
Visual Builder

Groovy Scripting Reference

18.4.1

Visual Builder
Groovy Scripting Reference

18.4.1

Part Number: F13985-03

Copyright © 2019,2021, Oracle and/or its affiliates. All rights reserved

Authors: Steve Muench

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Visual Builder
Groovy Scripting Reference

Contents

Preface .. i

1 Introduction 1
Terminology .. 1

Where You'll Use Groovy in Your Application .. 2

Ensuring Your Scripts Are Easy to Maintain .. 2

2 Groovy Basics 3
Commenting Your Scripts ... 3

Defining Variables .. 4

Referencing the Value of a Field in the Current Object ... 5

Working with Numbers, Dates, and Strings ... 5

Using Substitution Expressions in Strings ... 6

Using Conditional Expressions .. 7

Using the Switch Statement .. 8

Returning a Boolean Result ... 8

Assigning a Value to a Field in the Current Object .. 9

Writing Null-Aware Expressions .. 9

Understanding Null Versus the Empty String .. 10

Understanding Secondary Fields Related to a Reference ... 10

Using Groovy's Safe Navigation Operator ... 11

Assigning a Value to a Field in a Related Object ... 12

Printing and Viewing Diagnostic Messages .. 12

Working with Lists .. 13

Working with Maps ... 15

Working with Ranges ... 16

3 Examples of Each Context Where You Can Use Groovy 17
Providing an Expression to Calculate a Custom Formula Field's Value .. 17

Providing an Expression to Calculate a Custom Field's Default Value .. 17

Defining a Field-Level Validation Rule ... 18

Visual Builder
Groovy Scripting Reference

Defining an Object-Level Validation Rule ... 18

Defining Reusable Behavior with an Object Function .. 19

Enabling External Visibility of an Object Function ... 20

Defining an Object-Level Trigger to Complement Default Processing .. 20

Defining a Field-Level Trigger to React to Value Changes .. 21

Converting a Trigger to Custom Code ... 22

4 Groovy Tips and Techniques 25
Using the Related Object Accessor Field to Work with a Parent Object .. 25

Using the Related Object Accessor Field to Work with a Referenced Object .. 25

Using the Related Collection Accessor Field to Work with Child Rows .. 26

Accessing Current Date and Time from the Application Server .. 27

Accessing Current Date and Time from the Database .. 27

Understanding Additional Built-in Groovy Functions .. 28

Testing Whether a Field's Value Is Changed .. 33

Avoiding Validation Threshold Errors By Conditionally Assigning Values ... 33

Understanding "Before Commit" Performance Impact ... 34

Detecting Row State in After Changes Posted to Database Trigger ... 34

Avoiding Posting Threshold Errors By Conditionally Assigning Values ... 35

Functional Restrictions in Trigger Scripts ... 35

Passing the Current Object to a Helper Function ... 36

Referencing Original Values of Changed Fields .. 36

Raising a Warning From a Validation Rule Instead of an Error ... 36

Throwing a Custom Validation Exception .. 36

Returning Locale-Sensitive Custom Strings ... 37

Raising a Trigger's Optional Declaratively-Configured Error Message .. 38

Accessing the View Object for Programmatic Access to Business Objects ... 38

Defining the Sort Order for Query Results .. 40

Finding an Object by Id ... 41

Finding Objects Using a View Criteria ... 42

Accomplishing More with Less Code .. 48

Creating a New Object ... 60

Updating an Existing Object .. 61

Permanently Removing an Existing Object .. 61

Reverting Changes in a Single Row ... 61

Understanding Why Using Commit or Rollback In Scripts Is Strongly Discouraged .. 61

Using the User Data Map ... 62

Visual Builder
Groovy Scripting Reference

Referencing Information About the Current User .. 62

Using Aggregate Functions ... 62

Understanding the Difference Between Default Expression and Create Trigger ... 64

Deriving Values of a Field When Other Fields Change Value .. 64

Setting Invalid Fields for the UI in an Object-Level Validation Rule ... 65

Determining the State of a Row ... 66

Understanding How Local Variables Hide Object Fields ... 67

Invoking REST Services from Your Scripts ... 67

Formatting Numbers and Dates Using a Formatter .. 74

Working with Field Values Using a Parameterized Name ... 75

5 Best Practices for Groovy Performance 79
Search Using at Least One Indexed Field .. 79

Explicitly Select Only the Attributes You Need ... 79

Test for Existence by Selecting a Single Row .. 80

Avoid Using newView() Inside a Loop .. 80

Set Field Values in Bulk .. 82

Avoid Revalidating Known Valid Data ... 83

Use Left Shift Operator To Append to Lists .. 84

6 Understanding Common JBO Exceptions in Groovy Scripts 85
JBO-25030: Detail entity X with row key Y cannot find or invalidate its owning entity .. 85

JBO-26020: Attempting to insert row with no matching EO base ... 86

7 Supported Classes and Methods for Use in Groovy 87
Supported Classes and Methods for Use in Groovy Scripts .. 87

Visual Builder
Groovy Scripting Reference

Visual Builder
Groovy Scripting Reference

Preface

Preface
This document explains how to use the Groovy scripting language to enhance your Visual Builder applications.

i

Visual Builder
Groovy Scripting Reference

Preface

ii

Visual Builder
Groovy Scripting Reference

Chapter 1
Introduction

1 Introduction

Groovy is a standard, dynamic scripting language for the Java platform for which Visual Builder provides deep support.
This document explains the basics of how you will use the Groovy scripting language to enhance your applications.
This section provides a brief overview of the different contexts in which you can use Groovy scripts. The second section
covers the basics of Groovy. The third section gives a concrete example of each type of Groovy script you can write. The
fourth section offers a compendium of tips and techniques for getting the most out of Groovy in your applications, and
the final section documents the supported classes and methods you are allowed to use in your Groovy code.

Note: Please read Supported Classes and Methods for Use in Groovy Scripts that documents the only classes and
methods you may use in your Groovy scripts. Using any other class or method will raise a security violation error.

Terminology
Throughout the document the term script is used to describe one or more lines of Groovy code that your application
using Oracle business objects executes at runtime. Often a very-short script is all that is required. For example, to
validate that a CommissionPercentage field's value does not exceed 40%, you might use a one-line script like:

return CommissionPercentage < 0.40

In fact, this one-liner can be conveniently shortened by dropping the return keyword since the return keyword is always
implied on the last line of a script:

CommissionPercentage < 0.40

For slightly more complicated logic, your script might require some conditional handling. For example, suppose the
maximum commission percentage is 40% if the salesperson's job grade is less than or equal to 3, but 60% if the job
grade is higher. Your script would grow a little to look like this:

if (JobGrade <= 3) {
 return CommissionPercentage < 0.40
}
else {
 return CommissionPercentage < 0.60
}

Scripts that you'll write for other purposes like complex validation rules or reusable functions may span multiple pages,
depending on your needs.

When a context requiring a Groovy script will typically use a short (often, one-line) script, we emphasize that fact by
calling it an expression, however technically the terms script and expression are interchangeable. Anywhere you can
provide a one-line expression is also a valid context for providing a multi-line script if the need arises. Whether you
provide a short expression or a multi-line script, the syntax and features at your disposal are the same. You need only
pay attention that your code returns a value of the appropriate type for the context in which you use it. Each section
below highlights the expected return type for the script in question.

1

Visual Builder
Groovy Scripting Reference

Chapter 1
Introduction

Where You'll Use Groovy in Your Application
There are a number of different contexts where you will use Groovy scripts as you customize existing objects or create
new custom ones. You will write shorter scripts to provide an expression to:

• calculate a formula field's value

• calculate a field's default value

You will generally write somewhat longer scripts to define:

• a field-level validation rule

• an object-level validation rule

• a trigger to complement default processing

• reusable behavior in an object function

If you anticipate calling the same code from multiple different contexts, any of your scripts can call the reusable code
you write in object functions.

After exploring the Groovy basic techniques needed to understand the examples, see Examples of Each Context Where
You Can Use Groovy for a concrete example of each of these usages, and Groovy Tips and Techniques for additional tips
and techniques on getting the most out of Groovy in your application.

Ensuring Your Scripts Are Easy to Maintain
When writing a script, your first instinct is to get your business logic working correctly. Over time, as you iteratively add
functionality, the script for a complex business process can grow very long. However, Oracle recommends limiting each
script to 400 lines. Since one script can invoke other functions, in practice this restriction does not hamper your ability
to solve business problems. It is always possible to decompose a lengthy script into a shorter alternative that invokes
other object functions as needed.

For example, instead of writing a 600–line trigger script, create a shorter trigger that invokes other object functions. In
turn, if one of these functions starts getting long, reorganize its code into additional, smaller functions that the original
function can invoke. For each function you create, choose a meaningful name that describes the task it performs.

Suppose you have written a “Before Insert” trigger that executes before each new PurchaseOrder object is created.
Imagine it contains a large amount of code that conditionally creates a default set of LineItem child objects for new
orders. To avoid exceeding the 400–line limit and improve readability of your code, reorganize it into two object
functions named requiresDefaultLineItems() and createDefaultLineItems(). Then rewrite the original trigger to be:

// Before Insert Trigger on PurchaseOrder
if (requiresDefaultLineItems()) {
 createDefaultLineItems()
}

By following these recommendations, your code will avoid “Code too large!” errors and will become much easier for
colleagues to understand and maintain as well.

2

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

2 Groovy Basics

This section highlights some important aspects of Groovy to allow you to better understand the examples in the
sections that follow.

Commenting Your Scripts
It is important that you document your scripts so that you and your colleagues who might view the code months from
now will remember what the logic is doing. You can use either a double-slash combination // which makes the rest of
the current line a comment, or you can use the open-comment and close-comment combination of /* followed later by
*/. The latter style can span multiple lines.

Here is an example of both styles in action:

// Loop over the names in the list
for (name in listOfNames) {
 /*
 * Update the location for the current name.
 * If the name passed in does not exist, will result in a no-op
 */
 updateLocationFor(name, // name of contact
 'Default', /* location style */
)
}

When using multi-line comments, it is illegal for a nested /* ... */ comment to appear inside of another one. So, for
example, the following is not allowed:

// Nested, multi-line comment below is not legal
def interest = 0
/*
 18-MAY-2001 (smuench) Temporarily commented out calculation!

 /*
 * Interest Accrual Calculation Here
 */
 interest = complexInterestCalculation()
*/

Instead, you can comment out an existing multi-line block like this:

// Nested, multi-line comment below is legal
def interest = 0
//
// 18-MAY-2001 (smuench) Temporarily commented out calculation!
//
// /*
// * Interest Accrual Calculation Here
// */
// interest = complexInterestCalculation()
//

Or, alternatively had your initial code used the // style of comments, the following is also legal:

// Nested, multi-line comment below is not legal

3

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

def interest = 0
/*
 18-MAY-2001 (smuench) Temporarily commented out calculation!

 //
 // Interest Accrual Calculation Here
 //
 interest = complexInterestCalculation()
*/

The most common style-guide for comments would suggest to use multi-line comments at the beginning of the
script, and single-line comments on subsequent lines. This allows you to most easily comment out code for debugging
purposes. Thus, you typical script would look like this:

/*
 * Object validation rule for BankAccount
 *
 * Ensures that account is not overdrawn
 */
def balance = CurrentBalance
// Use an object function to calculate uncleared charges
def unclearedCharges = unclearedChargesAmountForAccount()
// Perform some other complicated processing
performComplicatedProcessing()
// return true if the account is not overdrawn
return balance > unclearedCharges

Defining Variables
Groovy is a dynamic language, so variables in your scripts can be typed dynamically using the def keyword as follows:

// Assign the number 10 to a variable named "counter"
def counter = 10

// Assign the string "Hello" to a variable named "salutation"
def salutation = 'Hello'

// Assign the current date and time to a variable named "currentTime"
def currentTime = now()

Using the def keyword you can define a local variable of the right type to store any kind of value, not only the three
examples above. Alternatively you can declare a specific type for variables to make your intention more explicit in the
code. For example, the above could be written like this instead:

// Assign the number 10 to a variable of type Integer named "counter"
Integer counter = 10

// Assign the string "Hello" to a variable named "salutation"
String salutation = 'Hello'

// Assign the current date and time to a variable named "currentTime"
Date currentTime = now()

Note: You can generally choose to use the def keyword or to use a specific type for your variables according to your
own preference, however when your variable needs to hold a business object, you must to define the variable’s type
using the def keyword. See the tip in Using Substitution Expressions in Strings below for more information.

4

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

Referencing the Value of a Field in the Current Object
When writing scripts that execute in the context of the current business object, you can reference the value of any field
in the current object by simply using its API name. This includes all of the following contexts:

• object validation rules

• field-level validation rules

• formula field expressions

• object triggers

• field triggers, and

• object functions

To write a script that references the value of fields named contactPhoneNumber and contactTwitterName, you would use
the following code:

// Assign value of field "contactPhoneNumber" to "phone" var
def phone = contactPhoneNumber

// Assign value of field "contactTwitterName" to "twitterName" var
def twitterName = contactTwitterName

// Assemble text fragment by concatenating static text and variables
def textFragment = 'We will try to call you at ' + phone +
 ' or send you a tweet at ' + twitterName

Defining a local variable to hold the value of a field is a good practice if you will be referencing its value more than once
in your code. If you only need to use it once, you can directly reference a field's name without defining a local variable
for it, like this:

def textFragment = 'We will try to call you at ' + contactPhoneNumber +
 ' or send you a tweet at ' + contactTwitterName

Note: When referencing a field value multiple times, you can generally choose to use or not to use a local variable
according to your own preference, however when working with an RowIterator object, you must to use the def
keyword to define a variable to hold it. See the tip in the Using Substitution Expressions in Strings for more
information.

Working with Numbers, Dates, and Strings
Groovy makes it easy to work with numbers, dates and strings. The expression for a literal number is just the number
itself:

// Default discount is 5%
def defaultDiscount = 0.05
// Assume 31 days in a month
def daysInMonth = 31

To create a literal date, use the date() or dateTime() function:
// Start by considering January 31st, 2019
def lastDayOfJan = date(2019,1,31)

5

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

// Tax forms are late after 15-APR-2019 23:59:59
def taxSubmissionDeadline = dateTime(2019,4,15,23,59,59)

Write a literal string using a matching pair of single quotes, as shown here.
// Direct users to the Acme support twitter account
def supportTwitterHandle = '@acmesupport'

It is fine if the string value contains double-quotes, as in:
// Default podcast signoff
def salutation = 'As we always say, "Animate from the heart."'

However, if your string value contains single quotes, then use a matching pair of double-quotes to surround the value
like this:

// Find only gold customers with credit score over 750
customers.appendViewCriteria("status = 'Gold' and creditScore > 750")

You can use the normal + and - operators to do date, number, and string arithmetic like this:

// Assign a date three days after the CreatedDate
def targetDate = CreatedDate + 3

// Assign a date one week (seven days) before the value
// of the SubmittedDate field
def earliestAcceptedDate = SubmittedDate - 7

// Increase an employee's Salary field value by 100 dollars
Salary = Salary + 100

// Decrement an salesman's commission field value by 100 dollars
Commission = Commission - 100

// Subtract (i.e. remove) any "@"-sign that might be present
// in the contact's twitter name
def twitNameWithoutAtSign = ContactTwitterName - '@'

// Add the value of the twitter name to the message
def message = 'Follow this user on Twitter at @' + twitNameWithoutAtSign

Using Substitution Expressions in Strings
Groovy supports using two kinds of string literals, normal strings and strings with substitution expressions. To define a
normal string literal, use single quotes to surround the contents like this:

// These are normal strings
def name = 'Steve'
def confirmation = '2 message(s) sent to ' + name

To define a string with substitution expressions, use double-quotes to surround the contents. The string value can
contain any number of embedded expressions using the ${ expression } syntax. For example, you could write:

// The confirmation variable is a string with substitution expressions
def name = 'Steve'
def numMessages = 2
def confirmation = "${numMessages} message(s) sent to ${name}"

6

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

Executing the code above will end up assigning the value 2 messages(s) sent to Steve to the variable named
confirmation. It does no harm to use double-quotes all the time, however if your string literal contains no substitution
expressions it is slightly more efficient to use the normal string with single-quotes.

Tip: As a rule of thumb, use normal (single-quoted) strings as your default kind of string, unless you require the
substitution expressions in the string.

Using Conditional Expressions
When you need to perform the conditional logic, you use the familiar if/else construct. For example, in the text
fragment example in the previous section, if the current object's ContactTwitterName returns null, then you won't want
to include the static text related to a twitter name. You can accomplish this conditional text inclusion using if/else like
this:

def textFragment = 'We will try to call you at ' + ContactPhoneNumber
if (ContactTwitterName != null) {
 textFragment += ', or send you a tweet at '+ContactTwitterName
}
else {
 textFragment += '. Give us your twitter name to get a tweet'
}
textFragment += '.'

While sometimes the traditional if/else block is more easy to read, in other cases it can be quite verbose. Consider an
example where you want to define an emailToUse variable whose value depends on whether the EmailAddress field ends
with a .gov suffix. If the primary email ends with .gov, then you want to use the AlternateEmailAddress instead. Using
the traditional if/else block your script would look like this:

// Define emailToUse variable whose value is conditionally
// assigned. If the primary email address contains a '.gov'
// domain, then use the alternate email, otherwise use the
// primary email.
def emailToUse
if (endsWith(EmailAddress,'.gov') {
 emailToUse = AlternateEmailAddress
}
else {
 emailToUse = EmailAddress
}

Using Groovy's handy inline if / then / else operator, you can write the same code in a lot fewer lines:

def emailToUse = endsWith(EmailAddress,'.gov') ? AlternateEmailAddress : EmailAddress

The inline if / then / else operator has the following general syntax:

BooleanExpression ? If_True_Use_This_Expression : If_False_Use_This_Expression

Since you can use whitespace to format your code to make it more readable, consider wrapping inline conditional
expressions like this:

def emailToUse = endsWith(EmailAddress,'.gov')
 ? AlternateEmailAddress
 : EmailAddress

7

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

Using the Switch Statement
If the expression on which your conditional logic depends may take on many different values, and for each different
value you'd like a different block of code to execute, use the switch statement to simplify the task. As shown in the
example below, the expression passed as the single argument to the switch statement is compared with the value in
each case block. The code inside the first matching case block will execute. Notice the use of the break statement inside
of each case block. Failure to include this break statement results in the execution of code from subsequent case blocks,
which will typically lead to bugs in your application.

Notice, further, that in addition to using a specific value like 'A' or 'B' you can also use a range of values like 'C'..'P' or
a list of values like ['Q','X','Z']. The switch expression is not restricted to being a string as is used in this example; it
can be any object type.

def logMsg
def maxDiscount = 0
// warehouse code is first letter of product SKU
// uppercase the letter before using it in switch
def warehouseCode = upperCase(left(SKU,1))
// Switch on warehouseCode to invoke appropriate
// object function to calculate max discount
switch (warehouseCode) {
 case 'A':
 maxDiscount = Warehouse_A_Discount()
 logMsg = 'Used warehouse A calculation'
 break
 case 'B':
 maxDiscount = Warehouse_B_Discount()
 logMsg = 'Used warehouse B calculation'
 case 'C'..'P':
 maxDiscount = Warehouse_C_through__P_Discount()
 logMsg = 'Used warehouse C-through-P calculation'
 break
 case ['Q','X','Z']:
 maxDiscount = Warehouse_Q_X_Z_Discount()
 logMsg = 'Used warehouse Q-X-Z calculation'
 break
 default:
 maxDiscount = Default_Discount()
 logMsg = 'Used default max discount'
}
println(logMsg+' ['+maxDiscount+']')
// return expression that will be true when rule is valid
return Discount == null || Discount <= maxDiscount

Returning a Boolean Result
Two business object contexts expect your groovy script to return a boolean true or false result. These include:

• object-level validation rules

• field-level validation rules

Groovy makes this easy. One approach is to use the groovy true and false keywords to indicate your return as in the
following example:

8

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

// Return true if value of the commission field is greater than 1000
if (commission > 1000) {
 return true
}
else {
 return false
}

However, since the expression commission > 1000 being tested above in the if statement is itself a boolean-valued
expression, you can write the above logic in a more concise way by simply returning the expression itself like this:

return commission > 1000

Furthermore, since Groovy will implicitly change the last statement in your code to be a return, you could even remove
the return keyword and just say:

commission > 1000

This is especially convenient for simple comparisons that are the only statement in a validation rule.

Assigning a Value to a Field in the Current Object
To assign the value of a field, use the Groovy assignment operator = and to compare expressions for equality, use the
double-equals operator == as follows:

// Compare the ContactTwitterName field's value to the constant string 'steve'
if (ContactTwitterName == 'steve') {
 // Assign a new value to the ContactTwitterName field
 ContactTwitterName = 'stefano'
}

Tip: See Avoiding Validation Threshold Errors By Conditionally Assigning Values for a tip about how to avoid your field
assignments from causing an object to hit its validation threshold.

Writing Null-Aware Expressions
When writing your scripts, be aware that field values can be null. You can use the nvl() null value function to easily
define a value to use instead of null as part of any script expressions you use. Consider the following examples:

// Assign a date three days after the PostedDate
// Use the current date instead of the PostedDate if the
// PostedDate is null
def targetDate = nvl(PostedDate,now()) + 3

// Increase an employee's custom Salary field value by 10 percent
// Use zero if current Salary is null
Salary = nvl(Salary,0) * 1.1

Tip: Both expressions you pass to the nvl() function must have the same datatype, or you will see type-checking
warnings when saving your code. For example, if Salary is a number field, then it is incorrect to use an expression like
nvl(Salary,’<No Salary>’) because the first expression is a number while the second expression is a string.

9

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

Understanding Null Versus the Empty String
In Groovy, there is a subtle difference between a variable whose value is null and a variable whose value is the empty
string. The value null represents the absence of any object, while the empty string is an object of type String with zero
characters. If you try to compare the two, they are not the same. For example, any code inside the following conditional
block will not execute because the value of varA (null) does not equals the value of varB (the empty string).

def varA = null
def varB = '' /* The empty string */
if (varA == varB) {
 // Do something here when varA equals varB
}

Another common gotcha related to this subtle difference is that trying to compare a variable to the empty string
does not test whether it is null. For example, the code inside the following conditional block will execute (and cause a
NullPointerException at runtime) because the null value of varA is not equal to the empty string:

def varA = null
if (varA != '') {
 // set varB to the first character in varA
 def varB = varA.charAt(0)
}

To test whether a string variable is neither null nor empty, you could explicitly write out both conditions like this:

if (varA != null && varA != '') {
 // Do something when varA is neither null nor empty
}

However, Groovy provides an even simpler way. Since both null and the empty string evaluate to false when
interpreted as a boolean, you can use the following instead:

if (varA) {
 // Do something when varA has a non-null and non-empty value
}

If varA is null, the condition block is skipped. The same will occur if varA is equal to the empty string because either
condition will evaluate to boolean false. This more compact syntax is the recommended approach.

Understanding Secondary Fields Related to a Reference
A reference field represents a many-to-1 foreign key between one object and a another object of the same or different
type. For example, a TroubleTicket object might have a reference field named reportedBy that represents a foreign key
to the specific Contact object that reported the trouble ticket. When defining a reference field, you specify a default
display field name from the reference object. For example, while defining the reportedBy lookup field referencing the
Contact object, you might specify the Contact Name field (contactName).

When you define a reference field like reportedBy, you get one primary field and two secondary fields:

• The Foreign Key Field

This primary field is named reportedBy and it holds the value of the primary key of the referenced contact.

10

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

• The Related Object Accessor Field

This secondary field is named reportedByObject and it allows you to programmatically access the related
contact object in script code. This is the default name, but be aware it can be edited in the relationship editor.

• The Display Name Field

This secondary field name follows the pattern objectAccessorName_displayFieldName . It holds the value of the
display field related to the referenced object. For this example, the field is reportedByObject_contactName and
reflects the name of the related contact.

To access additional fields besides the default display name from the related object, you can use the related object
accessor field like this:

// Assume script runs in context of TroubleTicket object
def contactEmail = reportedByObject?.emailAddress

If you reference multiple fields from the related object, you can save the related object in a variable and then reference
multiple fields using this object variable:

// Assume script runs in context of TroubleTicket object
def contact = reportedByObject
def email = contact?.emailAddress
def linkedIn = contact?.linkedInUsername

To change which contact reported the TroubleTicket, you can set a new contact by using one of the following
techniques. If you know the primary key value of the new contact, then use this approach:

// Assume script runs in context of TroubleTicket object
def newId = /* ... Get the Id of the New Contact Here */
contact = newId

If you know a unique value of some contact's default display field, then you can use this approach instead:

// Assume script runs in context of TroubleTicket object
reportedByObject_contactName = 'James Smith'

Tip: If the value your script assigns to a reference field’s secondary display name field (e.g.
reportedByObject_contactName) uniquely identifies a referenced object, then the corresponding value of the reference
field itself (e.g. reportedBy) will automatically update to reflect the primary key of the matching object.

Note: If the value your script assigns to a reference field’s secondary display name field does not uniquely identify a
referenced object, then the assignment is ignored.

Using Groovy's Safe Navigation Operator
If you are using "dot" notation to navigate to reference the value of a related object, you should use Groovy's safe-
navigation operator ?. instead of just using the . operator. This will avoid a NullPointerException at runtime if the left-
hand-side of the operator happens to evaluate to null. For example, consider a TroubleTicket object with a reference
field named assignedTo representing the staff member assigned to work on the trouble ticket. Since the assignedTo field

11

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

may be null before the ticket gets assigned, any code referencing fields from the related object should use the safe-
navigation operator as shown here:

// access referenced object and access its last name
// Using the ?. operator, if related object is null,
// the expression evaluates to null instead of throwing
// NullPointerException
def assignedToName = assignedToObject?.lastName

Tip: For more information on why the code here accesses assignedToObject instead of a field named assignedTo, see
Understanding Secondary Fields Related to a Reference

Assigning a Value to a Field in a Related Object
To assign a value to a field in a related object, use the assignment operator like this:

// Assume script runs in context of an Activity object (child of TroubleTicket)
// and that troubleTicket is the name of the parent accessor
troubleTicket.status = 'Open'

Since a child object must be owned by some parent row, you can assume that the troubleTicket accessor will always
return a valid parent row instead of ever returning null. This is a direct consequence of the fact that the parent foreign
key value in the Activity object’s troubleTicket field is mandatory. In this situation, it is not strictly necessary to use the
Groovy safe-navigation operator, but in practice is it always best to use it:

troubleTicket?.status = 'Open'

By following this advice, you can be certain your code will never fail with a NullPointerException error when you happen
to work with an accessor to a related object that is optional. For example, suppose you added a reference field named
secondaryAssignee to the Activity object and that its value is optional. This means that referencing the related accessor
field named secondaryAssigneeObject can return null if the foreign key field secondaryAssignee is null. In this case, it is
imperative that you use the safe-navigation operator so that the attempted assignment is ignored when there is no
secondary assignee for the current activity.

secondaryAssigneeObject?.openCases = caseTotal

Tip: For more information on accessing related objects see Using the Related Object Accessor Field to Work with a
Parent Object and Using the Related Object Accessor Field to Work with a Referenced Object..

Printing and Viewing Diagnostic Messages
To assist with debugging, use the Logs window to view details on runtime exceptions as well as the runtime diagnostic
messages your scripts have generated. Open the window by clicking on the Logs button at the bottom of the Visual
Builder window, located next to the Audits button. Log messages related to your user account appear the first time the
window is opened. Check the Enable Logging checkbox when you want messages logged by your own script code to
be written to the diagnostic log. The messages are shown by default in chronological order. When a runtime exception
occurs, additional details on the offending script and line number where the error occurred are visible in the tooltip by
hovering your mouse over the exception message. The search field allows you to filter the log messages. To export the

12

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

messages to a file, use the Export toolbar button. To close the Logs window again, click again on the Logs button in the
window’s title bar.

If you keep the Logs window open while you work, consider the following approach. Before starting a new attempt to
reproduce the problem, click the Clear toolbar button to remove any previous messages generated. After encountering
the error you are diagnosing, click the Refresh toolbar button to see the latest log messages generated.

Writing Diagnostic Log Messages from Your Scripts
To write messages to the diagnostic log, use the print or println function. The former writes its value without any
newline character, while the latter writes it value along with a newline. For example:

// Write a diagnostic message to the log. Notice how
// convenient string substitution expressions are
println("Status = ${Status}")

In this release, the diagnostic messages in the log are not identified by context, so it can be helpful to include
information in the printed diagnostic messages to identify what code was executing when the diagnostic message was
written. For example:

// Write a diagnostic message to the log, including info about the context
println("[In: BeforeInsert] Status = ${Status}")

Working with Lists
A list is an ordered collection of objects. You can create list of objects using Groovy's square-bracket notation and a
comma separating each list element like this:

// Define a list of numbers
def list = [101, 334, 1208, 20]

Of course, the list can be of strings as well:

// Define a list of strings

13

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

def names = ['Steve','Paul','Jane','Josie']

If needed, the list can contain objects of any type, including a heterogeneous set of object types, for example a mix of
strings and numbers.

To refer to a specific element in the list, use the square brackets with an integer argument like this.

// Store the third name in the list in a variable
def thirdName = names[2] // zero based index!

Remember that the list is zero-based so list [0] is the first element of the list and list [5] is the six element. Of
course you can also pass a variable as the value of the operand like this:

for (j in 2..3) {
 def curName = names[j]
 // do something with curName value here
}

To update a specific list item's value, you can use the combination of the subscript and the assignment operator:

names[2] = 'John'

To add an entry to the end of the list, use the add() method:

names.add('Ringo')

A list can contain duplicates, so if you write code like the following, then the string Ringo will be added twice to the list:

// This will add 'Ringo' twice to the list!
names.add('Ringo')
names.add('Ringo')

To test if an entry already exists in the list, use the contains() function. This way, you can ensure that you don't add the
same item twice if duplicates are not desirable for your purposes:

// The exclamation point is the "not" operator, so this
// first checks if the 'names' list does NOT contain 'Ringo' before
// adding it to the list
if (!names.contains('Ringo')) {
 names.add('Ringo')
}

To remove an entry from the list, use the remove() method.

names.remove('Ringo')

Note that this only removes the first occurrence of the item in the list, returning a boolean result indicating true if the
desired item was found and removed. Therefore, if your list allows duplicates and you need to remove them all, you'll
need to write a loop to call remove() until it returns false.

You can iterate over the entries in a list using the for...in loop like this:

// Process each name in the list, returning
// false if any restricted name is encountered
for (name in names) {
 // call an object function for each name processed
 if (isNameRestricted(name)) {
 return false
 }
}
return true

You can define an empty list using the square-bracket notation with nothing inside like this:

def foundElements = [] // empty list!

14

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

Working with Maps
A map is an unordered collection of name/value pairs. The name in each name/value pair is called the map's key for
that entry since it is the key to looking up the value in the map later. You can create a map using Groovy's square-
bracket notation, using a colon to separate each key and value, and a comma between each key/value pair like this:

// Define a map of name/value pairs that associate
// a status value (e.g. "Open", "Closed", "Pending") with a
// maximum number of days
def maxDaysByStatus = [Open:30, Closed:90, Pending:45]

Notice that by default, the map key is assumed to be a string so you don't need to include the key values in quotes.
However, if any key value contains spaces you will need to use quotes around it like this:

def maxDaysByStatus = [Open:30, Closed:90, Pending:45, 'On Backorder':10]

If you want to use another type as the map key, you need to surround the key with parentheses. Consider the following
example without the parentheses:

def x = 1
def y = 2
def xvalue = 'One'
def yvalue = 'Two'
// this creates a map with entries ('x'->'One') and ('y'->'Two')
def m = [x:xvalue,y:yvalue]

The above example creates a map with key values of the strings x and y, rather than using the value of the variable x
and the value of the variable y as map keys. To obtain this effect, surround the key expressions with parentheses like
this:

def x = 1
def y = 2
def xvalue = 'One'
def yvalue = 'Two'
// this creates a map with entries (1->'One') and (2->'Two')
def m = [(x):xvalue,(y):yvalue]

This creates a map with key values of the numbers 1 and 2.

To reference the value of a map entry, use dot notation like this, using the may key value as if it were a field name on the
map object:

def closedDayLimit = maxDaysByStatus.Closed

If the key value contains a literal dot character or contains spaces or special characters, you can also use the square-
bracket notation, passing the key value as the operand:

def onBackorderDayLimit = maxDaysByStatus['On Backorder']

This square bracket notation is also handy if the key value is coming from the value of a variable instead of a literal
string, for example:

// Loop over a list of statuses to process
for (curStatus in ['Open','On Backorder']) {
 def limitForCurStatus = maxDaysByStatus[curStatus]
 // do something here with the current status' limit
}

15

Visual Builder
Groovy Scripting Reference

Chapter 2
Groovy Basics

To add an new key/value pair to the map, use the put() method:

// Add an additional status to the map
maxDaysByStatus.put('Ringo')

A map cannot contain duplicate key entries, so if you use put() to put the value of an existing element, the existing
value for that key is overwritten. You can use the containsKey() function to test whether or not a particular map entry
already exists with a given key value, or you can use the containsValue() function to test if any map entry exists that has
a given value — there might be zero, one, or multiple entries!

// Test whether a map key matching the value of the
// curKey variable exists or not
if (maxDaysByStatus.containsKey(curKey)) {
 def dayLimit = maxDaysByStatus[curKey]
 // do something with dayLimit here
}
else {
 println("Unexpected error: key ${curKey} not found in maxDaysByStatusMap!")
}

To remove an entry from the map, use the remove() method. It returns the value that was previously associated with the
key passed in, otherwise it returns null if it did not find the given key value in the map to remove.

maxDaysByStatus.remove('On Backorder')

You can define an empty map using the square-bracket notation with only a colon inside like this:

def foundItemCounts = [:] // empty map!

Working with Ranges
Using ranges, you can conveniently creates lists of sequential values. If you need to work with a list of integers from 1 to
100, rather than creating a list with 100 literal numbers in it, you can use the .. operator to create a range like this:

def indexes = 1..100

The range is particularly useful in performing iterations over a list of items in combination with a for loop like this:

def indexes = 1..100
for (j in indexes) {
 // do something with j here
}

Of course, you need not assign the range to a variable to use it in a loop, you can use it inline like this:

for (j in 1..100) {
 // do something with j here
}

16

Visual Builder
Groovy Scripting Reference

Chapter 3
Examples of Each Context Where You Can Use Groovy

3 Examples of Each Context Where You Can
Use Groovy

This section provides a simple example of using Groovy in all of the different supported contexts in your application.

Providing an Expression to Calculate a Custom Formula
Field's Value
To compute a field’s value using an formula, set the field’s Value Calculation property to Calculate value with a formula
and provide an appropriate Groovy expression.

Read-Only Calculated Fields
A field whose value calculation is configured to use a formula is read-only. The expression you supply is evaluated at
runtime to return the field’s value each time it is accessed. The expected return type of the formula field's expression
must be compatible with the type of the field on which you’ve configured that formula. (e.g. Number, Date, or String).

For example, consider a custom TroubleTicket object. If you add a number field named daysOpen, you can configure it to
calculate its value with a formula and provide an expression like this:

(today() - creationDate) as Integer /* truncate to whole number of days */

Providing an Expression to Calculate a Custom Field's
Default Value
When a new row is created for an object, the value of a custom field defaults to null unless you configure a default
value for it. You can configure a default by setting its Value Calculation property to supply an expression to Set to
default if value not provided. You can either specify a static default value, or use a Groovy expression. The default
value expression is evaluated at the time the new row is created. The expected return type of your field's default value
expression must be compatible with the field's type (Number, Date, String, etc.)

For example, consider a callbackDate field in a TroubleTicket object. If you want the callback back for a new trouble
ticket to default to 3 days after it was created, then you can provide a default expression of:

creationDate + 3

17

Visual Builder
Groovy Scripting Reference

Chapter 3
Examples of Each Context Where You Can Use Groovy

Defining a Field-Level Validation Rule
A field-level validation rule is a constraint you can define on any standard or custom field. It is evaluated whenever the
corresponding field's value is set. When the rule executes, the field's value has not been assigned yet and your rule acts
as a gatekeeper to its successful assignment. The expression (or longer script) you write must return a boolean value
that indicates whether the value is valid. If the rule returns true, then the field assignment will succeed so long as all
other field-level rules on the same field also return true. If the rule returns false, then this prevents the field assignment
from occurring, the invalid field is visually highlighted in the UI, and the configured error message is displayed to the
end user. Since the assignment fails in this situation, the field retains its current value (possibly null, if the value was
null before), however the UI component in the web page allows the user to see and correct their invalid entry to try
again. Your script can use the newValue keyword to reference the new value that will be assigned if validation passes. To
reference the existing field value, use the oldValue keyword. A field-level rule is appropriate when the rule to enforce
only depends on the new value being set.

For example, consider a TroubleTicket object with a Priority field. To validate that the number entered is between 1 and
5, your field-level validation rule would look like this:

• Field Name: Priority

• Rule Name: Validate_Priority_Range

• Error Message: The priority must be in the range from 1 to 5

Rule Body

newValue == null || (1..5).contains(newValue as Integer)

Tip: If a validation rule for field A depends on the values of one or more other fields (e.g. Y and Z), then create
an object-level rule and programmatically signal which field or fields should be highlighted as invalid to the user as
explained in Setting Invalid Fields for the UI in an Object-Level Validation Rule.

Defining an Object-Level Validation Rule
An object-level validation rule is a constraint you can define on any business object. It is evaluated whenever the
framework attempts to validate the object. Use object-level rules to enforce conditions that depend on two or more
fields in the object. This ensures that regardless of the order in which the user assigns the values, the rule will be
consistently enforced. The expression (or longer script) you write must return a boolean value that indicates whether the
object is valid. If the rule returns true, then the object validation will succeed so long as all other object-level rules on
the same object return true. If the rule returns false, then this prevents the object from being saved, and the configured
error message is displayed to the end user.

For example, consider a TroubleTicket object with Priority and DueDate fields. To validate that a trouble ticket of priority
1 or 2 cannot be saved without a due date, your object-level rule would look like this:

• Rule Name: Validate_High_Priority_Ticket_Has_DueDate

• Error Message: A trouble ticket of priority 1 or 2 must have a due date

Rule Body

// Rule depends on two fields, so must be written as object-level rule

18

Visual Builder
Groovy Scripting Reference

Chapter 3
Examples of Each Context Where You Can Use Groovy

if (Priority <= 2 && DueDate == null) {
 // Signal to highlight the DueDate field on the UI as being in error
 adf.error.addAttribute('DueDate')
 return false
}
return true

Defining Reusable Behavior with an Object Function
Object functions are useful for code that encapsulates business logic specific to a given object. You can call object
functions by name from any other script code related to the same object or from any other scripts that work
programmatically with the object in question. When defining a function, you specify a return value and can optionally
specify one or more typed parameters that the caller will be required to pass in when invoked. The most common types
for function return values and parameters are the following:

• String: a text value

• Boolean: a logical true or false value

• Long: an integer value in the range of ±263-1

• BigInteger: a integer of arbitrary precision

• Double: a floating-point decimal value in the range of ±1.79769313486231570 x 10308

• BigDecimal: a decimal number of arbitrary precision

• Date: a date value with optional time component

• List: an ordered collection of objects

• Map: an unordered collection of name/value pairs

• Object: any object

In addition, a function can define a void return type which indicates that it returns no value.

For example, you might define the following updateOpenTroubleTicketCount() object function on a Contact object.
It calls the newView() built-in function (described in Accessing the View Object for Programmatic Access to Business
Objects) to access the view object for programmatic access of trouble tickets, then appends a view criteria to find
trouble tickets related to the current contact's id and having either 'Working' or 'Waiting' as their current status. Finally,
it calls getEstimatedRowCount() to retrieve the count of trouble tickets that qualify for the filter criteria. Finally, if the new
count is different from the existing value of the openTroubleTickets field, it updates this field’s value to be the new count
computed.

• Function Name: updateOpenTroubleTicketCount

• Return Type: void

• Parameters: None

Function Definition

// Access the view object for TroubleTicket programmatic access
def tickets = newView('TroubleTicket')
tickets.appendViewCriteria("""
contact = ${Id} and status in ('Working','Waiting')
"""
// Update OpenTroubleTickets field value
def newCount = tickets.getEstimatedRowCount()
if (openTroubleTickets != newCount) {
 openTroubleTickets = newCount

19

Visual Builder
Groovy Scripting Reference

Chapter 3
Examples of Each Context Where You Can Use Groovy

}

Enabling External Visibility of an Object Function
When you create an object function named doSomething() on an object named Example, the following is true by default:

• other scripts on the same object can call it,

• any script written on another object that obtains a row of type Example can call it

• external systems working with an Example object via REST service, cannot call it

• it displays in the Object category of the Functions tab on the Code Helpers Palette.

If you check the Callable by External Systems checkbox, then an external system working with an Example object will be
able to invoke your doSomething() via REST service. Do this when the business logic it contains should be accessible to
external systems.

Defining an Object-Level Trigger to Complement Default
Processing
Triggers are scripts that you can write to complement the default processing logic for a standard or custom object. You
can define triggers both at the object-level and the field-level. The object-level triggers that are available are described
below. See Defining a Field-Level Trigger to React to Value Changes for the available field-level triggers.

• On Initialize
Fires when a new instance of an object is created. Use to assign programmatic default values to one or more
fields in the object.

• On Invalidate
Fires on a valid parent object when a child row is created, removed, or modified, or also when the first persistent
field is changed in an unmodified row.

• On Remove
Fires when an attempt is made to delete an object. Returning false stops the row from being deleted and
displays the optional trigger error message.

• Before Insert
Fires before a new object is inserted into the database.

• Before Update
Fires before an existing object is modified in the database

• Before Delete

20

Visual Builder
Groovy Scripting Reference

Chapter 3
Examples of Each Context Where You Can Use Groovy

Fires before an existing object is deleted from the database

• Before Commit

Fires after all changes have been posted to the database, but before they are permanently committed. Can be
used to make additional changes that will be saved as part of the current transaction.

• Before Rollback

Fires before the change pending for the current object (insert, update, delete) is rolled back

For example, consider a Contact object with a openTroubleTickets field that needs to be updated any time a trouble
ticket is created or modified. You can create the following trigger on the TroubleTicket object that invokes the
updateOpenTroubleTicketCount() object function described above.

• Trigger Object: TroubleTicket

• Trigger: Before Commit

• Trigger Name: Before_Commit_Set_Open_Trouble_Tickets

Trigger Definition

// Get the related contact for this trouble ticket
def relatedContact = contactObject
// Update its openTroubleTickets field value
relatedContact?.updateOpenTroubleTicketCount()

Defining a Field-Level Trigger to React to Value Changes

Field-level triggers are scripts that you can write to complement the default processing logic for a standard or custom
field. The following field-level trigger is available:

• After Field Changed

Fires when the value of the related field has changed (implying that it has passed any field-level validation rules
that might be present).

Use the After Field Changed trigger to calculate other derived field values when another field changes value. Do not
use a field-level validation rule to achieve this purpose because while your field-level validation rule may succeed, other
field-level validation rules may fail and stop the field's value from actually being changed. Since generally you only
want your field-change derivation logic to run when the field's value actually changes, the After Field Changed trigger
guarantees that you get this desired behavior.

See Deriving Values of a Field When Other Fields Change Value for tips on using this trigger.

21

Visual Builder
Groovy Scripting Reference

Chapter 3
Examples of Each Context Where You Can Use Groovy

Converting a Trigger to Custom Code
When you create a new trigger, Visual Builder uses the visual editor shown in the figure below. This interface allows you
to solve many common use cases with point and click by configuring one or more conditional expressions and one or
more actions that should execute if a given condition is true.

As you use the designer interface, Visual Builder keeps the trigger’s equivalent Groovy script in sync. At any time you
can peek at a read-only view of the script code by clicking on the Code Editor button in the toolbar. Click again on the
Designer toolbar button to return to the visual view. If your trigger requires a small amount of custom Groovy code, use
the Custom Groovy Code action as shown below. This action is useful for adding small amounts of manually authored
Groovy script inside an otherwise declaratively-configured trigger. For example here we’ve written one line of Groovy
code in the “Upcase Subject” custom Groovy code action to uppercase the subject of the trouble ticket being inserted.

22

Visual Builder
Groovy Scripting Reference

Chapter 3
Examples of Each Context Where You Can Use Groovy

If the complexity of your task demands it, or you simply prefer it that way, you can convert any trigger you create into a
custom code trigger. While in the read-only code editor view, as shown in the figure below, you can click on the convert
to Custom Code Trigger link to change the current trigger into a manually authored script. Once you’ve performed this
step, the code editor becomes editable. After performing this step, you have full control over the contents of the current
trigger’s groovy script. This conversion is a one-way street, however. A custom code trigger cannot be switched back
into visual design mode. You’ll need to create a new trigger to start again with the point-and-click approach in the visual
editor.

23

Visual Builder
Groovy Scripting Reference

Chapter 3
Examples of Each Context Where You Can Use Groovy

24

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

4 Groovy Tips and Techniques

This section provides a compendium of tips and techniques for getting the most out of Groovy in your application.

Using the Related Object Accessor Field to Work with a
Parent Object
When writing business logic in a child object like Activity, you can access its owning parent TroubleTicket object using
the related object accessor field. If the parent object is named TroubleTicket, the related object accessor field in Activity
will be named troubleTicket. It is best practice to always store the parent object in a local variable as shown in the
example below. This ensures that no matter how many fields you access from the parent object or how many times you
reference it that you only retrieve it once.

// Assume code in context of Activity
// Store the parent object in a local variable
def ticket = troubleTicket
if (ticket.status == 'Open') {
 // Do something here because the owning parent
 // trouble ticket's status is open
}

Notice that since the child object cannot exist without an owning parent object, the reference to the parent object will
never be null, so here instead of the Groovy safe navigation operator (?.) we can just use the normal dot operator in the
expression ticket.status.

Using the Related Object Accessor Field to Work with a
Referenced Object
When writing business logic for an object like TroubleTicket that has a reference field like contact or assignedTo, you
can access the referenced object using the respective field's related object accessor field. See Understanding Secondary
Fields Related to a Reference for more information on this. For the contact and assignedTo fields, the related object
accessor fields are named contactObject and assignedToObject, respectively. It is best practice to always store the
referenced object in a local variable as shown in the example below. This ensures that no matter how many fields you
access from the related object you only retrieve it once.

// Assume code in context of TroubleTicket
// Store the contact object and assignedTo object in a local variable
def customer = contactObject
def supportRep = assignedToObject
if (endsWith(customer?.emailAddress,'.gov') &&
 startsWith(supportRep?.phoneNumber,'202')) {
 // Do something here because contact's email address
 // is a government mail address and assigned-to staff member's
 // phone number is in the 202 area code for Washington DC.
}

25

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Notice that since the reference fields contact and assignedTo might be optional, their value may be null and
consequently the value of the related object accessor may be null, too. This is why the example is using the Groovy safe
navigation operator (?.) to reference fields of the related object in case either related object might be null.

Using the Related Collection Accessor Field to Work with
Child Rows
When two business objects are related one-to-many, the object on the “many” side of the relationship is commonly
called a “child object” when its delete rule is set to “Cascade”. When a parent object like TroubleTicket has a child object
Activity, the parent object will by default have a related collection accessor field named activityCollection. You can
write business logic in the context of the parent TroubleTicket object that works with the one or more Activity child
rows. To do this, your code accesses the related collection accessor field by name like this:

// Assume code in context of TroubleTicket
// define a variable to hold activities collection
def activities = activityCollection
// work with activities here...

Tip: Always store a child collection you want to work with in a local variable. Failure to do this will result in your code
that does not behave as you expect.

The related collection accessor field returns a row iterator object, so you can use methods like those listed in the table
below to work with the rows. The row iterator tracks the current row in the collection that your code is working with.

Method Name Description

hasNext()

Returns: - true if the row iterator has more rows to iterate over, false if there are no rows in the
iterator's row set or if the iterator is already on or beyond the last row.

next()

Returns: - the next row in the row iterator

reset()

Returns: - void. Resets the row iterator to the "slot" before the first row.

first()

Returns: - the first row in the row iterator, or null if the iterator's row set is empty

Putting the commonly used row iterator methods from this table into practice, the example below shows the typical
code you will use to work with the child row iterator. This example accesses the child row iterator using the related
collection field's API name, and saves it in a local variable. Then, it resets the iterator so that it sits on the "slot" before
the first row in the row iterator. Next, it uses a while loop in combination with the hasNext() method to iterate over each
row in the row iterator.

// store the child row iterator in a local variable
def activities = activityCollection
// ensure iterator is on slot before first row
activities.reset()
// loop while there are more rows to process
while (activities.hasNext()) {
 // access the next row in the row iterator

26

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

 def curActivity = activities.next()
 // reference fields or object functions from the current row
 if (curActivity.Status == 'Open') {
 // do something here to the current child activity
 }
}
// to process the same row iterator again in this block of code,
// call activities.reset() method again to reset the
// iterator to the slot before the first row

To detect whether the child row iterator is empty or not, you can use the first() method. If it returns null then the row
iterator's row set is empty. As shown in the example below, if you call the first() method and there are rows in the
row iterator's row set, this method sets the iterator to point at the first row. So, if your script uses the first() method,
then plans to iterate over all the rows in the iterator again using the typical while(rowiterator .hasNext()) idiom, you
need to call the reset() method on the row iterator to move the current row pointer back to the slot before the first row.
Failure to do this could result in inadvertently not processing the first row in the row set.

def activities = activityCollection
// If there are no child activities...
if (activities.first() == null) {
 // Do something here because there are no child activities
}
else {
 // There are some child activities, call reset() to set
 // iterator back to slot before first row
 activities.reset()
 while (activities.hasNext()) {
 def curActivity = activities.next();
 // Do something here with the current activity
 }
}

Accessing Current Date and Time from the Application
Server
Oracle’s application development framework exposes functionality to your business object scripts through the
predefined adf variable. For example, to reference the application server's current date use the following expression:

adf.currentDate

To reference the application server's current date including the current time, use the expression:

adf.currentDateTime

Note: This function is valid in any Groovy script specific to a particular business object. If necessary to pass the
information into other contexts, you can pass its value as a parameter to a function call.

Accessing Current Date and Time from the Database
Oracle’s application development framework exposes functionality to your business object scripts through the
predefined adf variable. For example, to reference the database's current date, use the following expression:

27

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

adf.currentDBDate

To reference the application server's current date including the current time, use the expression:

adf.currentDBDateTime

Note: This function is valid in any Groovy script specific to a particular business object. If necessary to pass the
information into other contexts, you can pass its value as a parameter to a function call.

Understanding Additional Built-in Groovy Functions
This section explains a number of additional helper functions you can use in your scripts. Some provide a simple
example as well. Use the Functions tab of the code editor palette to insert any of the built-in functions into your script.

Function Description

today()

Returns: the current date, with no time

Return Type: Date

now()

The current date and time

Return Type: Timestamp

date(year , month , day)

Returns: a date, given the year, month, and day

Return Type: Date

Parameters:

• year - a positive integer

• month - a positive integer between 1 and 12

• day - a positive integer between 1 and 31

Example: to return a date for February 8th, 1998, use date(1998,2,8)

dateTime(y , m , d , hr , min ,
sec)

Returns: a timestamp, given the year, month, day, hour, minute, and second

Return Type: Timestamp

Parameters:

• year - a positive integer

• month - a positive integer between 1 and 12

• day - a positive integer between 1 and 31

• hour - a positive integer between 0 and 23

• minute - a positive integer between 0 and 59

• second - a positive integer between 0 and 59

28

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Function Description

Example: to return a timestamp for February 8th, 1998, at 23:42:01, use dateTime(1998,2,8,23,
42,1)

year(date)

Returns: the year of a given date

Return Type: Integer

Parameters:

• date - date

Example: if curDate represents April 19th, 1996, then year(curDate) returns 1996.

month(date)

Returns: the month of a given date

Return Type: Integer

Parameters:

• date - a date

Example: if curDate represents April 12th, 1962, then month(curDate) returns 4.

day(date)

Returns: the day for a given date

Return Type: Integer

Parameters:

• date - a date

Example: if curDate represents July 15th, 1968, then day(curDate) returns 15.

Function Description

contains(s1 , s2)

Returns: true, if string s1 contains string s2, false otherwise

Return Type: boolean

Parameters:

• s1 - a string to search in

• s2 - a string to search for

Example: if twitterName holds the value @steve, then contains(twitterName,'@') returns
true.

endsWith(s1 , s2)

Returns: true, if string s1 ends with string s2, false otherwise

Return Type: boolean

Parameters:

• s1 - a string to search in

• s2 - a string to search for

29

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Function Description

For example, if twitterName holds the value @steve, then endsWith(twitterName,'@') returns
false.

find(s1 , s2)

Returns: the integer position of the first character in string s1 where string s2 is found, or zero (0) if
the string is not found

Return Type: Integer

Parameters:

• s1 - a string to search in

• s2 - a string to search for

Example: if twitterName holds the value @steve, then find(twitterName,'@') returns 1 and
find(twitterName,'ev') returns 4.

left(s , len)

Returns: the first len characters of the string s

Return Type: String

Parameters:

• s - a string

• len - an integer number of characters to return

Example: if postcode holds the value 94549-5114, then left(postcode,5) returns 94549.

length(s)

Returns: the length of string s

Return Type: Integer

Parameters:

• s - a string

Example: if name holds the value Julian Croissant, then len(name) returns 16.

lowerCase(s)

Returns: the string s with any uppercase letters converted to lowercase

Return Type: String

Parameters:

• s - a string

Example: if sku holds the value 12345-10-WHT-XS, then lowerCase(sku) returns 12345-10-wht-xs.

right(s , len)

Returns: the last len characters of the string s

Return Type: String

Parameters:

• s - a string

• len - an integer number of characters to return

Example: if sku holds the value 12345-10-WHT-XS, then right(sku,2) returns XS.

30

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Function Description

startsWith(s1 , s2)

Returns: true, if string s1 starts with s2, false otherwise

Return Type: boolean

Parameters:

• s1 - a string to search in

• s2 - a string to search for

Example: if twitterName holds the value @steve, then startsWith(twitterName,'@') returns
true.

substringBefore(s1 , s2)

Returns: the substring of s1 that precedes the first occurrence of s2, otherwise an empty string

Return Type: String

Parameters:

• s1 - a string to search in

• s2 - a string to search for

Examples: if sku holds the value 12345-10-WHT-XS, then substringBefore(sku,'-')
returns the value 12345, substringBefore(sku,'12345') returns an empty string, and
substringBefore(sku,'16-BLK') also returns an empty string.

substringAfter(s1 , s2)

Returns: the substring of s1 that follows the first occurrence of s2. otherwise an empty string

Return Type: String

Parameters:

• s1 - a string to search in

• s2 - a string to search for

Example: if sku holds the value 12345-10-WHT-XS, then substringAfter(sku,'-') returns the
value 10-WHT-XS, substringAfter(sku,'WHT-') returns the value XS, substringAfter(sku,
'XS') returns an empty string, and substringAfter(sku,'BLK') also returns an empty string.

upperCase(s)

Returns: the string s with any lowercase letters converted to uppercase

Return Type: String

Parameters:

• s - a string

Example: if sku holds the value 12345-10-Wht-xs, then upperCase(sku) returns 12345-10-WHT-XS.

Function Description

newView(objectAPIName)

Returns: a ViewObject reserved for programmatic use, or null if not available.

Return Type: ViewObject

Parameters:

31

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Function Description

• objectAPIName - the object API name whose rows you want to find, create, update, or remove

Example: newView('TroubleTicket') returns a new view object instance you can use to find,
 create, update, or delete TroubleTicket rows.

key(list)

Returns: a multi-valued key object for use in the ViewObject's findByKey() method.

Return Type: Key

Parameters:

• list - a list of values for a multi-field key

Example: if a standard object has a two-field key, use key([101,'SAMBA'])

key(val)

Returns: a key object for use in the ViewObject's findByKey() method.

Return Type: Key

Parameters:

• val - a value to use as the key field

Example: if a standard object has a single-field key, as all custom objects do, use key(123456789)

nvl(o1 , o2)

Returns: the object o1 if it is not null, otherwise the object o2.

Return Type: Object

Parameters:

• o1 - a value to use if not null

• o2 - a value to use instead if o1 is null

Example: to calculate the sum of Salary and Commission fields that might be null, use
nvl(Salary,0) + nvl(Commission,0)

encodeToBase64(s) Returns: the base64 encoding of s.

Return Type: String

Parameters:

• s - string to encode

decodeBase64(s) Returns: the base64 decoding of s.

Return Type: String

Parameters:

• s - string to decode

decodeBase64ToByteArray(s) Returns: byte array decoding of s.

Return Type: byte[]

Parameters:

32

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Function Description

• s - string to decode

encodeByteArrayToBase64(b) Returns: base64 encoding of b.

Return Type: String

Parameters:

• b - byte[] to encode

Testing Whether a Field's Value Is Changed
You can test whether a field's value has changed in the current transaction by using the built-in isAttributeChanged()
function. As shown in this example, it takes a single string argument that provides the name of the field whose changed
status you want to evaluate:

if (isAttributeChanged('Status')) {
 // perform some logic here in light of the fact
 // that status has changed in this transaction
}

Avoiding Validation Threshold Errors By Conditionally
Assigning Values
When you write scripts for validation rules that modify the values of fields in the current object, you must be aware
of how this affects the object's so-called "validation cycle". Before allowing an object to be saved to the database, the
application development framework ensures that its data passes all validation rules. The act of successfully running
all defined validation rules results in the object's being marked as valid and allows the object to be saved along with
all other valid objects that have been modified in the current transaction. If as part of executing a validation rule your
script modifies the value of a field, this marks the object "dirty" again. This results in ADF's subjecting the object again
to all of the defined validation rules to ensure that your new changes do not result in an invalid object. If the act of re-
validating the object runs your scripts that modify the field values again, this process could result in a cycle that would
appear to be an infinite loop. ADF avoids this possibility by imposing a limit of 10 validation cycles on any given object. If
after 10 attempts at running all the rules the object still has not been able to be successfully validated due to the object's
being continually modified by its validation logic, ADF will throw an exception complaining that you have exceeded the
validation threshold:

Validation threshold limit reached. Invalid Entities still in cache

A simple way to avoid this from happening is to test the value of the field your script is about to assign and ensure that
you perform the field assignment (or setAttribute() call to modify its value) only if the value you intend to assign is
different from its current value. An example script employing this approach would look like this:

// Object-level validation rule on a PurchaseOrder object
// to derive the default purchasing rep based on a custom
// algorithm defined in an object function named
// determinePurchasingRep() if both the Discount and NetDaysToPay

33

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

// fields have changed in the current transaction.
if (isAttributeChanged('Discount') &&
 isAttributeChanged('NetDaysToPay')) {
 def defaultRep = determinePurchasingRep()
 // If new defaultRep is not the current rep, assign it
 if (PurchasingRep != defaultRep) {
 PurchasingRep = defaultRep
 }
}
return true

Note: This example illustrates how to avoid a typical problem that can occur when using a validation rule to perform
field derivations. The recommended trigger to use for such purposes would be the field-level "After Value Changed"
trigger, or alternatively the "Before Insert" and/or "Before Update" trigger. It is still a good practice to perform
conditional field assignment in those cases, too. See Deriving Values of a Field When Other Fields Change Value for
more information on deriving field values.

Understanding "Before Commit" Performance Impact
When you write a trigger to derive field values programmatically, wherever possible use the Before Insert or Before
Update triggers instead of Before Commit. When the Before Commit trigger fires, the changes in the row have already
been sent to the database, and performing further field assignments therein requires doing a second round trip to
the database to permanently save your field updates to each row modified in this way. When possible, using the
Before-save triggers sets the field values before the changes are sent the first time to the database, resulting in better
performance.

Note: If your script utilizes the getEstimatedRowCount() function on view object query with a complex filter, then use
the Before Commit trigger for best results. The database COUNT() query the function performs to return the estimate is
more accurate when performed over the already-posted data changes made during the current transaction.

Detecting Row State in After Changes Posted to
Database Trigger
When writing an Before Commit trigger, if your code needs to detect the effective row state of the current
object, use the getPrimaryRowState() function covered in Determining the State of a Row . For example, it can
use getPrimaryRowState().isNew() to notice that the current object was created in the current transaction or
getPrimaryRowState().isModified() to conclude instead that it was an existing row that was changed.

34

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Avoiding Posting Threshold Errors By Conditionally
Assigning Values
Despite the recommendation in Understanding “Before Commit” Performance Impact, if you still must use an Before
Commit trigger then you must be aware of how this affects the object's so-called "posting cycle". For example, you
might use it to perform field value assignments when your custom logic must perform a query that filters on the data
being updated in the current transaction. If your trigger modifies the value of a field, this marks the object "dirty" again.
This results in subjecting the object again to all of the defined validation rules to ensure that your new changes do not
result in an invalid object. If the object passes validation, then your trigger's most recent field value changes must be
posted again to the database. In the act of re-posting the object's changes, your trigger may fire again. If your trigger
again unconditionally modifies one or more field values again, this process could result in a cycle that would appear to
be an infinite loop. The runtime avoids this possibility by imposing a limit of 10 posting cycles on any given object. If
after 10 attempts to post the (re)validated object to the database it remains "dirty," due to the object's being continually
modified by your trigger logic, then the system will throw an exception complaining that you have exceeded the posting
threshold:

Post threshold limit reached. Some entities yet to be posted

A simple way to avoid this from happening is to test the value of the field your script is about to assign and ensure that
you perform the field assignment (or setAttribute() call to modify its value) only if the value you intend to assign is
different from its current value. An example script employing this approach would look like this:

// After Changes Posted in Database Trigger
// If total score is 100 or more, set status to WON.
def totalScore = calculateTotalScoreUsingQuery()
if (totalScore >= 100) {
 // Only set the status to WON if it's not already that value
 if (Status != 'WON') {
 Status = 'WON'
 }
}

Functional Restrictions in Trigger Scripts
This section documents functional restrictions of which you should be aware when writing custom Groovy script in
triggers.

• Before Rollback Trigger

Your trigger should not set the value of any fields in this trigger. The changes are too late to be included in the
current transaction.

35

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Passing the Current Object to a Helper Function
If an object function executes in the context of the object on which it is defined. However, if your object function needs
to accept another object as a parameter, ensure that you choose Object as the parameter’s data type.

When writing code in any trigger, object function, or other object script, you can use the expression adf.source to pass
the current object to another function you invoke that accepts a business object as a parameter.

Referencing Original Values of Changed Fields
When the value of a field gets changed during the current transaction, your code can still access the so-called "original
value" of the field. This is the value it had when the existing object was retrieved from the database. Sometimes it can
be useful to reference this original value as part of your business logic. To do so, use the getOriginalAttributeValue()
function as shown below (substituting your field's name for the example's priority):

// Assume we're in context of a TroubleTicket
if (isAttributeChanged('priority')) {
 def curPri = priority
 def origPri = getOriginalAttributeValue('priority')
 println("Priority changed: ${origPri} -> ${curPri}")
 // do something with the curPri and origPri values here
}

Raising a Warning From a Validation Rule Instead of an
Error
When your validation rule returns false, it causes a validation error that stops normal processing. If instead you want
to show the user a warning that does not prevent the data from being saved successfully, then your rule can signal a
warning and then return true. For example, your validation rule would look like this:

// if the discount is over 50%, give a warning
if (Discount > 0.50) {
 // raise a warning using the default declarative error message
 adf.error.warn(null)
}
return true

Throwing a Custom Validation Exception
When defining object level validation rules or triggers, normally the declaratively-configured error message will
be sufficient for your needs. When your validation rule returns false to signal that the validation has failed, the
error message you've configured is automatically shown to the user. The same occurs for a trigger when it calls the
adf.error.raise(null) function. If you have a number of different conditions you want to enforce, rather than writing

36

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

one big, long block of code that enforces several distinct conditions, instead define a separate validation rule or trigger
(as appropriate) for each one so that each separate check can have its own appropriate error message.

That said, on occasion you may require writing business logic that does not make sense to separate into individual rules,
and which needs to conditionally determine which among several possible error messages to show to the user. In this
case, you can throw a custom validation exception with an error string that you compose on the fly using the following
technique:

// Throw a custom object-level validation rule exception
// The message can be any string value
throw new oracle.jbo.ValidationException('Your custom message goes here')

Note that choose this approach, your error message is not translatable in the standard way, so it becomes your
responsibility to provide translated versions of the custom-thrown error messages. You could use a solution like the one
presented in Returning Locale-Sensitive Custom Strings for accomplishing the job.

Returning Locale-Sensitive Custom Strings
When you throw custom validation error messages, if your end users are multi-lingual, you may need to worry about
providing a locale-specific error message string. To accomplish this, you can reference the current locale (inferred from
each end user’s browser settings) as part of a function that encapsulates all of your error strings. Consider a getMessage
function like the one below. Once it is defined, your validation rule or trigger can throw a locale-sensitive error message
by passing in the appropriate message key:

// context is trigger or object-level validation rule
throw new oracle.jbo.ValidationException(getMessage('BIG_ERROR'))

The function is defined as follows.

• Function Name: getMessage

• Return Type: String

• Parameters: stringKey String

Function Definition

// Let "en" be the default lang
// Get the language part of the locale
// e.g. for locale "en_US" lang part is "en"
def defaultLang = 'en';
def userLocale = adf.context.getLocale() as String
def userLang = left(userLocale,2)
def supportedLangs=['en','it']
def lookupLang = supportedLangs.contains(userLang)
 ? userLang : defaultLang
def messages =
 [BIG_ERROR: [en:'A big error occurred',
 it:'È successo un grande errore'],
 SMALL_ERROR:[en:'A small error occurred',
 it:'È successo un piccolo errore']
]
return messages[stringKey][lookupLang]

37

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Raising a Trigger's Optional Declaratively-Configured
Error Message
In contrast with a validation rule where the declarative error message is mandatory, when you write a trigger it is
optional. Since any return value from a trigger's script is ignored, the way to cause the optional error message to be
shown to the user is by calling the adf.error.raise() method, passing null as the single argument to the function. This
causes the default declarative error message to be shown to the user and stops the current transaction from being
saved successfully. For example, you trigger would look like this:

// Assume this is in a Before Insert trigger
if (someComplexCalculation() == -1) {
 // raise an exception using the default declarative error message
 adf.error.raise(null)
}

Accessing the View Object for Programmatic Access to
Business Objects
A "view object" is a component that simplifies querying and working with business object rows. The newView() function
allows you to access a view object dedicated to programmatic access for a given business object. Each time the newView(
objectAPIName) function is invoked for a given value of object API name, a new view object instance is created for its
programmatic access. This new view object instance is in a predictable initial state. Typically, the first thing you will then
do with this new view object instance is:

• Call the findByKey() function on the view object to find a row by key, or

• Append a view criteria to restrict the view object to only return some desired subset of business objects rows
that meet your needs, as described in Finding Objects Using a View Criteria.

A view object will typically be configured to return its results in sorted order. If the default sort order does not meet your
needs, you can use the setSortBy() method on the view object to provide a comma-separated list of field names on
which to sort the results. The new sort order will take effect the next time you call the executeQuery() method on the
view object. See Defining the Sort Order for Query Results for further details on sorting options available.

A view object instance for programmatic access to a business object is guaranteed not to be used directly by your
application user interface pages. This means that any iteration you perform on the view object in your script will not
inadvertently affect the current row seen in the user interface.

Method Name Description

findByKey()

Allows you to find a row by unique id.

Returns: an array of rows having the given key, typically containing either zero or one row.

Parameters:

• key - a key object representing the unique identifier for the desired row

38

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Method Name Description

• maxRows - an integer representing the maximum number of rows to find (typically 1 is used)

Example: See Finding an Object by Id

findRowsMatchingCriteria()

Allows you to find a set of matching rows based on a filter criteria.

Returns: an iterator you can use to process the matching rows using methods iter.hasNext() and
iter.next() ofr one row.

Parameters:

• viewCriteria - a view criteria representing the filter. The easiest way to create a new view
criteria is to use the newViewCriteria() function.

• maxRows - an integer representing the maximum number of rows to find (-1 means return all
matching rows up to a limit of 500)

Example: See Finding Rows in a Child Rowset Using findRowsMatchingCriteria

appendViewCriteria()

Appends an additional view criteria query filter.

Parameters:

• filterExpr - a String representing a filter expression.

• ignoreNullBindVarValues - an optional boolean parameter indicating whether expression
predicates containing null bind variable values should be ignored (defaults to false if not
specified).

Returns: - void.

Alternatively, if you already have created a view criteria using newViewCriteria() you can pass that
view criteria as the single argument to this function.

executeQuery()

Executes the view object's query with any currently appended view criteria filters.

Returns: - void.

hasNext()

Returns: - true if the row iterator has more rows to iterate over, false if there are no further rows in
the iterator or it is already on or beyond the last row.

next()

Returns: - the next row in the iterator

reset()

Resets the view object's iterator to the "slot" before the first row.

Returns: - void.

first()

Returns: - the first row in the row iterator, or null if the iterator's row set is empty

createRow()

Creates a new row, automatically populating its system-generated Id primary key field.

Returns: - the new row

insertRow()

Inserts a new row into the view object's set of rows.

Returns: - void

39

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Method Name Description

setSortBy()

Set the sort order for query results.

Returns: - void

Defining the Sort Order for Query Results
To define the sort order for view object query results, call the setSortBy() method on the view object instance you are
working with before calling its executeQuery() method to retrieve the results. The setSortBy() function takes a single
string argument whose value can be a comma-separated list of one or more field names in the object. The following
example shows how to use this method to sort by a single field.

def vo = newView('TroubleTicket')
// Use object function to simplify filtering by agent
applyViewCriteriaForSupportAnalyst(vo, analystId)
vo.setSortBy('Priority')
vo.executeQuery()
while (vo.hasNext()) {
 def curRow = vo.next()
 // Work with current row curRow here
}

By default the sort order will be ascending, but you can make your intention explicit by using the asc or desc keyword
after the field's name in the list, separated by a space. The example below shows how to sort descending by the number
of callbacks.

def vo = newView('TroubleTicket')
// Use object function to simplify filtering by customer
applyViewCriteriaForCustomerCode(vo, custCode)
vo.setSortBy('NumberOfCallbacks desc')
vo.executeQuery()
while (vo.hasNext()) {
 def curRow = vo.next()
 // Work with current row curRow here
}

As mentioned before, the string can be a comma-separated list of two or more fields as well. This example shows how
to sort by multiple fields, including explicitly specifying the sort order.

def vo = newView('TroubleTicket')
// Use object function to simplify filtering by customer
applyViewCriteriaForCustomerCode(vo, custCode)
// Sort ascending by Priority, then descending by date created
vo.setSortBy('Priority asc, CreationDate desc')
vo.executeQuery()
while (vo.hasNext()) {
 def curRow = vo.next()
 // Work with current row curRow here
}

By default, when sorting on a text field, its value is sorted case-senstively. A value like 'Blackberry' that starts with a
capital 'B' would sort before a value like 'apple' with a lower-case 'a'. To indicate that you'd like a field's value to be sorted
case-insensitively, surround the field name in the list by the UPPER() function as shown in the following example.

40

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

def vo = newView('TroubleTicket')
// Use object function to simplify filtering by customer
applyViewCriteriaForCustomerCode(vo, custCode)
// Sort case-insensitively by contact last name, then by priority
vo.setSortBy('UPPER(ContactLastName),Priority')
vo.executeQuery()
while (vo.hasNext()) {
 def curRow = vo.next()
 // Work with current row curRow here
}

Tip: While it is possible to sort on a formula field or dynamic choice field by specifying its name, don't do so unless
you can guarantee that only a small handful of rows will be returned by the query. Sorting on a formula field or
dynamic choice list must be done in memory, therefore doing so on a large set of rows will be inefficient.

Finding an Object by Id
To find an object by id, follow these steps:

1. Use the newView() function to obtain the view object for programmatic access for the business object in
question

2. Call findByKey(), passing in a key object that you construct using the key() function
The new object will be saved the next time you save your work as part of the current transaction. The following example
shows how the steps fit together in practice.

// Access the view object for the custom TroubleTicket object
def vo = newView('TroubleTicket')
def foundRows = vo.findByKey(key(100000000272002),1)
def found = foundRows.size() == 1 ? foundRows[0] : null;
if (found != null) {
 // Do something here with the found row
}

To simplify the code involved in this common operation, you could consider defining the following findRowByKey()
helper function:

• Function Name: findRowByKey

• Return Type: oracle.jbo.Row

• Parameters: vo oracle.jbo.ViewObject, idValue Object

Function Definition

println('findRowByKey')
def found = vo.findByKey(key(idValue),1)
return found.size() == 1 ? found[0] : null;

After defining this helper function, the example below shows the simplified code for finding a row by key.

// Access the view object for the custom TroubleTicket object
def vo = newView('TroubleTicket')
def found = findRowByKey(vo,100000000272002)
if (found != null) {
 // Do something here with the found row
}

41

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Finding Objects Using a View Criteria
A "view criteria" is a declarative data filter for the custom or standard objects you work with in your scripts. After
creating a view object using the newView() function, but before calling executeQuery() on it, use the appendCriteria()
method to add a filter so the query will return only the rows you want to work with. This section explains the declarative
syntax of view criteria filter expressions, and provides examples of how to use them. At runtime, the application
development framework translates the view criteria into an appropriate SQL WHERE clause for efficient database
execution.

Using a Simple View Criteria
To find custom or standard objects using a view criteria, perform the following steps:

1. Create a view object with the newView() function
2. Append a view criteria with the appendViewCriteria() function, using an appropriate filter expression
3. Execute the query by calling executeQuery()
4. Process the results

The example below queries the TroubleTicket object to find the trouble tickets assigned to a particular staff member
with id 100000000089003 and which have a status of Working.

/*
 * Query all 'Working'-status trouble tickets assigned to a staff member with id 100000000089003
 */
// 1. Use the newView() function to get a view object
def vo = newView('TroubleTicket')
// 2. Append a view criteria using a filter expression
vo.appendViewCriteria("assignedTo = 100000000089003 and status = 'Working'")
// 3. Execute the query
vo.executeQuery()
// 4. Process the results
if (vo.hasNext()) {
 def row = vo.next()
 // Do something here with the current result row
}

Syntax of View Criteria Filter Expressions
You use a view criteria filter expression to identify the specific rows you want to retrieve from a view object. Each
expression includes the case-sensitive name of a queriable field, followed by an operator and one or more operand
values (depending on the operator used). Each operand value can be either a literal value or a bind variable value. An
attempt to filter on a field that is not queriable or a field name that does not exist in the current object will raise an error.
The following are simple examples of filter expressions.

To test whether a value is null you must use the is null or the is not null keywords:

• Comment is null

• Comment is not null

42

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

For equality use the = sign, and for inequality use either the != or the <> operators. Literal datetime values must adhere
exclusively to the format shown here.

• NextCallSchedule = '2015-07-15 16:26:30'

• Priority = 3

• Priority != 1

• Priority <> 1

• ActivityType != 'RS'

• ActivityType <> 'RS'

For relational comparisons, use the familiar <, <=, >, or > operators, along with between or not between. Literal date values
must adhere exclusively the format shown here.

• CreationDate >= '2015-07-15'

• Priority <= 2

• Priority < 3

• Priority <> 1

• Priority > 1

• Priority >= 1

• TotalLoggedHours >= 12.75

• Priority between 2 and 4

• Priority not between 2 and 4

For string matching, you can use the like operator, employing the percent sign % as the wildcard character to obtain
"starts with", "contains", or "ends with" style filtering, depending on where you place your wildcard(s):

• RecordName like 'TT-%'

• RecordName like '%-TT'

• RecordName like '%-TT-%'

To test whether a field's value is in a list of possibilities, you can use the in operator:

• ActivityType in ('OC','IC','RS')

You can combine expressions using the conjunctions and and or along with matching sets of parentheses for grouping
to create more complex filters like:

• (Comment is null) or ((Priority <= 2) and (RecordName like 'TT-99%'))

• (Comment is not null) and ((Priority <= 2) or (RecordName like 'TT-99%'))

When using the between or in clauses, you must surround them by parentheses when you join them with other clauses
using and or or conjunctions.

You use a filter expression in one of two ways:

1. Append the view criteria filter expression using appendViewCriteria() to a view object created using newView()
2. Create the view criteria by passing a filter expression to newViewCriteria(), then filter a related collection with

findRowsMatchingCriteria()

Filter expressions are not validated at design time, so if your expression contains typographical errors like misspelled
field names, incorrect operators, mismatched parentheses, or other errors, you will learn of the problem at runtime
when you test your business logic.

43

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Tips for Formatting Longer Criteria Across Multiple Lines
Groovy does not allow carriage returns or newlines to appear inside of a quoted string, so for example, the following
lines of script would raise an error:

def vo = newView('StaffMember')
// ERROR: Single-line quotes cannot contain carriage returns or new lines
vo.appendViewCriteria("
 (Salary between 10000 and 24000)
 and JobId <> 'AD_VP'
 and JobId <> 'PR_REP'
 and CommissionPct is null
 and Salary != 11000
 and Salary != 12000
 and (DepartmentId < 100
 or DepartmentId > 200)
")
vo.executeQuery()

Luckily, Groovy supports the triple-quote-delimited, multi-line string literal, so you can achieve a more readable long
view criteria filter expression using this as shown:

def vo = newView('StaffMember')
vo.appendViewCriteria("""
 (Salary between 10000 and 24000)
 and JobId <> 'AD_VP'
 and JobId <> 'PR_REP'
 and CommissionPct is null
 and Salary != 11000
 and Salary != 12000
 and (DepartmentId < 100
 or DepartmentId > 200)
""")
vo.executeQuery()

Using String Substitution for Literal Values into a View Criteria
Expression Used Only Once
If you will only be using a view object a single time after calling newView(), you can use Groovy's built-in string
substitution feature to replace variable or expression values directly into the view criteria expression text as shown in
the following example:

def vo = newView('StaffMember')
def loSal = 13500
def anon = 'Anonymous'
vo.appendViewCriteria("(Salary between ${loSal} and ${loSal + 1}) and LastName != '${anon}'")
vo.executeQuery()

Notice that you must still include single quotes around the literal string values. The string subsitution occurs at the
moment the string is passed to the appendViewCriteria() function, so if the values of the loSal or anon variables change,
their new values are not reflected retroactively in the substituted string filter criteria expression. In this example below,
Groovy substitutes the values of the loSal and anon into the view criteria expression string before passing it to the
appendViewCriteria() function. Even though their values have changed later in the script, when the vo.executeQuery() is

44

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

performed a second time, the view object re-executes using the exact same filter expression as it did before, unaffected
by the changed variable values.

def vo = newView('StaffMember')
def loSal = 13500
def anon = 'Anonymous'
vo.appendViewCriteria("(Salary between ${loSal} and ${loSal + 1}) and LastName != '${anon}'")
vo.executeQuery()
// ... etc ...
loSal = 24000
anon = 'Julian'
// The changed values of 'loSal' and 'anon' are not used by the
// view criteria expression because the one-time string substitutions
// were done as part of the call to appendViewCriteria() above.
vo.executeQuery()

If you need to use a view object with appended view criteria filter expression multiple times within the same script, use
named bind variables as described in the following section instead of string substitution. Using named bind variables,
the updated values of the variables are automatically used by the re-executed query.

Using Custom Bind Variables for View Criteria Used Multiple Times

Often you may need to execute the same view object multiple times within the same script. If your operand values
change from query execution to query execution, then named bind variables allow you to append a view criteria once,
and use it many times with different values for the criteria expression operands. Just add one or more named bind
variables to your view object, and then set the values of these bind variables as appropriate before each execution. The
bind variables act as "live" placeholders in the appended filter expression, and their current values are used each time
the view object's query is executed.

To add a named bind variable, use the addBindVariable() function. Pass a view object or rowset as the first argument
and a string value to define the name of the bind variable as the second argument as shown in the example below. You
can name your bind variable using any combination of letters, numbers, and underscores, as long as the name starts
with a letter.

def vo = newView('StaffMember')
addBindVariable(vo,'VarLastName')
setBindVariable(vo,'VarLastName','King')
vo.appendViewCriteria('LastName = :VarLastName')
vo.executeQuery()
while (vo.hasNext()) {
 def r = vo.next();
 // Will return "Steven King" and "Janette King"
}
setBindVariable(vo,'VarLastName','Higgins')
vo.executeQuery()
while (vo.hasNext()) {
 def r = vo.next();
 // Will return "Shelley Higgins"
}

You can reference a named bind variable in the view criteria expression anywhere a literal value can be used, prefacing
its name by a colon (e.g. :VarLastName). After adding the bind variable, you use the setBindVariable() function one or
more times in your script to assign values to the variable. Until you explicitly set its value for the current view object or
rowset, your bind variable defaults to having a value of null. Accidentally leaving the value null will result in retrieving
no rows for most filter expressions involving a bind variable operand due to how the SQL language treats the null value
in comparisons. The current value of the bind variable is used each time your script executes the view object. In the

45

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

example below, this causes the rows for employees "Steven King" and "Janette King" to be returned during the first view
object execution, and the row for "Shelly Higgins" to be returned on the second view object execution.

By default, the data type of the named bind variable is of type Text. If you need to use a bind variable in filter
expressions involving number, date, or datetime fields, then you need to explicitly define a bind variable with the
appropriate type for best performance. To add a bind variable of a specific datatype, pass one of the values Text, Number,
Date, or Datetime as a string value to the optional third argument of the addBindVariable() function. For example, the
following script uses two bind variables of type Number and another of type Date. Notice that the data type name is not
case-sensitive (e.g. Number, number, or NUMBER are all allowed).

def vo = newView('TroubleTicket')
addBindVariable(vo,'VarLowPri','number')
addBindVariable(vo,'VarHighPri','Number')
addBindVariable(vo,'VarDueDate','DATE')
setBindVariable(vo, 'VarLowPri', 1)
setBindVariable(vo, 'VarDueDate', 2)
setBindVariable(vo, 'VarDueDate', today() + 3)
vo.appendViewCriteria('(priority between :VarLowPri and :VarHighPri) and dueDate < :VarDueDate')
vo.executeQuery()
while (vo.hasNext()) {
 def row = vo.next()
 // Returns trouble tickets with priorities 1 and 2 that are
 // due within three days from today
}
setBindVariable(vo, 'VarLowPri', 3)
setBindVariable(vo, 'VarDueDate', 4)
setBindVariable(vo, 'VarDueDate', today() + 5)
vo.executeQuery()
while (vo.hasNext()) {
 def row = vo.next()
 // Returns trouble tickets with priorities 3 and 4 that are
 // due within five days from today
}

Using View Criteria to Query Case-Insensitively
If you want to filter in a case-insensitive way, you can use the upper() function around the field name in the filter. If you
are not sure whether the operand value is uppercase, you can also use the upper() function around the operand like this:

• upper(JustificationCode) = 'BRK'

• upper(JustificationCode) = upper(:codeVar)

• upper(JustificationCode) like upper(:codeVar)||'%'

Limitations of View Criteria Filter Expressions
While view criteria filter expressions are extremely convenient, they do not support every possible type of filtering that
you might want to do. This section describes several constructs that are not possible to express directly, and where
possible, suggests an alternative way to achieve the filtering.

• Only a case-sensitive field name is allowed before the operator
On the left hand side of the operator, only a case-sensitive field name is allowed. So, for example, even a simple
expression like 1 = 1 is considered illegal because the left-hand side is not a field name.

• Cannot reference a calculated expression directly as an operand value

46

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

You might be interested in querying all rows where one field is equal to a calculated quantity. For example,
when querying trouble tickets you might want to find all open tickets whose Resolution Promised Date is less
than three days away. Unfortunately, an expression like ResolutionPromisedDate <= today() + 3 is not allowed
because it uses a calculated expression on the right hand side of the operator. As an alternative, you can
compute the value of the desired expression prior to appending the view criteria and use the already-computed
value as a literal operand value string substitution variable in the string or as the value of a bind variable.

• Cannot reference a field name as an operand value

You might be interested in querying all rows where one field is equal to another field value. For example, when
querying contacts you might want to find all contacts whose Home Phone Number is equal to their Work Phone
Number. Unfortunately, an expression like HomePhoneNumber = WorkPhoneNumber is not allowed because it uses a
field name on the right hand side of the operator. A clause such as this will be ignored at runtime, resulting in
no effective filtering.

• Cannot reference fields of related objects in the filter expression

It is not possible to reference fields of related objects directly in the filter query expression. As an alternative,
you can reference the value of a related expression prior to appending the view criteria and use the already-
computed value as a literal operand value string substitution variable in the string or as the value of a bind
variable.

• Cannot use bind variable values of types other than Text, Number, Date, or Datetime

It is not possible to use bind variable values of types other than the four supported types: Text, Number, Date,
and Datetime. An attempt to use other data types as the value of a bind variable may result in errors or in the
criteria's being ignored.

Finding Rows in a Child Rowset Using findRowsMatchingCriteria
In addition to using view criteria to filter a view object that you create using newView(), you can also use one to retrieve a
subset of the rows in a related collection. For example, if a TroubleTicket custom object contains a child object collection
of related activities, you can process selected activities in the related collection using code as shown below:

def vo = newView('TroubleTicket')
vo.appendViewCriteria("priority = 1 and status = 'Open'")
vo.executeQuery()
def vc = null
// Process all open P1 trouble tickets
while (vo.hasNext()) {
 def curTicket = vo.next()
 def activities = curTicket.activityCollection
 if (vc == null) {
 addBindVariable(activities,'TodaysDate','date')
 vc = newViewCriteria(activities,"activityType in ('OC','IC') and creationDate > :TodaysDate")
 }
 // Process the activities created today for inbound/outbound calls
 setBindVariable(activities,'TodaysDate',today())
 def iter = activities.findRowsMatchingCriteria(vc,-1)
 while (iter.hasNext()) {
 def activity = iter.next()
 // process the activity here
 }
}

47

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

The newViewCriteria() function accepts an optional third parameter ignoreNullBindVarValues of boolean type that
you can use to indicate whether filter expression predicates containing null bind variable values should be ignored. If
omitted, the default value of this parameter is false.

Accomplishing More with Less Code
Your code will frequently work with collections and contain conditional logic and loops involving values that might be
null. This section explains the simplest way of working with conditionals and loops when the value involved might
be null, and covers how to define and pass functions around like objects using closures. Finally, it explains the most
common collection methods and how to combine them with closures to gain maximum expressive power in minimum
lines of code. Fewer lines of code makes your business logic easier to read and write.

Embracing Null-Handling in Conditions
You can avoid many extra lines of code by understanding how conditional statements behave with null values. If a
variable someFlag is a Boolean variable that might be null, then the following conditional block executes only if someFlag
is true. If someFlag is null or false, then the block is skipped.

// If boolean someFlag is true...
if (someFlag) {
 // Do something here if someFlag is true
}

A String variable can be null, an empty string (""), or can contain at least one character in it. If a variable middleName is a
String, then the following conditional block executes only if middleName is not null and contains at least one character:

// If customer has a middle name...
if (middleName) {
 // Do something here if middleName has at least one character in it
}

If a variable recentOrders is a List, then the following conditional block executes only if recentOrders is not null and
contains at least one element:

// If customer has any recent orders...
if (recentOrders) {
 // Do something here if recentOrders has at least one element
}

If a variable recentTransactions is a Map, then the following conditional block executes only if recentTransactions is not
null and contains at least one map entry:

// If supplier has any recent transactions...
if (recentTransactions) {
 // Do something here if recentTransactions has at least one map entry
}

If a variable customerId can be null, and its data type is anything other than the ones described above then the following
conditional block executes only if customerId has a non-null value:

// If non-boolean customerId has a value...
if (customerId) {
 // Do something here if customerId has a non-null value
}

48

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

If you need to test a Map entry in a conditional and there's a chance the Map might be null, then remember to use the
safe-navigation operator (?.) when referencing the map key by name:

// Use the safe-navigation operator in case options Map is null
if (options?.orderBy) {
 // Do something here if the 'orderBy' key exists and has a non-null value
}

Embracing Null-Handling in Loops
You can avoid many extra lines of code by understanding how loops behave with null values. If a variable recentOrders
is a List, then the following loop processes each element in the list or gets skipped if the variable is null or the list is
empty:

// Process recent customer orders (if any, otherwise skip)
for (order in recentOrders) {
 // Do something here with current order
}

If a variable recentTransactions is a Map, then the following conditional block executes only if recentTransactions is not
null and contains at least one map entry:

// Process supplier's recent transaction (if any, otherwise skip)
for (transaction in recentTransactions) {
 // Do something here with each transaction referencing each map
 // entry's key & value using transaction.key & transaction.value
}

A String variable can be null, an empty string (""), or can contain at least one character in it. If a variable middleName
is a String, then the following conditional block will execute only if middleName is not null and contains at least one
character:

// Process the characters in the customer's middle name
for (c in middleName) {
 // Do something here with each character 'c'
}

If your for loop invokes a method directly on a variable that might be null, then use the safe-navigation operator (?.) to
avoid an error if the variable is null:

// Split the recipientList string on commas, then trim
// each email to remove any possible whitespace
for (email in recipientList?.split(',')) {
 def trimmedEmail = email.trim()
 // Do something here with the trimmed email
}

Understanding Groovy's Null-Safe Comparison Operators
It's important to know that Groovy's comparison operators == and != handle nulls gracefully so you don't have to worry
about protecting null values in equality or inequality comparisons. Furthermore, the >, >=, <, and <= operators are also
designed to avoid null-related exceptions, however you need to be conscious of how Groovy treats null in these order-
dependent comparisons. Effectively, a null value is "less than" any other non-null value in the natural ordering, so for
example observe the following comparison results.

49

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Left-Side Expression Operator Right-Side Expression Comparison Result

'a'

>

null

true

'a'

<

null

false

100

>

null

true

100

<

null

false

-100

>

null

true

-100

<

null

false

now()

>

null

true

now()

<

null

false

now() - 7

>

null

true

now() - 7

<

null

false

If you want a comparison to treat a null-valued field with different semantics — for example, treating a null
MaximumOverdraftAmount field as if it were zero (0) like a spreadsheet user might expect — then use the nvl() function as
part of your comparison logic as shown in the following example:

// Change default comparison semantics for the MaximumOverdraftAmount custom field in
// case its value is null by using nvl() to treat null like zero (0)
if (nvl(MaximumOverdraftAmount,0) < -2000) {
 // do something for suspiciously large overdraft amount
}

As illustrated by the table above, without the nvl() function in the comparison any MaximumOverdraftAmount value of null
would always be less than -2000 — since by default null is less than everything.

Using Functions as Objects with Closures
While writing helper code for your application, you may find it handy to treat a function as an object called a closure. It
lets you to define a function you can store in a variable, accept as a function parameter, pass into another function as an
argument, and later invoke on-demand, passing appropriate arguments as needed.

For example, consider an application that must support different strategies for calculating sales tax on an order's line
items. The Order object's computeTaxForOrder() function shown below declares a taxStrategyFunction parameter of type
Closure to accept a tax strategy function from the caller. At an appropriate place in the code, it invokes the function
passed-in by applying parentheses to the parameter name, passing along any arguments.

// Object function on Order object
// Float computeTaxForOrder(Closure taxStrategyFunction)
Float totalTax = 0

50

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

// Iterate over order line items and return tax using
// taxStrategyFunction closure passed in
def orderLines = orderLinesCollection
orderLines.reset()
while (orderLines.hasNext()) {
 // Invoke taxStrategyFunction() passing current line's lineTotal
 def currentLine = orderLines.next()
 totalTax += taxStrategyFunction(currentLine.lineTotal)
}
return totalTax

In one territory ABC, imagine that amounts under 25 euros pay 10% tax while items 25 euros or over pay 22%. In a
second territory DEF, sales tax is a flat 20%. We could represent these two tax computation strategies as separate
function variables as shown below. The closure is a function body enclosed by curly braces that has no explicit function
name. By default the closure function body accepts a single parameter named it that will evaluate to null if no
parameter is passed at all when invoked. Here we've saved one function body in the variable named taxForTerritoryABC
and another in the variable taxForTerritoryDEF.

def taxForTerritoryABC = { return it * (it < 25 ? 0.10 : 0.22) }
def taxForTerritoryDEF = { return it * 0.20 }

When the function body is a one-line expression, you can omit the return keyword as shown below, since Groovy
returns the last evaluated expression as the function return value if not explicitly returned using the return statement.

def taxForTerritoryABC = { it * (it < 25 ? 0.10 : 0.22) }
def taxForTerritoryDEF = { it * 0.20 }

The code inside each anonymous function body is not executed until later when it gets explicitly invoked. With the code
in a variable, we can pass that variable as an argument to an object function like the Order object's computeTaxForOrder()
as shown below. Here we're calling it from a Before Insert trigger on the Order object:

// Before Insert trigger on Order
def taxForTerritoryABC = { it * (it < 25 ? 0.10 : 0.22) }
// Assign the value of totalTax field, using the taxForTerritoryABC
// function to compute the tax for each line item of the order.
totalTax = computeTaxForOrder(taxForTerritoryABC)

If you don't like the default name it for the implicit parameter passed to the function, you can give the parameter an
explicit name you prefer using the following "arrow" (->) syntax. The parameter name goes on the left, and the body of
the function on the right of the arrow:

def taxForTerritoryABC = { amount -> amount * (amount < 25 ? 0.10 : 0.22) }
def taxForTerritoryDEF = { val -> val * 0.20 }

The closure is not limited to a single parameter. Consider the following slightly different tax computation function
on the Order object named computeTaxForOrderInCountry(). It accepts a taxStrategyFunction that it invokes with two
arguments: an amount to be taxed and a country code.

// Object function on Order object
// BigDecimal computeTaxForOrderInCountry(Closure taxStrategyFunction) {
BigDecimal totalTax = 0
// Iterate over order line items and return tax using
// taxStrategyFunction closure passed in
def orderLines = orderLinesCollection
orderLines.reset()
while (orderLines.hasNext()) {
 // Invoke taxStrategyFunction() passing current line's lineTotal
 // and the countryCode field value from the owning Order object
 def currentLine = orderLines.next()
 totalTax += taxStrategyFunction(currentLine.lineTotal,
 currentLine.order.countryCode)
}

51

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

return totalTax

This means the closure you pass to computeTaxForOrderInCountry must declare both parameters and give each a name
as shown in the example below. Notice that the function body can contain multiple lines if needed.

def taxForTerritoryABC = { amount, countryCode ->
 if (countryCode == 'IT') {
 return amount * (amount < 25 ? 0.10 : 0.22)
 }
 else {
 return amount * (amount < 50 ? 0.12 : 0.25)
 }
 }

There's no requirement that you store the closure function in a local variable before you pass it into a function. You can
pass the closure directly inline like this:

// Before Insert trigger on Order: Assign totalTax
// using a flat 0.22 tax regardless of countryCode
totalTax = computeTaxForOrderInCountry({ amount, country -> return 0.22 })

In this situation, to further simplify the syntax, Groovy allows omitting the extra set of surrounding parentheses like this:
totalTax = computeTaxForOrderInCountry{ amount, country -> return 0.22 }

Many built-in collection functions — described in more details in the following sections — accept a closure to
accomplish their job. For example, the findAll() function shown below finds all email addresses in the list that end with
the .edu suffix.

def recipients = ['sjc@example.edu','dan@example.com',
 'spm@example.edu','jim@example.org']
def eduAddreses = recipients.findAll{ it?.endsWith('.edu') }

Finally, in order to define a closure that accepts no parameters and should raise an error if any parameter is passed to it,
you must use the arrow notation without mentioning any parameters on the left side of the arrow like this:

def logCurrentTime = { -> println("Current time is ${now()}") }

Some later code that invokes this closure by name by appending parentheses like this will succeed because it is passing
no arguments:

// Invoke the closure's function body with no arguments
logCurrentTime()

However, an attempt to pass it an argument will fail with an error:
// This will FAIL because the closure demands no arguments!
logCurrentTime(123)

Working More Cleverly with Collections
Business logic frequently requires working with collections of values. This section explains the most useful functions
you can use to work with your collections to keep code clean, readable, and easy to understand.

Finding Items in a Collection
To find all items matching a condition in a collection, use the findAll() function. It accepts a boolean closure identifying
the items you're looking for. The result is a List of all items in the collection for which the closure evaluates to true. If no
item matches or the collection is empty, then an empty collection is returned.

52

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

As shown below, you can leave off the parentheses if passing the closure in-line. The result of this example is a list
containing all recipient emails whose address ends with the .edu suffix:

def recipients = ['sjc@example.edu','dan@example.com',
 'spm@example.edu','jim@example.org']
// Pass boolean closure using implicit "it" parameter with find criteria
// (using safe-navigation operator in case any element is null)
def eduAddreses = recipients.findAll{ it?.endsWith('.edu') }

When applied to a List of Map objects, your closure can reference the current map's keys by name as shown below. This
example produces a list of phonebook entries having a phone number that starts with the country code "+39-" for Italy.

def phonebook = [
 [name: 'Steve', phone: '+39-123456789'],
 [name: 'Joey', phone: '+1-234567890'],
 [name: 'Sara', phone: '+39-345678901'],
 [name: 'Zoe', phone: '+44-456789123']
]
def italianFriends = phonebook.findAll { it?.phone?.startsWith('+39-') }

If you call findAll() on a Map, then the parameter passed to the closure on each evaluation is the current Map entry.
Each entry has a key and value property you can reference in the closure function body if necessary. The result is a Map
containing only the entries for which the closure evaluates to true. In the example below, the result is a map containing
the two users' map entries whose name is Steve.

def users = [
 'smuench':[name:'Steve', badge:'A123'],
 'jevans':[name:'Joe', badge:'B456'],
 'sburns':[name:'Steve', badge:'C789']
]
def usersNamedSteve = users.findAll { it?.value.name == 'Steve' }

To find only the first matching item, use the find() function instead of findAll(). It accepts the same boolean closure
but stops when the first match is identified. Note that in contrast to findAll(), when using find() if no item matches the
predicate or the collection was empty to begin with then null is returned.
Companion functions exist to perform other searching operations like:

• any { boolean_predicate } — returns true if boolean_predicate returns true for any item

• every { boolean_predicate } — returns true if boolean_predicate returns true for every item

Generating One Collection from Another
You can use the collect() function to produce a new collection from an existing collection. The resulting one contains
the results of evaluating a closure for each element in the original collection. In the example below, the uppercasedNames
collection is a list of the uppercase name property values of all the map entries in the phonebook.

def phonebook = [
 [name: 'Steve', phone: '+39-123456789'],
 [name: 'Joey', phone: '+1-234567890'],
 [name: 'Sara', phone: '+39-345678901'],
 [name: 'Zoe', phone: '+44-456789123']
]
def uppercasedNames = phonebook.collect { it?.name?.toUpperCase() }

You can combine collection functions in a chain to first filter then collect results of only the matching entries. For
example, the code below produces a list of the values of the name property of phonebook entries with an Italian phone
number.

// First filter phonebook collection, then collect the name values
def italianNames = phonebook.findAll { it?.phone?.startsWith('+39-') }

53

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

 .collect { it?.name }

Sorting Items in a Collections
To sort the items in a collection, use the sort() function. If the collection is a simple list then its items will be sorted
ascending by their natural ordering. For example, this line will sort the list of names in alphabetical order. The collection
you invoke it on is updated to reflect the sorted ordering:

def names = ['Zane','Jasmine','Abigail','Adam']
names.sort()

For a list of maps, if you want to sort on the value of a particular map property, pass a closure that returns the property
to use for sorting. The following example shows how to sort a users collection based on the number of accesses a user
has made.

def users = [
 [userid:'smuench', name:'Steve', badge:'A123', accesses: 135],
 [userid:'jevans', name:'Joe', badge:'B456', accesses: 1001],
 [userid:'sburns', name:'Steve', badge:'C789', accesses: 52]
]
// Sort the list of maps based on the accesses property of each map
users.sort { it.accesses }

For a map of maps, the approach is similar but since the closure is passed a map entry key/value pair, this use case
requires accessing the value property of the map entry before referencing its accesses property as shown here.

def users = [
 'smuench':[name:'Steve', badge:'A123', accesses: 135],
 'jevans':[name:'Joe', badge:'B456', accesses: 1001],
 'sburns':[name:'Steve', badge:'C789', accesses: 52]
]
// Sort the map of maps based on the accesses property of map entry's value
users.sort { it.value.accesses }

If you need more control over the sorting, you can pass a closure that accepts two parameters and returns:

• 0 — if they are equal

• -1 — if the first parameter is less than the second parameter

• 1 — if the first parameter is greater than the second parameter

The simplest way to implement a comparator closure is to use the Groovy "compare to" operator (<=>). In the example
below, the two-parameter closure uses this operator to return the appropriate integer based on comparing the value
of the accesses property of the the first map entry's value with the corresponding value of the same property on the
second map entry's value.

// Sort map of maps by comparing the accesses property of map entry's value
users.sort { a, b -> a.value.accesses <=> b.value.accesses }

To reverse the sort order to be descending if needed, simply swap the roles of the two parameters passed to the closure.
For example, to sort the user list descending by number of accesses, as shown below, swap the a and b parameters on
the right side of the arrow:

// Sort map of maps DESCENDING by comparing the accesses property of map entry's value
users.sort { a, b -> b.value.accesses <=> a.value.accesses }

If your sorting needs are more complex, you can implement the comparator closure in any way you need to, so long as it
returns one of the three expected integer values.

54

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Grouping Items in a Collection
To group items in a collection, use the groupBy() function, providing a closure to evaluate as the grouping key. For
example, given a list of words you can group them based on the length of each word by doing the following:

def words = ['For', 'example', 'given', 'a', 'list', 'of', 'words', 'you', 'can',
 'group', 'them', 'based', 'on', 'the', 'length', 'of', 'each', 'word']
def groupedByLength = words.groupBy{ it.length() }

This produces the following result of type Map of List:
[
 3:['For', 'you', 'can', 'the'],
 7:['example'],
 5:['given', 'words', 'group', 'based'],
 1:['a'],
 4:['list', 'them', 'each', 'word'],
 2:['of', 'on', 'of'],
 6:['length']
]

To produce a count of the number of items in each group, use the countBy() function, passing the same kind of closure
to determine the grouping key:

def countsByLength = words.countBy{ it.length() }

This produces a map with the word lengths as the map key and the count as the value:

[3:4, 7:1, 5:4, 1:1, 4:4, 2:3, 6:1]

You can group and sort any collection as needed. For example, after grouping and counting the list of words above, you
can group the resulting map into further groups based on whether the words have an even number of characters or an
odd number of characters like this:

def evenOdd = countsByLength.groupBy{ it.key % 2 == 0 ? 'even' : 'odd' }

This produces a map of maps like this:
[odd:[3:4, 7:1, 5:4, 1:1],
 even:[4:4, 2:3, 6:1]]

These functions can be chained so you can produce a sorted list of words containing less than three letters and the
count of their occurrences by doing:

def shortWordCounts = words.findAll{ it.length() < 3 }
 .countBy{ it }
 .sort{ it.key }

The code is compact and easy to understand, but if you want to rename the closure parameters to make them even
more self-documenting:

def shortWordCounts =
 words.findAll{ word -> word.length() < 3 }
 .countBy{ word -> word
 .sort{ wordCountMapEntry -> wordCountMapEntry.key }

For the final flourish, you could consider even adding additional comments like this:
def shortWordCounts =
 // Find words less than 3 characters
 words.findAll{ word -> word.length() < 3 }
 // Then count how many times each resulting word occurs
 .countBy{ word -> word }
 // Then sort alphabetically by word

55

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

 .sort{ wordCountMapEntry -> wordCountMapEntry.key }

This produces the desired result of:
[a:1, of:2, on:1]

Computing Aggregates Over a Collection
You can easily compute the count, sum, minimum, or maximum of items in a collection. This section describes how to
use these four collection functions.

Computing the Count of Items in a Collection
To determine the number of items in a collection call its size() function. However, if you need to count a subset of
items in a collection based on a particular condition, then use count(). If you provide a single value, it returns a count of
occurrences of that value in the collection. For example, the following use of count('bbb') returns the number 2.

def list = ['aa','bbb','cccc','defgh','bbb','aa','defgh','defgh']
// If there are two or more 'bbb' then do something...
if (list.count('bbb') >= 2){ /* etc. */ }

The count() function also accepts a boolean closure identifying which items to count. For example, to count the strings
in a list whose lengths are an even number of characters, use code like the following. The count reflects the items for
which the closure evaluates to true.

def list = ['aa','bbb','cccc','defgh','bbb','aa','defgh','defgh']
def numEvenLengths = list.count{ it.length() % 2 == 0 }

To partition the collection into distinct groups by a grouping expression and then count the number of items in each
group, use the countBy() function. It takes a closure that identifes the grouping key before computing the count of the
items in each group. For example, to count the number of occurrences of items in the list above, use:

def entriesAndCounts = list.countBy{ it }

This will produce a resulting map like this:
[aa:2, bbb:2, cccc:1, defgh:3]

If you want to sort the result descending by the number of occurrences of the strings in the list, use:
def entriesAndCounts = list.countBy{ it }
 .sort{ a, b -> b.value <=> a.value }

Which produces the map:
[defgh:3, aa:2, bbb:2, cccc:1]

If you only care about the map entry containing the word that occurred the most frequently and its count of
occurrences, then you can further chain the unqualified find() function that returns the first element.

def topWord = list.countBy{ it }
 .sort{ a, b -> b.value <=> a.value }
 .find()
println "Top word '${topWord.key}' appeared ${topWord.value} times"

Computing the Minimum of Items in a Collection
To determine the minimum item in a collection call its min() function with no arguments. However, if you need to find
the minimum from a subset of items in a collection based on a particular condition, then pass a closure to min() that
identifies the expression for which to find the minimum value. For example, to find the minimum item in the following
list of users based on the number of accesses they've made to a system, do the following:

def users = [

56

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

 'smuench':[name:'Steve', badge:'A123', accesses: 135],
 'sburns':[name:'Steve', badge:'C789', accesses: 52],
 'qbronson':[name:'Quello', badge:'Z231', accesses: 52],
 'jevans':[name:'Joe', badge:'B456', accesses: 1001]
]
// Return the map entry with the minimum value based on accesses
def minUser = users.min { it.value.accesses }

The min() function returns the first item having the minimum accesses value of 52, which is the map entry
corresponding to sburns. However, to return all users having the minimum value requires first determining the
minimum value of accesses and then finding all map entries having that value for their accesses property. This code
looks like:

// Find the minimum value of the accesses property
def minAccesses = users.min { it.value.accesses }.value.accesses
// Return all map entries having that value for accesses
def usersWithMinAccesses = users.findAll{ it.value.accesses == minAccesses }

There is often more than one way to solve a problem. Another way to compute the minimum number of accesses would
be to first collect() all the accesses values, then call min() on that collection of numbers. That alternative approach
looks like this:

// Find the minimum value of the accesses property
def minAccesses = users.collect{ it.value.accesses }.min()

Using either approach to find the minimum accesses value, the resulting map produced is:
[
 sburns:[name:'Steve', badge:'C789', accesses:52],
 qbronson:[name:'Quello', badge:'Z231', accesses:52]
]

If the collection whose minimum item you seek requires a custom comparison to be done correctly, then you can pass
the same kind of two-parameter comparator closure that the sort() function supports.

Computing the Maximum of Items in a Collection
To determine the maximum item in a collection call its max() function with no arguments. However, if you need to find
the maximum from a subset of items in a collection based on a particular condition, then pass a closure to max() that
identifies the expression for which to find the maximum value. For example, to find the maximum item in the following
list of users based on the number of accesses they've made to a system, do the following:

def users = [
 'smuench':[name:'Steve', badge:'A123', accesses: 1001],
 'sburns':[name:'Steve', badge:'C789', accesses: 52],
 'qbronson':[name:'Quello', badge:'Z231', accesses: 152],
 'jevans':[name:'Joe', badge:'B456', accesses: 1001]
]
// Return the map entry with the maximum value based on accesses
def maxUser = users.max { it.value.accesses }

The max() function returns the first item having the maximum accesses value of 1001, which is the map entry
corresponding to smuench. However, to return all users having the maximum value requires first determining the
maximum value of accesses and then finding all map entries having that value for their accesses property. This code
looks like:

// Find the maximum value of the accesses property
def maxAccesses = users.max { it.value.accesses }.value.accesses
// Return all map entries having that value for accesses
def usersWithMaxAccesses = users.findAll{ it.value.accesses == maxAccesses }

57

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

There is often more than one way to solve a problem. Another way to compute the maximum number of accesses would
be to first collect() all the accesses values, then call max() on that collection of numbers. That alternative approach
looks like this:

// Find the maximum value of the accesses property
def maxAccesses = users.collect{ it.value.accesses }.max()

Using either approach to find the maximum accesses value, the resulting map produced is:
[
 smuench:[name:Steve, badge:A123, accesses:1001],
 jevans:[name:Joe, badge:B456, accesses:1001]
]

If the collection whose maximum element you seek requires a custom comparison to be done correctly, then you can
pass the same kind of two-parameter comparator closure that the sort() function supports.

Computing the Sum of Items in a Collection
To determine the sum of items in a collection call its sum() function with no arguments. This works for any items that
support a plus operator. For example, you can sum a list of numbers like this to produce the result 1259.13:

def salaries = [123.45, 678.90, 456.78]
// Compute the sum of the list of salaries
def total = salaries.sum()

However, since strings also support a plus operator, it might surprise you that the following also works to produce the
result VincentvanGogh:

def names = ['Vincent','van','Gogh']
def sumOfNames = names.sum()

If you need to find the sum of a subset of items in a collection based on a particular condition, then first call findAll()
to identify the subset you want to consider, then collect() the value you want to sum, then finally call sum() on that
collection. For example, to find the sum of all accesses for all users with over 100 accesses, do the following to compute
the total of 2154:

def users = [
 'smuench':[name:'Steve', badge:'A123', accesses: 1001],
 'sburns':[name:'Steve', badge:'C789', accesses: 52],
 'qbronson':[name:'Quello', badge:'Z231', accesses: 152],
 'jevans':[name:'Joe', badge:'B456', accesses: 1001]
]
// Compute sum of all user accesses for users having more than 100 accesses
def total = users.findAll{ it.value.accesses > 100 }
 .collect{ it.value.accesses }
 .sum()

Joining Items in a Collection
To join the items in a collection into a single String, use its join() function as shown below, passing the string you want
to be used as the separator between list items.

def paths = ['/bin', '/usr/bin', '/usr/local/bin']
// Join the paths in the list, separating by a colon
def pathString = recipients.join(':')

The result will be the string:
/bin:/usr/bin:/usr/local/bin

58

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Using Optional Method Arguments
Using optional, named method arguments on your helper functions can make your code easier to read and more self-
documenting. For example, consider a object helper function queryRows() that simplifies common querying use cases.
Sometimes your calling code only requires a select list and a from clause:

def rates = queryRows(select: 'fromCurrency,toCurrency,exchangeRate',
 from: 'DailyRates')

On other occasions, you may need a where clause to filter the data and an orderBy parameter to sort it:
def euroRates = queryRows(select: 'fromCurrency,toCurrency,exchangeRate',
 from: 'DailyRates',
 where: "fromCurrency = 'EUR'",
 orderBy: 'exchangeRate desc')

By using optional, named arguments, your calling code specifies only the information required and clarifies the
meaning of each argument. To adopt this approach, use a single parameter of type Map when defining your function:

// Global Function
List queryRows(Map options)

Of course, one way to call the queryRows() function is to explicitly pass a Map as its single argument like this:
// Passing a literal Map as the first argument of queryRows()
def args = [select: 'fromCurrency,toCurrency,exchangeRate',
 from: 'DailyRates']
def rates = queryRows(args)

You can also pass a literal Map inline without assigning it to a local variable like this:

// Passing a literal Map inline as the first argument of queryRows()
def rates = queryRows([select: 'fromCurrency,toCurrency,exchangeRate',
 from: 'DailyRates'])

However, when passing a literal Map directly inside the function call argument list you can omit the square brackets. This
makes the code easier to read:

// Passing a literal Map inline as the first argument of queryRows()
// In this case, Groovy allows removing the square brackets
def rates = queryRows(select: 'fromCurrency,toCurrency,exchangeRate',
 from: 'DailyRates')

The Map argument representing your function's optional parameters must be first. If your function defines additional
parameters, then when calling the function, pass the values of the other parameters first followed by any optional,
named parameters you want to include. For example, consider the signature of following findMatchingOccurrences()
object function that returns the number of strings in a list that match a search string. The function supports three
optional boolean parameters caseSensitive, expandTokens, useRegExp.

Long findMatchingOccurrences(Map options, List stringsToSearch, String searchFor)

Calling code passes optional, named arguments after values for stringsToSearch and searchFor as shown below:
// Use an object function to count how many emails
// are from .org or .edu sites
def nonCommercial = findMatchingOccurrences(emails,'.*.org|.*.edu',
 caseSensitive: true,
 useRegExp: true)

Regardless of the approach the caller used to pass in the key/value pairs, your function body works with optional,
named arguments as entries in the leading Map parameter. Be aware that if no optional argument is included, then

59

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

the leading Map parameter evaluates to null. So assume the options parameter might be null and handle that case
appropriately.

Your code should validate incoming optional arguments and, where appropriate, provide default values for options the
caller did not explicitly pass in. The example below shows the opening lines of code for the queryRows() global function.
Notice it uses the safe-navigation operator (?.) when referencing the select property of the options parameter just in
case it might be null and signals an error using another global function named error().

// Object Function: List queryRows(Map options)
// ---------------
// The options Map might be null if caller passes no named parameters
// so check uses the safe-navigation operator to gracefully handle the
// options == null case, too. We're assuming another object helper function
// named 'error()' exists to help throw exception messages.
if (!options?.select) {
 error("Must specify list of field names in 'select' parameter")
}
if (!options?.from) {
 error("Must specify object name in 'from' parameter")
}
// From here, we know that some options were supplied, so we do not
// need to continue using the "?." operator when using options.someName
def vo = newView(options.from)
// etc.

Creating a New Object
To create a new object, follow these steps:

1. Use the newView() function to obtain the view object for programmatic access for the business object in
question

2. Call the createRow() function on the view object to create a new row
3. Set the desired field values in the new row
4. Call insertRow() on the view object to insert the row.

The new object will be saved the next time you save your work as part of the current transaction. The example below
shows how the steps fit together in practice.

// Access the view object for the custom TroubleTicket object
def vo = newView('TroubleTicket')
// Create the new row
def newTicket = vo.createRow()
// Set the problem summary
newTicket.ProblemSummary = 'Cannot insert floppy disk'
// Assign the ticket a priority
newTicket.Priority = 2
// Insert the new row into the view object
vo.insertRow(newTicket)
// The new data will be saved to the database as part of the current
// transaction when it is committed.

60

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Updating an Existing Object
If the object you want to update is the current row in which your script is executing, then just assign new values to the
fields as needed.

However, if you need to update an object that is different from the current row, perform these steps:

1. Use newView() to access the appropriate view object for programmatic access
2. Find the object by id or find one or more objects using a view criteria, depending on your requirements
3. Assign new values to fields on this row as needed

The changes will be saved as part of the current transaction when the user commits it.

Tip: See Avoiding Validation Threshold Errors By Conditionally Assigning Values for a tip about how to avoid your field
assignments from causing an object to hit its validation threshold.

Permanently Removing an Existing Object
To permanently remove an existing object, perform these steps:

1. Use newView() to access the appropriate view object for programmatic access
2. Find the object by id or find one or more objects using a view criteria, depending on your requirements
3. Call the remove() method on the row or rows as needed

The changes will be saved as part of the current transaction when the user commits it.

Reverting Changes in a Single Row
To revert pending changes to an existing object, perform these steps:

1. Use newView() to access the appropriate view object for programmatic access
2. Find the object by id
3. Call the revertRowAndContainees() method as follows on the row

yourRow.revertRowAndContainees()

Understanding Why Using Commit or Rollback In Scripts
Is Strongly Discouraged
By design you cannot commit or rollback the transaction from within your scripts. Any changes made by your scripts
get committed or rolled-back along with the rest of the current transaction. If your script code were allowed to call

61

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

commit() or rollback(), this would affect all changes pending in the current transaction, not only those performed by
your script and could lead to data inconsistencies.

Using the User Data Map
The application development framework provides a map of name/value pairs that is associated with the current user's
session. You can use this map to temporarily save name/value pairs for use by your business logic. Be aware that the
information that you put in the user data map is never written out to a permanent store, so values your code puts into
the user data map are only available during the current request.

To access the server map from a validation rule or trigger, use the expression adf.userSession.userData as shown in the
following example:

// Put a name/value pair in the user data map
adf.userSession.userData.put('SomeKey', someValue)

// Get a value by key from the user data map
def val = adf.userSession.userData.SomeKey

Tip: See Using Groovy Maps and Lists with REST Services for more information on using maps in your scripts.

Referencing Information About the Current User
The adf.context.getSecurityContext() expression provides access to the security context, from which you can access
information about the current user like her user name or whether she belongs to a particular role. The following code
illustrates how to reference these two pieces of information:

// Get the security context
def secCtx = adf.context.getSecurityContext()
// Check if user has a given role
if (secCtx.isUserInRole('MyAppRole')) {
 // get the current user's name
 def user = secCtx.getUserName()
 // Do something if user belongs to MyAppRole
}

Using Aggregate Functions
Built-in support for row iterator aggregate functions can simplify a number of common calculations you will perform
in your scripts, especially in the context of scripts written in a parent object which has one or more collections of child
objects.

62

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Understanding the Supported Aggregate Functions
Five built-in aggregate functions allow summarizing rows in a row set. The most common use case is to calculate
an aggregate value of a child collection in the context of a parent object. The table below provides a description and
example of the supported functions.

Aggregate Function Description Example (in Context
ofTroubleTicket Parent
Object

avg

Average value of an expression

ActivityCollection.avg('Duration')

min

Minimum value of an expression

ActivityCollection.min('Duration')

max

Maximum value of an expression

ActivityCollection.max('Duration')

sum

Sum of the value of an
expression

ActivityCollection.sum('Duration')

count

Count of rows having a non-null
expression value

ActivityCollection.count('Duration')

Understanding Why Aggegrate Functions Are Appropriate Only to
Small Numbers of Child Rows
The aggregate functions described in this section compute their result by retrieving the rows of a child collection from
the database and iterating through all of these rows in memory. This fact has two important consequences. The first is
that these aggregate functions should only be used when you know the number of rows in the child collection will be
reasonably small. The second is that your calculation may encounter a runtime error related to exceeding a fetch limit if
the child collection's query retrieves more than 500 rows.

Understanding How Null Values Behave in Aggregate Calculation
When an ADF aggregate function executes, it iterates over each row in the row set. For each row, it evaluates the Groovy
expression provided as an argument to the function in the context of the current row. If you want a null value to be
considered as zero for the purposes of the aggregate calculation, then use the nvl() function like this:

// Use nvl() Function in aggregate expression
def avgDuration = ActivityCollection.min('nvl(Duration,0)')

63

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Performing Conditional Counting
In the case of the count() function, if the expression evaluates to null then the row is not counted. You can supply a
conditional expression to the count() function which will count only the rows where the expression returns a non-null
value. For example, to count the number of child activities for the current trouble-ticket where the Duration was over
half an hour, you can use the following expression:

// Conditional expression returns non-null for rows to count
// Use the inline if/then/else operator to return 1 if the
// duration is over 0.5 hours, otherwise return null to avoid
// counting that the non-qualifying row.
def overHalfHourCount = ActivityCollection.count('nvl(Duration,0) > 0.5 ? 1 : null')

Understanding the Difference Between Default
Expression and Create Trigger
There are two ways you can assign default values to fields in a newly-created row and it is important to understand the
difference between them.

The first way is to provide a default value expression for one or more fields in your object. Your default value expression
should not depend on other fields in the same object since you cannot be certain of the order in which the fields are
assigned their default values. The default value expression should evaluate to a legal value for the field in question
and it should not contain any field assignments or any setAttribute() calls as part of the expression. The framework
evaluates your default expression and assigns it to the field to which it is associated automatically at row creation time.

On the other hand, If you need to assign default values to one or more fields after first allowing the framework to
assign each field's literal default values or default value expression, then the second way is more appropriate. Define a
Create trigger on the object and inside that trigger you can reference any field in the object as well as perform any field
assignments or setAttribute() calls to assign default values to one or more fields.

Deriving Values of a Field When Other Fields Change
Value
There are three different use cases where you might want to derive the value of a field. This section assists you in
determining which one is appropriate for your needs.

Deriving the Value of a Formula Field When Other Fields Change
Value
If the value of your derived field is calculated based on other fields and its calculated value does not need to be
permanently stored, then use a formula field. To derive the value of the formula field, perform these two steps:

1. Configure the field’s Value Calculation setting to Calculate value with a formula

64

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

2. Enter the formula as Groovy script that returns a value compatible with the field’s type

Deriving the Value of Non-Formula Field When Other Fields
Change Value
If the value of your derived field must be stored, then use one of strategies in this section to derive its value.

Deriving a Non-Formula Field Using a Before Trigger
If your derived value depends on multiple fields, or you prefer to write all field derivation logic in a single trigger, then
create an appropriate "before" trigger (Before Insert and/or Before Update) that computes the derived values and
assigns each to its respective field. See Testing Whether a Field's Value Is Changed for more information on this function
and Avoiding Validation Threshold Errors By Conditionally Assigning Values for a tip about how to avoid your field
assignments from causing an object to hit its validation threshold.

Deriving a Non-Formula Field Using an After Field Changed Trigger
If your derived value depends on a single field’s value, then consider writing an After Field Changed trigger. When this
trigger fires, the value of the field in question has already changed. Therefore, you can simply reference the new value
of the field by name instead of using the special newValue expression (as would be required in a field-level validation rule
to reference the field's candidate new value that is attempting to be set).

Setting Invalid Fields for the UI in an Object-Level
Validation Rule
When a field-level validation rule that you've written returns false, ADF signals the failed validation with an error and
the field is highlighted in the user interface to call the problem to the user's attention. However, since object-level
validation rules involve multiple fields, the framework does not know which field to highlight in the user interface as
having the problematic value. If you want your object-level validation rule to highlight one or more fields as being in
need of user review to resolve the validation error, you need to assist the framework in this process. You do this by
adding a call to the adf.error.addAttribute() function in your validation rule script before returning false to signal the
failure. For example, consider the following rule to enforce: A contact cannot be his/her own manager. Since the id field
of the Contact object cannot be changed, it will make sense to flag the manager reference field as the field in error to
highlight in the user interface. Here is the example validation rule.

• Rule Name: Contact_Cannot_Be_Own_Manager

• Error Message: A contact cannot be his/her own manager

Rule Body

// Rule depends on two fields, so must be
// written as object-level rule
if (manager == id) {
 // Signal to highlight the Manager field on the UI
 // as being in error. Note that Manager_Id field
 // is not shown in the user interface!
 adf.error.addAttribute('manager')
 return false
}

65

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

return true

Determining the State of a Row
A row of data can be in any one of the following states:

• New
A new row that will be inserted into the database during the next save operation.

• Unmodified
An existing row that has not been modified

• Modified
An existing row where one or more values has been changed and will be updated in the database during the
next save operation

• Deleted
An existing row that will be deleted from the database during the next save operation

• Dead
A row that was new and got removed before being saved, or a deleted row after it has been saved

To determine the state of a row in your Groovy scripts, use the function getPrimaryRowState() and its related helper
methods as shown in the following example.

// Only perform this business logic if the row is new
if (getPrimaryRowState().isNew())
{
 // conditional logic here
}

The complete list of helper methods that you can use on the return value of getPrimaryRowState() is shown below:

• isNew()
Returns boolean true if the row state is new, false otherwise.

• isUnmodified()
Returns boolean true if the row state is unmodified, false otherwise.

• isModified()
Returns boolean true if the row state is modified, false otherwise.

• isDeleted()
Returns boolean true if the row state is deleted, false otherwise.

66

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

• isDead()

Returns boolean true if the row state is dead, false otherwise.

Understanding How Local Variables Hide Object Fields
If you define a local variable whose name is the same as the name of a field in your object, then be aware that this local
variable will take precedence over the current object's field name when evaluated in your script. For example, assuming
an object has a field named Status, then consider the following object validation script:

// Assuming current object has a Status field, define local variable of the same name
def Status = 'Closed'
/*
 * :
 * Imagine pages full of complex code here
 * :
 */
// If the object's current status is Open, then change it to 'Pending'
// ------------------
// POTENTIAL BUG HERE: The Status local variable takes precedence
// ------------------ so the Status field value is not used!
//
if (Status == 'Open') {
 Status = 'Pending'
}

At the top of the example, a variable named Status is defined. After pages full of complex code, later in the script the
author references the custom field named Status without remembering that there is also a local variable named Status
defined above. Since the local variable named Status will always take precedence, the script will never enter into the
conditional block here, regardless of the current value of the Status field in the current object. As a rule of thumb, use a
naming scheme for your local variables to ensure their names never clash with object field names.

Invoking REST Services from Your Scripts
Calling a REST service endpoint from your scripts involves these high-level steps:

• Create a service connection with one or more endpoints, choosing meaningful Service Id and Endpoint Ids

• Write Groovy code to:

◦ Acquire a new service object using newService(’yourServiceId’)

◦ Set any necessary path parameters, query parameters, or HTTP header fields

◦ Construct a payload object if one is required

◦ Invoke an endpoint method on the service object, passing a payload object if needed

◦ If successful, process the response payload, checking HTTP status code if needed

◦ If exception was thrown, catch and handle it, checking HTTP status code if needed

This section explains these steps in more detail.

67

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Creating a Service Connection
To invoke a REST service from your Groovy script, start by creating a service connection. Visual Builder defaults a value
for its Service Name and Service Id fields, but allows you to change both if desired. Since your code will reference the
service using its Service Id, choose an identifier that will help others reading your code understand what the service
does. Note that the value of Service Id cannot be changed after the service connection is created.

Each service consists of one or more endpoints. Each of a service’s endpoints is a distinct operation that the service can
perform. Visual Builder defaults a value for each endpoint’s Endpoint Id, but allows you to subsequently change it when
you edit the endpoint. Your Groovy code will directly reference the Endpoint Id as a method name when you invoke the
service, so choose an identifier that will help others reading your code understand the function each method performs.

Consider a service connection with a Service Name of UsersService and a Service Id of usersService. Suppose it
has endpoints with Endpoint Id values getUser, getUsers, createUser, and updateUser. Your Groovy code will use the
respective id values of the service and endpoint to call a service operation like getUser at runtime. For example, you
might write:

def userSvc = newService('usersService') // NOTE: Service Id, not Service Name
def newUser = userSvc.createUser([id:456, name:'Steve'])

Note: If you update the Endpoint Id of a service endpoint after Groovy code has referenced it, adjust your code to use
the corresponding new method name or runtime errors will result.

Acquiring a New Service Object
Every service call you make in a script requires a service object. To obtain an appropriate service object on which to
invoke an endpoint method, use the newService() function, passing in the service id representing the service you want
to use. Consider a service connection with a Service Name of UsersService and a Service Id of usersService. Use the id
value of the service to acquire an appropriate service object:

// NOTE: Service Id, not Service Name
def userSvc = newService('usersService')

Setting Path Parameters If Needed
A service connection encapsulates a base URL. For example, a service named UsersService might correspond to a base
URL of https://hcm.example.org. Each service endpoint, in turn, corresponds to a relative path that complements the
service’s base URL to define a unique resource. For example, one of this example service’s endpoints might have an id
of getUsers and correspond to the /users path. In this case, calling the service may require just two lines of code:

// Get the list of users
def userSvc = newService('usersService')
def userList = userSvc.getUsers()

Sometimes an endpoint’s path includes a substitution parameter whose value represents the unique id of a resource,
like the id of a user in this example. Consider another endpoint named getUser with /users/{userid} as its path. The
{userid} represents a path parameter named userid whose value your code must supply before calling the endpoint
method. A failure to do so will result in a runtime error. To set a path parameter named userid, use the service object’s
pathParams map as shown in this example:

68

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

// Get information for the user 3037
def userSvc = newService('usersService')
userSvc.pathParams.userid = '3037'
def user = userSvc.getUser()

If the name of a path parameter is not a legal Groovy identifier because it contains a character like a hyphen or space
(e.g. user-id), use this alternative map syntax instead:

userSvc.pathParams['user-id'] = '3037'

If you set multiple path parameters in a single line, then the user-id map key still need to be quoted like this:

userSvc.pathParams = ['user-id': '3037', anotherParam: 'anotherValue']

A service endpoint can also have more than one path parameter. In this case, you can set each path parameter
separately like this:

// Get information for the user 3037
def userSvc = newService('usersService')
userSvc.pathParams.userid = '3037'
userSvc.pathParams.anotherParam = 'anotherValue'
def user = userSvc.getUser()

Alternatively, you can set all path parameters at the same time by assigning the pathParams map like this:

// Get information for the user 3037
def userSvc = newService('usersService')
userSvc.pathParams = [userid: '3037', anotherParam: 'anotherValue']
def user = userSvc.getUser()

Setting Query Parameters If Needed
In addition to path parameters, a service endpoint may require supplying one or more values for so-called “query”
parameters. These parameters can affect how the service responds to your request, or may even be mandatory. For
example, suppose the getUser endpoint supports a query parameter named format whose valid values are compact and
verbose, and a query parameter named currency to specify the three-letter code of the currency in which to report the
user’s balance. The service documentation will clarify whether the format and currency parameters are required or
optional, and explain any relevant default behavior. Failure to supply a value for a required query parameter may result
in a runtime error. To use this endpoint to retrieve the compact form of a given user’s information for the euro currency,
use the service object’s queryParams map as shown in this example:

// Get compact info for the user 3037
def userSvc = newService('usersService')
userSvc.pathParams.userid = '3037'
userSvc.queryParams.format = 'compact'
userSvc.queryParams.currency = 'EUR'
def user = userSvc.getUser()

When setting multiple query parameters, as an alternative approach to setting each parameter on its own line as shown
above, it’s also possible to assign the entire parameters map in a single assignment. The example below is equivalent to
the one above, but notice the queryParams map is set to a map containing two entries in a single line:

// Get compact info for the user 3037
def userSvc = newService('usersService')
userSvc.pathParams.userid = '3037'
userSvc.queryParams = [format: 'compact', currency: 'EUR']

def user = userSvc.getUser()

69

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

If the name of a query parameter is not a legal Groovy identifier because it contains a character like a hyphen or space
(e.g. base-currency), use this alternative map syntax instead:

userSvc.queryParams['base-currency'] = 'EUR'

If you are assigning the entire map at once, then it is still required to quote the key value, but the syntax looks like this:

userSvc.queryParams = [format: 'compact', 'base-currency':'EUR']

Setting HTTP Headers If Needed
Beyond using path parameters, and query parameters, a service endpoint might support behavior controlled by header
fields. Each header field is a name/value pair where the value is a list containing one or more values. Suppose the
documentation for our getUser service explains that it supports retrieving user information in either XML or JSON
format, based on the value of an HTTP header field named Accept. Assume the two values it recognizes for this field are
either application/xml or application/json. To retrieve the verbose form of a given user’s information in JSON format,
use the service object’s requestHTTPHeaders map as shown in this example:

// Get compact info for the user 3037
def userSvc = newService('usersService')
userSvc.pathParams.userid = '3037'
userSvc.queryParams.format = 'verbose'
// Notice the value is a list containing one string!
userSvc.requestHTTPHeaders.Accept = ['application/json']
def user = userSvc.getUser()

If the name of a header field is not a legal Groovy identifier because it contains a character like a hyphen or space (e.g.
Content-Type), use this alternative map syntax instead:

userSvc.requestHTTPHeaders['Content-Type'] = ['application/json']

Using Groovy Maps and Lists with REST Services
When passing and receiving structured data from a REST service endpoint, a Groovy Map represents an object and its
properties. In fact, maps and lists are all you need to work with service request and response payloads. In particular, you
never need to work directly with the JavaScript Object Notation (JSON) string representation of an object because the
platform automatically converts between Groovy objects and JSON as necessary.

For example, an Employee object with properties named Empno , Ename, Sal, and Hiredate would be represented by a Map
object having four key/value pairs, where the names of the properties are the keys. You can create an empty Map using
the syntax:

def newEmp = [:]

Then, you can add properties to the map using the explicit put() method like this:

newEmp.put('Empno',1234)
newEmp.put('Ename','Sean')
newEmp.put('Sal',9876)
newEmp.put('Hiredate',date(2013,8,11))

Alternatively, and more conveniently, you can assign and/or update map key/value pairs using a simpler direct
assignment notation like this:

newEmp.Empno = 1234

70

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

newEmp.Ename = 'Sean'
newEmp.Sal = 9876
newEmp.Hiredate = date(2013,8,11)

Finally, you can also create a new map and assign some or all of its properties at once using the constructor syntax:

def newEmp = [Empno : 1234,
 Ename : 'Sean',
 Sal : 9876,
 Hiredate : date(2013,8,11)]

To create a collection of objects you use the Groovy List object. You can create one object at a time and then create an
empty list, and call the list's add() method to add both objects to the list:

def dependent1 = [Name: 'Dave', BirthYear: 1996]
def dependent2 = [Name: 'Jenna', BirthYear: 1999]
def listOfDependents = []
listOfDependents.add(dependent1)
listOfDependents.add(dependent2)

To save a few steps, the last three lines above can be done in a single line by constructing a new list with the two desired
elements in one line like this:

def listOfDependents = [dependent1, dependent2]

You can also create the list of maps in a single go using a combination of list constructor syntax and map constructor
syntax:

def listOfDependents = [[Name: 'Dave', BirthYear: 1996],
 [Name: 'Jenna',BirthYear: 1999]]

If the employee object above had a property named Dependents that was a list of objects representing dependent
children, you can assign the property using the same syntax as shown above (using a list of maps as the value
assigned):

newEmp.Dependents = [[Name: 'Dave', BirthYear: 1996],
 [Name: 'Jenna',BirthYear: 1999]]

Lastly, note that you can also construct a new employee with nested dependents all in one statement by further nesting
the constructor syntax:

def newEmp = [Empno : 1234,
 Ename : 'Sean',
 Sal : 9876,
 Hiredate : date(2013,8,11),
 Dependents : [
 [Name: 'Dave', BirthYear: 1996],
 [Name: 'Jenna', BirthYear: 1999]
]
]

For more information on Maps and Lists, see Working with Lists and Working with Maps

Checking Success Status and Handling Exceptions
Each service endpoint method call can succeed or fail. If a call succeeds, then your script continues normally. If
necessary, you can check the exact value of the success status code in the range of 200-399 using the HTTPStatusCode
field of the service object. If a call fails, an exception named RestConnectionException is thrown. Use Groovy’s try/catch
syntax around the service endpoint method invocation to properly handle an eventual error. If you ignore this best
practice, the unhandled exception will be reported to your end user, perhaps causing unnecessary confusion or alarm. If

71

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

necessary, you can check the exact value of the failure status code in the range of 400–599 by using the statusCode field
of the exception object. The following example shows both of these techniques in practice:

// import the exceptions for later use below
import oracle.adf.model.connection.rest.exception.RestConnectionException
import oracle.jbo.ValidationException
// Fetch user info for an existing user
def userSvc = newService('usersService')
userSvc.pathParams.userid = '3037'
try {
 def user = userSvc.getUser()
 def status = userSvc.HTTPStatusCode
 // perform logic here on success
}
catch (RestConnectionException rcex) {
 def status = rcex.statusCode
 // on failure, handle error here
 throw new ValidationException('User registry unavailable, try again later.')
}

Calling Service Endpoint Methods
For a registered service having id someService , to call its service endpoint with id someEndpoint in your script, do the
following:

1. Import RestConnectionException and JboException for error handling
2. Define a service object variable svc and assign it newService(’someService’)
3. Configure pathParams, queryParams, and requestHTTPHeaders maps of svc as needed
4. Define a variable reqPayload if needed and assign it a value
5. Inside a try block...

◦ Define a variable respPayload to hold the response payload

◦ Assign svc.someEndpoint(…) to the variable

◦ Process the response payload after checking svc.HTTPStatusCode if needed

6. Inside the corresponding catch block for RestConnectionException...

◦ Handle the error appropriately, after checking rcex.statusCode if necessary

◦ Return false to fail a validation rule or raise a custom exception

A full example that follows these guidelines looks like this object function:
// Object function cloneUser(userIdToClone String)
// Imports only needed once at the top of the script
import oracle.adf.model.connection.rest.exception.RestConnectionException
import oracle.jbo.ValidationException
def svc = newService('usersService')
svc.pathParams.userid = userIdToClone
svc.queryParams['api-key'] = 'vCDDpu3NjiytQF'
svc.requestHTTPHeaders['Some-Header'] = ['Somevalue']
// No payload needed for getUser()
def cloneUserResponse = svc.getUser()
// Diagnostic println visible in the Logs window
println("User ${userIdToClone} to clone: "+
 "city = ${cloneUserResponse.address.city}, "+
 "zip = ${cloneUserResponse.address.zipcode}")
def createRequest = [name: userName,
 address: [city: cloneUserResponse.address.city,
 zipcode: cloneUserResponse.address.zipcode]]
// Get new service, else must clear params/headers maps from previous call

72

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

svc = newService('usersService')
try {
 def newUserResponse = svc.createUser(createRequest)
 // Assign business object field remoteUserId
 // with the system-generated user id from response
 remoteUserId = newUserResponse.id
 println("Set remoteUserId of new LocalUser to ${newUserResponse.id}")
}
catch (RestConnectionException rcex) {
 throw new ValidationException('User registry unavailable, try again later.')
}

Browsing Available Service Endpoint Methods
When writing your scripts, as shown in the figure below, the Services tab in the Code Helper palette displays the
endpoint methods for all service connections. Each service’s Service Name appears in a title bar in the list. Use the
toggle control to the left of each service name to expand or collapse the list of that service’s endpoints. Clicking on the
right arrow in the palette margin inserts the appropriate Groovy code to call the service endpoint in question, providing
template code where appropriate.

For example, suppose you had clicked on the right-arrow next to the getUser function as shown in the figure. This would
insert the following lines of Groovy code into your script wherever the cursor is positioned in the editor:

def usersService = newService('usersService');
usersService.pathParams['id'] = 'idValue'; // TODO: Change this value
def usersServiceGetUser = usersService.getUser();

After doing this, notice the TODO comment and adjust the example idValue in quotes to be the appropriate user id value
you want to retrieve from the UsersService service.

73

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

Formatting Numbers and Dates Using a Formatter
Groovy provides the Formatter object that you can use in a text formula expression or anywhere in your scripts that you
need for format numbers or dates. The general pattern for using a Formatter is to first construct a new instance like this,
passing the the expression for the current user's locale as an argument:

def fmt = new Formatter(adf.context.locale)

This Formatter object you've instantiated will generally be used to format a single, non-null value by calling its format()
method like this:

def ret = fmt.format(formatString , arg1 [, arg2 , ..., argN])

Note that if you call the format() method of the same Formatter object multiple times, then the results are concatenated
together. To format several distinct values without having their results be concatentated, instantiate a new Formatter for
each call to a format() method.

The format string can include a set of special characters that indicate how to format each of the supplied arguments.
Some simple examples are provided below, however the complete syntax is covered in the documentation for the
Formatter class.

Example of Formatting a Number Using a Formatter
To format a number numberVal as a floating point value with two (2) decimal places and thousands separator you can do:

Double dv = numberVal as Double
def fmt = new Formatter(adf.context.locale)
def ret = (dv != null) ? fmt.format('%,.2f', dv) : null

If the value of numberVal were 12345.6789, and the current user's locale is US English, then this would produce a
formatted string like:

12,345.68

If instead the current user's locale is Italian, it would produce a formatted string like:

12.345,68

To format a number numberVal as a floating point value with three (3) decimal places and no thousands separator you
can do:

Double dv = numberVal as Double
def fmt = new Formatter(adf.context.locale)
def ret = (dv != null) ? fmt.format('%.3f', dv) : null

If the value of numberVal were 12345.6789, and the current user's locale is US English, then this would produce a
formatted string like:

12345.679

To format a number value with no decimal places to have a zero-padded width of 8, you can do:

Long lv = numberVal as Long
def fmt = new Formatter(adf.context.locale)
def ret = (lv != null) ? fmt.format('%08d', lv) : null

74

http://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html
http://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

If the value of numberVal were 5543, then this would produce a formatted string like:

00005543

Formatting a Date Using a Formatter
To format a datetime value datetimeVal to display only the hours and minutes in 24-hour format, you can do:

Date dv = datetimeVal as Date
def fmt = new Formatter(adf.context.locale)
def ret = (dv != null) ? fmt.format('%tH:%tM', dv, dv) : null

If the value of datetimeVal were 2014-03-19 17:07:45, then this would produce a formatted string like:

17:07

To format a date value dateVal to display the day of the week, month name, the day, and the year, you can do:

Date dv = dateVal as Date
def fmt = new Formatter(adf.context.locale)
def ret = (dv != null) ? fmt.format('%tA, %tB %te, %tY',dv,dv,dv,dv) : null

If the value of dateVal were 2014-03-19, and the current user's locale is US English, then this would produce a formatted
string like:

Wednesday, March 19, 2014

Working with Field Values Using a Parameterized Name
When writing reusable code, if your object function needs to perform the same operations on different fields, you can
parameterize the field name. Start by defining a function parameter of type String whose value at runtime will be the
name of a field in the current object. Then, when your code needs to access the value of the parameterized field, just
call getAttribute(fieldNameParam). To assign a new value to that field, call setAttribute(fieldNameParam,newValue). In
either case, if the value of the field name parameter passed in does not match the name of some field in the current
object, a NoDefException will be thrown to signal an error.

Consider the following example of an object function named conditionalIncrement() that increments the value of the
number field whose name is passed in only if the field’s value is less than a maximum value also passed in:

// Object function: void conditionalIncrement(fieldName String, maxValue Long)
// ---------------
def fieldValue = getAttribute(fieldName)
if (fieldValue < maxValue) {
 setAttribute(fieldName, fieldValue + 1)
}

The first line defines a fieldValue variable to store the value of the field whose name is passed in. If its value is less
than maxValue, then line three assigns the field a new value that is one greater than its current value. Once you define
an object function like conditionalIncrement(), then any Groovy scripts on the same object can invoke it, passing in
appropriate argument values. For example, in one script suppose you need to increment the value of a field named
UsageCount if its value is less than 500:

// Increment the usage count if it is less than 500
conditionalIncrement('UsageCount', 500)

75

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

In another script, imagine you need to increment the value of a DocumentVersionNumber field if its value is less than 1000.
You can use the same object function: just pass in different values for the field name and maximum value parameters:

// Increment the document version number if it is less than 1000
conditionalIncrement('DocumentVersionNumber', 1000)

Of course the getAttribute() and setAttribute() functions can also accept a literal String value as their first argument,
so you could theoretically write conditional logic like:

// Ensure document is not locked before updating request-for-approval date
// NOTE: more verbose get/setAttribute() approach
if (getAttribute('DocumentStatus') != 'LOCKED') {
 setAttribute('RequestForApprovalDate', today())
}

However, in the example above, when the name of the field being evaluated and assigned is not coming from a
parameter or local variable, then it is simpler and more readable to write this equivalent code instead:

// Ensure document is not locked before updating request-for-approval date
// NOTE: More terse, elegant direct field name access
if (DocumentStatus != 'LOCKED') {
 RequestForApprovalDate = today()
}

When invoked on their own, the getAttribute() and setAttribute() functions operate on the current object. However,
anywhere in your script code where you are working with a business object Row, you can also call these functions on that
particular row as shown in the following example of an object function. Notice that it also parameterizes the name of
the object passed to the newView() function:

// Object function: String getRowDescription(objectName String, displayFieldName String, id Long)
// ---------------
// Create a new view object to work with the business object whose name is
// passed in the objectName parameter
def view = newView(objectName)
// Find the row in that view whose key is given by the value of the id parameter
def rows = view.findByKey(key(id),1)
// If we found exactly one row, return the value of the display field name on
// that row, whose field name is given by the value in the displayFieldName parameter
return rows.size() == 1 ? return rows[0].getAttribute(displayFieldName) : null

With such a function defined, we can invoke it from any script in the object to access the display field value of different
objects we might need to work with:

// Get RecordName of the Task object with key 123456
def taskName = getRowDescription('Task','RecordName',123456)
// Get the Name of the Territory object with key 987654
def optyName = getRowDescription('Territory','Name',987654)

If you use the getAttribute() or setAttribute() to access field values on a related object, remember that the first
argument must represent the name of a single field on the object on which you invoke it. For example, the following
is not a correct way to use the setAttribute() function to set the Status field of the parent TroubleTicket object for an
activity because TroubleTicket?.Status is not the name of a single field on the current Activity object:

// Assume script runs in context of an Activity object (child of TroubleTicket)
// INCORRECT way to set a parent field's value using setAttribute()
setAttribute('TroubleTicket?.Status', 'Open')

Instead, first access the related object and store it in a local variable. Then you can assign a field on the related object as
follows:

// Assume script runs in context of an Activity object (child object TroubleTicket)
// First access the parent object
def parentTicket = TroubleTicket

76

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

// Then call the setAttribute on that parent object
parentTicket?.setAttribute('Status', 'Open')

77

Visual Builder
Groovy Scripting Reference

Chapter 4
Groovy Tips and Techniques

78

Visual Builder
Groovy Scripting Reference

Chapter 5
Best Practices for Groovy Performance

5 Best Practices for Groovy Performance

Following the advice in this section will ensure your application has the best performance possible.

Search Using at Least One Indexed Field
Whenever you perform a query, make sure that your view object's view criteria filter includes at least one indexed
field in the predicate. Especially when the amount of data is large, using at least one index to filter the data makes a
meaningful difference in application query performance.

Note: Failure to use an index of any kind for your an application business logic query implies the database will
perform a full table scan that can be a recipe for slow response times and unhappy end users.

Explicitly Select Only the Attributes You Need
When performing a business object query, it's important to indicate which fields your code will access from the results.
This includes fields your logic plans to update as well. By doing this proactively, your application gains two advantages:

1. You retrieve only the data you need from the database, and
2. You avoid an additional system-initiated query to "fault-in" missing data on first reference

Call the selectAttributesBeforeQuery() function to select the attributes your code will access before it performs a view
object's query. As shown in the example below, the first parameter is a view object you have created with newView()
and the second argument is a case-sensitive list of field names. If you are including a sort in your query by calling
setSortBy(), make sure to include the sort field name(s) in the selected attributes list as well.

def employees = newView('StaffMember')
addBindVariable(employees,'Job','Text')
addBindVariable(employees,'Dept','Number')
// Make sure that JobId or DepartmentId is indexed!
employees.appendViewCriteria('JobId = :Job and DepartmentId = :Dept')
employees.setSortBy('Salary desc')
selectAttributesBeforeQuery(employees,['Email','LastName','FirstName','Salary'])
setBindVariable(employees,'Job','SH_CLERK')
setBindVariable(employees,'Dept',50)
employees.executeQuery()
while (employees.hasNext()) {
 def employee = employees.next()
 // Work with employee.Email, employee.LastName, employee.FirstName, employee.Salary
}

79

Visual Builder
Groovy Scripting Reference

Chapter 5
Best Practices for Groovy Performance

Note: If you fail to call the selectAttributesBeforeQuery() function before executing a view object for a custom object
you've created with newView(), then by default the query will retrieve only the primary key field from the database
when initially performing the query, and then for each row of the while loop as soon as your code references one
of the other attributes like Email, LastName, FirstName, or Salary, the system is forced to perform an additional query
to retrieve all of the current row's fields from the database using the primary key. If your object has 200 fields, this
means retrieving 200 fields of data even through your code may actually reference only four of them. This can quickly
lead to your application's performing many, many avoidable extra queries and fetching much unnecessary data.
Neither of these situations is good for performance.

Test for Existence by Selecting a Single Row
When you need to check if at least one row matches a particular criteria, for best performance select only the primary
key field and just the first row of the result. If it's not null, then the existence test succeeds. If it's null, then no such row
exists. Use this technique instead of calling getEstimatedRowCount(). For example, to test whether any employee exists in
a given department with a given job identifier, you can write a helper function like this:

Object Function: Boolean employeeExistsInDepartmentWithJob(Long department, String jobCode)

def employees = newView('StaffMember')
addBindVariable(employees,'Job','Text')
addBindVariable(employees,'Dept','Number')
// Make sure that either JobId or DepartmentId is indexed!
employees.appendViewCriteria('JobId = :Job and DepartmentId = :Dept')
// Retrieve only the primary key field
selectAttributesBeforeQuery(employees,['EmployeeId'])
setBindVariable(employees,'Job',jobCode)
setBindVariable(employees,'Dept',department)
employees.executeQuery()
// Retrieve just the first row!
return employees.first() != null

With the employeeExistsInDepartmentWithJob() helper function in place, our business logic in the StaffMember object can
use it like this:

if (employeeExistsInDepartmentWithJob(50,'SH_CLERK')) { /* etc. */ }

Avoid Using newView() Inside a Loop
Using newView() inside a loop can lead to unpredictable ExprResourceException errors when you inadvertently create
more view objects than the system allows in a single trigger or object function. For example, consider the following code
that iterates over an unknown number of uncleared transaction records. For each uncleared transaction processed,
if the transaction currency is not GBP then it queries the historical exchange rate based on the transaction date to
convert the non-GBP currency amount in question into GBP. It uses the newView() function inside the loop to query the
ExchangeRate business object and does so without using bind variables. This approach creates one new view object
for each loop iteration. If the number of transaction rows being iterated over is unpredictably large, this technique can
produce an ExprResourceException error when it hits the upper limit on number of view objects that can be created in a
single trigger or function.

// NON-BEST-PRACTICE EXAMPLE: USES newView() INSIDE A LOOP !!

80

Visual Builder
Groovy Scripting Reference

Chapter 5
Best Practices for Groovy Performance

// ~~~~~~~~~~~~~~~~~~~~~~~~~ May lead to unpredictable ExprResourceException error
// Create view object for processing uncleared transactions
def txns = newView('Transaction')
txns.appendViewCriteria("cleared = 'N'")
selectAttributesBeforeQuery(txns,['id','cleared','currency','amount','txnDate'])
txns.executeQuery()
// Process each uncleared transaction
while (txns.hasNext()) {
 def exchangeRate = 1
 def txn = txns.next()
 def curr = txn.currency
 if (curr != 'GBP') {
 def date = txn.txnDate
 // NON-BEST PRACTICE: USE OF newView() INSIDE A LOOP !!
 def rates = newView('ExchangeRate')
 rates.appendViewCriteria("fromCurr = '${curr}' and toCurr = 'GBP' and rateDate = '${date}'")
 rates.executeQuery()
 exchangeRate = rates.first()?.rate
 }
 if (exchangeRate) {
 txn.cleared = 'Y'
 // Multiply original txn amount by rate and round to 2 decimal places
 txn.amountInGBP = (txn.amount * exchangeRate as Double).round(2)
 }
}

In these situations, use this approach instead:

• Create a single view object outside the loop that references bind variables in its filter criteria

• Inside the loop, set the values of the bind variables for the current loop iteration

• Execute the query on the single view object once per loop iteration

By adopting this technique, you use a single view object instead of an unpredictably large number of view objects
and you avoid encountering the ExprResourceException when iterating over a larger number of rows. The code below
implements the same functionality as above, but follows these best practice guidelines.

// BEST PRACTICE: Single VO with bind variables outside the loop
// ~~~~~~~~~~~~~
// Create view object to be reused inside the loop for exchange rates
def rates = newView('ExchangeRate')
addBindVariable(rates,'Base','Text')
addBindVariable(rates,'ForDate','Date')
rates.appendViewCriteria("fromCurr = :Base and toCurr = 'GBP' and rateDate = :FromDate")
// Create view object for processing uncleared transactions
def txns = newView('Transaction')
txns.appendViewCriteria("cleared = 'N'")
selectAttributesBeforeQuery(txns,['id','cleared','currency','amount','txnDate'])
txns.executeQuery()
// Process each uncleared transaction
while (txns.hasNext()) {
 def exchangeRate = 1
 def txn = txns.next()
 def curr = txn.currency
 if (curr != 'GBP') {
 def date = txn.txnDate
 // BEST PRACTICE: Set bind variables & execute view object created outside loop
 setBindVariable(rates,'Base',curr)
 setBindVariable(rates,'ForDate',date)
 rates.executeQuery()
 exchangeRate = rates.first()?.rate
 }
 if (exchangeRate) {
 txn.cleared = 'Y'

81

Visual Builder
Groovy Scripting Reference

Chapter 5
Best Practices for Groovy Performance

 // Multiply original txn amount by rate and round to 2 decimal places
 txn.amountInGBP = (txn.amount * exchangeRate as Double).round(2)
 }
}

If the functionality inside the loop becomes more involved, you may benefit by refactoring it into an object function. The
object function below shows an exchangeRateForCurrencyOnDate() helper function that accepts the single view object
created outside the loop as a parameter of type Object. Inside the function, it sets the bind variables, executes the view
object's query, and returns the resulting exchange rate.

Object Function: Float exchangeRateForCurrencyOnDate(Object rates, String curr, Date date)

// Set bind variables and execute view object passed in
setBindVariable(rates,'Base',curr)
setBindVariable(rates,'ForDate',date)
rates.executeQuery()
return rates.first()?.rate

After refactoring the code into this object function, the if block in the original best-practice code above can be changed
to:

 // etc.
 if (curr != 'GBP') {
 def date = txn.txnDate
 // Pass single 'rates' view object into the helper function
 rate = exchangeRateForCurrencyOnDate(rates,curr,date)
 }
 // etc.

Set Field Values in Bulk
Wherever possible in your code, for best performance set the values of all fields in a row in a single call to the
setAttributeValuesFromMap() function. Using these bulk-assignment functions saves processing time and can eliminate
avoidable queries related to your Dynamic Choice List and Fixed Choice List attribute validation when compared to the
equivalent job performed one field at a time. For example, the following code example sets the values of five fields of an
existing staff member row. The code finds an employee by its employee id value which we know is always indexed.

// Find an existing staff member #123456789 by the indexed primary key
// field id, then bulk-assign 5 field values whose names are also included
// in the view object's select list to avoid unnecessary "fault-in" queries.
def employees = newView('StaffMember')
addBindVariable(employees,'bind_id','Number')
employees.appendViewCriteria('id = :bind_id')
selectAttributesBeforeQuery(employees,
 ['id','email','carMake','carModel','vacation','accrualDate'])
setBindVariable(employees,'bind_id',123456789)
employees.executeQuery()
def emp = employees.first()
if (emp) {
 emp.setAttributeValuesFromMap(
 email: emp.email.replace('old.org','new.org'),
 carMake: 'VW',
 carModel: 'GLF',
 vacation: 160,
 accrualDate: today())
}

82

Visual Builder
Groovy Scripting Reference

Chapter 5
Best Practices for Groovy Performance

When creating a new row, you can accomplish the same bulk assignment task using the createAndInitRowFromMap()
function. The following example creates a new staff member assigning all fields in bulk:

def emps = newView('StaffMember')
// If StaffMember view object will only be used for insert, then
// this call will stop any query from being performed
emps.setMaxFetchSize(0)
// Insert a new staff member, setting all necessary fields in bulk
emps.insertRow(emps.createAndInitRowFromMap(
 Email: 'jane.barnes@example.org',
 CarMake: 'AUD',
 CarModel: 'A8',
 Vacation: 200,
 AccrualDate: today()))

Both examples in this section illustrate Groovy's support for removing the square brackets around a literal Map passed
inline to a function with a leading Map argument. To learn more about how your own functions can leverage this feature,
see Using Optional, Named Method Arguments.

When writing generic helper code, if you find it more convenient to process the field names to assign and corresponding
values to assign in separate lists, then consider using the setAttributeValues() function. The example below shows
how it may fit your situation better than setAttributeValuesFromMap(). This alternative function accomplishes the same
performance improvement. It assumes you've created another error() helper method to throw an error with a given
message.

// void doBulkAssignment(Object row, List fieldNames, List fieldValues)
// accepting row to assign, field names and field values as separate Lists
if (fieldNames.size() == fieldValues.size()) {
 row.setAttributeValues(fieldNames, fieldValues)
}
else {
 error("Must supply same number of fields and values to assign!")
}

Related Topics
• Using Optional, Named Method Arguments

Avoid Revalidating Known Valid Data
Normally your business logic will use the equals sign assigment operator to set a single field's value, or use the
setAttributeValuesFromMap() or createRowAndInitFromMap() functions to set two or more field values in bulk. Any fields
assigned through these methods will be validated by any field and object-level validation rules that are defined to
ensure that the business object data saved to the database is always 100% valid.

On special occasions, you may know a priori that the value your code assigns to a field is already valid. In cases where
you are 100% certain the value being assigned to a field is valid, you can consider using the populateValidAttribute()
function to knowingly assign a valid value to a field without causing additional validation to occur.

For example, your code can change the value of an order's OrderStatus field to one of the values that you know is valid
like CLOSED by using the following code:

// NOTE: Consciously assigning a known-valid value
// ~~~~ without further validation!
order.populateValidAttribute('OrderStatus','CLOSED')

83

Visual Builder
Groovy Scripting Reference

Chapter 5
Best Practices for Groovy Performance

Use Left Shift Operator To Append to Lists
To append elements to an existing list, use the left shift operator (<<) or call the list's add() function for best
performance. For example, the following code processes a collection of products and adds the value of the Id field from
a subset of the products encountered to a new list:

list productIdsToProcess = []
for (prod in products) {
 if (prod.Status == 'RETURNED') {
 // Append the current product id to the list
 // Same as calling productIdsToProcess.add(prod.Id)
 productIdsToProcess << prod.Id
 }
}

This technique is better than using the plus or plus-equals operator to do the same job because both of those create a
new list each time.

84

Visual Builder
Groovy Scripting Reference

Chapter 6
Understanding Common JBO Exceptions in Groovy Scripts

6 Understanding Common JBO Exceptions in
Groovy Scripts

This section provides some background information on ADF exceptions that might occur while your Groovy scripts are
executing and attempts to explain the most common causes.

JBO-25030: Detail entity X with row key Y cannot find or
invalidate its owning entity

• Problem Description

You tried to create a new child object row of type X row without providing the necessary context information to
identify its owning parent object. At the moment of child row creation the correct owning parent context must
be provided, otherwise the new child row created would be an "orphan".

For example, consider a custom object named TroubleTicket that has a child object named Activity. The
following script that tries to create a new activity would generate this error:

def activityVO = newView('Activity')
// PROBLEM: Attempting to create a new child activity row
// ------- without providing context about which owning
// TroubleTicket row this activity belongs to.
def newActivity = activityVO.createRow()

This generates a JBO-25030: Detail entity Activity with row key null cannot find or invalidate its owning entity
exception because the script is trying to create a new Activity row without providing the context that allows that
new row to know which TroubleTicket it should belong to.

• Resolution

There are two ways to provide the appropriate parent object context when creating a new child object row. The
first approach is to get the owning parent row to which you want to add a new child row and use the parent
row's child collection attribute to perform the createRow() and insertRow() combination. For example, to create
a new Activity row in the context of TroubleTicket with an Id of 100000000272002 you can do the following,
using the helper function mentioned in Finding an Object by Id. When you use this approach, the parent object
context is implicit since you're performing the action on the parent row's child collection.

def idParent = 100000000272002
def ttVO = newView('TroubleTicket')
def parent = findRowByKey(ttVO,idParent)
if (parent != null) {
 // Access the collection of Activity child rows for
 // this TroubleTicket parent object
 def activities = parent.ActivityCollection
 // Use this child collection to create/insert the new row
 def newActivity = activities.createRow()
 activities.insertRow(newActivity);
 // Set other field values of the new activity here...

85

Visual Builder
Groovy Scripting Reference

Chapter 6
Understanding Common JBO Exceptions in Groovy Scripts

}

The second approach you can use is to pass the context that identifies the id of the parent TroubleTicket row
when you create the child row. You do that using an alternative function named createAndInitRow() as shown
below. In this case, you don't need to have the parent row in hand or even use the parent TroubleTicket view
object. Providing the id to the owning parent row at the moment of child activity row creation is good enough.

def idParent = 100000000272002
// Create an name/value pairs object to pass the parent id
def parentAttrs = new oracle.jbo.NameValuePairs()
parentAttrs.setAttribute('Id',idParent)
// Use this name/value pairs object to pass the parent
// context information while creating the new child row
def activityVO = newView('Activity')
def newActivity = activityVO.createAndInitRow(parentAttrs)
activityVO.insertRow(newActivity);
// Set other field values of the new activity here...

JBO-26020: Attempting to insert row with no matching
EO base

• Problem Description

You inadvertently added a row that was created or queried from one view object to another view object of a
different type. For example, the following script would generate this error:

def empVO = newView("Employees")
def newEmp = empVO.createRow()
def deptVO = newView("Department")
// PROBLEM: Incorrectly adding a row of type "Employees"
// ------- to the view of type "Department"
deptVO.insertRow(newEmp)

This generates a JBO-26020: Attempting to insert row with no matching EO base exception because the script is
trying to insert a row from "Employees" view into a view that is expecting rows of type "Department". This leads
to a type mismatch that is not supported.

• Resolution

Ensure that when you call insertRow() on a view object that the row you are trying to insert into the collection is
of the correct view type.

86

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

7 Supported Classes and Methods for Use in
Groovy

Supported Classes and Methods for Use in Groovy
Scripts
When writing Groovy scripts, you may only use the classes and methods that are documented in the table below. Using
any other class or method may work initially, but will throw a runtime exception when you migrate your code to later
versions. Therefore, we strongly suggest that you ensure the Groovy code you write adheres to the classes and methods
shown here. For each class, in addition to the method names listed in the table, the following method names are also
allowed:

• equals()

• hashCode()

• toString()

In contrast, the following methods are never allowed on any object:

• finalize()

• getClass()

• getMetaClass()

• notify()

• notifyAll()

• wait()

Class Name Allowed Methods Package

ADFContext

• getLocale()

• getSecurityContext()

oracle.adf.share

Array

• Any constructor

• Any method

java.sql

Array

• getArray()

• getElemType()

• getList()

oracle.jbo.domain

ArrayList

• Any constructor

• Any method

java.util

Arrays

• Any constructor

• Any method

java.util

87

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

AttributeDef

• getAttributeKind()

• getIndex()

• getName()

• getPrecision()

• getProperty()

• getScale()

• getUIHelper()

• getUpdateableFlag()

• isMandatory()

• isQueriable()

oracle.jbo

AttributeHints

• getControlType()

• getDisplayHeight()

• getDisplayHint()

• getDisplayWidth()

• getFormat()

• getFormattedAttribute()

• getFormatter()

• getFormatterClassName()

• getHint()

• getLocaleName()

• parseFormattedAttribute()

oracle.jbo

AttributeList

• getAttribute()

• getAttributeIndexOf()

• getAttributeNames()

• setAttribute()

oracle.jbo

BaseLobDomain

• closeCharacterStream()

• closeInputStream()

• closeOutputStream()

• getInputStream()

• getLength()

• getOutputStream()

• getcharacterStream()

oracle.jbo.domain

BigDecimal

• Any constructor

• Any method

java.math

BigInteger

• Any constructor

• Any method

java.math

88

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

BitSet

• Any constructor

• Any method

java.util

Blob

• Any constructor

• Any method

java.sql

BlobDomain

• Any constructor

• getBinaryOutputStream()

• getBinaryStream()

• getBufferSize()

oracle.jbo.domain

Boolean

• Any constructor

• Any method

java.lang

Byte

• Any constructor

• Any method

java.lang

Calendar

• Any constructor

• Any method

java.util

Char

• Any constructor

• bigDecimalValue()

• bigIntegerValue()

• booleanValue()

• doubleValue()

• floatValue()

• getValue()

• intValue()

• longValue()

oracle.jbo.domain

Clob

• Any constructor

• Any method

java.sql

ClobDomain

• Any constructor

• toCharArray()

oracle.jbo.domain

Collection

• Any constructor

• Any method

java.util

Collections

• Any constructor

• Any method

java.util

Comparator

• Any constructor

• Any method

java.util

89

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

Currency

• Any constructor

• Any method

java.util

DBSequence

• Any constructor

• getValue()

oracle.jbo.domain

Date

• Any constructor

• Any method

java.util

Date

• Any constructor

• Any method

java.sql

Date

• Any constructor

• compareTo()

• dateValue()

• getValue()

• stringValue()

• timeValue()

• timestampValue()

oracle.jbo.domain

Dictionary

• Any constructor

• Any method

java.util

Double

• Any constructor

• Any method

java.lang

Enum

• Any constructor

• Any method

java.lang

EnumMap

• Any constructor

• Any method

java.util

EnumSet

• Any constructor

• Any method

java.util

Enumeration

• Any constructor

• Any method

java.util

EventListener

• Any constructor

• Any method

java.util

EventListenerProxy

• Any constructor

• Any method

java.util

EventObject • Any constructor java.util

90

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

 • Any method

Exception

• Any method java.lang

ExprValueErrorHandler

• addAttribute()

• clearAttributes()

• raise()

• raiseLater()

• warn()

oracle.jbo

Float

• Any constructor

• Any method

java.lang

Formattable

• Any constructor

• Any method

java.util

FormattableFlags

• Any constructor

• Any method

java.util

Formatter

• Any constructor

• Any method

java.util

GregorianCalendar

• Any constructor

• Any method

java.util

HashMap

• Any constructor

• Any method

java.util

HashSet

• Any constructor

• Any method

java.util

Hashtable

• Any constructor

• Any method

java.util

IdentityHashMap

• Any constructor

• Any method

java.util

Integer

• Any constructor

• Any method

java.lang

Iterator

• Any constructor

• Any method

java.util

JboException

• getDetails()

• getErrorCode()

oracle.jbo

91

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

• getErrorParameters()

• getLocalizedMessage()

• getMessage()

• getProductCode()

• getProperty()

JboWarning

• Any constructor

• getDetails()

• getErrorCode()

• getErrorParameters()

• getLocalizedMessage()

• getMessage()

• getProductCode()

• getProperty()

oracle.jbo

Key

• toStringFormat() oracle.jbo

LinkedHashMap

• Any constructor

• Any method

java.util

LinkedHashSet

• Any constructor

• Any method

java.util

LinkedList

• Any constructor

• Any method

java.util

List

• Any constructor

• Any method

java.util

ListIterator

• Any constructor

• Any method

java.util

ListResourceBundle

• Any constructor

• Any method

java.util

Locale

• Any constructor

• Any method

java.util

Long

• Any constructor

• Any method

java.lang

Map

• Any constructor

• Any method

java.util

92

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

Math

• Any constructor

• Any method

java.lang

MathContext

• Any constructor

• Any method

java.math

NClob

• Any constructor

• Any method

java.sql

NameValuePairs

• Any constructor

• getAttribute()

• getAttributeIndexOf()

• getAttributeNames()

• setAttribute()

oracle.jbo

NativeTypeDomainInterface

• getNativeObject() oracle.jbo.domain

Number

• Any constructor

• bigDecimalValue()

• bigIntegerValue()

• booleanValue()

• byteValue()

• doubleValue()

• floatValue()

• getValue()

• intValue()

• longValue()

• shortValue()

oracle.jbo.domain

Number

• abs()

• and()

• compareTo()

• div()

• downto()

• intdiv()

• leftShift()

• minus()

• mod()

• multiply()

• next()

• or()

java.lang

93

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

• plus()

• power()

• previous()

• rightShift()

• rightShiftUnsigned()

• step()

• times()

• toBigDecimal()

• toBigInteger()

• toDouble()

• toInteger()

• toLong()

• unaryMinus()

• upto()

• xor()

Object

• any()

• asBoolean()

• asType()

• collect()

• each()

• eachWithIndex()

• every()

• find()

• findAll()

• findIndexOf()

• findIndexValues()

• findLastIndexOf()

• findResult()

• getAt()

• grep()

• identity()

• inject()

• inspect()

• is()

• isCase()

• iterator()

• print()

• printf()

java.lang

94

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

• println()

• putAt()

• split()

• sprintf()

• toString()

• with()

Observable

• Any constructor

• Any method

java.util

Observer

• Any constructor

• Any method

java.util

PriorityQueue

• Any constructor

• Any method

java.util

Properties

• Any constructor

• Any method

java.util

PropertyPermission

• Any constructor

• Any method

java.util

PropertyResourceBundle

• Any constructor

• Any method

java.util

Queue

• Any constructor

• Any method

java.util

Random

• Any constructor

• Any method

java.util

RandomAccess

• Any constructor

• Any method

java.util

Ref

• Any constructor

• Any method

java.sql

ResourceBundle

• Any constructor

• Any method

java.util

Row

• getAttribute()

• getAttributeHints()

• getKey()

• getLookupDescription()

• getOriginalAttributeValue()

oracle.jbo

95

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

• getPrimaryRowState()

• getSelectedListDisplayValue()

• getSelectedListDisplayValues()

• getStructureDef()

• isAttributeChanged()

• isAttributeUpdateable()

• remove()

• revertRow()

• revertRowAndContainees()

• setAttribute()

• setAttributeValues()

• setAttributeValuesFromMap()

• validate()

RowId

• Any constructor

• Any method

java.sql

RowIterator

• createAndInitRow()

• createAndInitRowFromMap()

• createRow()

• findByKey()

• findRowsMatchingCriteria()

• first()

• getAllRowsInRange()

• getCurrentRow()

• getEstimatedRowCount()

• hasNext()

• hasPrevious()

• insertRow()

• last()

• next()

• previous()

• reset()

oracle.jbo

RowSet

• avg()

• count()

• createAndInitRow()

• createRow()

• executeQuery()

• findByKey()

oracle.jbo

96

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

• findRowsMatchingCriteria()

• first()

• getAllRowsInRange()

• getCurrentRow()

• getEstimatedRowCount()

• hasNext()

• hasPrevious()

• insertRow()

• last()

• max()

• min()

• next()

• previous()

• reset()

• sum()

Scanner

• Any constructor

• Any method

java.util

SecurityContext

• getUserName()

• getUserProfile()

• isUserInRole()

oracle.adf.share.security

Session

• getLocale()

• getLocaleContext()

• getUserData()

oracle.jbo

Set

• Any constructor

• Any method

java.util

Short

• Any constructor

• Any method

java.lang

Short

• Any constructor

• Any method

java.lang

SimpleTimeZone

• Any constructor

• Any method

java.util

SortedMap

• Any constructor

• Any method

java.util

SortedSet

• Any constructor java.util

97

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

• Any method

Stack

• Any constructor

• Any method

java.util

StackTraceElement

• Any constructor

• Any method

java.lang

StrictMath

• Any constructor

• Any method

java.lang

String

• Any constructor

• Any method

java.lang

StringBuffer

• Any constructor

• Any method

java.lang

StringBuilder

• Any constructor

• Any method

java.lang

StringTokenizer

• Any constructor

• Any method

java.util

Struct

• Any constructor

• Any method

java.sql

Struct

• getAttribute()

• setAttribute()

oracle.jbo.domain

StructureDef

• findAttributeDef()

• getAttributeIndexOf()

oracle.jbo

Time

• Any constructor

• Any method

java.sql

TimeZone

• Any constructor

• Any method

java.util

Timer

• Any constructor

• Any method

java.util

TimerTask

• Any constructor

• Any method

java.util

Timestamp

• Any constructor

• Any method

java.sql

98

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

Timestamp

• Any constructor

• compareTo()

• dateValue()

• getValue()

• stringValue()

• timeValue()

• timestampValue()

oracle.jbo.domain

TreeMap

• Any constructor

• Any method

java.util

TreeSet

• Any constructor

• Any method

java.util

UUID

• Any constructor

• Any method

java.util

UserProfile

• getBusinessCity()

• getBusinessCountry()

• getBusinessEmail()

• getBusinessFax()

• getBusinessMobile()

• getBusinessPOBox()

• getBusinessPager()

• getBusinessPhone()

• getBusinessPostalAddr()

• getBusinessPostalCode()

• getBusinessState()

• getBusinessStreet()

• getDateofBirth()

• getDateofHire()

• getDefaultGroup()

• getDepartment()

• getDepartmentNumber()

• getDescription()

• getDisplayName()

• getEmployeeNumber()

• getEmployeeType()

• getFirstName()

• getGUID()

oracle.adf.share.security.identitymanagment

99

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

• getGivenName()

• getHomeAddress()

• getHomePhone()

• getInitials()

• getJpegPhoto()

• getLastName()

• getMaidenName()

• getManager()

• getMiddleName()

• getName()

• getNameSuffix()

• getOrganization()

• getOrganizationalUnit()

• getPreferredLanguage()

• getPrincipal()

• getProperties()

• getProperty()

• getTimeZone()

• getTitle()

• getUIAccessMode()

• getUniqueName()

• getUserID()

• getUserName()

• getWirelessAccountNumber()

ValidationException

• getDetails()

• getErrorCode()

• getErrorParameters()

• getLocalizedMessage()

• getMessage()

• getProductCode()

• getProperty()

oracle.jbo

Vector

• Any constructor

• Any method

java.util

ViewCriteria

• createAndInitRow()

• createRow()

• createViewCriteriaRow()

• findByKey()

oracle.jbo

100

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

• findRowsMatchingCriteria()

• first()

• getAllRowsInRange()

• getCurrentRow()

• getEstimatedRowCount()

• hasNext()

• hasPrevious()

• insertRow()

• last()

• next()

• previous()

• reset()

ViewCriteriaItem

• getValue()

• makeCompound()

• setOperator()

• setUpperColumns()

• setValue()

oracle.jbo

ViewCriteriaItemCompound

• ensureItem()

• getValue()

• makeCompound()

• setOperator()

• setUpperColumns()

• setValue()

oracle.jbo

ViewCriteriaRow

• ensureCriteriaItem()

• getConjunction()

• isUpperColumns()

• setConjunction()

• setUpperColumns()

oracle.jbo

ViewObject

• appendViewCriteria()

• avg()

• count()

• createAndInitRow()

• createRow()

• createViewCriteria()

• executeQuery()

• findByKey()

• findRowsMatchingCriteria()

oracle.jbo

101

Visual Builder
Groovy Scripting Reference

Chapter 7
Supported Classes and Methods for Use in Groovy

Class Name Allowed Methods Package

• first()

• getAllRowsInRange()

• getCurrentRow()

• getEstimatedRowCount()

• getMaxFetchSize()

• hasNext()

• hasPrevious()

• insertRow()

• last()

• max()

• min()

• next()

• previous()

• reset()

• setMaxFetchSize()

• setSortBy()

• sum()

WeakHashMap

• Any constructor

• Any method

java.util

102

	Groovy Scripting Reference
	Preface
	Introduction
	Terminology
	Where You'll Use Groovy in Your Application
	Ensuring Your Scripts Are Easy to Maintain

	Groovy Basics
	Commenting Your Scripts
	Defining Variables
	Referencing the Value of a Field in the Current Object
	Working with Numbers, Dates, and Strings
	Using Substitution Expressions in Strings
	Using Conditional Expressions
	Using the Switch Statement
	Returning a Boolean Result
	Assigning a Value to a Field in the Current Object
	Writing Null-Aware Expressions
	Understanding Null Versus the Empty String
	Understanding Secondary Fields Related to a Reference
	Using Groovy's Safe Navigation Operator
	Assigning a Value to a Field in a Related Object
	Printing and Viewing Diagnostic Messages
	Writing Diagnostic Log Messages from Your Scripts

	Working with Lists
	Working with Maps
	Working with Ranges

	Examples of Each Context Where You Can Use Groovy
	Providing an Expression to Calculate a Custom Formula Field's Value
	Read-Only Calculated Fields

	Providing an Expression to Calculate a Custom Field's Default Value
	Defining a Field-Level Validation Rule
	Defining an Object-Level Validation Rule
	Defining Reusable Behavior with an Object Function
	Enabling External Visibility of an Object Function
	Defining an Object-Level Trigger to Complement Default Processing
	Defining a Field-Level Trigger to React to Value Changes
	Converting a Trigger to Custom Code

	Groovy Tips and Techniques
	Using the Related Object Accessor Field to Work with a Parent Object
	Using the Related Object Accessor Field to Work with a Referenced Object
	Using the Related Collection Accessor Field to Work with Child Rows
	Accessing Current Date and Time from the Application Server
	Accessing Current Date and Time from the Database
	Understanding Additional Built-in Groovy Functions
	Testing Whether a Field's Value Is Changed
	Avoiding Validation Threshold Errors By Conditionally Assigning Values
	Understanding "Before Commit" Performance Impact
	Detecting Row State in After Changes Posted to Database Trigger
	Avoiding Posting Threshold Errors By Conditionally Assigning Values
	Functional Restrictions in Trigger Scripts
	Passing the Current Object to a Helper Function
	Referencing Original Values of Changed Fields
	Raising a Warning From a Validation Rule Instead of an Error
	Throwing a Custom Validation Exception
	Returning Locale-Sensitive Custom Strings
	Raising a Trigger's Optional Declaratively-Configured Error Message
	Accessing the View Object for Programmatic Access to Business Objects
	Defining the Sort Order for Query Results
	Finding an Object by Id
	Finding Objects Using a View Criteria
	Using a Simple View Criteria
	Syntax of View Criteria Filter Expressions
	Tips for Formatting Longer Criteria Across Multiple Lines
	Using String Substitution for Literal Values into a View Criteria Expression Used Only Once
	Using Custom Bind Variables for View Criteria Used Multiple Times
	Using View Criteria to Query Case-Insensitively
	Limitations of View Criteria Filter Expressions
	Finding Rows in a Child Rowset Using findRowsMatchingCriteria

	Accomplishing More with Less Code
	Embracing Null-Handling in Conditions
	Embracing Null-Handling in Loops
	Understanding Groovy's Null-Safe Comparison Operators
	Using Functions as Objects with Closures
	Working More Cleverly with Collections
	Finding Items in a Collection
	Generating One Collection from Another
	Sorting Items in a Collections
	Grouping Items in a Collection
	Computing Aggregates Over a Collection
	Computing the Count of Items in a Collection
	Computing the Minimum of Items in a Collection
	Computing the Maximum of Items in a Collection
	Computing the Sum of Items in a Collection

	Joining Items in a Collection

	Using Optional Method Arguments

	Creating a New Object
	Updating an Existing Object
	Permanently Removing an Existing Object
	Reverting Changes in a Single Row
	Understanding Why Using Commit or Rollback In Scripts Is Strongly Discouraged
	Using the User Data Map
	Referencing Information About the Current User
	Using Aggregate Functions
	Understanding the Supported Aggregate Functions
	Understanding Why Aggegrate Functions Are Appropriate Only to Small Numbers of Child Rows
	Understanding How Null Values Behave in Aggregate Calculation
	Performing Conditional Counting

	Understanding the Difference Between Default Expression and Create Trigger
	Deriving Values of a Field When Other Fields Change Value
	Deriving the Value of a Formula Field When Other Fields Change Value
	Deriving the Value of Non-Formula Field When Other Fields Change Value
	Deriving a Non-Formula Field Using a Before Trigger
	Deriving a Non-Formula Field Using an After Field Changed Trigger

	Setting Invalid Fields for the UI in an Object-Level Validation Rule
	Determining the State of a Row
	Understanding How Local Variables Hide Object Fields
	Invoking REST Services from Your Scripts
	Creating a Service Connection
	Acquiring a New Service Object
	Setting Path Parameters If Needed
	Setting Query Parameters If Needed
	Setting HTTP Headers If Needed
	Using Groovy Maps and Lists with REST Services
	Checking Success Status and Handling Exceptions
	Calling Service Endpoint Methods
	Browsing Available Service Endpoint Methods

	Formatting Numbers and Dates Using a Formatter
	Example of Formatting a Number Using a Formatter
	Formatting a Date Using a Formatter

	Working with Field Values Using a Parameterized Name

	Best Practices for Groovy Performance
	Search Using at Least One Indexed Field
	Explicitly Select Only the Attributes You Need
	Test for Existence by Selecting a Single Row
	Avoid Using newView() Inside a Loop
	Set Field Values in Bulk
	Avoid Revalidating Known Valid Data
	Use Left Shift Operator To Append to Lists

	Understanding Common JBO Exceptions in Groovy Scripts
	JBO-25030: Detail entity X with row key Y cannot find or invalidate its owning entity
	JBO-26020: Attempting to insert row with no matching EO base

	Supported Classes and Methods for Use in Groovy
	Supported Classes and Methods for Use in Groovy Scripts

