
Oracle® Big Data Appliance
Software User's Guide

Release 5.2
F25130-02
March 2021

Oracle Big Data Appliance Software User's Guide, Release 5.2

F25130-02

Copyright © 2011, 2021, Oracle and/or its affiliates.

Primary Author: Frederick Kush

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Changes in Oracle Big Data Appliance Release 5.2

Part I Administration

1 Introducing Oracle Big Data Appliance

1.1 What Is Big Data? 1-1

1.1.1 High Variety 1-1

1.1.2 High Complexity 1-2

1.1.3 High Volume 1-2

1.1.4 High Velocity 1-2

1.2 The Oracle Big Data Solution 1-2

1.3 Software for Big Data Appliance 1-3

1.3.1 Software Component Overview 1-4

1.4 Acquiring Data for Analysis 1-5

1.4.1 Hadoop Distributed File System 1-5

1.4.2 Apache Hive 1-6

1.4.3 Oracle NoSQL Database 1-6

1.5 Allocating Resources Among Services 1-7

1.6 Organizing Big Data 1-7

1.6.1 MapReduce 1-7

1.6.2 Oracle Big Data Connectors 1-8

1.6.2.1 Oracle SQL Connector for Hadoop Distributed File System 1-9

1.6.2.2 Oracle Loader for Hadoop 1-9

1.6.2.3 Oracle XQuery for Hadoop 1-9

1.6.2.4 Oracle R Advanced Analytics for Hadoop 1-9

1.6.2.5 Oracle Data Integrator Enterprise Edition 1-10

1.6.2.6 Oracle Shell for Hadoop Loaders 1-10

1.6.3 Oracle R Support for Big Data 1-10

1.7 Analyzing and Visualizing Big Data 1-11

1.8 Best Practices 1-11

iii

2 Security for Oracle Big Data Appliance

2.1 Overview 2-1

2.2 About Predefined Users and Groups 2-1

2.3 About User Authentication 2-2

2.4 About Fine-Grained Authorization 2-2

2.5 About HDFS Transparent Encryption 2-3

2.6 About HTTPS/Network Encryption 2-4

2.6.1 Configuring Web Browsers to use Kerberos Authentication 2-5

2.7 Port Numbers Used on Oracle Big Data Appliance 2-6

2.8 Additional Guidance for Securing Clusters 2-7

3 Administering Oracle Big Data Appliance

3.1 Monitoring Multiple Clusters Using Oracle Enterprise Manager 3-1

3.1.1 Using the Enterprise Manager Web Interface 3-1

3.1.2 Using the Enterprise Manager Command-Line Interface 3-2

3.2 Managing Operations Using Cloudera Manager 3-3

3.2.1 Monitoring the Status of Oracle Big Data Appliance 3-3

3.2.2 Performing Administrative Tasks 3-5

3.2.3 Managing CDH Services With Cloudera Manager 3-5

3.3 Using Hadoop Monitoring Utilities 3-5

3.3.1 Monitoring MapReduce Jobs 3-5

3.3.2 Monitoring the Health of HDFS 3-6

3.4 Using Cloudera Hue to Interact With Hadoop 3-7

3.5 About the Oracle Big Data Appliance Software 3-9

3.5.1 Unconfigured Software 3-9

3.5.2 Allocating Resources Among Services 3-10

3.6 About CDH Clusters 3-10

3.6.1 For New Clusters: High Availability HiveServer2 and Oozie 3-10

3.6.1.1 Configuring HA for the HiveServer2 and Oozie Load Balancer 3-12

3.6.2 Roles on a Three-Node Development Cluster 3-13

3.6.3 Role Locations on Rack 1 of a CDH Cluster with Four or More Nodes 3-14

3.6.4 Role Locations on Additional Racks of a Cluster 3-16

3.6.5 About MapReduce 3-17

3.6.6 Automatic Failover of the NameNode 3-17

3.6.7 Automatic Failover of the ResourceManager 3-18

3.6.8 Map and Reduce Resource Allocation 3-19

3.7 About Oracle NoSQL Database Clusters 3-19

3.8 About Kafka Clusters 3-19

3.8.1 Where Do the Services Run on a Kafka Cluster? 3-19

3.9 Effects of Hardware on Software Availability 3-21

iv

3.9.1 Logical Disk Layout 3-21

3.9.2 Critical and Noncritical CDH Nodes 3-23

3.9.2.1 High Availability or Single Points of Failure? 3-23

3.9.2.2 Where Do the Critical Services Run? 3-24

3.9.3 First NameNode Node 3-24

3.9.4 Second NameNode Node 3-24

3.9.5 First ResourceManager Node 3-24

3.9.6 Second ResourceManager Node 3-25

3.9.7 Noncritical CDH Nodes 3-25

3.10 Managing a Hardware Failure 3-25

3.10.1 Prerequisites for Managing a Failing Node 3-26

3.10.2 Managing a Failing CDH Critical Node 3-26

3.10.3 Managing a Failing Noncritical Node 3-28

3.11 Stopping and Starting Oracle Big Data Appliance 3-29

3.11.1 Prerequisites 3-29

3.11.2 Stopping Oracle Big Data Appliance 3-30

3.11.2.1 Stopping All Managed Services 3-30

3.11.2.2 Stopping Cloudera Manager Server 3-31

3.11.2.3 Stopping Oracle Data Integrator Agent 3-31

3.11.2.4 Dismounting NFS Directories 3-32

3.11.2.5 Stopping the Servers 3-32

3.11.2.6 Stopping the InfiniBand and Cisco Switches 3-32

3.11.3 Starting Oracle Big Data Appliance 3-33

3.11.3.1 Powering Up Oracle Big Data Appliance 3-33

3.11.3.2 Starting the HDFS Software Services 3-33

3.11.3.3 Starting Oracle Data Integrator Agent 3-34

3.12 Auditing Oracle Big Data Appliance 3-34

3.13 Collecting Diagnostic Information for Oracle Customer Support 3-34

4 Supporting User Access to Oracle Big Data Appliance

4.1 About Accessing a Kerberos-Secured Cluster 4-1

4.2 Providing Remote Client Access to CDH 4-2

4.2.1 Prerequisites 4-2

4.2.2 Installing a CDH Client on Any Supported Operating System 4-3

4.2.3 Configuring a CDH Client for an Unsecured Cluster 4-3

4.2.4 Configuring a CDH Client for a Kerberos-Secured Cluster 4-4

4.2.5 Verifying Access to a Cluster from the CDH Client 4-5

4.3 Providing Remote Client Access to Hive 4-6

4.4 Managing User Accounts 4-8

4.4.1 Creating Hadoop Cluster Users 4-8

v

4.4.1.1 Creating Users on an Unsecured Cluster 4-8

4.4.1.2 Creating Users on a Secured Cluster 4-9

4.4.2 Providing User Login Privileges (Optional) 4-9

4.5 Recovering Deleted Files 4-10

4.5.1 Restoring Files from the Trash 4-10

4.5.2 Changing the Trash Interval 4-11

4.5.3 Disabling the Trash Facility 4-12

4.5.3.1 Completely Disabling the Trash Facility 4-12

4.5.3.2 Disabling the Trash Facility for Local HDFS Clients 4-12

4.5.3.3 Disabling the Trash Facility for a Remote HDFS Client 4-13

5 Configuring Oracle Exadata Database Machine for Use with Oracle
Big Data Appliance

5.1 About Optimizing Communications 5-1

5.1.1 About Applications that Pull Data Into Oracle Exadata Database
Machine 5-1

5.1.2 About Applications that Push Data Into Oracle Exadata Database
Machine 5-2

5.2 Prerequisites for Optimizing Communications 5-2

5.3 Specifying the InfiniBand Connections to Oracle Big Data Appliance 5-3

5.4 Specifying the InfiniBand Connections to Oracle Exadata Database Machine 5-4

5.5 Enabling SDP on Exadata Database Nodes 5-4

5.6 Creating an SDP Listener on the InfiniBand Network 5-6

Part II Oracle DataSource for Apache Hadoop

6 Oracle DataSource for Apache Hadoop (OD4H)

6.1 Operational Data, Big Data and Requirements 6-1

6.2 Overview of Oracle DataSource for Apache Hadoop (OD4H) 6-1

6.2.1 Opportunity with Hadoop 2.x 6-2

6.2.2 Oracle Tables as Hadoop Data Source 6-2

6.2.3 External Tables 6-3

6.2.3.1 TBLPROPERTIES 6-4

6.2.3.2 SERDE PROPERTIES 6-6

6.2.4 List of jars in the OD4H package 6-6

6.3 How does OD4H work? 6-6

6.3.1 Create a new Oracle Database Table or Reuse an Existing Table 6-7

6.3.2 Hive DDL 6-7

6.3.3 Create External Tables in Hive 6-8

vi

6.4 Features of OD4H 6-9

6.4.1 Performance And Scalability Features 6-9

6.4.1.1 Splitters 6-10

6.4.1.2 Choosing a Splitter 6-12

6.4.1.3 Predicate Pushdown 6-13

6.4.1.4 Projection Pushdown 6-14

6.4.1.5 Partition Pruning 6-14

6.4.2 Smart Connection Management 6-15

6.4.3 Security Features 6-15

6.4.3.1 Improved Authentication 6-16

6.5 Use HiveQL with OD4H 6-19

6.6 Use Spark SQL with OD4H 6-19

6.7 Writing Back to Oracle Database 6-20

Glossary

Index

vii

Changes in Oracle Big Data Appliance
Release 5.2

See Changes In Oracle Big Data Appliance 5.2 in the Oracle Big Data Appliance
Owner's Guide for a summary of new features as well as a list of important software
updates since the previous release.

Changes in Oracle Big Data Appliance Release 5.2

viii

Part I
Administration

This part describes Oracle Big Data Appliance and provides instructions for routine
administrative tasks. It contains the following chapters:

• Introducing Oracle Big Data Appliance

• Security for Oracle Big Data Appliance

• Administering Oracle Big Data Appliance

• Supporting User Access to Oracle Big Data Appliance

• Configuring Oracle Exadata Database Machine for Use with Oracle Big Data
Appliance

1
Introducing Oracle Big Data Appliance

This chapter presents an overview of Oracle Big Data Appliance and describes the
software installed on the system. This chapter contains the following sections:

• What Is Big Data?

• The Oracle Big Data Solution

• Software for Big Data Appliance

• Acquiring Data for Analysis

• Organizing Big Data

• Analyzing and Visualizing Big Data

1.1 What Is Big Data?
Using transactional data as the source of business intelligence has been
commonplace for many years. As digital technology and the World Wide Web
spread into every aspect of modern life, other sources of data can make important
contributions to business decision making. Many businesses are looking to these new
data sources. They are finding opportunities in analyzing vast amounts of data that
until recently was discarded.

Big data is characterized by:

• A variety of data sources

• A complexity of data types

• A high volume of data flow

• A high velocity of data transactions

These characteristics pinpoint the challenges in deriving value from big data, and the
differences between big data and traditional data sources that primarily provide highly
structured, transactional data.

1.1.1 High Variety
Big data is derived from a variety of sources, such as:

• Equipment sensors: Medical, manufacturing, transportation, and other machine
sensor transmissions

• Machines: Call detail records, web logs, smart meter readings, Global Positioning
System (GPS) transmissions, and trading systems records

• Social media: Data streams from social media sites such as Facebook and
blogging sites such as Twitter

Analysts can mine this data repeatedly as they devise new ways of extracting
meaningful insights. What seems irrelevant today might prove to be highly pertinent
to your business tomorrow.

1-1

Challenge: Delivering flexible systems to handle this high variety

1.1.2 High Complexity
As the variety of data types increases, the complexity of the system increases. The
complexity of data types also increases in big data because of its low structure.

Challenge: Finding solutions that apply across a broad range of data types.

1.1.3 High Volume
Social media can generate terabytes of daily data. Equipment sensors and other
machines can generate that much data in less than an hour.

Even traditional data sources for data warehouses, such as customer profiles from
customer relationship management (CRM) systems, transactional enterprise resource
planning (ERP) data, store transactions, and general ledger data, have increased
tenfold in volume over the past decade.

Challenge: Providing scalability and ease in growing the system

1.1.4 High Velocity
Huge numbers of sensors, web logs, and other machine sources generate data
continuously and at a much higher speed than traditional sources, such as individuals
entering orders into a transactional database.

Challenge: Handling the data at high speed without stressing the structured systems

1.2 The Oracle Big Data Solution
Oracle Big Data Appliance is an engineered system comprising both hardware and
software components. The hardware is optimized to run the enhanced big data
software components.

Oracle Big Data Appliance delivers:

• A complete and optimized solution for big data

• Single-vendor support for both hardware and software

• An easy-to-deploy solution

• Tight integration with Oracle Database and Oracle Exadata Database Machine

Oracle provides a big data platform that captures, organizes, and supports deep
analytics on extremely large, complex data streams flowing into your enterprise from
many data sources. You can choose the best storage and processing location for your
data depending on its structure, workload characteristics, and end-user requirements.

Oracle Database enables all data to be accessed and analyzed by a large user
community using identical methods. By adding Oracle Big Data Appliance in front
of Oracle Database, you can bring new sources of information to an existing data
warehouse. Oracle Big Data Appliance is the platform for acquiring and organizing big
data so that the relevant portions with true business value can be analyzed in Oracle
Database.

Chapter 1
The Oracle Big Data Solution

1-2

For maximum speed and efficiency, Oracle Big Data Appliance can be connected
to Oracle Exadata Database Machine running Oracle Database. Oracle Exadata
Database Machine provides outstanding performance in hosting data warehouses and
transaction processing databases. Moreover, Oracle Exadata Database Machine can
be connected to Oracle Exalytics In-Memory Machine for the best performance of
business intelligence and planning applications. The InfiniBand connections between
these engineered systems provide high parallelism, which enables high-speed data
transfer for batch or query workloads.

The following figure shows the relationships among these engineered systems.

Figure 1-1 Oracle Engineered Systems for Big Data

Social media
Blogs
Smart phones
Meters
Sensors
Web logs
Trading systems
GPS signals

InfiniBand

InfiniBand

Oracle Big Data
Appliance

Oracle
Exadata

Oracle
Exalytics

Analyze & Visualize

Organize

Acquire

Stream

1.3 Software for Big Data Appliance
The Oracle Linux operating system and Cloudera's Distribution including Apache
Hadoop (CDH) underlie all other software components installed on Oracle Big Data
Appliance. CDH is an integrated stack of components that have been tested and
packaged to work together.

CDH has a batch processing infrastructure that can store files and distribute work
across a set of computers. Data is processed on the same computer where it is stored.
In a single Oracle Big Data Appliance rack, CDH distributes the files and workload
across 18 servers, which compose a cluster. Each server is a node in the cluster.

The software framework consists of these primary components:

Chapter 1
Software for Big Data Appliance

1-3

• File system: The Hadoop Distributed File System (HDFS) is a highly scalable
file system that stores large files across multiple servers. It achieves reliability by
replicating data across multiple servers without RAID technology. It runs on top of
the Linux file system on Oracle Big Data Appliance.

• MapReduce engine: The MapReduce engine provides a platform for the
massively parallel execution of algorithms written in Java. Oracle Big Data
Appliance 3.0 runs YARN by default.

• Administrative framework: Cloudera Manager is a comprehensive administrative
tool for CDH. In addition, you can use Oracle Enterprise Manager to monitor both
the hardware and software on Oracle Big Data Appliance.

• Apache projects: CDH includes Apache projects for MapReduce and HDFS,
such as Hive, Pig, Oozie, ZooKeeper, HBase, Sqoop, and Spark.

• Cloudera applications: Oracle Big Data Appliance installs all products included in
Cloudera Enterprise Data Hub Edition, including Impala, Search, and Navigator.

1.3.1 Software Component Overview
The major software components perform three basic tasks:

• Acquire

• Organize

• Analyze and visualize

The best tool for each task depends on the density of the information and the
degree of structure. The following figure shows the relationships among the tools and
identifies the tasks that they perform.

Figure 1-2 Oracle Big Data Appliance Software Overview

Note:

In Oracle Big Data Appliance 5.0, Oracle Big Data SQL is temporarily de-
supported.

Chapter 1
Software for Big Data Appliance

1-4

Acquire Organize Analyze

Oracle Big Data Appliance

Data Variety

Big Data

Schema

Information
Density

HDFS

Oracle
NoSQL
Database

CDH

Oracle Database
(Data Warehouse)

In-Database Analytics

Oracle Advanced Analytics
Oracle R Enterprise
Data Mining

Oracle Business
Intelligence

Oracle Data Integrator

Oracle Big Data
Connectors

Oracle Big Data
SQL

Oracle Database
(Transactional)

1.4 Acquiring Data for Analysis
Databases used for online transaction processing (OLTP) are the traditional data
sources for data warehouses. The Oracle solution enables you to analyze traditional
data stores with big data in the same Oracle data warehouse. Relational data
continues to be an important source of business intelligence, although it runs on
separate hardware from Oracle Big Data Appliance.

Oracle Big Data Appliance provides these facilities for capturing and storing big data:

• Hadoop Distributed File System

• Apache Hive

• Oracle NoSQL Database

1.4.1 Hadoop Distributed File System
Cloudera's Distribution including Apache Hadoop (CDH) on Oracle Big Data Appliance
uses the Hadoop Distributed File System (HDFS). HDFS stores extremely large files
containing record-oriented data. On Oracle Big Data Appliance, HDFS splits large data
files into chunks of 256 megabytes (MB), and replicates each chunk across three
different nodes in the cluster. The size of the chunks and the number of replications
are configurable.

Chunking enables HDFS to store files that are larger than the physical storage of one
server. It also allows the data to be processed in parallel across multiple computers
with multiple processors, all working on data that is stored locally. Replication ensures
the high availability of the data: if a server fails, the other servers automatically take
over its work load.

HDFS is typically used to store all types of big data.

Chapter 1
Acquiring Data for Analysis

1-5

See Also:

• For conceptual information about Hadoop technologies, refer to this
third-party publication:

Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly
Media Inc., 2012, ISBN: 978-1449311520).

• For documentation about Cloudera's Distribution including Apache
Hadoop, see the Cloudera documentation at

http://www.cloudera.com/

1.4.2 Apache Hive
Hive is an open-source data warehouse that supports data summarization, ad hoc
querying, and data analysis of data stored in HDFS. It uses a SQL-like language
called HiveQL. An interpreter generates MapReduce code from the HiveQL queries.
By storing data in Hive, you can avoid writing MapReduce programs in Java.

Hive is a component of CDH and is always installed on Oracle Big Data Appliance.
Oracle Big Data Connectors can access Hive tables.

1.4.3 Oracle NoSQL Database
Oracle NoSQL Database is a distributed key-value database built on the proven
storage technology of Berkeley DB Java Edition. Whereas HDFS stores unstructured
data in very large files, Oracle NoSQL Database indexes the data and supports
transactions. But unlike Oracle Database, which stores highly structured data, Oracle
NoSQL Database has relaxed consistency rules, no schema structure, and only
modest support for joins, particularly across storage nodes.

NoSQL databases, or "Not Only SQL" databases, have developed over the past
decade specifically for storing big data. However, they vary widely in implementation.
Oracle NoSQL Database has these characteristics:

• Uses a system-defined, consistent hash index for data distribution

• Supports high availability through replication

• Provides single-record, single-operation transactions with relaxed consistency
guarantees

• Provides a Java API

Oracle NoSQL Database is designed to provide highly reliable, scalable, predictable,
and available data storage. The key-value pairs are stored in shards or partitions (that
is, subsets of data) based on a primary key. Data on each shard is replicated across
multiple storage nodes to ensure high availability. Oracle NoSQL Database supports
fast querying of the data, typically by key lookup.

An intelligent driver links the NoSQL database with client applications and provides
access to the requested key-value on the storage node with the lowest latency.

Oracle NoSQL Database includes hashing and balancing algorithms to ensure proper
data distribution and optimal load balancing, replication management components to

Chapter 1
Acquiring Data for Analysis

1-6

http://www.oracle.com/pls/topic/lookup?ctx=en/bigdata/big-data-appliance/4.13&id=cloudera

handle storage node failure and recovery, and an easy-to-use administrative interface
to monitor the state of the database.

Oracle NoSQL Database is typically used to store customer profiles and similar data
for identifying and analyzing big data. For example, you might log in to a website
and see advertisements based on your stored customer profile (a record in Oracle
NoSQL Database) and your recent activity on the site (web logs currently streaming
into HDFS).

Oracle NoSQL Database is an optional component of Oracle Big Data Appliance and
runs on a separate cluster from CDH.

See Also:

• Oracle NoSQL Database documentation

• Oracle Big Data Appliance Licensing Information

1.5 Allocating Resources Among Services
You can allocate resources to each service—HDFS, YARN, Hive, and so forth—as a
percentage of the total resource pool. Cloudera Manager automatically calculates the
recommended resource management settings based on these percentages. The static
service pools isolate services on the cluster, so that a high load on one service as a
limited impact on the other services.

To allocate resources among services:

1. Log in as admin to Cloudera Manager.

2. Open the Clusters menu at the top of the page, then select Static Service Pools
under Resource Management.

3. Select Configuration.

4. Follow the steps of the wizard, or click Change Settings Directly to edit the
current settings.

1.6 Organizing Big Data
Oracle Big Data Appliance provides several ways of organizing, transforming, and
reducing big data for analysis:

• MapReduce

• Oracle Big Data Connectors

• Oracle R Support for Big Data

1.6.1 MapReduce
The MapReduce engine provides a platform for the massively parallel execution
of algorithms written in Java. MapReduce uses a parallel programming model for
processing data on a distributed system. It can process vast amounts of data quickly

Chapter 1
Allocating Resources Among Services

1-7

http://docs.oracle.com/cd/NOSQL/html/index.html

and can scale linearly. It is particularly effective as a mechanism for batch processing
of unstructured and semistructured data. MapReduce abstracts lower-level operations
into computations over a set of keys and values.

Although big data is often described as unstructured, incoming data always has some
structure. However, it does not have a fixed, predefined structure when written to
HDFS. Instead, MapReduce creates the desired structure as it reads the data for a
particular job. The same data can have many different structures imposed by different
MapReduce jobs.

A simplified description of a MapReduce job is the successive alternation of two
phases: the Map phase and the Reduce phase. Each Map phase applies a transform
function over each record in the input data to produce a set of records expressed
as key-value pairs. The output from the Map phase is input to the Reduce phase.
In the Reduce phase, the Map output records are sorted into key-value sets, so that
all records in a set have the same key value. A reducer function is applied to all the
records in a set, and a set of output records is produced as key-value pairs. The Map
phase is logically run in parallel over each record, whereas the Reduce phase is run in
parallel over all key values.

Note:

Oracle Big Data Appliance uses the Yet Another Resource Negotiator
(YARN) implementation of MapReduce.

1.6.2 Oracle Big Data Connectors
Oracle Big Data Connectors facilitate data access between data stored in CDH
and Oracle Database. The connectors are licensed separately from Oracle Big Data
Appliance and include:

• Oracle SQL Connector for Hadoop Distributed File System

• Oracle Loader for Hadoop

• Oracle XQuery for Hadoop

• Oracle R Advanced Analytics for Hadoop

• Oracle Shell for Hadoop Loaders

• Oracle Data Integrator Enterprise Edition

Note:

Oracle Data Integrator (ODI) is not supported in this release of Oracle
Big Data Appliance.

See Also:

Oracle Big Data Connectors

Chapter 1
Organizing Big Data

1-8

https://docs.oracle.com/en/bigdata/big-data-connectors/index.html

1.6.2.1 Oracle SQL Connector for Hadoop Distributed File System
Oracle SQL Connector for Hadoop Distributed File System (Oracle SQL Connector
for HDFS) provides read access to HDFS from an Oracle database using external
tables.

An external table is an Oracle Database object that identifies the location of data
outside of the database. Oracle Database accesses the data by using the metadata
provided when the external table was created. By querying the external tables, users
can access data stored in HDFS as if that data were stored in tables in the database.
External tables are often used to stage data to be transformed during a database load.

You can use Oracle SQL Connector for HDFS to:

• Access data stored in HDFS files

• Access Hive tables.

• Access Data Pump files generated by Oracle Loader for Hadoop

• Load data extracted and transformed by Oracle Data Integrator

1.6.2.2 Oracle Loader for Hadoop
Oracle Loader for Hadoop is an efficient and high-performance loader for fast
movement of data from a Hadoop cluster into a table in an Oracle database. It can
read and load data from a wide variety of formats. Oracle Loader for Hadoop partitions
the data and transforms it into a database-ready format in Hadoop. It optionally sorts
records by a sorting key (such as a primary key) before loading the data or creating
output files. The load runs as a MapReduce job on the Hadoop cluster.

1.6.2.3 Oracle XQuery for Hadoop
Oracle XQuery for Hadoop runs transformations expressed in the XQuery language
by translating them into a series of MapReduce jobs, which are executed in parallel
on the Hadoop cluster. The input data can be located in HDFS or Oracle NoSQL
Database. Oracle XQuery for Hadoop can write the transformation results to HDFS,
Oracle NoSQL Database, or Oracle Database.

1.6.2.4 Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop is a collection of R packages that provides:

• Interfaces to work with Hive tables, Apache Hadoop compute infrastructure, local
R environment and database tables

• Predictive analytic techniques written in R or Java as Hadoop MapReduce jobs
that can be applied to data in HDFS files

Using simple R functions, you can copy data between R memory, the local file system,
HDFS, and Hive. You can write mappers and reducers in R, schedule these R
programs to execute as Hadoop MapReduce jobs, and return the results to any of
those locations.

Chapter 1
Organizing Big Data

1-9

1.6.2.5 Oracle Data Integrator Enterprise Edition
Oracle Data Integrator (ODI) Enterprise Edition extracts, transforms, and loads data
into Oracle Database from a wide range of sources.

In ODI, a knowledge module (KM) is a code template dedicated to a specific task in
the data integration process. You use Oracle Data Integrator Studio to load, select,
and configure the KMs for your particular application. More than 150 KMs are available
to help you acquire data from a wide range of third-party databases and other data
repositories. You only need to load a few KMs for any particular job.

Oracle Data Integrator Enterprise Edition contains the KMs specifically for use with big
data.

The ODI agent mounted on Oracle Big Data Appliance is the Standalone Agent (rather
than the Colocated Agent or Java EE Agent).

You can establish master-child relationships between ODI agents on Oracle Big Data
Appliance. You can also configure an external HA master Java EE Agent to distribute
jobs to multiple Standalone Agents on Oracle Big Data Appliance, which is useful
if your enterprise uses ODI to extract data from other sources in addition to the
appliance.

1.6.2.6 Oracle Shell for Hadoop Loaders

Oracle Shell for Hadoop Loaders is a helper shell that provides a simple to use
command line interface to Oracle Loader for Hadoop, Oracle SQL Connector for
HDFS, and the Copy to Hadoop feature of Big Data SQL.

1.6.3 Oracle R Support for Big Data
R is an open-source language and environment for statistical analysis and graphing
It provides linear and nonlinear modeling, standard statistical methods, time-series
analysis, classification, clustering, and graphical data displays. Thousands of open-
source packages are available in the Comprehensive R Archive Network (CRAN) for
a spectrum of applications, such as bioinformatics, spatial statistics, and financial and
marketing analysis. The popularity of R has increased as its functionality matured to
rival that of costly proprietary statistical packages.

Analysts typically use R on a PC, which limits the amount of data and the processing
power available for analysis. Oracle eliminates this restriction by extending the R
platform to directly leverage Oracle Big Data Appliance. Oracle R Distribution is
installed on all nodes of Oracle Big Data Appliance.

Oracle R Advanced Analytics for Hadoop provides R users with high-performance,
native access to HDFS and the MapReduce programming framework, which enables
R programs to run as MapReduce jobs on vast amounts of data. Oracle R Advanced
Analytics for Hadoop is included in the Oracle Big Data Connectors. See "Oracle R
Advanced Analytics for Hadoop".

Oracle R Enterprise is a component of the Oracle Advanced Analytics option to
Oracle Database. It provides:

• Transparent access to database data for data preparation and statistical analysis
from R

Chapter 1
Organizing Big Data

1-10

• Execution of R scripts at the database server, accessible from both R and SQL

• A wide range of predictive and data mining in-database algorithms

Oracle R Enterprise enables you to store the results of your analysis of big data in an
Oracle database, or accessed for display in dashboards and applications.

Both Oracle R Advanced Analytics for Hadoop and Oracle R Enterprise make Oracle
Database and the Hadoop computational infrastructure available to statistical users
without requiring them to learn the native programming languages of either one.

See Also:

• For information about R, go to

http://www.r-project.org/

• For information about Oracle R Enterprise, go to

http://docs.oracle.com/cd/E67822_01/index.htm

1.7 Analyzing and Visualizing Big Data
After big data is transformed and loaded in Oracle Database, you can use the full
spectrum of Oracle business intelligence solutions and decision support products to
further analyze and visualize all your data.

1.8 Best Practices
The Data Warehouse Insider blog site provides expert advice on best practices for
administering and using Oracle Big Data Appliance.

Hadoop Best Practices

Chapter 1
Analyzing and Visualizing Big Data

1-11

http://www.oracle.com/pls/topic/lookup?ctx=en/bigdata/big-data-appliance/4.13&id=r_project
http://docs.oracle.com/cd/E67822_01/index.htm
https://blogs.oracle.com/datawarehousing/hadoop-best-practices

2
Security for Oracle Big Data Appliance

Oracle Big Data Appliance development focuses on delivering an engineered system
that is highly secure. This spans all aspects of the product: strong authentication
(Kerberos), authorization, network encryption, encryption for data at rest, auditing and
lineage/impact analysis.

2.1 Overview
You can take the precautions described in this section to thwart unauthorized use of
the software and data on Oracle Big Data Appliance:

• About Predefined Users and Groups

• About User Authentication

• About Fine-Grained Authorization

• About HDFS Transparent Encryption

• About HTTPS / Network Encryption

• Port Numbers Used on Oracle Big Data Appliance

• Additional Guidance for Securing Clusters

See Also:

Oracle Big Data Appliance development abides by Oracle's comprehensive
OSSA (Oracle Software Security Assurance) standards.

https://www.oracle.com/corporate/security-practices/assurance/

2.2 About Predefined Users and Groups
Every open-source package installed on Oracle Big Data Appliance creates one or
more users and groups. Most of these users do not have login privileges, shells, or
home directories. They are used by daemons and are not intended as an interface
for individual users. For example, Hadoop operates as the hdfs user, MapReduce
operates as mapred, and Hive operates as hive.

You can use the oracle identity to run Hadoop and Hive jobs immediately after the
Oracle Big Data Appliance software is installed. This user account has login privileges,
a shell, and a home directory.

Oracle NoSQL Database and Oracle Data Integrator run as the oracle user. Its
primary group is oinstall.

2-1

https://www.oracle.com/corporate/security-practices/assurance/

Note:

Do not delete, re-create, or modify the users that are created during
installation, because they are required for the software to operate.

The following table identifies the operating system users and groups that are created
automatically during installation of Oracle Big Data Appliance software for use by CDH
components and other software packages.

Table 2-1 Operating System Users and Groups

User Name Group Used By Login Rights

flume flume Apache Flume parent and nodes No

hbase hbase Apache HBase processes No

hdfs hadoop NameNode, DataNode No

hive hive Hive metastore and server processes No

hue hue Hue processes No

mapred hadoop ResourceManager, NodeManager, Hive
Thrift daemon

Yes

mysql mysql MySQL server Yes

oozie oozie Oozie server No

oracle dba,
oinstall

Oracle NoSQL Database, Oracle Loader for
Hadoop, Oracle Data Integrator, and the
Oracle DBA

Yes

sqoop sqoop Apache Sqoop metastore No

svctag Auto Service Request No

zookeeper zookeeper ZooKeeper processes No

2.3 About User Authentication
Oracle Big Data Appliance supports Kerberos security as a software installation
option. See Supporting User Access to Oracle Big Data Appliance for details about
setting up clients and users to access a Kerberos-protected cluster.

2.4 About Fine-Grained Authorization
The typical authorization model on Hadoop is at the HDFS file level, such that
users either have access to all of the data in the file or none. In contrast, Apache
Sentry integrates with the Hive and Impala SQL-query engines to provide fine-grained
authorization to data and metadata stored in Hadoop.

Oracle Big Data Appliance automatically configures Sentry during software installation,
beginning with Mammoth utility version 2.5.

Chapter 2
About User Authentication

2-2

See Also:

• Cloudera Manager Help

• How to Add or Remove Sentry on Oracle Big Data Appliance v4.2
or Higher with bdacli (Doc ID 2052733.1) on My Oracle Support.

2.5 About HDFS Transparent Encryption
HDFS Transparent Encryption protects Hadoop data that is at rest on disk. After HDFS
Transparent Encryption is enabled for a cluster on Oracle Big Data Appliance, data
writes and reads to encrypted zones (HDFS directories) on the disk are automatically
encrypted and decrypted. This process is “transparent” because it is invisible to the
application working with the data.

HDFS Transparent Encryption does not affect user access to Hadoop data, although it
can have a minor impact on performance.

HDFS Transparent Encryption is an option that you can select during the initial
installation of the software by the Mammoth utility. You can also enable or disable
HDFS Transparent Encryption at any time by using the bdacli utility. Note that HDFS
Transparent Encryption can be installed only on a Kerberos-secured cluster.

Oracle recommends that you set up the Navigator Key Trustee (the service that
manages keys and certificates) on a separate server, external to the Oracle Big Data
Appliance.

See the following MOS documents at My Oracle Support for instructions on installing
and enabling HDFS Transparent Encryption.

Title MOS Doc ID

How to Setup Highly Available Active and
Passive Key Trustee Servers on BDA V4.4
Using 5.5 Parcels

2112644.1
Installing using parcels as described in
this MOS document is recommended over
package-based installation. See Cloudera’s
comments on Parcels.

How to Enable/Disable HDFS Transparent
Encryption on Oracle Big Data Appliance V4.4
with bdacli

2111343.1

How to Create Encryption Zones on HDFS on
Oracle Big Data Appliance V4.4

2111829.1

Note:

If either HDFS Transparent Encryption or Kerberos is disabled, data stored in
the HDFS Transparent Encryption zones in the cluster will remain encrypted
and therefore inaccessible. To restore access to the data, re-enable HDFS
Transparent Encryption using the same key provider.

Chapter 2
About HDFS Transparent Encryption

2-3

https://support.oracle.com/rs?type=doc&id=2052733.1
https://support.oracle.com/rs?type=doc&id=2052733.1
http://support.oracle.com
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_parcels.html?scroll=concept_fwl_d1x_k4_unique_1

See Also:

Cloudera documentation about HDFS at-rest encryption at http://
www.cloudera.com for more information about managing files in encrypted
zones.

2.6 About HTTPS/Network Encryption
HTTPS Network/Encryption on the Big Data Appliance has two components :

• Web Interface Encryption

Configures HTTPS for the following web interfaces: Cloudera Manager, Oozie, and
HUE. This encryption is now enabled automatically in new Mammoth installations.
For current installations it can be enabled via the bdacli utility. This feature does
not require that Kerberos is enabled.

• Encryption for Data in Transit and Services

There are two subcomponents to this feature. Both are options that can be
enabled in the Configuration Utility at installation time or enabled/disabled using
the bdacli utility at any time. Both require that Kerberos is enabled.

– Encrypt Hadoop Services

This includes SSL encryption for HDFS, MapReduce, and YARN web
interfaces, as well as encrypted shuffle for MapReduce and YARN. It also
enable authentication for access to the web consoles for the MapReduce, and
YARN roles.

– Encrypt HDFS Data Transport

This option will enable encryption of data transferred between DataNodes and
clients, and among DataNodes.

HTTPS/Network Encryption is enabled and disabled on a per cluster basis. The
Configuration Utility described in the Oracle Big Data Appliance Owner’s Guide,
includes settings for enabling encryption for Hadoop Services and HDFS Data
Transport when a cluster is created. The bdacli utility reference pages (also in the
Oracle Big Data Appliance Owner’s Guide) provide HTTPS/Network Encryption
command line options.

See Also:

Supporting User Access to Oracle Big Data Appliance for an overview of how
Kerberos is used to secure CDH clusters.

About HDFS Transparent Encryption for information about Oracle Big Data
Appliance security for Hadoop data at-rest.

Cloudera documentation at http://www.cloudera.com for more information
about HTTPS communication in Cloudera Manager and network-level
encryption in CDH.

Chapter 2
About HTTPS/Network Encryption

2-4

http://cloudera.com
http://cloudera.com
http://www.cloudera.com

2.6.1 Configuring Web Browsers to use Kerberos Authentication

If web interface encryption is enabled, each web browser accessing an HDFS,
MapReduce, or YARN-encrypted web interface must be configured to authenticate
with Kerberos. Note that this is not necessary for the Cloudera Manager, Oozie, and
Hue web interfaces, which do not require Kerberos.

The following are the steps to configure Mozilla Firefox1, Microsoft Internet Explorer2,
and Google Chrome3 for Kerberos authentication.

To configure Mozilla Firefox:

1. Enter about:config in the Location Bar.

2. In the Search box on the about:config page, enter: network.negotiate-
auth.trusted-uris

3. Under Preference Name, double-click the network.negotiate-auth.trusted-
uris .

4. In the Enter string value dialog, enter the hostname or the domain name of
the web server that is protected by Kerberos. Separate multiple domains and
hostnames with a comma.

To configure Microsoft Internet Explorer:

1. Configure the Local Intranet Domain:

a. Open Microsoft Internet Explorer and click the Settings "gear" icon in the
top-right corner. Select Internet options.

b. Select the Security tab.

c. Select the Local intranet zone and click Sites.

d. Make sure that the first two options, Include all local (intranet)
sites not listed in other zones and Include all sites that
bypass the proxy server are checked.

e. Click Advanced on the Local intranet dialog box and, one at a time, add
the names of the Kerberos-protected domains to the list of websites.

f. Click Close.

g. Click OK to save your configuration changes, then click OK again to exit the
Internet Options panel.

2. Configure Intranet Authentication for Microsoft Internet Explorer:

a. Click the Settings "gear" icon in the top-right corner. Select Internet
Options.

b. Select the Security tab.

c. Select the Local Intranet zone and click the Custom level... button to open the
Security Settings - Local Intranet Zone dialog box.

1 Mozilla Firefox is a registered trademark of the Mozilla Foundation.
2 Microsoft Internet Explorer is a registered trademark of Microsoft Corporation.
3 Google Chrome is a registered trademark of Google Inc

Chapter 2
About HTTPS/Network Encryption

2-5

d. Scroll down to the User Authentication options and select Automatic
logon only in Intranet zone .

e. Click OK to save your changes.

To configure Google Chrome:

If you are using Microsoft Windows, use the Control Panel to navigate to the
Internet Options dialogue box. Configuration changes required are the same as those
described above for Microsoft Internet Explorer.

On4 or on Linux, add the --auth-server-whitelist parameter to the google-chrome
command. For example, to run Chrome from a Linux prompt, run the google-chrome
command as follows

 google-chrome --auth-server-whitelist = "hostname/domain"

Note:

On Microsoft Windows, the Windows user must be an user in the Kerberos
realm and must possess a valid ticket. If these requirements are not met,
an HTTP 403 is returned to the browser upon attempt to access a Kerberos-
secured web interface.

2.7 Port Numbers Used on Oracle Big Data Appliance
The following table identifies the port numbers that might be used in addition to those
used by CDH.

To view the ports used on a particular server:

1. In Cloudera Manager, click the Hosts tab at the top of the page to display the
Hosts page.

2. In the Name column, click a server link to see its detail page.

3. Scroll down to the Ports section.

See Also:

For the full list of CDH component port numbers, go to the Cloudera website
at

https://www.cloudera.com/documentation/enterprise/6/6.1/topics/
cdh_ports.html#cdh_ports

4 Mac OS is a registered trademark of Apple, Inc.

Chapter 2
Port Numbers Used on Oracle Big Data Appliance

2-6

https://www.cloudera.com/documentation/enterprise/6/6.1/topics/cdh_ports.html#cdh_ports
https://www.cloudera.com/documentation/enterprise/6/6.1/topics/cdh_ports.html#cdh_ports

Table 2-2 Oracle Big Data Appliance Port Numbers

Service Port

Automated Service Monitor (ASM) 30920

HiveServer2 (for High Availability only) 10015

HTTP Oozie (for High Availability only) 10021

HTTPS Oozie (for High Availability only) 10025

MySQL Database 3306

Oracle Data Integrator Agent 20910

Oracle NoSQL Database administration 5001

Oracle NoSQL Database processes 5010 to 5020

Oracle NoSQL Database registration 5000

Port map 111

rpc.statd 668

ssh 22

xinetd (service tag) 6481

Key Management Server (when hosted on the appliance) 16000

2.8 Additional Guidance for Securing Clusters
Use the following resources to learn how to further strengthen cluster security.

Oracle Blogs

• Secure Your Hadoop Cluster

• Securing Kafka Clusters

Tutorials

Securing the Oracle Big Data Appliance

Chapter 2
Additional Guidance for Securing Clusters

2-7

https://blogs.oracle.com/datawarehousing/secure-your-hadoop-cluster
https://blogs.oracle.com/datawarehousing/secure-kafka-cluster
https://apexapps.oracle.com/pls/apex/f?p=44785:24:16841244362683:::24:P24_CONTENT_ID,P24_PREV_PAGE:12907,24

3
Administering Oracle Big Data Appliance

This chapter provides information about the software and services installed on Oracle
Big Data Appliance. It contains these sections:

• Monitoring Multiple Clusters Using Oracle Enterprise Manager

• Managing Operations Using Cloudera Manager

• Using Hadoop Monitoring Utilities

• Using Cloudera Hue to Interact With Hadoop

• About the Oracle Big Data Appliance Software

• About CDH Clusters

• Effects of Hardware on Software Availability

• Managing a Hardware Failure

• Stopping and Starting Oracle Big Data Appliance

• Auditing Oracle Big Data Appliance

• Collecting Diagnostic Information for Oracle Customer Support

3.1 Monitoring Multiple Clusters Using Oracle Enterprise
Manager

An Oracle Enterprise Manager plug-in enables you to use the same system monitoring
tool for Oracle Big Data Appliance as you use for Oracle Exadata Database Machine
or any other Oracle Database installation. With the plug-in, you can view the status of
the installed software components in tabular or graphic presentations, and start and
stop these software services. You can also monitor the health of the network and the
rack components.

Oracle Enterprise Manager enables you to monitor all Oracle Big Data Appliance racks
on the same InfiniBand fabric. It provides summary views of both the rack hardware
and the software layout of the logical clusters.

Note:

Before you start, contact Oracle Support for up-to-date information about
Enterprise Manager plug-in functionality.

3.1.1 Using the Enterprise Manager Web Interface
After opening Oracle Enterprise Manager web interface, logging in, and selecting a
target cluster, you can drill down into these primary areas:

3-1

• InfiniBand network: Network topology and status for InfiniBand switches and
ports. See Figure 3-1.

• Hadoop cluster: Software services for HDFS, MapReduce, and ZooKeeper.

• Oracle Big Data Appliance rack: Hardware status including server hosts, Oracle
Integrated Lights Out Manager (Oracle ILOM) servers, power distribution units
(PDUs), and the Ethernet switch.

The following figure shows a small section of the cluster home page.

Figure 3-1 YARN Page in Oracle Enterprise Manager

To monitor Oracle Big Data Appliance using Oracle Enterprise Manager:

1. Download and install the plug-in. See Oracle Enterprise Manager System
Monitoring Plug-in Installation Guide for Oracle Big Data Appliance .

2. Log in to Oracle Enterprise Manager as a privileged user.

3. From the Targets menu, choose Big Data Appliance to view the Big Data
page. You can see the overall status of the targets already discovered by Oracle
Enterprise Manager.

4. Select a target cluster to view its detail pages.

5. Expand the target navigation tree to display the components. Information is
available at all levels.

6. Select a component in the tree to display its home page.

7. To change the display, choose an item from the drop-down menu at the top left of
the main display area.

3.1.2 Using the Enterprise Manager Command-Line Interface
The Enterprise Manager command-line interface (emcli) is installed on Oracle Big
Data Appliance along with all the other software. It provides the same functionality
as the web interface. You must provide credentials to connect to Oracle Management
Server.

To get help, enter emcli help.

Chapter 3
Monitoring Multiple Clusters Using Oracle Enterprise Manager

3-2

https://docs.oracle.com/bigdata/bda412/EMBDA/toc.htm
https://docs.oracle.com/bigdata/bda412/EMBDA/toc.htm

See Also:

Oracle Enterprise Manager Command Line Interface Guide

3.2 Managing Operations Using Cloudera Manager
Cloudera Manager is installed on Oracle Big Data Appliance to help you with
Cloudera's Distribution including Apache Hadoop (CDH) operations. Cloudera
Manager provides a single administrative interface to all Oracle Big Data Appliance
servers configured as part of the Hadoop cluster.

Cloudera Manager simplifies the performance of these administrative tasks:

• Monitor jobs and services

• Start and stop services

• Manage security and Kerberos credentials

• Monitor user activity

• Monitor the health of the system

• Monitor performance metrics

• Track hardware use (disk, CPU, and RAM)

Cloudera Manager runs on the ResourceManager node (node03) and is available on
port 7180.

To use Cloudera Manager:

1. Open a browser and enter a URL like the following:

In this example, bda1 is the name of the appliance, node03 is the name of
the server, example.com is the domain, and 7180 is the default port number for
Cloudera Manager.

2. Log in with a user name and password for Cloudera Manager. Only a user with
administrative privileges can change the settings. Other Cloudera Manager users
can view the status of Oracle Big Data Appliance.

See Also:

https://www.cloudera.com/documentation/enterprise/latest/topics/
cm_dg_about.html provides information on Cloudera
monitoring and diagnostics.

3.2.1 Monitoring the Status of Oracle Big Data Appliance
In Cloudera Manager, you can choose any of the following pages from the menu bar
across the top of the display:

Chapter 3
Managing Operations Using Cloudera Manager

3-3

https://docs.oracle.com/cd/E73210_01/EMCLI/GUID-4E306E13-0A06-46F2-BD3A-8F6AE0B9C6E2.htm#EMCLI101
https://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_about.html
https://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_about.html

• Home: Provides a graphic overview of activities and links to all services controlled
by Cloudera Manager. See the following figure.

• Clusters: Accesses the services on multiple clusters.

• Hosts: Monitors the health, disk usage, load, physical memory, swap space, and
other statistics for all servers in the cluster.

• Diagnostics: Accesses events and logs. Cloudera Manager collects historical
information about the systems and services. You can search for a particular
phrase for a selected server, service, and time period. You can also select the
minimum severity level of the logged messages included in the search: TRACE,
DEBUG, INFO, WARN, ERROR, or FATAL.

• Audits: Displays the audit history log for a selected time range. You can filter the
results by user name, service, or other criteria, and download the log as a CSV
file.

• Charts: Enables you to view metrics from the Cloudera Manager time-series data
store in a variety of chart types, such as line and bar.

• Backup: Accesses snapshot policies and scheduled replications.

• Administration: Provides a variety of administrative options, including Settings,
Alerts, Users, and Kerberos.

Rhe following figure shows the Cloudera Manager home page.

Figure 3-2 Cloudera Manager Home Page

Chapter 3
Managing Operations Using Cloudera Manager

3-4

3.2.2 Performing Administrative Tasks
As a Cloudera Manager administrator, you can change various properties for
monitoring the health and use of Oracle Big Data Appliance, add users, and set up
Kerberos security.

To access Cloudera Manager Administration:

1. Log in to Cloudera Manager with administrative privileges.

2. Click Administration, and select a task from the menu.

3.2.3 Managing CDH Services With Cloudera Manager
Cloudera Manager provides the interface for managing these services:

• HDFS

• Hive

• Hue

• Oozie

• YARN

• ZooKeeper

You can use Cloudera Manager to change the configuration of these services, stop,
and restart them. Additional services are also available, which require configuration
before you can use them. See "Unconfigured Software."

Note:

Manual edits to Linux service scripts or Hadoop configuration files do not
affect these services. You must manage and configure them using Cloudera
Manager.

3.3 Using Hadoop Monitoring Utilities
You also have the option of using the native Hadoop utilities. These utilities are read-
only and do not require authentication.

Cloudera Manager provides an easy way to obtain the correct URLs for these utilities.
On the YARN service page, expand the Web UI submenu.

3.3.1 Monitoring MapReduce Jobs
You can monitor MapReduce jobs using the resource manager interface.

To monitor MapReduce jobs:

• Open a browser and enter a URL like the following:

http://bda1node03.example.com:8088

Chapter 3
Using Hadoop Monitoring Utilities

3-5

In this example, bda1 is the name of the rack, node03 is the name of the server
where the YARN resource manager runs, and 8088 is the default port number for
the user interface.

The following figure shows the resource manager interface.

Figure 3-3 YARN Resource Manager Interface

3.3.2 Monitoring the Health of HDFS
You can monitor the health of the Hadoop file system by using the DFS health utility on
the first two nodes of a cluster.

To monitor HDFS:

• Open a browser and enter a URL like the following:

http://bda1node01.example.com:50070

In this example, bda1 is the name of the rack, node01 is the name of the server
where the dfshealth utility runs, and 50070 is the default port number for the user
interface.

Figure 3-3 shows the DFS health utility interface.

Chapter 3
Using Hadoop Monitoring Utilities

3-6

Figure 3-4 DFS Health Utility

3.4 Using Cloudera Hue to Interact With Hadoop
Hue runs in a browser and provides an easy-to-use interface to several applications
to support interaction with Hadoop and HDFS. You can use Hue to perform any of the
following tasks:

• Query Hive data stores

• Create, load, and delete Hive tables

• Work with HDFS files and directories

• Create, submit, and monitor MapReduce jobs

• Monitor MapReduce jobs

• Create, edit, and submit workflows using the Oozie dashboard

• Manage users and groups

Hue is automatically installed and configured on Oracle Big Data Appliance. It runs on
port 8888 of the ResourceManager node. See the tables in About CDH Clusters for
Hue’s location within different cluster configurations.

Chapter 3
Using Cloudera Hue to Interact With Hadoop

3-7

To use Hue:

1. Log in to Cloudera Manager and click the hue service on the Home page.

2. On the hue page under Quick Links, click Hue Web UI.

3. Bookmark the Hue URL, so that you can open Hue directly in your browser. The
following URL is an example:

http://bda1node03.example.com:8888

4. Log in with your Hue credentials.

If Hue accounts have not been created yet, log into the default Hue administrator
account by using the following credentials:

• Username: admin

• Password: cm-admin-password

where cm-admin-password is the password specified when the cluster for the
Cloudera Manager admin user was activated. You can then create other user and
administrator accounts.

The following figure shows the Hive Query Editor.

Figure 3-5 Hive Query Editor

Chapter 3
Using Cloudera Hue to Interact With Hadoop

3-8

See Also:

Hue User Guide at

https://www.cloudera.com/documentation/enterprise/6/6.0/topics/hue.html

3.5 About the Oracle Big Data Appliance Software
The following sections identify the software installed on Oracle Big Data Appliance.

This section contains the following topics:

• Unconfigured Software

• Allocating Resources Among Services

3.5.1 Unconfigured Software
Your Oracle Big Data Appliance license includes all components in Cloudera
Enterprise Data Hub Edition. All CDH components are installed automatically by the
Mammoth utility. Do not download them from the Cloudera website.

However, you must use Cloudera Manager to add some services before you can use
them, such as the following:

• Apache Flume

• Apache HBase

• Apache Spark

• Apache Sqoop

• Cloudera Impala

• Cloudera Search

To add a service:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, expand the cluster menu in the left panel and choose Add a
Service to open the Add Service wizard. The first page lists the services you can
add.

3. Follow the steps of the wizard.

See Also:

• For a list of key CDH components:

http://www.cloudera.com/content/www/en-us/products/apache-
hadoop/key-cdh-components.html

Chapter 3
About the Oracle Big Data Appliance Software

3-9

https://www.cloudera.com/documentation/enterprise/6/6.0/topics/hue.html
https://www.cloudera.com/documentation/enterprise/5-15-x/topics/hue.html
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/key-cdh-components.html
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/key-cdh-components.html

3.5.2 Allocating Resources Among Services
You can allocate resources to each service—HDFS, YARN, Hive, and so forth—as a
percentage of the total resource pool. Cloudera Manager automatically calculates the
recommended resource management settings based on these percentages. The static
service pools isolate services on the cluster, so that a high load on one service as a
limited impact on the other services.

To allocate resources among services:

1. Log in as admin to Cloudera Manager.

2. Open the Clusters menu at the top of the page, then select Static Service Pools
under Resource Management.

3. Select Configuration.

4. Follow the steps of the wizard, or click Change Settings Directly to edit the
current settings.

3.6 About CDH Clusters
There are slight variations in the location of the services within a cluster, depending on
the configuration of the cluster.

Note that in general decommissioning or removing roles that were deployed by the
Mammoth installer is not supported. In some cases this may be acceptable for slave
roles. However, the role must be completely removed from Cloudera Manager. Also,
removal of a role may result in lower performance or reduced storage.

This section contains the following topics:

• Roles on a Three-Node Development Cluster

• Role Locations on Rack 1 of a CDH Cluster with Four or More Nodes

• Role Locations on Additional Racks of a Cluster

• About MapReduce

• Automatic Failover of the NameNode

• Automatic Failover of the ResourceManager

3.6.1 For New Clusters: High Availability HiveServer2 and Oozie
High Availability HiveServer2 and HA Oozie is automatically included in new clusters.

As of Big Data Appliance 5.2, new clusters automatically include HA HiveServer2 and
HA Oozie. This applies to new clusters only.

The Oozie and HiveServer2 roles are duplicated on separate nodes within each
new cluster. With each pair of roles, both roles are continuously active. Traffic is
routed through an HAProxy load balancer. In order to prevent the load balancer
from becoming a single point of failure, there is an option in the Big Data Appliance
Configuration Generation Utility to configure High Availability for the load balancer as
well. If HA is configured for the load balancers, then the primary balancer is normally
active. The secondary load balancer is activated only to provide failover if the first fails.

Chapter 3
About CDH Clusters

3-10

The Hiveserver2 and Oozie HA enhancements are not added to existing clusters
upgraded to this release. At this time there are no manual steps to enable HiveServer2
and Oozie in upgraded clusters.

Changes in Keystore and Trust Store Locations for HiveServer2 and Oozie

It is important to note that in conjunction with the introduction of High Availability for
HiveServer 2 and Oozie, the Keystore and Truststore locations for these roles has
changed as of Big Data Appliance 5.2. You can see this in Configuration Manager, as
shown at the end of this topic.

• HiveServer2 TLS/SSL Server JKS Keystore File Location: /opt/cloudera/
security/pki_load_balancer/node.jks

• HiveServer2 TLS/SSL Client Truststore File: /opt/cloudera/security/
pki_load_balancer/kpoklkd.truststore

Note:

These changes apply to new clusters only. Upgraded clusters retain the
original pre-5.2 Keystore and Truststore paths.

The following example from Configuration Manager shows the new locations for the
Keystore and Truststore. It it also shows the address of the load balancer that handles
HiveServer2 and Oozie traffic.

Chapter 3
About CDH Clusters

3-11

3.6.1.1 Configuring HA for the HiveServer2 and Oozie Load Balancer
With High Availability for HiveServer2 and Oozie, the load balancer remains a potential
single point of failure. However you have the option to provide High Availability for the
load balancer as well.

Note:

There are two prerequisites for configuring HA for the load balancer:

• Provide a public virtual IP address for the load balancer.

• In environments where there are strict firewall rules, these rules must
allow the multicast address 224.0.0.18 and the execution of the VRRP
protocol.

Virtual IP Addresses to Support HA for the HiveServer2 and Oozie Load
Balancer

You can choose to set up High Availability for the load balancer when you pre-
configure the Mammoth installation on the appliance. To support HA for the load
balancer you must provide a public virtual IP address. This is used as a floating IP
address that is automatically assigned to the active load balancer. In a failover event,
the virtual IP address is re-assigned from the load balancer where the failure occurred
to a load balancer on another node and this second load balancer is activated to take
over HiverServer2 and Oozie traffic. Under normal conditions, the active load balancer
is on Node02 of the cluster and the inactive load balancer is on Node01. The load
balancer is actually installed on all nodes but is active on one node only and stopped
on all others.

The Oracle Big Data Appliance Configuration Generation Utility now includes a field
where you can add the virtual IP address for the load balancer. Also provide a valid
hostname for the IP address.

Chapter 3
About CDH Clusters

3-12

Important:

If no virtual IP address is provided, then there is no failover for the load
balancer that handles HiverServer2 and Oozie traffic. Then if the load
balancer or the node itself fails, you must manually change any connections
to these services from the failed load balancer to a direct connection to one
of the HiveServer2 or Oozie instances. Also any mammoth -c tests will fail in
this circumstance because their entry point is through the load balancer.

See Using Oracle Big Data Appliance Configuration Generation Utility in the Big Data
Appliance Owner's Guide.

3.6.2 Roles on a Three-Node Development Cluster
Oracle Big Data Appliance enables the use of three-node clusters for development
purposes.

Caution:

Three-node clusters are generally not suitable for production environments
because all of the nodes are master nodes. This puts constraints on
high availability. The minimum recommended cluster size for a production
environment is five nodes.

Chapter 3
About CDH Clusters

3-13

Note:

In the following table, the new roles for HA HiveServer2 and Oozie support
that are present on new clusters only are highlighted in italic font and
prefixed with an asterisk. These highlighted roles are not present on
upgraded clusters.

Table 3-1 Role Locations for a Three-Node Development Cluster

Node1 Node2 Node3

NameNode NameNode/Failover -

Failover Controller Failover Controller -

DataNode DataNode DataNode

NodeManager NodeManager NodeManager

JournalNode JournalNode JournalNode

- HttpFS Cloudera Manager and CM
roles

- MySQL Backup MySQL Primary

ResourceManager - ResourceManager

- - JobHistory

- ODI Spark History

Hue Server Hue Server -

Hue Load Balancer Hue Load Balancer -

ZooKeeper ZooKeeper ZooKeeper

Active Navigator Key Trustee
Server (if HDFS Transparent
Encryption is enabled)

Passive Navigator Key Trustee
Server (if HDFS Transparent
Encryption is enabled)

-

Kerberos Master KDC (Only
if MIT Kerberos is enabled
and on-BDA KDCs are being
used.)

Kerberos Slave KDC (Only
if MIT Kerberos is enabled
and on-BDA KDCs are being
used.)

-

Sentry Server (if enabled) Sentry Server (if enabled) -

Hive Metastore Hive Metastore -

- WebHCat -

*Oozie Oozie -

*HiveServer2 HiveServer2 -

*HAProxy Load Balancer
(stopped)

*HAProxy Load Balancer
(started)

-

3.6.3 Role Locations on Rack 1 of a CDH Cluster with Four or More
Nodes

All four master nodes and the roles they host are now located in the first rack of a
cluster. In earlier releases, some critical roles are hosted on the second rack of a
multirack cluster.

Clusters across multiple racks which are upgraded to Release 5.2 from older versions
will retain their current multiple-rack layout, in which some critical roles are hosted on
the second rack.

Chapter 3
About CDH Clusters

3-14

The table below identifies the roles on the first rack of CDH cluster. Node1 is the first
server in the cluster and Nodenn is the last server in the cluster. This service layout is
the same for a single-rack cluster and the first rack of a multirack cluster.

Note:

As of Big Data Appliance 5.2, new clusters include High Availability Oozie
and for HiveServer2, and an HAProxy load balancer to manage traffic for
these services. The new HA roles for these services are Node1. The load
balancer is on Node2. This applies to new clusters only. Upgraded clusters
do NOT include these roles. HA Oozie and HA Hiveserver2 are not present
on upgraded clusters and the HAProxy load balancer is also not present. In
the following table, these roles that are present on new clusters only are in
italic font and marked with an asterisk.

Table 3-2 Role Locations in the First Rack of a Cluster

Node1 Node2 Node3 Node4 Node5 to nn

Balancer - Cloudera Manager
Server

- -

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

DataNode DataNode DataNode DataNode DataNode

Failover Controller Failover Controller Big Data Manager
(including BDM-proxy
and BDM-notebook)

- -

JournalNode JournalNode JournalNode - -

- MySQL Backup MySQL Primary - -

NameNode NameNode Navigator Audit
Server and Navigator
Metadata Server

- -

NodeManager (in
clusters of eight
nodes or less)

NodeManager (in
clusters of eight
nodes or less)

NodeManager NodeManager NodeManager

Sentry Server (if
enabled)

Sentry Server (if
enabled)

SparkHistoryServer Oracle Data
Integrator Agent

-

Hive Metastore HttpFS - Hive Metastore -

ZooKeeper ZooKeeper ZooKeeper Hive WEbHCat
Server

-

Hue Server - JobHistory Hue Server -

Hue Load Balancer - Hue Load Balancer - -

Active Navigator Key
Trustee Server (if
HDFS Transparent
Encryption is
enabled)

Passive Navigator
Key Trustee Server
(if HDFS Transparent
Encryption is
enabled)

ResourceManager ResourceManager -

Chapter 3
About CDH Clusters

3-15

Table 3-2 (Cont.) Role Locations in the First Rack of a Cluster

Node1 Node2 Node3 Node4 Node5 to nn

Kerberos KDC (if MIT
Kerberos is enabled
and on-BDA KDCs
are being used)

Kerberos KDC (if MIT
Kerberos is enabled
and on-BDA KDCs
are being used)

- - -

If Kerberos is
enabled:
Hue Kerberos
Ticket Renewer,
Key Trustee KMS
Key Management
Server Proxy, Key
Trustee Server Active
Database

If Kerberos is
enabled:
Key Trustee KMS Key
Management Server
Proxy, Key Trustee
Server Passive
Database

- If Kerberos is
enabled:
Hue Kerberos Ticket
Renewer

-

Oozie* - - Oozie -

HiveServer2* - - HiveServer2 -

HAProxy (stopped)* HAProxy * - - -

In the Big Data Appliance Configuration Utility where you provide configuration details
for the Mammoth installation, you can implement High Availability for the load balancer
itself. if you provide a virtual IP address for a second HAProxy instance in the cluster.
If a virtual IP address is provided, then when the cluster is started the HAProxy
instance on Node2 is in the start state and the instance on Node1 is in the stop state.
If the instance on Node2 transitions tostop for any reason, then the instance on Node1
is started.

Note:

If Oozie High Availability is enabled, then Oozie servers are hosted on
Node4 and another node (preferably a ResourceNode) selected by the
customer.

3.6.4 Role Locations on Additional Racks of a Cluster

Note:

This layout has changed from previous releases.

All critical roles run on the first rack of the cluster. The roles running on all nodes of
rack 2 and additional racks are the same as those running on Node5 and above on
rack 1:

• Cloudera Manager Agent

• DataNode

• NodeManager (if cluster includes eight nodes or less)

Chapter 3
About CDH Clusters

3-16

3.6.5 About MapReduce
Yet Another Resource Negotiator (YARN) is the version of MapReduce that runs on
Oracle Big Data Appliance. MapReduce applications developed using MapReduce 1
(MRv1) may require recompilation to run under YARN.

The ResourceManager performs all resource management tasks. An MRAppMaster
performs the job management tasks. Each job has its own MRAppMaster. The
NodeManager has containers that can run a map task, a reduce task, or an
MRAppMaster. The NodeManager can dynamically allocate containers using the
available memory. This architecture results in improved scalability and better use of
the cluster than MRv1.

YARN also manages resources for Spark and Impala.

See Also:

"Running Existing Applications on Hadoop 2 YARN" at

http://hortonworks.com/blog/running-existing-applications-on-
hadoop-2-yarn/

3.6.6 Automatic Failover of the NameNode
The NameNode is the most critical process because it keeps track of the location of
all data. Without a healthy NameNode, the entire cluster fails. Apache Hadoop v0.20.2
and earlier are vulnerable to failure because they have a single name node.

The current version of Cloudera's Distribution including Apache Hadoop in Oracle Big
Data Appliance reduces this vulnerability by maintaining redundant NameNodes. The
data is replicated during normal operation as follows:

• CDH maintains redundant NameNodes on the first two nodes of a cluster.
One of the NameNodes is in active mode, and the other NameNode is in hot
standby mode. If the active NameNode fails, then the role of active NameNode
automatically fails over to the standby NameNode.

• The NameNode data is written to a mirrored partition so that the loss of a single
disk can be tolerated. This mirroring is done at the factory as part of the operating
system installation.

• The active NameNode records all changes to the file system metadata in at least
two JournalNode processes, which the standby NameNode reads. There are three
JournalNodes, which run on the first three nodes of each cluster.

• The changes recorded in the journals are periodically consolidated into a single
fsimage file in a process called checkpointing.

On Oracle Big Data Appliance, the default log level of the NameNode is DEBUG, to
support the Oracle Audit Vault and Database Firewall plugin. If this option is not
configured, then you can reset the log level to INFO.

Chapter 3
About CDH Clusters

3-17

http://hortonworks.com/blog/running-existing-applications-on-hadoop-2-yarn/
http://hortonworks.com/blog/running-existing-applications-on-hadoop-2-yarn/

Note:

Oracle Big Data Appliance 2.0 and later releases do not support the use of
an external NFS filer for backups and do not use NameNode federation.

The following figure shows the relationships among the processes that support
automatic failover of the NameNode.

Figure 3-6 Automatic Failover of the NameNode on Oracle Big Data Appliance

Failover
Controller
Server 1

DataNode

DataNode

DataNode

JournalNode
edits

NameNode
(active mode)

Server 1

NameNode
(hot standby mode)

Server 2

Failover
Controller
Server 2

Checkpointing

JournalNode
edits

JournalNode
edits

ZooKeeper

3.6.7 Automatic Failover of the ResourceManager
The ResourceManager allocates resources for application tasks and application
masters across the cluster. Like the NameNode, the ResourceManager is a critical
point of failure for the cluster. If all ResourceManagers fail, then all jobs stop running.
Oracle Big Data Appliance supports ResourceManager High Availability in Cloudera 5
to reduce this vulnerability.

CDH maintains redundant ResourceManager services on node03 and node04. One of
the services is in active mode, and the other service is in hot standby mode. If the
active service fails, then the role of active ResourceManager automatically fails over to
the standby service. No failover controllers are required.

The following figure shows the relationships among the processes that support
automatic failover of the ResourceManager.

Chapter 3
About CDH Clusters

3-18

Figure 3-7 Automatic Failover of the ResourceManager on Oracle Big Data
Appliance

NodeManager

NodeManager

NodeManager

ResourceManager
Server 3

ResourceManager
Server 4

ZooKeeper

3.6.8 Map and Reduce Resource Allocation
Oracle Big Data Appliance dynamically allocates memory to YARN. The allocation
depends upon the total memory on the node and whether the node is one of the four
critical nodes.

If you add memory, update the NodeManager container memory by increasing it by
80% of the memory added. Leave the remaining 20% for overhead.

3.7 About Oracle NoSQL Database Clusters
Oracle NoSQL Database clusters do not have critical nodes and because the storage
nodes are replicated by a factor of three, the risk of critical failure is minimal.
Administrative services are distributed among the nodes in number equal to the
replication factor. You can use the Administration CLI and Admin console to administer
the cluster from any node that hosts the administrative processes.

If the node hosting Mammoth fails (the first node of the cluster), then follow the
procedure for reinstalling it in "Prerequisites for Managing a Failing Node"

To repair or replace any failing Oracle NoSQL node, follow the procedure in "Managing
a Failing Noncritical Node".

3.8 About Kafka Clusters
Critical services for Kafka clusters are as follows:

• Node 1: Zookeper, Kafka broker.

• Node 2: MySQL backup database, Zookeper, Kafka broker.

• Node 3: Zookeeper, Mysql primary database, Cloudera Manager server, Kafka
broker.

3.8.1 Where Do the Services Run on a Kafka Cluster?
As with CDH clusters, there are some minor differences in the way services are
distributed in multirack Kafka clusters, depending upon whether the cluster started as
a multirack or was extended from a single-rack cluster.

Chapter 3
About Oracle NoSQL Database Clusters

3-19

Oracle Big Data Appliance enables the use of three-node clusters for development
purposes.

Caution:

Three-node Kafka clusters are generally not suitable for production
environments. The minimum recommended cluster size for a Kaka cluster
in a production environment is four nodes, which enables recovery of the
cluster if a node fails.

Table 3-3 Service Locations in a Single-Rack Kafka Cluster

Node1 Node2 Node3 All Additional Nodes

Kafka Broker Kafka Broker Kafka Broker Kafka Broker

Zookeeper Zookeeper Zookeeper Cloudera Manager
Agent

Kerberos Master KDC
(if Kerberos MIT
enabled)

Kerberos Slave KDC
(if Kerberos MIT
enabled)

Cloudera Manager
(and CM roles)

—

— MySQL Backup MySQL Primary —

Table 3-4 Service Locations in First Rack of a Multirack Kafka Cluster (When
Extended From a Single-Rack Cluster)

Node1 Node2 Node3 All Additional Nodes

Kafka Broker Kafka Broker Kafka Broker Kafka Broker

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Zookeeper — Zookeeper —

— — MySQL Primary —

Table 3-5 Service Locations in Additional Racks of a Multirack Kafka Cluster
(When Extended From a Single-Rack Cluster)

Node1 Node2 Node3 All Additional Nodes

Kafka Broker Kafka Broker Kafka Broker Kafka Broker

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Zookeeper — — —

MySQL Backup (on
second rack only)

— — —

Table 3-6 Service Locations in First Rack of a Multirack Kafka Cluster (When
Started as Multirack)

Node1 Node2 Node3 All Additional Nodes

Kafka Broker Kafka Broker Kafka Broker Kafka Broker

Chapter 3
About Kafka Clusters

3-20

Table 3-6 (Cont.) Service Locations in First Rack of a Multirack Kafka Cluster
(When Started as Multirack)

Node1 Node2 Node3 All Additional Nodes

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Zookeeper Zookeeper — —

— MySQL Primary — —

Table 3-7 Service Locations in Additional Racks of a Multirack Kafka Cluster
(When Started as Multirack)

Node1 Node2 Node3 All Additional Nodes

Kafka Broker Kafka Broker Kafka Broker Kafka Broker

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Zookeeper — — —

MySQL Backup (on
second rack only)

— — —

3.9 Effects of Hardware on Software Availability
The effects of a server failure vary depending on the server's function within the CDH
cluster. Oracle Big Data Appliance servers are more robust than commodity hardware,
so you should experience fewer hardware failures. This section highlights the most
important services that run on the various servers of the primary rack. For a full list,
see "Role Locations on Rack 1 of a CDH Cluster with Four or More Nodes."

Note:

In a multirack cluster, some critical services run on the first server of the
second rack. See "Role Locations on Additional Racks of a Cluster."

3.9.1 Logical Disk Layout
The layout of logical disk partitions for X7, X6, X5, and X4 server models is shown
below.

On all drive configurations, the operating system is installed on disks 1 and 2. These
two disks are mirrored. They include the Linux operating system, all installed software,
NameNode data, and MySQL Database data. The NameNode and MySQL Database
data are replicated on the two servers for a total of four copies.

Important changes that have occurred in Big Data Appliance disk partitioning over time
are:

• In X7 – switchover to the use of EFI instead of BIOS and the replacement of USB
with two SSDs

Chapter 3
Effects of Hardware on Software Availability

3-21

• In Oracle Linux 7 - swap partitioning is dropped.

In the table below, note that Linux disk/partition device names (such as /dev/sdc
or /dev/sdc1) are not stable. They are picked by the kernel at boot time, so they may
change as disks are removed and re-added.

Table 3-8 Oracle Big Data Appliance Server Disk Partioning

Disks 1 and 2 (OS) Disks 3 – 12 (Data)

10 TB Drives (Big Data Appliance X7)
Disk /dev/sdc:

Number Start End
Size File system
Name Flags
 1 1049kB 201MB 200MB
fat16 EFI System Partition
boot
 2 201MB 701MB 500MB
ext4 raid
 3 701MB 1049GB 1049GB
ext4 raid
 4 1049GB 9796GB 8747GB
ext4 ext4

Disk /dev/sdd:

Number Start End Size
File system Name Flags
 1 1049kB 201MB 200MB
fat16 fat32
 2 201MB 701MB
500MB ext4 raid
 3 701MB 1049GB
1049GB ext4 raid
 4 1049GB 9796GB 8747GB
ext4 ext4

10 TB Drives (Big Data Appliance X7)
Disks /dev/sde to /dev/sdn:

Number Start End Size
File system Name Flags
 1 1049kB 9796GB 9796GB
ext4 ext4

8 TB Drives (Big Data Appliance X6 and X5)

Number Start End Size
File system Name Flags
 1 1049kB 500MB 499MB
ext4 primary boot
 2 500MB 501GB
500GB primary
raid
 3 501GB 550GB 50.0GB
linux-swap(v1) primary
 4 550GB 7864GB
7314GB ext4 primary

8 TB Drives (Big Data Appliance X6 and X5)

Number Start End Size
File system Name Flags
 1 1049kB 7864GB 7864GB
ext4 primary

Chapter 3
Effects of Hardware on Software Availability

3-22

Table 3-8 (Cont.) Oracle Big Data Appliance Server Disk Partioning

Disks 1 and 2 (OS) Disks 3 – 12 (Data)

4 TB Drives (Big Data Appliance X4)

Number Start End Size
File system Name Flags
 1 1049kB 500MB 499MB
ext4 primary boot
 2 500MB 501GB
500GB primary
raid
 3 501GB 560GB 59.5GB
linux-swap(v1) primary
 4 560GB 4000GB 3440GB
ext4 primary

4 TB Drives (Big Data Appliance X4)

Number Start End Size
File system Name Flags
 1 1049kB 4000GB 4000GB
ext4 primary

3.9.2 Critical and Noncritical CDH Nodes
Critical nodes are required for the cluster to operate normally and provide all services
to users. In contrast, the cluster continues to operate with no loss of service when a
noncritical node fails.

Critical services are installed initially on the first four nodes of the cluster (within
the first rack in the case of multirack clusters). The remaining nodes (node05 up to
node18) only run noncritical services. If a hardware failure occurs on one of the critical
nodes, then the services can be moved to another, noncritical server. For example, if
node02 fails, then you might move its critical services node05. Table 3-2 identifies the
location of services on the first rack.

3.9.2.1 High Availability or Single Points of Failure?
Some services have high availability and automatic failover. Other services have a
single point of failure. The following list summarizes the critical services:

• NameNodes: High availability with automatic failover

• ResourceManagers: High availability with automatic failover

• MySQL Database: Primary and backup databases are configured with replication
of the primary database to the backup database. There is no automatic failover. If
the primary database fails, the functionality of the cluster is diminished, but no data
is lost.

• Cloudera Manager: The Cloudera Manager server runs on one node. If it fails,
then Cloudera Manager functionality is unavailable.

• Hue server, Hue load balancer, Sentry, Hive metastore (and also HiveServer2
and Oozie in new clusters only) : High availability

• Oozie server, Oracle Data Integrator agent: These services have no
redundancy. If the node fails, then the services are unavailable.

Chapter 3
Effects of Hardware on Software Availability

3-23

3.9.2.2 Where Do the Critical Services Run?
Critical services are hosted as shown below. See Role Locations on Rack 1 of a CDH
Cluster with Four or More Nodes for the complete list of services on each node.

Table 3-9 Critical Service Locations on a Single Rack

Node Name Critical Functions

First NameNode Balancer, Failover Controller, JournalNode, NameNode,
ZooKeeper, Hue Server.

Second NameNode Failover Controller, JournalNode, MySQL Backup Database,
NameNode, ZooKeeper

First ResourceManager
Node

Cloudera Manager Server, JobHistory, JournalNode, MySQL
Primary Database, ResourceManager, ZooKeeper.

Second ResourceManager
Node

Hive, Hue, Oozie, Solr, Oracle Data Integrator Agent,
ResourceManager

3.9.3 First NameNode Node
If the first NameNode fails or goes offline (such as a restart), then the second
NameNode automatically takes over to maintain the normal activities of the cluster.

Alternatively, if the second NameNode is already active, it continues without a backup.
With only one NameNode, the cluster is vulnerable to failure. The cluster has lost the
redundancy needed for automatic failover.

3.9.4 Second NameNode Node
If the second NameNode fails, then the function of the NameNode either fails over
to the first NameNode (node01) or continues there without a backup. However, the
cluster has lost the redundancy needed for automatic failover if the first NameNode
also fails.

The MySQL backup database also runs on this node. MySQL Database continues to
run, although there is no backup of the master database.

3.9.5 First ResourceManager Node
If the first ResourceManager node fails or goes offline (such as in a restart of the
server where the node is running), then the second ResourceManager automatically
takes over the distribution of MapReduce tasks to specific nodes across the cluster.

If the second ResourceManager is already active when the first ResourceManager
becomes inaccessible, then it continues as ResourceManager, but without a backup.
With only one ResourceManager, the cluster is vulnerable because it has lost the
redundancy needed for automatic failover.

If the first ResourceManager node fails or goes offline (such as a restart), then the
second ResourceManager automatically takes over to distribute MapReduce tasks to
specific nodes across the cluster.

Chapter 3
Effects of Hardware on Software Availability

3-24

Alternatively, if the second ResourceManager is already active, it continues without
a backup. With only one ResourceManager, the cluster is vulnerable to failure. The
cluster has lost the redundancy needed for automatic failover.

These services are also disrupted:

• Cloudera Manager: This tool provides central management for the entire CDH
cluster. Without this tool, you can still monitor activities using the utilities described
in "Using Hadoop Monitoring Utilities".

• MySQL Database: Cloudera Manager, Oracle Data Integrator, Hive, and Oozie
use MySQL Database. The data is replicated automatically, but you cannot access
it when the master database server is down.

3.9.6 Second ResourceManager Node
If the second ResourceManager node fails, then the function of the ResourceManager
either fails over to the first ResourceManager or continues there without a backup.
However, the cluster has lost the redundancy needed for automatic failover if the first
ResourceManager also fails.

These services are also disrupted:

• Oracle Data Integrator Agent This service supports Oracle Data Integrator, which
is one of the Oracle Big Data Connectors. You cannot use Oracle Data Integrator
when the ResourceManager node is down.

• Hive: Hive provides a SQL-like interface to data that is stored in HDFS. Most of
the Oracle Big Data Connectors can access Hive tables, which are not available if
this node fails.

• Hue: This administrative tool is not available when the ResourceManager node is
down.

• Oozie: This workflow and coordination service runs on the ResourceManager
node, and is unavailable when the node is down.

3.9.7 Noncritical CDH Nodes
The noncritical nodes are optional in that Oracle Big Data Appliance continues to
operate with no loss of service if a failure occurs. The NameNode automatically
replicates the lost data to always maintain three copies. MapReduce jobs execute
on copies of the data stored elsewhere in the cluster. The only loss is in computational
power, because there are fewer servers on which to distribute the work.

3.10 Managing a Hardware Failure
If a server starts failing, you must take steps to maintain the services of the cluster
with as little interruption as possible. You can manage a failing server easily using the
bdacli utility, as described in the following procedures. One of the management steps
is called decommissioning. Decommissioning stops all roles for all services, thereby
preventing data loss. Cloudera Manager requires that you decommission a CDH node
before retiring it.

When a noncritical node fails, there is no loss of service. However, when a critical
node fails in a CDH cluster, services with a single point of failure are unavailable, as

Chapter 3
Managing a Hardware Failure

3-25

described in "Effects of Hardware on Software Availability". You must decide between
these alternatives:

• Wait for repairs to be made, and endure the loss of service until they are complete.

• Move the critical services to another node. This choice may require that some
clients are reconfigured with the address of the new node. For example, if the
second ResourceManager node (typically node03) fails, then users must redirect
their browsers to the new node to access Cloudera Manager.

You must weigh the loss of services against the inconvenience of reconfiguring the
clients.

3.10.1 Prerequisites for Managing a Failing Node
Ensure that you do the following before managing a failing or failed server, whether it
is configured as a CDH node or an Oracle NoSQL Database node:

• Try restarting the services or rebooting the server.

• Determine whether the failing node is critical or noncritical.

• If the failing node is where Mammoth is installed:

1. For a CDH node, select a noncritical node in the same cluster as the failing
node.

For a NoSQL node, repair or replace the failed server first, and use it for these
steps.

2. Upload the Mammoth bundle to that node and unzip it.

3. Extract all files from BDAMammoth-version.run, using a command like the
following:

./BDAMammoth-ol6-4.0.0.run

Afterward, you must run all Mammoth operations from this node.

See Oracle Big Data Appliance Owner's Guide for information about the
Mammoth utility.

4. Follow the appropriate procedure in this section for managing a failing node.

Mammoth is installed on the first node of the cluster, unless its services were
migrated previously.

3.10.2 Managing a Failing CDH Critical Node
The procedure for dealing with a failed critical node is to migrate the critical services to
another node.

After migrating the critical services from the failing node to another node, you have
several options for reintegrating the failed node into the cluster:

• Reprovision the node
This procedure reinstalls all of the software required for the node to operate as a
DataNode. Reprovisioning is the only option for a node that is not repairable and
has been replaced.

• Recommission the node

Chapter 3
Managing a Hardware Failure

3-26

If you can repair a failed critical node to the extent that the DataNode role is
working and are sure that any problems that may interfere with the DataNode role
are resolved, you may be able to save time by recommissioning the node instead
of reprovisioning it. Recommissioning is a much faster process. It reintegrates the
node as a DataNode, but does not perform a full reinstallation and there is no
need to reimage. It reverses the decommissioning of the node. A decommission
puts the node in quarantine, a recommission takes the node out of quarantine.

Note:

A special procedure is required before you can recommission a failed
Node1. See Preliminary Steps for Recommissioning Node1 at the end of
this section.

To manage a failing critical node:

1. Log in as root to the “Mammoth node.” (The node where Mammoth is installed.
This is usually Node1.)

2. Migrate the services to a noncritical node. (Replace node_name below with the
name of the failing node.)

bdacli admin_cluster migrate node_name

When the command finishes, the failng node is decommissioned and its services
are now running on a previously noncritical node.

3. You may want to communicate the change to your user community so that they
can redirect their clients to the new critical node as required.

4. Repair or replace the failed server.

5. As root on the Mammoth node, either reprovision or recommission the repaired or
replaced server as a noncritical node. Use the same name as the migrated node
for node_name, such as "bda1node02".

• To reprovision the node:

Note:

If you intend to reprovision the node, it is recommended (though not
required) that you reimage it first to ensure that there are no other
problems with the software.

bdacli admin_cluster reprovision <node_name>

• To recommission the node:

bdacli admin_cluster reprovision <node_name>

6. From the Mammoth node as root, reprovision the repaired or replaced server as a
noncritical node. Use the same name as the migrated node for node_name, such
as bda1node02:

Chapter 3
Managing a Hardware Failure

3-27

bdacli admin_cluster reprovision node_name

7. If the failed node supported services like HBase or Impala, which Mammoth
installs but does not configure, then use Cloudera Manager to reconfigure them
on the new node.

Preliminary Steps for Recommissioning Node1 Only

Before recommissioning a failed (and repaired) Node1, do the following:

1. Determine where to relocate the Mammoth role. Mammoth ordinarily runs on
Node1 and so when this node fails, the Mammoth role must be transferred to
another node. It is best to avoid using other critical nodes and instead choose the
first available DataNode.

2. On each node of the cluster:

a. Update /opt/oracle/bda/install/state/config.json. Change
MAMMOTH_NODE to point to the node where you plan to host the Mammoth role.

b. Update /opt/oracle/bda/cluster-hosts-infiniband to add Node1.

3. On the node where you plan to host the Mammoth role:

setup-root-ssh -C

4. Use SSH to log on to each node as root and edit /opt/oracle/bda/
install/state/config.json. Remove Node1 from the QUARANTINED arrays –
QUARANTINED_POSNS and QUARANTINED_HOSTS.

5. On the node where you plan to host the Mammoth role:

a. Run mammoth -z.
This node is now the new Mammoth node.

b. Log on to each node in the cluster and in /opt/oracle/bda/install/state/
config.json, re-enter Node1 into the QUARANTINED arrays.

6. You can now recommission Node1. On the Mammoth node, run:

bdacli admin_cluster recommission node0

3.10.3 Managing a Failing Noncritical Node
Use the following procedure to replace a failing node in either a CDH or a NoSQL
cluster.

To manage a failing noncritical node:

1. Log in as root to the node where Mammoth is installed (typically Node1).

2. Decommission the failing node. Replace node_name with the name of the failing
node.

bdacli admin_cluster decommission node_name

In Configuraton Manager, verify that the node is decommissioned.

3. After decommissioning the failed node, the next steps depend upon which of these
two conditions is true:

Chapter 3
Managing a Hardware Failure

3-28

• The node can be repaired without reimaging.

• The node must be replaced, or, the node can be repaired, but requires
reimaging.
If a failed node cannot be accessed or if the OS is corrupted, it must be
reimaged.

4. a. If the node is replacement or must be reimaged, then follow instructions in
Document 1485745.1 in My Oracle Support. This document provides the links
to imaging instructions for all Big Data Appliance releaeses.
After reimaging, then reprovision the node:

bdacli admin_cluster reprovision node_name

After this, the node will be ready for recommissiong.

b. If the existing node can be repaired without reimaging, then recommission it.
There is no need for reprovisioning.

To recommission the node in either case, log to the Mammoth node as
root on and run the following bdacli command. Use the same name as the
decommissioned node for node_name:

bdacli admin_cluster recommission node_name

5. If the node is part of a CDH cluster, log into Cloudera Manager, and locate the
recommissioned node. Check that HDFS DataNode, YARN NodeManager, and
any other roles that should be running are showing a green status light. If they are
not, then manually restart them.

See Also:

Oracle Big Data Appliance Owner's Guide for the complete bdacli syntax

3.11 Stopping and Starting Oracle Big Data Appliance
This section describes how to shut down Oracle Big Data Appliance gracefully and
restart it.

• Prerequisites

• Stopping Oracle Big Data Appliance

• Starting Oracle Big Data Appliance

3.11.1 Prerequisites
You must have root access. Passwordless SSH must be set up on the cluster, so that
you can use the dcli utility.

To ensure that passwordless-ssh is set up:

1. Log in to the first node of the cluster as root.

Chapter 3
Stopping and Starting Oracle Big Data Appliance

3-29

https://support.oracle.com/epmos/faces/DocumentDisplay?parent=DOCUMENT&sourceId=2012822.1&id=1485745.1

2. Use a dcli command to verify it is working. This command should return the IP
address and host name of every node in the cluster:

dcli -C hostname
192.0.2.1: bda1node01.example.com
192.0.2.2: bda1node02.example.com
 .
 .
 .

3. If you do not get these results, then set up dcli on the cluster:

setup-root-ssh -C

See Also:

Oracle Big Data Appliance Owner's Guide for details about these
commands.

3.11.2 Stopping Oracle Big Data Appliance
Follow these procedures to shut down all Oracle Big Data Appliance software and
hardware components.

Note:

The following services stop automatically when the system shuts down. You
do not need to take any action:

• Oracle Enterprise Manager agent

• Auto Service Request agents

3.11.2.1 Stopping All Managed Services
Use Cloudera Manager to stop the services it manages, including flume, hbase, hdfs,
hive, hue, mapreduce, oozie, and zookeeper.

1. Log in to Cloudera Manager as the admin user.

See "Managing Operations Using Cloudera Manager".

2. In the Status pane of the opening page, expand the menu for the cluster and click
Stop, and then click Stop again when prompted to confirm. See Figure 3-8.

To navigate to this page, click the Home tab, and then the Status subtab.

3. On the Command Details page, click Close when all processes are stopped.

4. In the same pane under Cloudera Management Services, expand the menu for the
mgmt service and click Stop.

5. Log out of Cloudera Manager.

Chapter 3
Stopping and Starting Oracle Big Data Appliance

3-30

Figure 3-8 Stopping HDFS Services

3.11.2.2 Stopping Cloudera Manager Server
Follow this procedure to stop Cloudera Manager Server.

1. Log in as root to the node where Cloudera Manager runs (initially node03).

Note:

The remaining tasks presume that you are logged in to a server as
root. You can enter the commands from any server by using the dcli
command. This example runs the pwd command on node03 from any
node in the cluster:

dcli -c node03 pwd

2. Stop the Cloudera Manager server:

service cloudera-scm-server stop
Stopping cloudera-scm-server: [OK]

3. Verify that the server is stopped:

service cloudera-scm-server status
cloudera-scm-server is stopped

After stopping Cloudera Manager, you cannot access it using the web console.

3.11.2.3 Stopping Oracle Data Integrator Agent
If Oracle Data Integrator is used on the cluster:

1. Check the status of the Oracle Data Integrator agent:

dcli -C service odi-agent status

2. Stop the Oracle Data Integrator agent, if it is running:

dcli -C service odi-agent stop

Chapter 3
Stopping and Starting Oracle Big Data Appliance

3-31

3. Ensure that the Oracle Data Integrator agent stopped running:

dcli -C service odi-agent status

3.11.2.4 Dismounting NFS Directories
All nodes share an NFS directory on node03, and additional directories may also
exist. If a server with the NFS directory (/opt/exportdir) is unavailable, then the
other servers hang when attempting to shut down. Thus, you must dismount the NFS
directories first.

1. Locate any mounted NFS directories:

dcli -C mount | grep shareddir
192.0.2.1: bda1node03.example.com:/opt/exportdir on /opt/shareddir type nfs
(rw,tcp,soft,intr,timeo=10,retrans=10,addr=192.0.2.3)
192.0.2.2: bda1node03.example.com:/opt/exportdir on /opt/shareddir type nfs
(rw,tcp,soft,intr,timeo=10,retrans=10,addr=192.0.2.3)
192.0.2.3: /opt/exportdir on /opt/shareddir type none (rw,bind)
 .
 .
 .

The sample output shows a shared directory on node03 (192.0.2.3).

2. Dismount the shared directory:

dcli -C umount /opt/shareddir

3. Dismount any custom NFS directories.

3.11.2.5 Stopping the Servers
The Linux shutdown -h command powers down individual servers. You can use the
dcli -g command to stop multiple servers.

1. Create a file that lists the names or IP addresses of the other servers in the
cluster, that is, not including the one you are logged in to.

2. Stop the other servers:

dcli -g filename shutdown -h now

For filename, enter the name of the file that you created in step 1.

3. Stop the server you are logged in to:

shutdown -h now

3.11.2.6 Stopping the InfiniBand and Cisco Switches
To stop the network switches, turn off a PDU or a breaker in the data center. The
switches only turn off when power is removed.

The network switches do not have power buttons. They shut down only when power is
removed

To stop the switches, turn off all breakers in the two PDUs.

Chapter 3
Stopping and Starting Oracle Big Data Appliance

3-32

3.11.3 Starting Oracle Big Data Appliance
Follow these procedures to power up the hardware and start all services on Oracle Big
Data Appliance.

3.11.3.1 Powering Up Oracle Big Data Appliance
1. Switch on all 12 breakers on both PDUs.

2. Allow 4 to 5 minutes for Oracle ILOM and the Linux operating system to start on
the servers.

If the servers do not start automatically, then you can start them locally by pressing
the power button on the front of the servers, or remotely by using Oracle ILOM. Oracle
ILOM has several interfaces, including a command-line interface (CLI) and a web
console. Use whichever interface you prefer.

For example, you can log in to the web interface as root and start the server from the
Remote Power Control page. The URL for Oracle ILOM is the same as for the host,
except that it typically has a -c or -ilom extension. This URL connects to Oracle ILOM
for bda1node4:

http://bda1node04-ilom.example.com

3.11.3.2 Starting the HDFS Software Services
Use Cloudera Manager to start all the HDFS services that it controls.

1. Log in as root to the node where Cloudera Manager runs (initially node03).

Note:

The remaining tasks presume that you are logged in to a server as
root. You can enter the commands from any server by using the dcli
command. This example runs the pwd command on node03 from any
node in the cluster:

dcli -c node03 pwd

2. Verify that the Cloudera Manager started automatically on node03:

service cloudera-scm-server status
cloudera-scm-server (pid 11399) is running...

3. If it is not running, then start it:

service cloudera-scm-server start

4. Log in to Cloudera Manager as the admin user.

See "Managing Operations Using Cloudera Manager".

5. In the Status pane of the opening page, expand the menu for the cluster and click
Start, and then click Start again when prompted to confirm. See Figure 3-8.

To navigate to this page, click the Home tab, and then the Status subtab.

Chapter 3
Stopping and Starting Oracle Big Data Appliance

3-33

6. On the Command Details page, click Close when all processes are started.

7. In the same pane under Cloudera Management Services, expand the menu for the
mgmt service and click Start.

8. Log out of Cloudera Manager (optional).

3.11.3.3 Starting Oracle Data Integrator Agent
If Oracle Data Integrator is used on this cluster:

1. Check the status of the agent:

/opt/oracle/odiagent/agent_standalone/oracledi/agent/bin/startcmd.sh
OdiPingAgent [-AGENT_NAME=agent_name]

2. Start the agent:

/opt/oracle/odiagent/agent_standalone/oracledi/agent/bin/agent.sh [-
NAME=agent_name] [-PORT=port_number]

3.12 Auditing Oracle Big Data Appliance

Notice:

Audit Vault and Database Firewall is no longer supported for use with
Oracle Big Data Appliance. It is recommended that customers use Cloudera
Navigator for monitoring.

3.13 Collecting Diagnostic Information for Oracle Customer
Support

If you need help from Oracle Support to troubleshoot CDH issues, then you should first
collect diagnostic information using the bdadiag utility with the cm option.

To collect diagnostic information:

1. Log in to an Oracle Big Data Appliance server as root.

2. Run bdadiag with at least the cm option. You can include additional options on the
command line as appropriate. See the Oracle Big Data Appliance Owner's Guide
for a complete description of the bdadiag syntax.

bdadiag cm

The command output identifies the name and the location of the diagnostic file.

3. Go to My Oracle Support at http://support.oracle.com.

4. Open a Service Request (SR) if you have not already done so.

5. Upload the bz2 file into the SR. If the file is too large, then upload it to
sftp.oracle.com, as described in the next procedure.

Chapter 3
Auditing Oracle Big Data Appliance

3-34

http://www.oracle.com/pls/topic/lookup?ctx=en/bigdata/big-data-appliance/4.13&id=my_oracle_support

To upload the diagnostics to ftp.oracle.com:

1. Open an SFTP client and connect to sftp.oracle.com. Specify port 2021 and
remote directory /support/incoming/target, where target is the folder name
given to you by Oracle Support.

2. Log in with your Oracle Single Sign-on account and password.

3. Upload the diagnostic file to the new directory.

4. Update the SR with the full path and the file name.

See Also:

My Oracle Support Note 549180.1 at

http://support.oracle.com

Chapter 3
Collecting Diagnostic Information for Oracle Customer Support

3-35

http://www.oracle.com/pls/topic/lookup?ctx=en/bigdata/big-data-appliance/4.13&id=my_oracle_support

4
Supporting User Access to Oracle Big Data
Appliance

This chapter describes how you can support users who run MapReduce jobs on
Oracle Big Data Appliance or use Oracle Big Data Connectors. It contains these
sections:

• About Accessing a Kerberos-Secured Cluster

• Providing Remote Client Access to CDH

• Providing Remote Client Access to Hive

• Managing User Accounts

• Recovering Deleted Files

4.1 About Accessing a Kerberos-Secured Cluster
Apache Hadoop is not an inherently secure system. It is protected only by network
security. After a connection is established, a client has full access to the system.

To counterbalance this open environment, Oracle Big Data Appliance supports
Kerberos security as a software installation option. Kerberos is a network
authentication protocol that helps prevent malicious impersonation. Oracle Big Data
Appliance support two forms of Kerberos Hadoop security: MIT Kerberos and
Microsoft Active Directory Kerberos.

CDH provides these securities when configured to use Kerberos:

• The CDH master nodes, NameNodes, and JournalNodes resolve the group name
so that users cannot manipulate their group memberships.

• Map tasks run under the identity of the user who submitted the job.

• Authorization mechanisms in HDFS and MapReduce help control user access to
data.

Oracle Big Data Appliance provides the ability to configure Kerberos security directly
using a Microsoft Active Directory (AD) server for Kerberos support (as supported by
Cloudera Manager).

You have the option of enabling either form of Kerberos as part of the Mammoth
configuration. You can also enable or disable Kerberos later through the bdacli utility.

If the Oracle Big Data Appliance cluster is secured with Kerberos, then you must take
additional steps to authenticate a CDH client and individual users, as described in this
chapter. Users must know their Kerberos user name, password, and realm.

The following table describes some frequently used Kerberos commands. For more
information, see the MIT Kerberos documentation.

4-1

Table 4-1 Kerberos User Commands

Command Description

kinit userid@realm Obtains a Kerberos ticket.

klist Lists a Kerberos ticket if you have one already.

kdestroy Invalidates a ticket before it expires.

kpasswd userid@realm Changes your password.

See Also:

• MIT Kerberos Documentation at http://web.mit.edu/kerberos/krb5-
latest/doc/

• CDH 5 Security Guide at https://www.cloudera.com/documentation/cdh/
5-0-x/CDH5-Security-Guide/CDH5-Security-Guide.html.

• If you choose to enable Active Directory Kerberos, either with
Mammoth or with the bdacli utility, first read MOS (My Oracle Support)
documents 2029378.1 and 2013585.1. These documents explain
required preliminary steps and provide important information on known
issues.

4.2 Providing Remote Client Access to CDH
Oracle Big Data Appliance supports full local access to all commands and utilities in
Cloudera's Distribution including Apache Hadoop (CDH).

You can use a browser on any computer that has access to the client network
of Oracle Big Data Appliance to access Cloudera Manager, Hadoop Map/Reduce
Administration, the Hadoop Task Tracker interface, and other browser-based Hadoop
tools.

To issue Hadoop commands remotely, however, you must connect from a system
configured as a CDH client with access to the Oracle Big Data Appliance client
network. This section explains how to set up a computer so that you can access HDFS
and submit MapReduce jobs on Oracle Big Data Appliance.

4.2.1 Prerequisites
Ensure that you have met the following prerequisites:

• You must have these access privileges:

– Sudo access to the client system

– Login access to Cloudera Manager

If you do not have these privileges, then contact your system administrator for
help.

Chapter 4
Providing Remote Client Access to CDH

4-2

http://web.mit.edu/kerberos/krb5-latest/doc/
http://web.mit.edu/kerberos/krb5-latest/doc/
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/CDH5-Security-Guide.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/CDH5-Security-Guide.html

• The client system must run an operating system that Cloudera supports for CDH
6.

https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/
installation.html

• The client system must run a compatible version of Oracle JDK 1.8. See the
Cloudera documentation Cloudera documentation for a list of versions that are
compatible with CDH 6.x releases.

To verify the version, use this command:

$ java -version

• In the client configuration, ensure that the HDFS property
dfs.client.use.datanode.hostname is set to “true”.

<property>
 <name>dfs.client.use.datanode.hostname</name>
 <value>true</value>
 <description>Whether clients should use datanode hostnames when
 connecting to datanodes.
 </description>
</property>

This is property is already set to “true” if you download the configuration from
Cloudera Manager on Oracle Big Data Appliance. It may not be set to “true” if you
acquire the configuration from other sources, including Cloudera.

4.2.2 Installing a CDH Client on Any Supported Operating System
To install a CDH client on any operating system identified as supported by Cloudera,
follow these instructions.

1. Log in to the client system.

2. If an earlier version of Hadoop is already installed, then remove it.

See the Cloudera documentation for removing an earlier CDH version at
Uninstalling Cloudera Software and Managed Software

3. Follow the instructions provided in Document 1943912.1 at My Oracle Support.

4.2.3 Configuring a CDH Client for an Unsecured Cluster
After installing CDH, you must configure it for use with Oracle Big Data Appliance.

The commands in this procedure that reference HADOOP_HOME are used to support older
Hadoop clients that require this environment variable. The cluster uses YARN (MRv2)
and does not use HADOOP_HOME. If no older clients access the cluster, then you can
omit these commands.

To configure the Hadoop client:

1. Log in to the client system and download the MapReduce client configuration
from Cloudera Manager. In this example, Cloudera Manager listens on port 7180
(the default) of bda01node03.example.com, and the configuration is stored in a file
named yarn-conf.zip.

Chapter 4
Providing Remote Client Access to CDH

4-3

https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/installation.html
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/installation.html
https://docs.cloudera.com/documentation/enterprise/6/release-notes/topics/rg_java_requirements.html#java_requirements
https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_uninstall_cm.html
https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1943912.1

$ wget -O yarn-conf.zip http://bda01node03.example.com:7180/cmf/services/3/
client-config

2. Unzip mapreduce-config.zip into a permanent location on the client system.

$ unzip yarn-config.zip
Archive: yarn-config.zip
 inflating: yarn-conf/hadoop-env.sh
 inflating: yarn-conf/hdfs-site.xml
 inflating: yarn-conf/core-site.xml
 inflating: yarn-conf/mapred-site.xml
 inflating: yarn-conf/log4j.properties
 inflating: yarn-conf/yarn-site.xml

All files are stored in a subdirectory named yarn-config.

3. Make a backup copy of the Hadoop configuration files:

cp /full_path/yarn-conf /full_path/yarn-conf-bak

4. Overwrite the existing configuration files with the downloaded configuration files.

cd /full_path/yarn-conf
cp * /usr/lib/hadoop/conf

4.2.4 Configuring a CDH Client for a Kerberos-Secured Cluster
Follow these steps to enable the CDH client to work with a secure CDH cluster.

To configure a CDH client for Kerberos:

1. Log in to the system where you created the CDH client.

2. Install the Java Cryptography Extension Unlimited Strength Jurisdiction Policy
Files:

a. Download the files for your Java version:

Java 6: http://www.oracle.com/technetwork/java/javase/downloads/
jce-6-download-429243.html

Java 7: http://www.oracle.com/technetwork/java/javase/downloads/
jce-7-download-432124.html

Java 8: http://www.oracle.com/technetwork/java/javase/downloads/
jce8-download-2133166.html

b. Decompress the downloaded file. This example unzips JCE-8:

$ unzip UnlimitedJCEPolicyJDK8.zip
Archive: UnlimitedJCEPolicyJDK8.zip
 creating: UnlimitedJCEPolicy/
 inflating: UnlimitedJCEPolicy/US_export_policy.jar
 inflating: UnlimitedJCEPolicy/local_policy.jar
 inflating: UnlimitedJCEPolicy/README.txt

Note:

The JCE-6 files unzip into a directory named jce instead of
UnlimitedJCEPolicy.

Chapter 4
Providing Remote Client Access to CDH

4-4

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

c. Copy the unzipped files into the Java security directory. For example:

$ cp UnlimitedJCEPolicy/* /usr/java/latest/jre/lib/security/

3. Follow the steps for configuring an unsecured client.

See "Configuring a CDH Client for an Unsecured Cluster."

4. Ensure that you have a user ID on the CDH cluster that had been added to the
Kerberos realm.

See "Creating Hadoop Cluster Users."

5. On the CDH client system, create a file named krb5.conf in
the $HADOOP_CONF_DIR directory. Enter configuration settings like the following,
using values appropriate for your installation for the server names, domain, and
realm:

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 clockskew = 3600
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
[realms]
 EXAMPLE.COM = {
 kdc = bda01node01.example:88
 admin_server = bda01node07:749
 default_domain = example.com
 }
[domain_realm]
 .com = EXAMPLE.COM

6. Activate the new configuration file:

export KRB5_CONFIG=$HADOOP_CONF_DIR/krb5.conf
export HADOOP_OPTS="-Djava.security.krb5.conf=$HADOOP_CONF_DIR/krb5.conf"
export KRB5CCNAME=$HADOOP_CONF_DIR/krb5cc_$USER

7. Verify that you have access to the Oracle Big Data Appliance cluster.

See "Verifying Access to a Cluster from the CDH Client."

4.2.5 Verifying Access to a Cluster from the CDH Client
Follow this procedure to ensure that you have access to the Oracle Big Data
Appliance cluster.

To verify cluster access:

1. To access a Kerberos-protected CDH cluster, first obtain a ticket granting ticket
(TGT):

$ kinit userid@realm

2. Verify that you can access HDFS on Oracle Big Data Appliance from the client, by
entering a simple Hadoop file system command like the following:

$ hadoop fs -ls /user
Found 6 items
drwxr-xr-x - jdoe hadoop 0 2014-04-03 00:08 /user/jdoe
drwxrwxrwx - mapred hadoop 0 2014-04-02 23:25 /user/history

Chapter 4
Providing Remote Client Access to CDH

4-5

drwxr-xr-x - hive supergroup 0 2014-04-02 23:27 /user/hive
drwxrwxr-x - impala impala 0 2014-04-03 10:45 /user/impala
drwxr-xr-x - oozie hadoop 0 2014-04-02 23:27 /user/oozie
drwxr-xr-x - oracle hadoop 0 2014-04-03 11:49 /user/oracle

Check the output for HDFS users defined on Oracle Big Data Appliance, and not
on the client system. You should see the same results as you would after entering
the command directly on Oracle Big Data Appliance.

3. Submit a MapReduce job. You must be logged in to the client system under the
same user name as your HDFS user name on Oracle Big Data Appliance.

The following example calculates the value of pi:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-
examples-*jar pi 10 1000000
Number of Maps = 10
Samples per Map = 1000000
Wrote input for Map #0
Wrote input for Map #1
 .
 .
 .
Job Finished in 12.403 seconds
Estimated value of Pi is 3.14158440000000000000

4. Use Cloudera Manager to verify that the job ran on Oracle Big Data Appliance
instead of the local system. Select mapreduce Jobs from the Activities menu for a
list of jobs.

The following figure shows the job created by the previous example.

Figure 4-1 Monitoring a YARN Job in Cloudera Manager

4.3 Providing Remote Client Access to Hive
Follow this procedure to provide remote client access to Hive.

Chapter 4
Providing Remote Client Access to Hive

4-6

To set up a Hive client:

1. Set up a CDH client. See "Providing Remote Client Access to CDH."

2. Log in to the client system and download the Hive client configuration from
Cloudera Manager. In this example, Cloudera Manager listens on port 7180 (the
default) of bda01node03.example.com, and the configuration is stored in a file
named hive-conf.zip.

$ wget -O hive-conf.zip http://bda01node03.example.com:7180/cmf/services/5/
client-config
Length: 1283 (1.3K) [application/zip]
Saving to: 'hive-conf.zip'
100%[======================================>] 1,283 --.-K/s in 0.001s
2016-05-15 08:19:06 (2.17 MB/s) - `hive-conf.zip' saved [1283/1283]

3. Unzip the file into a permanent installation directory, which will be the Hive
configuration directory:

$ unzip hive-conf.zip
Archive: hive-conf.zip
 inflating: hive-conf/hive-env.sh
 inflating: hive-conf/hive-site.xml

4. Download the Hive software from the Cloudera website:

$ wget http://archive.cloudera.com/cdh5/cdh/5/hive-<version>-
cdh5.<version>.tar.gz
Length: 49637596 (47M) [application/x-gzip]
Saving to: 'hive-<version>-cdh5.<version>.tar.gz'
100%[======================================>] 49,637,596 839K/s in 47s
2016-05-15 08:22:18 (1.02 MB/s) - `hive-<version>-cdh5.<version>.tar.gz'
saved [49637596/49637596]

5. Decompress the file into a permanent installation directory, which will be the Hive
home directory. The following command unzips the files into the current directory
in a subdirectory named hive-0.12.0-cdh5.0.0:

$ tar -xvzf hive-<version>-cdh5.<version>.tar.gz
hive-<version>-cdh5.<version>/
hive-<version>-cdh5.<version>/examples/
 .
 .
 .

6. Set the following variables, replacing hive-home-dir and hive-conf-dir with the
directories you created in steps 3 and 5.

export HIVE_HOME=hive-home-dir
export HIVE_CONF_DIR=hive-conf-dir
alias hive=$HIVE_HOME/bin/hive

The following steps test whether you successfully set up a Hive client.

To verify Hive access:

1. To access a Kerberos-protected CDH cluster, first obtain a ticket granting ticket
(TGT):

$ kinit userid@realm

2. Open the Hive console:

Chapter 4
Providing Remote Client Access to Hive

4-7

$ hive
Logging initialized using configuration in jar:file:/usr/lib/hive/lib/hive-
common-<version>-cdh5.<version>.jar!/hive-log4j.properties
Hive history file=/tmp/oracle/hive_job_log_e10527ee-9637-4c08-9559-
a2e5cea6cef1_831268640.txt
hive>

3. List all tables:

hive> show tables;
OK
src

4.4 Managing User Accounts
This section describes how to create users who can access HDFS, MapReduce, and
Hive. It contains the following topics:

• Creating Hadoop Cluster Users

• Providing User Login Privileges (Optional)

4.4.1 Creating Hadoop Cluster Users
When creating user accounts, define them as follows:

• To run MapReduce jobs, users must either be in the hadoop group or be granted
the equivalent permissions.

• To create and modify tables in Hive, users must either be in the hive group or be
granted the equivalent permissions.

• To create Hue users, open Hue in a browser and click the User Admin icon. See
"Using Cloudera Hue to Interact With Hadoop."

4.4.1.1 Creating Users on an Unsecured Cluster
To create a user on an unsecured Hadoop cluster:

1. Open an ssh connection as the root user to a noncritical node (node04 to
node18).

2. Create the user's home directory:

sudo -u hdfs hadoop fs -mkdir /user/user_name

You use sudo because the HDFS super user is hdfs (not root).

3. Change the ownership of the directory:

sudo -u hdfs hadoop fs -chown user_name:hadoop /user/user_name

4. Verify that the directory is set up correctly:

hadoop fs -ls /user

5. Create the operating system user across all nodes in the cluster:

dcli useradd -G hadoop,hive[,group_name...] -m user_name

In this syntax, replace group_name with an existing group and user_name with the
new name.

Chapter 4
Managing User Accounts

4-8

6. Verify that the operating system user belongs to the correct groups:

dcli id user_name

7. Verify that the user's home directory was created on all nodes:

dcli ls /home | grep user_name

Example 4-1 Creating a Hadoop User

sudo -u hdfs hadoop fs -mkdir /user/jdoe
sudo -u hdfs hadoop fs -chown jdoe:hadoop /user/jdoe
hadoop fs -ls /user
Found 5 items
drwx------ - hdfs supergroup 0 2013-01-16 13:50 /user/hdfs
drwxr-xr-x - hive supergroup 0 2013-01-16 12:58 /user/hive
drwxr-xr-x - jdoe jdoe 0 2013-01-18 14:04 /user/jdoe
drwxr-xr-x - oozie hadoop 0 2013-01-16 13:01 /user/oozie
drwxr-xr-x - oracle hadoop 0 2013-01-16 13:01 /user/oracle
dcli useradd -G hadoop,hive -m jdoe
dcli id jdoe
bda1node01: uid=1001(jdoe) gid=1003(jdoe) groups=1003(jdoe),127(hive),123(hadoop)
bda1node02: uid=1001(jdoe) gid=1003(jdoe) groups=1003(jdoe),123(hadoop),127(hive)
bda1node03: uid=1001(jdoe) gid=1003(jdoe) groups=1003(jdoe),123(hadoop),127(hive)
 .
 .
 .
dcli ls /home | grep jdoe
bda1node01: jdoe
bda1node02: jdoe
bda1node03: jdoe

Example 4-1 creates a user named jdoe with a primary group of hadoop and an
addition group of hive.

4.4.1.2 Creating Users on a Secured Cluster
To create a user on a Kerberos-secured cluster:

1. Connect to Kerberos as the HDFS principal and execute the following commands,
replacing jdoe with the actual user name:

hdfs dfs -mkdir /user/jdoe
hdfs dfs -chown jdoe /user/jdoe
dcli -C useradd -G hadoop,hive -m jdoe
hash=$(echo "hadoop" | openssl passwd -1 -stdin)
dcli -C "usermod --pass='$hash' jdoe"

2. Log in to the key distribution center (KDC) and add a principal for the user. In the
following example, replace jdoe, bda01node01, and example.com with the correct
user name, server name, domain, and realm.

ssh -l root bda01node01.example.com kadmin.local
add_principal user_name@EXAMPLE.COM

4.4.2 Providing User Login Privileges (Optional)
Users do not need login privileges on Oracle Big Data Appliance to run MapReduce
jobs from a remote client. However, for those who want to log in to Oracle Big Data
Appliance, you must set a password. You can set or reset a password the same way.

Chapter 4
Managing User Accounts

4-9

To set a user password across all Oracle Big Data Appliance servers:

1. Create a Hadoop cluster user as described in "Creating Hadoop Cluster Users.".

2. Confirm that the user does not have a password:

dcli passwd -S user_name
bda1node01.example.com: jdoe NP 2013-01-22 0 99999 7 -1 (Empty password.)
bda1node02.example.com: jdoe NP 2013-01-22 0 99999 7 -1 (Empty password.)
bda1node03.example.com: jdoe NP 2013-01-22 0 99999 7 -1 (Empty password.)

If the output shows either "Empty password" or "Password locked," then you must
set a password.

3. Set the password:

 hash=$(echo 'password' | openssl passwd -1 -stdin); dcli "usermod --
pass='$hash' user_name"

4. Confirm that the password is set across all servers:

dcli passwd -S user_name
bda1node01.example.com: jdoe PS 2013-01-24 0 99999 7 -1 (Password set, MD5
crypt.)
bda1node02.example.com: jdoe PS 2013-01-24 0 99999 7 -1 (Password set, MD5
crypt.)
bda1node03.example.com: jdoe PS 2013-01-24 0 99999 7 -1 (Password set, MD5
crypt.)

See Also:

• Oracle Big Data Appliance Owner's Guide for information about dcli.

• The Linux man page for the full syntax of the useradd command.

4.5 Recovering Deleted Files
CDH provides an optional trash facility, so that a deleted file or directory is moved to a
trash directory for a set period, instead of being deleted immediately from the system.
By default, the trash facility is enabled for HDFS and all HDFS clients.

4.5.1 Restoring Files from the Trash
When the trash facility is enabled, you can easily restore files that were previously
deleted.

To restore a file from the trash directory:

1. Check that the deleted file is in the trash. The following example checks for files
deleted by the oracle user:

$ hadoop fs -ls .Trash/Current/user/oracle
Found 1 items
-rw-r--r-- 3 oracle hadoop 242510990 2012-08-31 11:20 /user/oracle/.Trash/
Current/user/oracle/ontime_s.dat

Chapter 4
Recovering Deleted Files

4-10

2. Move or copy the file to its previous location. The following example moves
ontime_s.dat from the trash to the HDFS /user/oracle directory.

$ hadoop fs -mv .Trash/Current/user/oracle/ontime_s.dat /user/oracle/
ontime_s.dat

4.5.2 Changing the Trash Interval
The trash interval is the minimum number of minutes that a file remains in the trash
directory before being deleted permanently from the system. The default value is 1 day
(24 hours).

To change the trash interval:

1. Open Cloudera Manager. See "Managing Operations Using Cloudera Manager".

2. On the Home page under Status, click hdfs.

3. On the hdfs page, click the Configuration subtab, and then select View and Edit.

4. Search for or scroll down to the Filesystem Trash Interval property under
NameNode Default Group. See Figure 4-2.

5. Click the current value, and enter a new value in the pop-up form.

6. Click Save Changes.

7. Expand the Actions menu at the top of the page and choose Restart.

8. Open a connection as root to a node in the cluster.

9. Deploy the new configuration:

dcli -C bdagetclientconfig

The following figure shows the Filesystem Trash Interval property in Cloudera
Manager.

Figure 4-2 HDFS Property Settings in Cloudera Manager

Chapter 4
Recovering Deleted Files

4-11

4.5.3 Disabling the Trash Facility
The trash facility on Oracle Big Data Appliance is enabled by default. You can change
this configuration for a cluster. When the trash facility is disabled, deleted files and
directories are not moved to the trash. They are not recoverable.

4.5.3.1 Completely Disabling the Trash Facility
The following procedure disables the trash facility for HDFS. When the trash facility is
completely disabled, the client configuration is irrelevant.

To completely disable the trash facility:

1. Open Cloudera Manager. See "Managing Operations Using Cloudera Manager".

2. On the Home page under Status, click hdfs.

3. On the hdfs page, click the Configuration subtab, and then select View and Edit.

4. Search for or scroll down to the Filesystem Trash Interval property under
NameNode Default Group. See Figure 4-2.

5. Click the current value, and enter a value of 0 (zero) in the pop-up form.

6. Click Save Changes.

7. Expand the Actions menu at the top of the page and choose Restart.

4.5.3.2 Disabling the Trash Facility for Local HDFS Clients
All HDFS clients that are installed on Oracle Big Data Appliance are configured to use
the trash facility. An HDFS client is any software that connects to HDFS to perform
operations such as listing HDFS files, copying files to and from HDFS, and creating
directories.

You can use Cloudera Manager to change the local client configuration setting,
although the trash facility is still enabled.

Note:

If you do not want any clients to use the trash, then you can completely
disable the trash facility. See "Completely Disabling the Trash Facility."

To disable the trash facility for local HDFS clients:

1. Open Cloudera Manager. See "Managing Operations Using Cloudera Manager".

2. On the Home page under Status, click hdfs.

3. On the hdfs page, click the Configuration subtab, and then select View and Edit.

4. Search for or scroll down to the Filesystem Trash Interval property under Gateway
Default Group. See Figure 4-2.

5. Search for or scroll down to the Use Trash property under Client Settings. See
Figure 4-2.

Chapter 4
Recovering Deleted Files

4-12

6. Deselect the Use Trash check box.

7. Click Save Changes. This setting is used to configure all new HDFS clients
downloaded to Oracle Big Data Appliance.

8. Open a connection as root to a node in the cluster.

9. Deploy the new configuration:

dcli -C bdagetclientconfig

4.5.3.3 Disabling the Trash Facility for a Remote HDFS Client
Remote HDFS clients are typically configured by downloading and installing a CDH
client, as described in "Providing Remote Client Access to CDH." Oracle SQL
Connector for HDFS and Oracle R Advanced Analytics for Hadoop are examples of
remote clients.

To disable the trash facility for a remote HDFS client:

1. Open a connection to the system where the CDH client is installed.

2. Open /etc/hadoop/conf/hdfs-site.xml in a text editor.

3. Set the trash interval to zero:

<property>
 <name>fs.trash.interval</name>
 <value>0</value>
</property>

4. Save the file.

Chapter 4
Recovering Deleted Files

4-13

5
Configuring Oracle Exadata Database
Machine for Use with Oracle Big Data
Appliance

This chapter provides information about optimizing communications between Oracle
Exadata Database Machine and Oracle Big Data Appliance. It describes how you can
configure Oracle Exadata Database Machine to use InfiniBand alone, or SDP over
InfiniBand, to communicate with Oracle Big Data Appliance.

This chapter contains the following sections:

• About Optimizing Communications

• Prerequisites for Optimizing Communications

• Specifying the InfiniBand Connections to Oracle Big Data Appliance

• Specifying the InfiniBand Connections to Oracle Exadata Database Machine

• Enabling SDP on Exadata Database Nodes

• Creating an SDP Listener on the InfiniBand Network

5.1 About Optimizing Communications
Oracle Exadata Database Machine and Oracle Big Data Appliance use Ethernet by
default, although typically they are also connected by an InfiniBand network. Ethernet
communications are much slower than InfiniBand. After you configure Oracle Exadata
Database Machine to communicate using InfiniBand, it can obtain data from Oracle
Big Data Appliance many times faster than before.

Moreover, client applications that run on Oracle Big Data Appliance and push the
data to Oracle Database can use Sockets Direct Protocol (SDP) for an additional
performance boost. SDP is a standard communication protocol for clustered server
environments, providing an interface between the network interface card and the
application. By using SDP, applications place most of the messaging burden upon
the network interface card, which frees the CPU for other tasks. As a result, SDP
decreases network latency and CPU utilization, and thereby improves performance.

5.1.1 About Applications that Pull Data Into Oracle Exadata Database
Machine

Oracle SQL Connector for Hadoop Distributed File System (HDFS) is an example of
an application that pulls data into Oracle Exadata Database Machine. The connector
enables an Oracle external table to access data stored in either HDFS files or a Hive
table.

The external table provide access to the HDFS data. You can use the external table for
querying HDFS data or for loading it into an Oracle database table.

5-1

Oracle SQL Connector for HDFS functions as a Hadoop client running on the
database servers in Oracle Exadata Database Machine.

If you use Oracle SQL Connector for HDFS or another tool that pulls the data
into Oracle Exadata Database Machine, then for the best performance, you should
configure the system to use InfiniBand. See "Specifying the InfiniBand Connections to
Oracle Big Data Appliance."

See Also :

Oracle Big Data Connectors
for information about Oracle SQL Connector for HDFS

5.1.2 About Applications that Push Data Into Oracle Exadata
Database Machine

Oracle Loader for Hadoop is an example of an application that pushes data into Oracle
Exadata Database Machine. The connector is an efficient and high-performance
loader for fast movement of data from a Hadoop cluster into a table in an Oracle
database. You can use it to load data from Oracle Big Data Appliance to Oracle
Exadata Database Machine.

Oracle Loader for Hadoop functions as a database client running on the Oracle Big
Data Appliance. It must make database connections from Oracle Big Data Appliance
to Oracle Exadata Database Machine over the InfiniBand network. Use of Sockets
Direct Protocol (SDP) for these database connections further improves performance.

If you use Oracle Loader for Hadoop or another tool that pushes the data into Oracle
Exadata Database Machine, then for the best performance, you should configure the
system to use SDP over InfiniBand as described in this chapter.

5.2 Prerequisites for Optimizing Communications
Oracle Big Data Appliance and Oracle Exadata Database Machine racks must be
cabled together using InfiniBand cables. The IP addresses must be unique across all
racks and use the same subnet for the InfiniBand network.

See Also:

• Oracle Big Data Appliance Owner's Guide about multirack cabling

• Oracle Big Data Appliance Owner's Guide about IP addresses and
subnets

Chapter 5
Prerequisites for Optimizing Communications

5-2

https://docs.oracle.com/en/bigdata/big-data-connectors/index.html

5.3 Specifying the InfiniBand Connections to Oracle Big
Data Appliance

You can configure Oracle Exadata Database Machine to use the InfiniBand IP
addresses of the Oracle Big Data Appliance servers. Otherwise, the default network is
Ethernet. Use of the InfiniBand network improves the performance of all data transfers
between Oracle Big Data Appliance and Oracle Exadata Database Machine.

To identify the Oracle Big Data Appliance InfiniBand IP addresses:

1. If you have not done so already, install a CDH client on Oracle Exadata Database
Machine. See "Providing Remote Client Access to CDH."

2. Obtain a list of private host names and InfiniBand IP addresses for all Oracle Big
Data Appliance servers.

An Oracle Big Data Appliance rack can have 6, 12, or 18 servers.

3. Log in to Oracle Exadata Database Machine with root privileges.

4. Edit /etc/hosts on Oracle Exadata Database Machine and add the Oracle Big
Data Appliance host names and InfiniBand IP addresses. The following example
shows the sequential IP numbering:

192.168.8.1 bda1node01.example.com bda1node01
192.168.8.2 bda1node02.example.com bda1node02
192.168.8.3 bda1node03.example.com bda1node03
192.168.8.4 bda1node04.example.com bda1node04
192.168.8.5 bda1node05.example.com bda1node05
192.168.8.6 bda1node06.example.com bda1node06

5. Check /etc/nsswitch.conf for a line like the following:

hosts: files dns

Ensure that the line does not reverse the order (dns files); if it does, your
additions to /etc/hosts will not be used. Edit the file if necessary.

6. Ping all Oracle Big Data Appliance servers. Ensure that ping completes and
shows the InfiniBand IP addresses.

ping bda1node01.example.com
PING bda1node01.example.com (192.168.8.1) 56(84) bytes of data.
64 bytes from bda1node01.example.com (192.168.8.1): icmp_seq=1 ttl=50
time=20.2 ms
 .
 .
 .

7. Run CDH locally on Oracle Exadata Database Machine and test HDFS
functionality by uploading a large file to an Oracle Big Data Appliance server.
Check that your network monitoring tools (such as sar) show I/O activity on the
InfiniBand devices.

To upload a file, use syntax like the following, which copies localfile.dat to the
HDFS testdir directory on node05 of Oracle Big Data Appliance:

hadoop fs -put localfile.dat hdfs://bda1node05.example.com/testdir/

Chapter 5
Specifying the InfiniBand Connections to Oracle Big Data Appliance

5-3

5.4 Specifying the InfiniBand Connections to Oracle Exadata
Database Machine

You can configure Oracle Big Data Appliance to use the InfiniBand IP addresses of the
Oracle Exadata Database Machine servers. This configuration supports applications
on Oracle Big Data Appliance that must connect to Oracle Exadata Database
Machine.

To identify the Oracle Exadata Database Machine InfiniBand IP addresses:

1. Obtain a list of private host names and InfiniBand IP addresses for all Oracle
Exadata Database Machine servers.

2. Log in to Oracle Big Data Appliance with root privileges.

3. Edit /etc/hosts on Oracle Big Data Appliance and add the Oracle Exadata
Database Machine host names and InfiniBand IP addresses.

4. Check /etc/nsswitch.conf for a line like the following:

hosts: files dns

Ensure that the line does not reverse the order (dns files); if it does, your
additions to /etc/hosts will not be used. Edit the file if necessary.

5. Restart the dnsmasq service:

service dnsmasq restart

6. Ping all Oracle Exadata Database Machine servers. Ensure that ping completes
and shows the InfiniBand IP addresses.

7. Test the connection by downloading a large file to an Oracle Exadata Database
Machine server. Check that your network monitoring tools (such as sar) show I/O
activity on the InfiniBand devices.

To download a file, use syntax like the following, which copies a file named
mydata.json to the dm01ce108 storage server:

$ scp mydata.json oracle@dm01cel08-priv.example.com:mybigdata.json
oracle@dm01cel08-priv.example.com's password: password

5.5 Enabling SDP on Exadata Database Nodes
SDP improves the performance of client applications that run on Oracle Big Data
Appliance and push large data loads to Oracle Database on Oracle Exadata Database
Machine.

The following procedure describes how to enable SDP on the database nodes in an
Oracle Exadata Database Machine running Oracle Linux. You must also configure
your application on a job-by-job basis to use SDP.

To enable SDP on Oracle Exadata Database Machine:

1. Open /etc/infiniband/openib.conf file in a text editor, and add the following
line:

set: SDP_LOAD=yes

Chapter 5
Specifying the InfiniBand Connections to Oracle Exadata Database Machine

5-4

2. Save these changes and close the file.

3. To enable both SDP and TCP, open /etc/ofed/libsdp.conf in a text editor, and
add the use both rule:

use both server * :
use both client * :

4. Save these changes and close the file.

5. Open /etc/modprobe.conf file in a text editor, and add this setting:

options ib_sdp sdp_zcopy_thresh=0 recv_poll=0

6. Save these changes and close the file.

7. Replicate these changes across all database nodes in the Oracle Exadata
Database Machine rack.

8. Restart all database nodes for the changes to take effect.

9. If you have multiple Oracle Exadata Database Machine racks, then repeat these
steps on all of them.

To specify SDP protocol for a load job:

1. Add JVM options to the HADOOP_OPTS environment variable to enable JDBC SDP
export:

HADOOP_OPTS="-Doracle.net.SDP=true -Djava.net.preferIPv4Stack=true"

2. In either the Hadoop command or the configuration file for the job, set the
mapred.child.java.opts configuration property to enable the child task JVMs for
SDP.

For example, use these options in the command line for a MapReduce job:

-D mapred.child.java.opts="-Doracle.net.SDP=true -
Djava.net.preferIPv4Stack=true"

3. Configure standard Ethernet communications for the job.

For example, Oracle Loader for Hadoop reads the value of the
oracle.hadoop.loader.connection.url property from a job configuration file. The
value has this syntax:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=hostName)(PORT=portNumber)))
 (CONNECT_DATA=(SERVICE_NAME=serviceName)))

Replace hostName, portNumber, and serviceName with the appropriate values to
identify the SDP listener on your Oracle Exadata Database Machine.

4. Configure the Oracle listener on Exadata to support the SDP protocol and bind it
to a specific port address (such as 1522).

For example, Oracle Loader for Hadoop reads the value of the
oracle.hadoop.loader.connection.oci_url property from a job configuration
file. The value has this syntax:

(DESCRIPTION=(ADDRESS=(PROTOCOL=SDP)
 (HOST=hostName) (PORT=portNumber))
 (CONNECT_DATA=(SERVICE_NAME=serviceName)))

Chapter 5
Enabling SDP on Exadata Database Nodes

5-5

5.6 Creating an SDP Listener on the InfiniBand Network
To add a listener for the Oracle Big Data Appliance connections coming in on the
InfiniBand network, first add a network resource for the InfiniBand network with virtual
IP addresses.

Note:

These instructions apply to Exadata V2, X2-2 , and X3-2 nodes running
Oracle Linux 5. Document 1580584.1 in My Oracle Support provides
instructions for these same systems as well as for X4-2, X5-2, and X6-2
nodes running Oracle Linux 6 .

This example below lists two nodes for an Oracle Exadata Database Machine quarter
rack. If you have an Oracle Exadata Database Machine half or full rack, you must
repeat node-specific lines for each node in the cluster.

1. Edit /etc/hosts on each node in the Exadata rack to add the virtual IP addresses
for the InfiniBand network. Make sure that these IP addresses are not in use. For
example:

Added for Listener over IB
192.168.10.21 dm01db01-ibvip.example.com dm01db01-ibvip
192.168.10.22 dm01db02-ibvip.example.com dm01db02-ibvip

2. As the root user, create a network resource on one database node for the
InfiniBand network. For example:

/u01/app/grid/product/12.1.0.1/bin/srvctl add network -k 2 -S
192.168.10.0/255.255.255.0/bondib0

3. Verify that the network was added correctly with a command like the following
examples:

/u01/app/grid/product/12.1.0.1/bin/crsctl stat res -t | grep net
ora.net1.network
ora.net2.network -- Output indicating new Network resource

or

/u01/app/grid/product/12.1.0.1/bin/srvctl config network -k 2
Network exists: 2/192.168.10.0/255.255.255.0/bondib0, type static -- Output
indicating Network resource on the 192.168.10.0 subnet

4. Add the virtual IP addresses on the network created in Step 2, for each node in the
cluster. For example:

srvctl add vip -n dm01db01 -A dm01db01-ibvip/255.255.255.0/bondib0 -k 2
#
srvctl add vip -n dm01db02 -A dm01db02-ibvip/255.255.255.0/bondib0 -k 2

5. As the oracle user who owns Grid Infrastructure Home, add a listener for the
virtual IP addresses created in Step 4.

srvctl add listener -l LISTENER_IB -k 2 -p TCP:1522,/SDP:1522

Chapter 5
Creating an SDP Listener on the InfiniBand Network

5-6

https://support.oracle.com/

6. For each database that will accept connections from the middle tier, modify
the listener_networks init parameter to allow load balancing and failover
across multiple networks (Ethernet and InfiniBand). You can either enter the full
TNSNAMES syntax in the initialization parameter or create entries in tnsnames.ora in
the $ORACLE_HOME/network/admin directory. The TNSNAMES.ORA entries must exist
in GRID_HOME. The following example first updates tnsnames.ora.

Complete this step on each node in the cluster with the correct IP addresses for
that node. LISTENER_IBREMOTE should list all other nodes that are in the cluster.
DBM_IB should list all nodes in the cluster.

Note:

The database instance reads the TNSNAMES only on startup. Thus, if
you modify an entry that is referred to by any init.ora parameter
(LISTENER_NETWORKS), then you must either restart the instance or
issue an ALTER SYSTEM SET LISTENER_NETWORKS command for the
modifications to take affect by the instance.

DBM =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01-scan)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = dbm)
))
DBM_IB =
(DESCRIPTION =
(LOAD_BALANCE=on)
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db01-ibvip)(PORT = 1522))
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db02-ibvip)(PORT = 1522))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = dbm)
))
LISTENER_IBREMOTE =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db02-ibvip.mycompany.com)(PORT =
1522))
))
LISTENER_IBLOCAL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db01-ibvip.mycompany.com)(PORT =
1522))
(ADDRESS = (PROTOCOL = SDP)(HOST = dm01db01-ibvip.mycompany.com)(PORT =
1523))
))
LISTENER_IPLOCAL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm0101-vip.mycompany.com)(PORT = 1521))
))
LISTENER_IPREMOTE =
(DESCRIPTION =
(ADDRESS_LIST =

Chapter 5
Creating an SDP Listener on the InfiniBand Network

5-7

(ADDRESS = (PROTOCOL = TCP)(HOST = dm01-scan.mycompany.com)(PORT = 1521))
))

7. Connect to the database instance as sysdba.

8. Modify the listener_networks init parameter by using the SQL ALTER SYSTEM
command:

SQL> alter system set listener_networks=
 '((NAME=network2) (LOCAL_LISTENER=LISTENER_IBLOCAL)
 (REMOTE_LISTENER=LISTENER_IBREMOTE))',
 '((NAME=network1)(LOCAL_LISTENER=LISTENER_IPLOCAL)
 (REMOTE_LISTENER=LISTENER_IPREMOTE))' scope=both;

9. On the Linux command line, use the srvctl command to restart LISTENER_IB to
implement the modification in Step 7:

srvctl stop listener -l LISTENER_IB
srvctl start listener -l LISTENER_IB

Chapter 5
Creating an SDP Listener on the InfiniBand Network

5-8

Part II
Oracle DataSource for Apache Hadoop

This part describes Oracle DataSource for Apache Hadoop (OD4H) storage handler
for Oracle Database. It contains the following chapters:

• Oracle DataSource for Apache Hadoop (OD4H)

6
Oracle DataSource for Apache Hadoop
(OD4H)

Oracle DataSource for Apache Hadoop (formerly known as Oracle Table Access for
Apache Hadoop) allows direct, fast, parallel, secure, and consistent access to master
data in Oracle Database using Spark SQL through Hive metastore. This chapter
discusses Oracle DataSource for Apache Hadoop (OD4H) in the following sections:

• Operational Data, Big Data and Requirements

• Overview of Oracle DataSource for Apache Hadoop (OD4H)

• How Does OD4H Work?

• Features of OD4H

• Using Hive SQL with OD4H

• Using Spark SQL with OD4H

• Writing Back To Oracle Database

6.1 Operational Data, Big Data and Requirements
The typical data architecture in most companies comprises of the following
components:

• Oracle Database for operational, transactional, and master data, which is shared
business object

• Big Data

Hadoop applications (such as Master Data Management (MDM) or Events processing)
need access to data in both Hadoop storages (such as HDFS and NoSQL Database
as a landing point for Web logs) and Oracle Database (as the reliable and auditable
source of truth). You can adopt one of the following approaches to process such data
that reside in both Hadoop storage and Oracle Database:

• Perform an Extract, Transform, and Load (ETL) Copy using tools such as Copy to
Hadoop tool of Oracle

• Access the data directly using Oracle Big Data SQL and Oracle DataSource for
Apache Hadoop (OD4H)

This chapter discusses Oracle DataSource for Apache Hadoop (OD4H).

6.2 Overview of Oracle DataSource for Apache Hadoop
(OD4H)

Oracle DataSource for Apache Hadoop (OD4H) is the storage handler for Oracle
Database that uses HCatalog and InputFormat.

6-1

This section discusses the following concepts:

• Opportunity with Hadoop 2.x

• Oracle Tables as Hadoop Data Source

• External Tables

6.2.1 Opportunity with Hadoop 2.x
Hadoop 2.x architecture decouples compute engines from cluster resources
management and storages. It enables:

• A variety of SQL query engines. For instance, Hive SQL, Spark SQL, Big Data
SQL, and so on.

• A variety of programmatic compute engines. For instance, MapReduce, Pig,
Storm, Solr, Cascading, and so on.

• Elastic allocation of compute resources (CPU, memory) through YARN.

• A variety of data stores such as HDFS, NoSQL, as well as remote storages
through HCatalog, InputFormat, OutputFormat and StorageHandler interfaces.

Oracle DataSource for Apache Hadoop (OD4H) is the storage handler for Oracle
Database that uses HCatalog and InputFormat.

Following is an illustration of Hadoop 2.0 Architecture:

Figure 6-1 Hadoop 2.0 Architecture

Batch
(MapReduce)

Interactive
(Tez)

In-Memory
(Spark)

Graph
(Giraph)

Streaming
(Storm)

Compute Engines
Query Engines
Programming Modules
Applications

Yarn (Cluster Resource Management)

Data
HCatalog,

InputFormat,
StorageHandler

Compute and Memory

Redundant and / or Reliable Storage

HDFS NoSQL Other

6.2.2 Oracle Tables as Hadoop Data Source
OD4H enables current and ad-hoc querying. This makes querying data faster and
more secure. You can query data directly and retrieve only the data that you need,
when you need it.

OD4H also provides Oracle’s end-to-end security. This includes Identity Management,
Column Masking, and Label and Row Security.

OD4H also furnishes direct access for Hadoop and Spark APIs such as Pig,
MapReduce and others.

Chapter 6
Overview of Oracle DataSource for Apache Hadoop (OD4H)

6-2

6.2.3 External Tables
External Tables turn Oracle tables into Hadoop and/or Spark datasources. The DDL
for declaring External Tables is as follows:

CREATE[TEMPORARY] EXTERNAL TABLE [IF NOT EXISTS] [db_name.]table_name
[(col_name data_type [COMMENTcol_comment],...)]
[COMMENT table_comment]
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
[WITHSERDEPROPERTIES(...)]
[TBLPROPERTIES (property_name=property_value,...)]

data_type
|SMALLINT
|INT
|BIGINT
|BOOLEAN
|FLOAT
|DOUBLE
|STRING
|BINARY
|TIMESTAMP
|DECIMAL
|DECIMAL(precision,scale)
|VARCHAR
|CHAR

See Also:

Refer the following link for Hive
External Table syntax https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+DDL#LanguageManualDDL-CreateTable

Note:

Oracle supports only primitive types.

The following table shows the mappings between Oracle and Hive types.

Oracle Data Type Hive Data Type

NUMBER INT when the scale is 0 and the precision is less than 10.

BIGNIT when the scale is 0 and precision is less than 19.

DECIMAL when the scale is greater than 0 or the precision is
greater than 19.

Chapter 6
Overview of Oracle DataSource for Apache Hadoop (OD4H)

6-3

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable

CLOB

NCLOB

STRING

BINARY_DOUBLE DOUBLE

BINARY_FLOAT FLOAT

BLOB BINARY

CHAR

NCHAR

CHAR

VARCHAR2

NVARCHAR2

VARCHAR

ROWID

UROWID

BINARY

DATE TIMESTAMP

TIMESTAMP TIMESTAMP

TIMESTAMPTZ

TIMESTAMPLTZ

Unsupported

RAW BINARY

The properties of external tables can be described as follows:

6.2.3.1 TBLPROPERTIES

Property Use

oracle.hcat.osh.columns.mapping Comma separated list to specify mapping between
Hive columns and Oracle table columns. All external
tables using OracleStorageHandler must define this.

mapreduce.jdbc.url Connection URL to connect to the database

mapreduce.jdbc.username Connection user name to connect to the database

mapreduce.jdbc.password Connection password to connect to the database

mapreduce.jdbc.input.table.name Oracle table name

mapreduce.jdbc.input conditions To be used for querying the database. Must be used
for query pushdown.

mapreduce.jdbc.input.query To be used for querying the database. Query should be
used only when a subset of the columns is selected.

mapreduce.jdbc.input.orderby ORDER BY clause to be specified for pushing ordering
to the database.

Chapter 6
Overview of Oracle DataSource for Apache Hadoop (OD4H)

6-4

Property Use

oracle.hcat.osh.splitterKind To be used to specify how OracleStorageHandler
must create splits, so that they are a good
match for the physical structure of the target table
in Oracle Database. The splitter kind applicable
could be SINGLE_SPLITTER, PARTITION_SPLITTER,
ROW_SPLITTER, BLOCK_SPLITTER.

oracle.hcat.osh.rowsPerSplit Used only when ROW_SPLITTER splitterKind is applied
on the table. Represents Number of rows per split for
LIMIT_RANGE splitter. Default is 1000

oracle.hcat.osh.authentication Authentication method used to connect to Oracle
Database. Can be SIMPLE (default), ORACLE_WALLET,
KERBEROS

sun.security.krb5.principal Kerberos principal. Used only when KERBEROS
authentication is applied.

oracle.hcat.osh.kerb.callback Callback for Kerberos authentication. Used only when
Kerberos authentication is applied.

oracle.hcat.osh.maxSplits Maximum number of splits for any splitter kind

oracle.hcat.osh.useChunkSplitter Use chunk based ROW_SPLITTER
and BLOCK_SPLITTER that use
DBMS_PARALLEL_EXECUTE package to divide table
into chunks that will map to hadoop splits.The default
value is set to ‘true’.

oracle.hcat.osh.chunkSQL Used by CUSTOM_SPLITTERto create splits. The
SQL string should be a SELECT statement that
returns range of each chunk must have two columns:
start_id and end_id The columns must be of ROWID
type.

oracle.hcat.osh.useOracleParallelism When configured, parallel queries will be executed
while fetching rows from Oracle. Default value: ‘false’

oracle.hcat.osh.fetchSize JDBC fetchsize for generated select queries used to
fetch rows. Default value: 10 (set by Oracle JDBC
Driver)

Note:

In addition to the above, any JDBC connection properties (oracle.jdbc.*
and oracle.net.*) can be specified as TBLPROPERTIES. They will be used
while establishing connection to Oracle Database using JDBC driver.

Note:

Oracle DataSource for Apache Hadoop (OD4H) works with Oracle View and
Oracle Tables.

Chapter 6
Overview of Oracle DataSource for Apache Hadoop (OD4H)

6-5

6.2.3.2 SERDE PROPERTIES

Property Use

oracle.hcat.osh.columns.mapping All external tables using OracleStorageHandler
must define this. Its a comma separated list
to specify mapping between hive columns
(specified in create table) and oracle
table columns. WITHSERDEPROPERTIES also
enables the external table definition to refer
only to select columns in the actual Oracle
table. In other words, not all columns from
the Oracle table need to be part of the Hive
external table. The ordering of oracle columns
in the mapping is the same as ordering of hive
columns specified in create table.

6.2.4 List of jars in the OD4H package
Oracle DataSource for Apache Hadoop (OD4H) contains the following list of jars.

OD4H consists of the following list of jars.

Table 6-1 List of jars in OD4H

Name of JAR Use

osh.jar Contains OracleStorageHandler
Implementation

ojdbc8.jar An OD4H specific JDBC driver (which is
optimized with internal calls), used by Spark
or Hadoop tasks to connect to the database.

ucp.jar For creating connection pools in
OracleStorageHandler

oraclepki103.jar, osdt_core.jar, osdt_cert.jar,
osdt_jce.jar

For Oracle Wallet authentication

orai18n.jar Oracle Globalization Support

xdb.jar Oracle XDB jar

6.3 How does OD4H work?
Oracle DataSource for Apache Hadoop (OD4H) does not require creating a new table.
You can start working with OD4H using the following steps:

1. Create a new Oracle table, or, reuse an existing table.

2. Create the Hive DDL for creating the external table referencing the Oracle Table.

3. Issue HiveSQL, SparkSQL, or other Spark/Hadoop queries and API calls.

The following sections show how to create a new Oracle Database Table, and a Hive
DDL:

• Create a New Oracle Database Table

• Hive DDL

Chapter 6
How does OD4H work?

6-6

• Creating External Table in Hive

6.3.1 Create a new Oracle Database Table or Reuse an Existing Table
Here is an illustration of a partitioned Oracle table that we will use to demo how
partition pruning works:

1. CREATE TABLE EmployeeData (Emp_ID NUMBER,
 First_Name VARCHAR2(20),
 Last_Name VARCHAR2(20),
 Job_Title VARCHAR2(40),
 Salary NUMBER)
PARTITION BY RANGE (Salary)
 (PARTITION salary_1 VALUES LESS THAN (60000)
 TABLESPACE tsa
 , PARTITION salary_2 VALUES LESS THAN (70000)
 TABLESPACE tsb
 , PARTITION salary_3 VALUES LESS THAN (80000)
 TABLESPACE tsc
 , PARTITION salary_4 VALUES LESS THAN (90000)
 TABLESPACE tsd
 , PARTITION salary_5 VALUES LESS THAN (100000)
 TABLESPACE tse
);

Note:

You can use this syntax for table creation, in the following examples
listed in this Book.

2. Issue queries from Hive, Spark, or any other Hadoop models (including joins with
local Hive Tables.)

6.3.2 Hive DDL
In this example, we will associate two Hive external tables to the same Oracle table,
using two different split patterns:

• SIMPLE_SPLITTER

• PARTITION_SPLITTER

Note:

It is possible that the external table has fewer columns than the base Oracle
table.
Since columns can have different names, use TBLPROPERTY for mapping with
the base table.

In the following examples, we are using the following variables:

connection_string = jdbc:oracle:thin:@localhost:1521/<servicename>

Chapter 6
How does OD4H work?

6-7

oracle_user=od4h

oracle_pwd=od4h

The following command creates a Hive external table with the default split pattern, that
is SIMPLE_SPLITTER.

CREATE EXTERNAL TABLE EmployeeDataSimple (
 Emp_ID int,
 First_Name string,
 Last_Name string,
 Job_Title string,
 Salary int
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'Emp_ID,First_Name,Last_Name,Job_Title,Salary')
TBLPROPERTIES (
 'mapreduce.jdbc.url' = '${hiveconf:jdbc:oracle:thin:@localhost:1521/
<servicename>}',
 'mapreduce.jdbc.username' = '${hiveconf:od4h}',
 'mapreduce.jdbc.password' = '${hiveconf:od4h}',
 'mapreduce.jdbc.input.table.name' = 'EmployeeData'
);

The following example creates a Hive external table using PARTITION_SPLITTER.

DROP TABLE EmployeeDataPartitioned;
CREATE EXTERNAL TABLE EmployeeDataPartitioned (
 Emp_ID int,
 First_Name string,
 Last_Name string,
 Job_Title string,
 Salary int
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'Emp_ID,First_Name,Last_Name,Job_Title,Salary')
TBLPROPERTIES (
 'mapreduce.jdbc.url' = '${hiveconf:jdbc:oracle:thin:@localhost:1521/
<servicename>}',
 'mapreduce.jdbc.username' = '${hiveconf:od4h}',
 'mapreduce.jdbc.password' = '${hiveconf:od4h}',
 'mapreduce.jdbc.input.table.name' = 'EmployeeData',
 'oracle.hcat.osh.splitterKind' = 'PARTITIONED_TABLE'
);

6.3.3 Create External Tables in Hive
You can create an external table in Hive in the following way:

DROP TABLE employees;

CREATE EXTERNAL TABLE employees (
 EMPLOYEE_ID INT,
 FIRST_NAME STRING,
 LAST_NAME STRING,
 SALARY DOUBLE,

Chapter 6
How does OD4H work?

6-8

 HIRE_DATE TIMESTAMP,
 JOB_ID STRING
)

 STORED BY 'oracle.hcat.osh.OracleStorageHandler'

WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'employee_id,first_name,last_name,salary,hire_date,job_id')

 TBLPROPERTIES (
 'mapreduce.jdbc.url' = 'jdbc:oracle:thin:@localhost:1521:orcl',
 'mapreduce.jdbc.username' = 'hr',
 'mapreduce.jdbc.password' = 'hr',
 'mapreduce.jdbc.input.table.name' = 'EMPLOYEES'
);

Note:

For using OD4H, ensure that the ucp.jar, the ojdbc8.jar file, and the
osh.jar file are present in the Hive CLASSPATH environment variable. This is
pre-configured on Oracle Big Data Appliance.
To learn more about the CLASSPATH environment variable and other Hive
configuration properties, refer to the following sources:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

For Cloudera distribution, refer to the following page that explains the steps
for Cloudera Manager:

https://www.cloudera.com/documentation/enterprise/5-14-x/topics/
cm_mc_hive_udf.html

For other distributions, refer to the respective documentation on adding
additional JAR files to Hive or HiveServer2 environment.

6.4 Features of OD4H
The following topics discuss features of OD4H.

• Performance and Scalability Features

• Security Features

• Using Hive SQL with OD4H

• Using Spark SQL with OD4H

6.4.1 Performance And Scalability Features
Following sections discuss the performance and scalability features of OD4H:

• Splitters

• Predicate Pushdown

Chapter 6
Features of OD4H

6-9

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://www.cloudera.com/documentation/enterprise/5-14-x/topics/cm_mc_hive_udf.html
https://www.cloudera.com/documentation/enterprise/5-14-x/topics/cm_mc_hive_udf.html

• Projection Pushdown

• Partition Pruning

• Smart Connection Management

HCatalog stores table metadata from Hive DDL. HiveSQl, Spark SQL and others, then
use this metadata while submitting queries.

The Oracle table is divided into granules determined by the splitterKind property.
These granules are then read into a split by OracleStorageHandler, by submitting
generated queries.

OracleStorageHandler will not have to test all possible query types if the query plan
determines which splits need to be scanned.

Figure 6-2 OD4H in a Nutshell

split

split

Hive

Hadoop
HCatalog

Hive DDL

Map Task

Map Task

Map Task

split

split

granule

Oracle Storage
Handler

Map Reduce JobOracle Table

granule

granule

granule

Rewritten
Query

by JDBC

Job Tracker

6.4.1.1 Splitters
While executing a query on a Hive external table through OD4H, the underlying
Oracle table is dynamically divided into granules, which correspond to splits on the
Hadoop side. Each split is processed by a single map task. With the help of the
ORACLE_SPLITTER_KIND property, you can specify how the splits are created. This
ensures that the splits are a good match for the physical structure of the target table in
Oracle Database.

The different kinds of splitters available are:

SINGLE_SPLITTER

Creates one split for the table. Use SINGLE_SPLITTER where a single task is sufficient
to process the query against the entire table.

Chapter 6
Features of OD4H

6-10

ROW_SPLITTER

Limits the number of rows per Split. The default number of rows is 1000. You can
specify number of rows by setting the oracle.hcat.osh.rowsPerSplit property. The
default value of oracle.hcat.osh.maxSplits is 1 when ROW_SPLITTER is used. You
can increase this value to enable parallel reads.

Based on the values provided in the rowsPerSplit property, OD4H will divide tables
into splits. If the number of splits obtained is higher than the maxSplits, then
maxSplits property will be used. The rows per split will be divided accordingly.

Note:

oracle.hcat.osh.rowsPerSplitis used only by ROW_SPLITTER and not any
other splitter kind.

BLOCK_SPLITTER

Creates splits based on underlying storage of data blocks. With Block Splitter, you
can specify the maximum number of splits to be generated. The default value of
oracle.hcat.osh.maxSplits is 1, when BLOCK_SPLITTER is used. You can increase
this value to enable parallel reads. BLOCK_SPLITTER requires SELECT privilege on the
SYS.DBA.EXTENTS table, granted to the schema containing the Oracle target table. In
the event that this permission does not exist, OD4H will use SINGLE_SPLITTER.

Note:

The actual number of splits under BLOCK_SPLITTER may be lesser than the
value specified in the oracle.hcat.osh.maxSplits property.
Do not use BLOCK_SPLITTER on partitioned tables or Index Organized
tables.

Note:

For ROW_SPLITTER and BLOCK_SPLITTER types, use
oracle.hcat.osh.useChunkSplitter to specify splitting mechanism.
The default property value is true. This enables creating chunks
corresponding to splits using the DBMS_PARALLEL_EXECUTE package. When
the property value is false, custom SQL is generated for splitting. Since
DBMS_PARALLEL_EXECUTE can only be used for tables and not views, if
mapreduce.jdbc.input.table.name points to a view and not a table, then
oracle.hcat.osh.useChunkSplitter should be set to false.

PARTITION_SPLITTER

Creates one split per partition. PARTITION_SPLITTER is used by default
when the table is partitioned. You can override this setting by specifying

Chapter 6
Features of OD4H

6-11

ROW_SPLITTER in table properties. With PARTITION_SPLITTER, the default value of
oracle.hcat.osh.maxSplits table property is 64.

Following is an illustration of ROW_SPLITTER:

DROP TABLE employees;

CREATE EXTERNAL TABLE employees (
 EMPLOYEE_ID INT,
 FIRST_NAME STRING,
 LAST_NAME STRING,
 SALARY DOUBLE,
 HIRE_DATE TIMESTAMP,
 JOB_ID STRING
)
 STORED BY 'oracle.hcat.osh.OracleStorageHandler'

WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'employee_id,first_name,last_name,salary,hire_date,job_id')

TBLPROPERTIES (
'mapreduce.jdbc.url' = 'jdbc:oracle:thin:@localhost:1521:orcl',
'mapreduce.jdbc.username' = 'hr',
'mapreduce.jdbc.password' = 'hr',
'mapreduce.jdbc.input.table.name' = 'EMPLOYEES',
'oracle.hcat.osh.splitterKind' = 'ROW_SPLITTER',
'oracle.hcat.osh.rowsPerSplit' = '1500'
);

CUSTOM_SPLITTER

Use CUSTOM_SPLITTER If you want to provide a custom split generation mechanism.
You can do this using CUSTOM_SPLITTER through oracle.hcat.osh.splitterKind
property and a SELECT statement that emits ROWIDs corresponding to start and end of
each split in oracle.hcat.osh.chunkSQL.

6.4.1.2 Choosing a Splitter
SINGLE_SPLITTER is used by default if no splitter is specified in the table properties for
Hive external table, and the target Oracle table is not partitioned.

For an unpartitioned table, the default value of oracle.hcat.osh.maxSplits will be 1.
For partitioned table, the default value of the same will be 64, and the default splitter
will be PARTITION_SPLITTER. The default for maxSplits is set to limit the number of
connections to the Oracle server. To increase this limit, you must increase the value of
oracle.hcat.osh.maxSplits explicitly in hive table properties.

Use the following guidelines while choosing a splitter kind for a hive external table:

Splitter Kind Use

SINGLE_SPLITTER When no parallelism is required.

PARTITION_SPLITTER Used by default when target table is
partitioned

Chapter 6
Features of OD4H

6-12

Splitter Kind Use

BLOCK_SPLITTER When Oracle user has SELECT privilege on
SYS.DBA_EXTENTS, and target table is not
partitioned.

ROW_SPLITTER When Oracle user does not have SELECT
privilege on SYS.DBA_EXTENTS.

CUSTOM_SPLITTER For fine grain control over generated splits.

6.4.1.3 Predicate Pushdown
Predicate Pushdown is an optimization technique, in which you push predicates (WHERE
condition) down to be evaluated by Oracle Database at the time of querying. This
minimizes the amount of data fetched from Oracle Database to Hive, while performing
a query.

Set the configuration property hive.optimize.ppd to either true or false for enabling
Predicate Pushdown. The default value on hive-1.1.0 is set to true. Hence, Predicate
Pushdown is always performed, unless you want to disable it.

Note:

OD4H does not push down all possible predicates. It considers only the
part of the execution plan pertaining to Oracle table declared as external
table. OD4H also rewrites sub-queries for the Oracle SQL engine and
each split task. At present conditions involving operators >,=,< and != in a
single condition over a column (e.g. key > 10) or a combination of multiple
conditions separated by AND (e.g. key > 10 AND key < 20 AND key !=17)
are pushed down.

Another option to reduce the amount of data fetched from the Oracle Database
is to specify a condition at the time of table creation, using TBLPROPERTY
mapreduce.jdbc.input.conditions. For instance:

mapreduce.jdbc.input.conditions = 'key > 10 OR key = 0'.

This will restrict the rows fetched from Oracle Database whenever any query is
performed based on the condition specified. The external table that gets created, is
analogous to a view on Oracle Database. This approach is only useful when you want
to push down complex predicates that cannot be analyzed and automatically pushed
down by OD4H.

Chapter 6
Features of OD4H

6-13

Note:

Due to incompatibilities between date and timestamp representation in
Hive and Oracle, these columns are not pushed down by default in
a query. You can enable this with certain limitations by setting the
tableproperty oracle.hcat.datetime.pushdown to true. When set to true,
the date representation in the query should be in the form YYYY-MM-DD and
timetamp should be in the form “YYYY-MM-DD HH:MM:SS” with no decimal
places. No other date or timestamp representation is supported when
oracle.hcat.datetime.pushdown is set to true.

6.4.1.4 Projection Pushdown
Projection Pushdown is an optimization technique that fetches only the required
columns from Oracle Database when a query is performed. If you want to fetch
all columns during a query (not recommended), you can disable it by setting the
hive.io.file.read.all.columns connection property to true. On Hive–1.1.0, this
property is false by default.

6.4.1.5 Partition Pruning
If you refer to Employee Data Partition table, the partitions irrelevant to the query are
removed from the partition list. This is done by executing an explain plan on the query
to obtain the list of partitions and sub-partitions that are relevant to the query.

Table level partition pruning uses table level predicate pushdown, on the other hand
partition pruning at the query level uses query level predicate pushdown.

Partition pruning is active when a SELECT query is run, in which the WHERE clause uses
the partitioning key. Following is an example of partition pruning:

To query the partition, where salary is in the above range and prune other partitions,
perform the following:

Hive External Table:

CREATE EXTERNAL TABLE EmployeeDataPartitioned (
 Emp_ID int,
 First_Name string,
 Last_Name string,
 Job_Title string,
 Salary int
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'Emp_ID,First_Name,Last_Name,Job_Title,Salary')
TBLPROPERTIES (
 'mapreduce.jdbc.url' = '${hiveconf:connection_string}',
 'mapreduce.jdbc.username' = '${hiveconf:oracle_user}',
 'mapreduce.jdbc.password' = '${hiveconf:oracle_pwd}',
 'mapreduce.jdbc.input.table.name' = 'EmployeeData',
 'oracle.hcat.osh.oosKind' = 'PARTITIONED_TABLE'
);

Chapter 6
Features of OD4H

6-14

The following SELECT statement shows how to query the partition, where salary is
between 72000 to 78000, and prunes other partitions:

select * from EmployeeDataPartitioned where salary > 72000 and salary < 78000;

6.4.2 Smart Connection Management
Connection Caching

Each map task runs in its own JVM. Each JVM in turn caches a single connection to
the Oracle database that you can reuse within the same query. The Mapper checks
the cache before establishing a new connection and caching is not done once the
query has completed executing.

Oracle RAC Awareness

JDBC and UCP are aware of various Oracle RAC instances. This can be used to
split queries submitted to JDBC. The StorageHandler will depend on listener for load
balancing.

Handling Logon Storms

Hadoop allows you to limit the number of mappers attempting to connect to the
Database. Hadoop allows you to limit the number of mappers attempting to connect to
the Database using oracle.hcat.osh.maxSplits. This parameter controls the degree
of concurrency. However, subsequent tasks of the same query are guaranteed to
query their table granule as per the System Commit Number (SCN) of the query. This
ensures consistency of the result sets.

Database Resident Connection Pooling (DRCP)

It is recommended to configure DRCP for OD4H, and limit the maximum number of
concurrent connections to the Oracle Database from OD4H.

Configuring Database Resident Connection Pooling
To configure DRCP, use the following steps:

1. Login as SYSDBA.

2. Start the default pool, SYS_DEFAULT_CONNECTION_POOL using
DBMS_CONNECTION_POOL.START_POOL with the default settings.

You can use DBMS_CONNECTION_POOL.MINSIZE and
DBMS_CONNECTION_POOL.MAXSIZE with the default settings.

See Also:

For more information on configuring DRCP see the Oracle Database
Administration Guide

6.4.3 Security Features
Following are the security features of OD4H:

Chapter 6
Features of OD4H

6-15

https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/index.html

6.4.3.1 Improved Authentication
OD4H uses Oracle JDBC driver for connecting to Oracle Database. It provides all
authentication methods supported by Oracle JDBC. OD4H supports authentication
through use of basic authentication (user name and password), Oracle Wallet, and
Kerberos. You can specify the authentication to be used for a table created in Hive,
through the oracle.hcat.osh.authentication table property. This is useful only for
strong authentication.

• Kerberos

• Oracle Wallet

• Basic Authentication

Note:

Oracle recommends using strong authentication such as Kerberos.

The various authentication processes are described with examples as follows:

1. Kerberos
Uses Kerberos credentials of the Hadoop engine process. This principal should
have access to the table.

See Also:

Oracle Database JDBC Developer's Guide for information on configuring
database for Kerberos and details of client parameters

You can enable Kerberos configuration on Hive, by adding to hive-env.sh the
following:

export HADOOP_OPTS="$HADOOP_OPTS -Djava.security.krb5.conf=<path to
kerberos configuration>

To enable child JVMs to use Kerberos configuration, edit the mapred-site.xml to
include the following property on all nodes of the cluster:

<property><name>mapred.child.java.opts</name> <value>-
Djava.security.krb5.conf=<path to kerberos configuration>></value></
property>

Enable these configurations on Oracle Big Data Appliance using Cloudera
manager..

Following is an illustration of Kerberos authentication:

CREATE EXTERNAL TABLE kerb_example (
id DECIMAL,

Chapter 6
Features of OD4H

6-16

https://docs.oracle.com/database/121/JJDBC/clntsec.htm#JJDBC28339

name STRING,
salary DECIMAL
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' = 'id,name,salary')
TBLPROPERTIES (
'mapreduce.jdbc.url' =
'jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=adc*******.xxxxxx.com)(PORT=5521))(CONNECT_DATA=
(SERVICE_NAME=project_name.xxx.rdbms.xxxx.com)))',
'mapreduce.jdbc.input.table.name' = 'kerb_example',
'mapreduce.jdbc.username' = 'CLIENT@xxxxxx.COM',
'oracle.hcat.osh.authentication' = 'KERBEROS',
'oracle.net.kerberos5_cc_name' = '/tmp/krb5cc_xxxxx',
'java.security.krb5.conf' = '/home/user/kerberos/krb5.conf',
'oracle.hcat.osh.kerb.callback' = 'KrbCallbackHandler',
'sun.security.krb5.principal' = 'CLIENT@xxxxx.COM'
);

The path specified in oracle.security.krb5.conf should be accessible to
all nodes of the cluster. These paths should also match with the path of
the corresponding properties in Oracle Database sqlnet.ora.The keytab path
provided in sqlnet.ora should also be accessible from all nodes of the cluster.

If sun.security.krb5.principal is not specified, OD4H attempts to
authenticate using default principal in Credential Cache specified by the
oracle.net.kerberos5_cc_name property.

Note:

The callback is called only if the principal cannot be authenticated
using a ticket obtained from the credential cache specified in
oracle.net.kerberos5_cc_nameproperty.

A simple callback handler class is described as follows (The callback class must
be available to the Hive classpath):

class KrbCallbackHandler
 implements CallbackHandler{

@Override
public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException{
for (int i = 0; i < callbacks.length; i++){
 if (callbacks[i] instanceof PasswordCallback){
 PasswordCallback pc = (PasswordCallback)callbacks[i];
 System.out.println("set password to 'welcome'");
 pc.setPassword((new String("welcome")).toCharArray());
} else if (callbacks[i] instanceof NameCallback) {
 ((NameCallback)callbacks[i]).setName("client@xxxxx.COM");
}else{
 throw new UnsupportedCallbackException(callbacks[i],
 "Unrecognized Callback");
 }

Chapter 6
Features of OD4H

6-17

 }
}

2. Oracle Wallet
The wallet should be available in the OS environment of each engine process.
Following is an illustration of how to add Wallet authentication:

CREATE EXTERNAL TABLE wallet_example (
 id DECIMAL,
 salary DECIMAL
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 name STRING,
 'oracle.hcat.osh.columns.mapping' = 'id,name,salary')
TBLPROPERTIES (
'mapreduce.jdbc.url' = 'jdbc:oracle:thin:/@inst1',
'mapreduce.jdbc.input.table.name' = 'wallet_example',
'oracle.hcat.osh.authentication' = 'ORACLE_WALLET',
'oracle.net.tns_admin' = '/scratch/user/view_storage/user_project6/
work',
'oracle.net.wallet_location' = '/scratch/user/view_storage/
user_project6/work'
);

Note:

The paths specified in oracle.net.tns_admin and
oracle.net.wallet_location should be accessible from all nodes of the
cluster.

See Also:

Managing the Secure External Password Store for Password Credentials

3. Basic Authentication (for demonstration purposes only)
This is stored in HCatalog TBLPROPERTIES or supplied on HiveQL SELECT
statement.

When Basic Authentication is used, then the user name and password for Oracle
Schema are specified in Hive external Table properties.

Note:

Oracle does not recommend this authentication process in the
production environment because the password is stored unmasked in
HCatalog.

Chapter 6
Features of OD4H

6-18

6.5 Use HiveQL with OD4H
HiveQL is a SQL like language provided by Hive. It can be used to query hive external
tables created using OD4H.

To track the status of a running query on Oracle Big Data Appliance, you can run the
Resource Manager web interface in your browser in the following way:

http://<domain>:8088/<cluster_name>

You can also see the logs of a query in Cloudera Manager, which also indicates the
actual query sent to Oracle Database corresponding to your query on HiveQL. Hive
and OD4H use the Simple Logging Facade for Java (SLF4J) framework for logging.
You can use the logging configuration techniques of Hive for controlling the logging
level of classes related to OD4H.

6.6 Use Spark SQL with OD4H
Spark SQL enables you to execute relational queries expressed in SQL and HiveSQL
using Spark. Spark SQL mixex SQL queries with programmatic data manipulations
supported by RDDs (Resilient Distributed Datasets) in Java, Python and Scala, with a
single application. You can also use it to query external tables created using OD4H.

Before running the queries, perform the following steps to configure Spark SQL on
Oracle Big Data Appliance:

1. Add ojdbc7.jar and osh.jar to CLASSPATH in /usr/lib/spark/bin/compute-
classpath.sh

CLASSPATH="$CLASSPATH:/opt/oracle/od4h/lib/osh.jar"
CLASSPATH="$CLASSPATH:/opt/oracle/od4h/lib/ojdbc7.jar"

2. Edit SPARK_HOME in /usr/lib/spark/conf/spark-env.sh

export SPARK_HOME=/usr/lib/spark:/etc/hive/conf

3. You will need to specify additional environment variables in /usr/lib/spark/
conf/spark-env.sh.

The Hive related variables that you need to substitute for running the code
example, are marked in bold. The file already contains Hadoop related
environment variables.

export DEFAULT_HADOOP=/usr/lib/hadoop
export DEFAULT_HIVE=/usr/lib/hive
export DEFAULT_HADOOP_CONF=/etc/hadoop/conf
export DEFAULT_HIVE_CONF=/etc/hive/conf
export HADOOP_HOME=${HADOOP_HOME:-$DEFAULT_HADOOP}
export HADOOP_HDFS_HOME=${HADOOP_HDFS_HOME:-${HADOOP_HOME}/../hadoop-hdfs}
export HADOOP_MAPRED_HOME=${HADOOP_MAPRED_HOME:-${HADOOP_HOME}/../hadoop-
mapreduce}
export HADOOP_YARN_HOME=${HADOOP_YARN_HOME:-${HADOOP_HOME}/../hadoop-yarn}
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-$DEFAULT_HADOOP_CONF}
export HIVE_CONF_DIR=${HIVE_CONF_DIR:-$DEFAULT_HIVE_CONF}

CLASSPATH="$CLASSPATH:$HIVE_CONF_DIR"
CLASSPATH="$CLASSPATH:$HADOOP_CONF_DIR"

Chapter 6
Use HiveQL with OD4H

6-19

if ["x" != "x$YARN_CONF_DIR"]; then
 CLASSPATH="$CLASSPATH:$YARN_CONF_DIR"
fi

Let's make sure that all needed hadoop libs are added properly
CLASSPATH="$CLASSPATH:$HADOOP_HOME/client/*"
CLASSPATH="$CLASSPATH:$HIVE_HOME/lib/*"
CLASSPATH="$CLASSPATH:$($HADOOP_HOME/bin/hadoop classpath)"

Once configured, you can run some sample queries on spark SQL using scripts
included in the /shell/*QuerySpark.sh demo file. By default, Spark prints queries
on the console. To modify this behavior you can edit the spark logging configuration
file /usr/lib/spark/conf/log4j.properties.

The log printed by OracleRecordReader shows the actual query sent to Oracle
Database, as follows:

15/03/18 10:36:08 INFO OracleRecordReader: Reading records from Oracle Table
using Query: SELECT FIRST_NAME, LAST_NAME, EMP_ID FROM EmployeeData

6.7 Writing Back to Oracle Database
In the typical use case for OD4H, you store the result sets of Hive or Spark SQL
queries back to Oracle Database. OD4H implements OutputFormat to enable you to
write back to an Oracle Database table from Hadoop.

After the data is inserted into an Oracle Database table, you can then use your favorite
business intelligence tools for further data mining

The following query is from the OD4H demo code samples. It demonstrates writing
back to an external table called EmployeeBonusReport.

Example 6-1 Writing Hive or Spark Result Sets Back to Oracle Database

INSERT INTO EmployeeBonusReport
 SELECT EmployeeDataSimple.First_Name,
EmployeeDataSimple.Last_Name,
 EmployeeBonus.bonus
 FROM EmployeeDataSimple JOIN EmployeeBonus ON
 (EmployeeDataSimple.Emp_ID=EmployeeBonus.Emp_ID)
 WHERE salary > 70000 and bonus > 7000"

Chapter 6
Writing Back to Oracle Database

6-20

Glossary

Apache Flume
A distributed service for collecting and aggregating data from almost any source into a
data store such as HDFS or HBase.

See also Apache HBase; HDFS.

Apache HBase
An open-source, column-oriented database that provides random, read/write access
to large amounts of sparse data stored in a CDH cluster. It provides fast lookup of
values by key and can perform thousands of insert, update, and delete operations per
second.

Apache Hive
An open-source data warehouse in CDH that supports data summarization, ad hoc
querying, and data analysis of data stored in HDFS. It uses a SQL-like language called
HiveQL. An interpreter generates MapReduce code from the HiveQL queries.

By using Hive, you can avoid writing MapReduce programs in Java.

See also Hive Thrift; MapReduce.

Apache Sentry
Integrates with the Hive and Impala SQL-query engines to provide fine-grained
authorization to data and metadata stored in Hadoop.

Apache Solr
Provides an enterprise search platform that includes full-text search, faceted search,
geospatial search, and hit highlighting.

Apache Spark
A fast engine for processing large-scale data. It supports Java, Scala, and Python
applications. Because it provides primitives for in-memory cluster computing, it is

Glossary-1

particularly suited to machine-learning algorithms. It promises performance up to 100
times faster than MapReduce.

Apache Sqoop
A command-line tool that imports and exports data between HDFS or Hive and
structured databases. The name Sqoop comes from "SQL to Hadoop." Oracle R
Advanced Analytics for Hadoop uses the Sqoop executable to move data between
HDFS and Oracle Database.

Apache YARN
An updated version of MapReduce, also called MapReduce 2. The acronym stands for
Yet Another Resource Negotiator.

ASR
Oracle Auto Service Request, a software tool that monitors the health of the hardware
and automatically generates a service request if it detects a problem.

See also OASM.

Balancer
A service that ensures that all nodes in the cluster store about the same amount of
data, within a set range. Data is balanced over the nodes in the cluster, not over the
disks in a node.

CDH
Cloudera's Distribution including Apache Hadoop, the version of Apache Hadoop and
related components installed on Oracle Big Data Appliance.

Cloudera Hue
Hadoop User Experience, a web user interface in CDH that includes several
applications, including a file browser for HDFS, a job browser, an account
management tool, a MapReduce job designer, and Hive wizards. Cloudera Manager
runs on Hue.

See also HDFS; Apache Hive.

Cloudera Impala
A massively parallel processing query engine that delivers better performance for SQL
queries against data in HDFS and HBase, without moving or transforming the data.

Glossary

Glossary-2

Cloudera Manager
Cloudera Manager enables you to monitor, diagnose, and manage CDH services in a
cluster.

The Cloudera Manager agents on Oracle Big Data Appliance also provide information
to Oracle Enterprise Manager, which you can use to monitor both software and
hardware.

Cloudera Navigator
Verifies access privileges and audits access to data stored in Hadoop, including Hive
metadata and HDFS data accessed through HDFS, Hive, or HBase.

Cloudera Search
Provides search and navigation tools for data stored in Hadoop. Based on Apache
Solr.

Cloudera's Distribution including Apache Hadoop (CDH)
See CDH.

cluster
A group of servers on a network that are configured to work together. A server is either
a master node or a worker node.

All servers in an Oracle Big Data Appliance rack form a cluster. Servers 1, 2, and 3 are
master nodes. Servers 4 to 18 are worker nodes.

See Hadoop.

DataNode
A server in a CDH cluster that stores data in HDFS. A DataNode performs file system
operations assigned by the NameNode.

See also HDFS; NameNode.

Flume
See Apache Flume.

Hadoop
A batch processing infrastructure that stores files and distributes work across a group
of servers. Oracle Big Data Appliance uses Cloudera's Distribution including Apache
Hadoop (CDH).

Glossary

Glossary-3

Hadoop Distributed File System (HDFS)
See HDFS.

Hadoop User Experience (Hue)
See Cloudera Hue.

HBase
See Apache HBase.

HDFS
Hadoop Distributed File System, an open-source file system designed to store
extremely large data files (megabytes to petabytes) with streaming data access
patterns. HDFS splits these files into data blocks and distributes the blocks across
a CDH cluster.

When a data set is larger than the storage capacity of a single computer, then it must
be partitioned across several computers. A distributed file system can manage the
storage of a data set across a network of computers.

See also cluster.

Hive
See Apache Hive.

Hive Thrift
A remote procedure call (RPC) interface for remote access to CDH for Hive queries.

See also CDH; Apache Hive.

HiveQL
A SQL-like query language used by Hive.

See also Apache Hive.

HotSpot
A Java Virtual Machine (JVM) that is maintained and distributed by Oracle. It
automatically optimizes code that executes frequently, leading to high performance.
HotSpot is the standard JVM for the other components of the Oracle Big Data
Appliance stack.

Glossary

Glossary-4

Hue
See Cloudera Hue.

Impala
See Cloudera Impala.

Java HotSpot Virtual Machine
See HotSpot.

JobTracker
A service that assigns tasks to specific nodes in the CDH cluster, preferably those
nodes storing the data. MRv1 only.

See also Hadoop; MapReduce.

Kerberos
A network authentication protocol that helps prevent malicious impersonation. It was
developed at the Massachusetts Institute of Technology (MIT).

Mahout
Apache Mahout is a machine learning library that includes core algorithms for
clustering, classification, and batch-based collaborative filtering.

MapReduce
A parallel programming model for processing data on a distributed system. Two
versions of MapReduce are available, MapReduce 1 and YARN (MapReduce 2). The
default version on Oracle Big Data Appliance 3.0 and later is YARN.

A MapReduce program contains these functions:

• Mappers: Process the records of the data set.

• Reducers: Merge the output from several mappers.

• Combiners: Optimizes the result sets from the mappers before sending them to
the reducers (optional and not supported by all applications).

See also Apache YARN.

Glossary

Glossary-5

MySQL Database
A SQL-based relational database management system. Cloudera Manager, Oracle
Data Integrator, Hive, and Oozie use MySQL Database as a metadata repository on
Oracle Big Data Appliance.

NameNode
A service that maintains a directory of all files in HDFS and tracks where data is stored
in the CDH cluster.

See also HDFS.

Navigator
See Cloudera Navigator.

node
A server in a CDH cluster.

See also cluster.

NodeManager
A service that runs on each node and executes the tasks assigned to it by the
ResourceManager. YARN only.

See also ResourceManager; YARN.

NoSQL Database
See Oracle NoSQL Database.

OASM
Oracle Automated Service Manager, a service for monitoring the health of Oracle Sun
hardware systems. Formerly named Sun Automatic Service Manager (SASM).

Oozie
An open-source workflow and coordination service for managing data processing jobs
in CDH.

Oracle Database Instant Client
A small-footprint client that enables Oracle applications to run without a standard
Oracle Database client.

Glossary

Glossary-6

Oracle Linux
Oracle Linux is Oracle’s commercial version of the Linux operating system. Oracle
Linux is free to download, use, and redistribute without a support contract.

Oracle NoSQL Database
A distributed key-value database that supports fast querying of the data, typically by
key lookup.

Oracle R Distribution
An Oracle-supported distribution of the R open-source language and environment for
statistical analysis and graphing.

Oracle R Enterprise
A component of the Oracle Advanced Analytics Option. It enables R users to run
R commands and scripts for statistical and graphical analyses on data stored in an
Oracle database.

Pig
An open-source platform for analyzing large data sets that consists of the following:

• Pig Latin scripting language

• Pig interpreter that converts Pig Latin scripts into MapReduce jobs

Pig runs as a client application.

See also MapReduce.

ResourceManager
A service that assigns tasks to specific nodes in the CDH cluster, preferably those
nodes storing the data. YARN only.

See also Hadoop; YARN.

Search
See Cloudera Search.

Sentry
See Apache Sentry.

Glossary

Glossary-7

Solr
See Apache Solr.

Spark
See Apache Spark.

Sqoop
See Apache Sqoop.

table
In Hive, all files in a directory stored in HDFS.

See also HDFS.

TaskTracker
A service that runs on each node and executes the tasks assigned to it by the
JobTracker service. MRv1 only.

See also JobTracker.

Whirr
Apache Whirr is a set of libraries for running cloud services.

YARN
See Apache YARN.

ZooKeeper
A MapReduce 1 centralized coordination service for CDH distributed processes
that maintains configuration information and naming, and provides distributed
synchronization and group services.

Glossary

Glossary-8

Index

A
Apache Sentry, 2-2
application adapters, 1-10
applications

data pull, 5-1
data push, 5-2

authentication, 4-1
authorization, 2-2
Automated Service Manager, 2-7

B
bdadiag utility, 3-34
Berkeley DB, 1-6
big data description, 1-1
business intelligence, 1-3, 1-5, 1-11

C
CDH

about, 1-3
diagnostics, 3-34
file system, 1-5
remote client access, 4-2
security, 4-1

chunking files, 1-5
client access

HDFS cluster, 4-3
HDFS secured cluster, 4-4
Hive, 4-6

client configuration, 4-2
Cloudera Manager

about, 3-3
accessing administrative tools, 3-5
connecting to, 3-3
effect of hardware failure on, 3-25
software dependencies, 3-25
starting, 3-3
UI overview, 3-3

Cloudera’s Distribution including Apache
Hadoop, 1-5

clusters, definition, 1-3

D
data replication, 1-5
DataNode, 3-23
diagnostics, collecting, 3-34
dnsmasq service, 5-4
duplicating data, 1-5

E
emcli utility, 3-2
encryption, 2-3, 2-4
engineered systems, 1-3
Exadata Database Machine, 1-3
Exadata InfiniBand connections, 5-3
Exalytics In-Memory Machine, 1-3
external tables, 1-9

F
failover

JobTracker, 3-18
NameNode, 3-17

files, recovering HDFS, 4-10
first NameNode, 3-24
Flume, 3-9
ftp.oracle.com, 3-34

G
groups, 2-1, 4-8

H
Hadoop Distributed File System, 1-4
hadoop group, 4-8
Hadoop version, 1-3
HBase, 3-9
HDFS

about, 1-4, 1-5
HDFS Transparent Encryption, 2-3
help from Oracle Support, 3-34
Hive, 2-2

about, 1-6

Index-1

Hive (continued)
client access, 4-6
node location, 3-25
software dependencies, 3-25
tables, 4-8
user identity, 2-1

hive group, 4-8
HiveQL, 1-6
HTTPS/Network Encryption, 2-4
Hue, 3-25

users, 4-8

I
Impala, 3-9
InfiniBand connections to Exadata, 5-3
InfiniBand network configuration, 5-1
installing CDH client, 4-2

J
JobTracker

failover, 3-18
security, 4-1

JobTracker node, 3-24

K
Kafka clusters, 3-19
Kerberos authentication, 4-1
Kerberos commands, 4-1
Kerberos user setup, 4-9
key-value database, 1-6
knowledge modules, 1-10

L
loading data, 1-9
login privileges, 4-9

M
MapReduce, 1-4, 1-7, 4-1, 4-8
MySQL Database

about, 3-25
port number, 2-7
user identity, 2-2

N
NameNode, 4-1

first, 3-24
NameNode failover, 3-17
NoSQL databases, 1-6

O
OASM, port number, 2-7
ODI, 1-9
oinstall group, 4-8
Oozie, 3-25

software dependencies, 3-25
operating system users, 2-1
Oracle Automated Service Manager, 2-7
Oracle Data Integrator

about, 1-9, 1-10
node location, 3-25
software dependencies, 3-25

Oracle Data Integrator agent, 2-7
Oracle Exadata Database Machine, 1-3, 5-1
Oracle Exalytics In-Memory Machine, 1-3
Oracle Linux

about, 1-3
relationship to HDFS, 1-4

Oracle Loader for Hadoop, 1-9
Oracle NoSQL Database

about, 1-6, 1-9
port numbers, 2-7

Oracle R Advanced Analytics for Hadoop, 1-9
Oracle R Enterprise, 1-10
Oracle SQL Connector for HDFS, 1-9
Oracle Support, creating a service request, 3-34
oracle user, 4-8
Oracle XQuery for Hadoop, 1-9

P
planning applications, 1-3
port map, 2-7
port numbers, 2-6, 2-7
pulling data into Exadata, 5-1
pushing data into Exadata, 5-2

R
R Connector, 1-9
R language support, 1-10
recovering HDFS files, 4-10
remote client access, 4-2, 4-6
replicating data, 1-5
resource management, 1-7, 3-10
rpc.statd service, 2-7

S
SDP listener configuration, 5-6
SDP over InfiniBand, 5-1
SDP, enabling on Exadata, 5-4
Search, 3-9
Sentry, 2-2

Index

Index-2

service requests, creating for CDH, 3-34
service tags, 2-7
services

node locations, 3-19
Sockets Direct Protocol, 5-1
software framework, 1-3
software services

node locations, 3-19
port numbers, 2-6

Spark, 3-9
Sqoop, 3-9
ssh service, 2-7

T
tables, 1-9, 4-8
trash facility, 4-10
trash facility, disabling, 4-12
trash interval, 4-11
troubleshooting CDH, 3-34

U
uploading diagnostics, 3-34
user accounts, 4-8
user groups, 4-8
users

Cloudera Manager, 3-5
operating system, 2-1

X
xinetd service, 2-7
XQuery connector, 1-9

Y
YARN support, 1-8

Z
zones, 2-3

Index

Index-3

	Contents
	Changes in Oracle Big Data Appliance Release 5.2
	Part I Administration
	1 Introducing Oracle Big Data Appliance
	1.1 What Is Big Data?
	1.1.1 High Variety
	1.1.2 High Complexity
	1.1.3 High Volume
	1.1.4 High Velocity

	1.2 The Oracle Big Data Solution
	1.3 Software for Big Data Appliance
	1.3.1 Software Component Overview

	1.4 Acquiring Data for Analysis
	1.4.1 Hadoop Distributed File System
	1.4.2 Apache Hive
	1.4.3 Oracle NoSQL Database

	1.5 Allocating Resources Among Services
	1.6 Organizing Big Data
	1.6.1 MapReduce
	1.6.2 Oracle Big Data Connectors
	1.6.2.1 Oracle SQL Connector for Hadoop Distributed File System
	1.6.2.2 Oracle Loader for Hadoop
	1.6.2.3 Oracle XQuery for Hadoop
	1.6.2.4 Oracle R Advanced Analytics for Hadoop
	1.6.2.5 Oracle Data Integrator Enterprise Edition
	1.6.2.6 Oracle Shell for Hadoop Loaders

	1.6.3 Oracle R Support for Big Data

	1.7 Analyzing and Visualizing Big Data
	1.8 Best Practices

	2 Security for Oracle Big Data Appliance
	2.1 Overview
	2.2 About Predefined Users and Groups
	2.3 About User Authentication
	2.4 About Fine-Grained Authorization
	2.5 About HDFS Transparent Encryption
	2.6 About HTTPS/Network Encryption
	2.6.1 Configuring Web Browsers to use Kerberos Authentication

	2.7 Port Numbers Used on Oracle Big Data Appliance
	2.8 Additional Guidance for Securing Clusters

	3 Administering Oracle Big Data Appliance
	3.1 Monitoring Multiple Clusters Using Oracle Enterprise Manager
	3.1.1 Using the Enterprise Manager Web Interface
	3.1.2 Using the Enterprise Manager Command-Line Interface

	3.2 Managing Operations Using Cloudera Manager
	3.2.1 Monitoring the Status of Oracle Big Data Appliance
	3.2.2 Performing Administrative Tasks
	3.2.3 Managing CDH Services With Cloudera Manager

	3.3 Using Hadoop Monitoring Utilities
	3.3.1 Monitoring MapReduce Jobs
	3.3.2 Monitoring the Health of HDFS

	3.4 Using Cloudera Hue to Interact With Hadoop
	3.5 About the Oracle Big Data Appliance Software
	3.5.1 Unconfigured Software
	3.5.2 Allocating Resources Among Services

	3.6 About CDH Clusters
	3.6.1 For New Clusters: High Availability HiveServer2 and Oozie
	3.6.1.1 Configuring HA for the HiveServer2 and Oozie Load Balancer

	3.6.2 Roles on a Three-Node Development Cluster
	3.6.3 Role Locations on Rack 1 of a CDH Cluster with Four or More Nodes
	3.6.4 Role Locations on Additional Racks of a Cluster
	3.6.5 About MapReduce
	3.6.6 Automatic Failover of the NameNode
	3.6.7 Automatic Failover of the ResourceManager
	3.6.8 Map and Reduce Resource Allocation

	3.7 About Oracle NoSQL Database Clusters
	3.8 About Kafka Clusters
	3.8.1 Where Do the Services Run on a Kafka Cluster?

	3.9 Effects of Hardware on Software Availability
	3.9.1 Logical Disk Layout
	3.9.2 Critical and Noncritical CDH Nodes
	3.9.2.1 High Availability or Single Points of Failure?
	3.9.2.2 Where Do the Critical Services Run?

	3.9.3 First NameNode Node
	3.9.4 Second NameNode Node
	3.9.5 First ResourceManager Node
	3.9.6 Second ResourceManager Node
	3.9.7 Noncritical CDH Nodes

	3.10 Managing a Hardware Failure
	3.10.1 Prerequisites for Managing a Failing Node
	3.10.2 Managing a Failing CDH Critical Node
	3.10.3 Managing a Failing Noncritical Node

	3.11 Stopping and Starting Oracle Big Data Appliance
	3.11.1 Prerequisites
	3.11.2 Stopping Oracle Big Data Appliance
	3.11.2.1 Stopping All Managed Services
	3.11.2.2 Stopping Cloudera Manager Server
	3.11.2.3 Stopping Oracle Data Integrator Agent
	3.11.2.4 Dismounting NFS Directories
	3.11.2.5 Stopping the Servers
	3.11.2.6 Stopping the InfiniBand and Cisco Switches

	3.11.3 Starting Oracle Big Data Appliance
	3.11.3.1 Powering Up Oracle Big Data Appliance
	3.11.3.2 Starting the HDFS Software Services
	3.11.3.3 Starting Oracle Data Integrator Agent

	3.12 Auditing Oracle Big Data Appliance
	3.13 Collecting Diagnostic Information for Oracle Customer Support

	4 Supporting User Access to Oracle Big Data Appliance
	4.1 About Accessing a Kerberos-Secured Cluster
	4.2 Providing Remote Client Access to CDH
	4.2.1 Prerequisites
	4.2.2 Installing a CDH Client on Any Supported Operating System
	4.2.3 Configuring a CDH Client for an Unsecured Cluster
	4.2.4 Configuring a CDH Client for a Kerberos-Secured Cluster
	4.2.5 Verifying Access to a Cluster from the CDH Client

	4.3 Providing Remote Client Access to Hive
	4.4 Managing User Accounts
	4.4.1 Creating Hadoop Cluster Users
	4.4.1.1 Creating Users on an Unsecured Cluster
	4.4.1.2 Creating Users on a Secured Cluster

	4.4.2 Providing User Login Privileges (Optional)

	4.5 Recovering Deleted Files
	4.5.1 Restoring Files from the Trash
	4.5.2 Changing the Trash Interval
	4.5.3 Disabling the Trash Facility
	4.5.3.1 Completely Disabling the Trash Facility
	4.5.3.2 Disabling the Trash Facility for Local HDFS Clients
	4.5.3.3 Disabling the Trash Facility for a Remote HDFS Client

	5 Configuring Oracle Exadata Database Machine for Use with Oracle Big Data Appliance
	5.1 About Optimizing Communications
	5.1.1 About Applications that Pull Data Into Oracle Exadata Database Machine
	5.1.2 About Applications that Push Data Into Oracle Exadata Database Machine

	5.2 Prerequisites for Optimizing Communications
	5.3 Specifying the InfiniBand Connections to Oracle Big Data Appliance
	5.4 Specifying the InfiniBand Connections to Oracle Exadata Database Machine
	5.5 Enabling SDP on Exadata Database Nodes
	5.6 Creating an SDP Listener on the InfiniBand Network

	Part II Oracle DataSource for Apache Hadoop
	6 Oracle DataSource for Apache Hadoop (OD4H)
	6.1 Operational Data, Big Data and Requirements
	6.2 Overview of Oracle DataSource for Apache Hadoop (OD4H)
	6.2.1 Opportunity with Hadoop 2.x
	6.2.2 Oracle Tables as Hadoop Data Source
	6.2.3 External Tables
	6.2.3.1 TBLPROPERTIES
	6.2.3.2 SERDE PROPERTIES

	6.2.4 List of jars in the OD4H package

	6.3 How does OD4H work?
	6.3.1 Create a new Oracle Database Table or Reuse an Existing Table
	6.3.2 Hive DDL
	6.3.3 Create External Tables in Hive

	6.4 Features of OD4H
	6.4.1 Performance And Scalability Features
	6.4.1.1 Splitters
	6.4.1.2 Choosing a Splitter
	6.4.1.3 Predicate Pushdown
	6.4.1.4 Projection Pushdown
	6.4.1.5 Partition Pruning

	6.4.2 Smart Connection Management
	6.4.3 Security Features
	6.4.3.1 Improved Authentication

	6.5 Use HiveQL with OD4H
	6.6 Use Spark SQL with OD4H
	6.7 Writing Back to Oracle Database

	Glossary
	Apache Flume
	Apache HBase
	Apache Hive
	Apache Sentry
	Apache Solr
	Apache Spark
	Apache Sqoop
	Apache YARN
	ASR
	Balancer
	CDH
	Cloudera Hue
	Cloudera Impala
	Cloudera Manager
	Cloudera Navigator
	Cloudera Search
	Cloudera's Distribution including Apache Hadoop (CDH)
	cluster
	DataNode
	Flume
	Hadoop
	Hadoop Distributed File System (HDFS)
	Hadoop User Experience (Hue)
	HBase
	HDFS
	Hive
	Hive Thrift
	HiveQL
	HotSpot
	Hue
	Impala
	Java HotSpot Virtual Machine
	JobTracker
	Kerberos
	Mahout
	MapReduce
	MySQL Database
	NameNode
	Navigator
	node
	NodeManager
	NoSQL Database
	OASM
	Oozie
	Oracle Database Instant Client
	Oracle Linux
	Oracle NoSQL Database
	Oracle R Distribution
	Oracle R Enterprise
	Pig
	ResourceManager
	Search
	Sentry
	Solr
	Spark
	Sqoop
	table
	TaskTracker
	Whirr
	YARN
	ZooKeeper

	Index

