecycle: Delete models that are outdated and no longer relevant to current
business processes or technology.

• Project organization and cleanup: Clear out unused models to maintain a clean and
efficient project workspace.

• Presence of duplicate or incorrect models: Delete incorrectly setup models or
redundant models to optimize model management.

To delete a decision model:

1. In your project, click Decision in the left toolbar to view the list of decision models.

2. In the Decisions box, point to the decision model you want to delete, click , and click
Delete.

3. In the Delete decision dialog, click Delete.

Chapter 5
Edit or View a Decision Model

5-3

Note:

Deleting a decision model that is currently used in one or more integrations does not
delete its references within those integrations. This may result in runtime errors.

Chapter 5
Delete a Decision Model

5-4

6
Troubleshoot Decisions

Find solutions for problems with decision models, decision logic, or services.

Topics:

• The Option to Activate a Decision Model Is Not Displayed

• Unable to Add a Decision Model to an Integration

• An Input Used in a Decision Is Not Recognized

The Option to Activate a Decision Model Is Not Displayed
If you are unable to view the option to activate your decision model, you haven't fully
configured it.

The Problem

On the Decision page of your project, when you click on a decision model, the Activate
option is not available.

Possible Causes

The decision model is in the Draft state due to either of the following reasons:

• There are validation errors in the model.

• No decision service exists in the model.

Solutions

Perform the following tasks to change the decision model's state from Draft to Configured and
view the Activate option.

• Fix all errors in your decision model. See Review and Fix Errors in a Decision.

• Create at least one decision service. See Expose Decisions as Services.

Unable to Add a Decision Model to an Integration
If you are unable to add a decision model to an integration, you may have not activated the
model.

The Problem

In the integration designer, when you add a Decision element at the required point in your
integration, the Decision Service Configuration Wizard opens. In the wizard, the required
decision model is not available to select.

Possible Cause

The decision model you want to add to your integration is not active.

6-1

Solution

Activate the decision model to make it available for selection in the configuration wizard of the
integration designer. See Activate a Decision Model.

An Input Used in a Decision Is Not Recognized
If you encounter a Name not found error within a decision, you may be using an undefined
input.

The Problem

Within a decision, when you use an input variable or an output of another decision in a field,
the Name not found error is displayed.

Possible Causes

• You have not created the required input variable.

• You have not connected the nodes on the canvas to represent the decision flow.

Solutions

• Create the necessary variable or decision you intend to use as an input. See Create Input
Data or Add Decisions.

• Connect the nodes on the canvas to establish the complete node graph for your decision
flow. See Connect Nodes on the Canvas.

Chapter 6
An Input Used in a Decision Is Not Recognized

6-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Learn About Decision Modeling
	What Are Decisions?
	About Decision Model Notation
	About Friendly Enough Expression Language
	Data Types
	Grammar Rules
	Built-In Functions
	String Functions
	List Functions
	Numeric Functions
	Boolean Functions
	Conversion Functions

	List Iteration Expressions Using Keywords
	Date, Time, and Duration Functions
	Conversion Examples
	Arithmetic Operation Examples
	Comparison Operation Examples

	2 Learn About Decisions in Oracle Integration
	How to Model Decisions in Oracle Integration?
	Understand the Decision Designer
	Decision Requirement Diagrams
	Decision Designer Components

	Workflow for Using Decision Models in Oracle Integration
	Best Practices for Modeling Decisions

	3 Design Decision Models
	Create Decision Models
	Create a New Decision Model
	Import a Decision Model

	Add Decisions
	Define Decision Input and Type
	Create Input Data
	Define Custom Data Types
	Construct a Data Type
	Define Attributes for a Complex Data Type

	Import a JSON Schema
	JSON Schema Import Restrictions

	Connect Nodes on the Canvas
	Configure a Decision's Logic
	Configure Empty Decisions
	Configure Expressions
	Configure Decision Tables
	About Decision Table Elements
	About Decision Table Input
	About Decision Table Output
	About Rules
	About Hit Policies

	Specify a Decision Table's Logic

	Configure If / Else Statements
	Configure Functions
	Configure Lists
	Configure Contexts
	Configure Relations
	Configure Loops

	Review and Fix Errors in a Decision

	4 Test and Activate Decision Models
	Test a Decision Model
	Expose Decisions as Services
	Activate a Decision Model
	Add a Decision Model to an Integration

	5 Manage Decision Models
	Update a Decision Model
	Semantic Versioning Rules

	Clone a Decision Model
	Deactivate a Decision Model
	Edit or View a Decision Model
	Delete a Decision Model

	6 Troubleshoot Decisions
	The Option to Activate a Decision Model Is Not Displayed
	Unable to Add a Decision Model to an Integration
	An Input Used in a Decision Is Not Recognized

