
Oracle® Big Data Connectors
User's Guide

Release 5 (5.1)
F10954-08
March 2022



Oracle Big Data Connectors User's Guide, Release 5 (5.1)

F10954-08

Copyright © 2011, 2021, Oracle and/or its affiliates.

Contributors: Dimpi Sarmah, Frederick Kush

Primary Author: Donna Carver

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xv

Documentation Accessibility xv

Related Documents xv

Text Conventions xvi

Syntax Conventions xvi

Changes in Oracle Big Data Connectors 5.1 xvi

Part I   Setup

1   Getting Started with Oracle Big Data Connectors

About Oracle Big Data Connectors 1-1

Big Data Concepts and Technologies 1-2

What is MapReduce? 1-3

What is Apache Hadoop? 1-3

Download and Install Oracle Big Data Connectors 1-4

Certified Hadoop Platforms 1-5

Secure Connection to Oracle Database 1-5

Using JDBC SSL 1-5

Using Secure External Java KeyStore and Hadoop credential command 1-6

Oracle SQL Connector for Hadoop Distributed File System Setup 1-7

Software Requirements 1-7

Install and Configure a Hadoop Client on the Oracle Database System 1-8

Install and Configure Oracle SQL Connector for HDFS 1-9

Oracle Database Privileges for OSCH Users 1-13

OS-Level Requirements for OSCH Users 1-14

Use Oracle SQL Connector for HDFS on a Secure Hadoop Cluster 1-14

Oracle Loader for Hadoop Setup 1-15

Software Requirements 1-15

Install Oracle Loader for Hadoop 1-15

Oracle Database Privileges for OLH Users 1-16

iii



Provide Support for Offline Database Mode 1-16

Use Oracle Loader for Hadoop on a Secure Hadoop Cluster 1-17

Oracle Shell for Hadoop Loaders Setup 1-17

Install Oracle Shell for Hadoop Loaders on a Hadoop Node 1-19

Oracle Database Privileges for OHSH Users 1-20

Configure OHSH to Enable Job Monitoring 1-21

Oracle XQuery for Hadoop Setup 1-22

Software Requirements 1-22

Install Oracle XQuery for Hadoop 1-23

Troubleshoot the File Paths 1-24

Configure Oozie for the Oracle XQuery for Hadoop Action 1-25

Oracle R Advanced Analytics for Hadoop Setup 1-25

Install the Software on Hadoop 1-26

Software Requirements for a Third-Party Hadoop Cluster 1-26

Install Sqoop on a Third-Party Hadoop Cluster 1-27

Install Hive on a Third-Party Hadoop Cluster 1-27

Install R on a Hadoop Client 1-28

Install R on a Third-Party Hadoop Cluster 1-28

Install the ORCH Package on a Third-Party Hadoop Cluster 1-28

Install Additional R Packages 1-29

Provide Remote Client Access to R Users 1-31

Software Requirements for Remote Client Access 1-31

Configure the Server as a Hadoop Client 1-31

Install Sqoop on a Hadoop Client 1-32

Install R on a Hadoop Client 1-32

Install the ORCH Package on a Hadoop Client 1-32

Install the Oracle R Enterprise Client Packages (Optional) 1-32

Oracle Data Integrator 1-33

Oracle Datasource for Apache Hadoop Setup 1-33

Configure HiveServer2 1-34

Part II   Oracle Database Connectors

2   Oracle Shell for Hadoop Loaders

What is Oracle Shell for Hadoop Loaders? 2-1

Configure Oracle Shell for Hadoop Loaders (OHSH) 2-2

Get Started with Oracle Shell for Hadoop Loaders 2-4

Load an Oracle Database Table 2-8

iv



3   Oracle SQL Connector for Hadoop Distributed File System

About Oracle SQL Connector for HDFS 3-1

Interfaces to Oracle SQL Connector for HDFS 3-2

Getting Started With Oracle SQL Connector for HDFS 3-2

Configure Your System for Oracle SQL Connector for HDFS 3-6

Use Oracle SQL Connector for HDFS with Oracle Big Data Appliance and Oracle Exadata 3-7

Use the ExternalTable Command-Line Tool 3-7

About ExternalTable 3-7

ExternalTable Command-Line Tool Syntax 3-8

Create External Tables 3-9

Create External Tables with the ExternalTable Tool 3-10

Create External Tables from Data Pump Format Files 3-10

Required Properties 3-11

Optional Properties 3-11

Defining Properties in XML Files for Data Pump Format Files 3-11

Example 3-12

Create External Tables from Hive Tables 3-12

Hive Table Requirements 3-13

Data Type Mappings 3-13

Required Properties 3-14

Optional Properties 3-14

Defining Properties in XML Files for Hive Tables 3-15

Example 3-16

Creating External Tables from Partitioned Hive Tables 3-16

Create External Tables from Delimited Text Files 3-21

Data Type Mappings 3-21

Required Properties 3-21

Optional Properties 3-21

Defining Properties in XML Files for Delimited Text Files 3-22

Example 3-23

Create External Tables in SQL 3-24

Update External Tables 3-24

ExternalTable Syntax for Publish 3-25

ExternalTable Example for Publish 3-25

Explore External Tables and Location Files 3-26

ExternalTable Syntax for Describe 3-26

ExternalTable Example for Describe 3-26

Drop Database Objects Created by Oracle SQL Connector for HDFS 3-26

ExternalTable Syntax for Drop 3-27

ExternalTable Example for Drop 3-27

v



More About External Tables Generated by the ExternalTable Tool 3-27

About Configurable Column Mappings 3-28

Default Column Mappings 3-28

All Column Overrides 3-28

One Column Overrides 3-28

Mapping Override Examples 3-28

What Are Location Files? 3-29

Enable Parallel Processing 3-29

Set Up Degree of Parallelism 3-30

Location File Management 3-30

Location File Names 3-31

Configure Oracle SQL Connector for HDFS 3-31

Create a Configuration File 3-31

Oracle SQL Connector for HDFS Configuration Property Reference 3-32

Performance Tips for Querying Data in HDFS 3-46

4   Oracle Loader for Apache Hadoop

What Is Oracle Loader for Hadoop? 4-1

Interfaces to Oracle Loader For Hadoop 4-2

Use Oracle Loader for Hadoop With the Hadoop Command Line Utility 4-2

Interfaces to Oracle Loader for Hadoop 4-3

Online Database Mode 4-3

Offline Database Mode 4-5

Create the Target Table 4-7

Supported Data Types for Target Tables 4-7

Supported Partitioning Strategies for Target Tables 4-7

Compression 4-8

Create a Job Configuration File 4-8

Establish Secure Connections to Oracle Database Using SSL and Oracle Wallet 4-10

Use Oracle Wallets 4-10

Use JDBC SSL 4-11

Generate the Target Table Metadata for Offline Database Mode 4-11

About Input Formats 4-11

Delimited Text Input Format 4-12

Complex Text Input Formats 4-13

Hive Table Input Format 4-14

Avro Input Format 4-15

Oracle NoSQL Database Input Format 4-15

Custom Input Formats 4-16

Mapping Input Fields to Target Table Columns 4-17

vi



Automatic Mapping 4-17

Manual Mapping 4-17

Manual Mapping: Examples 4-18

About Output Formats 4-20

JDBC Output Format 4-20

Oracle OCI Direct Path Output Format 4-21

Delimited Text Output Format 4-21

Oracle Data Pump Output Format 4-23

Run a Loader Job 4-24

Specify Hive Input Format JAR Files 4-25

Specify Oracle NoSQL Database Input Format JAR Files 4-25

Job Reporting 4-25

Handling Rejected Records 4-25

Log Rejected Records in Bad Files 4-26

Set a Job Reject Limit 4-26

Balancing Loads When Loading Data into Partitioned Tables 4-26

Use the Sampling Feature 4-26

Tuning Load Balancing 4-26

Tuning Sampling Behavior 4-27

When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme? 4-27

Resolve Memory Issues 4-28

What Happens When a Sampling Feature Property Has an Invalid Value? 4-28

Optimize Communications Between Oracle Engineered Systems 4-28

Oracle Loader for Hadoop Configuration Property Reference 4-29

Part III   Oracle XQuery for Apache Hadoop

5   Using Oracle XQuery for Apache Hadoop

What Is Oracle XQuery for Hadoop? 5-1

Get Started With Oracle XQuery for Hadoop 5-3

Basic Steps 5-3

Example: Hello World! 5-3

About the Oracle XQuery for Hadoop Functions 5-4

About the Adapters 5-4

About Other Modules for Use With Oracle XQuery for Hadoop 5-5

Create an XQuery Transformation 5-6

XQuery Transformation Requirements 5-6

About XQuery Language Support 5-7

Accessing Data in the Hadoop Distributed Cache 5-7

Call Custom Java Functions from XQuery 5-8

vii



Access User-Defined XQuery Library Modules and XML Schemas 5-8

XQuery Transformation Examples 5-9

Run Queries 5-14

Oracle XQuery for Hadoop Options 5-14

Generic Options 5-15

About Running Queries Locally 5-16

Run Queries from Apache Oozie 5-16

Use Oozie with Oracle XQuery for Hadoop Action 5-16

Supported XML Elements 5-17

Example: Hello World 5-18

Oracle XQuery for Hadoop Configuration Properties 5-19

6   Oracle XQuery for Apache Hadoop Reference

Avro File Adapter 6-1

Built-in Functions for Reading Avro Files 6-2

avro:collection-avroxml 6-2

avro:get 6-3

Custom Functions for Reading Avro Container Files 6-3

Custom Functions for Writing Avro Files 6-5

Examples of Avro File Adapter Functions 6-6

About Converting Values Between Avro and XML 6-7

Reading Avro as XML 6-8

Writing XML as Avro 6-13

JSON File Adapter 6-17

Built-in Functions for Reading JSON 6-17

json:collection-jsonxml 6-18

json:parse-as-xml 6-18

json:get 6-18

Custom Functions for Reading JSON Files 6-19

Examples of JSON Functions 6-20

JSON File Adapter Configuration Properties 6-21

About Converting JSON Data Formats to XML 6-22

About Converting JSON Objects to XML 6-22

About Converting JSON Arrays to XML 6-23

About Converting Other JSON Types 6-23

Oracle Database Adapter 6-23

Custom Functions for Writing to Oracle Database 6-24

Examples of Oracle Database Adapter Functions 6-27

Oracle Loader for Hadoop Configuration Properties and Corresponding %oracle-
property Annotations 6-29

Oracle NoSQL Database Adapter 6-32

viii



Prerequisites for Using the Oracle NoSQL Database Adapter 6-32

Built-in Functions for Reading from and Writing to Oracle NoSQL Database 6-33

kv:collection-text 6-33

kv:collection-avroxml 6-34

kv:collection-xml 6-34

kv:collection-binxml 6-35

kv:collection-tika 6-35

kv:put-text 6-36

kv:put-xml 6-36

kv:put-binxml 6-36

kv:get-text 6-36

kv:get-avroxml 6-36

kv:get-xml 6-37

kv:get-binxml 6-37

kv:get-tika 6-37

kv:key-range 6-37

kv:key-range 6-37

Built-in Functions for Reading from and Writing to Oracle NoSQL Database using Table
API 6-38

kv-table:collection-jsontext 6-38

kv-table:get-jsontext 6-39

kv-table:put-jsontext 6-39

Built-in Functions for Reading from and Writing to Oracle NoSQL Database using
Large Object API 6-40

kv-lob:get-text 6-40

kv-lob:get-xml 6-40

kv-lob:get-binxml 6-41

kv-lob:get-tika 6-41

kv-lob:put-text 6-41

kv-lob:put-xml 6-41

kv-lob:put-binxml 6-41

Custom Functions for Reading Values from Oracle NoSQL Database 6-41

Custom Functions for Retrieving Single Values from Oracle NoSQL Database 6-44

Custom Functions for Reading Values from Oracle NoSQL Database using Table API 6-46

Custom Functions for Reading Single Row from Oracle NoSQL Database using Table
API 6-47

Custom Functions for Retrieving Single Values from Oracle NoSQL Database using
Large Object API 6-47

Custom Functions for Writing to Oracle NoSQL Database 6-48

Custom Functions for Writing Values to Oracle NoSQL Database using Table API 6-49

Custom Functions for Writing Values to Oracle NoSQL Database using Large Object
API 6-50

ix



Examples of Oracle NoSQL Database Adapter Functions 6-50

Oracle NoSQL Database Adapter Configuration Properties 6-55

Sequence File Adapter 6-58

Built-in Functions for Reading and Writing Sequence Files 6-59

seq:collection 6-59

seq:collection-xml 6-59

seq:collection-binxml 6-60

seq:collection-tika 6-60

seq:put 6-61

seq:put-xml 6-61

seq:put-binxml 6-62

Custom Functions for Reading Sequence Files 6-63

Custom Functions for Writing Sequence Files 6-64

Examples of Sequence File Adapter Functions 6-66

Solr Adapter 6-68

Prerequisites for Using the Solr Adapter 6-68

Configuration Settings 6-68

Example Query Using the Solr Adapter 6-68

Built-in Functions for Loading Data into Solr Servers 6-69

solr:put 6-69

Custom Functions for Loading Data into Solr Servers 6-69

Examples of Solr Adapter Functions 6-70

Solr Adapter Configuration Properties 6-71

Text File Adapter 6-73

Built-in Functions for Reading and Writing Text Files 6-73

text:collection 6-74

text:collection-xml 6-74

text:put 6-75

text:put-xml 6-75

text:trace 6-76

Custom Functions for Reading Text Files 6-76

Custom Functions for Writing Text Files 6-78

Examples of Text File Adapter Functions 6-79

Tika File Adapter 6-82

Built-in Library Functions for Parsing Files with Tika 6-82

tika:collection 6-82

tika:parse 6-83

Custom Functions for Parsing Files with Tika 6-83

Tika Parser Output Format 6-84

Tika Adapter Configuration Properties 6-84

Examples of Tika File Adapter Functions 6-85

x



XML File Adapter 6-86

Built-in Functions for Reading XML Files 6-86

xmlf:collection (Single Task) 6-86

xmlf:collection-multipart (Single Task) 6-87

xmlf:collection (Multiple Tasks) 6-87

Custom Functions for Reading XML Files 6-88

Examples of XML File Adapter Functions 6-91

Utility Module 6-93

Oracle XQuery Functions for Duration, Date, and Time 6-93

ora-fn:date-from-string-with-format 6-93

ora-fn:date-to-string-with-format 6-94

ora-fn:dateTime-from-string-with-format 6-94

ora-fn:dateTime-to-string-with-format 6-95

ora-fn:time-from-string-with-format 6-96

ora-fn:time-to-string-with-format 6-96

Format Argument 6-97

Locale Argument 6-97

Oracle XQuery Functions for Strings 6-97

ora-fn:pad-left 6-97

ora-fn:pad-right 6-98

ora-fn:trim 6-99

ora-fn:trim-left 6-100

ora-fn:trim-right 6-100

Hadoop Module 6-100

Built-in Functions for Using Hadoop 6-100

oxh:find 6-101

oxh:increment-counter 6-101

oxh:println 6-101

oxh:println-xml 6-102

oxh:property 6-102

Serialization Annotations 6-102

7   Oracle XML Extensions for Hive

What are the XML Extensions for Hive? 7-1

Use the Hive Extensions From the Command Line 7-2

Use the Hive Extensions in HiveServer2 7-3

About the Hive Functions 7-6

Permanently Declaring the Hive Functions 7-6

Create XML Tables 7-7

Hive CREATE TABLE Syntax for XML Tables 7-7

xi



CREATE TABLE Configuration Properties 7-8

CREATE TABLE Examples 7-9

Syntax Example 7-9

Simple Examples 7-10

OpenStreetMap Examples 7-13

Oracle XML Functions for Hive Reference 7-15

Data Type Conversions 7-15

Hive Access to External Files 7-15

Online Documentation of Functions 7-16

xml_exists 7-17

xml_query 7-18

xml_query_as_primitive 7-20

xml_table 7-23

Part IV   Oracle R Advanced Analytics for Apache Hadoop

8   Oracle R Advanced Analytics for Apache Hadoop

About Oracle R Advanced Analytics for Hadoop 8-1

Oracle R Advanced Analytics for Hadoop Architecture 8-1

Oracle R Advanced Analytics for Hadoop packages and functions 8-2

Oracle R Advanced Analytics for Hadoop APIs 8-3

Inputs to Oracle R Advanced Analytics for Hadoop 8-4

Access to HDFS Files 8-5

Access to Apache Hive 8-5

ORCH Functions for Hive 8-5

ORE Functions for Hive 8-5

Generic R Functions Supported in Hive 8-6

Support for Hive Data Types 8-7

Usage Notes for Hive Access 8-9

Example: Loading Hive Tables into Oracle R Advanced Analytics for Hadoop 8-9

Access to Oracle Database 8-10

Usage Notes for Oracle Database Access 8-11

Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R Enterprise 8-11

Oracle R Advanced Analytics for Hadoop Functions 8-11

Native Analytical Functions 8-12

Using the Hadoop Distributed File System (HDFS) 8-12

Using Apache Hive 8-13

Using Aggregate Functions in Hive 8-14

Making Database Connections 8-14

Copying Data and Working with HDFS Files 8-14

xii



Converting to R Data Types 8-15

Using MapReduce 8-16

Debugging Scripts 8-17

Demos of Oracle R Advanced Analytics for Hadoop Functions 8-17

Security Notes for Oracle R Advanced Analytics for Hadoop 8-18

Part V   Oracle DataSource for Apache Hadoop

9   Oracle DataSource for Apache Hadoop (OD4H)

Operational Data, Big Data and Requirements 9-1

Overview of Oracle DataSource for Apache Hadoop (OD4H) 9-1

Opportunity with Hadoop 2.x 9-2

Oracle Tables as Hadoop Data Source 9-2

External Tables 9-3

TBLPROPERTIES 9-4

SERDE PROPERTIES 9-6

List of jars in the OD4H package 9-6

How does OD4H work? 9-6

Create a new Oracle Database Table or Reuse an Existing Table 9-7

Hive DDL 9-7

Create External Tables in Hive 9-8

Features of OD4H 9-9

Performance And Scalability Features 9-9

Splitters 9-10

Choosing a Splitter 9-12

Predicate Pushdown 9-13

Projection Pushdown 9-14

Partition Pruning 9-14

Smart Connection Management 9-14

Security Features 9-15

Improved Authentication 9-15

Use HiveQL with OD4H 9-18

Use Spark SQL with OD4H 9-19

Writing Back to Oracle Database 9-20

Part VI   Appendices

xiii



A   OraLoaderMetadata Utility

D   Oracle Big Data Connectors Accessibility Recommendations

Tips on Using Screen Readers and Braille Displays D-1

Tips on Using Screen Magnifiers D-1

F   Recent Change History

Changes in Oracle Big Data Connectors Release 4.12 F-1

B   Using Oracle's Hive Storage Handler for Kafka to Create a Hive External
Table for Kafka Topics

C   Apache License

Apache Licensed Code C-4

E   Additional Big Data Connector Resources

Index

xiv



Preface

The Oracle Big Data Connectors User's Guide describes how to install and use Oracle Big
Data Connectors:

• Oracle Loader for Hadoop

• Oracle SQL Connector for Hadoop Distributed File System

• Oracle XQuery for Hadoop

• Oracle R Advanced Analytics for Hadoop

• Oracle Datasource for Apache Hadoop

• Oracle Data Integrator1

Audience
This document is intended for users of Oracle Big Data Connectors, including the following:

• Application developers

• Java programmers

• XQuery programmers

• System administrators

• Database administrators

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents:

• Oracle Loader for Hadoop Java API Reference

• Oracle Big Data Appliance Software User's Guide
1 Oracle Big Data Connectors includes a restricted use license for the Oracle Data Integrator when licensed on an Oracle

Big Data Appliance. However, additional licensing is required for using it on other Hadoop clusters.

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Text Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Syntax Conventions
The syntax is presented in a simple variation of Backus-Naur Form (BNF) that uses
the following symbols and conventions:

Symbol or Convention Description

[ ] Brackets enclose optional items.

{ } Braces enclose a choice of items, only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

... Ellipses indicate that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, and vertical bars must be
entered as shown.

Changes in Oracle Big Data Connectors 5.1
Oracle Big Data Connectors 5.1 includes the following new features, and software
revisions.

About JDBC SSL

JDBC SSL lets you create secure connections to Oracle Database. See Using JDBC
SSL

About Hadoop Crendential CLI

Hadoop Credential CLI lets you create a secure keystore file to store database
passwords. See Using Secure External Java KeyStore and Hadoop credential
command.

Software Updates in This Release

Connector Version

Oracle SQL Connector for HDFS (OSCH) 5.0.0

Oracle Loader for Hadoop (OLH) 5.0.1

Preface

xvi



Connector Version

Oracle Shell for Hadoop Loaders (OHSH) 5.0.1

Oracle R Advanced Analytics for Hadoop
(ORAAH)

2.8.2

Oracle XQuery for Hadoop (OXH) 4.9.5

Oracle DataSource for Apache Hadoop
(OD4H)

1.2.4

Recent Change History Prior to Oracle Big Data Connectors 5.1

Appendix F in this guide describes changes in the previous Oracle Big Data Connector
release – 4.12. If you are upgrading from an earlier release, you may find it useful to review
this information.

Preface

xvii



Part I
Setup

Part I contains the following chapter:

• Getting Started with Oracle Big Data Connectors



1
Getting Started with Oracle Big Data
Connectors

This chapter describes the Oracle Big Data Connectors and provides installation instructions.

This chapter contains the following sections:

• About Oracle Big Data Connectors

• Big Data Concepts and Technologies

• Download and Install Oracle Big Data Connectors

• Oracle SQL Connector for Hadoop Distributed File System Setup

• Oracle Loader for Hadoop Setup

• Oracle Shell for Hadoop Loaders Setup

• Oracle XQuery for Hadoop Setup

• Oracle R Advanced Analytics for Hadoop Setup

• Oracle Data Integrator

• Oracle Datasource for Apache Hadoop Setup

About Oracle Big Data Connectors
Oracle Big Data Connectors facilitate access to data stored in an Apache Hadoop cluster.
They can be licensed for use on either Oracle Big Data Appliance or a Hadoop cluster
running on commodity hardware.

These are the connectors:

• Oracle SQL Connector for Hadoop Distributed File System: Enables an Oracle
external table to access data stored in Hadoop Distributed File System (HDFS) files or a
table in Apache Hive. The data can remain in HDFS or the Hive table, or it can be loaded
into an Oracle database.

• Oracle Loader for Apache Hadoop: Provides an efficient and high-performance loader
for fast movement of data from a Hadoop cluster into a table in an Oracle database.
Oracle Loader for Hadoop prepartitions the data if necessary and transforms it into a
database-ready format. It optionally sorts records by primary key or user-defined columns
before loading the data or creating output files.

• Oracle XQuery for Apache Hadoop: Runs transformations expressed in the XQuery
language by translating them into a series of MapReduce jobs, which are executed in
parallel on the Hadoop cluster. The input data can be located in a file system accessible
through the Hadoop File System API, such as the Hadoop Distributed File System
(HDFS), or stored in Oracle NoSQL Database. Oracle XQuery for Hadoop can write the
transformation results to HDFS, Oracle NoSQL Database, Apache Solr, or Oracle
Database. An additional XML processing capability is through XML Extensions for Hive.

1-1



• Oracle Shell for Hadoop Loaders: A helper shell that provides a simple-to-use
command line interface to Oracle Loader for Hadoop, Oracle SQL Connector for
HDFS, and Copy to Hadoop (a feature of Big Data SQL). It has basic shell
features such as command line recall, history, inheriting environment variables
from the parent process, setting new or existing environment variables, and
performing environmental substitution in the command line.

• Oracle R Advanced Analytics for Apache Hadoop: Provides a general
computation framework, in which you can use the R language to write your custom
logic as mappers or reducers. A collection of R packages provides predictive
analytic techniques that run as MapReduce jobs. The code executes in a
distributed, parallel manner using the available compute and storage resources on
the Hadoop cluster. Oracle R Advanced Analytics for Hadoop includes interfaces
to work with Apache Hive tables, the Apache Hadoop compute infrastructure, the
local R environment, and Oracle database tables. 

• Oracle Data Integrator: Extracts, loads, and transforms data from sources such
as files and databases into Hadoop and from Hadoop into Oracle or third-party
databases. Oracle Data Integrator provides a graphical user interface to utilize the
native Hadoop tools and transformation engines such as Hive, HBase, Sqoop,
Oracle Loader for Hadoop, and Oracle SQL Connector for Hadoop Distributed File
System.

• Oracle Datasource for Hadoop: Provides direct, fast, parallel, secure and
consistent access to master data in Oracle Database using Hive SQL, Spark SQL,
as well as Hadoop APIs that support SerDes, HCatalog, InputFormat and
StorageHandler.

Individual connectors may require that software components be installed in Oracle
Database and either the Hadoop cluster or an external system set up as a Hadoop
client for the cluster. Users may also need additional access privileges in Oracle
Database.

See Also:

My Oracle Support Information Center: Big Data Connectors (ID 1487399.2)
and its related information centers.

Big Data Concepts and Technologies
Enterprises are seeing large amounts of data coming from multiple sources. Click-
stream data in web logs, GPS tracking information, data from retail operations, sensor
data, and multimedia streams are just a few examples of vast amounts of data that
can be of tremendous value to an enterprise if analyzed. The unstructured and semi-
structured information provided by raw data feeds is of little value in and of itself. The
data must be processed to extract information of real value, which can then be stored
and managed in the database. Analytics of this data along with the structured data in
the database can provide new insights into the data and lead to substantial business
benefits.

Chapter 1
Big Data Concepts and Technologies

1-2

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1487399.2


What is MapReduce?
MapReduce is a parallel programming model for processing data on a distributed system. It
can process vast amounts of data quickly and can scale linearly. It is particularly effective as
a mechanism for batch processing of unstructured and semi-structured data. MapReduce
abstracts lower level operations into computations over a set of keys and values.

A simplified definition of a MapReduce job is the successive alternation of two phases, the
map phase and the reduce phase. Each map phase applies a transform function over each
record in the input data to produce a set of records expressed as key-value pairs. The output
from the map phase is input to the reduce phase. In the reduce phase, the map output
records are sorted into key-value sets so that all records in a set have the same key value. A
reducer function is applied to all the records in a set and a set of output records are produced
as key-value pairs. The map phase is logically run in parallel over each record while the
reduce phase is run in parallel over all key values.

Note:

Oracle Big Data Connectors 3.0 and later supports the Yet Another Resource
Negotiator (YARN) implementation of MapReduce.

What is Apache Hadoop?
Apache Hadoop is the software framework for the development and deployment of data
processing jobs based on the MapReduce programming model. At the core, Hadoop provides
a reliable shared storage and analysis system. Analysis is provided by MapReduce. Storage
is provided by the Hadoop Distributed File System (HDFS), a shared storage system
designed for MapReduce jobs.

The Hadoop ecosystem includes several other projects including Apache Avro, a data
serialization system that is used by Oracle Loader for Hadoop.

Cloudera's Distribution including Apache Hadoop (CDH) is installed on Oracle Big Data
Appliance. You can use Oracle Big Data Connectors on a Hadoop cluster running CDH or the
equivalent Apache Hadoop components, as described in the setup instructions in this
chapter.

See Also:

• For conceptual information about the Hadoop technologies, the following third-
party publication:

Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly Media Inc.,
2012, ISBN: 978-1449311520).

• For information about Cloudera's Distribution including Apache Hadoop
(CDH5), visit the Oracle Cloudera website.

• For information about Apache Hadoop, visit the Apache Hadoop website.

Chapter 1
Big Data Concepts and Technologies

1-3



Download and Install Oracle Big Data Connectors
You can download Oracle Big Data Connectors from Oracle Technology Network or 
Oracle Software Delivery Cloud. Both sites are cross-browser compatible.

Note:

Oracle Big Data Appliance customers do not need to download Oracle Big
Data Connectors from an external source. Oracle Big Data Connectors are
included in the Oracle Big Data Appliance deployment bundle. See Enabling
and Disabling Oracle Big Data Connectors in the Oracle Big Data Appliance
Owner’s Guide. All other customers should download the software as
described here.

To download from Oracle Technology Network:

1. Go to
http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/
index.html

2. Click the name of each connector to download a zip file containing the installation
files.

To download from Oracle Software Delivery Cloud:

1. Go to https://edelivery.oracle.com/
2. Sign in and accept the Export Restrictions.

3. Type in the product name in the Product field and select the platform:

Product: Oracle Big Data Connectors

Platform: Linux x86-64

4. When Oracle Big Data Connectors appears in the Product List, click Continue.
The most recent major release of Oracle Big Data Connectors will appear as the
selected option.

5. To choose a different release, click Select Alternate Release and choose another
package from the list. Click Continue.

6. Read the Terms and Conditions. Click the checkbox if you accept them, then click
Continue.

7. On the download site, select the zip files for individual Oracle Big Data Connectors
or click Download All.

Each download package includes a README file with installation instructions and a
set of examples.

Chapter 1
Download and Install Oracle Big Data Connectors

1-4

http://www.oracle.com/pls/topic/lookup?ctx=E87334-01&id=bdc_downloads
http://www.oracle.com/pls/topic/lookup?ctx=E87334-01&id=bdc_downloads
https://edelivery.oracle.com/


Certified Hadoop Platforms
All Oracle Big Data Connectors run on both CDH (Cloudera Distribution Including Apache
Hadoop) and HDP (Hortonworks Data Platform). A few Big Data Connectors also run on CDP
(Cloudera Data Platform).

Note:

• Big Data Connectors 5.x is required to work with CDH 6.x. All components with
the exception of Oracle Data Integrator are certified to work with CDH 6.x.

• Oracle Loader for Hadoop 5.0.1 to 5.1.2 and Oracle SQL Connector for HDFS
5.0.1 to 5.1.2 are certified to work with Hortonworks 3.0.1.

• Oracle Loader for Hadoop 5.1.2 and Oracle SQL Connector for HDFS 5.1.2 are
certified to work with Cloudera Data Platform (CDP) version 7.1.6.

Version 5.1.2 of Oracle Loader for Hadoop and Oracle SQL Connector for HDFS are
available from My Oracle Support. The 5.1.2 version of Oracle Shell for Hadoop Loaders, the
command-line UI for these connectors, should also be downloaded from My Oracle Support.
For details on downloading the 5.1.2 versions of these connectors, please refer to note
2823564.1 on My Oracle Support.

Secure Connection to Oracle Database
Describes using JDBC SSL and Java KeyStore to securely connect to Oracle Database.

Using JDBC SSL

Follow these steps to connect to the Oracle Database using JDBC SSL:

1. Download the SSL wallet.zip file. For example, see Download Client Credentials for
information on downloading client credentials for Oracle Autonomous Data Warehouse.

2. Copy the wallet.zip file to a directory location on a node in the Hadoop cluster or Hadoop
edge node (from where you will run Oracle Loader for Hadoop or Oracle SQL Connector
for HDFS or Oracle Shell for Hadoop Loaders). This is your TNS_ADMIN directory on the
Hadoop node. For example: /home/oracle/SSL_wallet.

3. Unzip the wallet.zip file.

4. Set the permissions of the file to be accessible to the OS user who will run Oracle Loader
for Hadoop or Oracle SQL Connector for HDFS or Oracle Shell for Hadoop Loaders.

5. In the sqlnet.ora file, update the WALLET_LOCATION entry so that the DIRECTORY points to
the directory location of the SSL wallet you created in Step 2.

For Example:

WALLET_LOCATION=
                (SOURCE= 
                   (METHOD=FILE)

Chapter 1
Certified Hadoop Platforms

1-5



                   (METHOD_DATA=
                  (DIRECTORY=/home/oracle/SSL_wallet/)))

6. In the tnsnames.ora file, find the name of the TNS entry using TCPS protocol. For
example:

inst1_ssl = (DESCRIPTION=(ADDRESS=
                                   (PROTOCOL=tcps)
                                    (HOST=<hostname>)
                                     (PORT=1521))
                                     
(CONNECT_DATA=(SERVICE_NAME=<service_name>)))

7. Create a connection.properties file in the TNS_ADMIN directory and add the
following code:

javax.net.ssl.trustStore=<directory_location>/cwallet.sso 
javax.net.ssl.trustStoreType=SSO 
javax.net.ssl.keyStore=<directory_location>/cwallet.sso
javax.net.ssl.keyStoreType=SSO

For example:

javax.net.ssl.trustStore=/home/oracle/SSL_wallet/cwallet.sso
javax.net.ssl.trustStoreType=SSO
javax.net.ssl.keyStore=/home/oracle/SSL_wallet/cwallet.sso 
javax.net.ssl.keyStoreType=SSO

Using Secure External Java KeyStore and Hadoop credential
command

Oracle Shell for Hadoop Loaders (OHSH) can use a secure external Java KeyStore
(JKS) file to store database passwords. The Hadoop credential command can be used
to create the Java KeyStore file.

• Use the following syntax to create the keyStore file using the Hadoop credential
command:

$ hadoop credential create <password alias> 
          -value <password> 
          -provider jceks://file/<directory location where the 
keystore file will be stored>/<keystorefilename>.jceks

For example:

$ hadoop credential create oracle_passwd 
           -value password 
           -provider jceks://file/home/oracle/passwd.jceks

Chapter 1
Secure Connection to Oracle Database

1-6



Oracle SQL Connector for Hadoop Distributed File System
Setup

Oracle recommends running Oracle SQL Connector for Hadoop Distributed File System
(HDFS) on a Hadoop client or edge node. In addition, you must install and configure Oracle
SQL Connector for HDFS on the system where Oracle Database runs.

On Oracle Big Data Appliance, there is an option to include Oracle Big Data Connectors in
the installation. If this was selected in the Configuration Generation Utility, then Oracle SQL
Connector for HDFS is already available on the appliance. (See Chapter 4, Using Oracle Big
Data Appliance Configuration Generation Utility, in the Big Data Appliance Owner’s Guide.)

This section contains the following topics:

• Software Requirements

• Install and Configure a Hadoop Client on the Oracle Database System

• Install and Configure Oracle SQL Connector for HDFS

• Oracle Database Privileges for OSCH Users

• OS-Level Requirements for OSCH Users

• Use Oracle SQL Connector for HDFS on a Secure Hadoop Cluster

Software Requirements
Oracle SQL Connector for HDFS requires the following software:

Hadoop Requirements:

• A certified release of either CDH (Cloudera Distribution Including Apache Hadoop) or
HDP (Hadoop Data Platform).

• Java Development Kit (JDK). Consult the distributor of your Hadoop software (Cloudera
or Hortonworks) for the recommended version.

Oracle Big Data Appliance already meets these requirements. If you are using CDH or HDP
on a commodity server platform, check to ensure that the system meets them.

Oracle Database System and Hadoop Client System Requirements:

• A version of Oracle Database that is currently supported by Oracle.

• The same version of Hadoop that is installed on your Hadoop cluster: CDH 5.7 or higher,
CDH6, or Hortonworks Data Platform 2.4.0, 2.5.0, 2.61, or 3.0.1. .

If you have a secure Hadoop cluster configured with Kerberos, then the Hadoop client on
the database system must be set up to access a secure cluster.

• The same version of the JDK that is installed on your Hadoop cluster.

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

1-7



Note:

Oracle SQL Connector for HDFS requires a Hadoop client on the OS
platform of the database system. This is straightforward for Linux systems.
Platforms other than Linux require a tarball installation of the Hadoop client.
Refer to this Oracle Blog post Connecting Hadoop with Oracle. See the
following documents in My Oracle Support for details:

• Installation Instructions for Oracle SQL Connector for HDFS on Solaris
(Doc ID 2101331.1)

• Using Oracle Big Data Connectors with Hadoop clusters on commodity
hardware and Oracle Databases on commodity hardware (Doc ID
2101354.1)

• Configuring Oracle SQL Connector for HDFS for Oracle Database
systems on IBM AIX (Doc ID 2152000.1)

See Also:

Use Oracle SQL Connector for HDFS on a Secure Hadoop Cluster.

Install and Configure a Hadoop Client on the Oracle Database System
Oracle SQL Connector for HDFS requires a Hadoop client on the Oracle Database
System. The Hadoop installation can be minimally configured for Hadoop client use
only. The full configuration of Hadoop is not needed. 

Note:

Even if there is a complete Hadoop installation on the Oracle Database
system, do not start Hadoop on this system at any time. If Hadoop is running
locally, then Oracle SQL Connector for HDFS attempts to connect to it
instead of to the external Hadoop cluster.

For Oracle RAC systems including Oracle Exadata Database Machine, you must
install and configure the Hadoop client using identical paths on all systems running
Oracle instances.

Installing and configuring a Hadoop client on the Oracle Database systems involves
several steps which includes downloading and installing various components such as
Java JDK, Hadoop software, Hadoop Client configuration files, Kerberos configuration
and keytab files and testing connectivity to the Hadoop cluster. See the following
document on My Oracle Support for details: “How to Install and Configure a Hadoop
Client on the Oracle Database System for Oracle SQL Connector for HDFS (OSCH)”
(My Oracle Support note 2768424.1).

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

1-8

https://blogs.oracle.com/bigdataconnectors/entry/oracle_sql_connector_for_hdfs
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57643753237655&id=2101331.1&_adf.ctrl-state=ea0w96whc_77
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57643753237655&id=2101331.1&_adf.ctrl-state=ea0w96whc_77
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57692826018296&id=2101354.1&_adf.ctrl-state=ea0w96whc_134
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57692826018296&id=2101354.1&_adf.ctrl-state=ea0w96whc_134
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57692826018296&id=2101354.1&_adf.ctrl-state=ea0w96whc_134
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57766110119717&id=2152000.1&_adf.ctrl-state=ea0w96whc_191
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57766110119717&id=2152000.1&_adf.ctrl-state=ea0w96whc_191
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2768424.1


Install and Configure Oracle SQL Connector for HDFS
Follow this procedure to install Oracle SQL Connector for HDFS on the Oracle Database
system.

For Oracle RAC systems, including Oracle Exadata Database Machine, you must install and
configure Oracle SQL Connector for HDFS using identical paths on all systems running
Oracle instances.

In addition to this required installation on the database system, you can also install Oracle
SQL Connector for HDFS on any system configured as a compatible Hadoop client. This will
give you the option to create Oracle Database external tables from that node.

To install Oracle SQL Connector for HDFS on the Oracle Database system:

1. Download the zip file to a directory on the system where Oracle Database runs.

2. Unpack the content of oraosch-<version>.zip.

$ unzip oraosch-<version>.zip
Archive:  oraosch-<version>.zip
 extracting: orahdfs-<version>.zip
  inflating: README.txt

3. Unpack orahdfs-<version>.zip into a permanent directory:

$ unzip orahdfs-<version>.zip
unzip orahdfs-<version>.zip
Archive:  orahdfs-<version>.zip
   creating: orahdfs-<version>/
   creating: orahdfs-<version>/log/
  inflating: orahdfs-<version>/examples.zip   
   creating: orahdfs-<version>/doc/
  inflating: orahdfs-<version>/doc/README.txt
   creating: orahdfs-<version>/jlib/
  inflating: orahdfs-<version>/jlib/osdt_cert.jar
  inflating: orahdfs-<version>/jlib/oraclepki.jar
  inflating: orahdfs-<version>/jlib/osdt_core.jar
  inflating: orahdfs-<version>/jlib/ojdbc7.jar
  inflating: orahdfs-<version>/jlib/orahdfs.jar
  inflating: orahdfs-<version>/jlib/ora-hadoop-common.jar
   creating: orahdfs-<version>/bin/
  inflating: orahdfs-<version>/bin/hdfs_stream
  inflating: orahdfs-<version>/bin/hdfs_stream.cmd

The unzipped files have the structure shown in Example 1-1. The examples.zip file is not
unzipped. Unzip that file later when you want to work with the examples.

4. Open the orahdfs-<version>/bin/hdfs_stream Bash shell script in a text editor, and
make the changes indicated by the comments in the script, if necessary

To configure the hdfs_stream script, see “How to Install and Configure a Hadoop Client
on the Oracle Database System for Oracle SQL Connector for HDFS (OSCH)” (My
Oracle Support note 2768424.1). See the /u01/app/cloudera/cdhenv Bash shell script
defined in Step 7 of that document.

The hdfs_stream script does not inherit any environment variable settings, and so they
are set in the script if Oracle SQL Connector for HDFS needs them:

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

1-9

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2768424.1


• Add the following lines before the line export PATH=:

CDH_ROOT=/u01/app/cloudera
CDH_HOME=${CDH_ROOT}/parcels/CDH
export JAVA_HOME=${CDH_ROOT}/jdk
export HADOOP_CONF_DIR=${CDH_ROOT}/yarn-conf
#----------- set Kerberos security variables
export KRB5_CONFIG=${CDH_ROOT}/krb5.conf
export HADOOP_CLIENT_OPTS='-Djava.security.krb5.conf='$
{KRB5_CONFIG}

• Modify PATH as shown below to add ‘hadoop’ script to PATH:

export PATH=${CDH_HOME}/bin:/usr/bin:/bin

See the comments in the hdfs_stream script for more information about these
environment variables, and make any additional changes, as needed.

The hdfs_stream script is the preprocessor for the Oracle Database external table
created by Oracle SQL Connector for HDFS.

5. If your cluster is secured with Kerberos and the account does not already have a
Kerberos ticket, then obtain one:

$ kinit

See Use Oracle SQL Connector for HDFS on a Secure Hadoop Cluster in this
guide for information on acquiring and maintaining Kerberos tickets.

6. Run hdfs_stream to test permissions and usage.

Run hdfs_stream from the Oracle SQL Connector for HDFS /bin directory. Use a
new shell window to ensure that your shell environment does not contain an
inherited environment from earlier steps. You should see this usage information:

$ ./hdfs_stream
Usage: hdfs_stream locationFile

If you do not see the usage statement, then ensure that the operating system user
that Oracle Database is running under (such as oracle) has the following
permissions. OSCH_HOME represents the Oracle SQL Connector for HDFS home
directory.

• Read and execute permissions on the hdfs_stream script:

$ ls -l OSCH_HOME/bin/hdfs_stream
-rwxr-xr-x 1 oracle oinstall Nov 27 15:51 hdfs_stream

• Read permission on orahdfs.jar.

$ ls -l OSCH_HOME/jlib/orahdfs.jar
-rwxr-xr-x 1 oracle oinstall Nov 27 15:51 orahdfs.jar

If you do not see these permissions, then enter a chmod command to fix them, for
example:

$ chmod 755 OSCH_HOME/bin/hdfs_stream

In the previous commands, OSCH_HOME represents the Oracle SQL Connector for
HDFS home directory.

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

1-10



7. For an Oracle RAC system, repeat the previous steps for every Oracle instance, using
identical path locations.

8. Log in to Oracle Database and create a database directory for the orahdfs-
<version>/bin directory where hdfs_stream resides. For Oracle RAC systems, this
directory must be accessible by all Oracle instances through identical paths.

In this example, Oracle SQL Connector for HDFS is installed in /etc:
SQL> CREATE OR REPLACE DIRECTORY osch_bin_path AS '/etc/orahdfs-<version>/bin';

The directory path used for the OSCH_BIN_PATH database directory must be an absolute
path without symbolic links.

9. To support access to Hive tables:

a. Ensure that the system is configured as a Hive client.

b. Add the Hive JAR files and the Hive conf directory to the HADOOP_CLASSPATH
environment variable. To avoid JAR conflicts among the various Hadoop products,
Oracle recommends that you set HADOOP_CLASSPATH in your local shell initialization
script instead of making a global change to HADOOP_CLASSPATH. If there are multiple
JAR file paths in HADOOP_CLASSPATH ensure that the JARs for the current product are
listed first.

The following figure illustrates shows the flow of data and the components locations.

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

1-11



Figure 1-1    Oracle SQL Connector for HDFS Installation for HDFS and Data Pump Files

Table
Extern

al T
able M

etadata

ExExteternrnrn
alalal T T

abababababablele
 Table M

etadata

Hadoop Cluster

Oracle SQL 
Connector
for HDFS

Hadoop 
Client

Oracle 
Database

Oracle 
Database
System

Data File

Server

.

.

.
.
.
.

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

1-12



The unzipped files have the structure shown in the following example.

Example 1-1    Structure of the orahdfs Directory

orahdfs-<version>
   bin/
      hdfs_stream
      hdfs_stream.cmd   
   doc/
      README.txt
   jlib/ 
      ojdbc7.jar
      oraloader.jar      
      ora-hadoop-common.jar
      oraclepki.jar
      orahdfs.jar
      osdt_cert.jar
      osdt_core.jar
   log/
   examples.zip 

Oracle Database Privileges for OSCH Users
Oracle Database users require these privileges in order to use Oracle SQL Connector for
HDFS to create external tables:

• CREATE SESSION
• CREATE TABLE
• CREATE VIEW
• EXECUTE on the UTL_FILE PL/SQL package

• READ and EXECUTE on the OSCH_BIN_PATH directory created during the installation of
Oracle SQL Connector for HDFS. Do not grant write access to anyone. Grant EXECUTE
only to those who intend to use Oracle SQL Connector for HDFS.

• READ and WRITE on a database directory for storing external tables, or the CREATE ANY
DIRECTORY system privilege. For Oracle RAC systems, this directory must be on a shared
disk that all Oracle instances can access.

• A tablespace and quota for copying data into the Oracle database. Optional.

The following example shows the SQL commands granting these privileges to HDFSUSER.

Note:

To query an external table that uses Oracle SQL Connector for HDFS, users need
READ privilege for Oracle Database 12c or later and SELECT privilege for older
versions of the database.

Example 1-2    Granting Users Access to Oracle SQL Connector for HDFS

CONNECT / AS sysdba;
CREATE USER hdfsuser IDENTIFIED BY password
   DEFAULT TABLESPACE hdfsdata
   QUOTA UNLIMITED ON hdfsdata;

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

1-13



GRANT CREATE SESSION, CREATE TABLE, CREATE VIEW TO hdfsuser;
GRANT EXECUTE ON sys.utl_file TO hdfsuser;
GRANT READ, EXECUTE ON DIRECTORY osch_bin_path TO hdfsuser;
GRANT READ, WRITE ON DIRECTORY external_table_dir TO hdfsuser;

OS-Level Requirements for OSCH Users
Wherever Oracle SQL Connector for HDFS is installed (on the Oracle Database
system, a Hadoop cluster node, or a separate system set up as a Hadoop client), the
OS-level user account that logs in to use OSCH requires access to the shell variable
HADOOP_CLASSPATH. This variable must include the OSCH path on the Hadoop cluster –
path/orahdfs-<version>/jlib/*
Set the HADOOP_CLASSPATH as shown in the following example, where the OSCH
path is prepended to the current HADOOP_CLASSPATH. Putting OSCH first gives it
precedence over other JARs in the path.

$ export HADOOP_CLASSPATH="/etc/orahdfs-<version>/jlib/*:$HADOOP_CLASSPATH"

Use Oracle SQL Connector for HDFS on a Secure Hadoop Cluster
When users access an external table that was created using Oracle SQL Connector
for HDFS, the external table behaves like a Hadoop client. On the system where the
Oracle database is running, it connects as the OS user of the Oracle process
(usuallyoracle). For OSCH to work, this account requires read permission on the files
of all OSCH users. On a non-secure cluster these files are world-readable, but on a
Kerberos-secured cluster this access requires a Kerberos ticket.

For a user to authenticate using kinit:

• A Hadoop administrator must register the operating system user (such as oracle)
and password in the Key Distribution Center (KDC) for the cluster.

• A system administrator for the Oracle Database system must configure /etc/
krb5.conf and add a domain definition that refers to the KDC managed by the
secure cluster.

These steps enable the operating system user to authenticate with the kinit utility
before submitting Oracle SQL Connector for HDFS jobs. The kinit utility typically
uses a Kerberos keytab file for authentication without an interactive prompt for a
password.

The system should run kinit on a regular basis, before letting the Kerberos ticket
expire, to enable Oracle SQL Connector for HDFS to authenticate transparently. Use
cron or a similar utility to run kinit. For example, if Kerberos tickets expire every two
weeks, then set up a cron job to renew the ticket weekly.

Be sure to schedule the cron job to run when Oracle SQL Connector for HDFS is not
actively being used.

Do not call kinit within the Oracle SQL Connector for HDFS preprocessor script
(hdfs_stream), because it could trigger a high volume of concurrent calls to kinit and
create internal Kerberos caching errors.

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

1-14



Note:

Oracle Big Data Appliance configures Kerberos security automatically as a
configuration option.

Oracle Loader for Hadoop Setup
Follow the instructions in these sections for setting up Oracle Loader for Hadoop:

• Software Requirements

• Install Oracle Loader for Hadoop

• Oracle Database Privileges for OLH Users

• Provide Support for Offline Database Mode

• Use Oracle Loader for Hadoop on a Secure Hadoop Cluster

Software Requirements
Oracle Loader for Hadoop requires the following software:

• A certified release of CDH or HDP.

• A target database system running a version of Oracle Database that is currently
supported by Oracle.

Oracle Big Data Appliance already meets these requirements. If you are using CDH or HDP
on a commodity server platform, check to ensure that the system meets them.

For instructions on configuring OHSH to run on Oracle Big Data Service, see Use Big Data
Connectors and Copy to Hadoop to Copy Data Between Big Data Service and a Database
Instance in Using Oracle Big Data Service.

Install Oracle Loader for Hadoop
Oracle Loader for Hadoop is packaged with the Oracle Database 12c (12.1.0.2 and 12.2.0.1)
client libraries and Oracle Instant Client libraries for connecting to Oracle Database 11.2.0.4,
12.1.0.2, or 12.2.0.1.

To install Oracle Loader for Hadoop:

1. Unpack the content of oraloader-<version>.x86_64.zip into a directory on your
Hadoop cluster or on a system configured as a Hadoop client.

2. Unzip oraloader-<version>-h2.x86_64.zip into a directory on your Hadoop cluster.

A directory named oraloader-<version>-h2 is created with the following subdirectories
along with the examples. zip file, which you must unzip yourself.

doc
jlib
lib
examples.zip

3. Create a variable named OLH_HOME and set it to the installation directory.

Chapter 1
Oracle Loader for Hadoop Setup

1-15

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=GUID-18F22914-DF41-480F-8AC3-A6B7E26A5541
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=GUID-18F22914-DF41-480F-8AC3-A6B7E26A5541
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=GUID-18F22914-DF41-480F-8AC3-A6B7E26A5541


4. Add the following paths to the HADOOP_CLASSPATH variable:

• For all installations:

$OLH_HOME/jlib/*

When using OLH, $OLH_HOME/jlib/* should always be listed first in
HADOOP_CLASSPATH. Alternatively, you can avoid conflict with other scripts by
defining HADOOP_CLASSPATH within a script that uses it.

• To support data loads from Hive tables:

/usr/lib/hive/lib/*
/etc/hive/conf

See "oracle.hadoop.xquery.lib.share."

• To read data from Oracle NoSQL Database Release 2:

$KVHOME/lib/kvstore.jar

Oracle Database Privileges for OLH Users
Oracle Database users require these privileges in order to use Oracle Loader for
Hadoop to load data into the table:

• CREATE SESSION (to connect to the database).

• A tablespace and quota for inserting rows into the table.

Note:

As a OLH user, you must own the table. If you don't own the table, then you
need additional privileges to access DBMS_METADATA. See 
DBMS_METADATA

Provide Support for Offline Database Mode
In a typical installation, Oracle Loader for Hadoop can connect to the Oracle Database
system from the Hadoop cluster or a Hadoop client. If this connection is impossible—
for example, the systems are located on distinct networks—then you can use Oracle
Loader for Hadoop in offline database mode.

To support offline database mode, you must install Oracle Loader for Hadoop on two
systems:

• The Hadoop cluster or a system set up as a Hadoop client.

• The Oracle Database system or a system with network access to Oracle
Database, as described in the following procedure.

To support Oracle Loader for Hadoop in offline database mode:

1. Unpack the content of oraloader-<version>.zip into a directory on the Oracle
Database system or a system with network access to Oracle Database. You must
use the same version of the software as you installed on the Hadoop cluster.

2. Unzip oraloader-<version>-h2.x86_64.zip.

Chapter 1
Oracle Loader for Hadoop Setup

1-16

http://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=ARPLS026


3. Create a variable named OLH_HOME and set it to the installation directory. This example
uses the Bash shell syntax:

$ export OLH_HOME="/usr/bin/oraloader-<version>-h2/"
4. Add the Oracle Loader for Hadoop JAR files to the HADOOP_CLASSPATH environment

variable. If there are other JAR file paths in HADOOP_CLASSPATH, ensure that the Oracle
Loader for Hadoop JAR file path is listed first when using Oracle Loader for Hadoop .
This example uses the Bash shell syntax:

$ export HADOOP_CLASSPATH=$OLH_HOME/jlib/*:$HADOOP_CLASSPATH

Related Topics

• Interfaces to Oracle Loader for Hadoop

Use Oracle Loader for Hadoop on a Secure Hadoop Cluster
A secure Hadoop cluster has Kerberos installed and configured to authenticate client activity.
An operating system user must be authenticated before initiating an Oracle Loader for
Hadoop job to run on a secure Hadoop cluster. For authentication, the user must log in to the
operating system where the job will be submitted and use the standard Kerberos kinit utility.

For a user to authenticate using kinit:

• A Hadoop administrator must register the operating system user and password in the Key
Distribution Center (KDC) for the cluster.

• A system administrator for the client system, where the operating system user will initiate
an Oracle Loader for Hadoop job, must configure /etc/krb5.conf and add a domain
definition that refers to the KDC managed by the secure cluster.

Typically, the kinit utility obtains an authentication ticket that lasts several days. Subsequent
Oracle Loader for Hadoop jobs authenticate transparently using the unexpired ticket.

Oracle Big Data Appliance configures Kerberos security automatically as a configuration
option.

Oracle Shell for Hadoop Loaders Setup
Oracle Shell for Hadoop Loaders (OHSH) is integrated with Big Data Connectors. It provides
a set of declarative commands you can use to load content from Hadoop and Hive to Oracle
Database tables using Oracle Loader for Hadoop (OLH) and Oracle SQL Connector for
Hadoop Distributed File System (OSCH). It also enables you to load contents from Oracle
Database tables to Hadoop and Hive using the Copy to Hadoop feature of Big Data SQL.

Prerequisites

Oracle recommends running OHSH on a Hadoop client or edge node. It is also possible to
run OHSH on a Hadoop node or on the Oracle Database server.

OHSH can be set up in any of the environments above (Hadoop client, Hadoop node, edge
node, or Oracle Database server). To use OHSH, you need to install the software in only one
of these environments.

Each environment has its own prerequisites. Check the relevant column in table below and
install any software packages that are missing from the environment where you choose to run
OHSH. As the table indicates, JDBC connectivity is required in all cases.

Chapter 1
Oracle Shell for Hadoop Loaders Setup

1-17



Table 1-1     Prerequisites for Running OHSH

If You Plan to run OHSH From... The Prerequisites are...

A Hadoop node, a Hadoop client, or an edge
node.

Note:

When Big Data
Connectors is
licensed on
Oracle Big Data
Appliance, all of
the prerequisite
software and
OHSH itself are
pre-installed.

• SQL*Plus
• OLH and OSCH
• JDBC access to Oracle Database

The Oracle Database server. • Hadoop and Hive libraries (installed and
configured).

• OLH and OSCH
• JDBC access to Oracle Database

Installing Oracle Shell for Hadoop Loaders

Follow these instructions for setting up Oracle Shell for Hadoop Loaders. The
instructions are applicable to set up on a Hadoop client, an edge node, a Hadoop
node, or, on the Oracle Database server.

1. Extract the contents of ohsh-<version>.zip to a directory on the system where you
plan to run OHSH. 

The extraction creates a directory named ohsh-<version> with a README.txt file,
the examples package (examples.zip) and four subdirectories:

README.txt
examples.zip
/bin
/conf
/doc
/jlib

You must unzip examples.zip yourself.

The directory ohsh-<version> is referred to as <OHSH_HOME> later in these
instructions.

2. Follow the instructions contained in README.txt to configure Oracle Shell for
Hadoop Loaders. Below are instructions to install and configure Oracle Shell for
Hadoop Loaders on a Hadoop node.

Chapter 1
Oracle Shell for Hadoop Loaders Setup

1-18



Install Oracle Shell for Hadoop Loaders on a Hadoop Node
This procedure applies to installation on a Hadoop Node only. See the OHSH README.txt file
for installation on other systems.

Note:

These instructions use placeholders for the absolute paths that you will set as the
value of some variables. These are in italic font and are framed in brackets. For
example, <OHSH_HOME> is the path where OHSH is installed.

1. Install and set up SQL*Plus if it is not already on the node.

• Download the Oracle Instant Client for Linux along with the corresponding Instant
Client Package for SQL*Plus from the Oracle Technology Network. Select the client
version that matches the version of the Oracle Database.

For example, you can find the client downloads for Oracle Database versions at this
address:
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html

2. Extract both clients into the same directory ( <SQLPLUS_DIR> ).

3. Copy the tnsnames.ora and sqlnet.ora files from ${TNS_ADMIN} on the Oracle Database
host to a directory of your choice on the Hadoop node (<TNS_ADMIN_DIR>).

If an Oracle Wallet is created for the Oracle Database host, copy the wallet file to a
directory of your choice on the Hadoop node (<WALLET_LOCATION_DIR>.).

4. Edit sqlnet.ora . Set WALLET_LOCATION to <WALLET_LOCATION_DIR>. Also check to be
sure that sqlnet.wallet_override is set to “true”.

   WALLET_LOCATION=
      (SOURCE=(METHOD=FILE)(METHOD_DATA=
        (DIRECTORY=<WALLET_LOCATION_DIR>)))
   sqlnet.wallet_override=true

5. Install OLH and OSCH on the Hadoop node if they are not already installed.

Note that OSCH requires installation and configuration steps on the Oracle Database
host as well as on the Hadoop node. For both OLH and OSCH, follow the setup
instructions in the Big Data Connectors User’s Guide.

6. Edit <OHSH_HOME>/bin/ohsh_config.sh, to configure the home directories of OHSH
dependencies

   export HADOOP_HOME=<HADOOP_CLIENT_KIT>   
   export HADOOP_CONF_DIR=<HADOOP_CONF>
   export HIVE_HOME=<HIVE_CLIENT_KIT>
   export HIVE_CONF_DIR=<HIVE_CONF>
   export OLH_HOME=<OLH_HOME>
   export OSCH_HOME=<OSCH_HOME>
   export CP2HADOOP_HOME=<CP2HADOOP_HOME>

Chapter 1
Oracle Shell for Hadoop Loaders Setup

1-19

http://www.oracle.com/technetwork/database/database-technologies/instant-client/downloads/index.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html


   export HS2_HOST_PORT=<HS2_HOST>:<HS2_PORT>
   export HIVE_SESS_VAR_LIST=<semicolon_separated_variable_list>

7. If TNS admin and Oracle Wallet are enabled, then also set the following variables:

export WALLET_LOCATION="<WALLET_LOCATION_DIR>"
export TNS_ADMIN="<TNS_ADMIN_DIR>"

These values are assigned to OHSH tnsadmin and walletlocation defaults at
the start of an OHSH session. They are used for all TNS and Oracle Wallet
authentication in the session.

8. Add <OHSH_HOME>/bin to the PATH environment variable.

9. Start an OHSH session.

Note: The HADOOP_CLASSPATH environment variable should be cleared before
invoking Oracle Shell for Hadoop Loaders.

$ ohsh

Under the banner you should see a list of the kits that were found (OSCH, OLH,
and CP2HADOOP).

You can use the show resources command to see what resources are available.

ohsh> show resources

You will always see the three predefined resources: hadoop0, hive0, and bash0.

See Also:

• Unzip examples.zip into the installation directory at <OHSH_HOME>. The
README.txt file in the unzipped examples directory shows how to run
OHSH load methods in the examples.

• In the Big Data Connectors User’s Guide:

– Oracle Loader for Hadoop Setup

– Oracle SQL Connector for Hadoop Distributed FileSystem Setup

• In the Oracle Big Data Connectors blog space:

– How to Load Oracle and Hive Tables using OHSH (Part 1 -
Introduction)

– How to Load Oracle and Hive Tables using OHSH (Part 2 - OHSH
Configuration and CLI Usage)

Oracle Database Privileges for OHSH Users
OHSH users should have these privileges to load data:

Chapter 1
Oracle Shell for Hadoop Loaders Setup

1-20

https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-1-introduction
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-1-introduction
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-2-ohsh-configuration-and-cli-usage
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-2-ohsh-configuration-and-cli-usage


• Privileges required for Oracle Loader for Hadoop when using Oracle Loader for Hadoop
to load data. See Oracle Database Privileges for OLH Users.

• Privileges required for Oracle SQL Connector for HDFS when using Oracle SQL
Connector for HDFS to load data. See Oracle Database Privileges for OSCH Users.

Configure OHSH to Enable Job Monitoring
When OHSH jobs are executed, status and other information about the job is recorded into a
back-end database. To access information from the OHSH command line, you must first
configure the connection to the database.

Configuration Steps

Configure the following properties in conf/smartloader-conf.xml in order to enable a
database instance where job history is stored.

• oracle.hadoop.smartloader.diagnostics.jobhistory.jdbc.driver
Specifies the JDBC driver for the supported back-end database type. Currently, MYSQL
and ORACLE are valid values. If this property is not specified, the job history commands
fail.

Additional properties must be set. These differ, depending upon which database type is
defined as the supported back-end database

• If jdc.driver = ORACLE:

– oracle.hadoop.smartloader.diagnostics.jobhistory.jdbc.oracleConnectId
A TNS entry name defined in the tnsnames.ora file.

– oracle.hadoop.smartloader.diagnostics.jobhistory.jdbc.oracleWalletDir
The OS directory containing the Oracle Wallet used to connect to an Oracle
Database schema through JDBC.

– oracle.hadoop.smartloader.diagnostics.jobhistory.jdbc.oracleTnsDir
The file path to a directory on the node where OHSH runs. This directory contains
SQL*Net configuration files such as sqlnet.ora and tnsnames.ora. Typically, this
is ${ORACLE_HOME}/network/admin.

Note:

If you are running OHSH from a Hadoop client and want to use Oracle
Wallet, copy tnsnames.ora and the wallet files to any directory on the
Hadoop client.

• If jdbc.driver = MYSQL:

– oracle.hadoop.smartloader.diagnostics.jobhistory.jdbc.mysqlConnectUrl
The URL used to make a JDBC connection to the MySQL database

– oracle.hadoop.smartloader.diagnostics.jobhistory.jdbc.mysqlUser
MySQL user of job history schema

– oracle.hadoop.smartloader.diagnostics.jobhistory.jdbc.mysqlPW

Chapter 1
Oracle Shell for Hadoop Loaders Setup

1-21



Password of the MySQL user account.

Commands for Monitoring OHSH Jobs

After this configuration is completed, you will be able to execute the following OHSH
commands:

• ohsh> show job <job_id>
Shows the detailed information of the job specified by ID.

• ohsh> show job summary <job_id>
Shows the performance of the completed job specified by ID.

• ohsh> show job abstract <job_id>
Provides a functional description of the job.

• ohsh>  show jobs [failed|running|completed|finished] [extended]
[<integer>]
Shows the last n jobs of a particular job status.

– The first parameter specifies job status. If the status is not specified, all jobs
are shown, regardless of job status.

– The second parameter specifies whether to show details.  

– The third parameter specifies that the last n jobs of the specified status should
be shown. If n is not specified, then all jobs of that status are shown.

• ohsh>  truncate jobs [<integer>]
Removes the last n jobs from the database. If the integer is not specified,  the
command removes all jobs

Oracle XQuery for Hadoop Setup
You install and configure Oracle XQuery for Hadoop on the Hadoop cluster. If you are
using Oracle Big Data Appliance, then the software is already installed.

The following topics describe the software installation:

• Software Requirements

• Install Oracle XQuery for Hadoop

• Troubleshoot the File Paths

• Configure Oozie for the Oracle XQuery for Hadoop Action

Software Requirements
Oracle Big Data Appliance Release 4.3 and later releases meet the requirements
below. However, if you are installing Oracle XQuery for Hadoop on a third-party
cluster, then you must ensure that these components are installed.

• Java 8.x or 7.x.

• A certified release of either CDH (Cloudera's Distribution including Apache
Hadoop) or HDP (Hortonworks Data Platform).

Chapter 1
Oracle XQuery for Hadoop Setup

1-22



• Oracle NoSQL Database 3.x or 2.x to support reading and writing to Oracle NoSQL
Database

• Oracle Loader for Hadoop 3.8.0 or greater to support writing tables in Oracle databases

Install Oracle XQuery for Hadoop
Perform the following steps to install Oracle XQuery for Hadoop.

To install Oracle XQuery for Hadoop:

1. Unpack the contents of oxh-<version>.zip into the installation directory:

$ unzip oxh-<version>-cdh-<version>.zip
Archive:  oxh-<version>-cdh-<version>.zip
   creating: oxh-<version>-cdh<version>/
   creating: oxh-<version>-cdh<version>/lib/
   creating: oxh-<version>-cdh<version>/oozie/
   creating: oxh-<version>-cdh<version>/oozie/lib/
  inflating: oxh-<version>-cdh<version>/lib/ant-launcher.jar
  inflating: oxh-<version>-cdh<version>/lib/ant.jar
     .
     .
     .

You can now run Oracle XQuery for Hadoop.

2. For the fastest execution time, copy the libraries into the Hadoop distributed cache:

a. Copy all Oracle XQuery for Hadoop and third-party libraries into an HDFS directory.
To use the -exportliboozie option to copy the files, see "Oracle XQuery for Hadoop
Options". Alternatively, you can copy the libraries manually using the HDFS
command line interface.

If you use Oozie, then use the same folder for all files. See "Configure Oozie for the
Oracle XQuery for Hadoop Action"

b. Set the oracle.hadoop.xquery.lib.share property or use the -sharelib option on the
command line to identify the directory for the Hadoop distributed cache.

3. To support data loads into Oracle Database, install Oracle Loader for Hadoop:

a. Unpack the content of oraloader-<version>.x86_64.zip into a directory on your
Hadoop cluster or on a system configured as a Hadoop client. This archive contains
an archive and a README file.

b. Unzip the archive into a directory on your Hadoop cluster:

unzip oraloader-<version>-h2.x86_64.zip

A directory named oraloader-<version>-h2 is created with the following
subdirectories and the examples.zip file:

doc
jlib
lib
examples.zip

Unzip the example.zip file yourself.

c. Create an environment variable named OLH_HOME and set it to the installation
directory. Do not set HADOOP_CLASSPATH.

Chapter 1
Oracle XQuery for Hadoop Setup

1-23



4. To support data loads into Oracle NoSQL Database, install it, and then set an
environment variable named KVHOMEto the Oracle NoSQL Database installation
directory.

Note:

Do not add NoSQL Database jar files to a HADOOP_CLASSPATH.

5. To support indexing by Apache Solr:

a. Ensure that Solr is installed and configured in your Hadoop cluster. Solr is
included in Cloudera Search, which is installed automatically on Oracle Big
Data Appliance.

b. Create a collection in your Solr installation into which you will load documents.
To create a collection, use the solrctl utility.

See Also:

For the solrctl utility, Cloudera Search User Guide at

Cloudera Search User

c. Configure Oracle XQuery for Hadoop to use your Solr installation by setting
the OXH_SOLR_MR_HOME environment variable to the local directory containing
search-mr-<version>.jar and search-mr-<version>-job.jar. For example:

$ export OXH_SOLR_MR_HOME="/usr/lib/solr/contrib/mr"

Note:

Configure Oracle XQuery for Hadoop and set the OXH_SOLR_MR_HOME
environment variable to the local directory before using Apache Tika
adapter as well.

Troubleshoot the File Paths
If Oracle XQuery for Hadoop fails to find its own or third-party libraries when running
queries, first ensure that the environment variables were set correctly during Oracle
XQuery for Hadoop installation.

Note:

The HADOOP_CLASSPATH environment variable or -libjars command line
option must not contain either an OXH or third-party library.

Chapter 1
Oracle XQuery for Hadoop Setup

1-24

https://docs.cloudera.com/runtime/7.0.3/search-managing/topics/search-solrctl-ref.html


If they are set correctly, then you may need to edit lib/oxh-lib.xml. This file identifies the
location of Oracle XQuery for Hadoop system JAR files and other libraries, such as Avro,
Oracle Loader for Hadoop, and Oracle NoSQL Database.

If necessary, you can reference environment variables in this file as ${env.variable}, such
as ${env.OLH_HOME}. You can also reference Hadoop properties as ${property}, such as $
{mapred.output.dir}.

Related Topics

• Install Oracle XQuery for Hadoop

Configure Oozie for the Oracle XQuery for Hadoop Action
You can use Apache Oozie workflows to run your queries, as described in "Run Queries from
Apache Oozie". The software is already installed and configured on Oracle Big Data
Appliance.

For other Hadoop clusters, you must first configure Oozie to use the Oracle XQuery for
Hadoop action. These are the general steps to install the Oracle XQuery for Hadoop action:

1. Modify the Oozie configuration. If you run CDH on third-party hardware, then use
Cloudera Manager to change the Oozie server configuration. For other Hadoop
installations, edit oozie-site.htm.

• Add oracle.hadoop.xquery.oozie.OXHActionExecutor to the value of the
oozie.service.ActionService.executor.ext.classes property.

• Add oxh-action-v1.xsd to the value of the
oozie.service.SchemaService.wf.ext.schemas property.

2. Add oxh-oozie.jar to the Oozie server class path. For example, in a CDH5 installation,
copy oxh-oozie.jar to /var/lib/oozie on the server.

3. Add all Oracle XQuery for Hadoop dependencies to the Oozie shared library in a
subdirectory named oxh. You can use the CLI -exportliboozie option. See "Oracle
XQuery for Hadoop Options".

4. Restart Oozie for the changes to take effect.

The specific steps depend on your Oozie installation, such as whether Oozie is already
installed and which version you are using.

Oracle R Advanced Analytics for Hadoop Setup
An overview of Oracle R Advanced Analytics for Hadoop (ORAAH) is provided in Part IV of
this guide .

Release notes, installation instructions, comprehensive reference material, and a list of
changes in the current release are published separately on the Oracle Technology Network.

• ORAAH 2.8.2 Installation Guide.

• Oracle R Advanced Analytics for Hadoop 2.8.2 Release Notes .

• Oracle R Advanced Analytics for Hadoop 2.8.2 Reference Manual.

• ORAAH 2.8.2 Change List Summary.

• ORAAH 2.8.2 Oracle Formula and Data Preprocessing

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1-25

https://www.oracle.com/a/otn/docs/database/oraah-2-8-2-install-guide.pdf
https://www.oracle.com/a/otn/docs/database/oraah-2-8-2-release-notes.pdf
https://www.oracle.com/a/otn/docs/database/oraah-2-8-2-reference-manual.pdf
https://www.oracle.com/a/otn/docs/database/oraah-2-8-2-change-list.pdf
https://www.oracle.com/a/otn/docs/database/oraah-2-8-2-oracle-formula.pdf


• Supported Features for Apache Hive/Impala in ORAAH 2.8.0

Each ORAAH release is compatible with a number of Oracle Big Data Appliance
releases and releases of CDH running on non-Oracle platforms.

For a complete ORAAH compatibility matrix, see Document 2225633.1 on My Oracle
Support.

Install the Software on Hadoop
Oracle Big Data Appliance supports Oracle R Advanced Analytics for Hadoop without
any additional software installation or configuration. However, to use Oracle R
Advanced Analytics for Hadoop on a third-party Hadoop cluster, you must create the
necessary environment.

Software Requirements for a Third-Party Hadoop Cluster
You must install several software components on a third-party Hadoop cluster to
support Oracle R Advanced Analytics for Hadoop.

Install these components on third-party servers:

• A certified release of CDH (Cloudera's Distribution including Apache Hadoop) or
HDP (Hadoop Data Platform), or, Apache Hadoop 0.20.2+923.479 or later.

Complete the instructions provided by the distributor.

• Apache Hive 0.10.0+67 or later

See "Install Hive on a Third-Party Hadoop Cluster."

• Sqoop 1.3.0+5.95 or later for the execution of functions that connect to Oracle
Database. Oracle R Advanced Analytics for Hadoop does not require Sqoop to
install or load.

See "Install Sqoop on a Third-Party Hadoop Cluster."

• Mahout for the execution of (orch_lmf_mahout_als.R).

• Java Virtual Machine (JVM), preferably Java HotSpot Virtual Machine 6.

Complete the instructions provided at the download site at

http://www.oracle.com/technetwork/java/javase/downloads/index.html
• Oracle R Distribution 3.0.1 with all base libraries on all nodes in the Hadoop

cluster.

See "Install R on a Third-Party Hadoop Cluster."

• The ORCH package on each R engine, which must exist on every node of the
Hadoop cluster.

See "Install the ORCH Package on a Third-Party Hadoop Cluster".

• Oracle Loader for Hadoop to support the OLH driver (optional).

See "Oracle Loader for Hadoop Setup."

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1-26

https://www.oracle.com/a/otn/docs/database/oraah-2-8-2-hive-impala-support.pdf
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=408679426765807&id=2225633.1&_adf.ctrl-state=1bu5xt4y9c_77
http://www.oracle.com/technetwork/java/javase/downloads/index.html


Note:

Do not set HADOOP_HOME on the Hadoop cluster. CDH5 does not need it, and it
interferes with Oracle R Advanced Analytics for Hadoop. If you must set
HADOOP_HOME for another application, then also set HADOOP_LIBEXEC_DIR in
the /etc/bashrc file. For example:

export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec

Install Sqoop on a Third-Party Hadoop Cluster
Sqoop provides a SQL-like interface to Hadoop, which is a Java-based environment. Oracle
R Advanced Analytics for Hadoop uses Sqoop for access to Oracle Database.

Note:

Sqoop is required even when using Oracle Loader for Hadoop as a driver for
loading data into Oracle Database. Sqoop performs additional functions, such as
copying data from a database to HDFS and sending free-form queries to a
database. The driver also uses Sqoop to perform operations that Oracle Loader for
Hadoop does not support.

To install and configure Sqoop for use with Oracle Database:

1. Install Sqoop if it is not already installed on the server.

For Cloudera's Distribution including Apache Hadoop, see the Sqoop installation
instructions in the CDH Installation Guide.

2. Download the appropriate Java Database Connectivity (JDBC) driver for Oracle
Database from Oracle Technology Network at

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
3. Copy the driver JAR file to $SQOOP_HOME/lib, which is a directory such as /usr/lib/

sqoop/lib.

4. Provide Sqoop with the connection string to Oracle Database.

$ sqoop import --connect jdbc_connection_string

For example, sqoop import --connect jdbc:oracle:thin@myhost:1521/orcl.

Install Hive on a Third-Party Hadoop Cluster
Hive provides an alternative storage and retrieval mechanism to HDFS files through a
querying language called HiveQL. Oracle R Advanced Analytics for Hadoop uses the data
preparation and analysis features of HiveQL, while enabling you to use R language
constructs.

To install Hive:

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1-27

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html


1. Follow the instructions provided by the distributor (Cloudera or Apache) for
installing Hive.

2. Verify that the installation is working correctly:

3. $ hive -H usage: hive -d,--define <key=value> Variable subsitution to apply to hive
commands. e.g. -d A=B or --define A=B . . .

4. If the command fails or you see warnings in the output, then fix the Hive
installation.

Install R on a Hadoop Client
You can download R 2.13.2 and get the installation instructions from the Oracle R
Distribution website at

https://oss.oracle.com/ORD/

When you are done, ensure that users have the necessary permissions to connect to
the Linux server and run R.

You may also want to install RStudio Server to facilitate access by R users. See the
RStudio website at

http://rstudio.org/

Install R on a Third-Party Hadoop Cluster
You can download Oracle R Distribution 3.0.1 and get the installation instructions from
the website at

http://www.oracle.com/technetwork/database/database-technologies/r/r-
distribution/downloads/index.html

Install the ORCH Package on a Third-Party Hadoop Cluster
ORCH is the name of the Oracle R Advanced Analytics for Hadoop package.

To install the ORCH package:

1. Log in as root to the first node of the cluster.

2. Set the environment variables for the supporting software:

$ export JAVA_HOME="/usr/lib/jdk7"
$ export R_HOME="/usr/lib64/R"
$ export SQOOP_HOME "/usr/lib/sqoop"

3. Unzip the downloaded file:

$ unzip orch-<version>.zip
$ unzip orch-linux-x86_64-<version>.zip 
Archive:  orch-linux-x86_64-<version>.zip
   creating: ORCH<version>/
 extracting: ORCH<version>/ORCH_<version>_R_x86_64-unknown-linux-gnu.tar.gz  
  inflating: ORCH<version>/ORCHcore_<version>_R_x86_64-unknown-linux-
gnu.tar.gz  
     .
     .
     .

4. Change to the new directory:

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1-28

http://www.oracle.com/pls/topic/lookup?ctx=E83411-01&id=ord_downloads
http://www.oracle.com/pls/topic/lookup?ctx=E83411-01&id=rstudio
http://www.oracle.com/technetwork/database/database-technologies/r/r-distribution/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-distribution/downloads/index.html


$ cd ORCH<version>
5. Install the packages in the exact order shown here:

R --vanilla CMD INSTALL OREbase_<version>_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL OREstats_<version>_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL OREmodels_<version>_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL OREserver_<version>_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL ORCHcore_<version>_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL ORCHstats_<version>_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL ORCH_<version>_R_x86_64-unknown-linux-gnu.tar.gz

6. You must also install these packages on all other nodes of the cluster:

• OREbase

• OREmodels

• OREserver

• OREstats

The following examples use the dcli utility, which is available on Oracle Big Data
Appliance but not on third-party clusters, to copy and install the OREserver package:

$ dcli -C -f OREserver_<version>_R_x86_64-unknown-linux-gnu.tar.gz -d /tmp/ 
OREserver_<version>_R_x86_64-unknown-linux-gnu.tar.gz

$ dcli -C " R --vanilla CMD INSTALL /tmp/OREserver_<version>_R_x86_64-unknown-
linux-gnu.tar.gz"

Install Additional R Packages
Your Hadoop cluster must have libpng-devel installed on every node. If you are using a
cluster running on commodity hardware, then you can follow the same basic procedures.
However, you cannot use the dcli utility to replicate the commands across all nodes. See 
Oracle Big Data Appliance Owner's Guide for the syntax of the dcli utility.

To install libpng-devel:

1. Log in as root to any node in your Hadoop cluster.

2. Check whether libpng-devel is already installed:

# dcli rpm -qi libpng-devel
bda1node01: package libpng-devel is not installed
bda1node02: package libpng-devel is not installed
     .
     .
     .

If the package is already installed on all servers, then you can skip this procedure.

3. If you need a proxy server to go outside a firewall, then set the HTTP_PROXY environment
variable. This example uses dcli, which is available only on Oracle Big Data Appliance:

# dcli export HTTP_PROXY="http://proxy.example.com"
4. Change to the yum directory:

# cd /etc/yum.repos.d
5. Download and configure the appropriate configuration file for your version of Linux:

For Enterprise Linux 5 (EL5):

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1-29



a. Download the yum configuration file:

# wget http://public-yum.oracle.com/public-yum-el5.repo
b. Open public-yum-el5.repo in a text editor and make these changes:

Under el5_latest, set enabled=1
Under el5_addons, set enabled=1

c. Save your changes and exit.

d. Copy the file to the other Oracle Big Data Appliance servers:

# dcli -d /etc/yum.repos.d -f public-yum-el5.repo
For Oracle Linux 6 (OL6):

a. Download the yum configuration file:

# wget http://public-yum.oracle.com/public-yum-ol6.repo
b. Open public-yum-ol6.repo in a text editor and make these changes:

Under ol6_latest, set enabled=1
Under ol6_addons, set enabled=1

c. Save your changes and exit.

d. Copy the file to the other Oracle Big Data Appliance servers:

# dcli -d /etc/yum.repos.d -f public-yum-ol6.repo
6. Install the package on all servers:

# dcli yum -y install libpng-devel
bda1node01: Loaded plugins: rhnplugin, security
bda1node01: Repository 'bda' is missing name in configuration, using id
bda1node01: This system is not registered with ULN.
bda1node01: ULN support will be disabled.
bda1node01: http://bda1node01-master.abcd.com/bda/repodata/repomd.xml:
bda1node01: [Errno 14] HTTP Error 502: notresolvable
bda1node01: Trying other mirror.
     .
     .
     .
bda1node01: Running Transaction
bda1node01: Installing     : libpng-devel                    1/2
bda1node01: Installing     : libpng-devel                    2/2
 
bda1node01: Installed:
bda1node01: libpng-devel.i386 2:1.2.10-17.el5_8  ibpng-devel.x86_64 
2:1.2.10-17.el5_8
 
bda1node01: Complete!
bda1node02: Loaded plugins: rhnplugin, security
     .
     .
     .

7. Verify that the installation was successful on all servers:

# dcli rpm -qi libpng-devel
bda1node01: Name        : libpng-devel Relocations: (not relocatable)
bda1node01: Version     : 1.2.10       Vendor: Oracle America
bda1node01: Release     : 17.el5_8      Build Date: Wed 25 Apr 2012 06:51:15 

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1-30



AM PDT
bda1node01: Install Date: Tue 05 Feb 2013 11:41:14 AM PST  Build Host: ca-
build56.abcd.com
bda1node01: Group       : Development/Libraries  Source RPM: 
libpng-1.2.10-17.el5_8.src.rpm
bda1node01: Size        : 482483                 License: zlib
bda1node01: Signature   : DSA/SHA1, Wed 25 Apr 2012 06:51:41 AM PDT, Key ID 
66ced3de1e5e0159
bda1node01: URL         : http://www.libpng.org/pub/png/
bda1node01: Summary     : Development tools for programs to manipulate PNG image 
format files.
bda1node01: Description :
bda1node01: The libpng-devel package contains the header files and static
bda1node01: libraries necessary for developing programs using the PNG (Portable
bda1node01: Network Graphics) library.
     .
     .
     .

Provide Remote Client Access to R Users
Whereas R users will run their programs as MapReduce jobs on the Hadoop cluster, they do
not typically have individual accounts on that platform. Instead, an external Linux server
provides remote access.

Software Requirements for Remote Client Access
To provide access to a Hadoop cluster to R users, install these components on a Linux
server:

• The same version of Hadoop as your Hadoop cluster; otherwise, unexpected issues and
failures can occur

• The same version of Sqoop as your Hadoop cluster; required only to support copying
data in and out of Oracle databases

• Mahout; required only for the orch.ls function with the Mahout ALS-WS algorithm

• The same version of the Java Development Kit (JDK) as your Hadoop cluster

• Oracle R distribution 3.0.1 with all base libraries

• ORCH R package

To provide access to database objects, you must have the Oracle Advanced Analytics option
to Oracle Database. Then you can install this additional component on the Hadoop client:

• Oracle R Enterprise Client Packages

Configure the Server as a Hadoop Client
You must install Hadoop on the client and minimally configure it for HDFS client use.

To install and configure Hadoop on the client system:

1. Install and configure CDH5 or Apache Hadoop 2.2.0 on the client system. This system
can be the host for Oracle Database. If you are using Oracle Big Data Appliance, then
complete the procedures for providing remote client access in the Oracle Big Data
Appliance Software User's Guide. Otherwise, follow the installation instructions provided
by the distributor (Cloudera or Apache).

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1-31



2. Log in to the client system as an R user.

3. Open a Bash shell and enter this Hadoop file system command:

$HADOOP_HOME/bin/hdfs dfs -ls /user
4. If you see a list of files, then you are done. If not, then ensure that the Hadoop

cluster is up and running. If that does not fix the problem, then you must debug
your client Hadoop installation.

Install Sqoop on a Hadoop Client
Complete the same procedures on the client system for installing and configuring
Sqoop as those provided in "Install Sqoop on a Third-Party Hadoop Cluster".

Install R on a Hadoop Client
You can download R 2.13.2 and get the installation instructions from the Oracle R
Distribution website at

https://oss.oracle.com/ORD/

When you are done, ensure that users have the necessary permissions to connect to
the Linux server and run R.

You may also want to install RStudio Server to facilitate access by R users. See the
RStudio website at

http://rstudio.org/

Install the ORCH Package on a Hadoop Client
To install ORCH on your Hadoop client system:

1. Download the ORCH package and unzip it on the client system.

2. Change to the installation directory.

3. Run the client script:

# ./install-client.sh

Install the Oracle R Enterprise Client Packages (Optional)
To support full access to Oracle Database using R, install the Oracle R Enterprise
client packages. Without them, Oracle R Advanced Analytics for Hadoop does not
have access to the advanced statistical algorithms provided by Oracle R Enterprise.

See Also:

Oracle R Enterprise User's Guide for information about installing R and
Oracle R Enterprise

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1-32

http://www.oracle.com/pls/topic/lookup?ctx=E83411-01&id=ord_downloads
http://www.oracle.com/pls/topic/lookup?ctx=E83411-01&id=rstudio


Oracle Data Integrator
For the instructions to set up and use Oracle Data Integrator refer to Oracle Fusion
Middleware Integrating Big Data with Oracle Data Integrator.

Note:

Oracle Data Integrator is not supported for CDH 6.x.

Oracle Datasource for Apache Hadoop Setup

Software Requirements

Oracle Datasource for Apache Hadoop requires the following software:

• A target database system running Oracle Database 12c, 11.2.0.4, or earlier Oracle
database releases that can be queried with the Oracle JDBC driver for 12c.

Note that Oracle Database 11.2.0.4 and potentially earlier Oracle Database release may
work. However, some of the SPLIT patterns have dependencies on Oracle Database 12c
and might not provide accurate splits for parallel hadoop jobs when used to query earlier
releases of Oracle Database.

• Cloudera's Distribution including Apache Hadoop version 5 (CDH5), Hortonworks Data
Platform (HDP) 2.x, or, Apache Hadoop 2.2.0 to 2.6.0.

• Apache Hive 0.13.0, 0.13.1 or 1.1.0 (in order to query data from Oracle Database tables).

Installing Oracle Datasource for Apache Hadoop

Set HADOOP_CLASSPATH to include $OD4H_HOME/jlib/* in the Hadoop node where you are
running the Hive client. Ensure that this is listed first in HADOOP_CLASSPATH.

Ensure that the OD4H jars in $OD4H_HOME/jlib are accessible to Hive commands using
OD4H. You can do this in one of the following ways:

1. Configure HiveServer 2 and make jars available cluster wide. This will enable Hive client
beeline and other tools (such as SQL Developer) to work with OD4H.

2. To isolate configuration to a particular session, add jars manually. You can use this method
for situations when you use OD4H and do not want the OD4H jars to interfere with other
applications.

Add jar files to Hive CLI

To enable jar files to be present locally to a Hive CLI session, add the jar files via Hive as
follows:

$hive

hive> Add jar <jar name>

hive> Add jar <jar name>

Chapter 1
Oracle Data Integrator

1-33

http://docs.oracle.com/middleware/1221/odi/odi-big-data/index.html
http://docs.oracle.com/middleware/1221/odi/odi-big-data/index.html


Configure HiveServer2
Following are the steps to configure HiveServer2:

1. Login to Cloudera Manager

2. Click on Hive.

Figure 1-2    Hive UI

Figure 1-3    Cloudera Manager

3. Under Status Summary, click HiveServer2.

Figure 1-4    Hive Server2

Chapter 1
Oracle Datasource for Apache Hadoop Setup

1-34



4. Click on Configuration.

Figure 1-5    Configuring HiveServer2

5. Click on Service Configuration.

Figure 1-6    Service Configuration

6. Type ‘AUX’ in the search box. Under the property ‘Service-Wide/Advanced’, add the
directory containing jars you want to add in HiveServer2.

Chapter 1
Oracle Datasource for Apache Hadoop Setup

1-35



Figure 1-7    Adding Jars

7. Restart Hive.

Chapter 1
Oracle Datasource for Apache Hadoop Setup

1-36



Part II
Oracle Database Connectors

This part contains the following chapters:

• Oracle Shell for Hadoop Loaders

• Oracle SQL Connector for Hadoop Distributed File System

• Oracle Loader for Apache Hadoop



2
Oracle Shell for Hadoop Loaders

Oracle Big Data Connectors are a powerful toolset for data interchange between Hadoop and
Oracle Database. Oracle Shell for Hadoop Loaders (OHSH) is an ease-of-use tool for using
Oracle Loader for Hadoop, Oracle SQL Connector for HDFS, and the Copy to Hadoop
feature of Big Data SQL.

What is Oracle Shell for Hadoop Loaders?
Oracle Shell for Hadoop Loaders is a helper shell that provides an easy-to-use command line
interface to Oracle Loader for Apache Hadoop, Oracle SQL Connector for HDFS, and the
Copy to Hadoop feature of Big Data SQL. It has basic shell features such as command line
recall, history, inheriting environment variables from the parent process, setting new or
existing environment variables, and performing environmental substitution in the command
line. 

The core functionality of Oracle Shell for Hadoop Loaders includes the following:

• Defining named external resources with which Oracle Shell for Hadoop Loaders interacts
to perform loading tasks.

• Setting default values for load operations.

• Running load commands.

• Delegating simple pre and post load tasks to the Operating System, HDFS, Hive and
Oracle. These tasks include viewing the data to be loaded, and viewing the data in the
target table after loading.

See Also:

The examples directory in the OHSH kit contains many examples that define
resources and load data using Oracle Shell for Hadoop Loaders.  Unzip
<OHSH_KIT>/examples.zip and see<OHSH_KIT>/examples/README.txt for
a description of the examples and instructions on how to run OHSH load methods.

Note:

The HADOOP_CLASSPATH environment variable should be cleared before invoking
Oracle Shell for Hadoop Loaders.

2-1



Configure Oracle Shell for Hadoop Loaders (OHSH)

Note:

For instructions on configuring OHSH to run on Oracle Big Data Service, see 
Use Big Data Connectors and Copy to Hadoop to Copy Data Between Big
Data Service and a Database Instance in Using Oracle Big Data Service.

For OHSH on a Hadoop cluster or edge node, or on the Oracle Database System,
confirm the location of the OHSH install and set OHSH_HOME. For example:

1. Set OHSH_HOME.

$ export OHSH_HOME=/opt/oracle/ohsh-5.0.0 

2. Edit $OHSH_HOME/bin/ohsh_config.sh to set the following environment variables:

a. OLH_HOME: Installation location of Oracle Loader for Hadoop. For example:

export OLH_HOME=/opt/oracle/oraloader-5.0.0-h2

b. HS2_HOST_PORT: Hiveserver2 server and port information. For example:

export HS2_HOST_PORT = <server>:<port> 

c. HADOOP_CONF_DIR: Hadoop conf directory. For example:

export HADOOP_CONF_DIR=/etc/hadoop/conf 

d. HIVE_CONF_DIR: Hive conf directory. For example:

export HIVE_CONF_DIR=/etc/hive/conf 

e. TNS_ADMIN: To identify the Oracle Database.

• If you are using a standard JDBC connection instead of SSL or Oracle
Wallet, then you need to copy tnsnames.ora and sqlnet.ora
from $TNS_ADMIN on the database host to a <directory_location> on the
system where you plan to run OHSH.

export TNS_ADMIN=<directory_location>

• If you are using Oracle Wallet to store database credentials, then create
the wallet file on the database host and copy it to a <wallet_location> on
the system where you plan to run OHSH. In addition to TNS_ADMIN, set
WALLET_LOCATION_DIR to the location of the Wallet file.

export WALLET_LOCATION=<wallet_location>

Chapter 2
Configure Oracle Shell for Hadoop Loaders (OHSH)

2-2

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=GUID-18F22914-DF41-480F-8AC3-A6B7E26A5541
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=GUID-18F22914-DF41-480F-8AC3-A6B7E26A5541


Note:

Make sure that sqlnet.ora has wallet enabled and points to the
correct wallet location. For example:

WALLET_LOCATION=     
(SOURCE=(METHOD=FILE)
(METHOD_DATA=(DIRECTORY=<wallet_location>)))  
sqlnet.wallet_override=true

• If you are using SSL, TNS_ADMIN is the directory where the SSL client wallet files
reside. For example:

export TNS_ADMIN=/home/oracle/SSL_wallet

f. SQLCLIENT_HOME: Database client installation directory. For example:

export SQLCLIENT_HOME=/usr/lib/oracle/12.1/client64 

g. Set HIVE_SESS_VAR_LIST for any required Hive session variables. For example:

• To connect to HiveServer2 with Kerberos authentication:

export HIVE_SESS_VAR_LIST="principal=<The server principal of 
HiveServer2>"

The Hive principal is specified by the configuration property
hive.server2.authentication.kerberos.principal in hive-site.xml.

• To connect to HiveServer2 running in HTTP mode:

export HIVE_SESS_VAR_LIST="transportMode=http;
httpPath=<The HTTP endpoint>"

• To connect to HiveServer2 when SSL is enabled:

export HIVE_SESS_VAR_LIST="ssl=true;
sslTrustStore=<Trust Store path>;
trustStorePassword=<Trust Store password>"

3. Add $OHSH_HOME/bin/ohsh to your $PATH variable.

$ export PATH=$PATH:$OHSH_HOME/bin/ohsh

Chapter 2
Configure Oracle Shell for Hadoop Loaders (OHSH)

2-3



Get Started with Oracle Shell for Hadoop Loaders

Starting an OHSH Interactive Session

To start an interactive session, enter ohsh on the command line. Remember to clear
HADOOP_CLASSPATH before invoking OHSH. This brings you to the OHSH shell (if you
have OHSH in your path):

$ ohsh
ohsh>

You can execute OHSH commands in this shell (using the OHSH syntax). You can
also execute commands for Beeline/Hive, Hadoop, Bash, and SQL*Plus. For non-
OHSH commands, you add a delegation operator prefix (“%”) to the name of the
resource used to execute the command. For example:

ohsh> %bash0 ls —l

Scripting OHSH

You can also script the same commands that work in the CLI. The ohsh command
provides three parameters for working with scripts.

• ohsh —i <filename>.ohsh
The —i parameter tells OHSH to initialize an interactive session with the
commands in the script before the prompt appears. This is a useful way to set up
the required session resources and automate other preliminary tasks before you
start working within the shell.

$ ohsh –i initresources.ohsh

• ohsh —f <filename>.ohsh
The ohsh command with the —f parameter starts a non-interactive session and
runs the commands in the script.

$ ohsh –f myunattendedjobs.ohsh

• ohsh —i —f <filename>.ohsh
You can use —i and —f together to initialize a non-interactive session and then run
another script in the session.

$ ohsh -i mysetup.ohsh –f myunattendedjobs.ohsh

• ohsh —c
This command dumps all Hadoop configuration properties that an OHSH session
inherits at start up.

Chapter 2
Get Started with Oracle Shell for Hadoop Loaders

2-4



Working With OHSH Resources

A resource is some named entity that OHSH interacts with. For example: a Hadoop cluster is
a resource, as is a JDBC connection to an Oracle database, a Hive database, a SQL session
with an Oracle database, and a Bash shell on the local OS.

OHSH provides two default resources at start up: hive0 (to connect to the default Hive
database) and hadoop0.

• Using hive0 resource to execute a Hive command:

ohsh> %hive0 show tables

You can create additional Hive resources to connect to other Hive databases.

• Using the hadoop0 resource to execute a Hadoop command:

ohsh> %hadoop0 fs -ls

Within an interactive or scripted session, you can create instances of additional resources,
such as SSL, SQL, and JDBC. You need to create these three resources in order to connect
to Oracle Database through OHSH.

• Creating a SQL resource:

ohsh> create sqlplus resource sql0 
connectid=”bigdatalite.localdomain:1521/orcl”

Note:

At the prompt, enter database username and password.

• Creating a JDBC resource:

ohsh> create jdbc resource jdbc0 connectid=<database connection URL>

Note:

At the prompt, enter database username and password.

• Showing resources:

ohsh> show resources

This command lists default resources and any additional resources created within the
session.

Creating Resources Using JDBC SSL to Connect Oracle Database

You need to create these resources in order to connect to Oracle Database using SSL.

Chapter 2
Get Started with Oracle Shell for Hadoop Loaders

2-5



• Creating a SSL resource . See Using JDBC SSL to download the SSL client
wallet and complete the configuration steps.

• Creating a SQL resource:

ohsh> create sqlplus resource sql_ssl connectid="<tns entry name 
for the SSL connection>"

For example:

ohsh> create sqlplus resource sql_ssl connectid="inst1_ssl"

inst1_ssl is the TNS entry for the JDBC SSL connection

Note:

At the prompt, enter database username and password.

• Creating a JDBC resource:

ohsh> create jdbc resource jdbc_ssl 
connectiondir=<SSL wallet directory location>
connectid="<tns entry name for the SSL connection>"

For example:

ohsh> create jdbc resource ora_mydatabase_cs 
connectiondir=/home/oracle/ssl_client_wallet 
connectid="inst1_ssl"

inst1_ssl is the TNS entry for the JDBC SSL connection

Note:

At the prompt, enter database username and password.

Creating Resources Using Secure Java KeyStore

You can store passwords in the secure Java KeyStore. If you use the Java KeyStore,
then you won't be prompted for the username and password. You can also add this to
the scripts you develop to load data.

• Creating a Java KeyStore. See Using Secure External Java KeyStore and
Hadoop credential command

• Creating a SQL resource Using a Java KeyStore:

ohsh> create sqlplus resource sql_ssl_cs user=<username>
passwordalias=<password alias>  

Chapter 2
Get Started with Oracle Shell for Hadoop Loaders

2-6



provider="<provider_path>"
connectid="<tns entry name for the SSL connection>"

For example:

ohsh> create sqlplus resource sql_ssl_cs user=oracle 
passwordalias=oracle_passwd
provider="jceks://file/home/oracle/passwd.jceks"
connectid="inst1"

• Creating a SQL resource Using Java KeyStore with JDBC SSL connection:

ohsh> create sqlplus resource sql_ssl_cs user=<username> 
passwordalias=<password alias>  
provider="<provider_path>"
connectiondir=<SSL wallet directory location> 
connectid="<tns entry name for the SSL connection>

For example:

ohsh> create sqlplus resource sql_ssl_cs user=oracle 
passwordalias=oracle_passwd
provider="jceks://file/home/oracle/passwd.jceks"
connectiondir=/home/oracle/ssl_client_wallet
connectid="inst1_ssl"

• Creating a JDBC resource Using a Java KeyStore:

ohsh> create jdbc resource jdbc_ssl_cs user=<username>     
passwordalias=<password alias>    
provider="<provider_path>" 
connectid="<tns entry name for the SSL connection>"

For example:

ohsh> create jdbc resource jdbc_ssl_cs user=oracle 
passwordalias=oracle_passwd
provider="jceks://file/home/oracle/passwd.jceks"
connectid="inst1"

• Creating a JDBC resource Using Java KeyStore with JDBC SSL connection:

ohsh> create jdbc resource jdbc_ssl_cs user=<username>     
passwordalias=<password alias>    
provider="<provider_path>" 
connectiondir=<SSL wallet directory location> 
connectid="<tns entry name for the SSL connection>"

For example:

ohsh> create jdbc resource jdbc_ssl_cs user=oracle 
passwordalias=oracle_passwd

Chapter 2
Get Started with Oracle Shell for Hadoop Loaders

2-7



provider="jceks://file/home/oracle/passwd.jceks"
connectiondir=/home/oracle/ssl_client_wallet 
connectid="inst1_ssl"

Getting Help

The OHSH shell provides online help for all commands.

To get a list of all OHSH commands:

ohsh> help

To get help on a specific command, enter help, followed by the command:    

ohsh> help show

The table below describes the help categories available.

Help Command Description

help load Describes load commands for Oracle and
Hadoop tables.

help set Shows help for setting defaults for load
operations. It also describes what load
methods are impacted by a particular setting.

help show Shows help for inspecting default settings.

help shell Shows shell-like commands.

help resource Show commands for creating and dropping
named resources.

Load an Oracle Database Table
You can use the OHSH load command to load data from HDFS or Hive into an Oracle
Database table using OLH or OSCH or to load data from an Oracle Database table
into Hive using Copy to Hadoop.

The following load options are available for loading from HDFS or Hive into Oracle
Database:

• jdbc (the default for Oracle tables that are not partitioned) - load from HDFS or
Hive using the OLH JDBC Output Format

• directpath (the default for partitioned Oracle tables) - load from HDFS or Hive
using the OLH OCI Direct Path Output Format

• exttab - load from HDFS or Hive using OSCH

• etl - load CSV content in HDFS using OLH and OSCH together. OLH extracts
and transforms the delimited content in HDFS files into datapump files in HDFS.
OSCH then loads the datapump files from HDFS into a target table in Oracle

• etl deferred - Use OLH to transform the delimited content in HDFS files into data
pump files in HDFS. The data pump files are left there for OSCH to load at a later
time. The OHSH script for doing the load is generated in the local example
directory and can be manually executed to complete the load

Chapter 2
Load an Oracle Database Table

2-8



The following load options are available for loading from an Oracle Database table into Hive:

• directcopy (default) - Uses the Copy to Hadoop feature of Oracle Big Data SQL to
connect to Oracle Database and copy data from an Oracle table into a Datapump file
stored in HDFS

• stage - Connects to the Oracle Database and generates Datapump format files
containing the table data and metadata. Copies the datapump file from the Database to
HDFS. Then uses the Copy to Hadoop SerDes to enable Hive to read the datapump file

See the Using Oracle Shell for Hadoop Loaders With Copy to Hadoop in Oracle Big Data
SQL User's Guide for more information about using OHSH with Copy to Hadoop.

1. Use the load command to load files from HDFS into a target table in the Oracle
database.

The following command loads data from a delimited text file in HDFS <HDFS path> into
the target table in Oracle Database using the direct path option.

ohsh> load oracle table ora_mydatabase:<target table in the Oracle 
database> from path hadoop0:/user/<HDFS path> using directpath

Note:

The default direct path method is the fastest way to load a table. However, it
requires partitioned target table. Direct path is always recommended for use
with partition tables. Use the JDBC option to load into a non-partitioned target
table.

If the command does not explicitly state the load method, then OHSH
automatically uses the appropriate method. If the target Oracle table is
partitioned, then by default, OHSH uses direct path (i.e. Oracle OCI). If the
Oracle table is not partitioned, it uses JDBC.

2. After loading, check the number of rows.

You can do this conveniently from the OHSH command line:

ohsh> %sql0 select count(*) from <target table in Oracle Database>

Loading a Hive Table Into an Oracle Database Table

You can use OHSH to load a Hive table into a target table in an Oracle database. The
command below shows how to do this using the direct path method.

ohsh> load oracle table ora_mydatabase:<target table in Oracle Database> 
from hive table hive0:<Hive table name>

Note that if the target table is partitioned, then OHSH uses direct path automatically. You do
not need to enter using directpath explicitly in the command.

Chapter 2
Load an Oracle Database Table

2-9

https://docs.oracle.com/pls/topic/lookup?ctx=en/bigdata/big-data-sql/4.0/bdsug&id=BDSUG-GUID-6BE23F64-C08A-40A7-95A9-11DBC3F9FAE2


If the target table is non-partitioned, then specify the JDBC method instead:

ohsh> load oracle table ora_mydatabase:<target table in Oracle 
Database> from hive table hive0:<Hive table name> using jdbc

Note:

The load command assumes that the column names in the Hive table and in
the Oracle Database table are identically matched. If they do not match, then
use OHSH loadermap.

Using OHSH Loadermaps

The simple load examples in this section assume the following:

• Where we load data from a text file in Hadoop into an Oracle Database table, the
declared order of columns in the target table maps correctly to the physical
ordering of the delimited text fields in the file.

• Where we load Hive tables in to Oracle Database tables, the Hive and Oracle
Database column names are identically matched.

However, in less straightforward cases where the column names (or the order of
column names and delimited text fields) do not match, use the OHSH loadermap
construct to correct these mismatches.

You can also use a loadermap to specify a subset of target columns to load into table
or in the case of a load from a text file, specify the format of a field in the load.

Loadermaps are not covered in this introduction.

Performance Tuning Oracle Loader for Hadoop in OHSH

Aside from network bandwidth, two factors can have significant impact on Oracle
Loader for Hadoop performance. You can tune both in OHSH.

• Degree of parallelism

The degree of parallelism affects performance when Oracle Loader for Hadoop
runs in Hadoop. For the default method (direct path), parallelism is determined by
the number of reducer tasks. The higher the number of reducer tasks, the faster
the performance. The default value is 4. To set the number of tasks:

ohsh> set reducetasks 18

For the JDBC option, parallelism is determined by the number of map tasks and
the optimal number is determined automatically. However, remember that if the
target table is partitioned, direct path is faster than JDBC.

• Load balancing

Performance is best when the load is balanced evenly across reduce tasks. The
load is detected by sampling. Sampling is always enabled by default for loads
using the JDBC and the default copy method.

Chapter 2
Load an Oracle Database Table

2-10



Debugging in OHSH

Several OHSH settings control the availability of debugging information:

• outputlevel
The outputlevel is set to minimal by default. Set it to verbose in order to return a stack
trace when a command fails:

ohsh> set outputlevel verbose

• logbadrecords

ohsh> set logbadrecords true

This is set to true by default.

These log files are informative for debugging:

• Oracle Loader for Hadoop log files.

/user/<username>/smartloader/jobhistory/oracle/<target table schema>/
<target table name>/<OHSH job ID>/_olh

• Log files generated by the map and reduce tasks.

Other OHSH Properties That are Useful for Oracle Loader for Hadoop

You can set these properties on the OHSH command line or in a script. These values persist
for the current session only.

• dateformat

ohsh> set dateformat “yyyy-MM-dd HH:mm:ss”

The syntax for this command is dictated by the Java date format.

• rejectlimit
The number of rows that can be rejected before the load of a delimited text file fails.

• fieldterminator
The field terminator in loads of delimited text files.

• hadooptnsadmin
Location of an Oracle TNS admin directory in the Hadoop cluster

• hadoopwalletlocation
Location of the Oracle Wallet directory in the Hadoop cluster.

Using the exttab (External Table) Method to Load Data

A third option to load data from Hadoop into Oracle Database is exttab.

Chapter 2
Load an Oracle Database Table

2-11



Note:

The exttab option is available in on-premises deployments of OHSH only. It
is not available in Oracle cloud services

In the exttab, data is loaded via external tables. OHSH creates the external table using
Oracle SQL Connector for HDFS, and then uses a Create table as Select
statement to load the data into the target table:

ohsh> load oracle table ora_mydatabase:<target table in Oracle 
Database> from hive table hive0:<Hive table name> using exttab 

Learning Resources

These OHSH blog entries can help you get started.

• How to Load Oracle and Hive Tables with OHSH (Part 3 - Loading Oracle Tables)

• How to Load Oracle and Hive tables using OHSH (Part 5 - Using "loadermap"
when loading Oracle tables)

• How to Load Oracle and Hive tables using OHSH (Part 6 - Using the "etl" method
for loading Oracle tables)

• Oracle Loader for Hadoop and Performance Tuning

See the Java™ Platform, Standard Edition 7 API Specification for documentation on
the SimpleDateFormat class.

Chapter 2
Load an Oracle Database Table

2-12

https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-with-ohsh-part-3-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-5-using-loadermap-when-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-5-using-loadermap-when-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-6-using-the-etl-method-for-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-6-using-the-etl-method-for-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/oracle-loader-for-hadoop-and-performance-tuning-v3
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html


3
Oracle SQL Connector for Hadoop Distributed
File System

This chapter describes how to use Oracle SQL Connector for Hadoop Distributed File System
(HDFS) to facilitate data access between Hadoop and Oracle Database.

This chapter contains the following sections:

• About Oracle SQL Connector for HDFS

• Interfaces to Oracle SQL Connector for HDFS

• Getting Started With Oracle SQL Connector for HDFS

• Configure Your System for Oracle SQL Connector for HDFS

• Use the ExternalTable Command-Line Tool

• Create External Tables

• Update External Tables

• Explore External Tables and Location Files

• Drop Database Objects Created by Oracle SQL Connector for HDFS

• More About External Tables Generated by the ExternalTable Tool

• Configure Oracle SQL Connector for HDFS

• Performance Tips for Querying Data in HDFS

About Oracle SQL Connector for HDFS
Using Oracle SQL Connector for HDFS, you can use Oracle Database to access and analyze
data residing in Apache Hadoop in these formats:

• Data Pump files in HDFS

• Delimited text files in HDFS

• Delimited text files in Apache Hive tables

For other file formats, such as JSON files, you can stage the input as delimited text in a new
Hive table and then use Oracle SQL Connector for HDFS. Partitioned Hive tables are
supported, enabling you to represent a subset of Hive table partitions in Oracle Database,
instead of the entire Hive table.

Oracle SQL Connector for HDFS uses external tables and database views to provide Oracle
Database with read access to Hive tables, and to delimited text files and Data Pump files in
HDFS. An external table is an Oracle Database object that identifies the location of data
outside of a database. Oracle Database accesses the data by using the metadata provided
when the external table was created. Oracle SQL Connector for HDFS creates database
views over external tables to support access to partitioned Hive tables. By querying the
external tables or views, you can access data stored in HDFS and Hive tables as if that data
were stored in tables in an Oracle database.

3-1



To create these objects in Oracle Database, you use the ExternalTable command-line
tool provided with Oracle SQL Connector for HDFS. You provide ExternalTable with
information about the data source in Hadoop and about your schema in an Oracle
Database. You provide this information either as options to the ExternalTable
command or in an XML file. The ExternalTable command-line tool can be used from
either a shell or from SQL Developer.

When the external table is ready, you can query the data the same as any other
database table. You can query and join data in HDFS or a Hive table with other
database-resident data.

You can also perform bulk loads of data into Oracle database tables using SQL.You
may prefer that the data resides in an Oracle database (either all of it or just a
selection) if it is queried routinely. Oracle SQL Connector for HDFS functions as a
Hadoop client running on the Oracle database and uses the external table
preprocessor hdfs_stream to access data in HDFS. Oracle Shell for Hadoop Loaders
has commands to create and external table and do a bulk load in one step.

Interfaces to Oracle SQL Connector for HDFS
There are two ways to use Oracle SQL Connector for HDFS:

• Oracle Shell for Hadoop Loaders (OHSH)

OHSH is the preferred way to use Oracle SQL Connector for HDFS (OSCH). It
includes a command line interface (whose simple command syntax can also be
scripted) for moving data between Hadoop and Oracle Database using various
resources, including Oracle SQL Connector for HDFS.

• The Oracle SQL Connector for HDFS ExternalTable command line tool

Consider this option if you need to use a feature not supported by OHSH. For
most cases, OHSH is sufficient.

The remainder of this chapter describes using Oracle SQL Connector for HDFS with
the ExternalTable command-line utility. For information on using Oracle SQL
Connector for HDFS with OHSH, see Oracle Shell for Hadoop Loaders.

Getting Started With Oracle SQL Connector for HDFS
The following list identifies the basic steps that you take when using Oracle SQL
Connector for HDFS.

1. Log in to a system where Oracle SQL Connector for HDFS is installed. Oracle
recommends installing Oracle SQL Connector for HDFS on a Hadoop client or
edge node. In addition, it must be installed on the Oracle Database system.

See "Install and Configure a Hadoop Client on the Oracle Database System."

2. The first time you use Oracle SQL Connector for HDFS, ensure that the software
is configured.

See "Configure Your System for Oracle SQL Connector for HDFS." You might also
need to edit hdfs_stream if your environment is unique. See "Install and Configure
Oracle SQL Connector for HDFS".

3. If you are connecting to a secure cluster, then run kinit to authenticate yourself.

See "Use Oracle SQL Connector for HDFS on a Secure Hadoop Cluster."

Chapter 3
Interfaces to Oracle SQL Connector for HDFS

3-2



4. Create an XML document describing the connections and the data source, unless you
are providing these properties in the ExternalTable command.

See "Explore External Tables and Location Files."

5. Create a shell script containing an ExternalTable command.

See "Use the ExternalTable Command-Line Tool."

6. Run the shell script.

7. If the job fails, then use the diagnostic messages in the output to identify and correct the
error. Depending on how far the job progressed before failing, you may need to delete the
table definition from the Oracle database before rerunning the script.

8. After the job succeeds, connect to Oracle Database as the owner of the external table.
Query the table to ensure that the data is accessible.

9. If the data will be queried frequently, then you may want to load it into a database table to
improve querying performance. External tables do not have indexes or partitions.

If you want the data to be compressed as it loads into the table, then create the table with
the COMPRESS option.

10. To delete the Oracle Database objects created by Oracle SQL Connector for HDFS, use
the -drop command.

See "Drop Database Objects Created by Oracle SQL Connector for HDFS".

Example 3-1    Accessing HDFS Data Files from Oracle Database

The following illustrates these steps:

$ cat moviefact_hdfs.sh
# Add environment variables
export OSCH_HOME="/u01/connectors/orahdfs-<version>"
 
hadoop jar $OSCH_HOME/jlib/orahdfs.jar \
       oracle.hadoop.exttab.ExternalTable \
       -conf /home/oracle/movies/moviefact_hdfs.xml \
       -createTable

$ cat moviefact_hdfs.xml
<?xml version="1.0"?>
 <configuration>
    <property>
      <name>oracle.hadoop.exttab.tableName</name>
      <value>MOVIE_FACTS_EXT</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.locationFileCount</name>
      <value>4</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.dataPaths</name>
      <value>/user/oracle/moviework/data/part*</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.fieldTerminator</name>
      <value>\u0009</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.defaultDirectory</name>
      <value>MOVIEDEMO_DIR</value>

Chapter 3
Getting Started With Oracle SQL Connector for HDFS

3-3



    </property>
    <property>
      <name>oracle.hadoop.exttab.nullIfSpecifier</name>
      <value>\N</</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.columnNames</name>
      
<value>CUST_ID,MOVIE_ID,GENRE_ID,TIME_ID,RECOMMENDED,ACTIVITY_ID,RATING,SALES</
value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.colMap.TIME_ID.columnType</name>
      <value>TIMESTAMP</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.colMap.timestampMask</name>
      <value>YYYY-MM-DD:HH:MI:SS</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.colMap.RECOMMENDED.columnType</name>
      <value>NUMBER</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.colMap.ACTIVITY_ID.columnType</name>
      <value>NUMBER</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.colMap.RATING.columnType</name>
      <value>NUMBER</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.colMap.SALES.columnType</name>
      <value>NUMBER</value>
    </property>
    <property>
      <name>oracle.hadoop.exttab.sourceType</name>
      <value>text</value>
    </property>
    <property>
      <name>oracle.hadoop.connection.url</name>
      <value>jdbc:oracle:thin:@localhost:1521:orcl</value>
    </property>
    <property>
      <name>oracle.hadoop.connection.user</name>
      <value>MOVIEDEMO</value>
    </property>  
</configuration>

$ sh moviefact_hdfs.sh
Oracle SQL Connector for HDFS Release 3.4.0 - Production
 
Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
 
[Enter Database Password: password]
The create table command succeeded.
 
CREATE TABLE "MOVIEDEMO"."MOVIE_FACTS_EXT"
(
 "CUST_ID"                        VARCHAR2(4000),
 "MOVIE_ID"                       VARCHAR2(4000),

Chapter 3
Getting Started With Oracle SQL Connector for HDFS

3-4



 "GENRE_ID"                       VARCHAR2(4000),
 "TIME_ID"                        TIMESTAMP(9),
 "RECOMMENDED"                    NUMBER,
 "ACTIVITY_ID"                    NUMBER,
 "RATING"                         NUMBER,
 "SALES"                          NUMBER
)
ORGANIZATION EXTERNAL
( 
   TYPE ORACLE_LOADER
   DEFAULT DIRECTORY "MOVIEDEMO_DIR"
   ACCESS PARAMETERS
   (
     RECORDS DELIMITED BY 0X'0A'
     CHARACTERSET AL32UTF8
     PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream'
     FIELDS TERMINATED BY 0X'09'
     MISSING FIELD VALUES ARE NULL
     (
       "CUST_ID" CHAR(4000),
       "MOVIE_ID" CHAR(4000),
       "GENRE_ID" CHAR(4000),
       "TIME_ID" CHAR,
       "RECOMMENDED" CHAR,
       "ACTIVITY_ID" CHAR,
       "RATING" CHAR,
       "SALES" CHAR
     )
   )
   LOCATION
   (
     'osch-20141114064206-5250-1',
     'osch-20141114064206-5250-2',
     'osch-20141114064206-5250-3',
     'osch-20141114064206-5250-4'
   )
) PARALLEL REJECT LIMIT UNLIMITED;
 
The following location files were created.
 
osch-20141114064206-5250-1 contains 1 URI, 12754882 bytes
 
    12754882 hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00001
 
osch-20141114064206-5250-2 contains 1 URI, 438 bytes
 
         438 hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00002
 
osch-20141114064206-5250-3 contains 1 URI, 432 bytes
 
         432 hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00003
 
osch-20141114064206-5250-4 contains 1 URI, 202 bytes
 
         202 hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00004

$ sqlplus moviedemo
 
SQL*Plus: Release 12.1.0.1.0 Production on Fri Apr 18 09:24:18 2014
 
Copyright (c) 1982, 2013, Oracle.  All rights reserved.

Chapter 3
Getting Started With Oracle SQL Connector for HDFS

3-5



 
Enter password: password
Last Successful login time: Thu Apr 17 2014 18:42:01 -05:00
 
Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing 
options
 
SQL> DESCRIBE movie_facts_ext;
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 CUST_ID                                            VARCHAR2(4000)
 MOVIE_ID                                           VARCHAR2(4000)
 GENRE_ID                                           VARCHAR2(4000)
 TIME_ID                                            TIMESTAMP(9)
 RECOMMENDED                                        NUMBER
 ACTIVITY_ID                                        NUMBER
 RATING                                             NUMBER
 SALES                                              NUMBER

SQL> CREATE TABLE movie_facts AS SELECT * FROM movie_facts_ext;
 
Table created.

SQL> SELECT movie_id, time_id, recommended, rating FROM movie_facts WHERE rownum 
< 5;
 
MOVIE_ID TIME_ID                          RECOMMENDED     RATING
-------- -------------------------------- ----------- ----------
205      03-DEC-10 03.14.54.000000000 AM            1          1
77       14-AUG-11 10.46.55.000000000 AM            1          3
116      24-NOV-11 05.43.00.000000000 AM            1          5
141      01-JAN-11 05.17.57.000000000 AM            1          4

Configure Your System for Oracle SQL Connector for HDFS

Note:

For instructions on using Oracle SQL Connector for HDFS on Oracle Big
Data Service, see Use Big Data Connectors and Copy to Hadoop to Copy
Data Between Big Data Service and a Database Instance in Using Oracle
Big Data Service.

You can run the ExternalTable command-line tool provided with Oracle SQL
Connector for HDFS on either the Oracle Database system or the Hadoop cluster, as
described below.

• For Hive sources, log in to either a node in the Hadoop cluster or a system set up
as a Hadoop client for the cluster.

• For text and Data Pump format files, log in to either the Oracle Database system
or a node in the Hadoop cluster.

Oracle SQL Connector for HDFS requires additions to the HADOOP_CLASSPATH
environment variable on the system where you log in to run the tool. Your system

Chapter 3
Configure Your System for Oracle SQL Connector for HDFS

3-6

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=GUID-18F22914-DF41-480F-8AC3-A6B7E26A5541
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=GUID-18F22914-DF41-480F-8AC3-A6B7E26A5541


administrator may have set them up for you when creating your account, or may have left that
task for you. See "OS-Level Requirements for OSCH Users".

Setting up the environment variables:

• Verify that HADOOP_CLASSPATH includes the path to the JAR files for Oracle SQL
Connector for HDFS:

path/orahdfs-<version>/jlib/*
• If you are logged in to a Hadoop cluster with Hive data sources, then verify that

HADOOP_CLASSPATH also includes the Hive JAR files and conf directory. For example:

/usr/lib/hive/lib/*
/etc/hive/conf

• For your convenience, you can create an OSCH_HOME environment variable. The following
is the Bash command for setting it on Oracle Big Data Appliance:

$ export OSCH_HOME="/opt/oracle/orahdfs-<version>"

See Also:

• "Oracle SQL Connector for Hadoop Distributed File System Setup" for
instructions for installing the software and setting up user accounts on both
systems.

• OSCH_HOME/doc/README.txt for information about known problems with Oracle
SQL Connector for HDFS.

Use Oracle SQL Connector for HDFS with Oracle Big Data
Appliance and Oracle Exadata

Oracle SQL Connector for HDFS is a command-line utility that accepts generic command line
arguments supported by the org.apache.hadoop.util.Tool interface. It also provides a
preprocessor for Oracle external tables. See the Configuring Oracle Exadata Database
Machine for Use with Oracle Big Data Appliance for instructions on configuring Oracle
Exadata Database Machine for Use with Oracle Big Data Appliance.

Use the ExternalTable Command-Line Tool
Oracle SQL Connector for HDFS provides a command-line tool named ExternalTable. This
section describes the basic use of this tool. See "Create External Tables" for the command
syntax that is specific to your data source format.

About ExternalTable
The ExternalTable tool uses the values of several properties to do the following tasks:

• Create an external table

• Populate the location files

Chapter 3
Use Oracle SQL Connector for HDFS with Oracle Big Data Appliance and Oracle Exadata

3-7



• Publish location files to an existing external table

• List the location files

• Describe an external table

You can specify these property values in an XML document or individually on the
command line. .

Related Topics

• Configure Oracle SQL Connector for HDFS

ExternalTable Command-Line Tool Syntax
This is the full syntax of the ExternalTable command-line tool, which is run using the
hadoop command:

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \ 
[-D property=value]... \
-createTable [--noexecute [--output filename.sql]] 
  | -drop [--noexecute]
  | -describe
  | -publish [--noexecute] 
  | -listlocations [--details]
  | -getDDL

You can either create the OSCH_HOME environment variable or replace OSCH_HOME in the
command syntax with the full path to the installation directory for Oracle SQL
Connector for HDFS. On Oracle Big Data Appliance, this directory is:

/opt/oracle/orahdfs-<version>

For example, you might run the ExternalTable command-line tool with a command
like this:

hadoop jar /opt/oracle/orahdfs-<version>/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
     .
     .
     .

Generic Options and User Commands

-conf config_file
Identifies the name of an XML configuration file containing properties needed by the
command being executed.

-D property=value
Assigns a value to a specific property.

-createTable [--noexecute [--output filename]]
Creates an external table definition and publishes the data URIs to the location files of
the external table. The output report shows the DDL used to create the external table
and lists the contents of the location files. Oracle SQL Connector for HDFS also
checks the database to ensure that the required database directories exist and that
you have the necessary permissions.

Chapter 3
Use the ExternalTable Command-Line Tool

3-8



For partitioned Hive tables, Oracle SQL Connector for HDFS creates external tables, views,
and a metadata table. See Table 3-2.
Specify the metadata table name for partitioned Hive tables, or the external table name for
all other data sources.
Use the --noexecute option to see the execution plan of the command. The operation is not
executed, but the report includes the details of the execution plan and any errors. The --
output option writes the table DDL from the -createTable command to a file. Oracle
recommends that you first execute a -createTable command with --noexecute.

-drop [--noexecute]
Deletes one or more Oracle Database objects created by Oracle SQL Connector for HDFS
to support a particular data source. Specify the metadata table name for partitioned Hive
tables, or the external table name for all other data sources. An error occurs if you attempt to
drop a table or view that Oracle SQL Connector for HDFS did not create.
Use the --noexecute option to list the objects to be deleted.

-describe
Provides information about the Oracle Database objects created by Oracle SQL Connector
for HDFS. Use this command instead of -getDDL or -listLocations.

-publish [--noexecute]
Publishes the data URIs to the location files of an existing external table. Use this command
after adding new data files, so that the existing external table can access them.
Use the --noexecute option to see the execution plan of the command. The operation is not
executed, but the report shows the planned SQL ALTER TABLE command and location files.
The report also shows any errors.
Oracle recommends that you first execute a -publish command with --noexecute.
See "Update External Tables."

-listLocations [--details]
Shows the location file content as text. With the --details option, this command provides a
detailed listing. This command is deprecated in release 3.0. Use “-describe” instead.

-getDDL
Prints the table definition of an existing external table. This command is deprecated in
release 3.0. Use “-describe” instead.

Related Topics

• Configure Oracle SQL Connector for HDFS

See Also:

"Syntax Conventions"

Create External Tables
You can create external tables automatically using the ExternalTable tool provided in Oracle
SQL Connector for HDFS.

Chapter 3
Create External Tables

3-9



Create External Tables with the ExternalTable Tool
To create an external table using the ExternalTable tool, follow the instructions for
your data source:

• Create External Tables from Data Pump Format Files

• Create External Tables from Hive Tables

• Create External Tables from Delimited Text Files

When the ExternalTable -createTable command finishes executing, the external
table is ready for use. ExternalTable also manages the location files for the external
table. See "Location File Management."

To create external tables manually, follow the instructions in "Create External Tables in
SQL."

ExternalTable Syntax for -createTable

Use the following syntax to create an external table and populate its location files:

hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \
[-D property=value]... \
-createTable [--noexecute]

Create External Tables from Data Pump Format Files
Oracle SQL Connector for HDFS supports only Data Pump files produced by Oracle
Loader for Hadoop, and does not support generic Data Pump files produced by Oracle
Utilities.

Oracle SQL Connector for HDFS creates the external table definition for Data Pump
files by using the metadata from the Data Pump file header. It uses the ORACLE_LOADER
access driver with the preprocessor access parameter. It also uses a special access
parameter named EXTERNAL VARIABLE DATA, which enables ORACLE_LOADER to read
the Data Pump format files generated by Oracle Loader for Hadoop.

To delete the external tables and location files created by Oracle SQL Connector for
HDFS, use the -drop command. See "Drop Database Objects Created by Oracle SQL
Connector for HDFS".

Note:

Oracle SQL Connector for HDFS requires a patch to Oracle Database
11.2.0.2 before the connector can access Data Pump files produced by
Oracle Loader for Hadoop. To download this patch, go to http://
support.oracle.com and search for bug 14557588.

Release 11.2.0.3 and later releases do not require this patch.

Chapter 3
Create External Tables

3-10

http://support.oracle.com
http://support.oracle.com


Required Properties
These properties are required:

• oracle.hadoop.exttab.tableName

• oracle.hadoop.exttab.defaultDirectory

• oracle.hadoop.exttab.dataPaths

• oracle.hadoop.exttab.sourceType=datapump
• oracle.hadoop.connection.url

• oracle.hadoop.connection.user

See "Configure Oracle SQL Connector for HDFS" for descriptions of the properties used for
this data source.

Optional Properties
This property is optional:

• oracle.hadoop.exttab.logDirectory

• oracle.hadoop.exttab.createLogFiles

• oracle.hadoop.exttab.createBadFiles

Defining Properties in XML Files for Data Pump Format Files
The following example is an XML template containing the properties that describe a Data
Pump file. To use the template, cut and paste it into a text file, enter the appropriate values to
describe your Data Pump file, and delete any optional properties that you do not need. For
more information about using XML templates, see "Create a Configuration File."

Example 3-2    XML Template with Properties for a Data Pump Format File

<?xml version="1.0"?>

<!-- Required Properties -->

<configuration>
  <property>
    <name>oracle.hadoop.exttab.tableName</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.defaultDirectory</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.dataPaths</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.sourceType</name>
    <value>datapump</value>
  </property>
  <property>

Chapter 3
Create External Tables

3-11



    <name>oracle.hadoop.connection.url</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.connection.user</name>
    <value>value</value>
  </property>

<!-- Optional Properties -->

  <property>
    <name>oracle.hadoop.exttab.logDirectory</name>
    <value>value</value>
  </property>
</configuration>

Example
The following example creates an external table named SALES_DP_XTAB to read Data
Pump files.

Example 3-3    Defining an External Table for Data Pump Format Files

Log in as the operating system user that Oracle Database runs under (typically the
oracle user), and create a file-system directory. For Oracle RAC, you must create a
clusterwide directory on a distributed file system.

$ mkdir /data/sales_dp_dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DIRECTORY sales_dp_dir AS '/data/sales_dp_dir'
SQL> GRANT READ, WRITE ON DIRECTORY sales_dp_dir TO scott;

Create the external table:

$ export OSCH_HOME="/opt/oracle/orahdfs-<version>"
$ export HADOOP_CLASSPATH="$OSCH_HOME/jlib/*:$HADOOP_CLASSPATH"
$ hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \
-D oracle.hadoop.exttab.sourceType=datapump \
-D oracle.hadoop.exttab.dataPaths=hdfs:///user/scott/olh_sales_dpoutput/ \
-D oracle.hadoop.exttab.defaultDirectory=SALES_DP_DIR \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=SCOTT \
-createTable

Create External Tables from Hive Tables
Oracle SQL Connector for HDFS creates the external table definition from a Hive table
by contacting the Hive metastore client to retrieve information about the table columns
and the location of the table data. In addition, the Hive table data paths are published
to the location files of the Oracle external table.

To read Hive table metadata, Oracle SQL Connector for HDFS requires that the Hive
JAR files are included in the HADOOP_CLASSPATH variable. Oracle SQL Connector for
HDFS must be installed and running on a computer with a working Hive client.

Chapter 3
Create External Tables

3-12



Ensure that you add the Hive configuration directory to the HADOOP_CLASSPATH environment
variable. You must have a correctly functioning Hive client.

For Hive managed tables, the data paths come from the warehouse directory.

For Hive external tables, the data paths from an external location in HDFS are published to
the location files of the Oracle external table. Hive external tables can have no data, because
Hive does not check if the external location is defined when the table is created. If the Hive
table is empty, then one location file is published with just a header and no data URIs.

The Oracle external table is not a "live" Hive table. After changes are made to a Hive table,
you must use the ExternalTable tool to drop the existing external table and create a new
one.

To delete the external tables and location files created by Oracle SQL Connector for HDFS,
use the -drop command. See "Drop Database Objects Created by Oracle SQL Connector for
HDFS".

Hive Table Requirements
Oracle SQL Connector for HDFS supports Hive tables that are defined using ROW FORMAT
DELIMITED and FILE FORMAT TEXTFILE clauses. Both Hive-managed tables and Hive external
tables are supported.

Oracle SQL Connector for HDFS also supports partitioned Hive tables. In this case Oracle
SQL Connector for HDFS creates one or more external tables and database views. See
"Creating External Tables from Partitioned Hive Tables".

Hive tables can be either bucketed or not bucketed. All primitive types from Hive 0.10.0 are
supported.

Data Type Mappings
The following table shows the default data-type mappings between Hive and Oracle. To
change the data type of the target columns created in the Oracle external table, set the
oracle.hadoop.exttab.hive.columnType.* properties listed under "Optional Properties.".

Table 3-1    Hive Data Type Mappings

Data Type of Source Hive Column Default Data Type of Target Oracle Column

INT, BIGINT, SMALLINT, TINYINT INTEGER
DECIMAL NUMBER
DECIMAL(p,s) NUMBER(p,s)
DOUBLE, FLOAT NUMBER
DATE DATE with format mask YYYY-MM-DD
TIMESTAMP TIMESTAMP with format mask YYYY-MM-

DD HH24:MI:SS.FF
BOOLEAN VARCHAR2(5)
CHAR(size) CHAR(size)
STRING VARCHAR2(4000)
VARCHAR VARCHAR2(4000)

Chapter 3
Create External Tables

3-13



Table 3-1    (Cont.) Hive Data Type Mappings

Data Type of Source Hive Column Default Data Type of Target Oracle Column

VARCHAR(size) VARCHAR2(size)

Required Properties
These properties are required for Hive table sources:

• oracle.hadoop.exttab.tableName

• oracle.hadoop.exttab.defaultDirectory

• oracle.hadoop.exttab.sourceType=hive
• oracle.hadoop.exttab.hive.tableName

• oracle.hadoop.exttab.hive.databaseName

• oracle.hadoop.connection.url

• oracle.hadoop.connection.user

See "Configure Oracle SQL Connector for HDFS" for descriptions of the properties
used for this data source.

Optional Properties
These properties are optional for Hive table sources:

• oracle.hadoop.exttab.hive.columnType.*

• oracle.hadoop.exttab.hive.partitionFilter

• oracle.hadoop.exttab.locationFileCount

• oracle.hadoop.exttab.colMap.columnLength

• oracle.hadoop.exttab.colMap.column_name.columnLength

• oracle.hadoop.exttab.colMap.columnType

• oracle.hadoop.exttab.colMap.column_name.columnType

• oracle.hadoop.exttab.colMap.dateMask

• oracle.hadoop.exttab.colMap.column_name.dateMask

• oracle.hadoop.exttab.colMap.fieldLength

• oracle.hadoop.exttab.colMap.column_name.fieldLength

• oracle.hadoop.exttab.colMap.timestampMask

• oracle.hadoop.exttab.colMap.column_name.timestampMask

• oracle.hadoop.exttab.colMap.timestampTZMask

• oracle.hadoop.exttab.colMap.column_name.timestampTZMask

• oracle.hadoop.exttab.createLogFiles

• oracle.hadoop.exttab.createBadFiles

Chapter 3
Create External Tables

3-14



• oracle.hadoop.exttab.logDirectory

Defining Properties in XML Files for Hive Tables
The following example is an XML template containing the properties that describe a Hive
table. To use the template, cut and paste it into a text file, enter the appropriate values to
describe your Hive table, and delete any optional properties that you do not need. For more
information about using XML templates, see "Create a Configuration File."

Example 3-4    XML Template with Properties for a Hive Table

<?xml version="1.0"?>

<!-- Required Properties -->

<configuration>
  <property>
    <name>oracle.hadoop.exttab.tableName</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.defaultDirectory</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.sourceType</name>
    <value>hive</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.hive.partitionFilter</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.hive.tableName</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.hive.databaseName</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.connection.url</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.connection.user</name>
    <value>value</value>
  </property>

<!-- Optional Properties -->

  <property>
    <name>oracle.hadoop.exttab.locationFileCount</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.hive.columnType.TYPE</name>
    <value>value</value>
  </property>
</configuration>

Chapter 3
Create External Tables

3-15



Example
This example creates an external table named SALES_HIVE_XTAB to read data from a
Hive table. The example defines all the properties on the command line instead of in
an XML file.

Example 3-5    Defining an External Table for a nonpartitioned Hive Table

Log in as the operating system user that Oracle Database runs under (typically the
oracle user), and create a file-system directory:

$ mkdir /data/sales_hive_dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DIRECTORY sales_hive_dir AS '/data/sales_hive_dir'
SQL> GRANT READ, WRITE ON DIRECTORY sales_hive_dir TO scott;

Create the external table:

$ export OSCH_HOME="/opt/oracle/orahdfs-<version>"
$ export HADOOP_CLASSPATH="$OSCH_HOME/jlib/*:/usr/lib/hive/lib/*:/etc/hive/
conf:$HADOOP_CLASSPATH"

$ hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_HIVE_XTAB \
-D oracle.hadoop.exttab.sourceType=hive \
-D oracle.hadoop.exttab.locationFileCount=2 \
-D oracle.hadoop.exttab.hive.tableName=sales_country_us \
-D oracle.hadoop.exttab.hive.databaseName=salesdb \
-D oracle.hadoop.exttab.defaultDirectory=SALES_HIVE_DIR \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=SCOTT \
-createTable

Note:

For nonpartitioned Hive tables and other data sources the value for property
oracle.hadoop.exttab.tableName is the name of the external table.

Creating External Tables from Partitioned Hive Tables
Oracle SQL Connector for HDFS supports partitioned Hive tables, enabling you to
query a single partition, a range of partitions, or all partitions. You can represent all
Hive partitions or a subset of them in Oracle Database.

Chapter 3
Create External Tables

3-16



See Also:

"Create External Tables from Hive Tables" for required properties, data type
mappings, and other details applicable to all Hive table access using Oracle SQL
Connector for HDFS.

Database Objects that Support Access to Partitioned Hive Tables
To support a partitioned Hive table, Oracle SQL Connector for HDFS creates the objects
described in the following table.

Table 3-2    Oracle Database Objects for Supporting a Partitioned Hive Table

Database Object Description Naming Convention1

External Tables One for each Hive partition OSCHtable_name_n
For example, OSCHDAILY_1 and
OSCHDAILY_2

Views One for each external table. Used for
querying the Hive data.

table_name_n
For example, DAILY_1 and
DAILY_2

Metadata Table One for the Hive table. Identifies all external
tables and views associated with a
particular Hive table. Specify this table
when creating, describing, or dropping
these database objects.

table_name
For example, DAILY

1 The "_n" suffixed with table name indicates a numeric value.

For example, if a Hive table comprises five partitions, then Oracle SQL Connector for HDFS
creates five external tables, five views, and one metadata table in Oracle Database.

To drop the objects described in Table 3-2 and the location files, use the -drop command.
See "Drop Database Objects Created by Oracle SQL Connector for HDFS".

Note:

For partitioned Hive tables and other data sources the value for property
oracle.hadoop.exttab.tableName is the name of the metadata table.

Querying the Metadata Table
The metadata table provides critical information about how to query the Hive table. The
following table describes the columns of a metadata table.

Chapter 3
Create External Tables

3-17



Table 3-3    Metadata Table Columns

Column Description

VIEW_NAME The Oracle Database view used to access a single Hive table
partition. The view contains both Hive table and partition
columns.

EXT_TABLE_NAME An Oracle external table that represents a Hive table partition.
The external table contains only the Hive table columns and
not the Hive partition columns.

To access all the data in a Hive partition, use the
corresponding Oracle Database view.

HIVE_TABLE_NAME The partitioned Hive table being accessed through Oracle
Database.

HIVE_DB_NAME The Hive database where the table resides.

HIVE_PART_FILTER The Hive partition filter used to select a subset of partitions for
access by Oracle Database. A NULL value indicates that all
partitions are accessed.

Partition Columns Each column used to partition the Hive table has a separate
column in the metadata table. For example, the metadata table
has columns for COUNTRY, STATE, and CITY for a Hive table
partitioned by a combination of COUNTRY, STATE, and CITY
values.

The following SELECT statement queries a metadata table named HIVE_SALES_DATA:

SQL> SELECT view_name, ext_table_name, Hive_table_name, \
      hive_db_name, country, city \
      FROM hive_sales_data \
      WHERE state = 'TEXAS';

The results of the query identify three views with data from cities in Texas:

VIEW_NAME          EXT_TABLE_NAME         HIVE_TABLE_NAME   HIVE_DB_NAME  COUNTRY  CITY 
------------------------------------------------------------------------------------------
HIVE_SALES_DATA_1  OSCHHIVE_SALES_DATA_1  hive_sales_data   db_sales      US       AUSTIN
HIVE_SALES_DATA_2  OSCHHIVE_SALES_DATA_2  hive_sales_data   db_sales      US       HOUSTON
HIVE_SALES_DATA_3  OSCHHIVE_SALES_DATA_3  hive_sales_data   db_sales      US       DALLAS

The views include partition column values. Oracle recommends that you use the views
while querying a partitioned Hive table, as the external tables do not include the
partition column values.

Creating UNION ALL Views for Querying
To facilitate querying, you can create UNION ALL views over the individual partition
views. Use the mkhive_unionall_view.sql script, which is provided in the OSCH_HOME/
example/sql directory. To maintain performance, do not create UNION ALL views over
more than 50 to 100 views (depending on their size).

To use mkhive_unionall_view.sql, use the following syntax:

@mkhive_unionall_view[.sql] table schema view predicate

Chapter 3
Create External Tables

3-18



MKHIVE_UNIONALL_VIEW Script Parameters

table
The name of the metadata table in Oracle Database that represents a partitioned Hive table.
Required.

schema
The owner of the metadata table. Optional; defaults to your schema.

view
The name of the UNION ALL view created by the script. Optional; defaults to table_ua.

predicate
A WHERE condition used to select the partitions in the Hive table to include in the UNION ALL
view. Optional; defaults to all partitions.

Example 3-6    Union All Views for Partitioned Hive Tables

The following example creates a UNION ALL view named HIVE_SALES_DATA_UA, which
accesses all partitions listed in the HIVE_SALES_DATA metadata table:

SQL> @mkhive_unionall_view.sql HIVE_SALES_DATA null null null
 

This example creates a UNION ALL view named ALL_SALES, which accesses all partitions
listed in the HIVE_SALES_DATA metadata table:

SQL> @mkhive_unionall_view.sql HIVE_SALES_DATA null ALL_SALES null
 

The next example creates a UNION ALL view named TEXAS_SALES_DATA, which accesses the
rows of all partitions where STATE = 'TEXAS'.

SQL> @mkhive_unionallview.sql HIVE_SALES_DATA null TEXAS_SALES_DATA '(STATE = 
''''TEXAS'''')'

Error Messages

table name too long, max limit length
Cause: The names generated for the database objects exceed 30 characters.

Action: Specify a name that does not exceed 24 characters in the 
oracle.hadoop.exttab.tableName property. Oracle SQL Connector for HDFS generates external
table names using the convention OSCHtable_name_n. See Table 3-2.

table/view names containing string table_name found in schema schema_name
Cause: An attempt was made to create external tables for a partitioned Hive table, but the
data objects already exist.

Action: Use the hadoop -drop command to drop the existing tables and views, and then retry
the -createTable command. If this solution fails, then you might have "dangling" objects.
See "Dropping Dangling Objects".

Chapter 3
Create External Tables

3-19



Dropping Dangling Objects
Always use Oracle SQL Connector for HDFS commands to manage objects created
by the connector to support partitioned Hive tables. Dangling objects are caused when
you use the SQL drop table command to drop a metadata table instead of the -drop
command. If you are unable to drop the external tables and views for a partitioned
Hive table, then they are dangling objects.

Notice the schema and table names in the error message generated when you
attempted to drop the objects, and use them in the following procedure.

To drop dangling database objects:

1. Open a SQL session with Oracle Database, and connect as the owner of the
dangling objects.

2. Identify the location files of the external table by querying the
ALL_EXTERNAL_LOCATIONS and ALL_EXTERNAL_TABLES data dictionary views:

SELECT a.table_name, a.directory_name, a.location \
FROM all_external_locations a, all_external_tables b \
WHERE a.table_name = b.table_name AND a.table_name \
LIKE 'OSCHtable%' AND a.owner='schema'; 
 

In the LIKE clause of the previous syntax, replace table and schema with the
appropriate values.

In the output, the location file names have an osch- prefix, such as
osch-20140408014604-175-1.

3. Identify the external tables by querying the ALL_EXTERNAL_TABLES data dictionary
view:

SELECT table_name FROM all_external_tables \
WHERE table_name \
LIKE 'OSCHtable%' AND owner=schema;
 

4. Identify the database views by querying the ALL_VIEWS data dictionary view:

SELECT view_name FROM all_views 
WHERE view_name 
LIKE 'table%' AND owner='schema';
 

5. Inspect the tables, views, and location files to verify that they are not needed,
using commands like the following:

DESCRIBE schema.table;
SELECT * FROM schema.table;

DESCRIBE schema.view;
SELECT * FROM schema.view;

6. Delete the location files, tables, and views that are not needed, using commands
like the following:

EXECUTE utl_file.fremove('directory', 'location_file');

DROP TABLE schema.table;
DROP VIEW schema.view;

Chapter 3
Create External Tables

3-20



Create External Tables from Delimited Text Files
Oracle SQL Connector for HDFS creates the external table definition for delimited text files
using configuration properties that specify the number of columns, the text delimiter, and
optionally, the external table column names. By default, all text columns in the external table
are VARCHAR2. If column names are not provided, they default to C1 to Cn, where n is the
number of columns specified by the oracle.hadoop.exttab.columnCount property.

Data Type Mappings
All text data sources are automatically mapped to VARCHAR2(4000). To change the data type
of the target columns created in the Oracle external table, set the
oracle.hadoop.exttab.colMap.* properties listed under "Optional Properties."

Required Properties
These properties are required for delimited text sources:

• oracle.hadoop.exttab.tableName

• oracle.hadoop.exttab.defaultDirectory

• oracle.hadoop.exttab.dataPaths

• oracle.hadoop.exttab.columnCount or oracle.hadoop.exttab.columnNames

• oracle.hadoop.connection.url

• oracle.hadoop.connection.user

See "Configure Oracle SQL Connector for HDFS" for descriptions of the properties used for
this data source.

Optional Properties
These properties are optional for delimited text sources:

• oracle.hadoop.exttab.recordDelimiter

• oracle.hadoop.exttab.fieldTerminator

• oracle.hadoop.exttab.initialFieldEncloser

• oracle.hadoop.exttab.trailingFieldEncloser

• oracle.hadoop.exttab.locationFileCount

• oracle.hadoop.exttab.colMap.columnLength

• oracle.hadoop.exttab.colMap.column_name.columnLength

• oracle.hadoop.exttab.colMap.columnType

• oracle.hadoop.exttab.colMap.column_name.columnType

• oracle.hadoop.exttab.colMap.dateMask

• oracle.hadoop.exttab.colMap.column_name.dateMask

• oracle.hadoop.exttab.colMap.fieldLength

Chapter 3
Create External Tables

3-21



• oracle.hadoop.exttab.colMap.column_name.fieldLength

• oracle.hadoop.exttab.colMap.column_name.nullIfSpecifier

• oracle.hadoop.exttab.colMap.timestampMask

• oracle.hadoop.exttab.colMap.column_name.timestampMask

• oracle.hadoop.exttab.colMap.timestampTZMask

• oracle.hadoop.exttab.colMap.column_name.timestampTZMask

• oracle.hadoop.exttab.createLogFiles

• oracle.hadoop.exttab.createBadFiles

• oracle.hadoop.exttab.logDirectory

• oracle.hadoop.exttab.nullIfSpecifier

Defining Properties in XML Files for Delimited Text Files
This example is an XML template containing all the properties that describe a
delimited text file. To use the template, cut and paste it into a text file, enter the
appropriate values to describe your data files, and delete any optional properties that
you do not need. For more information about using XML templates, see "Create a
Configuration File."

Example 3-7    XML Template with Properties for a Delimited Text File

<?xml version="1.0"?>

<!-- Required Properties -->

<configuration>
  <property>
    <name>oracle.hadoop.exttab.tableName</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.defaultDirectory</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.dataPaths</name>
    <value>value</value>
  </property>

<!-- Use either columnCount or columnNames -->

  <property>
    <name>oracle.hadoop.exttab.columnCount</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.columnNames</name>
    <value>value</value>
  </property>

  <property>
    <name>oracle.hadoop.connection.url</name>
    <value>value</value>
  </property>

Chapter 3
Create External Tables

3-22



  <property>
    <name>oracle.hadoop.connection.user</name>
    <value>value</value>
  </property>

<!-- Optional Properties -->

  <property>
    <name>oracle.hadoop.exttab.colMap.TYPE</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.recordDelimiter</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.fieldTerminator</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.initialFieldEncloser</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.trailingFieldEncloser</name>
    <value>value</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.locationFileCount</name>
    <value>value</value>
  </property>
</configuration>

Example
This example creates an external table named SALES_DT_XTAB from delimited text files.

Example 3-8    Defining an External Table for Delimited Text Files

Log in as the operating system user that Oracle Database runs under (typically the oracle
user), and create a file-system directory:

$ mkdir /data/sales_dt_dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DIRECTORY sales_dt_dir AS '/data/sales_dt_dir'
SQL> GRANT READ, WRITE ON DIRECTORY sales_dt_dir TO scott;

Create the external table:

$ export OSCH_HOME="/opt/oracle/orahdfs-<version>"
$ export HADOOP_CLASSPATH="$OSCH_HOME/jlib/*:$HADOOP_CLASSPATH"

$ hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DT_XTAB \
-D oracle.hadoop.exttab.locationFileCount=2 \
-D oracle.hadoop.exttab.dataPaths="hdfs:///user/scott/olh_sales/*.dat" \
-D oracle.hadoop.exttab.columnCount=10 \

Chapter 3
Create External Tables

3-23



-D oracle.hadoop.exttab.defaultDirectory=SALES_DT_DIR \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=SCOTT \
-createTable

Create External Tables in SQL
You can create an external table manually for Oracle SQL Connector for HDFS. For
example, the following procedure enables you to use external table syntax that is not
exposed by the ExternalTable -createTable command.

Additional syntax might not be supported for Data Pump format files.

To create an external table manually:

1. Use the -createTable --noexecute command to generate the external table
DDL.

2. Make whatever changes are needed to the DDL.

3. Run the DDL from the previous step to create the table definition in the Oracle
database.

4. Use the ExternalTable -publish command to publish the data URIs to the
location files of the external table.

Update External Tables
The -publish option provides a way to update the location files (that point to HDFS
data paths) of existing Oracle external tables based on text, Data Pump, or Hive
sources.

The ExternalTable command line tool with the -createTable option creates the
external table and related metadata in Oracle Database. It also populates the external
table’s location files with the Universal Resource Identifiers (URIs) of the data files in
HDFS.

To “publish” updates to the location files of existing external tables,
use ExternalTable with the -publish option. This operation updates the location files
of external tables with new URIs of HDFS data paths, and adds external tables and
views for new partitions when the source is a partitioned Hive table

Use -publish in order to:

• Publish new data into an already existing external table.

-createTable takes a snapshot of the HDFS or Hive source at the time of external
table creation. However the source may change later. The -publish option
enables you to update the existing external table from the source.

• Publish new data when the source is a partitioned Hive table.

When new partitions are added to a source that is a partitioned Hive table, the -
publish option enables you to add new database objects required to access the
new partitions. This option detects the new Hive partitions and creates the
additional external tables and views for the partitions and updates the metadata
table created with the -createTable command.

Chapter 3
Update External Tables

3-24



• Populate an external table that you created manually using the -createTable command
with the --noexecute option.

Note:

The publish option now fully supports partitioned Hive tables. It is no longer
necessary to use -drop and -createTable as a workaround to update external
tables derived from partitioned Hive tables.

See Also:

Location File Management

ExternalTable Syntax for Publish
hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \
[-D property=value]... \
-publish [--noexecute]

See Also:

"ExternalTable Command-Line Tool Syntax"

ExternalTable Example for Publish
This example sets HADOOP_CLASSPATH and publishes the HDFS data paths to the external
table created in Example 3-3. See "Configure Your System for Oracle SQL Connector for
HDFS" for more information about setting this environment variable.

Example 3-9    Publishing HDFS Data Paths to an External Table for Data Pump Format
Files

This example uses the Bash shell.

$ export HADOOP_CLASSPATH="OSCH_HOME/jlib/*"
$ hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \
-D oracle.hadoop.exttab.sourceType=datapump \
-D oracle.hadoop.exttab.dataPaths=hdfs:/user/scott/data/ \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=scott -publish

In this example:

• OSCH_HOME is the full path to the Oracle SQL Connector for HDFS installation directory.

• SALES_DP_XTAB is the external table created in Example 3-3.

Chapter 3
Update External Tables

3-25



• hdfs:/user/scott/data/ is the location of the HDFS data.

• @myhost:1521 is the database connection string.

Explore External Tables and Location Files
The -describe command is a debugging and diagnostic utility that prints the definition
of an existing external table. It also enables you to see the location file metadata and
contents. You can use this command to verify the integrity of the location files of an
Oracle external table.

These properties are required to use this command:

• oracle.hadoop.exttab.tableName

• The JDBC connection properties; see "Connections using url, user, and password
Properties."

ExternalTable Syntax for Describe
hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \
[-D property=value]... \
-describe

See Also:

"ExternalTable Command-Line Tool Syntax"

ExternalTable Example for Describe
This example shows the command syntax to describe the external tables and location
files associated with SALES_DP_XTAB.

Example 3-10    Exploring External Tables and Location Files

$ export HADOOP_CLASSPATH="OSCH_HOME/jlib/*"
$ hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=scott -describe

Drop Database Objects Created by Oracle SQL Connector
for HDFS

The -drop command deletes the database objects created by Oracle SQL Connector
for HDFS. These objects include external tables, location files, and views. If you delete
objects manually, problems can arise as described in "Dropping Dangling Objects".

Chapter 3
Explore External Tables and Location Files

3-26



The -drop command only deletes objects created by Oracle SQL Connector for HDFS.
Oracle recommends that you always use the -drop command to drop objects created by
Oracle SQL Connector for HDFS.

These properties are required to use this command:

• oracle.hadoop.exttab.tableName. For partitioned Hive tables, this is the name of the metadata
table. For other data source types, this is the name of the external table.

• The JDBC connection properties; see "Connections using url, user, and password
Properties."

ExternalTable Syntax for Drop
hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \
[-D property=value]... \
-drop

See Also:

"ExternalTable Command-Line Tool Syntax"

ExternalTable Example for Drop
This example shows the command syntax to drop the database objects associated with
SALES_DP_XTAB.

Example 3-11    Dropping Database Objects

$ export HADOOP_CLASSPATH="OSCH_HOME/jlib/*"
$ hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=scott -drop

More About External Tables Generated by the ExternalTable
Tool

Because external tables are used to access data, all of the features and limitations of
external tables apply. Queries are executed in parallel with automatic load balancing.
However, update, insert, and delete operations are not allowed and indexes cannot be
created on external tables. When an external table is accessed, a full table scan is always
performed.

Oracle SQL Connector for HDFS uses the ORACLE_LOADER access driver. The hdfs_stream
preprocessor script (provided with Oracle SQL Connector for HDFS) modifies the input data
to a format that ORACLE_LOADER can process.

Chapter 3
More About External Tables Generated by the ExternalTable Tool

3-27



About Configurable Column Mappings
Oracle SQL Connector for HDFS uses default data type mappings to create columns
in an Oracle external table with the appropriate data types for the Hive and text
sources. You can override these defaults by setting various configuration properties,
for either all columns or a specific column.

For example, a field in a text file might contain a timestamp. By default, the field is
mapped to a VARCHAR2 column. However, you can specify a TIMESTAMP column and
provide a datetime mask to cast the values correctly into the TIMESTAMP data type. The
TIMESTAMP data type supports time-based queries and analysis that are unavailable
when the data is presented as text.

Default Column Mappings
Text sources are mapped to VARCHAR2 columns, and Hive columns are mapped to
columns with the closest equivalent Oracle data type. Table 3-1 shows the default
mappings.

All Column Overrides
The following properties apply to all columns in the external table. For Hive sources,
these property settings override the oracle.hadoop.exttab.hive.* property settings.

• oracle.hadoop.exttab.colMap.columnLength

• oracle.hadoop.exttab.colMap.columnType

• oracle.hadoop.exttab.colMap.dateMask

• oracle.hadoop.exttab.colMap.fieldLength

• oracle.hadoop.exttab.colMap.timestampMask

• oracle.hadoop.exttab.colMap.timestampTZMask

One Column Overrides
The following properties apply to only one column, whose name is the column_name
part of the property name. These property settings override all other settings.

• oracle.hadoop.exttab.colMap.column_name.columnLength

• oracle.hadoop.exttab.colMap.column_name.columnType

• oracle.hadoop.exttab.colMap.column_name.dateMask

• oracle.hadoop.exttab.colMap.column_name.fieldLength

• oracle.hadoop.exttab.colMap.column_name.timestampMask

• oracle.hadoop.exttab.colMap.column_name.timestampTZMask

Mapping Override Examples
The following properties create an external table in which all columns are the default
VARCHAR2 data type:

Chapter 3
More About External Tables Generated by the ExternalTable Tool

3-28



oracle.hadoop.exttab.tableName=MOVIE_FACT_EXT_TAB_TXT
oracle.hadoop.exttab.columnNames=CUST_ID,MOVIE_ID,GENRE_ID,TIME_ID,RECOMMENDED,ACTIVITY
_ID,RATING,SALES

In this example, the following properties are set to override the data type of several columns:

oracle.hadoop.exttab.colMap.TIME_ID.columnType=TIMESTAMP
oracle.hadoop.exttab.colMap.RECOMMENDED.columnType=NUMBER
oracle.hadoop.exttab.colMap.ACTIVITY_ID.columnType=NUMBER
oracle.hadoop.exttab.colMap.RATING.columnType=NUMBER
oracle.hadoop.exttab.colMap.SALES.columnType=NUMBER

Oracle SQL Connector for HDFS creates an external table with the specified data types:

SQL> DESCRIBE movie_facts_ext
Name                                      Null?    Type
----------------------------------------- -------- ----------------------------
CUST_ID                                            VARCHAR2(4000)
MOVIE_ID                                           VARCHAR2(4000)
GENRE_ID                                           VARCHAR2(4000)
TIME_ID                                            TIMESTAMP(9)
RECOMMENDED                                        NUMBER
ACTIVITY_ID                                        NUMBER
RATINGS                                            NUMBER
SALES                                              NUMBER

The next example adds the following property settings to change the length of the VARCHAR2
columns:

oracle.hadoop.exttab.colMap.CUST_ID.columnLength=12
oracle.hadoop.exttab.colMap.MOVIE_ID.columnLength=12
oracle.hadoop.exttab.colMap.GENRE_ID.columnLength=12

All columns now have custom data types:

SQL> DESCRIBE movie_facts_ext
Name                                      Null?    Type
----------------------------------------- -------- ----------------------------
CUST_ID                                            VARCHAR2(12)
MOVIE_ID                                           VARCHAR2(12)
GENRE_ID                                           VARCHAR2(12)
TIME_ID                                            TIMESTAMP(9)
RECOMMENDED                                        NUMBER
ACTIVITY_ID                                        NUMBER
RATINGS                                            NUMBER
SALES                                              NUMBER

What Are Location Files?
A location file is a file specified in the location clause of the external table. Oracle SQL
Connector for HDFS creates location files that contain only the Universal Resource Identifiers
(URIs) of the data files. A data file contains the data stored in HDFS.

Enable Parallel Processing
To enable parallel processing with external tables, you must specify multiple files in the
location clause of the external table. The number of files determines the number of child
processes started by the external table during a table read, which is known as the degree of
parallelism or DOP.

Chapter 3
More About External Tables Generated by the ExternalTable Tool

3-29



Set Up Degree of Parallelism
Ideally, you can decide to run at a particular degree of parallelism and create a number
of location files that are a multiple of the degree of parallelism, as described in the
following procedure.

To set up parallel processing for maximum performance:

1. Identify the maximum DOP that your Oracle DBA will permit you to use when
running Oracle SQL Connector for HDFS.

When loading a huge amount of data into an Oracle database, you should also
work with the DBA to identify a time when the maximum resources are available.

2. Create a number of location files that is a small multiple of the DOP. For example,
if the DOP is 8, then you might create 8, 16, 24, or 32 location files.

3. Create a number of HDFS files that are about the same size and a multiple of the
number of location files. For example, if you have 32 location files, then you might
create 128, 1280, or more HDFS files, depending on the amount of data and the
minimum HDFS file size.

4. Set the DOP for the data load, using either the ALTER SESSION command or hints
in the SQL SELECT statement.

This example sets the DOP to 8 using ALTER SESSION:

ALTER SESSION FORCE PARALLEL DML PARALLEL 8;
ALTER SESSION FORCE PARALLEL QUERY PARALLEL 8;

The next example sets the DOP to 8 using the PARALLEL hint:

INSERT /*+ parallel(my_db_table,8) */ INTO my_db_table \
   SELECT /*+ parallel(my_hdfs_external_table,8) */ * \
   FROM my_hdfs_external_table;

An APPEND hint in the SQL INSERT statement can also help improve performance.

Location File Management
The Oracle SQL Connector for HDFS command-line tool, ExternalTable, creates an
external table and publishes the HDFS URI information to location files. The external
table location files are stored in the directory specified by the 
oracle.hadoop.exttab.defaultDirectory property. For an Oracle RAC database, this directory
must reside on a distributed file system that is accessible to each database server.

ExternalTable manages the location files of the external table, which involves the
following operations:

• Generating new location files in the database directory after checking for name
conflicts

• Deleting existing location files in the database directory as necessary

• Publishing data URIs to new location files

• Altering the LOCATION clause of the external table to match the new location files

Location file management for the supported data sources is described in the following
topics.

Chapter 3
More About External Tables Generated by the ExternalTable Tool

3-30



Data Pump File Format
The ORACLE_LOADER access driver is required to access Data Pump files. The driver requires
that each location file corresponds to a single Data Pump file in HDFS. Empty location files
are not allowed, and so the number of location files in the external table must exactly match
the number of data files in HDFS.
Oracle SQL Connector for HDFS automatically takes over location file management and
ensures that the number of location files in the external table equals the number of Data
Pump files in HDFS.

Delimited Files in HDFS and Hive Tables
The ORACLE_LOADER access driver has no limitation on the number of location files. Each
location file can correspond to one or more data files in HDFS. The number of location files
for the external table is suggested by the oracle.hadoop.exttab.locationFileCount
configuration property.
See "Connections using url, user, and password Properties".

Location File Names
This is the format of a location file name:

osch-timestamp-number-n
In this syntax:

• timestamp has the format yyyyMMddhhmmss, for example, 20121017103941 for October
17, 2012, at 10:39:41.

• number is a random number used to prevent location file name conflicts among different
tables.

• n is an index used to prevent name conflicts between location files for the same table.

For example, osch-20121017103941-6807-1.

Configure Oracle SQL Connector for HDFS
You can pass configuration properties to the ExternalTable tool on the command line with
the -D option, or you can create a configuration file and pass it on the command line with the
-conf option. These options must precede the command to be executed.

For example, this command uses a configuration file named example.xml:

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
       oracle.hadoop.exttab.ExternalTable \
       -conf /home/oracle/example.xml \
       -createTable

See "ExternalTable Command-Line Tool Syntax".

Create a Configuration File
A configuration file is an XML document with a very simple structure as follows:

<?xml version="1.0"?>
<configuration>
  <property>
    <name>property</name>

Chapter 3
Configure Oracle SQL Connector for HDFS

3-31



    <value>value</value>
  </property>
     .
     .
     .
</configuration>

The following example shows a configuration file. See "Oracle SQL Connector for
HDFS Configuration Property Reference" for descriptions of these properties.

Example 3-12    Configuration File for Oracle SQL Connector for HDFS

<?xml version="1.0"?>
<configuration>
  <property>
    <name>oracle.hadoop.exttab.tableName</name>
    <value>SH.SALES_EXT_DIR</value>
  </property>
  <property>
    <name>oracle.hadoop.exttab.dataPaths</name>
    <value>/data/s1/*.csv,/data/s2/*.csv</value>
  </property>
  <property>
    <name>oracle.hadoop.connection.url</name>
    <value>jdbc:oracle:thin:@//myhost:1521/myservicename</value>
  </property>
  <property>
    <name>oracle.hadoop.connection.user</name>
    <value>SH</value>
  </property>
</configuration>

Oracle SQL Connector for HDFS Configuration Property Reference
The following is a complete list of the configuration properties used by the
ExternalTable command-line tool. The properties are organized into these categories:

• General Properties

• Connections using url, user, and password Properties

Chapter 3
Configure Oracle SQL Connector for HDFS

3-32



General Properties

Property Description

oracle.hadoop.exttab.badFi
leFormatUsePercentA

Indicates whether an external table bad file name contains '%a'. This is an optional
property for the -createTable command.

Valid values: TRUE,FALSE
Default value: FALSE
The default bad file name is<external_table_name>_%p.bad. If the value is
TRUE, this generates deterministic bad file names of the form
<external_table_name>_%a.bad. For example: 'mytable_000.bad', and
'mytable_001.bad'.

If .bad files exist then diagnostic external tables can be created over the .bad files
to review the rejected rows. No .bad files are generated if there are no rejected
rows.

See Also:

• oracle.hadoop.exttab.logFileFormatUsePercentA
• BADFILE | NOBADFILE in Oracle Database

Utilities.

oracle.hadoop.exttab.colM
ap.columnLength

Specifies the length of all external table columns of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, and RAW. Optional.

Default Value: The maximum length allowed by the column type

For Oracle Database 12c, Oracle SQL Connector for HDFS sets the length of
VARCHAR2, NVARCHAR2, and RAW columns depending on whether the database
MAX_STRING_SIZE option is set to STANDARD or EXTENDED.

Valid values: Integer

Chapter 3
Configure Oracle SQL Connector for HDFS

3-33



Property Description

oracle.hadoop.exttab.colM
ap.columnType

Specifies the data type mapping of all columns for Hive and text sources. Optional.

You can override this setting for specific columns by setting 
oracle.hadoop.exttab.colMap.column_name.columnType.

Default value: VARCHAR2 for text; see Table 3-1 for Hive

Valid values: The following Oracle data types are supported:

VARCHAR2
NVARCHAR2
CHAR
NCHAR
CLOB
NCLOB
NUMBER
INTEGER
FLOAT
BINARY_DOUBLE
BINARY_FLOAT
RAW*

DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
* RAW binary data in delimited text files must be encoded in hexadecimal.

oracle.hadoop.exttab.colM
ap.dateMask

Specifies the format mask used in the date_format_spec clause of the external table
for all DATE columns. This clause indicates that a character data field contains a
date in the specified format.

Default value: The default globalization format mask, which is set by the
NLS_DATE_FORMAT database parameter

Valid values: A datetime format model as described in Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colM
ap.fieldLength

Sets the character buffer length used by the ORACLE_LOADER access driver for all
CLOB columns. The value is used in the field_list clause of the external table
definition, which identifies the fields in the data file and their data types.

Default value: 4000 bytes

Valid values: Integer

oracle.hadoop.exttab.colM
ap.timestampMask

Specifies the format mask used in the date_format_spec clause of the external table
for all TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE columns. This clause
indicates that a character data field contains a timestamp in the specified format.

Default value: The default globalization format mask, which is set by the
NLS_TIMESTAMP_FORMAT database parameter

Valid values: A datetime format model as described in Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

Chapter 3
Configure Oracle SQL Connector for HDFS

3-34



Property Description

oracle.hadoop.exttab.colM
ap.timestampTZMask

Specifies the format mask used in the date_format_spec clause of the external table
for all TIMESTAMP WITH TIME ZONE columns. This clause indicates that a
character data field contains a timestamp in the specified format.

Default value: The default globalization format mask, which is set by the
NLS_TIMESTAMP_TZ_FORMAT database parameter

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colM
ap.column_name.columnL
ength

Specifies the length of all external table columns of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, and RAW. Optional.

Default Value: The value of oracle.hadoop.exttab.colMap.columnLength; if that
property is not set, then the maximum length allowed by the data type

Valid values: Integer

oracle.hadoop.exttab.colM
ap.column_name.columnT
ype

Overrides the data type mapping for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.columnType; if that
property is not set, then the default data type identified in Table 3-1

Valid values: See oracle.hadoop.exttab.colMap.columnType

oracle.hadoop.exttab.colM
ap.column_name.dateMask

Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.dateMask.

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colM
ap.column_name.fieldLeng
th

Overrides the character buffer length used by the ORACLE_LOADER access driver for
column_name. This property is especially useful for CLOB and extended data type
columns. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: Oracle SQL Connector for HDFS sets the default field lengths as
shown in the following table.

Table 3-4    Field Length Calculations

Data Type of Target Column Field Length

VARCHAR2, NVARCHAR2, CHAR,
NCHAR

Value of 

oracle.hadoop.exttab.colMap.column_name.colum
nLength

RAW 2 * columnLength property

CLOB, NCLOB Value of oracle.hadoop.exttab.colMap.fieldLength

All other types 255 (default size for external tables)

Valid values: Integer

Chapter 3
Configure Oracle SQL Connector for HDFS

3-35



Property Description

oracle.hadoop.exttab.colM
ap.column_name.nullIfSpe
cifier

This property is applied to a column identified by column_name in an external table.
Optional. Overrides the property oracle.hadoop.exttab.nullIfSpecifier.

Type: string

Valid values: same as for the property
oracle.hadoop.exttab.nullIfSpecifier.

Default values: none.

This property applies only to Delimited Text sources.

oracle.hadoop.exttab.colM
ap.column_name.timestam
pMask

Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.timestampMask.

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colM
ap.column_name.timestam
pTZMask

Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.timestampTZMask.

Valid values: A datetime format model as described in Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colu
mnCount

Specifies the number of columns for the external table created from delimited text
files. The column names are set to C1, C2,... Cn, where n is value of this property.

This property is ignored if oracle.hadoop.exttab.columnNames is set.

The -createTable command uses this property when 
oracle.hadoop.exttab.sourceType=text.

You must set either this property or oracle.hadoop.exttab.columnNames when
creating an external table from delimited text files.

oracle.hadoop.exttab.colu
mnNames

Specifies a comma-separated list of column names for an external table created
from delimited text files. If this property is not set, then the column names are set to
C1, C2,... Cn, where n is the value of the oracle.hadoop.exttab.columnCount
property.

The column names are read as SQL identifiers: unquoted values are capitalized,
and double-quoted values stay exactly as entered.

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

You must set either this property or oracle.hadoop.exttab.columnCount when creating
an external table from delimited text files.

Chapter 3
Configure Oracle SQL Connector for HDFS

3-36



Property Description

oracle.hadoop.exttab.data
CompressionCodec

Notice:

This property is deprecated.
OSCH discovers the compression code of each file at
runtime. The dataset can contain both compressed
and uncompressed files and can also contain files
compressed with different codecs.

Specifies the name of the compression codec class used to decompress the data
files. Specify this property when the data files are compressed. Optional.

This property specifies the class name of any compression codec that implements
the org.apache.hadoop.io.compress.CompressionCodec interface. This
codec applies to all data files.

Several standard codecs are available in Hadoop, including the following:

• bzip2: org.apache.hadoop.io.compress.BZip2Codec
• gzip: org.apache.hadoop.io.compress.GzipCodec
Default value: None

Chapter 3
Configure Oracle SQL Connector for HDFS

3-37



Property Description

oracle.hadoop.exttab.dataP
aths

Specifies a comma-separated list of fully qualified HDFS paths. This property
enables you to restrict the input by using special pattern-matching characters in the
path specification. See the following table. This property is required for the -
createTable and -publish commands using Data Pump or delimited text files.
The property is ignored for Hive data sources.

For example, to select all files in /data/s2/, and only the CSV files in /
data/s7/, /data/s8/, and /data/s9/, enter this expression:

/data/s2/,/data/s[7-9]/*.csv

The external table accesses the data contained in all listed files and all files in listed
directories. These files compose a single data set.

The data set can contain compressed files or uncompressed files, but not both.

Table 3-5    Pattern-Matching Characters

Character Description

? Matches any single character

* Matches zero or more characters

[abc] Matches a single character from the character set {a, b, c}

[a-b] Matches a single character from the character range {a...b}. The
character a must be less than or equal to b.

[^a] Matches a single character that is not from character set or range {a}.
The carat (^) must immediately follow the left bracket.

\c Removes any special meaning of character c. The backslash is the
escape character.

{ab\,cd} Matches a string from the string set {ab, cd}. Precede the comma with
an escape character (\) to remove the meaning of the comma as a
path separator.

{ab\,c{de\,fh}} Matches a string from the string set {ab, cde, cfh}. Precede the
comma with an escape character (\) to remove the meaning of the
comma as a path separator.

oracle.hadoop.exttab.dataP
athFilter

Specifies the path filter class. This property is ignored for Hive data sources.

Oracle SQL Connector for HDFS uses a default filter to exclude hidden files, which
begin with a dot or an underscore. If you specify another path filter class using the
this property, then your filter acts in addition to the default filter. Thus, only visible
files accepted by your filter are considered.

oracle.hadoop.exttab.defau
ltDirectory

Specifies the default directory for the Oracle external table. This directory is used for
all input and output files that do not explicitly name a directory object. In Oracle
RAC, this directory must be on a shared directory accessible by all Oracle
instances.

Valid value: The name of an existing database directory

Unquoted names are changed to upper case. Double-quoted names are not
changed; use them when case-sensitivity is desired. Single-quoted names are not
allowed for default directory names.

The -createTable command requires this property.

Chapter 3
Configure Oracle SQL Connector for HDFS

3-38



Property Description

oracle.hadoop.exttab.fieldT
erminator

Specifies the field terminator for an external table when
oracle.hadoop.exttab.sourceType=text. Optional.

Default value: , (comma)

Valid values: A string in one of the following formats:

• One or more regular printable characters; it cannot start with \u. For example,
\t represents a tab.

• One or more encoded characters in the format \uHHHH, where HHHH is a big-
endian hexadecimal representation of the character in UTF-16. For example,
\u0009 represents a tab. The hexadecimal digits are case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.hive.
columnType.*

Maps a Hive data type to an Oracle data type. The property name identifies the
Hive data type, and its value is an Oracle data type. The target columns in the
external table are created with the Oracle data type indicated by this property.

When Hive TIMESTAMP column is mapped to an Oracle TIMESTAMP column, then
the format mask is YYYY-MM-DD H24:MI:SS.FF. When a Hive STRING column is
mapped to an Oracle TIMESTAMP column, then the NLS parameter settings for the
database are used by default. You can override these defaults by using either the 
oracle.hadoop.exttab.colMap.timestampMask or 
oracle.hadoop.exttab.colMap.timestampTZMask properties.

Default values: The following table lists the Hive column type properties and their
default values.

Valid values: See the valid values for oracle.hadoop.exttab.colMap.columnType.

Table 3-6    Hive Column Type Mapping Properties

Property Default Value

oracle.hadoop.exttab.hive.columnType.BIGINT INTEGER
oracle.hadoop.exttab.hive.columnType.BOOLEAN VARCHAR2
oracle.hadoop.exttab.hive.columnType.DECIMAL NUMBER
oracle.hadoop.exttab.hive.columnType.DOUBLE NUMBER
oracle.hadoop.exttab.hive.columnType.FLOAT NUMBER
oracle.hadoop.exttab.hive.columnType.INT INTEGER
oracle.hadoop.exttab.hive.columnType.SMALLINT INTEGER
oracle.hadoop.exttab.hive.columnType.STRING VARCHAR2
oracle.hadoop.exttab.hive.columnType.TIMESTAMP TIMESTAMP
oracle.hadoop.exttab.hive.columnType.TINYINT INTEGER

oracle.hadoop.exttab.hive.
databaseName

Specifies the name of a Hive database that contains the input data table.

The -createTable command requires this property when
oracle.hadoop.exttab.sourceType=hive.

Chapter 3
Configure Oracle SQL Connector for HDFS

3-39



Property Description

oracle.hadoop.exttab.hive.
partitionFilter

Specifies a valid HiveQL expression that is used to filter the source Hive table
partitions. This property is ignored if the table is not partitioned.

Type: String

Default value: None. All partitions of the Hive table are mapped to external tables.

Valid values: A valid HiveQL expression.

Description: Specifies a valid HiveQL expression that is used to filter the source
Hive table partitions. This property is ignored if the Hive table is not partitioned.
Including other columns does not raise an error, but unintended consequences can
result. Oracle recommends that you exclude other columns.

The expression must conform to the following restrictions:

• Selects partitions and not individual records inside the partitions.
• Does not include columns that are not used to partition the table, because they

might cause unintended consequences.
• Does not include subqueries.
• Does not include user-defined functions (UDFs). Built-in functions are

supported.
• Does not support Hive variable name spaces (such as env:, system:,

hiveconf:, and hivevar:) because Hive variable expansion is disabled when
OSCH processes this string. Expand all variables in Hive CLI before setting this
property. For example:

CREATE VIEW view_name AS SELECT * from database.table_name 
WHERE expression;
DESCRIBE FORMATTED view_name;

The View Original Text field contains the query with all variables expanded.
Copy the where clause, starting after where.

Since all variable expansions are resolved at the Hadoop level, define any
Hadoop variables used in the expression using generic options (-D and -
conf). Use the Hive CLI to test the expression and ensure that it returns the
expected results. The following examples assume a source table defined with
this command:

CREATE TABLE t(c string)
   PARTITIONED BY (p1 string, p2 int, p3 boolean, p4 string, 
p5 timestamp);

Example 1: Nested Expressions

p1 like 'abc%' or (p5 >= '2010-06-20' and p5 <= '2010-07-03')

Example 2: Built-in Functions

year(p5) = 2014

Example 3: Bad Usage: Columns That Are Not Used to Partition the Table
These examples show that using c, a column that is not used to partition the table,
is unnecessary and can cause unexpected results.

Chapter 3
Configure Oracle SQL Connector for HDFS

3-40



Property Description

This example is equivalent to p2 > 35:

p2 > 35 and c like 'abc%'

This example loads all partitions. All partitions could contain c like 'abc%, so
partitions are filtered out:

p2 > 35 or c like 'abc%'

oracle.hadoop.exttab.hive.r
efreshTables

Only applies when the source is a Hive partitioned table, is ignored otherwise. This
property specifies whether the -publish operation should refresh HDFS data
paths in existing external tables when adding new external tables and views for new
Hive partitions in the source.

Set this property to TRUE to enable refresh. Note that enabling such a refresh can
slow down the -publish operation. If the existing Hive partitions in the source table
have not changed, set the property to FALSE.

Default value: FALSE
oracle.hadoop.exttab.hive.t
ableName

Specifies the name of an existing Hive table.

The -createTable command requires this property when
oracle.hadoop.exttab.sourceType=hive.

oracle.hadoop.exttab.hive.
deleteObsoleteTables

Specifies whether the -publish operation should drop the views and external
tables that do not map to any partition in the partitioned Hive table.   The property
only applies when the source is a Hive-partitioned table and is otherwise ignored.
This property is also ignored if the original -createTable operation for the Hive
partitioned source table included the oracle.hadoop.exttab.hive.partitionFilter
property

Set this property to TRUE to enable dropping obsolete objects.

Default value: FALSE
oracle.hadoop.exttab.initial
FieldEncloser

Specifies the initial field encloser for an external table created from delimited text
files. Optional.

Default value: null; no enclosers are specified for the external table definition.

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

Valid values: A string in one of the following formats:

• One or more regular printable characters; it cannot start with \u.

• One or more encoded characters in the format \uHHHH, where HHHH is a big-
endian hexadecimal representation of the character in UTF-16. The
hexadecimal digits are case insensitive.

Do not mix the two formats.

Chapter 3
Configure Oracle SQL Connector for HDFS

3-41



Property Description

oracle.hadoop.exttab.locati
onFileCount

Specifies the desired number of location files for the external table. Applicable only
to non-Data-Pump files.

Default value: 4

This property is ignored if the data files are in Data Pump format. Otherwise, the
number of location files is the lesser of:

• The number of data files
• The value of this property
At least one location file is created.

See "Enable Parallel Processing" for more information about the number of location
files.

oracle.hadoop.exttab.logDi
rectory

Specifies a database directory where log files and bad files are stored. The file
names are the default values used by external tables. For example, the name of a
log file is the table name followed by _%p.log.

This is an optional property for the -createTable command.

These are the default file name extensions:

• Log files: log
• Bad files: bad
Valid values: An existing Oracle directory object name.

Unquoted names are changed to uppercase. Quoted names are not changed. The
following table provides examples of how values are transformed.

Table 3-7    Examples of Quoted and Unquoted Values

Specified Value Interpreted Value

my_log_dir:'sales_tab_%p.log' MY_LOG_DIR/sales_tab_%p.log
'my_log_dir':'sales_tab_%p.log' my_log_dir/sales_tab_%p.log
"my_log_dir":"sales_tab_%p.log" my_log_dir/sales_tab_%p.log

oracle.hadoop.exttab.nullIf
Specifier

Specifies the NULLIF clause of the external table definition. Optional.

This property is applied to all the columns in an external table.

Type: string

Valid values: a string in following formats:

• One or more regular, printable characters, for example:\N
• One or more encoded characters in the format \uHHHH, where HHHH is a big-

endian hexadecimal representation of the character in UTF-16. For example:
\u000A represents a newline. The hexadecimal digits are case insensitive.

Default values: none.

This property applies only to Delimited Text sources.

See Also:

Example 2–1 . This example shows how to use
nullIfSpecifier when accessing HDFS data files
From Oracle Database.

Chapter 3
Configure Oracle SQL Connector for HDFS

3-42



Property Description

oracle.hadoop.exttab.prepr
ocessorDirectory

Specifies the database directory for the preprocessor. The file-system directory
must contain the hdfs_stream script.

Default value: OSCH_BIN_PATH
The preprocessor directory is used in the PREPROCESSOR clause of the external
table.

oracle.hadoop.exttab.prepr
ocessorScript

Specifies the name of the preprocessor script for the external table.

Default value: hdfs_stream
The preprocessor script name is used in the PREPROCESSOR clause of the external
table. This property is required only for Oracle Database running on Microsoft
Windows platforms and is optional for all other Oracle Database platforms. On
Microsoft Windows, the value must be set to hdfs_stream.cmd.

oracle.hadoop.exttab.recor
dDelimiter

Specifies the record delimiter for an external table created from delimited text files.
Optional.

Default value: \n
The -createTable command uses this property when 
oracle.hadoop.exttab.sourceType=text.

Valid values: A string in one of the following formats:

• One or more regular printable characters; it cannot start with \u.
• One or more encoded characters in the format \uHHHH, where HHHH is a big-

endian hexadecimal representation of the character in UTF-16. The
hexadecimal digits are case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.sourc
eType

Specifies the type of source files. The -createTable and -publish operations
require the value of this property.

Default value: text
Valid values: datapump, hive, or text

oracle.hadoop.exttab.strin
gSizes

Indicates whether the lengths specified for character strings are bytes or characters.
This value is used in the STRING SIZES ARE IN clause of the external table. Use
characters when loading multibyte character sets. See Oracle Database Utilities.

Default value: BYTES
Valid values: BYTES or CHARACTERS

oracle.hadoop.exttab.creat
eLogFiles

Specifies whether the log files should be created when the external tables are
queried. Oracle recommends enabling log file creation during development and
disabling log file creation during production for best performance.

Default value: TRUE
Log files are created by default. To stop creating log files you must drop the table,
set this property to FALSE, and then recreate the table. Use the -drop and -
createTable commands to drop and recreate the table.

oracle.hadoop.exttab.print
Verbose

Specifies whether to print verbose reports on the console during a -publish
operation. Set the value to TRUE to see verbose reports on the console. This
property should only be used for debugging.

Default value: FALSE

Chapter 3
Configure Oracle SQL Connector for HDFS

3-43



Property Description

oracle.hadoop.exttab.creat
eBadFiles

Specifies whether bad files should be created when the external tables are queried.
Bad files contain information on rows with bad data. Bad files are created only when
there is bad data. Oracle recommends creating bad files.

Default value: TRUE
Bad files are created by default. To stop creating bad files you must drop the table,
set this property to FALSE, and then recreate the table. Use the -drop and -
createTable commands to drop and recreate the table.

This property applies only to Hive and Delimited Text sources.

oracle.hadoop.exttab.logFil
eFormatUsePercentA

Indicates whether an external table log file name contains '%a'. This is an optional
property for the -createTable command.

Valid values: TRUE,FALSE
Default value: FALSE
The default log file name is<external_table_name>_%p.log. If the value is
TRUE, this generates deterministic log file names of the form
<external_table_name>_%a.log. For example: 'mytable_000.log', and
'mytable_001.log'.

Diagnostic external tables can be created over the .log files in order to determine
whether the load was successful or to review the reason for the rejected rows.

See Also:

• oracle.hadoop.exttab.badFileFormatUsePercentA
• LOGFILE | NOLOGFILE in Oracle Database

Utilities.

oracle.hadoop.exttab.table
Name

Specifies the metadata table for partitioned Hive tables or schema-qualified name of
the external table for all other data sources, in this format:

schemaName.tableName

If you omit schemaName, then the schema name defaults to the connection user
name.

Default value: none

Required property for all operations.

oracle.hadoop.exttab.trailin
gFieldEncloser

Specifies the trailing field encloser for an external table created from delimited text
files. Optional.

Default value: null; defaults to the value of oracle.hadoop.exttab.initialFieldEncloser
The -createTable command uses this property when 
oracle.hadoop.exttab.sourceType=text.

Valid values: A string in one of the following formats:

• One or more regular printable characters; it cannot start with \u.
• One or more encoded characters in the format \uHHHH, where HHHH is a big-

endian hexadecimal representation of the character in UTF-16. The
hexadecimal digits are case insensitive.

Do not mix the two formats.

Connections using url, user, and password Properties

The url, user, and password properties provide a distinct connection method. Do not
mix these properties with those required for a connection using an Oracle Wallet.

Chapter 3
Configure Oracle SQL Connector for HDFS

3-44

http://docs.oracle.com/database/121/SUTIL/GUID-D4313319-B751-4AA5-B92B-DF6990FD10A2.htm#SUTIL1396


Property Description

oracle.hadoop.connection.url Specifies the database connection string in the thin-style
service name format:

jdbc:oracle:thin:@//host_name:port/service_name

If you are unsure of the service name, then enter this
SQL command as a privileged user:

SQL> show parameter service

This property takes precedence over all other
connection properties.

Default value: Not defined

Valid values: A string

oracle.hadoop.connection.user Specifies an Oracle database log-in name. The
externalTable tool prompts for a password if the
oracle.hadoop.connection.password is not specified .

Default value: Not defined

Valid values: A string

oracle.hadoop.connection.password Password for the Oracle Database user. Oracle
recommends that you do not use this property to store a
clear text password outside of non-sensitive test or
demo environments. You can force a password prompt/
response by excluding the password property from the
connection. In that case, the externalTable tool prompts
for the password. If you require a connection with no
prompt/response, use the Oracle Wallet connection
method described in the next section instead.

Default value: Not defined.

Valid values: A string

Connections Using Oracle Wallet

When using Oracle Wallet as an external password store, set the properties shown in the
following table.

Table 3-8    Properties Required for Connections Using Oracle Wallet

Property Description

oracle.hadoop.connection.tnsEntryName Specifies a TNS entry name defined in the
tnsnames.ora file.

This property is used with the
oracle.hadoop.connection.tns_admin
property.

Default value: Not defined

Valid values: A string

Chapter 3
Configure Oracle SQL Connector for HDFS

3-45



Table 3-8    (Cont.) Properties Required for Connections Using Oracle Wallet

Property Description

oracle.hadoop.connection.tns_admin Specifies the directory that contains the
tnsnames.ora file. Define this property to use
transparent network substrate (TNS) entry names
in database connection strings. When using
TNSNames with the JDBC thin driver, you must
set either this property or the Java
oracle.net.tns_admin property. When both
are set, this property takes precedence over
oracle.net.tns_admin.

This property must be set when using Oracle
Wallet as an external password store.

Default value: The value of the Java
oracle.net.tns_admin system property

Valid values: A string

oracle.hadoop.connection.wallet_location Specifies a file path to an Oracle Wallet directory
where the connection credential is stored.

Default value: Not defined

Valid values: A string

Tip:

Connections using Oracle Wallet can accommodate many TNS entries and
are therefore recommended over those using the user, password and url
properties which are restricted to a single machine/port/servicename
combination.
For a simple step-by-step demonstration, see the posting Using Oracle SQL
Connector for HDFS with Oracle Wallet in the Connecting Hadoop With
Oracle blog.

Performance Tips for Querying Data in HDFS
Parallel processing is extremely important when you are working with large volumes of
data. When you use external tables, always enable parallel query with this SQL
command:

ALTER SESSION ENABLE PARALLEL QUERY;

Before loading the data into an Oracle database from the external files created by
Oracle SQL Connector for HDFS, enable parallel DDL:

ALTER SESSION ENABLE PARALLEL DDL;

Before inserting data into an existing database table, enable parallel DML with this
SQL command:

ALTER SESSION ENABLE PARALLEL DML;

Chapter 3
Performance Tips for Querying Data in HDFS

3-46

https://blogs.oracle.com/bigdataconnectors/entry/using_oracle_sql_connector_for
https://blogs.oracle.com/bigdataconnectors/entry/using_oracle_sql_connector_for
https://blogs.oracle.com/bigdataconnectors/
https://blogs.oracle.com/bigdataconnectors/


Hints such as APPEND and PQ_DISTRIBUTE also improve performance when you are inserting
data.

SeeMy Oracle Support Document 2111850.1 for additional details and examples for
improving performance.

Chapter 3
Performance Tips for Querying Data in HDFS

3-47

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=393560290853415&id=2111850.1&_adf.ctrl-state=xfdztztm_77


4
Oracle Loader for Apache Hadoop

This chapter explains how to use Oracle Loader for Apache Hadoop (Oracle Loader for
Hadoop) to load data from Apache Hadoop into tables in an Oracle Database. It contains the
following sections:

• What Is Oracle Loader for Hadoop?

• Interfaces to Oracle Loader for Hadoop

• Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

– Create the Target Table

– Create a Job Configuration File

– Establish Secure Connections to Oracle Database Using SSL and Oracle Wallet

– About Input Formats

– Mapping Input Fields to Target Table Columns

– About Output Formats

– Run a Loader Job

– Handling Rejected Records

– Balancing Loads When Loading Data into Partitioned Tables

– Optimize Communications Between Oracle Engineered Systems

• Oracle Loader for Hadoop Configuration Property Reference

What Is Oracle Loader for Hadoop?
Oracle Loader for Hadoop is an efficient and high-performance loader for fast loading of data
from a Hadoop cluster into a table in an Oracle database. It pre-partitions the data if
necessary and transforms it into a database-ready format. It can also sort records by primary
key or user-specified columns before loading the data or creating output files. Oracle Loader
for Hadoop uses the parallel processing framework of Hadoop to perform these
preprocessing operations, which other loaders typically perform on the database server as
part of the load process. Off-loading these operations to Hadoop reduces the CPU
requirements on the database server, thereby lessening the performance impact on other
database tasks.

Oracle Loader for Hadoop is a Java MapReduce application that balances the data across
reducers to help maximize performance. It works with a range of input data formats that
present the data as records with fields. It can read from sources that have the data already in
a record format (such as Avro files or Apache Hive tables), or it can split the lines of a text file
into fields.

If you have Java programming skills, you can extend the types of data that the loader can
handle by defining custom input formats. Then Oracle Loader for Hadoop uses your code to
extract the fields and records.

4-1



Interfaces to Oracle Loader For Hadoop
There are two ways to use Oracle Loader for Hadoop:

• Oracle Shell for Hadoop Loaders (OHSH)
OHSH is the preferred way to use Oracle Loader for Hadoop. It includes a CLI
(whose simple command syntax can also be scripted) for moving data between
Hadoop and Oracle Database using various resources, including OLH.

• The hadoop command-line utility
On the command line, you provide the job details with the configuration settings.
You typically provide these settings in a job configuration file. You can consider
this option, if you need to use a feature not supported by OHSH. For most cases,
OHSH is sufficient.

The remainder of this chapter describes using OLH with the hadoop command-line
utility. For information on using OLH with OHSH, see Oracle Shell for Hadoop Loaders.

Use Oracle Loader for Hadoop With the Hadoop Command
Line Utility

Perform the following basic steps when using Oracle Loader for Hadoop:

1. The first time you use Oracle Loader for Hadoop, ensure that the software is
installed and configured.

See "Oracle Loader for Hadoop Setup."

2. Connect to Oracle Database and create the target table.

See "Create the Target Table."

3. Establish a secure connection to the Oracle Database.

See "Establish Secure Connections to Oracle Database Using SSL and Oracle
Wallet."

4. Log in to either a node in the Hadoop cluster or a system set up as a Hadoop
client for the cluster.

5. If you are using offline database mode, then copy the table metadata to the
Hadoop system where you are logged in.

6. Create a configuration file. This file is an XML document that describes
configuration information, such as access to the target table metadata, the input
format of the data, and the output format.

See "Create a Job Configuration File."

7. Create an XML document that maps input fields to columns in the Oracle database
table. Optional.

See "Mapping Input Fields to Target Table Columns ."

8. Create a shell script to run the Oracle Loader for Hadoop job.

See "Run a Loader Job."

9. If you are connecting to a secure cluster, then you run kinit to authenticate
yourself.

Chapter 4
Interfaces to Oracle Loader For Hadoop

4-2



10. Run the shell script.

11. If the job fails, then use the diagnostic messages in the output to identify and correct the
error.

See "Job Reporting."

12. After the job succeeds, check the command output for the number of rejected records. If
too many records were rejected, then you may need to modify the input format
properties.

13. If you generated text files or Data Pump-format files, then load the data into Oracle
Database using one of these methods:

• Create an external table using Oracle SQL Connector for HDFS (online database
mode only).

See Oracle SQL Connector for Hadoop Distributed File System .

• Copy the files to the Oracle Database system and use SQL*Loader or external tables
to load the data into the target database table. Oracle Loader for Hadoop generates
scripts that you can use for these methods.

See "About DelimitedTextOutputFormat" or "About DataPumpOutputFormat."

14. Connect to Oracle Database as the owner of the target table. Query the table to ensure
that the data loaded correctly. If it did not, then modify the input or output format
properties as needed to correct the problem.

15. Before running the OraLoader job in a production environment, employ these
optimizations:

• Balancing Loads When Loading Data into Partitioned Tables

• Optimize Communications Between Oracle Engineered Systems

Interfaces to Oracle Loader for Hadoop
Oracle Loader for Hadoop operates in two modes:

• Online Database Mode

• Offline Database Mode

Online Database Mode
In online database mode, Oracle Loader for Hadoop can connect to the target database
using the credentials provided in the job configuration file or in an Oracle wallet. The loader
obtains the table metadata from the database. It can insert new records directly into the
target table or write them to a file in the Hadoop cluster. You can load records from an output
file when the data is needed in the database, or when the database system is less busy.

The following figure shows the relationships among elements in online database mode.

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-3



Figure 4-1    Online Database Mode

Table
Targ

et T
able

TaTargrgrgrg
etetet T T T

abababababab
 Table

Oracle 
Database

Table 
Metadata

Hadoop 
Data

Input 
Data

Hadoop Cluster

Oracle Loader
for Hadoop

Database System

Job 
Configuration

CVS or 
Data Pump 
Output 
File

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-4



Offline Database Mode
Offline database mode enables you to use Oracle Loader for Hadoop when the Oracle
Database system is on a separate network from the Hadoop cluster, or is otherwise
inaccessible. In this mode, Oracle Loader for Hadoop uses the information supplied in a table
metadata file, which you generate using a separate utility. The loader job stores the output
data in binary or text format output files on the Hadoop cluster. Loading the data into Oracle
Database is a separate procedure using another utility, such as Oracle SQL Connector for
Hadoop Distributed File System (HDFS) or SQL*Loader.

The following figure shows the relationships among elements in offline database mode. The
figure does not show the separate procedure of loading the data into the target table.

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-5



Figure 4-2    Offline Database Mode

Table
Targ

et T
able

TaTargrgrgrg
etetet T T T

abababababab
 Table

Oracle 
Database

Input 
Data

Hadoop Cluster

Oracle Loader
for Hadoop

Job 
Configuration

Database System

Table
Metadata

Table
Metadata

Oracle Loader
for Hadoop

CVS or 
Data Pump 
Output 
File

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-6



Create the Target Table
Oracle Loader for Hadoop loads data into one target table, which must exist in the Oracle
database. The table can be empty or contain data already. Oracle Loader for Hadoop does
not overwrite existing data.

Create the table the same way that you would create one for any other purpose. It must
comply with the following restrictions:

• Supported Data Types for Target Tables

• Supported Partitioning Strategies for Target Tables

Supported Data Types for Target Tables
You can define the target table using any of these data types:

• BINARY_DOUBLE
• BINARY_FLOAT
• CHAR
• DATE
• FLOAT
• INTERVAL DAY TO SECOND
• INTERVAL YEAR TO MONTH
• NCHAR
• NUMBER
• NVARCHAR2
• RAW
• TIMESTAMP
• TIMESTAMP WITH LOCAL TIME ZONE
• TIMESTAMP WITH TIME ZONE
• VARCHAR2
The target table can contain columns with unsupported data types, but these columns must
be nullable, or otherwise set to a value.

Supported Partitioning Strategies for Target Tables
Partitioning is a database feature for managing and efficiently querying very large tables. It
provides a way to decompose a large table into smaller and more manageable pieces called
partitions, in a manner entirely transparent to applications.

You can define the target table using any of the following single-level and composite-level 
partitioning strategies.

• Hash

• Hash-Hash

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-7



• Hash-List

• Hash-Range

• Interval

• Interval-Hash

• Interval-List

• Interval-Range

• List

• List-Hash

• List-List

• List-Range

• Range

• Range-Hash

• Range-List

• Range-Range

Oracle Loader for Hadoop does not support reference partitioning or virtual column-
based partitioning.

See Also:

Oracle Database VLDB and Partitioning Guide

Compression
Oracle Loader for Hadoop does not compress data. Compressing data during load is
defined by the table and database properties. To load data into a compressed table
define the table and database properties accordingly.

Create a Job Configuration File
A configuration file is an XML document that provides Hadoop with all the information
it needs to run a MapReduce job. This file can also provide Oracle Loader for Hadoop
with all the information it needs. See "Oracle Loader for Hadoop Configuration
Property Reference".

Configuration properties provide the following information, which is required for all
Oracle Loader for Hadoop jobs:

• How to secure connection to Oracle Database.

See "Establish Secure Connections to Oracle Database Using SSL and Oracle
Wallet."

• The format of the input data.

See "About Input Formats."

• The format of the output data.

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-8



See "About Output Formats."

OraLoader implements the org.apache.hadoop.util.Tool interface and follows the standard
Hadoop methods for building MapReduce applications. Thus, you can supply the
configuration properties in a file (as shown here) or on the hadoop command line. See "Run a
Loader Job."

You can use any text or XML editor to create the file. The following example provides an
example of a job configuration file.

Example 4-1    Job Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
 
<!--                          Input settings                             -->
 <property>
   <name>mapreduce.job.inputformat.class</name>
   <value>oracle.hadoop.loader.lib.input.DelimitedTextInputFormat</value>
 </property>
 
 <property>
   <name>mapreduce.input.fileinputformat.inputdir</name>
   <value>/user/oracle/moviedemo/session/*00000</value>
 </property>
 
 <property>
   <name>oracle.hadoop.loader.input.fieldTerminator</name>
   <value>\u0009</value>
 </property>
 
 <property>
   <name>oracle.hadoop.loader.input.fieldNames</name>
   
<value>SESSION_ID,TIME_IDDATE,CUST_ID,DURATION_SESSION,NUM_RATED,DURATION_RATED,NUM_COM
PLETED,DURATION_COMPLETED,TIME_TO_FIRST_START,NUM_STARTED,NUM_BROWSED,DURATION_BROWSED,
NUM_LISTED,DURATION_LISTED,NUM_INCOMPLETE,NUM_SEARCHED</value>
 </property>
 
 <property>
   <name>oracle.hadoop.loader.defaultDateFormat</name>
   <value>yyyy-MM-dd:HH:mm:ss</value>
 </property>
 

<!--                          Output settings                             -->
 <property>
   <name>mapreduce.job.outputformat.class</name>
   <value>oracle.hadoop.loader.lib.output.OCIOutputFormat</value>
 </property>
 
 <property>
   <name>mapreduce.output.fileoutputformat.outputdir</name>
   <value>temp_out_session</value>
 </property>
 
<!--                          Table information                           -->
 <property>
   <name>oracle.hadoop.loader.loaderMap.targetTable</name>
   <value>movie_sessions_tab</value>
 </property>   

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-9



 
<!--                          Connection information                      -->
 
<property>
  <name>oracle.hadoop.loader.connection.url</name>
  <value>jdbc:oracle:thin:@${HOST}:${TCPPORT}/${SERVICE_NAME}</value>
</property>
 
<property>
  <name>TCPPORT</name>
  <value>1521</value>
</property>
 
<property>
  <name>HOST</name>
  <value>myoraclehost.example.com</value>
</property>
 
<property>
 <name>SERVICE_NAME</name>
 <value>orcl</value>
</property>
 
<property>
  <name>oracle.hadoop.loader.connection.user</name>
  <value>MOVIEDEMO</value>
</property>
 
<property>
  <name>oracle.hadoop.loader.connection.password</name>
  <value>oracle</value>        
  <description> Note: Protect this file with 600 permissions since it has 
password in clear text.</description>
</property>
 
</configuration>

Establish Secure Connections to Oracle Database Using SSL and
Oracle Wallet

Learn about establishing secure connections to Oracle Database.

This section describes how to create and use an Oracle Wallet or the JDBC SSL
protocol to create and establish highly secure connections to Oracle Database.

Use Oracle Wallets
Oracle Wallet is a secure software container that stores authentication and signing
credentials. Oracle recommends that you use a wallet to provide your credentials. To
use an Oracle wallet, enter the following properties in the job configuration file:

• oracle.hadoop.loader.connection.wallet_location

• oracle.hadoop.loader.connection.tns_admin

• oracle.hadoop.loader.connection.url or oracle.hadoop.loader.connection.tnsEntryName

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-10



Use JDBC SSL
SSL is a widely used industry standard protocol that provides secure communication over a
network. SSL provides authentication, data encryption, and data integrity. SSL is required
when connecting to Oracle Cloud services such as Oracle Autonomous Data Warehouse
Cloud Service.

Connect to Oracle Database Using JDBC SSL
Learn to connect to Oracle Database using JDBC SSL.

1. Follow the instructions in Using JDBC SSL to connect to Oracle Database.

2. Add the following properties in the job configuration file:

<property> 
<name>oracle.hadoop.loader.connection.directory</name> 
<value><directory_location></value>
<description>For example: /home/oracle/SSL_wallet</description>
</property> 

<property>
<name>oracle.hadoop.loader.connection.tns_admin</name>
<value><directory_location></value>
<description>For example: /home/oracle/SSL_wallet</description>
</property>

<property>
<name>oracle.hadoop.loader.connection.tnsEntryName</name> 
<value><tns_entry></value>
<description>The TNS Entry must use the tcps protocol in order to 
activate SSL in the JDBC Thin driver.For example,
 inst1_ssl.</description> 
</property>

Generate the Target Table Metadata for Offline Database Mode
Learn to generate the Target table metadata for offline database mode.

Under some circumstances, the loader job cannot access the database, such as when the
Hadoop cluster is on a different network than Oracle Database. In such cases, you can use
the OraLoaderMetadata utility to extract and store the target table metadata in a file. To learn
more about the OraLoaderMetadata utility, see OraLoaderMetadata Utility.

About Input Formats
An input format reads a specific type of data stored in Hadoop. Several input formats are
available, which can read the data formats most commonly found in Hadoop:

• Delimited Text Input Format

• Complex Text Input Formats

• Hive Table Input Format

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-11



• Avro Input Format

• Oracle NoSQL Database Input Format

You can also use your own custom input formats. The descriptions of the built-in
formats provide information that may help you develop custom Java InputFormat
classes. See "Custom Input Formats."

You specify a particular input format for the data that you want to load into a database
table, by using the mapreduce.job.inputformat.class configuration property in the job
configuration file.

Note:

The built-in text formats do not handle header rows or newline characters
(\n) embedded in quoted values.

Delimited Text Input Format
To load data from a delimited text file, set mapreduce.job.inputformat.class to

oracle.hadoop.loader.lib.input.DelimitedTextInputFormat

About DelimitedTextInputFormat
The input file must comply with these requirements:

• Records must be separated by newline characters.

• Fields must be delimited using single-character markers, such as commas or tabs.

A null replaces any empty-string token, whether enclosed or unenclosed.

DelimitedTextInputFormat emulates the tokenization method of SQL*Loader:
Terminated by t, and optionally enclosed by ie, or by ie and te.
DelimitedTextInputFormat uses the following syntax rules, where t is the field
terminator, ie is the initial field encloser, te is the trailing field encloser, and c is one
character.

• Line = Token t Line | Token\n

• Token = EnclosedToken | UnenclosedToken

• EnclosedToken = (white-space)* ie [(non-te)* te te]* (non-te)* te (white-space)*

• UnenclosedToken = (white-space)* (non-t)*

• white-space = {c | Character.isWhitespace(c) and c!=t}

White space around enclosed tokens (data values) is discarded. For unenclosed
tokens, the leading white space is discarded, but not the trailing white space (if any).

This implementation enables you to define custom enclosers and terminator
characters, but it hard codes the record terminator as a newline, and white space as
Java Character.isWhitespace. A white space can be defined as the field terminator,
but then that character is removed from the class of white space characters to prevent
ambiguity.

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-12



Hadoop automatically decompresses compressed text files when they are read.

Required Configuration Properties
None. The default format separates fields with commas and has no field enclosures.

Optional Configuration Properties
Use one or more of the following properties to define the field delimiters for 
DelimitedTextInputFormat:

• oracle.hadoop.loader.input.fieldTerminator

• oracle.hadoop.loader.input.initialFieldEncloser

• oracle.hadoop.loader.input.trailingFieldEncloser

Use the following property to provide names for the input fields:

• oracle.hadoop.loader.input.fieldNames

Complex Text Input Formats
To load data from text files that are more complex than DelimitedTextInputFormat can
handle, set mapreduce.job.inputformat.class to

oracle.hadoop.loader.lib.input.RegexInputFormat
For example, a web log might delimit one field with quotes and another field with square
brackets.

About RegexInputFormat
RegexInputFormat requires that records be separated by newline characters. It identifies
fields in each text line by matching a regular expression:

• The regular expression must match the entire text line.

• The fields are identified using the capturing groups in the regular expression.

RegexInputFormat uses the java.util.regex regular expression-based pattern matching
engine. Hadoop automatically decompresses compressed files when they are read.

See Also:

Java Platform Standard Edition 6 Java Reference for more information about
java.util.regex at

http://docs.oracle.com/javase/6/docs/api/java/util/regex/package-
summary.html

Required Configuration Properties
Use the following property to describe the data input file:

• oracle.hadoop.loader.input.regexPattern

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-13

http://docs.oracle.com/javase/6/docs/api/java/util/regex/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/package-summary.html


Optional Configuration Properties
Use the following property to identify the names of all input fields:

• oracle.hadoop.loader.input.fieldNames

Use this property to enable case-insensitive matches:

• oracle.hadoop.loader.input.regexCaseInsensitive

Hive Table Input Format
To load data from a Hive table, set mapreduce.job.inputformat.class to

oracle.hadoop.loader.lib.input.HiveToAvroInputFormat

About HiveToAvroInputFormat
For nonpartitioned tables, HiveToAvroInputFormat imports the entire table, which is all
files in the Hive table directory.

For partitioned tables, HiveToAvroInputFormat imports one or more of the partitions.
You can either load or skip a partition. However, you cannot partially load a partition.

Oracle Loader for Hadoop rejects all rows with complex (non-primitive) column values.
UNIONTYPE fields that resolve to primitive values are supported. See "Handling
Rejected Records."

HiveToAvroInputFormat transforms rows in the Hive table into Avro records, and
capitalizes the Hive table column names to form the field names. This automatic
capitalization improves the likelihood that the field names match the target table
column names. See "Mapping Input Fields to Target Table Columns ".

Note:

This input format does not support Hive tables using quoted identifiers for
column names. See HIVE-6013

Also note that HiveToAvroInputFormat does not enforce the SQL Standard
Based Hive Authorization. For more information, see https://
cwiki.apache.org/confluence/display/Hive/
SQL+Standard+Based+Hive+Authorization.

Required Configuration Properties
You must specify the Hive database and table names using the following configuration
properties:

• oracle.hadoop.loader.input.hive.databaseName

• oracle.hadoop.loader.input.hive.tableName

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-14

https://issues.apache.org/jira/browse/HIVE-6013
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization


Optional Configuration Properties
To specify a subset of rows in the input Hive table to load, use the following property:

• oracle.hadoop.loader.input.hive.rowFilter

Avro Input Format
To load data from binary Avro data files containing standard Avro-format records, set 
mapreduce.job.inputformat.class to

oracle.hadoop.loader.lib.input.AvroInputFormat
To process only files with the .avro extension, append *.avro to directories listed in the
mapreduce.input.fileinputformat.inputdir configuration property.

Configuration Properties
None

Oracle NoSQL Database Input Format
To load data from Oracle NoSQL Database, set mapreduce.job.inputformat.class to

oracle.kv.hadoop.KVAvroInputFormat
This input format is defined in Oracle NoSQL Database 11g, Release 2 and later releases.

About KVAvroInputFormat
Oracle Loader for Hadoop uses KVAvroInputFormat to read data directly from Oracle NoSQL
Database.

KVAvroInputFormat passes the value but not the key from the key-value pairs in Oracle
NoSQL Database. If you must access the Oracle NoSQL Database keys as Avro data values,
such as storing them in the target table, then you must create a Java InputFormat class that
implements oracle.kv.hadoop.AvroFormatter. Then you can specify the
oracle.kv.formatterClass property in the Oracle Loader for Hadoop configuration file.

The KVAvroInputFormat class is a subclass of
org.apache.hadoop.mapreduce.InputFormat<oracle.kv.Key,
org.apache.avro.generic.IndexedRecord>

See Also:

Javadoc for the KVInputFormatBase class at

http://docs.oracle.com/cd/NOSQL/html/javadoc/index.html

Required Configuration Properties
You must specify the name and location of the key-value store using the following
configuration properties:

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-15

http://docs.oracle.com/cd/NOSQL/html/javadoc/index.html


• oracle.kv.hosts

• oracle.kv.kvstore

See "Oracle NoSQL Database Configuration Properties."

Custom Input Formats
If the built-in input formats do not meet your needs, then you can write a Java class for
a custom input format. The following information describes the framework in which an
input format works in Oracle Loader for Hadoop.

About Implementing a Custom Input Format
Oracle Loader for Hadoop gets its input from a class extending
org.apache.hadoop.mapreduce.InputFormat. You must specify the name of that class
in the mapreduce.job.inputformat.class configuration property.

The input format must create RecordReader instances that return an Avro
IndexedRecord input object from the getCurrentValue method. Use this method
signature:

public org.apache.avro.generic.IndexedRecord getCurrentValue()
throws IOException, InterruptedException;

Oracle Loader for Hadoop uses the schema of the IndexedRecord input object to
discover the names of the input fields and map them to the columns of the target table.

About Error Handling
If processing an IndexedRecord value results in an error, Oracle Loader for Hadoop
uses the object returned by the getCurrentKey method of the RecordReader to provide
feedback. It calls the toString method of the key and formats the result in an error
message. InputFormat developers can assist users in identifying the rejected records
by returning one of the following:

• Data file URI

• InputSplit information

• Data file name and the record offset in that file

Oracle recommends that you do not return the record in clear text, because it might
contain sensitive information; the returned values can appear in Hadoop logs
throughout the cluster. See "Log Rejected Records in Bad Files."

If a record fails and the key is null, then the loader generates no identifying
information.

Supporting Data Sampling
Oracle Loader for Hadoop uses a sampler to improve performance of its MapReduce
job. The sampler is multithreaded, and each sampler thread instantiates its own copy
of the supplied InputFormat class. When implementing a new InputFormat, ensure
that it is thread-safe. See "Balancing Loads When Loading Data into Partitioned
Tables."

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-16



InputFormat Source Code Example
Oracle Loader for Hadoop provides the source code for an InputFormat example.

 In order to access the examples, unzip file examples.zip, which is in $OLH_HOME. You can
find the InputFormat example in the examples/jsrc directory.

The sample format loads data from a simple, comma-separated value (CSV) file. To use this
input format, add $OLH_HOME/examples/oraloader-examples.jar to HADOOP_CLASSPATH and
specify oracle.hadoop.loader.examples.CSVInputFormat as the value of 
mapreduce.job.inputformat.class in the job configuration file.

This input format automatically assigns field names of F0, F1, F2, and so forth. It does not
have configuration properties.

Mapping Input Fields to Target Table Columns
Mapping identifies which input fields are loaded into which columns of the target table. You
may be able to use the automatic mapping facilities, or you can always manually map the
input fields to the target columns.

Automatic Mapping
Oracle Loader for Hadoop can automatically map the fields to the appropriate columns when
the input data complies with these requirements:

• All columns of the target table are loaded.

• The input data field names in the IndexedRecord input object exactly match the column
names. For example: When you load from a Hive table, the names of the Oracle target
table columns exactly match the names of the Hive table columns.

• All input fields that are mapped to DATE columns can be parsed using the same Java date
format.

Use these configuration properties for automatic mappings:

• oracle.hadoop.loader.loaderMap.targetTable: Identifies the target table.

• oracle.hadoop.loader.defaultDateFormat: Specifies a default date format that applies to all DATE
fields.

Manual Mapping
For loads that do not comply with the requirements for automatic mapping, you must define
additional properties. These properties enable you to:

• Load data into a subset of the target table columns.

• Create explicit mappings when the input field names are not identical to the database
column names.

• Specify different date formats for different input fields.

Use these properties for manual mappings:

• oracle.hadoop.loader.loaderMap.targetTable configuration property to identify the target table.
Required.

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-17



• oracle.hadoop.loader.loaderMap.columnNames: Lists the columns to be loaded.

• oracle.hadoop.loader.defaultDateFormat: Specifies a default date format that applies to
all DATE fields.

• oracle.hadoop.loader.loaderMap.column_name.format: Specifies the data format for a
particular column.

• oracle.hadoop.loader.loaderMap.column_name.field: Identifies the name of an Avro
record field mapped to a particular column.

Note:

Manual Mapping is particularly useful when different date columns have
different formats.

Manual Mapping: Examples
The following are the examples of manual mapping:

Configuration File conf.xml when loading from a text file

When you load delimited text from text files on HDFS, use F0, F1, … to refer to
columns in text files. In this example, F0 maps to EMPLOYEE_ID in the columnNames
property, F1 maps to LAST_NAME, and so on.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>   
     <property>       
          <name>oracle.hadoop.loader.loaderMap.targetTable</name>       
          <value>HR.EMPLOYEES</value>    
     </property>    
     <property>       
          <name>oracle.hadoop.loader.loaderMap.columnNames</name>       
          <value>EMPLOYEE_ID,LAST_NAME,EMAIL,HIRE_DATE,JOB_ID</value>   
     </property>   
      <property>       
          <name>oracle.hadoop.loader.loaderMap.EMPLOYEE_ID.field</name>       
          <value>F0</value>    
      </property>     
       <property>       
          <name>oracle.hadoop.loader.loaderMap.EMPLOYEE_ID.format</name>       
          <value></value>    
      </property>    
       <property>       
          <name>oracle.hadoop.loader.loaderMap.LAST_NAME.field</name>       
          <value>F1</value>    
      </property>    
       <property>       
          <name>oracle.hadoop.loader.loaderMap.LAST_NAME.format</name>       
          <value></value>   
      </property>    
       <property>       
          <name>oracle.hadoop.loader.loaderMap.EMAIL.field</name>       
          <value>F2</value>   
      </property>   
       <property>       
          <name>oracle.hadoop.loader.loaderMap.EMAIL.format</name>       

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-18



          <value></value>   
      </property>    
       <property>       
          <name>oracle.hadoop.loader.loaderMap.HIRE_DATE.field</name>       
          <value>F3</value>    
      </property>    
       <property>       
          <name>oracle.hadoop.loader.loaderMap.HIRE_DATE.format</name>       
          <value>MM-dd-yyyy</value>    
      </property>    
       <property>        
           <name>oracle.hadoop.loader.loaderMap.JOB_ID.field</name>       
           <value>F4</value>    
      </property>    
       <property>       
           <name>oracle.hadoop.loader.loaderMap.JOB_ID.format</name>       
           <value></value>    
       </property>
</configuration>

Configuration File conf.xml when loading from a Hive table

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>    
     <property>       
          <name>oracle.hadoop.loader.loaderMap.targetTable</name>          
          <value>HR.EMPLOYEES</value>   
    </property>    
     <property>       
          <name>oracle.hadoop.loader.loaderMap.columnNames</name>       
          <value>EMPLOYEE_ID,LAST_NAME,EMAIL,HIRE_DATE,JOB_ID</value>    
    </property>    
     <property>       
          <name>oracle.hadoop.loader.loaderMap.EMPLOYEE_ID.field</name>       
          <value>EMPLOYEE_ID</value>    
    </property>    
     <property>       
          <name>oracle.hadoop.loader.loaderMap.EMPLOYEE_ID.format</name>       
          <value></value>    
     </property>    
     <property>       
          <name>oracle.hadoop.loader.loaderMap.LAST_NAME.field</name>       
          <value>LAST_NAME</value>    
     </property>    
      <property>       
          <name>oracle.hadoop.loader.loaderMap.LAST_NAME.format</name>       
          <value></value>    
     </property>    
      <property>       
          <name>oracle.hadoop.loader.loaderMap.EMAIL.field</name>       
          <value>EMAIL</value>    
     </property>    
      <property>       
          <name>oracle.hadoop.loader.loaderMap.EMAIL.format</name>       
          <value></value>    
     </property>     
      <property>       
          <name>oracle.hadoop.loader.loaderMap.HIRE_DATE.field</name>       
          <value>HIRE_DATE</value>    
      </property>     
      <property>       

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-19



          <name>oracle.hadoop.loader.loaderMap.HIRE_DATE.format</name>       
          <value>MM-dd-yyyy</value>    
      </property>     
       <property>       
          <name>oracle.hadoop.loader.loaderMap.JOB_ID.field</name>       
          <value>JOB_ID</value>    
      </property>    
       <property>      
          <name>oracle.hadoop.loader.loaderMap.JOB_ID.format</name>       
          <value></value>    
      </property>
</configuration>

About Output Formats
In online database mode, you can choose between loading the data directly into an
Oracle database table or storing it in a file. In offline database mode, you are restricted
to storing the output data in a file, which you can load into the target table as a
separate procedure. You specify the output format in the job configuration file using the 
mapreduce.job.outputformat.class property.

Choose from these output formats:

• JDBC Output Format: Loads the data directly into the target table.

• Oracle OCI Direct Path Output Format: Loads the data directly into the target
table.

• Delimited Text Output Format: Stores the data in a local file.

• Oracle Data Pump Output Format: Stores the data in a local file.

JDBC Output Format
You can use a JDBC connection between the Hadoop system and Oracle Database to
load the data. The output records of the loader job are loaded directly into the target
table by map or reduce tasks as part of the OraLoader process, in online database
mode. No additional steps are required to load the data.

A JDBC connection must be open between the Hadoop cluster and the Oracle
Database system for the duration of the job.

To use this output format, set mapreduce.job.outputformat.class to

oracle.hadoop.loader.lib.output.JDBCOutputFormat

About JDBCOutputFormat
JDBCOutputFormat uses standard JDBC batching to optimize performance and
efficiency. If an error occurs during batch execution, such as a constraint violation, the
JDBC driver stops execution immediately. Thus, if there are 100 rows in a batch and
the tenth row causes an error, then nine rows are inserted and 91 rows are not.

The JDBC driver does not identify the row that caused the error, and so Oracle Loader
for Hadoop does not know the insert status of any of the rows in the batch. It counts all
rows in a batch with errors as "in question," that is, the rows may or may not be
inserted in the target table. The loader then continues loading the next batch. It
generates a load report at the end of the job that details the number of batch errors
and the number of rows in question.

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-20



One way that you can handle this problem is by defining a unique key in the target table. For
example, the HR.EMPLOYEES table has a primary key named EMPLOYEE_ID. After loading the
data into HR.EMPLOYEES, you can query it by EMPLOYEE_ID to discover the missing employee
IDs.Then you can locate the missing employee IDs in the input data, determine why they
failed to load, and try again to load them.

Configuration Properties
To control the batch size, set this property:

oracle.hadoop.loader.connection.defaultExecuteBatch

Oracle OCI Direct Path Output Format
You can use the direct path interface of Oracle Call Interface (OCI) to load data into the target
table. Each reducer loads into a distinct database partition in online database mode, enabling
the performance gains of a parallel load. No additional steps are required to load the data.

The OCI connection must be open between the Hadoop cluster and the Oracle Database
system for the duration of the job.

To use this output format, set mapreduce.job.outputformat.class to

oracle.hadoop.loader.lib.output.OCIOutputFormat

About OCIOutputFormat
OCIOutputFormat has the following restrictions:

• It is available only on the Linux x86.64 platform.

• The MapReduce job must create one or more reducers.

• The target table must be partitioned.

• For Oracle Database 11g (11.2.0.3), apply the patch for bug 13498646 if the target table
is a composite interval partitioned table in which the subpartition key contains a CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 column. Later versions of Oracle Database do not require
this patch.

Configuration Properties
To control the size of the direct path stream buffer, set this property:

oracle.hadoop.loader.output.dirpathBufsize

Delimited Text Output Format
You can create delimited text output files on the Hadoop cluster. The map or reduce tasks
generate delimited text files, using the field delimiters and enclosers that you specify in the
job configuration properties. Afterward, you can load the data into an Oracle database as a
separate procedure. See "About DelimitedTextOutputFormat."

This output format can use either an open connection to the Oracle Database system to
retrieve the table metadata in online database mode, or a table metadata file generated by
the OraloaderMetadata utility in offline database mode.

To use this output format, set mapreduce.job.outputformat.class to

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-21



oracle.hadoop.loader.lib.output.DelimitedTextOutputFormat

About DelimitedTextOutputFormat
Output tasks generate delimited text format files, and one or more corresponding
SQL*Loader control files, and SQL scripts for loading with external tables.

If the target table is not partitioned or if oracle.hadoop.loader.loadByPartition is false, then
DelimitedTextOutputFormat generates the following files:

• A data file named oraloader-taskId-csv-0.dat.
• A SQL*Loader control file named oraloader-csv.ctl for the entire job.

• A SQL script named oraloader-csv.sql to load the delimited text file into the
target table.

For partitioned tables, multiple output files are created with the following names:

• Data files: oraloader-taskId-csv-partitionId.dat
• SQL*Loader control files: oraloader-taskId-csv-partitionId.ctl
• SQL script: oraloader-csv.sql
In the generated file names, taskId is the mapper or reducer identifier, and partitionId
is the partition identifier.

If the Hadoop cluster is connected to the Oracle Database system, then you can use
Oracle SQL Connector for HDFS to load the delimited text data into an Oracle
database. See Oracle SQL Connector for Hadoop Distributed File System .

Alternatively, you can copy the delimited text files to the database system and load the
data into the target table in one of the following ways:

• Use the generated control files to run SQL*Loader and load the data from the
delimited text files.

• Use the generated SQL scripts to perform external table loads.

The files are located in the ${mapreduce.output.fileoutputformat.outputdir}/_olh
directory.

Configuration Properties
The following properties control the formatting of records and fields in the output files:

• oracle.hadoop.loader.output.escapeEnclosers

• oracle.hadoop.loader.output.fieldTerminator

• oracle.hadoop.loader.output.initialFieldEncloser

• oracle.hadoop.loader.output.trailingFieldEncloser

The following example shows a sample SQL*Loader control file that might be
generated by an output task.

Example 4-2    Sample SQL*Loader Control File

LOAD DATA CHARACTERSET AL32UTF8
INFILE 'oraloader-csv-1-0.dat'
BADFILE 'oraloader-csv-1-0.bad'
DISCARDFILE 'oraloader-csv-1-0.dsc'

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-22



INTO TABLE "SCOTT"."CSV_PART" PARTITION(10) APPEND
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(
   "ID"      DECIMAL EXTERNAL,
   "NAME"    CHAR,
   "DOB"     DATE 'SYYYY-MM-DD HH24:MI:SS'
)

Oracle Data Pump Output Format
You can create Data Pump format files on the Hadoop cluster. The map or reduce tasks
generate Data Pump files. Afterward, you can load the data into an Oracle database as a
separate procedure. See "About DataPumpOutputFormat."

This output format can use either an open connection to the Oracle Database system in
online database mode, or a table metadata file generated by the OraloaderMetadata utility in
offline database mode.

To use this output format, set mapreduce.job.outputformat.class to

oracle.hadoop.loader.lib.output.DataPumpOutputFormat

About DataPumpOutputFormat
DataPumpOutputFormat generates data files with names in this format:

oraloader-taskId-dp-partitionId.dat
In the generated file names, taskId is the mapper or reducer identifier, and partitionId is the
partition identifier.

If the Hadoop cluster is connected to the Oracle Database system, then you can use Oracle
SQL Connector for HDFS to load the Data Pump files into an Oracle database. See Oracle
SQL Connector for Hadoop Distributed File System .

Alternatively, you can copy the Data Pump files to the database system and load them using
a SQL script generated by Oracle Loader for Hadoop. The script performs the following tasks:

1. Creates an external table definition using the ORACLE_DATAPUMP access driver. The binary
format Oracle Data Pump output files are listed in the LOCATION clause of the external
table.

2. Creates a directory object that is used by the external table. You must uncomment this
command before running the script. To specify the directory name used in the script, set
the oracle.hadoop.loader.extTabDirectoryName property in the job configuration file.

3. Insert the rows from the external table into the target table. You must uncomment this
command before running the script.

The SQL script is located in the ${mapreduce.output.fileoutputformat.outputdir}/_olh
directory.

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-23



See Also:

• Oracle Database Administrator's Guide for more information about
creating and managing external tables

• Oracle Database Utilities for more information about the
ORACLE_DATAPUMP access driver

Run a Loader Job
To run a job using Oracle Loader for Hadoop, you use the OraLoader utility in a hadoop
command.

The following is the basic syntax:

hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \
-conf job_config.xml \
-libjars input_file_format1.jar[,input_file_format2.jar...]

You can include any generic hadoop command-line option. OraLoader implements the
org.apache.hadoop.util.Tool interface and follows the standard Hadoop methods
for building MapReduce applications.

Unzip the examples.zip file in $OLH_HOME in order to use the oraloader-examples.jar
file in the instructions below.

Basic Options

-conf job_config.xml
Identifies the job configuration file. See "Create a Job Configuration File."

-libjars
Identifies the JAR files for the input format.

• When using the example input format, specify $OLH_HOME/jlib/oraloader-
examples.jar. (You will first need to set up the example for use as described in 
InputFormat Source Code Example.)

• When using the Hive or Oracle NoSQL Database input formats, you must specify
additional JAR files, as described later in this section.

• When using a custom input format, specify its JAR file. Also remember to add the
JAR to HADOOP_CLASSPATH.

Separate multiple file names with commas, and list each one explicitly. Wildcard
characters and spaces are not allowed.

Oracle Loader for Hadoop prepares internal configuration information for the
MapReduce tasks. It stores table metadata information and the dependent Java
libraries in the distributed cache, so that they are available to the MapReduce tasks
throughout the cluster.

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-24



Example of Running OraLoader

The following uses a built-in input format and a job configuration file named MyConf.xml.

HADOOP_CLASSPATH="$OLH_HOME/jlib/*:$OLH_HOME/examples/oraloader-
examples.jar:$HADOOP_CLASSPATH"

hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \
-conf MyConf.xml -libjars $OLH_HOME/jlib/oraloader-examples.jar

Specify Hive Input Format JAR Files
When using HiveToAvroInputFormat, you must add the Hive configuration directory to the
HADOOP_CLASSPATH environment variable:

HADOOP_CLASSPATH="$OLH_HOME/jlib/*:hive_home/lib/*:hive_conf_dir:$HADOOP_CLASSPATH"

You must also add the following Hive JAR files, in a comma-separated list, to the -libjars
option of the hadoop command. Replace the stars (*) with the complete file names on your
system:

• hive-exec-*.jar
• hive-metastore-*.jar
• libfb303*.jar
This example shows the full file names in Cloudera's Distribution including Apache Hadoop
(CDH) 5.8:

# hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \ 
-conf MyConf.xml \
-libjars hive-exec-1.1.0-cdh5.8.0.jar, hive-metastore-1.1.0-cdh5.8.0.jar, 
libfb303-0.9.3.jar  

Specify Oracle NoSQL Database Input Format JAR Files
When using KVAvroInputFormat from Oracle NoSQL Database 11g, Release 2, you must
include $KVHOME/lib/kvstore.jar in your HADOOP_CLASSPATH and you must include the -
libjars option in the hadoop command:

hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \ 
-conf MyConf.xml \
-libjars $KVHOME/lib/kvstore.jar

Job Reporting
Oracle Loader for Hadoop consolidates reporting information from individual tasks into a file
named ${mapreduce.output.fileoutputformat.outputdir}/_olh/oraloader-report.txt.
Among other statistics, the report shows the number of errors, broken out by type and task,
for each mapper and reducer.

Handling Rejected Records
Oracle Loader for Hadoop may reject input records for a variety of reasons, such as:

• Errors in the mapping properties

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-25



• Missing fields in the input data

• Records mapped to invalid table partitions

• Badly formed records, such as dates that do not match the date format or records
that do not match regular expression patterns

Log Rejected Records in Bad Files
By default, Oracle Loader for Hadoop does not log the rejected records into Hadoop
logs; it only logs information on how to identify the rejected records. This practice
prevents user-sensitive information from being stored in Hadoop logs across the
cluster.

You can direct Oracle Loader for Hadoop to log rejected records by setting the 
oracle.hadoop.loader.logBadRecords configuration property to true. Then Oracle Loader
for Hadoop logs bad records into one or more "bad" files in the _olh/ directory under
the job output directory.

Set a Job Reject Limit
Some problems can cause Oracle Loader for Hadoop to reject every record in the
input. To mitigate the loss of time and resources, Oracle Loader for Hadoop aborts the
job after rejecting 1000 records.

You can change the maximum number of rejected records allowed by setting the 
oracle.hadoop.loader.rejectLimit configuration property. A negative value turns off the reject
limit and allows the job to run to completion regardless of the number of rejected
records.

Balancing Loads When Loading Data into Partitioned Tables
The goal of load balancing is to generate a MapReduce partitioning scheme that
assigns approximately the same amount of work to all reducers.

The sampling feature of Oracle Loader for Hadoop balances loads across reducers
when data is loaded into a partitioned database table. It generates an efficient
MapReduce partitioning scheme that assigns database partitions to the reducers.

The execution time of a reducer is usually proportional to the number of records that it
processes—the more records, the longer the execution time. When sampling is
disabled, all records from a given database partition are sent to one reducer. This can
result in unbalanced reducer loads, because some database partitions may have more
records than others. Because the execution time of a Hadoop job is usually dominated
by the execution time of its slowest reducer, unbalanced reducer loads slow down the
entire job.

Use the Sampling Feature
You can turn the sampling feature on or off by setting the 
oracle.hadoop.loader.sampler.enableSampling configuration property. Sampling is turned on
by default.

Tuning Load Balancing
These job configuration properties control the quality of load balancing:

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-26



• oracle.hadoop.loader.sampler.maxLoadFactor

• oracle.hadoop.loader.sampler.loadCI

The sampler uses the expected reducer load factor to evaluate the quality of its partitioning
scheme. The load factor is the relative overload for each reducer, calculated as
(assigned_load - ideal_load)/ideal_load. This metric indicates how much a reducer's load
deviates from a perfectly balanced reducer load. A load factor of 1.0 indicates a perfectly
balanced load (no overload).

Small load factors indicate better load balancing. The maxLoadFactor default of 0.05 means
that no reducer is ever overloaded by more than 5%. The sampler guarantees this
maxLoadFactor with a statistical confidence level determined by the value of loadCI. The
default value of loadCI is 0.95, which means that any reducer's load factor exceeds
maxLoadFactor in only 5% of the cases.

There is a trade-off between the execution time of the sampler and the quality of load
balancing. Lower values of maxLoadFactor and higher values of loadCI achieve more
balanced reducer loads at the expense of longer sampling times. The default values of
maxLoadFactor=0.05 and loadCI=0.95 are a good trade-off between load balancing quality
and execution time.

Tuning Sampling Behavior
By default, the sampler runs until it collects just enough samples to generate a partitioning
scheme that satisfies the maxLoadFactor and loadCI criteria.

However, you can limit the sampler running time by setting the 
oracle.hadoop.loader.sampler.maxSamplesPct property, which specifies the maximum number of
sampled records.

When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme?
Oracle Loader for Hadoop uses the generated partitioning scheme only if sampling is
successful. A sampling is successful if it generates a partitioning scheme with a maximum
reducer load factor of (1+ maxLoadFactor) guaranteed at a statistical confidence level of
loadCI.

Partition report identifies the keys that are assigned to the various mappers. This report is
saved in XML for the sampler to use; it does not contain information of use to you. The report
is named ${mapreduce.output.fileoutputformat.outputdir}/_balancer/
orabalancer_report.xml. It is only generated for sampled jobs. This xml file contains the
information about how to assign map output to different reducers, as well as the sampling
statistics.

The default values of maxLoadFactor, loadCI, and maxSamplesPct allow the sampler to
successfully generate high-quality partitioning schemes for a variety of different input data
distributions. However, the sampler might be unsuccessful in generating a partitioning
scheme using custom property values, such as when the constraints are too rigid or the
number of required samples exceeds the user-specified maximum of maxSamplesPct. In
these cases, Oracle Loader for Hadoop generates a log message identifying the problem,
partitions the records using the database partitioning scheme, and does not guarantee load
balancing.

Alternatively, you can reset the configuration properties to less rigid values. Either increase
maxSamplesPct, or decrease maxLoadFactor or loadCI, or both.

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-27



Resolve Memory Issues
A custom input format may return input splits that do not fit in memory. If this happens,
the sampler returns an out-of-memory error on the client node where the loader job is
submitted.

To resolve this problem:

• Increase the heap size of the JVM where the job is submitted.

• Adjust the following properties:

– oracle.hadoop.loader.sampler.hintMaxSplitSize

– oracle.hadoop.loader.sampler.hintNumMapTasks

If you are developing a custom input format, then see "Custom Input Formats."

What Happens When a Sampling Feature Property Has an Invalid Value?
If any configuration properties of the sampling feature are set to values outside the
accepted range, an exception is not returned. Instead, the sampler prints a warning
message, resets the property to its default value, and continues executing.

Optimize Communications Between Oracle Engineered Systems
If you are using Oracle Loader for Hadoop to load data from Oracle Big Data
Appliance to Oracle Exadata Database Machine, then you can increase throughput by
configuring the systems to use Sockets Direct Protocol (SDP) over the InfiniBand
private network. This setup provides an additional connection attribute whose sole
purpose is serving connections to Oracle Database to load data.

To specify SDP protocol:

1. Add JVM options to the HADOOP_OPTS environment variable to enable JDBC SDP
export:

HADOOP_OPTS="-Doracle.net.SDP=true -Djava.net.preferIPv4Stack=true"
2. Set this Hadoop configuration property for the child task JVMs:

-D mapred.child.java.opts="-Doracle.net.SDP=true -
Djava.net.preferIPv4Stack=true"

Note:

This Hadoop configuration property can be either added to the OLH
command line or set in the configuration file.

3. Configure standard Ethernet communications. In the job configuration file, set 
oracle.hadoop.loader.connection.url using this syntax:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
     (ADDRESS=(PROTOCOL=TCP)(HOST=hostName)(PORT=portNumber)))
     (CONNECT_DATA=(SERVICE_NAME=serviceName)))

Chapter 4
Use Oracle Loader for Hadoop With the Hadoop Command Line Utility

4-28



4. Configure the Oracle listener on Exadata to support the SDP protocol and bind it to a
specific port address (such as 1522). In the job configuration file, specify the listener
address as the value of oracle.hadoop.loader.connection.oci_url using this syntax:

(DESCRIPTION=(ADDRESS=(PROTOCOL=SDP)
    (HOST=hostName) (PORT=portNumber))
    (CONNECT_DATA=(SERVICE_NAME=serviceName)))

Replace hostName, portNumber, and serviceName with the appropriate values to identify
the SDP listener on your Oracle Exadata Database Machine.

See Also:

Oracle Big Data Appliance Software User's Guide for more information about
configuring communications over InfiniBand

Oracle Loader for Hadoop Configuration Property Reference
OraLoader uses the standard methods of specifying configuration properties in the hadoop
command. You can use the -conf option to identify configuration files, and the -D option to
specify individual properties.

This section describes the OraLoader configuration properties, the Oracle NoSQL Database
configuration properties, and a few generic Hadoop MapReduce properties that you typically
must set for an OraLoader job:

• MapReduce Configuration Properties

• OraLoader Configuration Properties

• Oracle NoSQL Database Configuration Properties

A configuration file showing all OraLoader properties is in $OLH_HOME/doc/oraloader-
conf.xml.

See Also:

Hadoop documentation for job configuration files at

http://wiki.apache.org/hadoop/JobConfFile

MapReduce Configuration Properties

Property Description

mapreduce.job.name Type: String

Default Value: OraLoader
Description: The Hadoop job name. A unique name can
help you monitor the job using tools such as the Hadoop
JobTracker web interface and Cloudera Manager.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-29

http://wiki.apache.org/hadoop/JobConfFile


Property Description

mapreduce.input.fileinputformat.inputdir Type: String

Default Value: Not defined

Description: A comma-separated list of input
directories.

mapreduce.job.inputformat.class Type: String

Default Value: Not defined

Description: Identifies the format of the input data. You
can enter one of the following built-in input formats, or
the name of a custom InputFormat class:

• oracle.hadoop.loader.lib.input.AvroInput
Format

• oracle.hadoop.loader.lib.input.Delimited
TextInputFormat

• oracle.hadoop.loader.lib.input.HiveToAvr
oInputFormat

• oracle.hadoop.loader.lib.input.RegexInpu
tFormat

• oracle.kv.hadoop.KVAvroInputFormat
See "About Input Formats" for descriptions of the built-in
input formats.

mapreduce.output.fileoutputformat.outputdir Type: String

Default Value: Not defined

Description: A comma-separated list of output
directories, which cannot exist before the job runs.
Required.

mapreduce.job.outputformat.class Type: String

Default Value: Not defined

Description: Identifies the output type. The values can
be:

• oracle.hadoop.loader.lib.output.DataPump
OutputFormat
Writes data records into binary format files that can
be loaded into the target table using an external
table.

• oracle.hadoop.loader.lib.output.Delimite
dTextOutputFormat
Writes data records to delimited text format files
such as comma-separated values (CSV) format
files.

• oracle.hadoop.loader.lib.output.JDBCOutp
utFormat
Inserts rows into the target table using a JDBC
connection.

• oracle.hadoop.loader.lib.output.OCIOutpu
tFormat
Inserts rows into the target table using the Oracle
OCI Direct Path interface.

See "About Output Formats."

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-30



Property Description

mapreduce.job.reduces Type: Integer

Default Value: 1

Description: The number of reduce tasks used by the
Oracle Loader for Hadoop job. The default value of 1
does not support parallel processing, therefore
performance improves when the value is increased to
support multiple parallel data loads. Choose a value that
provides an ample, but not excessive, number of reduce
tasks for the job. At a point dictated by the available
resources, an excessive increase in the number of
reduce tasks result in diminishing improvements, while
potentially degrading the performance of other jobs.

OraLoader Configuration Properties

Property Description

oracle.hadoop.loader.badRecordFl
ushInterval

Type: Integer

Default Value: 500
Description: Sets the maximum number of records that a task attempt can
log before flushing the log file. This setting limits the number of records that
can be lost when the record reject limit (oracle.hadoop.loader.rejectLimit) is
reached and the job stops running.

The oracle.hadoop.loader.logBadRecords property must be set to true for a
flush interval to take effect.

oracle.hadoop.loader.compressio
nFactors

Type: Decimal

Default Value:
BASIC=5.0,OLTP=5.0,QUERY_LOW=10.0,QUERY_HIGH=10.0,ARCHIVE_
LOW=10.0,ARCHIVE_HIGH=10.0
Description: These values are used by Oracle Loader for Hadoop when
sampling is enabled and the target table is compressed. They are the
compression factors of the target table. For best performance, the values of
this property should match the compression factors of the target table. The
values are a comma-delimited list of name=value pairs. The names must be
one of the following keywords:

ARCHIVE_HIGH
ARCHIVE_LOW
BASIC
OLTP
QUERY_HIGH
QUERY_LOW

oracle.hadoop.loader.connection.d
efaultExecuteBatch

Type: Integer

Default Value: 100
Description: The number of records inserted in one trip to the database. It
applies only to JDBCOutputFormat and OCIOutputFormat.

Specify a value greater than or equal to 1. Although the maximum value is
unlimited, very large batch sizes are not recommended because they result
in a large memory footprint without much increase in performance.

A value less than 1 sets the property to the default value.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-31



Property Description

oracle.hadoop.loader.connection.o
ci_url

Type: String

Default Value: Value of oracle.hadoop.loader.connection.url
Description: The database connection string used by OCIOutputFormat.
This property enables the OCI client to connect to the database using
different connection parameters than the JDBC connection URL.

The following example specifies Socket Direct Protocol (SDP) for OCI
connections.

(DESCRIPTION=(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=SDP)(HOST=myhost)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=my_db_service_name)))
This connection string does not require a "jdbc:oracle:thin:@" prefix. All
characters up to and including the first at-sign (@) are removed.

oracle.hadoop.loader.connection.p
assword

Type: String

Default Value: Not defined

Description: Password for the connecting user. Oracle recommends that
you do not store your password in clear text. Use an Oracle wallet instead.

oracle.hadoop.loader.connection.s
essionTimeZone

Type: String

Default Value: LOCAL
Description: Alters the session time zone for database connections. Valid
values are:

• [+|-]hh:mm: Hours and minutes before or after Coordinated Universal
Time (UTC), such as -5:00 for Eastern Standard Time

• LOCAL: The default time zone of the JVM

• time_zone_region: A valid JVM time zone region, such as EST (for
Eastern Standard Time) or America/New_York

This property also determines the default time zone for input data that is
loaded into TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE database column types.

oracle.hadoop.loader.connection.c
luster.tns_admin

Type: String

Default Value: Not defined.

Description: The TNS admin location on the cluster node if it is different
from the client side location.

By default, the client-side TNS admin location is the same as the location on
cluster nodes and it is specified by 
oracle.hadoop.loader.connection.tns_admin.

It is invalid to specify this property without specifying
oracle.hadoop.loader.connection.tns_admin.

oracle.hadoop.loader.connection.d
irectory

Type: String

Default Value: Not defined

Description: File path to a directory on each node of the Hadoop cluster.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-32



Property Description

oracle.hadoop.loader.connection.t
ns_admin

Type: String

Default Value: Not defined

Description: File path to a directory on each node of the Hadoop cluster,
which contains SQL*Net configuration files such as sqlnet.ora and
tnsnames.ora. Set this property so that you can use TNS entry names in
database connection strings.

You must set this property when using an Oracle wallet as an external
password store (as Oracle recommends). See 
oracle.hadoop.loader.connection.wallet_location.

oracle.hadoop.loader.connection.t
nsEntryName

Type: String

Default Value: Not defined

Description: A TNS entry name defined in the tnsnames.ora file. Use this
property with oracle.hadoop.loader.connection.tns_admin.

oracle.hadoop.loader.connection.u
rl

Type: String

Default Value: Not defined

Description: The URL of the database connection. This property overrides
all other connection properties.

If an Oracle wallet is configured as an external password store (as Oracle
recommends), then the property value must start with the
jdbc:oracle:thin:@ driver prefix, and the database connection string
must exactly match the credential in the wallet. See 
oracle.hadoop.loader.connection.wallet_location.

The following examples show valid values of connection URLs:

• Oracle Net Format:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
         (ADDRESS=(PROTOCOL=TCP)(HOST=myhost)
(PORT=1521)))
         
(CONNECT_DATA=(SERVICE_NAME=example_service_name)))

• TNS Entry Format:

jdbc:oracle:thin:@myTNSEntryName
• Thin Style:

jdbc:oracle:thin:@//myhost:1521/my_db_service_name
oracle.hadoop.loader.connection.u
ser

Type: String

Default Value: Not defined

Description: A database user name. This property requires that you also
set oracle.hadoop.loader.connection.password. However, Oracle
recommends that you use an Oracle wallet to store your password. Do not
store it in clear text.

When using online database mode, you must set either this property or 
oracle.hadoop.loader.connection.wallet_location.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-33



Property Description

oracle.hadoop.loader.connection.
wallet_location

Type: String

Default Value: Not defined

Description: File path to an Oracle wallet directory on each node of the
Hadoop cluster, where the connection credentials are stored.

When using an Oracle wallet, you must also set the following properties:

• oracle.hadoop.loader.connection.tns_admin
• oracle.hadoop.loader.connection.url or 

oracle.hadoop.loader.connection.tnsEntryName
oracle.hadoop.loader.connection.c
luster.wallet_location

Type: String

Default Value: Not defined.

Description: The wallet location on the cluster node if it is different from the
client-side location.

By default, the client-side wallet location is the same as the location on
cluster node and it is specified by 
oracle.hadoop.loader.connection.wallet_location.

It is invalid to specify this property without specifying
oracle.hadoop.loader.connection.wallet_location.

oracle.hadoop.loader.defaultDateF
ormat

Type: String

Default Value: yyyy-MM-dd HH:mm:ss
Description: Parses an input field into a DATE column using a
java.text.SimpleDateformat pattern and the default locale. If the input
file requires different patterns for different fields, then use the manual
mapping properties. See "Manual Mapping."

oracle.hadoop.loader.enableSortin
g

Type: Boolean

Default Value: true
Description: Controls whether output records within each reducer group
are sorted. Use the oracle.hadoop.loader.sortKey property to identify the
columns of the target table to sort by. Otherwise, Oracle Loader for Hadoop
sorts the records by the primary key.

oracle.hadoop.loader.enforceClas
spath

Type: Boolean

Default Value: true
To prevent mismatched versions of its JARs from being added to the
classpath, Oracle Loader for Hadoop checks that its internal classes are
loaded from ${oracle.hadoop.loader.olh_home}/jlib/jars.

To disable this check, set the property to false.

oracle.hadoop.loader.extTabDirect
oryName

Type: String

Default Value: OLH_EXTTAB_DIR
Description: The name of the database directory object for the external
table LOCATION data files. Oracle Loader for Hadoop does not copy data
files into this directory; the file output formats generate a SQL file containing
external table DDL, where the directory name appears.

This property applies only to DelimitedTextOutputFormat and
DataPumpOutputFormat.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-34



Property Description

oracle.hadoop.loader.input.fieldNa
mes

Type: String

Default Value: F0,F1,F2,...
Description: A comma-delimited list of names for the input fields.

For the built-in input formats, specify names for all fields in the data, not just
the fields of interest. If an input line has more fields than this property has
field names, then the extra fields are discarded. If a line has fewer fields
than this property has field names, then the extra fields are set to null. See
"Mapping Input Fields to Target Table Columns " for loading only selected
fields.

The names are used to create the Avro schema for the record, so they must
be valid JSON name strings.

This property applies to DelimitedTextInputFormat and
RegexInputFormat only.

oracle.hadoop.loader.input.fieldTe
rminator

Type: String

Default Value: , (comma)

Description: A character that indicates the end of an input field for 
DelimitedTextInputFormat. The value can be either a single character
or \uHHHH, where HHHH is the character's UTF-16 encoding.

oracle.hadoop.loader.input.hive.da
tabaseName

Type: String

Default Value: Not defined

Description: The name of the Hive database where the input table is stored

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-35



Property Description

oracle.hadoop.loader.input.hive.pa
rtitionFilter

Note:

This
propert
y is
deprec
ated.
Use
oracle
.hadoo
p.load
er.inp
ut.hiv
e.rowF
ilter
instead
.

Type: String

Default Value: Not defined

Description: A valid HiveQL expression that is used to filter the source Hive
table partitions for HiveToAvroInputFormat. The expression must contain
only partition columns. Including other columns does not raise an error, but
unintended consequences can result. Oracle recommends that you not
include other columns. If the value is not set, then Oracle Loader for
Hadoop loads the data from all partitions of the source Hive table. This
property is ignored if the table is not partitioned. It is also ignored if
oracle.hadoop.loader.input.hive.rowFilter is set.

The expression must conform to the following restrictions:

• Selects partitions and not individual records inside the partitions.
• Does not include columns that are not used to partition the table,

because they might cause unintended consequences.
• Does not include subqueries.
• Does not include user-defined functions (UDFs), which are not

supported; built-in functions are supported.
• Resolves all variable expansions at the Hadoop level. Hive variable

name spaces (such as env:, system:, hiveconf:, and hivevar:)
have no meaning. Oracle Loader for Hadoop sets
hive.variable.substitute to false, which disables Hive variable
expansion. You can choose between these expansion methods:

Expand all variables before setting this property: In the Hive CLI,
use the following commands:

CREATE VIEW view_name AS SELECT * from 
database.table_name WHERE expression;
DESCRIBE FORMATTED view_name;

The View Original Text field contains the query with all variables
expanded. Copy the where clause, starting after where.

Define all variables in Oracle Loader for Hadoop: In the hadoop
command to run Oracle Loader for Hadoop, use the generic options (-
D and -conf).

You can use the Hive CLI to test the expression and ensure that it returns
the expected results.

The following examples assume a source table defined with this command:

CREATE TABLE t(c string)
   PARTITIONED BY (p1 string, p2 int, p3 boolean, p4 
string, p5 timestamp);

Example 1: Nested Expressions

p1 like 'abc%' or (p5 >= '2010-06-20' and p5 <= 
'2010-07-03')

Example 2: Built-in Functions

year(p5) = 2014

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-36



Property Description

Example 3: Bad Usage: Columns That Are Not Used to Partition the
Table
These examples show that using c, a column that is not used to partition the
table, is unnecessary and can cause unexpected results.

This example is equivalent to p2 > 35:

p2 > 35 and c like 'abc%'

This example loads all partitions. All partitions could contain c like
'abc%, so partitions are filtered out:

p2 > 35 or c like 'abc%'

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-37



Property Description

oracle.hadoop.loader.input.hive.ro
wFilter

Type: String

Default Value: Not defined

Description: A valid HiveQL expression that is used to filter the rows of the
source Hive table for HiveToAvroInputFormat. If this value is not set
(default), Oracle Loader for Hadoop attempts to use the value of
oracle.hadoop.loader.input.hive.partitionFilter (provided the table is
partitioned). Otherwise, Oracle Loader for Hadoop loads the entire source
hive table.

The expression must conform to the following restrictions:

• Does not include subqueries.
• Does not include user-defined functions (UDFs), which are not

supported; built-in functions are supported.
• Resolves all variable expansions at the Hadoop level. Hive variable

name spaces (such as env:, system:, hiveconf:, and hivevar:) have no
meaning. Oracle Loader for Hadoop sets hive.variable.substitute to
false, which disables Hive variable expansion. You can choose between
these expansion methods:

– Expand all variables before setting this property: In the Hive
CLI, use the following commands:

CREATE VIEW view_name AS SELECT * from 
database.table_name WHERE expression;
DESCRIBE FORMATTED view_name;

The View Original Text field contains the query with all variables
expanded. Copy the expression within the WHERE clause. (Do not
include the WHERE keyword itself.)

– Define all variables in Oracle Loader for Hadoop. In the Hadoop
command to run Oracle Loader for Hadoop, use the generic
options (-Dand -conf).

In both cases you can use the Hive CLI to test the expression and ensure
that it returns the expected results. The following examples assume a
source table defined with this command:

CREATE TABLE t(c string)
   PARTITIONED BY (p1 string, p2 int, p3 boolean, p4 
string, p5 timestamp);

Example #1: nested expressions

c like 'abc%' and (p5 <= '2010-06-20' and p5 <= 
'2010-07-03')

Example #2: built-in functions

year(p5) = 2013)

Oracle recommends that you turn on hive.optimize.index.filter
when importing a subset of rows from a native Hive table (a table that is not
managed by a storage handler). This is known to help input formats such as
ORC and PARQUET, however there are several caveats:

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-38



Property Description

• The property must be set with a -D (using -conf will not work).
Alternatively, the property can be set in hive-site.xml.

• This does not work for ORC tables in Hive 0.12.

oracle.hadoop.loader.input.hive.ta
bleName

Type: String

Default Value: Not defined

Description: The name of the Hive table where the input data is stored.

oracle.hadoop.loader.input.initialFi
eldEncloser

Type: String

Default Value: Not defined

Description: A character that indicates the beginning of a field. The value
can be either a single character or \uHHHH, where HHHH is the character's
UTF-16 encoding. To restore the default setting (no encloser), enter a zero-
length value. A field encloser cannot equal the terminator or white-space
character defined for the input format.

When this property is set, the parser attempts to read each field as an
enclosed token (value) before reading it as an unenclosed token. If the field
enclosers are not set, then the parser reads each field as an unenclosed
token.

If you set this property but not 
oracle.hadoop.loader.input.trailingFieldEncloser, then the same value is used
for both properties.

oracle.hadoop.loader.input.regexC
aseInsensitive

Type: Boolean

Default Value: false
Description: Controls whether pattern matching is case-sensitive. Set to
true to ignore case, so that "string" matches "String", "STRING", "string",
"StRiNg", and so forth. By default, "string" matches only "string".

This property is the same as theinput.regex.case.insensitive
property of org.apache.hadoop.hive.contrib.serde2.RegexSerDe.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-39



Property Description

oracle.hadoop.loader.input.regexP
attern

Type: String

Default Value: Not defined

Description: The pattern string for a regular expression.

The regular expression must match each text line in its entirety. For
example, a correct regex pattern for input line "a,b,c," is "([^,]*),
([^,]*),([^,]*),". However, "([^,]*)," is invalid, because the
expression is not applied repeatedly to a line of input text.

RegexInputFormat uses the capturing groups of regular expression
matching as fields. The special group zero is ignored because it stands for
the entire input line.

This property is the same as the input.regex property of
org.apache.hadoop.hive.contrib.serde2.RegexSerDe.

See Also:

For descriptions of regular expressions and
capturing groups, the entry for
java.util.regex in the Java Platform
Standard Edition 6 API Specification at

http://docs.oracle.com/javase/6/
docs/api/java/util/regex/
Pattern.html

oracle.hadoop.loader.input.trailing
FieldEncloser

Type: String

Default Value: The value of oracle.hadoop.loader.input.initialFieldEncloser
Description: Identifies a character that marks the end of a field. The value
can be either a single character or \uHHHH, where HHHH is the character's
UTF-16 encoding. For no trailing encloser, enter a zero-length value.

A field encloser cannot be the terminator or a white-space character defined
for the input format.

If the trailing field encloser character is embedded in an input field, then the
character must be doubled up to be parsed as literal text. For example, an
input field must have '' (two single quotes) to load ' (one single quote).

If you set this property, then you must also set 
oracle.hadoop.loader.input.initialFieldEncloser.

oracle.hadoop.loader.loadByPartiti
on

Type: Boolean

Default Value: true
Description: Specifies a partition-aware load. Oracle Loader for Hadoop
organizes the output by partition for all output formats on the Hadoop
cluster; this task does not impact the resources of the database system.

DelimitedTextOutputFormat and DataPumpOutputFormat generate
multiple files, and each file contains the records from one partition. For
DelimitedTextOutputFormat, this property also controls whether the
PARTITION keyword appears in the generated control files for SQL*Loader.

OCIOutputFormat requires partitioned tables. If you set this property to
false, then OCIOutputFormat turns it back on. For the other output
formats, you can set loadByPartition to false, so that Oracle Loader
for Hadoop handles a partitioned table as if it were nonpartitioned.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-40

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html


Property Description

oracle.hadoop.loader.loaderMap.c
olumnNames

Type: String

Default Value: Not defined

Description: A comma-separated list of column names in the target table,
in any order. The names can be quoted or unquoted. Quoted names begin
and end with double quotes (") and are used exactly as entered. Unquoted
names are converted to upper case.

You must set oracle.hadoop.loader.loaderMap.targetTable, or this property is
ignored. You can optionally set 
oracle.hadoop.loader.loaderMap.column_name.field and 
oracle.hadoop.loader.loaderMap.column_name.format.

oracle.hadoop.loader.loaderMap.c
olumn_name.field

Type: String

Default Value: Normalized column name

Description: The name of a field that contains Avro records, which is
mapped to the column identified in the property name. The column name
can be quoted or unquoted. A quoted name begins and ends with double
quotes (") and is used exactly as entered. An unquoted name is converted
to upper case. Optional.

You must set oracle.hadoop.loader.loaderMap.columnNames, or this property
is ignored.

oracle.hadoop.loader.loaderMap.c
olumn_name.format

Type: String

Default Value: Not defined

Description: Specifies the data format of the data being loaded into the
column identified in the property name. Use a
java.text.SimpleDateformat pattern for a date format or regular
expression patterns for text. Optional.

You must set oracle.hadoop.loader.loaderMap.columnNames, or this property
is ignored.

oracle.hadoop.loader.loaderMap.ta
rgetTable

Type: String

Default Value: Not defined

Description: A schema-qualified name for the table to be loaded. This
property takes precedence over oracle.hadoop.loader.loaderMapFile.

To load a subset of columns, set the 
oracle.hadoop.loader.loaderMap.columnNames property. With columnNames,
you can optionally set oracle.hadoop.loader.loaderMap.column_name.field to
specify the names of the fields that are mapped to the columns, and 
oracle.hadoop.loader.loaderMap.column_name.format to specify the format of
the data in those fields. If all the columns of a table will be loaded, and the
input field names match the database column names, then you do not need
to set columnNames.

oracle.hadoop.loader.loaderMapFil
e

Loader maps are deprecated starting with Release 2.3. The
oracle.hadoop.loader.loaderMap.* configuration properties replace
loader map files. See "Manual Mapping."

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-41



Property Description

oracle.hadoop.loader.log4j.propert
yPrefix

Type: String

Default Value: log4j.logger.oracle.hadoop.loader
Description: Identifies the prefix used in Apache log4j properties loaded
from its configuration file.

Oracle Loader for Hadoop enables you to specify log4j properties in the
hadoop command using the -conf and -D options. For example:

-D log4j.logger.oracle.hadoop.loader.OraLoader=DEBUG
-D log4j.logger.oracle.hadoop.loader.metadata=INFO

All configuration properties starting with this prefix are loaded into log4j.
They override the settings for the same properties that log4j loaded from $
{log4j.configuration}. The overrides apply to the Oracle Loader for
Hadoop job driver, and its map and reduce tasks.

The configuration properties are copied to log4j with RAW values; any
variable expansion is done for log4j. Any configuration variables to be
used in the expansion must also start with this prefix.

oracle.hadoop.loader.logBadRecor
ds

Type: Boolean

Default Value: false
Description: Controls whether Oracle Loader for Hadoop logs bad records
to a file.

This property applies only to records rejected by input formats and
mappers. It does not apply to errors encountered by the output formats or
by the sampling feature.

oracle.hadoop.loader.logRetention
Policy

Type: String

Default Value: ALWAYS
Description: Specifies when Oracle Loader for Hadoop logs should be
generated/retained at the end of a job. Valid values are:
• ALWAYS – logs are generated and retained at the end of all jobs.

• NEVER – logs are never retained.

• ON_ERROR – logs are discarded unless an error is identified.

 The following situations are considered errors for the purposes of
 logRetentionPolicy:
• Any non-zero exit code.
• Any input record parse error (See

oracle.hadoop.loader.rejectLimit and
oracle.hadoop.loader.logBadRecords ).

• Any rejected rows (for OCIOutputFormat or JDBCOutputFormat).

 The following files are covered by this property:

• ${mapreduce.output.fileoutputformat.outputdir}/_olh/*
 with the exception of *.ctl and *.sql files.

• ${mapreduce.output.fileoutputformat.outputdir}/
_balancer/

oracle.hadoop.loader.olh_home Type: String

Default Value: Value of the OLH_HOME environment variable

Description: The path of the Oracle Loader for Hadoop home directory on
the node where you start the OraLoader job. This path identifies the location
of the required libraries.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-42



Property Description

oracle.hadoop.loader.olhcachePat
h

Type: String

Default Value: $
{mapreduce.output.fileoutputformat.outputdir}/../olhcache
Description: Identifies the full path to an HDFS directory where Oracle
Loader for Hadoop can create files that are loaded into the MapReduce
distributed cache.

The distributed cache is a facility for caching large, application-specific files
and distributing them efficiently across the nodes in a cluster.

See Also:

The description of
org.apache.hadoop.filecache.Distrib
utedCache in the Java documentation at

http://hadoop.apache.org/

oracle.hadoop.loader.output.degre
eOfParallelism

Type: String

Default Value: Not defined

Description:  If set, the value of this property controls either:

• The number of reduce tasks (if Oracle Loader for Hadoop triggers a
map-reduce job), or,

• The number of map tasks (if Oracle Loader for Hadoop triggers a map-
only job).

 If this property is not set, then the value of ${mapreduce.job.reduces}
is used for the number of reduce tasks.

• If the value for ${mapreduce.job.reduces} was set explicitly for the
job (set through a -D, a -conf, or set programmatically), then that
value will be used as is.

• If the value for ${mapreduce.job.reduces} was not set explicitly for
the job (e.g. set in one of the *-{site|default}.xml configuration
files), then the value is considered to be a cluster-wide setting and is
limited to a maximum value of 64. You can avoid this by explicitly
setting oracle.hadoop.loader.output.degreeOfParallelism or
mapreduce.job.reduces explicitly.

This property provides a unified way to limit the number of database
connections made by OCIOutputFormat and JDBCOutputFormat.
However, the property is enforced on all output formats in order to facilitate
debugging scenarios. For example, you can replace OCIOutputFormat
with DelimitedTextOutputFormat in order to see what data is being
processed by a particular reduce task.

oracle.hadoop.loader.output.dirpat
hBufsize

Type: Integer

Default Value: 131072 (128 KB)

Description: Sets the size in bytes of the direct path stream buffer for
OCIOutputFormat. Values are rounded up to the next multiple of 8 KB.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-43

http://hadoop.apache.org/


Property Description

oracle.hadoop.loader.output.escap
eEnclosers

Type: Boolean

Default Value: false
Description: Controls whether the embedded trailing encloser character is
handled as literal text (that is, escaped). Set this property to true when a
field may contain the trailing enclosure character as part of the data value.
See oracle.hadoop.loader.output.trailingFieldEncloser.

oracle.hadoop.loader.output.fieldT
erminator

Type: String

Default Value: , (comma)

Description: A character that indicates the end of an output field for
DelimitedTextInputFormat. The value can be either a single character
or \uHHHH, where HHHH is the character's UTF-16 encoding.

oracle.hadoop.loader.output.granu
leSize

Type: Integer

Default Value: 10240000
Description: The granule size in bytes for generated Data Pump files.

A granule determines the work load for a parallel process (PQ slave) when
loading a file through the ORACLE_DATAPUMP access driver.

See Also:

Oracle Database Utilities for more information
about the ORACLE_DATAPUMP access driver.

oracle.hadoop.loader.output.initial
FieldEncloser

Type: String

Default Value: Not defined

Description: A character generated in the output to identify the beginning of
a field. The value must be either a single character or \uHHHH, where HHHH
is the character's UTF-16 encoding. A zero-length value means that no
enclosers are generated in the output (default value).

Use this property when a field may contain the value of 
oracle.hadoop.loader.output.fieldTerminator. If a field may also contain the
value of oracle.hadoop.loader.output.trailingFieldEncloser, then set 
oracle.hadoop.loader.output.escapeEnclosers to true.

If you set this property, then you must also set 
oracle.hadoop.loader.output.trailingFieldEncloser.

oracle.hadoop.loader.output.trailin
gFieldEncloser

Type: String

Default Value: Value of oracle.hadoop.loader.output.initialFieldEncloser
Description: A character generated in the output to identify the end of a
field. The value must be either a single character or \uHHHH, where HHHH is
the character's UTF-16 encoding. A zero-length value means that there are
no enclosers (default value).

Use this property when a field may contain the value of 
oracle.hadoop.loader.output.fieldTerminator. If a field may also contain the
value of oracle.hadoop.loader.output.trailingFieldEncloser, then set 
oracle.hadoop.loader.output.escapeEnclosers to true.

If you set this property, then you must also set 
oracle.hadoop.loader.output.initialFieldEncloser.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-44



Property Description

oracle.hadoop.loader.rejectLimit Type: Integer

Default Value: 1000
Description: The maximum number of rejected or skipped records allowed
before the job stops running. A negative value turns off the reject limit and
allows the job to run to completion.

If mapreduce.map.speculative is true (the default), then the number of
rejected records may be inflated temporarily, causing the job to stop
prematurely.

Input format errors do not count toward the reject limit because they are
irrecoverable and cause the map task to stop. Errors encountered by the
sampling feature or the online output formats do not count toward the reject
limit either.

oracle.hadoop.loader.sampler.ena
bleSampling

Type: Boolean

Default Value: true
Description: Controls whether the sampling feature is enabled. Set this
property to false to disable sampling.

Even when enableSampling is set to true, the loader automatically
disables sampling if it is unnecessary, or if the loader determines that a
good sample cannot be made. For example, the loader disables sampling if
the table is not partitioned, the number of reducer tasks is less than two, or
there is too little input data to compute a good load balance. In these cases,
the loader returns an informational message.

oracle.hadoop.loader.sampler.hint
MaxSplitSize

Type: Integer

Default Value: 1048576 (1 MB)

Description: Sets the Hadoop mapred.max.split.size property for the
sampling process; the value of mapred.max.split.size does not change
for the job configuration. A value less than 1 is ignored.

Some input formats (such as FileInputFormat) use this property as a
hint to determine the number of splits returned by getSplits. Smaller
values imply that more chunks of data are sampled at random, which results
in a better sample.

Increase this value for data sets with tens of terabytes of data, or if the input
format getSplits method throws an out-of-memory error.

Although large splits are better for I/O performance, they are not necessarily
better for sampling. Set this value small enough for good sampling
performance, but no smaller. Extremely small values can cause inefficient
I/O performance, and can cause getSplits to run out of memory by
returning too many splits.

The org.apache.hadoop.mapreduce.lib.input.FileInputFormat
method always returns splits at least as large as the minimum split size
setting, regardless of the value of this property.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-45



Property Description

oracle.hadoop.loader.sampler.hint
NumMapTasks

Type: Integer

Default Value: 100
Description: Sets the value of the Hadoop mapred.map.tasks
configuration property for the sampling process; the value of
mapred.map.tasks does not change for the job configuration. A value less
than 1 is ignored.

Some input formats (such as DBInputFormat) use this property as a hint
to determine the number of splits returned by the getSplits method.
Higher values imply that more chunks of data are sampled at random, which
results in a better sample.

Increase this value for data sets with more than a million rows, but
remember that extremely large values can cause getSplits to run out of
memory by returning too many splits.

oracle.hadoop.loader.sampler.load
CI

Type: Decimal

Default Value: 0.95
Description: The statistical confidence indicator for the maximum reducer
load factor.

This property accepts values greater than or equal to 0.5 and less than 1
(0.5 <= value < 1). A value less than 0.5 resets the property to the default
value. Typical values are 0.90, 0.95, and 0.99.

See oracle.hadoop.loader.sampler.maxLoadFactor.

oracle.hadoop.loader.sampler.max
HeapBytes

Type: Integer

Default Value: -1
Description: Specifies in bytes the maximum amount of memory available
to the sampler.

Sampling stops when one of these conditions is true:

• The sampler has collected the minimum number of samples required
for load balancing.

• The percent of sampled data exceeds 
oracle.hadoop.loader.sampler.maxSamplesPct.

• The number of sampled bytes exceeds 
oracle.hadoop.loader.sampler.maxHeapBytes. This condition is not
imposed when the property is set to a negative value.

oracle.hadoop.loader.sampler.max
LoadFactor

Type: Float

Default Value: 0.05 (5%)

Description: The maximum acceptable load factor for a reducer. A value of
0.05 indicates that reducers can be assigned up to 5% more data than their
ideal load.

This property accepts values greater than 0. A value less than or equal to 0
resets the property to the default value. Typical values are 0.05 and 0.1.

In a perfectly balanced load, every reducer is assigned an equal amount of
work (or load). The load factor is the relative overload for each reducer,
calculated as (assigned_load - ideal_load)/ideal_load. If load balancing is
successful, the job runs within the maximum load factor at the specified
confidence.

See oracle.hadoop.loader.sampler.loadCI.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-46



Property Description

oracle.hadoop.loader.sampler.max
SamplesPct

Type: Float

Default Value: 0.01 (1%)

Description: Sets the maximum sample size as a fraction of the number of
records in the input data. A value of 0.05 indicates that the sampler never
samples more than 5% of the total number of records.

This property accepts a range of 0 to 1 (0% to 100%). A negative value
disables it.

Sampling stops when one of these conditions is true:

• The sampler has collected the minimum number of samples required
for load balancing, which can be fewer than the number set by this
property.

• The percent of sampled data exceeds 
oracle.hadoop.loader.sampler.maxSamplesPct.

• The number of sampled bytes exceeds 
oracle.hadoop.loader.sampler.maxHeapBytes. This condition is not
imposed when the property is set to a negative value.

oracle.hadoop.loader.sampler.min
Splits

Type: Integer

Default Value: 5
Description: The minimum number of input splits that the sampler reads
from before it makes any evaluation of the stopping condition. If the total
number of input splits is less than minSplits, then the sampler reads from
all the input splits.

A number less than or equal to 0 is the same as a value of 1.

oracle.hadoop.loader.sampler.num
Threads

Type: Integer

Default Value: 5
Description: The number of sampler threads. A higher number of threads
allows higher concurrency in sampling. A value of 1 disables multithreading
for the sampler.

Set the value based on the processor and memory resources available on
the node where you start the Oracle Loader for Hadoop job.

oracle.hadoop.loader.sortKey Type: String

Default Value: Not defined

Description: A comma-delimited list of column names that forms a key for
sorting output records within a reducer group.

The column names can be quoted or unquoted identifiers:

• A quoted identifier begins and ends with double quotation marks (").

• An unquoted identifier is converted to uppercase before use.

oracle.hadoop.loader.tableMetadat
aFile

Type: String

Default Value: Not defined

Description: Path to the target table metadata file. Set this property when
running in offline database mode.

Use the file:// syntax to specify a local file, for example:

file:///home/jdoe/metadata.xml

To create the table metadata file, run the OraLoaderMetadata utility. See
"OraLoaderMetadata Utility."

oracle.hadoop.loader.targetTable Deprecated. Use oracle.hadoop.loader.loaderMap.targetTable.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-47



Oracle NoSQL Database Configuration Properties

Property Description

oracle.kv.kvstore Type: String

Default Value: Not defined

Description: The name of the KV store with the source
data.

oracle.kv.hosts Type: String

Default Value: Not defined

Description: An array of one or more hostname:port
pairs that identify the hosts in the KV store with the
source data. Separate multiple pairs with commas.

oracle.kv.batchSize Type: Key

Default Value: Not defined

Description: The desired number of keys for
KVAvroInputFormatto fetch during each network
round trip. A value of zero (0) sets the property to a
default value.

oracle.kv.parentKey Type: String

Default Value: Not defined

Description: Restricts the returned values to only the
child key-value pairs of the specified key. A major key
path must be a partial path, and a minor key path must
be empty. A null value (the default) does not restrict the
output, and so KVAvroInputFormat returns all keys in
the store.

oracle.kv.subRange Type: KeyRange

Default Value: Not defined

Description: Further restricts the returned values to a
particular child under the parent key specified by 
oracle.kv.parentKey.

oracle.kv.depth Type: Depth

Default Value: PARENT_AND_DESCENDENTS
Description: Restricts the returned values to a
particular hierarchical depth under the value of 
oracle.kv.parentKey. The following keywords are valid
values:

• CHILDREN_ONLY: Returns the children, but not the
specified parent.

• DESCENDANTS_ONLY: Returns all descendants, but
not the specified parent.

• PARENT_AND_CHILDREN: Returns the children and
the parent.

• PARENT_AND_DESCENDANTS: Returns all
descendants and the parent.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-48



Property Description

oracle.kv.consistency Type: Consistency

Default Value: NONE_REQUIRED
Description: The consistency guarantee for reading
child key-value pairs. The following keywords are valid
values:

• ABSOLUTE: Requires the master to service the
transaction so that consistency is absolute.

• NONE_REQUIRED: Allows replicas to service the
transaction, regardless of the state of the replicas
relative to the master.

oracle.kv.timeout Type: Long

Default Value:

Description: Sets a maximum time interval in
milliseconds for retrieving a selection of key-value pairs.
A value of zero (0) sets the property to its default value.

oracle.kv.formatterClass Type: String

Default Value: Not defined

Description: Specifies the name of a class that
implements the AvroFormatter interface to format
KeyValueVersion instances into Avro IndexedRecord
strings.

Because the Avro records from Oracle NoSQL Database
pass directly to Oracle Loader for Hadoop, the NoSQL
keys are not available for mapping into the target Oracle
Database table. However, the formatter class receives
both the NoSQL key and value, enabling the class to
create and return a new Avro record that contains both
the value and key, which can be passed to Oracle
Loader for Hadoop.

Chapter 4
Oracle Loader for Hadoop Configuration Property Reference

4-49



Part III
Oracle XQuery for Apache Hadoop

This part contains the following chapters:

• Using Oracle XQuery for Apache Hadoop

• Oracle XQuery for Apache Hadoop Reference

• Oracle XML Extensions for Hive



5
Using Oracle XQuery for Apache Hadoop

This chapter explains how to use Oracle XQuery for Apache Hadoop (Oracle XQuery for
Hadoop) to extract and transform large volumes of semistructured data. It contains the
following sections:

• What Is Oracle XQuery for Hadoop?

• Get Started With Oracle XQuery for Hadoop

• About the Oracle XQuery for Hadoop Functions

• Create an XQuery Transformation

• Run Queries

• Run Queries from Apache Oozie

• Oracle XQuery for Hadoop Configuration Properties

What Is Oracle XQuery for Hadoop?
Oracle XQuery for Hadoop is a transformation engine for semistructured big data. Oracle
XQuery for Hadoop runs transformations expressed in the XQuery language by translating
them into a series of MapReduce jobs, which are executed in parallel on an Apache Hadoop
cluster. You can focus on data movement and transformation logic, instead of the
complexities of Java and MapReduce, without sacrificing scalability or performance.

The input data can be located in a file system accessible through the Hadoop File System
API, such as the Hadoop Distributed File System (HDFS), or stored in Oracle NoSQL
Database. Oracle XQuery for Hadoop can write the transformation results to Hadoop files,
Oracle NoSQL Database, or Oracle Database.

Oracle XQuery for Hadoop also provides extensions to Apache Hive to support massive XML
files.

Oracle XQuery for Hadoop is based on mature industry standards including XPath, XQuery,
and XQuery Update Facility. It is fully integrated with other Oracle products, which enables
Oracle XQuery for Hadoop to:

• Load data efficiently into Oracle Database using Oracle Loader for Hadoop.

• Provide read and write support to Oracle NoSQL Database.

The following figure provides an overview of the data flow using Oracle XQuery for Hadoop.

5-1



Figure 5-1    Oracle XQuery for Hadoop Data Flow

Table
Targ

et T
able

TaTargrgrgrg
etetet T T T

ababababab
 Table

Oracle 
Database

Input Resources Output Destinations

Oracle XQuery 
for Hadoop

Oracle NoSQL
Database

Avro 

Text

XML

Binary XML

Oracle NoSQL
Database

Apache
Solr

Avro 

Text

XML

Binary XML

* Parallel processing of a single JSON file is  
  not supported. See the JSON File Adapter. 

Hadoop File System

Avro Files
CSV Files
Sequence Files
Text Files
XML Files
JSON Files*

Hadoop File System

Avro Files
CSV Files
Sequence Files
Text Files
XML Files

Chapter 5
What Is Oracle XQuery for Hadoop?

5-2



Get Started With Oracle XQuery for Hadoop
Oracle XQuery for Hadoop is designed for use by XQuery developers. If you are already
familiar with XQuery, then you are ready to begin. However, if you are new to XQuery, then
you must first acquire the basics of the language. This guide does not attempt to cover this
information.

See Also:

• W3schools XQuery Tutorial

• XQuery 3.1: An XML Query Language

Basic Steps
Perform the following basic steps when using Oracle XQuery for Apache Hadoop:

1. The first time you use Oracle XQuery for Apache Hadoop, ensure that the software is
installed and configured.

See "Oracle XQuery for Hadoop Setup."

2. Log in to either a node in the Hadoop cluster or a system set up as a Hadoop client for
the cluster.

3. Create an XQuery transformation that uses the Oracle XQuery for Apache Hadoop
functions. It can use various adapters for input and output.

See "About the Oracle XQuery for Hadoop Functions" and "Create an XQuery
Transformation."

4. Execute the XQuery transformation.

See "Run Queries."

Example: Hello World!
Follow these steps to create and run a simple query using Oracle XQuery for Hadoop:

1. Create a text file named hello.txt in the current directory that contains the line Hello.

$ echo "Hello" > hello.txt
2. Copy the file to HDFS:

$ hdfs dfs -copyFromLocal hello.txt
 

3. Create a query file named hello.xq in the current directory with the following content:

import module "oxh:text";
for $line in text:collection("hello.txt")
return text:put($line || " World!")
 

4. Run the query:

Chapter 5
Get Started With Oracle XQuery for Hadoop

5-3

http://www.w3schools.com/xml/xquery_intro.asp
https://www.w3.org/TR/xquery-31/


$ hadoop jar $OXH_HOME/lib/oxh.jar hello.xq -output ./myout -print
13/11/21 02:41:57 INFO hadoop.xquery: OXH: Oracle XQuery for Hadoop 4.2.0 
((build 4.2.0-cdh5.0.0-mr1 @mr2). Copyright (c) 2014, Oracle.  All rights 
reserved.
13/11/21 02:42:01 INFO hadoop.xquery: Submitting map-reduce job 
"oxh:hello.xq#0" id="3593921f-c50c-4bb8-88c0-6b63b439572b.0", inputs=[hdfs://
bigdatalite.localdomain:8020/user/oracle/hello.txt], output=myout
     .
     .
     .
 

5. Check the output file:

$ hdfs dfs -cat ./myout/part-m-00000
Hello World!

About the Oracle XQuery for Hadoop Functions
Oracle XQuery for Hadoop reads from and writes to big data sets using collection and
put functions:

• A collection function reads data from Hadoop files or Oracle NoSQL Database
as a collection of items. A Hadoop file is one that is accessible through the
Hadoop File System API. On Oracle Big Data Appliance and most Hadoop
clusters, this file system is Hadoop Distributed File System (HDFS).

• A put function adds a single item to a data set stored in Oracle Database, Oracle
NoSQL Database, or a Hadoop file.

The following is a simple example of an Oracle XQuery for Hadoop query that reads
items from one source and writes to another:

for $x in collection(...)
return put($x)

Oracle XQuery for Hadoop comes with a set of adapters that you can use to define put
and collection functions for specific formats and sources. Each adapter has two
components:

• A set of built-in put and collection functions that are predefined for your
convenience.

• A set of XQuery function annotations that you can use to define custom put and
collection functions.

Other commonly used functions are also included in Oracle XQuery for Hadoop.

About the Adapters
Following are brief descriptions of the Oracle XQuery for Hadoop adapters.

Avro File Adapter
The Avro file adapter provides access to Avro container files stored in HDFS. It
includes collection and put functions for reading from and writing to Avro container
files.

Chapter 5
About the Oracle XQuery for Hadoop Functions

5-4



JSON File Adapter
The JSON file adapter provides access to JSON files stored in HDFS. It contains a collection
function for reading JSON files, and a group of helper functions for parsing JSON data
directly. You must use another adapter to write the output.

Oracle Database Adapter
The Oracle Database adapter loads data into Oracle Database. This adapter supports a
custom put function for direct output to a table in an Oracle database using JDBC or OCI. If a
live connection to the database is not available, the adapter also supports output to Data
Pump or delimited text files in HDFS; the files can be loaded into the Oracle database with a
different utility, such as SQL*Loader, or using external tables. This adapter does not move
data out of the database, and therefore does not have collection or get functions.
See "Software Requirements" for the supported versions of Oracle Database.

Oracle NoSQL Database Adapter
The Oracle NoSQL Database adapter provides access to data stored in Oracle NoSQL
Database. The data can be read from or written as Table, Avro, XML, binary XML, or text.
This adapter includes collection, get, and put functions.

Sequence File Adapter
The sequence file adapter provides access to Hadoop sequence files. A sequence file is a
Hadoop format composed of key-value pairs.
This adapter includes collection and put functions for reading from and writing to HDFS
sequence files that contain text, XML, or binary XML.

Solr Adapter
The Solr adapter provides functions to create full-text indexes and load them into Apache
Solr servers.

Text File Adapter
The text file adapter provides access to text files, such as CSV files. It contains collection
and put functions for reading from and writing to text files.
The JSON file adapter extends the support for JSON objects stored in text files.

XML File Adapter
The XML file adapter provides access to XML files stored in HDFS. It contains collection
functions for reading large XML files. You must use another adapter to write the output.

Related Topics

• Avro File Adapter

• JSON File Adapter

• Oracle Database Adapter

• Oracle NoSQL Database Adapter

• Sequence File Adapter

• Solr Adapter

• Text File Adapter

• XML File Adapter

About Other Modules for Use With Oracle XQuery for Hadoop
You can use functions from these additional modules in your queries:

Chapter 5
About the Oracle XQuery for Hadoop Functions

5-5



Standard XQuery Functions
The standard XQuery math functions are available.

Hadoop Functions
The Hadoop module is a group of functions that are specific to Hadoop.

Duration, Date, and Time Functions
This group of functions parse duration, date, and time values.

String-Processing Functions
These functions add and remove white space that surrounds data values.

Related Topics

• About XQuery Language Support

• Hadoop Module

• Oracle XQuery Functions for Duration, Date, and Time
You can manipulate durations, dates, and times in XQuery using Oracle XQuery
functions.

• Oracle XQuery Functions for Strings
You can manipulate strings in XQuery using Oracle XQuery functions.

Create an XQuery Transformation
This chapter describes how to create XQuery transformations using Oracle XQuery for
Hadoop. It contains the following topics:

• XQuery Transformation Requirements

• About XQuery Language Support

• Accessing Data in the Hadoop Distributed Cache

• Call Custom Java Functions from XQuery

• Access User-Defined XQuery Library Modules and XML Schemas

• XQuery Transformation Examples

XQuery Transformation Requirements
You create a transformation for Oracle XQuery for Hadoop the same way as any other
XQuery transformation, except that you must comply with these additional
requirements:

• The main XQuery expression (the query body) must be in one of the following
forms:

FLWOR1

or

(FLWOR1, FLWOR2,... , FLWORN)

In this syntax FLWOR is a top-level XQuery FLWOR expression "For, Let, Where,
Order by, Return" expression.

Chapter 5
Create an XQuery Transformation

5-6



• Each top-level FLWOR expression must have a for clause that iterates over an Oracle
XQuery for Hadoop collection function. This for clause cannot have a positional
variable.

See Oracle XQuery for Apache Hadoop Reference for the collection functions.

• Each top-level FLWOR expression can have optional let, where, and group by clauses.
Other types of clauses are invalid, such as order by, count, and window clauses.

• Each top-level FLWOR expression must return one or more results from calling an Oracle
XQuery for Hadoop put function. See Oracle XQuery for Apache Hadoop Reference for
the put functions.

• The query body must be an updating expression. Because all put functions are classified
as updating functions, all Oracle XQuery for Hadoop queries are updating queries.

In Oracle XQuery for Hadoop, a %*:put annotation indicates that the function is updating.
The %updating annotation or updating keyword is not required with it.

See Also:

– "FLWOR Expressions" in XQuery 3.1: An XML Query Language

– For a description of updating expressions, "Extensions to XQuery 1.0" in 
W3C XQuery Update Facility 1.0

About XQuery Language Support
Oracle XQuery for Hadoop supports W3C XQuery 3.1, except for the following:

• FLWOR window clause

• FLWOR count clause

• namespace constructors

• fn:parse-ietf-date

• fn:transform

• higher order XQuery functions

For the language, see W3C XQuery 3.1: An XML Query Language .

For the functions, see W3C XPath and XQuery Functions and Operators .

Accessing Data in the Hadoop Distributed Cache
You can use the Hadoop distributed cache facility to access auxiliary job data. This
mechanism can be useful in a join query when one side is a relatively small file. The query
might execute faster if the smaller file is accessed from the distributed cache.

To place a file into the distributed cache, use the -files Hadoop command line option when
calling Oracle XQuery for Hadoop. For a query to read a file from the distributed cache, it
must call the fn:doc function for XML, and either fn:unparsed-text or fn:unparsed-text-
lines for text files. See Example 5-7.

Chapter 5
Create an XQuery Transformation

5-7

https://www.w3.org/TR/xquery-31/#id-flwor-expressions
http://www.w3.org/TR/xquery-update-10/#dt-updating-expression
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xpath-functions-31/


Call Custom Java Functions from XQuery
Oracle XQuery for Hadoop is extensible with custom external functions implemented in
the Java language. A Java implementation must be a static method with the parameter
and return types as defined by the XQuery API for Java (XQJ) specification.

A custom Java function binding is defined in Oracle XQuery for Hadoop by annotating
an external function definition with the %ora-java:binding annotation. This annotation
has the following syntax:

%ora-java:binding("java.class.name[#method]")

java.class.name
The fully qualified name of a Java class that contains the implementation method.

method
A Java method name. It defaults to the XQuery function name. Optional.

See Example 5-8 for an example of %ora-java:binding.

All JAR files that contain custom Java functions must be listed in the -libjars
command line option. For example:

hadoop jar $OXH_HOME/lib/oxh.jar -libjars myfunctions.jar query.xq

See Also:

"XQuery API for Java (XQJ)" at

http://www.jcp.org/en/jsr/detail?id=225

Access User-Defined XQuery Library Modules and XML Schemas
Oracle XQuery for Hadoop supports user-defined XQuery library modules and XML
schemas when you comply with these criteria:

• Locate the library module or XML schema file in the same directory where the
main query resides on the client calling Oracle XQuery for Hadoop.

• Import the library module or XML schema from the main query using the location
URI parameter of the import module or import schema statement.

• Specify the library module or XML schema file in the -files command line option
when calling Oracle XQuery for Hadoop.

For an example of using user-defined XQuery library modules and XML schemas, see 
Example 5-9.

See Also:

"Location URIs" in XQuery 3.1: An XML Query Language

Chapter 5
Create an XQuery Transformation

5-8

http://www.jcp.org/en/jsr/detail?id=225
https://www.w3.org/TR/xquery-31/


XQuery Transformation Examples
For these examples, the following text files are in HDFS. The files contain a log of visits to
different web pages. Each line represents a visit to a web page and contains the time, user
name, page visited, and the status code.

mydata/visits1.log  
 
2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200
2013-10-30T10:00:10, mike, index.html, 401
 
mydata/visits2.log  
 
2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200

Example 5-1    Basic Filtering

This query filters out pages visited by user kelly and writes those files into a text file:

import module "oxh:text";

for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
where $split[2] eq "kelly"
return text:put($line)

The query creates text files in the output directory that contain the following lines:

2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200

Example 5-2    Group By and Aggregation

The next query computes the number of page visits per day:

import module "oxh:text";
 
for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
let $time := xs:dateTime($split[1])
let $day := xs:date($time)
group by $day
return text:put($day || " => " || fn:count($line))
 

The query creates text files that contain the following lines:

2013-10-28 => 3
2013-10-30 => 3
2013-11-01 => 1
2013-11-04 => 2

Chapter 5
Create an XQuery Transformation

5-9



Example 5-3    Inner Joins

This example queries the following text file in HDFS, in addition to the other files. The
file contains user profile information such as user ID, full name, and age, separated by
colons (:).

mydata/users.txt  
 
john:John Doe:45
kelly:Kelly Johnson:32
laura:Laura Smith:
phil:Phil Johnson:27

The following query performs a join between users.txt and the log files. It computes
how many times users older than 30 visited each page.

import module "oxh:text";
 
for $userLine in text:collection("mydata/users.txt")
let $userSplit := fn:tokenize($userLine, "\s*:\s*")
let $userId := $userSplit[1]
let $userAge := xs:integer($userSplit[3][. castable as xs:integer])
 
for $visitLine in text:collection("mydata/visits*.log")
let $visitSplit := fn:tokenize($visitLine, "\s*,\s*")
let $visitUserId := $visitSplit[2]
where $userId eq $visitUserId and $userAge gt 30
group by $page := $visitSplit[3]
return text:put($page || " " || fn:count($userLine))
 

The query creates text files that contain the following lines:

about.html 2
contact.html 1
index.html 4

The next query computes the number of visits for each user who visited any page; it
omits users who never visited any page.

import module "oxh:text";
 
for $userLine in text:collection("mydata/users.txt")
let $userSplit := fn:tokenize($userLine, "\s*:\s*")
let $userId := $userSplit[1]
 
for $visitLine in text:collection("mydata/visits*.log")
   [$userId eq fn:tokenize(., "\s*,\s*")[2]]
 
group by $userId
return text:put($userId || " " || fn:count($visitLine))
 

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1

Chapter 5
Create an XQuery Transformation

5-10



Note:

When the results of two collection functions are joined, only equijoins are
supported. If one or both sources are not from a collection function, then any join
condition is allowed.

Example 5-4    Left Outer Joins

This example is similar to the second query in Example 5-3, but also counts users who did
not visit any page.

import module "oxh:text";
 
for $userLine in text:collection("mydata/users.txt")
let $userSplit := fn:tokenize($userLine, "\s*:\s*")
let $userId := $userSplit[1]
 
for $visitLine allowing empty in text:collection("mydata/visits*.log")
   [$userId eq fn:tokenize(., "\s*,\s*")[2]]
 
group by $userId
return text:put($userId || " " || fn:count($visitLine))

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1
phil 0

Example 5-5    Semijoins

The next query finds users who have ever visited a page:

import module "oxh:text";
 
for $userLine in text:collection("mydata/users.txt")
let $userId := fn:tokenize($userLine, "\s*:\s*")[1]
 
where some $visitLine in text:collection("mydata/visits*.log")
satisfies $userId eq fn:tokenize($visitLine, "\s*,\s*")[2]
 
return text:put($userId)
 

The query creates text files that contain the following lines:

john
kelly
laura

Example 5-6    Multiple Outputs

The next query finds web page visits with a 401 code and writes them to trace* files using
the XQuery text:trace() function. It writes the remaining visit records into the default output
files.

Chapter 5
Create an XQuery Transformation

5-11



import module "oxh:text";
 
for $visitLine in text:collection("mydata/visits*.log")
let $visitCode := xs:integer(fn:tokenize($visitLine, "\s*,\s*")[4])
return if ($visitCode eq 401) then text:trace($visitLine) else 
text:put($visitLine)
 

The query generates a trace* text file that contains the following line:

2013-10-30T10:00:10, mike, index.html, 401

The query also generates default output files that contain the following lines:

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200
2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200

Example 5-7    Accessing Auxiliary Input Data

The next query is an alternative version of the second query in Example 5-3, but it
uses the fn:unparsed-text-lines function to access a file in the Hadoop distributed
cache:

import module "oxh:text";
 
for $visitLine in text:collection("mydata/visits*.log")
let $visitUserId := fn:tokenize($visitLine, "\s*,\s*")[2]
 
for $userLine in fn:unparsed-text-lines("users.txt")
let $userSplit := fn:tokenize($userLine, "\s*:\s*")
let $userId := $userSplit[1]
 
where $userId eq $visitUserId
 
group by $userId
return text:put($userId || " " || fn:count($visitLine))
 

The hadoop command to run the query must use the Hadoop -files option. See
"Accessing Data in the Hadoop Distributed Cache."

hadoop jar $OXH_HOME/lib/oxh.jar -files users.txt query.xq

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1

Example 5-8    Calling a Custom Java Function from XQuery

The next query formats input data using the java.lang.String#format method.

import module "oxh:text";
 
declare %ora-java:binding("java.lang.String#format")

Chapter 5
Create an XQuery Transformation

5-12



   function local:string-format($pattern as xs:string, $data as xs:anyAtomicType*) as 
xs:string external;
 
for $line in text:collection("mydata/users*.txt")
let $split := fn:tokenize($line, "\s*:\s*")
return text:put(local:string-format("%s,%s,%s", $split))
 

The query creates text files that contain the following lines:

john,John Doe,45
kelly,Kelly Johnson,32
laura,Laura Smith,
phil,Phil Johnson,27

See Also:

Java Platform Standard Edition 7 API Specification for Class String.

Example 5-9    Using User-Defined XQuery Library Modules and XML Schemas

This example uses a library module named mytools.xq:

module namespace mytools = "urn:mytools";
 
declare %ora-java:binding("java.lang.String#format")
   function mytools:string-format($pattern as xs:string, $data as xs:anyAtomicType*) 
as xs:string external;
 

The next query is equivalent to the previous one, but it calls a string-format function from the
mytools.xq library module:

import module namespace mytools = "urn:mytools" at "mytools.xq";
import module "oxh:text";
 
for $line in text:collection("mydata/users*.txt")
let $split := fn:tokenize($line, "\s*:\s*")
return text:put(mytools:string-format("%s,%s,%s", $split))
 

The query creates text files that contain the following lines:

john,John Doe,45
kelly,Kelly Johnson,32
laura,Laura Smith,
phil,Phil Johnson,27

Example 5-10    Filtering Dirty Data Using a Try/Catch Expression

The XQuery try/catch expression can be used to broadly handle cases where input data is in
an unexpected form, corrupted, or missing.  The next query finds reads an input file, ages.txt,
that contains a username followed by the user’s age.  

USER      AGE
------------------
john    45

Chapter 5
Create an XQuery Transformation

5-13

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String,java.lang.Object...)


kelly
laura   36
phil    OLD!

Notice that the first two lines of this file contain header text and that the entries for
Kelly and Phil have missing and dirty age values.  For each user in this file, the query
writes out the user name and whether the user is over 40 or not. 

import module "oxh:text";

for $line in text:collection("ages.txt")
let $split := fn:tokenize($line, "\s+")
return
   try {

      let $user := $split[1]
      let $age := $split[2] cast as xs:integer
      return
        if ($age gt 40) then
          text:put($user || " is over 40")
        else 
          text:put($user || " is not over 40")

   } catch * {
      text:trace($err:code || " : " || $line)
   }

The query generates an output text file that contains the following lines:

john is over 40
laura is not over 40

The query also generates a trace* file that contains the following lines:

err:FORG0001 : USER        AGE
err:XPTY0004 : ------------------
err:XPTY0004 : kelly
err:FORG0001 : phil        OLD!

Run Queries
To run a query, call the oxh utility using the hadoop jar command. The following is the
basic syntax:

hadoop jar $OXH_HOME/lib/oxh.jar [generic options] query.xq -output directory [-
clean] [-ls] [-print] [-sharelib hdfs_dir][-skiperrors] [-version]

Oracle XQuery for Hadoop Options
query.xq
Identifies the XQuery file. See "Create an XQuery Transformation."

Chapter 5
Run Queries

5-14



-clean
Deletes all files from the output directory before running the query. If you use the default
directory, Oracle XQuery for Hadoop always cleans the directory, even when this option is
omitted.

-exportliboozie directory
Copies Oracle XQuery for Hadoop dependencies to the specified directory. Use this option to
add Oracle XQuery for Hadoop to the Hadoop distributed cache and the Oozie shared
library. External dependencies are also copied, so ensure that environment variables such
as KVHOME, OLH_HOME, and OXH_SOLR_MR_HOME are set for use by the related adapters (Oracle
NoSQL Database, Oracle Database, and Solr).

-ls
Lists the contents of the output directory after the query executes.

-output directory
Specifies the output directory of the query. The put functions of the file adapters create files
in this directory. Written values are spread across one or more files. The number of files
created depends on how the query is distributed among tasks. The default output directory
is /tmp/oxh-user_name/output.
See "About the Oracle XQuery for Hadoop Functions" for a description of put functions.

-print
Prints the contents of all files in the output directory to the standard output (your screen).
When printing Avro files, each record prints as JSON text.

-sharelib hdfs_dir
Specifies the HDFS folder location containing Oracle XQuery for Hadoop and third-party
libraries.

-skiperrors
Turns on error recovery, so that an error does not halt processing.
All errors that occur during query processing are counted, and the total is logged at the end
of the query. The error messages of the first 20 errors per task are also logged. See these
configuration properties:

oracle.hadoop.xquery.skiperrors.counters
oracle.hadoop.xquery.skiperrors.max
oracle.hadoop.xquery.skiperrors.log.max

-version
Displays the Oracle XQuery for Hadoop version and exits without running a query.

Generic Options
You can include any generic hadoop command-line option. Oracle XQuery for Hadoop
implements the org.apache.hadoop.util.Tool interface and follows the standard Hadoop
methods for building MapReduce applications.

The following generic options are commonly used with Oracle XQuery for Hadoop:

-conf job_config.xml
Identifies the job configuration file. See "Oracle XQuery for Hadoop Configuration
Properties."

Chapter 5
Run Queries

5-15



When you work with the Oracle Database or Oracle NoSQL Database adapters, you
can set various job properties in this file. See "Oracle Loader for Hadoop
Configuration Properties and Corresponding %oracle-property Annotations " and
"Oracle NoSQL Database Adapter Configuration Properties".

-D property=value
Identifies a configuration property. See "Oracle XQuery for Hadoop Configuration
Properties."

-files
Specifies a comma-delimited list of files that are added to the distributed cache. See
"Accessing Data in the Hadoop Distributed Cache."

See Also:

For full descriptions of the generic options, go to

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
common/CommandsManual.html#Generic_Options

About Running Queries Locally
When developing queries, you can run them locally before submitting them to the
cluster. A local run enables you to see how the query behaves on small data sets and
diagnose potential problems quickly.

In local mode, relative URIs resolve against the local file system instead of HDFS, and
the query runs in a single process.

To run a query in local mode:

1. Set the Hadoop -jt and -fs generic arguments to local. This example runs the
query described in "Example: Hello World!" in local mode:

$ hadoop jar $OXH_HOME/lib/oxh.jar -jt local -fs local ./hello.xq -output ./
myoutput -print

2. Check the result file in the local output directory of the query, as shown in this
example:

$ cat ./myoutput/part-m-00000
Hello World!

Run Queries from Apache Oozie
Apache Oozie is a workflow tool that enables you to run multiple MapReduce jobs in a
specified order and, optionally, at a scheduled time. Oracle XQuery for Hadoop
provides an Oozie action node that you can use to run Oracle XQuery for Hadoop
queries from an Oozie workflow.

Use Oozie with Oracle XQuery for Hadoop Action
Follow these steps to execute your queries in an Oozie workflow:

Chapter 5
Run Queries from Apache Oozie

5-16

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#Generic_Options
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#Generic_Options


1. The first time you use Oozie with Oracle XQuery for Hadoop, ensure that Oozie is
configured correctly. See "Configure Oozie for the Oracle XQuery for Hadoop Action".

2. Develop your queries in Oracle XQuery for Hadoop the same as always.

3. Create a workflow XML file like the one shown in Example 5-11. You can use the XML
elements listed in "Supported XML Elements".

4. Set the Oozie job parameters. The following parameter is required:

oozie.use.system.libpath=true

See Example 5-13.

5. Run the job using syntax like the following:

oozie job -name http://example.com:11000/oozie -config filename -run

See Also:

"Oozie Command Line Usage" in the Apache Oozie Command Line Interface
Utilities at

https://oozie.apache.org/docs/4.0.0/
DG_CommandLineTool.html#Oozie_Command_Line_Usage

Supported XML Elements
The Oracle XQuery for Hadoop action extends Oozie's Java action. It supports the following
optional child XML elements with the same syntax and semantics as the Java action:

• archive
• configuration
• file
• job-tracker
• job-xml
• name-node
• prepare

See Also:

The Java action description in the Oozie Specification at

https://oozie.apache.org/docs/4.0.0/
WorkflowFunctionalSpec.html#a3.2.7_Java_Action

In addition, the Oracle XQuery for Hadoop action supports the following elements:

• script: The location of the Oracle XQuery for Hadoop query file. Required.

Chapter 5
Run Queries from Apache Oozie

5-17

https://oozie.apache.org/docs/4.0.0/DG_CommandLineTool.html#Oozie_Command_Line_Usage
https://oozie.apache.org/docs/4.0.0/DG_CommandLineTool.html#Oozie_Command_Line_Usage
https://oozie.apache.org/docs/4.0.0/WorkflowFunctionalSpec.html#a3.2.7_Java_Action
https://oozie.apache.org/docs/4.0.0/WorkflowFunctionalSpec.html#a3.2.7_Java_Action


The query file must be in the workflow application directory. A relative path is
resolved against the application directory.

Example: <script>myquery.xq</script>
• output: The output directory of the query. Required.

The output element has an optional clean attribute. Set this attribute to true to
delete the output directory before the query is run. If the output directory already
exists and the clean attribute is either not set or set to false, an error occurs. The
output directory cannot exist when the job runs.

Example: <output clean="true">/user/jdoe/myoutput</output>
Any error raised while running the query causes Oozie to perform the error transition
for the action.

Example: Hello World
This example uses the following files:

• workflow.xml: Describes an Oozie action that sets two configuration values for the
query in hello.xq: an HDFS file and the string World!
The HDFS input file is /user/jdoe/data/hello.txt and contains this string:

Hello

See Example 5-11.

• hello.xq: Runs a query using Oracle XQuery for Hadoop.

See Example 5-12.

• job.properties: Lists the job properties for Oozie. See Example 5-13.

To run the example, use this command:

oozie job -oozie http://example.com:11000/oozie -config job.properties -run

After the job runs, the /user/jdoe/myoutput output directory contains a file with the
text "Hello World!"

Example 5-11    The workflow.xml File for Hello World

This file is named /user/jdoe/hello-oozie-oxh/workflow.xml. It uses variables that
are defined in the job.properties file.

<workflow-app xmlns="uri:oozie:workflow:0.4" name="oxh-helloworld-wf">
  <start to="hello-node"/>
  <action name="hello-node">
    <oxh xmlns="oxh:oozie-action:v1">
      <job-tracker>${jobTracker}</job-tracker>
      <name-node>${nameNode}</name-node>

      <!-- 
        The configuration can be used to parameterize the query.
      -->
      <configuration>
        <property>
          <name>myinput</name>
          <value>${nameNode}/user/jdoe/data/src.txt</value>
        </property>

Chapter 5
Run Queries from Apache Oozie

5-18



        <property>
          <name>mysuffix</name>
          <value> World!</value>
        </property>
      </configuration>
 
      <script>hello.xq</script>

      <output clean="true">${nameNode}/user/jdoe/myoutput</output>

    </oxh>
    <ok to="end"/>
    <error to="fail"/>
  </action>
  <kill name="fail">
    <message>OXH failed: [${wf:errorMessage(wf:lastErrorNode())}]</message>
  </kill>
  <end name="end"/>
</workflow-app>

Example 5-12    The hello.xq File for Hello World

This file is named /user/jdoe/hello-oozie-oxh/hello.xq.

import module "oxh:text";

declare variable $input := oxh:property("myinput");
declare variable $suffix := oxh:property("mysuffix");

for $line in text:collection($input)
return
  text:put($line || $suffix)

Example 5-13    The job.properties File for Hello World

oozie.wf.application.path=hdfs://example.com:8020/user/jdoe/hello-oozie-oxh
nameNode=hdfs://example.com:8020
jobTracker=hdfs://example.com:8032
oozie.use.system.libpath=true

Oracle XQuery for Hadoop Configuration Properties
Oracle XQuery for Hadoop uses the generic methods of specifying configuration properties in
the hadoop command. You can use the -conf option to identify configuration files, and the -D
option to specify individual properties. See "Run Queries."

See Also:

Hadoop documentation for job configuration files at

http://wiki.apache.org/hadoop/JobConfFile

Chapter 5
Oracle XQuery for Hadoop Configuration Properties

5-19

http://www.oracle.com/pls/topic/lookup?ctx=E87334-01&id=apache_hadoop_config


Property Description

oracle.hadoop.xquery.lib.share Type: String

Default Value: Not defined.

Description: Identifies an HDFS directory that contains
the libraries for Oracle XQuery for Hadoop and third-
party software. For example:

http://path/to/shared/folder

All HDFS files must be in the same directory.

Alternatively, use the -sharelib option on the
command line.

Pattern Matching: You can use pattern matching
characters in a directory name. If multiple directories
match the pattern, then the directory with the most
recent modification timestamp is used.

To specify a directory name, use alphanumeric
characters and, optionally, any of the following special,
pattern matching characters:

Pattern Description

? Matches any one character.

* Matches zero or more characters.

[abc] Matches one character from character set
{a,b,c}.

[a-b] Matches one character from the character
range from a to b. Character a must be less
than or equal to character b.

[^a] Matches one character that is not from the a
character set or range. The carat (^) must
follow the opening bracket immediately (no
spaces).

\c Removes (escapes) any special meaning of
character c.

{ab,cd} Matches a string from the string set {ab, cd}.

{ab,c{de,fh}} Matches a string from the string set {ab, cde,
cfh}.

Oozie libraries: The value oxh:oozie expands
automatically to /user/{oozie,user}/share/lib/
{oxh,*/oxh*}, which is a common search path for
supported Oozie versions. The user is the current user
name. However, the Oracle XQuery for Hadoop Oozie
action ignores this setting when running queries,
because all libraries are preinstalled in HDFS.

oracle.hadoop.xquery.output Type: String

Default Value: /tmp/oxh-user_name/output. The
user_name is the name of the user running Oracle
XQuery for Hadoop.

Description: Sets the output directory for the query.
This property is equivalent to the -output command
line option. See "Oracle XQuery for Hadoop Options."

Chapter 5
Oracle XQuery for Hadoop Configuration Properties

5-20



Property Description

oracle.hadoop.xquery.scratch Type: String

Default Value: /tmp/oxh-user_name/scratch. The
user_name is the name of the user running Oracle
XQuery for Hadoop.

Description: Sets the HDFS temp directory for Oracle
XQuery for Hadoop to store temporary files.

oracle.hadoop.xquery.timezone Type: String

Default Value: Client system time zone

Description: The XQuery implicit time zone, which is
used in a comparison or arithmetic operation when a
date, time, or datetime value does not have a time zone.
The value must be in the format described by the Java
TimeZone class. See the TimeZone class description in
Java 7 API Specification at

http://docs.oracle.com/javase/7/docs/api/
java/util/TimeZone.html

oracle.hadoop.xquery.skiperrors Type: Boolean

Default Value: false
Description: Set to true to turn on error recovery, or
set to false to stop processing when an error occurs.
This property is equivalent to the -skiperrors
command line option.

oracle.hadoop.xquery.skiperrors.counters Type: Boolean

Default Value: true
Description: Set to true to group errors by error code,
or set to false to report all errors in a single counter.

oracle.hadoop.xquery.skiperrors.max Type: Integer

Default Value: Unlimited

Description: Sets the maximum number of errors that a
single MapReduce task can recover from.

oracle.hadoop.xquery.skiperrors.log.max Type: Integer

Default Value: 20

Description: Sets the maximum number of errors that a
single MapReduce task logs.

log4j.logger.oracle.hadoop.xquery Type: String

Default Value: Not defined

Description: Configures the log4j logger for each task
with the specified threshold level. Set the property to one
of these values: OFF, FATAL, ERROR, WARN, INFO,
DEBUG, or ALL. If this property is not set, then Oracle
XQuery for Hadoop does not configure log4j.

Chapter 5
Oracle XQuery for Hadoop Configuration Properties

5-21

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html


6
Oracle XQuery for Apache Hadoop Reference

This chapter describes the adapters available in Oracle XQuery for Apache Hadoop:

• Avro File Adapter

• JSON File Adapter

• Oracle Database Adapter

• Oracle NoSQL Database Adapter

• Sequence File Adapter

• Solr Adapter

• Text File Adapter

• Tika File Adapter

• XML File Adapter

• Serialization Annotations

This chapter also describes several other library modules:

• Hadoop Module

• Utility Module

Avro File Adapter
The Avro file adapter provides functions to read and write Avro container files in HDFS. It is
described in the following topics:

• Built-in Functions for Reading Avro Files

• Custom Functions for Reading Avro Container Files

• Custom Functions for Writing Avro Files

• Examples of Avro File Adapter Functions

• About Converting Values Between Avro and XML

6-1



Note:

Additional Configuration Steps for HDP Users

Oracle XQuery for Hadoop has been verified to run on both Cloudera’s
CDH5 and Hortonwork’s HDP 2.3.3.  However, to run queries that write to
Avro container files in HDP 2.3.2, you must change the OXH classpath
definition to use avro-mapred-1.7.4-hadoop2.jar.

1. Download the JAR from the Apache archive https://archive.apache.org/
dist/avro/avro-1.7.4/java/

2. In $OXH_HOME/lib/oxh-lib.xml locate the following path tag:

<path id="oracle.hadoop.xquery.avro.lib">
    <fileset dir="${oracle.hadoop.loader.olh_home}/jlib" 
erroronmissingdir="false">
        <include name="avro-mapred*.jar"/>
    </fileset>
</path>

Replace the path tag above with the following revision.[DIRECTORY] in
this example is a placeholder. Replace it with the directory path to the
JAR.

<path id="oracle.hadoop.xquery.avro.lib”>
    <fileset dir="[DIRECTORY]">
        <include name="avro-mapred-1.7.4-hadoop2.jar"/>\
    </fileset>
</path>

Built-in Functions for Reading Avro Files
To use the built-in functions in your query, you must import the Avro file module as
follows:

import module "oxh:avro";

The Avro file module contains the following functions:

• avro:collection-avroxml

• avro:get

There are no built-in functions for writing Avro container files. To write Avro files, you
must use a custom function that specifies the Avro writer schema.

avro:collection-avroxml
Accesses a collection of Avro files in HDFS. The files might be split up and processed
in parallel by multiple tasks. The function returns an XML element for each object. See
"About Converting Values Between Avro and XML."

Chapter 6
Avro File Adapter

6-2

https://archive.apache.org/dist/avro/avro-1.7.4/java/
https://archive.apache.org/dist/avro/avro-1.7.4/java/


Signature

declare %avro:collection("avroxml") function 
   avro:collection-avroxml($uris as xs:string*) as element()* external;

Parameters

$uris: The Avro file URIs

Returns

One XML element for each Avro object.

avro:get
Retrieves an entry from an Avro map modeled as XML

If you omit the $map parameter, then the behavior is identical to calling the two-argument
function and using the context item for $map.

Signature

avro:get($key as xs:string?, $map as node()?) as element(oxh:entry)?
 
avro:get($key as xs:string?) as element(oxh:entry)?

Returns

The value of this XPath expression:

$map/oxh:entry[@key eq $key]

Example

These function calls are equivalent:

$var/avro:get("key")

avro:get("key", $var)
 
$var/oxh:entry[@key eq "key"]

In this example, $var is an Avro map modeled as XML. See "Reading Maps."

Custom Functions for Reading Avro Container Files
You can use the following annotations to define functions that read collections of Avro
container files in HDFS. These annotations provide additional functionality that is not
available using the built-in functions.

Signature

Custom functions for reading Avro files must have the following signature:

declare %avro:collection("avroxml") [additional annotations]
   function local:myFunctionName($uris as xs:string*) as element()* external;

Chapter 6
Avro File Adapter

6-3



Annotations

%avro:collection("avroxml")
Declares the avroxml collection function. Required.
A collection function accesses Avro files in HDFS. The files might be split up and
processed in parallel by multiple tasks. The function returns an XML element for each
object. See "About Converting Values Between Avro and XML."

%avro:schema("avro-schema")
Provides the Avro reader schema as the value of the annotation. Optional.
The objects in the file are mapped to the reader schema when it is specified. For
example:

%avro:schema('
   {
      "type": "record",
      "name": "Person",
      "fields" : [
         {"name": "full_name", "type": "string"},
         {"name": "age", "type": ["int", "null"] }
       ]
   }
')

You cannot combine this annotation with %avro:schema-file or %avro:schema-kv.

See Also:

"Schema Resolution" in the Apache Avro Specification at
http://avro.apache.org/docs/current/spec.html#Schema+Resolution

%avro:schema-file("avro-schema-uri")
Like %avro:schema, but the annotation value is a file URI that contains the Avro reader
schema. Relative URIs are resolved against the current working directory of the
client's local file system. Optional.
For example, %avro:schema-file("schemas/person.avsc").
You cannot combine this annotation with %avro:schema or %avro:schema-kv.

%avro:schema-kv("schema-name")
Like %avro:schema, but the annotation value is a fully qualified record name. The
record schema is retrieved from the Oracle NoSQL Database catalog. Optional.
For example, %avro:schema-kv("org.example.PersonRecord").
You must specify the connection parameters to Oracle NoSQL Database when you
use this annotation. See "Oracle NoSQL Database Adapter Configuration Properties."
You cannot combine this annotation with %avro:schema or %avro:schema-file.

%avro:split-max("split-size")
Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.

Chapter 6
Avro File Adapter

6-4

http://avro.apache.org/docs/current/spec.html#Schema+Resolution


In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not case
sensitive. The following examples are equivalent:

%avro:split-max(1024)
%avro:split-max("1024")
%avro:split-max("1K")

%avro:split-min("split-size")
Specifies the minimum split size as either an integer or a string value. The split size controls
how the input file is divided into tasks. Hadoop calculates the split size as max($split-min,
min($split-max, $block-size)). Optional.
In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not case
sensitive. The following examples are equivalent:

%avro:split-min(1024)
%avro:split-min("1024")
%avro:split-min("1K")

Custom Functions for Writing Avro Files
You can use the following annotations to define functions that write Avro files.

Signature

Custom functions for writing Avro files must have the following signature:

declare %avro:put("avroxml") [additional annotations]
   local:myFunctionName($value as item()) external;

Annotations

%avro:put("avroxml")
Declares the avroxml put function. Required.
An Avro schema must be specified using one of the following annotations:

• %avro:schema
• %avro:schema-file
• %avro:schema-kv
The input XML value is converted to an instance of the schema. See "Writing XML as Avro."

%avro:schema("avro-schema")
Specifies the schema of the files. For example:

%avro:schema('
   {
      "type": "record",
      "name": "Person",
      "fields" : [
         {"name": "full_name", "type": "string"},

Chapter 6
Avro File Adapter

6-5



         {"name": "age", "type": ["int", "null"] }
      ]
   }
')

You cannot combine this annotation with %avro:schema-file or %avro:schema-kv.

%avro:schema-file("avro-schema-uri")
Like %avro:schema, but the annotation value is a file URI that contains the Avro reader
schema. Relative URIs are resolved against the current working directory of the
client's local file system.
For example: %avro:schema-file("schemas/person.avsc")
You cannot combine this annotation with %avro:schema or %avro:schema-kv.

%avro:schema-kv("schema-name")
Like %avro:schema, but the annotation value is a fully qualified record name. The
record schema is retrieved from the Oracle NoSQL Database catalog.
For example: %avro:schema-kv("org.example.PersonRecord")
You must specify the connection parameters to Oracle NoSQL Database when you
use this annotation. See "Oracle NoSQL Database Adapter Configuration Properties."
You cannot combine this annotation with %avro:schema or %avro:schema-file.

%avro:compress("method", [level]?)
Specifies the compression format used on the output.
The codec is one of the following string literal values:

• deflate: The level controls the trade-off between speed and compression. Valid
values are 1 to 9, where 1 is the fastest and 9 is the most compressed.

• snappy: This algorithm is designed for high speed and moderate compression.

The default is no compression.
The level is an integer value. It is optional and only supported when codec is deflate.
For example:

%avro:compress("snappy")
%avro:compress("deflate")
%avro:compress("deflate", 3)

%avro:file("name")
Specifies the output file name prefix. The default prefix is part.

Examples of Avro File Adapter Functions
These examples use the following text file in HDFS:

mydata/ages.txt

john,45
kelly,36
laura,
mike,27

Example 6-1    Converting a Text File to Avro

The following query converts the file into compressed Avro container files:

Chapter 6
Avro File Adapter

6-6



import module "oxh:text";
 
declare 
   %avro:put("avroxml")
   %avro:compress("snappy")
   %avro:schema('
      {
         "type": "record",
         "name": "AgeRec",
         "fields" : [
            {"name": "user", "type": "string"},
            {"name": "age", "type": ["int", "null"] }
         ]
      }
   ')
function local:put($arg as item()) external;

for $line in text:collection("mydata/ages.txt")
let $split := fn:tokenize($line, ",")
return
   local:put(
      <rec>
         <user>{$split[1]}</user>
         {
            if ($split[2] castable as xs:int) then
               <age>{$split[2]}</age>
            else 
               ()
         }
      </rec>
   )

The query generates an Avro file with the following records, represented here as JSON:

{"user":"john","age":{"int":45}}
{"user":"kelly","age":{"int":36}}
{"user":"laura","age":null}
{"user":"mike","age":{"int":27}}

Example 6-2    Querying Records in Avro Container Files

The next query selects records in which the age is either null or greater than 30, from the
myoutput directory. The query in Example 6-1generated the records.

import module "oxh:text";
import module "oxh:avro";

for $rec in avro:collection-avroxml("myoutput/part*.avro")
where $rec/age/nilled() or $rec/age gt 30
return
   text:put($rec/user)

This query creates files that contain the following lines:

john
kelly
laura

About Converting Values Between Avro and XML
This section describes how Oracle XQuery for Hadoop converts data between Avro and XML:

Chapter 6
Avro File Adapter

6-7



• Reading Avro as XML

• Writing XML as Avro

Reading Avro as XML
Both the Avro file adapter and the Oracle NoSQL Database adapter have an avroxml
method, which you can use with the collection functions to read Avro records as XML.
After the Avro is converted to XML, you can query and transform the data using
XQuery.

The following topics describe how Oracle XQuery for Hadoop reads Avro:

• Reading Records

• Reading Maps

• Reading Arrays

• Reading Unions

• Reading Primitives

Reading Records
An Avro record is converted to an <oxh:item> element with one child element for each
field in the record.

For example, consider the following Avro schema:

{
   "type": "record",
   "name": "Person",
   "fields" : [
      {"name": "full_name", "type": "string"},
      {"name": "age", "type": ["int", "null"] }
   ]
}

This is an instance of the record modeled as XML:

<oxh:item>
   <full_name>John Doe</full_name>
   <age>46</age>
</oxh:item>

Converting Avro records to XML enables XQuery to query them. The next example
queries an Avro container file named person.avro, which contains Person records. The
query converts the records to a CSV text file in which each line contains the full_name
and age values:

import module "oxh:avro";
import module "oxh:text";
 
for $x in avro:collection-avroxml("person.avro")
return
   text:put($x/full_name || "," || $x/age)
 

Null values are converted to nilled elements. A nilled element has an xsi:nil attribute
set to true; it is always empty. You can use the XQuery fn:nilled function to test if a

Chapter 6
Avro File Adapter

6-8



record field is null. For example, the following query writes the name of Person records that
have a null value for age:

import module "oxh:avro";
import module "oxh:text";
 
for $x in avro:collection-avroxml("person.avro")
where $x/age/nilled()
return
   text:put($x/full_name)
 

For nested records, the fields of the inner schema become child elements of the element that
corresponds to the field in the outer schema. For example, this schema has a nested record:

{
   "type": "record", 
   "name": "PersonAddress",
   "fields" : [
      {"name": "full_name", "type": "string"},
      {"name": "address", "type": 
         { "type" : "record",
           "name" : "Address",
           "fields" : [
              { "name" : "street", "type" : "string" },
              { "name" : "city", "type" : "string" }
            ]
         }
      }
   ]
}

This is an instance of the record as XML:

<oxh:item>
   <full_name>John Doe</full_name>
   <address>
      <street>123 First St.</street>
      <city>New York</city>
   </address>
</oxh:item>

The following example queries an Avro container file named people-address.avro that
contains PersonAddress records, and writes the names of the people that live in New York to
a text file:

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml("examples/person-address.avro")
where $person/address/city eq "New York"
return
   text:put($person/full_name)

Reading Maps
Avro map values are converted to an element that contains one child <oxh:entry> element
for each entry in the map. For example, consider the following schema:

{
   "type": "record", 

Chapter 6
Avro File Adapter

6-9



   "name": "PersonProperties",
   "fields" : [
      {"name": "full_name", "type": "string"},
      {"name": "properties", "type": 
         {"type": "map", "values": "string"}
      }
   ]
}

This is an instance of the schema as XML:

<oxh:item>
   <full_name>John Doe</full_name>
   <properties>
      <oxh:entry key="employer">Example Inc</oxh:entry>
      <oxh:entry key="hair color">brown</oxh:entry>
      <oxh:entry key="favorite author">George RR Martin</oxh:entry>
   </properties>
</oxh:item>

The following example queries a file named person-properties.avro that contains
PersonAddress records, and writes the names of the people that are employed by
Example Inc. The query shows how regular XPath expressions can retrieve map
entries. Moreover, you can use the avro:get function as a shortcut to retrieve map
entries.

import module "oxh:avro";
import module "oxh:text";
 
for $person in avro:collection-avroxml("person-properties.avro")
where $person/properties/oxh:entry[@key eq "employer"] eq "Example Inc"
return
   text:put($person/full_name)
 

The following query uses the avro:get function to retrieve the employer entry. It is
equivalent to the previous query.

import module "oxh:avro";
import module "oxh:text";
 
for $person in avro:collection-avroxml("person-properties.avro")
where $person/properties/avro:get("employer") eq "Example Inc"
return
   text:put($person/full_name)

You can use XQuery fn:nilled function to test for null values. This example returns
true if the map entry is null:

$var/avro:get("key")/nilled()

Reading Arrays
Oracle XQuery for Hadoop converts Avro array values to an element that contains a
child <oxh:item> element for each item in the array. For example, consider the
following schema:

{
   "type": "record", 
   "name": "PersonScores",

Chapter 6
Avro File Adapter

6-10



   "fields" : [
      {"name": "full_name", "type": "string"},
      {"name": "scores", "type": 
         {"type": "array", "items": "int"}
      }
   ]
}

This is an instance of the schema as XML:

<oxh:item>
   <full_name>John Doe</full_name>
   <scores>
      <oxh:item>128</oxh:item>
      <oxh:item>151</oxh:item>
      <oxh:item>110</oxh:item>
   </scores>
</oxh:item>

The following example queries a file named person-scores.avro that contains PersonScores
records, and writes the sum and count of scores for each person:

import module "oxh:avro";
import module "oxh:text";
 
for $person in avro:collection-avroxml("person-scores.avro")
let $scores := $person/scores/*
return
   text:put($person/full_name || "," || sum($scores) || "," || count($scores))

You can access a specific element of an array by using a numeric XPath predicate. For
example, this path expression selects the second score. XPath indexing starts at 1 (not 0).

$person/scores/oxh:item[2]

Reading Unions
Oracle XQuery for Hadoop converts an instance of an Avro union type based on the actual
member type of the value. The name of the member type is added as an XML avro:type
attribute to the enclosing element, which ensures that queries can distinguish between
instances of different member types. However, the attribute is not added for trivial unions
where there are only two member types and one of them is null.

For example, consider the following union of two records:

[
   {
      "type": "record", 
      "name": "Person1",
      "fields" : [
         {"name": "full_name", "type": "string"}
      ]
   }
   ,
   {
      "type": "record", 
      "name": "Person2",
      "fields" : [
         {"name": "fname", "type": "string"}
      ]
   }

Chapter 6
Avro File Adapter

6-11



]
 

This is an instance of the schema as XML:

<oxh:item avro:type="Person2">
   <fname>John Doe</fname>
</oxh:item>

The following example queries a file named person-union.avro that contains instances
of the previous union schema, and writes the names of the people from both record
types to a text file:

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml("examples/person-union.avro")
return
   if ($person/@avro:type eq "Person1") then
      text:put($person/full_name)
   else if ($person/@avro:type eq "Person2") then
      text:put($person/fname)
   else
      error(xs:QName("UNEXPECTED"), "Unexpected record type:" || $person/
@avro:type)

Reading Primitives
The following table shows how Oracle XQuery for Hadoop maps Avro primitive types
to XQuery atomic types.

Table 6-1    Mapping Avro Primitive Types to XQuery Atomic Types

Avro XQuery

boolean xs:boolean
int xs:int
long xs:long
float xs:float
double xs:double
bytes xs:hexBinary
string xs:string

Avro null values are mapped to empty nilled elements. To distinguish between a null
string value and an empty string value, use the XQuery nilled function. This path
expression only returns true if the field value is null:

$record/field/fn:nilled()

Avro fixed values are mapped to xs:hexBinary, and enums are mapped to xs:string.

Chapter 6
Avro File Adapter

6-12



Writing XML as Avro
Both the Avro file adapter and the Oracle NoSQL Database adapter have an avroxml
method, which you can use with the put functions to write XML as Avro. The following topics
describe how the XML is converted to an Avro instance:

• Writing Records

• Writing Maps

• Writing Arrays

• Writing Unions

• Writing Primitives

Writing Records
Oracle XQuery for Hadoop maps the XML to an Avro record schema by matching the child
element names to the field names of the record. For example, consider the following Avro
schema:

{
   "type": "record",
   "name": "Person",
   "fields" : [
      {"name": "full_name", "type": "string"},
      {"name": "age", "type": ["int", "null"] }
   ]
}

You can use the following XML element to write an instance of this record in which the
full_name field is John Doe and the age field is 46. The name of the root element (Person) is
inconsequential. Only the names of the child elements are used to map to the Avro record
fields (full_name and age).

<person>
   <full_name>John Doe</full_name>
   <age>46</age>
</person>

The next example uses the following CSV file named people.csv:

John Doe,46
Jane Doe,37
     .
     .
     .
 

This query converts values from the CSV file to Avro Person records:

import module "oxh:avro";
import module "oxh:text";
 
declare 
   %avro:put("avroxml")
   %avro:schema('
      {
         "type": "record", 

Chapter 6
Avro File Adapter

6-13



         "name": "Person",
         "fields" : [
            {"name": "full_name", "type": "string"},
            {"name": "age", "type": ["int", "null"] }
         ]
      }
   ')
function local:put-person($person as element()) external;

for $line in text:collection("people.csv")
let $split := tokenize($line, ",")
return
   local:put-person(
      <person>
         <full_name>{$split[1]}</full_name>
         <age>{$split[2]}</age>
      </person>
   )
 

For null values, you can omit the element or set the xsi:nil="true" attribute. For
example, this modified query sets age to null when the value is not numeric:

   .
   .
   .
for $line in text:collection("people.csv")
let $split := tokenize($line, ",")
return
   local:put-person(
      <person>
         <full_name>{$split[1]}</full_name>
         {
         if ($split[2] castable as xs:int) then
            <age>{$split[2]}</age>
         else 
            ()
         }
      </person>
   )

In the case of nested records, the values are obtained from nested elements. The next
example uses the following schema:

{
"type": "record", 
"name": "PersonAddress",
"fields" : [
   {"name": "full_name", "type": "string"},
   {"name": "address", "type": 
      { "type" : "record",
        "name" : "Address",
        "fields" : [
           { "name" : "street", "type" : "string" },
           { "name" : "city", "type" : "string" }
        ]
      }
   }
]
}

Chapter 6
Avro File Adapter

6-14



You can use following XML to write an instance of this record:

<person>
   <full_name>John Doe</full_name>
   <address>
      <street>123 First St.</street>
      <city>New York</city>
   </address>
</person>

Writing Maps
Oracle XQuery for Hadoop converts XML to an Avro map with one map entry for each
<oxh:entry> child element. For example, consider the following schema:

{
   "type": "record", 
   "name": "PersonProperties",
   "fields" : [
      {"name": "full_name", "type": "string"},
      {"name": "properties", "type": 
         {"type": "map", "values": "string"}
      }
   ]
}

You can use the following XML element to write an instance of this schema in which the
full_name field is John Doe, and the properties field is set to a map with three entries:

<person>
   <full_name>John Doe</full_name>
   <properties>
      <oxh:entry key="hair color">brown</oxh:entry>
      <oxh:entry key="favorite author">George RR Martin</oxh:entry>
      <oxh:entry key="employer">Example Inc</oxh:entry>
   </properties>
</person>

Writing Arrays
Oracle XQuery for Hadoop converts XML to an Avro array with one item for each <oxh:item>
child element. For example, consider the following schema:

{
   "type": "record", 
   "name": "PersonScores",
   "fields" : [
      {"name": "full_name", "type": "string"},
      {"name": "scores", "type": 
         {"type": "array", "items": "int"}
      }
   ]
}

You can use the following XML element to write an instance of this schema in which the
full_name field is John Doe and the scores field is set to [128, 151, 110]:

<person>
   <full_name>John Doe</full_name>
   <scores>

Chapter 6
Avro File Adapter

6-15



      <oxh:item>128</oxh:item>
      <oxh:item>151</oxh:item>
      <oxh:item>110</oxh:item>
   </scores>
</person>

Writing Unions
When writing an Avro union type, Oracle XQuery for Hadoop bases the selection of a
member type on the value of the avro:type attribute.

This example uses the following schema:

[
   {
      "type": "record", 
      "name": "Person1",
      "fields" : [
         {"name": "full_name", "type": "string"}
      ]
   }
   ,
   {
      "type": "record", 
      "name": "Person2",
      "fields" : [
         {"name": "fname", "type": "string"}
      ]
   }
]

The following XML is mapped to an instance of the Person1 record:

<person avro:type="Person1">
   <full_name>John Doe</full_name>
</person>

This XML is mapped to an instance of the Person2 record:

<person avro:type="Person2">
   <fname>John Doe</fname>
</person>

The avro:type attribute selects the member type of the union. For trivial unions that
contain a null and one other type, the avro:type attribute is unnecessary. If the
member type cannot be determined, then an error is raised.

Writing Primitives
To map primitive values, Oracle XQuery for Hadoop uses the equivalent data types
shown in Table 6-1 to cast an XML value to the corresponding Avro type. If the value
cannot be converted to the Avro type, then an error is raised.

This example uses the following schema:

{
   "type": "record",
   "name": "Person",
   "fields" : [
      {"name": "full_name", "type": "string"},

Chapter 6
Avro File Adapter

6-16



      {"name": "age", "type": ["int", "null"] }
   ]
}

Attempting to map the following XML to an instance of this schema raises an error, because
the string value apple cannot be converted to an int:

<person>
   <full_name>John Doe</full_name>
   <age>apple</age>
</person>

JSON File Adapter
The JSON file adapter provides access to JSON files stored in HDFS. It also contains
functions for working with JSON data embedded in other file formats. For example, you can
query JSON that is stored as lines in a large text file by using json:parse-as-xml with the
text:collection function.

Processing a single JSON file in parallel is not currently supported. A set of JSON files can
be processes in parallel, with sequential processing of each file.

The JSON module is described in the following topics:

• Built-in Functions for Reading JSON

• Custom Functions for Reading JSON Files

• Examples of JSON Functions

• JSON File Adapter Configuration Properties

• About Converting JSON Data Formats to XML

Built-in Functions for Reading JSON
To use the built-in functions in your query, you must import the JSON file adapter as follows:

import module "oxh:json";

The JSON module contains the following functions:

• json:collection-jsonxml

• json:parse-as-xml

• json:get

As of Big Data Connectors Release 4.9, Oracle XQuery for Hadoop also supports XQuery 3.1
including the standard facilities for processing JSON, including: fn:parse-json, fn:json-to-
xml, and fn:xml-to-json

See Also:

XPath and XQuery Functions and Operators 3.1

Chapter 6
JSON File Adapter

6-17

https://www.w3.org/TR/xpath-functions-31/


json:collection-jsonxml
Accesses a collection of JSON files in HDFS. Multiple files can be processed
concurrently, but each individual file is parsed by a single task.

The JSON file adapter automatically decompresses files compressed with a Hadoop-
supported compression codec.

Signature

json:collection-jsonxml($uris as xs:string*) as element()* external;

Parameters

$uris: The JSON file URIs

Returns

XML elements that model the JSON values. See "About Converting JSON Data
Formats to XML."

json:parse-as-xml
Parses a JSON value as XML.

Signature

json:parse-as-xml($arg as xs:string?) as element(*)?

Parameters

$arg: Can be the empty sequence.

Returns

An XML element that models the JSON value. An empty sequence if $arg is an empty
sequence. See "About Converting JSON Data Formats to XML."

json:get
Retrieves an entry from a JSON object modeled as XML. See "About Converting
JSON Data Formats to XML."

Signature

json:get($key as xs:string?, $obj as node()?) as element(oxh:entry)?

json:get($key as xs:string?) as element(oxh:entry)?

Parameters

$key: The JSON data key

$obj: The JSON object value

Chapter 6
JSON File Adapter

6-18



Returns

The value of the following XPath expression:

$obj/oxh:entry[@key eq $key]

If $input not present, then the behavior is identical to calling the two-argument function using
the context item for $obj. See the Notes.

Notes

These function calls are equivalent:

$var/json:get("key")

json:get("key", $var)

$var/oxh:entry[@key eq "key"]
 

$var is a JSON object modeled as XML. See "Reading Maps."

Custom Functions for Reading JSON Files
You can use the following annotations to define functions that read collections of JSON files
in HDFS. These annotations provide additional functionality that is not available using the
built-in functions.

Signature

Custom functions for reading JSON files must have the following signature:

declare %json:collection("jsonxml") [additional annotations]
   function local:myFunctionName($uris as xs:string*) as element()* external;

Annotations

%json:collection("jsonxml")
Declares the collection function. The annotation parameter must be jsonxml.

%output:encoding("charset")
Identifies the text encoding of the input files.
The valid encodings are those supported by the JVM. If this annotation is omitted, then the
encoding is automatically detected from the JSON file as UTF-8, UTF-16 big-endian
serialization (BE) or little-endian serialization (LE), or UTF-32 (BE or LE).
For better performance, omit the encoding annotation if the actual file encoding is specified
by JSON Request for Comment 4627, Section 3 "Encoding," on the Internet Engineering
Task Force (IETF) website at
http://www.ietf.org/rfc/rfc4627.txt

Parameters

$uris as xs:string*
Lists the JSON file URIs. Required.

Chapter 6
JSON File Adapter

6-19

http://www.ietf.org/rfc/rfc4627.txt


Returns

A collection of XML elements. Each element models the corresponding JSON value.
See "About Converting JSON Data Formats to XML."

Examples of JSON Functions
Example 6-3    

This example uses the following JSON text files stored in HDFS:

mydata/users1.json
[
{ "user" : "john", "full name" : "John Doe", "age" : 45 },
{ "user" : "kelly", "full name" : "Kelly Johnson", "age" : 32 }
]
 
mydata/users2.json 
[
{ "user" : "laura", "full name" : "Laura Smith", "age" : null },
{ "user" : "phil", "full name" : "Phil Johnson", "age" : 27 }
]
 

The following query selects names of users whose last name is Johnson from
users1.json and users2.json
import module "oxh:text";
import module "oxh:json";
 
for $user in json:collection-jsonxml("mydata/users*.json")/oxh:item
let $fullname := $user/json:get("full name")
where tokenize($fullname, "\s+")[2] eq "Johnson"
return 
   text:put-text($fullname)

This query generates text files that contain the following lines:

Phil Johnson
Kelly Johnson

The remaining examples query the following text file in HDFS:

mydata/users-json.txt
 
{ "user" : "john", "full name" : "John Doe", "age" : 45 }
{ "user" : "kelly", "full name" : "Kelly Johnson", "age" : 32 }
{ "user" : "laura", "full name" : "Laura Smith", "age" : null }
{ "user" : "phil", "full name" : "Phil Johnson", "age" : 27 }

Example 6-4    

The following query selects the names of users that are older than 30 from users-
json.txt:

import module "oxh:text";
import module "oxh:json";

for $line in text:collection("mydata/users-json.txt")
let $user := json:parse-as-xml($line)

Chapter 6
JSON File Adapter

6-20



where $user/json:get("age") gt 30
return 
   text:put($user/json:get("full name"))

This query generates text files that contain the following lines:

John Doe
Kelly Johnson

Example 6-5    

The next query selects the names of employees that have a null value for age from users-
json.txt:

import module "oxh:text";
import module "oxh:json";

for $line in text:collection("mydata/users-json.txt")
let $user := json:parse-as-xml($line)
where $user/json:get("age")/nilled()
return 
   text:put($user/json:get("full name"))
 

This query generates a text file that contains the following line:

Laura Smith

JSON File Adapter Configuration Properties
Oracle XQuery for Hadoop uses the generic options for specifying configuration properties in
the hadoop command. You can use the -conf option to identify configuration files, and the -D
option to specify individual properties.

The following configuration properties are equivalent to the Jackson parser options with the
same names. You can enter the option name in either upper or lower case. For example,
oracle.hadoop.xquery.json.parser.ALLOW_BACKSLASH_ESCAPING_ANY_CHARACTER and
oracle.hadoop.xquery.json.parser.allow_backslash_escaping_any_character are equal.

oracle.hadoop.xquery.json.parser.ALLOW_BACKSLASH_ESCAPING_ANY_CHARACT
ER
Type: Boolean
Default Value: false
Description: Enables any character to be escaped with a backslash (\). Otherwise, only the
following characters can be escaped: quotation mark("), slash (/), backslash (\), backspace,
form feed (f), new line (n), carriage return (r), horizontal tab (t), and hexadecimal
representations (unnnn)

oracle.hadoop.xquery.json.parser.ALLOW_COMMENTS
Type: Boolean
Default Value: false
Description: Allows Java and C++ comments (/* and //) within the parsed text.

oracle.hadoop.xquery.json.parser.ALLOW_NON_NUMERIC_NUMBERS
Type: Boolean
Default Value: false
Description: Allows Not a Number (NaN) tokens to be parsed as floating number values.

Chapter 6
JSON File Adapter

6-21



oracle.hadoop.xquery.json.parser.ALLOW_NUMERIC_LEADING_ZEROS
Type: Boolean
Default Value: false
Description: Allows integral numbers to start with zeroes, such as 00001. The zeros
do not change the value and can be ignored.

oracle.hadoop.xquery.json.parser.ALLOW_SINGLE_QUOTES
Type: Boolean
Default Value: false
Description: Allow single quotes (') to delimit string values.

oracle.hadoop.xquery.json.parser.ALLOW_UNQUOTED_CONTROL_CHARS
Type: Boolean
Default Value: false
Description: Allows JSON strings to contain unquoted control characters (that is,
ASCII characters with a decimal value less than 32, including the tab and line feed).

oracle.hadoop.xquery.json.parser.ALLOW_UNQUOTED_FIELD_NAMES
Type: Boolean
Default Value: false
Description: Allows unquoted field names, which are allowed by Javascript but not
the JSON specification.

Related Topics

• Run Queries

About Converting JSON Data Formats to XML
This section describes how JSON data formats are converted to XML. It contains the
following topics:

• About Converting JSON Objects to XML

• About Converting JSON Arrays to XML

• About Converting Other JSON Types

As of Big Data Connectors Release 4.9, Oracle XQuery for Hadoop also supports
XQuery 3.1 including the standard facilities for processing JSON, including: fn:parse-
json, fn:json-to-xml, and fn:xml-to-json

See Also:

XPath and XQuery Functions and Operators 3.1

About Converting JSON Objects to XML
JSON objects are similar to Avro maps and are converted to the same XML structure.
See "Reading Maps."

For example, the following JSON object is converted to an XML element:

{ 
   "user" : "john", 
   "full_name" : "John Doe", 

Chapter 6
JSON File Adapter

6-22

https://www.w3.org/TR/xpath-functions-31/


   "age" : 45 
}

The object is modeled as the following element:

<oxh:item>
    <oxh:entry key="user">john</oxh:entry>
    <oxh:entry key="full_name">John Doe</oxh:entry>
    <oxh:entry key="age">45</oxh:entry>
</oxh:item>

About Converting JSON Arrays to XML
JSON arrays are similar to Avro arrays and are converted to the same XML structure. See
"Reading Arrays."

For example, the following JSON array is converted to an XML element:

[ "red", "blue", "green" ]

The array is modeled as the following element:

<oxh:item>
   <oxh:item>red</oxh:item>
   <oxh:item>blue</oxh:item>
   <oxh:item>green</oxh:item>
</oxh:item>

About Converting Other JSON Types
The other JSON values are mapped as shown in the following table.

Table 6-2    JSON Type Conversions

JSON XML

null An empty (nilled) element

true/false xs:boolean
number xs:decimal
string xs:string

Oracle Database Adapter
The Oracle Database adapter provides custom functions for loading data into tables in Oracle
Database.

A custom put function supported by this adapter automatically calls Oracle Loader for
Hadoop at run time, either to load the data immediately or to output it to HDFS. You can
declare and use multiple custom Oracle Database adapter put functions within a single query.
For example, you might load data into different tables or into different Oracle databases with
a single query.

Ensure that Oracle Loader for Hadoop is installed on your system, and that the OLH_HOME
environment variable is set to the installation directory. See Step 3 of "Install Oracle XQuery
for Hadoop." Although not required, you might find it helpful to familiarize yourself with Oracle
Loader for Hadoop before using this adapter.

Chapter 6
Oracle Database Adapter

6-23



The Oracle Database adapter is described in the following topics:

• Custom Functions for Writing to Oracle Database

• Examples of Oracle Database Adapter Functions

• Oracle Loader for Hadoop Configuration Properties and Corresponding %oracle-
property Annotations

See Also:

"Software Requirements" for the versions of Oracle Database that Oracle
Loader for Hadoop supports

Custom Functions for Writing to Oracle Database
You can use the following annotations to define functions that write to tables in an
Oracle database either directly or by generating binary or text files for subsequent
loading with another utility, such as SQL*Loader.

Signature

Custom functions for writing to Oracle database tables must have the following
signature:

declare %oracle:put(["jdbc" | "oci" | "text" | "datapump"])
   [%oracle:columns(col1 [, col2...])] [%oracle-property annotations]
   function local:myPut($column1 [as xs:allowed_type_name[?]], [$column2 [as 
xs:allowed_type_name[?]], ...]) external;

Annotations

%oracle:put("output_mode"?)
Declares the put function and the output mode. Required.
The optional output_mode parameter can be one of the following string literal values:

• jdbc: Writes to an Oracle database table using a JDBC connection. Default.

See "JDBC Output Format."

• oci: Writes to an Oracle database table using an Oracle Call Interface (OCI)
connection.

See "Oracle OCI Direct Path Output Format."

• datapump: Creates Data Pump files and associated scripts in HDFS for
subsequent loading by another utility.

See "Oracle Data Pump Output Format."

• text: Creates delimited text files and associated scripts in HDFS.

See "Delimited Text Output Format."

For Oracle XQuery for Hadoop to write directly to an Oracle database table using
either JDBC or OCI, all systems involved in processing the query must be able to
connect to the Oracle Database system. See "Interfaces to Oracle Loader for
Hadoop."

Chapter 6
Oracle Database Adapter

6-24



%oracle:columns(col1 [, col2...])
Identifies a selection of one or more column names in the target table. The order of column
names corresponds to the order of the function parameters. See "Parameters." Optional.
This annotation enables loading a subset of the table columns. If omitted, the put function
attempts to load all columns of the target table.

%oracle-property:property_name (value)
Controls various aspects of connecting to the database and writing data. You can specify
multiple %oracle-property annotations. These annotations correspond to the Oracle Loader
for Hadoop configuration properties. Every %oracle-property annotation has an equivalent
Oracle Loader for Hadoop configuration property. "Oracle Loader for Hadoop Configuration
Properties and Corresponding %oracle-property Annotations " explains this relationship in
detail.
The %oracle-property annotations are optional. However, the various loading scenarios
require you to specify some of them or their equivalent configuration properties. For
example, to load data into an Oracle database using JDBC or OCI, you must specify the
target table and the connection information.
The following example specifies a target table named VISITS, a user name of db, a
password of password, and the URL connection string:

%oracle-property:targetTable('visits')
%oracle-property:connection.user('db')
%oracle-property:connection.password('password')
%oracle-property:connection.url('jdbc:oracle:thin:@//localhost:1521/
orcl.example.com')

Parameters

$column1 [as xs:allowed_type_name[?]], [$column2 [as xs:allowed_type_name[?]],...]
Enter a parameter for each column in the same order as the Oracle table columns to load all
columns, or use the %oracle:columns annotation to load selected columns.
Because the correlation between parameters and database columns is positional, the name
of the parameter (column1 in the parameter syntax) is not required to match the name of the
database column.
You can omit the explicit as xs:allowed_type_name type declaration for any parameter. For
example, you can declare the parameter corresponding to a NUMBER column simply
as $column1. In this case, the parameter is automatically assigned an XQuery type of
item()*. At run time, the input value is cast to the allowed XQuery type for the
corresponding table column type, as described in the following table. For example, data
values that are mapped to a column with a NUMBER data type are automatically cast as
xs:decimal. An error is raised if the cast fails.
Alternatively, you can specify the type or its subtype for any parameter. In this case, compile-
time type checking is performed. For example, you can declare a parameter corresponding
to a NUMBER column as $column as xs:decimal. You can also declare it as any subtype of
xs:decimal, such as xs:integer.
You can include the ? optional occurrence indicator for each specified parameter type. This
indicator allows the empty sequence to be passed as a parameter value at run time, so that
a null is inserted into the database table. Any occurrence indicator other than ? raises a
compile-time error.
The following table describes the appropriate mappings of XQuery data types with the
supported Oracle Database data types. In addition to the listed XQuery data types, you can
also use the subtypes, such as xs:integer instead of xs:decimal. Oracle data types are
more restrictive than XQuery data types, and these restrictions are identified in the table.

Chapter 6
Oracle Database Adapter

6-25



Table 6-3    Data Type Mappings Between Oracle Database and XQuery

Database Type XQuery Type

VARCHAR2 xs:string
Limited by the VARCHAR2 maximum size of 4000 bytes.

CHAR xs:string
Limited by the CHAR maximum size of 2000 bytes.

NVARCHAR2 xs:string
Limited by the NVARCHAR2 maximum size of 4000 bytes.

NCHAR xs:string
Limited by the NCHAR maximum size of 2000 bytes.

DATE xs:dateTime
Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. If a time zone is specified in the xs:dateTime
value, then the time zone information is dropped. Fractional
seconds are also dropped. A time value of 24:00:00 is not
valid.

TIMESTAMP xs:dateTime
Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. If a time zone is specified in the xs:dateTime
value, then the time zone information is dropped. Fractional
seconds are limited to a precision of 0 to 9 digits. A time value
of 24:00:00 is not valid.

TIMESTAMP W LOCAL TIME
ZONE

xs:dateTime
Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. In the offset from UTC, the time-zone hour field is
limited to -12:00 to 14:00. Fractional seconds are limited to a
precision of 0 to 9 digits.

See "About Session Time Zones."

TIMESTAMP W TIME ZONE xs:dateTime
Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. In the offset from UTC, the time-zone hour field is
limited to -12:00 to 14:00. Fractional seconds are limited to a
precision of 0 to 9 digits.

See "About Session Time Zones."

INTERVAL DAY TO SECOND xs:dateTimeDuration
The day and fractional seconds are limited by a precision of 0
to 9 digits each. The hour is limited to a range of 0 to 23, and
minutes and seconds are limited to a range of 0 to 59.

INTERVAL YEAR TO MONTH xs:yearMonthDuration
The year is limited by a precision of 0 to 9 digits, and the
month is limited to a range of 0 to 11.

BINARY_FLOAT xs:float
BINARY_DOUBLE xs:double
NUMBER xs:decimal

Limited by the NUMBER precision of 1 to 38 decimal digits and
scale of -84 to 127 decimal digits.

Chapter 6
Oracle Database Adapter

6-26



Table 6-3    (Cont.) Data Type Mappings Between Oracle Database and XQuery

Database Type XQuery Type

FLOAT xs:decimal
Limited by the FLOAT precision of 1 to 126 binary digits.

RAW xs:hexBinary
Limit by the RAW maximum size of 2000 bytes.

About Session Time Zones

If an xs:dateTime value with no time zone is loaded into TIMESTAMP W TIME ZONE or
TIMESTAMP W LOCAL TIME ZONE, then the time zone is set to the value of the
sessionTimeZone parameter, which defaults to the JVM time zone. Using Oracle XQuery for
Hadoop, you can set the sessionTimeZone property, as described in "Oracle Loader for
Hadoop Configuration Properties and Corresponding %oracle-property Annotations ."

Notes

With JDBC or OCI output modes, the Oracle Database Adapter loads data directly into the
database table. It also creates a directory with the same name as the custom put function
name, under the query output directory. For example, if your query output directory is
myoutput, and your custom function is myPut, then the myoutput/myPut directory is created.

For every custom Oracle Database Adapter put function, a separate directory is created. This
directory contains output produced by the Oracle Loader for Hadoop job. When you use
datapump or text output modes, the data files are written to this directory. The control and
SQL scripts for loading the files are written to the _olh subdirectory, such as myoutput/
myPut/_olh.

For descriptions of the generated files, see "Delimited Text Output Format" and "Oracle Data
Pump Output Format."

Examples of Oracle Database Adapter Functions
These examples use the following text files in HDFS. The files contain a log of visits to
different web pages. Each line represents a visit to a web page and contains the time, user
name, and page visited:

mydata/visits1.log  
 
2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200
2013-10-30T10:00:10, mike, index.html, 401

mydata/visits2.log  

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200

The examples also use the following file in HDFS, which contains anonymous page visits:

Chapter 6
Oracle Database Adapter

6-27



mydata/anonvisits.log
 
2011-10-30T10:01:01, index.html, 401
2011-11-04T06:15:40, contact.html, 401

This SQL command creates the VISITS table in the Oracle database:

CREATE TABLE visits (time TIMESTAMP, name VARCHAR2(15), page VARCHAR2(15), code 
NUMBER)

Example 6-6    Loading All Columns

The first query loads all information related to the page visit (time of visit, user name,
page visited, and status code) to the VISITS table. For anonymous access, the user
name is missing, therefore the query specifies () to insert a null into the table. The
target table name, user name, password, and connection URL are specified with
%oracle-property annotations.

The example uses a clear-text user name and password, which is insecure but
acceptable in a development environment. Oracle recommends that you use a wallet
instead for security, especially in a production application. You can configure an Oracle
wallet using either Oracle Loader for Hadoop properties or their equivalent %oracle-
property annotations. The specific properties that you must set are described in "Use
Oracle Wallets."

import module "oxh:text";
 
declare
   %oracle:put
   %oracle-property:targetTable('visits')
   %oracle-property:connection.user('db')
   %oracle-property:connection.password('password')
   %oracle-property:connection.url('jdbc:oracle:thin:@//localhost:1521/
orcl.example.com')
function local:myPut($c1, $c2, $c3, $c4) external;
 
for $line in text:collection("mydata/*visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
return
   if (count($split) > 3) then
      local:myPut($split[1], $split[2], $split[3], $split[4])
   else
      local:myPut($split[1], (), $split[2], $split[3])
 

The VISITS table contains the following data after the query runs:

TIME                           NAME            PAGE                  CODE
------------------------------ --------------- --------------- ----------
30-OCT-13 10.00.01.000000 AM   john            index.html             200
30-OCT-13 10.05.20.000000 AM   john            about.html             200
01-NOV-13 08.00.08.000000 AM   laura           index.html             200
04-NOV-13 06.12.51.000000 AM   kelly           index.html             200
04-NOV-13 06.12.40.000000 AM   kelly           contact.html           200
28-OCT-13 06.00.00.000000 AM   john            index.html             200
28-OCT-13 08.30.02.000000 AM   kelly           index.html             200
28-OCT-13 08.32.50.000000 AM   kelly           about.html             200
30-OCT-13 10.00.10.000000 AM   mike            index.html             401
30-OCT-11 10.01.01.000000 AM                   index.html             401
04-NOV-11 06.15.40.000000 AM                   contact.html           401

Chapter 6
Oracle Database Adapter

6-28



Example 6-7    Loading Selected Columns

This example uses the %oracle:columns annotation to load only the time and name columns
of the table. It also loads only visits by john.

The column names specified in %oracle:columns are positionally correlated to the put
function parameters. Data values provided for the $c1 parameter are loaded into the TIME
column, and data values provided for the $c2 parameter are loaded into the NAME column.

import module "oxh:text";

declare
   %oracle:put
   %oracle:columns('time', 'name')
   %oracle-property:targetTable('visits')
   %oracle-property:connection.user('db')
   %oracle-property:connection.password('password')
   %oracle-property:connection.url('jdbc:oracle:thin:@//localhost:1521/
orcl.example.com')
function local:myPut($c1, $c2) external;
 
for $line in text:collection("mydata/*visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
where $split[2] eq 'john'
return
   local:myPut($split[1], $split[2])
 

If the VISITS table is empty before the query runs, then it contains the following data
afterward:

TIME                           NAME            PAGE                 CODE
------------------------------ --------------- --------------- ----------
30-OCT-13 10.00.01.000000 AM   john
30-OCT-13 10.05.20.000000 AM   john
28-OCT-13 06.00.00.000000 AM   john

Oracle Loader for Hadoop Configuration Properties and Corresponding
%oracle-property Annotations

When you use the Oracle Database adapter of Oracle XQuery for Hadoop, you indirectly use
Oracle Loader for Hadoop. Oracle Loader for Hadoop defines configuration properties that
control various aspects of connecting to Oracle Database and writing data. Oracle XQuery for
Hadoop supports many of these properties, which are listed in the last column of the table
below.

You can specify these properties with the generic -conf and -D hadoop command-line options
in Oracle XQuery for Hadoop. Properties specified using this method apply to all Oracle
Database adapter put functions in your query. See "Run Queries" and especially "Generic
Options" for more information about the hadoop command-line options.

Alternatively, you can specify these properties as Oracle Database adapter put function
annotations with the %oracle-property prefix. These annotations are listed in the second
column of the table below. Annotations apply only to the particular Oracle Database adapter
put function that contains them in its declaration.

For example, you can set the target table to VISITS by adding the following lines to the
configuration file, and identifying the configuration file with the -conf option:

Chapter 6
Oracle Database Adapter

6-29



<property>
   <name>oracle.hadoop.loader.targetTable</name>
   <value>visits</value>
</property>
 

You can also set the target table to VISITS with the -D option, using the same Oracle
Loader for Hadoop property:

-D oracle.hadoop.loader.targetTable=visits
 

Both methods set the target table to VISITS for all Oracle Database adapter put
functions in your query.

Alternatively, this annotation sets the target table to VISITS only for the particular put
function that has the annotation in the declaration:

%oracle-property:connection.url('visits')
 

This flexibility is provided for convenience. For example, if a query has multiple Oracle
Database adapter put functions, each writing to a different table in the same database,
then the most convenient way to specify the necessary information is like this:

• Use the oracle.hadoop.loader.connection.url property in the configuration file to specify
the database connection URL. Then identify the configuration file using the -conf
option. This option sets the same database connection URL for all Oracle
Database adapter put functions in your query.

• Set a different table name using the %oracle-property:targetTable annotation in
each Oracle Database adapter put function declaration.

The following table identifies the Oracle Loader for Hadoop properties and their
equivalent Oracle XQuery for Hadoop annotations by functional category. Oracle
XQuery for Hadoop supports only the Oracle Loader for Hadoop properties listed in
this table.

Table 6-4    Configuration Properties and Corresponding %oracle-property Annotations

Category Property Annotation

Connection oracle.hadoop.loader.connection.defaultExecuteBatc
h

%oracle-
property:connection.defaultExecuteBa
tch

Connection oracle.hadoop.loader.connection.oci_url %oracle-property:connection.oci_url
Connection oracle.hadoop.loader.connection.password %oracle-property:connection.password
Connection oracle.hadoop.loader.connection.sessionTimeZone %oracle-

property:connection.sessionTimeZone
Connection oracle.hadoop.loader.connection.tns_admin %oracle-

property:connection.tns_admin
Connection oracle.hadoop.loader.connection.tnsEntryName %oracle-

property:connection.tnsEntryName
Connection oracle.hadoop.loader.connection.url %oracle-property:connection.url
Connection oracle.hadoop.loader.connection.user %oracle-property:connection.user

Chapter 6
Oracle Database Adapter

6-30



Table 6-4    (Cont.) Configuration Properties and Corresponding %oracle-property Annotations

Category Property Annotation

Connection oracle.hadoop.loader.connection.wallet_location %oracle-
property:connection.wallet_location

General oracle.hadoop.loader.badRecordFlushInterval %oracle-
property:badRecordFlushInterval

General oracle.hadoop.loader.compressionFactors %oracle-property:compressionFactors
General oracle.hadoop.loader.enableSorting %oracle-property:enableSorting
General oracle.hadoop.loader.extTabDirectoryName %oracle-property:extTabDirectoryName
General oracle.hadoop.loader.loadByPartition %oracle-property:loadByPartition
General oracle.hadoop.loader.logBadRecords %oracle-property:logBadRecords
General oracle.hadoop.loader.rejectLimit %oracle-property:rejectLimit
General oracle.hadoop.loader.sortKey %oracle-property:sortKey
General oracle.hadoop.loader.tableMetadataFile %oracle-property:tableMetadataFile
General oracle.hadoop.loader.targetTable %oracle-property:targetTable
Output oracle.hadoop.loader.output.dirpathBufsize %oracle-property:dirpathBufsize
Output oracle.hadoop.loader.output.escapeEnclosers %oracle-

property:output.escapeEnclosers
Output oracle.hadoop.loader.output.fieldTerminator %oracle-

property:output.fieldTerminator
Output oracle.hadoop.loader.output.granuleSize %oracle-property:output.granuleSize
Output oracle.hadoop.loader.output.initialFieldEncloser %oracle-

property:output.initialFieldEncloser
Output oracle.hadoop.loader.output.trailingFieldEncloser %oracle-

property:output.trailingFieldEnclose
r

Sampler oracle.hadoop.loader.sampler.enableSampling %oracle-
property:sampler.enableSampling

Sampler oracle.hadoop.loader.sampler.hintMaxSplitSize %oracle-
property:sampler.hintMaxSplitSize

Sampler oracle.hadoop.loader.sampler.hintNumMapTasks %oracle-
property:sampler.hintNumMapTask

Sampler oracle.hadoop.loader.sampler.loadCI %oracle-property:sampler.loadCI
Sampler oracle.hadoop.loader.sampler.maxHeapBytes %oracle-

property:sampler.maxHeapBytes
Sampler oracle.hadoop.loader.sampler.maxLoadFactor %oracle-

property:sampler.maxLoadFactor
Sampler oracle.hadoop.loader.sampler.maxSamplesPct %oracle-

property:sampler.maxSamplesPct
Sampler oracle.hadoop.loader.sampler.minSplits %oracle-property:sampler.minSplits
Sampler oracle.hadoop.loader.sampler.numThreads %oracle-property:sampler.numThreads

Chapter 6
Oracle Database Adapter

6-31



Oracle NoSQL Database Adapter
This adapter provides functions to read and write values stored in Oracle NoSQL
Database.

This adapter is described in the following topics:

• Prerequisites for Using the Oracle NoSQL Database Adapter

• Built-in Functions for Reading from and Writing to Oracle NoSQL Database

• Built-in Functions for Reading from and Writing to Oracle NoSQL Database using
Table API

• Custom Functions for Reading Values from Oracle NoSQL Database

• Custom Functions for Retrieving Single Values from Oracle NoSQL Database

• Custom Functions for Reading Values from Oracle NoSQL Database using Table
API

• Custom Functions for Reading Single Row from Oracle NoSQL Database using
Table API

• Custom Functions for Retrieving Single Values from Oracle NoSQL Database
using Large Object API

• Custom Functions for Writing to Oracle NoSQL Database

• Custom Functions for Writing Values to Oracle NoSQL Database using Table API

• Custom Functions for Writing Values to Oracle NoSQL Database using Large
Object API

• Examples of Oracle NoSQL Database Adapter Functions

• Oracle NoSQL Database Adapter Configuration Properties

Prerequisites for Using the Oracle NoSQL Database Adapter
Before you write queries that use the Oracle NoSQL Database adapter, you must
configure Oracle XQuery for Hadoop to use your Oracle NoSQL Database server.

You must set the following:

• The KVHOME environment variable to the local directory containing the Oracle
NoSQL database lib directory.

• The oracle.kv.hosts and oracle.kv.kvstore configuration properties.

• The OXH_SOLR_MR_HOME environment variable to the local directory containing
search-mr-<version>.jar and search-mr-<version>-job.jar, only when Tika
parser is invoked. That is, only when kv:collection-tika() or kv:get-tika()
functions are invoked or, %kv:collection('tika') or %kv:get('tika')
annotations are used with external functions.

You can set the configuration properties using either the -D or -conf options in the
hadoop command when you run the query. See "Run Queries."

This example sets KVHOME and uses the hadoop -D option in a query to set
oracle.kv.kvstore:

Chapter 6
Oracle NoSQL Database Adapter

6-32



$ export KVHOME=/local/path/to/kvstore/
$ hadoop jar $OXH_HOME/lib/oxh.jar -D oracle.kv.hosts=example.com:5000 -D 
oracle.kv.kvstore=kvstore ./myquery.xq -output ./myoutput

This example sets OXH_SOLR_MR_HOME environment variable when the Tika parser is invoked:

$ export OXH_SOLR_MR_HOME=/usr/lib/solr/contrib/mr

Note:

The HADOOP_CLASSPATH environment variable or -libjars command line option
must not contain NoSQL DB jars.

See "Oracle NoSQL Database Adapter Configuration Properties."

Built-in Functions for Reading from and Writing to Oracle NoSQL Database
To use the built-in functions in your query, you must import the Oracle NoSQL Database
module as follows

import module "oxh:kv";

The Oracle NoSQL Database module contains the following functions:

• kv:collection-text

• kv:collection-avroxml

• kv:collection-xml

• kv:collection-binxml

• kv:collection-tika

• kv:put-text

• kv:put-xml

• kv:put-binxml

• kv:get-text

• kv:get-avroxml

• kv:get-xml

• kv:get-binxml

• kv:get-tika

• kv:key-range

kv:collection-text
Accesses a collection of values in the database. Each value is decoded as UTF-8 and
returned as a string.

Chapter 6
Oracle NoSQL Database Adapter

6-33



Signature

declare %kv:collection("text") function 
   kv:collection-text($parent-key as xs:string?, $depth as xs:int?, $subrange as 
xs:string?) as xs:string* external;

declare %kv:collection("text") function 
   kv:collection-text($parent-key as xs:string?, $depth as xs:int?) as 
xs:string* external;

declare %kv:collection("text") function 
   kv:collection-text($parent-key as xs:string?) as xs:string* external;

Parameters

See "Parameters." Omitting $subrange is the same as specifying $subrange().
Likewise, omitting $depth is the same as specifying $depth().

Returns

One string for each value

kv:collection-avroxml
Accesses a collection of values in the database. Each value is read as an Avro record
and returned as an XML element. The records are converted to XML as described in
"Reading Records ."

Signature

declare %kv:collection("avroxml") function 
   kv:collection-avroxml($parent-key as xs:string?, $depth as xs:int?, $subrange 
as xs:string?) as element()* external;

declare %kv:collection("avroxml") function 
   kv:collection-avroxml($parent-key as xs:string?, $depth as xs:int?) as 
element()* external;

declare %kv:collection("avroxml") function 
   kv:collection-avroxml($parent-key as xs:string?) as element()* external;

Parameters

See "Parameters." Omitting $subrange is the same as specifying $subrange().
Likewise, omitting $depth is the same as specifying $depth().

Returns

One XML element for each Avro record

kv:collection-xml
Accesses a collection of values in the database. Each value is read as a sequence of
bytes and parsed as XML.

Chapter 6
Oracle NoSQL Database Adapter

6-34



Signature

declare %kv:collection("xml") function 
   kv:collection-xml($parent-key as xs:string?, $depth as xs:int?, $subrange as 
xs:string?) as document-node()* external;

declare %kv:collection("xml") function 
   kv:collection-xml($parent-key as xs:string?, $depth as xs:int?) as document-node()* 
external;

declare %kv:collection("xml") function 
   kv:collection-xml($parent-key as xs:string?) as document-node()* external;

Parameters

See "Parameters." Omitting $subrange is the same as specifying $subrange(). Likewise,
omitting $depth is the same as specifying $depth().

Returns

One XML document for each value.

kv:collection-binxml
Accesses a collection of values in the database. Each value is read as XDK binary XML and
returned as an XML document.

Signature

declare %kv:collection("binxml") function 
   kv:collection-binxml($parent-key as xs:string?, $depth as xs:int?, $subrange as 
xs:string?) as document-node()* external;

declare %kv:collection("binxml") function 
   kv:collection-binxml($parent-key as xs:string?, $depth as xs:int?) as document-
node()* external;

declare %kv:collection("binxml") function
   kv:collection-binxml($parent-key as xs:string?) as document-node()* external;

Parameters

See "Parameters." Omitting $subrange is the same as specifying $subrange(). Likewise,
omitting $depth is the same as specifying $depth().

Returns

One XML document for each value.

kv:collection-tika
Uses Tika to parse the specified value when invoked and returns as a document node.

Signature

declare %kv:collection("tika") function
kv:collection-tika($parent-key as xs:string?, $depth as xs:int?, $subrange as 
xs:string?) $contentType as xs:string?) as document-node()* external;

Chapter 6
Oracle NoSQL Database Adapter

6-35



Parameters

See "Parameters." Omitting $subrange is the same as specifying $subrange().
Likewise, omitting $depth is the same as specifying $depth().

Returns

One document node for each value.

kv:put-text
Writes a key-value pair. The $value is encoded as UTF-8.

Signature

declare %kv:put("text") function
   kv:put-text($key as xs:string, $value as xs:string) external;

kv:put-xml
Writes a key/value pair. The $xml is serialized and encoded as UTF-8.

Signature

declare %kv:put("xml") function 
   kv:put-xml($key as xs:string, $xml as node()) external;

kv:put-binxml
Puts a key/value pair. The $xml is encoded as XDK binary XML. See Oracle XML
Developer's Kit Programmer's Guide.

Signature

declare %kv:putkv:put-binxml("binxml") function
   ($key as xs:string, $xml as node()) external;

kv:get-text
Obtains the value associated with the key. The value is decoded as UTF-8 and
returned as a string.

Signature

declare %kv:get("text") function 
   kv:get-text($key as xs:string) as xs:string? external;

kv:get-avroxml
Obtains the value associated with the key. The value is read as an Avro record and
returned as an XML element. The records are converted to XML as described in
"Reading Records .".

Chapter 6
Oracle NoSQL Database Adapter

6-36



Signature

declare %kv:get("avroxml") function 
   kv:get-avroxml($key as xs:string) as element()? external;

kv:get-xml
Obtains the value associated with the key. The value is read as a sequence of bytes and
parsed as XML.

Signature

declare %kv:get("xml")  function 
   kv:get-xml($key as xs:string) as document-node()? external;

kv:get-binxml
Obtains the value associated with the key. The value is read as XDK binary XML and
returned as an XML document.

Signature

declare %kv:get("binxml") function
   kv:get-binxml($key as xs:string) as document-node()? external;

kv:get-tika
Obtains the value associated with the key. The value is parsed as byte array and returned as
a document node.

Signature

declare %kv:get("tika") function
   kv:get-tika($key as xs:string, $contentType as xs:string?) as document-node()? 
external;

kv:key-range
Defines a prefix range. The prefix defines both the lower and upper inclusive boundaries.

Use this function as the subrange argument of a kv:collection function.

Signature

kv:key-range($prefix as xs:string) as xs:string;

kv:key-range
Specifies a key range.

Use this function as the subrange argument of a kv:collection function.

Signature

kv:key-range($start as xs:string, $start-inclusive as xs:boolean, $end as 
xs:string, $end-inclusive as xs:boolean) as xs:string;

Chapter 6
Oracle NoSQL Database Adapter

6-37



Parameters

$start: Defines the lower boundary of the key range.

$start-inclusive: A value of true includes $start in the range, or false omits it.

$end: Defines the upper boundary of the key range. It must be greater than $start.

$end-inclusive: A value of true includes $end in the range, or false omits it.

Built-in Functions for Reading from and Writing to Oracle NoSQL
Database using Table API

To use the built-in functions in your query, you must have declared the name space
and imported the module as follows:

declare namespace kv-table = "oxh:kv-table";
import module "oxh:kv-table";

The Oracle NoSQL Database through Table API module contains the following
functions:

• kv-table:collection-jsontext

• kv-table:get-jsontext

• kv-table:put-jsontext

kv-table:collection-jsontext
These functions iterate over all or a subset of rows stored in a single table in the
NoSQL Database. Each row is returned in a form of a JSON string.

Signature

declare %kv-table:collection-jsontext("jsontext") function 
  kv-table:collection-jsontext($tableName as xs:string) as xs:string*

declare %kv-table:collection(“jsontext") function 
  kv-table:collection-jsontext($tableName as xs:string, $primaryKeyJsonValue as 
xs:string?) as xs:string*

declare %kv-table:collection(“jsontext") function
  kv-table:collection-jsontext($tableName as xs:string, $primaryKeyJsonValue as 
xs:string?, $fieldRangeJsonValue as xs:string?) as xs:string*

Parameters

$tableName as xs:string – name of the table in NoSQL Database

$primaryKeyJsonValue as xs:string? – a partial primary key specified as JSON text

Chapter 6
Oracle NoSQL Database Adapter

6-38



See Also:

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/
primaryshardkeys.html#partialprimarykeys

$fieldRangeJsonValue as xs:string? – field range for a remaining field of the given primary
key specified as JSON text

{ 
   "name": “fieldname", 
   "start": “startVal", 
   "startInclusive": true|false,  
   "end" : "endVal",
   "endInclusive": true|false   
}

Returns

JSON value of each row

Use "json:parse-as-xml" function to parse JSON string into an XML document

kv-table:get-jsontext
This function reads a single row stored in a table in NoSQL Database. The row is returned in
a form of a JSON string. If the row is not found, then an empty sequence is returned.

Signature

declare %kv-table:get(“jsontext") function
  kv-table:get-jsontext($tableName as xs:string, $primaryKeyJsonValue as xs:string) as 
xs:string?

Parameters

$tableName as xs:string – name of the table in NoSQL Database

$primaryKeyJsonValue as xs:string? – a full primary key specified as JSON text

See Also:

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/
primaryshardkeys.html#primarykeys

Returns

JSON value of the row or an empty sequence, if the row is not found.

Use "json:parse-as-xml" function to parse JSON string into an XML document

kv-table:put-jsontext
This function writes a row into NoSQL Database using its Table API

Chapter 6
Oracle NoSQL Database Adapter

6-39

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/primaryshardkeys.html#partialprimarykeys
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/primaryshardkeys.html#partialprimarykeys
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/primaryshardkeys.html#primarykeys
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/primaryshardkeys.html#primarykeys


Signature

declare %kv-table:put(“jsontext") function
  kv-table:put-jsontext($tableName as xs:string, $jsonValue as xs:string);

Parameters

$tableName as xs:string – name of the table in NoSQL Database

$jsonValue as xs:string – row specified as JSON text

Built-in Functions for Reading from and Writing to Oracle NoSQL
Database using Large Object API

To use the built-in functions in your query you must have declared the name space
and imported the module as follows:

declare namespace kv-lob = "oxh:kv-lob";
import module "oxh:kv-lob";

The Oracle NoSQL Database through Large Object API module contains the following
functions:

• kv-lob:get-text

• kv-lob:get-xml

• kv-lob:get-binxml

• kv-lob:get-tika

• kv-lob:put-text

• kv-lob:put-xml

• kv-lob:put-binxml

kv-lob:get-text
Obtains the value associated with the key. The value is decoded as UTF-8 and
returned as a string.

Signature

declare %kv-lob:get("text") 
function kv-lob:get-text($key as xs:string) as xs:string?

kv-lob:get-xml
Obtains the value associated with the key. The value is read as a sequence of bytes
and parsed as XML.

Signature

declare %kv-lob:get("xml") 
function kv-lob:get-xml($key as xs:string) as document-node()?

Chapter 6
Oracle NoSQL Database Adapter

6-40



kv-lob:get-binxml
Obtains the value associated with the key. The value is read as XDK binary XML and
returned as an XML document. See Oracle XML Developer's Kit Programmer's Guide.

Signature

declare %kv-lob:get("binxml")
function kv-lob:get-binxml($key as xs:string) as document-node()?

kv-lob:get-tika
Obtains the value associated with the key. The value is parsed as byte array and returned as
a document node.

Signature

declare %kv-lob:get("tika")
function kv-lob:get-tika($key as xs:string) as document-node()?

declare %kv-lob:get("tika")
function kv-lob:get-tika($key as xs:string, $contentType as xs:string?) as document-
node()?

kv-lob:put-text
Writes a key-value pair. The $value is encoded as UTF-8.

Signature

declare %kv-lob:put("text")
function kv-lob:put-text($key as xs:string, $value as xs:string)

kv-lob:put-xml
Writes a key/value pair. The $xml is serialized and encoded as UTF-8.

Signature

declare %kv-lob:put("xml")
function kv-lob:put-xml($key as xs:string, $document as node())

kv-lob:put-binxml
Puts a key/value pair. The $xml is encoded as XDK binary XML.

Signature

declare %kv-lob:put("binxml")
function kv-lob:put-binxml($key as xs:string, $document as node()

Custom Functions for Reading Values from Oracle NoSQL Database
You can use the following functions to read values from Oracle NoSQL Database. These
annotations provide additional functionality that is not available using the built-in functions.

Chapter 6
Oracle NoSQL Database Adapter

6-41



Signature

Custom functions for reading collections of NoSQL values must have one of the
following signatures:

declare %kv:collection("text") [additional annotations] 
   function local:myFunctionName($parent-key as xs:string?, $depth as 
xs:int?, $subrange as xs:string?) as xs:string* external;

declare %kv:collection(["xml"|"binxml"|"tika"]) [additional annotations] 
   function local:myFunctionName($parent-key as xs:string?, $depth as 
xs:int?, $subrange as xs:string?) as document-node()* external;

declare %kv:collection("tika") [additional annotations]
   function local:myFunctionName($parent-key as xs:string?, $depth as 
xs:int?, $subrange as xs:string?, $contentType as xs:string?) as document-
node()* external;

Annotations

%kv:collection("method")
Declares the NoSQL Database collection function. Required.
The method parameter is one of the following values:

• avroxml: Each value is read as an Avro record and returned as an XML element.
The records are converted to XML as described in "Reading Records ."

• binxml: Each value is read as XDK binary XML and returned as an XML
document.

• text: Each value is decoded using the character set specified by the
%output:encoding annotation.

• tika: Each value is parsed by Tika, and returned as a document node.

• xml: Each value is parsed as XML, and returned as an XML document.

%kv:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the
returned value. Specify true to return the key.
The default setting is true when method is xml, avroxml, or binxml, and false when it
is text. Text functions with this annotation set to true must be declared to return
text()? instead of xs:string?. Atomic xs:string values are not associated with a
document node, but text nodes are. For example:

declare %kv:collection("text") %kv:key("true")
   function local:col($parent-key as xs:string?) as text()* external;

When the key is returned, you can obtain its string representation by using the
kv:key() function. For example:

for $value in local:col(...)
let $key := $value/kv:key()
return ...

Chapter 6
Oracle NoSQL Database Adapter

6-42



%avro:schema-kv("schema-name")
Specifies the Avro reader schema. This annotation is valid only when method is avroxml.
Optional.
The schema-name is a fully qualified record name. The record schema is retrieved from the
Oracle NoSQL Database catalog. The record value is mapped to the reader schema. For
example, %avro:schema-kv("org.example.PersonRecord").

See Also:

For information about Avro schemas, the Oracle NoSQL Database Getting Started
Guide at
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/
schemaevolution.html

%output:encoding
Specifies the character encoding of text values. UTF-8 is assumed when this annotation is
not used. The valid encodings are those supported by the JVM.
This annotation currently only applies to the text method. For XML files, the document's
encoding declaration is used if it is available.

See Also:

"Supported Encodings" in the Oracle Java SE documentation at
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/
encoding.doc.html

Parameters

Parameter 1: $parent-key as xs:string?
Specifies the parent key whose child KV pairs are returned by the function. The major key
path must be a partial path and the minor key path must be empty. An empty sequence
results in fetching all keys in the store.

See Also:

For the format of the key, Oracle NoSQL Database Java Reference at
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/
Key.html#toString

Parameter 2: $depth as xs:int?
Specifies whether parents, children, descendants, or a combination are returned. The
following values are valid:

• kv:depth-parent-and-descendants(): Selects the parents and all descendants.

• kv:depth-children-only(): Selects only the immediately children, but not the parent.

• kv:depth-descendants-only(): Selects all descendants, but not the parent.

Chapter 6
Oracle NoSQL Database Adapter

6-43

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/Key.html#toString
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/Key.html#toString


• kv:depth-parent-and-children(): Selects the parent and the immediate
children.

An empty sequence implies kv:depth-parent-and-descendants().
This example selects all the descendants, but not the parent:

kv:collection-text("/parent/key", kv:depth-descendants-only(), ...

Parameter 3: $subRange as xs:string?
Specifies a subrange to further restrict the range under parentKey to the major path
components. The format of the string is:

<startType>/<start>/<end>/<endType>

The startType and endType are either I for inclusive or E for exclusive.
The start and end are the starting and ending key strings.
If the range does not have a lower boundary, then omit the leading startType/start
specification from the string representation. Similarly, if the range does not have an
upper boundary, then omit the trailing end/endType specification. A KeyRange requires
at least one boundary, thus at least one specification must appear in the string
representation.
The kv:key-range function provides a convenient way to create a range string.
The value can also be the empty sequence.
The following examples are valid subrange specifications:

Example Description

I/alpha/beta/E From alpha inclusive to beta exclusive

E//0123/I From "" exclusive to 0123 inclusive

I/chi/ From chi inclusive to infinity

E// From "" exclusive to infinity

/chi/E From negative infinity to chi exclusive

//I From negative infinity to "" inclusive

Custom Functions for Retrieving Single Values from Oracle NoSQL
Database

The Oracle NoSQL Database adapter has get functions, which enable you to retrieve
a single value from the database. Unlike collection functions, calls to get functions are
not distributed across the cluster. When a get function is called, the value is retrieved
by a single task.

Signature

Custom get functions must have one of the following signatures:

declare %kv:get("text") [additional annotations]
   function local:myFunctionName($key as xs:string) as xs:string? external;

declare %kv:get("avroxml") [additional annotations] 
   function local:myFunctionName($key as xs:string) as element()? external;

declare %kv:get(["xml"|"binxml"|"tika"]) [additional annotations]
   function local:myFunctionName($key as xs:string) as document-node()?

declare %kv:get(["tika"]) [additional annotations]

Chapter 6
Oracle NoSQL Database Adapter

6-44



   function local:myFunctionName($key as xs:string $contentType as xs:string?) as 
document-node()?

Annotations

%kv:get("method")
Declares the NoSQL Database get function. Required.
The method parameter is one of the following values:

• avroxml: The value is read as an Avro record and returned as an XML element. The
records are converted to XML as described in "Reading Records ."

• binxml: The value is read as XDK binary XML and returned as an XML document.

• text: The value is decoded using the character set specified by the %output:encoding
annotation.

• tika: Each value is parsed by Tika, and returned as a document node.

• xml: The value is parsed as XML and returned as an XML document.

%kv:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the returned
value. Specify true to return the key.
The default setting is true when method is xml, avroxml, or binxml, and false when it is
text. Text functions with this annotation set to true must be declared to return text()?
instead of xs:string?. Atomic xs:string values are not associated with a document node,
but text nodes are.
When the key is returned, you can obtain its string representation by using the kv:key()
function.

%avro:schema-kv("schema-name")
Specifies the Avro reader schema. This annotation is valid only when method is avroxml.
Optional.
The schema-name is a fully qualified record name. The record schema is retrieved from the
Oracle NoSQL Database catalog. The record value is mapped to the reader schema. For
example, %avro:schema-kv("org.example.PersonRecord").

See Also:

For information about Avro schemas, the Oracle NoSQL Database Getting Started
Guide at
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/
schemaevolution.html

%output:encoding
Specifies the character encoding of text values. UTF-8 is assumed when this annotation is
not used. The valid encodings are those supported by the JVM.
This annotation currently only applies to the text method. For XML files, the document
encoding declaration is used, if it is available.

Chapter 6
Oracle NoSQL Database Adapter

6-45

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html


See Also:

"Supported Encodings" in the Oracle Java SE documentation at
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/
encoding.doc.html

Custom Functions for Reading Values from Oracle NoSQL Database
using Table API

You can use the following functions to read values from Oracle NoSQL Database
using Table API. These annotations provide additional functionality that is not available
using the built-in functions.

Signature

Custom functions for reading collections of NoSQL values using Table API must have
one of the following signatures:

declare %kv-table:collection(“jsontext")
function local:myFunctionName($tableName as xs:string) as xs:string* external;

declare %kv-table:collection(“jsontext")
function local:myFunctionName($tableName as xs:string, $primaryKeyJsonValue as 
xs:string?) as xs:string* external;

declare %kv-table:collection(“jsontext")
function local:myFunctionName($tableName as xs:string, $primaryKeyJsonValue as 
xs:string?, $fieldRangeJsonValue as xs:string?) as xs:string* external;

Annotations

%kv-table:collection(“jsontext")
Declares the collection function that uses Table API.

Note:

jsontext is the only supported and required annotation value.

Parameters

Same as "Parameters."

Returns

Same as "Returns."

Chapter 6
Oracle NoSQL Database Adapter

6-46

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html


Custom Functions for Reading Single Row from Oracle NoSQL Database
using Table API

You can use the following functions to read single row from Oracle NoSQL Database using
Table API. These annotations provide additional functionality that is not available using the
built-in functions.

Signature

Custom functions to read single row from Oracle NoSQL Database using Table API must
have one of the following signatures:

declare %kv-table:get(“jsontext")
function local:myFunctionName($tableName as xs:string, $primaryKeyJsonValue as 
xs:string?) as xs:string? external;

Annotations

%kv-table:get(“jsontext")
Declares the get function that uses Table API.

Note:

jsontext is the only supported and required annotation value.

Parameters

Same as "Parameters."

Returns

Same as "Returns."

Custom Functions for Retrieving Single Values from Oracle NoSQL
Database using Large Object API

You can use the following functions to read values from Oracle NoSQL Database using Large
Object API. These annotations provide additional functionality that is not available using the
built-in functions.

Signature

Custom functions for reading single values using Large Object API must have one of the
following signatures:

declare %kv-lob:get("text") [additional annotations]
function local:myFunctionName($key as xs:string) as xs:string? external;

declare %kv-lob:get(["xml"|"binxml"|"tika"]) [additional annotations]
function local:myFunctionName($key as xs:string) as document-node()?

Chapter 6
Oracle NoSQL Database Adapter

6-47



declare %kv-lob:get(["tika"]) [additional annotations]
function local:myFunctionName($key as xs:string $contentType as xs:string?) as 
document-node()?

Annotations

%kv-lob:get(“method")
Declares the NoSQL Database get function that uses Large Object API. Required.
Supported method parameters are binxml, text, tika, and xml – same as in
%kv:get(“method").

Note:

avroxml method is not supported with Large Object API.

%kv-lob:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the returned
value. Specify true to return the key. Same as %kv:key().

%output:encoding
Specifies the character encoding of text values. UTF-8 is assumed when this
annotation is not used. The valid encodings are those supported by the JVM. This
annotation currently only applies to the text method. For XML files, the document
encoding declaration is used, if it is available.

Custom Functions for Writing to Oracle NoSQL Database
You can use the following annotations to define functions that write to Oracle NoSQL
Database.

Signature

Custom functions for writing to Oracle NoSQL Database must have one of the
following signatures:

declare %kv:put("text") function
   local:myFunctionName($key as xs:string, $value as xs:string) external;

declare %kv:put(["xml"|"binxml"|"avroxml"]) function 
   local:myFunctionName($key as xs:string, $xml as node()) external;

Chapter 6
Oracle NoSQL Database Adapter

6-48



Annotations

Annotation Description

%kv:put("method") Declares the NoSQL Database module put
function. Required.

The method determines how the value is stored. It
must be one of the following values:

• text: $value is serialized and encoded
using the character set specified by the
%output:encoding annotation.

• avroxml: $xml is mapped to an instance of
the Avro record specified by the
%avro:schema-kv annotation. See "Writing
XML as Avro."

• binxml: $xml is encoded as XDK binary
XML.

• xml: $xml is serialized and encoded using
the character set specified by the
%output:encoding annotation. You can
specify other XML serialization parameters
using %output:*.

%avro:schema-kv("schema-name") Specifies the record schema of the values to be
written. The annotation value is a fully qualified
record name. The record schema is retrieved from
the Oracle NoSQL Database catalog.

For example: %avro:schema-
kv("org.example.PersonRecord")

%output:* A standard XQuery serialization parameter for the
output method (text or XML) specified in %kv:put.
See "Serialization Annotations."

Custom Functions for Writing Values to Oracle NoSQL Database using
Table API

You can use the following annotations to define functions that write to Oracle NoSQL
Database using Table API.

Signature

Custom functions for writing rows using Table API must have one of the following signatures:

declare %kv-table:put(“jsontext")
function local:myFunctionName($tableName as xs:string, $jsonValue as xs:string?) 
external;

Annotations

%kv-table:put(“jsontext")
Declares the put function that uses Table API.

Chapter 6
Oracle NoSQL Database Adapter

6-49



Note:

jsontext is the only supported and required annotation value.

Parameters

Same as "Parameters."

Custom Functions for Writing Values to Oracle NoSQL Database using
Large Object API

You can use the following annotations to define functions that write to Oracle NoSQL
Database using Large Object API.

Signature

Custom functions for writing values using Large Object API must have one of the
following signatures:

declare %kv-lob:put("text")
function  local:myFunctionName($key as xs:string, $value as xs:string) external;

declare %kv-lob:put(["xml"|"binxml"]) 
function local:myFunctionName($key as xs:string, $xml as node()) external;

Annotations

%kv-lob:put("method")
Declares the NoSQL Database put function. Required. Supported method parameters
are binxml, text, and xml – same as in "%kv:put("method")"

Note:

avroxml method is not supported with Large Object API.

%output:*
A standard XQuery serialization parameter for the output method (text or XML)
specified in %kv-lob:put. See "Serialization Annotations."

Examples of Oracle NoSQL Database Adapter Functions
Example 6-8    Writing and Reading Text in Oracle NoSQL Database

This example uses the following text file is in HDFS. The file contains user profile
information such as user ID, full name, and age, separated by colons (:).

mydata/users.txt  
 
john:John Doe:45
kelly:Kelly Johnson:32
laura:Laura Smith:
phil:Phil Johnson:27

Chapter 6
Oracle NoSQL Database Adapter

6-50



The first query stores the lines of this text file in Oracle NoSQL Database as text values.

import module "oxh:text";
import module "oxh:kv";
 
for $line in text:collection("mydata/users.txt")
let $split := fn:tokenize($line, ":")
let $key := "/users/text/" || $split[1]
return
   kv:put-text($key, $line)

The next query reads the values from the database:

import module "oxh:text";
import module "oxh:kv";

for $value in kv:collection-text("/users/text")
let $split := fn:tokenize($value, ":")
where $split[2] eq "Phil Johnson"
return
   text:put($value)

The query creates a text file that contains the following line:

phil:Phil Johnson:27

Example 6-9    Writing and Reading Avro in Oracle NoSQL Database

In this example, the following Avro schema is registered with Oracle NoSQL Database:

{
   "type": "record",
   "name": "User",
   "namespace": "com.example",
   "fields" : [
      {"name": "id", "type": "string"},
      {"name": "full_name", "type": "string"},
      {"name": "age", "type": ["int", "null"] }
   ]
 }

The next query writes the user names to the database as Avro records.

import module "oxh:text";

declare %kv:put("avroxml") %avro:schema-kv("com.example.User")
   function local:put-user($key as xs:string, $value as node()) external;

for $line in text:collection("mydata/users.txt")
let $split := fn:tokenize($line, ":")
let $id := $split[1]
let $key := "/users/avro/" || $id
return
   local:put-user(
      $key,
      <user>
         <id>{$id}</id>
         <full_name>{$split[2]}</full_name>
         {
            if ($split[3] castable as xs:int) then
               <age>{$split[3]}</age>
            else

Chapter 6
Oracle NoSQL Database Adapter

6-51



               ()
         }
      </user>
   )

This query reads the values from the database:

import module "oxh:text";
import module "oxh:kv";

for $user in kv:collection-avroxml("/users/avro")
where $user/age gt 30
return
   text:put($user/full_name)

The query creates a text files with the following lines:

John Doe
Kelly Johnson

Example 6-10    Storing XML in NoSQL Database

The following query uses the XML files shown in Example 6-24 of "Examples of XML
File Adapter Functions" as input. It writes each comment element as an Oracle NoSQL
Database value:

import module "oxh:xmlf";
import module "oxh:kv";
 
for $comment in xmlf:collection("mydata/comments*.xml")/comments/comment
let $key := "/comments/" || $comment/@id
return 
   kv:put-xml($key, $comment)
 

The query writes the five comment elements as XML values in Oracle NoSQL
Database.

For very large XML files, modify the query as follows to improve performance and disk
space consumption:

• Use the following for clause, which causes each XML file to be split and
processed in parallel by multiple tasks:

for $comment in xmlf:collection("mydata/comments*.xml", "comment")
• In the return clause, use kv:put-binxml instead of kv:put-xml to store the values

as binary XML instead of plain text.

Use the kv:collection-xml function to read the values in the database. For example:

import module "oxh:text";
import module "oxh:kv";

for $comment in kv:collection-xml("/comments")/comment
return 
   text:put($comment/@id || " " || $comment/@user)
 

The query creates text files that contain the following lines:

Chapter 6
Oracle NoSQL Database Adapter

6-52



12345 john
23456 john
54321 mike
56789 kelly
87654 mike

Example 6-11    Storing XML as Avro in Oracle NoSQL Database

This example converts the XML values to Avro before they are stored.

Add the following Avro schema to Oracle NoSQL Database:

{
   "type": "record",
   "name": "Comment",
   "namespace": "com.example",
   "fields" : [
      {"name": "cid", "type": "string"},
      {"name": "user", "type": "string"},
      {"name": "content", "type": "string"},
      {"name": "likes", "type" : { "type" : "array", "items" : "string" } }
   ]
}

The following query writes five comment elements as Avro values in Oracle NoSQL Database:

import module "oxh:xmlf";
import module "oxh:kv";

declare %kv:put("avroxml") %avro:schema-kv("com.example.Comment")
  function local:put-comment($key as xs:string, $value as node()) external;

for $comment in xmlf:collection("mydata/comments*.xml", "comment")
let $key := "/comments/" || $comment/@id
let $value :=
  <comment>
    <cid>{$comment/@id/data()}</cid>
    <user>{$comment/@user/data()}</user>
    <content>{$comment/@text/data()}</content>
    <likes>{
      for $like in $comment/like
      return <oxh:item>{$like/@user/data()}</oxh:item>
    }</likes>
  </comment>
return 
  local:put-comment($key, $value)

Use the kv:collection-avroxml function to read the values in the database. For example:

import module "oxh:text";
import module "oxh:kv";

for $comment in kv:collection-avroxml("/comments")
return 
   text:put($comment/cid || " " || $comment/user || " " || count($comment/likes/*))

The query creates text files that contain the following lines:

12345 john 0
23456 john 2
54321 mike 1

Chapter 6
Oracle NoSQL Database Adapter

6-53



56789 kelly 2
87654 mike 0

Example 6-12    Reading and writing data using Oracle NoSQL Database Table
API

This example uses the following text file is in HDFS. The file contains user profile
information such as user ID, full name, and age, separated by colons (:).

mydata/users.txt  
john:John Doe:45
kelly:Kelly Johnson:32
laura:Laura Smith:
phil:Phil Johnson:27

Let us create a table called users in NoSQL DB as follows:

CREATE TABLE users (id STRING, name STRING, age INTEGER, PRIMARY KEY (id));

The first query stores users age into this table.

import module "oxh:text";
import module "oxh:kv-table";

for $line in text:collection("mydata/users.txt")
let $split := tokenize($line, ":")
let $id := $split[1]
let $name := $split[2]
let $age := $split[3]
where string-length($age) gt 0
let $row := 
'{' ||
  '"id":"' || $id || '",' ||
  '"name":"' || $name || '",' ||
  '"age":' || $age ||
'}'

return
   kv-table:put-jsontext(“users", $row)

After running this query the table contains the following records:

Id name age

john John Doe 45

kelly Kelly Johnson 32

phil Phil Johnson 27

The second query reads row from the table and returns ids of users whose name ends
with Johnson.

import module "oxh:text ";
import module "oxh:json";
import module "oxh:kv-table";
 
for $row in kv-table:collection("users")
let $user := json:parse-as-xml($row)
let $id := $user/json:get(“id")
let $name := $user/json:get(“name")

Chapter 6
Oracle NoSQL Database Adapter

6-54



where ends-with($name, “Johnson")
 
return text:put($id)

The query creates a text file that contains the following lines:

kelly
phil

Example 6-13    Reading data using Oracle NoSQL Database Large Object API

Assuming Oracle NoSQL Database contains the following information:

1. Table userImages

CREATE TABLE userImages (imageFileName STRING, imageVersion STRING,
imageDescription INTEGER, PRIMARY KEY (imageFileName))

imageFileName imageVersion imageDescription

IMG_001.JPG 1 Sunrise

IMG_002.JPG 1 Sunrise

2. Key/Value data loaded with Large Object API where:

• Key is the lob/imageFileName/image.lob
• Value is a JPEG image data that contains geolocation metadata in EXIF format

The following query extracts that metadata and converts it to CSV format as
imageFileName, latitude, and longitude.

import module “oxh:kv-table";
import module “oxh:kv-lob";
import module "oxh:tika";
import module "oxh:json";
import module "oxh:text ";
 
for $row in kv-table:collection("userImages")
 
let $imageFileName := json:parse-as-xml($row)/json:get(“imageFileName")
let $imageKey := “lob/" || $imageFileName || “/image.lob"
let $doc := kv-lob:get-tika($imageKey, “image/jpeg")
let $lat := $doc/tika:metadata/tika:property[@name eq "GPS Latitude"]
let $lon := $doc/tika:metadata/tika:property[@name eq "GPS Longitude"]
where exists($lat) and exists($lon)
 
return text:put($imageFileName || "," || $lat || "," || $lon)

Oracle NoSQL Database Adapter Configuration Properties
Oracle XQuery for Hadoop uses the generic options for specifying configuration properties in
the Hadoop command. You can use the -conf option to identify configuration files, and the -D
option to specify individual properties. See "Run Queries."

You can set various configuration properties for the Oracle NoSQL Database adapter that
control the durability characteristics and timeout periods. You must set oracle.kv.hosts and 
oracle.kv.kvstore.The following properties configure the Oracle NoSQL Database adapter.

Chapter 6
Oracle NoSQL Database Adapter

6-55



Property Description

oracle.hadoop.xquery.kv.config.durability Type: String

Default Value: NO_SYNC, NO_SYNC,
SIMPLE_MAJORITY
Description: Defines the durability characteristics
associated with %kv:put operations. The value consists
of three parts, which you specify in order and separate
with commas (,):

MasterPolicy, ReplicaPolicy, ReplicaAck

• MasterPolicy: The synchronization policy used
when committing a transaction to the master
database. Set this part to one of the following
constants:

NO_SYNC: Do not write or synchronously flush the
log on a transaction commit.

SYNC: Write and synchronously flush the log on a
transaction commit.

WRITE_NO_SYNC: Write but do not synchronously
flush the log on a transaction commit.

• ReplicaPolicy: The synchronization policy used
when committing a transaction to the replica
databases. Set this part to NO_SYNC, SYNC, or
WRITE_NO_SYNC, as described under MasterPolicy.

• ReplicaAck: The acknowledgment policy used to
obtain transaction acknowledgments from the
replica databases. Set this part to one of the
following constants:

ALL: All replicas must acknowledge that they have
committed the transaction.

NONE: No transaction commit acknowledgments are
required, and the master does not wait for them.

SIMPLE_MAJORITY: A simple majority of replicas
(such as 3 of 5) must acknowledge that they have
committed the transaction.

Chapter 6
Oracle NoSQL Database Adapter

6-56



Property Description

oracle.hadoop.xquery.kv.config.requestLimit Type: Comma-separated list of integers

Default Value: 100, 90, 80

Description: Limits the number of simultaneous
requests to prevent nodes with long service times from
consuming all threads in the KV store client. The value
consists of three integers, which you specify in order and
separate with commas:

maxActiveRequests, requestThresholdPercent,
nodeLimitPercent

• maxActiveRequests: The maximum number of
active requests permitted by the KV client. This
number is typically derived from the maximum
number of threads that the client has set aside for
processing requests.

• requestThresholdPercent: The percentage of
maxActiveRequests at which requests are limited.

• nodeLimitPercent: The maximum number of active
requests that can be associated with a node when
the number of active requests exceeds the
threshold specified by requestThresholdPercent.

oracle.hadoop.xquery.kv.config.requestTimeout Type: Long

Default Value: 5000 ms

Description: Configures the request timeout period in
milliseconds. The value must be greater than zero (0).

oracle.hadoop.xquery.kv.config.socketOpenTimeout Type: Long

Default Value: 5000 ms

Description: Configures the open timeout used when
establishing sockets for client requests, in milliseconds.
Shorter timeouts result in more rapid failure detection
and recovery. The default open timeout is adequate for
most applications. The value must be greater than zero
(0).

oracle.hadoop.xquery.kv.config.socketReadTimeout Type: Long

Default Value: 30000 ms

Description: Configures the read timeout period
associated with the sockets that make client requests, in
milliseconds. Shorter timeouts result in more rapid
failure detection and recovery. Nonetheless, the timeout
period should be sufficient to allow the longest timeout
associated with a request.

oracle.kv.batchSize Type: Key

Default Value: Not defined

Description: The desired number of keys for the
InputFormat to fetch during each network round trip. A
value of zero (0) sets the property to a default value.

Chapter 6
Oracle NoSQL Database Adapter

6-57



Property Description

oracle.kv.consistency Type: Consistency

Default Value: NONE_REQUIRED
Description: The consistency guarantee for reading
child key-value pairs. The following keywords are valid
values:

• ABSOLUTE: Requires the master to service the
transaction so that consistency is absolute.

• NONE_REQUIRED: Allows replicas to service the
transaction, regardless of the state of the replicas
relative to the master.

oracle.kv.hosts Type: String

Default Value: Not defined

Description: An array of one or more hostname:port
pairs that identify the hosts in the KV store with the
source data. Separate multiple pairs with commas.

oracle.kv.kvstore Type: String

Default Value: Not defined

Description: The name of the KV store with the source
data.

oracle.kv.timeout Type: Long

Default Value: Not defined

Description: Sets a maximum time interval in
milliseconds for retrieving a selection of key-value pairs.
A value of zero (0) sets the property to its default value.

oracle.hadoop.xquery.kv.config.LOBSuffix Type: String

Default Value: .lob

Description: Configures the default suffix associated
with LOB keys.

oracle.hadoop.xquery.kv.config.LOBTimeout Necessary or FYI? Also, hard-coded link.

oracle.hadoop.xquery.kv.config.readZones Type: Comma separated list of strings

Default Value: Not defined

Description: Sets the zones in which nodes must be
located to be used for read operations.

oracle.hadoop.xquery.kv.config.security Type: String

Default Value: Not defined

Description: Configures security properties for the
client.

Sequence File Adapter
The sequence file adapter provides functions to read and write Hadoop sequence files.
A sequence file is a Hadoop-specific file format composed of key-value pairs.

The functions are described in the following topics:

• Built-in Functions for Reading and Writing Sequence Files

• Custom Functions for Reading Sequence Files

Chapter 6
Sequence File Adapter

6-58



• Custom Functions for Writing Sequence Files

• Examples of Sequence File Adapter Functions

Built-in Functions for Reading and Writing Sequence Files
To use the built-in functions in your query, you must import the sequence file module as
follows:

import module "oxh:seq";

The sequence file module contains the following functions:

• seq:collection

• seq:collection-xml

• seq:collection-binxml

• seq:collection-tika

• seq:put

• seq:put-xml

• seq:put-binxml

For examples, see "Examples of Sequence File Adapter Functions."

seq:collection
Accesses a collection of sequence files in HDFS and returns the values as strings. The files
may be split up and processed in parallel by multiple tasks.

Signature

declare %seq:collection("text") function 
   seq:collection($uris as xs:string*) as xs:string* external;

Parameters

$uris: The sequence file URIs. The values in the sequence files must be either
org.apache.hadoop.io.Text or org.apache.hadoop.io.BytesWritable. For BytesWritable
values, the bytes are converted to a string using a UTF-8 decoder.

Returns

One string for each value in each file.

seq:collection-xml
Accesses a collection of sequence files in HDFS, parses each value as XML, and returns it.
Each file may be split up and processed in parallel by multiple tasks.

Signature

declare %seq:collection("xml") function 
   seq:collection-xml($uris as xs:string*) as document-node()* external;

Chapter 6
Sequence File Adapter

6-59



Parameters

$uris: The sequence file URIs. The values in the sequence files must be either
org.apache.hadoop.io.Text or org.apache.hadoop.io.BytesWritable. For
BytesWritable values, the XML document encoding declaration is used, if it is
available.

Returns

One XML document for each value in each file. See "Tika Parser Output Format."

seq:collection-binxml
Accesses a collection of sequence files in the HDFS, reads each value as binary XML,
and returns it. Each file may be split up and processed in parallel by multiple tasks.

Signature

declare %seq:collection("binxml") function 
   seq:collection-binxml($uris as xs:string*) as document-node()* external;

Parameters

$uris: The sequence file URIs. The values in the sequence files must be
org.apache.hadoop.io.BytesWritable. The bytes are decoded as binary XML.

Returns

One XML document for each value in each file.

Notes

You can use this function to read files that were created by seq:put-binxml in a
previous query. See "seq:put-binxml."

seq:collection-tika
Uses Tika to parse the sequence files in the HDFS. The values in the sequence files
must be either org.apache.hadoop.io.Text or
org.apache.hadoop.io.BytesWritable. For each value a document node returned
produced by Tika.

Signature

declare %seq:collection("tika") function 
   seq:collection-tika($uris as xs:string*) as document-node()* external;
declare %seq:collection("tika") function 
   seq:collection-tika($uris as xs:string*, $contentType as xs:string?) as 
document-node()* external;

Parameters

$uris: The sequence file URIs. The values in the sequence files must be either
org.apache.hadoop.io.Text or org.apache.hadoop.io.BytesWritable. Tika library
automatically detects character encoding. Alternatively, the encoding can be passed
in $contentType parameter as charset attribute.

Chapter 6
Sequence File Adapter

6-60



$contentType: Specifies the media type of the content to parse, and may have the charset
attribute.

Returns

One document node for each value in each file.

seq:put
Writes either the string value or both the key and string value of a key-value pair to a
sequence file in the output directory of the query.

This function writes the keys and values as org.apache.hadoop.io.Text.

When the function is called without the $key parameter, it writes the values as
org.apache.hadoop.io.Text and sets the key class to
org.apache.hadoop.io.NullWritable, because there are no key values.

Signature

declare %seq:put("text") function
   seq:put($key as xs:string, $value as xs:string) external;

declare %seq:put("text") function 
   seq:put($value as xs:string) external;

Parameters

$key: The key of a key-value pair

$value: The value of a key-value pair

Returns

empty-sequence()

Notes

The values are spread across one or more sequence files. The number of files created
depends on how the query is distributed among tasks. Each file has a name that starts with
part, such as part-m-00000. You specify the output directory when the query executes. See
"Run Queries."

seq:put-xml
Writes either an XML value or a key and XML value to a sequence file in the output directory
of the query.

This function writes the keys and values as org.apache.hadoop.io.Text.

When the function is called without the $key parameter, it writes the values as
org.apache.hadoop.io.Text and sets the key class to
org.apache.hadoop.io.NullWritable, because there are no key values.

Signature

declare %seq:put("xml") function
   seq:put-xml($key as xs:string, $xml as node()) external;

Chapter 6
Sequence File Adapter

6-61



declare %seq:put("xml") function 
   seq:put-xml($xml as node()) external;

Parameters

$key: The key of a key-value pair

$value: The value of a key-value pair

Returns

empty-sequence()

Notes

The values are spread across one or more sequence files. The number of files created
depends on how the query is distributed among tasks. Each file has a name that starts
with "part," such as part-m-00000. You specify the output directory when the query
executes. See "Run Queries."

seq:put-binxml
Encodes an XML value as binary XML and writes the resulting bytes to a sequence file
in the output directory of the query. The values are spread across one or more
sequence files.

This function writes the keys as org.apache.hadoop.io.Text and the values as
org.apache.hadoop.io.BytesWritable.

When the function is called without the $key parameter, it writes the values as
org.apache.hadoop.io.BytesWritable and sets the key class to
org.apache.hadoop.io.NullWritable, because there are no key values.

Signature

declare %seq:put("binxml") function
   seq:put-binxml($key as xs:string, $xml as node()) external;

declare %seq:put("binxml") function 
   seq:put-binxml($xml as node()) external;

Parameters

$key: The key of a key-value pair

$value: The value of a key-value pair

Returns

empty-sequence()

Notes

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with part, such as part-m-00000. You specify the
output directory when the query executes. See "Run Queries."

Chapter 6
Sequence File Adapter

6-62



You can use the seq:collection-binxml function to read the files created by this function.
See "seq:collection-binxml."

Custom Functions for Reading Sequence Files
You can use the following annotations to define functions that read collections of sequence
files. These annotations provide additional functionality that is not available using the built-in
functions.

Signature

Custom functions for reading sequence files must have one of the following signatures:

declare %seq:collection("text") [additional annotations] 
   function local:myFunctionName($uris as xs:string*) as xs:string* external;

declare %seq:collection(["xml"|"binxml"|"tika"]) [additional annotations]
   function local:myFunctionName($uris as xs:string*) as document-node()* external;
declare %seq:collection(["tika"]) [additional annotations]
   function local:myFunctionName($uris as xs:string*, $contentType as xs:string?) as 
document-node()* external;

Annotations

%seq:collection(["method"])
Declares the sequence file collection function, which reads sequence files. Required.
The optional method parameter can be one of the following values:

• text: The values in the sequence files must be either org.apache.hadoop.io.Text or
org.apache.hadoop.io.BytesWritable. Bytes are decoded using the character set
specified by the %output:encoding annotation. They are returned as xs:string. Default.

• xml: The values in the sequence files must be either org.apache.hadoop.io.Text or
org.apache.hadoop.io.BytesWritable. The values are parsed as XML and returned by
the function.

• binxml: The values in the sequence files must be
org.apache.hadoop.io.BytesWritable. The values are read as XDK binary XML and
returned by the function.

• tika: The values in the sequence files must be either org.apache.hadoop.io.Text or
org.apache.hadoop.io.BytesWritable. The values are parsed by Tika and returned by
the function.

%output:encoding("charset")
Specifies the character encoding of the input values. The valid encodings are those
supported by the JVM. UTF-8 is the default encoding.

See Also:

"Supported Encodings" in the Oracle Java SE documentation at
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/
encoding.doc.html

Chapter 6
Sequence File Adapter

6-63

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html


%seq:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the
returned value. Specify true to return the keys. The default setting is true when
method is binxml or xml, and false when it is text.
Text functions with this annotation set to true must return text()* instead of
xs:string* because atomic xs:string is not associated with a document.
When the keys are returned, you can obtain their string representations by using
seq:key function.
This example returns text instead of string values because %seq:key is set to true.

declare %seq:collection("text") %seq:key("true")
   function local:col($uris as xs:string*) as text()* external;

The next example uses the seq:key function to obtain the string representations of
the keys:

for $value in local:col(...)
let $key := $value/seq:key()
return 
   .
   .
   .

%seq:split-max("split-size")
Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.
In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%seq:split-max(1024)
%seq:split-max("1024")
%seq:split-max("1K")

%seq:split-min("split-size")
Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.
In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%seq:split-min(1024)
%seq:split-min("1024")
%seq:split-min("1K")

Custom Functions for Writing Sequence Files
You can use the following annotations to define functions that write collections of
sequence files in HDFS.

Chapter 6
Sequence File Adapter

6-64



Signature

Custom functions for writing sequence files must have one of the following signatures. You
can omit the $key argument when you are not writing a key value.

declare %seq:put("text") [additional annotations] 
   function local:myFunctionName($key as xs:string, $value as xs:string) external;

declare %seq:put(["xml"|"binxml"]) [additional annotations] 
   function local:myFunctionName($key as xs:string, $xml as node()) external;

Annotations

%seq:put("method")
Declares the sequence file put function, which writes key-value pairs to a sequence file.
Required.
If you use the $key argument in the signature, then the key is written as
org.apache.hadoop.io.Text. If you omit the $key argument, then the key class is set to
org.apache.hadoop.io.NullWritable.
Set the method parameter to text, xml, or binxml. The method determines the type used to
write the value:

• text: String written as org.apache.hadoop.io.Text
• xml: XML written as org.apache.hadoop.io.Text
• binxml: XML encoded as XDK binary XML and written as

org.apache.hadoop.io.BytesWritable

%seq:compress("codec", "compressionType")
Specifies the compression format used on the output. The default is no compression.
Optional.
The codec parameter identifies a compression codec. The first registered compression
codec that matches the value is used. The value matches a codec if it equals one of the
following:

1. The fully qualified class name of the codec

2. The unqualified class name of the codec

3. The prefix of the unqualified class name before Codec (case insensitive)

Set the compressionType parameter to one of these values:

• block: Keys and values are collected in groups and compressed together. Block
compression is generally more compact, because the compression algorithm can take
advantage of similarities among different values.

• record: Only the values in the sequence file are compressed.

All of these examples use the default codec and block compression:

%seq:compress("org.apache.hadoop.io.compress.DefaultCodec", "block")
%seq:compress("DefaultCodec", "block")
%seq:compress("default", "block")

%seq:file("name")
Specifies the output file name prefix. The default prefix is part.

Chapter 6
Sequence File Adapter

6-65



%output:parameter
A standard XQuery serialization parameter for the output method (text or XML)
specified in %seq:put. See "Serialization Annotations."

See Also:

SequenceFile at Apache’s Hadoop Wiki.
"The Influence of Serialization Parameters" sections for XML and text output
methods in XSLT and XQuery Serialization 3.1

Examples of Sequence File Adapter Functions
These examples queries three XML files in HDFS with the following contents. Each
XML file contains comments made by users on a specific day. Each comment can
have zero or more "likes" from other users.

mydata/comments1.xml
 
<comments date="2013-12-30">
   <comment id="12345" user="john" text="It is raining :( "/>
   <comment id="56789" user="kelly" text="I won the lottery!">
      <like user="john"/>
      <like user="mike"/>
   </comment>
</comments>
 
mydata/comments2.xml
 
<comments date="2013-12-31">
   <comment id="54321" user="mike" text="Happy New Year!">
      <like user="laura"/>
   </comment>
</comments>
 
mydata/comments3.xml
  
<comments date="2014-01-01">
   <comment id="87654" user="mike" text="I don't feel so good."/>
   <comment id="23456" user="john" text="What a beautiful day!">
      <like user="kelly"/>
      <like user="phil"/>
   </comment>
</comments>

Example 6-14    

The following query stores the comment elements in sequence files.

import module "oxh:seq";
import module "oxh:xmlf";
 
for $comment in xmlf:collection("mydata/comments*.xml", "comment")
return 
   seq:put-xml($comment)

Chapter 6
Sequence File Adapter

6-66

https://cwiki.apache.org/confluence/display/HADOOP2/SequenceFile
http://www.w3.org/TR/xslt-xquery-serialization-31/


Example 6-15    

The next query reads the sequence files generated by the previous query, which are stored in
an output directory named myoutput. The query then writes the names of users who made
multiple comments to a text file.

import module "oxh:seq";
import module "oxh:text";

for $comment in seq:collection-xml("myoutput/part*")/comment
let $user := $comment/@user
group by $user
let $count := count($comment)
where $count gt 1
return
   text:put($user || " " || $count)

The text file created by the previous query contain the following lines:

john 2
mike 2

See "XML File Adapter."

Example 6-16    

The following query extracts comment elements from XML files and stores them in
compressed sequence files. Before storing each comment, it deletes the id attribute and
uses the value as the key in the sequence files.

import module "oxh:xmlf";

declare 
   %seq:put("xml")
   %seq:compress("default", "block") 
   %seq:file("comments")
function local:myPut($key as xs:string, $value as node()) external;    

for $comment in xmlf:collection("mydata/comments*.xml", "comment")
let $id := $comment/@id
let $newComment := 
   copy $c := $comment 
   modify delete node $c/@id
   return $c
return
   local:myPut($id, $newComment)

Example 6-17    

The next query reads the sequence files that the previous query created in an output
directory named myoutput. The query automatically decompresses the sequence files.

import module "oxh:text";
import module "oxh:seq";

for $comment in seq:collection-xml("myoutput/comments*")/comment
let $id := $comment/seq:key()
where $id eq "12345"
return 
   text:put-xml($comment)
 

Chapter 6
Sequence File Adapter

6-67



The query creates a text file that contains the following line:

<comment id="12345" user="john" text="It is raining :( "/>

Solr Adapter
This adapter provides functions to create full-text indexes and load them into Apache
Solr servers. These functions call the Solr
org.apache.solr.hadoop.MapReduceIndexerTool at run time to generate a full-text
index on HDFS and optionally merge it into Solr servers. You can declare and use
multiple custom put functions supplied by this adapter and the built-in put function
within a single query. For example, you can load data into different Solr collections or
into different Solr clusters.

This adapter is described in the following topics:

• Prerequisites for Using the Solr Adapter

• Built-in Functions for Loading Data into Solr Servers

• Custom Functions for Loading Data into Solr Servers

• Examples of Solr Adapter Functions

• Solr Adapter Configuration Properties

Prerequisites for Using the Solr Adapter
The first time that you use the Solr adapter, ensure that Solr is installed and configured
on your Hadoop cluster as described in "Install Oracle XQuery for Hadoop".

Configuration Settings
Your Oracle XQuery for Hadoop query must use the following configuration properties
or the equivalent annotation:

• oracle.hadoop.xquery.solr.loader.zk-host
• oracle.hadoop.xquery.solr.loader.collection
If the index is loaded into a live set of Solr servers, then this configuration property or
the equivalent annotation is also required:

• oracle.hadoop.xquery.solr.loader.go-live
You can set the configuration properties using either the -D or -conf options in the
hadoop command when you run the query. See "Run Queries" and "Solr Adapter
Configuration Properties"

Example Query Using the Solr Adapter
This example sets OXH_SOLR_MR_HOME and uses the hadoop -D option in a query to set
the configuration properties:

$ export OXH_SOLR_MR_HOME=/usr/lib/solr/contrib/mr 
$ hadoop jar $OXH_HOME/lib/oxh.jar -D oracle.hadoop.xquery.solr.loader.zk-host=/
solr -D oracle.hadoop.xquery.solr.loader.collection=collection1 -D 
oracle.hadoop.xquery.solr.loader.go-live=true  ./myquery.xq -output ./myoutput

Chapter 6
Solr Adapter

6-68



Built-in Functions for Loading Data into Solr Servers
To use the built-in functions in your query, you must import the Solr module as follows:

import module "oxh:solr";

The Solr module contains the following functions:

• solr:put

The solr prefix is bound to the oxh:solr namespace by default.

solr:put
Writes a single document to the Solr index.

This document XML format is specified by Solr at

https://wiki.apache.org/solr/UpdateXmlMessages

Signature

declare %solr:put function
   solr:put($value as element(doc)) external;

Parameters

$value: A single XML element named doc, which contains one or more field elements, as
shown here:

<doc>
<field name="field_name_1">field_value_1</field>
     .
     .
     .
<field name="field_name_N">field_value_N</field>
</doc>

Returns

A generated index that is written into the output_dir/solr-put directory, where output_dir is
the query output directory

Custom Functions for Loading Data into Solr Servers
You can use the following annotations to define functions that generate full-text indexes and
load them into Solr.

Signature

Custom functions for generating Solr indexes must have the following signature:

declare %solr:put [additional annotations] 
   function local:myFunctionName($value as node()) external;

Chapter 6
Solr Adapter

6-69

https://wiki.apache.org/solr/UpdateXmlMessages


Annotations

%solr:put
Declares the solr put function. Required.

%solr:file(directory_name)
Name of the subdirectory under the query output directory where the index files will be
written. Optional, the default value is the function local name.

%solr-property:property_name(value)
Controls various aspects of index generation. You can specify multiple %solr-
property annotations.
These annotations correspond to the command-line options of
org.apache.solr.hadoop.MapReduceIndexerTool. Each MapReduceIndexerTool?
option has an equivalent Oracle XQuery for Hadoop configuration property and a
%solr-property annotation. Annotations take precedence over configuration
properties. See "Solr Adapter Configuration Properties" for more information about
supported configuration properties and the corresponding annotations.

See Also:

For more information about MapReduceIndexerTool? command line options,
see Cloudera Search User Guide at
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/
search_mapreduceindexertool.html

Parameters

$value: An element or a document node conforming to the Solr XML syntax. See
"solr:put" for details.

Examples of Solr Adapter Functions
Example 6-18    Using the Built-in solr:put Function

This example uses the following HDFS text file. The file contains user profile
information such as user ID, full name, and age, separated by colons (:).

mydata/users.txt
john:John Doe:45 
kelly:Kelly Johnson:32
laura:Laura Smith: 
phil:Phil Johnson:27

The first query creates a full-text index searchable by name.

import module "oxh:text";
import module "oxh:solr";
for $line in text:collection("mydata/users.txt") 
let $split := fn:tokenize($line, ":") 
let $id := $split[1]
let $name := $split[2]
return solr:put(
<doc>
<field name="id">{ $id }</field>

Chapter 6
Solr Adapter

6-70

https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/search_mapreduceindexertool.html
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/search_mapreduceindexertool.html


<field name="name">{ $name }</field>
</doc>
)

The second query accomplishes the same result, but uses a custom put function. It also
defines all configuration parameters by using function annotations. Thus, setting configuration
properties is not required when running this query.

import module "oxh:text";
declare %solr:put %solr-property:go-live %solr-property:zk-host("/solr") %solr-
property:collection("collection1") 
function local:my-solr-put($doc as element(doc)) external;
for $line in text:collection("mydata/users.txt") 
let $split := fn:tokenize($line, ":") 
let $id := $split[1]
let $name := $split[2]
return local:my-solr-put(
<doc>
<field name="id">{ $id }</field>
<field name="name">{ $name }</field>
</doc>
)

Solr Adapter Configuration Properties
The Solr adapter configuration properties correspond to the Solr MapReduceIndexerTool
options.

MapReduceIndexerTool is a MapReduce batch job driver that creates Solr index shards from
input files, and writes the indexes into HDFS. It also supports merging the output shards into
live Solr servers, typically a SolrCloud.

You can specify these properties with the generic -conf and -D hadoop command-line options
in Oracle XQuery for Hadoop. Properties specified using this method apply to all Solr adapter
put functions in your query. See "Run Queries" and especially "Generic Options" for more
information about the hadoop command-line options.

Alternatively, you can specify these properties as Solr adapter put function annotations with
the %solr-property prefix. These annotations are identified in the property descriptions.
Annotations apply only to the particular Solr adapter put function that contains them in its
declaration.

See Also:

For discussions about how Solr uses the MapReduceIndexerTool options, see the
Cloudera Search User Guide at

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/
latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html

Chapter 6
Solr Adapter

6-71

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html


Property Overview

oracle.hadoop.xquery.solr.loader.collection Type: String

Default Value: Not defined

Equivalent Annotation: %solr-
property:collection
Description: The SolrCloud collection for merging the
index, such as mycollection. Use this property with 
oracle.hadoop.xquery.solr.loader.go-live and 
oracle.hadoop.xquery.solr.loader.zk-host. Required as
either a property or an annotation.

oracle.hadoop.xquery.solr.loader.fair-scheduler-pool Type: String

Default Value: Not defined

Equivalent Annotation:%solr-property:fair-
scheduler-pool
Description: The name of the fair scheduler pool for
submitting jobs. The job runs using fair scheduling
instead of the default Hadoop scheduling method.
Optional.

oracle.hadoop.xquery.solr.loader.go-live Type: String values true or false
Default Value: false
Equivalent Annotation: %solr-property:go-live
Description: Set to true to enable the final index to
merge into a live Solr cluster. Use this property with 
oracle.hadoop.xquery.solr.loader.collection and 
oracle.hadoop.xquery.solr.loader.zk-host. Optional.

oracle.hadoop.xquery.solr.loader.go-live-threads Type: Integer

Default Value: 1000
Equivalent Annotation: %solr-property:go-live-
threads
Description: The maximum number of live merges that
can run in parallel. Optional.

oracle.hadoop.xquery.solr.loader.log4j Type: String

Default Value:

Equivalent Annotation: %solr-property:log4j
Description: The relative or absolute path to the
log4j.properties configuration file on the local file
system For example, /path/to/log4j.properties.
Optional.

This file is uploaded for each MapReduce task.

oracle.hadoop.xquery.solr.loader.mappers Type: String

Default Value: -1
Equivalent Annotation: %solr-property:mappers
Description: The maximum number of mapper tasks
that Solr uses. A value of -1 enables the use of all map
slots available on the cluster.

Chapter 6
Solr Adapter

6-72



Property Overview

oracle.hadoop.xquery.solr.loader.max-segments Type: String

Default Value: 1
Equivalent Annotation: %solr-property:max-
segments
Description: The maximum number of segments in the
index generated by each reducer.

oracle.hadoop.xquery.solr.loader.reducers Type: String

Default Value: -1
Equivalent Annotation: %solr-property:reducers
Description: The number of reducers to use:

• -1: Uses all reduce slots available on the cluster.

• -2: Uses one reducer for each Solr output shard.
This setting disables the MapReduce M-tree merge
algorithm, which typically improves scalability.

oracle.hadoop.xquery.solr.loader.zk-host Type: String

Default Value: Not defined

Equivalent Annotation: %solr-property:zk-host
Description: The address of a ZooKeeper ensemble
used by the SolrCloud cluster. Specify the address as a
list of comma-separated host:port pairs, each
corresponding to a ZooKeeper server. For example,
127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:218
3/solr. Optional.

If the address starts with a slash (/), such as /solr,
then Oracle XQuery for Hadoop automatically prefixes
the address with the ZooKeeper connection string.

This property enables Solr to determine the number of
output shards to create and the Solr URLs in which to
merge them. Use this property with 
oracle.hadoop.xquery.solr.loader.collection and 
oracle.hadoop.xquery.solr.loader.golive. Required as
either a property or an annotation.

Text File Adapter
The text file adapter provides functions to read and write text files stored in HDFS. It is
described in the following topics:

• Built-in Functions for Reading and Writing Text Files

• Custom Functions for Reading Text Files

• Custom Functions for Writing Text Files

• Examples of Text File Adapter Functions

Built-in Functions for Reading and Writing Text Files
To use the built-in functions in your query, you must import the text file module as follows:

import module "oxh:text";

Chapter 6
Text File Adapter

6-73



The text file module contains the following functions:

• text:collection

• text:collection-xml

• text:put

• text:put-xml

• text:trace

For examples, see "Examples of Text File Adapter Functions ."

text:collection
Accesses a collection of text files in HDFS. The files can be compressed using a
Hadoop-supported compression codec. They are automatically decompressed when
read.

The files might be split up and processed in parallel by multiple tasks.

Signature

declare %text:collection("text") function
   text:collection($uris as xs:string*) as xs:string* external;

declare %text:collection("text") function
   function text:collection($uris as xs:string*, $delimiter as xs:string?) as 
xs:string* external;

Parameters

$uris: The text file URIs.

$delimiter: A custom delimiter on which the file is split. The default is the newline
character.

Returns

One string value for each file segment identified by the delimiter; for the default
delimiter, a string value for each line in each file

text:collection-xml
Accesses a collection of text files in HDFS. The files can be compressed using a
Hadoop-supported compression codec. They are automatically decompressed when
read.

The files might be split up and processed in parallel by multiple tasks. Each delimited
section of each file is parsed as an XML document and returned by the function.
Therefore, each segment must fully contain a single XML document, and any delimit
characters in the XML must be escaped with XML character references. By default,
the delimiter is a new line.

Signature

declare %text:collection("xml") function 
   text:collection-xml($uris as xs:string*) as document-node()* external;

Chapter 6
Text File Adapter

6-74



declare %text:collection("xml") function 
   text:collection-xml($uris as xs:string*, $delimiter as xs:string?) as document-
node()* external;

Parameters

$uris: The text file URIs.

$delimiter: A custom delimiter on which the file is split. The default is the newline character.

Returns

One string value for each file segment identified by the delimiter; for the default delimiter, a
string value for each line in each file

text:put
Writes a line to a text file in the output directory of the query. The lines are spread across one
or more files.

Signature

declare %text:put("text") function
   text:put($value as xs:string) external;

Parameters

$value: The text to write

Returns

empty-sequence()

Notes

The number of files created depends on how the query is distributed among tasks. Each file
has a name that starts with part, such as part-m-00000. You specify the output directory
when the query executes. See "Run Queries."

text:put-xml
Writes XML to a line in a text file. The lines are spread across one or more files in the output
directory of the query.

Newline characters in the serialized XML are replaced with character references to ensure
that the XML does not span multiple lines. For example, &#xA; replaces the linefeed
character (\n).

Signature

declare %text:put("xml") function
   text:put-xml($value as node()) external;

Parameters

$value: The XML to write

Chapter 6
Text File Adapter

6-75



Returns

empty-sequence()

Notes

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with part, such as part-m-00000. You specify the
output directory when the query executes. See "Run Queries."

text:trace
Writes a line to a text file named trace-* in the output directory of the query. The lines
are spread across one or more files.

This function provides you with a quick way to write to an alternate output. For
example, you might create a trace file to identify invalid rows within a query, while
loading the data into an Oracle database table.

Signature

declare %text:put("text") %text:file("trace") function
   text:trace($value as xs:string) external;

Parameters

$value: The text to write

Returns

empty-sequence()

Custom Functions for Reading Text Files
You can use the following annotations to define functions that read collections of text
files in HDFS. These annotations provide additional functionality that is not available
using the built-in functions.

The input files can be compressed with a Hadoop-supported compression codec. They
are automatically decompressed when read.

Signature

Custom functions for reading text files must have one of the following signatures:

declare %text:collection("text") [additional annotations]
   function local:myFunctionName($uris as xs:string*, $delimiter as xs:string?) 
as xs:string* external;
 
declare %text:collection("text") [additional annotations]
   function local:myFunctionName($uris as xs:string*) as xs:string* external;
 
declare %text:collection("xml") [additional annotations]
   function local:myFunctionName($uris as xs:string*, $delimiter as xs:string?) 
as document-node()* external

declare %text:collection("xml") [additional annotations]

Chapter 6
Text File Adapter

6-76



   function local:myFunctionName($uris as xs:string*) as document-node()* external;

Annotations

%text:collection(["method"])
Declares the text collection function. Required.
The optional method parameter can be one of the following values:

• text: Each line in the text file is returned as xs:string. Default.

• xml: Each line in the text file is parsed as XML and returned as document-node. Each
XML document must be fully contained on a single line. Newline characters inside the
document must be represented by a numeric character reference.

%text:split("delimiter")
Specifies a custom delimiter for splitting the input files. The default delimiter is the newline
character.
Do not combine this annotation with the $delimiter parameter. To specify a custom
delimiter, use either this annotation or the $delimiter parameter.

%text:split-max("split-size")
Specifies the maximum split size as either an integer or a string value. The split size controls
how the input file is divided into tasks. Hadoop calculates the split size as max($split-min,
min($split-max, $block-size)). Optional.
In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not case
sensitive. The following examples are equivalent:

%text:split-max(1024)
%text:split-max("1024")
%text:split-max("1K")

%text:split-min("split-size")
Specifies the minimum split size as either an integer or a string value. The split size controls
how the input file is divided into tasks. Hadoop calculates the split size as max($split-min,
min($split-max, $block-size)). Optional.
In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not case
sensitive. The following examples are equivalent:

%text:split-min(1024)
%text:split-min("1024")
%text:split-min("1K")

Parameters

$uris as xs:string*
Lists the HDFS file URIs. The files can be uncompressed or compressed with a Hadoop-
supported codec. Required.

$delimiter as xs:string?
A custom delimiter on which the input text files are split. The default delimiter is a new line.
Do not combine this parameter with the %text:split annotation.

Chapter 6
Text File Adapter

6-77



Returns

xs:string* for the text method

document-node()* for the xml method

Custom Functions for Writing Text Files
You can use the following annotations to define functions that write text files in HDFS.

Signature

Custom functions for writing text files must have one of the following signatures:

declare %text:put("text") [additional annotations] function 
   text:myFunctionName($value as xs:string) external;
 
declare %text:put("xml") [additional annotations] function 
   text:myFunctionName($value as node()) external;

Annotations

%text:put(["method"])
Declares the text put function. Required.
The optional method parameter can be one of the following values:

• text: Writes data to a text file. Default.

• xml: Writes data to an XML file. The XML is serialized and newline characters are
replaced with character references. This process ensures that the resulting XML
document is one text line with no line breaks.

%text:compress("codec")
Specifies the compression format used on the output. The default is no compression.
Optional.
The codec parameter identifies a compression codec. The first registered
compression codec that matches the value is used. The value matches a codec if it
equals one of the following:

1. The fully qualified class name of the codec

2. The unqualified class name of the codec

3. The prefix of the unqualified class name before "Codec" (case insensitive)

All of these examples use the default codec and block compression:

%text:compress("org.apache.hadoop.io.compress.DefaultCodec", "block")
%text:compress("DefaultCodec", "block")
%text:compress("default", "block") 

%text:file("name")
Specifies the output file name prefix. The default prefix is part.

%output:parameter
A standard XQuery serialization parameter for the output method (text or XML)
specified in %text:put. See "Serialization Annotations."

Chapter 6
Text File Adapter

6-78



UTF-8 is currently the only supported character encoding.

Examples of Text File Adapter Functions
Example 6-19    Using Built-in Functions to Query Text Files

This example uses following text files in HDFS. The files contain a log of visits to different
web pages. Each line represents a visit to a web page and contains the time, user name, and
page visited.

mydata/visits1.log  
 
2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200
2013-10-30T10:00:10, mike, index.html, 401

mydata/visits2.log  

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200

The following query filters out the pages visited by john and writes only the date and page
visited to a new text file:

import module "oxh:text";
 
for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
where $split[2] eq "john"
return
   text:put($split[1] || " " || $split[3])
 

This query creates a text file that contains the following lines:

2013-10-28T06:00:00 index.html
2013-10-30T10:00:01 index.html
2013-10-30T10:05:20 about.html

The next query computes the number of page visits per day:

import module "oxh:text";
 
for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
let $time := xs:dateTime($split[1])
let $day := xs:date($time)
group by $day
return
   text:put($day || " => " || count($line))
 

The query creates text files that contain the following lines:

2013-10-28 => 3
2013-10-30 => 3

Chapter 6
Text File Adapter

6-79



2013-11-01 => 1
2013-11-04 => 2

Example 6-20    Querying Simple Delimited Formats

This example uses the fn:tokenize function to parse the lines of a text file. This
technique works well for simple delimited formats.

The following query declares custom put and collection functions. It computes the
number of hits and the number of unique users for each page in the logs.

import module "oxh:text";

declare
   %text:collection("text")
   %text:split-max("32m")
function local:col($uris as xs:string*) as xs:string* external;
 
declare
   %text:put("xml")
   %text:compress("gzip") 
   %text:file("pages")
function local:out($arg as node()) external;
 
for $line in local:col("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
let $user := $split[2]
let $page := $split[3]
group by $page
return
   local:out(
      <page>
         <name>{$page}</name>
         <hits>{count($line)}</hits>
         <users>{fn:count(fn:distinct-values($user))}</users>
      </page>
   )

The output directory of the previous query is named myoutput. The following lines are
written to myoutput/pages-r-*.gz.

<page><name>about.html</name><hits>2</hits><users>2</users></page>
<page><name>contact.html</name><hits>1</hits><users>1</users></page>
<page><name>index.html</name><hits>6</hits><users>4</users></page>

The files are compressed with the gzip codec. The following query reads the output
files, and writes the page name and total hits as plain text. The collection function
automatically decodes the compressed files.

import module "oxh:text";

for $page in text:collection-xml("myoutput/page*.gz")/page
return 
   text:put($page/name || "," || $page/hits)
 

This query creates text files that contain the following lines:

about.html,2
contact.html,1
index.html,6

Chapter 6
Text File Adapter

6-80



Example 6-21    Querying Complex Text Formats

The fn:tokenize function might not be adequate for complex formats that contain variety of
data types and delimiters. This example uses the fn:analyze-string function to process a
log file in the Apache Common Log format.

A text file named mydata/access.log in HDFS contains the following lines:

192.0.2.0 - - [30/Sep/2013:16:39:38 +0000] "GET /inddex.html HTTP/1.1" 404 284
192.0.2.0 - - [30/Sep/2013:16:40:54 +0000] "GET /index.html HTTP/1.1" 200 12390
192.0.2.4 - - [01/Oct/2013:12:10:54 +0000] "GET /index.html HTTP/1.1" 200 12390
192.0.2.4 - - [01/Oct/2013:12:12:12 +0000] "GET /about.html HTTP/1.1" 200 4567
192.0.2.1 - - [02/Oct/2013:08:39:38 +0000] "GET /indexx.html HTTP/1.1" 404 284
192.0.2.1 - - [02/Oct/2013:08:40:54 +0000] "GET /index.html HTTP/1.1" 200 12390
192.0.2.1 - - [02/Oct/2013:08:42:38 +0000] "GET /aobut.html HTTP/1.1" 404 283
 

The following query computes the requests made after September 2013 when the server
returned a status code 404 (Not Found) error. It uses a regular expression and fn:analyze-
string to match the components of the log entries. The time format cannot be cast directly to
xs:dateTime, as shown in Example 6-20. Instead, the ora-fn:dateTime-from-string-with-
format function converts the string to an instance of xs:dateTime.

import module "oxh:text";

declare variable $REGEX :=
   '(\S+) (\S+) (\S+) \[([^\]]+)\] "([^"]+)" (\S+) (\S+)';

for $line in text:collection("mydata/access.log")
let $match := fn:analyze-string($line, $REGEX)/fn:match
let $time := 
   ora-fn:dateTime-from-string-with-format(
      "dd/MMM/yyyy:HH:mm:ss Z",
      $match/fn:group[4]
   )
let $status := $match/fn:group[6]
where 
   $status eq "404" and 
   $time ge xs:dateTime("2013-10-01T00:00:00")
let $host := $match/fn:group[1]
let $request := $match/fn:group[5]
return
   text:put($host || "," || $request)

The query creates text files that contain the following lines:

192.0.2.1,GET /indexx.html HTTP/1.1
192.0.2.1,GET /aobut.html HTTP/1.1

Chapter 6
Text File Adapter

6-81



See Also:

• XPath and XQuery Functions and Operators 3.0 specification for
information about the fn:tokenize and fn:analyze-string functions:

fn:tokenize

fn:analyze-string

• For information about the Apache Common log format:

http://httpd.apache.org/docs/current/logs.html

Tika File Adapter
This adapter provides functions to parse files stored in HDFS in various formats using
Apache Tika library. It is described in the following topics:

• Built-in Library Functions for Parsing Files with Tika

• Custom Functions for Parsing Files with Tika

• Tika Parser Output Format

• Tika Adapter Configuration Properties

• Examples of Tika File Adapter Functions

Built-in Library Functions for Parsing Files with Tika
To use the built-in functions in your query, you must import the Tika file module as
follows:

import module "oxh:tika";

The Tika file module contains the following functions:

For examples, see "Examples of Tika File Adapter Functions ."

tika:collection
Parses files stored in HDFS in various formats and extracts the content or metadata
from them.

Signature

declare %tika:collection function
   tika:collection($uris as xs:string*) as document-node()* external;

declare %tika:collection function
   function tika:collection($uris as xs:string*, $contentType as xs:string?) as 
document-node()* external;

Parameters

$uris: The HDFS file URIs.

Chapter 6
Tika File Adapter

6-82

http://www.w3.org/TR/xpath-functions-31/#func-tokenize
http://www.w3.org/TR/xpath-functions-31/#func-analyze-string
http://httpd.apache.org/docs/current/logs.html


$contentType: Specifies the media type of the content to parse, and may have the charset
attribute. When the parameter is specified, then it defines both type and encoding. When not
specified, then Tika will attempt to auto-detect values from the file extension. Oracle
recommends you to specify the parameter.

Returns

Returns a document node for each value. See "Tika Parser Output Format".

tika:parse
Parses the data given to it as an argument.For example, it can parse an html fragment within
an XML or JSON document.

Signature

declare function
   tika:parse($data as xs:string?, $contentType as xs:string?) as document-node()* 
external;

Parameters

$data: The value to be parsed.

$contentType: Specifies the media type of the content to parse, and may have the charset
attribute. When the parameter is specified, then it defines both type and encoding. When not
specified, then Tika will attempt to auto-detect values from the file extension. Oracle
recommends you to specify the parameter.

Returns

Returns a document node for each value. See "Tika Parser Output Format".

Custom Functions for Parsing Files with Tika
You can use the following annotations to define functions to parse files in HDFS with Tika.
These annotations provide additional functionality that is not available using the built-in
functions.

Signature

Custom functions for reading HDFS files must have one of the following signatures:

declare %tika:collection [additional annotations]
   function local:myFunctionName($uris as xs:string*, $contentType as xs:string?) as 
document-node()* external;
declare %tika:collection [additional annotations]
   function local:myFunctionName($uris as xs:string*) as document-node()* external;

Annotations

%tika:collection(["method"])
Identifies an external function to be implemented by Tika file adapter. Required.
The optional method parameter can be one of the following values:

• tika: Each line in the tika file is returned as document-node(). Default.

Chapter 6
Tika File Adapter

6-83



%output:media-type
Declares the file content type. It is a MIME type and must not have the charset
attribute as per XQuery specifications. Optional.

%output:encoding
Declares the file character set. Optional.

Note:

%output:media-type and %output:econding annotations specify the content
type or encoding when the $contentType parameter is not explicitly provided
in the signature.

Parameters

$uris as xs:string*
Lists the HDFS file URIs. Required.

$contentType as xs:string?
The file content type. It may have the charset attribute.

Returns

document-node()* with two root elements. See "Tika Parser Output Format".

Tika Parser Output Format
The result of Tika parsing is a document node with two root elements:

• Root element #1 is an XHTML content produced by Tika.

• Root element #2 is the document metadata extracted by Tika.

The format of the root elements look like these:

Root element #1

<html xmlns="http://www.w3.org/1999/xhtml">
...textual content of Tika HTML...
</html>

Root element #2

<tika:metadata xmlns:tika="oxh:tika">
   <tika:property name="Name_1">VALUE_1</tika:property>
   <tika:property name="NAME_2">VALUE_2</tika:property>
</tika:metadata>

Tika Adapter Configuration Properties
The following Hadoop properties control the behavior of Tika adapter:

oracle.hadoop.xquery.tika.html.asis
Type:Boolean
Default Value: false.

Chapter 6
Tika File Adapter

6-84



Description: When this is set to TRUE, then all the HTML elements are omitted during
parsing. When this is set to FALSE, then only the safe elements are omitted during parsing.

oracle.hadoop.xquery.tika.locale
Type:Comma-separated list of strings
Default Value:Not Defined.
Description:Defines the locale to be used by some Tika parsers such as Microsoft Office
document parser. Only three strings are allowed: language, country, and variant. The strings
country and variant are optional. When locale is not defined, then the system locale is used.
When the strings are defined it must correspond to the java.util.Locale specification
format mentioned in http://docs.oracle.com/javase/7/docs/api/java/util/
Locale.htmland the locale can be constructed as follows:

• If only language is specified, then the locale is constructed from the language.

• If the language and country are specified, then the locale is constructed from both
language and country

• If language, country, and variant are specified, then the locale is constructed from
language, country, and variant.

Examples of Tika File Adapter Functions
Example 6-22    Using Built-in Functions to Index PDF documents with Cloudera
Search

This example query uses Tika to parse PDF files into HTML form and then add the HTML
documents into Solr's full-text index.

*bigdata*.pdf
 

The following query indexes the HDFS files:

import module "oxh:tika";
import module "oxh:solr";
 
for $doc in tika:collection("*bigdata*.pdf")
let $docid := data($doc//*:meta[@name eq "resourceName"]/@content)[1]
let $body := $doc//*:body[1]
return
   solr:put(
        <doc> 
            <field name="id">{ $docid }</field>
            <field name="text">{ string($body) }</field>
            <field name="content">{ serialize($doc/*:html) }</field>
         </doc> 
   )
 

The HTML representation of the documents is added to Solr index and they become
searchable. Each document Id in the index is the file name.

Example 6-23    Using Built-in Functions to Index HTML documents with Cloudera
Search

This example query uses sequence files and Tika to parse, where key is an URL and value is
a html.

Chapter 6
Tika File Adapter

6-85

http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html


import module "oxh:tika";
import module "oxh:solr";
import module "oxh:seq";

for $doc in seq:collection-tika(“/path/to/seq/files/*")
let $docid := document-uri($doc)
let $body := $doc//*:body[1]
return
   solr:put(
      <doc>
         <field name="id">{ $docid }</field>
         <field name="text">{ string($body) }</field>
         <field name="content">{ serialize($doc/*:html) }</field>
      </doc>
   )

The HTML representation of the documents is added to Solr index and they become
searchable. Each document Id in the index is the file name.

XML File Adapter
The XML file adapter provides access to XML files stored in HDFS. The adapter
optionally splits individual XML files so that a single file can be processed in parallel by
multiple tasks.

This adapter is described in the following topics:

• Built-in Functions for Reading XML Files

• Custom Functions for Reading XML Files

• Examples of XML File Adapter Functions

Built-in Functions for Reading XML Files
To use the built-in functions in your query, you must import the XML file module as
follows:

import module "oxh:xmlf";

The XML file module contains the following functions:

• xmlf:collection (Single Task)

• xmlf:collection-multipart (Single Task)

• xmlf:collection (Multiple Tasks)

See "Examples of XML File Adapter Functions."

xmlf:collection (Single Task)
Accesses a collection of XML documents in HDFS. Multiple files can be processed
concurrently, but each individual file is parsed by a single task.

This function automatically decompresses files compressed with a Hadoop-supported
codec.

Chapter 6
XML File Adapter

6-86



Note:

HDFS does not perform well when data is stored in many small files. For large data
sets with many small XML documents, use Hadoop sequence files and the 
Sequence File Adapter.

Signature

declare %xmlf:collection function
   xmlf:collection($uris as xs:string*) as document-node()* external;

Parameters

$uris: The XML file URIs

Returns

One XML document for each file

xmlf:collection-multipart (Single Task)
Accesses a collection of XML documents in HDFS. Multiple files can be processed
concurrently, but each individual file is parsed by a single task. This function is the same as
xmlf:collection except that each file may contain multiple well-formed XML documents
concatenated together.

This function automatically decompresses files compressed with a Hadoop-supported codec.
For example, a file containing multiple XML documents could be compressed using GZIP and
then accessed directly by this function.

Signature

declare %xmlf:collection("multipart")
 function    xmlf:collection($uris as xs:string*) as document-node()* external;

Parameters

$uris
The XML file URIs.

Returns

One or more XML documents for each file.

xmlf:collection (Multiple Tasks)
Accesses a collection of XML documents in HDFS. The files might be split and processed by
multiple tasks simultaneously, which enables very large XML files to be processed efficiently.
The function returns only elements that match a specified name.

This function does not automatically decompress files. It only supports XML files that meet
certain requirements. See "Restrictions on Splitting XML Files."

Chapter 6
XML File Adapter

6-87



Signature

declare %xmlf:collection function
   xmlf:collection($uris as xs:string*, $names as xs:anyAtomicType+) as 
element()* external;

Parameters

$uris
The XML file URIs

$names
The names of the elements to be returned by the function. The names can be either
strings or QNames. For QNames, the XML parser uses the namespace binding
implied by the QName prefix and namespace.

Returns

Each element that matches one of the names specified by the $names argument

Custom Functions for Reading XML Files
You can use the following annotations to define functions that read collections of XML
files in HDFS. These annotations provide additional functionality that is not available
using the built-in functions.

Signature

Custom functions for reading XML files must have one of the following signatures:

declare %xmlf:collection(["xml"|"multipart"]) [additional annotations]
    function local:myFunctionName($uris as xs:string*) as node()* external;

declare %xmlf:collection("xml") [additional annotations]
    function local:myFunctionName($uris as xs:string*, $names as 
xs:anyAtomicType+) as element()* external;

Annotations

%xmlf:collection
Declares the collection function. Required.
The method parameter is one of the following values:

• xml: Each value is parsed as XML

• multipart: Each value (or, file) may contain a concatenation of multiple well-formed
XML documents. This method cannot be used with parallel XML parsing. (See
xmlf:split and the two-argument function signature.)

%xmlf:split("element-name1"[,... "element-nameN")
Specifies the element names used for parallel XML parsing. You can use this
annotation instead of the $names argument.
When this annotation is specified, only the single-argument version of the function is
allowed. This restriction enables the element names to be specified statically, so they
do not need to be specified when the function is called.

Chapter 6
XML File Adapter

6-88



%output:encoding("charset")
Identifies the text encoding of the input documents.
When this encoding is used with the %xmlf:split annotation or the $names argument, only
ISO-8859-1, US-ASCII, and UTF-8 are valid encodings. Otherwise, the valid encodings are
those supported by the JVM. UTF-8 is assumed when this annotation is omitted.

See Also:

"Supported Encodings" in the Oracle Java SE documentation at
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/
encoding.doc.html

%xmlf:split-namespace("prefix", "namespace")
This annotation provides extra namespace declarations to the parser. You can specify it
multiple times to declare one or more namespaces.
Use this annotation to declare the namespaces of ancestor elements. When XML is
processed in parallel, only elements that match the specified names are processed by an
XML parser. If a matching element depends on the namespace declaration of one of its
ancestor elements, then the declaration is not visible to the parser and an error may occur.
These namespace declarations can also be used in element names when specifying the split
names. For example:

declare 
    %xmlf:collection 
    %xmlf:split("eg:foo") 
    %xmlf:split-namespace("eg", "http://example.org")
    function local:myFunction($uris as xs:string*) as document-node() 
external;

%xmlf:split-entity("entity-name", "entity-value")
Provides entity definitions to the XML parser. When XML is processed in parallel, only
elements that match the specified split names are processed by an XML parser. The DTD of
an input document that is split and processed in parallel is not processed.
In this example, the XML parser expands &foo; entity references as "Hello World":

%xmlf:split-entity("foo","Hello World")

%xmlf:split-max("split-size")
Specifies the maximum split size as either an integer or a string value. The split size controls
how the input file is divided into tasks. Hadoop calculates the split size as max($split-min,
min($split-max, $block-size)). Optional.
In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit).These qualifiers are not case
sensitive. The following examples are equivalent:

%xmlf:split-max(1024)
%xmlf:split-max("1024")
%xmlf:split-max("1K")

Chapter 6
XML File Adapter

6-89

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html


%xmlf:split-min("split-size")
Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.
In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%xmlf:split-min(1024)
%xmlf:split-min("1024")
%xmlf:split-min("1K")

Notes

Restrictions on Splitting XML Files

Individual XML documents can be processed in parallel when the element names are
specified using either the $names argument or the $xmlf:split annotation.

The input documents must meet the following constraints to be processed in parallel:

• XML cannot contain a comment, CDATA section, or processing instruction that
contains text that matches one of the specified element names (that is, a <
character followed by a name that expands to a QName). Otherwise, such content
might be parsed incorrectly as an element.

• An element in the file that matches a specified element name cannot contain a
descendant element that also matches a specified name. Otherwise, multiple
processors might pick up the matching descendant and cause the function to
produce incorrect results.

• An element that matches one of the specified element names (and all of its
descendants) must not depend on the namespace declarations of any of its
ancestors. Because the ancestors of a matching element are not parsed, the
namespace declarations in these elements are not processed.

You can work around this limitation by manually specifying the namespace
declarations with the %xmlf:split-namespace annotation.

Oracle recommends that the specified element names do not match elements in the
file that are bigger than the split size. If they do, then the adapter functions correctly
but not efficiently.

Processing XML in parallel is difficult, because parsing cannot begin in the middle of
an XML file. XML constructs like CDATA sections, comments, and namespace
declarations impose this limitation. A parser starting in the middle of an XML document
cannot assume that, for example, the string <foo> is a begin element tag, without
searching backward to the beginning of the document to ensure that it is not in a CDATA
section or a comment. However, large XML documents typically contain sequences of
similarly structured elements and thus are amenable to parallel processing. If you
specify the element names, then each task works by scanning a portion of the
document for elements that match one of the specified names. Only elements that
match a specified name are given to a true XML parser. Thus, the parallel processor
does not perform a true parse of the entire document.

Chapter 6
XML File Adapter

6-90



Examples of XML File Adapter Functions
Example 6-24    Using Built-in Functions to Query XML Files

This example queries three XML files in HDFS with the following contents. Each XML file
contains comments made by users on a specific day. Each comment can have zero or more
"likes" from other users.

mydata/comments1.xml
 
<comments date="2013-12-30">
   <comment id="12345" user="john" text="It is raining :( "/>
   <comment id="56789" user="kelly" text="I won the lottery!">
      <like user="john"/>
      <like user="mike"/>
   </comment>
</comments>
 
mydata/comments2.xml
 
<comments date="2013-12-31">
   <comment id="54321" user="mike" text="Happy New Year!">
      <like user="laura"/>
   </comment>
</comments>
 
mydata/comments3.xml
  
<comments date="2014-01-01">
   <comment id="87654" user="mike" text="I don't feel so good."/>
   <comment id="23456" user="john" text="What a beautiful day!">
      <like user="kelly"/>
      <like user="phil"/>
   </comment>
</comments>
 

This query writes the number of comments made each year to a text file. No element names
are passed to xmlf:collection, and so it returns three documents, one for each file. Each
file is processed serially by a single task.

import module "oxh:xmlf";
import module "oxh:text";

for $comments in xmlf:collection("mydata/comments*.xml")/comments
let $date := xs:date($comments/@date)
group by $year := fn:year-from-date($date)
return 
   text:put($year || ", " || fn:count($comments/comment))

The query creates text files that contain the following lines:

2013, 3
2014, 2

The next query writes the number of comments and the average number of likes for each
user. Each input file is split, so that it can be processed in parallel by multiple tasks. The
xmlf:collection function returns five elements, one for each comment.

Chapter 6
XML File Adapter

6-91



import module "oxh:xmlf";
import module "oxh:text";

for $comment in xmlf:collection("mydata/comments*.xml", "comment")
let $likeCt := fn:count($comment/like)
group by $user := $comment/@user
return 
   text:put($user || ", " || fn:count($comment) || ", " || fn:avg($likeCt))
 

This query creates text files that contain the following lines:

john, 2, 1
kelly, 1, 2
mike, 2, 0.5

Example 6-25    Writing a Custom Function to Query XML Files

The following example declares a custom function to access XML files:

import module "oxh:text";
 
declare 
   %xmlf:collection 
   %xmlf:split("comment")
   %xmlf:split-max("32M")
function local:comments($uris as xs:string*) as element()* external;
 
for $c in local:comments("mydata/comment*.xml")
where $c/@user eq "mike"
return text:put($c/@id)
 

The query creates a text file that contains the following lines:

54321
87654

Example 6-26    Accessing Compressed, Multipart XML Files

Assume that files comments1.xml, comments2.xml, and comments3.xml from example
5-24 are concatenated together and compressed using GZIP to create a single file
named comments.xml.gz. For example:

cat comments1.xml comments2.xml comments3.xml | gzip > comments.xml.gz

The following query accesses this multipart, compressed XML file:

import module "oxh:text"; import module "oxh:xmlf";  
for $comment in xmlf:collection-multipart("comments.xml.gz")/comments/
comment 
return
   text:put($comment/@id || "," || $comment/@user)

The query creates a text file that contains the following lines:

12345,john 
56789,kelly 

Chapter 6
XML File Adapter

6-92



54321,mike 
87654,mike 
23456,john

Utility Module
The utility module contains ora-fn functions for handling strings and dates. These functions
are defined in XDK XQuery, whereas the oxh functions are specific to Oracle XQuery for
Hadoop.

The utility functions are described in the following topics:

• Oracle XQuery Functions for Duration, Date, and Time

• Oracle XQuery Functions for Strings

Oracle XQuery Functions for Duration, Date, and Time
You can manipulate durations, dates, and times in XQuery using Oracle XQuery functions.

The Oracle XQuery functions are in namespace http://xmlns.oracle.com/xdk/xquery/
function. Namespace prefixora-fn is predeclared, and the module is automatically
imported.

ora-fn:date-from-string-with-format
This Oracle XQuery function returns a new date value from a string according to a given
pattern.

Signature

ora-fn:date-from-string-with-format($format as xs:string?,
                                    $dateString as xs:string?, 
                                    $locale as xs:string*)
                                   as xs:date?

ora-fn:date-from-string-with-format($format as xs:string?,
                                    $dateString as xs:string?)
                                   as xs:date?

Parameters

$format: The pattern; see Format Argument

$dateString: An input string that represents a date

$locale: A one- to three-field value that represents the locale; see Locale Argument

Example

This example returns the specified date in the current time zone:

ora-fn:date-from-string-with-format("yyyy-MM-dd G", "2013-06-22 AD")

Chapter 6
Utility Module

6-93



ora-fn:date-to-string-with-format
This Oracle XQuery function returns a date string with a given pattern.

Signature

ora-fn:date-to-string-with-format($format as xs:string?,
                                  $date as xs:date?,
                                  *$locale as xs:string?)
                                 as xs:string?

ora-fn:date-to-string-with-format($format as xs:string?,
                                  $date as xs:date?)
                                 as xs:string?

Parameters

$format: The pattern; see Format Argument

$date: The date

$locale: A one- to three-field value that represents the locale; see Locale Argument

Example

This example returns the string 2013-07-15:

ora-fn:date-to-string-with-format("yyyy-mm-dd", xs:date("2013-07-15"))

ora-fn:dateTime-from-string-with-format
This Oracle XQuery function returns a new date-time value from an input string,
according to a given pattern.

Signature

ora-fn:dateTime-from-string-with-format($format as xs:string?, 
                                        $dateTimeString as xs:string?,
                                        $locale as xs:string?)
                                       as xs:dateTime?

ora-fn:dateTime-from-string-with-format($format as xs:string?,
                                        $dateTimeString as xs:string?)
                                       as xs:dateTime?

Parameters

$format: The pattern; see Format Argument

$dateTimeString: The date and time

$locale: A one- to three-field value that represents the locale; see Locale Argument

Chapter 6
Utility Module

6-94



Examples

This example returns the specified date and 11:04:00AM in the current time zone:

ora-fn:dateTime-from-string-with-format("yyyy-MM-dd 'at' hh:mm", 
                                        "2013-06-22 at 11:04")

The next example returns the specified date and 12:00:00AM in the current time zone:

ora-fn:dateTime-from-string-with-format("yyyy-MM-dd G",
                                        "2013-06-22 AD") 

ora-fn:dateTime-to-string-with-format
This Oracle XQuery function returns a date and time string with a given pattern.

Signature

ora-fn:dateTime-to-string-with-format($format as xs:string?,
                                      $dateTime as xs:dateTime?,
                                      $locale as xs:string?)
                                     as xs:string?

ora-fn:dateTime-to-string-with-format($format as xs:string?,
                                      $dateTime as xs:dateTime?)
                                     as xs:string?

Parameters

$format: The pattern; see Format Argument

$dateTime: The date and time

$locale: A one- to three-field value that represents the locale; see Locale Argument

Examples

This example returns the string 07 JAN 2013 10:09 PM AD:

ora-fn:dateTime-to-string-with-format("dd MMM yyyy hh:mm a G",
                                      xs:dateTime("2013-01-07T22:09:44"))

The next example returns the string "01-07-2013":

ora-fn:dateTime-to-string-with-format("MM-dd-yyyy",
                                      xs:dateTime("2013-01-07T22:09:44")) 

Chapter 6
Utility Module

6-95



ora-fn:time-from-string-with-format
This Oracle XQuery function returns a new time value from an input string, according
to a given pattern.

Signature

ora-fn:time-from-string-with-format($format as xs:string?,
                                    $timeString as xs:string?,
                                    $locale as xs:string?)
                                   as xs:time?

ora-fn:time-from-string-with-format($format as xs:string?,
                                    $timeString as xs:string?)
                                   as xs:time?

Parameters

$format: The pattern; see Format Argument

$timeString: The time

$locale: A one- to three-field value that represents the locale; see Locale Argument

Example

This example returns 9:45:22 PM in the current time zone:

ora-fn:time-from-string-with-format("HH.mm.ss", "21.45.22")

The next example returns 8:07:22 PM in the current time zone:

fn-bea:time-from-string-with-format("hh:mm:ss a", "8:07:22 PM") 

ora-fn:time-to-string-with-format
This Oracle XQuery function returns a time string with a given pattern.

Signature

ora-fn:time-to-string-with-format($format as xs:string?,
                                  $time as xs:time?,
                                  $locale as xs:string?)
                                 as xs:string?

ora-fn:time-to-string-with-format($format as xs:string?, $time as 
xs:time?) as xs:string?

Parameters

$format: The pattern; see Format Argument

$time: The time

Chapter 6
Utility Module

6-96



$locale: A one- to three-field value that represents the locale; see Locale Argument

Examples

This example returns the string "10:09 PM":

ora-fn:time-to-string-with-format("hh:mm a", xs:time("22:09:44"))

The next example returns the string "22:09 PM":

ora-fn:time-to-string-with-format("HH:mm a", xs:time("22:09:44"))

Format Argument
The $format argument identifies the various fields that compose a date or time value.

Locale Argument
The $locale represents a specific geographic, political, or cultural region.

It is defined by up to three fields:

1. Language code: The ISO 639 alpha-2 or alpha-3 language code, or the registered
language subtags of up to eight letters. For example, en for English and ja for Japanese.

2. Country code: The ISO 3166 alpha-2 country code or the UN M.49 numeric-3 area
code. For example, US for the United States and 029 for the Caribbean.

3. Variant: Indicates a variation of the locale, such as a particular dialect. Order multiple
values in order of importance and separate them with an underscore (_). These values
are case sensitive.

Oracle XQuery Functions for Strings
You can manipulate strings in XQuery using Oracle XQuery functions.

The Oracle XQuery functions are in namespace http://xmlns.oracle.com/xdk/xquery/
function. Namespace prefixora-fn is predeclared, and the module is automatically
imported.

ora-fn:pad-left
Adds padding characters to the left of a string to create a fixed-length string. If the input string
exceeds the specified size, then it is truncated to return a substring of the specified length.
The default padding character is a space (ASCII 32).

Signature

ora-fn:pad-left($str as xs:string?,
                $size as xs:integer?,
                $pad as xs:string?)
               as xs:string?

ora-fn:pad-left($str as xs:string?,

Chapter 6
Utility Module

6-97



                $size as xs:integer?)
               as xs:string?

Parameters

$str: The input string

$size: The desired fixed length, which is obtained by adding padding characters
to $str
$pad: The padding character

If either argument is an empty sequence, then the function returns an empty
sequence.

Examples

This example prefixes "01" to the input string up to the maximum of six characters.
The returned string is "010abc". The function returns one complete and one partial pad
character.

ora-fn:pad-left("abc", 6, "01")

The example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-left("abcd", 2, "01")

This example prefixes spaces to the string up to the specified maximum of six
characters. The returned string has a prefix of two spaces: " abcd":

ora-fn:pad-left("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified
fixed length:

ora-fn:pad-left("abcd", 2)

ora-fn:pad-right
Adds padding characters to the right of a string to create a fixed-length string. If the
input string exceeds the specified size, then it is truncated to return a substring of the
specified length. The default padding character is a space (ASCII 32).

Signature

ora-fn:pad-right($str as xs:string?,
                 $size as xs:integer?,
                 $pad as xs:string?)
                as xs:string?

ora-fn:pad-right($str as xs:string?,
                 $size as xs:integer?)
                as xs:string?

Chapter 6
Utility Module

6-98



Parameters

$str: The input string

$size: The desired fixed length, which is obtained by adding padding characters to $str
$pad: The padding character

If either argument is an empty sequence, then the function returns an empty sequence.

Examples

This example appends "01" to the input string up to the maximum of six characters. The
returned string is "abc010". The function returns one complete and one partial pad character.

ora-fn:pad-right("abc", 6, "01")

This example returns only "ab" because the input string exceeds the specified fixed length:

ora-fn:pad-right("abcd", 2, "01")

This example appends spaces to the string up to the specified maximum of six characters.
The returned string has a suffix of two spaces: "abcd ":

ora-fn:pad-right("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-right("abcd", 2)

ora-fn:trim
Removes any leading or trailing white space from a string.

Signature

ora-fn:trim($input as xs:string?) as xs:string?

Parameters

$input: The string to trim. If $input is an empty sequence, then the function returns an empty
sequence. Other data types trigger an error.

Example

This example returns the string "abc":

ora-fn:trim("  abc  ")

Chapter 6
Utility Module

6-99



ora-fn:trim-left
Removes any leading white space.

Signature

ora-fn:trim-left($input as xs:string?) as xs:string?

Parameters

$input: The string to trim. If $input is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

Example

This example removes the leading spaces and returns the string "abc    ":

ora-fn:trim-left("    abc    ")

ora-fn:trim-right
Removes any trailing white space.

Signature

ora-fn:trim-right($input as xs:string?) as xs:string?

Parameters

$input: The string to trim. If $input is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

Example

This example removes the trailing spaces and returns the string "    abc":

ora-fn:trim-left("    abc    ")

Hadoop Module
These functions are in the http://xmlns.oracle.com/hadoop/xquery namespace.
The oxh prefix is predeclared and the module is automatically imported.

The Hadoop module is described in the following topic:

• Hadoop Functions

Built-in Functions for Using Hadoop
The following functions are built in to Oracle XQuery for Hadoop:

• oxh:find

Chapter 6
Hadoop Module

6-100



• oxh:increment-counter

• oxh:println

• oxh:println-xml

• oxh:property

oxh:find
Returns a sequence of file paths that match a pattern.

Signature

oxh:find($pattern as xs:string?) as xs:string*

Parameters

$pattern: The file pattern to search for

See Also:

For the file pattern, the globStatus method in the Apache Hadoop API at

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/
FileSystem.html#globStatus(org.apache.hadoop.fs.Path)

oxh:increment-counter
Increments a user-defined MapReduce job counter. The default increment is one (1).

Signature

oxh:increment-counter($groupName as xs:string, $counterName as xs:string, $value as 
xs:integer

oxh:increment-counter($groupName as xs:string, $counterName as xs:string

Parameters

$groupName: The group of counters that this counter belongs to.

$counterName: The name of a user-defined counter

$value: The amount to increment the counter

oxh:println
Prints a line of text to stdout of the Oracle XQuery for Hadoop client process. Use this
function when developing queries.

Signature

declare %updating function oxh:println($arg as xs:anyAtomicType?)

Chapter 6
Hadoop Module

6-101

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)


Parameters

$arg: A value to add to the output. A cast operation first converts it to string. An
empty sequence is handled the same way as an empty string.

Example

This example prints the values of data.txt to stdout:

for $i in text:collection("data.txt") 
return oxh:println($i)

oxh:println-xml
Prints a line of text or XML to stdout of the Oracle XQuery for Hadoop client process.
Use this function when developing queries and printing nodes of an XML document.

Signature

declare %updating function oxh:println-xml($arg as item()?)

Parameters

$arg: A value to add to the output. The input item is converted into a text as defined by
XSLT 2.0 and XQuery 1.0 Serialization specifications. An empty sequence is handled
the same way as an empty string.

oxh:property
Returns the value of a Hadoop configuration property.

Signature

oxh:property($name as xs:string?) as xs:string?

Parameters

$name: The configuration property

Serialization Annotations
Several adapters have serialization annotations (%output:*). The following lists
identify the serialization parameters that Oracle XQuery for Hadoop supports.

Serialization parameters supported for the text output method:

• encoding: Any encoding supported by the JVM

• normalization-form: none, NFC, NFD, NFKC, NFKD

Serialization parameters supported for the xml output method, using any values
permitted by the XQuery specification:

• cdata-section-elements
• doctype-public
• doctype-system

Chapter 6
Serialization Annotations

6-102



• encoding
• indent
• normalization-form
• omit-xml-declaration
• standalone

See Also:

"The Influence of Serialization Parameters" sections for XML and text output
methods in XSLT and XQuery Serialization, at locations like the following:

http://www.w3.org/TR/xslt-xquery-serialization/#XML_DOCTYPE
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-
ELEMENTS

Chapter 6
Serialization Annotations

6-103

http://www.w3.org/TR/xslt-xquery-serialization/#XML_DOCTYPE
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS


7
Oracle XML Extensions for Hive

This chapter explains how to use the XML extensions for Apache Hive provided with Oracle
XQuery for Hadoop. The chapter contains the following sections:

• What are the XML Extensions for Hive?

• Use the Hive Extensions From the Command Line

• About the Hive Functions

• Create XML Tables

• Oracle XML Functions for Hive Reference

What are the XML Extensions for Hive?
The XML Extensions for Hive provide XML processing support that enables you to do the
following:

• Query large XML files in HDFS as Hive tables

• Query XML strings in Hive tables

• Query XML file resources in the Hadoop distributed cache

• Efficiently extract atomic values from XML without using expensive DOM parsing

• Retrieve, generate, and transform complex XML elements

• Generate multiple table rows from a single XML value

• Manage missing and dirty data in XML

The XML extensions also support these W3C modern standards:

• XQuery 3.1

• XQuery Update Facility 1.0 (transform expressions)

• XPath 3.1

• XML Schema 1.0

• XML Namespaces

The XML extensions have two components:

• XML InputFormat and SerDe for creating XML tables

See "Create XML Tables."

• XML function library

See "About the Hive Functions."

7-1



Use the Hive Extensions From the Command Line
To enable the Oracle XQuery for Hadoop extensions, use the --auxpath and -i
arguments when starting Hive:

$ hive --auxpath \
$OXH_HOME/hive/lib/oxh-hive.jar,\
$OXH_HOME/hive/lib/oxh-mapreduce.jar,\
$OXH_HOME/hive/lib/oxquery.jar,\
$OXH_HOME/hive/lib/xqjapi.jar,\
$OXH_HOME/hive/lib/apache-xmlbeans.jar,\
$OXH_HOME/hive/lib/woodstox-core-asl-*.jar,\
$OXH_HOME/hive/lib/stax2-api-*.jar \
-i $OXH_HOME/hive/init.sql

Note:

On the Oracle BigDataLite VM, HIVE_AUX_JARS_PATH contains the Hive
extensions by default and hence specifying --auxpath is unnecessary.

The first time you use the extensions, verify that they are accessible. The following
procedure creates a table named SRC, loads one row into it, and calls the xml_query
function.

To verify that the extensions are accessible:

1. Log in to a server in the Hadoop cluster where you plan to work.

2. Start the Hive command-line interface (CLI):

$ hive --auxpath \
$OXH_HOME/hive/lib/oxh-hive.jar,\
$OXH_HOME/hive/lib/oxh-mapreduce.jar,\
$OXH_HOME/hive/lib/oxquery.jar,\
$OXH_HOME/hive/lib/xqjapi.jar,\
$OXH_HOME/hive/lib/apache-xmlbeans.jar,\
$OXH_HOME/hive/lib/woodstox-core-asl-*.jar,\
$OXH_HOME/hive/lib/stax2-api-*.jar \
-i $OXH_HOME/hive/init.sql

The init.sql file contains the CREATE TEMPORARY FUNCTION statements that
declare the XML functions.

3. Call an Oracle XQuery for Hadoop function for Hive. This example calls the
xml_query function to parse an XML string:

hive> SELECT xml_query("x/y", "<x><y>123</y><z>456</z></x>");
     .
     .
     .
["123"]

Chapter 7
Use the Hive Extensions From the Command Line

7-2



If the extensions are accessible, then the query returns ["123"], as shown in the example.

Use the Hive Extensions in HiveServer2
To enable the XML Extensions for Hive in HiveServer2, you must add the following JARs to
the environment variable HIVE_AUX_JARS_PATH and to the configuration property
hive.aux.jars.path.

$OXH_HOME/hive/lib/woodstox-core-asl-*.jar            
$OXH_HOME/hive/lib/apache-xmlbeans.jar            
$OXH_HOME/hive/lib/oxh-hive.jar            
$OXH_HOME/hive/lib/oxh-mapreduce.jar           
$OXH_HOME/hive/lib/stax2-api-*.jar            
$OXH_HOME/hive/lib/xqjapi.jar            
$OXH_HOME/hive/lib/oxquery.jar

If you are using Cloudera's distribution including Apache Hadoop (on Oracle Big Data
Appliance or commodity hardware) you can add the JARs as follows:

1. In Cloudera Manager, click hive:

2. Click Configuration to go to the Configuration tab.

3. In the search field, enter hive_aux. Then, add the following text after whatever value is in
Gateway Client Environment Advanced Configuration Snippet (Safety Valve) for
hive-env.sh . Be sure to include the leading comma. It is advisable to save the text of the
original path before editing this field in case you need to revert at a later time.

,/opt/oracle/oxh-*/hive/lib/woodstox-core-asl-oxh-*.jar,/opt/oracle/oxh-*/
hive/lib/apache-xmlbeans.jar,/opt/oracle/oxh-*/hive/lib/oxh-hive.jar,/opt/
oracle/oxh-*/hive/lib/oxh-mapreduce.jar,/opt/oracle/oxh-*/hive/lib/stax2-
api-*.jar,/opt/oracle/oxh-*/hive/lib/xqjapi.jar,/opt/oracle/oxh-*/
hive/lib/oxquery.jar

Note that the JAR version numbers in the paths above are wildcarded (*). Replace the
wildcards with the correct JAR versions for the OXH release you are working with.

Chapter 7
Use the Hive Extensions in HiveServer2

7-3



4. Search for hive.aux.jars.path. Add the following text after whatever value is in
Hive Client Advanced Configuration Snippet (Safety Valve) for hive-site.xml .
Be sure to add the text to the value field in the Gateway Default Group panel:

5. Click Save Changes.

Chapter 7
Use the Hive Extensions in HiveServer2

7-4



6. Click Actions and then click Deploy Client Configuration.

7. After the service restarts, check the status to ensure that it is working correctly.

8. To verify that the extensions are accessible, use Beeline:

a. Start Beeline:

$ beeline -i $OXH_HOME/hive/init.sql

Note:

You can use init.sql as shown above to temporarily declare the functions
xml_query, xml_table, et cetera. You can also enable the functions
permanently as described in Permanently Declaring the Hive Functions.

b. At the Beeline CLI, enter the following. (Fill in the placeholders host andport with the
host and port of hiveserver2.)

beeline> !connect jdbc:hive2: //[host]:[port] 

When prompted for a username and password, you can press Enter.

c. All the XML extension functions should be created when you connected to Hive. Try
the following command to test if they are working correctly:

beeline> SELECT xml_query("x/y", "<x><y>123</y><z>456</z></x>");

The results returned should be similar to this example:

+----------+--+
|   _c0    |
+----------+--+

Chapter 7
Use the Hive Extensions in HiveServer2

7-5



| ["123"]  |
+----------+--+

If this test is successful, then you are ready to use the Oracle XQuery for Hadoop
functions for Hive in HiveServer2.

See Also:

• Permanently Declaring the Hive Functions.

You can use init.sql to temporarily declare the functions, as shown in
previous examples. You can also permanently declare them.

About the Hive Functions
The Oracle XQuery for Hadoop extensions enable you to query XML strings in Hive
tables and XML file resources in the Hadoop distributed cache. These are the
functions:

• xml_query: Returns the result of a query as an array of STRING values.

• xml_query_as_primitive: Returns the result of a query as a Hive primitive value. Each
Hive primitive data type has a separate function named for it.

• xml_exists: Tests if the result of a query is empty

• xml_table: Maps an XML value to zero or more table rows, and enables nested
repeating elements in XML to be mapped to Hive table rows.

See "Oracle XML Functions for Hive Reference."

Permanently Declaring the Hive Functions
In the examples in the previous section, $OXH_HOME/hive/init.sql is used to
temporarily declare the XML extensions for Hive functions. However, as an alternative,
you can permanently declare the functions so that init.sql is not needed. Use the
following commands to permanently declare the functions.

CREATE FUNCTION xml_query AS 'oracle.hadoop.xquery.hive.OXMLQueryUDF' ;
CREATE FUNCTION xml_query_as_bigint AS 
'oracle.hadoop.xquery.hive.OXMLQueryBigintUDF' ;
CREATE FUNCTION xml_query_as_int AS 
'oracle.hadoop.xquery.hive.OXMLQueryIntUDF' ;
CREATE FUNCTION xml_query_as_smallint AS 
'oracle.hadoop.xquery.hive.OXMLQuerySmallintUDF' ;
CREATE FUNCTION xml_query_as_tinyint AS 
'oracle.hadoop.xquery.hive.OXMLQueryTinyintUDF' ;
CREATE FUNCTION xml_query_as_float AS 
'oracle.hadoop.xquery.hive.OXMLQueryFloatUDF' ;
CREATE FUNCTION xml_query_as_double AS 
'oracle.hadoop.xquery.hive.OXMLQueryDoubleUDF' ';
CREATE FUNCTION xml_query_as_boolean AS 

Chapter 7
About the Hive Functions

7-6



'oracle.hadoop.xquery.hive.OXMLQueryBooleanUDF' ;
CREATE FUNCTION xml_query_as_string AS 
'oracle.hadoop.xquery.hive.OXMLQueryStringUDF' ;
CREATE FUNCTION xml_exists AS 'oracle.hadoop.xquery.hive.OXMLExists' ;
CREATE FUNCTION xml_table AS 'oracle.hadoop.xquery.hive.OXMLTableUDTF' ;

Create XML Tables
This section describes how you can use the Hive CREATE TABLE statement to create tables
over large XML documents.

Hive queries over XML tables scale well, because Oracle XQuery for Hadoop splits up the
XML so that the MapReduce framework can process it in parallel.

To support scalable processing and operate in the MapReduce framework, the table adapter
scans for elements to use to create table rows. It parses only the elements that it identifies as
being part of the table; the rest of the XML is ignored. Thus, the XML table adapter does not
perform a true parse of the entire XML document, which imposes limitations on the input
XML. Because of these limitations, you can create tables only over XML documents that
meet the constraints listed in "XQuery Transformation Requirements." Otherwise, you might
get errors or incorrect results.

Hive CREATE TABLE Syntax for XML Tables
The following is the basic syntax of the Hive CREATE TABLE statement for creating a Hive table
over XML files:

CREATE TABLE table_name (columns)
ROW FORMAT
   SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
   INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
   OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(configuration)

Parameters

Parameter Description

columns All column types in an XML table must be one of
the Hive primitive types given in "Data Type
Conversions."

configuration Any of the properties described in "CREATE
TABLE Configuration Properties." Separate
multiple properties with commas.

Note:

Inserting data into XML tables is not supported.

Chapter 7
Create XML Tables

7-7



CREATE TABLE Configuration Properties
Use these configuration properties in the configuration parameter of the CREATE TABLE
command.

oxh-default-namespace
Sets the default namespace for expressions in the table definition and for XML
parsing. The value is a URI.
This example defines the default namespace:

"oxh-default-namespace" = "http://example.com/foo"

oxh-charset
Specifies the character encoding of the XML files. The supported encodings are
UTF-8 (default), ISO-8859-1, and US-ASCII.
All XML files for the table must share the same character encoding. Any encoding
declarations in the XML files are ignored.
This example defines the character set:

"oxh-charset" = "ISO-8859-1"

oxh-column.name
Specifies how an element selected by the oxh-elements property is mapped to
columns in a row. In this property name, replace name with the name of a column in
the table. The value can be any XQuery expression. The initial context item of the
expression (the "." variable) is bound to the selected element.
Check the log files even when a query executes successfully. If a column expression
returns no value or raises a dynamic error, the column value is NULL. The first time an
error occurs, it is logged and query processing continues. Subsequent errors raised
by the same column expression are not logged.
Any column of the table that does not have a corresponding oxh-column property
behaves as if the following property is specified:

"oxh-column.name" = "(./name | ./@name)[1]"

Thus, the default behavior is to select the first child element or attribute that matches
the table column name. See "Syntax Example."

oxh-elements
Identifies the names of elements in the XML that map to rows in the table, in a
comma-delimited list. This property must be specified one time. Required.
This example maps each element named foo in the XML to a single row in the Hive
table:

"oxh-elements" = "foo"

The next example maps each element named either foo or bar in the XML to a row in
the Hive table:

"oxh-elements" = "foo, bar"

oxh-entity.name
Defines a set of entity reference definitions.

Chapter 7
Create XML Tables

7-8



In the following example, entity references in the XML are expanded from &foo; to "foo
value" and from &bar; to "bar value".

"oxh-entity.foo" = "foo value"
"oxh-entity.bar" = "bar value"

oxh-namespace.prefix
Defines a namespace binding.
This example binds the prefix myns to the namespace http://example.org:

"oxh-namespace.myns" = "http://example.org"

You can use this property multiple times to define additional namespaces. The namespace
definitions are used when parsing the XML. The oxh-element and oxh-column property
values can also reference them.
In the following example, only foo elements in the http://example.org namespace are
mapped to table rows:

"oxh-namespace.myns" = "http://example.org",
"oxh-elements" = "myns:foo",
"oxh-column.bar" = "./myns:bar"

CREATE TABLE Examples
This section includes the following examples:

• Syntax Example

• Simple Examples

• OpenStreetMap Examples

Syntax Example
This example shows how to map XML elements to column names.

Example 7-1    Basic Column Mappings

In the following table definition, the oxh-elements property specifies that each element
named foo in the XML is mapped to a single row in the table. The oxh-column properties
specify that a Hive table column named BAR gets the value of the child element named bar
converted to STRING, and the column named ZIP gets the value of the child element named
zip converted to INT.

CREATE TABLE example (bar STRING, zip INT)
ROW FORMAT
   SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
   INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
   OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
   "oxh-elements" = "foo", 
   "oxh-column.bar" = "./bar",
   "oxh-column.zip" = "./zip"
)

Chapter 7
Create XML Tables

7-9



Example 7-2    Conditional Column Mappings

In this modified definition of the ZIP column, the column receives a value of -1 if the
foo element does not have a child zip element, or if the zip element contains a
nonnumeric value:

"oxh-column.zip" = "
   if (./zip castable as xs:int) then 
      xs:int(./zip) 
   else 
      -1
"

Example 7-3    Default Column Mappings

The following two table definitions are equivalent. Table Definition 2 relies on the
default mappings for the BAR and ZIP columns.

Table Definition 1

CREATE TABLE example (bar STRING, zip INT)
ROW FORMAT
   SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
   INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
   OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
   "oxh-elements" = "foo", 
   "oxh-column.bar" = "(./bar | ./@bar)[1]",
   "oxh-column.zip" = "(./zip | ./@zip)[1]"
)

Table Definition 2

CREATE TABLE example (bar STRING, zip INT)
ROW FORMAT
   SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
   INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
   OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
   "oxh-elements" = "foo"
)

Simple Examples
These examples show how to create Hive tables over a small XML document that
contains comments posted by users of a fictitious website. Each comment element in
the document (comments.xml) has one or more like elements that indicate that the
user liked the comment.

<comments>
   <comment id="12345" user="john" text="It is raining :( "/>
   <comment id="56789" user="kelly" text="I won the lottery!">
      <like user="john"/>
      <like user="mike"/>
   </comment>
   <comment id="54321" user="mike" text="Happy New Year!">
      <like user="laura"/>
   </comment>
</comments>

Chapter 7
Create XML Tables

7-10



In the CREATE TABLE examples, the comments.xml input file is in the current working directory
of the local file system.

Example 7-4    Creating a Table

The following Hive CREATE TABLE command creates a table named COMMENTS with a row for
each comment containing the user names, text, and number of likes:

hive>
CREATE TABLE comments (usr STRING, content STRING, likeCt INT)
ROW FORMAT
   SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
   INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
   OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
   "oxh-elements" = "comment",
   "oxh-column.usr" = "./@user",
   "oxh-column.content" = "./@text",
   "oxh-column.likeCt" = "fn:count(./like)"
);

The Hive LOAD DATA command loads comments.xml into the COMMENTS table.

hive> LOAD DATA LOCAL INPATH 'comments.xml' OVERWRITE INTO TABLE comments;
]

The following query shows the content of the COMMENTS table.

hive> SELECT usr, content, likeCt FROM comments;
     .
     .
     .
john  It is raining :(     0
kelly I won the lottery!   2
mike  Happy New Year!      1

Example 7-5    Querying an XML Column

This CREATE TABLE command is like the previous example, except that the like elements are
produced as XML in a STRING column.

hive>
CREATE TABLE comments2 (usr STRING, content STRING, likes STRING)
ROW FORMAT
   SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
   INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
   OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
   "oxh-elements" = "comment",
   "oxh-column.usr" = "./@user",
   "oxh-column.content" = "./@text",
   "oxh-column.likes" = "fn:serialize(<likes>{./like}</likes>)"
);

The Hive LOAD DATA command loads comments.xml into the table. See "Simple Examples" for
the contents of the file.

hive> LOAD DATA LOCAL INPATH 'comments.xml' OVERWRITE INTO TABLE comments2;
 

Chapter 7
Create XML Tables

7-11



The following query shows the content of the COMMENTS2 table.

hive> SELECT usr, content, likes FROM comments2;
     .
     .
     .
john   It is raining :(    <likes/>
kelly  I won the lottery!  <likes><like user="john"/><like user="mike"/></likes>
mike   Happy New Year!     <likes><like user="laura"/></likes>
 

The next query extracts the user names from the like elements:

hive> SELECT usr, t.user FROM comments2 LATERAL VIEW 
    > xml_table("likes/like", comments2.likes, struct("./@user")) t AS user;
     .
     .
     .
kelly  john
kelly  mike
mike   laura

Example 7-6    Generating XML in a Single String Column

This command creates a table named COMMENTS3 with a row for each comment, and
produces the XML in a single STRING column.

hive> 
CREATE TABLE comments3 (xml STRING)
ROW FORMAT
   SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
   INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
   OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
   "oxh-elements" = "comment",
   "oxh-column.xml" = "fn:serialize(.)"
   ); 

The Hive LOAD DATA command loads comments.xml into the table. See "Simple
Examples" for the contents of the file.

hive> LOAD DATA LOCAL INPATH 'comments.xml' OVERWRITE INTO TABLE comments3;

The following query shows the contents of the XML column:

hive> SELECT xml FROM comments3;
     .
     .
     .
<comment id="12345" user="john" text="It is raining :( "/>
<comment id="56789" user="kelly" text="I won the lottery!">
   <like user="john"/>
   <like user="mike"/>
</comment>
<comment id="54321" user="mike" text="Happy New Year!">
   <like user="laura"/>
</comment>
 

The next query extracts the IDs and converts them to integers:

Chapter 7
Create XML Tables

7-12



hive> SELECT xml_query_as_int("comment/@id", xml) FROM comments3;
     .
     .
     .
12345
56789
54321

OpenStreetMap Examples
These examples use data from OpenStreetMap, which provides free map data for the entire
world. You can export the data as XML for specific geographic regions or the entire planet. An
OpenStreetMap XML document mainly contains a sequence of node, way, and relation
elements.

In these examples, the OpenStreetMap XML files are stored in the /user/name/osm HDFS
directory.

See Also:

• To download OpenStreetMap data, go to

http://www.openstreetmap.org/export
• For information about the OpenStreetMap XML format, go to

http://wiki.openstreetmap.org/wiki/OSM_XML

Example 7-7    Creating a Table Over OpenStreetMap XML

This example creates a table over OpenStreetMap XML with one row for each node element
as follows:

• The id, lat, lon, and user attributes of the node element are mapped to table columns.

• The year is extracted from the timestamp attribute and mapped to the YEAR column. If a
node does not have a timestamp attribute, then -1 is used for the year.

• If the node element has any child tag elements, then they are stored as an XML string in
the TAGS column. If node has no child tag elements, then column value is NULL.

hive>
CREATE EXTERNAL TABLE nodes (
   id BIGINT,
   latitude DOUBLE,
   longitude DOUBLE,
   year SMALLINT,
   tags STRING
) 
ROW FORMAT 
   SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
   INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
   OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
LOCATION '/user/name/osm'
TBLPROPERTIES (
   "oxh-elements" = "node",

Chapter 7
Create XML Tables

7-13

http://www.openstreetmap.org/export
http://wiki.openstreetmap.org/wiki/OSM_XML


   "oxh-column.id" = "./@id",
   "oxh-column.latitude" = "./@lat",
   "oxh-column.longitude" = "./@lon",
   "oxh-column.year" = "
      if (fn:exists(./@timestamp)) then
         fn:year-from-dateTime(xs:dateTime(./@timestamp))
      else
         -1
   ",
   "oxh-column.tags" = "
      if (fn:exists(./tag)) then
         fn:serialize(<tags>{./tag}</tags>)
      else 
         ()
   "
);

The following query returns the number of nodes per year:

hive> SELECT year, count(*) FROM nodes GROUP BY year;

This query returns the total number of tags across nodes:

hive> SELECT sum(xml_query_as_int("count(tags/tag)", tags)) FROM nodes;

Example 7-8    

In OpenStreetMap XML, the node, way, and relation elements share a set of common
attributes, such as the user who contributed the data. The next table produces one row
for each node, way, and relation element.

hive>
  CREATE EXTERNAL TABLE osm (
     id BIGINT,
     uid BIGINT,
     type STRING
  ) 
  ROW FORMAT 
    SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
  STORED AS
    INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
    OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
  LOCATION '/user/name/osm'
  TBLPROPERTIES (
    "oxh-elements" = "node, way, relation",
    "oxh-column.id" = "./@id",
    "oxh-column.uid" = "./@uid",
    "oxh-column.type" = "./name()"
  );

The following query returns the number of node, way, and relation elements. The
TYPE column is set to the name of the selected element, which is either node, way, or
relation.

hive> SELECT type, count(*) FROM osm GROUP BY type;
 

This query returns the number of distinct user IDs:

hive> SELECT count(*) FROM (SELECT uid FROM osm GROUP BY uid) t;

Chapter 7
Create XML Tables

7-14



See Also:

For a description of the OpenStreetMap elements and attributes, go to

http://wiki.openstreetmap.org/wiki/Elements

Oracle XML Functions for Hive Reference
This section describes the Oracle XML Extensions for Hive. It describes the following
commands and functions:

• xml_exists

• xml_query

• xml_query_as_primitive

• xml_table

Data Type Conversions
This table shows the conversions that occur automatically between Hive primitives and XML
schema types.

Table 7-1    Data Type Equivalents

Hive XML schema

TINYINT xs:byte
SMALLINT xs:short
INT xs:int
BIGINT xs:long
BOOLEAN xs:boolean
FLOAT xs:float
DOUBLE xs:double
STRING xs:string

Hive Access to External Files
The Hive functions have access to the following external file resources:

• XML schemas

See http://www.w3.org/TR/xquery/#id-schema-import
• XML documents

See http://www.w3.org/TR/xpath-functions/#func-doc
• XQuery library modules

See http://www.w3.org/TR/xquery/#id-module-import

Chapter 7
Oracle XML Functions for Hive Reference

7-15

http://wiki.openstreetmap.org/wiki/Elements
http://www.w3.org/TR/xquery/#id-schema-import
http://www.w3.org/TR/xpath-functions/#func-doc
http://www.w3.org/TR/xquery/#id-module-import


You can address these files by their URI from either HTTP (by using the http://...
syntax) or the local file system (by using the file://... syntax). In this example,
relative file locations are resolved against the local working directory of the task, so
that URIs such as bar.xsd can be used to access files that were added to the
distributed cache:

xml_query("
   import schema namespace tns='http://example.org' at 'bar.xsd';
   validate { ... }
        ",
   .
   .
   .

To access a local file, first add it to the Hadoop distributed cache using the Hive ADD
FILE command. For example:

ADD FILE /local/mydir/thisfile.xsd;

Otherwise, you must ensure that the file is available on all nodes of the cluster, such
as by mounting the same network drive or simply copying the file to every node. The
default base URI is set to the local working directory.

See Also:

• For examples of accessing the distributed cache, see Example 7-15 for
xml_query, Example 7-22 for xml_query_as_primitive, and 
Example 7-31 for xml_table.

• For information about the default base URI, see XQuery 3.1: An XML
Query Language at

http://www.w3.org/TR/xquery/#dt-base-uri

Online Documentation of Functions
You can get online Help for the Hive extension functions by using this command:

DESCRIBE FUNCTION [EXTENDED] function_name;

This example provides a brief description of the xml_query function:

hive> describe function xml_query;         
OK
xml_query(query, bindings) - Returns the result of the query as a STRING array

The EXTENDED option provides a detailed description and examples:

hive> describe function extended xml_query;
OK
xml_query(query, bindings) - Returns the result of the query as a STRING array
Evaluates an XQuery expression with the specified bindings. The query argument 
must be a STRING and the bindings argument must be a STRING or a STRUCT. If the 
bindings argument is a STRING, it is parsed as XML and bound to the initial 
context item of the query. For example:
  

Chapter 7
Online Documentation of Functions

7-16

https://www.w3.org/TR/xquery-31/#dt-static-base-uri


  > SELECT xml_query("x/y", "<x><y>hello</y><z/><y>world</y></x>") FROM src LIMIT 1;
  ["hello", "world"]
     .
     .
     .

xml_exists
Tests if the result of a query is empty.

Signature

xml_exists(
    STRING query, 
    { STRING | STRUCT } bindings
) as BOOLEAN

Description

query
An XQuery or XPath expression. It must be a constant value, because it is only read the first
time the function is evaluated. The initial query string is compiled and reused in all
subsequent calls.
You can access files that are stored in the Hadoop distributed cache and HTTP resources
(http://...). Use the XQuery fn:doc function for XML documents, and the fn:unparsed-
text and fn:parsed-text-lines functions to access plain text files.
If an error occurs while compiling the query, the function raises an error. If an error occurs
while evaluating the query, the error is logged (not raised), and an empty array is returned.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of variable
values:

• STRING: The string is bound to the initial context item of the query as XML.

• STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a variable
binding (name, value) for the query. The name fields must be type STRING, and the value
fields can be any supported primitive. See "Data Type Conversions."

Return Value

true if the result of the query is not empty; false if the result is empty or the query raises a
dynamic error

Notes

The first dynamic error raised by a query is logged, but subsequent errors are suppressed.

Examples

Example 7-9    STRING Binding

This example parses and binds the input XML string to the initial context item of the query
x/y:

Hive> SELECT xml_exists("x/y", "<x><y>123</y></x>") FROM src LIMIT 1;
     .
     .

Chapter 7
xml_exists

7-17



     .
true

Example 7-10    STRUCT Binding

This example defines two query variables, $data and $value:

Hive> SELECT xml_exists(
      "parse-xml($data)/x/y[@id = $value]",
      struct(
         "data", "<x><y id='1'/><y id='2'/></x>",
         "value", 2
      )
   ) FROM src LIMIT 1;
     .
     .
     .
true

Example 7-11    Error Logging

In this example, an error is written to the log, because the input XML is invalid:

hive> SELECT xml_exists("x/y", "<x><y>123</invalid></x>") FROM src LIMIT 1;
     .
     .
     .
false

xml_query
Returns the result of a query as an array of STRING values.

Signature

xml_query(
   STRING query, 
   { STRING | STRUCT } bindings
) as ARRAY<STRING>

Description

query
An XQuery or XPath expression. It must be a constant value, because it is only read
the first time the function is evaluated. The initial query string is compiled and reused
in all subsequent calls.
You can access files that are stored in the Hadoop distributed cache and HTTP
resources (http://...). Use the XQuery fn:doc function for XML documents, and
the fn:unparsed-text and fn:parsed-text-lines functions to access plain text files.
See Example 7-15.
If an error occurs while compiling the query, the function raises an error. If an error
occurs while evaluating the query, the error is logged (not raised), and an empty array
is returned.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

Chapter 7
xml_query

7-18



• STRING: The string is bound to the initial context item of the query as XML. See 
Example 7-12.

• STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a variable
binding (name, value) for the query. The name fields must be type STRING, and the value
fields can be any supported primitive. See "Data Type Conversions" and Example 7-13.

Return Value

A Hive array of STRING values, which are the result of the query converted to a sequence of
atomic values. If the result of the query is empty, then the return value is an empty array.

Examples

Example 7-12    Using a STRING Binding

This example parses and binds the input XML string to the initial context item of the query
x/y:

hive> 
SELECT xml_query("x/y", "<x><y>hello</y><z/><y>world</y></x>") 
FROM src LIMIT 1;
     .
     .
     .
["hello","world"]

Example 7-13    Using a STRUCT Binding

In this example, the second argument is a STRUCT that defines two query variables, $data
and $value. The values of the variables in the STRUCT are converted to XML schema types as
described in "Data Type Conversions."

hive>
SELECT xml_query(
   "fn:parse-xml($data)/x/y[@id = $value]", 
   struct(
      "data", "<x><y id='1'>hello</y><z/><y id='2'>world</y></x>",
      "value", 1
   )
) FROM src LIMIT 1;
     .
     .
     .
["hello"]

Example 7-14    Obtaining Serialized XML

This example uses the fn:serialize function to return serialized XML:

hive> 
SELECT xml_query(
"for $y in x/y 
return fn:serialize($y)
",
"<x><y>hello</y><z/><y>world</y></x>"
) FROM src LIMIT 1;
     .
     .
     .
["<y>hello</y>","<y>world</y>"]

Chapter 7
xml_query

7-19



Example 7-15    Accessing the Hadoop Distributed Cache

This example adds a file named test.xml to the distributed cache, and then queries it
using the fn:doc function. The file contains this value:

<x><y>hello</y><z/><y>world</y></x>

hive> ADD FILE test.xml;
Added resource: test.xml
hive> SELECT xml_query("fn:doc('test.xml')/x/y", NULL) FROM src LIMIT 1;
     .
     .
     .
["hello","world"]

Example 7-16    Results of a Failed Query

The next example returns an empty array because the input XML is invalid. The XML
parsing error will be written to the log:

hive> SELECT xml_query("x/y", "<x><y>hello</y></invalid") FROM src LIMIT 1;
     .
     .
     .
[]

xml_query_as_primitive
Returns the result of a query as a Hive primitive value. Each Hive primitive data type
has a separate function named for it:

• xml_query_as_string
• xml_query_as_boolean
• xml_query_as_tinyint
• xml_query_as_smallint
• xml_query_as_int
• xml_query_as_bigint
• xml_query_as_double
• xml_query_as_float

Signature

xml_query_as_primitive (
   STRING query,
   {STRUCT | STRING} bindings,
} as primitive

Description

query
An XQuery or XPath expression. It must be a constant value, because it is only read
the first time the function is evaluated. The initial query string is compiled and reused
in all subsequent calls.

Chapter 7
xml_query_as_primitive

7-20



You can access files that are stored in the Hadoop distributed cache and HTTP resources
(http://...). Use the XQuery fn:doc function for XML documents, and the fn:unparsed-
text and fn:parsed-text-lines functions to access plain text files. See Example 7-15.
If an error occurs while compiling the query, the function raises an error. If an error occurs
while evaluating the query, the error is logged (not raised), and an empty array is returned.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of variable
values:

• STRING: The string is bound to the initial context item of the query as XML. See 
Example 7-17.

• STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a variable
binding (name, value) for the query. The name fields must be type STRING, and the value
fields can be any supported primitive. See "Data Type Conversions" and Example 7-18.

The first item in the result of the query is cast to the XML schema type that maps to the
primitive type of the function. If the query returns multiple items, then all but the first are
ignored.

Return Value

A Hive primitive value, which is the first item returned by the query, converted to an atomic
value. If the result of the query is empty, then the return value is NULL.

Examples

Example 7-17    Using a STRING Binding

This example parses and binds the input XML string to the initial context item of the query
x/y:

hive> SELECT xml_query_as_string("x/y", "<x><y>hello</y></x>") FROM src LIMIT 1;
     .
     .
     .
"hello"

The following are string binding examples that use other primitive functions:

hive> SELECT xml_query_as_int("x/y", "<x><y>123</y></x>") FROM src LIMIT 1;
     .
     .
     .
123
 
hive> SELECT xml_query_as_double("x/y", "<x><y>12.3</y></x>") FROM src LIMIT 1;
     .
     .
     .
12.3
 
hive> SELECT xml_query_as_boolean("x/y", "<x><y>true</y></x>") FROM src LIMIT 1;
     .
     .
     .
true

Chapter 7
xml_query_as_primitive

7-21



Example 7-18    Using a STRUCT Binding

In this example, the second argument is a STRUCT that defines two query
variables, $data and $value. The values of the variables in the STRUCT are converted
to XML schema types as described in "Data Type Conversions."

hive>
SELECT xml_query_as_string(
   "fn:parse-xml($data)/x/y[@id = $value]", 
   struct(
      "data", "<x><y id='1'>hello</y><z/><y id='2'>world</y></x>",
      "value", 2
   )
) FROM src LIMIT 1;
     .
     .
     .
world

Example 7-19    Returning Multiple Query Results

This example returns only the first item (hello) from the query. The second item (world)
is discarded.

hive> SELECT xml_query_as_string("x/y", "<x><y>hello</y><z/><y>world</y></x>") 
FROM src LIMIT 1;
     .
     .
     .
hello

Example 7-20    Returning Empty Query Results

This example returns NULL because the result of the query is empty:

hive> SELECT xml_query_as_string("x/foo", "<x><y>hello</y><z/><y>world</y></x>") 
FROM src LIMIT 1;
     .
     .
     .
NULL

Example 7-21    Obtaining Serialized XML

These examples use the fn:serialize function to return complex XML elements as a
STRING value:

hive> SELECT xml_query_as_string("fn:serialize(x/y[1])", "<x><y>hello</y><z/
><y>world</y></x>") FROM src LIMIT 1;
     .
     .
     .
"<y>hello</y>"

hive> SELECT xml_query_as_string(
   "fn:serialize(<html><head><title>{$desc}</title></head><body>Name: {$name}</
body></html>)", 
   struct(
      "desc", "Employee Details",
      "name", "John Doe"
   )
) FROM src LIMIT 1;

Chapter 7
xml_query_as_primitive

7-22



...
<html><head><title>Employee Details</title></head><body>Name: John Doe</body></html>

Example 7-22    Accessing the Hadoop Distributed Cache

This example adds a file named test.xml to the distributed cache, and then queries it using
the fn:doc function. The file contains this value:

<x><y>hello</y><z/><y>world</y></x>

Hive> ADD FILE test.xml;
Added resource: test.xml
Hive> SELECT xml_query_as_string("fn:doc('test.xml')/x/y[1]", NULL) FROM src LIMIT 1;
     .
     .
     .
hello

Example 7-23    Results of a Failed Query

This example returns NULL because </invalid is missing an angle bracket. An XML parsing
error is written to the log:

Hive> SELECT xml_query_as_string("x/y", "<x><y>hello</invalid") FROM src LIMIT 1;
     .
     .
     .
NULL

This example returns NULL because foo cannot be cast as xs:float. A cast error is written to
the log:

Hive> SELECT xml_query_as_float("x/y", "<x><y>foo</y></x>") FROM src LIMIT 1;
     .
     .
     .
NULL

xml_table
A user-defined table-generating function (UDTF) that maps an XML value to zero or more
table rows. This function enables nested repeating elements in XML to be mapped to Hive
table rows.

Signature

xml_table( 
   STRUCT? namespaces,
   STRING query, 
   {STRUCT | STRING} bindings,
   STRUCT? columns
) 

Description

namespaces
Identifies the namespaces that the query and column expressions can use. Optional.

Chapter 7
xml_table

7-23



The value is a STRUCT with an even number of STRING fields. Each pair of fields
defines a namespace binding (prefix, URI) that can be used by the query or the
column expressions. See Example 7-26.

query
An XQuery or XPath expression that generates a table row for each returned value. It
must be a constant value, because it is only read the first time the function is
evaluated. The initial query string is compiled and reused in all subsequent calls.
If a dynamic error occurs during query processing, then the function does not raise an
error, but logs it the first time. Subsequent dynamic errors are not logged.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

• STRING: The string is bound to the initial context item of the query as XML. See 
Example 7-24.

• STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type
STRING, and the value fields can be any supported primitive. See "Data Type
Conversions."

columns
The XQuery or XPath expressions that define the columns of the generated rows.
Optional.
The value is a STRUCT that contains the additional XQuery expressions. The XQuery
expressions must be constant STRING values, because they are only read the first
time the function is evaluated. For each column expression in the STRUCT, there is one
column in the table.
For each item returned by the query, the column expressions are evaluated with the
current item as the initial context item of the expression. The results of the column
expressions are converted to STRING values and become the values of the row.
If the result of a column expression is empty or if a dynamic error occurs while
evaluating the column expression, then the corresponding column value is NULL. If a
column expression returns more than one item, then all but the first are ignored.
Omitting the columns argument is the same as specifying 'struct(".")'. See 
Example 7-25.

Return Value

One table row for each item returned by the query argument.

Notes

The XML table adapter enables Hive tables to be created over large XML files in
HDFS. See "Hive CREATE TABLE Syntax for XML Tables".

Chapter 7
xml_table

7-24



Examples

Note:

You could use the xml_query_as_string function to achieve the same result in this
example. However, xml_table is more efficient, because a single function call sets
all three column values and parses the input XML only once for each row. The
xml_query_as_string function requires a separate function call for each of the
three columns and reparses the same input XML value each time.

Example 7-24    Using a STRING Binding

The query "x/y" returns two <y> elements, therefore two table rows are generated. Because
there are two column expressions ("./z", "./w"), each row has two columns.

hive> SELECT xml_table(
   "x/y",
   "<x>
      <y>
         <z>a</z>
         <w>b</w>
      </y>
      <y>
         <z>c</z>
      </y>
   </x>
   ",
   struct("./z", "./w")
 ) AS (z, w)
 FROM src;
     .
     .
     .
a        b
c        NULL

Example 7-25    Using the Columns Argument

The following two queries are equivalent. The first query explicitly specifies the value of the
columns argument:

hive> SELECT xml_table(
      "x/y",
      "<x><y>hello</y><y>world</y></x>",
      struct(".")
   ) AS (y)
   FROM src;
     .
     .
     .
hello
world

The second query omits the columns argument, which defaults to struct("."):

Chapter 7
xml_table

7-25



hive> SELECT xml_table(
      "x/y",
      "<x><y>hello</y><y>world</y></x>"
   ) AS (y)
   FROM src;
     .
     .
     .
hello
world

Example 7-26    Using the Namespaces Argument

This example specifies the optional namespaces argument, which identifies an ns
prefix and a URI of http://example.org.

hive> SELECT xml_table(
     struct("ns", "http://example.org"),
     "ns:x/ns:y",
     "<x xmlns='http://example.org'><y><z/></y><y><z/><z/></y></x>",
     struct("count(./ns:z)")
  ) AS (y)
  FROM src;
     .
     .
     .
1
2

Example 7-27    Querying a Hive Table of XML Documents

This example queries a table named COMMENTS3, which has a single column named
XML_STR of type STRING. It contains these three rows:

hive> SELECT xml_str FROM comments3;

<comment id="12345" user="john" text="It is raining:("/>
<comment id="56789" user="kelly" text="I won the lottery!"><like user="john"/
><like user="mike"/></comment>
<comment id="54321" user="mike" text="Happy New Year!"><like user="laura"/></
comment>

The following query shows how to extract the user, text, and number of likes from the
COMMENTS3 table.

hive> SELECT t.id, t.usr, t.likes
     FROM comments3 LATERAL VIEW xml_table(
        "comment",
        comments.xml_str, 
        struct("./@id", "./@user", "fn:count(./like)")
     ) t AS id, usr, likes;

12345   john    0
56789   kelly   2
54321   mike    1

Example 7-28    Mapping Nested XML Elements to Table Rows

This example shows how to use xml_table to flatten nested, repeating XML elements
into table rows. See the previous example for the COMMENTS table.

Chapter 7
xml_table

7-26



> SELECT t.i, t.u, t.l
    FROM comments3 LATERAL VIEW xml_table (
       "let $comment := ./comment
        for $like in $comment/like
        return
           <r>
              <id>{$comment/@id/data()}</id>
              <user>{$comment/@user/data()}</user>
              <like>{$like/@user/data()}</like>
           </r>
       ",
       comments.xml_str,
       struct("./id", "./user", "./like")
    ) t AS i, u, l;

56789   kelly   john
56789   kelly   mike
54321   mike    laura

Example 7-29    Mapping Optional Nested XML Elements to Table Rows

This example is a slight modification of the previous example that produces a row even when
a comment has no likes. See Example 7-27 for the COMMENTS table.

> SELECT t.i, t.u, t.l
     FROM comments3 LATERAL VIEW xml_table (
        "let $comment := ./comment
         for $like allowing empty in $comment/like
         return 
            <r>
               <id>{$comment/@id/data()}</id>
               <user>{$comment/@user/data()}</user>
               <like>{$like/@user/data()}</like>
            </r>
        ",
        comments.xml_str, 
        struct("./id", "./user", "./like")
     ) t AS i, u, l;

12345   john
56789   kelly   john
56789   kelly   mike
54321   mike    laura

Example 7-30    Creating a New View

You can create views and new tables using xml_table, the same as any table-generating
function. This example creates a new view named COMMENTS_LIKES from the COMMENTS table:

hive> CREATE VIEW comments_likes AS 
     SELECT xml_table(
        "comment", 
         comments.xml_str, 
         struct("./@id", "count(./like)")
     ) AS (id, likeCt)
     FROM comments;

This example queries the new view:

> SELECT * FROM comments_likes
     WHERE CAST(likeCt AS INT) != 0;

Chapter 7
xml_table

7-27



56789   2
54321   1

Example 7-31    Accessing the Hadoop Distributed Cache

You can access XML documents and text files added to the distributed cache by using
the fn:doc and fn:unparsed-text functions.

This example queries a file named test.xml that contains this string:

<x><y>hello</y><z/><y>world</y></x>

hive> ADD FILE test.xml;
Added resource: test.xml
hive> SELECT xml_table("fn:doc('test.xml')/x/y", NULL) AS y FROM src;
     .
     .
     .
hello
world

Chapter 7
xml_table

7-28



Part IV
Oracle R Advanced Analytics for Apache
Hadoop

This part contains the following chapter:

• Oracle R Advanced Analytics for Apache Hadoop



8
Oracle R Advanced Analytics for Apache
Hadoop

This chapter describes R support for big data. It contains the following sections:

• About Oracle R Advanced Analytics for Hadoop

• Access to HDFS Files

• Access to Apache Hive

• Access to Oracle Database

• Oracle R Advanced Analytics for Hadoop Functions

• Demos of Oracle R Advanced Analytics for Hadoop Functions

• Security Notes for Oracle R Advanced Analytics for Hadoop

Note:

Oracle R Advanced Analytics for Apache Hadoop (Oracle R Advanced Analytics for
Hadoop) was previously called Oracle R Connector for Hadoop or ORCH. ORCH is
still mentioned in this document and in the product for backward compatibility.

About Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop provides:

• A general computation framework, in which you can use the R language to write your
custom logic as mappers or reducers. The code executes in a distributed, parallel
manner using the available compute and storage resources on the Hadoop cluster.

• An R interface to manipulate Hive tables, which is similar to the transparency layer of
Oracle R Enterprise but with a restricted set of functionality.

• A set of pre-packaged parallel-distributed algorithms.

• Support for Apache Spark, with which you can execute predictive analytics functions on a
Hadoop cluster using YARN to dynamically form a Spark cluster or on a dedicated stand-
alone Spark cluster. You can switch on or off Spark execution using spark.connect() and
spark.disconnect() functions.

• The ability to use Spark to execute neural network analytical function (orch.neural), for
significantly improved performance over MapReduce execution.

Oracle R Advanced Analytics for Hadoop Architecture
Oracle R Advanced Analytics for Hadoop:

8-1



• is built upon Hadoop streaming, a utility that is a part of Hadoop distribution and
allows creation and execution of Map or Reduce jobs with any executable or script
as mapper or reducer.

• is designed for R users to work with Hadoop cluster in a client-server
configuration. Client configurations must conform to the requirements of the
Hadoop distribution that Oracle R Advanced Analytics for Hadoop is deployed in.

• uses command line interfaces to HDFS and HIVE to communicate from client
nodes to Hadoop clusters.

• builds the logic required to transform an input stream of data into R data frame
object to be readily consumed by user-provided mapper and reducer functions
written into R.

• allows R users to move data from an Oracle Database table or view into Hadoop
as an HDFS file, using the Sqoop utility. Similarly data can be moved back from an
HDFS file into Oracle Database, using the Sqoop utility or Oracle Loader for
Hadoop, depending on the size of data being moved and security requirements

• support's R's binary RData representation for input and output, for performance
sensitive analytic workloads. Conversion utilities from delimiter separated
representation to and from RData representation is available as part of Oracle R
Advanced Analytics for Hadoop.

• includes a Hadoop Abstraction Layer (HAL) which manages the similarities and
differences across various Hadoop distributions. ORCH will auto-detect the
Hadoop version at startup.

Oracle R Advanced Analytics for Hadoop packages and functions
Oracle R Advanced Analytics for Hadoop includes a collection of R packages that
provides:

• Interfaces to work with the:

– Apache Hive tables

– Apache Hadoop compute infrastructure

– local R environment

– Oracle Database tables

– -Proprietary binary RData representations

– Apache Spark RDD objects

• Predictive analytic techniques for:

– linear regression

– generalized linear models

– neural networks

– matrix completion using low rank matrix factorization

– nonnegative matrix factorization

– k-means clustering

– principal components analysis

– multivariate analysis

Chapter 8
About Oracle R Advanced Analytics for Hadoop

8-2



ORAAH 2.6 introduces full stack of predictive modeling algorithms on Spark. This
includes integration of many Spark MLlib capabilities, including Linear Model techniques
(Linear Regression, LASSO, Ridge Regression), as well as GLM, SVM, k-Means,
Gaussian Mixture clustering, Decision Trees, Random Forests and Gradient Boosted
Trees, PCA and SVD. Existing ORAAH custom Spark algorithms are enhanced with the
addition of Linear Models and Stepwise capability for both LM and GLM.

While these techniques have R interfaces, Oracle R Advanced Analytics for Hadoop
implement them in either Java or R as distributed, parallel MapReduce jobs, thereby
leveraging all nodes of your Hadoop cluster.

You install and load this package as you would any other R package. Using simple R
functions, you can perform tasks like these:

• Access and transform HDFS data using a Hive-enabled transparency layer

• Use the R language for writing mappers and reducers

• Copy data between R memory, the local file system, HDFS, Hive, and Oracle Database
instances

• Manipulate Hive data transparently from R

• Execute R programs as Hadoop MapReduce jobs and return the results to any of those
locations

– With Oracle R Advanced Analytics for Hadoop, MapReduce jobs can be submitted
from R for both non-cluster (local) execution and Hadoop cluster execution

– When Oracle R Enterprise and Oracle R Advanced Analytics for Hadoop are used
together on a database server, you can schedule database jobs using the
DBMS_SCHEDULER to execute scripts containing ORCH functions

To use Oracle R Advanced Analytics for Hadoop, you should be familiar with MapReduce
programming, R programming, and statistical methods.

Oracle R Advanced Analytics for Hadoop APIs
Oracle R Advanced Analytics for Hadoop provides access from a local R client to Apache
Hadoop using functions with these prefixes:

• hadoop: Identifies functions that provide an interface to Hadoop MapReduce

• hdfs: Identifies functions that provide an interface to HDFS

• orch: Identifies a variety of functions; orch is a general prefix for ORCH functions

• ore: Identifies functions that provide an interface to a Hive data store

Oracle R Advanced Analytics for Hadoop uses data frames as the primary object type, but it
can also operate on vectors and matrices to exchange data with HDFS. The APIs support the
numeric, integer, and character data types in R.

All of the APIs are included in the ORCH library. The functions are listed in "Oracle R Advanced
Analytics for Hadoop Functions".

See Also:

The R Project website at http://www.r-project.org/

Chapter 8
About Oracle R Advanced Analytics for Hadoop

8-3

http://www.r-project.org/


Inputs to Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop can work with delimited text files resident in
an HDFS directory, HIVE tables, or binary RData representations of data. If the input
data to an Oracle R Advanced Analytics for Hadoop orchestrated map-reduce
computation does not reside in HDFS, a copy of the data in HDFS is created
automatically prior to launching the computation.

Before Oracle R Advanced Analytics for Hadoop can work with delimited text files it
determines metadata associated with the files and captures the same in a file stored
alongside of the data files. This file is named __ORCHMETA__. The metadata
contains information such as:

• If the file contains key(s), then the delimiter that is the key separator

• The delimiter that is the value separator

• Number and data types of columns in the file

• Optional names of columns

• Dictionary information for categorical columns

• Other Oracle R Advanced Analytics for Hadoop-specific system data

Oracle R Advanced Analytics for Hadoop runs an automatic metadata discovery
procedure on HDFS objects as part of hdfs.attach() invocation to create the metadata
file. When working with HIVE tables, __ORCHMETA__ file is created automatically
from the HIVE table definition2.

Oracle R Advanced Analytics for Hadoop can optionally convert input data into R's
binary RData representation for I/O performance that is on par with a pure Java based
map-reduce implementation.

Oracle R Advanced Analytics for Hadoop captures row streams from HDFS files and
delivers them formatted as a data frame object (or optionally matrix, vector, or list
objects generated from the data frame object or AS IS, if RData representation is
used) to the mapped function written in R. To accomplish this, Oracle R Advanced
Analytics for Hadoop must recognize the tokens and data types of the tokens that
become columns of a data frame. Oracle R Advanced Analytics for Hadoop uses R's
facilities to parse and interpret tokens in input row streams. If missing values are not
represented using R's “NA" token, they can be explicitly identified by the na.strings
argument of hdfs.attach().

Delimited text files with the same key and value separator are preferred over files with
a different key delimiter and value delimiter. The Read performance of files with the
same key and value delimiter is roughly 2x better than that of files with different key
and value delimiter.

The key delimiter and value delimiter can be specified through the key.sep and val.sep
arguments of hdfs.attach() or when running a MapReduce job for its output HDFS
data.

Binary RData representation is the most performance efficient representation of input
data in Oracle R Advanced Analytics for Hadoop. When possible, users are
encouraged to use this binary data representation for performance sensitive analytics.

Chapter 8
About Oracle R Advanced Analytics for Hadoop

8-4



Access to HDFS Files
For Oracle R Advanced Analytics for Hadoop to access the data stored in HDFS, the input
files must comply with the following requirements:

• All input files for a MapReduce job must be stored in one directory as the parts of one
logical file. Any valid HDFS directory name and file name extensions are acceptable.

• Any file in that directory with a name beginning with an underscore (_) is ignored.

All delimiters are supported, and key and value delimiters can be different.

You can also convert a delimited file into binary format, using the Rdata representation from
R, for the best I/O performance.

Access to Apache Hive
Apache Hive provides an alternative storage and retrieval mechanism to HDFS files through
a querying language called HiveQL, which closely resembles SQL. Hive uses MapReduce for
distributed processing. However, the data is structured and has additional metadata to
support data discovery. Oracle R Advanced Analytics for Hadoop uses the data preparation
and analysis features of HiveQL, while enabling you to use R language constructs.

ORCH Functions for Hive
ORCH provides these conversion functions to help you move data between HDFS and Hive:

hdfs.toHive
hdfs.fromHive

ORE Functions for Hive
You can connect to Hive and analyze and transform Hive table objects using R functions that
have an ore prefix, such as ore.connect. If you are also using Oracle R Enterprise, then you
will recognize these functions. The ore functions in Oracle R Enterprise create and manage
objects in an Oracle database, and the ore functions in Oracle R Advanced Analytics for
Hadoop create and manage objects in a Hive database. You can connect to one database at
a time, either Hive or Oracle Database, but not both simultaneously.

Note:

For information about requirements and instructions to set up and use Oracle R
Enterprise, refer to Oracle R Enterprise library at: https://docs.oracle.com/cd/
E83411_01/index.htm.

For example, the ore.connect(type="HIVE") establishes a connection with the default HIVE
database.ore.hiveOptions(dbname='dbtmp') and allows you to change the default
database, while ore.showHiveOptions() allows you to examine the current default HIVE
database.

See Table 8-7 for a list of ORE as.ore.* and is.ore.* functions.

Chapter 8
Access to HDFS Files

8-5

https://docs.oracle.com/cd/E83411_01/index.htm
https://docs.oracle.com/cd/E83411_01/index.htm


Generic R Functions Supported in Hive
Oracle R Advanced Analytics for Hadoop also overloads the following standard
generic R functions with methods to work with Hive objects.

Character methods
casefold, chartr, gsub, nchar, substr, substring, tolower, toupper
This release does not support grepl or sub.

Frame methods

• attach, show
• [, $, $<-, [[, [[<-
• Subset functions: head, tail
• Metadata functions: dim, length, NROW, nrow, NCOL, ncol, names, names<-,

colnames, colnames<-
• Conversion functions: as.data.frame, as.env, as.list
• Arithmetic operators: +, -, *, ^, %%, %/%, /
• Compare, Logic, xor, !
• Test functions: is.finite, is.infinite, is.na, is.nan
• Mathematical transformations: abs, acos, asin, atan, ceiling, cos, exp, expm1,

floor, log, log10, log1p, log2, logb, round, sign, sin, sqrt, tan, trunc
• Basic statistics: colMeans, colSums, rowMeans, rowSums, Summary, summary, unique
• by, merge
• unlist, rbind, cbind, data.frame, eval
This release does not support dimnames, interaction, max.col, row.names,
row.names<-, scale, split, subset, transform, with, or within.

Logical methods
ifelse, Logic, xor, !

Matrix methods
Not supported

Numeric methods

• Arithmetic operators: +, -, *, ^, %%, %/%, /
• Test functions: is.finite, is.infinite, is.nan
• abs, acos, asin, atan, ceiling, cos, exp, expm1, floor, log, log1p, log2, log10,

logb, mean, round, sign, sin, sqrt, Summary, summary, tan, trunc, zapsmall
This release does not support atan2, besselI, besselK, besselJ, besselY, diff,
factorial, lfactorial, pmax, pmin, or tabulate.

Chapter 8
Access to Apache Hive

8-6



Vector methods

• show, length, c
• Test functions: is.vector, is.na
• Conversion functions: as.vector, as.character, as.numeric, as.integer, as.logical
• [, [<-, |
• by, Compare, head, %in%, paste, sort, table, tail, tapply, unique
This release does not support interaction, lengthb, rank, or split.

The following example shows simple data preparation and processing.

Example 8-1    Using R to Process Data in Hive Tables

# Connect to Hive
ore.connect(type="HIVE")

# Attach the current envt. into search path of R
ore.attach()

# create a Hive table by pushing the numeric columns of the iris data set
IRIS_TABLE <- ore.push(iris[1:4])

# Create bins based on Petal Length
 IRIS_TABLE$PetalBins = ifelse(IRIS_TABLE$Petal.Length < 2.0, "SMALL PETALS",
+                        ifelse(IRIS_TABLE$Petal.Length < 4.0, "MEDIUM PETALS",
+                        ifelse(IRIS_TABLE$Petal.Length < 6.0,
+                               "MEDIUM LARGE PETALS", "LARGE PETALS")))

#PetalBins is now a derived column of the HIVE object
> names(IRIS_TABLE)
[1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "PetalBins"   

# Based on the bins, generate summary statistics for each group
aggregate(IRIS_TABLE$Petal.Length, by = list(PetalBins = IRIS_TABLE$PetalBins),
+           FUN = summary)
1        LARGE PETALS    6 6.025000 6.200000 6.354545 6.612500  6.9    0
2 MEDIUM LARGE PETALS    4 4.418750 4.820000 4.888462 5.275000  5.9    0
3       MEDIUM PETALS    3 3.262500 3.550000 3.581818 3.808333  3.9    0
4        SMALL PETALS    1 1.311538 1.407692 1.462000 1.507143  1.9    0
Warning message:
ORE object has no unique key - using random order 

Support for Hive Data Types
Oracle R Advanced Analytics for Hadoop can access any Hive table containing columns with
string and numeric data types such as tinyint, smallint, bigint, int, float, and double.

There is no support for these complex data types:

array
binary
map
struct
timestamp
union

Chapter 8
Access to Apache Hive

8-7



If you attempt to access a Hive table containing an unsupported data type, you will
receive an error message. To access the table, you must convert the column to a
supported data type.

To convert a column to a supported data type:

1. Open the Hive command interface:

$ hive
hive>

2. Identify the column with an unsupported data type:

hive> describe table_name;
3. View the data in the column:

hive> select column_name from table_name;
4. Create a table for the converted data, using only supported data types.

5. Copy the data into the new table, using an appropriate conversion tool.

The first example below shows the conversion of an array. The other two examples
show the conversion of timestamp data.

Example 8-2    Converting an Array to String Columns

R> ore.sync(table="t1")
   Warning message:
   table t1 contains unsupported data types 
     .
     .
     .
hive> describe t1;
OK
      col1   int
      col2   array<string>

hive> select * from t1;
OK
1      ["a","b","c"]
2      ["d","e","f"]
3      ["g","h","i"]

hive> create table t2 (c1 string, c2 string, c2 string);
hive> insert into table t2 select col2[0], col2[1], col2[2] from t1;
     .
     .
     .
R> ore.sync(table="t2")
R> ore.ls()
[1] "t2"
R> t2$c1
[1] "a" "d" "g" 

The following example uses automatic conversion of the timestamp data type into
string. The data is stored in a table named t5 with a column named tstmp.

Example 8-3    Converting a Timestamp Column

hive> select * from t5;

Chapter 8
Access to Apache Hive

8-8



hive> create table t6 (timestmp string); 
hive> insert into table t6 SELECT tstmp from t5;
 

The following example uses the Hive get_json_object function to extract the two columns of
interest from the JSON table into a separate table for use by Oracle R Advanced Analytics for
Hadoop.

Example 8-4    Converting a Timestamp Column in a JSON File

hive> select * from t3;
OK
      
{"custId":1305981,"movieId":null,"genreId":null,"time":"2010-12-30:23:59:32","recommend
ed":null,"activity":9}

hive> create table t4 (custid int, time string);
 
hive> insert into table t4 SELECT cast(get_json_object(c1, '$.custId') as int), 
cast(get_json_object(c1, '$.time') as string) from t3;

Usage Notes for Hive Access
The Hive command language interface (CLI) is used for executing queries and provides
support for Linux clients. There is no JDBC or ODBC support.

The ore.create function creates Hive tables only as text files. However, Oracle R Advanced
Analytics for Hadoop can access Hive tables stored as either text files or sequence files.

You can use the ore.exec function to execute Hive commands from the R console. For a
demo, run the hive_sequencefile demo.

Oracle R Advanced Analytics for Hadoop can access tables and views in the default Hive
database only. To allow read access to objects in other databases, you must expose them in
the default database. For example, you can create views.

Oracle R Advanced Analytics for Hadoop does not have a concept of ordering in Hive. An R
frame persisted in Hive might not have the same ordering after it is pulled out of Hive and into
memory. Oracle R Advanced Analytics for Hadoop is designed primarily to support data
cleanup and filtering of huge HDFS data sets, where ordering is not critical. You might see
warning messages when working with unordered Hive frames:

Warning messages:
1: ORE object has no unique key - using random order 
2: ORE object has no unique key - using random order 

To suppress these warnings, set the ore.warn.order option in your R session:

R> options(ore.warn.order = FALSE)

Example: Loading Hive Tables into Oracle R Advanced Analytics for
Hadoop

The following example provides an example of loading a Hive table into an R data frame for
analysis. It uses these Oracle R Advanced Analytics for Hadoop functions:

hdfs.attach
ore.attach

Chapter 8
Access to Apache Hive

8-9



ore.connect
ore.create
ore.hiveOptions
ore.sync

Example 8-5    Loading a Hive Table

# Connect to HIVE metastore and sync the HIVE input table into the R session.
ore.connect(type="HIVE")
ore.sync(table="datatab")
ore.attach()
 
# The "datatab" object is a Hive table with columns named custid, movieid, 
activity, and rating.
# Perform filtering to remove missing (NA) values from custid and movieid 
columns 
# Project out three columns: custid, movieid and rating
t1 <- datatab[!is.na(datatab$custid) &
    !is.na(datatab$movieid) & 
    datatab$activity==1, c("custid","movieid", "rating")]
 
# Set HIVE field delimiters to ','. By default, it is Ctrl+a for text files but
# ORCH 2.0 supports only ',' as a file separator.
ore.hiveOptions(delim=',')

# Create another Hive table called "datatab1" after the transformations above.
ore.create (t1, table="datatab1")
 
# Use the HDFS directory, where the table data for datatab1 is stored, to attach
# it to ORCH framework. By default, this location is "/user/hive/warehouse"
dfs.id <- hdfs.attach("/user/hive/warehouse/datatab1")

# dfs.id can now be used with all hdfs.*, orch.* and hadoop.* APIs of ORCH for 
further processing and analytics.

Access to Oracle Database
Oracle R Advanced Analytics for Hadoop provides a basic level of database access.
You can move the contents of a database table to HDFS, and move the results of
HDFS analytics back to the database.

You can then perform additional analysis on this smaller set of data using a separate
product named Oracle R Enterprise. It enables you to perform statistical analysis on
database tables, views, and other data objects using the R language. You have
transparent access to database objects, including support for Business Intelligence
and in-database analytics.

Access to the data stored in an Oracle database is always restricted to the access
rights granted by your DBA.

Oracle R Enterprise is included in the Oracle Advanced Analytics option to Oracle
Database Enterprise Edition. It is not included in the Oracle Big Data Connectors.

See Also:

Oracle R Enterprise User's Guide

Chapter 8
Access to Oracle Database

8-10



Usage Notes for Oracle Database Access
Oracle R Advanced Analytics for Hadoop uses Sqoop to move data between HDFS and
Oracle Database. Sqoop imposes several limitations on Oracle R Advanced Analytics for
Hadoop:

• You cannot import Oracle tables with BINARY_FLOAT or BINARY_DOUBLE columns. As a
work-around, you can create a view that casts these columns to NUMBER data type.

• All column names must be in upper case.

Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R
Enterprise

The following scenario may help you identify opportunities for using Oracle R Advanced
Analytics for Hadoop with Oracle R Enterprise.

Using Oracle R Advanced Analytics for Hadoop, you can look for files that you have access
to on HDFS and execute R calculations on data in one such file. You can also upload data
stored in text files on your local file system into HDFS for calculations, schedule an R script
for execution on the Hadoop cluster using DBMS_SCHEDULER, and download the results into a
local file.

Using Oracle R Enterprise, you can open the R interface and connect to Oracle Database to
work on the tables and views that are visible based on your database privileges. You can filter
out rows, add derived columns, project new columns, and perform visual and statistical
analysis.

Again using Oracle R Advanced Analytics for Hadoop, you might deploy a MapReduce job on
Hadoop for CPU-intensive calculations written in R. The calculation can use data stored in
HDFS or, with Oracle R Enterprise, in an Oracle database. You can return the output of the
calculation to an Oracle database and to the R console for visualization or additional
processing.

Oracle R Advanced Analytics for Hadoop Functions
The Oracle R Advanced Analytics for Hadoop functions are described in R Help topics. This
section groups them into functional categories and provides brief descriptions.

• Native Analytical Functions

• Using the Hadoop Distributed File System (HDFS)

• Using Apache Hive

• Using Aggregate Functions in Hive

• Making Database Connections

• Copying Data and Working with HDFS Files

• Converting to R Data Types

• Using MapReduce

• Debugging Scripts

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

8-11



Native Analytical Functions
The following table describes the native analytic functions.

Table 8-1    Functions for Statistical Analysis

Function Description

orch.cor Generates a correlation matrix with a Pearson's correlation
coefficients.

orch.cov Generates a covariance matrix.

orch.getXlevels Creates a list of factor levels that can be used in the xlev
argument of a model.matrix call. It is equivalent to
the .getXlevels function in the stats package.

orch.glm Fits and uses generalized linear models on data stored in
HDFS.

orch.kmeans Perform k-means clustering on a data matrix that is stored as a
file in HDFS.

orch.lm Fits a linear model using tall-and-skinny QR (TSQR)
factorization and parallel distribution. The function computes
the same statistical parameters as the Oracle R Enterprise
ore.lm function.

orch.lmf Fits a low rank matrix factorization model using either the
jellyfish algorithm or the Mahout alternating least squares with
weighted regularization (ALS-WR) algorithm.

orch.neural Provides a neural network to model complex, nonlinear
relationships between inputs and outputs, or to find patterns in
the data.

orch.nmf Provides the main entry point to create a nonnegative matrix
factorization model using the jellyfish algorithm. This function
can work on much larger data sets than the R NMF package,
because the input does not need to fit into memory.

orch.nmf.NMFalgo Plugs in to the R NMF package framework as a custom
algorithm. This function is used for benchmark testing.

orch.princomp Analyzes the performance of principal component.

orch.recommend Computes the top n items to be recommended for each user
that has predicted ratings based on the input
orch.mahout.lmf.asl model.

orch.sample Provides the reservoir sampling.

orch.scale Performs scaling.

Using the Hadoop Distributed File System (HDFS)
The following table describes the functions that execute HDFS commands from within
the R environment.

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

8-12



Table 8-2    Functions for Using HDFS

Function Description

hdfs.cd Sets the default HDFS path.

hdfs.cp Copies an HDFS file from one location to another.

hdfs.describe Returns the metadata associated with a file in HDFS.

hdfs.exists Verifies that a file exists in HDFS.

hdfs.head Copies a specified number of lines from the beginning of a file in HDFS.

hdfs.id Converts an HDFS path name to an R dfs.id object.

hdfs.ls Lists the names of all HDFS directories containing data in the specified path.

hdfs.mkdir Creates a subdirectory in HDFS relative to the current working directory.

hdfs.mv Moves an HDFS file from one location to another.

hdfs.parts Returns the number of parts composing a file in HDFS.

hdfs.pwd Identifies the current working directory in HDFS.

hdfs.rm Removes a file or directory from HDFS.

hdfs.rmdir Deletes a directory in HDFS.

hdfs.root Returns the HDFS root directory.

hdfs.setroot Sets the HDFS root directory.

hdfs.size Returns the size of a file in HDFS.

hdfs.tail Copies a specified number of lines from the end of a file in HDFS.

Using Apache Hive
The following table describes the functions available in Oracle R Advanced Analytics for
Hadoop for use with Hive. .

Table 8-3    Functions for Using Hive

Function Description

hdfs.fromHive Converts a Hive table to a HDFS identifier in ORCH.

hdfs.toHive Converts an HDFS object identifier to a Hive table represented by an
ore.frame object.

ore.create Creates a database table from a data.frame or ore.frame object.

ore.drop Drops a database table or view.

ore.get Retrieves the specified ore.frame object.

ore.pull Copies data from a Hive table to an R object.

ore.push Copies data from an R object to a Hive table.

ore.recode Replaces the values in an ore.vector object.

Related Topics

• ORE Functions for Hive

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

8-13



Using Aggregate Functions in Hive
The following table describes the aggregate functions from the OREstats package that
Oracle R Advanced Analytics for Hadoop supports for use with Hive data.

Table 8-4    Oracle R Enterprise Aggregate Functions

Function Description

aggregate Splits the data into subsets and computes summary statistics for each
subset.

fivenum Returns Tukey's five-number summary (minimum, lower hinge, median,
upper hinge, and maximum) for the input data.

IQR Calculates an interquartile range.

median Calculates a sample median.

quantile Generates sample quantiles that correspond to the specified
probabilities.

sd Calculates the standard deviation.

var1 Calculates the variance.

1 For vectors only

Making Database Connections
The following table describes the functions for establishing a connection to Oracle
Database.

Table 8-5    Functions for Using Oracle Database

Function Description

orch.connect Establishes a connection to Oracle Database.

orch.connected Checks whether Oracle R Advanced Analytics for Hadoop is connected
to Oracle Database.

orch.dbcon Returns a connection object for the current connection to Oracle
Database, excluding the authentication credentials.

orch.dbinfo Displays information about the current connection.

orch.disconnect Disconnects the local R session from Oracle Database.

orch.reconnect Reconnects to Oracle Database with the credentials previously
returned by orch.disconnect.

Copying Data and Working with HDFS Files
The following table describes the functions for copying data between platforms,
including R data frames, HDFS files, local files, and tables in an Oracle database.

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

8-14



Table 8-6    Functions for Copying Data

Function Description

hdfs.attach Copies data from an unstructured data file in HDFS into the R framework.
By default, data files in HDFS are not visible to the connector. However, if
you know the name of the data file, you can use this function to attach it to
the Oracle R Advanced Analytics for Hadoop name space.

hdfs.download Copies a file from HDFS to the local file system.

hdfs.get Copies data from HDFS into a data frame in the local R environment. All
metadata is extracted and all attributes, such as column names and data
types, are restored if the data originated in an R environment. Otherwise,
generic attributes like val1 and val2 are assigned.

hdfs.pull Copies data from HDFS into an Oracle database. This operation requires
authentication by Oracle Database. See orch.connect.

hdfs.push Copies data from an Oracle database to HDFS. This operation requires
authentication by Oracle Database. See orch.connect.

hdfs.put Copies data from an R in-memory object (data.frame) to HDFS. All data
attributes, like column names and data types, are stored as metadata with
the data.

hdfs.sample Copies a random sample of data from a Hadoop file into an R in-memory
object. Use this function to copy a small sample of the original HDFS data
for developing the R calculation that you ultimately want to execute on the
entire HDFS data set on the Hadoop cluster.

hdfs.upload Copies a file from the local file system into HDFS.

is.hdfs.id Indicates whether an R object contains a valid HDFS file identifier.

Converting to R Data Types
The following table describes functions for converting and testing data types. The Oracle R
Enterprise OREbase package provides these functions.

Table 8-7    Functions for Converting and Testing Data Types

Function Description

as.ore Coerces an in-memory R object to an ORE object.

as.ore.character Coerces an in-memory R object to an ORE character object.

as.ore.date Coerces an in-memory R object to an ORE date object.

as.ore.datetime Coerces an in-memory R object to an ORE datetime object.

as.ore.difftime Coerces an in-memory R object to an ORE difftime object.

as.ore.factor Coerces an in-memory R object to an ORE factor object.

as.ore.frame Coerces an in-memory R object to an ORE frame object.

as.ore.integer Coerces an in-memory R object to an ORE integer object.

as.ore.list Coerces an in-memory R object to an ORE list object.

as.ore.logical Coerces an in-memory R object to an ORE logical object.

as.ore.matrix Coerces an in-memory R object to an ORE matrix object.

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

8-15



Table 8-7    (Cont.) Functions for Converting and Testing Data Types

Function Description

as.ore.numeric Coerces an in-memory R object to an ORE numeric object.

as.ore.object Coerces an in-memory R object to an ORE object.

as.ore.vector Coerces an in-memory R object to an ORE vector object.

is.ore Tests whether the specified value is an object of a particular Oracle R
Enterprise class.

is.ore.character Tests whether the specified value is a character.

is.ore.date Tests whether the specified value is a date.

is.ore.datetime Tests whether the specified value is a datetime type.

is.ore.difftime Tests whether the specified value is a difftime type.

is.ore.factor Tests whether the specified value is a factor.

is.ore.frame Tests whether the specified value is a frame.

is.ore.integer Tests whether the specified value is an integer.

is.ore.list Tests whether the specified value is a list.

is.ore.logical Tests whether the specified value is a logical type.

is.ore.matrix Tests whether the specified value is a matrix.

is.ore.numeric Tests whether the specified value is numeric.

is.ore.object Tests whether the specified value is an object.

is.ore.vector Tests whether the specified value is a vector.

Using MapReduce
The following table describes functions that you use when creating and running
MapReduce programs.

Table 8-8    Functions for Using MapReduce

Function Description

hadoop.exec Starts the Hadoop engine and sends the mapper, reducer, and
combiner R functions for execution. You must load the data
into HDFS first.

hadoop.jobs Lists the running jobs, so that you can evaluate the current
load on the Hadoop cluster.

hadoop.run Starts the Hadoop engine and sends the mapper, reducer, and
combiner R functions for execution. If the data is not already
stored in HDFS, then hadoop.run first copies the data there.

orch.dryrun Switches the execution platform between the local host and
the Hadoop cluster. No changes in the R code are required for
a dry run.

orch.export Makes R objects from a user's local R session available in the
Hadoop execution environment, so that they can be
referenced in MapReduce jobs.

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

8-16



Table 8-8    (Cont.) Functions for Using MapReduce

Function Description

orch.keyval Outputs key-value pairs in a MapReduce job.

orch.keyvals Outputs a set of key-value pairs in a MapReduce job.

orch.pack Compresses one or more in-memory R objects that the
mappers or reducers must write as the values in key-value
pairs.

orch.tempPath Sets the path where temporary data is stored.

orch.unpack Restores the R objects that were compressed with a previous
call to orch.pack.

orch.create.parttab Enables partitioned Hive tables to be used with ORCH
MapReduce framework.

Debugging Scripts
The following table lists the functions available to help you debug your R program scripts.

Table 8-9    Functions for Debugging Scripts

Function Description

orch.dbg.lasterr Returns the last error message.

orch.dbg.off Turns off debugging mode.

orch.dbg.on Turns on debugging mode, which prints out the interactions between
Hadoop and Oracle R Advanced Analytics for Hadoop including the R
commands.

orch.dbg.output Directs the output from the debugger.

orch.version Identifies the version of the ORCH package.

orch.debug Enables R style debugging of MapReduce R scripts.

Demos of Oracle R Advanced Analytics for Hadoop Functions
Oracle R Advanced Analytics for Hadoop provides an extensive set of demos, which you can
access in the same way as any other R demos.

The demo function lists the functions available in ORCH:

R>  demo(package="ORCH")
Demos in package 'ORCH':
 
hdfs_cpmv               ORCH's copy and move APIs
hdfs_datatrans          ORCH's HDFS data transfer APIs
hdfs_dir                ORCH's HDFS directory manipulation APIs
hdfs_putget             ORCH's get and put API usage
hive_aggregate          Aggregation in HIVE
hive_analysis           Basic analysis & data processing operations
hive_basic              Basic connectivity to HIVE storage
hive_binning            Binning logic

Chapter 8
Demos of Oracle R Advanced Analytics for Hadoop Functions

8-17



hive_columnfns          Column function
hive_nulls              Handling of NULL in SQL vs. NA in R
     .
     .
     .

To run a demo from this list, use this syntax:

demo("demo_name", package="ORCH")

For example, this package runs the Hive binning demo:

R> demo("hive_binning", package = "ORCH")
 
 
 demo('hive_binning', package = 'ORCH')
 
 
        demo(hive_binning)
        ---- ~~~~~~~~~~~~
 
> #
> #     ORACLE R CONNECTOR FOR HADOOP DEMOS
> #
> #     Name: hive_binning.R
> #     Description: Demonstrates binning logic in R
> #
> #
     .
     .
     .

If an error occurs, exit from R without saving the workspace image and start a new
session. You should also delete the temporary files created in both the local file system
and the HDFS file system:

# rm -r /tmp/orch*
# hdfs dfs -rm -r /tmp/orch*

Upon completion run these:

1. hadoop.exec to cleanup or remove all empty part files and Hadoop log files.

2. hadoop.run to allow overwriting of HDFS objects with the same name.

Security Notes for Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop can invoke the Sqoop utility to connect to
Oracle Database either to extract data or to store results.

Sqoop is a command-line utility for Hadoop that imports and exports data between
HDFS or Hive and structured databases. The name Sqoop comes from “SQL to
Hadoop." The following explains how Oracle R Advanced Analytics for Hadoop stores
a database user password and sends it to Sqoop.

Oracle R Advanced Analytics for Hadoop stores a user password only when the user
establishes the database connection in a mode that does not require reentering the
password each time. The password is stored encrypted in memory. See the Help topic
for orch.connect.

Chapter 8
Security Notes for Oracle R Advanced Analytics for Hadoop

8-18



Oracle R Advanced Analytics for Hadoop generates a configuration file for Sqoop and uses it
to invoke Sqoop locally. The file contains the user's database password obtained by either
prompting the user or from the encrypted in-memory representation. The file has local user
access permissions only. The file is created, the permissions are set explicitly, and then the
file is open for writing and filled with data.

Sqoop uses the configuration file to generate custom JAR files dynamically for the specific
database job and passes the JAR files to the Hadoop client software. The password is stored
inside the compiled JAR file; it is not stored in plain text.

The JAR file is transferred to the Hadoop cluster over a network connection. The network
connection and the transfer protocol are specific to Hadoop, such as port 5900.

The configuration file is deleted after Sqoop finishes compiling its JAR files and starts its own
Hadoop jobs.

Chapter 8
Security Notes for Oracle R Advanced Analytics for Hadoop

8-19



Part V
Oracle DataSource for Apache Hadoop

This part describes Oracle DataSource for Apache Hadoop (OD4H) storage handler for
Oracle Database. It contains the following chapters:

• Oracle DataSource for Apache Hadoop (OD4H)



9
Oracle DataSource for Apache Hadoop
(OD4H)

Oracle DataSource for Apache Hadoop (formerly known as Oracle Table Access for Apache
Hadoop) allows direct, fast, parallel, secure, and consistent access to master data in Oracle
Database using Spark SQL through Hive metastore. This chapter discusses Oracle
DataSource for Apache Hadoop (OD4H) in the following sections:

• Operational Data, Big Data and Requirements

• Overview of Oracle DataSource for Apache Hadoop (OD4H)

• How Does OD4H Work?

• Features of OD4H

• Using Hive SQL with OD4H

• Using Spark SQL with OD4H

• Writing Back To Oracle Database

Operational Data, Big Data and Requirements
The typical data architecture in most companies comprises of the following components:

• Oracle Database for operational, transactional, and master data, which is shared
business object

• Big Data

Hadoop applications (such as Master Data Management (MDM) or Events processing) need
access to data in both Hadoop storages (such as HDFS and NoSQL Database as a landing
point for Web logs) and Oracle Database (as the reliable and auditable source of truth). You
can adopt one of the following approaches to process such data that reside in both Hadoop
storage and Oracle Database:

• Perform an Extract, Transform, and Load (ETL) Copy using tools such as Copy to
Hadoop tool of Oracle

• Access the data directly using Oracle Big Data SQL and Oracle DataSource for Apache
Hadoop (OD4H)

This chapter discusses Oracle DataSource for Apache Hadoop (OD4H).

Overview of Oracle DataSource for Apache Hadoop (OD4H)
Oracle DataSource for Apache Hadoop (OD4H) is the storage handler for Oracle Database
that uses HCatalog and InputFormat.

This section discusses the following concepts:

• Opportunity with Hadoop 2.x

9-1



• Oracle Tables as Hadoop Data Source

• External Tables

Opportunity with Hadoop 2.x
Hadoop 2.x architecture decouples compute engines from cluster resources
management and storages. It enables:

• A variety of SQL query engines. For instance, Hive SQL, Spark SQL, Big Data
SQL, and so on.

• A variety of programmatic compute engines. For instance, MapReduce, Pig,
Storm, Solr, Cascading, and so on.

• Elastic allocation of compute resources (CPU, memory) through YARN.

• A variety of data stores such as HDFS, NoSQL, as well as remote storages
through HCatalog, InputFormat, OutputFormat and StorageHandler interfaces.

Oracle DataSource for Apache Hadoop (OD4H) is the storage handler for Oracle
Database that uses HCatalog and InputFormat.

Following is an illustration of Hadoop 2.0 Architecture:

Figure 9-1    Hadoop 2.0 Architecture

Batch
(MapReduce)

Interactive
(Tez)

In-Memory
(Spark)

Graph
(Giraph)

Streaming
(Storm)

Compute Engines
Query Engines
Programming Modules
Applications

Yarn (Cluster Resource Management)

Data
HCatalog,

InputFormat,
StorageHandler

Compute and Memory

Redundant and / or Reliable Storage

HDFS NoSQL Other

Oracle Tables as Hadoop Data Source
OD4H enables current and ad-hoc querying. This makes querying data faster and
more secure. You can query data directly and retrieve only the data that you need,
when you need it.

OD4H also provides Oracle’s end-to-end security. This includes Identity Management,
Column Masking, and Label and Row Security.

OD4H also furnishes direct access for Hadoop and Spark APIs such as Pig,
MapReduce and others.

Chapter 9
Overview of Oracle DataSource for Apache Hadoop (OD4H)

9-2



External Tables
External Tables turn Oracle tables into Hadoop and/or Spark datasources. The DDL for
declaring External Tables is as follows:

CREATE[TEMPORARY] EXTERNAL TABLE [IF NOT EXISTS]  [db_name.]table_name
[(col_name data_type [COMMENTcol_comment],...)]
[COMMENT table_comment]
STORED BY 'oracle.hcat.osh.OracleStorageHandler' [WITHSERDEPROPERTIES(...)]
[TBLPROPERTIES (property_name=property_value,...)]
 
data_type
|SMALLINT
|INT
|BIGINT
|BOOLEAN
|FLOAT
|DOUBLE
|STRING
|BINARY
|TIMESTAMP
|DECIMAL
|DECIMAL(precision,scale)
|VARCHAR
|CHAR

See Also:

Refer the following link for Hive External Table syntax https://cwiki.apache.org/
confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable

Note:

Oracle supports only primitive types.

The following table shows the mappings between Oracle and Hive types.

Oracle Data Type Hive Data Type

NUMBER INT when the scale is 0 and the precision is less than 10.

BIGNIT when the scale is 0 and precision is less than 19.

DECIMAL when the scale is greater than 0 or the precision is greater
than 19.

CLOB STRING

Chapter 9
Overview of Oracle DataSource for Apache Hadoop (OD4H)

9-3

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable


NCLOB

BINARY_DOUBLE DOUBLE

BINARY_FLOAT FLOAT

BLOB BINARY

CHAR
NCHAR

CHAR

VARCHAR2
NVARCHAR2

VARCHAR

ROWID
UROWID

BINARY

DATE TIMESTAMP
TIMESTAMP TIMESTAMP
TIMESTAMPTZ
TIMESTAMPLTZ

Unsupported

RAW BINARY

The properties of external tables can be described as follows:

TBLPROPERTIES

Property Use

oracle.hcat.osh.columns.mapping Comma separated list to specify mapping between
Hive columns and Oracle table columns. All external
tables using OracleStorageHandler must define this.

mapreduce.jdbc.url Connection URL to connect to the database

mapreduce.jdbc.username Connection user name to connect to the database

mapreduce.jdbc.password Connection password to connect to the database

mapreduce.jdbc.input.table.name Oracle table name

mapreduce.jdbc.input conditions To be used for querying the database. Must be used
for query pushdown.

mapreduce.jdbc.input.query To be used for querying the database. Query should be
used only when a subset of the columns is selected.

mapreduce.jdbc.input.orderby ORDER BY clause to be specified for pushing ordering
to the database.

Chapter 9
Overview of Oracle DataSource for Apache Hadoop (OD4H)

9-4



Property Use

oracle.hcat.osh.splitterKind To be used to specify how OracleStorageHandler must
create splits, so that they are a good match for the
physical structure of the target table in Oracle
Database. The splitter kind applicable could be
SINGLE_SPLITTER, PARTITION_SPLITTER,
ROW_SPLITTER, BLOCK_SPLITTER.

oracle.hcat.osh.rowsPerSplit Used only when ROW_SPLITTER splitterKind is applied
on the table. Represents Number of rows per split for
LIMIT_RANGE splitter. Default is 1000

oracle.hcat.osh.authentication Authentication method used to connect to Oracle
Database. Can be SIMPLE (default), ORACLE_WALLET,
KERBEROS

sun.security.krb5.principal Kerberos principal. Used only when KERBEROS
authentication is applied.

oracle.hcat.osh.kerb.callback Callback for Kerberos authentication. Used only when
Kerberos authentication is applied.

oracle.hcat.osh.maxSplits Maximum number of splits for any splitter kind

oracle.hcat.osh.useChunkSplitter Use chunk based ROW_SPLITTER and
BLOCK_SPLITTER that use
DBMS_PARALLEL_EXECUTE package to divide table
into chunks that will map to hadoop splits.The default
value is set to ‘true’.

oracle.hcat.osh.chunkSQL Used by CUSTOM_SPLITTERto create splits. The SQL
string should be a SELECT statement that returns
range of each chunk must have two columns:
start_id and end_id The columns must be of ROWID
type.

oracle.hcat.osh.useOracleParallelism When configured, parallel queries will be executed
while fetching rows from Oracle. Default value: ‘false’

oracle.hcat.osh.fetchSize JDBC fetchsize for generated select queries used to
fetch rows. Default value: 10 (set by Oracle JDBC
Driver)

Note:

In addition to the above, any JDBC connection properties (oracle.jdbc.* and
oracle.net.*) can be specified as TBLPROPERTIES. They will be used while
establishing connection to Oracle Database using JDBC driver.

Note:

Oracle DataSource for Apache Hadoop (OD4H) works with Oracle View and Oracle
Tables.

Chapter 9
Overview of Oracle DataSource for Apache Hadoop (OD4H)

9-5



SERDE PROPERTIES

Property Use

oracle.hcat.osh.columns.mapping All external tables using OracleStorageHandler
must define this. Its a comma separated list to
specify mapping between hive columns
(specified in create table) and oracle table
columns. WITHSERDEPROPERTIES also
enables the external table definition to refer
only to select columns in the actual Oracle
table. In other words, not all columns from the
Oracle table need to be part of the Hive
external table. The ordering of oracle columns
in the mapping is the same as ordering of hive
columns specified in create table.

List of jars in the OD4H package
Oracle DataSource for Apache Hadoop (OD4H) contains the following list of jars.

OD4H consists of the following list of jars.

Table 9-1    List of jars in OD4H

Name of JAR Use

osh.jar Contains OracleStorageHandler
Implementation

ojdbc8.jar An OD4H specific JDBC driver (which is
optimized with internal calls), used by Spark or
Hadoop tasks to connect to the database.

ucp.jar For creating connection pools in
OracleStorageHandler

oraclepki103.jar, osdt_core.jar, osdt_cert.jar,
osdt_jce.jar

For Oracle Wallet authentication

orai18n.jar Oracle Globalization Support

xdb.jar Oracle XDB jar

How does OD4H work?
Oracle DataSource for Apache Hadoop (OD4H) does not require creating a new table.
You can start working with OD4H using the following steps:

1. Create a new Oracle table, or, reuse an existing table.

2. Create the Hive DDL for creating the external table referencing the Oracle Table.

3. Issue HiveSQL, SparkSQL, or other Spark/Hadoop queries and API calls.

The following sections show how to create a new Oracle Database Table, and a Hive
DDL:

• Create a New Oracle Database Table

• Hive DDL

Chapter 9
How does OD4H work?

9-6



• Creating External Table in Hive

Create a new Oracle Database Table or Reuse an Existing Table
Here is an illustration of a partitioned Oracle table that we will use to demo how partition
pruning works:

1. CREATE TABLE EmployeeData ( Emp_ID NUMBER,
    First_Name VARCHAR2(20),
    Last_Name VARCHAR2(20),
    Job_Title VARCHAR2(40),
    Salary NUMBER)
PARTITION BY RANGE (Salary)
 ( PARTITION salary_1 VALUES LESS THAN (60000)
    TABLESPACE tsa
 , PARTITION salary_2 VALUES LESS THAN (70000)
    TABLESPACE tsb
 , PARTITION salary_3 VALUES LESS THAN (80000)
    TABLESPACE tsc
 , PARTITION salary_4 VALUES LESS THAN (90000)
    TABLESPACE tsd
 , PARTITION salary_5 VALUES LESS THAN (100000)
    TABLESPACE tse
 );

Note:

You can use this syntax for table creation, in the following examples listed in
this Book.

2. Issue queries from Hive, Spark, or any other Hadoop models (including joins with local
Hive Tables.)

Hive DDL
In this example, we will associate two Hive external tables to the same Oracle table, using
two different split patterns:

• SIMPLE_SPLITTER
• PARTITION_SPLITTER

Note:

It is possible that the external table has fewer columns than the base Oracle table.
Since columns can have different names, use TBLPROPERTY for mapping with the
base table.

In the following examples, we are using the following variables:

connection_string = jdbc:oracle:thin:@localhost:1521/<servicename>
oracle_user=od4h

Chapter 9
How does OD4H work?

9-7



oracle_pwd=od4h
The following command creates a Hive external table with the default split pattern, that
is SIMPLE_SPLITTER.

CREATE EXTERNAL TABLE EmployeeDataSimple (
 Emp_ID int,
 First_Name string,
 Last_Name string,
 Job_Title string,
 Salary int
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
     'oracle.hcat.osh.columns.mapping' = 
'Emp_ID,First_Name,Last_Name,Job_Title,Salary')
TBLPROPERTIES (
 'mapreduce.jdbc.url' = '${hiveconf:jdbc:oracle:thin:@localhost:1521/
<servicename>}',
 'mapreduce.jdbc.username' = '${hiveconf:od4h}',
 'mapreduce.jdbc.password' = '${hiveconf:od4h}',
 'mapreduce.jdbc.input.table.name' = 'EmployeeData'
);

The following example creates a Hive external table using PARTITION_SPLITTER.

DROP TABLE EmployeeDataPartitioned;
CREATE EXTERNAL TABLE EmployeeDataPartitioned (
 Emp_ID int,
 First_Name string,
 Last_Name string,
 Job_Title string,
 Salary int
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
     'oracle.hcat.osh.columns.mapping' = 
'Emp_ID,First_Name,Last_Name,Job_Title,Salary')
TBLPROPERTIES (
 'mapreduce.jdbc.url' = '${hiveconf:jdbc:oracle:thin:@localhost:1521/
<servicename>}',
 'mapreduce.jdbc.username' = '${hiveconf:od4h}',
 'mapreduce.jdbc.password' = '${hiveconf:od4h}',
 'mapreduce.jdbc.input.table.name' = 'EmployeeData',
 'oracle.hcat.osh.splitterKind' = 'PARTITIONED_TABLE'
);

Create External Tables in Hive
You can create an external table in Hive in the following way:

DROP TABLE employees;
 
CREATE EXTERNAL TABLE employees (
  EMPLOYEE_ID INT,
  FIRST_NAME  STRING,
  LAST_NAME   STRING,
  SALARY      DOUBLE,
  HIRE_DATE   TIMESTAMP,
  JOB_ID      STRING

Chapter 9
How does OD4H work?

9-8



 )
 
  STORED BY 'oracle.hcat.osh.OracleStorageHandler'
 
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' = 
'employee_id,first_name,last_name,salary,hire_date,job_id')
 
  TBLPROPERTIES (
    'mapreduce.jdbc.url' = 'jdbc:oracle:thin:@localhost:1521:orcl',
    'mapreduce.jdbc.username' = 'hr',
    'mapreduce.jdbc.password' = 'hr',
    'mapreduce.jdbc.input.table.name' = 'EMPLOYEES'
);

Note:

For using OD4H, ensure that the ucp.jar, the ojdbc8.jar file, and the osh.jar file
are present in the Hive CLASSPATH environment variable. This is pre-configured on
Oracle Big Data Appliance.
To learn more about the CLASSPATH environment variable and other Hive
configuration properties, refer to the following sources:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

For Cloudera distribution, refer to the following page that explains the steps for
Cloudera Manager:

https://www.cloudera.com/documentation/enterprise/5-14-x/topics/
cm_mc_hive_udf.html

For other distributions, refer to the respective documentation on adding additional
JAR files to Hive or HiveServer2 environment.

Features of OD4H
The following topics discuss features of OD4H.

• Performance and Scalability Features

• Security Features

• Using Hive SQL with OD4H

• Using Spark SQL with OD4H

Performance And Scalability Features
Following sections discuss the performance and scalability features of OD4H:

• Splitters

• Predicate Pushdown

• Projection Pushdown

Chapter 9
Features of OD4H

9-9

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://www.cloudera.com/documentation/enterprise/5-14-x/topics/cm_mc_hive_udf.html
https://www.cloudera.com/documentation/enterprise/5-14-x/topics/cm_mc_hive_udf.html


• Partition Pruning

• Smart Connection Management

HCatalog stores table metadata from Hive DDL. HiveSQl, Spark SQL and others, then
use this metadata while submitting queries.

The Oracle table is divided into granules determined by the splitterKind property.
These granules are then read into a split by OracleStorageHandler, by submitting
generated queries.

OracleStorageHandler will not have to test all possible query types if the query plan
determines which splits need to be scanned.

Figure 9-2    OD4H in a Nutshell

split

split

Hive

Hadoop
HCatalog

Hive DDL

Map Task

Map Task

Map Task

split

split

granule

Oracle Storage
Handler

Map Reduce JobOracle Table

granule

granule

granule

Rewritten
Query

by JDBC

Job Tracker

Splitters
While executing a query on a Hive external table through OD4H, the underlying Oracle
table is dynamically divided into granules, which correspond to splits on the Hadoop
side. Each split is processed by a single map task. With the help of the
ORACLE_SPLITTER_KIND property, you can specify how the splits are created. This
ensures that the splits are a good match for the physical structure of the target table in
Oracle Database.

The different kinds of splitters available are:

SINGLE_SPLITTER

Creates one split for the table. Use SINGLE_SPLITTER where a single task is sufficient
to process the query against the entire table.

Chapter 9
Features of OD4H

9-10



ROW_SPLITTER

Limits the number of rows per Split. The default number of rows is 1000. You can specify
number of rows by setting the oracle.hcat.osh.rowsPerSplit property. The default value of
oracle.hcat.osh.maxSplits is 1 when ROW_SPLITTER is used. You can increase this value to
enable parallel reads.

Based on the values provided in the rowsPerSplit property, OD4H will divide tables into
splits. If the number of splits obtained is higher than the maxSplits, then maxSplits property
will be used. The rows per split will be divided accordingly.

Note:

oracle.hcat.osh.rowsPerSplitis used only by ROW_SPLITTER and not any other
splitter kind.

BLOCK_SPLITTER

Creates splits based on underlying storage of data blocks. With Block Splitter, you can
specify the maximum number of splits to be generated. The default value of
oracle.hcat.osh.maxSplits is 1, when BLOCK_SPLITTER is used. You can increase this value
to enable parallel reads. BLOCK_SPLITTER requires SELECT privilege on the SYS.DBA.EXTENTS
table, granted to the schema containing the Oracle target table. In the event that this
permission does not exist, OD4H will use SINGLE_SPLITTER.

Note:

The actual number of splits under BLOCK_SPLITTER may be lesser than the value
specified in the oracle.hcat.osh.maxSplits property.
Do not use BLOCK_SPLITTER on partitioned tables or Index Organized tables.

Note:

For ROW_SPLITTER and BLOCK_SPLITTER types, use
oracle.hcat.osh.useChunkSplitter to specify splitting mechanism. The default
property value is true. This enables creating chunks corresponding to splits using
the DBMS_PARALLEL_EXECUTE package. When the property value is false, custom
SQL is generated for splitting. Since DBMS_PARALLEL_EXECUTE can only be used for
tables and not views, if mapreduce.jdbc.input.table.name points to a view and
not a table, then oracle.hcat.osh.useChunkSplitter should be set to false.

PARTITION_SPLITTER

Creates one split per partition. PARTITION_SPLITTER is used by default when the table is
partitioned. You can override this setting by specifying ROW_SPLITTER in table properties. With
PARTITION_SPLITTER, the default value of oracle.hcat.osh.maxSplits table property is 64.

Chapter 9
Features of OD4H

9-11



Following is an illustration of ROW_SPLITTER:

DROP TABLE employees;
 
CREATE EXTERNAL TABLE employees (
  EMPLOYEE_ID INT,
  FIRST_NAME  STRING,
  LAST_NAME   STRING,
  SALARY      DOUBLE,
  HIRE_DATE   TIMESTAMP,
  JOB_ID      STRING
 )
 STORED BY 'oracle.hcat.osh.OracleStorageHandler'
 
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' = 
'employee_id,first_name,last_name,salary,hire_date,job_id')

TBLPROPERTIES (
'mapreduce.jdbc.url' = 'jdbc:oracle:thin:@localhost:1521:orcl',     
'mapreduce.jdbc.username' = 'hr',
'mapreduce.jdbc.password' = 'hr',
'mapreduce.jdbc.input.table.name' = 'EMPLOYEES',     
'oracle.hcat.osh.splitterKind' = 'ROW_SPLITTER',     
'oracle.hcat.osh.rowsPerSplit' = '1500' 
);  

CUSTOM_SPLITTER

Use CUSTOM_SPLITTER If you want to provide a custom split generation mechanism.
You can do this using CUSTOM_SPLITTER through oracle.hcat.osh.splitterKind
property and a SELECT statement that emits ROWIDs corresponding to start and end of
each split in oracle.hcat.osh.chunkSQL.

Choosing a Splitter
SINGLE_SPLITTER is used by default if no splitter is specified in the table properties for
Hive external table, and the target Oracle table is not partitioned.

For an unpartitioned table, the default value of oracle.hcat.osh.maxSplits will be 1.
For partitioned table, the default value of the same will be 64, and the default splitter
will be PARTITION_SPLITTER. The default for maxSplits is set to limit the number of
connections to the Oracle server. To increase this limit, you must increase the value of
oracle.hcat.osh.maxSplits explicitly in hive table properties.

Use the following guidelines while choosing a splitter kind for a hive external table:

Splitter Kind Use

SINGLE_SPLITTER When no parallelism is required.

PARTITION_SPLITTER Used by default when target table is
partitioned

Chapter 9
Features of OD4H

9-12



Splitter Kind Use

BLOCK_SPLITTER When Oracle user has SELECT privilege on
SYS.DBA_EXTENTS, and target table is not
partitioned.

ROW_SPLITTER When Oracle user does not have SELECT
privilege on SYS.DBA_EXTENTS.

CUSTOM_SPLITTER For fine grain control over generated splits.

Predicate Pushdown
Predicate Pushdown is an optimization technique, in which you push predicates (WHERE
condition) down to be evaluated by Oracle Database at the time of querying. This minimizes
the amount of data fetched from Oracle Database to Hive, while performing a query.

Set the configuration property hive.optimize.ppd to either true or false for enabling
Predicate Pushdown. The default value on hive-1.1.0 is set to true. Hence, Predicate
Pushdown is always performed, unless you want to disable it.

Note:

OD4H does not push down all possible predicates. It considers only the part of the
execution plan pertaining to Oracle table declared as external table. OD4H also
rewrites sub-queries for the Oracle SQL engine and each split task. At present
conditions involving operators >,=,< and != in a single condition over a column (e.g.
key > 10) or a combination of multiple conditions separated by AND (e.g. key > 10
AND key < 20 AND key !=17) are pushed down.

Another option to reduce the amount of data fetched from the Oracle Database is to specify a
condition at the time of table creation, using TBLPROPERTY
mapreduce.jdbc.input.conditions. For instance:

mapreduce.jdbc.input.conditions = 'key > 10 OR key = 0'.
This will restrict the rows fetched from Oracle Database whenever any query is performed
based on the condition specified. The external table that gets created, is analogous to a view
on Oracle Database. This approach is only useful when you want to push down complex
predicates that cannot be analyzed and automatically pushed down by OD4H.

Note:

Due to incompatibilities between date and timestamp representation in Hive and
Oracle, these columns are not pushed down by default in a query. You can enable
this with certain limitations by setting the tableproperty
oracle.hcat.datetime.pushdown to true. When set to true, the date
representation in the query should be in the form YYYY-MM-DD and timetamp should
be in the form “YYYY-MM-DD HH:MM:SS” with no decimal places. No other date or
timestamp representation is supported when oracle.hcat.datetime.pushdown is
set to true.

Chapter 9
Features of OD4H

9-13



Projection Pushdown
Projection Pushdown is an optimization technique that fetches only the required
columns from Oracle Database when a query is performed. If you want to fetch all
columns during a query (not recommended), you can disable it by setting the
hive.io.file.read.all.columns connection property to true. On Hive–1.1.0, this
property is false by default.

Partition Pruning
If you refer to Employee Data Partition table, the partitions irrelevant to the query are
removed from the partition list. This is done by executing an explain plan on the query
to obtain the list of partitions and sub-partitions that are relevant to the query.

Table level partition pruning uses table level predicate pushdown, on the other hand
partition pruning at the query level uses query level predicate pushdown.

Partition pruning is active when a SELECT query is run, in which the WHERE clause uses
the partitioning key. Following is an example of partition pruning:

To query the partition, where salary is in the above range and prune other partitions,
perform the following:

Hive External Table:

CREATE EXTERNAL TABLE EmployeeDataPartitioned (
 Emp_ID int,
 First_Name string,
 Last_Name string,
 Job_Title string,
 Salary int
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
     'oracle.hcat.osh.columns.mapping' = 
'Emp_ID,First_Name,Last_Name,Job_Title,Salary')
TBLPROPERTIES (
 'mapreduce.jdbc.url' = '${hiveconf:connection_string}',
 'mapreduce.jdbc.username' = '${hiveconf:oracle_user}',
 'mapreduce.jdbc.password' = '${hiveconf:oracle_pwd}',
 'mapreduce.jdbc.input.table.name' = 'EmployeeData',
 'oracle.hcat.osh.oosKind' = 'PARTITIONED_TABLE'
);

The following SELECT statement shows how to query the partition, where salary is
between 72000 to 78000, and prunes other partitions:

select * from EmployeeDataPartitioned where salary > 72000 and salary < 78000;

Smart Connection Management
Connection Caching

Each map task runs in its own JVM. Each JVM in turn caches a single connection to
the Oracle database that you can reuse within the same query. The Mapper checks

Chapter 9
Features of OD4H

9-14



the cache before establishing a new connection and caching is not done once the query has
completed executing.

Oracle RAC Awareness

JDBC and UCP are aware of various Oracle RAC instances. This can be used to split queries
submitted to JDBC. The StorageHandler will depend on listener for load balancing.

Handling Logon Storms

Hadoop allows you to limit the number of mappers attempting to connect to the Database.
Hadoop allows you to limit the number of mappers attempting to connect to the Database
using oracle.hcat.osh.maxSplits. This parameter controls the degree of concurrency.
However, subsequent tasks of the same query are guaranteed to query their table granule as
per the System Commit Number (SCN) of the query. This ensures consistency of the result
sets.

Database Resident Connection Pooling (DRCP)

It is recommended to configure DRCP for OD4H, and limit the maximum number of
concurrent connections to the Oracle Database from OD4H.

Configuring Database Resident Connection Pooling
To configure DRCP, use the following steps:

1. Login as SYSDBA.

2. Start the default pool, SYS_DEFAULT_CONNECTION_POOL using
DBMS_CONNECTION_POOL.START_POOL with the default settings.

You can use DBMS_CONNECTION_POOL.MINSIZE and DBMS_CONNECTION_POOL.MAXSIZE with
the default settings.

See Also:

For more information on configuring DRCP see the Oracle Database Administration
Guide

Security Features
Following are the security features of OD4H:

Improved Authentication
OD4H uses Oracle JDBC driver for connecting to Oracle Database. It provides all
authentication methods supported by Oracle JDBC. OD4H supports authentication through
use of basic authentication (user name and password), Oracle Wallet, and Kerberos. You can
specify the authentication to be used for a table created in Hive, through the
oracle.hcat.osh.authentication table property. This is useful only for strong
authentication.

• Kerberos

• Oracle Wallet

• Basic Authentication

Chapter 9
Features of OD4H

9-15

https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/index.html


Note:

Oracle recommends using strong authentication such as Kerberos.

The various authentication processes are described with examples as follows:

1. Kerberos
Uses Kerberos credentials of the Hadoop engine process. This principal should
have access to the table.

See Also:

Oracle Database JDBC Developer's Guide for information on configuring
database for Kerberos and details of client parameters

You can enable Kerberos configuration on Hive, by adding to hive-env.sh the
following:

export HADOOP_OPTS="$HADOOP_OPTS -Djava.security.krb5.conf=<path to 
kerberos configuration>

To enable child JVMs to use Kerberos configuration, edit the mapred-site.xml to
include the following property on all nodes of the cluster:

<property><name>mapred.child.java.opts</name>  <value>-
Djava.security.krb5.conf=<path to kerberos configuration>></value></
property>

Enable these configurations on Oracle Big Data Appliance using Cloudera
manager..

Following is an illustration of Kerberos authentication:

CREATE EXTERNAL TABLE kerb_example (
id DECIMAL,
name STRING,
salary DECIMAL
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
        'oracle.hcat.osh.columns.mapping' = 'id,name,salary')
TBLPROPERTIES (
'mapreduce.jdbc.url' = 
'jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=adc*******.xxxxxx.com)(PORT=5521))(CONNECT_DATA=
(SERVICE_NAME=project_name.xxx.rdbms.xxxx.com)))',
'mapreduce.jdbc.input.table.name' = 'kerb_example',
'mapreduce.jdbc.username' = 'CLIENT@xxxxxx.COM',
'oracle.hcat.osh.authentication' = 'KERBEROS',
'oracle.net.kerberos5_cc_name' = '/tmp/krb5cc_xxxxx',

Chapter 9
Features of OD4H

9-16

https://docs.oracle.com/database/121/JJDBC/clntsec.htm#JJDBC28339


'java.security.krb5.conf' = '/home/user/kerberos/krb5.conf',
'oracle.hcat.osh.kerb.callback' = 'KrbCallbackHandler',
'sun.security.krb5.principal' = 'CLIENT@xxxxx.COM'
);

The path specified in oracle.security.krb5.conf should be accessible to all nodes of
the cluster. These paths should also match with the path of the corresponding properties
in Oracle Database sqlnet.ora.The keytab path provided in sqlnet.ora should also be
accessible from all nodes of the cluster.

If sun.security.krb5.principal is not specified, OD4H attempts to authenticate using
default principal in Credential Cache specified by the oracle.net.kerberos5_cc_name
property.

Note:

The callback is called only if the principal cannot be authenticated using a
ticket obtained from the credential cache specified in
oracle.net.kerberos5_cc_nameproperty.

A simple callback handler class is described as follows (The callback class must be
available to the Hive classpath):

class KrbCallbackHandler 
        implements CallbackHandler{

@Override
public void handle(Callback[] callbacks) throws IOException,
        UnsupportedCallbackException{
for (int i = 0; i < callbacks.length; i++){
    if (callbacks[i] instanceof PasswordCallback){
    PasswordCallback pc = (PasswordCallback)callbacks[i];
    System.out.println("set password to 'welcome'");
    pc.setPassword((new String("welcome")).toCharArray());
} else if (callbacks[i] instanceof NameCallback) {
    ((NameCallback)callbacks[i]).setName("client@xxxxx.COM");
}else{
    throw new UnsupportedCallbackException(callbacks[i],
            "Unrecognized Callback");
        }
    }
}

2. Oracle Wallet
The wallet should be available in the OS environment of each engine process. Following
is an illustration of how to add Wallet authentication:

CREATE EXTERNAL TABLE wallet_example (
    id DECIMAL,
    salary DECIMAL
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
    name STRING,
        'oracle.hcat.osh.columns.mapping' = 'id,name,salary')

Chapter 9
Features of OD4H

9-17



TBLPROPERTIES (
'mapreduce.jdbc.url' = 'jdbc:oracle:thin:/@inst1',
'mapreduce.jdbc.input.table.name' = 'wallet_example',
'oracle.hcat.osh.authentication' = 'ORACLE_WALLET',
'oracle.net.tns_admin' = '/scratch/user/view_storage/user_project6/
work',
'oracle.net.wallet_location' = '/scratch/user/view_storage/
user_project6/work'
);

Note:

The paths specified in oracle.net.tns_admin and
oracle.net.wallet_location should be accessible from all nodes of the
cluster.

See Also:

Managing the Secure External Password Store for Password Credentials

3. Basic Authentication (for demonstration purposes only)
This is stored in HCatalog TBLPROPERTIES or supplied on HiveQL SELECT
statement.

When Basic Authentication is used, then the user name and password for Oracle
Schema are specified in Hive external Table properties.

Note:

Oracle does not recommend this authentication process in the
production environment because the password is stored unmasked in
HCatalog.

Use HiveQL with OD4H
HiveQL is a SQL like language provided by Hive. It can be used to query hive external
tables created using OD4H.

To track the status of a running query on Oracle Big Data Appliance, you can run the
Resource Manager web interface in your browser in the following way:

http://<domain>:8088/<cluster_name>
You can also see the logs of a query in Cloudera Manager, which also indicates the
actual query sent to Oracle Database corresponding to your query on HiveQL. Hive
and OD4H use the Simple Logging Facade for Java (SLF4J) framework for logging.
You can use the logging configuration techniques of Hive for controlling the logging
level of classes related to OD4H.

Chapter 9
Use HiveQL with OD4H

9-18



Use Spark SQL with OD4H
Spark SQL enables you to execute relational queries expressed in SQL and HiveSQL using
Spark. Spark SQL mixex SQL queries with programmatic data manipulations supported by
RDDs (Resilient Distributed Datasets) in Java, Python and Scala, with a single application.
You can also use it to query external tables created using OD4H.

Before running the queries, perform the following steps to configure Spark SQL on Oracle Big
Data Appliance:

1. Add ojdbc7.jar and osh.jar to CLASSPATH in /usr/lib/spark/bin/compute-
classpath.sh
CLASSPATH="$CLASSPATH:/opt/oracle/od4h/lib/osh.jar"
CLASSPATH="$CLASSPATH:/opt/oracle/od4h/lib/ojdbc7.jar"

2. Edit SPARK_HOME in /usr/lib/spark/conf/spark-env.sh
export SPARK_HOME=/usr/lib/spark:/etc/hive/conf

3. You will need to specify additional environment variables in /usr/lib/spark/conf/
spark-env.sh.

The Hive related variables that you need to substitute for running the code example, are
marked in bold. The file already contains Hadoop related environment variables.

export DEFAULT_HADOOP=/usr/lib/hadoop
export DEFAULT_HIVE=/usr/lib/hive
export DEFAULT_HADOOP_CONF=/etc/hadoop/conf
export DEFAULT_HIVE_CONF=/etc/hive/conf
export HADOOP_HOME=${HADOOP_HOME:-$DEFAULT_HADOOP}
export HADOOP_HDFS_HOME=${HADOOP_HDFS_HOME:-${HADOOP_HOME}/../hadoop-hdfs}
export HADOOP_MAPRED_HOME=${HADOOP_MAPRED_HOME:-${HADOOP_HOME}/../hadoop-mapreduce}
export HADOOP_YARN_HOME=${HADOOP_YARN_HOME:-${HADOOP_HOME}/../hadoop-yarn}
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-$DEFAULT_HADOOP_CONF}
export HIVE_CONF_DIR=${HIVE_CONF_DIR:-$DEFAULT_HIVE_CONF}
 
CLASSPATH="$CLASSPATH:$HIVE_CONF_DIR"
CLASSPATH="$CLASSPATH:$HADOOP_CONF_DIR"
 
if [ "x" != "x$YARN_CONF_DIR" ]; then
  CLASSPATH="$CLASSPATH:$YARN_CONF_DIR"
fi
 
# Let's make sure that all needed hadoop libs are added properly
CLASSPATH="$CLASSPATH:$HADOOP_HOME/client/*"
CLASSPATH="$CLASSPATH:$HIVE_HOME/lib/*"
CLASSPATH="$CLASSPATH:$($HADOOP_HOME/bin/hadoop classpath)"

Once configured, you can run some sample queries on spark SQL using scripts included in
the /shell/*QuerySpark.sh demo file. By default, Spark prints queries on the console. To
modify this behavior you can edit the spark logging configuration file /usr/lib/spark/conf/
log4j.properties.

The log printed by OracleRecordReader shows the actual query sent to Oracle Database, as
follows:

Chapter 9
Use Spark SQL with OD4H

9-19



15/03/18 10:36:08 INFO OracleRecordReader: Reading records from Oracle Table
using Query: SELECT FIRST_NAME, LAST_NAME, EMP_ID FROM EmployeeData

Writing Back to Oracle Database
In the typical use case for OD4H, you store the result sets of Hive or Spark SQL
queries back to Oracle Database. OD4H implements OutputFormat to enable you to
write back to an Oracle Database table from Hadoop.

After the data is inserted into an Oracle Database table, you can then use your favorite
business intelligence tools for further data mining

The following query is from the OD4H demo code samples. It demonstrates writing
back to an external table called EmployeeBonusReport.

Example 9-1    Writing Hive or Spark Result Sets Back to Oracle Database

INSERT INTO EmployeeBonusReport 
             SELECT EmployeeDataSimple.First_Name, 
EmployeeDataSimple.Last_Name,
                    EmployeeBonus.bonus 
             FROM EmployeeDataSimple JOIN EmployeeBonus ON
                        
(EmployeeDataSimple.Emp_ID=EmployeeBonus.Emp_ID)
             WHERE salary > 70000 and bonus > 7000"

Chapter 9
Writing Back to Oracle Database

9-20



Part VI
Appendices

This section contains the following appendices.

• OraLoaderMetadata Utility

• Using Oracle's Hive Storage Handler for Kafka to Create a Hive External Table for Kafka
Topics

• Oracle Big Data Connectors Accessibility Recommendations

• Apache License

• Additional Big Data Connector Resources



A
OraLoaderMetadata Utility

Use the following syntax to run the OraLoaderMetadata utility on the Oracle Database
system. You must enter the java command on a single line, although it is shown here on
multiple lines for clarity:

java oracle.hadoop.loader.metadata.OraLoaderMetadata
   -user userName 
   -connection_url connection
   [-schema schemaName]
   -table tableName
   -output fileName.xml

To see the OraLoaderMetadata Help file, use the command with no options.

Options

-user userName
The Oracle Database user who owns the target table. The utility prompts you for the
password.

-connection_url connection
The database connection string in the thin-style service name format:

jdbc:oracle:thin:@//hostName:port/serviceName

If you are unsure of the service name, then enter this SQL command as a privileged user:
show parameter service

NAME               TYPE        VALUE
------------------ ----------- ----------
service_names      string      orcl

-schema schemaName
The name of the schema containing the target table. Unquoted values are capitalized, and
unquoted values are used exactly as entered. If you omit this option, then the utility looks for
the target table in the schema specified in the -user option.

-table tableName
The name of the target table. Unquoted values are capitalized, and unquoted values are
used exactly as entered.

-output fileName.xml
The output file name used to store the metadata document.

The following example shows how to store the target table metadata in an XML file.

Example A-1    Generating Table Metadata

Run the OraLoaderMetadata utility:

A-1



$ java -cp '/tmp/oraloader-<version>-h2/jlib/*' 
oracle.hadoop.loader.metadata.OraLoaderMetadata -user HR -connection_url 
jdbc:oracle:thin://@localhost:1521/orcl.example.com -table EMPLOYEES -output 
employee_metadata.xml

The OraLoaderMetadata utility prompts for the database password.

Oracle Loader for Hadoop Release <version> - Production
 
Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
 
[Enter Database Password:] password

OraLoaderMetadata creates the XML file in the same directory as the script.

$ more employee_metadata.xml
<?xml version="1.0" encoding="UTF-8"?>
<!--
Oracle Loader for Hadoop Release <version> - Production
 
Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.
 
-->
<DATABASE>
<ROWSET><ROW>
<TABLE_T>
 <VERS_MAJOR>2</VERS_MAJOR>
 <VERS_MINOR>5 </VERS_MINOR>
 <OBJ_NUM>78610</OBJ_NUM>
 <SCHEMA_OBJ>
  <OBJ_NUM>78610</OBJ_NUM>
  <DATAOBJ_NUM>78610</DATAOBJ_NUM>
  <OWNER_NUM>87</OWNER_NUM>
  <OWNER_NAME>HR</OWNER_NAME>
  <NAME>EMPLOYEES</NAME>
     .
     .
     .

Appendix A

A-2



D
Oracle Big Data Connectors Accessibility
Recommendations

This section provides some tips on using screen readers and screen magnifiers with these
tools.

Tips on Using Screen Readers and Braille Displays
The following are some suggestions on using text-to-speech output and braille displays.

• Use a character mode based terminal such as Putty or Cygwin. Do not use an X-
Windows-based VNC.

• In the settings of the terminal software, set the cursor type to "block" cursor, not blinking
or flashing.

• The output of the certain commands can generate a significant amount of information and
might spill off the terminal window, and the virtual window or braille display. In those,
cases consider piping the output of a command through more in order to break the output
into pages. You can then use the space bar key to page through the output.

• A few recommended screen reader settings include the following (JAWS is used here just
as an example):

– Set the JAWS cursor to "All". Use the key combination of Insert + s until you hear
"All".

– You may need to turn off virtual cursor. If you are using JAWS, you can do this using
the key combination of Insert + z.

– Use the virtual window to capture text. If you are using JAWS, you can do this using
the key combination of Insert + Alt + w.

Tips on Using Screen Magnifiers
Examples of screen magnifiers include ZoomText, MAGic, and SuperNova.

• Screen magnifiers can support both character-based terminals and X-Window-based
VNC.

• If you are using the screen reader function of the screen magnifier (ZoomText screen
reader), then you should use a character-based terminal as described above.

• If you are using a VNC, decide your preference for a window display, for example, TWM
or ICE. A display setting for ICE can be done with the following:

vncserver -geometry 1600*950 :2

1600*950specifies the display size, and :2 specifies the VNC display number.

D-1



F
Recent Change History

Changes in Oracle Big Data Connectors Release 4.12
The following are changes in Oracle Big Data Connectors for Release 4.12.

Software Updates in This Release

Connector Version

Oracle SQL Connector for HDFS (OSCH) 3.8.2

Oracle Loader for Hadoop (OLH) 3.9.2

Oracle Shell for Hadoop Loaders (OHSH) 1.3.2

Oracle XQuery for Hadoop (OXH) 4.9.1

Oracle R Advanced Analytics for Hadoop (ORAAH) 2.8.0

Oracle DataSource for Apache Hadoop (OD4H) 1.3.1

Oracle Data Integrator (ODI) 12.2.1.2.6

New Commands for Monitoring OHSH Jobs

OHSH includes four new commands to monitor jobs and a command to remove jobs.

• ohsh> show job <job_id>
Shows detailed information about the job specified by ID.

• ohsh> show job summary <job_id>
Shows the performance of the completed job specified by ID.

• ohsh> show job abstract <job_id>
Provides a functional description of the job .

• ohsh>  show jobs [failed|running|completed|finished] [extended] [<integer>]
Shows the last n jobs of a particular job status.

– The first parameter specifies job status. If the status is not specified, all jobs are
shown, regardless of job status.

– The second parameter specifies whether to show details.  

– The third parameter specifies that the last n jobs of the specified status should be
shown. If n is not specified, then all jobs of that status are shown.

• ohsh>  truncate jobs [<integer>]
Removes the last n jobs from the database. If the integer is not specified,  the command
removes all jobs

F-1



See Also:

• See the OHSH help for descriptions of all OHSH commands:

ohsh> help

• When OHSH is installed in on-premises environments (outside of Oracle
Big Data cloud services), edits to the smartloader-conf.xml
configuration file are required in order to enable these commands.

Other Changes

In earlier releases, usage examples for each of the Oracle Big Data Connectors are
automatically installed into an examples directory under the home directory for the
connector. In this release, the installation zip file for each connector includes an
examples.zip file which you can unpack when you are ready to start working with the
examples.

Appendix F
Changes in Oracle Big Data Connectors Release 4.12

F-2



B
Using Oracle's Hive Storage Handler for
Kafka to Create a Hive External Table for
Kafka Topics

The Hive storage handler for Kafka enables Hive (as well as Oracle Big Data SQL) to query
Kafka topics.

To provide access to Kafka data, you create a Hive external table over the Kafka topics. The
Oracle Big Data SQL storage handler that enables Hive to read the Kafka data format is
oracle.hadoop.kafka.hive.KafkaStorageHandler .

You can use this storage handler to create external Hive tables backed by data residing in
Kafka. Big Data SQL can then query the Kafka data through the external Hive tables.  

The Hive DDL is demonstrated by the following example, where topic1 and topic2 are two
topics in Kafka broker whose keys are serialized by Kafka's String serializer and whose
values are serialized by kafka's Long serializer.

CREATE EXTERNAL TABLE test_table
row format serde ‘oracle.hadoop.kafka.hive.KafkaSerDe’
stored by 'oracle.hadoop.kafka.hive.KafkaStorageHandler'
tblproperties('oracle.kafka.table.key.type'='string',
                     'oracle.kafka.table.value.type'='long',
                     'oracle.kafka.bootstrap.servers'='nshgc0602:9092',
                     'oracle.kafka.table.topics'='topic1,topic2');

The example below shows the resulting Hive table. The Kafka key, value, offset, topic name,
and partitionid are mapped to Hive columns.  You can explicitly designate the offset for each
topic/partition pair through a WHERE clause in you Hive query.  

hive> describe test_table;
OK
topic            string                  from deserializer   
partitionid      int                     from deserializer   
key              string                  from deserializer   
value            bigInt                  from deserializer   
offset           bigint                  from deserializer
timestamptype    smallInt            from deserializer
timestamp        timestamp           from deserializer
Time taken: 0.084 seconds, Fetched: 7 row(s) 

The content of the table is a snapshot of the Kafka topics when the Hive query is executed.
When new data is inserted into the Kafka topics, you can use the offset column or the
timestamp column to track the changes to the topic. The offsets are per topic/partition. For

B-1



example, the following query will return new messages after the specified offsets in the
where clause for each topic/partition:

hive> select * from test_table where (topic="topic1" and partitoinid=0 
and offset > 199) or (topic="topic1" and partitionid=1 and offset > 
198) or (topic="topic2" and partitionid=0 and offset > 177) or 
(topic="topic2" and partitionid=1 and offset > 176);

You need to keep track of the offsets for all topic/partition. For example, you can use
an Oracle table to store these offsets. A more convenient way to keep track of new
data is using the timestamp column. You can query data after a specific time point
using the following query:

hive> select * from test_table where timestamp > '2017-07-12 11:30:00'; 

See the Property Reference section below for descriptions of all table properties

Property Reference

Table B-1    Table Properties of Hive Storage Handler for Kafka

Property
Name

Requir
ement

Description

oracle.kaf
ka.table.to
pics

Require
d

A comma-separated list of Kafka topics. Each Kafka topic name must
consists of only letters (uppercase and lowercase), numbers, .(dot),
_(underscore), and -(minus). The maximum length for each topic name
is 249. These topics must have the same serialization mechanisms. The
resulting Hive table consists of records from all the topics listed here. A
Hive column “topic” will be added and it will be set to the topic name for
each record.

oracle.kaf
ka.bootstr
ap.servers

Require
d

This property will be translated to the “bootstrap.servers” property for the
underlying Kafka consumer. The consumer makes use of all servers,
irrespective of which servers are specified here for bootstrapping. This
list only impacts the initial hosts used to discover the full set of servers.
This list should be in the form host1:port1,host2:port2,.... Since
these servers are just used for the initial connection to discover the full
cluster membership (which may change dynamically), this list need not
contain the full set of servers. For availability reasons, you may want to
list more than one server.

Appendix B

B-2



Table B-1    (Cont.) Table Properties of Hive Storage Handler for Kafka

Property
Name

Requir
ement

Description

oracle.kaf
ka.table.k
ey.type

Optional The key type for your record. If unset, then the key part of the Kafka
record will be ignored in the Hive row. Only values of “string”, “integer”,
“long”, “double”, “avro”, “avro_confluent”are supported. “string”, “integer”,
“double” and “long” correspond to the built-in primitive serialization types
supported by Kafka. If this property is one of these primitive types, then
the Kafka key for each record will be mapped to one single Hive Column.
If this property is set to “avro” or “avro_confluent”, then
oracle.kafka.table.key.schema is required. The Kafka key for
each record will be deserialized into an Avro Object. If the Avro schema
is of record type then each first level field of the record will be mapped to
a single Hive column. If the Avro schema is not of Record Type, then it
will be mapped to a single Hive Column named “key”.

The difference between “avro” and “avro_confluent” is that the wire
format for the serialization is slightly different. For “avro”, the entire bytes
array of the key consists of the bytes of avro serialization. For
“avro_confluent”, the bytes array consists of a magic byte, a version
number, then the bytes of avro serialization of the key.

oracle.kaf
ka.table.v
alue.type

Optional The value type of your record. If unset, then the value part of Kafka
record will be ignored in the Hive row. Use of this property is similar to
use of oracle.kafka.table.key.type. The difference between them
is: when the Avro Schema for Kafka value is not of record type. The
whole Avro object will be mapped to a single Hive Column named
“value” instead of “key”.

oracle.kaf
ka.table.k
ey.writer.s
chema

Optional An optional writer schema for the Kafka key’s Avro serialization. It’s
required when the reader schema for the key is different from the
schema in which the keys are written to Kafka brokers. It must be the
exact schema in which Kafka keys are serialized.

oracle.kaf
ka.table.k
ey.schema

Require
d when
“oracle.
kafka.ta
ble.key.t
ype” is
“avro” or
“avro_c
onfluent
”

The JSON string for the Kafka key's Avro reader schema. It doesn't need
to be exactly the same as the Kafka key's writer Avro schema. As long
as the reader schema is compatible with the Kafka key or the converted
object from the converter, it is valid. This enables you to rename Hive
columns and choose what fields to keep from the Kafka key in the Hive
row. If the schema in this property is different from the schema in which
the Kafka keys are serialized, then
oracle.kafka.table.key.writer.schema is required.

oracle.kaf
ka.table.v
alue.writer
.schema

Optional An optional writer schema for the Kafka value’s Avro serialization. Its use
is similar to oracle.kafka.table.key.writer.schema.

oracle.kaf
ka.table.v
alue.sche
ma

Require
d when
“oracle.
kafka.ta
ble.valu
e.type”
is “avro”
or
“avro_c
onfluent
”

The JSON string for the Kafka value's Avro reader schema. Its use is
similar to oracle.kafka.table.key.schema.

Appendix B

B-3



Table B-1    (Cont.) Table Properties of Hive Storage Handler for Kafka

Property
Name

Requir
ement

Description

oracle.kaf
ka.table.e
xtra.colum
ns

Optional
, default
to “true”

A boolean flag to control whether to include extra Kafka columns:
paritionid, offset, timestamptype.

oracle.kaf
ka.chop.p
artition

Optional
, default
to false

A Boolean flag to control whether to chop Kafka partitions into smaller
chunks. This is useful when the number of Kafka partitions is small and
the size of each Kafka partition is large.

oracle.kaf
ka.partitio
n.chunk.si
ze

Optional When oracle.kafka.chop.partition is true, this property controls the
number of Kafka records in each partition chunk. It should be set a value
estimated by (Ideal size of a split)/(Average size of a Kafka record). For
example, if the ideal size of a split is 256 MB and the average size of s
Kafka record is 256 Bytes, then this property should be set to 1000000.

Appendix B

B-4



C
Apache License

Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of this
definition, "control" means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted
by this License.

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation
of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of authorship.
For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by
an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or
written communication sent to the Licensor or its representatives, including but not limited
to communication on electronic mailing lists, source code control systems, and issue
tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

C-1

http://www.apache.org/licenses/


"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement,
then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and in
Source or Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to any
part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if
and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the

Appendix C

C-2



Licensor shall be under the terms and conditions of this License, without any additional
terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing the
content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.
You are solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions under this
License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Appendix C

C-3

http://www.apache.org/licenses/LICENSE-2.0


This product includes software developed by The Apache Software Foundation (http://
www.apache.org/) (listed below):

Apache Licensed Code
The following is included as a notice in compliance with the terms of the Apache 2.0
License, and applies to all programs licensed under the Apache 2.0 license:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
A copy of the license is also reproduced below.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in
or attached to the work (an example is provided in the Appendix below).

Appendix C
Apache Licensed Code

C-4

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/


"Derivative Works" shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of authorship.
For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by
an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or
written communication sent to the Licensor or its representatives, including but not limited
to communication on electronic mailing lists, source code control systems, and issue
tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the
Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license
applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the
Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or
a Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work
shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that you meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this
License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the
Work, excluding those notices that do not pertain to any part of the Derivative Works;
and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to any
part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or

Appendix C
Apache Licensed Code

C-5



documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own
attribution notices within Derivative Works that You distribute, alongside or as
an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for,
acceptance of support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such obligations, You
may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Appendix C
Apache Licensed Code

C-6



APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets "[]" replaced with your own identifying information. (Do not include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

This product includes software developed by The Apache Software Foundation (http://
www.apache.org/) (listed below):

Appendix C
Apache Licensed Code

C-7

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/
http://www.apache.org/


E
Additional Big Data Connector Resources

The following are useful resources for learning about and using Oracle Big Data Connectors.

Oracle Big Data Connector Downloads

The Oracle Technology Network (OTN) provides downloads of the latest versions as well as
earlier versions of the Oracle Big Data Connectors.

Oracle Big Data Connector Blogs and Community Forums

Oracle Blogs includes a number of postings on Oracle Big Data Connectors under the topic
Connecting Hadoop with Oracle, including the following.

• Oracle Shell for Hadoop Loaders (OHSH), an introduction to OHSH.

• Copy to Hadoop with OHSH , some OHSH examples using the Oracle Big Data Lite VM.

• Using Oracle SQL Connector for HDFS with Oracle Wallet , a simple step-by-step
demonstration of how to use Oracle SQL Connector for HDFS with a client-side Oracle
Wallet.

• Oracle SQL Connector for HDFS and Oracle Database System Platforms, a post about
OSCH support for the various Oracle Database server platforms.

The Oracle Datasource for Apache Hadoop Community Forum provides blog posts on OD4H
and a discussion forum for OD4H users.

E-1

http://www.oracle.com/technetwork/database/database-technologies/bdc/big-data-connectors/downloads/index.html
https://blogs.oracle.com/
https://blogs.oracle.com/bigdataconnectors/entry/oracle_shell_for_hadoop_loaders
https://blogs.oracle.com/bigdataconnectors/entry/copy_to_hadoop_with_oshell
https://blogs.oracle.com/bigdataconnectors/entry/using_oracle_sql_connector_for
https://blogs.oracle.com/bigdataconnectors/?page=1
https://community.oracle.com/community/database/big_data/datasource-for-hadoop


Index

Symbols
%*

put annotation, 5-7
%annotations, 6-5, 6-76, 6-78
%ora-java

binding annotation, 5-8
%output annotation, 6-48
%output encoding annotation, 6-83
%output media-type annotation, 6-83
%updating annotation, 5-7

A
access privileges, Oracle Database, 1-13
adapters

Avro, 6-1
Oracle NoSQL Database, 6-32
sequence file, 6-58
text file, 6-73
tika, 6-82
XML file, 6-86

aggregate functions for Hive, 8-14
ALLOW_BACKSLASH_ESCAPING_ANY_CHAR

ACTER property, 6-21
ALLOW_COMMENTS property, 6-21
ALLOW_NON_NUMERIC_NUMBERS property,

6-21
ALLOW_NUMERIC_LEADING_ZEROS property,

6-21
ALLOW_SINGLE_QUOTES property, 6-21
ALLOW_UNQUOTED_CONTROL_CHARS

property, 6-21
ALLOW_UNQUOTED_FIELD_NAMES property,

6-21
ALTER SESSION commands, 3-46
analytic functions in R, 8-12
annotations

Avro collection, 6-3
equal to Oracle Loader for Hadoop

configuration properties, 6-29
for writing to Oracle NoSQL Database, 6-48
Oracle Database adapter, 6-24
Oracle NoSQL Database adapter, 6-41
parsing tika files, 6-83

annotations (continued)
reading from Oracle NoSQL Database, 6-44
reading sequence files, 6-63
reading text files, 6-76
reading XML files, 6-88
writing text files, 6-78

Apache Hadoop distribution, 1-3, 1-26
Apache licenses, C-4
avro

compress annotation, 6-5
file annotation, 6-5
put annotation, 6-5
schema annotation, 6-5
schema-file annotation, 6-5
schema-kv annotation, 6-5, 6-41, 6-44, 6-48

Avro
annotations for reading, 6-3
annotations for writing, 6-5

Avro array,
reading as XML, 6-10

Avro file adapter, 6-1
examples, 6-6
reading Avro as XML, 6-8
writing XML as Avro, 6-13

Avro files
collection annotations, 6-3
collection function, 6-3
converting text to, 6-6
functions for reading, 6-2
output file name, 6-5
put functions, 6-5
querying records, 6-6
reading, 6-3
reading as XML, 6-8
writing, 6-5

Avro maps, 6-3
Avro maps, reading as XML, 6-9
Avro null values, 6-12
Avro primitives

reading as XML, 6-12
Avro reader schema, 6-4, 6-6, 6-45
Avro records, reading as XML, 6-8
Avro unions, reading as XML, 6-11
avro((colon))collection-avroxml function, 6-2
avro((colon))get function, 6-3

Index-1



avroxml method, 6-8, 6-13

B
balancing loads in Oracle Loader for Hadoop,

4-26
batchSize property, 6-55
bzip2 input files, 3-32

C
character encoding, 6-41, 6-44
character methods for Hive, 8-6
client libraries, 1-15
clients

configuring Hadoop, 1-31
coersing data types in R, 8-15
collection annotation

text files, 6-76
tika files, 6-83

collection annotations
Avro, 6-3

collection function (XQuery)
description, 5-4

collection functions
Oracle NoSQL Database adapter, 6-42
sequence files, 6-63
text files, 6-76
tika files, 6-83

collection-tika function, 6-35, 6-60
columnCount property (OSCH), 3-32
columnLength property (OSCH), 3-32
columnNames property (OSCH), 3-32
columnType property (OSCH), 3-32
compressed data files, 3-32
compressed files, 3-38
compression

data in database tables, 3-3
sequence files, 6-64

compression codec, 6-5
compression methods

Avro output files, 6-6
CompressionCodec property (OSCH), 3-32
configuration properties

for Oracle XQuery for Hadoop, 6-29
JSON file adapter, 6-21
Oracle NoSQL Database adapter, 6-55
Oracle XQuery for Hadoop, 5-19

configuration settings
Hadoop client, 1-31
Sqoop utility, 1-27

configuring a Hadoop client, 1-31
connecting to Oracle Database from R, 8-14
consistency property, 6-55

CREATE TABLE
configuration properties, 7-8
examples, 7-9
syntax, 7-7

CREATE TABLE privilege, 1-13
createBadFiles property, 3-32
createLogFiles property, 3-32
CSV files, 3-38, 4-30

D
Data Pump files, 3-10

XML template, 3-11
data type mappings

between XQuery and Avro, 6-12
between XQuery and Oracle Database, 6-25
Oracle Database and XQuery, 6-24

data type mappings, Hive (OSCH), 3-32
data type testing in R, 8-15
data types

Oracle Loader for Hadoop, 4-7
database directories

for Oracle SQL Connector for HDFS, 1-11
database patches, 1-15, 3-10
database privileges, 1-13
database system, configuring to run MapReduce

jobs, 1-8
database tables

writing using Oracle XQuery for Hadoop,
6-23

databaseName property, Hive (OSCH), 3-32
dataCompressionCodec property (OSCH), 3-32
dataPathFilter property (OSCH), 3-32
dataPaths property (OSCH), 3-32
dateMask property (OSCH), 3-32
defaultDirectory property (OSCH), 3-32
deflate compression, 6-5
delimited text files

XML templates, 3-22
DelimitedTextInputFormat class, 4-12, 4-35

Oracle Loader for Hadoop, 4-13
delimiter

for splitting text files, 6-76
Direct Connector for HDFS, 3-38
directories, 1-11

default HDFS for XQuery, 5-19
Oracle SQL Connector for HDFS home, 1-10
Sqoop home, 1-27

Directory property (OSCH), 3-32
disable_directory_link_check access parameter,

3-10
distributed cache

accessing from Oracle XQuery for Hadoop,
5-7

downloading software, 1-4, 1-26–1-28, 1-32

Index

Index-2



drivers
JDBC, 1-27, 4-20
ORACLE_DATAPUMP, 4-24
ORACLE_LOADER, 3-27

durability property, 6-55

E
encoding characters, 6-41, 6-44
external tables

about, 3-1
ExternalTable command

syntax, 3-8

F
fieldLength property (OSCH), 3-32
fieldTerminator property (OSCH), 3-32
file paths

locating in XQuery, 6-101
FLWOR requirements, 5-6
fn

nilled function, 6-8, 6-10
frame methods for Hive, 8-6
functions

for writing to Oracle NoSQL Database, 6-48
Oracle NoSQL Database, 6-33, 6-38, 6-40
parsing tika files, 6-82, 6-83
reading and writing sequence files, 6-59
reading and writing text files, 6-73
reading Avro files, 6-3
reading from Oracle NoSQL Database, 6-42,

6-44
reading JSON files, 6-17
reading sequence files, 6-63
reading text files, 6-76
reading XML files, 6-86, 6-88
writing Avro files, 6-5
writing sequence files, 6-64
writing text files, 6-78

G
get function

Oracle NoSQL Database adapter, 6-44
get-tika function, 6-37
gzip input files, 3-32

H
Hadoop client

configuring, 1-31
installing, 1-8

HADOOP_HOME environment variable, 1-27

HADOOP_LIBEXEC_DIR environment variable,
1-27

HDFS commands
issuing from R, 8-12

HDFS data
copying in R, 8-14

HDFS directories
creating in R, 8-13

HDFS directory, 5-19
HDFS files

loading data into an Oracle database, 4-16
restrictions in Oracle R Advanced Analytics

for Hadoop, 8-5
hdfs_stream Bash shell script, 1-9
Hive access from R, 8-5
Hive access in R, 8-13
Hive data type mappings (OSCH), 3-32
Hive data types, support for, 8-7
Hive JAR files for Oracle Loader for Hadoop,

4-25
Hive tables

XML format, 3-15
hive.columnType property (OSCH), 3-32
hive.databaseName property (OSCH), 3-32
hive.partitionFilter property, 3-32
hive.tableName property, 3-32
HiveToAvroInputFormat class, 4-14, 4-25
Hortonworks Data Platform distribution, 1-7
hosts property, 6-55

I
initialFieldEncloser property, 3-32
InputFormat class

Oracle Loader for Hadoop, 4-13
installation

Hadoop client, 1-8
Oracle Data Integrator Application Adapter

for Hadoop, 1-33
Oracle Loader for Hadoop, 1-15
Oracle R Advanced Analytics for Hadoop,

1-25
Oracle Shell for Hadoop Loaders Setup, 1-17
Oracle SQL Connector for HDFS, 1-7
Sqoop utility, 1-27

installation instructions, 1-1
Instant Client libraries, 1-15

J
JDBC drivers, 1-27, 4-20
json

get function, 6-18
parse-as-xml function, 6-18

Index

Index-3



JSON data formats
converting to XML, 6-22

JSON file adapter
configuration properties, 6-21

JSON files
reading, 6-17

JSON module, 6-17
examples, 6-20

K
kv

collection annotation, 6-41
collection-avroxml function, 6-34
collection-binxml function, 6-35
collection-text function, 6-33
collection-xml function, 6-34
get annotation, 6-44
get-avroxml function, 6-36
get-binxml function, 6-37
get-text function, 6-36
get-xml function, 6-37
key annotation, 6-41, 6-44
key-range function, 6-37
put annotation, 6-48
put-binxml function, 6-36
put-text function, 6-36
put-xml function, 6-36

kv-lob
get-binxml, 6-41
get-text, 6-40
get-tika, 6-41
get-xml, 6-40
put-binxml, 6-41
put-text, 6-41
put-xml, 6-41

kv-table
collection-jsontext, 6-38

KVAvroInputFormat class, 4-25
kvstore property, 6-55

L
load balancing

in Oracle Loader for Hadoop, 4-26
LOBSuffixproperty, 6-55
LOBTimeout property, 6-55
locationFileCount property, 3-32
log4j.logger.oracle.hadoop.xquery property, 5-19
logDirectory property, 3-32
logical methods for Hive, 8-6

M
mapping

JSON to XML, 6-23
mappings

Oracle Database and XQuery data types,
6-24

mappings, Hive to Oracle Database (OSCH),
3-32

MapReduce functions
writing in R, 8-16

MasterPolicy durability, 6-55
matrix methods for Hive, 8-6

N
nilled elements, 6-8
nilled function, 6-12
null values in Avro, 6-12
numeric methods for Hive, 8-6

O
OCI Direct Path, 4-31
OHSH, 1-17
operating system user permissions, 1-10
ora-java

binding annotation, 5-8
oracle

columns annotation, 6-24
put annotation, 6-24

Oracle Data Integrator Application Adapter for
Hadoop

installing, 1-33
Oracle Database

annotations for writing, 6-24
connecting from R, 8-14
put function, 6-24
user privileges, 1-13

Oracle Database access from ORCH, 8-10
Oracle Database adapter, 6-23

configuration properties, 6-29
examples, 6-27

Oracle Database Adapter
using Oracle Loader for Hadoop, 6-23

Oracle Direct Connector for HDFS, 3-38
Oracle Exadata Database Machine

installing a Hadoop client, 1-8
Oracle Instant Client libraries, 1-15
Oracle Loader for Hadoop

description, 4-1
input formats, 4-16
installing, 1-15
supported database versions, 1-15

Index

Index-4



Oracle NoSQL Database
annotations for writing, 6-48

Oracle NoSQL Database adapter, 6-32
annotations for reading, 6-42
collection function, 6-42
get function, 6-44
reading Avro as XML, 6-8
writing XML as Avro, 6-13

Oracle NoSQL Database Adapter
configuration properties, 6-55
examples, 6-50

Oracle NoSQL Database functions, 6-33, 6-38,
6-40

Oracle OCI Direct Path, 4-30, 4-31
Oracle permissions, 1-10
Oracle R Advanced Analytics for Hadoop

categorical list of functions, 8-11
connecting to Oracle Database, 8-14
copying HDFS data, 8-14
debugging functions, 8-17
description, 1-2, 8-2
HDFS commands issued from, 8-12
installation, 1-25
MapReduce functions, 8-16

Oracle RAC systems, installing a Hadoop client,
1-8

Oracle Shell for Hadoop Loaders Setup
installing, 1-17

Oracle Software Delivery Cloud, 1-4
Oracle SQL Connector for HDFS

description, 3-1
installation, 1-7
pattern-matching characters, 3-38
query optimization, 3-46

Oracle Technology Network
downloads, 1-4, 1-27

Oracle XQuery for Hadoop, 5-1
accessing the distributed cache, 5-7
accessing user-defined XQuery library

modules and XML schemas, 5-8
basic transformation examples, 5-9
calling custom Java external functions, 5-8
configuration properties, 5-19
configuring Oracle NoSQL Database server,

6-32
description, 5-1
error logging levels, 5-19
error recovery setting, 5-19
hadoop command, 5-14
JSON module, 6-17
Oracle NoSQL Database adapter, 6-32
output directory, 5-19
running queries, 5-14
running queries locally, 5-16
sequence file adapter, 6-58

Oracle XQuery for Hadoop (continued)
temp directory, 5-19
text file adapter, 6-73
tika adapter, 6-82
time zone, 5-19
XML file adapter, 6-86

Oracle XQuery for Hadoop adapters
overview, 5-4

Oracle XQuery for Hadoop modules
overview, 5-5

ORACLE_DATAPUMP driver, 4-24
ORACLE_LOADER driver, 3-27
oracle-property annotation, 6-24
oracle.hadoop.exttab.colMap.column_name.nullIf

Specifier property, 3-32
oracle.hadoop.exttab.createBadFiles property,

3-32
oracle.hadoop.exttab.createLogFiles property,

3-32
oracle.hadoop.exttab.hive.tableName property,

3-32
oracle.hadoop.exttab.initialFieldEncloser

property, 3-32
oracle.hadoop.exttab.locationFileCount property,

3-32
oracle.hadoop.exttab.logDirectory property, 3-32
oracle.hadoop.exttab.nullIfSpecifier property,

3-32
oracle.hadoop.exttab.preprocessorDirectory

property, 3-32
oracle.hadoop.exttab.preprocessorScript, 3-32
oracle.hadoop.exttab.recordDelimiter property,

3-32
oracle.hadoop.exttab.sourceType property, 3-32
oracle.hadoop.exttab.stringSizes property, 3-32
oracle.hadoop.exttab.tableName property, 3-32
oracle.hadoop.xquery.* properties, 5-19
oracle.hadoop.xquery.json.parser.*, 6-21
oracle.hadoop.xquery.kv property, 6-55
oracle.hadoop.xquery.kv.config.durability

property, 6-55
oracle.hadoop.xquery.kv.config.requestLimit

property, 6-55
oracle.hadoop.xquery.kv.config.requestTimeout

property, 6-55
oracle.hadoop.xquery.kv.config.socketOpenTime

out property, 6-55
oracle.hadoop.xquery.kv.config.socketReadTime

out property, 6-55
oracle.hadoop.xquery.lib.share property, 5-19
oracle.hadoop.xquery.tika.html.asis property,

6-84
oracle.hadoop.xquery.tika.locale property, 6-84
oracle.kv.batchSize property, 6-55
oracle.kv.consistency property, 6-55

Index

Index-5



oracle.kv.hosts configuration property, 6-55
oracle.kv.hosts property, 6-55
oracle.kv.kvstore configuration property, 6-55
oracle.kv.kvstore property, 6-55
oracle.kv.timeout property, 6-55
orahdfs-version.zip file, 1-9
orahdfs-version/bin directory, 1-11
OraLoader, 4-29
oraloader-<version>.zip file, 1-23
oraloader-version directory, 1-15, 1-23
oraloader-version.zip, 1-16
oraloader-version.zip file, 1-9, 1-15
ORCH package

installation, 1-26, 1-28
orch.tgz package, 1-28
ORE functions for Hive, 8-5
ore.create function, 8-9
ore.exec function, 8-9
ore.warn.order option, 8-9
OSCH_BIN_PATH directory, 1-13
output

encoding annotation, 6-41, 6-44, 6-63, 6-88
parameter annotation, 6-78

output annotation, 6-64
output directory for Oracle XQuery for Hadoop,

5-19
oxh

find function, 6-101
increment-counter function, 6-101
println function, 6-101
println-xml function, 6-102
property function, 6-102

oxh-charset property, 7-8
oxh-column property, 7-8
oxh-default-namespace property, 7-8
oxh-elements property, 7-8
oxh-entity.name property, 7-8
oxh-namespace.prefix property, 7-8
OXMLSerDe, 7-7

P
parallel processing, 1-3, 3-46
parsing options for JSON files, 6-21
parsing tika files, 6-82
partitioning, 4-7
PathFilter property (OSCH), 3-32
Paths property (OSCH), 3-32
pattern matching, 5-19
pattern matching (OSCH), 3-32
pattern-matching characters in Oracle SQL

Connector for HDFS, 3-38
preprocessor access parameter, 3-10
preprocessorDirectory property, 3-32
privileges, Oracle Database, 1-13

put function (XQuery)
description, 5-4

put functions
Oracle NoSQL Database adapter, 6-48
sequence files, 6-64
text files, 6-78

Q
queries

running in Oracle XQuery for Hadoop, 5-14
running locally in Oracle XQuery for Hadoop,

5-16
query optimization for Oracle SQL Connector for

HDFS, 3-46

R
R data types, converting and testing, 8-15
R distribution, 1-26, 1-31
R Distribution, 1-28, 1-32
R functions

categorical listing, 8-11
R functions for Hive, 8-6
random order messages, 8-9
reading Avro files, 6-3
reading sequence files, 6-59
reading text files, 6-73
readZones property, 6-55
recordDelimiter property, 3-32
records, rejected, 4-26
rejected records, 4-26
ReplicaAck policy, 6-55
ReplicaPolicy durability, 6-55
requestLimit property, 6-55
requestTimeout property, 6-55

S
sampling data

from Oracle Loader for Hadoop, 4-26
scripts

debugging in R, 8-17
security property, 6-55
seq

collection annotation, 6-63
collection function, 6-59
collection-binxml function, 6-60
collection-xml function, 6-59
compress annotation, 6-64
file annotation, 6-64
key annotation, 6-63
put annotation, 6-64
put functions, 6-61

Index

Index-6



seq (continued)
put-binxml function, 6-62
put-xml function, 6-61
split-max annotation, 6-63
split-min annotation, 6-63

sequence file adapter, 6-58
annotations for writing, 6-64
collection function, 6-63
examples, 6-66

sequence file adapter functions, 6-59
sequence files

compression, 6-64
output file name, 6-64
reading, 6-63
split size, 6-64
writing, 6-64

serialization parameter, 6-49, 6-78
serialization parameters, 6-102
skiperrors property for Oracle XQuery for

Hadoop, 5-19
skiperrors.counters property, 5-19
skiperrors.log.max property, 5-19
skiperrors.max property, 5-19
snappy compression, 6-5
socketOpenTimeout property, 6-55
socketReadTimeout property, 6-55
software downloads, 1-4, 1-26–1-28, 1-32
sourceType property, 3-32
split size

for Avro files, 6-4
sequence files, 6-64
text files, 6-76

split sizes, 6-4
splitting XML files, 6-90
SQL*Loader, 4-22
Sqoop, 8-11
Sqoop utility

installing on a Hadoop client, 1-32
installing on a Hadoop cluster, 1-27

stringSizes property, 3-32
subrange specification, Oracle NoSQL Database

adapter, 6-44

T
tables

compression in database, 3-3
copying data from HDFS, 4-1
writing to Oracle Database, 6-24

temp directory, setting for Oracle XQuery for
Hadoop, 5-19

text
collection annotation, 6-76
collection function, 6-74
collection-xml function, 6-74

text (continued)
compress annotations, 6-78
file annotation, 6-78
put annotation, 6-78
put function, 6-75
put-xml function, 6-75
split annotation, 6-76
split-max annotation, 6-76
trace function, 6-76

text file adapter, 6-73
collection function, 6-76
put function, 6-78

text files
converting to Avro, 6-6
delimiter, 6-76
reading, 6-76
reading and writing, 6-73
split size, 6-76
writing, 6-78

tika
%output encoding annotation, 6-83
%output media-type annotation, 6-83
collection annotation, 6-83
collection function, 6-82
helper function, 6-83
parse function, 6-83
parse textual data, 6-83

tika adapter, 6-82
tika file adapter

collection function, 6-83
parsing, 6-82

tika files
parsing, 6-83

time zones in XQuery, 6-27
timeout property, 6-55
timestampMask property (OSCH), 3-32
timestampTZMask property (OSCH), 3-32
timezone property for Oracle XQuery for Hadoop,

5-19
type mappings

between XQuery and Avro, 6-12
between XQuery and Oracle Database, 6-25

U
uncompressed files, 3-38
updating functions, 5-7
UTF-8 encoding, 6-41, 6-44
UTL_FILE package, 1-13

V
vector methods for Hive, 8-6

Index

Index-7



W
wildcards, 5-19
writing Avro files, 6-5
writing sequence files, 6-59
writing text files, 6-73
writing to Oracle tables, 6-23

X
XML

writing as Avro arrays, 6-15
writing as Avro maps, 6-15
writing as Avro primitives, 6-16
writing as Avro records, 6-13
writing as Avro unions, 6-16

XML file adapter, 6-86
examples, 6-91

XML files
reading, 6-86, 6-88
restrictions on splitting, 6-90

XML schemas
accessing user-defined, 5-8

XML template for Data Pump files, 3-11
XML templates

Data Pump files, 3-11
delimited text files, 3-22
Hive tables, 3-15

XML templates (continued)
XML_EXISTS function, 7-17
XML_QUERY function, 7-18
XML_QUERY_AS_primitive function, 7-20
XML_TABLE function, 7-23
xmlf

collection annotation, 6-88
collection functions, 6-86
split annotation, 6-88
split-entity annotation, 6-88
split-max annotation, 6-88
split-min annotation, 6-76, 6-88
split-namespace annotation, 6-88

XQuery, 5-1
XQuery library modules

accessing user-defined, 5-8
XQuery specification support, 5-7
XQuery transformations

requirements, 5-6
xquery.output property, 5-19
xquery.scratch property, 5-19
xquery.skiperrors property, 5-19
xquery.skiperrors.counters property, 5-19
xquery.skiperrors.log.max property, 5-19
xquery.skiperrors.max property, 5-19
xquery.timezone property, 5-19
xsi

nil attribute, 6-8

Index

Index-8


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Text Conventions
	Syntax Conventions
	Changes in Oracle Big Data Connectors 5.1

	Part I Setup
	1 Getting Started with Oracle Big Data Connectors
	About Oracle Big Data Connectors
	Big Data Concepts and Technologies
	What is MapReduce?
	What is Apache Hadoop?

	Download and Install Oracle Big Data Connectors
	Certified Hadoop Platforms
	Secure Connection to Oracle Database
	Using JDBC SSL
	Using Secure External Java KeyStore and Hadoop credential command

	Oracle SQL Connector for Hadoop Distributed File System Setup
	Software Requirements
	Install and Configure a Hadoop Client on the Oracle Database System
	Install and Configure Oracle SQL Connector for HDFS
	Oracle Database Privileges for OSCH Users
	OS-Level Requirements for OSCH Users
	Use Oracle SQL Connector for HDFS on a Secure Hadoop Cluster

	Oracle Loader for Hadoop Setup
	Software Requirements
	Install Oracle Loader for Hadoop
	Oracle Database Privileges for OLH Users
	Provide Support for Offline Database Mode
	Use Oracle Loader for Hadoop on a Secure Hadoop Cluster

	Oracle Shell for Hadoop Loaders Setup
	Install Oracle Shell for Hadoop Loaders on a Hadoop Node
	Oracle Database Privileges for OHSH Users
	Configure OHSH to Enable Job Monitoring

	Oracle XQuery for Hadoop Setup
	Software Requirements
	Install Oracle XQuery for Hadoop
	Troubleshoot the File Paths
	Configure Oozie for the Oracle XQuery for Hadoop Action

	Oracle R Advanced Analytics for Hadoop Setup
	Install the Software on Hadoop
	Software Requirements for a Third-Party Hadoop Cluster
	Install Sqoop on a Third-Party Hadoop Cluster
	Install Hive on a Third-Party Hadoop Cluster
	Install R on a Hadoop Client
	Install R on a Third-Party Hadoop Cluster
	Install the ORCH Package on a Third-Party Hadoop Cluster

	Install Additional R Packages
	Provide Remote Client Access to R Users
	Software Requirements for Remote Client Access
	Configure the Server as a Hadoop Client
	Install Sqoop on a Hadoop Client
	Install R on a Hadoop Client
	Install the ORCH Package on a Hadoop Client
	Install the Oracle R Enterprise Client Packages (Optional)


	Oracle Data Integrator
	Oracle Datasource for Apache Hadoop Setup
	Configure HiveServer2



	Part II Oracle Database Connectors
	2 Oracle Shell for Hadoop Loaders
	What is Oracle Shell for Hadoop Loaders?
	Configure Oracle Shell for Hadoop Loaders (OHSH)
	Get Started with Oracle Shell for Hadoop Loaders
	Load an Oracle Database Table

	3 Oracle SQL Connector for Hadoop Distributed File System
	About Oracle SQL Connector for HDFS
	Interfaces to Oracle SQL Connector for HDFS
	Getting Started With Oracle SQL Connector for HDFS
	Configure Your System for Oracle SQL Connector for HDFS
	Use Oracle SQL Connector for HDFS with Oracle Big Data Appliance and Oracle Exadata
	Use the ExternalTable Command-Line Tool
	About ExternalTable
	ExternalTable Command-Line Tool Syntax

	Create External Tables
	Create External Tables with the ExternalTable Tool
	Create External Tables from Data Pump Format Files
	Required Properties
	Optional Properties
	Defining Properties in XML Files for Data Pump Format Files
	Example

	Create External Tables from Hive Tables
	Hive Table Requirements
	Data Type Mappings
	Required Properties
	Optional Properties
	Defining Properties in XML Files for Hive Tables
	Example
	Creating External Tables from Partitioned Hive Tables
	Database Objects that Support Access to Partitioned Hive Tables
	Querying the Metadata Table
	Creating UNION ALL Views for Querying
	Error Messages
	Dropping Dangling Objects


	Create External Tables from Delimited Text Files
	Data Type Mappings
	Required Properties
	Optional Properties
	Defining Properties in XML Files for Delimited Text Files
	Example

	Create External Tables in SQL

	Update External Tables
	ExternalTable Syntax for Publish
	ExternalTable Example for Publish

	Explore External Tables and Location Files
	ExternalTable Syntax for Describe
	ExternalTable Example for Describe

	Drop Database Objects Created by Oracle SQL Connector for HDFS
	ExternalTable Syntax for Drop
	ExternalTable Example for Drop

	More About External Tables Generated by the ExternalTable Tool
	About Configurable Column Mappings
	Default Column Mappings
	All Column Overrides
	One Column Overrides
	Mapping Override Examples

	What Are Location Files?
	Enable Parallel Processing
	Set Up Degree of Parallelism

	Location File Management
	Location File Names

	Configure Oracle SQL Connector for HDFS
	Create a Configuration File
	Oracle SQL Connector for HDFS Configuration Property Reference

	Performance Tips for Querying Data in HDFS

	4 Oracle Loader for Apache Hadoop
	What Is Oracle Loader for Hadoop?
	Interfaces to Oracle Loader For Hadoop
	Use Oracle Loader for Hadoop With the Hadoop Command Line Utility
	Interfaces to Oracle Loader for Hadoop
	Online Database Mode
	Offline Database Mode

	Create the Target Table
	Supported Data Types for Target Tables
	Supported Partitioning Strategies for Target Tables
	Compression

	Create a Job Configuration File
	Establish Secure Connections to Oracle Database Using SSL and Oracle Wallet
	Use Oracle Wallets
	Use JDBC SSL
	Connect to Oracle Database Using JDBC SSL

	Generate the Target Table Metadata for Offline Database Mode

	About Input Formats
	Delimited Text Input Format
	About DelimitedTextInputFormat
	Required Configuration Properties
	Optional Configuration Properties

	Complex Text Input Formats
	About RegexInputFormat
	Required Configuration Properties
	Optional Configuration Properties

	Hive Table Input Format
	About HiveToAvroInputFormat
	Required Configuration Properties
	Optional Configuration Properties

	Avro Input Format
	Configuration Properties

	Oracle NoSQL Database Input Format
	About KVAvroInputFormat
	Required Configuration Properties

	Custom Input Formats
	About Implementing a Custom Input Format
	About Error Handling
	Supporting Data Sampling
	InputFormat Source Code Example


	Mapping Input Fields to Target Table Columns
	Automatic Mapping
	Manual Mapping
	Manual Mapping: Examples

	About Output Formats
	JDBC Output Format
	About JDBCOutputFormat
	Configuration Properties

	Oracle OCI Direct Path Output Format
	About OCIOutputFormat
	Configuration Properties

	Delimited Text Output Format
	About DelimitedTextOutputFormat
	Configuration Properties

	Oracle Data Pump Output Format
	About DataPumpOutputFormat


	Run a Loader Job
	Specify Hive Input Format JAR Files
	Specify Oracle NoSQL Database Input Format JAR Files
	Job Reporting

	Handling Rejected Records
	Log Rejected Records in Bad Files
	Set a Job Reject Limit

	Balancing Loads When Loading Data into Partitioned Tables
	Use the Sampling Feature
	Tuning Load Balancing
	Tuning Sampling Behavior
	When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme?
	Resolve Memory Issues
	What Happens When a Sampling Feature Property Has an Invalid Value?

	Optimize Communications Between Oracle Engineered Systems

	Oracle Loader for Hadoop Configuration Property Reference


	Part III Oracle XQuery for Apache Hadoop
	5 Using Oracle XQuery for Apache Hadoop
	What Is Oracle XQuery for Hadoop?
	Get Started With Oracle XQuery for Hadoop
	Basic Steps
	Example: Hello World!

	About the Oracle XQuery for Hadoop Functions
	About the Adapters
	About Other Modules for Use With Oracle XQuery for Hadoop

	Create an XQuery Transformation
	XQuery Transformation Requirements
	About XQuery Language Support
	Accessing Data in the Hadoop Distributed Cache
	Call Custom Java Functions from XQuery
	Access User-Defined XQuery Library Modules and XML Schemas
	XQuery Transformation Examples

	Run Queries
	Oracle XQuery for Hadoop Options
	Generic Options
	About Running Queries Locally

	Run Queries from Apache Oozie
	Use Oozie with Oracle XQuery for Hadoop Action
	Supported XML Elements
	Example: Hello World

	Oracle XQuery for Hadoop Configuration Properties

	6 Oracle XQuery for Apache Hadoop Reference
	Avro File Adapter
	Built-in Functions for Reading Avro Files
	avro:collection-avroxml
	avro:get

	Custom Functions for Reading Avro Container Files
	Custom Functions for Writing Avro Files
	Examples of Avro File Adapter Functions
	About Converting Values Between Avro and XML
	Reading Avro as XML
	Reading Records
	Reading Maps
	Reading Arrays
	Reading Unions
	Reading Primitives

	Writing XML as Avro
	Writing Records
	Writing Maps
	Writing Arrays
	Writing Unions
	Writing Primitives



	JSON File Adapter
	Built-in Functions for Reading JSON
	json:collection-jsonxml
	json:parse-as-xml
	json:get

	Custom Functions for Reading JSON Files
	Examples of JSON Functions
	JSON File Adapter Configuration Properties
	About Converting JSON Data Formats to XML
	About Converting JSON Objects to XML
	About Converting JSON Arrays to XML
	About Converting Other JSON Types


	Oracle Database Adapter
	Custom Functions for Writing to Oracle Database
	Examples of Oracle Database Adapter Functions
	Oracle Loader for Hadoop Configuration Properties and Corresponding %oracle-property Annotations

	Oracle NoSQL Database Adapter
	Prerequisites for Using the Oracle NoSQL Database Adapter
	Built-in Functions for Reading from and Writing to Oracle NoSQL Database
	kv:collection-text
	kv:collection-avroxml
	kv:collection-xml
	kv:collection-binxml
	kv:collection-tika
	kv:put-text
	kv:put-xml
	kv:put-binxml
	kv:get-text
	kv:get-avroxml
	kv:get-xml
	kv:get-binxml
	kv:get-tika
	kv:key-range
	kv:key-range

	Built-in Functions for Reading from and Writing to Oracle NoSQL Database using Table API
	kv-table:collection-jsontext
	kv-table:get-jsontext
	kv-table:put-jsontext

	Built-in Functions for Reading from and Writing to Oracle NoSQL Database using Large Object API
	kv-lob:get-text
	kv-lob:get-xml
	kv-lob:get-binxml
	kv-lob:get-tika
	kv-lob:put-text
	kv-lob:put-xml
	kv-lob:put-binxml

	Custom Functions for Reading Values from Oracle NoSQL Database
	Custom Functions for Retrieving Single Values from Oracle NoSQL Database
	Custom Functions for Reading Values from Oracle NoSQL Database using Table API
	Custom Functions for Reading Single Row from Oracle NoSQL Database using Table API
	Custom Functions for Retrieving Single Values from Oracle NoSQL Database using Large Object API
	Custom Functions for Writing to Oracle NoSQL Database
	Custom Functions for Writing Values to Oracle NoSQL Database using Table API
	Custom Functions for Writing Values to Oracle NoSQL Database using Large Object API
	Examples of Oracle NoSQL Database Adapter Functions
	Oracle NoSQL Database Adapter Configuration Properties

	Sequence File Adapter
	Built-in Functions for Reading and Writing Sequence Files
	seq:collection
	seq:collection-xml
	seq:collection-binxml
	seq:collection-tika
	seq:put
	seq:put-xml
	seq:put-binxml

	Custom Functions for Reading Sequence Files
	Custom Functions for Writing Sequence Files
	Examples of Sequence File Adapter Functions

	Solr Adapter
	Prerequisites for Using the Solr Adapter
	Configuration Settings
	Example Query Using the Solr Adapter

	Built-in Functions for Loading Data into Solr Servers
	solr:put

	Custom Functions for Loading Data into Solr Servers
	Examples of Solr Adapter Functions
	Solr Adapter Configuration Properties

	Text File Adapter
	Built-in Functions for Reading and Writing Text Files
	text:collection
	text:collection-xml
	text:put
	text:put-xml
	text:trace

	Custom Functions for Reading Text Files
	Custom Functions for Writing Text Files
	Examples of Text File Adapter Functions

	Tika File Adapter
	Built-in Library Functions for Parsing Files with Tika
	tika:collection
	tika:parse

	Custom Functions for Parsing Files with Tika
	Tika Parser Output Format
	Tika Adapter Configuration Properties
	Examples of Tika File Adapter Functions

	XML File Adapter
	Built-in Functions for Reading XML Files
	xmlf:collection (Single Task)
	xmlf:collection-multipart (Single Task)
	xmlf:collection (Multiple Tasks)

	Custom Functions for Reading XML Files
	Examples of XML File Adapter Functions

	Utility Module
	Oracle XQuery Functions for Duration, Date, and Time
	ora-fn:date-from-string-with-format
	ora-fn:date-to-string-with-format
	ora-fn:dateTime-from-string-with-format
	ora-fn:dateTime-to-string-with-format
	ora-fn:time-from-string-with-format
	ora-fn:time-to-string-with-format
	Format Argument
	Locale Argument

	Oracle XQuery Functions for Strings
	ora-fn:pad-left
	ora-fn:pad-right
	ora-fn:trim
	ora-fn:trim-left
	ora-fn:trim-right


	Hadoop Module
	Built-in Functions for Using Hadoop
	oxh:find
	oxh:increment-counter
	oxh:println
	oxh:println-xml
	oxh:property


	Serialization Annotations

	7 Oracle XML Extensions for Hive
	What are the XML Extensions for Hive?
	Use the Hive Extensions From the Command Line
	Use the Hive Extensions in HiveServer2
	About the Hive Functions
	Permanently Declaring the Hive Functions
	Create XML Tables
	Hive CREATE TABLE Syntax for XML Tables
	CREATE TABLE Configuration Properties
	CREATE TABLE Examples
	Syntax Example
	Simple Examples
	OpenStreetMap Examples


	Oracle XML Functions for Hive Reference
	Data Type Conversions
	Hive Access to External Files

	Online Documentation of Functions
	xml_exists
	xml_query
	xml_query_as_primitive
	xml_table


	Part IV Oracle R Advanced Analytics for Apache Hadoop
	8 Oracle R Advanced Analytics for Apache Hadoop
	About Oracle R Advanced Analytics for Hadoop
	Oracle R Advanced Analytics for Hadoop Architecture
	Oracle R Advanced Analytics for Hadoop packages and functions
	Oracle R Advanced Analytics for Hadoop APIs
	Inputs to Oracle R Advanced Analytics for Hadoop

	Access to HDFS Files
	Access to Apache Hive
	ORCH Functions for Hive
	ORE Functions for Hive
	Generic R Functions Supported in Hive
	Support for Hive Data Types
	Usage Notes for Hive Access
	Example: Loading Hive Tables into Oracle R Advanced Analytics for Hadoop

	Access to Oracle Database
	Usage Notes for Oracle Database Access
	Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R Enterprise

	Oracle R Advanced Analytics for Hadoop Functions
	Native Analytical Functions
	Using the Hadoop Distributed File System (HDFS)
	Using Apache Hive
	Using Aggregate Functions in Hive
	Making Database Connections
	Copying Data and Working with HDFS Files
	Converting to R Data Types
	Using MapReduce
	Debugging Scripts

	Demos of Oracle R Advanced Analytics for Hadoop Functions
	Security Notes for Oracle R Advanced Analytics for Hadoop


	Part V Oracle DataSource for Apache Hadoop
	9 Oracle DataSource for Apache Hadoop (OD4H)
	Operational Data, Big Data and Requirements
	Overview of Oracle DataSource for Apache Hadoop (OD4H)
	Opportunity with Hadoop 2.x
	Oracle Tables as Hadoop Data Source
	External Tables
	TBLPROPERTIES
	SERDE PROPERTIES

	List of jars in the OD4H package

	How does OD4H work?
	Create a new Oracle Database Table or Reuse an Existing Table
	Hive DDL
	Create External Tables in Hive

	Features of OD4H
	Performance And Scalability Features
	Splitters
	Choosing a Splitter
	Predicate Pushdown
	Projection Pushdown
	Partition Pruning

	Smart Connection Management
	Security Features
	Improved Authentication


	Use HiveQL with OD4H
	Use Spark SQL with OD4H
	Writing Back to Oracle Database


	Part VI Appendices
	A OraLoaderMetadata Utility
	D Oracle Big Data Connectors Accessibility Recommendations
	Tips on Using Screen Readers and Braille Displays
	Tips on Using Screen Magnifiers

	F Recent Change History
	Changes in Oracle Big Data Connectors Release 4.12

	B Using Oracle's Hive Storage Handler for Kafka to Create a Hive External Table for Kafka Topics
	C Apache License
	Apache Licensed Code

	E Additional Big Data Connector Resources

	Index

