
Oracle® Cloud
Oracle Visual Builder Page Model Guide

Release 24.10
G12356-02
October 2024

Oracle Cloud Oracle Visual Builder Page Model Guide, Release 24.10

G12356-02

Copyright © 2023, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Related Resources vii

Conventions viii

1 Understand the Page Model

Variables 1-1

Object Variables 1-1

Array Variables 1-2

Metadata Variables 1-3

Built-in Variables 1-3

Types 1-6

Built-in Extended Types 1-8

Service Data Provider 1-9

ServiceDataProviderFactory 1-66

Multi-Service Data Provider 1-67

MultiServiceDataProviderFactory 1-85

Array Data Provider 2 1-86

Array Data Provider (Legacy) 1-92

Custom Extended Types 1-98

InstanceFactory Types 1-102

JET Dynamic UI Variable Types 1-107

Default Values 1-109

Expressions in Default Values 1-111

Input Variables 1-111

Persisted Variables 1-112

rateLimit Variable Property 1-112

Constants 1-113

JavaScript Action Chains 1-115

JavaScript Actions 1-115

Assign Variable 1-115

iii

Call Action Chain 1-115

Call Component 1-116

Call Function 1-116

Call REST 1-117

Call Variable 1-123

Code 1-124

Fire Data Provider Event 1-124

Fire Event 1-129

Fire Notification 1-130

For Each 1-131

Get Dirty Data Status 1-132

Get Location 1-133

If 1-134

Login 1-134

Logout 1-135

Navigate Back 1-135

Navigate To Application 1-135

Navigate To Flow 1-137

Navigate To Page 1-137

Open URL 1-138

Reset Dirty Data Status 1-139

Reset Variables 1-139

Return 1-140

Run in Parallel 1-140

Scan Barcode 1-142

Share 1-143

Switch 1-143

Try-Catch-Finally 1-144

JSON Action Chains 1-144

JSON Actions 1-144

Assign Variables Action 1-144

Call Action Chain Action 1-147

Call Component Action 1-148

Call Function Action 1-149

Call REST Action 1-149

Call Variable Method Action 1-155

EditorUrl Action 1-156

Fire Event Action 1-157

Fire Data Provider Event Action 1-158

Fire Notification Event Action 1-162

ForEach Action 1-162

Get Location Action 1-164

iv

If Action 1-166

Login Action 1-166

Logout Action 1-167

Navigate Action 1-167

Navigate Back Action 1-171

Open URL Action 1-171

Reset Variables Action 1-172

Return Action 1-173

Run in Parallel / Fork Action 1-174

Scan Barcode Action 1-175

Share Action 1-176

Switch Action 1-177

Take Photo Action 1-177

Transform Chart Data Action (Deprecated) 1-179

Web Share Action 1-183

Action Chain Properties 1-184

Variable References in Action Chains 1-184

Action Chain Variables 1-186

Action Results 1-186

Flow 1-187

Flow Properties 1-188

Using Flows to Create Single-Page Applications 1-188

Represent the Flow State in the URL 1-189

Navigating Between Flows and Pages 1-190

Flow Lifecycle 1-190

Load Flow Resources 1-190

Use Flows Not in the Flows Folder 1-190

Shell Flow 1-191

Fragments 1-192

Define a Fragment Component 1-192

Fragment Scopes and Namespaces 1-194

Define Fragment Input Parameters 1-195

Write Back a Fragment Variable Value to the Parent Container 1-197

Deferred Rendering of a Fragment 1-198

Fragment Events 1-198

Referencing Fragments in Extensions 1-204

Extending a Fragment 1-208

Fragment Patterns 1-209

Components 1-212

HTML Source 1-212

VB Switcher Component 1-212

VB Switcher Navigation 1-213

v

VB Switcher Usage and Properties 1-213

VB Switcher Methods 1-214

VB Switcher Events 1-215

VB Switcher Examples 1-215

Imports 1-217

Import Custom Components 1-217

Import Custom Modules 1-217

Import Modules Using requireJS Path Mapping 1-217

Import Modules Using a Global Functions Resource Path 1-219

Import Custom CSS 1-230

Security 1-232

Security Configuration 1-232

Security Provider 1-233

User Information 1-234

Error Handling 1-234

Helper Utilities 1-235

REST Helper 1-235

Module Function Event Builder 1-238

Security Helper 1-239

Events 1-239

Declared Events 1-241

Lifecycle (Page and Flow) Events 1-242

Component Events 1-245

Fragment Events 1-247

Custom Events 1-247

System Events 1-248

Event Behavior 1-249

Variable ‘onValueChanged’ Events 1-250

2 Related Topics

Declarative RequireJS Path Mapping 2-1

Service Resolution 2-1

Service Transforms 2-6

Metadata Transforms 2-10

Translations 2-12

vi

Preface

Oracle Visual Builder Page Model Reference describes the structure and components used in
the Oracle Visual Builder page model.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
Oracle Visual Builder Page Model Reference is intended for users who want to understand the
structure and components used in visual application pages and application extensions.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://support.oracle.com/portal/ or visit Oracle
Accessibility Learning and Support if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

vii

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

• Oracle Public Cloud

http://cloud.oracle.com
• Anatomy of Visual Applications in Building Responsive Applications with Visual Builder

Studio

• What Is Oracle Visual Builder Studio? in Using Visual Builder Studio

Conventions
The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

http://cloud.oracle.com

1
Understand the Page Model

The page model consists of a JSON file. To work with the page model by hand, you should
understand the structure and components of this JSON.

Applications built using Visual Builder typically have multiple flows, each containing multiple
pages. Every application has a default flow, and every flow has a default page, and pages
are what users see and interact with.

A Visual Builder page is backed by a model. This guide describes how to work with the
metadata in the model's JSON file. Other containers like, application, flow, page, fragment
and layout, also each use a similar model.

Note:

While most metadata defined in the page model applies to pages and other container
types (for example, variables are supported in every container), the level of support
for specific metadata may differ between container types. For details on the
differences, refer to the specific container types.

Variables
Variables are the basic blocks of state management. Components and expressions in
applications are bound to variables, and the variables and their structure must be defined to
ensure that the design time and runtime work properly.

A variable must have a name and a type. Variables are in the variables namespace.

A variable can send an event when it changes. To add an event handler to a value change
event, specify it in the 'onValueChanged' property of the variable. For details, see Variable
‘onValueChanged’ Events. See rateLimit Variable Property for information on setting a timeout
value for the 'onValueChanged' property.

Object Variables
Variables may also be objects that contain properties.

In this case, the type of the variable should be an object that defines what properties are
allowed in that object.

The following variable in JavaScript:

let nameOfVariable = {
 foo: "someString",
 bar: 10
}

could be defined like this:

1-1

"nameOfVariable": {
 "type": {
 "foo": "string",
 "bar": "number"
 }
}

Example 1-1 An Object Containing Another Object

This JavaScript object

let otherObject = {
 foo: {
 name: "myName"
 },
 bar: 10
}

can be described by the following structure:

"otherObject": {
 "type": {
 "foo": {
 "name": "string",
 },
 "bar": "number"
 }
}

Array Variables
Variables can represent arrays.

Arrays are defined the same way as objects. However, in this case, the object type is inside an
array.

Arrays can have nested objects or arrays as well, and object types can also contain nested
arrays.

Example 1-2 An Array Represented by a Variable

A JavaScript array

let myArray = [
 {
 foo: "someString",
 bar: 10
 },
 {
 foo: "someOtherString",
 bar: 11
 }
]

can be represented like this:

"nameOfVariable": {
 "type": [
 {
 "foo": "string",
 "bar": "number"
 }

Chapter 1
Variables

1-2

]
}

Example 1-3 An Array of Strings

"nameOfVariable": {
 "type": "string[]"
}

Metadata Variables
Metadata variables are variables intended to represent metadata in specific cases. They are
declared in a different "metadata" namespace (regular variables are in the "variables"
namespace/declaration), and have slightly different behavior than regular variables. Metadata
variables:

• do not have a "persisted" property

• do not have an "input" property (and cannot be used on a URL for navigation input, for
example).

• are initialized after "variables" variables, and as such, "variables" declarations cannot have
expressions dependent on their values.

• only specific types are supported; these are unique to "metadata" variables.

For a description of the "metadata" declarations used to provide metadata to JET Dynamic UI
Components, see JET Dynamic UI Variable Types.

Built-in Variables
There are several built-in variables available.

currentPage

To access some of the current page's metadata, such as ID and title, there is a built-in variable
named currentPage on the application object. The currentPage variable automatically updates
as the current page changes during navigation. This can be used to update a navigation
component with the currently selected page.

Name Description

$application.currentPage.id The path of the current page. The path describes the location
of the page in the flow hierarchy.

$application.currentPage.path The path of the current page for the application. The path
describes the location of the page in the flow hierarchy.

$application.currentPage.title The title of the current page. The title is formed by
prepending all the titles of the shells in the flow hierarchy to
the current page.

$flow.currentPage The id of the current page for this flow.

currentFlow

If there is a routerFlow in the page, the $page.currentFlow variable can be used to
retrieve the id of this flow.

Name Description

$page.currentFlow The id of the current flow.

Chapter 1
Variables

1-3

current App UI

The current following App UI variables are available on the global object when using App UIs.

Name Description

$global.currentAppUi.id The id of the App UI

$global.currentAppUi.urlId The id of the App UI as shown in the URL

$global.currentAppUi.displayName The display name for the App UI

$global.currentAppUi.description The description of the App UI

$global.currentAppUi.defaultPage The default page of the App UI (if there is one)

$global.currentAppUi.defaultFlow The default flow of the App UI (if there is one)

$global.currentAppUi.applicationStripe The stripe of the custom App UI

$global.currentAppUi.pillarTheme The pillar theme to use for the App UI

$global.currentAppUi.pillarThemeMode The pillar theme mode to use for the App UI

$global.currentAppUi.icon The icon of the custom App UI

$global.currentAppUi.usage (This variable is reserved for Oracle Cloud
Applications)

$global.currentAppUi.menuDisplayName The name of the custom App UI

$global.currentAppUi.extensible (Boolean) If this App UI can be extended

deployment

Use the deployment variable to distinguish between web, mobile, and progressive web
applications that have been deployed from VB Studio.

Name Description

$application.deployment.appType Deprecated. The variable is always set to web.

$application.deployment.pwa = 'enabled' ||
'disabled'

Used to indicate if application is configured as a progressive
web applications (PWA).

For a web application, $application.deployment.pwa is always 'disabled', regardless of
whether the web application is running in the Designer or deployed.

For a PWA, the value of $application.deployment.pwa is set to 'disabled' when the
application is in the VB Studio Designer and $application.deployment.pwa is set to
'enabled' when the application is deployed.

path

The path variable is used to build the path to a resource, such as an image located in a folder
in the application or in a flow.

Name Description

$application.path The path needed to retrieve a resource located in the
application folder.

$flow.path The path needed to retrieve a resource in the flow folder.

$extension.path The path needed to retrieve a resource in the current
extension.

Chapter 1
Variables

1-4

user

The user variable is used to access information about the current user. It is based on the User
Info returned by the Security Provider. It is possible to modify the set of user information by
changing the implementation of the Security Provider. See Security.

Name Description

$application.user.userId The user id <string>.

$application.user.fullName The user full name <string>.

$application.user.email The user email <string>.

$application.user.username The user name <string>.

$application.user.roles The user roles (array of strings).

$application.user.roles.roleName Returns true if roleName is a role of this user.

$application.user.permissions User permissions (array of strings).

$application.user.permissions.permName Returns true if permName is a permission of this user.

$application.user.isAuthenticated Returns true if this user is authenticated.

translations

This is not a variable, but an API available for getting localized strings
using $<container>.translations.<bundlename>.key,
or $container.<translations>.format(<bundlename>,<key>,args...).

This API exists for $application, $flow, and $page, but is only useful if you have defined
translation bundles. If translation values are needed in JavaScript function modules, they must
be passed as arguments to the function.

responsive

This is not directly a variable, but contains several Knockout Observables that represent JET
Media Queries. The following are available, and are accessible
via $application.responsive.XXX (for example, $application.responsive.smUp): smUp,
mdUp, lgUp, xlUp, smOnly, mdOnly, lgOnly.

info

Some information from the application and page descriptor can be retrieved using the info
keyword.

Name Description

$application.info.id The application id defined in app-flow.json
$application.info.description The application description defined in app-flow.json
$flow.info.id The flow id defined in flow-id-flow.json
$flow.info.description The flow description defined in flow-id-flow.json
$page.info.title The page title defined in page-id-page.json
$page.info.description The page description defined in page-id-page.json
$fragment.info.id This is the id set on the oj-vb-fragment component or the

system generated stable id (if an id is not set on the
component).

The fragment id defined in fragment-id-
fragment.json

Chapter 1
Variables

1-5

Name Description

$fragment.info.title The fragment title defined in fragment-id-
fragment.json.

$fragment.info.description The fragment description defined in fragment-id-
fragment.json.

$layout.info.id The layout id.

components

This is not a variable, but contains utility methods for finding JET components on a page.
These methods return an element that is a JET component. If no element is found, or if the
element is not part of a JET component, these methods will return null.

Note:

These methods are not for finding general elements To find elements on the page,
use methods such as document.getElementById and
document.querySelector.

Name Description

$page.components.byId('myCard') (deprecated) Use document.getElementById, which returns a JET
Component or null.

$page.components.bySelector('#myCompId')
(deprecated)

Use document.querySelector, which returns a JET
Component or null.

Types
Types define structure in much the same way as variables.

Types can be defined at the application, flow, and page level, and can be referenced by
variables.

Types can be defined once at the application level in the application model. This can help you
to avoid using the same structure repeatedly in different variables.

Example 1-4 Using Types in the Application Model

types: {
 "myType": {
 "foo": "string",
 "bar": "number"
 }
}

Example 1-5 Referencing Types in a Variable

To reference types in a variable, prefix the type with 'application:', for example:

"nameOfVariable": {
 "type": "application:myType"
}

Chapter 1
Variables

1-6

Page

A page can access a type defined in itself, or the parent flow, or the application.

Definition Result

"nameOfVariable": {
 "type": "myType"
}

Uses the type named myType defined in the page.

"nameOfVariable": {
 "type": "page:myType"
}

Uses the type named myType defined in the page (same as
no prefix).

"nameOfVariable": {
 "type": "flow:myType"
}

Uses the type named myType defined in the flow containing
this page.

"nameOfVariable": {
 "type": "application:myType"
}

Uses the type named myType defined in the application.

Flow

A flow can access a type defined in itself, or the application.

Definition Result

"nameOfVariable": {
 "type": "myType"
}

Uses the type named myType defined in the flow.

"nameOfVariable": {
 "type": "flow:myType"
}

Uses the type named myType defined in the flow (same as
no prefix).

"nameOfVariable": {
 "type": "application:myType"
}

Uses the type named myType defined in the application.

Chapter 1
Variables

1-7

Application

An application can access a type defined in itself.

Definition Result

"nameOfVariable": {
 "type": "myType"
}

Uses the type named myType defined in the application.

"nameOfVariable": {
 "type": "application:myType"
}

Uses the type named myType defined in the application
(same as no prefix).

Type References

An existing type can be used inside a type definition.

"types": {
 "region": {
 "facility": {
 "id": "string",
 "name": "string",
 "detail": "string"
 },
 "address": "flow:address", <-- Use address defined in the parent flow
 "facilities": "facility[]" <-- Use facility defined above
 }
}

Built-in Extended Types
VB provides a few built-in 'extended' types that extend from some base types provided by JET
(for example, JET ArrayDataProvider) or implement an interface (JET DataProvider), and,
most importantly, that use the VB Extended Type mechanism so that these types are VB
aware. These VB types are generally used with a VB variable.

Authors can also use the same Extended Type mechanism to write Custom Extended Types.

VB provides these built-in extended types:

• Service Data Provider
This built-in extended type represents a data provider that fetches data from a service
endpoint and that can be bound to listView, table and other collection components that can
bind to a DataProvider implementation. It encapsulates various capabilities such as
filtering, sorting, pagination, and fetch and allows externalizing fetches to an actionChain.

• Multi-Service Data Provider
JET components that bind to data providers like oj-combobox-one / oj-select-single (or the
-many variants) often use different 'fetch' capabilities. Example, a oj-select-single
component calls fetchFirst() (on the DataProvider implementation) to populate its options,
in addition to fetchByKeys() to fetch data for selected value and fetchByOffset. This built-in

Chapter 1
Variables

1-8

extended type is a dataProvider implementation that combines multiple
ServiceDataProvider variables, each providing a unique fetch capability.

• Array Data Provider 2
This extended builtin type is a data provider implementation where the data is available as
an array. Generally with vb/ArrayDataProvider2 (similar to vb/ArrayDataProvider) all the
data is set once, the data itself can fetched from a backend service (say a list of countries)
as it is assumed that array once created is static, i.e. data changes infrequently or has
limited/infrequent adds/updates and removes done to it.

• Array Data Provider (Legacy)
This extended type uses the JET oj.ArrayDataProvider implementation, which is based
on the DataProvider interface, and whose data is a plain array. The properties on the
variable of type vb/ArrayDataProvider generally mirror the JET ADP's properties.

Service Data Provider
Service Data Provider represents a data provider that provides data by fetching it from a
service or endpoint and that can be bound to components. It also allows externalizing fetches
through an action chain.

The Service Data Provider can be used to fetch collections of data either implicitly using a
configured endpoint, or externally by delegating to an action chain. Additionally, when Service
Data Provider uses an Oracle Cloud Applications service, the built-in business object REST
API transforms associated with the service automatically enable capabilities such as sorting,
filtering, and pagination of the data. When used with endpoints not part of an Oracle Cloud
Applications service, it's important for service authors to provide a custom transforms
implementation that supports these capabilities. (It's worth noting that some functionality is
controlled by the type of endpoint. For example, pagination properties such as limit and
offset are available on a Get Many endpoint, but not a Get One endpoint.)

A variable that uses this built-in type can be bound to collection components like listView, table,
combobox/select, chart, and other JET components that accept a data provider.

When the properties of the Service Data Provider variable change, it listens to the variable
onValueChanged event, and notifies all its subscribers (such as components) to refresh (by
raising a data provider event). Currently, UI components are the only listeners of this event.

Service Data Provider Properties
ServiceDataProvider (SDP) exposes properties that a variable of this type can use to
configure. All properties are directly accessible through the variable. Expressions like
{{ $page.variables.incidentListTableSource.filterCriterion }} can be used where
expressions are supported, including component (markup) attributes.

endpoint

A string that is the REST endpoint in the format 'serviceName/endpointName'. The endpoint is
typically a GET endpoint that returns a collection, and is defined in the service model.

fetchChainId

A string that is the 'id' of the actionChain to use to fetch the results. See Implicit and
Externalized Fetches for more information.

headers

An object of the names of one or more header properties, and the corresponding values. Any
headers specified here are also set on the externalized REST action by the design time.

Chapter 1
Variables

1-9

Alternatively, if a fetchChainId is not specified, headers are passed through to the internal
REST calling mechanism by the ServiceDataProvider.

idAttribute

Supports composite keys, using multiple properties. It is a string or array that is the field or
fields in the response data for each row, that represents the 'id', or key, field. Deprecated; use
keyAttributes instead.

keyAttributes

A string or array, that is the field or fields in the response data for each row, that represent(s)
the 'id' (or key) field. Can be:

• A property name - the key, in various contexts, will also be a string.

• An array of property names - the key will also be an array, of values.

• @value, use all properties - the key will also be an array, of values.

• @index, use the index as the key - the key will be an integer.

itemsPath

A string that is the path to the root of the actual collection in the response. Example 'result' if
the response returned from the endpoint looks like {count: 10, result: [...]}
capabilities

An object that defines the capabilities supported by the ServiceDataProvider and the endpoint
it uses. The capabilities object is defined by the JET DataProvider API.

This property serves as a hint for UI components bound to an SDP variable, to know about the
capabilities the endpoint supports and use the correct fetch / sort / filter behaviors.

A variable of type vb/ServiceDataProvider generally defaults to a 'fetchFirst' capability if no
capability is specified. This means that the endpoint associated to the SDP is assumed to
support a fetchFirst behavior. The same endpoint can support other 'fetch' capabilities as
well.

For example, with business object REST API GETAll endpoints, the same endpoint can
provide fetchFirst / fetchByKeys ('lookup') and fetchByOffset ('randomAccess') behaviors.

With third-party services it's important for authors to carefully consider the behaviors their
endpoint supports before configuring the SDP property. For example if the third-party service
endpoint provides optimal 'lookup' based fetchByKeys, and a 'randomAccess' based
fetchByOffset, it's important that the author implements the appropriate transforms functions
to support these capabilities. Refer to the section on Request Transformation Functions,
particularly the 'paginate' and 'fetchByKeys' types for details.

If the same endpoint cannot be used to provide the other fetch behaviors then it might be
required to use a Multi-Service Data Provider. In all other cases SDP will fallback to using the
fetchFirst behavior to provide sub-optimal implementations of fetchByKeys and
fetchByOffset behavior.

Chapter 1
Variables

1-10

Key /
Type

sub-key Values Example Description

fetchFirst
(optional
) / object

impleme
ntation

"iterat
ion"

fetchFirst is not a capability supported by
the JET DataProvider contract but is a
new capability that SDP introduces.

Why this is needed?

SDP variables created prior to this
enhancement will always assume the
'fetchFirst' capability, for backwards
compatibility. New SDP variables created
in DT 'may' choose to set this property to
correctly reflect the capability the
endpoint supports.

fetchByK
eys
(optional
) / object

impleme
ntation

"lookup
"

"iterat
ion"

getCustomers endpoint
supports a lookup based
fetchByKeys.

"customersSDP": {
 "type": "vb/
ServiceDataProvider",
 "defaultValue": {
 "endpoint":
"demo-data-service/
getCustomers",
 "keyAttributes":
"id",
 "itemsPath":
"result",
 "capabilities": {
 "fetchByKeys":
{

"implementation":
"lookup"
 }
 }
 }
},

(see JET DataProvider API)
the "lookup" based implementation
indicates the endpoint supports fetching
key(s) data using a single request.

• For business object REST API
services, most GETAll endpoints
that provide a fetchFirst capability
also support querying for a key. So
the default business object REST
API transforms uses the fetchFirst
endpoint to query for the key(s) and
this property need not be set. In
rare cases an entirely different
endpoint might be required to fetch
key data, in which case a Multi
Service Data Provider might be
needed.

• For all other types of services,
authors must ensure a lookup
based 'fetchByKeys' transforms
function is provided. If not an
"iteration" based implementation is
used.

when a "lookup" based implementation
is not provided, SDP falls back to an
"iteration" based implementation. This is
non-performant because it uses
fetchFirst / iteration to iterate over rows
until the requested key(s) are located,
before returning the requested key data
in the form - FetchByKeysResults.

Chapter 1
Variables

1-11

Key /
Type

sub-key Values Example Description

multiKey
Lookup

"yes"

"no" "capabilities" : {
 "fetchByKeys": {

"implementation":
"lookup",

"multiKeyLookup":
"no"
 }
}

Tells SDP whether endpoint can fetch
multiple or a single key at a time.
defaults to 'yes'. only available when
implementation is 'lookup'. This is
automatically supported for business
object REST API services that use the
provided business object REST API
transforms.

• when fetchByKeys() is called with
more than one key and the
capability only supports lookup by a
single key, then as an optimization
SDP makes multiple fetch calls
against the endpoint, one per key
and assembles the results

fetchByO
ffset
(optional
) / object

impleme
ntation

"iterat
ion"

"random
Access"

getIncidents endpoint
supports a lookup based
fetchByOffset.

"incidentsSDP": {
 "type": "vb/
ServiceDataProvider",
 "defaultValue": {
 "endpoint":
"demo-data-service/
getIncidents",
 "keyAttributes":
"id",
 "itemsPath":
"result",
 "capabilities": {

"fetchByOffset": {

"implementation":
"randomAccess"
 }
 }
 }
}

the "randomAccess" based
implementation requires an endpoint that
supports random access of requested
page from an offset.

• For business object REST API
services, most GETAll endpoints
support querying from a specified
offset, and so the default business
object REST API transforms uses
this implementation automatically.

• For all other types of services,
authors must ensure a
"randomAccess" based (paginate)
transforms function is provided. If
not an "iteration" based
implementation is used.

when a "randomAccess" based
implementation is not provided, SDP
falls back to an "iteration" based
implementation. This is non-performant
because it uses fetchFirst / iteration to
iterate over pages until the desired offset
is reached.

Chapter 1
Variables

1-12

Key /
Type

sub-key Values Example Description

filter /
object

operator
s

array of
supporte
d
operator
s

"capabilities" : {
 "filter": {
 "operators":
["$eq", "$or"]
 }
}

a map of supported filter operators.
Note: VB does not support Set types so
use Array for operators

This doc does not go into the details of
wiring up the 'filter' and 'sort' capabilities,
but when these are set the
getCapability() method on the
DataProvider will use the information
defined here.

For more on filter operators, see the JET
documentation:
oj.FilterCapability.html#operators

It's a combination of attribute and
compound operators.

• For list of attribute operators -
oj.AttributeFilterDef.html#op

• For list of component operators -
oj.CompoundFilterDef.html#op

textFilter any
value "capabilities" : {

 "filter": {
 "textFilter":
true
 }
}

any truthy value can be set for textFilter.
By default SDP sets this to true.

This value tells the consumer of the SDP
that text filtering is enabled.

For business object REST API
endpoints, text filtering works by default
with some minimal configuration, but the
service author is expected to write a filter
transforms function for any complex text
filtering. See Filter Transform for details.

For 3rd party endpoints the service
author must write a filter transforms
function that handles the text filter, or
they can turn off the capability entirely.

sort /
object "capabilities" : {

 "sort": {
 "attributes":
"single"
 }
}

array of supported sort operators.
For more on sort capabilities, see
oj.SortCapability in the JET
documentation.

responseType

The type of the response that is returned by the ServiceDataProvider. This can be an object or
array. When provided it is used for two purposes:

1. To determine the fields to fetch (aka select fields) from the endpoint. A transforms author
will be provided these fields via the 'select' transforms function, if they wish to edit it, but
ultimately the final response is shaped by the ServiceDataProvider based on the
responseType set on it (see point 2 below).

a. When using an Oracle Cloud Application-based endpoint with ServiceDataProvider,
the built-in business object REST API transforms are loaded automatically (vb/

Chapter 1
Variables

1-13

BusinessObjectsTransform for Business Objects or business object REST API
services), and the select transforms function creates a 'fields' query parameter with the
desired fields, both scalar and objects (and recursively includes the object's fields, as
well). This will both include and expand fields.

2. To automatically shape the response (from the fetch call) to match the responseType.
Shaping a response to match the responseType usually means that missing data is 'fixed
up'. This is done to ensure that binding expressions used in components work without
issues.

a. For example, an expression like {{ $current.objectVar.propA }} will fail if objectVar
is missing.

Note:

Auto-shaping of response data is based on rules determined by the Visual
Builder type system. If authors do not want the automatic shaping of data
performed by ServiceDataProvider to introduce unexpected behavior, they
must either ensure that the response data is 'complete', or they need to wrap
binding expressions to guard against missing data. Response data can be
made 'complete' either on the server-side, or the client can use a 'body'
response transforms function to fix up incomplete data based on business
rules.

Some additional things to consider:

When ServiceDataProvider externalizes data fetch

When author chooses to externalize the ServiceDataProvider fetch, the design-time often
configures a chain with a RestAction, with most properties from the ServiceDataProvider on
the action (RestAction and ServiceDataProvider configuration share similar properties). It also
adds a 'hookHandler' property. There are certain properties that are best set on the
ServiceDataProvider and not on the RestAction. Refer to the Externalized Fetch section for a
list of properties that must be configured on the ServiceDataProvider variable.

It is recommended that 'responseType' always be configured on the ServiceDataProvider so
that the 'select fields' are requested with the fetch call, and auto shaping of the response does
not yield unexpected results (see note). The former is always determined by
ServiceDataProvider.

Note:

For external fetches, if the RESTAction also has 'responseType' set, then it gets
applied first to the response. Not only is this redundant and not performant, it's also
problematic if the responseType on RestAction were to auto-shape the response to
have fewer attributes than what the 'select fields' requested.

When ServiceDataProvider is used with dynamic components

Another reason for recommending that 'responseType' always be configured on the
ServiceDataProvider is to address dynamic UI cases, where the responseType is not known at
design-time, and 'select fields' are only provided at runtime (see note). In fact the
responseType is often set to a wildcard type ('any' / 'any[]').

Chapter 1
Variables

1-14

Note:

Dynamic collection components determine the list of attributes to fetch only at
runtime. And this is provided via a fetchFirst() call to ServiceDataProvider (using the
'attributes' parameter) and not configured using the 'responseType' property (see JET
FetchListParameters). When 'attributes' are provided, 'responseType' is ignored.
There is also no default auto-shaping done when attributes are provided.

body

An object that represents the body for a fetch request, where the request is made to a POST
based endpoint. Another example is where ElasticSearch based endpoints use a POST
method to fetch search results, where the search criteria are set using the body.

uriParameters

An object that defines one or more properties that are parameters on the endpoint URL. For
example, the FixitFast service has an endpoint to retrieve all incidents for a technician using
the URL http://.../incidents?technician={technician}. Here 'technician' is a query
parameter that will be defined under uriParameters like this:

"uriParameters": {
 "technician": "{{ $page.variables.appUser.name }}"
},

The uriParameters are used to perform a simple string replacement if the URL includes
parameters that must be substituted before it's resolved. Otherwise the parameters are
appended to the URL. The uriParameters are also passed to the query transform function
(details below), so page authors can use the value of the above property to tweak the URI
further if needed.

pagingCriteria

An object that defines the paging defaults if needed. Generally a paging component (like
listView or table) will provide the data provider with size or offset or both. If the component
does not provide either size or offset, the ServiceDataProvider will use the values set on this
property as defaults. The pagingCriteria are then passed to the paginate transform function
(see below). Supports the following properties.

• size: number of rows to fetch by default, when no size is provided by caller.

• offset: the offset to start the fetch from. Defaults to 0.

• maxSize: the default maximum number of rows to fetch when the caller (usually a
component) requests that all rows be fetched. Some JET components, like oj-chart, often
request all rows by setting { size: -1 }. This property can be used to control the
maximum number of rows to fetch, when it may not be performant to ask the service
endpoint to return all rows. If this property is not set, then the size: -1 property is passed
through to the paginate transforms, and it may be necessary for transforms authors to
handle -1 as the size.

• iterationLimit: the upper limit of the number of rows that can be fetched during iteration
cycles. This is only used when size isn't provided and continuous iteration of rows is
required. An example is when a list of values component tries to fetch labels for selected
keys and the underlying multiServiceDataProvider is not configured with a 'lookup' based
fetchByKeys capability. So the ServiceDataProvider reverts to using an optimized 'iteration'
based implementation that is based on the fetchFirst capability. When this happens, there

Chapter 1
Variables

1-15

https://www.oracle.com/webfolder/technetwork/jet/jsdocs/FetchListParameters.html
https://www.oracle.com/webfolder/technetwork/jet/jsdocs/FetchListParameters.html

could be numerous fetch requests hitting the endpoint. If the service or endpoint would like
to limit this, it's important to set this value. This also gets used with the optimized
fetchByOffset capability for its optimized iteration based implementation.

Page authors need to understand how the above properties are used by the
ServiceDataProvider during a fetch call:

1. Generally, the page size used by a fetch can be defaulted using the pagingCriteria.size.
This is only used when a component does not explicitly provide a size. The same is true for
an offset.

2. When the size is provided by the caller (for example, components), this overrides the
default pagingCriteria.size set on the ServiceDataProvider.

Note:

When components do ask for a specific number of rows, and the
ServiceDataProvider returns more rows than were explicitly requested, some
components can get in an indeterminate state. In such cases, to control the
fetchSize, it's better to set this property on the component. Specifically, oj-list-
view has a scrollPolicyOptions.fetchSize.

3. Some components do not support a fetchSize property. If this is the case, you can force
the fetch to be a different value from what the component requested by writing a paginate
transform function where the size can be tweaked. But you might then encounter the
indeterminate state described in #2.

4. It is generally not recommended that you set endpoint-specific size and offset parameters
using the uriParameters property directly (for example, the business object REST API
supports 'limit' and 'offset' query parameters that are the equivalent of
the pagingCriteria.size and offset). If you do, you are on your own to write a business
object REST API transform that can merge/use the value set both in the uriParameters and
pagingCriteria properties. And you are also likely run into the caveats explained in #3.

filterCriterion

An object representing a single attribute filter criterion with the properties { op, attribute,
value }, where 'op' is one of the supported JET attribute operators, and 'attribute' and 'value
are the name and value of the attribute respectively. It may also represent a compound filter
criterion {op, criteria}, where 'op' is a compound operator, and ‘criteria’ is an array of
attributes or compound criterion.

Most complex filter expressions can be expressed using the JET filterCriterion structure.
Sometimes you may need to externalize fetches to build your filter criteria for the REST action.

Note:

The business object REST API transforms shipped with Visual Builder support all
attribute operators except $regex. They can transform a simple attribute filter or a
compound filter that is an array of attribute filter criterion.

// attribute criterion
{
 "op": "$eq",
 "attribute": "empName",

Chapter 1
Variables

1-16

 "value": "Lucy"
}

// In the business object REST API, the above criterion will become the
following query parameter:
// "q=empName = 'Lucy'"

// compound criterion
{
 "op": "$or",
 "criteria": [
 {
 "op": "$gt",
 "attribute": "hireDate",
 "value": "2015-01-01"
 },
 {
 "op": "$le",
 "attribute": "hireDate",
 "value": "2018-01-01"
 }
]
}

// In the business object REST API, the above criterion will become the
following query parameter:
// "q=hireDate > '2015-01-01' or hireDate <= '2018-01-01'"

Complex grouped criteria can be expressed in JSON using the filterCriterion API, but a
transform function that can handle such grouped (or nested) criteria will need to be written by
page authors for the business object REST API or for other external REST services, in order to
build the appropriate query parameter.

{
 "op": "$and",
 "criteria": [
 {
 "op": "$sw",
 "attribute": "project",
 "value": "BUFF"
 },
 {
 "op": "$or",
 "criteria: [
 {
 "op": "$ge",
 "attribute": "label",
 "value": "foo"
 },
 {
 "op": "$le",
 "attribute": "label",
 "value": "bar"
 }

Chapter 1
Variables

1-17

]
 }
]
}

// In the business object REST API, the above criterion will become the
following query parameter:
// "q=((project LIKE 'BUFF%') and ((label >= 'foo) or (label <= 'bar')))"

sortCriteria

An array of objects, where each object is an atomic sort expression of the form shown here. If
you have more complex structures for representing sortCriteria, you can use the externalized
fetch option to build sort criteria and provide it to the REST action. See Implicit and
Externalized Fetches for details.

[{
 "attribute": "<name of the field>",
 "direction": "<'ascending' (default) or 'descending'>"
}]

When using multiple attributes for the sortCriteria, you specify them separated by commas:

[
 {
 "attribute": "col2",
 "direction": "ascending"
 },
 {
 "attribute": "col3",
 "direction": "ascending"
 }
]

mergeTransformOptions

This property allows a page author to set a callback to fix up or merge the final transforms
options that are passed to the transform functions configured on the ServiceDataProvider. Let's
say a sample endpoint, GET /customers, supports an 'ids' query parameter that can used to
query customers by specific keys. For example:

/customers?ids=cus-101,cus-103

A component like oj-select-many might call the ServiceDataProvider requesting the customer
data for specific keys by calling fetchByKeys() with these keys: ['cus-101', 'cus-103'].

The ServiceDataProvider does not support a declarative way to automatically map these keys
programmatically to the 'ids' query parameter on the URL. Therefore, it might be necessary for
the page author to use this property to set a function callback that will fix up the query
transforms option. For details on writing this function, see Merge Transform Options Function.

transformsContext

A context object passed to the transform functions for both request and response. For
fetchFirst calls, the context will be available for all iterations using the same iterator. Authors

Chapter 1
Variables

1-18

can manage this object as they wish. If this property is not set, an empty Object is provided by
default to all transform functions. When a fetchMetadata property is provided as part of a
fetch*() call, then this property is automatically set on the transformsContext Object and made
available to transform functions.

• fetchMetadata
For Elastic searches where the query can be arbitrarily complex, callers can send extra
search metadata via the fetch call. This parameter can be used to tweak the body that is
used as POST-body in the query.

Note:

This is a Preview API and subject to change.

• textFilterAttributes
See Filter Transform for details on this property.

totalSize

See getTotalSize

transforms

An object that has two properties for specifying 'request' and 'response' transform functions
(callbacks).

Request transformation (or transform) functions are generally specified on the service (or
endpoint) definition as it applies to all usages of the service. The transform functions specified
here are only applicable for the current usage of the service or endpoint.

Request transform functions are primarily used to transform the URL or Request configuration
before a request is sent to the endpoint.

Response functions can be used to process the response and return any additional state along
with the response. Additional state is saved as internal state on the data source variable.

At design time, the page author will need to know whether the endpoint supports paging,
sorting, filtering (or QBE), and the format/syntax for specifying these. Using the transform
functions, the page author can tweak the Request to build a URL containing the paging,
sorting, filtering params, and additional endpoint specific query params.

• request: An object whose properties refer to the type of the request transform functions,
and the value the actual function. The following types are supported. See Request
Transformation Functions for details.

– paginate: a paginate function that implements code to transform the request for
pagination (or iterating through record sets) specific to the endpoint.

– sort: a sort function that implements code to transform the request for sorting, specific
to the endpoint.

– filter: a filter function. Note: Refer to the next section for details on how to use the
transform functions.

– query: a query function, to pre-process query parameters available through the
uriParameters property.

– select: a select (fields) function used to build the list of fields to fetch, if the endpoint
supports it.

Chapter 1
Variables

1-19

– body: a body transform function that allows page authors to tweak the body if needed
before the fetch call is made.

– fetchByKeys: transforms function that allows a page author to take a key or Set of
keys passed in via the options, and update the request to fetch requested keys.

• response: An object whose properties also refer to the type of the response transform
function. See Response Transformation Functions for details.

– paginate: This transform function is called immediately after the REST layer receives
a response. It is called with the response so this function can process it and return an
object with a group of properties set. The returned object is the primary way
ServiceDataProvider obtains information about the paging state of the request:

* totalSize: <optional> used to inform SDP what the totalSize of the result is.

* hasMore: <generally requiredc> A boolean that indicates whether there are more
records to fetch. Example in business object REST API usecases this would map
to the hasMore boolean property commonly returned in the response. See
explanation below for behavior of SDP when hasMore is not set.

* pagingState: <optional> This can be used to store any paging state specific to the
paging capability supported by the endpoint. In 1.0.0, this property can be used in
the response paginate transform function, to set additional paging state. Which will
then be passed 'as is' to the request paginate transform function, for the next fetch
call.

– body: This transform function is called immediately after the REST layer receives a
response. It is a hook for authors to transform the response body, and is not
guaranteed to be called in any specific order.

The way this works is an iterating component will get the AsyncIterator from the
dataProvider (like ServiceDataProvider) and keep iterating until there is no more data to
fetch, or until the component viewPort is filled, or until its current scrollPosition is reached
(this might be needed when a selected row is several pages down), whichever comes first.
So it's extremely important for SDP to have the above information, to know when to stop
iterating.

Missing 'hasMore' property in the paginate

In the event that service implementors may not have configured a paginate transform, we
provide the following fallback behavior. If the first fetch request from by the SDP's
AsyncIterator, has no 'hasMore' through the paginate response, SDP assumes there are no
more records to fetch and iterator is marked as done. This behavior at least allows
components to render some data without causing repetitive fetches. Of course this means
scrolling through component will not fetch next set, if the endpoint did indeed have more rows
to fetch.

Implicit and Externalized Fetches
When a ServiceDataProvider is configured with properties described in the Service Data
Provider Properties section, it will, for the most part, manage fetching data and notifying
components implicitly. The exception is the 'fetchChainId'.

Implicit Fetch

A typical configuration for an implicitly fetching ServiceDataProvider would look like this:

"incidentListDataProviderImplicit": {
 "type": "vb/ServiceDataProvider",
 "description": "configuration for implicit fetches",

Chapter 1
Variables

1-20

 "input": "none",
 "defaultValue": {
 "endpoint": "ifixitfast-service/getIncidents",
 "headers": {},
 "keyAttributes": "id",
 "itemsPath": "result",
 "uriParameters": {
 "technician": "{{ $application.user.userId }}"
 }
 }
}

It is important to note that a ServiceDataProvider variable does not cache its data, just its
configuration. The data is also not persisted to history, session or localStorage.

Since the data can be arbitrarily large data sets, it is recommended that page authors use
other means to cache data on the client, such as the JET offline toolkit cache. This applies to
externalized fetches as well.

Externalized Fetch via an Action Chain

When a 'fetchChainId' property is present, the ServiceDataProvider delegates the fetch to the
action chain. A typical configuration for a ServiceDataProvider variable (supporting a fetchFirst
capability) that externalizes REST will look like the code below. These are the only properties
that are allowed to be configured (or that are relevant):

• capabilities: when this property isn't set, the 'fetchFirst' fetch capability is assumed.

• fetchChainId

• idAttribute (deprecated) or keyAttributes

• itemsPath

• mergeTransformOptions: this property is defined on the ServiceDataProvider variable,
because merging transform options only applies when an action chain (with a REST
action) is called in the context of a data provider fetch call.

• transformsContext: Unlike most transforms-related properties, this property can only be
defined on the SDP configuration. Most transforms-related properties can be defined on
the REST action (requestTransformationOptions, requestTransformFunctions,
responseTransformationFunctions).

• responseType

"variables": {
 "incidentListTableSource": {
 "type": "vb/ServiceDataProvider",
 "input": "none",
 "persisted": "session",
 "defaultValue": {
 "fetchChainId": "fetchIncidentListChain",
 "keyAttributes": "id",
 "itemsPath": "result",
 "responseType": "application:incidentsResponse"
 }
 }
},
"chains": {
 "fetchIncidentListChain": {

Chapter 1
Variables

1-21

 ...
 },
}

The type definition of "application:incidentsResponse" used by the 'responseType' property can
be seen in this example. This structure is similar to the one returned from a REST response.
Note that itemsPath is always located within the 'body' property of the response that is
returned.

For example, the app-flow.json file for the ServiceDataProvider configuration shown above
could look like this:

"incidentsResponse": {
 "type": {
 "status": "string",
 "headers": "object",
 "body": {
 "result": "application:incidentSummary[]"
 }
 }
},
"incidentSummary": {
 "type": {
 "id": "string",
 "problem": "string",
 "priority": "string",
 "status": "string",
 "customer": "application:customer"
 }
},

A sample return value from the action chain would look like this:

{
 "status": "200",
 "headers": {},
 "body": {
 "result": [
 {
 "id": "incident_1",
 "problem": "heater broken",
 "priority": "high",
 "status": "open",
 "customer": {}
 }
]
 }
}

Generally, users externalize fetches to ensure full control over how the request and response
are processed.

For example, users can connect custom sort and filter query parameters either in the service
endpoint or in the REST action. This is the preferred configuration approach. If, however,
properties like sortCriteria, filterCriterion, transforms, and so on, are defined on the

Chapter 1
Variables

1-22

ServiceDataProvider, they will be ignored, and those configured on the REST action will be
used when building the request. It's important to note that sortCriteria / filterCriterion passed in
by the component / caller will always get used and (attempted to be) merged with the ones
configured on RestAction. See Merge Transform Options Function property.

In the example below, the action chain 'fetchIncidentListChain' defined in
the fetchChainId property of the ServiceDataProvider variable above has a typical chain
configuration, one of which is a RestAction.

1. The 'hookHandler' property under configuration chain variable will be automatically
generated at design time and is always set to vb/RestHookHandler. SDP implements a
custom hookHandler that extends from this class.

2. If the REST response returns a structure that is exactly what the ServiceDataProvider
expects, this can be returned directly (as in the example below). But if the REST response
is different from the expected responseType, then an action that maps the REST response
to the structure defined by 'responseType' on the SDP needs to be configured.

3. The last action in the chain will always be a ReturnAction whose payload resembles the
REST response whose body resembles 'responseType'. The incidentsResponse response
variable in the chain is provided for clarity but is not used by the chain.

4. If more fields are returned than what the responseType has, SDP will attempt to auto-map
the result to the response type.

5. It's important to not set the 'returnType' property when a ReturnAction is already present in
the chain for SDP, because this additionally coerces the response returned to the caller.

"chains": {
 "fetchIncidentListChain": {
 "variables": {
 "configuration": {
 "type": {
 "hookHandler": "vb/RestHookHandler"
 },
 "description": "the configuration for the rest action",
 "input": "fromCaller",
 "required": true
 },
 "response": {
 "type": "application:incidentsResponse"
 }
 },
 "root": "fetchIncidentList",
 "actions": {
 "fetchIncidentList": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/getIncidents",
 "uriParams": {
 "technician": "{{ $application.user.userId }}"
 },
 "hookHandler": "{{ $variables.configuration.hookHandler }}",
 "requestTransformOptions": {
 "sort": "{{ $page.variables.sortExpression }}",
 "filter": "{{ $page.variables.filterAtomicExpression }}"
 },
 "requestTransformFunctions": {

Chapter 1
Variables

1-23

 "paginate": "{{ $page.functions.paginate }}",
 "query": "{{ $page.functions.query }}",
 "filter": "{{ $page.functions.filter }}",
 "sort": "{{ $page.functions.sort }}"
 },
 "responseTransformFunctions": {
 "paginate": "{{ $page.functions.paginateResponse }}"
 }
 },
 "outcomes": {
 "success": "returnSuccessResponse",
 "failure": "returnFailureResponse"
 }
 },
 "returnSuccessResponse": {
 "module": "vb/action/builtin/returnAction",
 "parameters": {
 "outcome": "success",
 "payload": "{{ $chain.results.fetchIncidentList }}"
 }
 },
 "returnFailureResponse": {
 "module": "vb/action/builtin/returnAction",
 "parameters": {
 "outcome": "failure",
 "payload": "{{ $chain.results.fetchIncidentList }}"
 }
 }
 }
 }
}

Merge Transform Options Function
mergeTransformOptions function signature:

A page author can use the mergeTransformOptions function callback on the
ServiceDataProvider fetch to fix up the transforms options that will be passed to the transform
functions, if and when needed. The function will be passed two
parameters: 'configuration' and 'transformOptions'.

The configuration object will contain one set of { capability, context, externalContext,
fetchParameters } set as a request is servicing one fetch capability.

For the configuration object, this table describes configuration parameters for the
fetchByKeys capability.

Sub-property Sub-property Value Description

capability - fetchByKeys A hint that supplies the
author the fetch capability.

Chapter 1
Variables

1-24

Sub-property Sub-property Value Description

context • idAttribute
• itemsPath
• uriParameters
• filterCriterion
• sortCriteria
• pagingCriteria
• responseType
• capabilities

– fetchByKeys
– keys
– ...

- Provides a snapshot of
the ServiceDataProvider
variable at the time the
fetchByKeys() call is
made.

For external chains, the
state may not include all
properties listed here.

externalContext If the fetch was
externalized then the
context setup on the
RestAction

fetchParameters keys - The original parameters
passed in via the
fetchByKeys call.

This table describes configuration parameters for the fetchByOffset capability.

Prop
erty

Sub-property Value Description

capab
ility

- fetchByOffset A hint telling the author the
fetch capability for the current
request.

conte
xt

• idAttribute
• itemsPath
• uriParameters
• filterCriterion
• sortCriteria
• pagingCriteria
• responseType
• capabilities

– fetchByKeys
– keys
– ...

A snapshot of the value of the
ServiceDataProvider variable
at the time the fetchByOffset()
call was made.

extern
alCon
text

If the fetch was externalized
then the context setup on the
RestAction

fetchP
arame
ters

• filterCriterion
• size
• offset
• sortCriteria

- The original parameters
passed in via the fetchByOffset
call.

This table describes configuration parameters for the fetchFirst capability.

Prop
erty

Sub-property Value Description

capab
ility

- fetchFirst A hint telling that the request is
a fetchFirst capability.

Chapter 1
Variables

1-25

Prop
erty

Sub-property Value Description

value • idAttribute
• itemsPath
• uriParameters
• filterCriterion
• sortCriteria
• pagingCriteria
• responseType
• capabilities

– fetchByKeys
– keys
– ...

- A snapshot of the value of the
ServiceDataProvider variable
at the time the fetchFirst() call
was made.

extern
alCon
text

If the fetch was externalized
then the context setup on the
RestAction

fetchP
arame
ters

• filterCriterion
• size
• sortCriteria

- -

This table describes the properties for the transformOptions parameter.

Property Description

• query
• filter
• paginate
• sort
• select

These are the properties when the ServiceDataProvider is
configured for implicit fetch.

When the ServiceDataProvider is configured to use an
external fetch chain, the options configured on the
RestAction 'requestTransformOptions' property will be
made available here.

A sample endpoint, GET /customers, supports an 'ids' query parameter that can used to query
customers by specific keys. For example: customers?ids=cus-101,cus-103.

For this to work, there is currently no easy way at design time to map the keys provided by the
component programmatically to the 'ids' query parameter on the URL. It might be necessary for
page authors to use this property to wire up a function that will merge the transforms option.

This should be configured as follows:

1. Configuring 'mergeTransformOptions' property

• The ServiceDataProvider variable below defines a fetchByKeys capability.

• The 'mergeTransformOptions' property is configured to point to a page function.

"customerSingleSDP_External": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "demo-data-service/getCustomers",
 "keyAttributes": "id",
 "itemsPath": "result",
 "capabilities": {
 "fetchByKeys": {
 "implementation": "lookup"
 }

Chapter 1
Variables

1-26

 }

 "mergeTransformOptions":
 "{{ $page.functions.processOptionsForGetCustomers }}"
 }
}

2. Implementing the function

• The page author uses the function to fix up the 'query' transform options that will be
passed to the query transform function.

• The page function "{{ $page.functions.processOptionsForGetCustomers}}" will
look like the following:

/**
 * fix up the query transform options.
 * When the fetchByKeys capability is set, the 'keys' provided via the
fetch call
 * can be be looked up via the configuration.fetchParameters. This can be
 * set/merged onto the 'query' transform options (1). This allows the
transform
 * function to then use the keys to build the final 'ids=' query param on
the url.
 * See queryCustomersByIds method.
 *
 * Note: (1) this is needed because there is no way through DT
configuration
 * to define a mapping of 'keys' that are provided via a fetch call, to
the 'ids'
 * query parameter.
 *
 * @param configuration a map of 3 key values. The keys are
 * - fetchParameters: parameters passed to a fetch call
 * - capability: 'fetchByKeys' | 'fetchFirst' | 'fetchByOffset'
 * - context: the context of the SDP when the fetch was initiated.
 *
 * @param transformOptions a map of key values, where the keys are the
names of
 * the transform functions.
 * @returns {*}
 */
PageModule.prototype.processOptionsForGetCustomers =
 function (configuration, transformOptions) {
 var c = configuration;
 var to = transformOptions;
 var fbkCap = !!(c && c.capability === 'fetchByKeys');
 var keysToFetch = fbkCap ? (c && c.fetchParameters &&
c.fetchParameters.keys) : null;

 if (fbkCap && keysToFetch && keysToFetch.length > 0) {
 // join keys
 var keysToFetchStr = keysToFetch.join(',');
 to = to || {};
 to.query = to.query || {};
 // ignore ids set on the query options and instead use ones passed in
by

Chapter 1
Variables

1-27

 // fetchByKeys call
 to.query.ids = keysToFetchStr;
 }

 return to;
};

3. • A query transform function is not needed in the above example because the query
parameters are automatically appended to the final request URL if no additional
transformation of the query options to the query parameter is needed.

• A query transform function might be needed in more complex use cases.

Request Transformation Functions
A request transformation (or transform) function is generally specified on the service endpoint.
It can also be specified on the ServiceDataProvider variable, which overrides the endpoint one.

A request transform function is called right before a request is made to the server/endpoint. It
provides a chance for page authors to transform the options (paginate, filter, sort, and so on)
and build the final (request) configuration. The ServiceDataProvider supports a predefined list
of request transform function types, described in this section. Note that there are no
guarantees of the order in which transform functions are called, except that vbPrepare is called
first and body transform is called last.

Each request transformation function has the following signature (except in the case of
vbPrepare and fetchByKeys transform):

function (configuration, options, transformsContext) {

 // process the options and update configuration object
 return configuration;
}

The parameters to the function are:

• configuration: An object that has the following properties:

– endpointDefinition: The metadata pertaining to the endpoint.

– fetchConfiguration: The configuration pertaining to this fetch call. If fetch was initiated
by ServiceDataProvider, this includes the following properties:

* capability: The fetch capability, like fetchByKeys, fetchFirst, fetchByOffset.

* context: A snapshot of the ServiceDataProvider variable state at the time the fetch
call was made.

* externalContext: If the fetch was externalized to a chain, then the context setup
on the RestAction in that chain.

* fetchParameters: A snapshot of the original fetch parameters provided by the
initiator of the fetch (such as a component). The parameters passed to the fetch
call are defined by the JET Data Provider fetch API.

* transformsOptions: The full set of transforms options that are passed to each
transform function. These are computed using the parameters configured on the
Service Data Provider, the RestAction (if applicable), and the input parameters
provided by initiator (such as the component).

Chapter 1
Variables

1-28

– initConfig: Map of another configuration passed into the request. The 'initConfig'
exactly matches the 'init' parameter of the request.

– parameters: Path and query parameters. These are not writable.

– url: Full URL of the request.

• options: An object that is relevant to the type of transformation function. For a filter
function, for example, this would be the filterCriterion.

• transformsContext: A context object, set by the author (ServiceDataProvider, RestHelper,
Call Rest action), that is then passed to every transform function to store or retrieve any
contextual information for the current request lifecycle.

If transformations are needed for a specific data provider instance, these functions can be
defined on the ServiceDataProvider variable under the 'transforms' property. For externalized
fetch cases, the RestAction properties can be used for configuring transformations.

vbPrepare Transform

In order to fetch the data required by the application, clients are expected to use the VB
RestHelper directly or, for example, via a RestAction or ServiceDataProvider. Regardless of
the invocation mechanism, there are two main pieces of information that are usually provided
for the request to happen: the identifier of the endpoint and, if relevant, the values of the
endpoint "parameters" (such as server variables, path parameters, query parameters, and
header parameters).

The vbPrepare request transform provides a hook that clients can use to programmatically
modify the parameters, which can effectively change the URL of the request issued by Visual
Builder.

Signature

The vbPrepare transform can be declared as follows:

Request.prototype.vbPrepare = function(configuration, options,
transformsContext) {
 // Clients can manipulate the parameters of the fetch via the
'options.parameters' object.
}

This transform is invoked before any other transform. Its arguments are also slightly different
from the other transforms:

• The configuration parameter provides the information about the endpoint being fetched,
including the endpoint identifier, the OpenAPI path for the endpoint, and the server details
(including URL templates and server variables).

• The options parameter has a property parameters that exposes the object holding the
parameters passed to the RestHelper. The value of parameters is a "live" object: in other
words, changing the properties of options.parameters actually modifies the values used
by the RestHelper.

• The transformsContext is an object that is set at the RestHelper, which is then passed to
all transforms.

vbPrepare Request Transform Examples
The examples below illustrate the arguments passed to the vbPrepare transform, as well as
the effect its code has on the fetch performed by the RestHelper.

The 'store' service

Chapter 1
Variables

1-29

The examples below use a service store, defined as follows:

• The service is located on an extension extA, and is exposed to extensions that depend on
extA.

• The server of the service refers to the backend storeapi, and has a server variable
storeId:

"servers": [
 {
 "url": "vb-catalog://backends/extA:storeapi/{storeId}",
 "variables": {
 "storeId": {
 "default": "001"
 }
 }
 }
],

• The backend storeapi is defined in the catalog.json artifact of extA, and also has a server
variable:

"backends" {
 "storeapi": {
 "extensionAccess": true,
 "transforms": {
 "path": "./storeapi.js"
 },
 "servers": [{
 "url": "https://www.mystore.com/{version}",
 "variables": {
 "version": {
 "default": "1.0"
 }
 }
 }]
 }
}

• The service has an operation listProduct with both a "path" and a "query" parameter:

"/products/{productId}": {
 "get": {
 "operationId": "listProduct",
 "description": "List a product",
 "parameters": [
 {
 "name": "productId",
 "in": "path",
 "description": "The ID of product.",
 "required": true,
 "schema": {
 "type": "string"
 }
 },
 {

Chapter 1
Variables

1-30

 "name": "manufactureModel",
 "in": "query",
 "description": "Whether or not to use the manufacture's model.",
 "required": false,
 "schema": {
 "type": "boolean",
 "default": false
 }
 }
],
 "responses": {
 ...
 }
 }
}

Transform Script

As indicated above, the transform script storeapi.js is provided by the storeapi backend, so
that's the artifact that must contain the vbPrepare transform method.

If the service store itself had a transform script, the method for vbPrepare should be declared
there.

Example 1-6 RestAction

Assume that the following RestAction is defined in an action chain.

"getProduct": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "extA:store/listProduct",
 "uriParams": {
 "productId": "[[$chain.variables.productId]]"
 }
 },

The getProduct action provides only the value for the productId path parameter, which is
required. The data fetch fails if the path is not specified.

The vbPrepare transform could be implemented in storeapi.js like this (this example uses the
traditional, "function-prototype" design for transforms):

define([], function () {
 var Request = function () {};

 Request.prototype.vbPrepare = function(configuration, options) {
 /*
 * configuration = {
 * endpointId: 'extA:store/listProduct',
 * endpointPath: '/products/{productId}',
 * serverUrlTemplates: [
 * {
 * // The url of the server of the store service.
 * template: 'vb-catalog://backends/extA:storeapi/{storeId}',
 *
 * // The value that VB would use for the 'storeId' server variable,

Chapter 1
Variables

1-31

 * // which in this case is the default value provided by the
 * // OpenAPI definition.
 * variables: {
 * storeId: '001',
 * },
 * },
 * {
 * // The url of the server of the storeapi backend.
 * template: 'https://www.mystore.com/{version}',
 *
 * // The value that VB would use for the 'version' server variable,
 * // which in this case is the default value provided by the
 * // OpenAPI definition.
 * variables: {
 * version: '1.0',
 * },
 * },
 *],
 * }
 */

 /*
 * options = {
 * // The resolved uriParams specified by the RestAction.
 * parameters: {
 * productId: 'tv001',
 * },
 * }
 */

 // Changing both the 'productId' path parameter and the 'version' server
variable.
 options.parameters.productId = 'notebook003';
 options.parameters['server:version'] = '2.1';

 // Adding a query parameter that is not specified in the OpenAPI
definition.
 options.parameters.internalSKU = true;
 };

 var Response = function() {};

 return {
 request: Request,
 response: Response
 };
});

With the transform above, the request URL that is fetched is https://
www.mystore.com/2.1/001/products/notebook003?internalSKU=true.

Chapter 1
Variables

1-32

Example 1-7 RestHelper

Assume that the following code is defined in a script located in extension extB that depends on
extA.

const restHelper = RestHelper.get('extA:store/listProduct', { extensionId:
'extB' });

restHelper.parameters({
 'server:storeId': 'To-001',
 manufactureModel: true,
 productId: 'tv001',
});

restHelper.transformsContext({
 myValue: 123,
});

return restHelper.fetch;

Also, assume that the web application defines the following value on the index.html artifact:

<script type="text/javascript">
 window.vbInitParams = {
 'services.catalog.common.version': 'untested',
 };
</script>

The vbPrepare transform could be implemented in storeapi.js like this (this examples uses an
alternative, simpler design for transforms):

'use strict';

define([], () => ({
 request: {
 vbPrepare: (configuration, options, transformsContext) => {
 /*
 * configuration = {
 * endpointId: 'extA:store/listProduct',
 * endpointPath: '/products/{productId}',
 * serverUrlTemplates: [
 * {
 * // The url of the server of the store service.
 * template: 'vb-catalog://backends/extA:storeapi/{storeId}',
 *
 * // The value that VB would use for the 'storeId' server
variable,
 * // which in this case is provided via the
'RestHelper.parameter'
 * variables: {
 * storeId: 'To-001',
 * }
 * },
 * {
 * // The url of the server of the storeapi backend.

Chapter 1
Variables

1-33

 * template: 'https://www.mystore.com/{version}',
 *
 * // The value that VB would use for the 'version' server
variable,
 * // which in this case is provided via the 'vbInitParams' from
index.html.
 * variables: {
 * version: 'untested',
 * }
 * },
 *],
 * }
 */

 /*
 * options = {
 * // The parameters set via 'RestHelper.parameters'.
 * parameters: {
 * 'server:storeId': 'To-001',
 * manufactureModel: true,
 * productId: 'tv001',
 * },
 * }
 */

 /*
 * // The value set via 'RestHelper.transformsContext'
 * transformsContext = {
 * myValue: 123,
 * }
 */

 // Not setting the 'manufactureModel' query parameter to use the
server's
 // default value.
 delete options.parameters.manufactureModel;
 },
 },
}));

With the transform above, the request URL that is fetched is https://www.mystore.com/
untested/To-001/products/tv001.

FetchByKeys Transform

A fetchByKeys transforms function allows the page author to take a key or Set of keys passed
in via the options and tweak the URL, to fetch the data for the requested keys.

When the consumer of the SDP calls the fetchByKeys() method, if the transforms author has
provided a 'fetchByKeys' transforms implementation, it is called over the other transforms. If no
fetchByKeys transforms function is provided then the default transforms are called.

The built-in business object REST API transforms already provides a fetchByKeys transforms
function implementation that appends the keys to the URL. This should suffice for most
common cases and should result in at most one fetch request to the server. For third-party
REST endpoints, the author can provide a custom fetchByKeys transforms implementation.

Chapter 1
Variables

1-34

Signature

The fetchByKeys transform function can be declared like this:

const fetchByKeys = function (configuration, options, transformsContext) {

 var c = configuration;
 // use the keys provided to update the c.url

 return c;
}

This function has the following parameters:

• configuration an object with the following properties:

– Refer to the signature in Request Transformation Functions for details on the various
properties.

• options the keys to fetch

• transformsContext is an object that is set by the author (ServiceDataProvider,
RestHelper, Call Rest action) to then be passed as is to all transforms for the current fetch
cycle.

The function returns the updated configuration object.

Examples

The examples below illustrate the arguments passed to the fetchByKeys transform, as well as
the effect its code has on the fetch performed by the RestHelper.

Example 1-8 FixItFast service

The examples below use a service fixitfast that has a GET endpoint to retrieve the list of
customers.

ServiceDataProvider variable

Assume that the following variable of type vb/ServiceDataProvider is defined in a page that
refers to the GET /customers endpoint.

{
 "variables": {
 "customersSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "fixitfast-service/getCustomers",
 "keyAttributes": "id",
 "itemsPath": "result",
 "responseType": {
 "result": "customerResponse[]"
 }
 }
 },
 "customersSDP2": {
 "type": "vb/ServiceDataProvider2",
 "constructorParams": [
 {
 "endpoint": "fixitfast-service/getCustomers",

Chapter 1
Variables

1-35

 "keyAttributes": "id",
 "itemsPath": "result",
 "responseType": {
 "result": "customerResponse[]"
 }
 }
]
 }
 }
}

The above SDP variable customersSDP, an extended type variable, is bound to an endpoint
that returns all customers. Another variable, customersSDP2 is an instance factory type - vb/
ServiceDataProvider2 that is bound to the same endpoint.

Note:

In the former case, the fetchByKeys capability may need to be set explicitly to values
other than the defaults for optimal behavior. This is because the extended type vb/
ServiceDataProvider does not automatically fetch the capabilities from the service
metadata transforms, whereas this is not the case for the extended type. Example,

{
 "customersSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 // ...
 "capabilities": {
 "fetchByKeys": {
 "implementation": "lookup",
 "multiKeyLookup": "single"
 }
 }
 }
 }
}

Refer to the Service Data Provider docs for details.

In both cases, when a component bound to the SDP variable initiates a fetchByKeys calls it
passes the Set of keys whose data needs to be fetched. In both cases, a RestHelper instance
is created and the fetchByKeys request transforms alone is run prior to the fetch. The
fetchByKeys request transforms function uses the Set of keys passed in to build a query param
on the configuration url.

The fetchByKeys transform is implemented in the default service transforms as follows:

define([], function () {
 class Request {

 static fetchByKeys(configuration, options, transformsContext) {
 const c = configuration;

Chapter 1
Variables

1-36

 const fetchConfig = c.fetchConfiguration;
 const fetchByKeysCap = !!(c && c.capability === 'fetchByKeys'); //
check if current fetch call is a fetchByKeys

 if (fetchByKeysCap) {
 const fetchKeys = options;
 if (fetchKeys && fetchKeys instanceof Set && fetchKeys.size > 0) {
 const keyAttribute = fetchConfig.context.keyAttributes ||
fetchConfig.context.idAttribute;
 const keysArr = Array.from(keys);

 // use the key values provided along with the keyAttribute to
update the c.url
 }
 }

 return c;
 }
 }

 class Response {};
 class Metadata {};

 // Note: as an example, the Request object is expanded to include just the
fetchByKeys property
 return {
 metadata: Metadata,
 request: { fetchByKeys: Request.fetchByKeys },
 response: Response
 };
});

Filter Transform

The filter request transform allows authors to take a filter criterion and turn into a filter query
that is generally appended to the configuration.url.

The filter criterion provided via the options parameter is an object that has a single attribute
filter criterion with properties { op, attribute, value }, or more complex criterion as defined by the
JET Data Provider docs. Additionally, text filtering is also supported (similar to the JET
TextFilterDef).

While the JET Data Provider Filter API defines many complex structures for representing a
filter criterion only a subset of these definitions and capabilities are implemented by the
Business Object based service transforms implementation.

The Business Objects transforms supports transforming filter criterion that use a simple form
(similar to JET AttributeExprFilterDef - refer to the JET docs for details), or a compound filter
that is an array of simple attribute filter criterion. Nested criterion structures as shown below
are also supported. See examples shown below

When using an SDP also refer to the docs for the same on how filterCriterion property is
configured.

Examples of Criterion Transforms

Chapter 1
Variables

1-37

This example is a simple attribute criterion that transforms to "q=empName = 'Lucy'":

{
 "op": "$eq",
 "attribute": "empName",
 "value": "Lucy"
}

This example is a compound criterion that tranforms to "q=hireDate > '2015-01-01' or
hireDate <= '2018-01-01'":

{
 "op": "$or",
 "criteria": [
 {
 "op": "$gt",
 "attribute": "hireDate",
 "value": "2015-01-01"
 },
 {
 "op": "$le",
 "attribute": "hireDate",
 "value": "2018-01-01"
 }
]
}

This example is a nested compound criterion that transforms to the following query parameter
"q=((foo LIKE 'foo%') and ((bar >= 'bar1') or (bar <= 'bar2')))":

{
 "op": "$or",
 "criteria": [
 {
 "op": "$and",
 "criteria": [
 {
 "attribute": "price",
 "op": "$gt",
 "value": 30
 },
 {
 "attribute": "price",
 "op": "$lt",
 "value": 40
 }
]
 }
]
}

This is an example of text filtering that transforms to q=(PartyName LIKE 'Megha%'). The term
'PartyName' is picked up by automatically looking up a special property on the

Chapter 1
Variables

1-38

transformsContext property - vb-textFilterAttributes: ['PartyName']. If nothing is set
then the keyAttribute is used as the attribute for the text search:

{
 "text": "Megha"
}

This is an example of text filtering that is combined with compound criterion that transforms to
q=((PartyName LIKE 'Megha%') and (Foo = 'bar1'))',":

{
 "op": "$and",
 "criteria": [
 {
 "text": "Megha"
 },
 {
 "op": "$or",
 "criteria": [
 {
 "op": "$eq",
 "attribute": "Foo",
 "value": "bar1"
 }
]
 }
]
}

For 3rd party services the author can provide a custom filter transforms implementation.

Signature

The filter transform function can be declared like this:

const filter = function(configuration, options, transformsContext) {

 var c = configuration;
 // use the filter criterion provided on 'options' parameter to generate the
filter query
 // update c.url as needed

 return c;
}

This function has the following parameters:

• configuration an object with the following properties:

– Refer to the signature in Request Transformation Functions for details on the various
properties.

Chapter 1
Variables

1-39

• options the filter criterion to transform. Business Objects transforms supports the following
compound and attribute operators in the filter criterion:

 '$co', // see JET AttributeFilterOperator.AttributeOperator.$co
 '$eq', // see JET AttributeFilterOperator.AttributeOperator.$eq
 '$ew', // see JET AttributeFilterOperator.AttributeOperator.$ew
 '$pr', // see JET AttributeFilterOperator.AttributeOperator.$pr
 '$gt', // see JET AttributeFilterOperator.AttributeOperator.$gt
 '$ge', // see JET AttributeFilterOperator.AttributeOperator.$ge
 '$lt', // see JET AttributeFilterOperator.AttributeOperator.$lt
 '$le', // see JET AttributeFilterOperator.AttributeOperator.$le
 '$ne', // see JET AttributeFilterOperator.AttributeOperator.$ne
 '$sw', // see JET AttributeFilterOperator.AttributeOperator.$sw

 '$and', // see JET CompoundFilterOperator.CompoundOperator.$and
 '$or', // see JET CompoundFilterOperator.CompoundOperator.$or
]

• transformsContext is an object that is set by the author (ServiceDataProvider,
RestHelper, Call Rest action) to then be passed as is to all transforms for the current fetch
cycle.

The function returns the updated configuration object.

Usages

The examples below illustrate the arguments passed to the filter transform as well as the effect
its code has on the fetch performed by the RestHelper.

The examples below use a service fixitfast that has a GET endpoint to retrieve the list of
customers.

Example 1-9 ServiceDataProvider variable

Assume that the following variable of type vb/ServiceDataProvider is defined in a page that
refers to the above GET /customers endpoint. The SDP variable includes a default filter
criterion and also sets a property called transformsContext with a key vb-
textFilterAttributes that is set to ['lastName']. This is a hint to the filter request transform
to use this attribute when building a text query.

{
 "variables": {
 "customersSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "fixitfast-service/getCustomers",
 "keyAttributes": "id",
 "itemsPath": "result",
 "responseType": {
 "result": "customerResponse[]"
 },
 "filterCriterion": {
 "op": "$eq",
 "attribute": "region",
 "value": "{{ $variables.customer.region || \"US\" }}"
 },
 "transformsContext": {
 "vb-textFilterAttributes": ["lastName"]

Chapter 1
Variables

1-40

 }
 }
 }
 }
}

When a caller such as a component bound to the above SDP initiates a fetch call, it can also
provide additional filter criterion along with a text value to search against if applicable (example
oj-select-single provides a text filter in the form { text: '<some-text-to-search>' }). These
are combined with the configured filter criterion above and the merged filter criterion is
provided to the filter transforms function. Refer to the Service Data Provider docs for details.

The filter request transforms function uses the filter criterion passed in via the options
parameter to build a query param on the configuration url.

The filter transform is implemented in the service transforms as follows:

define([], function () {
 class Request {

 static filter(configuration, options, transformsContext) {
 const c = configuration;
 const tc = transformsContext;
 const textFilterAttributes = tc && tc[VB_TEXT_FILTER_ATTRS];

 // process options to build the query

 return c;
 }
 }

 class Response {};
 class Metadata {};

 // Note: as an example, the Request object is expanded to include just the
filter property
 return {
 metadata: Metadata,
 request: { filter: Request.filter },
 response: Response
 };
});

Example 1-10 Rest Action

Assume that the following variable of type vb/ServiceDataProvider is defined in a page that
delegates the fetch to an action chain (set via 'fetchChainId' property).

The chain "fetchCustomersChain" in its fetchCustomers RestAction configuration sets a
default filter criteria via the property requestTransformOptions.filter.

Chapter 1
Variables

1-41

When a fetch is initiated by a component bound to the SDP, the filter criterion is automatically
passed in to the filter transform function associated to the service, along with the ones
provided by caller, via the options parameter. Refer to the Call Rest action docs for details.

{
 "variables": {
 "customersSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "fetchChainId": "fetchCustomersChain",
 "keyAttributes": "id",
 "itemsPath": "result"
 }
 }
 },
 "chains": {
 "fetchCustomersChain": {
 "variables": {
 "configuration": {
 "type": {
 "hookHandler": "vb/RestHookHandler"
 },
 "description": "the configuration for the rest action",
 "input": "fromCaller",
 "required": true
 }
 },
 "root": "fetchCustomers",
 "actions": {
 "fetchCustomers": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "fixitfast-service/getCustomers",
 "hookHandler": "{{ $variables.configuration.hookHandler }}",
 "responseType": "customersComputedResponse",
 "requestTransformOptions": {
 "filter": {
 "op": "$eq",
 "attribute": "region",
 "value": "{{ $page.variables.customer.region || \"US\" }}"
 }
 }
 },
 "outcomes": {
 "success": "returnCustomersResponse",
 "failure": "returnFailureResponse"
 }
 }
 }
 }
 }
}

Chapter 1
Variables

1-42

Write a Filter Transforms Function for Text Filtering

If your SDP binds to a business object REST API endpoint, you have the following options to
get text filtering to work:

• Option 1: Configure the SDP to include a vb-textFilterAttributes property where the
attributes to apply the text filter is specified. The built-in business object REST API
transforms look for this property and automatically build a filter criterion using the text and
turns it into a 'q' param.

"transformsContext": {
 "vb-textFilterAttributes": ["lastName"]
}

For the above configuration example, if a user enters text 'foo' in select-single, the SDP
generates q=lastName LIKE 'foo%'.

By default, the operator used is 'startsWith' as this is considered to be more optimized for
db queries than 'contains'.

• Option 2: If Option 1 doesn't meet your needs, then you can write a custom filter transform
that massages the text filter and turns it into a regular filterCriterion.

If you use option 2, you could do something similar to the following example. In this example,
resourcesListSDP uses the getall_resources endpoint. The (request) filter transforms property
is a callback that is defined in the PageModule.

"resourcesListSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "crmRestApi11_12_0_0/getall_resources",
 "keyAttributes": "PartyNumber",
 "itemsPath": "items",
 "responseType": "page:getallResourcesResponse",
 "transformsContext": {
 "vb-textFilterAttributes": ["PartyName"]
 },
 "transforms": {
 "request": {
 "filter": "{{ $functions.processFilter }}"
 }
 }
 }
}

It's important to note that the transformsContext object is an argument to every transforms
function, so transforms authors can read the attributes and build the query that way.

The transforms function below takes the text value provided by the component and turns into
an attribute filter criterion using the attributes passed in:

define(['vb/BusinessObjectsTransforms'], function(BOTransforms) {
 'use strict';

 var PageModule = function PageModule() {};

Chapter 1
Variables

1-43

 /**
 * The filter transform parses the text filter that may be part of the
options and replaces
 * it with an appropriate attribute filter criterion using the
textFilterAttrs.
 *
 * Note: select-single provides a text filter in the form { text:
'someTextToSearch' }.
 *
 * The processing of the resulting filterCriterion is delegated to the
Business Object REST API
 * transforms module, which takes the filterCriterion and turns it into the
'q' param.
 * @param textFilterAttrs
 * @return a transforms func that is called later with the options
 */
 PageModule.prototype.processFilter = function(config, options,
transformsContext) {
 const c = configuration;
 let o = options;
 let textValue;
 let isCompound;
 const tc = transformsContext;
 const textFilterAttributes = tc && tc['vb-textFilterAttributes];

 textValue = o && o.text;

 // build your regular filtercriterion and delegate to VB BO REST API
filter transforms

 return BOTransforms.request.filter(configuration, o);
 }
 return PageModule;
});

Note:

Page authors are discouraged from configuring the SDP with the 'q' parameter
directly, for example by setting a 'q' parameter in the uriParameters property. It is
recommended that authors always use filterCriterion property to define 'q' criteria.
This is especially important when using text filtering because the components always
provide a filterCriterion which is appended to any configured filterCriterion on the
SDP It becomes especially difficult for VB to reconcile the 'q' defined in uriParameters
with the filterCriterion and authors are on their own to merge the two.

It's also important to note that select-single calls fetchByKeys very often to locate the
record(s) pertaining to the select keys. For this reason, a new fetchByKeys
transforms function has been added. Refer to the fetchByKeys transforms function for
details.

Chapter 1
Variables

1-44

Paginate Transform

The paginate request transform allows authors to take a paging criteria and generate paging
related query param that is then appended to the configuration.url.

The paging criteria is provided via the options parameter with properties { size, offset }.

Example of Paging Criterion Transform

This example is a paging criterion that transforms to "?limit=5&offset=10:

{
 "size": 5,
 "offset": 10
}

Signature

The paginate transform function can be declared like this:

const paginate = function(configuration, options, transformsContext) {

 var c = configuration;
 // use the paging criteria provided on 'options' parameter to generate the
appropriate query param
 // update c.url as needed

 return c;
}

This function has the following parameters:

• configuration an object with the following properties:

– Refer to the signature in Request Transformation Functions for details on the various
properties.

• options the paging criteria to transform:

– size: Specifies how many rows to fetch. If a size is not specified, or size is set to -1
(some JET components, such as JET chart components, often request all rows by
setting { size: -1 }. When this is the case, it might be necessary to handle -1 as
size).

– offset: Specifies which row to start the fetch from.

• transformsContext is an object that is set by the author (ServiceDataProvider,
RestHelper, Call Rest action) to then be passed as is to all transforms for the current fetch
cycle.

The function returns the updated configuration object.

Usages

Example 1-11 When size of -1 is provided

// Paginate function that limits fetched to a max size of 100
const paginate = (configuration, options, context) => {

Chapter 1
Variables

1-45

 var c = configuration;
 var os = (options.size === -1 || options.size > 100) ? 100 : options.size;

 if (options) {
 c.url = appendToUrl(c.url, 'limit', os);
 c.url = appendToUrl(c.url, 'offset', options.offset);
 }
 return c;
}

Query Transform

The query request transform allows authors to take the uri parameters and modify or add new
query parameters to the configuration.url.

Normally uriParameters configured on the Service Data Provider or the Call Rest action are
appended to the URL automatically but there may be cases where user would want to tweak
the query parameters some more.

Let's say the endpoint GET /incidents, supports a query parameter called "search", which does
a semantic aka contextual search. If there is a special param that needs to always be
appended before calling the endpoint, then the transform function could be used for that.

Signature

The paginate transform function can be declared like this:

Request.prototype.query = function(configuration, options, transformsContext)
{

 var c = configuration;
 // use the query criteria provided on 'options' parameter to generate the
query param
 // update c.url as needed

 return c;
}

This function has the following parameters:

• configuration an object with the following properties:

– Refer to the signature in Request Transformation Functions for details on the various
properties.

• options the uri parameters.

• transformsContext is an object that is set by the author (ServiceDataProvider,
RestHelper, Call Rest action) to then be passed as is to all transforms for the current fetch
cycle.

The function returns the updated configuration object.

Examples

The examples below illustrate the arguments passed to the query transform as well as the
effect its code has on the fetch performed by the RestHelper.

Chapter 1
Variables

1-46

The example below uses a service fixitfast that has a GET endpoint to retrieve the list of
customers.

Example 1-12 ServiceDataProvider variable

Assume that the following variable of type vb/ServiceDataProvider is defined in a page that
refers to the GET /incidents endpoint.

The SDP variable includes the uriParameters property as shown below.

{
 "variables": {
 "incidentListTableSource": {
 "type": "vb/ServiceDataProvider",
 "input": "none",
 "defaultValue": {
 "endpoint": "fixitfast-service/getIncidents",
 "keyAttributes": "id",
 "uriParameters": {
 "technician": "hcr",
 "searchIn": "{{ $page.variables.searchType }}"
 },
 "transforms": {
 "request": {
 "query": "{{ $page.functions.query }}"
 }
 }
 }
 }
 }
}

The query request transforms function uses the criteria passed in via the options parameter to
build a query param on the configuration url.

The query transform is implemented in the page module JavaScript as follows:

define([], function () {
 class PageModule {

 query(configuration, options, transformsContext) {
 const o = options;
 const c = configuration;

 if (o && !o.searchIn) {
 let newUrl = c.url;
 newUrl = `${newUrl}&search=faq`; // appends faq search qp

 c.url = newUrl;
 }
 return c;
 }
 }

 return PageModule;
});

Chapter 1
Variables

1-47

Select Transform

The select request transform allows authors to construct the query param, to include fields
whose values need to be included, in the response. Example, the built-in Business Objects
based transforms creates a 'fields' query parameter.

The select criteria provided via the options parameter is an Object with properties { attributes,
type }. The type is the response type structure typically specified on the ServiceDataProvider
and Call Rest action configurations. The attributes are provided by the caller, such as the
component, through a fetch call. See JET Data Provider docs for details on the fetch methods
and the parameters. particularly 'attributes' (JET FetchAttribute). When attributes and type
are present, how these are combined is left to the discretion of the transforms' implementation.

Examples

select criteria with type transforms to
"fields=PartyId,PartyStatus,PartyType;PrimaryAddress:AddressId,FormattedAddress"

{
 "attributes": null,
 "type": [
 {
 "PartyId": "number",
 "PartyStatus": "string",
 "PartyType": "string",
 "PrimaryAddress": [
 {
 "AddressId": "number",
 "FormattedAddress": "string"
 }
]
 }
]
}

select criteria with attributes transforms to fields=a;b:b1,b2;c:c2;c.c1:c1a,c1b'

{
 "attributes": [
 "a",
 {
 "name": "b",
 "attributes": [
 "b1",
 "b2"
]
 },
 {
 "name": "c",
 "attributes": [
 {
 "name": "c1",
 "attributes": [
 "c1a",
 "c1b"

Chapter 1
Variables

1-48

]
 },
 "c2"
]
 }
],
 "type": null
}

select criteria with both type and attributes transforms to
fields=PartyId,PartyStatus,PartyType,a;PrimaryAddress:AddressId,FormattedAddress,
b;PrimaryAddress.FormattedAddress:c

{
 "attributes": [
 "PartyId",
 {
 "name": "PrimaryAddress",
 "attributes": [
 "AddressId",
 {
 "name": "FormattedAddress",
 "attributes": [
 "c"
]
 },
 "b"
]
 },
 "a"
],
 "type": {
 "items": [
 {
 "PartyId": "number",
 "PartyStatus": "string",
 "PartyType": "string",
 "PrimaryAddress": [
 {
 "AddressId": "number",
 "FormattedAddress": "string"
 }
]
 }
]
 }
}

For 3rd party services the author can provide a custom select transforms implementation.

Signature

Chapter 1
Variables

1-49

The filter transform function can be declared like this:

function(configuration, options, transformsContext) {

 var c = configuration;
 // use the select criteria provided on 'options' parameter to generate the
query param
 // update c.url as needed

 return c;
}

This function has the following parameters:

• configuration an object with the following properties:

– Refer to the signature in Request Transformation Functions for details on the various
properties.

• options select the fields whose data is requested:

– type: an Object that is configured as responseType property on the Service Data
Provider or Rest Action

– attributes: a structure defined by JET that is an Array<(string|FetchAttribute)>. See
JET docs for details.

• transformsContext is an object that is set by the author (ServiceDataProvider,
RestHelper, Call Rest action) to then be passed as is to all transforms for the current fetch
cycle.

The function returns the updated configuration object.

Usage

The examples below illustrate the arguments passed to the select transform, as well as the
effect its code has on the fetch performed by the RestHelper.

The example below uses a service fixitfast that has a GET endpoint to retrieve the list of
customers.

Example 1-13 ServiceDataProvider variable

Assume that the following variable of type vb/ServiceDataProvider is defined in a page that
refers to the above GET /customers endpoint. The SDP variable includes a response type that
it expects the response to be in, set via the property responseType.

{
 "types": {
 "customerResponse": {
 "PartyId": "number",
 "PartyStatus": "string",
 "PartyType": "string",
 "PrimaryAddress": [
 {
 "AddressId": "number",
 "FormattedAddress": "string"
 }
]
 }

Chapter 1
Variables

1-50

 },
 "variables": {
 "customersSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "fixitfast-service/getCustomers",
 "keyAttributes": "PartyId",
 "itemsPath": "result",
 "responseType": {
 "items": "customerResponse"
 }
 }
 }
 }
}

When a caller such as a component bound to the above SDP initiates a fetch call, it can also
provide additional attributes. These are combined with the configured responseType above and
the combined select criteria is provided to the select transforms function.

The select request transforms function uses the criteria passed in via the options parameter
to build a query param on the configuration url. The select transform is implemented in the
service transforms as follows:

define([], function () {
 class Request {

 static select(configuration, options, transformsContext) {
 const c = configuration;
 const selectOpts = options;

 // process options to build the query param for the fields requested in
the response
 if (selectOpts && (selectOpts.type || selectOpts.attributes)) {
 // ...
 }

 // update the c.url
 return c;
 }
 }

 var Response = function() {};
 var Metadata = function() {};

 // Note: as an example, the Request object is expanded to include just the
select property
 return {
 metadata: Metadata,
 request: { select: Request.select },
 response: Response
 };
});

Chapter 1
Variables

1-51

Sort Transform

The sort request transform allows authors to transform a sort criteria into a sort query param
that is then appended to the configuration.url.

The sort criteria provided via the options parameter is an array that has one or more criteria
with properties { attribute, direction }. See JET SortCriterion for details.

Examples of Sort criteria

This example shows a single sort criterion that transforms to "orderBy=firstName:asc"

[
 {
 "attribute": "firstName",
 "direction": "ascending"
 }
]

This example shows a compound sort criteria that transforms to
"orderBy=firstName:asc,age:desc"

[
 {
 "attribute": "firstName",
 "direction": "ascending"
 },
 {
 "attribute": "age",
 "direction": "descending"
 }
]

For 3rd party services the author can provide a custom sort transforms implementation.

Signature

The sort transform function can be declared like this:

const sort = function(configuration, options, transformsContext) {

 var c = configuration;
 // use the sort criteria provided on 'options' parameter to generate the
query param
 // update c.url as needed

 return c;
}

This function has the following parameters:

• configuration an object with the following properties:

– Refer to the signature in Request Transformation Functions for details on the various
properties.

Chapter 1
Variables

1-52

• options the sort criteria to transform.

• transformsContext is an object that is set by the author (ServiceDataProvider,
RestHelper, Call Rest action) to then be passed as is to all transforms for the current fetch
cycle.

The function returns the updated configuration object.

Usage

The examples below illustrate the arguments passed to the sort transform, as well as the effect
its code has on the fetch performed by the RestHelper.

The example below uses a service fixitfast that has a GET endpoint to retrieve the list of
customers.

Example 1-14 ServiceDataProvider variable

Assume that the following variable of type vb/ServiceDataProvider is defined in a page that
refers to the above GET /customers endpoint. The SDP variable includes a default sort criteria
set via the property sortCriteria.

{
 "variables": {
 "customersSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "fixitfast-service/getCustomers",
 "keyAttributes": "id",
 "itemsPath": "result",
 "responseType": {
 "result": "customerResponse[]"
 },
 "sortCriteria": [
 {
 "attribute": "lastName",
 "direction": "ascending"
 }
]
 }
 }
 }
}

When a caller such as a component bound to the above SDP initiates a fetch call, it can also
provide additional sort criteria. These are combined with the configured cort criteria above and
the merged sort criteria is provided to the sort transforms function.

The

sort

request transforms function uses the criteria passed in via the

options

Chapter 1
Variables

1-53

parameter to build a query param on the configuration url. The

sort

transform is implemented in the service transforms as follows:

define([], function () {
 class Request {

 static sort(configuration, options, transformsContext) {
 const c = configuration;
 const sortCriteria = options;

 // process options to build the query param for the sort
 if (sortCriteria && Array.isArray(sortCriteria) && sortCriteria.length
> 0) {
 sortCriteria.forEach((sc) => {
 const dir = sc.direction === 'descending' ? 'desc' : 'asc';
 const attr = sc.attribute || "";
 if (attr) {

 // build sort criteria and append to url
 }
 })
 }

 // update the c.url
 return c;
 }
 }

 class Response {};
 class Metadata {};

 // Note: as an example, the Request object is expanded to include just the
sort property
 return {
 metadata: Metadata,
 request: { sort: Request.sort },
 response: Response
 };
});

Example 1-15 REST Action

Assume that the following variable of type vb/ServiceDataProvider is defined in a page that
delegates the fetch to an action chain (set via 'fetchChainId' property).

The chain "fetchCustomersChain" in its fetchCustomers RestAction configuration sets a
default sort criteria via the property requestTransformOptions.sort.

Chapter 1
Variables

1-54

When a fetch is initiated by a component bound to the SDP, the sort criteria is automatically
passed in to the sort transform function associated to the service, via the options parameter.
Refer to the Call Rest action docs for details.

{
 "variables": {
 "customersSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "fetchChainId": "fetchCustomersChain",
 "keyAttributes": "id",
 "itemsPath": "result"
 }
 }
 },
 "chains": {
 "fetchCustomersChain": {
 "variables": {
 "configuration": {
 "type": {
 "hookHandler": "vb/RestHookHandler"
 },
 "description": "the configuration for the rest action",
 "input": "fromCaller",
 "required": true
 }
 },
 "root": "fetchCustomers",
 "actions": {
 "fetchCustomers": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "fixitfast-service/getCustomers",
 "hookHandler": "{{ $variables.configuration.hookHandler }}",
 "responseType": "customersComputedResponse",
 "requestTransformOptions": {
 "sort": [
 {
 "attribute": "lastName",
 "direction": "desc"
 }
]
 }
 },
 "outcomes": {
 "success": "returnCustomersResponse",
 "failure": "returnFailureResponse"
 }
 }
 }
 }
 }
}

Chapter 1
Variables

1-55

Body Transform

(Required) <Enter a short description here.>

The body request transform allows the author to modify the body payload for the fetch request.
Some getAll endpoints in any type of service, be it Business Object / BOSS / ElasticSearch,
may use a POST operation with a body (example, where the search criteria is set on the 'body'
of the request payload) in order to retrieve search results. The body of the payload is generally
provided by the caller of the request, which can be modified using this request transform
function.

The body transform function is called after all other transforms are run. This is to allow
additional contextual information to be added by the previous transforms (to the
transformsContext parameter) that need to be included in the body.

Signature

The body transform function can be declared like this:

Request.prototype.body = function(configuration, options, transformsContext) {
 // Clients can manipulate the options of the fetch that contains the body
of the payload to send.
}

This function has the following parameters:

• configuration an object with the following properties:

– Refer to the signature in Request Transformation Functions for details on the various
properties.

• options the body for the POST request.

• transformsContext is an object that is set by the author (ServiceDataProvider,
RestHelper, Call Rest action) to then be passed as is to all transforms for the current fetch
cycle.

The function returns the updated configuration object.

Usage

The examples below illustrate the arguments passed to the body transform, as well as the
effect its code has on the fetch performed by the RestHelper.

The example below uses a service fixitfast that has a POST endpoint to retrieve the list of
incidents currently open in the system.

• The service has an operation postToGetIncidents similar to what is shown below. Please
refer to the VB Docs on creating a Service Connection on how to add/configure POST
endpoints and also set up a custom transforms for the same.

{
 "/incidents": {
 "post": {
 "operationId": "postToGetIncidents",
 "responses": {
 "default": {
 "description": "Default response"
 }

Chapter 1
Variables

1-56

 },
 "x-vb": {
 "transforms": {
 "path": "./fixitfast-post-transforms.js",
 "disabled": {
 "request": [
 "sort",
 "filter",
 "query"
]
 }
 },
 "headers": {
 "Content-type": "application/json",
 "Accept": "application/json"
 }
 }
 }
 }
}

Transform Script

As indicated above, the transform script fixitfast-post-transforms.js is specified in the
fixitfast service catalog, along with the endpoint definition. This artifact contains the body
transform method.

If the service fixitfast had a transform script, the method for body could be declared there as
long as the transforms code applies to this POST endpoint.

Example 1-16 ServiceDataProvider variable

Assume that the following variable of type vb/ServiceDataProvider is defined in a page that
refers to the above POST endpoint.

{
 "variables": {
 "userFilter": {
 "type": "object",
 "defaultValue": {
 "technician": "hcr",
 "role": "tech"
 }
 },
 "searchCriteria": {
 "type": "object",
 "defaultValue": {
 "searchLevel": "allReports"
 }
 },
 "incidentsList": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "fixitfast-service/postToGetIncidents",
 "keyAttributes": "id",
 "itemsPath": "result",
 "body": {

Chapter 1
Variables

1-57

 "userFilter": "{{ $page.variables.userFilter }}",
 "searchCriteria": "{{ $page.variables.searchCriteria }}"
 }
 }
 }
 }
}

The above SDP variable incidentsList is bound to listview component that initiates a fetch to
retrieve all incidents. This creates a RestHelper instance and subsequently the request
transforms to be run. The body request transforms function is called, and the body is updated
as needed, on the configuration object, before the POST request is made.

The body transform is implemented in fixitfast-post-transforms.js as follows:

define([], function () {
 class Request {
 static body(configuration, options, transformsContext) {
 const c = configuration;

 /*
 * options = {
 * userFilter: {
 * technician: 'hcr',
 * role: 'tech'
 * },
 * searchCriteria: {
 * searchLevel: 'allReports'
 * }
 * }
 */

 // Update the body values if needed
 const body = c.initConfig.body || {};

 return c;
 };
 }

 class Metadata {};
 class Response {};

 // Note: as an example, the Request object is expanded to include just the
body property
 return {
 metadata: Metadata,
 request: { body: Request.body },
 response: Response
 };
});

Chapter 1
Variables

1-58

Response Transformation Functions
Response transformation (transform) functions are called right after a request returns
successfully, and allow a page author to transform / augment the response to a form expected
by the caller.

The ServiceDataProvider supports a predefined list of response transformation function types,
described in this section. Note that there are no guarantees of the order in which transform
functions are called.

Signature

A response transformation function has the following signature: function (result). It can be
defined on the service endpoint, but can also be overridden on the variable.

function(configuration, transformsContext) {

 // process the contents and return the result appropriate for the
response transform
 return result;
}

Generally these functions are implemented by a service author and associated to the service,
but the individual functions can also be overridden on the Service Data Provider variable or the
Call Rest action.

The parameters to the function are:

• configuration: An object that has the following properties:

– headers: The response headers.

– body: The body returned in the response.

– fetchConfiguration: the configuration pertaining to this fetch call. If fetch was initiated
by ServiceDataProvider this includes the following properties:

* capability: The fetch capability, like fetchByKeys, fetchFirst, fetchByOffset

* context: a snapshot of the ServiceDataProvider variable state at the time the fetch
call was made.

* externalContext: if the fetch was externalized to a chain, then the context setup
on the RestAction in that chain

* fetchParameters: a snapshot of the original fetch parameters provided by the
initiator of the fetch (such as a component). The parameters passed to the fetch
call are defined by the JET Data Provider fetch API.

* transformsOptions: these are full set of transforms options that are passed to
each transform function. These are computed using the parameters configured on
the Service Data Provider, the RestAction (if applicable), and the input parameters
provided by initiator (such as the component).

• transformsContext: a context object that is passed to every transform function to store/
retrieve any contextual information for the current request lifecycle.

The function returns a configuration object appropriate for the response transform type. See
the following common response transform types (paginate transform, body transform) below
for details on the returned responses.

Chapter 1
Variables

1-59

Paginate Transform

This transformation function is called immediately after the fetch returns with a response. The
paginate response transform function can process the response and return an object with the
following properties set.

The returned Object is the primary way in which callers like Service Data Provider know about
the paging state.

• totalSize: A number tracking for the (canonical) total size of the result is. See JET Data
Provider Docs for details.

• hasMore: generally required. A boolean that indicates whether there are more records to
fetch. Example in Business Objects based services, this would map to the hasMore
boolean property commonly returned, in the response. Iterating components can use this
information to keep iterating until there is no more data to fetch, or until certain UI
conditions are met (this might be needed when a selected row is several pages down).

• pagingState: This can be used to store any paging state specific to the paging capability
supported by the endpoint. This additional paging state will then be passed 'as is' to the
request paginate transform function, for the next iteration.

Body Transform

This transform function is called immediately after the REST call returns with a response, and
is a hook for authors to transform the response body, if needed. This function is not guaranteed
to be called in any specific order.

Example

A ServiceDataProvider variable that is configured with a custom body response transform is
shown below. While it overrides the body response transforms whereas, the paginate
response transforms function used to process the response returned by fetch call, is the
default transforms associated to the service.

{
 "variables": {
 "incidentsList": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "ifixitfast-openapi3/getCustomers",
 "keyAttributes": "id",
 "itemsPath": "items",
 "responseType": {
 "items": "customerResponse[]",
 "extraResult": "extraResponse"
 },
 "transforms": {
 "response": {
 "body": " {{ $page.functions.bodyResponse }}"
 }
 }
 }
 }
 }
}

Chapter 1
Variables

1-60

The default paginate response transforms functions for a Business Object based service
returns an object with the properties { totalSize, hasMore } as shown below:

define([], function () {
 class Response {
 /**
 * Called after response returns from a fetch call, this is a good place
to process
 * response, to provide pagination info such as totalSize and hasMore.
 *
 * @param configuration - a Map containing the following properties
 * - headers: response header
 * - body: body of the response
 * - fetchConfiguration: the configuration that triggered this fetch call.
 *
 * @param transformsContext transforms context
 *
 * @returns {{}}
 */
 static paginateResponse(configuration, transformsContext) {
 const ps = {};
 const tr = {};

 if (configuration.body) {
 const rb = configuration.body;

 if (rb.totalCount) {
 tr.totalSize = rb.totalCount;
 }
 if (rb.totalCount > 0) {
 tr.hasMore = !!rb.hasMore;
 } else {
 tr.hasMore = false;
 }
 }
 return tr;
 };
 }

 var Response = function() {};
 var Metadata = function() {};

 // Note: as an example, the Request object is expanded to include just the
sort property
 return {
 metadata: Metadata,
 request: Request,
 response: { paginate: Response.paginateResponse },
 };
});

Chapter 1
Variables

1-61

The custom body response transforms function configured in the SDP variable is defined in the
PageModule JS. It appends extra results to the return value.

define([], function () {
 class PageModule {
 /**
 * Fix up response data and extract other info and return a transformed
result body.
 * The object returned must have the body that the caller is configured
for
 *
 * @param configuration - a Map containing the following properties
 * - headers: response header
 * - body: body of the response
 * - fetchConfiguration: the configuration that triggered this fetch call.
 *
 * @param transformsContext transforms context
 *
 * @returns {*}
 */
 static bodyResponse = (configuration, transformsContext) => {
 const tr = {};
 const c = configuation;

 if (c.body) {
 // fix up result.body from REST if needed and set the new body in tr
 tr.items = c.body.items;

 // you can also store additional data.
 tr.extraResult = { foo: 'bar' };
 }

 return tr;
 };
 };

 return PageModule;
});

Methods
ServiceDataProvider implements most methods from oj.DataProvider, except for the isEmpty
method.

Most ServiceDataProvider methods, such as fetchFirst, fetchByKeys, fetchByOffset,
containsKeys, and getCapabilities, are called by the component that interfaces with the
DataProvider implementation and will rarely need to be used directly. The getTotalSize method
is an exception to this general rule.

getTotalSize method

The getTotalSize method returns a Promise that resolves to the total size of data available on
the service endpoint. If a positive number is not set in the response transforms, a size of -1 is
returned. Generally the returned value is the canonical size of the (endpoint) fetch when no
search criteria is applied. In other words, this value is meant to be the same every time a fetch
is called against the endpoint.

Chapter 1
Variables

1-62

Because page authors often want the convenience of binding the totalSize on the page, vb/
ServiceDataProvider supports a totalSize property that is a number. This can be used instead
of the getTotalSize method, which is used by JavaScript callers.

For example, a page author can use the totalSize property of the ServiceDataProvider in
markup as follows:

<oj-bind-text id="totalIncRows"
 value="[[$variables.incidentListDataProvider.totalSize]]"></oj-bind-text>

Features and Capabilities

Page authors generally need not be concerned with this, but it's generally useful to understand
the features and capabilities that SDP supports. For details refer to JET
DataProvider#getCapability.

At design time, a page author may need to know what features and capabilities the endpoint
supports, and they may need to configure the correct properties and transforms.

Events
At design time, a page author may need to know what features and capabilities the endpoint
supports, and they may need to configure the correct properties and transforms.

Events

The events raised by the data provider are defined by contract for oj.DataProvider. These
events are fired at appropriate times to notify UI components. Page authors may need to force
the variable to fire some of the DataProvider events, including 'add', 'remove', 'refresh', and
'update'.

vbDataProviderNotification Event Listener

Page authors can register an event listener of this type in order to be notified of catastrophic
errors that may occur when something goes wrong during an implicit fetch. For an externalized
fetch, where the fetch is externalized to a action chain, the current mechanism of handling
failure outcomes can continue to be used.

For example, on the page, the listeners property can have this definition:

"vbDataProviderNotification": {
 "chains": [
 {
 "chainId": "someChainX"
 }
]
}

The event payload available to the listener is an object that has the following properties:

• severity: a string

• detail: any details of the error, such as REST failure details

• capability: an object with the capabilities configured on the ServiceDataProvider

• fetchParameters: an object with the parameters passed to the fetch

Chapter 1
Variables

1-63

• context: an object representing the state of the ServiceDataProvider at the time the fetch
was initiated

• id: uniqueId, a string, the id of the ServiceDataProvider instance

• key: since the event can be fired multiple times, this identifies the event instance

Page authors can use this to display an error message.

Example 1-17 Firing a DataProvider event by using a fireDataProviderEvent action

A page is configured to have a master list and detail form showing the details of the current
selected row on the list. Suppose that the form is wired to PATCH to a different endpoint than
the one configured on the list. When the user updates the form data, it's desirable for the same
actionChain to also raise the 'update' event on the ServiceDataProvider so it can show the
changes to the current row. To configure the page:

<!-- list view bound to page variable incidentListTableSource -->
<oj-list-view id="listview"
 data="{{$variables.incidentListTableSource}}"
...
</oj-list-view>

<!-- form UI fields bound to page variable currentIncident -->
<div class="oj-form-layout"
 <div class="oj-form"
 <div class="oj-flex"
 <div class="oj-flex-item"
 <oj-label for="problem"Problem</oj-label>
 </div>
 <div class="oj-flex-item"
 <oj-input-text id="problem"
 value="{{$variables.currentIncident.problem}}"
 required=true</oj-input-text>
 </div>
 </div>
...

<!-- Save button bound to componentEvent handler 'saveIncident' -->
<oj-button href="#" id='saveButton'
 label='Save'
 on-dom-click='[[$componentEvents.saveIncident]]'</oj-button>

// saveIncident calls the actionChain 'saveIncidentChain', which
// (1) defines 2 variables - incidentId and incidentPayload
// (2) then calls a REST action to put/patch payload
// (3) then it takes the result from (2) and assigns to incidentsResponse
chain
// variable,
// (4) calls an actionChain to fire a data provider event to refresh the SDP
page
// variable
// (5) an update event payload passed to the action chain
"saveIncidentChain": {
 "variables": { // (1)
 "incidentId": {
 "type": "string",

Chapter 1
Variables

1-64

 "description": "the ID of the incident to update",
 "input": "fromCaller",
 "required": true
 },
 "incidentPayload": {
 "type": "object",
 "description": "the payload of the incident data",
 "input": "fromCaller",
 "required": true
 },
 "incidentsResponse": {
 "type": "application:incidentsResponse"
 }
 },
 "root": {
 "id": "saveIncidentToRest", // (2)
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/putIncident",
 "uriParams": {
 "id": "{{ $variables.incidentId }}"
 },
 "body": "{{ $variables.incidentPayload }}"
 },
 "outcomes": {
 "success": "assignVariables_incidentsResponse"
 }
 },
 "assignVariables_incidentsResponse": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$variables.incidentsResponse.result": {
 "source": "{{ $chain.results.saveIncidentToRest.body }}" // (3)
 }
 },
 "outcomes": {
 "success": "updateIncidentList"
 }
 },
 "updateIncidentList": {
 "module": "vb/action/builtin/callChainAction",
 "parameters": {
 "id": "fireDataProviderMutationEventActionChain", // (4)
 "params": {
 "payload": {
 "update": { // (5)
 "data": "{{ $variables.incidentsResponse }}"
 }
 }
 }
 }

Chapter 1
Variables

1-65

 }
}

"fireDataProviderMutationEventActionChain": {
 "variables": {
 "payload": {
 "type": "application:dataProviderMutationEventDetail",
 "input": "fromCaller"
 }
 },
 "root": "fireEventOnDataProvider",
 "actions": {
 "fireEventOnDataProvider": {
 "module": "vb/action/builtin/fireDataProviderEventAction",
 "parameters": {
 "target": "{{ $page.variables.incidentListDataProvider }}", // SDP
variable
 // on which the event is
fired
 "add": "{{ $variables.payload.add }}",
 "remove": "{{ $variables.payload.remove }}",
 "update": "{{ $variables.payload.update }}" // has the updated record
details
 }
 }
 }
},

ServiceDataProviderFactory
Some times it's desirable to create a standalone VB type instance programmatically by passing
an initial state. Here the instance is not backed by a variable, that is, its state is not stored in
redux. Instead the instance and/or the caller manages its state essentially.For such cases VB
publishes a contract for a TypeFactory that any type author can implement. See Custom
Extended Types.

The TypeFactory contract is provided in the vb/types/factories/typeFactory.js. VB
provides TypeFactory implementations for creating a ServiceDataProvider instance. Refer to
the ServiceDataProviderFactory for details. (vb/types/factories/
serviceDataProviderFactory.js)

Methods

createInstance

Returns an instance of the ServiceDataProvider. Refer to the JSDocs for the parameters
supported on this method. The instance returned supports all methods from the DataProvider
contract.

• options, object used to instantiate the ServiceDataProvider with, usually contains these
properties

– dataProviderOptions, its initial or 'default' state.

* state properties are same as what a regular ServiceDataProvider variable takes

Chapter 1
Variables

1-66

– serviceOptions, optional configuration needed by the RestHelper to locate the endpoint
details. This can be skipped if the dataProviderOptions includes an 'endpoint' property

* properties:

* url <string>
* operationRef <string>

caller can create an instance as follows:

ServiceDataProviderFactory.createInstance({ dataProviderOptions: { endpoint:
"foo/getBars", responseType: "barType[]", keyAttributes: "id"} })
 .then((sdpInstance) => {
 const iter = sdpInstance.fetchFirst();
 iter.next().then((results) => {
 // process results
 });
 });

Multi-Service Data Provider
The vb/MultiServiceDataProvider built-in type is a data provider implementation that combines
multiple vb/ServiceDataProvider variables, each providing a unique fetch capability.

Often components that bind to data providers, like oj-combobox-one and oj-select-single (or
the -many variants), require or use different 'fetch' capabilities on the data provider
implementation.

For example, an oj-select-single component might call fetchFirst() (on the DataProvider
implementation) to populate its options, and then call fetchByKeys() to fetch data for selected
value, and fetchByOffset() to fetch items from an offset. Often the endpoint configured on a
ServiceDataProvider may provide multiple capabilities - for example, most GETAll endpoints
for business object REST API services also allow fetching data for specific keys, and from an
offset, on the same endpoint. However, on rare occasions authors might require different
endpoints to support different fetch capabilities. A MultiServiceDataProvider can be used for
this purpose.

Design Time Assumptions

At design time, a service author can identify different endpoints that provide the fetchByKeys
and fetchByOffset capabilities, in addition to the current fetch all (fetchFirst capability). When
there are different endpoints a page author must pick different endpoints for each (fetch)
capability when configuring a variable of a type vb/MultiServiceDataProvider. It is common for
the same REST endpoint to support multiple capabilities.

• for fetchByKeys

– For example, the same endpoint can fetch all territories and a set of territories that
match a set of territory codes (fetchByKeys): GET /fndTerritories? and /
fndTerritories?q=TerritoryCode in ('US', 'AE')

– the same endpoint can be used to fetch all customers, or to fetch customers by
specific keys using the same endpoint but different query parameters: GET /customers
and GET /customers?ids=cus-101,cus-103.

• for fetchByOffest

– an Oracle Cloud application endpoint can fetch all territories, and territories at a given
offset - GET /fndTerritories and /fndTerritories?offset=50&size=10

Chapter 1
Variables

1-67

Properties

A variable of the built-in type vb/MultiServiceDataProvider can be configured with the
dataProviders property using the following sub-properties.

dataProviders Sub-
property

Type Example Description

fetchFirst "vb/
ServiceDataProvider" {

 "variables": {

"activitiesMultiS
DP": {
 "type":
"vb/
MultiServiceDataP
rovider",

"defaultValue": {

"dataProviders":
{

"fetchFirst":
"{{ $variables.li
stSDP }}"
 }
 }
 }
 }
}

A
MultiServiceDataProvide
r is needed only when
more than one fetch
capability needs to be
configured.

Chapter 1
Variables

1-68

dataProviders Sub-
property

Type Example Description

fetchByKeys "vb/
ServiceDataProvider" {

 "variables": {

"activitiesMultiS
DP": {
 "type":
"vb/
MultiServiceDataP
rovider",

"defaultValue": {

"dataProviders":
{

"fetchFirst":
"{{ $variables.li
stSDP }}"

"fetchByKeys":
"{{ $variables.de
tailSDP }}"

 }
 }
 }
 }
}

A reference to the vb/
ServiceDataProvider
variable.

Chapter 1
Variables

1-69

dataProviders Sub-
property

Type Example Description

fetchByOffset "vb/
ServiceDataProvider" {

 "variables": {

"activitiesMultiS
DP": {
 "type":
"vb/
MultiServiceDataP
rovider",

"defaultValue": {

"dataProviders":
{

"fetchFirst":
"{{ $variables.li
stSDP }}"

"fetchByOffset":
"{{ $variables.li
stSDP }}"
 }
 }
 }
 }
}

A reference to the vb/
ServiceDataProvider
variable.

Behavior

• A variable of type vb/MultiServiceDataProvider must have at least one fetch capability
defined. Otherwise an error is flagged.

• When a fetchFirst capability is not defined, a no-op fetchFirst capability is used. The JET
DataProvider contract requires a fetchFirst implementation to be provided.

• All fetch capabilities must point to a variable of type vb/ServiceDataProvider.

• A MultiServiceDataProvider cannot reference another MultiServiceDataProvider variable.

Usage

Here are some of the common ways service endpoints might provide their fetch capabilities.

Usage: When a service provides unique endpoints for different fetch capabilities

When a service has unique endpoints for each fetch capability, we will require one variable of
type 'vb/ServiceDataProvider' per fetch API, and a variable of type 'vb/
MultiServiceDataProvider' variable that combines the individual ServiceDataProvider
variables together. The list-of-values component will then bind to a variable of type vb/
MultiServiceDataProvider.

Chapter 1
Variables

1-70

Let's consider this third-party REST API that is used to get information about countries.

• fetchFirst capability: to get a list of all countries and their info, where the alpha3Code is the
primary key

– service/endpoint: rest-service/getAllCountries

– GET https://restcountries.eu/rest/v2/all
• fetchByKeys capability (with multi key lookup): to get a list of countries by their three-letter

alpha code

– service/endpoint: rest-service/getCountriesByCodes

– GET https://restcountries.eu/rest/v2/alpha?codes=usa;mex
In order for the list-of-values component to use the above endpoints, the design time will need
to create three variables:

• One vb/MultiServiceDataProvider variable that references two ServiceDataProvider
variables, one for each fetch capability

• Two vb/ServiceDataProvider variables

vb/MultiServiceDataProvider Configuration

At design time, a variable using this type will be created that looks like this:

1 {
2 "variables": {
3 "countriesMultiSDP": {
4 "type": "vb/MultiServiceDataProvider",
5 "defaultValue": {
6 "dataProviders": {
7 "fetchFirst": "{{ $page.variables.allCountriesSDP }}
8 "fetchByKeys": "{{ $page.variables.countriesByCodesSDP }}"
9 }
10 }
11 }
12 }
13 }

• Line 3: countriesMultiSDP is a variable of type vb/MultiServiceDataProvider. This defines
two properties: 'fetchFirst' and 'fetchByKeys'.

• Line 7: The fetchFirst property allows the MultiServiceDataProvider to call fetchFirst() on
the referenced ServiceDataProvider variable.

• Line 8: The fetchByKeys property allows the MultiServiceDataProvider to call
fetchByKeys() on the referenced ServiceDataProvider variable.

vb/ServiceDataProvider Variables Configuration

For the above use case, the referenced ServiceDataProvider variables will be configured as
follows:

Chapter 1
Variables

1-71

Configuration Description

1 {
2 "variables": {
3 "allCountriesSDP": {
4 "type": "vb/
ServiceDataProvider",
5 "defaultValue": {
6 "endpoint": "rest-service/
getAllCountries",
7
 "keyAttributes": "alpha3Code"
8 }
9 },
10 "countriesByCodesSDP": {...}
11 }
12 }

Line 3: defines the ServiceDataProvider variable
with a fetchFirst capability.

• When a capabilities property is not specified,
it's assumed that the ServiceDataProvider
supports a fetchFirst capability.

• When a capabilities property is present but no
fetch capability is defined (that is, only the filter
and sort capabilities are defined), fetchFirst is
assumed.

Line 6: defines the endpoint to use the
getAllCountries operation to fetch all countries.

Chapter 1
Variables

1-72

Configuration Description

1 {
2 "variables": {
3 "allCountriesSDP": {
4 "countriesByCodesSDP": {
5 "type": "vb/
ServiceDataProvider",
6 "defaultValue": {
7 "endpoint": "rest-service/
getCountriesByCodes",
8
 "keyAttributes": "alpha3Code"
,
9 "capabilities": {
10 "fetchByKeys": {
11
 "implementation": "lookup
",
12
 "multiKeyLookup" : 'no'
13 }
14 },
15
 "mergeTransformOptions": "{{
$functions.fixupTransformOptions }}"
16 }
17 }
18 }

Line 4: defines the ServiceDataProvider variable
that supports a fetchByKeys capability.

Line 7: uses the getCountriesByCodes operation to
fetch a list of countries by their codes.

Line 9: a 'capabilities' property is added to
ServiceDataProvider that has
a 'fetchByKeys' property object. See next section
for details.

• 'implementation' property is set to "lookup"

• 'multiKeyLookup' property set to "no"

Line 15: the 'mergeTransformOptions' property
is set to a page function.

• this is needed so page author can map the
keys set programmatically to be turned into the
query parameters '?codes='

Note:

 Normally fetchByKeys() is called by
a JET component programmatically
with one or more keys.

• When keys are provided programmatically,
ServiceDataProvider will use a best-guess
heuristic to map keys to the appropriate
transform options. But when this is not easily
decipherable by ServiceDataProvider, page
authors can use
a 'mergeTransformOptions' property that
maps to a function, to fix up the list of the
'query' options. This function will be passed in
all the info it needs to merge the final transform
options.

Note:

 In this example the keys need to
map to the codes uriParameters,
and such a mapping cannot be
represented in the page model
using an expression.

• When no keys are provided,
ServiceDataProvider will throw an error.

Chapter 1
Variables

1-73

Configuration Description

1 /**
2 * fix up the query transform
options.
3 * When the fetchByKeys
capability is set, the 'keys'
provided via the fetch call
4 * can be be looked up via
configuration.fetchParameters.
5 * This can be used to set a
'codes' property on the 'query'
transform options
6 * whose value is the keys
provided via a fetch call.
7 *
8 * @param configuration a map of
3 key values, The keys are
9 * - fetchParameters:
parameters passed to a fetch call
10 * - capability: 'fetchByKeys'
| 'fetchFirst' | 'fetchByOffset'
11 * - context: the context of
the SDP when the fetch was initiated.
12 *
13 * @param transformOptions a map
of key values, where the keys are the
14 * names of the transform
functions.
15 * @returns {*}
16 */
17
PageModule.prototype.fixupTransformOp
tions =
18 function (configuration,
transformOptions) {
19 var c = configuration;
20 var to = transformOptions;
21 var fbkCap = !!(c &&
c.capability === 'fetchByKeys');
22 var keysToFetch = fbkCap ?
23 (c &&
c.fetchParameters &&
c.fetchParameters.keys) : null
24
25 if (fbkCap && keysToFetch &&
keysToFetch.length > 0) {
26 // join keys
27 var keysToFetchStr =
keysToFetch.join(';');
28 to = to || {};
29 to.query = to.query || {};
30

Line 17: function that fixes up the transform options
that will be sent to the transform functions.

Line 33: set a new 'codes' query parameter, whose
value is a ';' separated list of country alpha codes.

Chapter 1
Variables

1-74

Configuration Description

31 // ignore codes set on the
query options and instead use ones
passed in
32 // by fetchByKeys call
33 to.query.codes =
keysToFetchStr;
34 }
35
36 return to;
37 };

Configuring a JET Combo/Select at Design Time

To configure a list-of-values field that uses the above, the design time needs to create three
variables:

• One vb/MultiServiceDataProvider variable

• Two vb/ServiceDataProvider variables

The MultiServiceDataProvider variables are bound to the combo/select components as follows.

• Line 2 points to a variable of type vb/MultiServiceDataProvider.

1 <oj-combobox-one id="so11" value="{{ $variables.selectedActivities }}"
2 options="[[$variables.countriesMultiSDP]]"
3 options-keys.label='[["name"]]'
4 options-keys.value='[["alpha3Code"]]'
5 </oj-combobox-one>

A distinct vb/ServiceDataProvider variable is needed for each unique service/endpoint. Often
authors want to provide different default filterCriterion, sortCriteria or uriParams, or even write
different transforms for each capability. Isolating each capability to a unique
ServiceDataProvider variable allows for this separation.

Any individual vb/ServiceDataProvider variables might externalize its fetch, or allow an
actionChain to assign values to its properties directly via expressions. They can also allow a
fireDataProviderEventAction to reference the Service Data Provider variable directly. First class
variables are the easiest way to give page authors access.

Usage: When a service provides unique endpoints for different fetch capabilities, but
the fetchByKeys endpoint only supports a single-key-based lookup

In this use case, the service supports a fetchFirst capability that fetches all rows, and a
fetchByKeys capability that returns a single row by its key. There is no endpoint that can return
rows by multiple keys.

To understand this usecase further let's take the example of the sample ifixitfast service - and
the incidents endpoints that is used to get information about incidents.

• fetchFirst capability: to get a list of all incidents for the selected technician,

– service/endpoint: fixitfast-service/getIncidents
– GET https://.../ifixitfaster/api/incidents?technician=hcr

Chapter 1
Variables

1-75

• fetchByKeys capability (with single key lookup): to get a single incident it its 'id'

– service/endpoint: fixitfast-service/getIncident
– GET https://.../ifixitfaster/api/incidents/inc-101

In order for the list-of-values component to use the above endpoints, the design time will need
to create three variables:

• One vb/MultiServiceDataProvider variable that references two ServiceDataProvider
variables, one for each fetch capability

• Two vb/ServiceDataProvider variables

vb/MultiServiceDataProvider Variable Configuration

The configuration for the vb/MultiServiceDataProvider variable is similar to the previous
examples.

1 {
2 "variables": {
3 "countriesMultiSDP": {
4 "type": "vb/MultiServiceDataProvider",
5 "defaultValue": {
6 "dataProviders": {
7 "fetchFirst": "{{ $page.variables.allIncidentsSDP }}"
8 "fetchByKeys": "{{ $page.variables.incidentBySingleKeySDP }}"
9 }
10 }
11 }
12 }
13 }

vb/ServiceDataProvider Variables Configuration

For the previous use case, the referenced ServiceDataProvider variables will be configured as
follows.

Chapter 1
Variables

1-76

Configuration Description

some-page.json

1 {
2 "variables": {
3 "allIncidentsSDP": {
4 "type": "vb/
ServiceDataProvider",
5 "defaultValue": {
6
"endpoint": "fixitfast-service/
getAllIncidents",
7 "keyAttributes": "id",
8 "itemsPath": "result",
9 "uriParameters": {
10
"technician": "{{ $application.user.u
serId }}"
11 }
12 }
13 },
14 "incidentBySingleKeySDP":
{...}
15 }
16 }

• Line 3: defines the ServiceDataProvider
variable with the fetchFirst capability.

• Line 6: defines the endpoint that uses the
getAllIncidents operation to fetch all incidents.

Chapter 1
Variables

1-77

Configuration Description

1 {
2 "variables": {
3 "allIncidentsSDP": {...},
4 "incidentBySingleKeySDP": {
5 "type": "vb/
ServiceDataProvider",
6 "defaultValue": {
7 "endpoint": "fixitfast-
service/getIncident",
8 "keyAttributes": "id",
9 "uriParameters": {
10 "id":
"{{ $variables.incidentId }}"
11 }
12 "capabilities": {
13 "fetchByKeys": {
14 "implementation":
"lookup",
15 "multiKeyLookup" :
'no'
16 }
17 }
18 }
19 }
20 }

Line 4: defines the ServiceDataProvider variable
with the fetchByKeys capability. The
ServiceDataProvider variable is configured for an
implicit fetch.

Line 7: uses the getIncident operation to fetch a
single incident by its id.

Line 9: maps the 'id' key in the 'uriParameters'.

• At runtime the 'id' key value is substituted in
the path parameter of the URL.

• For example, if the 'id' value is "inc-101", the
request URL goes from https://.../
incidents/{id} → http://.../
incidents/inc-101

Line 12: a new 'capabilities' property is added
to ServiceDataProvider that has
a 'fetchByKeys' key object.

• The 'implementation' property is set
to "lookup".

• The 'multiKeyLookup' property is set to "no",
as the endpoint only supports lookup using a
single key at a time.

Notice that a 'mergeTransformOptions' property
is not set.

• This is because Service Data Provider uses a
simple heuristic to map the 'keys' provided
programmatically to the 'id' sub-property of
the 'uriParameters'.

– It can do this because
ServiceDataProvider sees that the
keyAttributes value "id" is the same
attribute key set on 'uriParameters'.

– Also, this is only possible when
ServiceDataProvider is configured to use
implicit fetch (that is, it does not use an
external action chain to do a fetch).

• In some cases the ServiceDataProvider
cannot easily decipher the mapping (as seen
in the previous example), and this is when
page authors can use
a 'mergeTransformOptions' property to map
the keys to the right transform options.

• When multiple keys are provided by the caller,
ServiceDataProvider as an optimization calls
the single endpoint a single key at a time,
assembles the result, and returns this to caller.

Chapter 1
Variables

1-78

Configuration Description

1 {
2 "variables": {
3 "allIncidentsSDP": {...},
4
"incidentBySingleKeySDP_External": {
5 "type": "vb/
ServiceDataProvider",
6 "defaultValue": {
7 "fetchChainId":
"fetchSingleIncidentChain",
8 "keyAttributes": "id",
9 "mergeTransformOptions":
"{{ $page.functions.fixupTransformOpt
ions }}",
10 "capabilities": {
11 "fetchByKeys": {
12 "implementation":
"lookup",
13 "multiKeyLookup": "no"
14 }
15 }
16 }
17 },
18 "chains": {}
19 }

Line 4: defines the ServiceDataProvider variable
with a fetchByKeys capability.

• The Service Data Provider variable uses an
action chain to fetch data. See the next section
for the action chain configuration.

Line 9: sets a mergeTransformOptions function.

• This function is used by the page author to fix
up the 'query' transform options to use the key
passed in via the fetch call.

Chapter 1
Variables

1-79

Configuration Description

/**
 * Process the transform options.
 * When ServiceDataProvider uses
external fetch chain, it doesn't
 * have all the information to build
the final transform options
 * to use with the transform
functions. In such cases the page
 * author can use this method to
build the final list of options.
 * Replaces id set via configuration
with the value passed in by caller.
 *
 * @param configuration an Object
with the following properties
 * - capability: 'fetchByKeys' |
'fetchFirst' | 'fetchByOffset'
 * - fetchParameters: parameters
passed to the fetch call
 * - context: the context of the
Service Data Provider variable at
 * the time the fetch
call was made
 *
 * @param transformOptions a map of
key values, where the keys are the
 * names of the transform
functions.
 *
 * @returns {*} the transformOptions
either the same one passed in or
 * the final fixed up transform
options
 */
PageModule.prototype.fixupTransformOp
tions = function (configuration,
transformOptions) {
 var c = configuration;
 var to = transformOptions || {};
 var fetchByKeys = !!(c &&
c.capability === 'fetchByKeys');

 if (fetchByKeys) {
 var key =
c.fetchParameters.keys[0];
 if (key &&
 (!to.query || (to.query &&
to.query.id !==
c.fetchParameters.keys[0]))) {
 to.query = to.query || {};
 to.query.id = key;

mergeTransformOptions function

Chapter 1
Variables

1-80

Configuration Description

 }
 }
 return to;
};

Chapter 1
Variables

1-81

Configuration Description

1 {
2 "variables": {},
3 "chains": {
4 "fetchSingleIncidentChain": {
5 "variables": {
6 "configuration": {
7 "type": {
8 "hookHandler": "vb/
RestHookHandler"
9 },
10 "description": "the
configuration for the rest action",
11 "input": "fromCaller",
12 "required": true
13 },
14 "uriParameters": {
15 "type": "object",
16 "defaultValue": {
17 "id":
"{{ $page.variables.incidentId }}"
18 }
19 }
20 },
21 "root":
"fetchSingleIncidentAction",
22 "actions": {
23
"fetchSingleIncidentAction": {
24 "module": "vb/action/
builtin/restAction",
25 "parameters": {
26 "endpoint":
"fixitfast-service/getIncident",
27 "hookHandler":
"{{ $variables.configuration.hookHand
ler }}",
28 "uriParams":
"{{ $variables.uriParameters }}",
29 "responseType":
"flow:incident",
30
"requestTransformFunctions": {
31 "query":
"{{ $page.functions.queryIncidentById
 }}"
32 }
33 },
34 "outcomes": {
35 "success":
"returnIncidentResponse",
36 "failure":

The external fetch action chain is configured as
follows.

Line 4: the action chain used by the
ServiceDataProvider.

Line 23: the RestAction, the chain calls to fetch a
single incident by id.

Line 28: the 'uriParams' property of the RestAction
is set to the page variable "incidentId".

• The value of the "incidentId" variable might be
different from what the caller passes in.

• The mergeTransformOptions function above
builds the query options containing the final id
value.

Line 31: the requestTransformFunction.query maps
to a query transform function that substitutes the
endpoint URL with the final id value.

Chapter 1
Variables

1-82

Configuration Description

"returnFailureResponse"
37 }
38 },
39 }
40 }
41 }
42 }

/**
 * query transform function that
takes the id provided in the options
 * and expands the URL.
 * @param configuration
 * @param options
 * @returns {*}
 */
PageModule.prototype.queryIncidentByI
d = function (configuration,
options) {
 const c = configuration;
 if (options && options.id) {
 var result =
URI.expand(c.endpointDefinition.url,
{ id: options.id });
 var newUrl = result.toString();
 if (newUrl !== c.url) {
 console.log(`typesDemo sample:
replacing ${c.url} with ${newUrl}`);
 }
 c.url = newUrl;
 }
 return c;
};

Query transform function

Usage: When the same endpoint supports multiple fetch capabilities

Most list-of-value objects fall into this category. For example, to fetch both a list of territories
and to fetch a subset of territories by their ids, the same endpoint is used:

• fetchFirst capability:

– service/endpoint: fa-crm-service/getTerritories

– GET /fndTerritories?finder=EnabledFlagFinder;BindEnabledFlag=Y

• fetchByKeys capability:

– GET /fndTerritories?finder=EnabledFlagFinder;BindEnabledFlag=Y&q=TerritoryCode
IN ('AE', 'AD', 'US')

Chapter 1
Variables

1-83

In this case, a single ServiceDataProvider variable of type vb/ServiceDataProvider that
multiplexes different fetch capabilities is the recommended approach. The ServiceDataProvider
variable can then be used to bind to the list-of-values component.

Note:

It is recommended that service authors ensure that the service is configured to use
the default business object REST API transforms.

vb/ServiceDataProvider Variables Configuration

The data returned by the service endpoint will look something like this:

{
 "items": [
 {
 "TerritoryCode": "AE",
 "AlternateTerritoryCode": "ar-AE",
 "TerritoryShortName": "United Arab Emirates",
 "CurrencyCode": "AED"
 },
 ...
],
 "count": 25,
 "hasMore": false,
 "limit": 25,
 "offset": 0,
}

The ServiceDataProvider variables for the fetchFirst and fetchByKeys capabilities will be
configured as follows

sample-page.html Description

"territoriesSDPVar": {
 "type": "vb/ServiceDataProvider",
 "defaultValue: {
 "endpoint": "fa-crm-service/
getTerritories",
 "keyAttributes": "TerritoryCode",
 "itemsPath": "items",
 "uriParameters": {
 "finder":
"EnabledFlagFinder;BindEnabledFlag=Y"
 }
 }
}

A finder query parameter is applied to all queries
going against the endpoint.

When no capabilities are set, the
ServiceDataProvider variable is assumed to
support a fetchFirst capability

Configuring a JET Select-Single in Design Time

• Line 1: the value is bound to a variable that is an array of selected TerritoryCode keys.

Chapter 1
Variables

1-84

• Line 2: the data attribute is bound to the ServiceDataProvider variable.

1 <oj-select-single id="so11" value="{{ $variables.selectedTerritories }}"
2 data="[[$variables.territoriesSDPVar]]"
3 item-text='[["TerritoryShortName"]]'
4 </oj-select-single>

Usage: When a service provides a fetchByKeys capability, and
DataProvider.containsKeys is called

The containsKeys() method can be called by components bound to a ServiceDataProvider
variable that supports the 'fetchByKeys' capability. The default implementation of
containsKeys() will call fetchByKeys() and return a oj.ContainsKeysResult object, as defined by
the JET DataProvider contract. This implementation addresses the most common usecase.

MultiServiceDataProviderFactory
Some times it's desirable to create a standalone VB type instance programmatically by passing
an initial state. In this case, the instance is not backed by a variable, that is, its state is not
stored in redux. Instead the instance and/or the caller manages its state essentially. For such
cases VB publishes a contract for a TypeFactory that any type author can use. See Custom
Extended Types.

The TypeFactory contract is provided in the vb/types/factories/typeFactory.js. VB
provides TypeFactory implementations for creating a ServiceDataProvider instance. Refer to
the MultiServiceDataProviderFactory for details. (vb/types/factories/
multiServiceDataProviderFactory.js)

Methods

createInstance

Returns an instance of the MultiServiceDataProvider. Refer to the JSDocs for the parameters
supported on this method. The instance returned supports all methods from the DataProvider
contract.

• options. The object used to instantiate the ServiceDataProvider usually contains these
properties:

– dataProviderOptions. This is its initial or 'default' state.

* state properties are similar to the properties of a regular MultiServiceDataProvider
variable

• serviceOptions. This optional configuration is needed by the RestHelper to locate the
endpoint details.

• – vbContext. This optional configuration is needed by the RestHelpers to locate the
service of an endpoint. Typically this object should be obtained from a Visual Builder
API or via a callback mechanism.
If not available, clients should pass in an object with a string property 'extensionId'. The
property's value is the id of the extension executing this code (for example, the id of
the extension that contains the action chain using the MultiServiceDataProvider).

Here is an example of how a caller can create an instance

Chapter 1
Variables

1-85

Example 1-18 Create SDP

// create SDP
ServiceDataProviderFactory.createInstance({ dataProviderOptions: { endpoint:
"foo/getBars", responseType: "barType[]", keyAttributes: "id"} })
 .then((sdpInstance) => {
 // use SDP to create MDP instance
 MultiDataProviderFactory.createInstance({ dataProviderOptions:
{ dataProviders: { fetchFirst: sdpInstance } } })
 .then((mdpInstance) => {
 const iter = mdpInstance.fetchFirst();
 iter.next().then((results) => {
 // process results
 });
 });
 });

Array Data Provider 2
Like the legacy Array Data Provider, the built-in Array Data Provider 2 can be bound to
collection components.

Like ArrayDataProvider, this built-in type is a data provider implementation where the data is
available as an array. All the data is set once, and the data itself can fetched from a backend
service (say a list of countries), but it is assumed that array once created is static, that is, data
changes infrequently or has limited and infrequent adds, updates and removes done to it.

The vb/ArrayDataProvider2 can be bound to collection components such as listView and table
components. Operations on the data, such as sorts, adds, removes, and updates, are
managed by the vb/ArrayDataProvider2 itself. This is different from the vb/
ServiceDataProvider, where all operations generally are processed in the back end via REST
calls.

ArrayDataProvider2 behaves differently from the legacy ArrayDataProvider in the following
ways:

• Writes to individual properties of the ArrayDataProvider2.data are NOT allowed, and users
will see an error when this occurs. Usually this happens when components use writable
binding expressions that write directly to properties within individual data (array) items.

• ArrayDataProvider2 SUPPORTS using the fireDataProviderEventAction to mutate data, in
addition to the assignVariablesAction.

• ArrayDataProvider2 tracks mutations to data made using fireDataProviderEventAction and
notifies listeners (that is, components) of just the changes. This has the benefit of only
updating the necessary parts of the UI.

A variable of this type is generally defined on the page, using the built-in type vb/
ArrayDataProvider2.

{

 "variables": {
 "productListADPA": {
 "type": "vb/ArrayDataProvider2",
 "defaultValue": {
 "itemType": "application:productSummary",
 "keyAttributes": "id"

Chapter 1
Variables

1-86

 }
 }
 }
 ...

ArrayDataProvider2 has several properties available.

data

The static array of data that the ArrayDataProvider2 wraps. The data property is set once when
the page loads. The implicitSort criteria that the data is pre-sorted with is also set once the
page loads.

keyAttributes

A string or array of string field names that represent the primary key for each row. Can be one
of:

• a field name - the key value is a primitive or whatever the field value represents.

• an array of field names - the key will also be an array of values. For example, for
keyAttributes: ['id'], when data is [{id: 'ie', name: "IE"}, {id: 'chrome', name: "Chrome"}], the
corresponding keys will be [['ie'], ['chrome']]

• @value, use all properties - the key will also be an array of all values.

• @index, use the index as the key - the key will be an integer.

implicitSort

The implicit sort criteria by which the data is pre-sorted. This is an array of objects, where each
object is an atomic sort expression of the form:

{
 "attribute": "<name of the field>",
 "direction": "<'ascending' (default) or 'descending'>"
}

itemType

The type of each item in the data array. This is usually a string that points to an application type
or to a definition.

sortComparators

An optional object with a 'comparators' property that is either an array of arrays where each
inner array has 2 items - name of the attribute that the sortCriteria applies to, and a comparator
function callback that is used by ADP to sort the attribute (column), or is a Map of attribute to
comparator function. This API is similar to the JET SortComparator API.

Here are some examples of configuration for array or arrays.

"sortComparators": {
 "comparators": [
 [
 "Category", "{{ $page.functions.alphaSort }}"
],
 [
 "Product", "{{ $page.functions.alphaSort }}"
]

Chapter 1
Variables

1-87

]
}

Using a Map:

sortComparators: {
 comparators: "{{ new Map([['name', $page.functions.alphaSort]]) }}",
}

The comparator function will look like this:

var alphaSort = function (a, b) {
 return a.localeCompare(b);
}

textFilterAttributes

An array of attributes to filter on. See the JET documentation for ArrayDataProvider
textFilterAttributes.

"customerListADP": {
 "type": "vb/ArrayDataProvider2",
 "defaultValue": {
 "keyAttributes": "id",
 "itemType": "flow:customer",
 "textFilterAttributes": [
 "lastName", "firstName"
]
 }
}

Features and Capabilities

ArrayDataProvider2 supports the same capabilities as the legacy ArrayDataProvider:

sort

• {capabilityName: 'full', attributes: 'multiple} means the endpoint has support
for sorting results by one or more fields.

• null means the endpoint has no support for sorting.

Data Mutation and Refresh Events

vb/ArrayDataProvider2 notifies components when the underlying data mutates or is changed in
a way that requires a refresh. The events currently supported by any iterating data providers
are the 'mutate' ('add', 'remove' and 'update') event and 'refresh'. See Assigning Data for
details.

Variable Events

All variables including vb/ArrayDataProvider2 raise the variable onValueChanged event when
any of its properties change. ArrayDataProvider2 in particular will detect which of its data has
changed, and will automatically notify subscribers of just the change (these are typically
components that are bound to the ArrayDataProvider2 variable and have registered a listener).

Assigning Data

Chapter 1
Variables

1-88

The data property of the vb/ArrayDataProvider2 variable is set once, when the page or
component loads. The implicitSort criteria that the data is pre-sorted with is also set once the
page or component loads.

After the initial load, a page author can mutate the data either by directly manipulating the data
array using the 'assignVariablesAction' action or by using the 'fireDataProviderEventAction'.

Using a fireDataProviderEventAction, authors can mutate data property, and also notify
components in one shot. When the mutation events 'add', 'remove' and 'update' are called the
vb/ArrayDataProvider2 implementation will automatically mutate the underlying data, so users
are not required to mutate the ArrayDataProvider2.data prior to raising this event, say, using an
assignVariablesAction. This is a convenience offered only by the vb/ArrayDataProvider2
implementation, not by vb/ArrayDataProvider. See Fire Data Provider Event Action for details.

Often the mutation to the data is triggered by the UI or some other app logic, which might
require the use of assignVariablesAction. This is another way to update the
ArrayDataProvider2.data, in which case It's not required to use the
fireDataProviderEventAction. See Assign Variables Action for details.

Note:

ADP data in a JSON file needs to be assigned a valid JSON value. ADP data that is
assigned a value from the result of a previous action (for example, a call module
action or REST action), must also be valid JSON. When a non-JSON value (such as
JavaScript values like NaN or Infinity) is provided, you should choose the correct
JSON value that should be used and then replace it. For example, the JavaScript
value "NaN" can be replace by "0", which is an accepted JSON value.

Example 1-19 Where the data is literally inlined

In this example, the ArrayDataProvider2 variable productsADPB has its initial data inlined.

"variables": {
 "productsADPB": {
 "type": "vb/ArrayDataProvider2",
 "description": "mutations are done on 'data' property using
assignVariables",
 "defaultValue": {
 "itemType": "ProductType",
 "keyAttributes": "id",
 "data": [{
 "Amount": 30,
 "CurrencyCode": "USD",
 "Quantity": 3,
 "RegisteredPrice": 30,
 "Type": "Literal",
 "Product": "Product-Literal",
 "id": 30
 }]
 }
 }
}

Chapter 1
Variables

1-89

To remove an item from the above ArrayDataProvider2 data you can use an
assignVariablesAction.

• Line 16: filters the data array of productsADPB by removing the item with the matching key

1 "removeProductsADPB": {
2 "root": "removeFromProductsADPB",
3 "description": "",
4 "variables": {
5 "key": {
6 "type": "number",
7 "required": true,
8 "input": "fromCaller"
9 }
10 },
11 "actions": {
12 "removeFromProductsADPB": {
13 "module": "vb/action/builtin/assignVariablesAction",
14 "description": "splice returns the removed item, so filter is used
instead, which mutates and returns the original array",
15 "parameters": {
16 "$page.variables.productsADPB.data": {
17 "source": "{{ $page.variables.productsADPB.data.filter((p) =>
p.id !== $chain.variables.key) }}",
18 "reset": "empty",
19 "auto": "always"
20 }
21 }
22 }
23 }
24 }

When the data is inlined or is assigned from a vbEnter action chain, you can add or update
items to the array using the assignVariablesAction.

• Line 1: shows an example action where the product is updated directly

• Line 12: shows an example action where the new product is added to the tail end of the
data array

1 "updateProductsADPB": {
2 "module": "vb/action/builtin/assignVariablesAction",
3 "description": "directly updating ADP2.data item is possible when data
has no expression",
4 "parameters": {
5
"$page.variables.productsADPB.data[$page.variables.productsADPB.data.findInde
x(p => p.id === $chain.variables.key)]": {
6 "source": "{{ $chain.variables.product }}",
7 "auto": "always",
8 "reset": "empty"
9 }
10 }
11 }
12 "addToProductsADPBTail": {
13 "module": "vb/action/builtin/assignVariablesAction",

Chapter 1
Variables

1-90

14 "parameters": {
15
"$page.variables.productsADPB.data[$page.variables.productsADPB.data.length]":
 {
16 "source": "{{ $chain.results.generateNewProduct }}"
17 }
18 }
19 }

Example 1-20 Where the productsADPC is updated via a fireDataProviderEventAction

In this example, productsADPC has its data coming from another variable.

"productsADPC": {
 "type": "vb/ArrayDataProvider2",
 "description": "mutations on data can be done on the referenced 'products'
or on "
 + "the 'data' property directly. The latter will disconnect the
reference",
 "defaultValue": {
 "data": "{{ $page.variables.products }}",
 "itemType": "ProductType",
 "keyAttributes": "id"
 }
}

To update a specific product, you can use the fireDataProviderEventAction to set the target,
data and keys properties.

• Line 28: set the event payload using the fireDataProviderEventAction

1 "updateProductsADPC": {
2 "root": "updateProduct",
3 "description": "updates productsADPC using data provider mutation event",
4 "variables": {
5 "product": {
6 "type": "page:ProductType",
7 "required": false,
8 "input": "fromCaller"
9 }
10 },
11 "actions": {
12 "updateProduct": {
13 "module": "vb/action/builtin/assignVariablesAction",
14 "parameters": {
15 "$chain.variables.product": {
16 "source": {
17 "Amount": "{{ $chain.variables.product.Amount *
(1+Math.floor(Math.random() * Math.floor(5))) }}",
18 "Quantity": "{{ $chain.variables.product.Quantity *
(1+Math.floor(Math.random() * Math.floor(5))) }}"
19 },
20 "reset": "none",
21 "auto": "always"
22 }

Chapter 1
Variables

1-91

23 },
24 "outcomes": {
25 "success": "fireEventProductsADPC"
26 }
27 },
28 "fireEventProductsADPC": {
29 "module": "vb/action/builtin/fireDataProviderEventAction",
30 "parameters": {
31 "target": "{{ $page.variables.productsADPC }}",
32 "update": {
33 "keys": "{{ [$chain.variables.product.id] }}",
34 "data": "{{ [$chain.variables.product] }}"
35 }
36 }
37 }
38 }
39 },

Array Data Provider (Legacy)
The built-in legacy array data provider could be bound to collection components in previous
versions. It should not be used in new applications.

This legacy built-in type is a data provider implementation based on the JET
oj.ArrayDataProvider implementation, where the data is static. A static source of data can be
fetched from a backend service, but it is assumed that it does not change frequently and only
allows infrequent adds/updates and removes. This data provider can be bound to collection
components such as listView and table components. Operations on the data, such as sorts,
adds, removes, or updates are managed by the vb/ArrayDataProvider itself. This is different
from the vb/ServiceDataProvider, where all operations generally are processed in the back end
via REST calls.

New applications should use vb/ArrayDataProvider2.

The ArrayDataProvider behaves as follows:

• Writes to individual properties of the ArrayDataProvider.data are allowed. Usually this
happens when components use writable binding expressions that write directly to
properties within individual data (array) items.

Note:

It's important to remember that when you use a writable binding expression, the
component writes the new value to the bound ADP.data property. This causes the
ADP variable to change and the table or listview component bound to the ADP
variable to refresh. If this behavior is not desired, use vb/ArrayDataProvider2 and
the proper editable table / list-view patterns. (The recommended patterns are
documented in the Oracle blogs.)

• ArrayDataProvider does not support using the fireDataProviderEventAction to mutate data.
Instead, use the assignVariablesAction.

Chapter 1
Variables

1-92

A variable of this type is generally defined on the page, using the built-in type vb/
ArrayDataProvider.

{

 "variables": {
 "productListADPD": {
 "type": "vb/ArrayDataProvider",
 "defaultValue": {
 "itemType": "application:productSummary"
 }
 }
 }
 ...

The ArrayDataProvider has several properties available.

data

The static array of data that the ArrayData Provider wraps. The data property is set once when
the page or component loads. The implicitSort criteria that the data is pre-sorted with is also
set once the page or component loads.

idAttribute

A string or array of string field names that represent the primary key for each row. Deprecated:
use keyAttributes instead.

keyAttributes

A string or array of string field names that represent the primary key for each row.

• a field name - the key value is a primitive or whatever the field value represents.

• an array of field names - the key will also be an array of values.

• @value, use all properties - the key will also be an array of all values.

• @index, use the index as the key - the key will be an integer.

implicitSort

The implicit sort criteria by which the data is pre-sorted. This is an array of objects, where each
object is an atomic sort expression of the form:

{
 "attribute": "<name of the field>",
 "direction": "<'ascending' (default) or 'descending'>"
}

itemType

The type of each item in the data array. This is usually a string that points to an application type
or to a definition.

Features and Capabilities

The ArrayDataProvider provides a sort feature:

• {capabilityName: 'full', attributes: 'multiple} means the endpoint has support
for sorting results by one or more fields.

Chapter 1
Variables

1-93

• null means the endpoint has no support for sorting.

Data Mutation and Refresh Events

vb/ArrayDataProvider notifies components when the underlying data mutates or is changed in
a way that requires a refresh. The only way to mutate ArrayDataProvider data is via the
'assignVariablesAction' event. The 'fireDataProviderEventAction' is a no-op when it comes to
updating the data property but can be used to notify just the listeners of the ArrayDataProvider
(components) of the change. But the latter is not needed when assignVariablesAction is used,
because it does both.

Variable Events

All variables including vb/ArrayDataProvider raise the variable onValueChanged event when
any of its properties change. ArrayDataProvider in particular will detect which of its data has
changed, and will automatically notify subscribers of just the change (these are typically
components that are bound to the ArrayDataProvider variable and have registered a listener).

Assigning Data

The data property of the vb/ArrayDataProvider variable is set once, when the page or
component loads. The implicitSort criteria that the data is pre-sorted with is also set once the
page or component loads.

After the initial load, a page author can mutate the data by directly manipulating the data array
using the assignVariablesAction action. Typically, the mutation to the data is triggered by the UI
or some other application logic. In either circumstance, the ArrayDataProvider data needs to
be manually updated. When the data property mutates, ArrayDataProvider automatically
detects the change and notifies all listeners/components of the change, so that they can re-
render. If the data is mutated directly, it's not required to use the fireDataProviderEvent action
with the ArrayDataProvider.

Example 1-21 Where the data refers to a constant

Here the ArrayDataProvider variable productADPE gets its initial data from a constant,
productsConstant. The ArrayDataProvider data array is initialized with one item.

"constants": {
 "productsConstant": {
 "type": "ProductType[]",
 "defaultValue": [{
 "Amount": 10,
 "CurrencyCode": "USD",
 "Quantity": 1,
 "RegisteredPrice": 10,
 "Type": "Constant",
 "Product": "Product-C1",
 "id": 10
 }]
 }
},
"productsADPE": {
 "type": "vb/ArrayDataProvider",
 "description": "mutations on data have to be done directly to the 'data'
property",
 "defaultValue": {
 "data": "{{ $page.constants.productsConstant }}",
 "itemType": "ProductType",
 "keyAttributes": "id"

Chapter 1
Variables

1-94

 }
},

In order to add a new item to the above ArrayDataProvider data you can use an
assignVariablesAction:

• Line 12: action that generates a new product item

• Line 22: assigns a new array with the new item appended to the existing data

It is currently not possible to add to a specific index of the array using assignVariablesAction,
when the array references a constants expression.

 1 "addProductsADPE": {
 2 "description": "adds the generated product to the end",
 3 "variables": {
 4 "detail": {
 5 "required": true,
 6 "type": "any",
 7 "input": "fromCaller"
 8 }
 9 },
10 "root": "generateNewProduct",
11 "actions": {
12 "generateNewProduct": {
13 "module": "vb/action/builtin/callModuleFunctionAction",
14 "parameters": {
15 "module": "{{ $page.functions }}",
16 "functionName": "generateNewProduct"
17 },
18 "outcomes": {
19 "success": "assignToADPData"
20 }
21 },
22 "assignToADPData": {
23 "module": "vb/action/builtin/assignVariablesAction",
24 "parameters": {
25 "$page.variables.productsADPE.data": {
26 "source":
"{{ $page.variables.productsADPE.data.concat([$chain.results.generateNewProduc
t]) }}",
27 "reset": "empty"
28 }
29 }
30 }
31 }
32 }

Example 1-22 Where the data refers to another variable

In this example the ArrayDataProvider variable productADPF gets its initial data from the
variable products. The ArrayDataProvider data array is initialized with one item.

"variables": {
 "products": {
 "type": "ProductType[]",

Chapter 1
Variables

1-95

 "defaultValue": [{
 "Amount": 20,
 "CurrencyCode": "USD",
 "Quantity": 2,
 "RegisteredPrice": 20,
 "Type": "Variable",
 "Product": "Product-V1",
 "id": 20
 }]
 },
 "productsADPF": {
 "type": "vb/ArrayDataProvider",
 "description": "mutations on data can be done on the referenced
'products' or "
 + "on the 'data' property directly. The latter will disconnect the
reference",
 "defaultValue": {
 "data": "{{ $page.variables.products }}",
 "itemType": "ProductType",
 "keyAttributes": "id"
 }
 },

In order to update an item of the above ArrayDataProvider data, you can use an
assignVariablesAction:

• Line 5: the action chain gets the updated product item

• Line 22: assign a new array to productsADPF with the updated product

 1 "updateProductsADPF": {
 2 "root": "assignToADPData",
 3 "description": "",
 4 "variables": {
 5 "updatedProduct": {
 6 "type": "page:ProductType",
 7 "required": true,
 8 "input": "fromCaller"
 9 },
10 "key": {
11 "type": "number",
12 "required": true,
13 "input": "fromCaller"
14 }
15 },
16 "actions": {
17 "assignToADPData": {
18 "module": "vb/action/builtin/assignVariablesAction",
19 "description": "assigning to specific item in ADP.data is not
possible, so we replace entire array",
20 "parameters": {
21 "$page.variables.productsADPF.data": {
22 "source": "{{ $page.variables.productsADPF.data.map(p => (p.id
=== $chain.variables.key ? $chain.variables.updatedProduct : p)) }}",
23 "reset": "empty"
24 }

Chapter 1
Variables

1-96

25 }
26 }
27 }
28}

Example 1-23 Where the data is literally inlined

In this example the ArrayDataProvider variable productADPG has its initial data inlined.

"variables": {
 "productsADPG": {
 "type": "vb/ArrayDataProvider",
 "description": "any mutations are done on 'data' property directly",
 "defaultValue": {
 "itemType": "ProductType",
 "keyAttributes": "id",
 "data": [{
 "Amount": 30,
 "CurrencyCode": "USD",
 "Quantity": 3,
 "RegisteredPrice": 30,
 "Type": "Literal",
 "Product": "Product-Literal",
 "id": 30
 }]
 }
 }
}

In order to remove an item from the above ArrayDataProvider data you can use an
assignVariablesAction. Line 16 filters the data array of productsADPG by removing the item
with the matching key.

 1 "removeProductsADPG": {
 2 "root": "removeFromProductsADPG",
 3 "description": "",
 4 "variables": {
 5 "key": {
 6 "type": "number",
 7 "required": true,
 8 "input": "fromCaller"
 9 }
10 },
11 "actions": {
12 "removeFromProductsADPG": {
13 "module": "vb/action/builtin/assignVariablesAction",
14 "description": "splice returns the removed item, so filter is used
instead, which mutates and returns the original array",
15 "parameters": {
16 "$page.variables.productsADPG.data": {
17 "source": "{{ $page.variables.productsADPG.data.filter((p) =>
p.id !== $chain.variables.key) }}",
18 "reset": "empty",
19 "auto": "always"
20 }

Chapter 1
Variables

1-97

21 }
22 }
23 }
24 }

When the data property is a literal value, to add or update items to the array it is possible to
assign to a specific item of the array:

• Line 1: shows an example action where the product is updated directly

• Line 12: shows an example action where the new product is added to the tail end of the
data array

 1 "updateProductsADPG": {
 2 "module": "vb/action/builtin/assignVariablesAction",
 3 "description": "directly updating ADP.data item is possible when data
has no expression",
 4 "parameters": {
 5
"$page.variables.productsADPG.data[$page.variables.productsADP3.data.findInde
x(p => p.id === $chain.variables.key)]": {
 6 "source": "{{ $chain.variables.product }}",
 7 "auto": "always",
 8 "reset": "empty"
 9 }
10 }
11 }
12 "addToProductsADPGTail": {
13 "module": "vb/action/builtin/assignVariablesAction",
14 "parameters": {
15
"$page.variables.productsADPG.data[$page.variables.productsADPG.data.length]":
 {
16 "source": "{{ $chain.results.generateNewProduct }}"
17 }
18 }
19 }

Custom Extended Types
Page authors can implement a Visual Builder type class using either the Extended Type
mechanism (that extends from the vb/types/extendedType class module) or use the Instance
Factory mechanism. The latter is much simpler to use since authors can simply plug their type
into a Visual Builder variable without writing any extra JavaScript code (which was needed with
the Extended Type system).

At runtime the instance of the custom type class can automatically make use of the redux
framework to store its 'value' (state). Visual Builder variables generally have a type that points
to a class or a type definition or can be a JavaScript primitive or an object. The Visual Builder
runtime discovers built-in types and custom types by detecting a forward slash in the type
name (for example, my/ComicStripType). The type is assumed to be a require path to a type
module and loads it.

Chapter 1
Variables

1-98

An example:

"myVariable": {
 "type": "my/ComicStripType",
 "defaultValue": {}
}

Reserved Properties

value

The state of an extended type is generally referred to as its value and its default value can be
specified using the 'defaultValue' property of a variable. For example, the comicStripType
specifies its default value, an Object, by providing defaults for 'name', 'publicationType' etc.
Also note that charactersADP is a reference to a variable of type vb/ArrayDataProvider2.

The type of the value is defined via the 'getTypeDefinition' function (see below). In this
example, this would be the properties in the defaultValue object: name, publicationType,
publications, etc.

In order to make the value accessible in expressions via
'<$scope>.variables.comicStripVar.value' where $scope is $page/$flow etc., and
'comicStripVar' is the type instance of the custom type that is created, 'value' is a special
property defined on the extended type instance and for this reason, will overlay any local
'value' property defined in your implementation. For this reason, take care not to use this
property internally! Property accessors to read (see getValue() method) and write (see
setValue() method) the value are provided.

"comicStripVar": {
 "type": "vb/sample/types/comicStripType",
 "defaultValue": {
 "name": "flowPage-Calvin & Hobbes",
 "publicationType": "flowPagePublicationType",
 "publications": [
 {
 "publication": "Universal Press Syndicate",
 "volumes": 24,
 "author": "Bill Watterson",
 "title": "The Doghouse",
 "year": 1987,
 "launchDate": "1985-11-18T08:00:00.000Z"
 },
 {
 "publication": "United Feature Syndicate",
 "volumes": 250,
 "author": "Bill Watterson",
 "title": "Calvin and Hobbes",
 "year": 1990,
 "launchDate": "1990-06-01T08:00:00.000Z"
 }
],
 "charactersADP": "{{ $variables.flow1SecondComicCharactersAdpVar }}"
 }
}

internalState

Chapter 1
Variables

1-99

In addition to 'value', extended type instances are provided an 'internalState' property. Custom
types can externalize their internal state so that it can be captured in redux by using this
'internalState' property. More specifically they can use property accessors to read (see
getInternalState() method) and write (see setInternalState() method) the internal state
are provided.

Methods

getTypeDefinition

As stated before, the type definition for the value of an extended type must be provided via the
'getTypeDefinition' function. This method is called at the time the type instance is created.
The example below returns the type definition of the state (value) of comicStripType. name,
publicationType, publications and charactersADP represent its state.

class ComicStripExtendedType extends ExtendedType {
 getTypeDefinition(variableDef, scopeResolver) {
 let publicationsDef = 'any';
 if (variableDef.defaultValue && variableDef.defaultValue.publicationType)
{
 // responseType is specified in the defaultValue
 const { publicationType } = variableDef.defaultValue;

 if (typeof publicationType === 'string') {
 publicationsDef = `${publicationType}[]`;
 }
 }
 return {
 type: {
 name: 'string',
 publicationType: 'string',
 publications: TypeUtils.getType(`${this.getId()}:${publicationsDef}`,
 { type: publicationsDef }, scopeResolver),
 charactersADP: 'vb/ArrayDataProvider2',
 },
 resolved: true, // because we are pre-resolving type references
 };
 }
}

hoistValueObjectProperties
As a convenience, if the type of this variable as defined in 'getTypeDefinition' is 'object', all root
properties of the values will be hoisted to the root variable type instance. This allows these
properties to be accessible via expressions like '$scope.variables.theInstance.property'. If
this is not desired, return false from 'hoistValueObjectProperties'.

init / activate / dispose (lifecycle methods)
A Visual Builder variable goes through various lifecycle stages. Extended type instances will be
notified of these stages via the init, activate and dispose methods.

• activate
The 'activate' method is called when this and other variables in the current scope have
been created and its initial (default) values determined. This method is called right before
the 'vbEnter' event and the value of the variable, and can be a good time for types to do
other setup using the resolved value. It is important to note that at the time 'activate' is

Chapter 1
Variables

1-100

called, any value assigned, to the extended type variable or the variables it depends on, in
the vbEnter action chains will not be available.

• dispose
The 'dispose' method is called when the current scope is being torn down and all variables,
including this variable is being disposed. This would be a good time to cleanup state for the
extended type. It is important to note that any outstanding async tasks that are pending,
would be the responsibility of the extended type to wind down gracefully.

handlePropertyValueChanged
When the value of an extended type variable changes (say via assignVariablesAction) it will be
notified of the change via this method.

invokeEvent
Additionally, custom type implementations have the ability to fire a custom event using
'invokeEvent', providing a name, payload. For example, 'comicStripUpdate' is an event fired by
the ComicStripType in the sample provided below.

getType
Custom extended types can retrieve the exploded type structure given a type definition, using
the 'getType' method.

Sample Extended Type - ComicStripType

Implementation

'use strict';
 define(['vb/types/extendedType', 'vb/types/typeUtils'], (ExtendedType,
TypeUtils) => {
 class ComicStripType extends ExtendedType {
 getTypeDefinition(variableDef, scopeResolver) {
 let publicationsDef = 'any';
 if (variableDef.defaultValue &&
variableDef.defaultValue.publicationType) {
 const { publicationType } = variableDef.defaultValue;
 if (typeof publicationType === 'string') {
 publicationsDef = `${publicationType}[]`;
 }
 }
 return {
 type: {
 name: 'string',
 publicationType: 'string',
 publications: TypeUtils.getType(`${this.getId()}:$
{publicationsDef}`,
 { type: publicationsDef }, scopeResolver),
 charactersADP: 'vb/ArrayDataProvider2',
 },
 resolved: true, // because we are pre-resolving type references
 };
 }

 activate() {
 console.log('activate called on variable', this.id);
 const value = this.getValue();
 const { name } = value;
 const { publicationType } = value;
 const { publications } = value;

Chapter 1
Variables

1-101

 const { charactersADP } = value;
 let charactersADPVValue;
 if (charactersADP) {
 charactersADPVValue = charactersADP.getValue();
 }

 const initialValue = {
 name, publications, publicationType, charactersADPVValue,
 };

 this.setInternalState('opStatus', 'not-started');
 console.log('initial evaluated value for variable', this.id, 'is',
finalValue);
 }

 handlePropertyVariableChangeEvent(e) {
 if (e.name.endsWith('value')) {
 if (e.diff) {
 if (e.diff.publications) {
 // process value change here
 }
 }
 }
 }

 /**
 * a sample method provided by this type that fakes a async op and
updates the internalState
 * @returns {Promise<T>}
 */
 callAsyncMethod() {
 this.setInternalState('opStatus', 'started');
 return Promise.resolve().then(() => {
 // call some other async method; set some internalState and fire an
event
 callAnotherAsyncMethod().then((res) => {
 const result = res;
 this.setInternalState('opStatus', 'completed');
 this.invokeEvent('comicStripUpdate', { status: 'success', result });
 });
 });
 }
 }

 return ComicStripType;
});

InstanceFactory Types
vb/InstanceFactory

With an InstanceFactory type, authors can declaratively plug in any JET type or a custom type,
and use it with a special Visual Builder variable (instance factory variable). The
InstanceFactory type:

• Supports creating immutable, or re-creatable (type) classes.

Chapter 1
Variables

1-102

• Many constructs in JET are immutable classes that are then assigned to component
properties. As a framework, Visual Builder facilitates the (re)creation of these classes, and
reassignment when the configuration of these classes change .

• The vb/InstanceFactory variable takes in the JS (type) class, as well as the parameters
to the constructor. When bound, this variable provides an 'instance' of the class (along with
the 'constructorParams').

• When the constructor parameters change, the InstanceFactory variable will automatically
create a new instance of the class.

• Like regular variables, a VB 'valueChanged' event is fired when an InstanceFactory
variable changes. The event payload will have the old and new values containing the two
properties constructorParams and instance.

• The 'constructorParams' of the variable alone will be serialized and persisted, not the
instance. If the constructorParams includes a property that references another
InstanceFactory variable, then that variable needs to be marked 'persisted', if author wants
to persist the full tree. It's preferable that authors always update the 'constructorParams',
so the instance is created automatically. If the instance is updated separately from
constructorParams, the persisted state may not accurately reflect the correct state.

Associate a type with a variable to create an instance of that type

This example shows how you can do this.

Code Description

1 "variables": {
2 "customersADP": {
3 "type" : "ojs/
ojarraydataprovider",
4 "constructorParams": []
5 }
6 },
7 "types": {
8 "ojs/ojarraydataprovider": {
9 ...
10 "constructorType": "vb/
InstanceFactory"
11 }
12 }

• Line 3: use the JET array data provider type
ojs/ojarraydataprovider. This module is
automatically loaded when the variable is
created, because a require mapping for ojs
already exists.
– you must use a '/' in its name

• Line 8: types declaration for ojs/
ojarraydataprovider

• Line 10: indicates that instance of JET ADP is
created using a vb/InstanceFactory.
– An author can use the short convention, in

which case the type name is assumed to
be the require JS module, Or use the
longer convention "vb/
InstanceFactory<ojs/
ojarraydataprovider>", if the
typename is different than the actual
require path.

Specify an array of params using the 'constructorParams' property

In this example, a JET ADP takes a data array as its first param and an options Object as its
second param.

Chapter 1
Variables

1-103

Code Description

1 "customersADP": {
2 "type" : "ojs/
ojarraydataprovider",
3 "constructorParams": [
4
"{{ $page.variables.customersData }}"
,
5 {
6 "keyAttributes": "id",
7 "textFilterAttributes": [
8 "lastName",
9 "firstName"
10]
11 }
12]
13 }

• Line 4: customersData is the data array
• Line 5: options object

Create an instance of the type, when the variable 'customersADP' is created

The variable has two properties that are stored in redux.

instance

This holds the constructed ADP instance.

A component that wants an ADP instance can use it this way.

<oj-select-single id="ss11"
 value="{{ $variables.customerId }}"

 data="[[$variables.customersADP.instance]]"

 item-text='[[$page.functions.getItemText]]'>
</oj-select-single>

constructorParams

• the array of params passed to the constructor of the type

• the constructorParams can be used in EL expressions as well for readonly expressions

• $variables.customersADP.constructorParams

Chapter 1
Variables

1-104

Note:

The properties defined on the instance can be mutated directly, and will be reflected
on the instance stored in redux.

The methods available on the instance can be called directly.

The properties and methods supported on the instance are assumed to be declared
by the type author using typescript or at design-time. This information is not relevant
for runtime purposes.

To change the 'constructorParams'

Variable properties can be changed in several ways.

Using assignVariables action

For an InstanceFactory variable that is defined like this:

"incidentsList": {
 "type": "vb/ServiceDataProvider2",
 "constructorParams": [
 {
 "endpoint": "demo-data-service/getIncidents",
 "keyAttributes": "id",
 "itemsPath": "result",
 "uriParameters": "{{ $variables[\"technicianURIParams\"] }}"
 }
]
},
"incidentsListView": {
 "type": "ojs/ojlistdataproviderview",
 "constructorParams": [
 "{{ $page.variables.incidentsList.instance }}", // SDP2
 {
 "sortCriteria": [
 {
 "attribute": "priority",
 "direction": "ascending"
 }
]
 }
]
}

The assignVariablesAction below adds a filterCriterion property on the constructorParams of
the JET ListDataProviderView variable. This assignment will cause the variable to create a new
instance based on the new values.

"setFilterCriterion": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.incidentsListView.constructorParams[1]": {
 "source": {

Chapter 1
Variables

1-105

 "op": "$eq",
 "attribute": "status",
 "value": "accepted"
 },
 "mapping": {
 "$target.filterCriterion": {
 "source": "$source",
 "reset": "empty"
 }
 },
 "reset": "none"
 }
 }
}

Using resetVariables action

For an InstanceFactory variables that is defined like above, the resetVariablesAction looks like
below to reset the view variable.

"resetVariables": {
 "module": "vb/action/builtin/resetVariablesAction",
 "parameters": {
 "variables": [
 "$page.variables.incidentsListView"
]
 }
}

Using component writeback via EL bindings

Note:

This option is not supported.

Call methods on the instance using an action

You can use 'callVariableMethodAction' to call any method, including async methods. It's
important to remember that because actions in a chain are intrinsically synchronous, a method
that returns a Promise waits for the Promise to resolve before executing the next action.

"callGetCapabilityChain": {
 "root": "getCapabilityOnLDPV",
 "actions": {
 "getCapabilityOnLDPV": {
 "module": "vb/action/builtin/callVariableMethodAction",
 "parameters": {
 "variable": "$page.variables.incidentsListView",
 "method": "getCapability",
 "params": [
 "sort"
]
 }

Chapter 1
Variables

1-106

 }
 }
}

Update the instance and constructorParams together

You can use the assignVariablesAction and a built-in function to update the instance and
constructorParams together.

In the following example, Line 6 uses a built-in utils called 'assignmentUtils' that provides an
assignValue method. This allows authors to provide both the updated instance, and the
associated constructorParams.

1 "assignInstanceAndCPToListViewVar": {
2 "module": "vb/action/builtin/assignVariablesAction",
3 "description": "update variable instance and constructorParams
declaratively",
4 "parameters": {
5 "$page.variables.incidentsListView": {
6 "module": "{{ $application.builtinUtils.assignmentUtils }}",
7 "functionName": "assignValue",
8 "params": [
9 {
10 "instance":
"{{ $chain.results.setFilterCriterion_priorityLow.instance }}",
11 "constructorParams":
"{{ $chain.results.setFilterCriterion_priorityLow.constructorParams }}"
12 }
13]
14 }
15 }
16 }

JET Dynamic UI Variable Types
These 'specific' variable types, specific to each JET metadata provider type, hide the 'factory'
detail from the declaration.

Note:

The (requireJS) prefix 'oj-dynamic' must be mapped to the root of the components/
providers. Typically, this would be done using the declarative "requirejs" syntax in
app-flow.json.

There is no "options" property; all properties are top-level "defaultValue" properties.

Binding Syntax

The binding for these variables is different than typical Visual Builder variables; each of these
variables expose the JET metadata provider as a 'provider' property of the variable.

Chapter 1
Variables

1-107

For example, see the "metadata" attribute below:

<oj-dynamic-form id="myForm" class="oj-flex-item oj-sm-12 oj-md-12"
 value="{{$page.variables.formData}}"
 metadata="[[$page.metadata.activities.provider]]">

vb/DynamicLayoutMetadataProviderDescriptor

The following parameters are mutually exclusive:

Parameter Description

endpoint A standard Visual Builder endpoint ID, in the form
of <service ID> / <operationID>, in an OpenAPI3
document with appropriate JSON Schema type
information.

path A path to a JSON file, which contains a (JET-
defined) JSON descriptor for the data.

"metadata": {
 "employee": {
 "type": "vb/DynamicLayoutMetadataProviderDescriptor",
 "defaultValue": {
 "endpoint": "sales/getAllSales"
 }
 },
 "department": {
 "type": "vb/DynamicLayoutMetadataProviderDescriptor",
 "defaultValue": {
 "path": "dynamicLayouts/some/path",
 "operationId": "get_Chickens",
 }
 }
}

vb/ContainerMetadataProviderDescriptor

There is no defaultValue.

"metadata": {
 "myContainerLayoutVar": {
 "type": "vb/ContainerMetadataProviderDescriptor"
 },

vb/HeterogeneousMetadataProviderDescriptor

Parameter Description

discriminator The field in the data that contains the options that
can be used to determine which metadata provider
to use for each new provider.

"metadata": {
 "incidentsProvider": {

Chapter 1
Variables

1-108

 "type": "vb/HeterogeneousMetadataProviderDescriptor",
 "defaultValue": {
 "discriminator": "discriminatorField"
 }
 }
},

vb/ServiceMetadataProviderDescriptor

Parameter Description

endpoint A standard VB endpoint ID, in the form of <service
ID> / <operationID>, in an OpenAPI3 document
with appropriate JSON Schema type information.

"metadata": {
 "employee": {
 "type": "vb/ServiceMetadataProviderDescriptor",
 "defaultValue": {
 "endpoint": "sales/getAllSales"
 }
 }
}

vb/JsonMetadataProviderDescriptor

Requires that 'oj-dynamic' prefix be (requireJS) mapped to the root of the Dynamic UI
Components.

The following parameters are mutually exclusive:

• path - path to a JSON file

• data - a (JS) object

"metadata": {
 "employee": {
 "type": "vb/JsonMetadataProviderDescriptor",
 "defaultValue": {
 "path": "path/to/some.json"
 }
 }
}

Default Values
Variables (but not types) may have default values.

To specify a default value:

"nameOfVariable": {
 "type": "string",
 "defaultValue": "someString"
},
"someOtherVariable": {
 "type": "boolean",
 "defaultValue": true"

Chapter 1
Variables

1-109

},
"yetAnotherVariable": {
 "type": "number",
 "defaultValue": 10
}

Example 1-24 Object Variables

Object variables can also have default values:

"nameOfVariable": {
 "type": {
 "foo": "string",
 "bar": "number"
 },
 "defaultValue": {
 foo: "myDefaultFoo"
 }
}

Example 1-25 Object Variables That Reference An Application Type

Object variables that reference an application type can also have a default value for their
properties:

"nameOfVariable": {
 "type": "application:myType",
 "defaultValue": {
 "foo": "myDefaultValue"
 }
}

Example 1-26 Arrays

Arrays can also have a default value for their properties:

"nameOfVariable": {
 "type": "application:myArrType",
 "defaultValue": [
 {
 "foo": "myDefaultValue"
 }
]
}

The following table shows how a variable is initialized, based on its type, when no default value
is provided.

Type Initial Value

String Undefined

Number Undefined

Boolean Undefined

Any Undefined

Object { }

Array []

Custom type An empty object with all properties initialized according to
this table

Chapter 1
Variables

1-110

Expressions in Default Values
Default values may contain expressions.

When a default value contains an expression, note that expressions can also use other
variables. You can reference a variable with the following syntax:

Scope Variable Syntax

Application $application.variables.<variableName>

Page $page.variables.<variableName>

Action Chain $chain.variables.<variableName>

Expressions must be wrapped in expression syntax :{{ expr }}. and the expression must be
the entire value. Expressions can also call external functions via the page function module.

To reference another variable in a default value, you can do the following:

"nameOfVariable": {
 "type": "application:myType",
 "defaultValue": {
 "foo": "{{ $application.variables.someOtherVariable }}"
 }
}

Since these are expressions, you can also add simple Javascript code to the values:

"myOtherVariable": {
 "type": {
 "someBoolProperty": "boolean"
 },
 "defaultValue": {
 "someBoolProperty": {{ $application.variables.someOtherVariable === true }}"
 }
}

Input Variables
Variables can also be inputs to the page.

There are two types of input. The first consists of inputs that come from the URL. The second
type consists of inputs that are passed internally by the framework. To mark a variable as an
input, you can use the following properties:

"nameOfVariable": {
 "type": "string",
 "input" "fromCaller/fromUrl"
 "required": true
}

Here the input is either "fromCaller" or "fromUrl". If it is "fromCaller", it will be passed internally
using the params property of the navigate action. If it is "fromURL", it will be passed via the
URL request parameter of the same name, like ?myVar=someValue. If the "required" property is
true, the variable value will be required to be passed during a navigation or page load.

The implicit object $parameters is used to retrieve the input parameter values inside
the vbBeforeEnter event handler. Input variables do not exist until the vbEnter event.

Chapter 1
Variables

1-111

In this example, the input regionName is retrieved using $parameters.regionName in
the vbBeforeEnter handler and using $page.variables.regionName in the vbEnter handler.

"eventListeners": {
 "vbBeforeEnter": {
 "chains": [
 {
 "chainId": "checkForRegionName",
 "parameters": {
 "regionName": "{{ $parameters.regionName }}"
 }
 }
],
 },
 "vbEnter": {
 "chains": [
 {
 "chainId": "initializeVariables",
 "parameters": {
 "regionName": "{{ $page.variables.regionName }}",
 "facilityId": "{{ $page.variables.facilityId }}"
 }
 }
]
 }
},

Persisted Variables
The value of a variable can be persisted on the history, for the current session or across
sessions.

If you set "persisted" to "history", the variable value is stored in the browser history. When
navigating back to a page in the browser history using the browser back button or when
refreshing the page, the value of the variable is restored to its value at the time the application
navigated away from this page.

If you set "persisted" to "session", the variable is stored in the browser session storage as long
as the browser is open. To store a variable across sessions, use "device" instead of "session".

If you set "persisted" to "device", the variable is stored in the browser local storage, so it is
persisted on the device where the application is running even if the browser is closed.

To remove a variable from storage, set its value to null.

Example 1-27 Using a Persisted Variable

"variables": {
 "sessionToken": {
 "type": "string",
 "persisted": "session"
 }
}

rateLimit Variable Property
A variable can set a rateLimit property that limits how often the onValueChanged event is fired.

Chapter 1
Variables

1-112

Specify the rateLimit property, with a timeout property in milliseconds, to limit how often the
onValueChanged event is fired on that variable. For example:

"pageVar": {
 "type": "string",
 "onValueChanged": {...},
 "rateLimit": {
 "timeout": 1000 // in milliseconds
 }
}

The default is to wait for the timeout to expire after all changes stop before firing the change
event.

Constants
Constants are scoped like variables, but their values can't be changed through assignment.

Constants have the following properties and restrictions:

• The scope of a constant can be page, flow, application, or action chain. The value of a
constant is defined declaratively in the descriptor using the constants property.

• The value of a constant can be an expression. The expression can refer to previously-
defined constants and variables in the current scope or application/flow.

• Constants are evaluated first, so expressions in variables can refer to constants.

• The name of a constant cannot be used by a variable in the same scope.

• Constants can be used in action chains.

• A constant can be an input parameter to a page or action chain.

• A constant cannot be of a built-in type.

• A constant holds a value that is immutable (contrary to JavaScript). For instance, in the
case where the content is an object, this means the object's contents (for example, its
properties) cannot be altered.

• Constants do not dispatch change events, since their values never change.

"constants": {
 "myConstant": {
 "type": "string",
 "description": "A useful constant",
 "defaultValue": "This string"
 }
}

Type

Constant type is the same as for variable except it cannot be a built-in type.

Default Value

Static Default Value. Constants hold a value that is immutable (unlike JavaScript). For
instance, in the case where the content is an object, this means the object's contents (for
example, its properties) cannot be altered. The value of a constant can be overridden in an

Chapter 1
Constants

1-113

extension during initialization, but once the value is set, it cannot be changed. (discussed
below).

Dynamic Default Value. A constant's default value can be an expression that contains
variables. In this this case, the constant will change when the variable value changes. That
change triggers a valueChange event that can be listened to using the onValueChanged
property:

"constants": {
 "fullName": {
 "defaultValue": "{{ $variables.firstName + ' ' + $variables.lastName }}",
 "onValueChanged": {
 "chains": [
 {
 "chainId": "fullNameChanged"
 }
]
 }
 }
}

Input

Constant input is the same as for variable.

Extension

Like variables, constants can be accessed by downstream or dependent extensions if they are
defined in the interface section of the base container.

"interface": {
 "constants": {
 "extendableConstant": {
 "type": "string",
 "description": "A constant visible to extensions",
 "defaultValue": "A string"
 }
 }
}

Additionally, when extending a container with an interface constant, the (base) value of the
constant can be changed on the extending container, using the defaultValue property, in the
extensions section:

"extensions": {
 "constants": {
 "extendableConstant": {
 "defaultValue": "Value from the extension"
 }
 }
}

Note that the onValueChanged can also be overwritten. In that case, the chain(s) defined in the
extension will be invoked instead the one(s) in the base object.

Chapter 1
Constants

1-114

JavaScript Action Chains
A JavaScript action chain is a sequence of actions started by an event. When a given event
occurs in a page, the event listener listening for that event kicks off the action chain.

For information about JavaScript action chains, see Work with JavaScript Action Chains in one
of these guides:

• Developing Applications with Oracle Visual Builder

JavaScript Actions
This section lists the built-in JavaScript actions that are available in Visual Builder for creating
JavaScript action chains.

Assign Variable
This action is used to assign a value to a local, page, flow, or application variable. It can also
be used to create a local variable.

When using code to reference a variable, the scope must be specified, unless it's defined in
the current scope. If the scope isn't specified, it means it's the current scope. For example, on
a page, the page's variables would be referenced as $variables.myVar instead
of $page.variables.myvar.

Call Action Chain
This action is used to start an action chain that has been defined in the same page, flow, or
application.

Note:

You can call a JSON action chain from a JavaScript action chain using this action;
however, you can't call a JavaScript action chain from a JSON action chain.

To call an action chain, you need to pass the following parameters:

Parameter Name Description

chain The name of the action chain to call. No prefix is required for page level action
chains, but application level ones need to be prefixed with application: and flow
level ones with flow:.

params An expression that maps to an array of parameters.

Here's an example of a call to an action chain with 2 input parameters:

const callChainResult = await Actions.callChain(context, {
 chain: 'MyActionChainToCall',
 params: {
 ip1: $application.variables.var1,
 ip2: $application.variables.var2

Chapter 1
JavaScript Action Chains

1-115

 },
});

Return Values

The call returns a result if the called action chain returns a result.

Call Component
A Call Component action provides a declarative way to call methods on JET components.

Here are details about this action's parameters:

Parameter Name Description

selector The component on the page that is to be called. A component must have its ID
parameter specified for it to show up in the drop-down list. You can also use the
DOM method document.getElementById to locate a JET element/component.

method The name of the component method to call.

params Array of parameters to pass to the method, if it takes arguments. Primitives,
objects, and array parameters are passed by value and not by reference. Instances
are still sent as references.

Here's an example of a call to the Call Component action:

 const callTableComponentRefreshRowResult = await
Actions.callComponentMethod(context, {
 selector: '#tableComponent',
 method: 'refreshRow',
 params: $variables.rowID,
 });

Call Function
This action is used to call a function defined for the current flow, page, or application (web
app). For extensions, it's used to call a function defined for the current flow, page, App UI, or
extension. These functions are referred to as module functions, and they're created and edited
using the JavaScript editor for a particular scope.

Using code, the syntax for specifying a module function that isn't a page function is:

$<scope>.functions.someFunction();

For page functions, the scope isn't specified:

$functions.someFunction();

Example
Suppose this function is defined for a page:

sum(num1, num2) {
 return num1 + num2;};
};

Chapter 1
JavaScript Action Chains

1-116

You call the function and assign its result like this:

const sumResult
= $functions.sum($variables.firstNum_pv, $variables.secondNum_pv);

Return Values

The result payload is equivalent to whatever the function returns (which may be undefined if
there is no return). If the function returns a promise, the result payload will be whatever is
resolved in the promise.

Call REST
The call REST action is used to make a REST call in conjunction with the service definitions.

Internally, this action uses the REST Helper, which is a public utility. Its parameters are as
follows.

Parameter Name Description

endpoint The endpoint ID as defined in the service configuration.

uriParams A key/value pair map that will be used to override path and query parameters
as defined in the service endpoint.

body A structured object that will be sent as the body.

requestType The content-type of the request, either 'json', 'form', or 'url'.

Note:

Note that this is deprecated. Instead, use
'contentType' and 'fileContentType'.

headers An object; each property name is a header name and value that will be sent
with the request.

contentType An optional string value with an actual MIME type, which will be used for the
"content-type" header. When used with "fileContentType", this is also used as
the type for the File blob.

responseType If set, the specified type is used to do two things at run-time:
• Generate a fields parameter for the REST URI to limit the attributes

fetched;
• Automatically map the fetched response to the response type (when

used with the built-in vb/BusinessObjectsTransform). This applies to
standard action chains.

See the definition for "responseType" in Service Data Provider Properties for
details on how the assigned type is used in that context.

filePath An optional path to a file to send with the request. If "contentType" is set, that
is used as the type for the File contents. If “contentType” is not set, a lookup
of common file extensions will be used.

filePartName Optional, used with filePath to allow override of the default name ("file") for the
FormData part.

fileContentType An optional string, used in combination with "contentType", "multipart/form-
data", and "filePath".

hookHandler Used primarily by vb/ServiceDataProvider when externalizing data fetches.
See Service Data Provider for details.

Chapter 1
JavaScript Action Chains

1-117

Parameter Name Description

requestTransformOption
s

A map of values to pass to the corresponding transform, as the "options"
parameter.

requestTransformFunctio
ns

A map of named transform functions, called before making the request, where
the function is: fn(configuration, options)

responseTransformFunct
ions

A map of named transform functions, called before making the response,
where the function is: fn(configuration, options)

responseBodyFormat A string that allows an override of the standard Rest behavior, which normally
looks for a “content-type” header to determine how to read and parse the
response. Possible values are "text", "json", "blob", "arrayBuffer", "base64",
"base64Url", and "formData".

responseFields This is an "advanced" field, for use specifically with JET Dynamic Forms. The
value would typically be a variable that is bound to the <oj-dynamic-form>
"rendered-fields" attribute. This is how a calculated layout can tell the Rest
Action call which fields to fetch.
Note: The vb/BusinessObjectsTransform transform is necessary to create a
query from this value.

Note: When "responseFields" is provided, "responseType" is ignored.

Using multipart/form Data

If you have set "contentType" to "multipart/form-data", the Call REST action interprets your
request "body" object as the form parts. Each property of the body object is a form part, which
is a key-value pair with its own content type and disposition.

If "filePath" is also set, it is added as an additional part using the lookup of common file
extension types.

If "filePath" is also set, it is added as an additional part using the sample simple file extension
type association. The name of this part is "file", or can be specified using "filePartName".

You may optionally override the file type by using "fileContentType" for the file part.

For more about working with the multipart/form-data format, refer to this Oracle blog,
Consuming REST APIs in VB - multipart/form-data.

Parameters Typically Required per Endpoint Type

These are the typically required parameters for each endpoint type:

• POST:

– body parameter is set to the variable containing the new record's data.

– uriParams parameter is used to provide any required input parameters.

Here's an example POST endpoint call:

 const callRestCreateIncident = await Actions.callRest(context, {
 endpoint: 'fixitfast/putIncident',
 body: $variables.incidentPayload ,
 uriParams: {
 id: $constants.incidentId,
 },
 });

• GET:

Chapter 1
JavaScript Action Chains

1-118

https://blogs.oracle.com/vbcs/post/consuming-rest-apis-in-vb-multipart-form-data

– uriParams parameter is used to provide any required input parameters, such as an ID
input parameter to get a single record.
Here's an example of a GET endpoint call to get a single record. The empIDToGet_ip
variable is an input parameter that passes the record's ID to the action chain that
contains this Call REST call:

 const getEmployeeResult = await Actions.callRest(context, {
 endpoint: 'businessObjects/get_Employee',
 uriParams: {
 'Employee_Id': empIDToGet_ip,
 },
 });

• DELETE:

– uriParams parameter is used to provide the ID of the record to delete.
Here's an example of a DELETE endpoint call to delete a record. The
empIDToDelete_ip variable is an input parameter that passes the record's ID to the
action chain that contains this Call REST call:

 const callRestBusinessObjectsDeleteEmployeeResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/delete_Employee',
 uriParams: {
 'Employee_Id': empIDToDelete_ip,
 },
 });

• PATCH:

– body parameter is set to the variable containing the record with the updated data.

– uriParams parameter is used to provide the ID of the record to update.

Here's an example PATCH endpoint call:

 const updateEmployeeResult = await Actions.callRest(context, {
 endpoint: 'businessObjects/update_Employee',
 uriParams: {
 'Employee_Id': $variables.empID_pv,
 },
 body: $variables.EmpUpdatedData_pv,
 });

Service Definitions

If your service connection details are static, the details, such as the server, path, and schema
of the request and response, are stored in the openapi3.json file for the service connection.

To view or edit a service's definition, select the service connection in the Services pane, then
open the Source tab. The editor uses the OpenAPI3 specification and JSON format.

Chapter 1
JavaScript Action Chains

1-119

Transforms

The requestTransformOptions, requestTransformFunctions, and responseTransformFunctions
can be used to modify the request and response. Some built-in service endpoints have built-in
transform functions for 'sort', 'filter', 'paginate', and 'select', so options for these transform
functions can be defined using the same name via the requestTransformOptions property. For
third party services, the options set are based on the type of transform functions supported.

When using the Rest Action, the transform names have no semantic meaning and all request
and response transforms are called.

Request and response transform functions have the following signatures.

Chapter 1
JavaScript Action Chains

1-120

Transform Type Parameters Return Value

Request
/**
 * configuration: {
 * url:
 * initConfig: {
 * method: // string
with http method
 * body: // request
body, if any
 * credentials: //
string see (fetch) Request
 * headers: // object,
map of strings
 * }
 * },
 *
 * options: provided by the
application
 *
 * context: an empty object,
which exists for the
 * lifetime of one REST
call, a set of
 * transforms share this.
 **/

mytransform(configuration,
options, context)

Configuration object; see "Parameters".

Typically, returns the same object
passed in, or a modified one.

Response
/**
 * response: { body,
headers }
 *
 * context: an empty object,
see "Request transforms"
 *
 */
myresponsetransform(response,
 context);

The return value is application-defined.
The value is returned as the
'transformResults' of the REST call
result:

/**
 * {
 * response: The (fetch)
Response object. Note that
the body has already
 * been read, so the
functions (ex. json())
cannot be called.
 *
 * body: the result of the
json()/text()/etc.
 *
 * transformResults: a map
of return values from
Response Transforms
 * }
 */

Chapter 1
JavaScript Action Chains

1-121

Example 1-28 A Simple Transform Function

You would assign request and response transform functions to a Call REST action when
interacting with a third-party service or when you need to override a business object’s auto-
generated transforms (vb/BusinessObjectTransforms). Otherwise, you should assign
transform functions to a backend, service connection, or endpoint.

In this example, the transform functions are defined in the page module and assigned to a Call
REST action. The arguments are automatically passed to the module functions.

Here are the transform functions defined in the page module, located on the page’s JavaScript
tab:

class PageModule {
 transformCityNames(result) {
 let tr = {};
 if (result.body) {
 tr = result.body.items;
 for (let i = 0; i < tr.length; i++) {
 tr[i].cityName = tr[i].cityName + " (city)";
 }
 }
 }

 sort2(configuration, options) {
 configuration.url = configuration.url + options;
 return configuration;
 }
}

Error Handling and Return Values

If the underlying REST API request returns a status code, the error object is returned for you to
handle the error yourself, otherwise an auto-generated error notification is shown.

The object returned by the Call REST action returns these results:

Chapter 1
JavaScript Action Chains

1-122

Result Relevant Properties of Returned Object Returned Object

Success If the returned object’s ok property is set to true,
indicating success, these are the object’s relevant
properties:

• body: object with results from the call (scalar, object,
array, etc.)

• headers: Headers object
• ok: boolean, set to true
• status: number, set to 200
• statusText: string, set to "OK"

{
 body {},
 error: null,
 headers: Headers
{},
 message: {summary:
‘ ’},
 ok: true,
 status: 200
 statusText: "OK",
}

*If a single record is returned,
it is contained in the body{}
object; if multiple records are
returned, they are contained
in the body{} object’s
results parameter.

Error If the returned object’s ok property is set to false,
indicating failure, these are the object’s relevant
properties:

• error: error object or null
• message: object with error summary
• ok: boolean, set to false
• status: number
• statusText: string showing type of error

{
 body: null,
 error: null,
 headers: Headers
{},
 message: {summary:
‘<error summary>’},
 ok: false,
 status: <status
number>,
 statusText:
‘<error type>’
}

For details about working with business objects, refer to Accessing Business Objects Using
REST APIs.

Call Variable
This action is used to call a method of an InstanceFactory variable that has been defined in the
current scope (flow, page, or application). Using this action with any other type results in an
error.

You can call any method on the current instance associated with the InstanceFactory variable,
including asynchronous ones. However, since actions are by design synchronous, this action
will wait for the asynchronous call to resolve before proceeding to the next action in the chain.

Here's an example of a call to an InstanceFactory variable's method:

const getRangeResult = $variables.myBook.instance.getRange($variables.range);

Chapter 1
JavaScript Action Chains

1-123

https://developer.mozilla.org/en-US/docs/Web/API/Response/headers
https://docs.oracle.com/en/cloud/paas/app-builder-cloud/consume-rest/
https://docs.oracle.com/en/cloud/paas/app-builder-cloud/consume-rest/

Return Values

The result payload is equivalent to whatever the function returns (which may be undefined if
there is no return). If the function returns a promise, the result payload will be whatever is
resolved in the promise.

Code
In the Design editor, the Code action is used to add JavaScript code to an action chain. To do
so, add the Code action from the Action pallet to the action chain and enter the code in the
Properties pane.

In the Code editor, you can use this action to create a local function.

Fire Data Provider Event
The Fire Data Provider Event action causes the DataProvider specified via the target
parameter to dispatch an oj.DataProvider event as a way to notify all listeners registered on
that DataProvider to react to changes to the underlying data. For example, a component using
a particular ServiceDataProvider may need to render new data because new data has been
added to the endpoint used by the ServiceDataProvider.

The action can be called either with a mutation or a refresh event. The refresh event is used to
re-fetch and re-render all data, and the mutation event is used to specify which changes to
show.

Note:

This action is not necessary for a VB Array Data Provider variable, since the data
array of an ADP variable, exposed via the data property, can be updated directly
using the Assign Variable action. Assigning the data array is automatically detected
by Visual Builder, and all listeners are notified of this change. Users will be warned of
this when the fireDataProviderEvent is used with an ADP, prior to mutating the data
property directly.

A mutation event can include multiple mutation operations (add, update, remove) as long as
the ID values between operations do not intersect. This behavior is enforced by JET
components. For example, you cannot add a record and remove it in the same event, because
the order of operations cannot be guaranteed.

This table provides details about the parameters for the Fire Data Provider Event action. For
further details, see DataProviderOperationEventDetail in Oracle JET API Reference.

Name Type Description

target string Target of the event, usually a variable of type vb/SDP.
Example:

target: $variables.employeeSDP

Chapter 1
JavaScript Action Chains

1-124

https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderOperationEventDetail.html

Name Type Description

refresh null Indicates a data provider refresh event needs to be dispatched to the data provider
identified by the target. A null value is specified because the refresh event does not
require a payload.
Example:

 await Actions.fireDataProviderEvent(context, {
 target: $variables.employeeListSDP,
 refresh: null,
 });

For further details, see DataProviderRefreshEventDetail in Oracle JET API
Reference.

Chapter 1
JavaScript Action Chains

1-125

https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderRefreshEventDetail.html

Name Type Description

add object The following properties may be present in the payload:
• data: Array<Object>; required. Passes the added records from the add

operation’s returned result. If you are using an SDP variable, the structure of
the data passed to this parameter must match the structure specified by the
itemsPath parameter of the SDP variable’s definition:

The SDP's itemsPath property specifies where the added records are in the
response payload, relative to the root of the response. Here are three different
structures for an add operation's response and the corresponding itemsPath
specification:

1. Added records (just one in this example) are provided as an array, at the
root of the response:

[
 {
 "id": 149,
 "firstName": "Qinqin",
 "lastName": "Han"
 }
]

The itemsPath specification for this case is: "itemsPath": ""
Here's an example of the data parameter for the Fire Data Provider Event
action for this case:

 //Add new employee record
 const callRestCreateEmployeeResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/create_Employee',
 body: $variables.newEmpData,
 });

 const fireDPEResult = await
Actions.fireDataProviderEvent(context, {
 target: $variables.employeeListSDP,
 add: {
 data: [callRestCreateEmployeeResult.body],
 keys:
[callRestCreateEmployeeResult.body.id],

Chapter 1
JavaScript Action Chains

1-126

Name Type Description

 metadata: [{key:
callRestCreateEmployeeResult.body.id,}],
 },
 });

2. Added records (just one in this example) are provided in an array, which is
in an object's property, such as this object's items property:

{
 "items": [
 {
 "id": 149,
 "firstName": "Qinqin",
 "lastName": "Han"
 }
],
 "count": 1,
 "hasMore": false,
 "offset": 0
}

The itemsPath specification for this case is: "itemsPath": "items"
Here's an example of the data parameter for the Fire Data Provider Event
action, for this case:

 //Add new employee record
 const callRestCreateEmployeeResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/create_Employee',
 body: $variables.newEmpData,
 });

 const fireDPEResult = await
Actions.fireDataProviderEvent(context, {
 target: $variables.employeeListSDP,
 add: {
 data: {items:
[callRestCreateEmployeeResult.body]},
 keys:
[callRestCreateEmployeeResult.body.id],
 metadata: [{key:
callRestCreateEmployeeResult.body.id,}],
 },
 });

Chapter 1
JavaScript Action Chains

1-127

Name Type Description

3. Added records (just one in this example) are provided as an array in a
nested structure that matches the itemsPath property. In this example,
the added records are in the bar property of this object's foo property:

{
 "foo" : {
 "bar" : [
 {
 "id": 149,
 "firstName": "Qinqin",
 "lastName": "Han"
 }
]
 }
}

The itemsPath specification for this case is: "itemsPath": "foo.bar"
Here's an example of the data parameter for the Fire Data Provider Event
action code for this case:

 //Add new employee record
 const callRestCreateEmployeeResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/create_Employee',
 body: $variables.newEmpData,
 });

 const fireDPEResult = await
Actions.fireDataProviderEvent(context, {
 target: $variables.employeeListSDP,
 add: {
 data: {foo: {bar:
[callRestCreateEmployeeResult.body]}},
 keys:
[callRestCreateEmployeeResult.body.id],
 metadata: [{key:
callRestCreateEmployeeResult.body.id,}],
 },
 });

• keys: Set<*>; required for optimal performance. Ensure that the
keyAttributes parameter is set for the SDP variable. Here's an example
value for this parameter:

keys: [callRestCreateEmployeeResult.body.id],
• metadata: Array.<ItemMetadata.<KeyValue>>; required for optimal

performance. Passes the key values of the added records. Here's an example
value for this parameter:

metadata: [{key: callRestCreateEmployeeResult.body.id,}],

Chapter 1
JavaScript Action Chains

1-128

Name Type Description

• addBeforeKeys: Array<keys>; optional. Array of keys for items located after
the items involved in the operation. They are relative to the data array, after the
operation was completed, and not to the original array. If null and the index is
not specified, then insert at the end.

• indexes: Array<number>; optional. Indexes of items involved in the
operation, relative to after the operation completes and not to the original
dataset. Indices are with respect to the DataProvider with only its implicit sort
applied.

For further details, see DataProviderAddOperationEventDetail in Oracle JET
API Reference.

remove Only the keys parameter is required to identify the records. For details about the
keys parameter, refer to the add event above.
Example:

await Actions.fireDataProviderEvent(context, {
 target: $variables.employeeSDP,
 remove: {
 keys: [$variables.productId],
 },
 });

For further details, see DataProviderMutationEventDetail in Oracle JET API
Reference.

update The update event's payload is similar to that of the add event, except
addBeforeKeys is not present.
Example:

await Actions.fireDataProviderEvent(context, {
 target: $variables.employeeSDP,
 update: {
 data: {items: [callRestUpdateEmployeeResult.body]},
 keys: [callRestCreateEmployeeResult.body.id],
 metadata: [{key: callRestCreateEmployeeResult.body.id,}],
 },
 });

For further details, see DataProviderMutationEventDetail in Oracle JET API
Reference.

Fire Event
This action allows you to fire a custom event that has been defined in your application, flow,
page or fragment, using the Events tab. A custom event can carry a payload that you define
when you create the event, and the payload is passed to the event using the Fire Event action.

Here's a quick overview of how a custom event and the Fire Event action are used:

1. Create a custom event, defining parameters if required.

2. Create an event listener, which can start more than one action chain:

a. Assign it the custom event

b. Create a new action chain for the event, which is launched when the event is triggered.
Create the action chain through the Event Listener tab, because if the listener's custom
event has input parameters, the action chain is created with an event input parameter.
This event object will contain the custom event's input parameters (example:

Chapter 1
JavaScript Action Chains

1-129

https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderAddOperationEventDetail.html
https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderMutationEventDetail.html
https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderMutationEventDetail.html

event.param1, event.param2...), and the event object is automatically passed to the
new action chain..

3. In the action chain that will trigger the event, use the Fire Event action to trigger the custom
event, providing any parameters defined for the event.

This table describes the parameters for the Fire Event action:

Parameter Name Description

event Name of custom event, defined in your application, that you want to invoke.

payload Event's payload; source can be a page variable, a specific value or an expression.

Here's an example of a call to the Fire Event action:

const fireApplicationEventNavigateToItemResult = await
Actions.fireEvent(context, {
 event: 'application:customEventToFire,
 payload: {
 item: $application.variables.varForCustomEvent,
 },
});

Fire Notification
This action is used to fire a "vbNotification" event to display a message to the user in the
browser.

There are four types of notifications: Info, Error, Warning, and Confirmation. They display a
summary and a message underneath:

Chapter 1
JavaScript Action Chains

1-130

"vbNotification" events are just like custom events, except that they have a defined name and a
suggested use. Notifications are generally intended to help implement a flexible message
display, but the specific use can be defined by the application. See Custom Events for details.

Here are details about this action's parameters:

Parameter Name Description

summary Summary/title to display in large, bold letters for notification.

message Message to display in notification.

displayMode Display mode: persist or transient

type Notification type: info, error, warning, or confirmation

Here's an example of a call to the Fire Notification action:

 await Actions.fireNotificationEvent(context, {
 message: $variables.message,
 summary: $variables.summary,
 displayMode: 'persist',
 type: 'error',
 });

For Each
This action lets you execute one or more actions for each item in an array.

Here are details about this action's parameters:

Parameter Name Description

items An expression that evaluates to the array that is to be looped.

item The default alias for the current item in the array; can be changed as
desired.

index The default alias for the index position; can be changed as desired.

mode Defines whether the actions are run serially (default) or in parallel.
Regardless of the mode, the For Each action does not complete until the
actions for each item in the items array are complete.

The "mode" parameter allows for serial or parallel action. The default is serial, for which each
"actionId" call is only made for an item when any previous item's "actionId" call finished
(meaning, any Promise returned from the last action resolves). Using "parallel" means that
each "actionId" call does not wait for the previous call to finish (useful for Rest Action calls,
etc). Using either mode, the For Each action does not finish until all Promises returned from
the "actionId" chain resolve (if no Promise is returned, it is considered resolved on return).

The following table describes additional properties injected into the available contexts that the
called action ('callee') can reference in its parameter expressions:

Parameter Name Description

$current.data The current array item.

$current.index The current array index.

alias.data An alternate syntax for $current.data, which allows a reference
to $current from nested contexts.

Chapter 1
JavaScript Action Chains

1-131

Parameter Name Description

alias.index An alternate syntax for $current.index, which allows a reference
to $current from nested contexts.

Return Values

On success, an array is returned with each element containing the return value from the last
action in the loop, from each iteration. For instance, if the loop contains two actions that return
results, actionA → actionB, and the loop iterates 5 times, the returned array will have 5
elements, each corresponding to an iteration and containing actionB's result from that iteration.

Get Dirty Data Status
The Get Dirty Data Status action is used to check if any of the values have changed for the
tracked variables within a particular scope (application, page, fragment, layout, flow), within
any contained pages, fragments, layouts, or flows, or within any extensions of them. If the
value of one of the tracked values changes, the Dirty Data status for the variable's scope
changes from 'notDirty' to 'dirty'. The Dirty Data status is returned for the scope that this
action is used in.

When checking the dirty data status of a particular scope and its subscopes, it’s the scope from
which the action chain is called that matters, not the scope in which the action chain is defined.
For instance, if a page event initiates a flow or a page action chain that has a Get Dirty Data
Status action, the Get Dirty Data Status action returns that page's dirty data status, because
the action chain is called from the page.

This action has no parameters to set. Also, this functionality works with all of the data types,
except Service Data Providers (SDPs). Currently, you'll have to handle the tracking of value
changes for SDPs.

To set a variable to be tracked for value changes, go to the relevant Variables tab, select the
variable, and in the Properties pane, set its Dirty Data Behavior property to 'Track'.

To reset the scope's Dirty Data status back to 'notDirty', use the Rest Dirty Status action.

Here's a sample action chain that uses this action, which is started by a vbBeforeExit event
listener for the page:

 async run(context) {
 const { $page, $flow, $application, $constants, $variables } = context;

 const getDirtyDataStatusResult = await
Actions.getDirtyDataStatus(context, {
 });

 if (getDirtyDataStatusResult.status === 'dirty') {
 // Warn the user if there are unsaved changes
 await Actions.fireNotificationEvent(context, {
 summary: 'You have unsaved changed. Please Save or Cancel',
 displayMode: 'transient',
 type: 'error',
 });

 // Stay on the page
 return { cancelled: true };

Chapter 1
JavaScript Action Chains

1-132

 }

 /* Navigation from this page can be canceled by returning an object
with the property cancelled set to true.
 This is useful when the page state is dirty and navigation should not
be allowed before saving.*/
 return { cancelled: false };
 }

Get Location
The Get Location action provides a declarative access to geographical location information
associated with the hosting device. This action requires the user's consent. As a best practice,
it should only be fired on a user gesture, so as to associate the permission prompt with the
action they just initiated.

Here are details about this action's parameters:

Parameter Name Description

maximumAge A positive long value indicating the maximum age in milliseconds of a
possible cached position that is acceptable to return. If set to 0, it means
that the device cannot use a cached position and must attempt to
retrieve the real current position. If set to Infinity, the device must return
a cached position regardless of its age.

timeout A positive long value representing the maximum length of time, in
milliseconds, that the device is allowed to take in order to return a
position. The default value is Infinity, meaning that
getCurrentPosition() won't return until the position is available.

enableHighAccuracy A boolean that indicates the application would like to receive the best
possible results. If true, and if the device is able to provide a more
accurate position, it will do so. This can result in slower response times
or increased power consumption. If false (the default value), the device
can save resources by responding more quickly or using less power. On
mobile devices, enableHighAccuracy should be set to true in order to
use GPS sensors.

If the geolocation API is supported in the browser, geolocationAction returns a JSON Position
object that represents the position of the device at a given time.

Return Type Description Example

Object The Position interface represents the
position of the concerned device at a
given time. The position, represented by
a Coordinates object, comprehends the
2D position of the device, on a spheroid
representing the Earth, but also its
altitude and its speed.
• Position.coords returns a

Coordinates object defining the
current location.

• Position.timestamp returns a DOM
timestamp representing the time at
which the location was retrieved.

Latitude and longitude can be accessed
from the Position's coordinates as
follows:

[[results.getCurrentLocation.coord
s.latitude]]

[[results.getCurrentLocation.coord
s.longitude]]

where getCurrentLocation is a
geolocationAction.

If geolocation is not supported by the browser, or a parameter with a wrong type is detected,
an error is returned by results.getCurrentLocation.error. If a PositionError occurs when

Chapter 1
JavaScript Action Chains

1-133

obtaining geolocation, a PositionError.code payload is returned. Possible
PositionError.code values are:

• PositionError.PERMISSION_DENIED

• PositionError.POSITION_UNAVAILABLE

• PositionError.TIMEOUT

For every failure, a descriptive error message can be obtained from the action chain, such as
[[results.getCurrentLocation.error.message]].

Here's an example of using the Get Location action:

 const getLocationResult = await Actions.geolocation(context, {
 timeout: 0,
 maximumAge: Infinity,
 });

 if (getLocationResult.getCurrentLocation.error != null) {
 await Actions.assignVariable(context, {
 variable: '$variables.coords_pv',
 value: getLocationResult.coords,
 });
 } else {
 await Actions.fireNotificationEvent(context, {
 message: getLocationResult.getCurrentLocation.error.message,
 summary: 'Error',
 });
 }

If
The If action is used to add conditions.

Login
This action launches the login process as defined in the Security Provider implementation.

It invokes the handleLogin function on the Security Provider with the returnPath argument.

This table describes the parameters for the Login action:

Parameter Name Description

returnPath The path of the page to go to after a successful login. If not defined,
uses the default page of the application.

The behavior of the default implementation of the Security Provider handleLogin function is:

• Navigate to the login URL specified by the Security Provider configuration.

• If returnPath is not defined, use the default page of the application.

• Convert the page returnPath to a URL path and add it to the login URL.

Chapter 1
JavaScript Action Chains

1-134

Here's an example of a call to the Login action:

await Actions.login(context, {
 returnPath: '/loginpage',
 });

Logout
This action launches the logout process as defined in the Security Provider implementation.

It invokes the handleLogout function on the Security Provider with the logoutUrl argument.

This table describes the parameters for the Logout action:

Parameter Name Description

logoutUrl The URL to navigate to in order to logout. If not defined, uses the logout URL of the
Security Provider configuration.

The behavior of the default implementation of the Security Provider handleLogout function is:

• Navigate to the URL defined by the logoutURL parameter.

• If the logoutUrl parameter is not defined, use the logout URL of the Security Provider
configuration.

• After the user is logged out, the application continues to the default page of the application.

Here's an example of a call to the Logout action:

await Actions.logout(context, {
 logoutUrl: $variables.logoutURL_pv,
});

Navigate Back
The Navigate Back action is used to return to the previous page in a browser's history.

This table describes the parameters for the Navigate Back action:

Parameter Name Description

params A key/value pair map that will be used to pass parameters to the page.

Here's an example of a call to the Navigate Back action, in which two parameters are passed:

 await Actions.navigateBack(context, {params: {
 inParam: $variables.var1,
 inParm1: $variables.var2,
 },
 });

Navigate To Application
The Navigate To Application action is used to navigate to a navigable page or flow in a
specified App UI, and if required, to pass parameters to the page or flow. For a page or flow to

Chapter 1
JavaScript Action Chains

1-135

be navigable, meaning you can navigate to it from a different App UI, that page or flow must be
set as navigable, as will be explained for this action's flow and page parameter.

This table describes the parameters for the Navigate To Application action:

Parameter Name Description

application The application (App UI) to navigate to.

history Set the effect on the browser history. Allowed values are: replace, skip and
push. If set to replace, the current browser history entry is replaced, meaning that
the Back button won't go back to that URL. If the value is set to skip, the URL is
not modified. Default is push.

flow The flow within the selected App UI to navigate to. Only flows that have their "Let
other App UIs navigate to this flow" setting enabled are available in the dropdown
list.

page The page within the selected flow to navigate to. Only pages that have their "Let
other App UIs navigate to this page" setting enabled on their Settings tab can be
navigated to

params An object with the parameters to pass to the application, if required.

Here's an example of a call to the Navigate To Application action, in which an input parameter
is passed to the application:

 const navToEmployeeAppResult = await
Actions.navigateToApplication(context, {
 application: 'employee-app',
 history: 'replace',
 flow: 'empflow',
 page: 'empflow-main',
 params: {
 empID: empID,
 },
 }, { id: 'navToEmpApp' });

Navigate to the Same Application with Different Input Parameters
Navigating to the same application but with different input parameters is considered a valid
navigation, and since the input parameters change, the onValueChanged event is triggered.

The navigation is pushed to the browser history, so pressing the browser's Back button
restores the previous values of the input parameters.

Chapter 1
JavaScript Action Chains

1-136

Navigate To Flow
For base apps (web apps), this action is used to navigate to a flow in the current application,
and if necessary, to pass parameters to the flow.

For App UIs, this action is used to navigate to a flow in the current App UI, and if necessary, to
pass parameters to the flow. To navigate to a flow in a different App UI, use the Navigate to
Application action.

This table describes the parameters for the Navigate To Flow action:

Parameter Name Description

target Specifies if the flow is for the current or parent page.

flow Flow within the current App UI to navigate to.

page Page within the flow to navigate to.

params An object with the parameters to pass to the flow, if required.

history Define the effect on the browser history. Allowed value are 'replace', 'skip' or 'push'.
If the value is 'replace', the current browser history entry is replaced, meaning that
back button will not go back to it. If the value is 'skip', the URL is not modified.
Default is 'push'.

Here's an example of a call to the Navigate To Flow action, in which two input parameters are
passed to the flow:

 const navFlowResult = await Actions.navigateToFlow(context, {
 target: 'parent',
 flow: 'main',
 params: {
 inParam: $variables.var1,
 inParm1: $variables.var2,
 },
 page: 'main-start',
 history: 'push',
 });

Navigate To Page
For base apps (web apps), this action is used to navigate to a page in the current application,
and if necessary, to pass parameters to the page.

For App UIs, this action is used to navigate to a page in the current App UI, and if necessary, to
pass parameters to the page. To navigate to a page in a different App UI, use the Navigate to
Application action..

This table describes the parameters for the Navigate To Page action:

Parameter Name Description

page The page within the current application (web apps) or App UI to navigate to.

params An object with the parameters to pass to the page, if required.

history Define the effect on the browser history. Allowed value are 'replace', 'skip' or 'push'.
If the value is 'replace', the current browser history entry is replaced, meaning that
back button will not go back to it. If the value is 'skip', the URL is not modified.
Default is 'push'.

Chapter 1
JavaScript Action Chains

1-137

Here's an example of a call to the Navigate To Page action, in which an input parameter is
passed to the page:

 const navigateResult = await Actions.navigateToPage(context, {
 page: 'main-display-results',
 params: {
 calResults: $variables.calculationResults,
 },
 history: 'push',
 });

Navigate to the Same Page with Different Input Parameters
Navigating to the same page but with different input parameters is considered a valid
navigation, and since the input parameters change, the onValueChanged event is triggered.

The navigation is pushed to the browser history, so pressing the browser's Back button
restores the previous values of the input parameters.

Open URL
The Open URL action is used to navigate to an external URL. In a web app, this action opens
the specified URL in the current window or in a new window using the window.open() API. In a
native mobile app, this action can open local file attachments as well as remote resources.

In a native mobile app, this action supports opening local file attachments as well as remote
resources. Allowed file types for the url parameter are:

• .pdf
• .doc
• .txt
• .text
• .ppt
• .rtf
• .xls
• .mp3
• .mp4
• .csv
The very first time, the user gets an option to select which application to use for opening a
given file type. If no application is available to open such a file, this action fails with the
appropriate error. After a file is first opened, it will always be opened with the same application
across all Visual Builder installed apps on the device.

If the specified file is not local or if the file extension is not recognized, this action will use
Cordova's plugin cordova-plugin-inappbrowser to open the specified URL.

This table describes the parameters for the Open URL action:

Parameter Name Description

url The URL to navigate to.

params A key/value pair map that will be used as query parameters to the URL

Chapter 1
JavaScript Action Chains

1-138

Parameter Name Description

hash The hash entry to append to the URL.

history Defines the effect on the browser history. Allowed values are 'replace' or 'push'. If
the value is 'replace', the current browser history entry is replaced, meaning that
the back button will not go back to it. Default is 'push'.

windowName A name identifying the window as defined in the window.open() API (optional). If
not defined, the URL opens in the current window. Otherwise, refer to the
window.open() API documentation. In a mobile app, there are 3 possible values:
_self, _blank, or _system. The default is _self. Refer to the documentation for
cordova-plugin-inappbrowser. For local file types, this parameter is ignored.

Once on the URL location, the browser back button will re-enter the last page, if you specified
a value for the windowName parameter that opens the URL in the current window. The page
input parameters will be remembered, even if their type is 'fromCaller'.

Here's an example of a call to the Open URL action, in which one parameter is passed:

 await Actions.openUrl(context, {
 url: $variables.urlToOpen_pv,
 params: {
 inParam: $variables.itemID,
 },
 hash: $variables.hashPart_pv,
 history: 'push',
 windowName: '_self',
 });

Reset Dirty Data Status
The Reset Dirty Data Status action is used to reset the Dirty Data status of the scope
(application, fragment, flow, page) that the action is used in to 'notDirty'. The Dirty Data status
of a scope changes from 'notDirty' to 'dirty' when one of its tracked variables has its value
changed.

This action takes no parameters, and it is used with the Get Dirty Data Status action.

Here's an example of a call to this action:

 await Actions.resetDirtyDataStatus(context, { });

Reset Variables
The Reset Variables action is used to reset variables to their default values, as defined in their
variable definitions.

This table describes the parameters for the Reset Variables action:

Chapter 1
JavaScript Action Chains

1-139

Parameter Name Description

variables An array of variables. Here is an example:

["$page.variables.var1", "$page.variables.var2"]

Note:

If a single variable expression is provided instead of
an array, it is implicitly treated as an array of one
variable.

Each expression in the array has to resolve to a variable or variable property, and
variables must be prefixed with their scope:
• $application.variables
• $page.variables
• $chain.variables
Each expression should be followed by a variable name or a path to a variable
property. For example:

• $application.variables.a
• $page.variables.a.b
• $variables.a.b.c (which is shorthand for $chain.variables.a.b.c)

Here's an example of a call to the Reset Variables action, in which two variables are to be
reset:

 await Actions.resetVariables(context, {
 variables: [
 '$page.variables.firstNum_pv',
 '$page.variables.secondNum_pv',
],
 }, { id: 'resetFirstAndSecondNum' });

Return
The Return action is used to return a payload for an action chain and to return control back to
where the action chain was called. For instance, action chain A can call action chain B, which
returns a value, then action chain A can use that returned value for further processing.

The Return action can also be used to exit an action chain early due to an exception, such as
an invalid value, or some other condition. If no value is returned by the Return action, the value
of undefined is returned by default.

For the Run In Parallel action, which uses aysc() functions to run blocks of code in parallel,
the Return action can be used to return a value for a block of code. For further details, see Run
in Parallel.

Run in Parallel
The Run in Parallel action is used to run multiple action chains in parallel, and it can also be
used to wait for their results to produce a combined result.

Chapter 1
JavaScript Action Chains

1-140

The actions to run for each sequence are placed within an asyn() method, and the value
returned by the asyn() method is put into the array returned by the Run in Parallel action. The
first element of the returned array contains the result from the first asyn() method, the second
element contains the result from the second asyn() method, and so on.

Here's an example of the Run in Parallel action, which returns its results in an array named
empInfo. In parallel, the action makes REST calls to get an employee's office location,
department, and team. The employee's information is then displayed:

async run(context, { office_ip = 1, department_ip = '1', team_ip = 2 }) {
 const { $page, $flow, $application, $constants, $variables } = context;

 const empInfo = await Promise.all([
 async () => {

 const callRestGetOfficesResult = await Actions.callRest(context, {
 endpoint: 'businessObjects/get_Offices',
 uriParams: {
 'Offices_Id': office_ip,
 },
 });

 return callRestGetOfficesResult.body.location;
 },
 async () => {

 const callRestGetDepartmentResult = await Actions.callRest(context,
{
 endpoint: 'businessObjects/get_Department',
 uriParams: {
 Department_Id: department_ip,
 },
 });

 return callRestGetDepartmentResult.body.name;
 },
 async () => {
 const callRestBusinessObjectsGetTeamResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/get_Team',
 uriParams: {
 'Team_Id': team_ip,
 },
 });

 return callRestBusinessObjectsGetTeamResult.body.name;
 },
].map(sequence => sequence()));

 await Actions.fireNotificationEvent(context, {
 summary: 'Employee Info',
 message: 'LOCATION: ' + empInfo[0] + ' DEPARTMENT: ' + empInfo[1] + '
TEAM: '+ empInfo[2],
 });
 }

Chapter 1
JavaScript Action Chains

1-141

Return Values

This action returns an array (empInfo) with the first element (index 0) containing the value
returned from the first asyn() method, the second element containing the value from the
second asyn() method, and the third element containing the value from the third asyn()
method.

Scan Barcode
Use the Scan Barcode action in your mobile application to scan QR codes and barcodes for
details such as URLs, Wi-Fi connections, and contact information.

The parameters for this action are:

Parameter Name Description

image An image object, which can be a CanvasImageSource, Blob, ImageData, or
an element

formats Optional: A series of barcode formats to search for, for example, one or more
of the following:
['aztec', 'code_128', 'code_39', 'code_93',
'codabar', 'data_matrix', 'ean_13', 'ean_8', itf',
'pdf417', 'qr_code', 'upc_a', 'upc_e']
Note that all formats may not be supported on all platforms.

If formats is not specified, the browser will search all supported formats, so
limiting the search to a particular subset of supported formats may provide
better performance.

convertBlob Optional: A boolean that enables you to automatically convert a Blob to an
ImageBitmap when using the Scan Barcode action to process the outcome of
the Take Photo action. If true, the Blob object is converted as an
ImageBitmap before being passed to the Scan Barcode action. If false
(default), the Blob object is left as is. You'll need to manually do the
conversion, for example, by adding a function to your application and calling
the function using the callModuleFunctionAction in your action
chain.

Here's an example of a call to the Scan Barcode action, in which a bitmap returned by a
module function is used for the Image parameter:

 const scanCreateImageBitmapResultResult = await
Actions.barcode(context, {
 image: createImageBitmapResult,
 formats: [
 'qr_code',
],
 });

Return Values

On success, a DetectedBarcode object is returned using the auto-generated variable shown by
the Store Results In parameter. If the browser does not support the Shape Detection API or if
a specified format is not supported, an exception is thrown.

Chapter 1
JavaScript Action Chains

1-142

https://wicg.github.io/shape-detection-api/#api

Share
The Share action is used to invoke the native sharing capabilities of the host platform in order
to share content with other applications, such as Facebook, Twitter, Slack, SMS and so on.

Invoke this action following a user gesture, such as a button click. Also, we recommend that
the Share action's UI only be shown if navigator.share is supported by the given browser, as
in this HTML code:

<oj-button disabled="[[!navigator.share]]">Share</oj-button>

This table describes the parameters for the Share action:

Parameter Name Description

title Represents the title of the document being shared. This value may be ignored by
the target.

text Text that forms the body of the message being shared. Can be specified with or
without a URL.

url URL string that refers to the resource being shared. Any URL can be shared, not
just URLs under website's current scope.

Here's an example of a call to the Share action:

 await Actions.webShare(context, {
 title: document.querySelector('h1').textContent,
 text: 'Check out this cool new app!',
 url: document.querySelector('link[rel=canonical]') &&
document.querySelector('link[rel=canonical]').href || window.location.href,
 });

Switch
Use the Switch action to select the actions to execute for a specific case value. If a case value
is not matched, the "default" case is executed.

Here's an example of a Switch code block that returns a language's three letter code:

 switch (language) {
 case 'English':
 return 'eng';
 break;
 case 'Chinese':
 return 'chn';
 break;
 case 'Spanish':
 return 'spn';
 break;
 default:
 return 'error';
 break;
 }

Chapter 1
JavaScript Action Chains

1-143

Try-Catch-Finally
This action is used to add Try, Catch, and Finally blocks in order to gracefully handle errors
and avoid program crashes.

JSON Action Chains
A JSON action chain is a sequence of actions started by an event. When a given event occurs
in a page, the event listener listening for that event kicks off the action chain. Each JSON
action chain is contained within its own JSON file, which is created and edited using the Action
Chain editor.

JSON Actions
A list of built-in actions, JSON based, available in Visual Builder for applications

Note:

Action definitions minimally have a "module" property that specifies the action
implementation. Actions can also have an optional "label" property, which is user-
friendly.

Assign Variables Action
This action is used to assign values to a set of variables.

This action has two forms. The first is metadata-driven, where you can specify how assignment
should be performed by using metadata. The second supports calling out to a custom assign
variable function. This custom assign variable function can perform a transformation on the
source value before assignment.

"myActionChain": {
 "root": "myAssignVariableAction",
 "actions": {
 "myAssignVariableAction": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters: {
 "$page.variables.target1": { "source": "{{ $page.variables.source1 }}" },
 "$page.variables.target2": { "source": "{{ $page.variables.source2 }}" }
 }
 }
 }
}

Metadata-Driven Variable Assignment
This action is used to assign values to a set of variables using metadata.

Metadata-driven variable assignment lets you use metadata to specify how assignment should
be performed.

This form takes a map of target expression and assignment metadata pairs. For example, if the
target expression is a structure, it has to resolve to a variable or to a variable's property. The
target expression has to be prefixed with one of the following:

Chapter 1
JSON Action Chains

1-144

• $application.variables
• $page.variables
• $chain.variables
• $variables
This should be followed by a variable name or a path to a variable property, such as the
following:

• $application.variables.a
• $page.variables.a.b
• $variables.a.b.c
Note that $variables.a.b.c is a shortened form of $chain.variables.a.b.c.

The expression can be arbitrarily complex as long as it is a valid JavaScript expression and
satisfies the above constraints.

The assignment metadata has the following format:

{
 "source": "some expression",
 "reset": "none", // default to " toDefault"
 "auto": "always", // default to "ifNoMappings"
 "mapping": { ... }
}

The "source" expression can be an arbitrary expression that evaluates to a primitive value, an
object or an array.

The "reset" option can be one of the following:

• "toDefault" - reset the target to its default value before assignment. This is the default.

• "empty" - clear the target before assignment. If the target has an object type, the target will
be reset to an empty object of that type. If the target is an array, the target will be reset to
an empty array.

• "none" - overwrite the existing target value

The "auto" option controls whether to auto-assign all properties from the source to the
corresponding properties of the target. It can be set to one of the following:

• "always" - auto-assignment will always be performed first before any mapping is applied.

• "ifNoMapping": auto-assignment will only be performed if no mapping is provided. This is
the default.

The "mapping" is a piece of metadata used to provide fine-grained control over what gets
assigned from the source to the target. When no "mapping" is used to control the assignment,
there are two possible schemes for assignment depending on the target type, auto and direct.

Auto Assign Source to Target
If the target has a concrete type, the assign action will auto-assign the source to the target. If
the target type is an object type, auto-assignment will recursively assign each property in the
source object to the corresponding property in the target object based on the target type. If the
target is an array, the source will be treated as an array if it is not one already. For each item
of the source array, an empty item will be created using the target's array item type and
appended to the target array. The source item is then auto-assigned to the target item.

Chapter 1
JSON Action Chains

1-145

If the target property is an object and the source property is a primitive or vice versa, no
assignment will be made. For primitive types, the source value will be coerced into the target
type before assignment. For boolean type, the coercion will be based on whether the source
value is truthy except for "false" (case-insensitive) and "0" which will be coerced to false.

Direct Assign Source to Target
If the target has a wildcard type, e.g., any, any[], object or object[], direct assignment will be
performed. The behavior may differ depending on the wildcard type:

• any - the source value is directly assigned to the target

• any[] - the source value is turned into an array if not one already and then directly
assigned to the target

• object - same as any except the source value has to be an object. Otherwise, no
assignment is performed.

• object[] - same as any[] except the items in the source array have to be objects.
Otherwise, no assignment is performed.

Example: Metadata-driven assignment takes a map of target expression and assignment
metadata pairs.

"myActionChain": {
 "root": "myAssignVariableAction",
 "actions": {
 "myAssignVariableAction": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters: {
 "$page.variables.target1": { "source": "{{ $page.variables.source1 }}" },
 "$page.variables.target2": { "source": "{{ $page.variables.source2 }}" }
 }
 }
 }
}

Example

"$page.variables.target": {
 "source": "{{ $page.variables.source }}",
 "mapping": {
 "$target.a": "$source.b",
 "$target.b.c": "$source.c.b"
 }
}

Example

"$page.variables.target": {
 "source": "{{ $page.variables.source }}",
 "mapping": {
 "$target.a": "$source.b",
 "$target.b": {
 "source": "$source.c"
 "mapping": {
 "$target.c": "$source.b"
 }
 }
 }
}

Chapter 1
JSON Action Chains

1-146

Assign Variables With a Custom Function
This action uses a custom function to assign values to a set of variables.

A custom assign variable function can perform a transformation on the source value before
assignment.

The AssignVariablesAction will first look up the function referenced by "functionName" from the
page's functions module and call it with the current available scopes. It will then assign the
return value of the function call to the target variable. The custom function should have the
following signature:

PageModule.prototype.myAssignVariableFunction = function (helper, targetDefaultValue)

The "targetDefaultValue" is the default value for the target which can be used to emulate the
"toDefault" reset option.

The "helper" is an utility object that can be used to retrieve values for variables within the
current scope and perform auto-assignment. It has the following interface:

class AssignmentHelper {
 /**
 * Gets a variable from a scope by its string representation, e.g.,
 * helper.get("$page.variables.myVar")
 */
 get(expr);

 /**
 * Assigns properties from one or more sources to the target if and
 * only if the property already exists on the target. The sources
 * are processed in the order they are defined.
 *
 * If target is null, any empty target value will be created based
 * on the target's type. If the target is not null, it will be cloned
 * and the sources will be assigned into the clone. In either case,
 * this value will be returned as the result.
 */
 pick(target, ...sources) {
}

Example: an assign variable function that resets the target value to its default value and auto-
assign the source to the target:

PageModule.prototype.myAssignVariableFunction = function (helper, targetDefaultValue) {
 var source = helper.get("$page.variables.source");
 var result = helper.pick(targetDefaultValue, source);
 return result;
}

Call Action Chain Action
The action module for this action is "vb/action/builtin/callChainAction".

Note:

You can call a JSON action chain from a JavaScript action chain using this action;
however, you can't call a JavaScript action chain from a JSON action chain.

Chapter 1
JSON Action Chains

1-147

To call an action chain, you need to pass the following parameters:

Parameter Name Description

id The ID of the action chain to call. Action chains
need to be prefixed with application: for an
application chain and flow: for a flow chain.

params An expression that maps to an array of parameters.

The outcome and result will be the outcome and result of the last action executed in the called
action chain.

Call Component Action
The action module for this action is "vb/action/builtin/callComponentMethodAction". This
provides a declarative way to call methods on JET components.

Parameters

Parameter Name Description

component The component on the page. Use the DOM method document.getElementById to
locate a JET element/component.
The following deprecated utility methods are provided in the $page scope to get JET
components, but will be removed in a future release:

$page.components.byId('myCard')

$page.components.bySelector('#myCompId')

Note:

These two methods will return null if no element is found,
or if the element is not part of a JET component.

method The name of the component method to call.

params Array of parameters to pass to the method, if it takes arguments. Primitives, objects, and
array parameters are passed by value and not by reference. Instances are still sent as
references.

For this sample composite component, the 'flipCard' method takes two parameters: 'model',
which is unused (null below), and 'event', which we construct with a 'type' property:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "flipCardMethodCall": {
 "label": "Flip the Card",
 "module": "vb/action/builtin/callComponentMethodAction",
 "parameters": {
 "component": "{{ document.getElementById('myCard') }}",
 "method": "flipCard",
 "params": ["{{ null }}", { "type": "click" }]
 }
 }
 }
}

Chapter 1
JSON Action Chains

1-148

Call Function Action
The action module for this action is "vb/action/builtin/callModuleFunctionAction".

To call a module function, you need to pass the following parameters.

Parameter Name Description

module The module to call the function on. This could be
"$page.functions",
"$application.functions", or
"$flow.functions".

functionName The name of the function to call.

params An array of parameters. Note that a single
parameter must still be passed as a single item
array.

The outcome is either 'success' if the function call was successful, or 'error' otherwise. The
result payload is equivalent to whatever the function returns (which may be undefined if there
is no return). If the function returns a promise, the result payload will be whatever is resolved in
the promise.

Suppose there is a function defined in the page functions module as follows:

PageModule.prototype.sum = function(one, two) {
 return one + two;
}

You can call that function with the following action:

"myActionChain": {
 "root": "mySumAction",
 "actions": {
 "myAction": {
 "label": "call my sum function",
 "module": "vb/action/builtin/callModuleFunctionAction",
 "parameters": {
 "module": "{{$page.functions}}",
 "functionName": "sum",
 "params": ["3", "4"]
 }
 }
 }
}

After this action call, $chain.results.mySumAction should be set to 7.

Call REST Action
The action module for this action is "vb/action/builtin/restAction".

The call REST action is used to make a REST call in conjunction with the service definitions.

Internally, this action uses the Rest Helper, which is a public utility. Its parameters are as
follows.

Chapter 1
JSON Action Chains

1-149

Parameter Name Description

endpoint The endpoint ID as defined in the service
configuration.

uriParams A key/value pair map that will be used to override
path and query parameters as defined in the
service endpoint.

body A structured object that will be sent as the body.

requestType The content-type of the request, either 'json', 'form',
or 'url'.

Note:

Note that this is
deprecated. Instead,
use 'contentType' and
'fileContentType'.

headers An object; each property name is a header name
and value that will be sent with the request.

contentType An optional string value with an actual MIME type,
which will be used for the "content-type" header.
When used with "fileContentType", this is also used
as the type for the File blob.

responseType If set, the specified type is used to do two things at
run-time:
• Generate a fields parameter for the REST URI

to limit the attributes fetched;
• Automatically map the fetched response to the

response type (when used with the built-in vb/
BusinessObjectsTransform). This applies to
standard action chains.

See the definition for "responseType" in Service
Data Provider Properties for details on how the
assigned type is used in that context.

filePath An optional path to a file to send with the request. If
"contentType" is set, that is used as the type for the
File contents. If “contentType” is not set, a lookup
of common file extensions will be used.

filePartName Optional, used with filePath to allow override of the
default name ("file") for the FormData part.

fileContentType An optional string, used in combination with
"contentType", "multipart/form-data", and "filePath".

hookHandler Used primarily by vb/ServiceDataProvider when
externalizing data fetches. See Service Data
ProviderServiceDataProvider for details.

requestTransformOptions A map of values to pass to the corresponding
transform, as the "options" parameter.

requestTransformFunctions A map of named transform functions, called before
making the request, where the function
is: fn(configuration, options)

responseTransformFunctions A map of named transform functions, called before
making the response, where the function
is: fn(configuration, options)

Chapter 1
JSON Action Chains

1-150

Parameter Name Description

responseBodyFormat A string that allows an override of the standard
Rest behavior, which normally looks for a “content-
type” header to determine how to read and parse
the response. Possible values are "text", "json",
"blob", "arrayBuffer", "base64", "base64Url", and
"formData".

responseFields This is an "advanced" field, for use specifically with
JET Dynamic Forms. The value would typically be
a variable that is bound to the <oj-dynamic-
form> "rendered-fields" attribute. This is how a
calculated layout can tell the Rest Action call which
fields to fetch.
Note: the vb/BusinessObjectsTransform transform
is necessary to create a query from this value.

Note: When "responseFields" is provided,
"responseType" is ignored.

Using multipart/form Data

If you have set "contentType" to "multipart/form-data", the Action will interpret your request
"body" object as the form parts. Each property of the body object will be a form part. If
"filePath" is also set, it will be added as an additional part using the lookup of common file
extension types.

If "filePath" is also set, it will be added as an additional part using the sample simple file
extension type association. The name of this part will be "file", or can be specified using
"filePartName".

You may optionally override the file type by using "fileContentType" for the file part.

Defining Services

In order to use a REST API, it should be first defined.

In this example, the following endpoint is registered for the 'foo' service:

{
 "openapi": "3.0",
 "info": {
 "version": "1.1",
 "title": "ifixitfast",
 "description": "FIF",
 },
 "host": "exampledomain.com",
 "basePath": "/services/root",
 "schemes": [
 "http"
],
 "paths": {
 "/foo/{id}": {
 "get": {
 "summary": "get a specific Foo object",
 "operationId": "getBar",
 "parameters": [
 {
 "name": "id",
 "in": "path",
 "required": true,

Chapter 1
JSON Action Chains

1-151

 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "",
 "schema": {}
 }
 }
 }
 }
 }
}

You can invoke that endpoint with the following, passing in a value for the 'id' path parameter
from a page parameter:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "foo/getBar",
 "uriParams": {
 "id": "{{ $page.variables.myId }}"
 }
 }
 }
 }
}

Declaring Services in the Application

Service definitions are referenced in declarations in the application or in flows. The service
name and path are defined by a "services" section in an app-flow.json or xxx-flow.json model.
Service declarations support two syntaxes: a string (path), or an object with "path" and
"headers":

"services": {
 "fooService": "./demo-data-service.json",
 "barService": {
 "path": "./service-def.json",
 "headers": {
 "Accept": "application/vnd.oracle.openapi3+json"
 }
 }
}

Transforms

The requestTransformOptions, requestTransformFunctions, and responseTransformFunctions
can be used to modify the request and response. Some built-in service endpoints have built-in
transform functions for 'sort', 'filter', 'paginate', and 'select', so options for these transform
functions can be defined using the same name via the requestTransformOptions property. For
third party services, the options set are based on the type of transform functions supported.

When using the Rest Action the transform names have no semantic meaning, and all request
and response transforms are called.

Request and response transform functions have the following signatures.

Chapter 1
JSON Action Chains

1-152

Transform
Type

Parameters Return Value

Request
/**
 * configuration: {
 * url:
 * initConfig: {
 * method: // string with
http method
 * body: // request body, if
any
 * credentials: // string
see (fetch) Request
 * headers: // object, map
of strings
 * }
 * },
 *
 * options: provided by the
application
 *
 * context: an empty object,
which exists for the
 * lifetime of one REST call,
a set of
 * transforms share this.
 **/

mytransform(configuration,
options, context)

Configuration object; see "Parameters".

Typically, returns the same object
passed in, or a modified one.

Chapter 1
JSON Action Chains

1-153

Transform
Type

Parameters Return Value

Response
/**
 * response: { body, headers }
 *
 * context: an empty object, see
"Request transforms"
 *
 */
myresponsetransform(response,
context);

The return value is application-defined.
The value is returned as the
'transformResults' of the REST call
result:

/**
 * {
 * response: The (fetch)
Response object. Note that
the body has already
 * been read, so the
functions (ex. json())
cannot be called.
 *
 * body: the result of the
json()/text()/etc.
 *
 * transformResults: a map
of return values from
Response Transforms
 * }
 */

Example 1-29 A Simple Transform Function

One request transform function and one response transform function for a third party service or
endpoint might look like this example. Here, the transform functions are defined in the page
module and are configured on the RestAction directly. More commonly, transform functions are
defined in the service definition and do not need to be mapped on the RestAction.

"fetchIncidentList": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/getIncidents",
 "requestTransformOptions": {
 "sort": "{{ $page.variables.sortExpression }}",
 },
 "requestTransformFunctions": {
 "sort": "{{ $page.functions.sort }}"
 },
 "responseTransformFunctions": {
 "paginate": "{{ $page.functions.paginateResponse }}"
 }
 },
 "outcomes": {
 "success": "returnSuccessResponse",
 "failure": "returnFailureResponse"
 }
},

The corresponding module functions would be:

PageModule.prototype.sort = function (configuration, options) {
 /// some code here to modify 'configuration'

Chapter 1
JSON Action Chains

1-154

 return configuration;
}

PageModule.prototype.paginateResponse = function (configuration) {
 /// some code here to modify 'configuration'
 return configuration;
}

Outcomes

The Call REST action has the following outcomes.

Outcome Description Result Payload

success If the response code is within the 200 range
(or 'ok' in fetch API terms).

• status: number
• headers: Headers object
• body: the result of the call (scalar, obejct,

array, etc).

{
 status: <responseCode>,
 headers: <responseHeaders>,
 body: <result body>
}

failure If the response code is outside of the 200
range (an error response).

• message

– summary: string
• error: Error object, or null
• payload

– status: number
– headers: Headers object
– body: the result of the call (scalar,

obejct, array, etc).

{
 message: {
 summary: <rt message>
 },
 error: <Error, or null>,
 payload: {
 status: <responseCode>,
 headers:
<responseHeaders>,
 body: <result body>
 }
}

Call Variable Method Action
The action module for this action is vb/action/builtin/callVariableMethodAction. This
action is used to call a method on a variable of InstanceFactory type only. Using it with any
other variable will report an error.

Here is an example.

"callGetCapabilityChain": {
 "root": "getCapabilityOnLDPV",
 "actions": {
 "getCapabilityOnLDPV": {
 "module": "vb/action/builtin/callVariableMethodAction",
 "parameters": {
 "variable": "$page.variables.incidentsListView",
 "method": "getCapability",
 "params": [
 "sort"
]
 }

Chapter 1
JSON Action Chains

1-155

https://developer.mozilla.org/en-US/docs/Web/API/Response/headers
https://developer.mozilla.org/en-US/docs/Web/API/Response/headers

 }
 }
}

Where incidentsListView is an InstanceFactory variable defined like this:

"incidentsListLDPV": {
 "type": "ojs/ojlistdataproviderview",
 "constructorParams": [
 "{{ $page.variables.incidentsList.instance }}",
 {
 "sortCriteria": [
 {
 "attribute": "priority",
 "direction": "ascending"
 }
]
 }
],
 "persisted": "session"
}

To call a variable method, we need to pass the following parameters:

Parameter Name Description

variable The variable path

method The name of the method to call

params (optional) An array of parameters. Note that a single parameter must still
be passed as a single item array.

The outcome is either 'success' if the function call was successful, or a 'failure' outcome. An
error is thrown for configuration errors.

The result payload is equivalent to whatever the function returns (which may be undefined if
there is no return). If the function returns a promise, the result payload will be whatever is
resolved in the promise.

EditorUrl Action
This action is used to build the URL of the Visual Builder editor from an application at runtime.
It gathers multiple pieces of information and returns a URL with request parameters
representing various contextual info needed by the editor.

The action module for this action is vb/action/builtin/editorUrlAction.

Note:

This action should not be used for mobile applications.

The base URL pointing to the editor location is either passed as an argument to the action or
has to be defined in the EDITOR_URL property of the vbInitConfig global object. If this value
is not available, the action will abort with an error. Depending if the dynamicLayout request

Chapter 1
JSON Action Chains

1-156

parameter is defined, the editor will either edit the current page or the ruleset of a specific
dynamic component.

Here is an example of editorUrlAction usage:

"openEditor": {
 "variables": {
 "componentId": {
 "type": "string",
 "input": "fromCaller",
 "required": true
 }
 },
 "root": "editorUrl",
 "actions": {
 "editorUrl": {
 "module": "vb/action/builtin/editorUrlAction",
 "parameters": {
 "componentId": "{{ $variables.componentId }}"
 },
 "outcomes": {
 "success": "openEditor"
 }
 },
 "openEditor": {
 "module": "vb/action/builtin/openUrlAction",
 "parameters": {
 "url": "{{ $chain.results.editorUrl }}",
 "windowName": "VB_EDITOR"
 }
 }
 }
}

Parameter Description

editorUrl URL of the VB Extension editor (optional). If not
defined, use the value of
vbInitConfig.EDITOR_URL.

componentId The id of the component to use to retrieve the
dynamic layout. (optional)

Fire Event Action
The action module for this action is "vb/action/builtin/fireCustomEventAction".

This action allows you to fire application-defined events.

"actions": {
 "fireEvent": {
 "module": "vb/action/builtin/fireCustomEventAction",
 "parameters": {
 "name": "application:customEventToFire",
 "payload": "{{ $variables.payload }}"
 }
 }
}

Chapter 1
JSON Action Chains

1-157

Fire Data Provider Event Action
The action module for this action is "vb/action/builtin/fireDataProviderEventAction".

This causes the DataProvider specified via the 'target' parameter to dispatch an
oj.DataProvider event as a way to notify all listeners registered on that DataProvider to react to
changes to the underlying data. For example, a component using a particular
ServiceDataProvider may need to render new data because new data has been added to the
endpoint used by the ServiceDataProvider.

The action can be called either with a mutation event or a refresh but not both. Generally a
mutation event is raised when items have been added, updated, or removed from the data that
the ServiceDataProvider represents.

Note:

This action can be used with a vb/ArrayDataProvider2. It does not need to be used
with a legacy vb/ArrayDataProvider because the 'data' is already exposed as a
property on the variable. This allows page authors to directly mutate the data array
using the assignVariables action. This assignment is automatically detected by Visual
Builder, and all listeners of this change are notified, removing the need to use a
fireDataProviderEventAction. Users will be warned when the
fireDataProviderEventAction is used with a legacy ArrayDataProvider, prior to
mutating the 'data' property directly.

A mutation event can include multiple mutation operations (add, update, remove) as long as
the id values between operations do not intersect. This behavior is enforced by JET
components. For example, you cannot add a record and remove it in the same event, because
the order of operations cannot be guaranteed.

The action can return either success or failure. Success returns null, while failure returns the
error string.

Table 1-1 Parameters

Name Type Description Example

target string Target of the event, usually a variable
of type vb/SDP or vb/ADP.

target: "{{ $page.variable
s.incidentList }}"

refresh null Indicates a data provider refresh event
needs to be dispatched to the data
provider identified by the target. A null
value is specified because the refresh
event does not require a payload.

refresh: null

Chapter 1
JSON Action Chains

1-158

Table 1-1 (Cont.) Parameters

Name Type Description Example

add object The following properties may be
present in the payload:
• data: Array<Object>; the results

of the 'add' operation. Note there
can be more than one rows
added. If data alone is present in
the payload, and the target has a
keyAttributes property specified,
then the 'keys' are built for you.
The structure of the data returned
must be similar to the
responseType specified on the
target variable of type vb/
ServiceDataProvider (respecting
the "itemsPath", if any), or the
itemType specified on the vb/
ArrayDataProvider

• keys: optional Set<*>. the keys for
the rows that were added. If a
ServiceDataProvider variable is
configured with a keyAttributes
property, this can be determined
by the ServiceDataProvider itself
from the data, if data is present.

• metadata: optional Array<ItemMe
tadata<Object>>. Since the
ServiceDataProvider variable is
configured with 'keyAttributes', this
can be determined by the
ServiceDataProvider itself.

• addBeforeKeys: Optional Array of
keys for items located after the
items involved in the operation.
They are relative to the data array,
after the operation was completed
and not the original array. If null
and index are not specified, then
insert at the end.

• afterKeys: Deprecated: use
addBeforeKeys instead.
Optional Set<*>; a Set that is
the keys of items located after the
items involved in the operation. If
null and index not specified then
insert at the end.

• indexes: optional Array<number>,
identifying insertion point.

"add": {
 "data":
"{{ $chain.results.savePro
duct.body }}",
"indexes": [0]
}

An example with
ServiceDataProvider, where
"itemsPath": "items":

"updateList": {
 "module": "vb/action/
builtin/
fireDataProviderEventActio
n",
 "parameters": {
 "target":
"{{ $page.variables.person
List }}",
 "add": {
 "data": {
 "items":
"{{ [$chain.results.create
PersonPost.body] }}"
 }
 }
 }
}

remove The payload for the remove event is
similar to add above except
'afterKeys'/'addBeforeKeys' are not
present.

"remove": {
 "keys":
"{{ [$page.variables.prod
uctId] }}"
}

Chapter 1
JSON Action Chains

1-159

Table 1-1 (Cont.) Parameters

Name Type Description Example

update Same as remove. "update": {
 "data":
"{{ $page.variables.curren
tIncidentResponse }}"
}

The action can return two outcomes:

• The name of the outcome can be 'success' or 'failure'.

• The result of a failure outcome is the error string, and the result of a success outcome is
null.

Example 1-30 Example 1

Configuring a refresh event to be dispatched to a ServiceDataProvider:

(1) activityListDataProvider is the name of the
page variable that is of type vb/ServiceDataProvider
(2) refresh has a null value

"fireDataProviderRefreshEventActionChain": {
 "variables": {
 "payload": {
 "type": {
 "target": "activityListDataProvider" // (1)
 }
 }
 },
 "root": "fireEventOnDataProvider",
 "actions": {
 "fireEventOnDataProvider": {
 "module": "vb/action/builtin/fireDataProviderEventAction",
 "parameters": {
 "target": "{{ $page.variables[$variables.payload.target] }}",
 "refresh": null // (2)
 }
 }
 }
},

Example 1-31 Example 2

Configuring a remove event to be dispatched to a ServiceDataProvider:

(1) deleteProductChain deletes a product and ends up calling
another chain that fires a remove event on the ServiceDataProvider
(2) deletes the product from the backend service via a RestAction
(3) calls fireDataProviderEventAction
(4) on a variable of type vb/ServiceDataProvider
(5) with a remove payload

"variables": {
 "productListSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "keyAttributes": "id",

Chapter 1
JSON Action Chains

1-160

 "responseType": "application:productSummary[]"
 }
 },
}
"chains": {
 "deleteProductChain": { // (1)
 "variables": {
 "productId": {
 "type": "string",
 "description": "delete a single product",
 "input": "fromCaller",
 "required": true
 }
 },
 "root": "deleteProduct",
 "actions": {
 "deleteProduct": { // (2)
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/deleteProduct",
 "uriParams": {
 "productId": "{{ $page.variables.productId }}"
 }
 },
 "outcomes": {
 "success": "refreshProductList"
 }
 },
 "refreshProductList": {
 "module": "vb/action/builtin/callChainAction",
 "parameters": {
 "id": "fireDataProviderMutationEventActionChain",
 "params": {
 "payload": {
 "remove": {
 "keys": "{{ [$page.variables.productId] }}"
 }
 }
 }
 }
 }
 }
 },
 "fireDataProviderMutationEventActionChain": {
 "variables": {
 "payload": {
 "type": "application:dataProviderMutationEventDetail",
 "input": "fromCaller"
 }
 },
 "root": "fireEventOnDataProvider",
 "actions": {
 "fireEventOnDataProvider": {
 "module": "vb/action/builtin/fireDataProviderEventAction", //
(3) // (2)
 "parameters": {
 "target": "{{ $page.variables.productListSDP }}", // (4)
 "remove": "{{ $variables.payload.remove }}" // (5)
 }
 }
 }

Chapter 1
JSON Action Chains

1-161

 }
},

Fire Notification Event Action
The action module for this action is "vb/action/builtin/fireNotificationEventAction". This action is
used to fire "vbNotification" events.

"vbNotification" events are just like custom events, except that they have a defined name and a
suggested use. Notifications are generally intended to help implement a flexible message
display, but the specific use can be defined by the application. See Custom Events for details.

"actions": {
 "fireNotification": {
 "module": "vb/action/builtin/fireNotificationEventAction",
 "parameters": {
 "summary": "[[$page.variables.summary]]",
 "message": "[[$page.variables.message]]",
 "displayMode": "persist",
 "type": "info"
 }
 }
}

ForEach Action
This action lets you execute another action for each item in an array.

The ForEach action takes an 'items' and 'actionId', and adds a $current context variable for
the called action, or 'Callee', in order to access the current item. The parameters are as
follows:

Parameter Name Description

as An optional alias for $current. Used to name the context so
that it can be referenced in nested Callees.

actionId An ID in the current action chain.

items An expression that evaluates to an array.

mode "serial" (default) or "parallel".

The "mode" parameter allows for serial or parallel action. Prior to this parameter, the behavior
was "serial"; each "actionId" call was made for an item only when any previous item's
"actionId" call finished (meaning, any Promise returned from the last action resolves). Using
"parallel" means that each "actionId" call does not wait for the previous call to finish (useful for
Rest Action calls, etc).Using either mode, the ForEach action does not finish until all Promises
returned from the "actionId" chain resolve (if no Promise is returned, it is considered resolved
on return).

The following table describes additional properties injected into the available contexts that the
called action ('callee') can reference in its parameter expressions:

Parameter Name Description

$current.data The current array item.

$current.index The current array index.

Chapter 1
JSON Action Chains

1-162

Parameter Name Description

alias.data An alternate syntax for $current.data, which allows a
reference to $current from nested contexts.

alias.index An alternate syntax for $current.index, which allows a
reference to $current from nested contexts.

The outcome of the action is either:

• "success", with an array containing the return value of the last action's results; in other
words, an array of the return of the "sub-chain" ("chainlet"?) called for each item in the
loop,

• or "failure" if there is some exception/error.

Note: Except for the return value for the last action, the results of each Action are not
accessible outside of the sub-chain; for example, if the sub-chain is "actionA" → "actionB", the
result of the ForEach will contain an array of "actionB" return values, and not "actionA"'s.

ForEach "as" Alias

By default, the ForEach Action ID in the declaration will be used for the alias to $current.

Note that if an action has an "as" alias, then the value will be used as the alias instead. For
example, for as="foo", you can also create expressions that reference "foo.data" and
"foo.index".

Example 1-32 Example 1

In this example, $current.data and forEachCurrent.data are equivalent.

actions: {
 "forEach": {
 "module": "vb/action/builtin/forEachAction",
 "parameters": {
 "items": "{{ $variables.testArray }}",
 "actionId": "someAction",
 "as": "forEachCurrent",
 },
 },
 "someAction": {
 "module": "someRandomAction",
 "parameters": {
 "outcome": "{{ $current.data.foo }}",
 "payload": {
 "text": "{{ forEachCurrent.data.bar }}",
 "index": "{{ $current.index }}' }"
 }
 }
 }
}

Example 1-33 Example 2

This example demonstrates the use of “as”.

"actions": {
 "forEachOuter": {
 "label: 'the outer-most action, a ForEach',
 "module": "vb/action/builtin/forEachAction",
 "parameters": {

Chapter 1
JSON Action Chains

1-163

 "items": ["a", "b"],
 "actionId": "forEachInner"
 }
 },
 "forEachInner": {
 "label": "the inner-most action, a ForEach, called by a ForEach",
 "module": "vb/action/builtin/forEachAction",
 "as": "inner",
 "parameters": {
 "items": [1, 2],
 "actionId": "someAction",
 }
 },
 "someAction": {
 "label": "a custom action",
 "module": "countToTwoAction",
 "parameters": {
 "someParam": "{{ forEachOuter.data }}",
 "anotherParam": "{{ inner.data }}"
 }
 }
}

Get Location Action
The action module for this action is "vb/action/builtin/geolocationAction".

This action provides a declarative access to geographical location information associated with
the hosting device. This action requires the user's consent. As a best practice, it should only be
fired on a user gesture. Doing so will allow users to more easily associate the system
permission prompt for access with the action they just initiated.

Parameter Name Description

maximumAge A positive long value indicating the maximum age
in milliseconds of a possible cached position that is
acceptable to return. If set to 0, it means that the
device cannot use a cached position and must
attempt to retrieve the real current position. If set to
Infinity, the device must return a cached position
regardless of its age.

timeout A positive long value representing the maximum
length of time, in milliseconds, that the device is
allowed to take in order to return a position. The
default value is Infinity, meaning that
getCurrentPosition() won't return until the
position is available.

enableHighAccuracy A boolean that indicates the application would like
to receive the best possible results. If true, and if
the device is able to provide a more accurate
position, it will do so. This can result in slower
response times or increased power consumption. If
false (the default value), the device can save
resources by responding more quickly or using less
power. On mobile devices, enableHighAccuracy
should be set to true in order to use GPS sensors.

If the geolocation API is supported in the browser, geolocationAction returns a JSON Position
object that represents the position of the device at a given time.

Chapter 1
JSON Action Chains

1-164

Return Type Description Example

Object The Position interface represents
the position of the concerned
device at a given time. The
position, represented by a
Coordinates object, comprehends
the 2D position of the device, on
a spheroid representing the
Earth, but also its altitude and its
speed.
• Position.coords returns a

Coordinates object defining
the current location.

• Position.timestamp returns a
DOM timestamp
representing the time at
which the location was
retrieved.

Latitude and longitude can be
accessed from the Position's
coordinates as follows:

[[$chain.results.getCurrentL
ocation.coords.latitude]]

[[$chain.results.getCurrentL
ocation.coords.longitude]]

where getCurrentLocation is a
geolocationAction.

If geolocation is not supported by the browser, or a parameter with a wrong type is detected, a
failure outcome is returned. If a PositionError occurs when obtaining geolocation, a failure
outcome with a PositionError.code payload is returned. Possible PositionError.code values are:

• PositionError.PERMISSION_DENIED

• PositionError.POSITION_UNAVAILABLE

• PositionError.TIMEOUT

For every failure, a descriptive error message can be obtained from the action chain, such as
[[$chain.results.getCurrentLocation.error.message]].

An example of using the geolocation action:

"chains": {
 "getCurrentLocation": {
 "root": "geolocation1",
 "description": "",
 "actions": {
 "geolocation1": {
 "module": "vb/action/builtin/geolocationAction",
 "parameters": {
 "timeout": 50000,
 "maximumAge": "{{Infinity}}"
 },
 "outcomes": {
 "failure": "fireNotification1",
 "success": "assignVariables1"
 }
 },
 "fireNotification1": {
 "module": "vb/action/builtin/fireNotificationEventAction",
 "parameters": {
 "summary": "[[$chain.results.geolocation1.error.message]]",
 "type": "error",
 "displayMode": "persist"
 }
 },
 "assignVariables1": {
 "module": "vb/action/builtin/assignVariablesAction",

Chapter 1
JSON Action Chains

1-165

 "parameters": {
 "$page.variables.coords": {
 "source": "{{ $chain.results.geolocation1.coords }}",
 "auto": "always"
 }
 }
 }
 }
 }
},

If Action
The action module for this action is "vb/action/builtin/ifAction".

This action will evaluate an expression and return a 'true' outcome if the expression evaluates
to true, and a 'false' outcome otherwise.

Parameter Name Description

condition The expression to evaluate.

For example:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/ifAction",
 "parameters": {
 "condition": "{{ $chain.results.myRestAction.code === 404 }}"
 },
 "outcomes": {
 "true": "...",
 "false": "..."
 }
 }
 }
}

Login Action
This action launches the login process as defined in the Security Provider implementation.

The action module for this action is "vb/action/builtin/loginAction". It invokes
the handleLogin function on the Security Provider with the returnPath argument.

Parameter Name Description

returnPath The path of the page or flow to go to when login is
successful.

The behavior of the default implementation of the Security Provider handleLogin function is:

• Navigate to the login URL specified by the Security Provider configuration.

• If returnPath is not defined, use the default page of the application.

• Convert the page returnPath to a URL path and add it to the login URL.

Chapter 1
JSON Action Chains

1-166

Example 1-34 Example

An example of a chain using the loginAction:

"signInChain": {
 "root": "signInAction",
 "actions": {
 "signInAction": {
 "module": "vb/action/builtin/loginAction"
 }
 }
}

Logout Action
This action launches the logout process as defined in the Security Provider implementation.

The action module for this action is "vb/action/builtin/logoutAction". It invokes
the handleLogout function on the Security Provider with the logoutUrl argument.

Parameter Name Description

logoutUrl The URL to navigate to in order to log out.

The behavior of the default implementation of the Security Provider handleLogout function is:

• Navigate to the URL defined by the logoutURL parameter.

• If the logoutUrl parameter is not defined, uses the logout Url of the Security Provider
configuration.

• After the user is logged out, the application continues to the default page of the application.

Example 1-35 Example

An example of a chain using the logoutAction:

"logoutChain": {
 "root": "logout",
 "actions": {
 "logout": {
 "module": "vb/action/builtin/logoutAction"
 }
 }
}

Navigate Action
The action module for this action is "vb/action/builtin/navigateAction".

This action will navigate the user to a page and also pass any parameters to activate that
page. Parameters for this action are:

Parameter Name Description

page The path to the destination page. The path can be a single page ID, or a path
starting with a page ID. It can be an absolute path starting at the application or
relative to the current page. When used with 'flow' , the path cannot be absolute; it
navigates to the page relative to the flow.

flow ID of the destination flow, used to change the content of the flow displayed in the
current page. When used with 'page', navigates to the page in that flow.

Chapter 1
JSON Action Chains

1-167

Parameter Name Description

target Target of the destination flow, used with 'flow' to change the content of the parent
flow instead of the nested flow. Values are 'parent' or 'self' (default).

params A key/value pair map that will be used to pass parameters to a page (optional)

history Defines the effect on the browser history. Values are 'replace', 'skip' or 'push'. If the
value is 'replace', the current browser history entry is replaced, meaning that the
back button will not go back to it. If the value is 'skip', the URL is not
modified. (optional and default is 'push')

Page input parameters are page variables with the Input Parameter enabled. You can use the
Navigate action to set the value for these input parameters. But if a page parameter was a path
to a deeply nested page, like /shell/main/other, you'll see a list of all input parameters
from each page/flow in the path (that is, input parameters for the shell page, the main flow, as
well as other pages). Name collisions across flows/pages are not accounted for—something
you'll need to keep in mind when defining input parameters.

Here's an example of the navigate action:

"myActionChain": {
 "root": "navigate",
 "actions": {
 "navigate": {
 "module": "vb/action/builtin/navigateAction",
 "parameters": {
 "page": "myOtherPage",
 "params": {
 "id": "{{ $page.variables.myId }}"
 }
 }
 }
 }
 }

This returns the outcome 'success' if there was no error during navigation. If navigation
completed successfully, returns the action result true, otherwise false. Returns the outcome
fail with the error in the payload if there was an error.

Navigating to the same page

Navigating to the same page with different input params is considered as a valid navigation.
Since the current page is not changing, only the page input variable value will change and the
onValueChanged event will be triggered. When navigating to the same page, the events
vbBeforeEnter, vbEnter, vbBeforeExit, and vbExit are not triggered because the page never
transitioned to an enter or exit state.

The navigation is pushed into the browser history, so pressing the browser's Back button will
restore the previous values of the input variables.

Example 1-36 Page or flow descriptor with navigation fromExternal property set to
enabled

"navigation": {
 "fromExternal": "enabled"
}

Chapter 1
JSON Action Chains

1-168

Navigation with the page parameter

The 'page' parameter is the ID of a sibling page or a path starting with a sibling page's ID (like
pageId/flowId/...). It cannot be or start with a flow ID.

Example 1-37 Navigate to a sibling of the current page

To navigate to page other, a sibling of the current page:

"parameters": {
 "page": "other"
}

Example 1-38 Navigate to a sibling page and change content of the nested flow

To navigate to flow main, which is defined under the sibling page other:

"parameters": {
 "page": "other/main"
}

Example 1-39 Navigate to the root application

To navigate to the root of the application:

"parameters": {
 "page": "/"
}

Example 1-40 Navigate to the current flow's default page

To navigate to the current flow's default page:

"parameters": {
 "page": ""
}

Example 1-41 Navigate to a deeply nested page relative to the application root

To navigate to a deeply nested page relative to the root of the application:

"parameters": {
 "page": "/shell/main/other"
}

Navigation with the flow parameter

The 'flow' parameter can only be the ID of a flow defined below the current page or an empty
string.

Chapter 1
JSON Action Chains

1-169

Example 1-42 Navigate to a specific flow

To change the content of the flow displayed in the current page to the flow main:

"parameters": {
 "flow": "main"
}

Example 1-43 Navigate to a page in a specific flow

To change the content of the flow displayed in the current page to the flow main and navigate
to the page other or the flow main:

"parameters": {
 "flow": "main",
 "page": "other"
}

Example 1-44 Navigate to the current page's default flow

To navigate to the current page's default flow:

"parameters": {
 "flow": ""
}

Example 1-45 Navigate the parent flow to a specific flow

To change the parent flow to the flow main:

"parameters": {
 "target": "parent",
 "flow": "main"
}

Example 1-46 Navigate the parent flow to the default flow

To change the parent flow to the default flow:

"parameters": {
 "target": "parent",
 "flow": ""
}

Example 1-47 Navigate to any page in a sibling flow

To change the parent flow to the flow main and navigate to page other in the flow main (note
that page can be a path):

"parameters": {
 "target": "parent",
 "flow": "main",
 "page": "other"
}

Chapter 1
JSON Action Chains

1-170

Navigate Back Action
The action module for this action is "vb/action/builtin/navigateBackAction".

This action will go back one step in browser history. It has a single 'success' outcome and can
return a payload by specifying values for the input parameters.

Parameter Name Description

params An optional key/value pair map that will be used to pass
parameters to a page.

When a parameter is not specified, the original value of the input parameter on the destination
page is used. When a parameter is specified, it has precedence over fromUrl parameters.

Open URL Action
The action module for this action is "vb/action/builtin/openUrlAction".

In a web app, this action opens the specified URL in the current window or in a new window
using the window.open() API.

In a native mobile app, this action supports opening local file attachments as well as remote
resources. Allowed file types for the url parameter are as follows:

• .pdf
• .doc
• .txt
• .text
• .ppt
• .rtf
• .xls
• .mp3
• .mp4
• .csv
The very first time, the user will get an option to select which application to use for opening a
given file type. If no application is available to open such a file, this action will fail with the
appropriate error. Once the given file has been opened once, it will always be opened with the
same application across all Visual Builder installed apps on the device.

If the specified file is not local or if the file extension is not recognized, this action will use
Cordova's plugin cordova-plugin-inappbrowser to open the specified URL.

Parameter Name Description

url The url to navigate to (required)

params A key/value pair map that will be used as query
parameters to the url (optional)

hash The hash entry to append to the URL. (optional)

Chapter 1
JSON Action Chains

1-171

Parameter Name Description

history Defines the effect on the browser history. Allowed
values are 'replace' or 'push'. If the value
is 'replace', the current browser history entry is
replaced, meaning that the back button will not go
back to it. (optional, and default is 'push')

windowName A name identifying the window as defined in the
window.open() API (optional). If not defined, the
URL opens in the current window. Otherwise, refer
to the window.open() API documentation. In a
mobile app, there are 3 possible values: _self,
_blank, or _system. The default is _self. Refer
to the documentation for cordova-plugin-
inappbrowser. For local file types, this parameter
is ignored.

Once on the URL location, the browser back button will re-enter the last page if you specified a
value for the windowName parameter that opens the URL in the current window and the page
input parameters will be remembered, even if their type is 'fromCaller'.

Example 1-48 Open a new window in the browser with the given URL

To open a URL:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/openUrlAction",
 "parameters": {
 "url": "http://www.example.com",
 "params": {
 "id": "{{ $page.variables.myId }}"
 },
 "windowName": "myOtherWindow"
 }
 }
 }
}

Reset Variables Action
Use this action to reset variables to their default values defined in their variable definitions.

The action module for this action is vb/action/builtin/resetVariablesAction.

Chapter 1
JSON Action Chains

1-172

Parameter Name Description

variables An array of variables. Here is an example.

["$page.variables.var1",
"$page.variables.var2"]

Note:

If a single variable
expression is
provided instead of
an array, it will be
implicitly treated as
an array of one
variable.

Each expression in the array has to resolve to a
variable or variable property. It has to be prefixed
with one of the following:
• $application.variables
• $page.variables
• $chain.variables
Each expression should be followed by a variable
name or a path to a variable property. For example:

• $application.variables.a
• $page.variables.a.b
• $variables.a.b.c (which is shorthand

for $chain.variables.a.b.c)

Return Action
The action module for this action is "vb/action/builtin/returnAction".

This action (which should be the terminal action of a chain) allows you to control the outcome
and payload of that chain when necessary. Parameters for this action are as follows:

Parameter Name Description

payload The payload to return from this action. Useful in a
'callChainAction" to control the resulting payload
from calling that action chain. This can be an
expression.

outcome The outcome to return from this action. Useful in a
'callChainAction" to control the resulting outcome
from calling that action chain. This can be an
expression.

An example that uses the return action on a chain that makes a REST call, but returns a
simpler value:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "someRestCall": {
 "module": "vb/action/builtin/callRestAction",

Chapter 1
JSON Action Chains

1-173

 "parameters": {...},
 "outcomes": {
 "success": "myReturnAction"
 }
 }
 "myReturnAction": {
 "module": "vb/action/builtin/returnAction",
 "parameters": {
 "outcome": "success",
 "payload":
"{{ $chain.results.someRestCall.body.somewhere.inthe.payload.isa.string }}"
 }
 }
 }
}

This will return a simple string on a successful REST call if this action chain was called via the
'callChainAction'.

Run in Parallel / Fork Action
The action module for this action is "vb/action/builtin/forkAction".

This action allows multiple action chain paths to run in parallel, then wait for their responses
and produce a combined result. Normally, if you do not care what your action chains return,
you can chain multiple action chains on the event handler. If you want to wait for the result, and
take action once everything is complete, you can use this action instead.

A fork action has an arbitrary set of actions whose action sub-chains will run in parallel. A
special outcome, 'join', will be followed once all the sub-chains complete processing. The
outcome of the fork action is always 'join', and the result is a mapping from the outcome id's of
the sub-chains to their outcome/result payload.

This action takes one parameter, "actions", which is a map of an action alias, to an Action ID in
the chain. The alias is the property name used in the results of the Fork action results (an alias
allows the same Action to be called multiple times in the same Fork Action).

Example 1-49 Example

To make two REST calls, then do some assignments only after they both complete:

"myActionChains": {
 "root": "myAction",
 "actions": {
 "myForkAction": {
 "module": "vb/action/builtin/forkAction",
 "parameters": {
 "orcl": "orcl",
 "crm": "crm",
 },
 "outcomes": {
 "join": "join"
 },
 "orcl": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "stock/get-stock-quote",
 "uriParams": { "stock": "ORCL" }
 }
 }
 "crm": {
 "module": "vb/action/builtin/restAction",

Chapter 1
JSON Action Chains

1-174

 "parameters": {
 "endpoint": "stock/get-stock-quote",
 "uriParams": { "stock": "CRM" }
 }
 },
 "join": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.orcl": { "source": "{{ ''
+ $chain.results.getAllStockQuotes.orcl.result.body }}" },
 "$page.variables.crm": { "source": "{{ ''
+ $chain.results.getAllStockQuotes.crm.result.body }}" }
 }
 }
 }
}

Scan Barcode Action
Use this action in your mobile application to scan QR codes and barcodes for details such as
URLs, Wi-Fi connections, and contact information.

The action module for this action is vb/action/builtin/barcodeAction. Parameters for
this action are:

Parameter Name Description

image An image object, which can be a CanvasImageSource, Blob, ImageData, or
an element

formats Optional: A series of barcode formats to search for, for example, one or more
of the following:
['aztec', 'code_128', 'code_39', 'code_93',
'codabar', 'data_matrix', 'ean_13', 'ean_8', itf',
'pdf417', 'qr_code', 'upc_a', 'upc_e']
Note that all formats may not be supported on all platforms.

If formats is not specified, the browser will search all supported formats, so
limiting the search to a particular subset of supported formats may provide
better performance.

convertBlob Optional: A boolean that enables you to automatically convert a Blob to an
ImageBitmap when using the Scan Barcode action to process the outcome of
the Take Photo action. If true, the Blob object is converted as an
ImageBitmap before being passed to the Scan Barcode action. If false
(default), the Blob object is left as is. You'll need to manually do the
conversion, for example, by adding a function to your application and calling
the function using the callModuleFunctionAction in your action
chain.

Here's an example of the barcodeAction's metadata used to read QR code from an HTML
image element:

"fromImage": {
 "module": "vb/action/builtin/barcodeAction",
 "parameters": {
 "image": "[document.querySelector('#qrcode')]",
 "formats": "[[['qr_code']]]"
 },
 "outcomes": {
 "failure": "showError",

Chapter 1
JSON Action Chains

1-175

 "success": "openUrl"
 }
 }

Here's another example, using the barcodeAction to process the outcome of the Take Photo
action as a QR code:

"qrCodeFromFile": {
 "module": "vb/action/builtin/barcodeAction",
 "parameters": {
 "image": "[[$chain.results.takePhoto.file]]",
 "formats": "[[['qr_code']]]",
 "convertBlob": true
 },
 "outcomes": {
 "failure": "showError",
 "success": "openUrl"
 }
 }

A success outcome will include the DetectedBarcode object as a result. DetectedBarcode
(https://wicg.github.io/shape-detection-api/#detectedbarcode) has a rawValue property that
corresponds to the decoded string. A failure outcome will be returned if the browser does not
support Shape Detection API, or if a specified format is not supported.

Share Action
Use this action in mobile applications to invoke the native sharing capabilities of the host
platform and share content with other applications, such as Facebook, Twitter, Slack, SMS and
so on.

The action module for this action is "vb/action/builtin/webShareAction".

Invoke this action following a user gesture, such as a button click. Also, we recommend that
the share UI should only be shown if navigator.share is supported in the given browser, as in
this HTML code:

<oj-button disabled="[[!navigator.share]]">Share</oj-button>

Parameter Name Description

title Optional. Represents the title of the document
being shared. This value may be ignored by the
target.

text Optional. Text that forms the body of the message
being shared. Can be specified with or without a
URL.

url Optional. URL string that refers to the resource
being shared. Any URL can be shared, not just
URLs under website's current scope.

Although all parameters are individually optional, you must specify at least one parameter.

Example:

Chapter 1
JSON Action Chains

1-176

https://wicg.github.io/shape-detection-api/#detectedbarcode

"share": {
 "module": "vb/action/builtin/webShareAction",
 "parameters": {
 "text": "Check out this cool new app!",
 "title": "[[document.querySelector('h1').textContent]]",
 "url": "[[document.querySelector('link[rel=canonical]') &&
document.querySelector('link[rel=canonical]').href || window.location.href]]",
 },
 "outcomes": {
 "failure": "handleShareError"
 }
}

A success outcome is returned when the user completes a share action. A failure outcome is
returned when the browser does not support the Web Share API or a parameter error is
detected.

Switch Action
The action module for this action is "vb/action/builtin/switchAction".

This action will evaluate an expression and create an outcome with that value as the outcome
name. An outcome of "default" is used when the expression does not evaluate to a usable
string.

Parameter Name Description

caseValue This value is used as the outcome value. If null or
undefined, the outcome is "default".

possibleValues Optional. Array of strings, representing the allowed
outcomes. If caseValue evaluates to something not
in this array, the outcome is "default".

Example:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/switchAction",
 "parameters": {
 "caseValue": "{{ $chain.variables.myCase }}",
 "possibleValues": ["case1", "case2"]
 },
 "outcomes": {
 "case1": "...",
 "case2": "...",
 "default": "..."
 }
 }
 }
}

Take Photo Action
The action module for this action is vb/action/builtin/takePhotoAction. Use this
action in a mobile application to take photos or choose images from the system's image library.
The takePhotoAction is deprecated for web applications. Use the JET file upload

Chapter 1
JSON Action Chains

1-177

component, or the camera component in the Components palette which uses the JET
file upload component.

The behavior of this action depends on the type of application that you use it in:

• iOS application: Prompts user with multiple options, such as Camera, Browse, or Like

• Android application: Prompts user with options, such as Camera, Browse, or Cancel

• Progressive web apps on Android and iOS: Prompts user with multiple options, such as
Camera, Browse, or Like

Parameter Name Description

mediaType Set to image by default. The video type is also supported.

Clear the image input value from the Media Type drop-down
list if you want your mobile application to use the deprecated
Take Photo action implementation from pre-19.1.3 releases.
The pre-19.1.3 Take Photo action can only be used in
Android and iOS applications.

If mediaType is set to video:

• For iOS Native apps, options to record video using the Camera or to select video files will
be provided.

• For Android Native apps, only file selection is allowed. Recording using the Camera is not
supported.

• For PWA apps on iOS and Android, options to record video using the Camera or to select
video files will be provided.

Example 1-50 Example

The outcome of this action is a binary data object (blob) duck-typed as File. The outcome
name is file.

// To use the outcome file in images, use the URL.createObjectURL and
URL.revokeObjectURL
// methods, as in the following example
const blobURL = URL.createObjectURL(fileBlob);

// Release the BLOB after it loads.
document.getElementById("img-712450837-1").onload = function () {
 URL.revokeObjectURL(blobURL);
};

// Set the image source to the BLOB URL
document.getElementById("img-712450837-1").src = blobURL;

// To upload the selected/captured image or video, use restAction and set the
body of
// restAction to the outcome file of takePhotoAction.
"takePhoto1": {
 "module": "vb/action/builtin/takePhotoAction",
 "parameters": {
 "mediaType": "image"
 },

Chapter 1
JSON Action Chains

1-178

 "outcomes": {
 "success": "callTakePhotoSuccess",
 "failure": "callTakePhotoFailed"
 }
},
"callRestEndpoint1": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "OracleCom/postUpload",
 "body": "{{ $chain.results.takePhoto1.file }}", // <- File is set as
body of restAction
 "contentType": "image/jpeg"
 },
 "outcomes": {
 "success": "callUploadSuccess",
 "failure": "callUploadFailed"
 }
},
"callUploadFailed": {
 "module": "vb/action/builtin/callModuleFunctionAction",
 "parameters": {
 "module": "{{$page.functions}}",
 "functionName": "uploadFailed",
 "params": [
 "{{ $chain.results.callRestEndpoint1.body }}"
]
 }
},
"callUploadSuccess": {
 "module": "vb/action/builtin/callModuleFunctionAction",
 "parameters": {
 "module": "{{$page.functions}}",
 "functionName": "uploadSuccess",
 "params": [
 "{{ $chain.results.callRestEndpoint1.body }}"
]
 }
},

Transform Chart Data Action (Deprecated)
The action module for this action is vb/action/builtin/transformChartDataAction.
The transformChartDataAction is deprecated. Data should be set directly on the chart
instead.

Transforms a JSON array with a particular structure into a JSON object containing (array)
properties that JET chart component expects.

Page Authors can use this action to take the response from a REST action, turn into a format
that this action expects, and use the result returned by this action to assign to a variable bound
to the chart component.

The action supports the following parameter.

Chapter 1
JSON Action Chains

1-179

Paramet
er Name

Type Description Example

source Array<O
bject>

An array of objects, or data points,
where each data point has one of the
two structures below. The first is used
with charts that show groups of data for
one or more series, such as bar and pie.
The second is used with charts that
show three dimensions of data, such as
bubble.

// Structure 1
{
 group: '<group-name>',
 series: '<series-name>',
 value: '<value-number>'
}

// Structure 2
{
 group: '<group-name>',
 series: '<series-name>',
 valueX: '<valueX-number>',
 valueY: '<valueY-number>',
 valueZ: '<valueZ-number>'
}

// JSON for Structure 1
[{
 group: 'bob',
 series: 'Feb',
 value: 5
}, {
 group: 'joe',
 series: 'Feb',
 value: 2
}]

// JSON for Structure 2
[{
 group: 'bob',
 series: 'Feb',
 valueX: 5,
 valueY: 1,
 valueZ: 3
}, {
 group: 'joe',
 series: 'Feb',
 valueX: 6,
 valueY: 2,
 valueZ: 4
}]

The action returns a JSON object with the following properties.

Chapter 1
JSON Action Chains

1-180

Return
Type

Description Example

Object The Object has two properties. The
properties differ based on the
structure that's passed in.
• groups: {Array} of one or more

group names
• series: {Array} of objects

where each object has 2
properties: name and items
– name: {String} name of

the series
– items:

* {Array} of numbers
when the input
resembles the
Structure 1 above; or

* {Array} of objects,
when the input
resembles the second
structure above, with
each object
containing the
following properties:
* x: {Number}
* y: {Number}
* z: {Number}

// Return Value for Structure 1
{
 groups: ['bob', 'joe'],
 series: [{
 name: 'Feb',
 items: [5, 2]
 }]
}

// Return Value for Structure 2
{
 groups: ['bob', 'joe'],
 series: [{
 name: 'Feb',
 items: [{
 x: 5,
 y: 1,
 z: 3
 }, {
 x: 6,
 y: 2,
 z: 4
 }]
 }]

}

The example below shows a chain called "fetchTechnicianStatsChain" with four actions
chained together to take a REST response and turn the JSON response into a form that can
be used by a Chart UI component. The four actions are:

1. Use a Call REST endpoint action to fetch technician stats.

2. Use an Assign Variables action to map the response from (1) to a form that the Transform
Chart Data action expects. If the REST response is so deeply nested that a simple
transformation of source to target using an Assign Variables action is not possible, page
authors can use a page function (using a Call Function action) to transform the data into a
form that the Transform Chart Data action expects.

3. Use a Transform Chart Data action to take the response from (2) and turn it into a form that
a Chart component can consume.

4. Use an Assign Variables action to store the return value from (3) in a page variable.

"actions": {
 "fetchTechnicianStatsChain": {
 "variables": {
 "flattenedArray": {

Chapter 1
JSON Action Chains

1-181

 "type": [
 {
 "group": "string",
 "series": "string",
 "value": "string"
 }
],
 "description": "array of data points",
 "input": "none"
 }
 },
 "root": "fetchTechnicianStats",
 "actions": {
 "fetchTechnicianStats": { // (1)
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/getTechnicianStats",
 "uriParams": {
 "technician": "{{ $page.variables.technician }}"
 }
 },
 "outcomes": {
 "success": "flattenDataForBar"
 }
 },
 "flattenDataForBar": { // (2)
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$chain.variables.flattenedArray": {
 "source":
"{{ $chain.results.fetchTechnicianStats.body.metrics }}",
 "reset": "toDefault",
 "mapping": {
 "$target.group": "$source.technician",
 "$target.series": "$source.month",
 "$target.value": "$source.incidentCount"
 }
 }
 },
 "outcomes": {
 "success": "transformToBarChartData"
 }
 },
 "transformToBarChartData": { // (3)
 "module": "vb/action/builtin/transformChartDataAction",
 "parameters": {
 "source": "{{ $chain.variables.flattenedArray }}"
 },
 "outcomes": {
 "success": "assignToPageVariable"
 }
 },
 "assignToPageVariable": { // (4)
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.incidentChartDS": {
 "source": "{{ $chain.results.transformToBarChartData }}",
 "reset": "toDefault"
 }
 }
 }
 }

Chapter 1
JSON Action Chains

1-182

 }
}

Web Share Action
The action module for this action is "vb/action/builtin/webShareAction".

The Web Share action allows mobile and web applications to share content with other
applications, such as Facebook, Twitter, Slack, and SMS, by invoking the native sharing
capabilities of the host platform.

Note:

Web apps require the web browser running the app to support the Web Share action.
Currently, not all browsers support this native feature.

This action should only be invoked following a user gesture (such as a button click). It is a
good idea to only enable share UI based of feature detection:

<oj-button disabled="[[!navigator.share]]">Share</oj-button>

Web Share action parameters correspond to Web Share API options:

The action supports the following parameters.

Parameter Name Description

title Title of the document being shared. May be ignored by the handler/target.

text An arbitrary text that forms the body of the message being shared.

url A URL string referring to a resource being shared.

All parameters are individually optional, but at least one parameter has to be specified. Any url
can be shared, not just urls under website's current scope. Text can be shared with or without a
url.

The example below illustrates an action's parameters one would specify to share the current
page's title and url:

"share": {
 "module": "vb/action/builtin/webShareAction",
 "parameters": {
 "text": "Check out this cool new app!",
 "title": "[[document.querySelector('h1').textContent]]",
 "url": "[[document.querySelector('link[rel=canonical]') &&
document.querySelector('link[rel=canonical]').href ||
window.location.href]]", },
 "outcomes": {
 "failure": "handleShareError"
 }
}

A success outcome is returned once user has completed a share action. A failure outcome is
returned when browser does not support Web Share API or a parameter error is detected.

Chapter 1
JSON Action Chains

1-183

https://developer.mozilla.org/en-US/docs/Web/API/Navigator/share

Action Chain Properties
An action chain has two properties: the set of variables it can use, and the root action.

Action chains are defined under the 'chains' property of the page model. An action chain
always has a root action. This root action will always be called when the action chain is
invoked.

This action chain will call the 'myAction' action:

"chains": {
 "myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "label": "My action!",
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "key": "value"
 }
 }
 }
 }
}

Each action has an outcome. Usually, an action supports the "success" or "error" outcomes.
Some actions may also support other outcomes. Actions can be chained by connecting an
additional action to a previous action's outcome.

To perform another action if the previous action succeeds, and handle error cases if it does not
succeed, you could do the following:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "key": "value"
 },
 "outcomes": {
 "success": "mySuccessAction",
 "error": "myErrorAction"
 }
 },
 "mySuccessAction": {
 "module": "vb/action/builtin/someAction"
 },
 "myErrorAction": {
 "module": "vb/action/builtin/someAction"
 }
 }
}

Variable References in Action Chains
Variables can be referenced for the parameter values of an action.

The runtime will automatically evaluate parameter values as expressions. Similar to the default
value syntax of variables, variables can be referenced directly into an action parameter's value:

Chapter 1
JSON Action Chains

1-184

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "label": "some action",
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "key": "{{ $page.variables.myVariable }}"
 }
 }
 }
}

Simple JavaScript code can be added to the values:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "label": "some action",
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "key": "{{ $page.variables.myVariable === 'yellow' }}"
 }
 }
 }
}

Non-expressions are entered in JSON:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "myString": "somestaticvalue",
 "myNumber": 1
 "myBoolean": true
 }
 }
 }
}

Map and array values are also expressed in JSON:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "key": {
 "key1": "static value",
 "key2": "{{ $page.variables.something }}"
 }
 }
 }
 }
}

Chapter 1
JSON Action Chains

1-185

Action Chain Variables
An action chain can also have variables. These are defined and used in the same way as page
parameters.

Unlike page parameters, input variables only support the 'fromCaller' or 'none' type. Input
variables must be specified by event handlers calling into action chains.

"myActionChain": {
 "variables": {
 "id": {
 "type": "string",
 "description": "the ID of something to update",
 "input": "fromCaller",
 "required": true
 }
 },
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction"
 }
 }
}

Action chain variables can be assigned to or read from using the
syntax $chain.variables.varName and are only accessible within an action chain. They can
also be referenced by the shorthand $variables.varName within the chain.

Action Results
Actions in an action chain can return a result that can be used by subsequent actions in the
chain.

After an action implementation is run, it may return a result. The type of these results are
specific to an implementation of an action. This result will be stored in a special
variable, $chain.results. The results of a previous action are contained
within $chain.results.<actionId>.

Example 1-51 Accessing a Previous Action`s Results

To access a previous action's results:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction",
 "outcomes": {
 "success": "someOtherAction"
 }
 },
 "someOtherAction": {
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "myKey": "{{ $chain.results.myAction }}"

Chapter 1
JSON Action Chains

1-186

 }
 }
 }
}

Example 1-52 Action Chain Return Type and Outcomes

You can specify a return type and an array of outcomes. If a return type is specified, the result
of the final outcome will be auto-mapped into the return type. If "outcomes" is specified, the
name of the final outcome must match one of the possible outcomes. Otherwise, the action
chain will fail. Here is an example:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction"
 }
 },
 "returnType": "application:someType",
 "outcomes": ["success", "failure"]
}

Action "failure" Outcomes

Actions return a standard object shape when returning a "failure" outcome. The result will be
an object with the following properties:

• "message": may contain one optional "summary" string property

• "error": may contain an Error object

• "payload": may contain any Action-specific additional information about the failure

Flow
A flow is a way to organize your application in independent and shareable units of work that
are building blocks for a single-page application.

The structure of a flow is the same as the structure of an application. A flow has a descriptor
(<name>-flow.json) and a functions module file (<name>-flow.js), and contains pages and
possibly other flows. The id of a flow is the name of the folder that contain the flow structure.

The following example shows an application that contains two flows: main and other.

app-flow.[json|js]
 pages/
 app-page.[json|js|html]
 flows/
 main/
 main-flow.[json|js]
 pages/
 start-page.[json|js|html]
 flows/
 ...
 other/
 other-flow.[json|js]
 pages/
 start-page.[json|js|html]

Chapter 1
Flow

1-187

Flow Properties
A flow can define a default page, variables, chains, functions, listeners and types.

Here is an example of the descriptor for the flow other:

{
 "flowModelVersion": "18.1.5",
 "id": "other",
 "description": "Flow other",
 "defaultPage": "start",
 "types": {}
 "variables": {},
 "chains": {},
 "eventListeners": {}
}

All pages of a flow can access variables, chains, functions, listeners and types defined in the
flow. Defining these elements in the flow allows you to share definition and objects that are
used across multiple pages in the flow.

Property Description

defaultPage The defaultPage property is used to define which
page should be the current page of a flow, when
the default page is not specified by the navigation.

In the example application above with the flows
main and other, the path app/other will navigate
to the flow other, and display the flow's default
page.

In the descriptor for the flow other above, the
defaultPage property defines start as the flow's
default page.

types Pages can address a flow type using the
"flow:typeName" syntax, where typeName is a
type defined in the flow.

variables Flow variables can be addressed in any expression
in the page using $flow.

chains In a callChainAction, pages can address a flow
chain using the "flow:chainId" syntax.

Using Flows to Create Single-Page Applications
You use the <oj-vb-content> component to nest flows into a page. By nesting a flow into a
page, the page can display multiple pages within a single page in your application (single-page
application). The <oj-vb-content> component has the same API as the JET <oj-module>
element. The following example shows how to nest a flow in a page:

<oj-vb-content config="[[vbRouterFlow]]"></oj-vb-content>

The content of the current page of the current flow is displayed in the page at the location of
this component tag in the view (HTML). The currentFlow and currentPage are managed by

Chapter 1
Flow

1-188

Visual Builder using a hierarchy of routers. When navigating in the application, the router
changes the value of the currentPage of a flow, or the currentFlow of a page, and this
determines the content of the oj-vb-content element. The router also manages the URL to
reflect the currentFlow and the currentPage.

For example, when navigating using the path app/flow-a, the current flow for page app is
flow-a, and the content of the default page of flow-a is inserted at the location of the oj-vb-
content tag.

Nesting content at a specific locations in the page allows you to build page templates or shells.

Note:

A flow should only be nested in page. Nesting a flow in a dialog will not work properly.

Using the page routerFlow property

When the navigation does not specify which flow to use, the routerFlow property of the page
descriptor is used to determine the default router flow.

In the following example, when navigating to page app, the flow main will be used as the
current flow. It will be the flow displayed in page app when no flow is specified in the
navigation. The following example shows the routerFlow property in a page descriptor:

{
 "pageModelVersion": "18.1.5",
 "description": "Application Page",
 "routerFlow": "main",
 "variables": {
 ...
}

Represent the Flow State in the URL
There are two strategies for the router to represent the state in the URL: query and path.

• query (default): the current page path is stored in the URL using a query parameter like
this:

http://myApp/?page=app&app=main

• path: the current page path is stored in the URL using a path segment like this:

http://myApp/vp/app/main

Notice the marker vp added to the URL. It is needed in order for Visual Builder to recognize
where the path to the current page starts.

To change the strategy, use the routerStrategy property in app-flow.json:

{
 "applicationModelVersion": "18.1.5",
 "id": "flowDemo",

Chapter 1
Flow

1-189

 ...
 "routerStrategy": "path"
}

When using the path router strategy, the server where the application is deployed needs to be
able to handle these URLs in a special way to ensure that browser refreshes and bookmarks
work properly.

Navigating Between Flows and Pages
Flows and pages are loaded on demand at the time the application navigates to them. All
pages located in the pages/ folder are contained by this flow and it is possible to navigate from
one page to an other page using the navigateToPageAction using the path <pageId>. It is also
possible to navigate between flows within the same page, in this case the path to use is
<pageId>/<flowId>, or just <flowId>.

Flow Lifecycle
While navigating between flows, for example from flow-a to flow-b, the current flow for a page
changes from flow-a to flow-b. When this change happens, two events notifying the change
are dispatched: 1) flow-b is entered, then 2) flow-a is exited.

The following table describes the two flow events:

Name Description

vbEnter Dispatched when entering a flow after all the flow
scoped variables have been added and initialized.

vbExit Dispatched when exiting a flow before disposing of
flow resources.

Load Flow Resources
Two built-in variables are used to address local resources (for example,
images): $application.path and $flow.path.

Each variable is used to build a path relative to the location of the flow:

<!-- Display an image located in the resource folder in this application -->

<!-- Display an image located in the resource folder in this flow -->

Use Flows Not in the Flows Folder
A flow's id is the folder name in the flows folder. For example, if the flows folder contains a
folder named main, the flow's id would be main. If you want to use a flow located in another
location, you can use the flows property in the flow descriptor. The flows property is a map of
paths keyed by the id given to the flow:

app-flow.json
{

Chapter 1
Flow

1-190

 "id": "Main Application"
 ...
 "flows": {
 "crm": "some-nested-path/flows/crm",
 "flow2": "/flows/flow2",
 "flow3": "http://host:port/special/location/of/myFlow"
 }
}

The path is relative to the current flow location. If the path starts with /, the path is absolute,
meaning that it is relative to the application directory (the directory where app-flow.json is
located). You can also use a URL for the path. When the path is a URL, the flow will be loaded
from the URL.

Shell Flow
A shell flow is a special flow with only one page. The purpose of a shell flow is to define the
shell page of an application, or of another flow. To make an application use a shell flow, you
enter the id of the shell flow for the defaultPage property of the application. When you do this,
the application will use the default page of the shell flow as the default page of the application:

{
 "applicationModelVersion": "18.2.3",
 "id": "flowDemo",
 "description": "An Application to demonstrate the use of flow",
 "defaultPage": "shellFlowId",
 ...
}

When using a flow for the default page, the flow id is not included in the URL. The flow id is
hidden from the URL and from the path used for navigation.

Note:

Shell flows have the following limitations:

• Only one page can be defined in a shell flow.

• The page cannot make reference to artifacts such as variables or types defined
in the shell flow metadata.

Defining the default flow of a shell

The default flow of a shell page is defined using the routerFlow property. The default flow can
be defined externally by specifying a path in the defaultPage entry. This is so that the same
shell flow can be re-used for multiple applications:

{
 "applicationModelVersion": "18.2.3",
 "id": "flowDemo",
 "description": "An Application to demonstrate the use of flow",
 "defaultPage": "shellFlow/crmFlow",

Chapter 1
Flow

1-191

 ...
}

In the example above, the flow with the id "crmFlow" will be used as the default flow of the
shell page.

Fragments
Fragments encapsulate a reusable piece of UI, model and code (HTML, JSON and JavaScript)
that can be shared across pages in an application.

Fragments can be added and reused in pages and other fragments in applications, extensions
and app UIs. A fragment can also be used multiple times in the same page, for example,
providing different sets of input parameters to the same fragment, as shown here:

<oj-vb-fragment id="editProd1" name="edit-product">
 <oj-vb-fragment-param name="products"
 value="[[$page.variables.productListDynamic]]"></oj-vb-
fragment-param>
</oj-vb-fragment>

<oj-vb-fragment id="editProd2" name="edit-product">
 <oj-vb-fragment-param name="products"
 value="[[$page.variables.productListStatic]]"></oj-vb-fragment-
param>
</oj-vb-fragment>

A fragment can also be 'nested' in another fragment. However, when looking at the structure of
applications and extensions, every fragment in a page, no matter how deeply it's 'nested', is an
independent unit that encapsulates its state and 'logic, and is not 'aware' of its container.

Define a Fragment Component
To include a fragment in a page or other component, you use the <oj-vb-fragment>
component, specifying the name of the fragment.

A fragment with the name "incident-list-fragment" could be written like this:

<oj-vb-fragment id="incLF1" name="incident-list-fragment"></oj-vb-fragment>

When the component above is rendered, it starts loading the fragment identified by the 'name'.
The fragment instance created for the page is identified by the 'id'. The component can have
the following properties:

Chapter 1
Fragments

1-192

Property Name Description

id Optional.
A <string> unique to the container where the fragment is included.

A fragment id must be unique, whether it's generated automatically or set by the
author. This id is accessible within the fragment scope
using $fragment.info.id. This can be used within expressions set on the 'id'
property of components, and even the id of a "nested" fragment.

Note:

The id property need not be set on the oj-vb-fragment
component. When an id is not provided a system
generated unique id will be used. Though unique for
the container consuming the fragment, this id is not
considered "stable" and cannot be used for persisting
variable values. If you want to persist variable values
in a fragment, you'll need to provide an id, ensuring
that it is both unique and stable, particularly when
fragments are used inside of stamping components.

name Required.
A <string> name of fragment to load. The component loads the physical fragment
artifacts using the 'name' property. This needs to be statically defined and cannot
be an expression.

bridge Required within a VDOM. Also works within a component.
This property allows the fragment to discover the current context and establish a
bridge between the component and Visual Builder eco-system. It's value is always
"vbBridge".

The example below shows the 'bridge' property configured on an oj-vb-fragment.
The same configuration can be used with oj-dynamic-form component as well.

<oj-vb-fragment id="incLL" name="incidentsListLayout"
bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="userId"
value="[[$page.variables.technician.id
]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="filterCriterion"
value="[[$page.variables.filterCriterion
]]"></oj-vb-fragment-param>
 </oj-vb-fragment>

- oj-vb-fragment-
param (sub-
component)

For each input parameter a fragment defines via the 'input' property on a variable,
this sub-component can be used to provide the values for the input parameters.
Parameters marked as "required" in the fragment must be provided.

• name: string, name of param

• value: any, value of the input param

A fragment model (the descriptor JSON) can tag its variables with these properties
to declare the input parameters (see Define Fragment Input Parameters below):

• input ("fromCaller"),

• required, that can be true (if the caller has to pass a value) or false, and

• writeback, that can be set to true to allow the fragment variable value to be
automatically written back to the input parameter variable.

Chapter 1
Fragments

1-193

Example 1-53 Include fragments in a page or another fragment

In this example of fragments in a page, the tab bar (oj-tab-bar) selection drives the fragment
that is to be loaded.

incidentsShell-page.html Notes

1 <oj-tab-bar
selection="{{ $variables.incidentsLayout }}">
2
3 <li id="list">List
4 <li id="map">Map
5 <li id="schedule">Schedule/li>
6
7 </oj-tab-bar>
8 <oj-switcher
value="[[$variables.incidentsLayout]]">
9 <div slot="list">
10 <oj-vb-fragment id="incLL"
name="incidentsListLayout"></oj-vb-fragment>
11 </div>
12 <oj-defer slot="map">
13 <oj-vb-fragment id="incML"
name="incidentsMapLayout"></oj-vb-fragment>
14 </oj-defer>
15 <oj-defer slot="schedule">
16 <oj-vb-fragment id="incSL"
name="incidentsScheduleLayout"></oj-vb-fragment>
17 </oj-defer>
18 </oj-switcher>

Line 10, 13, 16: <oj-vb-
fragment> uses the 'name'
property to specify a static
fragment to load. The 'id'
property is expected to be
unique to the current page.

Lines 13, 16: component is
wrapped in an oj-defer (see
Deferred Rendering of a
Fragment).

Fragment Scopes and Namespaces
As a fragment is designed to be scope-agnostic, it is unaware of the parent container scope
and associated properties. This means that the fragment cannot access its parent's scopes
(such as $page or $flow), call its chains, and so on. However, a fragment can access some
scopes: $global (unified app in extensions), $application (for the older style of apps),
and $extension (in extensions).

Within a fragment, there is a new local $fragment scope can be used within the fragment (this
can be particularly useful when writing expressions):

• $variables / $fragment.variables can be used to refer to the local variable in a
fragment. $fragment.variables is needed for action chains.

Namespaces

Namespaces are used when referencing types in other scopes. The namespaces are similar to
the scopes: global: / application: (for base apps), and fragment: for local scope.

Chapter 1
Fragments

1-194

Define Fragment Input Parameters
A fragment can define parameters that are required or optional. Callers must provide a value
for each of the required input parameters, and may provide values for optional ones.
Additionally, parameters that are marked for 'writeback' will cause the fragment to automatically
writeback the changed/updated value in its variable to the source variable, that was set via the
<oj-vb-fragment-param> tag. For details, see Write Back a Fragment Variable Value to the
Parent Container.

Input parameters can be reapplied on a fragment after the fragment is loaded. When input
parameter values change "mid-cycle", the fragment receives this value automatically, so the
fragment can react to the change, as determined by the fragment author. This can be useful,
for example, when the input parameter is an expression involving a page variable, and the
variable's value changes.

Once a fragment is loaded using input parameters provided by the outer page, if the page
variable's value changes, the updated value is automatically picked up by the fragment
parameters. This means that the 'live' behavior of variables, where the value change of a 'live'
variable triggers changes in other variables, will also automatically update the input parameters
that use the same variable.

The following special properties can be applied to fragment variables to determine behavior:

Property Description

"input": "fromCaller" Identifies the variable or constant as a fragment
input parameter, which the caller of a fragment can
provide.

"required": true Identifies that the variable must be provided by the
caller.

"writeback": true Identifies that the variable's value will be
automatically written back to the input parameter
variable.

Example 1-54 Fragment where the userId and fragFilterCriterion variables are set as
required and fromCaller.

The incidentsSDP variable can use the input param values to initialize its state.

A page that loads a fragment can provide the parameters like this:

incidentShell-page

<oj-vb-fragment id="incLL" name="incidentsListLayout">

 <oj-vb-fragment-param name="userId"
value="[[$page.variables.technician.id]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="fragFilterCriterion"
value="[[$page.variables.filterCriterion]]"></oj-vb-fragment-param>

</oj-vb-fragment>

The page JSON defines the variables above like this:

Chapter 1
Fragments

1-195

incidentsShell-page

"technician": {
 "type": "object",
 "defaultValue": {
 "id": "rosie",
 "name": "Rosie Riveter"
 }
},
"filterCriterion": {
 "type": "object",
 "defaultValue": {
 "op": "$ne",
 "attribute": "status",
 "value": "closed"
 }
}

In the 'incidentShell-page', the page variables userId and filterCriterion are passed in as
parameters to the fragment ("incidentsListLayout-fragment"). In this example, when the
filterCriterion page variable changes, it updates the fragment parameters, which in this
example is the fragFilterCriterion fragment variable. As a local SDP variable on the
fragment references fragFilterCriterion, a re-fetch is triggered by the SDP using the new
criteria.

incidentsListLayout-fragment

"userId": {
 "type": "string",
 "input": "fromCaller",
 "required": true
},
"fragFilterCriterion": {
 "type": "object",
 "input": "fromCaller",
 "required": true
},
"incidentsSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "ifixitfast-service/getIncidents",
 "keyAttributes": "id",
 "uriParameters": {
 "technician": "{{ $variables.userId }}"
 },
 "filterCriterion": "{{ $variables.fragFilterCriterion }}"
 }
}

Example 1-55 Fragment where a list-view of incidents is bound to an SDP variable

In this example, the fragment defines an SDP variable as required by the caller using the
(input: fromCaller) property.

Chapter 1
Fragments

1-196

Note:

Though this is unusual, the caller can pass a reference to the SDP variable defined
by the outer page to a fragment. The reference the fragment variable holds can be
used only for the purposes of rendering. Using an action that mutates the state of the
variable (such as assignVariables or resetVariables) is not allowed, and will throw
errors. Use with extreme caution.

incidentsListLayout-fragment

{
 "variables": {
 "incidentsSDP": {
 "type": "vb/ServiceDataProvider",
 "input": "fromCaller",
 "required": true
 }
 }
}

The page that loads the fragment above will provide the input parameters using the oj-vb-
fragment-param sub-component:

incidentsShell-page

<oj-vb-fragment id="incLL" name="incidentsListLayout">

 <oj-vb-fragment-param name="incidentsSDP"
value="[[$page.variables.incidentsSDP]]">
 </oj-vb-fragment-param>

 </oj-vb-fragment>

Write Back a Fragment Variable Value to the Parent Container
A fragment variable whose value is provided by the caller ("input": "fromCaller" property),
can additionally be marked as supporting "writeback" ("writeback":true). This allows the
fragment variable value to be automatically set / written back to the input parameter variable of
the page. You can set the writeback property on fragment variables with the following types:
primitive, array and object. If an input parameter value is already passed in by reference (for
example, an SDP or $dynamicLayoutContext), the fragment variable receiving the reference
doesn't need to be configured with the writeback property.

Example 1-56 Define the 'incidentId' interface variable in a fragment

In this example, a page uses the fragment below to provide a value for the variable via
parameter.

"incidentId": {
 "type": "string",
 "description": "extensions can update the value",
 "input": "fromCaller",

Chapter 1
Fragments

1-197

 "writeback": true
}

When the fragment variable value changes, the value is automatically written back into the
outer variable selectedIncidentId.

<oj-vb-fragment id="incs-list1" name="incidents-list">
 <oj-vb-fragment-param name="incidentId"
 value="{{ $page.variables.selectedIncidentId }}"></oj-vb-fragment-param>
</oj-vb-fragment>

Note:

The expression is wrapped in {{ }}. This is required for the web component
framework to enable writeback.

As an alternative to the configuration above, the other recommended way for a page to be
notified of updates to a fragment variable is for the fragment to fire a custom event (with the
propagationBehavior property set to "container") that 'emits' the event to the page, which has
a listener to handle the event. See Custom Fragment Events for details.

Deferred Rendering of a Fragment
The default behavior of a fragment is for it to load/run immediately when it's encountered by
the page rendering it. By wrapping a fragment in the <oj-defer> component, you can control
when a fragment loads and renders in a page. The fragment can be hidden until loaded by a
trigger. The trigger to load a fragment can either be a configurable or it can be determined by
the framework. Configurable triggers that can be used to load a fragment include button clicks,
tab selection, dialog open, and oj-bind-if components. In this case, UI events or the application
state drives the fragment that is loaded.

Deferring the rendering of a fragment can improve performance, so that, for example, an action
chain for a hidden fragment is delayed until the fragment is actually loaded. For examples on
using oj-defer, see Deferred Rendering in the JET Developer Cookbook.

For examples of using <oj-defer> with <oj-vb-fragment>, see Fragment Patterns below.

Fragment Events
Fragments support several lifecycle events defined by the system. In addition, fragments also
support custom events that can be handled by listeners defined in the fragment, and further
propagated to the listener bound on the fragment container.

Lifecycle Events

When the lifecycle event is raised, the framework calls the event listener with the name of the
event. Fragments can fire these events when the fragment artifacts load, when the fragment
state is activated, or when the fragment is disposed. Other lifecycle events are currently not
supported by fragments.

Chapter 1
Fragments

1-198

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=deferredRendering&demo=deferredCollapsible

Table 1-2 Fragment Event Parameters

Name Description Returns

vbEnter Dispatched when the fragment
state is activated. Variable scopes
available:

• $application: All application
variables

• $extension: All extension
variables

• $fragment: All local variables
in the fragment

None

vbExit Dispatched when the fragment is
disposed (generally by navigating
away from a page or the page is
disposed).

None

Framework Events

vbNotificationEvent is an example of a framework event that raises a notification for further
processing by a parent container and to display the notification message. This is a special
event that is automatically bubbled up to the parent container(s) without any need for binding
the event on the fragment component. Other specialized types of notification events, such as
SDP vbDataProviderNotification events, also have the same behavior.

Component Events

The behavior and usage of component events in fragments is similar to that in other
components. See Component Events.

Custom Events

Custom events can be declared in fragments under the "events" property. There are two types
of custom events in fragments:

Event Type Description

Events that can be handled by the same fragment
and its extensions

This type of event is similar to other Visual Builder
custom events, and is handled similarly. For details,
see Custom Events.

Events that 'emit' a custom event to the fragment
container

This type is expressly used for the purpose of
propagating to the outer container component (the
oj-vb-fragment component). For details, see below.

Event that 'emits' a custom event to the fragment container

By setting the "propagationBehavior" property of a custom event to "container", the event will
'emit to the container" when fired, allowing the fragment's parent container (oj-vb-fragment) to
listen to the custom event.

For example, if you want to use a fragment event to call an action chain to perform some
business logic, or to save data to a REST backend, you would fire a custom event that 'emits
to the container' so that a listener on the parent can handle the event and trigger the action
chain.

Chapter 1
Fragments

1-199

Property Description

propagationBehavior When this property is set to container, the
fragment component (oj-vb-fragment) can listen
to the fragment event, but fragment listeners cannot
listen to the event.

When this property is not set, the default value is
"self", implying the event can only be handled by
the fragment listeners.

Note:

This property is only
supported by
fragment events.

Example 1-57 A fragment event that is listenable by the parent container

The following code describes a "saveincident" event, where the propagationBehavior is set to
"container" .

{
 "description": "An incident form fragment",
 "title": "Incidents Form Fragment",
 "events": {
 "saveincident": {
 "description": "fired when an incident has to be saved. The mutated
incident data provided in payload",
 "propagationBehavior": "container",
 "payloadType": {
 "data": {
 "id": "string",
 "problem": "string",
 "priority": "string",
 "status": "string",
 "customer": {
 "id": "string"
 }
 }
 }
 }
 }
...
}

This allows the oj-vb-fragment component that loads the fragment to bind an event listener to
the same event, as shown below:

<oj-vb-fragment name="incident-form"
id="[[$page.functions.fragmentUniqueId]]" bridge="[[vbBridge]]"
 on-saveincident="[[$page.listeners.saveIncident]]">

Chapter 1
Fragments

1-200

 <oj-vb-fragment-param name="currentIncident"
 value="[[$page.variables.currentIncident]]"></oj-vb-fragment-param>
</oj-vb-fragment>

WARNING:

Note the 'on-saveincident' attribute. It is important that the event name be lowercase
or camelCase with no hyphens as defined by Web Component DOM event naming
conventions.

Auto-wire custom events from fragment to container

When a custom fragment event can be emitted to its parent container (with the
"propagationBehavior" property set to "container"), the custom fragment event can be
automatically wired to an event listener on its immediate parent container and/or its extension.
To do this, a fragment author can add the autoWire property to the event that is to be
propagated to the parent container.

For a custom fragment event to be auto-wired to a listener on the parent container, the
autoWire property must be added:

• On the fragment event to specify the name of the event listener it expects the parent
container to have (for example, "autoWire": "performSaveIncident")

• On the parent event listener to enable auto-wiring and further clarify its behavior.

The autoWire event listener property can be set to:

– none (default): Disables automatic wiring of an event listener.

– full: Setting autoWire to full on the fragment's base parent container event listener
allows this event listener to be invoked when the auto-wired event is fired from a
fragment that is part of the extended parent container. For example, if an auto-wired
event listener is defined on a page, and the page is extended and in turn contains a
fragment, when the fragment fires an auto-wired event, the base page's event listener
is invoked. If both the fragment's base parent container and extended parent container
have an auto-wired event listener defined, both are invoked.

– selfOnly: Setting autoWire to selfOnly limits the event listener invocation to the one
defined on the immediate parent alone.

Example 1-58 Auto-wiring a fragment event and eventListener

The following code shows how a fragment declares an auto-wired events:

{
 "description": "A incident form fragment",
 "title": "Incidents Form Fragment",
 "interface": {
 "events": {
 "saveincident": {
 "description": "fired when an incident has to be saved. The mutated
incident data provided in payload",
 "autoWire": "performSaveIncident",
 "propagationBehavior": "container",
 "payloadType": {
 "data": {

Chapter 1
Fragments

1-201

 "id": "string",
 "problem": "string",
 "priority": "string",
 "status": "string",
 "customer": {
 "id": "string"
 }
 }
 }
 }
 }
 },
 "chains": {
 "fireSaveIncidentChain": {
 "variables": {
 "incidentPayload": {
 "type": "fragment:incidentEventPayload",
 "description": "the payload of the incident data to send with
event",
 "input": "fromCaller",
 "required": true
 }
 },
 "root": "fireCustomSaveIncidentEvent",
 "actions": {
 "fireCustomSaveIncidentEvent": {
 "module": "vb/action/builtin/fireCustomEventAction",
 "parameters": {
 "name": "saveincident",
 "payload": {
 "data": "{{ $variables.incidentPayload }}"
 }
 }
 }
 }
 }
 },
 "eventListeners": {
 "fireSaveIncident": {
 "chains": [
 {
 "chainId": "fireSaveIncidentChain",
 "parameters": {
 "incidentPayload": {
 "id": "{{ $variables.currentIncident.id }}",
 "problem": "{{ $variables.currentIncident.problem }}",
 "priority": "{{ $variables.currentIncident.priority }}",
 "status": "{{ $variables.currentIncident.status }}",
 "customer": {
 "id": "{{ $variables.currentIncident.customer.id }}"
 }
 }
 }
 }
]
 }

Chapter 1
Fragments

1-202

 },
...
}

Here's the code for page-x, an extended parent container which uses the above fragment:

<oj-vb-fragment name="incident-
form" :id="[[$page.functions.fragmentUniqueId]]">
 <oj-vb-fragment-param name="currentIncident"
 value="[[$page.variables.currentIncident]]"></oj-vb-fragment-param>
</oj-vb-fragment>

Here's the code for page, the base parent container of the above fragment that defines the
auto-wired listener:

...
"eventListeners": {
 "performSaveIncident": {
 "autoWire": "full",
 "chains": [
 {
 "chainId": "performSaveIncidentChain",
 "parameters": {...}
 }
]
 }
}
...

In this example, when the fragment fires the saveincident auto-wired event, the
performSaveIncident auto-wired event listener from the base page container is invoked
because its autoWire property is set to full.

Let's say the base page container defined the auto-wired listener with autoWire set to
selfOnly as shown here:

...
"eventListeners": {
 "performSaveIncident": {
 "autoWire": "selfOnly",
 "chains": [
 {
 "chainId": "performSaveIncidentChain",
 "parameters": {...}
 }
]
 }
}
...

In this case, no auto-wired listener is invoked because the fragment's immediate parent is the
extended page container that does not have an auto-wired listener defined, while the base

Chapter 1
Fragments

1-203

page container's performSaveIncident auto-wired event listener is set up to be invoked only if
the base page container is an immediate parent of the fragment.

Referencing Fragments in Extensions
In an extension, you can reference fragments in the same extension as well as fragments
defined in dependent extensions. When an extension references a fragment defined in a
dependent extension, the dependent extension name is prepended to the fragment name.

To reference a fragment defined in a dependent extension, the fragment's JSON descriptor
must include the "referenceable": "extension" property.

{
 "description": "A product list fragment",
 "title": "Product List Fragment",
 "referenceable": "extension",
...
}

In an extension, you can reference fragments:

• In a page in your extension's App UI,

• In a section template that extends a dynamic container,

• In a field or form template for your extension's dynamic tables and forms,

• In a field or form template that extends a dynamic form or table in a dependent extension.

Here's an example of a page in an extension referencing a fragment in a dependent extension
(in this example, extA is the name of the dependent extension):

<oj-dialog id="newProductDialogDynamic" title="New Product" initial-
visibility="hide">
 <div slot="body" style="border:2px">
 <oj-defer>
 <oj-vb-fragment id="createProd1" name="extA:create-product">
 </oj-vb-fragment>
 </oj-defer>
 </div>
</oj-dialog>

Example 1-59 Reference a fragment in a page

In this example, the fragment products-list is defined in a dependent extension (extA). A
page defined in an App UI of an extension can include the products-list fragment using a
prefix before the fragment name: extA:products-list).

<oj-vb-fragment id="prod-list" name="extA:products-list"
bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="catalog" value="[['US']]"></oj-vb-fragment-
param>
</oj-vb-fragment>

Chapter 1
Fragments

1-204

To bind an event fired by the fragment onto a listener in the calling page of the extension, the
event in the fragment must be part of the interface. It must also have the
'propagationBehavior' set to 'container'. For details, see Custom Fragment Events.

This example shows the 'saveproduct' event declared by the fragment 'products-list':

"interface": {
 "events": {
 "saveproduct": {
 "description": "fired when a product has been created. The mutated
product is fixed up in a local array and returned",
 "propagationBehavior": "container",
 "payloadType": {
 "data": [
 {
 "id": "string",
 "name": "string",
 "unitPrice": "number",
 "productCategory": "string"
 }
],
 "message": "string"
 }
 }
 }
}

A page in the extension that references the above fragment from the dependent extension can
bind the event to a listener on the page using the on-<eventname> attribute:

<oj-vb-fragment id="prods" name="extA:products-list" bridge="[[vbBridge]]"
 on-saveproduct="[[$page.listeners.onSaveProduct]]">

</oj-vb-fragment>

WARNING:

It is important that the event name be lowercase or camelCase with no hyphens as
defined by Web Component DOM event naming conventions.

Example 1-60 Reference a fragment in a dynamic container template

Generally, the only artifacts in a fragment that can be extended are its model and the
JavaScript code. However, if a page in a dependent extension contains a dynamic container,
an extension could override the dynamic container's section template(s) to then reference a
fragment defined in the dependent extension.

In the following example, the section template references the fragment 'incidents-list' in a
dependent extension (using the dependent extension's name as the prefix before the fragment
name: extA:incidents-list).

<!-- dynamic container section template -->
<template id='tmplExtB'>

Chapter 1
Fragments

1-205

 <oj-vb-fragment id="incs-list" name="extA:incidents-list"
bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="technicianId"
value="[[$application.user.userId]]"></oj-vb-fragment-param>
 </oj-vb-fragment>
</template>

It's important to note that the fragment 'incidents-list' must be marked as 'referenceable' so that
a dependent extension can use it.

{
 "description": "A incidents list layout fragment",
 "title": "Incidents List Fragment",
 "referenceable": "extension",
...
}

To bind an event fired by a referenced fragment to a listener in the calling page template, the
event in the fragment must be part of the interface. It must also have the
'propagationBehavior' set to 'container'. For details, see Custom Fragment Events.

"interface": {
 "events": {
 "updatedincidentmessage": {
 "description": "fired when an incident has been updated. The mutated
incident data is provided in payload",
 "propagationBehavior": "container",
 "payloadType": {
 "data": {
 "id": "string",
 "problem": "string",
 "priority": "string",
 "status": "string",
 "customer": {
 "id": "string"
 }
 }
 }
 }
 }
 }
}

The template in the extension (that references the fragment) can bind the event to a listener
using the "on-<eventname>" attribute.

<oj-vb-fragment id="incs-list" name="extA:incidents-list"
bridge="[[vbBridge]]"
 on-
updatedincidentmessage="[[$listeners.updateMessageBarWithUpdatedIncident]]">
</oj-vb-fragment>

Chapter 1
Fragments

1-206

WARNING:

It is important that the event name be lowercase or camelCase with no hyphens as
defined by Web Component DOM event naming conventions.

Example 1-61 Reference a fragment in a dynamic layout form template

A fragment can be referenced from field and form templates used in dynamic forms. When
doing so, it's important to pass the context property setup by the layout component
($dynamicLayoutContext) to the fragment as a parameter. This context is an umbrella property
that contains all other dynamic component-related context variables, such as $value
and $metadata.

In the following example of a form template, the form is rendered using the fragment dynamic-
form-template-employee:

<template id="formTemplateSimple">
 <oj-vb-fragment id="formTemplateSimple_EmpFrag" name="dynamic-form-template-
employee" bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="$dynamicLayoutContext"
 value="[[$dynamicLayoutContext]]"></oj-vb-
fragment-param>
 </oj-vb-fragment>
</template>

The fragment dynamic-form-template-employee stores the layout property in a variable
defined in the fragment. Within the fragment markup (HTML), it can be used in an expression
like $variables.dynamicLayoutContext.fields... (or whichever sub-properties you may
need in your template markup) to access sub-properties of the layout context:

<oj-input-text :id="[[$fragment.info.id + '-empname']]"
 label-hint="Employee Name"
 value="{{ $variables.dynamicLayoutContext.fields.firstName.value }}"></oj-
input-text>

$dynamicLayoutContext

The $dynamicLayoutContext context property needs to be configured when a fragment is used
in form or field templates in layout components. The $dynamicLayoutContext allows:

• To write back to 'dynamic layout managed' objects.
Some fragments are intended to be used both within form templates and field templates.

Particularly when used within a field template, it can be very desirable to be able to not
only read a value provided by the dynamic component field, but also to write back to the
same. The $dynamicLayoutContext property enables this without requiring you to
configure a fragment event to notify the parent of the changed value.

Using $dynamicLayoutContext, you can pass this context property provided by the layout
component into the fragment as a reference (using an input parameter as shown in the
example above). You can then bind the input component / 'value' property in the fragment
to read and write to this variable. By doing this, any changes in the input value is
automatically known by the parent layout.

• To consolidate context properties in one basket.

Chapter 1
Fragments

1-207

Before fragments were used in layout component templates, authors would have used any
number of the context properties (like $fields, $value etc.) that the parent layout
exposed, and bind those to the components they use in the templates. But after adding
support for fragments inside templates, a new container boundary is introduced, so these
context properties are now no longer available/bindable directly by the components inside
the fragment. In order to expose these context properties to fragment components, this
top-level context property was introduced.

Extending a Fragment
When extending a fragment, an extension can override the fragment's metadata (JSON) and
JavaScript. For example, to extend the fragment my-example-fragment, the fragment artifacts
in the extension would be myexample-fragment-x.json and my-example-fragment-x.js.

When you extend a fragment, the fragment overrides are picked up automatically.

For example, an extension extA might define a fragment dynamic-form-employee using the
following HTML and model (omitting the JavaScript for this example):

dynamic-form-employee-fragment.html

<oj-dynamic-form :id="[[$fragment.info.id + 'oj-dynamic-form-1']]"
 metadata="[[$fragment.metadata.employeeByIdMetadata.provider]]"
 layout="{{ $constants.layoutName }}"
 value="{{ $fragment.variables.getEmployeeById }}"
 value-loading="[[$variables.getEmployeeByIdDetailFormLoadingStatus]]"
 rendered-fields="{{ $variables.getEmployeeByIdDetailFormRenderedFields }}"
</oj-dynamic-form>

dynamic-form-employee-fragment.json

{
 "fragmentModelVersion": "22.01.0",
 "description": "Fragment that loads a dynamic form",
 "title": "Fragment Dynamic Form Employee",
 "referenceable": "extension",
 "types": {
 "getEmployeeByIdResponse": "object"
 },
 "interface": {
 "constants": {
 "layoutName": {
 "type": "string",
 "mode": "readWrite",
 "defaultValue": ""
 }
 }
 },
 "metadata": {
 "employeeByIdMetadata": {
 "type": "vb/DynamicLayoutMetadataProviderDescriptor",
 "defaultValue": {
 "endpoint": "employees/getEmployeeById"
 }
 }
 },

Chapter 1
Fragments

1-208

 "variables": {
 "getEmployeeById": {
 "type": "fragment:getEmployeeByIdResponse"
 },
 "getEmployeeByIdDetailFormLoadingStatus": {
 "type": "string",
 "defaultValue": "pending"
 },
 "getEmployeeByIdDetailFormRenderedFields": {
 "type": "any[]"
 }
 }
...
}

A downstream extension (extB) could extend the fragment in extA above, for example, by
overriding the constant layoutName in order to load a different layout template from the
extension layout. The fragment artifacts in extB might look like the following (in this example,
the JavaScript code is not included because there are no meaningful changes). The
layoutName constant in the extension redefines the layout to be one defined in its extended
layout (extB/formlayout_extended).

dynamic-form-employee-fragment-x.json

{
 "fragmentModelVersion": "22.01.0",
 "title": "Dynamic form employee fragment extension",
 "description": "A fragment extension for dynamic-form-employee-fragment",
 "extensions": {
 "constants": {
 "layoutName": {
 "description": "layout name override; layout provider loaded in base
fragment",
 "defaultValue": "extB/formlayout_extended"
 }
 }
 },
 "variables": {},
 "chains": {},
 "eventListeners": {},
 "imports": {}
}

Fragment Patterns
Example 1-62 Tab Bar containing three tabs, and all tabs except the first one are
hidden

In this example, when the page loads, only the 'list' tab item fragment is loaded and rendered.
The 'map' and 'schedule' tab items are hidden, and the fragment and associated artifacts are
not loaded, and the components inside those fragments are not rendered.

1. The <oj-vb-fragment> component is used to isolate the content of each tab item

Chapter 1
Fragments

1-209

2. In the switcher associated with the tab bar, the <oj-defer> slot is used to hide tabs. The
fragments are loaded and rendered when their tabs become visible.

3. For details on configuring the component, see Deferred Rendering in the JET Developer
Cookbook.

<oj-tab-bar selection="{{ $variables.incidentsLayout }}">

 <li id="list">List
 <li id="map">Map
 <li id="schedule">Schedule/li>

</oj-tab-bar>
<oj-switcher value="[[$variables.incidentsLayout]]">
 <div slot="list">
 <oj-vb-fragment id="incLL" name="incidentsListLayout"></oj-vb-fragment>
 </div>

 <oj-defer slot="map">
 <oj-vb-fragment id="incML" name="incidentsMapLayout"></oj-vb-fragment>
 </oj-defer>

 <oj-defer slot="schedule">
 <oj-vb-fragment id="incSL" name="incidentsScheduleLayout"></oj-vb-
fragment>
 </oj-defer>
</oj-switcher>

Example 1-63 Content inside a dialog is hidden initially, and loaded when the user
opens the dialog

1. The <oj-vb-fragment> component is used to isolate the content of the dialog.

2. In the dialog 'body' slot, <oj-defer> is used to wrap the oj-vb-fragment. When the dialog is
opened, the input parameters are passed to the fragment component, and the fragment is
loaded and rendered.

3. If the fragment fires an event, binding the event to a listener on the page enables the page
to listen to it. The "saveproduct" event has the "propagationBehavior": "container"
property, so the fragment component on the page can listen to it, and then call the
'onSaveProduct' listener on the page.

4. For details on configuring the component see Deferred Rendering in the JET Developer
Cookbook.

Note:

It's best to have all the content of the dialog within the fragment and the 'body' slot,
rather than splitting it, for example, having the buttons in the footer and having the
content within the <oj-defer>.

<oj-dialog id="newProductDialog" title="New Product" initial-
visibility="hide">
 <div slot="body">

Chapter 1
Fragments

1-210

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=deferredRendering&demo=deferredSwitcher
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=deferredRendering&demo=deferredSwitcher

 <oj-defer>
 <oj-vb-fragment id="createProd1" name="create-product"
 on-saveproduct="[[$page.listeners.onSaveProduct]]"
 on-
cancelproduct="[[$page.listeners.onCancelProduct]]">
 <oj-vb-fragment-param name="products"

value="[[$page.variables.productList]]"></oj-vb-fragment-param>
 </oj-vb-fragment>
 </oj-defer>
 </div>
</oj-dialog>

The event is declared in the fragment:

"saveproduct": {
 "description": "fired when a product has been created. The mutated product
is returned in
 payload",
 "behavior": "notify",
 "payloadType": {
 "data": [
 {
 "id": "string",
 "name": "string",
 "unitPrice": "number",
 "inventory": "number",
 "productCategory": "string"
 }
]
 },
 "propagationBehavior": "container"
}

Example 1-64 A single fragment used to display different content

It's possible to reuse a fragment in multiple places in the page. To use the same fragment in
two different parts of the page, use a different unique id on each oj-vb-fragment component.

In the example below, the 'edit-product' fragment is used by two components, and each
fragment has a unique id. The parameters and event configurations are also different.

<oj-bind-if test="[[$page.variables.productIdDynamic]]">
 <oj-vb-fragment id="editProd1" name="edit-product"
 on-saveproduct="[[$page.listeners.onEditProductDynamic]]">

 <oj-vb-fragment-param name="products"

value="[[$page.variables.productListDynamic]]"></oj-vb-fragment-param>
 </oj-vb-fragment>
<oj-bind-if>

<!-- fragment used for static case -->
<oj-bind-if test="[[$page.variables.productIdStatic]]">
 <oj-vb-fragment id="editProd2" name="edit-product"

Chapter 1
Fragments

1-211

 on-saveproduct="[[$page.listeners.onEditProductStatic]]">
 <oj-vb-fragment-param name="products"

value="[[$page.variables.productListStatic]]"></oj-vb-fragment-param>
 </oj-vb-fragment>
<oj-bind-if>

Components
Components are written as an HTML file, using standard HTML syntax.

HTML Source
Components are written as standard HTML files.

The HTML file for a page is located as a peer to the page model, as name-page.html. This
HTML source can be edited as a normal JET page.

There are currently two kinds of expressions, write-back and no write-back. This can be seen
in the component properties.

<oj-input-text maxlength='30' placeholder="[[$variables.searchText]]"
 value="{{$variables.searchVariable}}"</oj-input-text>

VB Switcher Component
The VB switcher web component that is used to display the content of one of many VB flows in
a VB page, and to quickly switch which one is displayed.

An API is provided to select which flow to render and to add or remove flows from an array of
available flows.

The following features are supported:

• the view and viewModel is persisted when switching flows

• navigation within a switcher element is allowed

• record the transition in the browser history

DOM and viewModel caching

In order to provide a quick switching between flows, support pages with iframe and to preserve
the selection and scrolling position, the content of the flow is preserved when switching to an
other flow. This is done by by showing and hiding the DOM nodes. The resources taken by a
switcher element are only released when the element is removed from the ArrayDataProvider.

Note:

Memory usage

Be aware that having a large amount of flows open in the switcher can result in a
large memory usage in the browser.

Chapter 1
Components

1-212

VB Switcher Navigation
Page navigation inside a switcher element or when switching elements does not update the
URL but the change is recorded in the browser history. As a result, the bookmarked page will
not restore the current state of the switcher.

Navigation within a switcher element

It is possible to navigate to a different page inside a switcher element. When navigation occur,
the URL is not updated but the navigation is recorded in the browser history. Using the
browser's back button restores the previous page of the current switcher element. Navigation
should be done using the navigateAction.

A switcher element can navigate to a different flow in the current App UI, open a different App
UI, or navigate to an App UI.

Switching between elements

When switching between elements, the transition is recorded in the browser history. Using the
back button restores the previously displayed element. This behavior can be altered using
vbBeforePopState.

When switching between elements, the page lifecycle events are not dispatched because the
page does not enter or exit. vbBeforeExit and vbExit are dispatched only after an element of
the switcher is deleted.

VB Switcher Usage and Properties
The VB switcher is a web component that can only be used in a Visual Builder page. Usage
consists of specifying an array of switcher elements, and which one is current.

Limitations

• Only one switcher component can be present in a page.

• When the switcher component is present in a page, no other flow can be displayed in that
page (no oj-vb-content component).

• Only flows marked with the embeddable = "enabled" property, or flows where the default
page is marked with the embeddable property, can be embedded in a switcher.

Properties

Name (Type) Description

data (ArrayDataProvider) An ArrayDataProvider, where each element of the element array is a switcher
element. For adding elements dynamically, it should be an ArrayDataProvider
that supports mutation, like the JET MutableArrayDataProvider or the VB
ArrayDataProvider2. Either flow or application property is required for the
element to be valid.

data.id (String) The id of the switcher element (required)

data.application (String) The id of the App UI. (optional, if not specified, the flow property is used with
the current App UI)

data.flow (String) The id of the flow

data.page (String) The id of the page of the flow to display if different than the default page
(optional)

Chapter 1
Components

1-213

Name (Type) Description

data.params (String) An object, where the properties are page or flow input variable names
(optional)

currentItem The id of the flow element to display. If the value is null, no switcher element is
displayed. The value can be set to change which switcher element is
displayed. If the id does not match an element of the data array, an error is
thrown.

bridge (Object) A reference to the internal property vbBridge, which is already available in
the VB page model. The value is always "[[vbBridge]]"

VB Switcher Methods
closeItem

Dispatch the vbBeforeExit event to all the containers of a switcher element the same way it is
displayed when navigating. Returns a promise with the result of the event. This allows a page
to veto the closing of a switcher element, for example, when dirty data is detected.

Name (Type) Description

id (String) The item to close.

<return> (Promise) A Promise that resolves to a boolean. If the result is false, the application
should not remove switcher element from the array. It is recommended to
invoke this function in the listener of the ojBeforeRemove event of the tabBar
component so that the array of switcher elements is not affected.

navigate

Navigate the content of the current switcher element from a page containing the switcher
component.

The parameters and the return value are the same as the navigate action.

Name (Type) Description

options (Object) The navigate options is an object with the same properties as the navigate
action.

options.page (String) The path to the destination page. The path can be absolute, starting at the
application, or it can be relative to the current page. When used in
combination with a flow or application, the path cannot be absolute, and it
navigates to the page relative to the flow or App UI.

options.flow (String) The id of the destination flow. Change the content of the flow displayed in the
current page. When used in combination with a page, navigates to the page in
that flow.

options.application
(String)

The id of the destination App UI. Change which App UI is displayed in the
host application. When used in combination with a page and flow, navigates
to the page in that App UI.

options.target (String) The target of the destination flow. The valid values are "parent" or "self"
(default). This is used in combination with a flow to change the content of the
parent flow instead of the nested flow.

Chapter 1
Components

1-214

Name (Type) Description

options.history (String) Defines the effect of the navigation on the browser history. The allowed values
are "replace", "skip" and "push" (default). If the value is "replace", the current
browser history entry is replaced, meaning that the browser's Back button will
not go back to it. If the value is "skip", the URL is left unchanged.

options.params (String) A key/value pair map that will be used to pass input parameters to a page
(optional).

<return> (Promise) A Promise that resolves to an object with the boolean property navigated,
indicating if the navigation succeeded.

VB Switcher Events
vbBeforePopState

This event is dispatched when the browser history changes (Back and Forward buttons), and it
is used for two purposes:

1. To be notified when a change to the switcher current item will be made due to a browser
Back or Forward button.

2. Cancel the default handling by setting preventDefault to "true".

Properties

All of the event payloads listed below can be found under event.detail.

Name (Type) Description

item (String) The potential new current item.

previousItem (String) The previous item.

pagePath (String) The path of the potential page to be display.

previousPagePath
(String)

The path of the previous page displayed.

VB Switcher Examples
Example 1-65 Switcher elements ADP declaration using JET
ojmutablearraydataprovider

"switcherArray": {
 "type": "object[]",
 "defaultValue": [
 {
 "flow": "aaa",
 "name": "Flow aaa",
 "id": "a"
 }
]
},
"switcherMutableArrayDP": {
 "type": "ojs/ojmutablearraydataprovider",
 "constructorParams": [
 "{{ $variables.switcherArray }}",
 {

Chapter 1
Components

1-215

 "keyAttributes": "id"
 }
]
},

Example 1-66 Switcher elements ADP using vb/ArrayDataProvider2

"switcherArray": {
 "type": "object[]",
 "defaultValue": [
 {
 "flow": "aaa",
 "name": "Flow aaa",
 "id": "a"
 }
]
},
"switcherADP": {
 "type": "vb/ArrayDataProvider2",
 "defaultValue" : {
 "keyAttributes": "id",
 "data": "{{ $variables.switcherArray }}",
 "itemType": "object"
 }
}

Example 1-67 How to mark a page or a flow to be embeddable

{
 "title": "Start Page",
 "description": "Landing page of the flow",
 ...
 "navigation": {
 "embeddable": "enabled"
 }
}

Example 1-68 Usage in page HTML

<oj-vb-switcher
 data="[[$variables.switcherADP]]"
 current-item="{{ $variables.selectedItem }}"
 bridge="[[vbBridge]]"
 on-vb-before-pop-state="[[$listeners.beforePopstate]]">
</oj-vb-switcher>

Example 1-69 Entry in imports section of the page definition to load the component

"imports": {
 ...
 "components": {
 "oj-vb-switcher": {
 "path": "vb/components/oj-vb-switcher/loader"

Chapter 1
Components

1-216

 }
 }
}

Imports
The sections below discuss how to import components, CSS, and modules.

Import Custom Components
JET Custom Components can be loaded using the "imports" section in a shell or page.

The "components" section contains a map of component IDs to objects which contain a
(requireJS) path to the JET Custom Components loader javascript. The ID should match the
component tag.

Example 1-70 Example:

"imports": {
 "components": {
 "demo-card": {
 "path": "resources/components/democard/loader"
 }
 }
}

Import Custom Modules
You can load custom modules inside the "imports" section in an application, flow, page, and
other containers. The "modules" section contains a map of module objects, which in turn
contain a 'path' to the module JavaScript loader.

The path property can be a requireJS path to the JavaScript, or it can be a path scheme that
resolves to a requireJS path to the JavaScript module loader.

Import Modules Using requireJS Path Mapping
The example below shows how to import two modules in a page.json using requireJS path
mapping.

{
 "imports": {
 "modules" : {
 "converterUtils": {
 "path": "ojs/ojconverterutils-i18n"
 },

 "arrayUtils": {
 "path": "faCommon/arrayUtils"
 }
 }
 }
}

Chapter 1
Imports

1-217

• "converterUtils" specifies a path to a JET module using the implicit requireJS mapping
('ojs') that is set up for JET modules in VB.

• "arrayUtils", on the other hand, uses a requireJS path 'faCommon' that is a requireJS
path mapping defined in the application metadata.

Each module defined in the section is available through an un-scoped "$imports" built-in
variable.

The built-in "$imports" context property is un-scoped and limited to the current container to
avoid performance issues and module conflicts at different context (for
example, $page, $flow, $application).

<div>
 <oj-bind-text
 value="[['Last Updated on - '
+ $imports.converterUtils.IntlConverterUtils.dateToLocalIso(new Date())]]">

 </oj-bind-text>
</div>

In a page.json action chain, the assignVariablesAction uses the external module imported as
"arrayUtils", to call a filter method, as shown here:

{
 "removeTab": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.switcherArray": {
 "module": "{{ $imports.arrayUtils }}",
 "functionName": "filter",
 "params": [
 {
 "array": "{{ $page.variables.switcherArray }}",
 "callback": "{{ function (p) { return p.id !
== $variables.itemToRemove } }}"
 }
]
 }
 }
 }
}

where the arrayUtils method 'filter' might look like this:

class ArrayUtils {
 /**
 * Returns a new array with all elements that pass the test implemented by
the provided function.
 * @param helper assignment helper
 * @param defaultValue the default value of the variable
 * @param {Object} params properties are
 * @param {Array} params.array - the array being filtered
 * @params {Function} params.callback - function used as callback to filter
values.

Chapter 1
Imports

1-218

 * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Array/filter
 * @return {Array} filtered array or the array1 if args invalid
 */
 static filter(helper, defaultValue, params) {
 const array1 = params.array1;
 const callback = params.callback;
 if (Array.isArray(array1) && callback && typeof callback === 'function') {
 return array1.filter(callback);
 }

 console.warn('invalid params provided for the filter method', params);
 return array1;
 }
}

Import Modules Using a Global Functions Resource Path
While a JavaScript resource defined within a Visual Builder application can be imported into a
container using existing conventions, it is often the case that an extension may want to share it
for reuse by downstream extensions.

A downstream extension that extends from an upstream extension can also define its own
global functions. Global functions can be defined at each extension level.

For example, a top level extension might have a set of JS modules that are used by layout
business rules associated to layout artifacts. Rather than copy the code for the utility resource
JavaScript in every downstream extension that requires the same logic, using the 'global
functions' feature, an extension can define the resource and declare the rules for its usage in a
functions.json metadata, . This allows a dependent downstream extension to import the JS
module and use it with minimal effort.

As stated, global functions for use within the extension (and its App UIs), or across extensions,
must first be declared in a functions.json metadata, along with level of access afforded to
downstream extensions to the methods the JS module provides.

Note:

The term 'global function' refers to its usage as a globally available module, and must
not be confused with a context, such as $global.

Define Global Functions
Global functions JavaScript modules must be defined under resources/functions for an
extension, and the metadata for each JavaScript resource to be declared in resources/
functions/functions.json.

Note:

Global functions can only be defined for an extension. They cannot be defined under
an App UI or other resources folders, including in a unified app.

Chapter 1
Imports

1-219

For example, ext-layout, is an extension that defines two JavaScript files that are shared by all
containers, like page, fragment or dynamic layout artifacts, in the current extension. The files -
dateUtils.js and standardUtils.js are located under ext-layout/ui/self/resources/
functions.

The JavaScript files are meant to be utilities style classes so that when the module is loaded
(using requireJS) it returns a map of function names to function callbacks.

Example 1-71 Global function JS module

The resources/functions folder contains a functions.json, a configuration file that defines
the list of JavaScript modules (in the 'files' section).

In this example, the standardUtils.js, defined in the location above, defines several static
methods, and returns the methods that are allowed for general use:

'use strict';

define([], () => {
 class StandardFunctions {
 static join(arr = []) {
 if (arr.length === 0) {
 return '';
 }
 const newArr = (arr.slice(1, arr.length).map((o) => (${o})));
 return [arr[0]].concat(newArr).join(' ');
 }

 /**
 * Returns true if the field provided as parameter #1 contains the
characters provided as parameter #2, else
 * returns false.
 * @param {string} field
 * @param {string} characters
 * @returns {boolean}
 */
 static contains(field = '', characters) {
 return field.indexOf(characters) >= 0;
 }

 /**
 * Returns a string converted from a decimal.
 * @param {number} field
 * @returns {string}
 */
 static convertNumberToString(field) {
 return field.toString();
 }

 /**
 * Convert string to number
 * @param {string} field
 * @return {number}
 */
 static convertStringToNumber(field) {
 return parseInt(field, 10);
 }

Chapter 1
Imports

1-220

 /**
 * Returns the number of characters in a string.
 * @param {string} field
 * @return {number}
 */
 static lengthOfString(field = '') {
 return field.length;
 }
 }

 return {
 contains: StandardFunctions.contains,
 convertNumberToString: StandardFunctions.convertNumberToString,
 convertStringToNumber: StandardFunctions.convertStringToNumber,
 join: StandardFunctions.join,
 lengthOfString: StandardFunctions.lengthOfString,
 };
});

Declaring global functions in functions.json metadata

In the sample above, the standardUtils JavaScript module exports an Object with five
properties mapped to the function callback. These methods can be declared in the metadata,
and then exposed to the current extension and downstream extensions using the
functions.json metadata configuration.

{
 "files": {
 "utils": {
 "path": "standardUtils",
 "label": "Standard Utility Functions",

 "referenceable": "extension",

 "functions": {
 "contains": {
 "params": {
 "field": {
 "label": "field",
 "description": "",
 "type": "string"
 },
 "characters": {
 "label": "characters",
 "description": "",
 "type": "string"
 }
 },
 "return": "boolean"
 },
 "convertNumberToString": {
 "referenceable": "self"
 },
 "convertStringToNumber": {
 "referenceable": "self"

Chapter 1
Imports

1-221

 },
 "join": {},
 "lengthOfString": {}
 }
 },
 "dateLocalUtils": {
 "path": "date/dateUtils",
 "label": "Date Utility Functions",

 "referenceable": "self",
 "functions": {
 "dateToIsoString": {
 "referenceable": "extension"
 }
 }
 }
 }
}

Note:

The metadata in the sample JSON above is edited to show the relevant details. It is
not a complete configuration.

The "files" section includes one or more JavaScript files. "utils" is an alias to the
JavaScript file "standardUtils.js", defined under the "path" property (the .js extension can
be dropped because it is a requireJS module).

The "referenceable": "extensible" declares that the file is accessible to downstream
dependent extensions. The file alias "dateLocalUtils", with the path "date/dateUtils", is
set to "referenceable": "self", which means it is only accessible to artifacts in the current
extension.

The "functions" section can be used to list functions that are available to callers. The function
name can be used in expressions, if present (see below). Additionally, function metadata can
define whether it can be referenced from the current extension or a dependent downstream
extension. While a function can be less permissive about its access, it cannot supersede the
access set on the file.

For example, the file "utils" allows access to all dependent extensions (it is set to
"referenceable": "extension"), whereas the method "convertNumberToString" within
"utils" only allows access to the current extension (it is set to "referenceable": "self") .
This is allowed because a function can be less permissive. This means a dependent extension
that imports this module, will not be able to call the "convertNumberToString" function (it will
result in a log error).

Another example, is where the file "dateLocalUtils" that defines a function
"dateToIsoString", which expands its access beyond what the file allows. This is not allowed
and ignored. The function can only be called by artifacts in the current extension.

When a function does not define "referenceable", access is set on the file. The default
access for a file is "self".

Chapter 1
Imports

1-222

Use Global Functions in a Container
Global functions must be imported into a page (or any Visual Builder container) using the
imports section of the container metadata (and its modules property) before the global
functions can be used.

For example, a layout.json, defined in the same extension (ext-layout) where the functions
metadata is defined, can specify the modules in its imports like this:

{
 "imports": {
 "modules": {
 "utils": {
 "path": "self:$functions/utils"
 },
 "dateUtils": {
 "path": "self:$functions/dateLocalUtils"
 },
 "commonUtils": {
 "path": "ext-common:$functions/utils"
 }
 }
 }
}

The path property uses a scheme for locating the JavaScript resource, particularly functions,
using a convention with three elements:

{extId}:{resourceType}/{resourceAlias}

The path resolves to the actual require path to the JavaScript module loader.

Element Description

{extId} Refers to the extension the resource belongs to. 'self' means the current
extension. Any other extension will be identified by its id.

• 'self: - a reserved word, is required to refer to extension level resources.
– Example: "self:$functions/dateLocalUtils" refers to the current

extension functions. The namespace 'self:' is required to refer to
extension resources.

• 'ext-common' - refers to the name of an upstream extension that the current
extension depends on. 'utils' is the resource alias defined there

{resourceType} Uses a special keyword for the /functions resources (for example,
"$functions").

• self:$functions resolves to an actual resource path ('ext-layout/ui/
self/resources/functions')

• ext-common:$functions resolves to an actual resource path ('ext-
common/ui/self/resources/functions')

Chapter 1
Imports

1-223

Element Description

{resourceAlias} For global functions, resourceAlias is the alias of the JavaScript defined in
functions.json.

• self:$functions/dateLocalUtils' resolves to ext-layout/ui/self/
resources/functions/date/dateUtils.js', where 'dateLocalUtils' is
the alias defined in functions.json.

• ext-common:$functions/commonUtils resolves to ext-common/ui/
self/resources/functions/utils/common.js, where 'commonUtils' is
the alias for the resource located under 'utils/common.js', that is defined in
functions.json.

Here is an example of how functions.json, defined under ext-common/ui/self/resources/
functions, might look:

{
 "commonUtils": {
 "path": "utils/common",

 "label": "Common Utility Functions",
 "referenceable": "extension",
 "functions": {
 "titleCase": {}
 }
 }
}

Note:

For "ext-layout" to import global functions from "ext-common", it must have a
dependency on the "ext-common" (see below).

Reference Global Functions in an Expression
For the layout that defines the above modules, the following expressions can be used to call
the methods exposed by a particular global functions module:

• $layout.modules.commonUtils.titleCase()
• $layout.modules.dateLocalUtils.dateToIsoString()
Where titleCase and dateToIsoString are the function names defined in functions.json in
the extension.

Note:

$modules is the shortened form for use in the current container.

Chapter 1
Imports

1-224

Note:

Any container that imports modules can expect $modules to be available (for
example, $page.modules, $fragment. modules).

An action chain JavaScript can provide $modules as part of the context:

class MyChain extends ActionChain {

 async run(context, params) {
 context.$layout.modules.dateUtils.today();

 const result = context.$application.modules.appUtils.update(); // can
also call modules in parent scopes

 await Actions.assignVariable(context,
 {
 variable: '$layout.variables.someValue',
 value: result / 2,
 });
 }
}

Examples of Accessing Global Functions in Extensions
The following examples describe the level of access available to global functions from
extension artifacts.

Example 1-72 extA is a top level extension that defines a functions JavaScript
extAUtils.js

extA defines its own functions files, under ui/self/resources. Additionally, it also defines
functions under an App UI (appUi-A) and under appUi-A/pages.

• extA has no dependencies on other extensions

• extA defines a public extAUtils.js that can be accessed by downstream extensions.

– Additionally, UI artifacts such as some-page.json can access the extAUtils.

extA/
 ui/
 self/
 resources/
 functions/
 extAUtils.js
 functions.json // { extAUtils: { referenceable: "extension" } }

 applications/
 appUIA/
 .../
 some-page.json

Chapter 1
Imports

1-225

 manifest.json // { dependencies: [] }

In the example above, some-page.json can have an imports section like this:

{
 "imports": {
 "modules": {
 "AUtils": {
 "path": "self:$functions/extAUtils"
 }
 }
 }
}

The imported module in the example above can be accessed using the expression
({{ $page.modules.AUtils.someMethod() }}).

Example 1-73 extA1 depends on extA and defines functions (both private and public)

• extA1 has a dependency on extA

• extA1 defines a private a1PrivateUtils.js that can be imported only by extA1 containers.

– For example, a1-form-fragment.json can import the private module.

• It also defines a public extA1Utils.js that can be imported by containers in the current
and downstream extensions.

extA1/
 ui/
 self/
 resources/
 functions/
 private/
 a1PrivateUtils.js
 public/
 extA1Utils.js
 functions.json

 fragments/
 a1-form/
 a1-form-fragment.json
 a1-form-fragment.js
 a1-form-fragment.html

 manifest.json // { dependencies: [extA] }

In the example above, a1-form-fragment.json can import the private module and have an
imports section. If a module is not declared here, it's not automatically available. For example,
'extA1Utils' is not defined here, so it cannot be used.

{
 "imports": {

Chapter 1
Imports

1-226

 "modules": {
 "A1PrivateUtils": {
 "path": "self:$functions/a1PrivateUtils"
 },
 "extAUtils": {
 "path": "extA:$functions/extAUtils"
 }
 }
 }
}

Some fragment markup can call a method exposed on the private utils:

<oj-bind-text
text="{{ $modules.A1PrivateUtils.titleCase($variables.name)) }}"/>

<oj-bind-text text="{{ $modules.extAUtils.region($variables.code) }}"/>

Because extA1 depends on extA, it can also refer to public functions from extA.

Example 1-74 extB depends on extA and extA1 and defines a functions JS extBUtils.js

• extB defines a layout 'buttons'

• extB defines its own global functions (extBUtils)

• extB also extends the fragment 'a1-form-fragment' from extA1

extB/
 dynamicLayouts/
 self/
 buttons/
 layout.json

 ui/
 self/
 resources/
 functions/
 extBUtils.js
 functions.json
 js/

 ext-A1/

 fragments/
 a1-form/
 a1-form-fragment-x.json
 a1-form-fragment-x.js

 manifest.json // dependencies: [extA, extA1]

Chapter 1
Imports

1-227

buttons/layout.json references the fragment from extA1. It can call the public extAUtils and
extA1Utils, in addition to the global functions extBUtils. This could be defined in layout.json:

{
 "imports": {
 "modules": {
 "extA1Utils": {
 "path": "extA1:$functions/extA1Utils"
 },
 "BUtils": {
 "path": "self:$functions/extBUtils"
 }
 }
 }
}

The layout.html could define a template that uses a fragment from extA1. The fragment,
because it's defined by extA1, can internally call a 'functions' module that is private to extA1.

<template id="formTemplateSimple">

 <oj-vb-fragment name="extA1:a1-form"
 bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="dynamicLayoutContext"
 value="[[$dynamicLayoutContext]]"></oj-vb-
fragment-param>

 <oj-vb-fragment-param name="foo"
value="[[$modules.BUtils.titleCase($layout.variables.lucy)]]">
 </oj-vb-fragment-param>

 </oj-vb-fragment>

</template>

extB also extends the fragment from extA1. This means the fragment-x will need to explicitly
define all imports it needs from the current extension and any of its upstream extensions. The
use of $base is not recommended for accessing imports of the base container, because the
exact list of imports that are accessible by the extended artifact cannot be easily determined,
nor can it be complete. For example, the a1-form-fragment.json from extA1 did not import
extA1Utils. Likewise, it imports local resources that should be hidden for the current extension.

It is recommended that authors explicitly import the modules they need. A sample imports on
a1-form-fragment-x.json might look like this:

{
 "imports": {
 "modules": {
 "extA1Utils": {
 "path": "extA1:$functions/extA1Utils"
 }
 }
 }
}

Chapter 1
Imports

1-228

Example 1-75 extZ extends layout from extB and also depends on extA1

• extZ extends the 'buttons' layout from extB and also defines its own 'zippers' layout.

• extZ also overrides some pages from the unified app.

• extZ also defines its own functions, in addition to having a 'functions' folder at the App UI
level (resources/functions) folder under appUiZ (see the example below).

– While there appears to be a functions.json defined at the App UI resources level,
these cannot be imported into the App UI using the $functions scheme. These files
can be imported into the App UI pages using the current schemes for importing such
files.

extZ/
 dynamicLayouts/
 extB/
 buttons/
 layout-x.json

 self/
 zippers/
 layout.json

 ui/
 self/
 applications/
 appUiZ/
 app.json
 pages/
 shell-page.html
 shell-page.json

 resources/
 functions/
 appUiZtils.js
 functions.json

 resources/
 functions/
 extZUtils.js
 functions.json

 base/
 pages/
 root/
 first-page-x.json
 app-flow-x.json

 manifest.json // dependencies: [extB, extA1]

The following sections detail the level of access for functions and the $modules usage in the
various Visual Builder containers.

Functions Access and $modules Usage in extZ/dynamicLayouts/extB/buttons/layout-x

When layout-x is an extension of a layout from extB, it should be possible to import extB's
functions, as well as the dependency extension (extA1).

Chapter 1
Imports

1-229

extA is not specified in the dependencies list, so its functions cannot be imported.

Note:

An extension must explicitly import the resources it needs, and not use $base to
access the imports set up by the artifact it extends.

extZ defines its own functions, so layout-x can import any of these.

{
 "imports": {
 "modules": {
 "extBUtils": {
 "path": "extB:$functions/extBUtils"
 },
 "extA1Utils": {
 "path": "extA1:$functions/extA1Utils"
 },
 "ZUtils": {
 "path": "self:$functions/extZUtils"
 }
 }
 }
}

Functions Access and $modules Usage in extZ/dynamicLayouts/self/zippers/layout-x

The files allowed in the previous section are also allowed here.

Functions Access and $modules Usage in extZ/ui/self/applications/appUiZ/pages/shell-
page

The files allowed in the previous section are also allowed here.

Functions Access and $modules Usage in extZ/ui/base/pages/app-flow-x.json

The files allowed in the previous section are also allowed here.

Import Custom CSS
You can load custom CSS through require-css('css![module-path]') inside the imports section
in an application, flow, page, and other containers.

The "css" section contains an array for strings for each CSS import. Each string is a
(requireJS) 'path' to the CSS to be loaded. The requireJS path can be an absolute path with
respect the application, a relative path with respective to the current context (application, flow
or page) or an external URL (for example, a CDN path) that can be accessed by the
application. Using custom CSS loading through metadata gives the flexibility to load CSS
through require-css vs hardcoding it in the HTML markup.

The CSS resources are typically defined at the extension level and App UI level, and can be
imported using the conventions mentioned below.

Chapter 1
Imports

1-230

In the following application structure, ext-A depends on ext-B, and extends a layout "incidents"
defined in ext-B. extA defines its own CSS files, under ui/self/resources. Additionally, it also
defines an App UI (appUi-A) with its own CSS resource.

ext-A/
 dynamicLayouts/
 self/
 orders/
 layout.json
 ext-B/
 incidents/
 layout-x.json

 ui/
 self/
 applications/
 appUi-A/
 app.json
 pages/
 shell-page.json
 resources/
 css/
 shell-2.css

 resources/
 css/
 app.css
 shell.css

 resources/
 css/
 ext.css

 base/
 pages/
 root/
 first-page-x.json
 app-flow-x.json

Example 1-76 Import CSS in shell-page.json

{
 "imports": {
 "css" : [
 "self:/resources/css/ext.css", // starts from the extension
 "/resources/css/shell.css", // starts from the App UI
 "resources/css/shell-2.css", // not supported, will throw an error
 "https://static.oracle.com/cdn/fnd/gallery/2007.0.0/some.css" // same
]
 }
}

In the example above:

Chapter 1
Imports

1-231

• If the path starts with self:/, the path starts at the root of the current extension (for
example, ext-A/ui/self/resources).

• If the path is absolute, the path starts at the root of the current App UI (appUi-A),
equivalent to the path starting with extA/ui/self/applications/appUi-A/resources.

• If the path is relative, throw an error because a relative path is not supported.

• If the path is a URL, use that URL.

Example 1-77 Import CSS in app.json

{
 "imports": {
 "css" : [
 "self:/resources/css/ext.css",
 "/resources/css/app.css"
]
 }
}

The app.json has access to both the extension level resources (self:/) and the App UI ones
(starting with /resources).

Example 1-78 Import CSS in layout-x, app-flow-x, flow-x, page-x

{
 "imports": {
 "css" : [
 "self:/resources/css/ext.css"
]
 }
}

Extension artifacts can only access resources defined at the current extension level.

Security
The security entry provides certain access limits.

The security entry provides a way to limit access to UI level artifacts, such as pages, flows, or
applications. These artifacts can require either a specific role or a specific permission in order
to enter and display the resource. If the user does not have the correct role or permission, the
runtime will refuse entry into that UI artifact. Currently the application, flows, and individual
pages can be protected in this manner.

Security Configuration
The security configuration is managed in several resources.

The configuration for security resides in the model for each of these resources: app-
flow.json, name-flow.json, name-page.json. If requiresAuthentication is false,
specifying roles or permissions results in an error. By default an artifact inherits
the requiresAuthentication property from its parent. If this is not present in the application
configuration, it defaults to true. This means that if no security section is defined in any of the
artifacts, the application will require authentication when starting.

Chapter 1
Security

1-232

The configuration follows the format seen in this example:

"security": {
 "access": {
 "requiresAuthentication": true/false,
 "roles": ["role1", "role2"],
 "permissions": ["perm1", "perm2"]
 }
}

When an anonymous user navigates to an artifact (page, flow or application) and the artifact is
secure, the user is prompted to login, and is then redirected to the artifact. This functionality is
provided by the default implementation of the Security Provider.

Security Provider
Security for an application is enabled using a pluggable mechanism called Security
Providers.

In the application model, app-flow.json, you can specify a "userConfig" element. The
userConfig element selects which Security Provider to use and how to configure it:

Example of an entry in app-flow.json to specify the Security Provider

"userConfig": {
 "type": "vb/DefaultSecurityProvider",
 "configuration": {
 "url": "url to some security api"
 }
}

A Security Provider takes a configuration object with a url. The url property should point to a
REST API. It must be possible to retrieve the current Security Provider configuration via this
REST API. The configuration contains user information and configuration information such
as loginUrl and logoutUrl.

A Security Provider performs the following functions.

Function Description

fetchCurrentUser(config) Fetch the configuration from the url and initialize
the userInfo property as well as the
loginUrl and logoutUrl properties.

static getUserInfoType() Return an object describing the type of the user info.

isAccessAllowed(type, path, accessInfo Check if the current user can access a resource with the
given access info. If the user is not authenticated, this
method returns false. Otherwise, if the user role is one of the
roles in accessInfo, or if the user permission is one of the
permissions in accessInfo, then the method returns true.

handleLoadError(error, returnPath) This function is called by the client when an error occurs
while loading a page. It attempts to handle the load error for
a Visual Builder artifact, and returns true if it does.

Chapter 1
Security

1-233

Function Description

handleLogin(returnPath) Handle the user login process. Redirects to the login page
using the login URL given by the security provider
configuration. If defined, the returnPath is added to the login
URL using the query parameter name. This is defined in the
'returnPathQueryParam' property of the SecurityProvider
class.

handleLogout(logoutUrl) Handle the user logout process. The default implementation
navigates to the URL defined by the logoutUrl argument. If
the logoutUrl argument is not defined, it uses the logoutUrl of
the SecurityProvider configuration.

User Information
The userInfo contains the user information fetched by the Security Provider.

For the default implementation, the userInfo has the following type:

{
 "userId": "string",
 "fullName": "string",
 "email": "string",
 "roles": "string[]",
 "permissions": "string[]",
 "isAuthenticated": "boolean"
}

The userInfo is made available to the application with the help of the $application.user built
in variable. This allows content in the page to be rendered conditionally.

Example 1-79 Example of conditional content rendering

<!-- Render 'I am a manager' if manager is a role of the current user -->
<oj-bind-if test='[[!$application.user.roles.manager]]'>
 I am a manager
</oj-bind-if>

<!-- Render the 'Sign In' button if the current user is not authenticated -->
<oj-bind-if test='[[!$application.user.isAuthenticated]]'>
 <oj-button id='signIn' on-oj-action='[[$listeners.onSignIn]]'Sign In</oj-button>
</oj-bind-if>

Error Handling
Support for unauthorized error handling is provided by several functions.

When loading an artifact returns an error, the function handleLoadError is called with an error
object that has a statusCode property. If the artifact is secure and the roles and permissions of
the current user do not match the ones required by the artifact, the error statusCode is
403. The default implementation of the handleLoadError will check if the user is
authenticated, and if not, will call the handleLogin function. This redirects to the loginUrl
provided by the Security Provider configuration.

The default implementation of the Security Provider handles status 401 and 403 errors. Other
security schemes will need to implement their own security provider and specify it in the
UserConfig section of the application descriptor. To implement your own security provider:

Chapter 1
Security

1-234

1. Create your own class extending vb/types/securityProvider and override any method
necessary.

2. If the user information is different, make sure to match the content of the userInfo property
and the type information returned by getUserInfoType(), since this determines what
information is exposed in the $application.user variable.

3. Enter your new type in the "type" section of the userConfig in app-flow.json as well as the
URL to retrieve the Security Provider configuration.

Example 1-80 Example of a custom Security Provider

define(['vb/types/securityProvider'],
(SecurityProvider) => {
 class TestSecurityProvider extends SecurityProvider {
 handleLogin(returnPath) {
 // implement your own login mechanism here
 }
 }

 return TestSecurityProvider;
});

Helper Utilities
The run time provides public JavaScript helpers to help with implementing some features in
JavaScript when a lower level of control is desired or needed.

These can be imported in your Javascript module functions.

REST Helper
The REST helper utility allows calling REST endpoints, which are defined in the service
definitions.

The Visual Builder runtime uses this helper internally.

The REST helper looks at the content-type header, if available, to try to determine how to read
and parse the response. If no content-type is available, text is assumed.

Table 1-3 REST helper content types

Content type Response method

contains "json" Response.json()

starts with "image/" Response.blob()

application/octet-stream Response.blob()

This behavior can be overridden using the responseBodyFormat() method.

Here's an example of how to use of the REST helper:

define(['vb/helpers/rest'], (Rest) => {
...
async callRestViaHelper() {
 const myparameters = { qparam1 : “value1”, qparam2 : “value2” } ;
 // parameter info will be appened to endpoint URL using this format: ?
qparam1=value1&qparam2=value2

Chapter 1
Helper Utilities

1-235

 const rest = Rest.get('myservice/myendpoint').parameters(myparameters);
 const result = await rest.fetch();
 return result.body;
}

Here's a snippet showing how to use the REST helper with an extension, with the second
parameter defining the scope:

define(['vb/helpers/rest'], (Rest) => {
...
async callRestViaHelper () {
 const rest = Rest.get('serviceExtensionId:serviceId/endpointId',
{extensionId:myExtensionId});
 const result = await rest.fetch();
}

In this example, a header is passed to the REST helper:

define(['vb/helpers/rest'], (Rest) => {
...
async callRestViaHelper () {
 const initConfig = { headers : { someHeader : “abc” } } ;
 // add a header called “someHeader” with value “abc”
 var const rest = Rest.get('myservice/
myendpoint').initConfiguration(initConfig);
 var const result =await rest.fetch();
}

If the header has hyphens, create the initConfig object like this:

// add a header called “x-dynamic-header” with value “def”
const initConfig = { headers : { ["x-dynamic-header"] : "def" } };

Table 1-4 REST helper methods

Method Parameters Return Value Description

static get(endpointId) endpointId: serverID/
operationID, same as
RestAction,
ServiceDataProvider

Instance of REST object Factory method

initConfiguration(initConf
ig)

initConfig: the initConfig
of the fetch() Request
object

REST helper, to allow
chaining of method calls

See the Request Web
API

parameters(parameters
Map)

parametersMap: object
of key/value pairs, same
as RestAction
'uriParams'

REST helper Set the parameter for the
call. Parameters defined
as path parameters for
the endpoint will be
inserted in the URL as
appropriate; the rest will
be appended as query
parameters.

Chapter 1
Helper Utilities

1-236

Table 1-4 (Cont.) REST helper methods

Method Parameters Return Value Description

requestTransformationFu
nctions
(transformationFunction
Map)

transformationFunctionM
ap: map of functions.

REST helper See Call REST Action

requestTransformationO
ptions
(transformationOptionMa
p)

transformationOptionMa
p: map of request
transform parameters

REST helper See Call REST Action

responseTransformation
Functions
(transformationFunction
Map)

transformationFunctionM
ap: map of functions.

REST helper See Call REST Action

body(body) body: actual payload to
send with the request

REST helper -

hookHandler(handler) handler: should extend
RestHookHandler, and
may override the
following:

handlePreFetchHook(re
st)
handleRequestHook(req
uest)
 -
returns request
handleResponseHook(re
sponse)
 -
returns response
handlePostFetchHook(r
esult)
handlePostFetchErrorH
ook(result)

REST helper Allows installation of
callbacks for various
phases of the REST call,
which may configure the
REST helpers, modify
the request and
response, or do special
processing based on the
result or result error.

define(['vb/helpers/
rest', 'vb/helpers/
rest'],
(Rest,
RestHookHandler) => {
 class MyHandler
extends
RestHookHandler {

responseBodyFormat(for
mat)

format: one of: text, json,
blob, arrayBuffer,
base64, or base64Url.
The response body type
is the same as the
corresponding method
for Response (except
base64, which returns
just the encoded portion
of the base64 URL).

REST helper Overrides the default
behavior, which looks at
the "content-type"
header to determine how
to read (and parse) the
response.

fetch() - Promise Performs the configured
fetch() call

toUrl()

toRelativeUrl()

- Promise Utility methods for
building requests and
responses that require
the endpoint path.
Resolves with the full (or
relative) path of the
endpoint, or empty string
if the endpoint is not
found.

Chapter 1
Helper Utilities

1-237

The REST helper fetch() call returns a Promise that resolves with an object that contains the
following properties:

Table 1-5 fetch() call return value

Property Description

response The Response object from the native fetch() call, or
the return from a HookHandler's
handleResponseHook, if one is being used.

body The body of the response object; the helper will
attempt to call the appropriate Response method
(json(), blob(), arrayBuffer(), etc) based on
responseBodyFormat() and Content-Type.

Module Function Event Builder
Within the context of module functions including main-page.js and app-flow.js, there is
an event helper available to allow raising custom events, similar to the Fire Custom Event
Action.

The helper is made available to the module function through a context passed to the Module
classes constructor, and has two methods available.

Table 1-6 Module function event helper methods

Method Description

fireCustomEvent(name, payload) See Fire Custom Event Action.

fireNotificationEvent(options) See Fire Notification Event Action.

Example 1-81 Usage in a module function

'use strict';

define(function () {
 function MainPageModule(context) {
 this.eventHelper = context.getEventHelper();
 }

 MainPageModule.prototype.fireCustom = function (name, payload) {
 return this.eventHelper.fireCustomEvent(name, payload);
 }

 MainPageModule.prototype.fireNotification = function (subject, message) {
 return this.eventHelper.fireNotificationEvent({ subject, message, type:
'info' });
 }

 return MainPageModule;
});

Chapter 1
Helper Utilities

1-238

Security Helper
The SecurityHelper utility provides methods to retrieve security-related data.

getServiceAccessToken() Method

The SecurityHelper.getServiceAccessToken() method returns the JWT token for a
configured service connection that uses a JWT token based authentication method and that
doesn’t use the VB Proxy. The method returns an error if the connection type is proxy based
(for example, if the connection type is “Always use proxy, irrespective of CORS support"
or ”Dynamic, the service does not support CORS”). This method is supported for these
authentication types:

• Oracle Cloud Account

• OAuth 2.0 User Assertion

• OAuth 2.0 Client Credentials

• OAuth 2.0 Resource Owner Password Credentials

This table provides further details about this method:

Parameter servicename: The name of the Service Connection for which
the JWT token is to be retrieved.

Constructor public SecurityHelper()

Here’s an example of how this method is used:

define(['vb/helpers/securityHelpers'], (helper) => {
…
 async getToken(servicename) {
 let tokenOP = await helper.getServiceAccessToken(servicename);
 return tokenOP;
 }

Events
There are several types of events, all of which the application can react to, using the event
listener syntax.

There are several types of events in the runtime: page events, flow events, system events,
custom or developer-defined system events, component (DOM) events, and variable
events. Event types are all handled by executing action chains.

The application reacts to events through event listeners, which declaratively specify action
chains to execute when the event occurs.

Event Listener Syntax

An event listener is an object with the following properties:

• "chains": an array of action chains to execute; includes "chainId" and optional
"parameters".

Chapter 1
Events

1-239

• "stopPropagation": optional, used only by custom and component events. An expression
that is evaluated immediately; if true, the event will not propagate to the current hander's
container's parent.

• "preventDefault": optional, used only by component events. Like "stopPropagation", it is
evaluated immediately. If true, The default (DOM) handling is not executed.

The "chainId" refers to an action chain to trigger when this variable changes. Optional
parameters can be sent to the action chain in response to the event (see the next section for
more details). To gain access to the old or new values, these are exposed in the $event implicit
object, where $event.value is the new value and $event.oldValue is the old value.

The following example defines three event listeners; one for the vbNotification built-in event, a
custom event listener, and a component listener. The syntax for all three is the same, though
how they are invoked is different:

• The built-in vbNotification event is called when that event is fired by the system. No explicit
wiring of the listener is required. The name identifies which action should invoke this
listener.

• The custom myCustomEventOne, is called when the application explicitly fires that event.
As with vbNotification, no explicit wiring of the listener is required.

• onButtonClicked is a component event, and is explicitly bound to a component action.

"eventListeners": {
 "vbNotification":
 "chains": [
 {
 "chainId": "application:logEventPayloadChain",
 "parameters": {
 "message": "{{ $event.message }}"
 "type": "{{ $event.type }}"
 }
 }
]
 },
 "myCustomEventOne": {
 "stopPropagation": "{{ $event.type === 'error' }}",
 "chains": [
 {
 "chainId": "application:fireEventChain",
 "parameters": {
 "name": "customEventOne",
 "payload": {
 "value1": "some value",
 "value2": 3
 }
 }
 }
]
 },
 "onButtonClicked": {
 "chains": [
 {
 "chainId": "application:logEventPayloadChain",
 "parameters": {
 "eventPayload": "{{ $event }}"
 }

Chapter 1
Events

1-240

 }
],
 }

The following HTML example shows explicit component event binding:

<oj-button href="#" id='myButton'
 disabled="[[true]]"
 chroming='half'
 on-click='[[$listeners.onButtonClicked]]'>My Button!!!</oj-button>

Event Prefix

An event prefix is a way for event listeners to define which custom event they are listening to.
Two aspects of the event listener are represented in the reference: the extension where the
event is defined, and the scope. The syntax for the scope is the same in the base and in the
extension. The extension reference is placed before the scope, and is separated with a slash
(/).

Inside base (Local)

The syntax is myScope:myEventName where myScope can be omitted if it refers to an event
defined in this object.

Reference Description

page:eventName Refer to an event defined in current page

flow:eventName Refer to an event defined in the flow containing this page

application:eventName Refer to an event defined in the App UI

global:eventName Refer to an event defined in the Unified App

Inside extension (Export)

The syntax is extension/myScope:myEventName where extension can be omitted if it refers to
an event defined in the base object.

Reference Alias/Shortcut Description

base/page:eventName /page:eventName Refer to an event defined in the interface section of
the base page

base/flow:eventName /flow:eventName Refer to an event defined in the interface section of
the base flow

base/
application:eventName

/application:eventName Refer to an event defined in the interface section of
the base App UI

base/layout:eventName /layout:eventName Refer to an event defined in the interface section of
the base layout

base/global:eventName /global:eventName Refer to an event defined in the interface section of
the base Unified App

Declared Events
Declared events are events that are explicitly defined in the application model, to define a
specific contract and type for the event.

Chapter 1
Events

1-241

Events can be declared at the Application, Flow, or Page level. References to events use
prefixes, just like variables and chains.

Events may also be declared in Layouts; when used within the Layout, they behave like other
Visual Builder events. But to be able to listen to a Layout event outside of the Layout, you
must use the the "dynamicComponent" behavior (below).

Events have a "payloadType" which declares the type of the event payload. This type is limited
to simple scalar types, or objects and arrays composed of scalar types; you cannot define a
"payloadType" that references other type definitions.

Example 1-82 Declaration

"events": {
 "myPageEvent": {
 "payloadType": {
 "message": "string",
 "code": "number"
 }
 }
},

Example 1-83 Event Listener

The "page:" prefix is required only when listening outside the page, but is always
recommended for clarity).

"eventListeners": {
 "page:myPageEvent": {
 "chains": [
 {
 "chainId": "handleEvent",
 "parameters": {
 "payload": "{{ $event }}"
 }
 }
]
 },

Lifecycle (Page and Flow) Events
Lifecycle events are defined by the system to indicate to a container (page, flow, or application)
a change in its lifecycle. Event listeners are defined in a page or flow descriptor. When an
event is raised, the framework calls the event listener with the name of the event defined in the
descriptor.

Event listeners are defined in the page module under the “eventListeners“ property of the
container model. Like all event types, a single event can have multiple event listeners. Event
listeners call action chains and can pass parameters and return a payload.

The order of execution during navigation from page source to page target is:

1. vbBeforeExit is dispatched to the source page.

2. vbBeforeEnter is dispatched to the target page.

3. vbExit is dispatched to the source page.

Chapter 1
Events

1-242

4. vbEnter is dispatched to the target page.

Table 1-7 Lifecycle Events

Name Container Description Return

vbBeforeEnter Page Dispatched to a page before navigating to it. At the point
the event is dispatched, the previous page state still
exists. Since the target page is not yet initialized, page
variables are not available, but input parameters can be
accessed using $parameters.

Navigation to the page can be canceled by returning an
object with the property cancelled set to true. This
is useful for redirecting to another page.

{cancelled:
boolean}

vbEnter Page, Flow,
Application

Dispatched after all page-scoped variables have been
added and initialized to their default values, values from
URL, or persisted values. This is a point where
additional initialization work for the page (for example,
data fetches) can be done. This event is "non-stopping"
for a page, but can be stopped for other containers like
application or flow. In other words, for application or flow,
the processing of the web application will only continue
after the chains called by the event ends.

None

vbBeforeExit Page Dispatched to a page before exiting it. Navigation away
from a page can be canceled by returning an object with
the property cancelled set to true. This is useful
when the page has dirty data and leaving the page
should not be allowed before saving.

This event is dispatched to all pages in the current
container hierarchy, starting with the leaf page (deepest
nested page) and ending with the shell page (top level).

When navigation is triggered by browser history (forward
or back button), the payload is an object with the
following properties:
• origin: (String) Specify what triggered the

vbBeforeExit event. The only valid value is
popState

• direction: (String) Specify if vbBeforeExit was
triggered by navigating backward or forward in the
browser history

• steps: (Number) Specify how many steps
navigation goes backward or forward in the history
stack

• canBeCanceled: (Boolean) Whether navigation in
the browser can be canceled by returning the object
{ cancelled: true } to the vbBeforeExit event.

{cancelled:
boolean}

vbExit Page, Flow Dispatched when exiting the container (page or flow).
This event can be used to clean up resources before
leaving the page.

None

Chapter 1
Events

1-243

Table 1-7 (Cont.) Lifecycle Events

Name Container Description Return

vbBeforeAppI
nstallPrompt

Page, Flow,
Application

Dispatched when a PWA receives a
BeforeInstallPromptEvent from the browser. The event
will be dispatched after vbBeforeEnter, but there is no
guarantee that it will be dispatched after vbEnter. The
vbBeforeAppInstallPrompt event can be used to display
a native application install prompt by calling
event.getInstallPromptEvent().prompt(
). Currently, this is only supported in Chrome. For
PWAs, the event will be handled automatically by the
root page.

{ getInstallPro
mptEvent() }

vbAfterNaviga
te

Page Dispatched from the current page after navigation to this
page is complete. The payload is an object with these
properties:
• currentPage: the path of the current page

• previousPage: the path of the previous page

None

vbDataProvid
erNotification

Dispatched when a Data Provider's implicit fetch fails
with an error. The event has the following payload:

{
 severity: 'string', // severity level
 detail: 'any', // details of the error,
this could have the Rest failure details
 capability: 'object', // object with
the capabilities configured on the SDP
 fetchParameters: 'object', // object
with the parameters passed to the fetch
 context: 'object', // object
representing the state of the SDP at the
time fetch was initiated
 id: 'string', // uniqueId of the SDP
instance
 key: 'string', // since the event can
be fired multiple times, this identifies
the event instance
},

None

vbResourceC
hanged

Dispatched when an application has been updated. This
event allows the application to notify the user that they
need to refresh to view the updated application. A
default handler resourceChangedHandler is added in the
application template.

{
 error: {
 detail: 'string',
 },
}

None

Chapter 1
Events

1-244

Table 1-7 (Cont.) Lifecycle Events

Name Container Description Return

vbNewConten
tAvailable

Dispatched when an updated Web PWA service worker
has been activated. The event will be dispatched after
vbEnter. A typical example of how an application can
respond to a vbNewContentAvailable event is to open a
dialog prompting the user to reload the page.

None

Component Events
Component events (also known as DOM events) are similar to page events, except that they
are fired by components on a page (or other container).

A component event listener can have any name, and is generally associated to a component
event property via the binding expression on the component markup. Component event
listeners are defined in the Page (or container) module under the eventListeners property,
much like other Visual Builder events. For example, an event listener for the selectionChange
event for the <oj-tab-bar> component can be defined within the eventListeners section as:

"eventListeners": {
 "onSelectionChange": {
 "chains": [
 {
 "chainId": "respondToChange",
 "parameters": {
 "text": "{{ $event.detail.value }}"
 }
 }
]
 }
}

Component event listeners are called in the same way as page lifecycle event listeners. There
can be more than one listener. When there is more than one, they run in parallel.

To reference an event listener from a component, you can use
the $listeners.eventListenerName implicit object. For example:

<oj-select-single ... on-selection-change="[[$listeners.onSelectionChange]]"

Component Event Objects

Within the context of component event listeners, there are three implicit objects.

• $event: The event payload sent by the component.

• $current: This represents the second parameter passed to the handler, if any. For JET,
this can be either the $current binding variable, or the $data variable if $current does not
exist in the component context.

• $bindingContext: represents the third parameter passed, if any. For JET, this is the
(Knockout) view model, and it will therefore contain the $current or $data variable as a
property.

Chapter 1
Events

1-245

These variables do not exist outside the listener context. In other words, you can reference
these in the listener declaration, but you cannot reference them in the called action chain; any
values needed in these variables must be passed explicitly to the action chain as arguments
(chain variables).

These three variables represent the arguments passed to the listener, and are not directly tied
to specific JET values. Their meaning could be different depending on the context.

For example, if using an event listener within an <oj-list-item> item, the value of $current
could be different whether you are using the item.renderer attribute or the itemTemplate slot
to display the item.

• Within an item.renderer script, JET does not define $current, so instead passes $data as
the second argument, so the Visual Builder $current is JET/Knockout $data. In some JET
contexts, like anitem.renderer script, you will also need to prefix Visual Builder listeners
with (Knockout) $parent in the HTML.

• Within an itemTemplate slot, JET defines $current, and passes that, so Visual
Builder $current is JET $current.

To determine whether JET $current exists for your use case., refer to the JET documentation
for the component to which you are adding a listener.

Additionally, the developer could decide to pass their own custom object for the parameters. In
the example below, the listener is wrapped, so Visual Builder $current is "some string", and
Visual Builder $bindingContext is undefined.

<oj-button on-click="{{ function(event, current, bindingContext)
{ $page.listeners.someListener(event, "some string") } }}">
 Click Me!
</oj-button>

Component Event Listener "preventDefault" Property

Component event listeners have an additional preventDefault property, which can be used to
prevent the normal DOM event handling from being executed.

This example uses an expression to check the payload of the event to stop propagation:

"eventListeners": {
 "customEventTwo": {
 "chains": [
 {
 "actionsId": "handleEventInMod2PageChain",
 "parameters": {
 "eventPayload": "{{ $event }}"
 },
 }
],
 "preventDefault": "{{ $event.type === 'info' }}"
 }

Component Event Listener "asyncBehavior" Property

Some components such as the JET table support events that accept async event listeners,
where the event accepts a Promise. This allows the component that fired the event to cancel it

Chapter 1
Events

1-246

asynchronously, if needed. The Promise provided by Visual Builder event listeners can also be
resolved or rejected within Visual Builder based on the action chain's behavior.

To opt in to the async behavior for a component event, the eventListeners property
asyncBehavior must be set to "enabled". The default value for this property is "disabled".
Before implementing action chain logic, refer to the component docs to make sure you
understand the implications of enabling async behavior.

Here's an example of enabling async behavior for a table component's ojBeforeRowEditEnd
event, with the asyncBehavior property set to "enabled" within the eventListeners property:

{
 "eventListeners": {
 "tableBeforeRowEdit": {
 "asyncBehavior": "enabled",
 "chains": [
 {
 "chainId": "beforeRowEditChain",
 "parameters": {
 "rowIndex": "{{$event.detail.rowContext.status.rowIndex}}"
 }
 }
]
 }
 }
}

The table component bound to the ojBeforeRowEditEnd event in the preceding example can
be configured as:

<oj-table scroll-policy="loadMoreOnScroll"
 id="oj-table-1"
 class="oj-flex-item oj-sm-12 oj-md-12"
 edit-mode="rowEdit"
 selection-mode='{"row": "single"}'
 data="{{ $page.variables.productsADP }}"
 scroll-policy-options.fetch-size="3"
 columns="{{ $page.functions.columnsArray }}"

 on-oj-before-row-edit="[[$listeners.table1BeforeRowEdit]]">
 ...
</oj-table>

Fragment Events
See Fragment Events.

Custom Events
Custom events are similar to page events, except that they are not limited to lifecycles. Their
event listeners can be defined in a page, flow, or application.

An event name is defined by the user, and is explicitly fired by the application, using the event
Actions provided, in the context of a page.

Chapter 1
Events

1-247

Custom event listeners are defined in the page or flow under the eventListeners property.

One difference between custom events and page events is that they 'bubble' up the
containment hierarchy. Any event listeners in a given flow or page for the event are executed
before looking for listeners in the container's parent. The order of container processing is:

• The page from where the event is fired.

• The flow containing the page.

• The page containing the flow.

• Recursively up the containment, ending with the application.

Custom and system event behavior can be modified using the stopPropagation property, which
prevents the event from bubbling to this event listener's container's parents.

Example 1-84 stopPropagation Example

"eventListeners": {
 "customEventTwo": {
 "stopPropagation": "{{ $event.type === 'info' }}"
 "chains": [
 {
 "actionsId": "handleEventInMod2PageChain",
 "parameters": {
 "eventPayload": "{{ $event }}"
 }
 }
],
 }...

vbNotification Events

The vbNotification event is a built-in custom event, rather than a page, flow, or application
event, as it is an event only explicitly fired by the application using the action 'vb/action/builtin/
fireNotificationEventAction' (see Fire Notification Event Action)

The payload is an object with these properties:

• "summary": a short summary, subject, or title

• "message": any text meaningful to the application

• "displayMode": "persist" or "transient"

• "type": "error", "warning", "info", or "confirmation"

• "key": an optional GUID, which may be useful for the UI. If not provided, one is generated
and provided in the payload.

System Events
System events are identical to custom and page events, except that the framework defines the
event.

An event name is defined by the user, and is explicitly fired by the application, using the event
Actions provided, in the context of a page.

System event listeners are defined in the page, shell, or flow under
the eventListeners property.

System events also propagate or bubble up the page's container hierarchy, executing any
listeners. Event bubbling can be stopped.

Chapter 1
Events

1-248

One difference between system events and page events is that they 'bubble' up the
containment hierarchy. Any event listeners in a given flow or page for the event are executed
before looking for listeners in the container's parent. The order of container processing is:

• The page from where the event is fired.

• The flow containing the page.

• The page containing the flow.

• Recursively up the containment, ending with the application.

Custom and system event behavior can be modified using the stopPropagation property, which
prevents the event from bubbling to this event listener's container's parents.

Example 1-85 stopPropagation Example

"eventListeners": {
 "customEventTwo": {
 "stopPropagation": "{{ $event.type === 'info' }}"
 "chains": [
 {
 "actionsId": "handleEventInMod2PageChain",
 "parameters": {
 "eventPayload": "{{ $event }}"
 }
 }
],
 }...

Event Behavior
Event behavior refers to how the listeners are called in relation to each other, whether the
result for the listeners is available, and what form the result would take.

Event behavior is meaningful for base applications, as well as extensions, and is not specific to
events defined in the "interface".

Event Behavior Types

The event behavior does not define the order in which the listener chains are called; event
behaviors define whether they are called serially or in parallel, whether the Action that raised
the event waits for listener resolution, and what the "result" of the listener invocation looks like.

For event behavior, "serially" means:

• All event listener chains for a single event listener (in a container) are called sequentially,
in declared order. This means that a listener action chain is not called until any previous
actions in the chain have finished.

• The event listeners for the next container's listeners are not called until the listener action
chains for any previous container's event listeners have finished.

The following table describes the event behavior types.

Event Behavior Description

Notify Parallel - The event is triggered but the application does not wait for the extension
to process it.

Chain results are not available to the Action (or helper) that fired the event
(because the listeners are called without waiting).

This is the default behavior.

Chapter 1
Events

1-249

Event Behavior Description

NotifyAndWait Serial - Each action chain listener must complete (and resolve any returned
Promise, if any) before another event listener action chain is called.

Chain results are not available to the Action (or helper) that fired the event.

CheckForCancel Serial - Each action chain listener must complete (and resolve any returned
Promise, if any) before another event listener action chain is called.

If any of the listener Chains returns a "success" with a payload of
{ "stopPropagation": true }, the application will stop calling event listeners.

When calling listeners defined in both extensions and the base application, the
listeners in the "closest" extension are called first. In other words, extensions of
extensions are called before extensions of the base. This allows higher-priority
extensions to cancel listening before the lower-priority extensions (or base) receive
the event.

Chain results are not available to the Action (or helper) that fired the event.

Transform Deprecated. Replaced by TransformPayload.

TransformPayload Serial - Each action chain listener must complete (and resolve any returned
Promise, if any) before another event listener action chain is called.

The "eventListener" will have access to a new context variable, $previous, which
is a peer of \$event. This will be the result of the previous listener invocation's
chain result, or undefined for the first invocation.

The "eventListener" for a "transform" event can also have a "returnType"
declaration, analogous to the "payloadType", but corresponding to the \$previous
value. If the event declaration has a "returnType", $previous should match the
type, otherwise, it will be coerced to the type.

When calling listeners defined in both extensions and the base application, the
listeners in the "base" are called first. In other words, the base fires an event with a
value, and the extensions may optionally modify that value. (This convention is the
opposite order of the "cancel" behavior).

The final result, "returnType", when all the listeners have been called, will be
returned as the result of the fireCustomEventAction that initially raised the event.

If the application wishes to use the "transform" mode, the convention it should
follow is:

• For any listeners for an event with a "transform" behavior that references more
than one Chain, the Chains are called in array order.

• All listeners for an event with a "transform" behavior should pass
the $previous as an argument to their Chain (and this will typically be wired
by the design time).

• All listeners for an event with a "transform" behavior should define a
"returnType", which matches the "returnType" for the event declaration.

• The Chain variable argument that corresponds to $previous should have an
argument that matches the "returnType" of the event, and the Chain should
also have a "returnType" that matches the listener's "returnType" (note that "
payloadType" and "returnType" cannot currently reference defined Types).

• The Chain should have a "returnType" defined, that matches the "returnType"
of the event.

The design time can add parameters for the listener, and the inputs for the Chain,
to provide \$previous, in the same way it currently provides the $event.

Variable ‘onValueChanged’ Events
Specific to variables, the 'onValueChanged' event is raised by the framework when a variable’s
value changes.

Chapter 1
Events

1-250

To add an event listener to an event, specify it in the 'onValueChanged' property of the
variable. Event listeners can only be added to the root variable, not to any sub-objects of the
variable structure. It uses the same syntax as other event listeners.

"variables" : {
 "incidentId": {
 "type": "string",
 "input": "fromCaller",
 "required": true,
 "onValueChanged": {
 "chains": [
 {
 "chainId": "fetchIncidentChain",
 "parameters": {
 "incidentId": "{{ $event.value }}"
 }
 }
]
 }
 }
},

Old and new variable values are available in the $event implicit object.

• $event.oldValue provides the variable’s old value.

• $event.value provides the variable’s new value.

• $event.diff can be used for complex types, where it is necessary to know the properties
within the variable that changed.

See the Variables section for details on variables.

Optional parameters can be sent to the action chain in response to the event. See the JSON
Action Chains section for more information.

Multiple event listeners can be added for the same event (note that 'chains' is an array
property). In this case, the event listeners will be run in parallel with respect to each other.

Chapter 1
Events

1-251

2
Related Topics

Declarative RequireJS Path Mapping
The application model supports declarative requireJS path mapping, using the "requirejs"
property.

String values and expressions are supported. Expressions use the normal 'double-brace'
convention to indicate it should be evaluated. Expressions cannot make references to
application artifacts because evaluation happens before the application is created, but can use
Declarative Initialization Parameters.

The "map","paths" and "bundles" sections of the requireJS.config object definition are
currently supported:

{
 "applicationModelVersion": "19.3.1",
 "id": "myApp",
 "description": "Big Box FixitFast Technician App",
 "defaultPage": "shell",
 "requirejs": {
 "paths": {
 "myPathPrefix": "some/other/path/prefix",
 "expPrefix": "{{ $initParams.myPrefix + '/somepath' }}"
 }
 },

For more details, see:

• http://requirejs.org/docs/api.html#config-paths

• http://requirejs.org/docs/api.html#config-map

Service Resolution
This section provides an overview of how the Visual Builder runtime (RT) resolves a service
name into the actual service definition that describes how to make a REST request. The
behavior is applicable to applications and extensions/app UIs.

Note:

In this section, the term "module" refers to both the base app (base) and to
extensions.

2-1

http://requirejs.org/docs/api.html#config-paths
http://requirejs.org/docs/api.html#config-map

An extension depends on one or more modules

• All extensions depend on base.

• An extension may depend on one or more extensions.

• Starting from the extension that is farthest from base, the dependency relationship must be
a "straight line from that extension and base".

– Dependency cycles are not allowed

– The following dependency relationships are allowed:

* ext2 depends on ext1 depends on base

* ext3 depends on base

* ext4 depends on ext3 depends on base

ext4 depends on ext2 depends on ext1 depends on base

* base

– The following dependency relationships are not allowed:

* ext1 depends on ext1

* ext2 depends on ext1 depends on ext2

* ext2 depends on ext1 depends on ext3 depends on ext2

* base depends on ext1

Services and Backends can be defined in base and in extensions

• A backend is an object defined in the catalog.json artifact of the module. A backend
describes how to access a server, including the server URL, required headers, and
authentication details.

• The path for the catalog.json artifact in base is <app>/services/catalog.json.

• The path for the catalog.json artifact in an extension is <extension>/services/self/
catalog.json.

A service can be either dynamic or static

A dynamic service is contributed via the catalog.json artifact of a module.

• The entry on the catalog is not the "metadata" of the service but instead the way to fetch
such metadata, hence the term "dynamic".

– The metadata of a service is a document with the OpenAPI definition that describes
the endpoints and the types of the service.

• In the catalog.json artifact, a service is defined as an entry of the services object:

– The name of the service is used as the key.

– The value is an OpenAPI definition with a single endpoint. The response yielded by
fetching this endpoint should be the metadata for the dynamic service.

• Example of service entry in catalog.json:

Chapter 2
Service Resolution

2-2

• A static service is contributed by providing the actual metadata for the service as an artifact
of the application.

– The default path for a static service in the base is <app>/services/<service name>/
openapi3.json.

– The default path for a static service in an extension is <extension>/services/self/
<service name>/openapi3.json.

– Example of static service:

A service may or may not be registered

• Users can choose to register a service in an artifact, such as app-flow.json.

Chapter 2
Service Resolution

2-3

– The name of the service is used as the registration entry key.

– The registration value indicates how to locate the service and is typically the path to an
artifact or the URI that identifies a dynamic service (for example, vb-catalog://
services/extA:myservice).

• It is no longer a requirement that all services are registered. See Endpoint ID below for a
description of how the RT tries to resolve service names, regardless of whether it's
registered or not.

• An advanced usage of the registration is to create new service names for existing services.

• Example:

A service is expected to be uniquely identified by its name

• Not recommended: if a module uses the same "not registered" name for both a dynamic
service and a static service, RT uses the dynamic service.

• A service name should be unique across different modules.

– DT will warn the user if that's not the case.

– Not recommended: RT handles the scenario in which the same service name
appears in multiple modules, as explained later on in this document. However this may
lead to "app level" programming errors that are hard to debug.

A module may be able to use services and backends from another module

• A service and a backend can be only used by a different module if that "object" is marked
as accessible and if the module using the "object" depends on the module defining the
"object".

– An accessible service or backend defined in base can be used by any module.

* Conversely, base cannot use services and backends defined by other modules.

– An accessible service defined in extension extB can only be used by extB itself and by
extensions that depend on extB (directly or indirectly).

* The same applies to a backend

• Services that are not marked as accessible are private and can only be used by the
module that defines them.

Chapter 2
Service Resolution

2-4

• Example of an accessible static service:

• Example of an accessible dynamic service:

• Example of an accessible backend:

Chapter 2
Service Resolution

2-5

Endpoint Id

• An endpoint id is a string that identifies a service and an operation within that service.

– For example, petstore/getAllPets refers to the operation from the service petstore,
and which is identified by the id getAllPets.

• With the introduction of extensions, an endpoint id is expected to be "namespaced" to
precisely indicate the module that contains the service.

– Examples: base:petstore/getAllPets, extA:storage/createItem
* The DT warns the user if the endpoint id is not fully qualified (if it does not have the

extension id).

* Adding a namespace to an endpoint id does not circumvent the visibility rules for
services and backends (see Using services and backends from another module
above).

* In other words, using the endpoint id extB:myservice/getAll on a module
that depends on the extension extB fails to resolve if extB is not exposing a
service named myservice.

Note:

The RT can handle endpoint ids without namespaces, however, this is not
recommended because it may lead to "app level" programming errors that
are hard to debug.

• An endpoint id is typically used as an argument to a RestAction, and to a code making a
REST request via the RT's REST Helper.

– They are also used on ServiceDataProvider and related APIs.

Service Transforms
In order to fetch data required by the application (from a backend service), callers can use the
VB RestHelper utility directly or, use a Call Rest action or ServiceDataProvider.

Chapter 2
Service Transforms

2-6

Regardless of the mechanism used, for the request to happen the identifier of the endpoint
along with the values of the endpoint "parameters" may need to be processed and transformed
into a form that is expected by the target service / endpoint scheme. Likewise, the response
received may need to be processed into to a form that is expected by the caller. In order to
facilitate this every service configuration must register a transforms module that implements
metadata, request and response transform functions.

Type of Transforms API Description

Request Transforms API Defines the various request transforms functions
that a service can support. These are specific to
the capabilities afforded by the service endpoints.
For example, a Business Objects based service
with a getAll operation (getAll /employees)
automatically supports capabilities that include
paginate, query, filter, sort. These can be used to
define the transforms functions that allow authors
to transform input parameters for a request - such
as server variables, path and query parameters,
header parameters, and other parameters (such as
filter criterion, sort criteria) that are provided by the
caller initiating the request.

For details on request transform function, see
Request Transformation Functions.

Response Transforms API Defines the various response transforms functions
that a service can support. Again these are specific
to the capabilities afforded by the service
endpoints. For example, a Business Objects based
service endpoint with a getAll operation (getAll /
employees) can return information that can be
processed in response transforms functions, such
as paginate and body.

For details on reponse transform function, see
Response Transformation Functions.

Metadata Transforms API Defines a standard way for a service to provide a
Map by a 'capabilities' that it supports. This allows
the caller to be aware of level of support that the
service has. Example of capabilities include filter,
sort, fetchByKeys etc.

Collectively, all three APIs are referred to as the Transforms API. The specific implementation
of the Transforms API for a particular service is referred to by its name (for example, Business
Objects Transforms). Refer to the JSDocs for serviceTransforms.js for details.

Standard Transforms File

A sample custom transforms implementation must return an object with three properties
(metadata, request and response), each containing methods with specific signatures. Refer to
the documentation for each type to understand how to implement them.

'use strict';

define([], () => {

 /**
 * Request class implements all the request tranforms functions needed to
transform the input parameters to the
 * Rest call. Each transforms function takes the parameters passed to it

Chapter 2
Service Transforms

2-7

and transforms it to a form that the
 * target service endpoint expects. Often this involves updating to the
configuration.url
 */
 class Request {
 /**
 * filter builds filter expression query parameter using filterCriterion
object set on the options.
 * @param {Object} configuration
 * @param {Object} options
 * @param {Object} transformsContext a transforms context object that can
be used by authors of transform
 * functions to store contextual information for the duration of the
request.
 * @returns {Object} configuration object, the url looks like ?filter=foo
eq bar
 */
 static filter(configuration, options, transformsContext) {
 // process filter options and fix up configuration.url
 return configuration;
 }

 static body(configuration, options, transformsContext) {}

 static fetchByKeys(configuration, options, transformsContext) {}

 static query(configuration, options, transformsContext) {}

 static paginate(configuration, options, transformsContext) {}

 static select(configuration, options, transformsContext) {}

 static sort(configuration, options, transformsContext) {}

 static vbPrepare(configuration, options) {}
 }

 /**
 * Response class implements all the response tranforms functions needed to
transform the response from the Rest
 * call. Each transforms function takes the parameters passed to it and
transforms the result to a form that the
 * caller expects. Often this involves updating configuration.body, which
 */
 class Response {
 static paginateResponse(configuration, transformsContext) {}

 static bodyResponse(configuration, transformsContext) {}

 someOtherMethod(config) {}
 somePrivateMethod() {}
 }

 class Metadata {
 static capabilities(configuration) {}
 }

Chapter 2
Service Transforms

2-8

 // Note: If the above classes implement other instance methods its best to
return
 // just the methods a transforms user will need. For example, the response
property
 // below returns just the exported methods
 return {
 metadata: Metadata,
 request: Request,
 response: { paginate: Response.paginateResponse, body:
Response.bodyResponse }
 };
});

Usage

Generally, all implementations for the various request, response and metadata transforms
functions pertaining to a particular service, are included in a transforms file that is then
associated to the service configuration.

In the example below, vb/BusinessObjectsTransforms is the pre-defined transforms
implementation used with Business Objects based services.

In a catalog.json for a Business Objects based service, the transforms file is set in the
backends (or services) section (see the example below). Refer to the Service Connection docs
for exact details on how this is configured, and where it is defined.

This file contains the default implementations for the most common transforms functions, that
are applied for the majority of service endpoints. However, specific endpoints can override the
defaults, and/or add custom transforms implementations.

{
 "backends": {
 "crmBO": {
 "headers": {},
 "servers": [
 {
 "variables": {
 "faVersionVar": {
 "default": "11.13.18.05"
 }
 },
 "url": "vb-catalog://backends/fa/crmRestApi/resources/
{faVersionVar}"
 }
],
 "transforms": {
 "path": "vb/BusinessObjectsTransforms"
 }
 }
 },
 "services": {
 "journeys": {
 "info": {
 "x-vb": {
 "transforms": {
 "path": "./finderOperationTransform.js"

Chapter 2
Service Transforms

2-9

 }
 }
 },
 "servers": [
 {
 "x-vb": {
 "headers": {
 "Accept": "application/vnd.oracle.openapi3+json"
 }
 },
 "url": "vb-catalog://backends/hcmBO/journeys/describe"
 }
]
 }
 }
}

Additionally, the default service transforms can also be overridden at the Service Data
Provider, Call Rest action and the Rest Helper levels, using specific properties on each. Refer
to the docs for the same for details.

Note:

In VB applications, services are generally BusinessObjects. VB Runtime provides a
default implementation for a Business Objects based service.

If your application uses a third party service, you may need to implement a custom
transforms module that includes the appropriate metadata, request, response
transforms functions specific to the capabilities afforded by the service.

Metadata Transforms
Service authors can implement the Metadata Transforms API in their transforms code, which
returns a Map of capabilities (with keys such as filter, sort, fetchByKeys) supported by a
particular service endpoint.

The default transforms implementations for Business Objects services processes the endpoint
metadata to determine the level of support and returns a Map of capabilities for that endpoint,
that can then be understood by Data Provider implementations. The capabilities can be
retrieved using the Metadata.capabilities().

The following is a sample structure of the capabilities for a Business Objects based service.
The list of capabilities generally applies to all endpoints that the service includes, but authors
can provide custom capabilities for different endpoints.

{
 "fetchByKeys": {
 "implementation": "lookup",
 "multiKeyLookup": "yes"
 },
 "fetchFirst": {
 "implementation": "iteration"
 },

Chapter 2
Service Transforms

2-10

 "fetchByOffset": {
 "implementation": "randomAccess"
 },
 "sort": {
 "attributes": "single"
 },
 "filter": {
 "operators": [
 "$eq",
 "$ne",
 "$co",
 "..."
],
 "textFilter": true
 }
}

The Service Data Provider determines its own capabilities based on the information above.

Signature

The metadata transforms capabilities function has the following signature:

function capabilities(configuration) {
 const caps = {};

 // process the endpoint configuration and build the capabilities for this
endpoint
 return caps;
}

The parameters to this function are

• configuration: An object that has the following properties:

– endpointDefinition: The metadata pertaining to the endpoint

– initConfig: The configuration for the current Rest call. The 'initConfig' exactly matches
the 'init' parameter of the request, as described in Request.

– parameters: Server variables, path and query parameters

– url: The full URL of the request.

The return value is a Map of capabilities whose JSON structure resembles the example in the
previous section. For the full list of properties in the capabilities, refer to the Visual Builder
Runtime public serviceTransforms.js API, and the JET Data Provider docs for the right set of
values for each capability. Business Objects service transforms implementations only support a
subset of the capabilities defined by JET Data Provider.

Example

A default implementation for the capabilities supported on an endpoint for a Business Objects
based service is already provided as part of the default Business Objects transforms. It returns
an object like the example shown below. The capabilities for an endpoint are cached once it's
determined that the capabilities are not being modified. It's uncommon for page authors to

Chapter 2
Service Transforms

2-11

want to override the default capabilities, but it can be set on the Service Data Provider variable,
if needed.

define([], function () {
 /**
 * transforms pertaining to a service or endpoint and not tied to a request.
 *
 * @type {{capabilities: (function(*): {})}}
 */
 class MetadataTransforms {
 /**
 * Returns the capabilities as defined by a DataProvider
 * @param configuration
 * @return {Object}
 * @private
 */
 // eslint-disable-next-line no-underscore-dangle
 static getCapabilities(configuration) {
 const caps = {};
 const c = configuration;
 const epDef = c.endpointDefinition;
 const paramsDef = epDef && epDef.parameters;
 if (paramsDef) {
 const queryParamsDef = paramsDef.query || {};

 if (queryParamsDef) {
 // using the endpoint definition build the capabilities
 }
 }

 return caps;
 }
 }

 class Response {};
 class Request {};

 // Note: as an example, the metadata object is expanded to include just the
sort property
 return {
 metadata: { capabilities: MetadataTransforms.getCapabilities },
 request: Request,
 response: Response
 };
});

Translations
The Translations API makes it possible to get localized strings
using $container.translations.

Translation bundles may now be defined declaratively in Application, Flow, or Page containers.
The properties of the "translations" object are the names of the bundle, and the value must
contain a "path" property that is the path to the bundle.

Chapter 2
Translations

2-12

When you declare a bundle at the Application level, an optional "merge" property allows you to
specify an existing bundle path, which this bundle should merge with and override. This allows
overriding existing bundles in JET, or JET CCs, with Application-level bundles. Expressions for
"merge" are supported, but they cannot reference Application artifacts, as this evaluation
happens before the creation of the Application.

The following paths are supported for "path":

• container relative: a path fragment prefixed by "./" (dot-slash) will be appended to the
declaring container's (flow, page) path. Note that flows and pages are not allowed to reach
outside of its container (the path cannot reference parent folders). This means that "../" is
not allowed anywhere in the path. See the note about Using "merge" below.

• application relative: a path fragment without a "./" prefix will be relative to the application
root. This is discouraged for Flows or Pages, except where a RequireJS path mapping is
being used.

• absolute: paths that contain a host are used as-is.

The bundle must be in a folder named nls : the path can be any depth, but the last folder in
the path must be nls, such that the root bundle is in the nls/ folder.

Translation bundles have the standard JET bundle format. String resolution uses the JET
oj.Config.getLocale() to get the current locale for the context.

Caution:

Using "merge"
When using "merge", take care to use requireJS mapped references consistently. A
common failure is when the "merge" property does not use a requireJS mapping, but
the defining path to the bundle does use a mapping. For example,when a CCA is
loaded using a requireJS path ("mapped/foo/loader") and it references the bundle
using a relative path ("./resources/nls/strings"), the app flow MUST also use the
mapping: ("merge": "mapped/foo/resources/nls/strings").

When a dot (".") is used as a prefix in the bundle paths, be aware that "merge" will
not work. Internally, Visual Builder 'normalizes' bundle paths, so the actual paths
used to define the bundle do not have a "dot" prefix.

For example, the declaration below defines a bundle, and then overrides it; note the
use of the "dot" prefix everywhere except the "merge". If "merge" is used in a a
declaration in app-flow.json, which is typical, the "dot" prefix on the "path"
properties are optional.

"translations": {
 "translations" : {
 "app" : {
 "path" : "./resources/strings/app/nls/app-strings"
 },
 "appoverride" : {
 "merge": "resources/strings/app/nls/app-strings",
 "path" : "./resources/strings/override/nls/override-strings"
 }
 },

Chapter 2
Translations

2-13

Example 2-1 Bundles

Two bundles, translations.js and moreTranslations.js, are defined in a Page model
JSON, named "app" and "anotherBundle":

"translations": {
 "app": {
 "path": "./resources/nls/translations"
 },
 "anotherBundle": {
 "path": "./resources/nls/moreTranslations"
 }
},

The corresponding expression syntax would be as follows, with one expression per bundle:

<h4><oj-bind-text value="[[$page.translations.anotherBundle.description]]"</oj-bind-
text></h4>

 <oj-bind-text value="[[$page.translations.format('app', 'info.instructions',
{ pageName: 'index.html' })]]"</oj-bind-text>

Example 2-2 Overriding both JET strings and a component's strings

{
 "id": "demoCardDemo",
 "description": "Custom Component, Demo Card, with methods",
 "defaultPage": "shell",
 "translations": {
 "main": {
 "path": "resources/nls/translations",
 "merge": "ojtranslations/nls/ojtranslations"
 },
 "dcoverride": {
 "path": "resources/nls/demo-card-overrides",
 "merge": "resources/components/democard/resources/nls/demo-card-translations"
 }
 },

Expression Language

Similar to variable references and other references, the objectcan be prefixed with the
container (for example, application in the example below), or you can omit the container, in
which case the current container is assumed.

<oj-bind-text
 value="[[$translations.format('myPageBundle', 'info.instructions',
{ pageName: 'index.html' })
]]">
</oj-bind-text>
<!-- or -->
<oj-bind-text
 value="[[$application.translations.format('myPageBundle',
'info.instructions', { pageName:
 'index.html' })]]">
</oj-bind-text>

Chapter 2
Translations

2-14

In the example above, the format() function allows both named and positional replacement.

<oj-bind-text
 value="[[$page.translations.shell.shell_header_title]]">
</oj-bind-text>

Strings can be referenced directly, using $translations.<bundle>.<string id>.

Existing Applications That Use Translations

Applications that used translations prior to 18.2.3 must manually migrate their translations.
Translations previously used the JET configuration, and therefore had one bundle for the entire
app. You have several options:

• Declare the bundle. You can choose to break the bundle up logically, but the simplest
migration would be to use the exact example above in app-flow.json, which uses the
path for the existing bundle provided for new apps.

• Change the expression syntax to the new syntax. Assuming you declared your single
bundle in the same manner as the Bundles example, named "app":

– For just the translated string, change $application.translations.get(key)
to $application.translations.app.key

– For Strings that require replacement, change $application.translations.get(key,
arguments) to $application.translations.format('app', key, arguments)

Specifying the Locale

By default, VB defers to JET to determine the current locale for the client. This is typically done
by first looking at the <html> tag 'lang' attribute, and then falling back to some browser settings.

There is a "localization" declaration section in the Application model (app-flow.json) that
contains a "locale" property, which allows the developer to specify an alternate locale. This
configures the JET ojL10n plugin to use this locale.

Expressions may be used, but the application is not created at this point, and therefore no
application functions or variables are available. Instead, the developer must provide the
necessary JavaScript. The developer should also set the 'lang' attribute on the <html> tag, so
that JET, and anything that uses JET, will also use this locale.

Example 2-3 Locale Example

{
 "id": "demoCardDemo",
 "description": "Custom Component, Demo Card, with methods",
 "defaultPage": "shell",
 "services": {},
 "translations": {
 "main": {
 "path": "resources/nls/translations",
 },
 },
 "localization": {
 "locale": "{{ determineLocale() }}"
 },
 "types": {}
}

Chapter 2
Translations

2-15

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Understand the Page Model
	Variables
	Object Variables
	Array Variables
	Metadata Variables
	Built-in Variables
	Types
	Built-in Extended Types
	Service Data Provider
	Service Data Provider Properties
	Implicit and Externalized Fetches
	Merge Transform Options Function
	Request Transformation Functions
	vbPrepare Transform
	vbPrepare Request Transform Examples

	FetchByKeys Transform
	Filter Transform
	Paginate Transform
	Query Transform
	Select Transform
	Sort Transform
	Body Transform

	Response Transformation Functions
	Paginate Transform
	Body Transform

	Methods
	Events

	ServiceDataProviderFactory
	Multi-Service Data Provider
	MultiServiceDataProviderFactory
	Array Data Provider 2
	Array Data Provider (Legacy)

	Custom Extended Types
	InstanceFactory Types
	JET Dynamic UI Variable Types
	Default Values
	Expressions in Default Values
	Input Variables
	Persisted Variables
	rateLimit Variable Property

	Constants
	JavaScript Action Chains
	JavaScript Actions
	Assign Variable
	Call Action Chain
	Call Component
	Call Function
	Call REST
	Call Variable
	Code
	Fire Data Provider Event
	Fire Event
	Fire Notification
	For Each
	Get Dirty Data Status
	Get Location
	If
	Login
	Logout
	Navigate Back
	Navigate To Application
	Navigate To Flow
	Navigate To Page
	Open URL
	Reset Dirty Data Status
	Reset Variables
	Return
	Run in Parallel
	Scan Barcode
	Share
	Switch
	Try-Catch-Finally

	JSON Action Chains
	JSON Actions
	Assign Variables Action
	Metadata-Driven Variable Assignment
	Assign Variables With a Custom Function

	Call Action Chain Action
	Call Component Action
	Call Function Action
	Call REST Action
	Call Variable Method Action
	EditorUrl Action
	Fire Event Action
	Fire Data Provider Event Action
	Fire Notification Event Action
	ForEach Action
	Get Location Action
	If Action
	Login Action
	Logout Action
	Navigate Action
	Navigate Back Action
	Open URL Action
	Reset Variables Action
	Return Action
	Run in Parallel / Fork Action
	Scan Barcode Action
	Share Action
	Switch Action
	Take Photo Action
	Transform Chart Data Action (Deprecated)
	Web Share Action

	Action Chain Properties
	Variable References in Action Chains
	Action Chain Variables
	Action Results

	Flow
	Flow Properties
	Using Flows to Create Single-Page Applications
	Represent the Flow State in the URL
	Navigating Between Flows and Pages
	Flow Lifecycle
	Load Flow Resources
	Use Flows Not in the Flows Folder
	Shell Flow

	Fragments
	Define a Fragment Component
	Fragment Scopes and Namespaces
	Define Fragment Input Parameters
	Write Back a Fragment Variable Value to the Parent Container
	Deferred Rendering of a Fragment

	Fragment Events
	Referencing Fragments in Extensions
	Extending a Fragment
	Fragment Patterns

	Components
	HTML Source
	VB Switcher Component
	VB Switcher Navigation
	VB Switcher Usage and Properties
	VB Switcher Methods
	VB Switcher Events
	VB Switcher Examples

	Imports
	Import Custom Components
	Import Custom Modules
	Import Modules Using requireJS Path Mapping
	Import Modules Using a Global Functions Resource Path
	Define Global Functions
	Use Global Functions in a Container
	Reference Global Functions in an Expression
	Examples of Accessing Global Functions in Extensions

	Import Custom CSS

	Security
	Security Configuration
	Security Provider
	User Information
	Error Handling

	Helper Utilities
	REST Helper
	Module Function Event Builder
	Security Helper

	Events
	Declared Events
	Lifecycle (Page and Flow) Events
	Component Events
	Fragment Events
	Custom Events
	System Events

	Event Behavior
	Variable ‘onValueChanged’ Events

	2 Related Topics
	Declarative RequireJS Path Mapping
	Service Resolution
	Service Transforms
	Metadata Transforms

	Translations

