
JD Edwards
EnterpriseOne
Tools

Business Services Development
Methodology Guide

9.2

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

9.2

Part Number: E53610-03

Copyright © 2011, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Contents

Preface .. i

1 Introduction to JD Edwards EnterpriseOne Tools Business Services
Development Methodology

1

JD Edwards EnterpriseOne Tools Business Services Development Methodology Overview .. 1

JD Edwards EnterpriseOne Tools Business Services Development Methodology Implementation 1

2 Understanding Business Services 3
JD Edwards EnterpriseOne Business Services ... 3

Development Methodology .. 3

Value Objects .. 4

Package Naming and Structure .. 6

Java Coding Standards ... 7

3 Understanding Media Object Business Services 9
JD Edwards EnterpriseOne Media Object Business Services ... 9

Development Methodology ... 9

4 Creating a Published Business Service 11
Creating a Published Business Service ... 11

Understanding Published Business Services .. 11

Developing a Published Business Service ... 12

Managing Published Business Service Components ... 14

Calling a Business Service .. 27

Calling a Media Object Business Service .. 29

Handling Errors in the Published Business Service ... 30

Testing a Published Business Service .. 31

Customizing a Published Business Service .. 32

Deprecating a Published Business Service .. 36

5 Creating a Business Service 37
Creating a Business Service ... 37

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Understanding Business Services .. 37

Developing a Business Service ... 38

Managing Business Service Components .. 39

Calling Business Functions .. 49

Calling Database Operations ... 53

Calling Other Business Services ... 53

Calling Media Object Operations ... 54

Managing Business Service Properties ... 55

Handling Errors in the Business Service ... 57

Modifying a Business Service ... 60

Documenting a Business Service ... 60

6 Creating Business Services That Call Database Operations 63
Understanding Database Operations .. 63

Creating a Query Database Operation Business Service .. 65

Creating an Insert Database Operation Business Service .. 68

Creating an Update Database Operation Business Service .. 73

Creating a Delete Database Operation Business Service .. 77

7 Creating Business Services that Call Media Object Operations 81
Understanding Media Object Operations ... 81

Creating a Media Object Business Service ... 81

8 Versioning JD Edwards EnterpriseOne Web Services 91
Versioning JD Edwards EnterpriseOne Web Services .. 91

Overview ... 91

Published Business Services .. 91

Business Services ... 94

JD Edwards EnterpriseOne as a Web Service Consumer .. 97

9 Understanding Transaction Processing 101
Transaction Processing .. 101

Default Transaction Processing Behavior .. 101

Explicit Transaction Processing Behavior ... 103

10 Understanding Logging 107
Logging ... 107

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

11 Understanding JD Edwards EnterpriseOne as a Web Service Consumer 109
Understanding JD Edwards EnterpriseOne as a Web Service Consumer .. 109

JD Edwards EnterpriseOne as a Web Service Consumer .. 109

C Business Function Calling a Business Service ... 109

Creating a Business Service for JD Edwards EnterpriseOne as a Web Service Consumer .. 110

Using Softcoding .. 111

Testing the Business Service for JD Edwards EnterpriseOne as a Web Service Consumer ... 112

12 Using Business Services with HTTP Request/Reply 113
Understanding Business Services and HTTP POST .. 113

Using Business Services with HTTP Request/Reply ... 113

Testing the Servlet .. 114

13 Appendix A - Utility Business Services 115
Understanding Utility Business Services ... 115

Entity Processor Business Service ... 115

GL Account Processor Business Service .. 118

Inventory Item ID Processor Business Service .. 121

Net Change Processor Business Service ... 126

Processing Version Processor Business Service .. 128

14 Glossary 131
Accessor Methods/Assessors ... 131

business service ... 131

business service framework .. 131

business service property .. 131

Business Service Property Admin Tool .. 131

business service property business service group .. 131

business service property key ... 132

business service property utilities .. 132

business service property value .. 132

business services server .. 132

business services source file or business service class .. 132

business service value object template ... 132

Business Service Value Object Template Utility ... 132

business services server artifact ... 133

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

exposed method or value object .. 133

internal method or value object .. 133

JDeveloper Project .. 133

JDeveloper Workspace ... 133

published business service ... 133

softcoding ... 133

Index ... 135

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Preface

Preface
Welcome to the JD Edwards EnterpriseOne documentation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc .

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

Related Information
For additional information about JD Edwards EnterpriseOne applications, features, content, and training, visit the JD
Edwards EnterpriseOne pages on the JD Edwards Resource Library located at:

http://learnjde.com

Conventions
The following text conventions are used in this document:

Convention Meaning

Bold

Boldface type indicates graphical user interface elements associated with an action or terms defined in
text or the glossary.

Italics

Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular
values.

Monospace

Monospace type indicates commands within a paragraph, URLs, code examples, text that appears on a
screen, or text that you enter.

> Oracle by Example

Indicates a link to an Oracle by Example (OBE). OBEs provide hands-on, step- by-step instructions,
including screen captures that guide you through a process using your own environment. Access to
OBEs requires a valid Oracle account.

i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://learnjde.com

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Preface

ii

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 1
Introduction to JD Edwards EnterpriseOne Tools Business

Services Development Methodology

1 Introduction to JD Edwards EnterpriseOne
Tools Business Services Development
Methodology

JD Edwards EnterpriseOne Tools Business Services
Development Methodology Overview
The guide provides rules, best practices, example code pieces, and steps that you can follow to create business
services that enable interoperability between JD Edwards EnterpriseOne and other Oracle applications or third-party
applications and systems. You create business services using the JD Edwards EnterpriseOne toolset and the Java
programming language.

Rules are guidelines that you must follow when creating or customizing JD Edwards EnterpriseOne business services.
Although the JD Edwards EnterpriseOne toolset does not enforce rules, these are mandatory guidelines that you must
follow to accomplish the desired results and to meet specified standards.

Best practices are guidelines that you should follow when creating or customizing JD Edwards EnterpriseOne business
services. These are guidelines, which are not mandatory, that help you make good design decisions.

This guide provides an overview of business services and information for creating and modifying business services.

This guide does not preclude the use of other standard development methodologies.

Note: Oracle reserves the right to reorganize the business services foundation packages (jar files) for tools release
upgrades. If you are planning to upgrade your system, test your custom objects and modify them as appropriate to
ensure your code will continue to work as intended. You cannot upgrade custom business service objects after you
install a tools release upgrade.

JD Edwards EnterpriseOne Tools Business Services
Development Methodology Implementation
The JD Edwards EnterpriseOne Tools Business Services Development Guide provides concepts and information
for creating business services. The JD Edwards EnterpriseOne Tools Business Services Development Methodology
Guide supports the JD Edwards EnterpriseOne Tools Business Services Development Guide by providing naming
conventions, best practices, guidelines, and other information for developing business services. Use the JD Edwards
EnterpriseOne Tools Business Services Development Methodology Guide in conjunction with the JD Edwards
EnterpriseOne Tools Business Services Development Guide if you are developing business services.

See the JD Edwards EnterpriseOne Tools Business Services Development Guide

1

olink:EOTDE

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 1
Introduction to JD Edwards EnterpriseOne Tools Business

Services Development Methodology

2

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 2
Understanding Business Services

2 Understanding Business Services

JD Edwards EnterpriseOne Business Services
JD Edwards EnterpriseOne provides interoperability with other Oracle applications and third-party systems by natively
producing and consuming web services. Web services enable software applications written in various programming
languages and running on various platforms to exchange information. JD Edwards EnterpriseOne exposes business
services as web services. A web service is a standardized way of integrating web-based applications, and in JD Edwards
EnterpriseOne, web services are referred to as published business services. Business services enable JD Edwards
EnterpriseOne to expose transactions as a basic service that can expose an XML document-based interface.

Published Business Services
A published business service is a JD Edwards EnterpriseOne Object Management Workbench (OMW) object that
represents one Java class that publishes multiple business services. When you create a web service, you identify
the Java class. The published business service also contains value object classes that make up the signature for the
published business service.

Business Services
A business service is a JD Edwards EnterpriseOne OMW object that represents one or more classes that expose public
methods. Each method performs a business process. A business service also contains internal value object classes
that make up the signature for the business service methods. These public methods can be called from other business
service classes and published business service classes.

Development Methodology
JD Edwards EnterpriseOne provides tools to help you create business services and published business services. You
access Oracle's JDeveloper from JD Edwards EnterpriseOne OMW. You should have one business service workspace
based on the JD Edwards EnterpriseOne path code in JDeveloper. This workspace should have been created when
JDeveloper was launched from OMW. Each business service and published business service has its own project under
the business service workspace, where you can add and modify code for business services and published business
services that were created using OMW. JDeveloper provides wizards that generate Java code to help you create
business services and published business services. All business services and published business services are written in
the Java programming language.

The JD Edwards EnterpriseOne business services framework provides a set of foundation packages. Each foundation
package contains a set of interfaces and related classes that provide building blocks that you use to create the
business service or published business service. Business service classes extend the BusinessService foundation
class. Business service classes call business functions and database operations. The published business service class
extends the PublishedBusinessService foundation class. This class exposes public methods that represent JD Edwards
EnterpriseOne business processes as web services.

3

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 2
Understanding Business Services

The business services framework also supports business service properties. Business service properties provide
flexibility in the code by enabling users to set a value without changing the code. The business service framework
includes wizards that provide building blocks to help you create business function calls and database operation calls.
You also can access code templates. Code templates generate skeleton code that you modify and finalize. You can use
code templates to generate skeleton code for creating public and private methods for a published business service,
creating public methods for a business service, formatting data, calling a business service property, and testing a
published business service.

JD Edwards EnterpriseOne business service and published business service classes use value object classes. A value
object is an interface to a business service or a published business service. A value object is the high-level component
that contains the business data that defines a business process. Business services use internal value objects, and
published business services use published value objects. Internal value objects and published value objects and their
components extend the ValueObject foundation class. Published response value objects, which are used by published
business services, extend the MessageValueObject foundation class and contain warning messages that are returned
from business function and database operation calls.

Value Objects
Value objects are a specific type of source file that holds input and output data, much like a data structure passes data.
The input and output parameters of business service operations are called internal value objects. Business service
internal value objects are not published interfaces. Business service operations use one internal value object for both
input and output. Examples of internal value objects include InternalAddAddressBook, InternalProcessPurchaseOrder,
InternalEntity, and so on.

The input and output parameters of the published business service business operations are called value objects. These
parameters are the payload of the web service. A business operation defined in a published business service takes
one value object as its input parameter and returns one value object as its output parameter. Examples of published
business service value objects include AddAddressBook, ProcessSalesOrder, ProcessPurchaseOrder, GetCustomer,
ConfirmProcessPurchaseOrder, and so on.

The structure of a value object is modeled after the business object document (BOD) defined by Open Applications
Group, Inc. (OAGIS). The structure represents the hierarchy of a business process. The following example value object
shows the hierarchy for AddAddressBook:

4

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 2
Understanding Business Services

Value objects are made up of components, compounds, and fields.

Components
Components are extensible building blocks of a value object and consist of compounds and fields or just fields.
Examples of components are PurchaseOrderHeader, PurchaseOrderDetail, and EntityAddress.

Compounds
Compounds are collections of related fields and are implemented as classes. Compounds are basic, shared building
blocks. Examples of compounds are purchaseOrderKeys, supplier, and item.

Fields
Fields are the lowest-level elements that are defined. Components and compounds, if used, consist of fields.

5

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 2
Understanding Business Services

Package Naming and Structure
You use JD Edwards EnterpriseOne OMW to create new JD Edwards EnterpriseOne business service and published
business service objects and to access existing business service and published business service objects. When you
name a business service or published business service, you must use naming conventions that are compatible with
OMW. You create business service and published business service objects in OMW, and then you start JDeveloper from
OMW. JDeveloper automatically creates a project for the last OMW object that you created; using JDeveloper and the
Project wizard, you create projects for each OMW object that you created.

The Java package that is created for business services and published business services is determined when you create
an OMW object. The following are examples of package names:

package oracle.e1.bssv.JP010000

package oracle.e1.bssv.util.J0100020

A business service can be created in a utilities package (oracle.e1.bssv.util) if the business service provides a repeatable
task that is consumed by multiple other business services. All other business services and published business services
are created with the root package name (oracle.e1.bssv).

In the preceding examples, the portion of the name in italic font is the business service object name. To be compatible
with OMW object names, this portion of the package name must be eight characters. The naming convention for the
OMW object name is different for business service and published business service packages.

For a business service package, the OMW object name is J, system code, and numbers, where the numbers are a
number that you assign to each business service; for example, J0100001, J0200002, J0100010, J0100020, J0100100,
J0100110, and so on. The OMW object name must be eight characters. The following diagram shows the structure for a
business service.

For a published business service package, the OMW object name is JP, system code, and zeros (for example, JP010000).
The OMW object name must be a total of eight characters. The naming standards do not preclude the creation of
a second published business service per system code; however, our guideline is to create one service per system
code. The naming convention for the OMW object is also part of the name of the package where the published
business service class resides. Within the JDeveloper tree structure, a published business service must be directly
under the package name. For example, the published business service AddressBookManager.java can be under
oracle.e1.bssv.JP010020 only; it cannot be under a subpackage of JP010020. The following diagram shows the structure
for a published business service:

6

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 2
Understanding Business Services

Each business service and published business service must have its own package name. You cannot include both a
business service name and a published business service name together as one package. For example, the package
name oracle.e1.bssv.JP010000.J0100020 is invalid.

Java Coding Standards
You use JDeveloper and the Java programming language to create JD Edwards EnterpriseOne business service and
published business service classes that run in a J2EE environment. The business services foundation package provides
classes that you extend when you write your code. The business services foundation and JDeveloper provide wizards

7

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 2
Understanding Business Services

that help you structure your code. JDeveloper enables you to set preferences for placing braces and then reformats the
code to your desired style.

You use basic Java programming style conventions when you write your code. For example, instead of sprinkling
literals and constant values throughout the code, you should define these values as private static final variables at the
beginning of a method or function or define them globally. Another convention is to use uppercase letters for each
word. You should separate each pair of words with an underscore when naming constants, as illustrated in this code
sample:

private static final String DEFAULT_ERROR = "c39f495121b...etc";

You should include meaningful comments consistently throughout your code. For easier readability when you create a
Java class, order the elements in the following way:

1. Attributes
2. Constructors
3. Methods

The code that you write should check for null and empty strings, as illustrated in this example code:

if ((string != null) && (string.length() !=0))
 or
if ((string == null) || (string.length() == 0))
 or
if ((string == null) || (string.equals("")))

Your code should check for null objects. You can use this sample code to check for null objects:

if (object !=null)
{
 doSomething()
}

When you compare strings, use equals(). This code sample shows the correct way and the wrong way to compare
strings:

String abc = "abc"; String def = "def";
// Correct way
if ((abc + def).equals("abcdef"))
{

}

// Wrong way
if ((abc + def) == "abcdef")
{

}

When you create published value objects, the code should test for null objects in the set methods. This code sample
shows how to test for null objects:

public void setCarrier(Entity carrier)
 {
 if (carrier != null)
 this.carrier = carrier;
 else
 this.carrier = new Entity();
 }

8

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 3
Understanding Media Object Business Services

3 Understanding Media Object Business
Services

JD Edwards EnterpriseOne Media Object Business
Services
JD Edwards EnterpriseOne Media Object business services provide a way to send and receive Media Object attachments
to and from EnterpriseOne business services and third-party web services. Media Object business services leverage
the Message Transmission Optimization Mechanism (MTOM) specification to transmit media objects as binary data in
SOAP Messages. These Media Object business services are exposed in the JAX-WS web service that can be consumed
by internal EnterpriseOne business services or external third-party systems. You can develop Media Object business
services to perform an insert, select, or delete of media object files (PDF, documents, images, and so forth), text, and
URLs in EnterpriseOne.

Development Methodology
The JD Edwards EnterpriseOne business services framework provides a set of foundation packages that can perform
operations to insert, select, and delete media objects in EnterpriseOne. Media Object business service classes call Media
Object operations. Media Object business services (published or internal) use the Media Object Value Object Class
Wizard to create the value objects for calling the Media Object operations.

The following list contains the high level steps for developing business services that perform media object operations:

1. Create the internal media object value object using the Media Object Value Object Class Wizard in the internal
business service project.
See Creating Internal Media Object Value Objects for more information.

2. Create a business service class using the Business Service Class Wizard in the internal business service project.
See Creating a Business Service Class for more information.

3. Within the business service class, use the Create Media Object Call Wizard to generate the code that performs
the Media Object operations.
See Calling Media Object Operations for more information.

4. Create the published Media Object value object using the Media Object Value Object Class Wizard in the
published business service project.
See Creating a Media Object Published Value Object for more information.

5. Create the published business service class using the Published Business Service Class Wizard in the published
business service project.
See Creating a Published Business Service for more information.

6. Map the published value object fields to the corresponding fields in the internal value object.
See Mappings for more information.

9

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 3
Understanding Media Object Business Services

7. Within the published business service class, write the code to call the internal business service class created in
step 2 above.

See Calling a Media Object Business Service for more information.

10

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

4 Creating a Published Business Service

Creating a Published Business Service

Note: Oracle reserves the right to reorganize the business services foundation packages (jar files) for tools release
upgrades. If you are planning to upgrade your system, test your custom objects and modify them as appropriate to
ensure your code will continue to work as intended. You cannot upgrade custom business service objects after you
install a tools release upgrade.

Understanding Published Business Services
A published business service gives exposure to one or more business services by providing an interface that is available
to the public as a consumable web service. A published business service is a Java class that contains business service
methods where the actual business logic is performed.

You use JDeveloper, JD Edwards EnterpriseOne business services framework, and the Java programming language to
create published business services. The business service framework provides a set of foundation packages that helps
you create published business services. Each foundation package contains a set of interfaces and related classes. All
published business service classes extend from the PublishedBusinessService foundation class. Code samples are
provided throughout this chapter to demonstrate the general concepts for creating a published business service. Rules
and best practices are discussed for each topic, if appropriate.

The following class diagram shows the main published business service class (AddressBookManager) and the value
object class (AddAddressBook) and its components:

11

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

These features are illustrated in the published business service class diagram:

• AddressBookManager extends foundation class PublishedBusinessService.

• AddAddressBook extends ValueObject.

• ConfirmAddAddressBook extends MessageValueObject.

• All components of AddAddressBook and ConfirmAddAddressBook extend ValueObject.

Developing a Published Business Service
A published business service contains multiple Java classes, including a published business service class and value
object classes. The published business service class contains public methods that are exposed to the public. These
public Java methods are wrappers for business services where the actual business logic is performed.

After a business service is published, you cannot change the name and signature of the business service without
affecting the consumers of that service. If you change an underlying business service that the published method
exposes, then you change the signature and contract of the published business service. Because JD Edwards
EnterpriseOne is not providing a merge of new and existing software, when you update or upgrade your system, any
business services that you have changed will be overwritten by new JD Edwards EnterpriseOne code. If you need to
change an underlying business service, copy the existing business service into a new Object Management Workbench
(OMW) object and name the OMW object as a version of the original business service. You also create a new published
business service method that includes the versioned business service.

12

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

Creating a Transaction in a Published Business Service
A published business service class has a public method and a protected method that work together to expose a web
service operation. The public method is exposed as the web service and acts as a wrapper method that passes a null to
the context and connection parameters of the protected method. By passing null for these objects, the wrapper method
identifies that this is the outermost call; that is, this is the web service. When a null context is passed, the protected
method creates a context object that contains either a default manual connection or an auto commit connection for
processing a transaction. Two methods with the same context name but different parameters exist. The context object
that is used depends on whether you initiate a manual commit or auto commit connection. After the context object is
created, the protected method starts processing by calling startPublishedMethod. All calls after startPublishedMethod
are tied together by the context object. By passing null for the connection object, the wrapper method indicates that
the default connection should be used for all operations. If a JD Edwards EnterpriseOne customer needs to extend
a published business service by creating their own published business service and calling an existing JD Edwards
EnterpriseOne published business service, the connection must be passed and it would not be null.

See Auto Commit.

The context object and the connection object are passed to the business service method where the business function
call is made. After returning from the business service, the context object is sent to finishPublishedMethod to
commit the default transaction in the case of manual commit, and then to the close method to close and clean up all
outstanding connections.

This code sample shows creating and passing the context object:

 public ConfirmAddAddressBook addAddressBook(AddAddressBook vo)
throws BusinessServiceException {
 return (addAddressBook(null,null, vo));
 }
 protected ConfirmAddAddressBook addAddressBook
 (IContext context,IConnection
 connection, AddAddressBook vo) throws
 BusinessServiceException{
 //perform all work within try block, finally will clean up any
 //connections
 try {
 // call start published method, passing null,
 //will return context object so BSFN can be called later
 //used to indicate transaction boundary as well as used for
 //logging
 //RI: Start Implicit Transaction
 context = startPublishedMethod(context,
 "addAddressBook");
 // create a new internal vo based on the external vo passed
 InternalAddAddressBook internalVO= new
 InternalAddAddressBook();
 messages.addMessages(vo.mapFromPublished(context,
 internalVO));
 // start business service addAddressBook passing context
 and internal VO
 //RI: Published Business Service Calling Business Service
 E1MessageList messages = AddressBookProcessor.addAddressBook
 (context,connection,internalVO);
 // Published Business Service will send either warnings in
 the Confirm Value Object or throw a published business
 service Exception.
 //a return status of 2 is an error, throw the exception

13

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 if (messages.hasErrors()) {
 // get the string representation of all the messages
 //RI: Error Handling
 String error = messages.getMessagesAsString());
 // Throw new BusinessServiceException(error);
 throw new BusinessServiceException(error,context);
 }
 // exception was not thrown, so create the confirm VO from
 internal VO
 ConfirmAddAddressBook confirmVO = new ConfirmAddAddressBook
 (internalVO);
 confirmVO.setE1MessageList(messages);
 // call finish published method, passing the context
 //to commit transaction(if no exceptions), as well as use
 //in logging
 finishPublishedMethod(context, "addAddressBook");
 // return confirm VO, filled with return values and messages
 return confirmVO;
 } finally {
 //clean up any remaining connections and resources.
 close(context,"addAddressBook");
 }

Managing Published Business Service Components
Naming conventions and concepts for creating published business service classes, methods, value objects, and fields
are discussed in the following sections. Code samples are provided as examples for you to follow. Rules and best
practices are also discussed where appropriate.

Published Business Service Class Names
The naming convention for a published business service class is the description name of the system code with Manager
added to the end of the name; for example, AddressBookManager. Other examples of published business service class
names are ProcurementManager and SalesOrderManager.

This code sample shows the naming convention for a published business service class:

 public class AddressBookManager extends
 PublishedBusinessService {

 }

Published Business Service Method Names
The naming convention for a published business service method is to use a functional description prefaced by an action
verb that describes the processing that will occur. For example, for a published business service method that adds an
address book record to the database, an appropriate published business service method name is addAddressBook. The
business service public method uses the same name as the published business service method.

This code sample shows the naming convention for a published business service method:

14

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 public ConfirmAddAddressBook addAddressBook
 (AddAddressBook vo) throws BusinessServiceException{
 ...
 }

Published Business Service Value Object Names
The input and output parameters of the published business service are called published value objects. The published
business service method takes one value object as its input parameter and returns one value object as its output
parameter.

This code sample shows the naming convention for published value objects:

 public ConfirmAddAddressBook addAddressBook
(AddAddressBook vo) throws BusinessServiceException {
 ...
 }

Published Business Service Variable Names
The variable name should clarify the type of data in the field or compound. For example, if multiple entity type objects
exist, the class called Entity would be the data type, but ProcessPurchaseOrder would contain objects of type Entity
called supplier and shipTo. In this example, the Entity class can be reused from the EntityProcessor utility business
service.

In the following code sample, the AddAddressBook value object has three top-level field names and contains an
entityAddress, which is subsequently made up of an entity with three fields and an address with ten fields:

public class AddAddressBook extends ValueObject implements
Serializable{
 private EntityAddress entityAddress = new EntityAddress();
 private String entityName;
 private String entityTypeCode;
 private String version;

 }
 public class EntityAddress extends ValueObject implements
 Serializable {
 private Entity entity = new Entity();
 private Address address = new Address();

 }
 public class Address extends ValueObject implements Serializable{
 private String mailingName;
 private String addressLine1;
 private String addressLine2;
 private String addressLine3;
 private String addressLine4;
 private String city;
 private String countyCode;
 private String stateCode;
 private String postalCode;
 private String countryCode;

 }
 public class Entity extends ValueObject implements Serializable{
 private Integer entityId;

15

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 private String entityLongId;
 private String entityTaxId;

 }

Creating a Published Business Service Class
The business service foundation provides a Published Business Service wizard that helps you create published business
service classes. The wizard prompts you for a published business service name, an input value object name, an output
value object name, and a method name. The wizard creates a Java code structure for a published business service class
that can be published as a web service. This structure contains comments and TODO: tags to help you add the code to
call mapping methods and business service methods.

See "Understanding Business Services" in the JD Edwards EnterpriseOne Tools Business Services Development
Methodology Guide .

Rules
The published business service class extends the PublishedBusinessService foundation class, and the constructor
must be public. This extension provides access to the transaction methods (startPublishedMethod and
finishPublishedMethod) that are used in all of the published methods of a published business service class.

This code sample shows how to extend the published business service foundation class:

 public class AddressBookManager extends PublishedBusinessService {
 public AddressBookManager() {
 }

 }

Declaring Public Methods for a Published Business Service
Published business service classes expose public, nonstatic methods. Declaring a public method exposes it to third-
party systems.

This code sample shows a published business service declaring a business service method:

 public ConfirmAddAddressBook addAddressBook
 (AddAddressBook vo) throws BusinessServiceException{
 ...
 }

When you use the Published Business Service wizard to create the published business service class, the wizard also
creates a public and protected method. For additional methods, you can use code templates to generate Java code. The
E1PM – EnterpriseOne Published Business Service Method code template generates code for both public and protected
methods of a published business service class. You use a code template in the source code. After you generate code
using the code template, you press the Tab key to move through the highlighted fields to complete the generated code.
The generated code contains TODO: tags that help you.

16

olink:EOTME00120
olink:EOTME00120

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

Creating a Published Value Object
The business service foundation provides value object wizards that help you create value object classes that follow
methodology rules for published value objects. The Value Object wizard creates objects based on database tables and
business views for database operations or from the data structures defined within a business function.

When the wizard generates member variables for the published value object class, it uses the description that comes
from the data dictionary item in the business function data structure or from table or business view columns as the
variable name. If these are not the names that you want to use in your published interface, you can change them.

This code sample shows a generated variable:

 /**
 * Business Unit
 * An alphanumeric code that identifies a separate entity within a
 * business for which you want to track costs. For example, a
 * business unit might be a warehouse location, job, project, work
 * center, branch, or plant.

 * EnterpriseOne Key Field: false
 * EnterpriseOne Alias: MCU
 * EnterpriseOne field length: 12
 */
 private String businessUnit = null;

You use the standard JDeveloper wizard to generate the getter and setter methods for the variables because the Value
Object wizard does not generate these methods. For web services to be generated and deployed successfully, you must
use J2EE standards for naming the getter and setter methods. J2EE standards for writing a field such as private String
description would be:

public String getDescription(){
 return description;
 }
 public void setDescription(String description){
 this.description = description;
 }

For Boolean fields, the pattern is slightly different. J2EE standards for writing a field such as private Boolean
isCreditExempt; would be:

public Boolean isIsCreditExempt(){
 return isCreditExempt;
 }
 public void setIsCreditExempt(Boolean isCreditExempt){
 this.isCreditExempt = isCreditExempt;
 }

Published Value Object Structure and Data Types
The published input value object must extend the ValueObject foundation class. The published confirm or response
value object contains warning messages that were returned from the business processing and must extend the
MessageValueObject foundation class. All published value objects must have a default constructor.

This table lists the valid data types for published value objects:

17

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

Valid Data Type Usage

java.lang.String

Use for string or char fields in JD Edwards EnterpriseOne.

java.util.Calendar

Use for JDEDate or UTIME fields in JD Edwards EnterpriseOne.

java.lang.Integer

Use for MathNumeric fields defined with 0 decimals, for example, mnAddressNumber,
 mnShortItemNumber, and so on.

java.lang.BigDecimal

Use for MathNumeric fields defined with >0 decimals, for example, mnPurchaseUnitPrice.

java.lang.Boolean

Use for char fields specified only as true/false or 0/1 Boolean fields.

Value object classes can be reused when a business service calls a utility or for calls between business services that
depend on one another—such as AddressBook and Supplier. For example, you can reuse the Entity class from the
EntityProcessor utility business service by importing the class from the utility's package.

Web Service Considerations for Data Types and Variable Names
A published business service class is the foundation for creating a web service. The web services description
language (WSDL) is an XML-based language that describes a web service. The WSDL describes all methods of
the published business service as well as the input and output value objects for these methods. All classes that
make up the highest-level value object are included in the WSDL description. For example, for the Procurement
Manager web service, the operations that the WSDL exposes are processPurchaseOrder, getPurchaseOrder, and
processPurchaseOrderAcknowledge. All value object classes that are associated with these operations are defined in the
WSDL as well.

All classes that are used within a published business service must have a unique name, which you should consider
when you reuse value objects across published business services. Member variable names within the published
business service value object class must be unique if they are of different object types. For example, the hierarchy of
ProcessPurchaseOrder contains two classes representing financial data—one at the header level and one at the detail
level. The header and detail are represented by unique classes because they are structured differently. Because both
header and detail belong under the interface ProcessPurchaseOrder, the variable name referencing these object types
must be unique; for example, financial and financialDetail.

The requirement for using unique variable names applies only to classes that have the same parent value object. You
are not required to use unique variable names across value object classes. For example, both ProcessPurchaseOrder and
ProcessPurchaseOrderAcknowledge have a header class, but the header classes are structured differently. Both of the
member variables representing these classes can use the name header because they belong to different parent value
objects. Classes that can be reused, such as PurchaseOrderKey, can have the same variable name across value objects.

The following examples show uniquely named classes that have member variables that are named the same:

Type Member Variable Name

ProcessPurchaseOrder
 PurchaseOrderHeader
 PurchaseOrderKey
 Integer
 String
 String

header
 purchaseOrderKey
 documentNumber
 documentCompany
 documentType

18

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

Type Member Variable Name

 UserReservedData
 String
 Integer
 BigDecimal
 Calendar

 PurchaseOrderFinancial
 PurchaseOrderDetail

 PurchaseOrderFinancialDetail

 userReservedData
 userReservedCode
 userReservedNumber
 userReservedAmount
 userReservedDate
 financial
 detail
 financialDetail

Type Member Variable Name

ConfirmProcessPurchaseOrder

 ConfirmPurchaseOrderHeader
 PurchaseOrderKey
 Integer
 String
 String
 UserReservedData
 String
 Integer
 BigDecimal
 Calendar

 ConfirmPurchaseOrderFinancial

 ConfirmPurchaseOrderDetail

 ConfirmPurchaseOrderFinancialDetail

header
 purchaseOrderKey
 documentNumber
 documentCompany
 documentType
 userReservedData
 userReservedCode
 userReservedNumber
 userReservedAmount
 userReservedDate
 financial
 detail
 financialDetail

Type Member Variable Name

ProcessPurchaseOrderAcknowledge

 PurchaseOrderAcknowledgeHeader
 PurchaseOrderKey
 Integer
 String
 String
 UserReservedData
 String
 Integer
 BigDecimal
 Calendar

 PurchaseOrderAcknowledgeFinancial

 PurchaseOrderAcknowledgeDetail

 PurchaseOrderAcknowledgeFinancialDetail

header
 purchaseOrderKey
 documentNumber
 documentCompany
 documentType
 userReservedData
 userReservedCode
 userReservedNumber
 userReservedAmount
 userReservedDate
 financial
 detail
 financialDetail

19

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

Type Member Variable Name

GetPurchaseOrder
 PurchaseOrderGetHeader
 PurchaseOrderKey
 Integer
 String
 String
 UserReservedData
 String
 Integer
 BigDecimal
 Calendar

 PurchaseOrderGetFinancial

 PurchaseOrderGetDetail

 PurchaseOrderGetFinancialDetail

purchaseOrderGetHeader
 purchaseOrderKey
 documentNumber
 documentCompany
 documentType
 userReservedData
 userReservedCode
 userReservedNumber
 userReservedAmount
 userReservedDate
 financial
 detail
 financialDetail

Type Member Variable Name

ShowPurchaseOrder
 PurchaseOrderShowHeader
 PurchaseOrderKey
 Integer
 String
 String
 UserReservedData
 String
 Integer
 BigDecimal
 Calendar

 PurchaseOrderShowFinancial

 PurchaseOrderShowDetail

 PurchaseOrderShowFinancialDetail

header
 purchaseOrderKey
 documentNumber
 documentCompany
 documentType
 userReservedData
 userReservedCode
 userReservedNumber
 userReservedAmount
 userReservedDate
 financial
 detail
 financialDetail

Rules
Follow these rules when you develop published business service value object classes:

• Implement the serialize interface for all published value objects. This facilitates exposing the published business
service as a web service.

• Initialize published business service value object compound attributes. This is to prevent null pointer exceptions
when the method calls accessors.

• Expose published business service value object compound collections as arrays. Collection objects such as an
ArrayList cannot be exposed from a web service at this time.

• Do not change published value objects, because the change breaks the contract that was created by the original
value object. This is to support backwards compatibility.

20

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

• Do not add a new field, because this breaks the original contract that was set by the value object. You must
create a new version of the value object and method.

• Create response value objects that contain a complete message (more than just keys).

• Place mappings between published and internal value objects in a method in the published value object.

Published Input Value Object
This code sample illustrates the code for a published input value object class:

public class AddAddressBook extends ValueObject implements
Serializable{
 private EntityAddress entityAddress = new EntityAddress();
 // Compound attribute is initialized
 private String entityName; //Leaf attribute not initialized
 private String entityTypeCode;
 private String version;

 }
 public class EntityAddress extends ValueObject implements
Serializable {
 private Entity entity = new Entity();
 private Address address = new Address();

 }
 public class Address extends ValueObject implements
Serializable{
 private String mailingName;
 private String addressLine1;
 private String addressLine2;
 private String addressLine3;
 private String addressLine4;
 private String city;
 private String countyCode;
 private String stateCode;
 private String postalCode;
 private String countryCode;

 }
 public class Entity extends ValueObject implements
Serializable{
 private Integer entityId;
 private String entityLongId;
 private String entityTaxId;

 }

Published Response Value Object
This code sample illustrates the code for a published response value object class:

public class ConfirmAddAddressBook extends MessageValueObject implements
Serializable{
 private EntityAddress entityAddress = new EntityAddress();
 // Compound attribute is initialized
 private String entityName;
 //Leaf attribute not initialized
 private String entityTypeCode;
 private String version;

21

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 }
 public class EntityAddress extends ValueObject implements Serializable {
 private Entity entity = new Entity();
 private Address address = new Address();

 }
 public class Address extends ValueObject implements Serializable{
 private String mailingName;
 private String addressLine1;
 private String addressLine2;
 private String addressLine3;
 private String addressLine4;
 private String city;
 private String countyCode;
 private String stateCode;
 private String postalCode;
 private String countryCode;

 }
 public class Entity extends ValueObject implements Serializable{
 private Integer entityId;
 private String entityLongId;
 private String entityTaxId;

 }

Mappings
The mapping between the published value object and the internal value object takes place in the published value object.
You create a method for mapping fields from the published value object to the corresponding fields of the internal value
object.

If you call the Formatter utility or a business service utility when mapping data from published to internal value
objects, Oracle recommends that you create a method named mapFromPublished that returns an E1MessageList. The
mapFromPublished method takes at a minimum the internal value object as a parameter. This method holds all of
the mappings between the published value object and the internal value object. If a message could be returned to the
published business service, you should create a method for mappings. You should always create a method to return
messages when you call a business service utility or the Formatter utility during mapping. If no messages would be
returned from mappings, you can have the method return void.

This code sample uses the mapFromPublished method and returns an E1MessagleList:

 public E1MessageList mapFromPublished(IContext context, RI_InternalAdd
AddressBook vo){
 E1MessageList messages = new E1MessageList();
 //set all internal VO attributes based on external VO passed in

 vo.setSzMailingName(this.getEntityAddress().getAddress().
getMailingName());
 vo.setSzAddressLine1(this.getEntityAddress().getAddress().
getAddressLine1());
 vo.setSzAddressLine2(this.getEntityAddress().getAddress().
getAddressLine2());
 vo.setSzAddressLine3(this.getEntityAddress().getAddress().
getAddressLine3());
 vo.setSzAddressLine4(this.getEntityAddress().getAddress().
getAddressLine4());
 vo.setSzCity(this.getEntityAddress().getAddress().getCity());
 vo.setSzState(this.getEntityAddress().getAddress().getStateCode());

22

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 vo.setSzCountry(this.getEntityAddress().getAddress().getCountryCode());
 vo.setSzCounty(this.getEntityAddress().getAddress().getCountyCode());
 vo.setSzPostalCode(this.getEntityAddress().getAddress().
getPostalCode());
 vo.setMnAddressBookNumber(this.getEntityAddress().getEntity().
getEntityId());
 vo.setSzLongAddressNumber(this.getEntityAddress().getEntity().
getEntityLongId());
 vo.setSzTaxId(this.getEntityAddress().getEntity().getEntityTaxId());
 vo.setSzAlphaName(this.getEntityName());
 vo.setSzSearchType(this.getEntityTypeCode());
 vo.setSzVersion(this.getVersion());
 vo.setJdDateEffective(this.getEffectiveDate());
 //format business unit coming from published vo.
 String formattedMCU = null;
 String bu = this.getBusinessUnit();
 if(bu!=null && !bu.equals("")){
 try {
 formattedMCU = context.getBSSVDataFormatter().format(this.
getBusinessUnit(),"MCU");
 vo.setSzBusinessUnit(formattedMCU);
 }
 catch (BSSVDataFormatterException e) {
 context.getBSSVLogger().app(context,"Error when formatting Business
 Unit.",null,vo,e);
 //Create new E1 Message with error from exception
 messages.addMessage(new E1Message(context, "002FIS",this.
getBusinessUnit()));
 }
 }

 //phones loop through array
 //new arraylist
 RI_Phone phones[] = this.getPhones();
 if (this.getPhones()!=null){
 ArrayList phonesList = new ArrayList();
 for(int i=0; i<phones.length; i++){
 //create internal phone and add to array list

If an E1MessageList would never be returned, and the mappings are from internal to published response value objects,
you can use an overloaded constructor for the internal value object mappings. If you have no calls to utilities or
formatters, mapping can be done in the constructor. If the mappings are from published to internal value objects and no
messages are being returned, you should create a mapFromPublished method that returns void.

This code sample uses an overloaded constructor for mapping:

 public ShowAddressBook(InternalGetAddressBook internalVO){
 if(internalVO.getQueryResults()!=null){
 this.setNumberRowsReturned(internalVO.getQueryResults().size());
 this.addressBook = new AddressBook[internalVO.getQueryResults().
size()];
 for(int i = 0;i<internalVO.getQueryResults().size();i++){
 AddressBook ab = new AddressBook(internalVO.getQueryResults(i));
 this.setAddressBook(i,ab);
 }
 }
 }

23

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

Data Type Transformation
When you map data between published and internal value objects, data type transformations may be required. The
business service foundation provides methods and constructors that format data and transform data types. Data type
transformations that are done in the mappings are:

• Integer to and from MathNumeric

• BigDecimal to and from MathNumeric

• Boolean to and from String

Integer to and from MathNumeric and BigDecimal to and from MathNumeric
Mapping between published integer fields and internal math numeric fields requires a data type transformation. You
use the set methods of the internal value object to make these transformations. An overloaded method takes either an
integer or a math numeric data type when setting the field value.

The same rule applies to mapping between big decimal and math numeric fields. The business service foundation
provides multiple math numeric constructors. The null check is performed because the constructor throws an error if a
null parameter is passed.

This code sample shows set methods where a new math numeric data type is created by passing an integer type value
or a big decimal type value:

---------------Integer to MathNumeric----------------------
public void setNumberField(Integer numberField){
 if(numberField!=null)
 this.numberField= new MathNumeric(numberField);
}
---------------BigDecimal to MathNumeric-------------------
public void setNumberField(BigDecimal numberField){
 if(numberField!=null)
 this.numberField= new MathNumeric(numberField);
}
---------------MathNumeric to BigDecimal--------------------
public void setNumberField(MathNumeric numberField){
 if(numberField!= null)
 this.numberField= numberField.asBigDecimal();
}
---------------MathNumeric to Integer-----------------------
public void setNumberField(MathNumeric numberField){
 if(numberField!= null)
 this.numberField= new Integer(numberField.intValue());
}

Boolean to and from String
A published Boolean field must be translated to an internal String type field. The business service foundation provides
three ValueObject methods to assist you with this transformation. Because these methods are in the ValueObject class,
they are available from all value objects. The methods are:

Method Usage

transformBooleanYN(Boolean)

Returns a string of Y for passed value of true. Returns N for passed value of false. Returns null string
for null Boolean.

24

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

Method Usage

transformBoolean01(Boolean)

Returns a string of 1 for passed value of true. Returns 0 for passed value of false. Returns null string for
null Boolean.

transformToBoolean(String)

Returns a Boolean value that takes a string. A string of 1,Y,y returns true. A string of 0,N,n returns false.
A null or incorrect string returns null.

This code sample shows the structure for each of the methods:

-----------------String to Boolean---------------------
//Use ValueObject (tools provided method) transformToBoolean.
//Tools method will account for both Y,y,N,n,0,1 values, null values
//set Boolean to null
public void setIsSomething(String isSomething){
 this.isSomething= transformToBoolean(isSomething);
}
------------------Boolean to String----------------------
//E1 needs to be researched to determine what values are valid for
//true and false values
//Use ValueObject (tools provided methods) transformBooleanYN or
//transform Boolean01.
//Tools method will provide proper Boolean value for either Y/N or
//0/1, null will result in null String
public void setIsSomething(Boolean isSomething){
 this.isSomething = transformBooleanYN(isSomething);
}
 OR
public void setIsSomething(Boolean isSomething){
 this.isSomething = transformBoolean01(isSomething);

Data Formatter
In addition to mappings, you might need to format data coming from the published value object. For example, the JD
Edwards EnterpriseOne database stores fields such as company (CO) and business unit (MCU) with preceding spaces or
zeros. These fields should be formatted so that the preceding spaces and zeros are hidden from the published business
service. The business service foundation utilities package provides formatting methods that enable you to pass in a
value, and based on the data dictionary rules for the data dictionary item being passed in, formats the value accordingly.

You can use the code template E1DF – EnterpriseOne Data Formatter to generate code for data that requires formatting.
The formatter code template generates the code and highlights variable names that you must change.

This sample code is generated by the EnterpriseOne Data formatter code template:

//format business unit coming from published vo.
 String formattedMCU = null;
 String bu = this.getBusinessUnit();
 if(bu!=null && !bu.equals("")){
 try {
 formattedMCU = context.getBSSVDataFormatter().format(
this.getBusinesUnit(),"MCU");
 vo.setSzBusinessUnit(formattedMCU);
 }
 catch (BSSVDataFormatterException e) {
 context.getBSSVLogger().app(context,"Error when
formatting BusinessUnit.",null,vo,e);

25

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 //Create new E1 Message with error from exception
 messages.addMessage(new E1Message(context,
"002FIS",this.getBusinessUnit()));
 }
 }

Creating a Media Object Published Value Object
The business service development tools provide a value object wizard that helps you create Media Object value object
classes that follow the methodology rules for published value objects. The Media Object Value Object Class Wizard
creates objects based on Media Object data structures. When the wizard generates member variables for the published
value object class, it uses the metadata of the data dictionary item in the Media Object data structure.

You use the standard JDeveloper wizard to generate the getter and setter methods for the variables because the Media
Object Value Object Class Wizard does not generate these methods. To successfully generate and deploy web services,
you must use J2EE standards for naming the getter and setter methods.

The Media Object Value Object Class Wizard generates two java classes: one is the actual value object and the other
is a value object that by default is named MOItem_Publish.java. The actual value object contains the properties from
the Media Object data structure and the reference to the array of default value objects in order to hold multiple media
objects.

The default value object, MOItem_Publish.java, contains the Media Object properties such as moname, seqno, and
motype, as well as the attachment. Do not change the name of the default value object.

Below is the sample code for the actual value object created for Media Object data structure ABGT using the Media
Object Value Object Class Wizard:

public class ABGT extends ValueObject implements Serializable {
 /**
 * Media Object Array

 */
 private MOItem_Publish[] moItems = null;

 /**
 * Address Number
 * <p>
 * TODO: Description using Glossary Text from EnterpriseOne if appropriate.
 * </p>
 * EnterpriseOne Key Field: false

 * EnterpriseOne Alias: AN8

 * EnterpriseOne field length: 8

 * EnterpriseOne decimal places: 0

 */
 private Integer mnAddressNumber = null;

 /**
 * TODO: Default public constructor for instantiating: ABGT
 */
 public ABGT() {
 }
}

Below is the sample code for Default value Object (MOItem_Publish.java) created using the
 Media Object valueobject Wizard.

26

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

public class MOItem_Publish extends ValueObject implements Serializable {
 /**
 * Media Object Attachment Type

 */
 private String szMoType = null;

 /**
 * Media Object Attachment File Name

 */
 private String szItemName = null;

 /**
 * Media Object Sequence Number

 */
 private int moSeqNo = 0;

 /**
 * Media Object Data

 */
 private DataHandler szData = null;

 /**
 * TODO: Default public constructor for instantiating: MOItem_Publish
 */
 public MOItem_Publish() {
 }
}

Calling a Business Service
The published business service class exposes a public method as a web service operation. The business service method
that the published business service class calls acts as a controller to the business logic.

Published business services can also call Media Object business services. For more information, see Calling a Media
Object Business Service.

Rules
These are the rules for a published business service method calling a business service method:

• The signature for the business service static method must contain an IContext object, an IConnection object,
and an internal value object.

• The published business service method passes the IContext and IConnection objects to the business service,
enabling the published business service to keep track of transaction information throughout the entire
processing of the published business service.

• The published business service method creates a new internal value object that is based on the external value
object.

• The business service static method returns an E1MessageList object, which contains an array of all error,
warning, and information messages that occurred during processing and were set by the business function.

• If the array contains an error message, the published business service must throw an exception using the text
from the E1MessageList

27

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

• If no error messages exist in the array, the business service returns a confirm value object to the published
business service method caller.

The confirm object is created when the business service passes the internal value object to the constructor
for the published confirm value. All warnings and information messages that are returned from calling the
business service are mapped to the confirm object.

This code sample shows implementation of these rules:

public ConfirmAddAddressBook addAddressBook(AddAddressBook vo) throws
BusinessServiceException {
 return (addAddressBook(null, null, vo));
 }
 protected ConfirmAddAddressBook addAddressBook(IContext context,
 IConnection connection,
 AddAddressBook vo) throws
BusinessServiceException {
 //perform all work within try block, finally will clean up any
connections
 try {
 //Call start published method, passing context of null
 //will return context object so BSFN or DB operation can
 //be called later.
 //Context will be used to indicate default transaction
 //boundary, as well as access to formatting and logging
 //operations.
 context = startPublishedMethod(context, "addAddressBook",
vo);
 //Create new published business service messages object for
 //holding errors and warnings that occur during processing.
 E1MessageList messages = new E1MessageList();
 // Create a new internal value object.
 InternalAddAddressBook internalVO =
 new InternalAddAddressBook();
 vo.mapFromPublished(context, internalVO);
 //Call business service passing context, connection and
 //internal VO
 E1MessageList bssvMessages = AddressBookProcessor.addAddressBook
(context, connection, internalVO);
 //Add messages returned from business service to message list
 //for published business service.
 messages.addMessages(bssvMessages);
 //Published Business Service will send either warnings in the
 //Confirm Value Object or throw a published business service
 //Exception.
 //If messages contains errors, throw the exception
 if (messages.hasErrors()) {
 //Get the string representation of all the messages.
 String error = messages.getMessagesAsString();
 //Throw new BusinessServiceException
 throw new BusinessServiceException(error, context);
 }
 //Exception was not thrown, so create the confirm VO from
 //internal VO
 ConfirmAddAddressBook confirmVO =
 new ConfirmAddAddressBook(internalVO);
 confirmVO.setE1MessageList(messages);
 finishPublishedMethod(context, "addAddressBook");
 //return outVO, filled with return values and messages

28

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 return confirmVO;
 } finally {
 //Call close to clean up all remaining connections and
 //resources.
 close(context, "addAddressBook");
 }
 }

Calling a Media Object Business Service
The published business service class exposes a public method as a web service operation. The business service method
that the Media Object published business service class calls acts as a controller to the business logic that can perform
operations on the media objects.

The rules for calling a business service also apply to calling a Media Object business service. See Calling a Business
Service for more information.

You may need to call multiple business services from a published business service method to perform the following
tasks:

1. Call a normal internal business service, such as a call to the AddAddressBook business service, which does not
perform a Media Object operation.

2. Call the Media Object internal business service for adding the Media Object attachments.
For example, you could change the existing RI_AddressBook business service (JPR01000) so that it performs the add
Media Object operation after creating an Address Book record. The following sample code shows this example:

 protected RI_ConfirmAddAddressBook addAddressBookMO(IContext context,
 IConnection connection,
 RI_AddAddressBook vo) throws BusinessServiceException {
 //perform all work within try block, finally will clean up any connections.
 try {
 //Call start published method, passing context of null
 //will return context object so BSFN or DB operation can be called later.
 //Context will be used to indicate default transaction boundary, as well as
 access
 //to formatting and logging operations.
 context = startPublishedMethod(context, "addAddressBookMO", vo);

 //Create new PublishedBusinessService messages object for holding errors and
 warnings that occur during processing.
 E1MessageList messages = new E1MessageList();
 //TODO: Create a new internal value object.
 RI_InternalAddAddressBook internalVO =
 new RI_InternalAddAddressBook();
 messages.addMessages(vo.mapFromPublished(context, internalVO));
 //Call BSSV passing context, connection and internal VO
 E1MessageList bssvMessages =
 RI_AddressBookProcessor.addAddressBook(context,
 connection,
 internalVO);
 //Add messages returned from BSSV to message list for Published Business Service.
 messages.addMessages(bssvMessages);

 //PublishedBusinessService will send either warnings in the Confirm Value Object
 or throw a BusinessServiceException.

29

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 //If messages contains errors, throw the exception
 if (messages.hasErrors()) {
 //Get the string representation of all the messages.
 String error = messages.getMessagesAsString();
 //Throw new BusinessServiceException
 throw new BusinessServiceException(error, context);
 }

 //MO Code to call Internal BSSV - Start
 ABGT_Internal inputVO = new ABGT_Internal();
 messages.addMessages(vo.mapFromPublished(context, inputVO));
 inputVO.setMnAddressNumber(internalVO.getMnAddressBookNumber());

 E1MessageList moMessages =

 RI_AddressBookMediaObjectProcessor.addAddressBookMO(context,

 connection,

 inputVO);
 messages.addMessages(moMessages);
 //MO Code to call Internal BSSV End
 if (messages.hasErrors()) {
 //Get the string representation of all the messages.
 String error = messages.getMessagesAsString();
 //Throw new BusinessServiceException
 throw new BusinessServiceException(error, context);
 }

 //Exception was not thrown, so create the confirm VO from internal VO
 RI_ConfirmAddAddressBook confirmVO =
 new RI_ConfirmAddAddressBook(internalVO);
 confirmVO.setE1MessageList(messages);
 finishPublishedMethod(context, "addAddressBookMO");
 //return outVO, filled with return values and messages
 return confirmVO;
 } finally {
 //Call close to clean up all remaining connections and resources.
 close(context, "addAddressBookMO");
 }
 }

See Calling Media Object Operations in this guide for details on how to call the Media Object operations within the
internal business service.

Handling Errors in the Published Business Service
The published business service class is the JD Edwards EnterpriseOne object that is exposed as a web service. Upon
invocation, the published business service returns either a value object that contains data and warning messages, or it
throws a BusinessServiceException that contains all errors and warnings that occurred during business processing. The
published business service throws BusinessServiceException if any messages of the type error occur in the collection
of messages that are returned from the call to the business service method. System errors and database failures are
thrown as runtime exceptions. A runtime exception is not handled, but it will cause the published business service to fail

30

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

and return to the original caller. Throwing an exception causes any database operations that were performed between
the default transaction boundaries to roll back, and an error message is sent to the log files.

This code sample shows how to handle errors in the published business service:

 E1MessageList messages = AddressBookProcessor.addAddress
Book(context, connection, internalVO);
 //published business service will send either warnings in the
 Confirm Value Object or throw a published business service
 exception.
 //a return status of 2 is an error, throw the exception
 if (messages.hasErrors()) {
 //get the string representation of all the messages
 //RI: Error Handling
 String error = messages.getMessagesAsString();
 //Throw new BusinessServiceException(error);
 throw new BusinessServiceException(error, context);
 }
 //exception was not thrown, so create the confirm VO from internal VO
 ConfirmAddAddressBook confirmVO = new ConfirmAddAddressBook
(internalVO);
 confirmVO.setE1MessageList(messages);
 //return confirm VO, filled with return values and messages
 return confirmVO;

Testing a Published Business Service
You must perform unit testing for the published business service (and business service) that you develop to ensure that
the service works as intended. Because published business services depend on the JD Edwards EnterpriseOne system,
most of the testing is actually integrated testing. Unit testing should include scenarios that test all decision points in the
code. Here are some possible unit tests:

• Test for each action code that is passed, for example, add, change, cancel.

• Test 1 line, 5 lines, 0 lines.

• Perform negative tests.

You can use any of the following methods to test objects in your code:

• Create a test harness class to test the different functions of the published business service.
If you create a test harness, you must call business service foundation methods at the start and finish of the
test to shut down the process within JDeveloper. You can use the code template E1Test – EnterpriseOne Test
Harness Class to generate the framework for your test harness application. You can use this code sample as a
model for creating a test harness:
public static void main(String[] args) throws BusinessServiceException{
 try{
 //call required prior to starting test from application (main())
 TestBusinessService.startTest();
 //call test method
 testAddNoPhone();
 }
 finally{
 //call required after completing test from application (main())
 TestBusinessService.finishTest();

31

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 }
 }

• Use the JUnit extension for JDeveloper and create test cases that test the functionality of the published
business service.

JUnit provides a way of running all tests in a suite and can write assertions to determine whether a test passed
or failed.

• Test all functionality through the web service graphical user interface that JDeveloper offers.

When you use this method, you can save and rerun XML documents.

Testing the Web Service
After unit testing is complete, you create a web service from the public methods in the published business service. You
should verify that no problems occur when generating or invoking the web service. Testing the web service is critical
because it is possible to pass all tests from a test harness and fail at creating or running a web service.

Use the JDeveloper wizard to test the web service. You access this wizard from JDeveloper New Gallery when you add
an object to your project.

WSI Compliance Testing
After the published business service is tested as a web service, you verify that the WSDL is WSI compliant. You use
JDeveloper for this task.

Customizing a Published Business Service
The published business services that are delivered with your JD Edwards EnterpriseOne software provide a specific,
described unit of work. Although these published business services should cover the functionality that you require, you
might need to run additional business logic to meet your specific business requirements. This additional business logic
could require processing before, after, or during the delivered published business services unit of work. If you require
additional business logic, you should create a custom published business service.

When you customize a published business service, upgrades and updates should be a primary consideration. For
example, if your customizations include code changes within the published business service or business service classes
that are delivered by JD Edwards EnterpriseOne, then when an upgrade or update is applied to your system, a merge of
the code itself would be required. Code merging is extremely difficult to perform and is error prone, and good tooling is
hard to find.

To keep updates and upgrades simple, Oracle recommends that you create a new published business service that
extends the delivered published business service. You use OMW to create and manage your new, custom published
business service. When you extend the delivered published business service, you can add your business logic either
before or after the delivered published business service's unit of work. By extending the delivered published business
service, your custom classes can access the published business service's functionality, control the transaction scope,
and share its context. Extending from a published business service class instead of the internal business service class
is significant. Published classes have an explicit contract. When you extend a published class, you can be sure that your
customizations will continue to work when your system is updated because the published business service signature

32

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

and behavior will not change when JD Edwards EnterpriseOne is updated. Internal (business service) classes have no
contract and can be changed by JD Edwards EnterpriseOne application development for an update or upgrade.

Extending from published business service classes allows for customizations before and after the delivered published
business service's unit of work. If you require custom business logic that processes during the delivered published
business service's unit of work, you must create a new published business service and manually copy the delivered
published business service and associated business services and modify them as necessary. You use OMW to create
and manage your new published business service.

Published Business Service Model
Two methods are required to expose a published business service class as a web service: a public method and a
protected method. The sole purpose of the public method is to be called as a web service. The protected method
manages and processes the call to the business service classes.

You can use this code sample as a model for your published business service class:

/**
* RI_AddressBookManager is the published business service class exposing
* functionality within Address Book processes.
*/
public class AddressBookManager extends PublishedBusinessService {
 /**
 * published business service Public Constructor
 */
 public AddressBookManager() {
 }
 /**
 * Published method for Adding an AddressBook Record.
 * Acts as wrapper method, passing null context and null connection,
 * will call protected addAddressBook.
 * @param vo the value object representing input data for Adding an
 * AddressBook record
 * @return confirmVO the response data from the business process for adding an
 * AddressBook record.
 * @throws BusinessServiceException
 */
 public ConfirmAddAddressBook addAddressBook(AddAddressBook vo) throws
BusinessServiceException {
 return (addAddressBook(null, null, vo));
 }
 /**
 * Protected method for RI_AddressBookManager published business
 * service.
 * addAddressBook will make calls to business service classes
 * for completing business process.
 * @param vo the value object representing input data for adding an
 * AddressBook record.
 * @param context conditionally provides the connection for the
 * database operation and logging information
 * @param connection can either be an explicit connection or null.
 * If null, the default connection is used.
 * @return response value object is the data returned from the
 * business process for adding an AddressBook record.
 * @throws BusinessServiceException
 */
 protected ConfirmAddAddressBook addAddressBook(IContext context,
 IConnection connection,

33

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 AddAddressBook vo) throws BusinessServiceException {
 //perform all work within try block, finally will clean up any
 //connections
 try {
 //Call start published method, passing context of null will
 //return context object so BSFN or DB operation can be called
 //later.
 //Context will be used to indicate default transaction
 //boundary, as well as access to formatting and logging
 //operations.
 context = startPublishedMethod(context, "addAddressBook", vo);
 //Create new published business service messages object for holding
 //errors and warnings that occur during processing.
 E1MessageList messages = new E1MessageList();
 // Create a new internal value object.
 InternalAddAddressBook internalVO =
 new InternalAddAddressBook();
 vo.mapFromPublished(context, internalVO);
 //Call business service passing context, connection and
 //internal VO
 E1MessageList bssvMessages = AddressBookProcessor.
addAddressBook(context,connection, internalVO);
 //Add messages returned from business service to message list
 //for published business service.
 messages.addMessages(bssvMessages);
 //A published business service will send either warnings in
 //the Confirm Value Object or throw a published business
 //service Exception.
 //If messages contains errors, throw the exception
 if (messages.hasErrors()) {
 //Get the string representation of all the messages.
 String error = messages.getMessagesAsString();
 //Throw new BusinessServiceException
 throw new BusinessServiceException(error, context);
 }
 //Exception was not thrown, so create the confirm VO from
 internal VO ConfirmAddAddressBook confirmVO =
 new ConfirmAddAddressBook(internalVO);
 confirmVO.setE1MessageList(messages);
 finishPublishedMethod(context, "addAddressBook");
 //return outVO, filled with return values and messages
 return confirmVO;
 } finally {
 //Call close to clean up all remaining connections and
 //resources.
 close(context, "addAddressBook");
 }
 }

Extending a Published Business Service
You can add functionality to an existing published business service. Custom processing must take place either before
or after the business service call and typically, all processing is within the same transaction boundary. You extend a
published business service by doing the following tasks:

1. Create a new class that extends the original published business service class.
2. Create a new public method that calls the inherited method for which you are extending functionality.

34

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

3. Create custom processing that takes place either before or after the business service call. Typically, all
processing will be within the same transaction boundary.

 /**
 * Published method for Customized Add Address Book
 * This exposed method will call the method addAddressBook from
 * parent class.
 * @param vo the value object representing input data for adding
 * AddressBook record
 * @return confirmVO the response data from the business process for
 * adding an address book record.
 * @throws BusinessServiceException
 */
 public ConfirmAddAddressBook customAddAddressBook
(AddAddressBook vo) throws BusinessServiceException {
 //perform all work within try block, finally will clean up
 //any connections
 IContext context = null;
 IConnection connection = null;
 try {
 //Call start published method, passing context of null
 //will return context object so BSFN or DB operation can
 //be called later.
 //Context will be used to indicate default transaction
 //boundary, as well as access to formatting and logging
 //operations.
 context = startPublishedMethod(context,
"customAddAddressBook",vo);
 //Create new published business service messages object
 //for holding errors and warnings that occur during
 //processing.
 E1MessageList messages = new E1MessageList();

 //TODO: This is where a customer customization would be
 //coded.
 //Whatever is coded here is included within the
 //transaction but occurs prior to calling the published
 //business service.

 //Call published business service method
 ConfirmAddAddressBook confirmVO = this.addAddressBook
(context, connection, vo);

 //TODO: This is where a customer customization would be
 //coded.
 //Whatever is coded here is included within the
 //transaction but occurs after calling the published
 //business service.

 //published business service will send either warnings
 //in the Confirm Value Object or throw a published
 //business service Exception.
 //If messages contains errors, throw the exception

 if (messages.hasErrors()) {
 //get the string representation of all the messages
 String error = messages.getMessagesAsString();
 //Throw new BusinessServiceException
 throw new BusinessServiceException(error, context);
 }

35

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 4
Creating a Published Business Service

 //Call finish published method, passing the context
 //to commit default implicit transaction(in case of no
 //exceptions)
 finishPublishedMethod(context, "customAddAddressBook");
 //return confirmVO, mapped with return values and
 //messages
 return confirmVO;
 } finally {

 //Call close to clean up all remaining connections and
 //resources.
 close(context,"customAddAddressBook");
 }

 }

Deprecating a Published Business Service
When the signature of a published business service is modified, a new published business service is created to replace
the original published business service. The JD Edwards EnterpriseOne deprecation policy for published business
services is to ship and support both the original and the replacement published business service for the first release
of the replacement published business service. For the second release of the replacement published business service,
only the replacement published business service is shipped, but both the original and replacement published business
services are supported. For the third release, only the replacement published business service is shipped and supported.
The original published business service is no longer supported. For example, oracle.e1.bssv.JP010003 is shipped with
9.0. For 9.1, oracle.e1.bssv.JP010022 is created to replace JP010003. Both published business services are shipped and
supported for Release 9.1. For Release 9.2, only the replacement published business service (JP010022) is shipped, but
both published business services (JP010022 and JP010003) are supported. For Release 9.3, only JP010022 is shipped
and supported. The original published business service (JP010003), which was shipped with 9.0 and 9.1, is no longer
supported.

36

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

5 Creating a Business Service

Creating a Business Service

Note: Oracle reserves the right to reorganize the business services foundation packages (jar files) for tools release
upgrades. If you are planning to upgrade your system, test your custom objects and modify them as appropriate to
ensure your code will continue to work as intended. You cannot upgrade custom business service objects after you
install a tools release upgrade.

Understanding Business Services
Business services are JD Edwards EnterpriseOne Object Management Workbench (OMW) objects that are called by
a published business service to accomplish a specific task. Business service classes are written in Java programming
language and provide methods that access the business logic in JD Edwards EnterpriseOne for many supported
business transactions, such as journal entries, exchange rates, accounts payable vouchers, inventory lookups, pricing,
sales orders, and so on. A business service method can call a business function or a database operation. A utility
business service performs a repeatable task and can be called by multiple business service classes.

This chapter focuses on business services that call a business function. Because many of the rules and best practices
are the same for business services that call business functions and business services that call database operations,
discussions in this chapter are applicable to both types of business services. However, some differences and exceptions
exist, and Chapter 5, Creating a Business Service That Calls a Database Operation focuses on differences for each type
of database operation.

You use wizards, which are provided by JDeveloper and the business services framework, and the Java programming
language to create business service classes. If you are creating a new business service, you first create an OMW object.
When you launch JDeveloper from OMW, the project should be created automatically. If the project is not created,
you use the Project wizard that is provided by JDeveloper to create a project for your business service. You use the
Business Service Class wizard to create a business service class that has one or more methods. A method can call a
business function, a database operation, or another business service (for example, a utility business service method) to
accomplish a specific task. The business services framework provides two wizards: the Create Business Function Call
wizard to help you create methods that call business functions and the Create Database Call wizard to help you create
methods that call database operations.

In addition to wizards, the business services framework provides a set of foundation packages that help you create
a business service method. Each foundation package contains a set of interfaces and related classes. All business
service classes extend from the BusinessService foundation class. The wizards that are provided by the business service
framework enable you to create code that is specific for calling a business function or a database operation. Code
samples, using a specific example of adding an address book record that uses AddressBook master business function,
are provided throughout this chapter to demonstrate general concepts. Rules and best practices are discussed if they
are applicable to the topic.

This business service class diagram shows the main business service class (AddressBookProcessor) and the internal
value object class (InternalAddAddressBook) and its components:

37

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

These features are illustrated in the diagram:

• AddressBookProcessor extends BusinessService class.

• InternalAddAddressBook and its components extend ValueObject class.

Developing a Business Service
A business service represents one or more Java classes that expose public methods. A business service class can
expose multiple methods, such as addAddressBook, addAddressBookWithPhones, changeAddressBook, and so on.
The methods access logic in JD Edwards EnterpriseOne and support a specific step in a business process, for example,
adding an address book record. When you create the business service, you should consider including methods that
have similar functionality and manageability in the same business service. If multiple processes are similar and can
reuse code, then these methods should exist in the same business service.

IContext and IConnection Objects
A business service public method must contain two objects, IContext and IConnection, as part of its signature. The
IContext object provides the default connection for the business function call and holds an identifier that ties together
all processing for the business service. The IConnection object enables the business service method to be run under an
explicit transaction; and if the connection is null, the default transaction is used. The context and connection objects are
passed to the public methods of the business service class, which in turn passes these objects to any of the methods
that call a business function. To indicate the boundaries of the internal method, business service public methods must
call the inherited methods, startInternalMethod(context, "methodName", valueObject) before any other logic and
finishInternalMethod(context, "methodName", valueObject) when all other processing is finished.

This code sample shows how to use IContext and IConnection:

public static E1MessageList addAddressBook(IContext context, IConnection
connection, InternalAddAddressBook internalVO){
 //call start internal method, passing the context (which was
 //passed from published business service)
 startInternalMethod(context, "addAddressBook",internalVO);

38

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 ...
 // calls method which then executes BSFN AddressBookMBF
 E1MessageList messages = callAddressBookMasterMBF
(context,connection, internalVO, programId);
 ...
 // call finish internal method passing context
 finishInternalMethod(context, "addAddressBook");
 //return status code from BSFN call
 ...
 return messages;
 }

Note:
• Transaction Processing.

Managing Business Service Components
This section discusses naming conventions and concepts for creating business service classes, methods, internal
value objects, and fields. Code samples are provided as examples for you to follow. Rules and best practices are also
discussed.

Business Service Class Names
The naming convention for a business service class is to use the functional description with Processor added at the end
of the name, for example, AddressBookProcessor and AddressBookQueryProcessor.

This code sample shows the naming convention for a business service class:

public abstract class AddressBookProcessor extends BusinessService {

 }

Business Service Method Names
A method is an operation that performs a business process. The naming convention for a business service public
method is to name the public method the same name as the method in the published business service, for example,
addAddressBook.

This code sample shows the naming convention for a public method:

public static E1MessageList addAddressBook(IContext context,
IConnection connection, InternalAddAddressBook internalVO){
 ...
 }

39

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

Business Service Internal Value Object Names
Internal value object classes are the input and output parameters of the business service methods. These value objects
are not published interfaces. You use these internal value objects to map values to and from a business function.
Internal value objects can be composed of fields, compounds, and components.

The naming convention for an internal value object class is to use the published value object name with Internal
added to the beginning of the name. Some examples of names for internal value objects are InternalAddAddressBook,
InternalProcessPurchaseOrder, and InternalEntity.

This code sample shows the naming convention for an internal value object class:

 public class InternalAddAddressBook extends ValueObject {

 }

Database operations use a different convention for naming internal value objects.

See Understanding Database Operations.

Field Names
The naming convention for field names in the internal value object is to use a name that matches the data structure
member names of the business function that is being called, for example, mnAddressNumber and szMailingName.
The number of fields exposed through the internal value object may be larger than the published value object, and you
should include all of the possible business data fields and flag fields in the internal value object because this object can
be used by internal applications.

Compound and Component Names for a Business Service
By design, the internal value object has a flat hierarchical structure, meaning that the structure contains few, if any,
compounds and components. Compounds and components that exist within an internal value object should be named
similarly; for example, the compound name should be prefaced with the word Internal (such as, InternalPhones).

The following code sample shows an internal value object class that has one compound (internalPhones) and many field
names (szAlphaName, szSearchType, and so on) at the top level that correspond to business function data structure
member names.

public class InternalAddAddressBook extends ValueObject {
 private String szLongAddressNumber;
 private MathNumeric mnAddressBookNumber;
 private String szTaxId;
 private String szMailingName;
 private String szAddressLine1;
 private String szAddressLine2;
 private String szAddressLine3;
 private String szAddressLine4;
 private String szPostalCode;
 private String szCity;
 private String szCounty;
 private String szState;
 private String szCountry;
 private String szAlphaName;
 private String szSearchType;
 private String szVersion;

40

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 private String szBusinessUnit;
 private Date jdDateEffective;
 private ArrayList internalPhones;
 ...
 }

Creating a Business Service Class
The business service foundation provides the Business Service Object wizard, which you use to create new business
service classes. This wizard follows the methodology discussed in this document. The Business Service Object wizard
prompts you for the class name, an internal input value object class, and a method name, and then it generates code
for a business service class. The wizard also generates comments and TODO: statements where necessary to help you
complete the generated code.

See "Creating Business Service Classes" in the JD Edwards EnterpriseOne Tools Business Services Development Guide .

Rules
When you create a business service class, follow these rules:

• Business service classes are abstract classes and must extend the foundation class BusinessService.
BusinessService is the parent class that provides foundation support for transactions and logging.

• Business service classes have only static methods, so to reinforce static behavior and prevent the class from
being instantiated, declare an abstract class.

This code sample illustrates extending the BusinessService class and declaring the class as abstract:

public abstract class AddressBookProcessor extends BusinessService {

 ...
 }

You design and develop a business service as a static class that processes multiple requests simultaneously. A static
class means that only one instance of the class exists in Java virtual memory (JVM), regardless of the number of
simultaneous requests being processed. These requests are also called threads.

Static classes reduce object creation. If a business service was not static, one business service would exist for each
request. As each request finishes, the class would be released and eventually the system reclaims the memory that the
class used. Creating and releasing objects repeatedly causes performance degradation, because more memory is used
and more CPU cycles are required.

To ensure that the business service provides a thread-safe environment, you cannot use instance variables in the
business service class. An instance variable is a value that is useful to only one request, for example, a counter. A
thread-safe environment means that the multiple requests (threads) that are being processed simultaneously do not
interfere with each other. The absence of instance variables helps ensure thread safety at compile time. You can include
static variables in the business service class. A static variable is a value that is useful to all requests, for example, a
cached value that is used to specify a language. A static variable is shared data, independent of a request.

Declaring a Business Service Public Method
A public method is an operation that can be used by other classes and methods. The signature takes IContext,
IConnection, and an internal value object and returns E1MessageList.

41

olink:EOTDE00050

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

You can add additional public methods to a business service class by accessing the JDeveloper Code Templates and
selecting E1SM – EnterpriseOne Business Service Method Call. This template generates code for a public method. You
press Tab to move through the highlighted fields and complete the code. This template enforces methodology and gives
you a head start for developing a new public method.

This code sample shows how to declare a public message:

public static E1MessageList addAddressBook(IContext context,
IConnection connection, InternalAddAddressBook internalVO){
 startInternalMethod(context, "addAddressBook", internalVO);
 // call BSFN AddressBookMBF
 E1MessageList messages = callAddressBookMasterMBF(context,
connection, internalVO, programID);
 finishInternalMethod(context, "addAddressBook");
 return messages;
 }

Rules for Declaring a Business Service Public Method
When you declare a public method for a business service class, follow these rules:

• Business service classes must expose public static methods to a published business service class. A business
service class cannot contain instance variables or nonstatic methods.

• Business service methods that are to be used by a published business service must return an E1MessageList
object to that published business service. The caller of the business service determines how to handle the
errors and whether to create and throw an exception. The signature of the business service method must
contain IContext and IConnection objects and a value object class that represents an internal value object that
passes values to the business function calls.

Best Practices for Private and Protected Methods
When you declare methods other than the public method (for example, a utility method), consider these best practices:

• Declare nonpublic methods as protected or private; all methods must be static.

• Keep scope as private as possible.

Creating Internal Value Objects
Internal value object classes and their components extend the foundation ValueObject class.

The business service foundation provides value object class wizards that help you create internal value object classes
that follow methodology rules. The value object wizards also assist you by pulling useful information from the JD
Edwards EnterpriseOne data dictionary into the Javadoc for value objects. You must create accessor methods (getter
and setter methods) because the value object wizards do not generate these methods. Also, you must provide the
description name of the field for the Javadoc.

The value object wizards enable you to create value object classes from the data structures that are defined within a
business function or from database tables or business views. Remember that the wizard uses the field name that comes
from the data structure, table, or business view to generate member variables for the internal value object class. These
generated variables look very much like JD Edwards EnterpriseOne data items.

This code sample is from a business function:

42

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 /**
 * Address Line 1
 * EnterpriseOne Alias: ADD1
 * EnterpriseOne field length: 40
 */
 private String szAddressLine1 = null;

This code sample is from a table:

 /**
 * CreditMessage
 * A value in the user defined code table
 * that indicates the credit status of a customer or supplier
 * EnterpriseOne Alias: CM
 * EnterpriseOne field length: 2
 * EnterpriseOne User Defined Code: 00/CM
 */
 private String F0101_CM = null;

See Understanding Database Operations.

See "Creating Business Function Calls" in the JD Edwards EnterpriseOne Tools Business Services Development Guide .

See "Creating Database Operation Calls" in the JD Edwards EnterpriseOne Tools Business Services Development Guide
.

Rules for Internal Value Object
This list identifies the rules for internal value objects:

• The structure of an internal value object has a flatter hierarchy than the published value object, because the
internal value object has few if any compounds or components.

• The collections within the internal value object can be created using either ArrayList or Array. An ArrayList is
easier to work with because it can be dynamically sized. Arrays are necessary when the internal value object
will be serialized. A business service that exposes JD Edwards EnterpriseOne functionality to a third party can
use an ArrayList. A business service called from a business function (for example, using web service callout
when JD EnterpriseOne is a web service consumer) must use an Array because the ArrayList data type cannot
be serialized.

For example, you can use the following code sample to declare the compound for phones:

Private ArrayList internalPhones = null;

ArrayList is populated during business service processing, and in the preceding code sample, the collection
contains InternalPhone objects.

Or you can use this code sample to declare the compound for phones:

Private InternalPhone[] internalPhones = null;

• The data types for internal value object classes match the types used in the JD Edwards EnterpriseOne data
structures, as identified in the following table:

Internal Value Object Data Type Usage

oracle.e1.bssvfoundation.util.MathNumeric

Use for all fields that are declared as numeric in JD Edwards EnterpriseOne.

43

olink:EOTDE00051
olink:EOTDE00052

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

Internal Value Object Data Type Usage

java.lang.String

Use for string and char fields.

java.util.Date

Use for all JDEDate fields in JD Edwards EnterpriseOne.

java.util.GregorianCalendar

Use for all UTIME fields in JD Edwards EnterpriseOne.

Best Practices for Internal Value Object
When deciding which fields to include in the internal value object class, consider that all data fields that the application
accepts and the function uses are valid fields.

If an internal business function call passes processing fields, you must determine whether these fields should be
exposed in the internal value object class. An example of this type of processing field would be a field that is used to
manipulate a cache. If a business service is called from another business service and a processing field is exposed
and passed in from the calling business service, will the behavior be as expected? If not, that processing field should
not be exposed in the internal value object class. Fields that should not be exposed in the internal value object class
can be handled by creating another value object called InternalProcessing. The InternalProcessing value object can
contain all unexposed processing fields as member variables. The InternalProcessing value object should not be
part of the InternalValueObject class and should not be exposed from the business service method signature. The
InternalProcessing value object can be passed in the business function method calls but is not passed in or out of the
business service method.

This code sample shows an InternalProcessing value object:

/**
* InternalProcessing contains processing fields used for
* ProcessPurchaseOrderAcknowledge
* but these will not be exposed fields.
*/
public class InternalProcessing extends ValueObject {
 /**
 * Action Flag
 * EnterpriseOne Key Field: false
 * EnterpriseOne Alias: ACFL
 * EnterpriseOne field length: 1
 * EnterpriseOne User Defined Code: 08/AC
 */
 private String cProcessHeaderDetailFlag = null;
 /**
 * Job Number
 * EnterpriseOne Key Field: false
 * EnterpriseOne Alias: JOBS
 * EnterpriseOne field length: 8
 * EnterpriseOne decimal places: 0
 * EnterpriseOne Next Number: 00/4
 */
 private MathNumeric mnF4311JobNumber = null;
 /**
 * Transaction ID
 * EnterpriseOne Key Field: false

44

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 * EnterpriseOne Alias: TCID
 * EnterpriseOne field length: 15
 * EnterpriseOne decimal places: 0
 */
 private MathNumeric mnTransactionID = null;
 /**
 * Process ID
 * EnterpriseOne Key Field: false
 * EnterpriseOne Alias: PEID
 * EnterpriseOne field length: 15
 * EnterpriseOne decimal places: 0
 */
 private MathNumeric mnProcessID = null;
 /**
 * Job Number
 * EnterpriseOne Key Field: false
 * EnterpriseOne Alias: JOBS
 * EnterpriseOne field length: 8
 * EnterpriseOne decimal places: 0
 * EnterpriseOne Next Number: 00/4
 */
 private MathNumeric mnCacheJobNumber = null;
}

This code sample shows how to pass the InternalProcessing value object to business function methods:

 public static E1MessageList processPurchaseOrderAcknowledge
(IContext context,IConnection connection, InternalProcessPurchase
OrderAcknowledge internalVO){
 //Call start internal method, passing the context (which was
 //passed from published business service).
 startInternalMethod(context, "processPurchaseOrderAcknowledge",
 internalVO);
 //Create new message list for business service processing.
 E1MessageList messages = new E1MessageList();
 InternalProcessing internalProcessingVO = new
InternalProcessing();
 //TODO: call method (created by the wizard), which then
 //executes Business Function or Database operation.
 messages = callPurchaseOrderAcknowledgeNotify(context,
connection, internalVO,internalProcessingVO);
 //TODO: add messages returned from E1 processing to business
 //service message list.
 //Call finish internal method passing context.
 finishInternalMethod(context, "processPurchaseOrderAcknowledge
");
 //Call finish internal method passing context.
 return messages;
 }
 /**
 * Calls the PurchaseOrderAcknowledgeNotify(B4302190) business
 * function which has the D4302190A data structure.
 * @param context conditionally provides the connection for the
 * business function call and logging information
 * @param connection can either be an explicit connection or null.
 * If null the default connection is used.
 * @param TODO document input parameters
 * @return A list of messages if there were application errors,
 * warnings,or informational messages. Returns null if there were
 * no messages.

45

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 */
 private static E1MessageList callPurchaseOrderAcknowledgeNotify
(IContext context, IConnection connection, InternalProcessPurchase
OrderAcknowledge internal VO, InternalProcessing internalProcessingVO) {
 BSFNParameters bsfnParams = new BSFNParameters();
 // map input parameters from input value object
 bsfnParams.setValue("cProcessHeaderDetailFlag",
internalProcessingVO.
get CProcessHeaderDetailFlag());
 bsfnParams.setValue("mnF4311JobNumber", internalProcessingVO.
getMnF4311JobNumber());
 bsfnParams.setValue("mnTransactionID", internalProcessingVO.
getMnTransactionID());
 bsfnParams.setValue("mnProcessID", internalProcessingVO.get
MnProcessID());
 bsfnParams.setValue("mnCacheJobNumber", internalProcessingVO.
getMnCacheJobNumber());
 bsfnParams.setValue("cHeaderOrderStatusCode", internalVO.get
CHeaderOrderStatusCode());
 bsfnParams.setValue("mnOrderNumber", internalVO.getMnOrder
Number());
 bsfnParams.setValue("szOrderType", internalVO.
getSzOrderType());
 bsfnParams.setValue("szOrderCompany", internalVO.getSzOrder
Company());

 //get bsfnService from context
 IBSFNService bsfnService = context.getBSFNService();
 //execute business function
 bsfnService.execute(context, connection, "PurchaseOrder
AcknowledgeNotify",bsfnParams);
 //map output parameters to output value object
 internalProcessingVO.setCProcessHeaderDetailFlag(bsfnParams.
getValue("cProcessHeaderDetailFlag").toString());
 internalProcessingVO.setMnF4311JobNumber((MathNumeric)bsfn
Params.getValue("mnF4311JobNumber"));
 internalProcessingVO.setMnTransactionID((MathNumeric)bsfn
Params.getValue("mnTransactionID"));
 internalProcessingVO.setMnProcessID((MathNumeric)bsfnParams.
getValue("mn#ProcessID"));
 internalProcessingVO.setMnCacheJobNumber((MathNumeric)bsfn
Params.getValue("mnCacheJobNumber"));
 internalVO.setCHeaderOrderStatusCode(bsfnParams.
getValue("cHeaderOrderStatusCode").toString());
 internalVO.setMnOrderNumber((MathNumeric)bsfnParams.getValue
("mnOrderNumber"));
 ...
 //return any errors, warnings, or informational messages to the
 //caller
 return bsfnParams.getE1MessageList();
 }

Creating Internal Media Object Value Objects
Like other internal value object classes, Media Object value objects and their components extend the ValueObject
foundation class. The business service foundation provides the Media Object Value Object Class Wizard, which helps
you create internal Media Object value object classes that follow methodology rules. The value object wizards also assist

46

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

you by pulling useful information from the JD Edwards EnterpriseOne data dictionary into the Javadoc for value objects.
You must create accessor methods (getter and setter methods) because the value object wizards do not generate these
methods. Also, you must provide the description name of the field for the Javadoc. The wizard uses the field name that
comes from the Media Object data structure to generate member variables for the internal Media Object value object
class.

The Media Object Value Object Class Wizard generates two java classes: one is the actual internal value object,
and the other is the value object that is named MOItem_Internal.java by default. The internal value object contains
the properties from the Media Object data structure and the reference to the array of default value objects
(MOItem_Internal.java) in order to hold multiple media objects.

The default value object, MOItem_Internal.java, contains the Media Object properties such as media object name, type,
and attachment data. Do not change the name of the default value object.

Apart from the variables created from the Media Object data structure, the wizard creates the following two default
methods and one member variable:

• getSzMoKey

This method prepares the Media Object Key for the media object. If desired, you can customize the logic to
override this method to meet your business need.

• getSzMoName

This method is used to retrieve the name of the Media Object data structure.

• downloadMediaObject

This is the member variable. If set to true, then the Media Object Select operation will return a list of all media
objects along with file attachments. If set to false, the Media Object Select operation will return a list of all
media objects but will not download the file attachments. By default, this variable is set to true.

The following code is an example of an internal value object created through the Media Object Value Object Class
Wizard for the Media Object data structure ABGT:

public class ABGT_Internal extends ValueObject implements Serializable {
 /**
 * Media Object Array

 */
 private MOItem_Internal[] moItems = null;

 /**
 * Download Attachments

 */
 private boolean downloadMediaObject = true;

 /**
 * Address Number
 * <p>
 * TODO: Description using Glossary Text from EnterpriseOne if appropriate.
 * </p>
 * EnterpriseOne Key Field: false

 * EnterpriseOne Alias: AN8

 * EnterpriseOne field length: 8

 * EnterpriseOne decimal places: 0

 * EnterpriseOne Next Number: 01/1

 */
 private MathNumeric mnAddressNumber = null;

47

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 /**
 * Builds and returns the Media Object Key with the media object attributes
 */
 public String getSzMoKey() {
 String key = String.valueOf(mnAddressNumber);
 if (key.startsWith("null|"))
 {
 key = key.substring(4, key.length());
 }
 if (key.endsWith("|null"))
 {
 key = key.substring(0, key.length() - 4);
 }
 while(key.indexOf("|null|") != -1)
 {
 key = key.replace("|null|", "||");
 }
 return key;
 }

 /**
 * Returns the Media Object name
 */
 public String getSzMoName() {
 return "ABGT";
 }
}

The following is an example of the default value object (MOItem_Internal) created through the Media Object Value
Object Wizard:

public class MOItem_Internal extends ValueObject implements Serializable {
 /**
 * Media Object Attachment Type

 */
 private String szMoType = null;

 /**
 * Media Object Attachment File Name

 */
 private String szItemName = null;

 /**
 * Media Object Sequence Number

 */
 private int moSeqNo = 0;

 /**
 * Media Object Data

 */
 private DataHandler szData = null;

 /**
 * TODO: Default public constructor for instantiating: MOItem_Internal
 */
 public MOItem_Internal() {
 }

 /**
 * TODO: Default public constructor for instantiating: MOItem_Internal

48

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 */
 public MOItem_Internal(String szMoType) {
 this.szMoType = szMoType;
 }

 /**
 * TODO: Default public constructor for instantiating: MOItem_Internal
 */
 public MOItem_Internal(int moSeqNo) {
 this.moSeqNo = moSeqNo;
 }

 /**
 * TODO: Default public constructor for instantiating: MOItem_Internal
 */
 public MOItem_Internal(String szMoType, String szItemName, DataHandler szData) {
 this.szMoType = szMoType;
 this.szItemName = szItemName;
 this.szData = szData;
 }
}

Calling Business Functions
A business function is an encapsulated set of business rules and logic that can be reused by multiple applications.
Business functions provide a common way to access the JD Edwards EnterpriseOne database. A business function
performs a specific task.

You use the business service foundation Business Function Call Wizard to create a business function call.

See "Understanding Business Function Calls" in the JD Edwards EnterpriseOne Tools Business Services Development
Guide .

This code sample is generated by the Business Function Wizard:

 //calls method which then executes BSFN AddressBookMBF
 //RI: This private function is created by the wizard, The
 //business function will be executed inside this internal function
 messages = callAddressBookMasterMBF(context, internalVO,programId);

The wizard creates a generic method. You modify the signature of the method and complete the code for the objects
that will be accessed for mapping to and from the business function call. The wizard creates InputVOType as a
placeholder in the signature for the internal value object class name that you provide.

This code sample shows a business function call that was created by the wizard:

/**
 * Calls the AddressBookMasterMBF(N0100041) business function which has
 * the D0100041 data structure.
 * @param context provides the connection for the business function call
 * and logging information
 * @param TODO document input parameters
 * @return A list of messages if there were application errors, warnings,
 * or informational messages. Returns null if there were no messages.
 */
 private static E1MessageList callAddressBookMasterMBF(IContext

49

olink:EOTDE00026
olink:EOTDE00026

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

context, IConnection connection, InputVOType internalVO) {
 BSFNParameters bsfnParams = new BSFNParameters();
 // map input parameters from input value object
 bsfnParams.setValue("cActionCode", internalVO.getCActionCode());
 bsfnParams.setValue("cUpdateMasterFile", internalVO.getCUpdateMaster
File());
 bsfnParams.setValue("cProcessEdits", internalVO.getCProcessEdits());
 bsfnParams.setValue("cSuppressErrorMessages", internalVO.getCSuppress
ErrorMessages());
 bsfnParams.setValue("szErrorMessageID", internalVO.getSzErrorMessage
ID());
 bsfnParams.setValue("mnSameAsExcept", internalVO.getMnSameAsExcept());
 bsfnParams.setValue("mnAddressBookNumber", internalVO.getMnAddressBook
Number());
 ...
 try {
 //get bsfnService from context
 IBSFNService bsfnService = context.getBSFNService();
 //execute business function
 bsfnService.execute(context, connection, "AddressBookMasterMBF",
bsfnParams);
 } catch (BSFNServiceInvalidArgException invalidArgEx) {
 //Create error message for Invalid Argument exception and return
 //it in ErrorList
 E1MessageList returnMessages = new E1MessageList();
 returnMessages.addMessage(new E1Message(context, "018FIS",
invalidArg
Ex.getMessage()));
 return returnMessages;
 } catch (BSFNServiceSystemException systemEx) {
 //Create error message for System exception and return it in
 //ErrorList
 E1MessageList returnMessages = new E1MessageList();
 returnMessages.addMessage(new E1Message(context, "019FIS",
systemEx.getMessage()));
 return returnMessages;
 }
 //map output parameters to output value object
 internalVO.setMnAddressBookNumber(bsfnParams.getValue("mnAddressBook
Number");
 internalVO.setSzLongAddressNumber(bsfnParams.getValue("szLongAddress
Number");
 internalVO.setSzTaxId(bsfnParams.getValue("szTaxId"));
 internalVO.setSzAlphaName(bsfnParams.getValue("szAlphaName"));
 internalVO.setSzSecondaryAlphaName(bsfnParams.getValue("szSecondary
AlphaName"));
 internalVO.setSzMailingName(bsfnParams.getValue("szMailingName"));
 internalVO.setSzSecondaryMailingName(bsfnParams.getValue("szSecondary
MailingName"));
 internalVO.setSzDescriptionCompressed(bsfnParams.getValue
("szDescriptionCompressed"));
 internalVO.setSzBusinessUnit(bsfnParams.getValue("szBusinessUnit"));
 internalVO.setSzAddressLine1(bsfnParams.getValue("szAddressLine1"));
 //return any errors, warnings, or informational messages to the caller
 return bsfnParams.getE1MessageList();
 }

50

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

After the wizard creates the code for the generic method, you modify the code as needed. You might need to:

• Add parameters to be passed.
At a minimum, the internal value object includes an IContext object and an IConnection object, generated by
the wizard, and an internal value object, which you define. You may need to pass an additional parameter such
as an internalProcessing value object for processing fields that should not be exposed.

• Fix mappings if required.
The generated code assumes that all fields can be mapped directly to and from the internal value object. If an
additional structure exists in the internal value object or some fields should be mapped from class constant
fields, you must fix the mapping statements where this assumption is not true. JDeveloper identifies incorrect
statements.

• Fix the data type of the object retrieved from bsfnParams.
The generated code adds a cast argument when mapping to internalVO by getting values from the bsfnParams
object. The bsfnParams object is a collection of objects and when an object is retrieved, the type needs to
be cast to the correct data type so that it can be added to the internalVO reference, as illustrated in this code
sample:
private static E1MessageList callAddressBookMasterMBF(IContext context,
 IConnection connection,
 InternalAddAddressBook internalVO,
 String programId) {
 // create new bsfnParams object
 BSFNParameters bsfnParams = new BSFNParameters();
 //set values for bsfn params based on internal vo attribute values
 bsfnParams.setValue("cActionCode", ACTION_CODE_ADD);
 bsfnParams.setValue("cUpdateMasterFile", UPDATE_MASTER_TRUE);
 bsfnParams.setValue("cProcessEdits", PROCESS_EDITS_TRUE);
 bsfnParams.setValue("cSuppressErrorMessages", SUPPRESS_ERROR_FALSE);
 bsfnParams.setValue("szVersion", internalVO.getSzVersion());
 bsfnParams.setValue("mnAddressBookNumber",
 internalVO.getMnAddressBookNumber());
 bsfnParams.setValue("szLongAddressNumber",
 internalVO.getSzLongAddressNumber());
 bsfnParams.setValue("szTaxId", internalVO.getSzTaxId());
 bsfnParams.setValue("szSearchType", internalVO.getSzSearchType());
 ...
 bsfnParams.setValue("szState", internalVO.getSzState());
 bsfnParams.setValue("szCountry",
 internalVO.getSzCountry());
 //set program id to value retrieved in business service properties
 bsfnParams.setValue("szProgramId", programID);
 try {
 //get bsfnService from context
 IBSFNService bsfnService = context.getBSFNService();
 //execute business function

 bsfnService.execute(context, connection, "AddressBookMaster
MBF", bsfnParams);
 } catch (BSFNServiceInvalidArgException invalidArgEx) {
 //Create error message for Invalid Argument exception and
 //return it in ErrorList
 E1MessageList returnMessages = new E1MessageList();
 returnMessages.addMessage(new E1Message(context, "018FIS",
invalidArgEx.getMessage()));
 return returnMessages;

51

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 } catch (BSFNServiceSystemException systemEx) {
 //Create error message for System exception and return it in
 //ErrorList
 E1MessageList returnMessages = new E1MessageList();
 returnMessages.addMessage(new E1Message(context, "019FIS",
systemEx.getMessage()));
 return returnMessages;
 }
 //set internal VO attributes based on values passed back from bsfn
 //Must cast object to appropriate data type coming from bsfnParams
collection.
 internalVO.setMnAddressBookNumber((MathNumeric)bsfnParams.
getValue("mnAddressBookNumber"));
 internalVO.setSzLongAddressNumber((String)bsfnParams.
getValue("szLongAddressNumber"));
 internalVO.setSzCountry((String)bsfnParams.getValue("szCountry"));
 internalVO.setSzBusinessUnit((String)bsfnParams.
getValue("szBusinessUnit"));
 internalVO.setJdDateEffective((Date)bsfnParams.
getValue("jdDateEffective"));
 E1MessageList messages = bsfnParams.getE1MessageList();
 //set prefix to the message list being returned to provide more
information on errors
 bsfnParams.getE1MessageList().setMessagePrefix("AB MBF N0100041");
 //return any errors, warnings, or informational messages to the
 //caller
 return bsfnParams.getE1MessageList();
 }

When you run a business function, two exceptions, BSFNServiceInvalidArgException and BSFNServiceSystemException,
are thrown. The generated code runs the business function within a try/catch block, and in the event that an invalid
argument is passed to the business function, the error will be caught and added to the message list and returned to the
caller. The same behavior occurs if a database exception occurs within the business function. This code sample shows a
try/catch block:

try {
 //get bsfnService from context
 IBSFNService bsfnService = context.getBSFNService();
 //execute business function
 bsfnService.execute(context, connection, "AddressBookMasterMBF",
bsfnParams);
} catch (BSFNServiceInvalidArgException invalidArgEx) {
 //Create error message for Invalid Argument exception and return it in
ErrorList
 E1MessageList returnMessages = new E1MessageList();
 returnMessages.addMessage(new E1Message(context, "018FIS",
invalidArgEx.getMessage()));
 return returnMessages;
} catch (BSFNServiceSystemException systemEx) {
 //Create error message for System exception and return it in ErrorList
 E1MessageList returnMessages = new E1MessageList();
 returnMessages.addMessage(new E1Message(context, "019FIS",
systemEx.getMessage()));
 return returnMessages;
}

52

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

Calling Database Operations
You can create business services that call database operations. You use the business service foundation Database Call
wizard to create these business service methods. Database operations include query, insert, update, and delete.

This code sample shows code that is generated by the Database Call Wizard:

 //calls method which then executes jdbj callto the table
 //selected.
 messages = selectF0101(context, internalVO, maxRows);

The wizard creates a generic method. You modify the signature of the method and complete the code for the objects
that will be accessed for mapping to and from the database operation call. The wizard creates InputVOType as a
placeholder in the signature for the internal value object class name that you provide.

The wizard generates unique code for each type of database operation.

Note:
• Understanding Database Operations.

• "Understanding Database Operation Calls" in the JD Edwards EnterpriseOne Tools Business Services
Development Guide .

Calling Other Business Services
A method in one business service can call a method in another business service. For example,
SupplierProcessor.addSupplier could call AddressBookProcessor.addAddressBook or
AddressBookProcessor.addAddressBook could call PhonesProcessor.addPhones.

In this code sample, the PhonesProcessor.addPhones method takes an internalProcessPhones value object; this object
is created and populated before calling the method:

//RI: Business service call to business service
 //call PhonesProcessor
 //only call phones processor if phones exist.
 if (internalVO.getInternalPhones() != null) {
 //create new internalVO for phones processor
 InternalProcessPhone phones = new InternalProcessPhone();
 //map data from internalVO to phones processor internalVO
 phones.setMnAddressBookNumber(internalVO.getMnAddressBook
Number());
 phones.setPhones(internalVO.getInternalPhones());
 phones.setSzProgramId(programId);
 //call phones processor to add phones
 E1MessageList phonesMessages =
 RI_PhonesProcessor.addPhones(context, connection, phones);
 //If errors occur, change the error type to WARNING because
 //we don't want to stop processing of Address Book record due
 //to error while adding phones, interpret as warning instead.

53

olink:EOTDE00027
olink:EOTDE00027

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 if (phonesMessages.hasErrors()) {
 phonesMessages.changeMessageType(E1Message.ERROR_MSG_TYPE,
 E1Message.WARNING_MSG_TYPE);
 //set list of phones to list w/ only added phones.
 internalVO.setInternalPhones(phones.getPhones());
 }
 //add messages returned from phones processor
 messages.addMessages(phonesMessages);
 }

A business service method can call a business service utility method. For example, PurchaseOrderProcessor.
processPurchaseOrder can call ItemProcessor.processItem and EntityProcessor.processEntity.

This code sample shows a business service call to a business service utility:

//RI: Business service call to business service
 //call business service utility
 //This business service returns a status code, this example will not
 //use the status code to drive functionality, but
 //could be evaluated to change processing.
 InternalEntityUtility utilityEntity = new InternalEntityUtility();
 utilityEntity.setMnAddressBookNumber(internalVO.getMnAddressBook
Number());
 utilityEntity.setSzLongAddressNumber(internalVO.getSzLongAddress
Number());
 utilityEntity.setSzTaxId(internalVO.getSzTaxId());

 E1MessageList entityMessages = EntityProcessor.processEntity(context,
connection, utilityEntity);
 internalVO.setMnAddressBookNumber(utilityEntity.getMnAddressBook
Number());
 internalVO.setSzLongAddressNumber(utilityEntity.getSzLongAddress
Number());
 internalVO.setSzTaxId(utilityEntity.getSzTaxId());
 //Don't stop processing in case of errors from utility, change type to
 // warning and add them to error collection.
 if(entityMessages.hasErrors())
 entityMessages.changeMessageType(E1Message.ERROR_MSG_TYPE,E1Message.
WARNING_MSG_TYPE);
 //take messages generated from EntityProcessor and add them to the
 //high level value object.
 if (retMessages == null)
 {
 retMessages = entityMessages;
 }
 else
 {
 retMessages.addMessages(entityMessages);
 }

Calling Media Object Operations
 You can create business services that call Media Object operations. You use the business service foundation
Create Media Object Call Wizard to create these business service methods. Media Object operations include Insert,
Select, List, and Delete. This code sample shows code that is generated by the Create Media Object Call Wizard:

54

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

messages = insertMediaObject(context, connection, internalVO);

The wizard creates a generic method. You modify the signature of the method and complete the code for the objects
that will be accessed for mapping to and from the Media Object operation call. The wizard creates InputVOType as a
placeholder in the signature for the internal value object class name that you provide. The wizard generates unique code
for each type of Media Object operation. For more information, see Creating Business Services that Call Media Object
Operations.

Managing Business Service Properties
Business service properties provide a way for you to change a value in a business service method without changing the
method code. A business service property consists of a key and a value. The key is the name of the business service
property and cannot be changed. You use OMW to create business service properties.

Note:
• "Understanding Business Service Properties" in the JD Edwards EnterpriseOne Tools Business Services

Development Guide .

• "Working with Business Services Properties" in the JD Edwards EnterpriseOne Tools Object Management
Workbench Guide .

Standard Naming Conventions for the Property Key
You can organize business service properties at the system level or at the business service level. Business service
properties defined at the system level are used by more than one business service. Business service properties defined
at the business service level are used by only one business service.

System-Level Business Service Properties
The naming convention for system-level business service properties, used by multiple business services, is to use SYS
followed by a meaningful name that you provide. The naming convention looks like this:

SYS_Free_Form

where Free_Form is a name that you enter.

This is an example of a name for a system-level business service property that enables a user to define the program ID
that is to be used by any of the master business functions (MBFs) for processing:

SYS_PROGRAM_ID

Business Service Level Business Service Properties
The naming convention for business service-level business service properties, used by only one business service, is to
use the BusinessServiceName followed by a meaningful name that you provide. The naming convention looks like this:

BusinessServiceName_Free_Form

This table provides examples of names for business service-level business service properties:

55

https://www.oracle.com/pls/topic/lookup?ctx=jde9.2&id=u30205785
https://www.oracle.com/pls/topic/lookup?ctx=jde9.2&id=u30205785
olink:EOTDE00127
olink:EOTDE00127
olink:EOTOM00056
olink:EOTOM00056

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

Business Service Property Name Usage

J0100001_AB_MBF_VERSION

This business service property allows the user to define which processing version to use when running
the Address Book MBF when processing from the AddressBook business service.

J0100021_AB_MBF_VERSION

This business service property allows the user to define which processing version to use when running
the Address Book MBF when processing from the Customer business service.

J0100021_CUS_MBF_VERSION

This business service property allows the user to define which processing version to use when running
the Customer MBF when processing from the Customer business service.

J4200040_BYPASS_BSFN_WARNINGS

This business service property sets a Bypass Warning Flag for sales order processing. If 1, the bypass
warning flag is true - treat as warnings, do not stop processing. If 0, the bypass warning flag is false -
treat warnings as errors, stop processing.

J4200040_PREFIX_1

This business service property adds prefix text to an error message that is returned from a business
function to give more specific context to the error message. For example, if an error is returned for a
detail line, the value for the prefix message could be "Line no. sent in:". This text is then concatenated
with the line number data and added as a prefix to the error message.

See Handling Errors in the Business Service.

Business Service Property Methods
The ServicePropertyAccess class provides two utility methods for accessing property values. These methods are:

• Get property value and return null/blank if no value exists in the database, illustrated in this code sample:

getSvcPropertyValue(IContext context, java.lang.String key)

Example: String processingVersion = ServicePropertyAccess.
getSvcPropertyValue(context,SVC_PROPERTY_AB_MBF_PROC_VERSION);

• Get service property value, but if the value is null, use the provided default value, illustrated in this code sample:

String getSvcPropertyValue(IContext context, java.lang.String key,
java.lang.String defaultVal)
Example: String programID = ServicePropertyAccess.getSvcPropertyValue
 ((Context)context, SVC_PROPERTY_PROGRAM_ID,"BSSV");

Both of these methods throw a ServicePropertyException message when the property key is null or does not exist in
the database. A business service must call these methods in a try/catch block and catch the ServicePropertyException.
You can handle business service property errors by creating a new E1Message object that collects the business
service property exception message as well as other errors retrieved from business function calls. The business
service returns the E1Message object to its caller, and the exception and error messages can be included in the
BusinessServiceException, which is thrown by the published business service. When you create the business service,
you determine whether to continue processing if an exception is caught. If you allow processing to continue, a failure
(an invalid value was passed because of the ServicePropertyException) could occur in the call to the business function.
Including text for the exception offers more information as to why the error occurred.

56

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

You can use the code template E1SD – EnterpriseOne Add Call to Service Property with Default Value to generate code
that calls the business service property method where a default value is passed. The template generates the code and
highlights the fields that you need to change.

You can use this code sample as a model for handling business service properties:

 public static final String SVC_PROPERTY_AB_MBF_PROC_VERSION =
"J010010_AB_MBF_PROC_VERSION";
 public static final String SVC_PROPTERY_PROGRAM_ID =
"SYS_PROGRAM_ID";
 ...
 //Call access Business Service Property to retrieve
 //Program ID and processing Version
 //create string so it can be passed to bsfn call
 String programId = null;
 //Call to return Business Service Properties - if fails
 //to retrieve value, use default and continue.
 try {
 programId =
 BusinessServicePropertyAccess.
getSvcPropertyValue(context, SVC_PROPERTY_PROGRAM_ID, "BSSV");
 } catch (BusinessServicePropertyException se) {
 context.getBSSVLogger().app(context,"@@@Attempt to
retrieve Business Service Property failed", "Verify that key exists
in database as entered.", SVC_PROPERTY_PROGRAM_ID, se);
 //Create new E1 Message using DD item for business
 //service property exception.
 E1Message scMessage = new E1Message(context,
"001FIS", SVC_PROPERTY_PROGRAM_ID);
 //Add messages to final message list to be returned.
 messages.addMessage(scMessage);
 }

Handling Errors in the Business Service
The business service object exposes public methods that call business functions or database operations to perform a
specific business process. During business processing, the business service captures errors and warnings in an array list
and returns this information to the published business service in an E1MessageList object.

Rules
All business services must return an E1MessageList object to the published business service. The E1MessageList object
must contain all errors, warnings, and information messages that were collected throughout the business service
processing.

Best Practices
When writing code for handling errors, remember these best practices:

• The business service foundation provides methods that you can use to add prefix messages to errors.
You should add useful information such as key information or detail line information when returning error

57

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

messages. If you add a prefix to an E1MessageList object that contains no errors, no prefix will be appended
and no error will be thrown.
This example shows how to add a prefix, which names the business function where the messages occurred, to
the message list:
bsfnParams.getE1MessageList().setMessagePrefix("AddressBookMasterMBF
(N0100041): ");
If the prefixed text can be translated to another language, use a business service property with this naming
convention for the text:
BSSVname_PREFIX_sequence
Use this code to attach the business service property as a prefix in an error message:
private static final String SVC_PROPERTY_PHONE_ERR_PREFIX =
"JR010030_PREFIX_1";
...
phonesMessages.setMessagePrefix(SVC_PROPERTY_PHONE_ERR_PREFIX +(i+1));

• If an error condition that is not handled by the business function call occurs, you can use a business
service foundation method to create a new error and add the error to the message list. This can be used
when a checked exception is thrown by business service foundation and you want to collect the exception
as a message in the E1MessageList. Examples of situations requiring a new E1Message are calling the
BSSVDataFormatter utility and retrieving business service properties. Because the alias for the JD Edwards
EnterpriseOne error to be returned must be passed to the method, an error data dictionary item must exist in
JD Edwards EnterpriseOne.
This code shows creating a new E1Message:
new E1Message(context, "001FIS", PROGRAM_ID);

Collecting Errors
When multiple business functions are called, a potential exists for several errors and warnings to be returned by the
business functions. You should gather all errors and warnings in the E1MessageList object for all of the business
functions that are called so that all errors and warnings are sent to the caller.

When a business service calls a business function, the business function collects all style errors, defined as error
messages in the JD Edwards EnterpriseOne data dictionary, in an ArrayList. The business function always returns an
E1MessageList object to its caller. The E1MessageList object contains an ArrayList of the messages returned from a
business function call. If no messages are returned, the ArrayList is empty. To determine the state of the E1MessageList
object or to determine whether any errors have occurred, you can use one of these methods to call the E1MessageList:

• hasErrors()

• hasWarning()

• hasInfoMessages()

The business service foundation provides several methods that let you add, remove, change, and append to the
ArrayList messages.

This code sample shows how to use hasErrors() to call the E1MessageList:

 if (messages.hasErrors()) {

58

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

 //Get the string representation of all the messages.
 String error = messages.getMessagesAsString();
 //Throw new BusinessServiceException
 throw new BusinessServiceException(error, context);
 }

This code sample shows adding a prefix to an E1MessageList to show where errors occurred in a business function:

private static E1MessageList callAddressBookMasterMBF(IContext context,
 IConnection connection,
 InternalValueObject internalVO,
 String programId){

 //create new bsfnParams object
 BSFNParameters bsfnParams = new BSFNParameters();
 //set values for bsfn params based on internal vo attribute values
 bsfnParams.setValue("mnAddressBookNumber",
 internalVO.getMnAddressBookNumber());
 bsfnParams.setValue("szLongAddressNumber",
 internalVO.getSzLongAddressNumber());
 bsfnParams.setValue("szTaxId", internalVO.getSzTaxId());
 ...
 //execute the AddressBookMasterMBF business function
 bsfnService.execute(context,connection, "AddressBookMasterMBF",bsfnParams);
 //set internal VO attributes based on values passed back from bsfn
internalVO.setMnAddressBookNumber((MathNumeric)bsfnParams.getValue
("mnAddressBookNumber"));
internalVO.setSzLongAddressNumber((String)bsfnParams.getValue
("szLongAddressNumber"));
 internalVO.setSzTaxId((String)bsfnParams.getValue("szTaxId").
toString());
 internalVO.setSzAlphaName((String)bsfnParams.getValue
("szAlphaName"));
 ...
bsfnParams.getE1MessageList().setMessagePrefix("AddressBookMasterMBF
(N0100041): ");
 //return any errors, warnings, or informational messages to the
 //caller
 return bsfnParams.getE1MessageList();

This code sample shows calling the PhonesMBF within a loop and handling the errors that are being collected:

public static E1MessageList addPhones(IContext context, IConnection
connection,
 InternalProcessPhone internalVO){
 E1MessageList retMessages = new E1MessageList();

 E1MessageList phonesMessages;
 //Add All phones passed in
 for (int i = 0; i < internalVO.getPhones().length; i++) {
 phonesMessages = callPhonesMBFtoAdd(context, connection,
internalVO, i);
 //set message prefix to add line number
 phonesMessages.setMessagePrefix("Phone line no. sent in"+
(i+1));
 //collect messages for all phones.
 retMessages.addMessages(phonesMessages);
 }
 //send messages back to caller
 return retMessages;

59

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

This sample code shows returning the messages to the caller and adding them to the existing message object:

 public static E1MessageList addAddressBook(IContext context,
IConnection connection,
 InternalAddAddressBook internalVO){
 E1MessageList retMessages = null;
 ...
 //if no errors in address book, continue and add phones.
 if (retMessages != null && !retMessages.hasErrors()) {
 E1MessageList phonesMessages;
 //RI: Business service call to business service
 //call PhonesProcessor
 ...
 phonesMessages = PhonesProcessor.addPhones(context,
connection,phones);
 //If errors occur, change the error type to WARNING
 if (phonesMessages != null && phonesMessages.hasErrors()){
 phonesMessages.changeMessageType(E1Message.ERROR_MSG_
TYPE,
E1Message.WARNING_MSG_TYPE);
 }
 if (retMessages == null)
 {
 retMessages = phonesMessages;
 }
 else
 {
 retMessages.addMessages(phonesMessages);
 }
 }

 return retMessages;

Modifying a Business Service
You can modify a business service providing that the change does not alter the signature or behavior of the published
business service. You can change a business service in many ways, and how you change the business service depends
on the business service design and the type of change that is required. Any change to a business service should
be determined as part of the design process. You should ask yourself these questions to determine whether the
modifications affect the published business service:

• Am I adding or removing required fields in the value object?

• Will these changes affect the way the existing published business service behaves?

If the answer is yes, you must create a new business service. You can copy and modify the existing business service to
create a new business service.

Documenting a Business Service
When you create code, use standard Javadoc practices to document both the business service and the published
business service classes. Javadoc comments should be added for member variables for all value objects. Most of this is

60

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

generated by the value object wizards. However, you are responsible for making sure that the description for exposed
fields is added and is in context with the business process that is being supported.

This code is an example of Javadoc for a member variable:

/**
 * Address Line 1
 * Line 1 of the Address.
 * EnterpriseOne Key field: false
 * EnterpriseOne Alias: add1
 * EnterpriseOne field length: 40
 */
 private String addressLine1 = null;

This documentation is a result of the preceding Javadoc:

You should include Javadoc comments for all public methods. The behavior of the public methods should also be
documented.

This code sample shows how to document a method using Javadoc:

 /**
 * Method addAddressBook is used for adding Address Book information
 * into EnterpriseOne, this includes basic address information plus
 * phones. If a phone cannot be added, the Address Book record will
 * still be added, but warning messages will be returned for the
 * corresponding phones that caused errors.
 * @param context conditionally provides the connection for the database
 * operation and logging information
 * @param connection can either be an explicit connection or null. If
 * null the default connection is used.
 * @param internalVO represents data that is passed to EnterpriseOne for
 * processing an AddressBook record.
 * @return an E1Message containing the text of any errors or warnings
 * that may have occurred
 */
 public static E1MessageList addAddressBook(IContext context,
 IConnection connection,
 InternalAddAddressBook internalVO){

61

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 5
Creating a Business Service

This documentation is a result of the preceding Javadoc code:

62

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

6 Creating Business Services That Call
Database Operations

Understanding Database Operations
Database operations include query, insert, update, and delete. Business services that publish insert, update, and delete
database operations should be exposed for staging tables only. Staging tables are Z files (interface tables) that mimic
JD Edwards EnterpriseOne tables. Some examples of Z files are F0101Z2 Address Book, F03012Z1 Customer Master, and
F0401Z1 Supplier Master. Instead of directly updating a JD Edwards EnterpriseOne database table, data is updated to
the appropriate Z file, where batch processes validate the data before updating the database. If you are not using a Z
file, you should call a business function to process the data so that proper data validation can be implemented and data
integrity maintained.

Many of the rules for business services that call database operations are the same as the rules for business services that
call business functions, but some exceptions and differences exist. The exceptions and differences are discussed in this
chapter for each of the different types of operations.

Data Types
The data types for the internal value objects for database operations include a long data type as well as all of the data
types that are available for business function calls. You use the long data type in a database operation to show how
many rows were updated, inserted, or deleted.

This table shows the data types for published value objects that expose database operations:

Published Value Object Data Type Usage

java.lang.String

Use for string and char fields.

java.util.Calendar

Use for all JDEDate and UTIME fields in JD Edwards EnterpriseOne.

java.lang.Integer

Use for MathNumeric fields defined with 0 decimals, for example, mnAddressNumber and
mnShortItemNumber.

java.lang.BigDecimal

Use for MathNumeric fields defined with >0 decimals, for example, mnPurchaseUnitPrice.

java.lang.Boolean

Use for char fields specified only as true/false or 0/1 Boolean fields.

long

Use only in response value object for number of rows returned, number of rows inserted, number of
rows updated, number of rows deleted, as returned from the database.

This table shows the data types for internal value objects that expose database operations:

63

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

Internal Value Object Data Type Usage

oracle.e1.bssvfoundation.util.MathNumeric

Use for all fields declared as numeric in JD Edwards EnterpriseOne.

java.lang.Integer

Use for JD Edwards EnterpriseOne ID fields.

java.util.Date

Use for all JDEDate fields.

java.util.GregorianCalendar

Use for UTIME fields in JD Edwards EnterpriseOne.

long

Use only in response value object for number of rows inserted, number of rows updated, number of
rows deleted, as returned from the database.

Database Exceptions
The code that runs the database operation is generated within a try/catch block and catches a DBServiceException. The
business service creates a new E1Message that returns database errors for data dictionary error item 005FIS. When you
use the business service foundation code for E1Message, you can create a new message and use the sLineSeparator
constant to take advantage of text substitution within the E1Message. The following sample code shows substituting
the view name for one parameter and the exception text for the other. Without text substitution, the E1 DD Error Item
Description reads:

Table - &1,&2

This code sample shows using text substitution:

"Exception in thread "main"
oracle.e1.bssvfoundation.exception.BusinessServiceException:
Error: Table/View - F0101Z2
Error during database operation: [DUPLICATE_KEY_ERROR] Duplicate key
error obtained for table F0101Z2., at oracle.e1.bssv.JPR01002.AddressBook
StagingManager.insertAddressBookStaging
(AddressBookStagingManager.java:78)
at oracle.e1.bssv.JPR01002.AddressBookStagingManager.insertAddress
BookStaging(AddressBookStagingManager.java:39)
at oracle.e1.bssv.JTR87011.AddressBookStagingTest.testInsertAddress
BookZTable1Record(AddressBookStagingTest.java:71) at
oracle.e1.bssv.JTR87011.AddressBookStagingTest.main(AddressBook
StagingTest.java:110"

This sample shows the code that is generated by business service foundation:

 private static final String QUERY_VIEW = "V0101XPI";
 ...
 try {
 //get dbService from context
 IDBService dbService = context.getDBService();
 //execute db select operation
 resultSet = dbService.BSSVDBSelect(context, connection,
"V0101XPI", IDBService.DB_BSVW, selectDistinct,
 maxReturnedRows, selectFields, sortOrder,
whereClause);
 } catch (DBServiceException e) {
 //take some action in response to the database exception

64

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

 returnMessages.addMessage(new E1Message(context,
 "005FIS",
 QUERY_VIEW +
E1Message.sLineSeparator+e.getMessage()));
 }

Creating a Query Database Operation Business Service
The query database operation uses the Database wizard Select operation over a table or business view to retrieve
records from JD Edwards EnterpriseOne.

Published Value Object for Query
The published interface for a select query database operation requires an input value object and an output value object.

Naming Conventions
The naming convention for an input value object is to use the verb get to preface the type of data to retrieve, for
example, GetAddressBook. The naming convention for an output value object is to use the verb show to preface the
type of data retrieved, for example, ShowAddressbook.

Data Types and Structure
The input value object for a query database operation represents a where clause for the query. The output value object
for a query database operation returns the query results in an array.

This code sample shows the structure for the show value object:

public class ShowAddressBook extends MessageValueObject implements
Serializable {
 private AddressBook addressBook[];
 ...
}

Error Handling
Any warnings that occurred during business service processing are included with the results in the show value object.
If an error occurs during processing, the error is returned to the published business service, and the published business
service throws an exception. If no results are returned, a message, without an array of records, is returned.

If an error occurs in a utility that is called during the mapping from the published to internal value object, processing
should be stopped and the error returned to the published business service, which can throw an exception. For example,
if the Entity Processor fails to find entity ID when tax ID is passed in, the query will not process and an error will be
returned to the published business service.

Class Diagram
The following class diagram shows the published business service objects for GetAddressBook:

65

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

Internal Value Object for Query
The internal value object for a query database operation contains two components, the where fields and the result
fields.

The names that you use for variables in the internal value object are important because the generated code uses these
names when calling the getter and setter methods for these objects.

This code sample shows the structure for the internal value object:

public class InternalGetAddressBook extends ValueObject{
 private InternalGetAddressBookWhereFields queryWhereFields =
 new InternalGetAddressBookWhereFields();
 private ArrayList queryResults = null;
 ...
}

66

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

In the preceding code sample, the variables are named queryResults and queryWhereFields. The queryResults
variable represents an array list that contains InternalShowAddressBook type objects. The InternalShowAddressBook
value object extends InternalGetAddressBookWhereFields. In the code sample, no additional fields are added to the
InternalShowAddressBook value object. However, more fields could be returned from the query than were allowed in
the where clause.

This class diagram shows the business service objects for GetAddressBook:

Empty Where Clause and Max Rows Returned
Because some tables are too large to return all records without causing significant performance degradation, the
recommended practice is to write a select statement that prevents empty where clauses or one that does not select
all records. Code that is generated by the wizard follows this recommendation. When you create a query database
operation, you must decide whether to allow an empty where clause. If you decide that an empty where clause is
appropriate for a particular query, you must modify the generated code to accommodate the empty where clause.

67

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

You must include a MaxRowsReturned business service property for all query database operations. This business
service property contains the maximum number of rows to be returned to the caller from the selected resultSet variable.
The business service property value is passed to the database select statement for processing. If an exception is caught
while the system retrieves the business service property, the business service should stop all processing and create an
E1MessageList object to pass the exception to the published business service.

Business services interpret a value of 0 (zero) in the business service property to mean return all rows. You must add
code to check whether the value returned is zero, and if so, pass a CONSTANT: DBService.DB_FETCH_ALL to the
database select call instead of the actual value retrieved. If zero is passed to the select call, an exception will be thrown.

This code sample shows how to check for zero:

//Call access property constants for Max Query Rows to be returned.
 //create long variable so it can be passed to bsfn call
 //initialize to 1 in the event, the business service property
 //call fails.
 long maxReturnedRows = 0;
 //Call to return Business Service Property - if fails to
 //retrieve value, use default and continue.
 try{
 maxReturnedRows = Long.parseLong
 (ServicePropertyAccess.getSvcPropertyValue(context,
 SVC_PROPERTY_QUERY_MAX_ROWS));
 //interpret property value of zero as "return all rows".
 //Need to send constant to database call.
 if (maxReturnedRows==0){
 maxReturnedRows = DBService.DB_FETCH_ALL;
 }
 }

The MaxRowsReturned value does not eliminate the need to check for a null where clause. On a large table, the entire
table is selected for processing regardless of how many records are returned to the caller. Because the select statement
processes the entire table, performance can be affected.

Creating an Insert Database Operation Business Service
The insert database operation enables you to add information to a table or business view. You use the Insert database
operation in the Database wizard to create an insert business service.

Published Value Object for Insert
The published interface for an insert database operation uses an input value object and an output value object.

Naming Conventions
The naming convention for an input value object is to use the verb insert to preface the type of data to be processed;
for example, InsertAddressBookStaging. The naming convention for an output value object is to use the verb phrase
ConfirmInsert to preface the information that is processed, for example, ConfirmInsertAddressBookStaging.

68

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

Data Types and Structure
The input value object for an insert database operation represents a data set to be inserted into a table. The output
value object returns messages and the number of records inserted, which is represented as a long data type. The output
value object also returns any warnings that occurred during business service processing. If an error occurs during
processing, an error message is sent to the published business service, and the published business service throws an
exception.

Class Diagram
The following class diagram shows the published business service objects for InsertAddressBookStaging:

69

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

70

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

Internal Value Object for Insert
The internal value object for an insert database operation includes an array list of records that need to be inserted. The
array list contains a collection of InternalInsertAddressBook StagingFields objects.

The following class diagram shows the business service objects for InternalInsertAddressBook Staging:

Inserting Multiple Records
The business service method handles multiple records for an insert database operation; however, the generated code
inserts one record at a time.

This code sample shows the business service method handling multiple records:

public static E1MessageList insertAddressBookStaging(IContext context,
 IConnection connection,
 InternalInsertAddressBookStaging internalVO){
 //Call start internal method, passing the context (which was passed
 //from published business service).
 startInternalMethod(context, "insertAddressBookZTable",
internalVO);
 //Create new message list for business service processing.

71

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

 E1MessageList messages = new E1MessageList();
 long numRowsInserted = 0;
 if (internalVO.getInsertFields()!=null) {
 for (int i = 0; i < internalVO.getInsertFields().size(); i++)
 {
 //call method (created by the wizard), which then
 //executes Business Function or Database operation
 E1MessageList insertMessages =
 InsertToF0101Z2(context, connection,
 internalVO.getInsertFields(i));
 //add messages returned from E1 processing to business
 //service message list.
 messages.addMessages(insertMessages);
 //if no errors occur while inserting, add to counter.
 if (!insertMessages.hasErrors()) {
 numRowsInserted++;
 }
 }
 internalVO.setNumberRowsInserted(numRowsInserted);
 }
 //Call finish internal method passing context.
 finishInternalMethod(context, "insertAddressBookZTable");
 //Return E1MessageList containing errors and warnings that
 //occurred during processing business service.
 return messages;

This code sample shows the generated code for the database insert:

private static E1MessageList InsertToF0101Z2(IContext context,
IConnection connection, InternalInsertAddressBookStagingFields
internalVO) {
 //create return object
 E1MessageList returnMessages = new E1MessageList();
 //specify columns to insert
 BSSVDBField[] insertFields =
 {new BSSVDBField("F0101Z2.EDUS"), // String – EdiUserId
 new BSSVDBField("F0101Z2.EDBT"), // String – EdiBatchNumber
 new BSSVDBField("F0101Z2.EDTN"), // String – EdiTransactNumber
 new BSSVDBField("F0101Z2.EDLN"), // Numeric – EdiLineNumber
 new BSSVDBField("F0101Z2.AN8"), // Numeric – AddressNumber
 new BSSVDBField("F0101Z2.ALKY"), // String – AlternateAddressKey
 new BSSVDBField("F0101Z2.TAX"), // String – TaxId
 new BSSVDBField("F0101Z2.ALPH"), // String – NameAlpha
 new BSSVDBField("F0101Z2.DC"), // String – DescripCompressed
 new BSSVDBField("F0101Z2.MCU") // String – CostCenter
 };
 //specify insert values
 Object[] insertValues =
 {internalVO.getF0101Z2_EDUS(),
 internalVO.getF0101Z2_EDBT(),
 internalVO.getF0101Z2_EDTN(),
 internalVO.getF0101Z2_EDLN(),
 internalVO.getF0101Z2_AN8(),
 internalVO.getF0101Z2_ALKY(),
 internalVO.getF0101Z2_TAX(),
 internalVO.getF0101Z2_ALPH(),
 internalVO.getF0101Z2_DC(),
 internalVO.getF0101Z2_MCU()
 };
 try {

72

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

 //get dbService from context
 IDBService dbService = context.getDBService();
 //execute db insert operation
 long numRecordsInserted =
 dbService.BSSVDBInsert(context, connection, "F0101Z2",
IDBService.DB_TABLE, insertFields, insertValues);
 } catch (DBServiceException e) {
 //take some action in response to the database exception
 returnMessages.addMessage(new E1Message(context, "005FIS",
TABLE_NAME + E1Message.sLineSeparator+e.getMessage()));
 }
 return returnMessages;
 }

Creating an Update Database Operation Business
Service
The update database operation enables you to modify existing information in a table or business view. You use the
Update database operation in the Database wizard to create an update business service.

Published Value Object for Update
The published interface for an Update database operation uses an input value object and an output value object.

Naming Conventions
The naming convention for an update value object is to use the verb update to preface the type of data to be processed,
for example, UpdateAddressBookStaging. The naming convention for an output value object is to use the verb phrase
ConfirmUpdate to preface the information that is processed, for example, ConfirmUpdateAddressBookStaging.

Data Types and Structure
The input value object for an update database operation represents a where clause for the records to be updated
and the fields that need to be updated for those records. The records and fields are represented by two separate
components under the main value object class. The output value object returns messages about the processing that
occurred and the number of records updated, which is represented as a long data type. The output value object also
returns any warnings that occurred during business service processing. If an error occurs during processing, an error
message is sent to the published business service, and the published business service throws an exception.

Class Diagram
This class diagram shows the published business service objects for UpdateAddressBookStaging:

73

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

Internal Value Object for Update
The internal value object for an update database operation contains a component that represents the where clause
for the records to be updated and a component that represents the fields to be updated. The variable names
updateWhereFields and updateFields for these components are important because the generated code assumes that
the proper naming convention is used. The generated code should require minimal changes, if any.

This code sample shows the structure for the internal value object:

public class InternalUpdateAddressBookStaging extends ValueObject {
 /**
 * Internal VO representing the where clause for updating the
 * F0101Z2 table.
 */

74

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

 private InternalUpdateAddressBookStagingWhereFields
updateWhereFields = new InternalUpdateAddressBookStagingWhereFields();
 /**
 * Internal VO representing the fields to be updated in the F0101Z2
 * table.
 */
 private InternalUpdateAddressBookStagingFields updateFields = new
InternalUpdateAddressBookStagingFields();
 /**
 * Number of rows updated as returned by the database call.
 */
 private long numberRowsUpdated = 0;

This code sample shows the generated code for the update database operation, with the updates that you are required
to make in bold type:

 private static E1MessageList UpdateF0101Z2(IContext context,
IConnection connection, InternalUpdateAddressBookStaging internalVO) {
 //create return object
 E1MessageList returnMessages = new E1MessageList();
 //specify columns to update
 BSSVDBField[] updateFields =
 {new BSSVDBField("F0101Z2.ALPH"), // String - NameAlpha
 new BSSVDBField("F0101Z2.DC"), // String - DescripCompressed
 new BSSVDBField("F0101Z2.MCU") // String - CostCenter
 };
 //specify update values
 Object[] updateValues =
 {internalVO.getUpdateFields().getF0101Z2_ALPH(),
 internalVO.getUpdateFields().getF0101Z2_DC(),
 internalVO.getUpdateFields().getF0101Z2_MCU()
 };
 //specify condition records must meet to be updated
 BSDBWhereField[] whereFields =
 {new BSDBWhereField(null, new BSSVDBField("F0101Z2.EDUS"),
IDBService.EQUALS, internalVO.getUpdateWhereFields().getF0101Z2_EDUS()),
 new BSDBWhereField(IDBService.AND, new BSSVDBField("F0101Z2.
EDBT"),
IDBService.EQUALS, internalVO.getUpdateWhereFields().getF0101Z2_EDBT()),
 new BSDBWhereField(IDBService.AND, new BSSVDBField("F0101Z2.
EDTN"),
IDBService.EQUALS, internalVO.getUpdateWhereFields().getF0101Z2_EDTN()),
 new BSDBWhereField(IDBService.AND, new BSSVDBField("F0101Z2.
EDLN"),
IDBService.EQUALS, internalVO.getUpdateWhereFields().
getF0101Z2_EDLN())};
 BSSVDBWhereClauseBuilder whereClause =
 new BSSVDBWhereClauseBuilder(context, whereFields);
 try {
 //get dbService from context
 IDBService dbService = context.getDBService();
 //execute db update operation
 long numRecordsUpdated =
 dbService.BSSVDBUpdate(context, connection, "F0101Z2",
IDBService.DB_TABLE, updateFields, updateValues, whereClause);
 internalVO.setNumberRowsUpdated(numRecordsUpdated);
 } catch (DBServiceException e) {
 // take some action in response to the database exception
 returnMessages.addMessage(new E1Message(context, "005FIS",
TABLE_NAME + E1Message.sLineSeparator+e.getMessage())); }

75

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

 return returnMessages;
 }

This class diagram shows the business service objects for UpdateAddressBookStaging:

76

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

Creating a Delete Database Operation Business Service
The delete database operation enables you to remove information in a table or business view. You use the Delete
database operation in the Database wizard to create a delete business service.

Published Value Object for Delete
The published interface for a delete database operation uses an input value object and an output value object.

Naming Conventions
The naming convention for a delete input value object is to use the verb delete to preface the type of data to be
processed, for example, DeleteAddressBookStaging. The naming convention for the delete output value object is to use
the verb phrase ConfirmDelete to preface the type of data processed, for example, ConfirmDeleteAddressBookStaging.

Data Types and Structure
The input value object for a delete database operation represents a where clause for the records to be deleted. The input
value object contains key fields to the table or business view. A value must be passed for each key field so that only one
record at a time is selected for deletion. The where clause is not conditionally created based on whether a value is sent
for a field. The delete operation should not be used for deleting all records at once; therefore, do not use a null where
clause in the code.

The output value object for a delete database operation returns messages and the number of records deleted, which
is represented as a long data type. The output value object also returns any warnings that occurred during business
service processing. If an error occurs during processing, an error message is sent to the published business service, and
the published business service throws an exception.

Class Diagram
This class diagram shows the published business service objects for DeleteAddressBookStaging:

77

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

Internal Value Object for Delete
The internal value object for a delete database operation includes the key fields that are required for selecting a record
to be deleted and the numberRowsDeleted field.

The following class diagram shows the business service objects for DeleteAddressBookStaging:

78

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

79

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 6
Creating Business Services That Call Database Operations

80

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations

7 Creating Business Services that Call Media
Object Operations

Understanding Media Object Operations
Many of the rules for business services that call Media Object operations are the same as the rules for business services
that call business functions and call database operations, but some exceptions and differences exist. The exceptions
and differences are discussed in this chapter for each of the different types of operations.

You can create business services that call Media Object operations. You use the business service foundation Create
Media Object Call Wizard to create these business service methods. Media Object operations include Insert, Select, and
Delete. This code sample shows code that is generated by the Create Media Object Call Wizard:

//calls method which then executes jdbj call to the table selected.
messages = insertMediaObject(context, connection, internalVO);

The wizard creates a generic method. You modify the signature of the method and complete the code for the objects
that will be accessed for mapping to and from the Media Object operation call. The wizard creates InputVOType as a
placeholder in the signature for the internal value object class name that you provide. The wizard generates unique code
for each type of Media Object operation.

Data Types
The data types for the internal/published value objects for Media Object operations include data types that are available
for business function calls or database operation calls. You use the long data type in a database operation to show how
many Media objects were deleted. This table shows the new data type used for published or internal value objects that
expose Media Object operations:

Published or Internal Data Type Usage

javax.activation.DataHandler

Used for Media object attachments transmitted as binary data over a network.

oracle.e1.bssvfoundation.base.MOInfo

Represents the metadata of the media object stored in EnterpriseOne.

Creating a Media Object Business Service
A Media Object business service contains the business logic to call a Media Object operation such as select, insert,
or delete. The java code to call the Media Object operations is automatically generated by the Create Media Object
Call Wizard. The code generated for each operation is unique. In the Create Media Object Call Wizard, you select the

81

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations
operation that you plan to implement. In addition, you must create a Media Object value object to call a Media Object
operation. You use the Media Object Value Object Class Wizard to create the Media Object value object.

See the following sections in the JD Edwards EnterpriseOne Tools Business Services Development Guide for more
information:

• "Running the Media Object Value Object Class Wizard"

• "Running the Create Media Object Call Wizard"

Internal Value Object
 The internal value object for calling a Media Object operation is created by selecting the internal option in the Media
Object Value Object Class Wizard. The same internal value object can be used for calling any of the Media Object
operations such as Select, Insert, or Delete. This internal value object contains an array list of Media Object records that
need to be inserted, selected, or deleted.

The following class diagram shows the business service objects for the internal business service
RI_AddressBookMediaObjectProcessor:

82

olink:EOTDE266
olink:EOTDE269

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations

83

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations

Published Value Object
The published interface for any Media Object operation requires an input value object and an output value object. The
published value object for calling any Media Object operation can be created by selecting the "publish" option in the
Media Object Value Object Class Wizard. This published Media Object value object is referenced within the published
input value object and the output value object classes.

Naming Conventions
For the input value object naming convention, use the verb "Insert" to preface the type of data to be processed; for
example, InsertAddressBookMO. For the output value object name, use the verb phrase "ConfirmInsert" to preface the
information that is processed; for example, ConfirmInsertAddressBookMO or ShowAddressBookMO.

Data Types and Structure
The input value object for a Media Object operation represents a data set that is required to perform a particular Media
Object operation. The data set includes the Media Object value object. The output value object returns messages and
the output data set, such as media object records for a select operation, for a particular operation. The output value
object also returns any warnings that occur during business service processing. If an error occurs during processing,
the system sends an error message to the published business service, and the published business service throws an
exception.

This code sample shows the structure for the output value object:

public class RI_ShowAddressBook extends oracle.e1.bssv.JPR01MO1.MessageValueObject
 implements Serializable {
 private ABGT_Publish mediaObject = null;
…
}

This code sample shows the structure for the input value object:

public class RI_AddAddressBook extends oracle.e1.bssv.JPR01MO1.ValueObject implements
 Serializable {
 /** Add the ABGT_Publish class reference to include the Mediaobject fields in the
 WSDL*/
 private ABGT_Publish mediaObject = null;
…
}

Class Diagram
The following class diagram shows the published business service objects for RI_AddressBookMediaObjectManager
Insert operation:

84

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations

85

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations

The following class diagram shows the published business service objects for the RI_AddressBookMediaObjectManager
Select operation:

86

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations

87

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations

The following class diagram shows the published business service objects for the RI_AddressBookMediaObjectManager
Delete operation:

88

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations

89

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 7
Creating Business Services that Call Media Object

Operations

90

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

8 Versioning JD Edwards EnterpriseOne Web
Services

Versioning JD Edwards EnterpriseOne Web Services

Note: This chapter is intended primarily for JD Edwards EnterpriseOne software engineers who design and develop
business services and published business services. If you create your own web services, you can use this chapter as a
guide for creating versioned web services.

Overview
When a web service exposes an interface in the form of a WSDL, that interface is assumed to be static from that
point on. The published interface for a web service is considered as a service contract, and the methods and inputs
to those methods are intended to remain unchanged for the life of that web service. However, over time, it may
become necessary to change the behavior or interface of an existing JD Edwards EnterpriseOne web service to provide
enhanced processing or to add fields. When you enhance an existing web service, it is very important that you do not
change the original methods and interfaces. This chapter provides concepts and procedures for enhancing business
services by creating a version of the original business service.

Published Business Services
JD Edwards EnterpriseOne provides web services, called published business services, for public consumption. The
methods and interfaces are exposed in the final web service WSDL. You cannot change the original method names,
the original names of the published value object classes, and the original web service behavior without affecting the
consumer of the business service. Only new optional processing can be introduced without versioning. Conceptually,
optional processing is a kind of invisible change where there is some way (for example, a service constant) to get
existing functionality and new functionality from an existing method without changing the interface, as well as
maintaining the availability of the original processing.

Determining if Versioning Is Required
Basically, any change to the published interface requires that you create a version of the published business service.
The following diagram is provided to help decide whether you should create a version of the original method name or
published value object class name or whether the processing is changed:

91

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

92

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

Naming Conventions for Versions
If you determine that you must change the behavior or interface of an existing published business service, you can
create a version of the original published business service. When you create a version of a published business service,
the name of the versioned published business service must clearly indicate that it is a version of an original published
business service. This enables users of the web service to choose the version with the desired behavior and interface.

Changes requiring versioning require new methods and value objects with a version appended to their name; for
example, myMethodV2 and ValueObjectV3. For field changes, you may need to version multiple value objects,
depending on the depth of placement of the new fields.

For example, a published business service exposes the method processAddressBook. An enhancement request
requires that 10 new address book fields be exposed and processed by the method. The new method name will be
processAddressBookV2. The original value object that will contain the new fields is called AddressBook. You copy the
original value object, AddressBook to a new value object called AddressBookV2. Then you create a new top-level value
object named processAddressBookV2 that contains the new version of the value object (AddressBookV2) and maps to
the new fields.

Creating a Published Business Service Version
The following high-level steps are provided to help you create versions to a published business service:

1. Determine where new and changed fields exist in the published value object.
Version the containing class and all classes above it in the published value object hierarchy.

2. Version the methods that use the top-level value object in the published Manager class.
3. Add and change fields within the internal value object (not a hierarchy.)
4. Add and change internal functionality (business function or input/output calls) in the internal business service.
5. In the new published value object version, change and add mappings in the mapFromPublished method.
6. Test both the original and the new version of the business service.

Example: Correct Field Names and Format of Interface
This section provides an example of the process for creating a version of a JD Edwards EnterpriseOne published
business service.

This example change involves modifications made in the published business service only. The business service is
JP010000. A field is incorrectly named isEntityTypeNettingIndicator but it should be isARAPNettingUsed. Use these
steps to create a version of the published business service.

1. Create a new version of the value object where the field resides.
a. Create a copy of the AddressBookResult value object and name it AddressBookResultV2.
b. Inside AddressBookResultV2, change the field isEntityTypeNettingIndicator to isARAPNettingUsed.
c. Create a copy of ShowAddressBook and name it ShowAddressBookV2.
d. InsideShowAddressBookV2, change all references in mapFromPublishedMethod to ShowAddressBookV2,

including the name change for the isARAPNettingUsed field.
2. Create a new published method.

93

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

a. Copy the existing getAddressBook method and paste it at the end of the class.
b. Change the name of the copy to getAddressBookV2.
c. Within getAddressBookV2, change all references to the value object ShowAddressBook to the new value

object ShowAddressBookV2.

Business Services
Business services, commonly called internal business services, perform a specific task. Internal business services do
not have a public interface; methods and interfaces are called by published business services. You can change methods
and value objects as long as the change to the internal business service does not affect the behavior of the published
business service that calls it.

Because the methods and interfaces of internal business services are not public, it is practical that these will be reused,
and may be called by both the new version and the existing version of the published business service. The internal
business service can provide existing behavior for the existing method while still providing new behavior for the new
method; the internal business service does not require renaming or version numbers. However, if the behavior is
different, you create a new method or you could copy the original method and append a version number to the method
that you copied.

For the internal value object, new non-required fields can be added without affecting the published business service.
Typically the internal value object contains all of the fields that could potentially be passed into a business function or
input/output call. So it is likely that the field is already included in the internal value object. Fields may be moved from
one internal value object to another. You can make these changes to the internal business service without affecting the
public interface.

Determining if Versioning is Required
Use the following diagram to help decide whether you should create a version of the original method name and value
object class name:

94

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

95

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

When determining whether to version an internal business service method or internal value object, you should focus
on the behavior of the internal business service. The goal is to maintain the existing behavior for the existing published
methods while still providing a new behavior.

You may want to employ a technique where a version parameter is passed to the internal function. When called
from the original published business service, a value of V1 is passed in the parameter and when called from a new
version published business service, a value of V2 is passed. Within the internal business service logic, only new logic is
performed if the parameter is V2. This keeps original logic intact while allowing additional functionality for V2.

Example: Enhancement that Includes New Fields and Associated
Processing
This section provides an example of the process for creating a version of a JD Edwards EnterpriseOne internal business
service and then creating a version of the published business service that calls the internal business service version.

This example change involves modifications made at all levels of the business service Java code. This example is
approached from the published interface through the internal business service to the JD Edwards EnterpriseOne
business function calls. The published business service is JP010020 and the internal business service is J0100021.

Use these steps to create a version of the internal business service and the published business service that calls it:

1. Determine where the new fields belong in the value object.

In this example, the top-level published value object is called ProcessCustomer. The fields are related to
invoicing information, so the new fields will be updated to the Invoice object.

2. In JDeveloper, do the following in the value object folder of the business service:

a. Create a copy of ProcessCustomer and name it ProcessCustomerV2.
b. Create a copy of Invoice and name it InvoiceV2.
c. Inside ProcessCustomerV2, change the current member reference from Invoice to InvoiceV2.
d. Inside ProcessCustomerV2, change all references in mapFromPublishedMethod to InvoiceV2.

3. Create a new published method.

a. Copy the existing processCustomer method and paste it at the end of the class.
b. Change the name of the copy to processCustomerV2.
c. Within processCustomerV2, change all references to the value object ProcessCustomer to the new value

object Process CustomerV2.
4. Evaluate and change the internal business service.

a. The new fields must be added to the internal business service, too. You can add the new fields to the
internal value object, InternalProcessCustomer, by just adding them as additional members in the class.

b. Modify CustomerProcessor to pass the new value object fields to CustomerMBF, which is already called.
Because these are new non-required fields, it does not matter if they are blank, as they would be called
from the existing business service. The processing functions as it always has when fields are blank, and
when these new fields are passed in, they will be processed as expected.

5. Return to the value object ProcessCustomerV2 and add new code to mapFromPublishedMethod that maps the
new published value object fields to the new internal value object fields.

6. Test both the new processCustomerV2 and the original processCustomer methods.

96

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

JD Edwards EnterpriseOne as a Web Service Consumer
JD Edwards EnterpriseOne can consume web services from third-party systems. Although these web services do not
expose a contract in the form of published methods and interfaces, they may need to be changed to take advantage
of third-party enhancements or new services. Because JD Edwards EnterpriseOne business functions call the methods
of the third-party web services, any new version or method must be added as new code that is called by the business
function. You must determine how to control which version of the business service the business function calls. You
might consider using a processing option or a service constant to control the behavior.

The only reason for changing a business service that consumes a third-party web service is that the third-party web
service has changed. The following scenarios illustrate how to control the behavior of the business services using a
processing option or service constant.

Scenario 1: A third party web service has changed--use a processing option

For this scenario, you should version method or value objects by appending a version number to the name. Most likely,
the third-party service that changed is also versioned. The new version of the business service method is called directly
from the JD Edwards EnterpriseOne business function, which may or may not pass new data to the changed third-party
web service. You can create a new JD Edwards EnterpriseOne processing option to control the version of the business
service method that is called and the data that is passed to it.

Scenario 2: A third-party web service has changed--use a service constant

An alternative to Scenario 1, is that the existing method could call the new method based on a service constant that
controls what version is being called. In this scenario, all of the data passed from the business function must be the
same for both versions. This scenario minimizes the impact to existing business function calls while allowing you to
control what version of the third-party service is called.

Scenario 3: The consumer business service is calling a free web service that has been updated

You have decided to upgrade the consumer business service to use the new version of a free web service. There will be
no impact to users of the consumer business service if the business service starts calling the new version of the free
web service without giving the user the option to use the previous version. There is no need to version the consumer
business service. You can enhance the JD Edwards EnterpriseOne web service to use the new version of the free web
service providing no backward compatibility is required.

Determining if Versioning is Required
Use the following diagram to help decide whether you should create a version of the original method name and value
object class name:

97

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

Creating a Version to a Consumer Business Service
The following high-level steps are provided to help you create versions to business services that consume third-party
web services:

1. Determine where new and changed fields exist in the value object.

Version the containing class and all classes above it in the value object hierarchy.
2. Version the method that uses the top-level value object in the Processor class.
3. Call the new method from a JD Edwards EnterpriseOne business service and do one of the following:

◦ Create a processing option to call the new or old method.

◦ Create a service constant to call the new method from the existing method.

98

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

Example: Enhancement to Call Latest Version of a Third-Party
Service
This section provides an example of the process for creating a version of a JD Edwards EnterpriseOne business service
that consumes a third-party web service.

In this example, a JD Edwards EnterpriseOne consumer business service calls a third-party service for weather forecast.
Originally, the web service used only a zip code as input, but now it accepts city and state, too. The consumer business
service is J8500001.

Use these steps to create a version of the internal business service and the published business service that calls it:

1. Create a new version of the value object to include the new fields; for example:

Create a copy of GetWeatherInput and name it GetWeatherInputV2.
2. Within the WeatherProcessor class, create a copy of the method getWeather and name it getWeatherV2.
3. Use the endpoint of the new version of the weather forecast service to create a new proxy for the service, and

name the new proxy ProxyV2.
4. In the new getWeatherV2 method, change the code to call the method from the new proxy, ProxyV2.
5. To support either version of the service, create processing options or system settings that indicate that city and

state can be used.
6. Enhance the JD Edwards EnterpriseOne applications and business function to follow the settings and allow

users to enter city and state, as well as to include the values in the XML generated by the business function that
calls the business service.

7. Modify getWeatherV2 to map the new city and state fields from the value object to the input of the web service
call.

99

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 8
Versioning JD Edwards EnterpriseOne Web Services

100

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 9
Understanding Transaction Processing

9 Understanding Transaction Processing

Transaction Processing
You update the JD Edwards EnterpriseOne database by processing a transaction. A transaction is a logical unit of
work performed on the database to complete a common task and maintain data consistency. A transaction consists
of transaction statements that are closely related and perform interdependent actions. Each transaction statement
performs part of the task, but all of the statements are required for completing the task. Transaction processing
ensures that related data is added to or deleted from the database simultaneously, thus preserving data integrity. In
transaction processing, data is not written to the database until a commit command is issued. When this happens, data
is permanently written to the database. You can use one of these ways to commit transactions:

• Auto commit

• Manual commit

Auto Commit
An auto commit transaction encompasses individual table updates within a business function call or direct database call
from the business service. Each individual update is committed or rolled back immediately. The commitment or rollback
does not depend on success or failure or any other call. Transaction processing that uses auto commit does not require
an explicit call to commit or roll back data. When you use auto commit, you cannot include another business function
or database call as part of the transaction for rollback. You cannot include multiple table updates called from within the
business function as part of a transaction for rollback.

Manual Commit
When you use manual commit, the record is held until commit or rollback is explicitly called. Business function and
database calls can be strung together and committed or rolled back based on success or failure of any one of the
calls. Although business function and database operations can be called within the same published business service
or business service transaction boundary, two separate connections are created in the background. When you code
for these two types of operations, consider that one should not depend on the other's data. For example, if you are
calling insert for a business unit and then you try to add an address book record that contains that business unit, the
transaction will fail because the database call hasn't been committed yet.

Default Transaction Processing Behavior
The business service framework provides two types of default transactions: manual commit connection and auto
commit connection.

For a single manual commit transaction, the default behavior is to scope all processing within the published business
service method. If any operation within this scope fails, all operations are rolled back, and the published business service
method throws an exception. This behavior is recommended when multiple records are committed to multiple tables.

101

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 9
Understanding Transaction Processing

For a single auto commit transaction, the default behavior is that each operation commits or rolls back immediately,
which means that each table update within each business function call is either committed or rolled back immediately.
This behavior is recommended for queries for which no transaction is needed or when you are committing a single
record to a single table.

When you are deciding which type of connection to use, you should always consider the business function behavior.

Published Business Service Boundary for Manual Commit
The startPublishedMethod, finishPublishedMethod, and close methods within the published business service indicate
the boundary of the transaction. All activities that occur within the startPublishedMethod and finishPublishedMethod
calls will be committed when finishPublishedMethod is called. You must include the close method to clean up all
connections.

Published Business Service Boundary for Auto Commit
The startPublishedMethod, finishPublishedMethod, and close methods within the published business service are
used to create the auto commit connection and to clean up the connections. All activities that occur within the
startPublishedMethod and finishPublishedMethod calls are committed or rolled back immediately because no
transaction boundary exists that encompasses more than one operation, including the table updates within the
business function. For an auto commit connection, the purpose of finishPublishedMethod is different than for a manual
commit because no need exists to commit the transaction. The finishPublishedMethod plays a roll in monitoring and
tying the entire business process together. You call the close method to clean up all connections.

For both manual commit and auto commit, you should use a try block to enclose startPublishedMethod and
finishPublishedMethod. You call the close method from a finally block to ensure that all transactions are finished and no
connections linger.

This code sample shows the structure for defining the transaction processing boundary for the published business
service:

public ConfirmAddAddressBook addAddressBook(AddAddressBook vo) throws
BusinessServiceException {
 return (addAddressBook(null, null, vo));
 }
 protected ConfirmAddAddressBook addAddressBook(IContext context,
 IConnection connection,
 AddAddressBook vo) throws BusinessServiceException{
 //perform all work within try block, finally will clean up any
 //connections
 try {
 // call start published method, passing null,
 //will return context object so BSFN can be called later
 //used to indicate transaction boundary as well as used for
 //logging
 //Start Implicit Transaction
 context = startPublishedMethod(context, "addAddressBook");
 // create a new internal VO.
 InternalAddAddressBook internalVO= new InternalAddAddress
Book();
 messages.addMessages(vo.mapFromPublsihed(context, internal
VO));//
 // start business service addAddressBook passing context and

102

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 9
Understanding Transaction Processing

 // internal VO published business service Calling business
 // service
 E1MessageList messages = AddressBookProcessor.addAddressBook
(context, connection, internalVO);
 // published business service will send either warnings in
 // the Confirm Value Object or throw a published business
 // serviceException.
 if (messages.hasErrors()) {
 // get the string representation of all the messages
 //RI: Error Handling
 String error = messages.getMessagesAsString());
 // Throw BusinessServiceException.(
 throw new BusinessServiceException(error,context);
 }
 // exception was not thrown, so create the confirm VO from
 // internal VO
 ConfirmAddAddressBook confirmVO = new ConfirmAddAddressBook
(internalVO);
 confirmVO.setE1MessageList(messages);
 //Call to commit default transaction.
 finishPublishedMethod(context, "addAddressBook");
 // return confirm VO, filled with return values and messages
 return confirmVO;
 }
 finally {
 //Call close to clean up all remaining connections and
 //resources.
 close(context,"addAddressBook");
 }
 }

Explicit Transaction Processing Behavior
Oracle recommends that you use default transaction behavior whenever possible. However, you can define your
published business service or business service to explicitly manage transactions. To handle the transaction correctly in
the business service, you must understand the detailed transaction behavior of the business function being called.

The published business service protected method and all business service methods are required to have both IContext
and IConnection as part of their signature, as are any calls to business functions or database operations. If you are using
default transaction processing, the connection can be null. If you use explicit transaction processing, you must provide
an explicit connection, either auto or manual commit. When you use an explicit connection, you decide whether having
multiple transactions is appropriate and whether they are auto commit or manual commit connections. If you create an
explicit transaction from your business service, you are not required to check for null on the connection before using it,
because the foundation classes ensure that the connection is never null. If the token is dropped, a runtime connection is
thrown, which is consistent with the default transaction processing.

Creating a New Connection
You can create a new transaction in either the published business service or business service, depending on where
control begins. Typically, the business service controls the transaction. The context object has exposure to all
connections; so to create a new connection, you call a method from the context object. You create either a manual
commit or an auto commit method. Both methods are illustrated in this code sample:

103

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 9
Understanding Transaction Processing

IConnection soConnection = context.getNewConnection(IConnection.MANUAL)
;);
//manual commit
IConnection soConnection = context.getNewConnection(IConnection.AUTO);
//auto commit

A manual commit method holds the record until commit or rollback is explicitly called. You create a manual commit
method by using IConnection.MANUAL (false) as the parameter in the context object. An auto commit method commits
the record immediately without an explicit call to commit the record. With auto commit, the record is committed when
the Close method is called. You create an auto commit method by using IConnection.AUTO (true) as the parameter in
the context object.

The default connection is available even when an explicit connection is created.

Using an Explicit Transaction
The following scenarios illustrate two ways to use an explicit transaction and achieve the same result. In these scenarios,
a business service processes a sales order. Inventory records are updated when each record is processed instead of
waiting until the end of the sales order processing to update the inventory records. In each scenario, if an error occurs
before the sales order process is completed and committed, an exception message is sent to the caller, and updates that
were made to the inventory records are rolled back.

Scenario 1
This scenario uses an explicit auto commit transaction that updates the Inventory table and commits and releases the
table immediately before continuing with the remainder of the sales order processing. Because inventory records are
committed before the sales order is committed, an error could occur during the continued processing of the sales order.
If an error occurs, another business function (referred to as a compensating business function) must be called to undo
the inventory updates.

You use another explicit transaction to call the compensating business function. You can either reuse the original
auto commit connection or create a new connection. The best option is to reuse the original auto commit connection,
because this limits the number of objects that are created. You cannot use the default transaction because you want
to send an exception message to the caller indicating that the sales order processing failed, and you want to roll back
any updates that were made to the inventory records. You use an explicit connection so that you can control the
compensating business function to ensure that updates are rolled back, even if an exception is thrown.

This code sample illustrates this scenario:

public E1MessageList processSalesOrder(IContext context, IConnection
connection, InternalProcessSalesOrder internalVO){
 ...
 //Create new explicit auto commit connection to add inventory
 //records
 IConnection invConnection = context.getNewConnection
(IConnection.AUTO);

 //call method (created by the wizard), which then executes
Business Function or Database operation
 E1MessageList invMessages = callInventoryMBF(context,
 invConnection,
 internalVO,
 programId);
 //add messages returned from E1 processing to business

104

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 9
Understanding Transaction Processing

 //service message list.
 messages.addMessages(invMessages);
 if (!invMessages.hasErrors()) {
 //No errors continue processing SO
 IConnection soConnection = context.getNewConnection
(IConnection.MANUAL);
 try {
 //Call SO
 E1MessageList soMessages = callSOMBF(context,
 soConnection,
 internalVO);
 //Check for errors, collect in messages.
 if (!soMessages.hasErrors()) {
 soConnection.commit();
 }else{
 soConnection.rollback();
 //Errors in SO processing, call MBF to compensate for
 //added inventory
 E1MessageList compMessages = callInventory
CompensateMBF(context,invConnection,internalVO);
 if(compMessages.hasErrors()){
 compMessages.setMessagePrefix("Unable to
Compensate for Added Inventory");
 }
 messages.addMessages(compMessages);
 }
 }
 catch (BSSVConnectionException e) {
 //Create new error and return E1MessageList
 E1Message txMessage = new E1Message
(context, "006FIS", e.getMessage());
 messages.addMessage(txMessage);
 }
 soConnection.close();

 }

 invConnection.close();

 finishInternalMethod(context, "addAddressBook");
 return messages;
 }

Scenario 2
This scenario uses an auto commit connection to create a default transaction by calling
startPublishedMethod and passing an additional parameter that specifies the auto commit connection
—startPublishedMethod(context,"processSalesOrder",IConnection. AUTO). Because inventory records are committed
before the sales order is committed, an error could occur during the continued processing of the sales order. If an
error occurs, another business function (referred to as a compensating business function) must be called to undo the
inventory updates.

To control the transaction and handle a sales order failure, you use a manual commit connection to call the Sales Order
Commit business function. Everything within the business function call will roll back. You can call a compensating
business function to roll back the inventory records that were automatically committed. You want the default auto
commit transaction to call the compensating business function.

This code sample illustrates this scenario:

105

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 9
Understanding Transaction Processing

public E1MessageList processSalesOrder(IContext context, IConnection
connection, InternalProcessSalesOrder internalVO){
 ...

 //call method (created by the wizard), which then executes
Business Function or Database operation
 E1MessageList invMessages = callInventoryMBF(context,
 connection,
 internalVO,
 programId);
 //add messages returned from E1 processing to business
 //service message list.
 messages.addMessages(invMessages);
 if (!invMessages.hasErrors()) {
 //No errors continue processing SO using manual commit
 //connection
 IConnection soConnection = context.getNewConnection
(IConnection.MANUAL);
 try {
 //Call SO
 E1MessageList soMessages = callSOMBF(context,
 soConnection,
 internalVO);
 //Check for errors, collect in messages.
 if (!soMessages.hasErrors()) {
 soConnection.commit();
 }else{
 soConnection.rollback();
 //Errors in SO processing, call MBF to compensate for
 //added inventory
 E1MessageList compMessages = callInventoryCompensateMBF
(context,connection,internalVO);
 if(compMessages.hasErrors()){
 compMessages.setMessagePrefix
("Unable to Compensate for Added Inventory");
 }
 messages.addMessages(compMessages);
 }
 }
 catch (BSSVConnectionException e) {
 //Create new error and return E1MessageList
 E1Message txMessage = new E1Message
(context, "006FIS", e.getMessage());
 messages.addMessage(txMessage);
 }
 soConnection.close();

 }
 finishInternalMethod(context, "addAddressBook");
 return messages;
 }

106

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 10
Understanding Logging

10 Understanding Logging

Logging
You use log files to troubleshoot system behavior. The location of the business service and published business service
log files is defined in the jdelog.properties file under <pathcode>/ini/bssv. The default location of these log files is
<pathcode>/bssv/log, which you can change.

Default Logging
The business service foundation provides default logging behavior. When startInternalMethod(IContext context, String
methodName, ValueObject internalVO) is called, the following information is automatically written in the log file:

22 Aug 2006 22:25:24,125 [Line ?] [DEBUG] - [BSSVFRAMEWORK]
[Context ID: 141.144.96.127:1907:1156307000656] startInternalMethod()
executed for addAddressBook
22 Aug 2006 22:25:24,140 [Line ?] [DEBUG] - [BSSVFRAMEWORK]
[Context ID: 141.144.96.127:1907:1156307000656] ValueObject for
addAddressBook:
===
ValueObject oracle.e1.bssv.J0100010.valueobject.InternalAddAddressBook:
InternalPhones[0]:
===
ValueObject oracle.e1.bssv.J0100030.valueobject.InternalPhone:
 SzPhoneNumber: 444-5555
 SzPhoneAreaCode: 303
 SzPhoneNumberType: HOM
===
InternalPhones[1]:
===
ValueObject oracle.e1.bssv.J0100030.valueobject.InternalPhone:
 SzPhoneNumber: 444-1555
 SzPhoneAreaCode: 303
 SzPhoneNumberType: 02
===
InternalPhones[2]:
===
ValueObject oracle.e1.bssv.J0100030.valueobject.InternalPhone:
 SzPhoneNumber: 444-1655
 SzPhoneAreaCode: 303
 SzPhoneNumberType: HOM
===
 SzTaxId: 11655018
 SzCountry: US
 SzState: CO
 SzCounty: Arapahoe
 SzCity: Denver
 SzPostalCode: 80807
 SzAddressLine4: Line 4
 SzAddressLine3: Line 3
 SzAddressLine2: Line 2
 SzAddressLine1: 223 W. Teller Ave

107

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 10
Understanding Logging

 SzMailingName: Green Tracy18
 MnAddressBookNumber: 0
 SzLongAddressNumber: 165346418
 JdDateEffective: Mon Sep 04 22:23:20 MDT 2006
 SzBusinessUnit: 30
 SzVersion: XJDE0001
 SzSearchType: E
 SzAlphaName: Tracy, Green18

Explicit Logging
You can use this code to provide explicit logging in the business service:

 //RI: call to logger - log the beginning of the business service method
processing using app ID
 context.getBSSVLogger().app(context,
 "@@@@@@Begin call for BSSV AddressBookProcessor.
addAddressBook",
 "\n",
 internalVO.toString(),
 null)
 ...
 }

Many logging methods exist for signifying APP, DEBUG, WARN, or SEVERE conditions. Plain text as well as exceptions
can be passed as parameters to these methods for inclusion in the logs.

This information is logged into the jas.log file as a result of the preceding sample code:

17 Jul 2006 16:53:51,125 [Line ?] [APP] - [oracle.e1.foundation.util.
IBSSVLogger]
 [Context ID: 10.139.87.66:2751:1153176823468]
 @@@@@@Begin call for BSSV AddressBookProcessor.addAddressBook

108

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 11
Understanding JD Edwards EnterpriseOne as a Web Service

Consumer

11 Understanding JD Edwards EnterpriseOne
as a Web Service Consumer

Understanding JD Edwards EnterpriseOne as a Web
Service Consumer

Note: Oracle reserves the right to reorganize the business services foundation packages (jar files) for tools release
upgrades. If you are planning to upgrade your system, test your custom objects and modify them as appropriate to
ensure your code will continue to work as intended. You cannot upgrade custom business service objects after you
install a tools release upgrade.

JD Edwards EnterpriseOne as a Web Service Consumer
JD Edwards EnterpriseOne can call and process external web services. Being a native consumer of web service enables
JD Edwards EnterpriseOne integration with other Oracle products and third-party systems. To enable JD Edwards
EnterpriseOne integration with other systems, you create a business function that calls a business service. The business
service calls an external web service. You also create a web service proxy that identifies where the web service can be
found. The web service proxy contains any security information that must be passed in the web service call. Some web
services do not require security. The results of the call are returned to the business service. The business service passes
the results to the business function. This diagram illustrates JD Edwards EnterpriseOne as a web service consumer.

C Business Function Calling a Business Service
The C business function builds an XML document that contains required input and output parameters, and passes the
XML document to an API that calls the business service. The XML document is based on the business service value
object. Similarly, the return from the API includes an XML document with the results of the call.

109

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 11
Understanding JD Edwards EnterpriseOne as a Web Service

Consumer

Best Practices for Business Functions Calling Business Services
When a need for calling a web service from within JD Edwards EnterpriseOne occurs, a business function is required
to make that call. To preserve changes that you have made to the JD Edwards EnterpriseOne business function when
you upgrade or update your system, Oracle recommends that you create a new business function specifically for this
task. This web service consumer business function can be called by a JD Edwards EnterpriseOne application or business
function. Processing in this web service business function would include:

• Initialize XML.

• Build XML.

• Call the API that calls the business service.

• Map the response.

• Handle errors.

• Return to the calling business function.

Creating a Business Service for JD Edwards
EnterpriseOne as a Web Service Consumer
To use JD Edwards EnterpriseOne as a web service consumer, you create a business service and its value object using
methodology and tools discussed in preceding chapters of this guide and in the JD Edwards EnterpriseOne Tools
Business Services Development Guide .

You can use the XML Template utility to create an empty XML document that is based on a business service value
object. The XML Template utility is provided by JDeveloper and supports these data types:

• java.lang.Integer

• java.math.BigDecimal

• oracle.e1.bssvfoudnation

• util.MathNumeric

• java.util.GregorianCalendar

• java.util.Date

• java.lang.Short

• java.lang.Boolean

• java.lang.String

Naming Convention for Consumer Business Services
For a business service that consumes third-party web services, the OMW object name is JC, system code, and zeros,
where the zeros are a number that you assign; for example JC850001.

110

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 11
Understanding JD Edwards EnterpriseOne as a Web Service

Consumer

Note: JCXXXXXX is used to distinguish between JD Edwards EnterpriseOne published business services (which are
JPXXXXXX), internal business services (J0100003), and consumer business services. Some early consumer business
services are named as J, system code, and XXXXX (for example, J8500001). These existing consumer business
services will not be changed, only new consumer business services will include the JC preface.

Rules for Value Object for JD Edwards EnterpriseOne as a Web
Service Consumer
A business service that is called from a business function must represent collections as arrays. You cannot use the
ArrayList data type because it cannot be serialized. This code sample shows using an array for declaring the compound
for phones:

private InternalPhone[] internalPhones = null;

Using Softcoding
Softcoding is a way to dynamically provide the where and who information to the web service proxy. The web service
proxy needs to know exactly which machine to call for the service (the where), and it needs to know the credentials to
pass for the call (the who). Also, values you use to test your business server in the development environment probably
will be different from the actual values that are used in the production environment. Softcoding allows the where and
who values to be plugged in at runtime instead of hard-coding these values into the business service.

A web service proxy has at least one softcoding template and one softcoding record; but a web service proxy can have
many templates and many records. You can use softcoding templates to create softcoding records. Using a softcoding
template is productive because softcoding records have similar values. Using a template also helps to minimize typing
errors when you are entering record information.

Softcoding Template Naming Conventions
JD Edwards EnterpriseOne softcoding templates are named like this:

• E1_J34A0010

• E1_J34A0010A

E1 indicates that the template was created by JD Edwards EnterpriseOne developers at Oracle. J34A000, which is the
key, is the business service name. The A indicates that a second template exists for the same business service.

To keep updates and upgrades simple, Oracle recommends that you not modify a JD Edwards EnterpriseOne softcoding
template. Instead, you should copy the JD Edwards EnterpriseOne template, provide a new name, and make the
appropriate modifications. For example, if you need to add security information to a template that has the correct right
endpoint information, you can copy the existing template, rename it, and add the security information. You might name
the new template similar to the JD Edwards EnterpriseOne template, for example:

CUST_J34A000

111

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 11
Understanding JD Edwards EnterpriseOne as a Web Service

Consumer

Note:
• "Understanding Softcoding" in the JD Edwards EnterpriseOne Tools Business Services Development Guide .

Testing the Business Service for JD Edwards
EnterpriseOne as a Web Service Consumer
You test the business service in the development environment. You can test a business service that calls an external web
service using one of these methods:

• Create a test business service.

• Use the development business services server.

Guidelines for using these methods are provided in Appendix B of the JD Edwards EnterpriseOne Tools Business
Services Development Guide .

Note:
• "Creating a Test Business Service" in the JD Edwards EnterpriseOne Tools Business Services Development

Guide .

112

olink:EOTDE00129
olink:EOTDE00056
olink:EOTDE00056

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 12
Using Business Services with HTTP Request/Reply

12 Using Business Services with HTTP
Request/Reply

Understanding Business Services and HTTP POST
JD Edwards EnterpriseOne enables you to use a business service to communicate with a third-party system using HTTP
POST. In this scenario, a business function is invoked by a request from a JD Edwards EnterpriseOne HTML web client,
which in turn calls a business service to make an HTTP POST request. You provide callback information in the posted
data for the third-party system to send an asynchronous reply to the request. When the callback reply is received from
the third-party system, the published business service that was included in the callback information is invoked. The
response is returned to the JD Edwards EnterpriseOne HTML web client.

The business services server uses a servlet listener to receive incoming messages from third-party systems. Received
messages contain callback information, which is used to associate the message with the correct request.

Note:
• "Understanding Business Services and HTTP POST" in the JD Edwards EnterpriseOne Tools Business Services

Development Guide .

Using Business Services with HTTP Request/Reply
When you use business services to do an HTTP request/reply, follow these rules:

• The listener servlet checks for authorization before calling the published business service. Therefore, you must
have authorization to invoke the specified method on the published business service.

• The value object class of the method to be called must have only one string field and the accessor (getter/
setter) method for the string field. The received XML payload will be passed to the method in this string field.

• The method to be called must have three parameters. This code sample shows the signature for this method:

public responseVO methodToBeCalled((IContext context, IConnection
connection,requestVO vo)

Note: This method must have a public modifier. The wizard that you use to create the structure for a
published business service generates a method with a protected modifier. You must change the method from
protected to public so that the published business service can be called from the listener service.

• The listener servlet does not wait for a response from the business service call. Any response is ignored.

• This kind of published business service must be used as the bridge between getting a response from external
sites and calling the processor business service that does the business logic.

113

olink:EOTDE00132

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 12
Using Business Services with HTTP Request/Reply

Testing the Servlet
You should test the servlet to ensure that it receives the return messages. You can do this by creating an XML document
that has the HTTP URL in it and ensuring that the message is delivered to the URL .

114

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

13 Appendix A - Utility Business Services

Understanding Utility Business Services
Utility business services are generic, reusable services that perform standard operations. Utility business services are
called by other business services to process information that is associated with the calling service. Utility business
services eliminate the need to write the same code in a number of business services, and they ensure that a specific
process is performed in a uniform manner.

The utility business services follow the rules, best practices, and guidelines discussed in this methodology guide. Utility
business service processing should be transparent to consumers of the published business service that calls them.
General information about each utility business service is provided in this appendix. If you create custom published
business services, you can use these predefined utilities, or you can copy a predefined utility business service into a new
business service object, modify it, and call it from your new business service.

Implementing Utility Business Services
General information for creating utility business services is provided in this guide. Here are some key items about utility
business services:

• Utility business services are called from more than one business service or published business service.

• All data mappings are made inside of the utility, not by the service calling the utility.

• Any errors that are encountered by the utility during processing are returned to the calling service to handle.

Entity Processor Business Service
This section discusses the Entity Processor business service.

Understanding the Entity Processor Business Service
The Entity Processor business service (J0100010) provides a published interface that exposes three ways to provide
address book key information for an entity.

The Entity Processor business service retrieves entity ID, entity long ID, and entity tax ID based on input that is supplied
by the published business service that calls the utility. This utility business service processes data in these ways:

• Retrieves Entity ID and Entity Long ID when Entity Tax ID is supplied as input.

• Retrieves Entity ID and Entity Tax ID when Entity Long ID is supplied as input.

• Retrieves Entity Tax ID and Entity Long ID when Entity ID is supplied as input.

115

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

Implementation Detail
This topic identifies the methods, signature, and value object (VO) classes for the Entity Processor business service.

Methods
Methods for the business service are:

• processEntity(Entity)

• processEntity(InternalEntityUtility)

Signature
The signature for the business service is:

Public static E1MessageList processEntity(IContext context, IConnection,
connection, ValueObject inputObject, ValueObject currentObject)

Value Object Classes
Value object classes for the business service are:

• Entity

• InternalEntityUtility

The Entity value object class is a published value object that is owned and managed by the Entity Processor business
service. Any published business service that wants to use the Entity value object class within its interface must import
the class.

Functional Processing
A published business service calls processEntity and passes an input value to the method. The processEntity method
sets processing parameters based on the input value. The method compares the input with null or an empty string to
determine which values are not included in the input. The order of null comparison is:

1. Address Number
2. Long Address Number
3. Tax ID

If the comparison is successful, the processEntity method calls the internal method, InternalEntityUtility. The
InternalEntityUtility method calls the ScrubAddressNumber business function (B0100016) passing in the desired action
code. The business function retrieves the appropriate data from the Address Book Master table (F0101).

Note: This method retrieves records from F0101 and ensures that the ScrubAddressNumber business function
selects the appropriate data. Using the business function instead of using direct table input/output has no significant
performance impact.

Value Object Classes
The tables in this section provide data information for value object classes.

116

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

Business Service Value Object

InternalEntityUtility N/A N/A

Business Service VO Field Name

Data Type

Input/Output

mnAddressNumber

MathNumeric

I/O

szLongAddressNumber

String

I/O

szTaxId

String

I/O

Published Reusable Value Object

Entity N/A N/A N/A N/A

Published Business
Service VO Field
Name

Data Type

Input

Key

Javadoc

entityId

Integer

Yes

Yes

Address book
number

entityLongId

String

Yes

No

NA

entityTaxId

String

Yes

No

NA

Output from Business Service to Published Value Object

InternalEntityUtility Entity N/A N/A N/A

Business Service VO
Field Name

Data Type

Published Business
Service VO Field
Name

Data Type

Transformer

mnAddressNumber

MathNumeric

entityId

Integer

MathNumeric to
Integer

szLongAddressNumber

String

entityLongId

String

Map

szTaxId

String

entityTaxId

String

Map

117

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

GL Account Processor Business Service
This section discusses the GL Account Processor business service.

Understanding the GL Account Processor Business Service
The GL Account Processor business service (J0900010) provides a published interface that exposes four ways to
provide general ledger account information.

The GL Account Processor business service retrieves account information based on input that is supplied by the
published business service that calls the utility. This utility business service processes data in these ways:

• Retrieves GL Account Long ID, GL Account Alternate data, and account information from objectAccount,
businessUnit, and subsidiary fields when GL Account ID is supplied as the input field.

• Retrieves GL Account ID, GL Account Alternate data, and account information from objectAccount,
businessUnit, and subsidiary fields when Account Long ID is supplied as the input field.

• Retrieves GL Account ID, GL Account Long ID data, and account information from objectAccount, businessUnit,
and subsidiary fields when Account Alternate is supplied as the input field.

• Retrieves GL Account ID, GL Account Long ID, and GL Account Alternate data when account information fields
(objectAccount, businessUnit and subsidiary) are supplied as the input field.

Implementation Detail
This topic identifies the methods, signature, and value object classes for the GL Account Processor business service.

Methods
Methods for the business service are:

• processGLAccount(InternalGLAccountUtility)

• processGLAccount(ProcessGLAccount)

Signature
The signature for the business service is:

Public static E1MessageList processGLAccount(IContext context, IConnection
connection, ValueObject inputObject, ValueObject currentObject)

Value Object Class
Value object classes for the business service are:

• InternalGLAccountUtility

• ProcessGLAccount
◦ GLAccount

◦ GLAccountKey

118

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

The GLAccount and GLAccountKey classes are published value objects that are owned and managed by the GL Account
Processor business service. Any published business service that wants to use the GLAccount or GLAccountKey classes
within its interface must import these classes.

Functional Processing
A published business service calls processGLAccountUtility and passes an input value to the method. The
processGLAccountUtility method sets processing parameters based on the input value. The method compares the input
with null to determine which values are not included in the input. The order of null comparison is:

1. Account ID
2. Account Long ID
3. Account Alternate

If all the values are null for these account fields, then the method evaluates these fields:

• objectAccount

• businessUnit

• subsidiary

If the comparison is successful, the processGLAccountUtility method calls the internal method,
InternalGLAccountUtility. The InternalGLAccountUtility method calls the ValidateAccountNumber business function
(XX0901), passing in the desired action code. The business function retrieves the appropriate data from the Account
Master table (F0901).

Note: This method retrieves records from F0901. The ValidateAccountNumber business function selects 19 columns
from the table. Using the business function does not have a significant performance impact.

Value Object Classes
The tables in this section provide data information for value object classes.

Business Service Input and Output Interface

InternalGLAccountUtility N/A N/A

Business Service VO Field Name

Data Type

Input/Output

szAccountNumber

String

Input/Output

szAccountId

String

Input/Output

szUnstructuredAccount

String

Input/Output

szDatabaseBusinessUnit

String

Input/Output

szDatabaseObject

String

Input/Output

119

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

InternalGLAccountUtility N/A N/A

szDatabaseSubsidiary

String

Input/Output

Note: For the account to be located, business unit, object, and subsidiary must be passed.

Published Reusable Value Object

ProcessGLAccount N/A N/A N/A

Published Business Service
VO Field Name

Data Type

Input

Key

GLAccount

N/A

N/A

N/A

objectAccount

String

Yes

No

businessUnit

String

Yes

No

subsidiary

String

Yes

No

GLAccountKey

N/A

N/A

N/A

accountId

String

Yes

Yes

accountLongId

String

Yes

No

accountAlternate

String

Yes

No

Published to Business Service Value Object

ProcessGLAccount InternalGL
AccountUtility

N/A N/A N/A

Published VO Field
Name

Data Type

Business Service VO Field
Name

Data Type

Transformer/
Formatter

GL Account

N/A

N/A

N/A

N/A

objectAccount

String

szDatabaseObject

String

Map

businessUnit

String

szDatabaseBusinessUnit

String

Map

120

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

ProcessGLAccount InternalGL
AccountUtility

N/A N/A N/A

subsidiary

String

szDatabaseSubsidiary

String

Map

GLAccountKey

N/A

N/A

N/A

N/A

accountId

String

szAccountId

String

Map

accountLongId

String

szAccountNumber

String

Map

accountAlternate

String

szUnstructuredAccount

String

Map

Inventory Item ID Processor Business Service
This section discusses the Inventory Item ID Processor business service.

Understanding the Inventory Item ID Processor Business Service
The Inventory Item ID Processor business service (J4100010) provides a published interface that exposes five ways to
provide item identification information.

The Inventory Item ID Processor business service retrieves all potential identifiers for an inventory item based on input
that is supplied by the published business service that calls the utility. This utility business service processes data in
these ways:

• Retrieves itemProduct and itemCatalog when itemId is supplied as the input field.

• Retrieves itemId and itemCatalog when itemProduct is supplied as the input field.

• Retrieves itemId and itemProduct when itemCatalog is supplied as the input field.

• Retrieves itemId, itemProduct, and itemCatalog when itemCustomer or itemSupplier and entity ID and cross-
reference type code are supplied as input fields.

• Retrieves itemId, itemProduct, and itemCatalog when itemFreeForm, branch plant, cross-reference type code,
and entityId are supplied as input fields.

Implementation Detail
This topic identifies the methods, signature, and value object classes for the Inventory Item ID Processor business
service.

Methods
Methods for the business service are:

• processInventoryItemId (InternalInventoryItemId)

121

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

• processInventoryItemId (ProcessItemCustomer)

• processInventoryItemId (ProcessItemSupplier)

Signature
The signature for the business service is:

Public static E1MessageList processInventoryItemID(IContext context,
IConnection connection, ValueObject inputObject, ValueObject currentObject)

Value Object Classes
Value object classes for this business service are:

• InternalInventoryItemId

• ProcessItemCustomer
– ItemGroupCustomer

• ProcessItemSupplier
– ItemGroupSupplier

The ItemGroupCustomer and ItemGroupSupplier classes are published value objects that are owned and managed by
the Inventory Item ID Processor business service. Any other business service that wants to use the ItemGroupCustomer
and ItemGroupSupplier classes as part of its interface must import these classes.

Functional Processing
The Inventory Item ID Processor determines processing based on whether a supplier item or a customer item class was
passed by the published business service. The utility retrieves related cross-reference data for the supplier or customer
item, if required. The ProcessItemCustomer or ProcessItemSupplier method compares the input value with null or an
empty string to determine processing. The first match that the utility finds determines how the utility retrieves the data.
The order of null comparison is:

1. ItemCrossReference
2. FreeForm
3. ItemId
4. ItemProduct
5. ItemCatalog

Depending on which field, if any, is selected during the comparison process, the ProcessItemCustomer or
ProcessItemSupplier method calls the internal method, InternalInventoryItemID, and makes a call to the appropriate
business function, passing the expected parameters. Finally, all retrieved item numbers (mnShortItemNumber,
sz2ndItemNumber, sz3rdItemNumber) are populated at the end of the process.

These business functions are used with this utility business service:

• Validate and Retrieve Item Master (X4101)

• Get Item Master Description UOM (B4001040)

• Verify and Get Item Xref (B4100600)

• Verify and Get Branch Plant Constants (B4101390)

Depending on the business function that is used, data is retrieved from these tables:

• F4101 (Item Master)

• F4104 (Item Cross Reference)

122

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

• F41001 (Inventory Constants)

Note: Database I/O operations are performed through business functions in the JD Edwards EnterpriseOne Validate
and Retrieve Item Master module (X4101). This module performs efficient fetches from F4101, retrieving only the
columns needed for each type of fetch. To prevent recalling the VerifyandGetBranchPlantConstants function, any
cross-reference code that is fetched will be passed back so that users can pass it in instead of having the utility pass
the cross-reference code.

Value Object Classes
The tables in this section provide data information for value object classes.

Business Service Value Object

InternalInventoryItemId N/A N/A

Business Service VO Field Name

Data Type

Input/Output

mnShortItemNumber

MathNumeric

Input and Output

sz2ndItemNumber

String

Input and Output

sz3rdItemNumber

String

Input and Output

szFreeFormItemNumber

String

Input

szBranchPlant

String

Input

szCrossRefItemNumber

String

Input

mnAddressNumber

MathNumeric

Input

szCrossRefTypeCode

String

Input

Published Reusable Value Object

ProcessItem N/A N/A N/A

Published Business Service
VO Field Name

Data Type

Input

Key

crossReferenceType

String

Yes

No

123

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

ProcessItem N/A N/A N/A

entityId

Integer

Yes

No

branchPlant

String

Yes

No

ItemGroupCustomer

N/A

N/A

N/A

itemId

Integer

Yes

No

itemProduct

String

Yes

No

itemCatalog

String

Yes

No

itemFreeForm

String

Yes

No

itemCustomer

String

Yes

No

ItemGroupSupplier

N/A

N/A

N/A

itemId

Integer

Yes

No

itemProduct

String

Yes

No

itemCatalog

String

Yes

No

itemFreeForm

String

Yes

No

itemSupplier

String

Yes

No

Input Business Service Processing

From VO/BSFN/Business
Service Property/Other

To BSFN/Other N/A N/A N/A

Field Name

Data Type

Field Name

Data Type

Transformer

Based on Input VO

N/A

VerifyAndGetBranchPlant
Constants (B41001390 /
D41001390A)

N/A

N/A

szBranchPlant

String

szBranchPlant

String

Map

ItemIdsByXref-MODE N/A N/A N/A N/A

124

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

From VO/BSFN/Business
Service Property/Other

To BSFN/Other N/A N/A N/A

N/A

N/A

VerifyAndGetItemXref
(B4100600 / D4100600)

N/A

N/A

Business Service Property
NUMBER_OF_KEYS = 3

String

szKeys

String

Map

Business Service Property
INDEX_ID = 4

String

szIndex

String

Map

szCrossRefItemNumber

String

szCustomerItemNumber

String

Map

mnAddressNumber

MathNumeric

mnAddressNumber

MathNumeric

Map

szCrossRefTypeCode

String

szCrossRefTypeCode

String

Map

N/A

N/A

getItemIdsByItemId
(internal function)

N/A

N/A

mnShortItemNumber

MathNumeric

mnShortItemNumber

MathNumeric

Map

ItemIdsByItemFreeform –
MODE

N/A

N/A

N/A

N/A

N/A

N/A

GetItemMasterDescription
UOM (B4001040 /
D4001040)

N/A

N/A

szFreeFormItemNumber

String

szPrimaryItemNumber

String

Map

szBranchPlant

String

szBranchPlant

String

Map

ItemIdsByItemId – MODE

N/A

N/A

N/A

N/A

N/A

N/A

GetItemMasterByShortItem
(X4101 / DSDX4101B)

N/A

N/A

mnShortItemNumber

MathNumeric

mnShortItemNumber

MathNumeric

Map

ItemIdsbyItemFreeForm –
MODE

N/A

N/A

N/A

N/A

N/A

N/A

GetItemMasterBy2ndItem
(X4101 / DSDX4101C)

N/A

N/A

125

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

From VO/BSFN/Business
Service Property/Other

To BSFN/Other N/A N/A N/A

sz2ndItemNumber

String

sz2ndItemNumber

String

Map

ItemIdsByItemCatalog –
Mode

N/A

N/A

N/A

N/A

N/A

N/A

GetItemMasterBy3rdItem
(X4101 / DSDX4101D)

N/A

N/A

sz3rdItemNumber

String

sz3rdItemNumber

String

Map

Net Change Processor Business Service
This section discusses the Net Change Processor business service.

Understanding the Net Change Processor Business Service
The Net Change Processor business service (J0000020) handles net change processing for both fields and value
objects. The utility processes changes depending on which method is called:

• Net Change by Field

The Net Change Processor utility determines the value of a field to use to update an entity. If you do not specify
a new value for a field, the utility preserves the current value.

• Net Change by Value Object

The Net Change Processor utility determines the value of all of the fields within a value object to use to update
an entity. If you do not specify a new value for a field within a value object, the utility preserves the current
value of the field within the value object.

Blank and zero are valid values for fields in the input object, and the utility preserves these values. If a field in the input
object has a null value, the utility replaces the null value with the current database value.

Implementation Detail
This topic identifies the methods, signature, and value object classes for the Net Change Processor business service.
Each method is discussed separately.

Method
The method that handles net change processing for value objects of this business service is performNetChange.

126

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

Signature
The signature for the business service is:

public static E1MessageList performNetChange(IContext context,
IConnection connection, ValueObject inputObject, ValueObject currentObject)

Value Objects
Value object classes for the business service are:

• ValueObject inputObject

This value object holds the values received from a business service or published business service.

• ValueObject currentObject

This value object holds the values of an entity as they exist in the database.

Functional Processing
When you update an entity in the database, the performNetChange method determines the value of all fields within
the value object that you are using. If no new value for a field within a value object is specified, the method preserves
the current database value of the field. This method allows processing of value objects of different types. The
performNetChange method assumes that the value object is flat. Field values of blank and zero are valid values in the
input object, and the method preserves them. Only fields with a value of null in the input object are replaced with the
current database value.

Method
The method that handles net change processing for fields of this business service is performNetChangeOnFields.

Signature
The signature for the business service is:

public static Object performNetChangeOnFields(IContext context,
IConnection connection, Object inputFieldValue, Object currentFieldValue)

Value Objects
This utility business service has no specific value objects.

Functional Processing
The performNetChangeOnFields method determines the value of a field to use when you are updating an entity. If no
new value for a field is specified in the input field, the method returns the current value of the field. Field values of blank
and zero are valid values in the input object, and the method preserves them. Only a value of null in the input object is
replaced with the current database value.

Note: The value object net change methods operate on a flat value object class only. Processing over
compound value objects is complex and negatively affects performance. The net change processor exposes the
performNetChangeOnFields method to expose a less complex implementation of net change processing for use in
those instances in which processing the full value object is undesirable.

127

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

Value Object Classes
This utility handles all objects that extend the value object super class. Because the utility is written to handle generic
objects, the utility does not have any specific value object mappings.

Processing Version Processor Business Service
This section discusses the Processing Version Processor business service.

Understanding the Processing Version Processor Business Service

The Processing Version Processor business service (J0000010) determines the processing option version that a
business service uses when it calls a business function. The consumer of a published business service is responsible for
providing the service constant key to the Processing Version Processor utility. If no version is specified in the published
business service, the Processing Version Processor utility retrieves a processing option version from service constants.

Implementation Detail
This topic identifies the methods, signature, and value object classes for the Net Change Processor business service.
Each method is discussed separately.

Method
The method for the business service is getProcessingVersion.

Signature
The signature for the business service is:

public static E1MessageList getProcessingVersion(IContext context,
IConnection connection, InternalProcessingVersion processingVersionVO))

Value Object
The value object for the business service is InternalProcessingVersion.

Functional Processing
A business service calls the getProcessingVersion method. This method verifies that the required input parameters
are specified. If all required parameters are passed, the method checks the processingOptionVersionValue parameter
to determine whether it contains a value. If no value exists, the method looks up the default value in service constants
using a consumer-provided key. The default value must be set up in service constants. The utility does not validate the
value that it retrieves from the service constants systems. If no errors are encountered, the correct processing option
version value is returned to the published business service consumer.

128

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

Note: The Processing Version Processor utility retrieves a value from the service constants system only when a
processing option version value is not provided by the consumer of the published business service.

Value Object Classes
The tables in this section provide data information for value object classes.

Business Service Value Object

InternalProcessAddressBook N/A N/A N/A

Business Service VO Field Name

Data Type

Input / Output

Comments

processingOptionVersionValue

String

Input/Output

On input, this field contains
the processing option
version value provided by
the consumer.

defaultValueServiceConstantKey

String

Input

This field contains the
service constant key for
the default processing
option version to use if
no processing option
version is provided by the
consumer.

129

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 13
Appendix A - Utility Business Services

130

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 14
Glossary

14 Glossary

Accessor Methods/Assessors
Java methods to “get" and “set" the elements of a value object or other source file.

business service
EnterpriseOne business logic written in Java. A business service is a collection of one or more artifacts. Unless specified
otherwise, a business service implies both a published business service and business service.

business service framework
Parts of the business service foundation that are specifically for supporting business service development.

business service property
Key value data pairs used to control the behavior or functionality of business services.

Business Service Property Admin Tool
An EnterpriseOne application for developers and administrators to manage business service property records.

business service property business service group
A classification for business service property at the business service level. This is generally a business service name. A
business service level contains one or more business service property groups. Each business service property group
may contain zero or more business service property records.

131

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 14
Glossary

business service property key
A unique name that identifies the business service property globally in the system.

business service property utilities
A utility API used in business service development to access EnterpriseOne business service property data.

business service property value
A value for a business service property.

business services server
The physical machine where the business services are located. Business services are run on an application server
instance.

business services source file or business service class
One type of business service artifact. A text file with the .java file type written to be compiled by a Java compiler.

business service value object template
The structural representation of a business service value object used in a C-business function.

Business Service Value Object Template Utility
A utility used to create a business service value object template from a business service value object.

132

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 14
Glossary

business services server artifact
The object to be deployed to the business services server.

exposed method or value object
Published business service source files or parts of published business service source files that are part of the published
interface. These are part of the contract with the customer.

internal method or value object
Business service source files or parts of business service source files that are not part of the published interface. These
could be private or protected methods. These could be value objects not used in published methods.

JDeveloper Project
An artifact that JDeveloper uses to categorize and compile source files.

JDeveloper Workspace
An artifact that JDeveloper uses to organize project files. It contains one or more project files.

published business service
EnterpriseOne service level logic and interface. A classification of a published business service indicating the intention
to be exposed to external (non-EnterpriseOne) systems.

softcoding
A coding technique that enables an administrator to manipulate site-specific variables that affect the execution of a
given process.

133

JD Edwards EnterpriseOne Tools
Business Services Development Methodology Guide

Chapter 14
Glossary

134

JD Edwards EnterpriseOne Tools | Index | 135

Index

A
array 43, 65, 111
array list 43, 58
auto commit 101

B
best practice

business function calling business service 110
creating business service value object 44
declaring private method 42
declaring public method 42
handling business service error 57

business function call 49, 63
Business Function Call Wizard 49
business function calling business service 109
business service

calling business function 49
calling business service 53
calling database operation 53
calling Media Object operations 54, 81
calling utility business service 54
creating 3, 37, 38
defining 3, 37, 38
handling errors 57
naming 6
overview 3
utility 115
versioning 94

business service property
calling 56
defining 55
handling errors 56
MaxRowsReturned 68
naming 55
organizing 55
property key 55

business servicedatabase operation 63
business serviceHTTP request/reply 113
business services framework 3
business serviceweb service consumer 109

C
class

business service
creating 41
naming 39

published business service
creating 16
naming 14

class diagram
business service 37
Delete operation 77, 78
Insert operation 69, 71
Media Object Delete operation 88
Media Object Insert operation 84
Media Object Select operation 86
published business service 11
Query operation 65, 67
RI_AddressBookMediaObjectProcessor business service objects 82

Update operation 73, 76
code template

E1DF – EnterpriseOne Data Formatter 25
E1PM – EnterpriseOne Published Business Service Method 16
E1SD – EnterpriseOne Add Call to Service Property with Default Value 57
E1SM – EnterpriseOne Business Service Method Call 42
E1Test – EnterpriseOne Test Harness Class 31
using 4
value object for Media Object data structure 26

component 40
compound 40
constructor 23
Create Media Object Call Wizard 54, 81
creating versions

consumer web service 98
published business service 93

D
data formatter 25
data type

business function value object 43
database operation internal value object 63
database operation published value object 63
published value object 17
transforming 24
web service consumer 110

Database Call Wizard 53
database operation 63

business service
Delete class diagram 78
Insert class diagram 71
Query class diagram 67
Update class diagram 74

creating Delete operation 77
creating Insert operation 68
creating Query operation 65
creating Update operation 73
Delete operation

error handling 77
internal value object 78
media object 54, 81
published value object 77
value object processing 77

Insert operation
error handling 69
internal value object 71
media object 54, 81
multiple records 71
published value object 68
value object processing 69

published business service
Delete class diagram 77
Insert class diagram 69
Query class diagram 65
Update class diagram 73

Query operation
creating 67
error handling 65
internal value object 66
published value object 65
value object processing 65

JD Edwards EnterpriseOne Tools | Index | 136

Select operation
media object 54, 81

Update operation
error handling 73
internal value object 74
published value object 73
value object processing 73

database operation call 53
Delete database operation call 77
documenting business service 61

E
E1DF – EnterpriseOne Data Formatter code template 25
E1MessageList

adding prefix 59
calling 58
using 22

E1PM – EnterpriseOne Published Business Service Method code template 16
E1SD – EnterpriseOne Add Call to Service Property with Default Value code
template 57
E1SM – EnterpriseOne Business Service Method Call code template 42
E1Test – EnterpriseOne Test Harness Class code template 31
error handling

business function 52, 58
business service 57
business service property 56
database operation 64
published business service 31

exceptionerror handling 52

F
field 40
format data 25

G
generated code 51, 53
GL Account Processor business serviceutility business service 118

H
HTTP request/reply

creating 113
overview 113
testing 114

I
Insert database operation call 68
Inventory Item ID Processor business serviceutility business service 121

J
Java code standards 8
Javadoc 61

L
listener 113
log file

default logging 107
explicit logging 108

M
manual commit 101
mapping data 22
Media Object business service

calling 29
operations

Insert 54, 81
Select 54, 81

Media Object Value Object Class Wizard 82
method

accessing business service property 56
business service

naming 39
public 42

published business service
naming 14
protected 16, 33
public 16, 33

modify published business service 12, 34
modifying business service 60
multiple records 71

N
naming

business function value object 40
business service class 39
business service level business service property 55
business service method 39
consumer business service 110
field 40
package 6
published business service class 14
published business service method 14
published business service value object 15
system level business service property 55
variable 15
versioned consumer web service 97
versioned internal business services 96
versioned published business service 93

namingdatabaseoperation 65
Net Change Processor Business Serviceutility business service 126

P
Processing Version Processor business serviceutility business service 128
published business service

adding functionality 34
changing 12
creating 3, 11, 27
customizing 32
defining 3, 11, 12
deprecating 36
handling errors 31
naming 6
overview 3
testing 31
versioning 91

Q
Query database operation call 65

JD Edwards EnterpriseOne Tools | Index | 137

R
rule

calling business service 27
creating business service class 41
creating business service value object 43
creating published business service class 16
creating published business service value object 20
declaring business service public method 42
HTTP request/reply 113
using E1MessageList 57
web service consumer value object 111

S
softcoding

defined 111
naming templates 111
template 111

T
testing

listener 114
published business service 31
web service 32
web service consumer 112
WSI compliance 32

transaction processing 101
business service 38
controlling the transaction 103
default behavior 101
explicit behavior 103
published business service 13

transaction processing boundary 102

U
Update database operation call 73
utility business service

creating 115
Entity Processor

method 116
overview 115
processing 116
signature 116
value object 116, 116

GL Account Processor
method 118
overview 118
processing 119
signature 118
value object 118, 119

Inventory Item ID Processor
method 121
overview 121
processing 122
signature 122
value object 123
value object class 122

Net Change Processor
method 126, 127
overview 126, 127
processing 127
signature 127, 127

value object 127, 127, 128
overview 115
Processing Version Processor

method 128
overview 128
processing 128
signature 128
value object 128, 129

V
value object

business service
creating 42
naming 40

defining 4
mapping data 22
published business service

creating 17, 20
input 21
naming 15
output 21

reusing 18
structure 5
using 4

value objectdatabase operation 65
variable 15, 17, 42
version examples

consumer web service 99
internal business service 96, 96
published business service 93

version support 36
versioning

consumer web services 97
internal business services 94
overview 91
published business services 91

W
web service 3
web service consumer

calling a business service 109
creating a business service 110
data type 110
overview 109
softcoding 111
testing 112
versioning 97

web service provider 37
web service proxy

softcoding 111
where clause 65, 67, 67, 73, 74, 77
wizard

Business Function Call 49
Create Media Object Call 54, 81
Database Call 53
Media Object Value Object Class 82

WSDL 18

X
XML document 109

JD Edwards EnterpriseOne Tools | Index | 138

	 Business Services Development Methodology Guide
	Preface
	Introduction to JD Edwards EnterpriseOne Tools Business Services Development Methodology
	JD Edwards EnterpriseOne Tools Business Services Development Methodology Overview
	JD Edwards EnterpriseOne Tools Business Services Development Methodology Implementation

	Understanding Business Services
	JD Edwards EnterpriseOne Business Services
	Published Business Services
	Business Services

	Development Methodology
	Value Objects
	Components
	Compounds
	Fields

	Package Naming and Structure
	Java Coding Standards

	Understanding Media Object Business Services
	JD Edwards EnterpriseOne Media Object Business Services
	Development Methodology

	Creating a Published Business Service
	Creating a Published Business Service
	Understanding Published Business Services
	Developing a Published Business Service
	Creating a Transaction in a Published Business Service

	Managing Published Business Service Components
	Published Business Service Class Names
	Published Business Service Method Names
	Published Business Service Value Object Names
	Published Business Service Variable Names

	Creating a Published Business Service Class
	Rules

	Declaring Public Methods for a Published Business Service
	Creating a Published Value Object
	Published Value Object Structure and Data Types
	Web Service Considerations for Data Types and Variable Names
	Rules
	Published Input Value Object
	Published Response Value Object
	Mappings
	Data Type Transformation
	Integer to and from MathNumeric and BigDecimal to and from MathNumeric
	Boolean to and from String
	Data Formatter

	Creating a Media Object Published Value Object

	Calling a Business Service
	Rules

	Calling a Media Object Business Service
	Handling Errors in the Published Business Service
	Testing a Published Business Service
	Testing the Web Service
	WSI Compliance Testing

	Customizing a Published Business Service
	Published Business Service Model
	Extending a Published Business Service

	Deprecating a Published Business Service

	Creating a Business Service
	Creating a Business Service
	Understanding Business Services
	Developing a Business Service
	IContext and IConnection Objects

	Managing Business Service Components
	Business Service Class Names
	Business Service Method Names
	Business Service Internal Value Object Names
	Field Names
	Compound and Component Names for a Business Service

	Creating a Business Service Class
	Rules

	Declaring a Business Service Public Method
	Rules for Declaring a Business Service Public Method
	Best Practices for Private and Protected Methods

	Creating Internal Value Objects
	Rules for Internal Value Object
	Best Practices for Internal Value Object

	Creating Internal Media Object Value Objects

	Calling Business Functions
	Calling Database Operations
	Calling Other Business Services
	Calling Media Object Operations
	Managing Business Service Properties
	Standard Naming Conventions for the Property Key
	System-Level Business Service Properties
	Business Service Level Business Service Properties

	Business Service Property Methods

	Handling Errors in the Business Service
	Rules
	Best Practices
	Collecting Errors

	Modifying a Business Service
	Documenting a Business Service

	Creating Business Services That Call Database Operations
	Understanding Database Operations
	Data Types
	Database Exceptions

	Creating a Query Database Operation Business Service
	Published Value Object for Query
	Naming Conventions
	Data Types and Structure
	Error Handling
	Class Diagram

	Internal Value Object for Query
	Empty Where Clause and Max Rows Returned

	Creating an Insert Database Operation Business Service
	Published Value Object for Insert
	Naming Conventions
	Data Types and Structure
	Class Diagram

	Internal Value Object for Insert
	Inserting Multiple Records

	Creating an Update Database Operation Business Service
	Published Value Object for Update
	Naming Conventions
	Data Types and Structure
	Class Diagram

	Internal Value Object for Update

	Creating a Delete Database Operation Business Service
	Published Value Object for Delete
	Naming Conventions
	Data Types and Structure
	Class Diagram

	Internal Value Object for Delete

	Creating Business Services that Call Media Object Operations
	Understanding Media Object Operations
	Data Types

	Creating a Media Object Business Service
	Internal Value Object
	Published Value Object
	Naming Conventions
	Data Types and Structure
	Class Diagram

	Versioning JD Edwards EnterpriseOne Web Services
	Versioning JD Edwards EnterpriseOne Web Services
	Overview
	Published Business Services
	Determining if Versioning Is Required
	Naming Conventions for Versions
	Creating a Published Business Service Version
	Example: Correct Field Names and Format of Interface

	Business Services
	Determining if Versioning is Required
	Example: Enhancement that Includes New Fields and Associated Processing

	JD Edwards EnterpriseOne as a Web Service Consumer
	Determining if Versioning is Required
	Creating a Version to a Consumer Business Service
	Example: Enhancement to Call Latest Version of a Third-Party Service

	Understanding Transaction Processing
	Transaction Processing
	Auto Commit
	Manual Commit

	Default Transaction Processing Behavior
	Published Business Service Boundary for Manual Commit
	Published Business Service Boundary for Auto Commit

	Explicit Transaction Processing Behavior
	Creating a New Connection
	Using an Explicit Transaction
	Scenario 1
	Scenario 2

	Understanding Logging
	Logging
	Default Logging
	Explicit Logging

	Understanding JD Edwards EnterpriseOne as a Web Service Consumer
	Understanding JD Edwards EnterpriseOne as a Web Service Consumer
	JD Edwards EnterpriseOne as a Web Service Consumer
	C Business Function Calling a Business Service
	Best Practices for Business Functions Calling Business Services

	Creating a Business Service for JD Edwards EnterpriseOne as a Web Service Consumer
	Naming Convention for Consumer Business Services
	Rules for Value Object for JD Edwards EnterpriseOne as a Web Service Consumer

	Using Softcoding
	Softcoding Template Naming Conventions

	Testing the Business Service for JD Edwards EnterpriseOne as a Web Service Consumer

	Using Business Services with HTTP Request/Reply
	Understanding Business Services and HTTP POST
	Using Business Services with HTTP Request/Reply
	Testing the Servlet

	Appendix A - Utility Business Services
	Understanding Utility Business Services
	Implementing Utility Business Services

	Entity Processor Business Service
	Understanding the Entity Processor Business Service
	Implementation Detail
	Methods
	Signature
	Value Object Classes
	Functional Processing

	Value Object Classes
	Business Service Value Object
	Published Reusable Value Object
	Output from Business Service to Published Value Object

	GL Account Processor Business Service
	Understanding the GL Account Processor Business Service
	Implementation Detail
	Methods
	Signature
	Value Object Class
	Functional Processing

	Value Object Classes
	Business Service Input and Output Interface
	Published Reusable Value Object
	Published to Business Service Value Object

	Inventory Item ID Processor Business Service
	Understanding the Inventory Item ID Processor Business Service
	Implementation Detail
	Methods
	Signature
	Value Object Classes
	Functional Processing

	Value Object Classes
	Business Service Value Object
	Published Reusable Value Object
	Input Business Service Processing

	Net Change Processor Business Service
	Understanding the Net Change Processor Business Service
	Implementation Detail
	Method
	Signature
	Value Objects
	Functional Processing
	Method
	Signature
	Value Objects
	Functional Processing

	Value Object Classes

	Processing Version Processor Business Service
	Understanding the Processing Version Processor Business Service
	Implementation Detail
	Method
	Signature
	Value Object
	Functional Processing

	Value Object Classes
	Business Service Value Object

	Glossary
	Accessor Methods/Assessors
	business service
	business service framework
	business service property
	Business Service Property Admin Tool
	business service property business service group
	business service property key
	business service property utilities
	business service property value
	business services server
	business services source file or business service class
	business service value object template
	Business Service Value Object Template Utility
	business services server artifact
	exposed method or value object
	internal method or value object
	JDeveloper Project
	JDeveloper Workspace
	published business service
	softcoding

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

