
JD Edwards
EnterpriseOne
Tools

Application Interface Services
Client Java API Developers Guide

9.2

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers Guide

9.2

Part Number: E64173-12

Copyright © 2011, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Contents

Preface .. i

1 Understanding the AIS Client Java API 1
Overview .. 1

Accessing AIS Server Endpoints with the AIS Client Java API .. 1

2 Getting Started 3
Certifications (Formerly Known as Minimum Technical Requirements) .. 3

Prerequisites .. 3

3 Configuring the Login Environment 5
Configuring the Login ... 5

Configuring the Logout .. 6

4 Performing AIS Form Service Calls 7
Understanding AIS Server Capabilities .. 7

Understanding the AIS Client Class Generator .. 7

Understanding Form Service Requests ... 8

Batch Form Service .. 17

Application Stack Service ... 20

Media Object Operations .. 22

Processing Option Service ... 29

Task Authorization Service .. 30

Logging Service .. 32

Query Support ... 32

Jargon Service .. 40

Data Service (API 1.1.0) .. 41

Understanding the Preference Service (API 1.3.1 and EnterpriseOne Tools 9.2.0.2) ... 55

Watchlist Service (API 1.4.0 and EnterpriseOne Tools 9.2.0.3) ... 57

Additional Supported Output Types for Form Service and Data Service (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)

... 58

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Orchestration Support (API 1.1.0) ... 61

Next Page Processing for Application Stack and Data Request (API 2.0.0 and EnterpriseOne Tools Release 9.2.1.2)

... 62

5 Glossary 67
AIS Server .. 67

AIS Server capability .. 67

AIS client .. 67

AIS Server endpoint ... 67

AIS service ... 67

form service request ... 67

instantiate .. 68

JDeveloper Project ... 68

JSON (JavaScript Object Notation) .. 68

processing option .. 68

QBE .. 68

serialize ... 68

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Preface

Preface
Welcome to the JD Edwards EnterpriseOne documentation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc .

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

Related Information
For additional information about JD Edwards EnterpriseOne applications, features, content, and training, visit the JD
Edwards EnterpriseOne pages on the JD Edwards Resource Library located at:

http://learnjde.com

Conventions
The following text conventions are used in this document:

Convention Meaning

Bold

Boldface type indicates graphical user interface elements associated with an action or terms defined in
text or the glossary.

Italics

Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular
values.

Monospace

Monospace type indicates commands within a paragraph, URLs, code examples, text that appears on a
screen, or text that you enter.

> Oracle by Example

Indicates a link to an Oracle by Example (OBE). OBEs provide hands-on, step- by-step instructions,
including screen captures that guide you through a process using your own environment. Access to
OBEs requires a valid Oracle account.

i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://learnjde.com

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Preface

ii

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 1
Understanding the AIS Client Java API

1 Understanding the AIS Client Java API

Overview
With the Application Interface Services (AIS) Client Java API, you can use any development tool that works with Java
APIs to create custom applications that interact with EnterpriseOne. Whether you need a simplified kiosk application
for your warehouse, an application that composites features from multiple EnterpriseOne applications into a single
purpose-built interface, or an application for the latest wearable device, the AIS Client Java API enables you to choose
the development platform that fits your needs.

The AIS Client Java API enables developers to create applications, referred to as AIS clients, that communicate with
the JD Edwards EnterpriseOne AIS Server. The AIS Server is a REST services server that when configured with the
EnterpriseOne HTML Server, enables access to EnterpriseOne forms and data. The AIS Client Java API provides classes
and methods that enable AIS clients to manage (create, read, update, delete) data in EnterpriseOne through REST
services.

Note: The EnterpriseOne HTML Server also executes some Java processing; therefore, it is sometimes referred to as
the Java Application Server (JAS). The terms HTML Server and JAS Server are synonymous.

Note:

• "Understanding the JD Edwards EnterpriseOne Application Interface Services (AIS) Server" in the JD Edwards
EnterpriseOne Application Interface Services Server Reference Guide for an overview and illustration of the
AIS Server architecture.

Accessing AIS Server Endpoints with the AIS Client Java
API
The AIS Server exposes endpoints that:

• Enable access to EnterpriseOne data and applications.

• Produce JSON responses.

Each endpoint provides a particular service, referred to as an AIS service, that AIS clients can use to interact with
EnterpriseOne applications. The AIS Client Java API enables easy access to all endpoints; all of the communication is
handled for you.

Starting with EnterpriseOne Tools release 9.2.1.2, the AIS Server provides version 2 AIS services that include additional
capabilities for AIS clients. All AIS services that were available before version 2 are also available as version 2 AIS
services. See "AIS Services (Endpoints)" in the JD Edwards EnterpriseOne Application Interface Services Server
Reference Guide for a list of the AIS Server endpoints and a description of the AIS service each endpoint provides.

1

olink:EOIIS134
olink:EOIIS134
olink:EOIIS185
olink:EOIIS185

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 1
Understanding the AIS Client Java API

You must use the AIS Client Java API 2.0.0 to access version 2 AIS services. Use the following URL format to access the
endpoints for version 2 AIS services: http://<server>:<port>/jderest/v2/<URI>

Note: AIS Java Client API version 1.4.2 is still available and compatible with previous AIS Server releases.

All POST calls expect JSON formatted request payloads.

When you use the API, you work with Java objects, not the JSON strings. But it is still important to understand how the
data is transmitted. The following chapters in this guide describe in detail how to use the services the endpoints provide
and the Java objects required to use them:

• Configuring the Login Environment

• Performing AIS Form Service Calls

2

https://www.oracle.com/pls/topic/lookup?ctx=jde9.2&id=u30205688
https://www.oracle.com/pls/topic/lookup?ctx=jde9.2&id=u30205689

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 2
Getting Started

2 Getting Started

Certifications (Formerly Known as Minimum Technical
Requirements)
Customers must conform to the supported platforms for the release, which can be found in the Certifications tab on My
Oracle Support: https://support.oracle.com .

For more information about JD Edwards EnterpriseOne Minimum Technical Requirements, see the following document
on My Oracle Support: JD Edwards EnterpriseOne Minimum Technical Requirements Reference (Doc ID 745831.1), which
is available here:

https://support.oracle.com/rs?type=doc&id=745831.1

Prerequisites
To develop AIS client applications, you must complete the following prerequisites:

• You must be running a minimum of JD Edwards EnterpriseOne Tools release 9.1.5.

• Deploy an Application Interface Service (AIS) Server configured with an EnterpriseOne HTML Server. See:

"Create an Application Interface Services (AIS) Server as a New Managed Instance" in the JD Edwards
EnterpriseOne Tools Server Manager Guide .

and

"Configuring the AIS Server" in the JD Edwards EnterpriseOne Application Interface Services Server Reference
Guide for additional configuration steps.

3

https://support.oracle.com
https://support.oracle.com/rs?type=doc&id=745831.1
olink:EOISM594
olink:EOISM594
olink:EOIIS102
olink:EOIIS102

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 2
Getting Started

• Download the latest AIS_Client_Java_API_2.x.x from the JD Edwards Update Center on My Oracle Support:
https://updatecenter.oracle.com/

To locate the download on the JD Edwards Update Center, use the Type field to search on "EnterpriseOne ADF."

The zip file contains:

◦ AIS_Client.jar, which contains the AIS Client Java API.

Click the following link to access the JD Edwards EnterpriseOne Application Interface Services (AIS) Client
API Reference , which provides descriptions of the AIS Client Java API classes and methods:

http://docs.oracle.com/cd/E53430_01/nav/development.htm

◦ Jackson 2.9.3 library, which includes the jackson-databind, jackson-core, and jackson-annotations jar
files.

◦ AISCGE 12c_v1.6.x.zip, which contains the AIS Client Class Generator extension for JDeveloper.

The AIS Client Class Generator is compatible only with JDeveloper 12.1.3 and up. After you download
it, see "Using the AIS Client Class Generator" in the JD Edwards EnterpriseOne Application Interface
Services Server Reference Guide for instructions on how to install and use the AIS Client Class
Generator.

Note: The AIS client and Jackson jar files must be in the classpath of your AIS client.

4

https://updatecenter.oracle.com/
https://updatecenter.oracle.com/
http://docs.oracle.com/cd/E24705_01/nav/development.htm
olink:EOIIS170
olink:EOIIS170

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 3
Configuring the Login Environment

3 Configuring the Login Environment

Configuring the Login
For an AIS client to call AIS services, the AIS client must first obtain a login environment by passing the following
information to the constructor in the LoginEnvironment object:

• EnterpriseOne login credentials. EnterpriseOne credentials include a user ID, password, environment, and
role. The AIS Server configuration uses a default EnterpriseOne environment and role unless you specify a
different environment and role here.

• AIS Server URL and the device name. The device name is a string that represents the device on which the
client is running. The device name serves as a unique identifier for your client.

• A list of required capabilities. (Optional) If the AIS client uses AIS Server capabilities, then you have the option
to pass a list of required capabilities to the LoginEnvironment constructor. The LoginEnvironment constructor
verifies that the capabilities are available on the AIS Server. If they are available, access to the AIS client is
granted. If they are not available, access is denied.
This prevents an AIS client from running if the AIS Server capability that it requires to properly function is not
available in the version of the AIS Server. See Understanding AIS Server Capabilities for a list of AIS Server
capabilities available by EnterpriseOne Tools release.

When the client requests a LoginEnvironment, the processing within the API uses the defaultconfg and tokenrequest
URI endpoints. For a description of these endpoints, see the "AIS Services (Endpoints)" section in the JD Edwards
EnterpriseOne Application Interface Services Server Reference Guide .

Example - Examples for Obtaining a Login Environment
//login with minimum required information
final String AIS_SERVER = "http://ais.example.com:7777";
final String USER_NAME = "jde";
final String PASSWORD = "jde";
final String DEVICE = "Java";
LoginEnvironment loginEnv = new LoginEnvironment(AIS_SERVER, USER_NAME, PASSWORD,
 DEVICE);

//login overrides default environment and role
final String ENVIRONMENT = "PROD";
final String ROLE = "PROLE";
LoginEnvironment loginEnv2 = new LoginEnvironment(AIS_SERVER, USER_NAME, PASSWORD,
 ENVIRONMENT, ROLE, DEVICE);

//login with required capabilities
//A CapabilityException will be thrown if AIS doesn't have those in the list
final String REQ_CAPABILITIES = "grid, processingOption";
LoginEnvironment loginEnv3 = new LoginEnvironment(AIS_SERVER, USER_NAME, PASSWORD,
 DEVICE, REQ_CAPABILITIES);

//login with token
String PS_TOKEN = "a ps token string";
LoginEnvironment loginEnv4 = new LoginEnvironment(AIS_SERVER, USER_NAME, null, null,
 null, DEVICE, null, null, PS_TOKEN)

5

olink:EOIIS185
olink:EOIIS185

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 3
Configuring the Login Environment

All calls to the AIS Server include the LoginEnvironment object. From this point forward in this guide, references to the
loginEnv variable assume that this step has been performed and that the variable is available.

Configuring the Logout
When finished making calls to the AIS Server, you must include the following logout call to end the user session:

AISClientUtilities.logout(loginEnv);

6

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

4 Performing AIS Form Service Calls

Understanding AIS Server Capabilities
The AIS Server exposes various capabilities that AIS client applications may or may not depend on. If your application
requires a certain capability, you must include it in the list of required capabilities in the LoginEnvironment constructor.

If you included a capability in the list, the Login module verifies that capability is available when the application
launches. If the capability is not available, the application returns an error message. If the capability is available, the
application continues to the login screen. See Configuring the Login Environment for more information.

You can access the AIS Server capabilities using the following URL:

http://<AIS Server>:<Port>/jderest/defaultconfig

You can also find a description of all AIS Server capabilities in the "AIS Server Capabilities and Services" section in the
JD Edwards EnterpriseOne Application Interface Services Server Reference Guide .

The code in Example - Capabilities in LoginEnvironment Constructor shows the grid and editable capabilities listed in
the LoginEnvironment constructor.

Example - Capabilities in LoginEnvironment Constructor
 final String REQUIRED_CAP_LIST = "grid,query";
 th.loginEnv = new LoginEnvironment(AIS_SERVER, USER_NAME, PASSWORD,
 ENVIRONMENT, ROLE, DEVICE, REQUIRED_CAP_LIST, JAS_SERVER);

If the list includes a capability that is not available on the AIS Server, it throws a CapabilityException, as shown in
Example - Capability Exception.

Example - Capability Exception
com.oracle.e1.aisclient.CapabilityException: Required Capabilities [grid, somethingelse]
 Available Capabilities: [grid, editable, log, processingOption, ignoreFDAFindOnEntry,
 selectAllGridRows, applicationStack, thumbnailSize, gridCellClick, query,
 taskAuthorization, urlMediaObjects, jargon, aliasNaming]

Understanding the AIS Client Class Generator
The AIS Client Class Generator is an extension to JDeveloper that enables you to create Application Controller
foundational classes that are required by AIS client applications.

For more information about the AIS Client Class Generator, see "Using the AIS Client Class Generator" in the JD
Edwards EnterpriseOne Application Interface Services Server Reference Guide .

7

https://www.oracle.com/pls/topic/lookup?ctx=jde9.2&id=u30205688
olink:EOIIS181
olink:EOIIS181
olink:EOIIS170
olink:EOIIS170

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Understanding Form Service Requests
This section contains the following topics:

• Overview

• Form Service Request Structure

• Control ID Notation for Return Control IDs

• Reading Data

• Adding Data

• Deleting Data

• Placing Events in the Proper Order

• Considering Hidden Filters and Hidden QBE

• Available Actions or Events

• Using Turbo Mode (API 1.4.2 and EnterpriseOne Tools 9.2.1)

Overview
AIS Server calls that retrieve data from forms in the EnterpriseOne web client are referred to as form service requests.
AIS client applications use form service requests to interact with EnterpriseOne web client forms. Form service requests,
formatted as REST service calls that use POST, contain form service events or commands that invoke actions on an
EnterpriseOne form.

A form service request enables you to perform various operations on a single form. By sending an ordered list of
commands, a form service request can replicate the actions taken by an EnterpriseOne web client user, including
populating fields, pressing buttons, and other actions.

To send a form service request to the AIS Server, send a POST to the following URL and send JSON in the body:

http://<AIS Server>:<Port>/formservice

If testing with a REST testing tool, you can send JSON directly.

The following list is an example of the operations required to perform a query in the find/browse form of the Address
Book application (P01012_W01012B):

1. Enter a value into the Search Type field and into the QBE field for address number.
2. Click the check boxes to show the extra grid columns and press the Find button.

This populates the grid with the data matching the query.

The form service returns the form parent object representing the form after it is populated with the data.

Form Service Request Structure
The class diagram in #unique_25/unique_25_Connect_42_BABHFBIC represents the basic structure of a form
service request. The collections under FormRequest are optional (0 to many); you do not have to have FIStructures,

8

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

FormActions, GridActions, and so forth. A form service request (FSR) event is a set of FormActions that you first
compile into an FSR event and then add to the FormRequest using the add method.

Control ID Notation for Return Control IDs
In EnterpriseOne, you can use the Property Browser in FDA to identify control IDs for fields on each EnterpriseOne
form. You can also find control IDs using the Item Help option in the form in the EnterpriseOne web client. In the
EnterpriseOne web client form, click the Help button (question mark in the upper right corner of a form) and then click

9

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

the Item Help option to access field-level help. With the field level help activated, you can click in a field or column to
access the control ID and business view information, which is displayed under the Advanced Options section.

For fields on the main form, the control ID will be a single value, such as 25.

Grids also have control IDs. For a traditional form, the grid ID is usually 1. For power forms, subforms, and reusable
subforms the grid ID is typically a value other than 1.

The columns within a grid also have unique IDs and are often referenced in conjunction with the grid ID. For example,
column 28 and 29 in grid 1 would be 1[28,29].

Power forms have more complex IDs. The fields on the main power form are represented with single values. The fields
on a subform are complex with an underscore separating them. So field 6 on subform 12 is 12_6. The ID of a re-usable
subform is available when viewing the power form that the subform is used on. The IDs of individual fields, a grid, or
columns on a re-usable subform is shown in FDA when viewing the subform directly; you cannot get these values when
viewing the subform alias.

The returnControlIDs string is bar delimited, without a starting or ending bar.

Example - Requesting fields and grid columns on a traditional form.
formRequest.setReturnControlIDs("19|20|60|125|1[45,49,88]");

In this example, 19|20|60|125 represent field control IDs.

1[45,49,88] represents columns in the grid.

Example - Requesting main form fields, subform fields, main form grid columns, and
subform grid columns.
formRequest.setReturnControlIDs("33|34|17[24,26,28]|50_45|50_53|50_9[35,39,41]");

In this example, 33|34 represent fields on the main form.

50_45|50_53 represent fields on the subform.

17[24,26,28] represent main form grid columns.

50_9[35,39,41] represent subform grid columns.

Reading Data
The code in Example - Form Service Request for Reading Data is an example of a form service request that reads data
from and EnterpriseOne form. In this example, the code results in populating the P01012 form parent object with data
that can be displayed or manipulated.

Example - Form Service Request for Reading Data
public P01012_W01012B_FormParent P01012()
{
P01012_W01012B_FormParent p01012form = null;

 try{
 //populate the request information
FormRequest formRequest = new FormRequest(loginEnv);

10

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

formRequest.setFormName("P01012_W01012B");
formRequest.setFormServiceAction("R");
formRequest.setMaxPageSize("30"); //only get 30 records
formRequest.setReturnControlIDs("54|1[19,20]");

FSREvent fsrEvent = new FSREvent();

fsrEvent.setFieldValue("54", "E"); //customers
//include >= operator in QBE
fsrEvent.setQBEValue("1[19]", ">=" + "6001");
fsrEvent.checkBoxChecked("62"); //show address
fsrEvent.checkBoxChecked("63"); //show phone
fsrEvent.doControlAction("15"); //find

formRequest.addFSREvent(fsrEvent); //add the events to the request
String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, formRequest,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.FORM_SERVICE_URI);

 //de-serialize the JSON string into the form parent object
p01012form = loginEnv.getObjectMapper().readValue(response,
 P01012_W01012B_FormParent.class);
 }
 catch(JDERestServiceException e)
 {
 //get more specific error string
 String error = JDERestServiceProvider.handleServiceException(e);
 System.out.println(error);
 }
 catch(Exception e)
 {
 //handle other exceptions
 System.out.println(e.getMessage());
 }

return p01012form;
}

Adding Data
The code in Example - Form Service Request for Adding Data is an example of a form service request that adds a new
phone number in the EnterpriseOne phones application and saves it. After saving the phone number, the form service
sends a response with the new number in the grid.

Example - Form Service Request for Adding Data
public P0115_W0115A_FormParent addPhone(){
P0115_W0115A_FormParent p0115_W0115A = null;

 //indicate using grid capability
//(alternatively could use required capability)
loginEnv.getUsedCapabilities().add("grid");

if (AISClientCapability.isCapabilityAvailable(loginEnv, "grid"))

11

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

{
 try{

FormRequest formRequest = new FormRequest(loginEnv);
formRequest.setFormName("P0115_W0115A");
formRequest.setFormServiceAction("U");

 //open this form with specific record for AB 7500, contact 0
formRequest.addToFISet("4", "7500");
formRequest.addToFISet("5", "0");

FSREvent fsrEvent = new FSREvent();
//create grid action
GridAction gridAction = new GridAction(loginEnv);
//create grid row insert event
GridRowInsertEvent gri = new GridRowInsertEvent();

//set the column values
gri.setGridColumnValue("27", "HOM");
gri.setGridColumnValue("28", "303");
gri.setGridColumnValue("29", "123-4567");

//add the row to grid ID "1"
gridAction.insertGridRow("1", gri);

//add the grid action to the events
fsrEvent.addGridAction(gridAction);

//press OK button
fsrEvent.doControlAction("4");

//add the FSR event to the request
formRequest.addFSREvent(fsrEvent);

String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, formRequest,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.FORM_SERVICE_URI);

//de-serialize the JSON string into the form parent object
p0115_W0115A = loginEnv.getObjectMapper().readValue(response,
 P0115_W0115A_FormParent.class);
 }
 catch(CapabilityException e)
 {
//handle capability exception
 System.out.println(e.getMessage());
 }
 catch(JDERestServiceException e)
 {
 //get more specific error string
 String error = JDERestServiceProvider.handleServiceException(e);
 System.out.println(error);
 }
}

 return p0115_W0115A;
}

12

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Deleting Data
The code in Example - Form Service Request for Deleting Data is an example of a form service request that deletes the
phone at index 0 and returns a response with a set of records without the removed phone number record.

Example - Form Service Request for Deleting Data
public P0115_W0115A _FormParent deletePhone(){

 P0115_W0115A _FormParent p0115_W0115A = null;
 try{

FormRequest formRequest = new FormRequest(loginEnv);
formRequest.setFormName("P0115_W0115A");
formRequest.setFormServiceAction(formRequest.ACTION_UPDATE);

 //open form with record for AB 7500 contact 0
formRequest.addToFISet("4", "7500");
formRequest.addToFISet("5", "0");

FSREvent fsrEvent = new FSREvent();

//select the row to delete from grid with ID "1", based on row index 0
fsrEvent.selectRow("1", 0);

//press Delete button
fsrEvent.doControlAction("59");

//press OK button
fsrEvent.doControlAction("4");

//add the FSR event to the request
formRequest.addFSREvent(fsrEvent);

String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, formRequest,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.FORM_SERVICE_URI);

//de-serialize the JSON string into the form parent object
p0115_W0115A = loginEnv.getObjectMapper().readValue(response,
 P0115_W0115A_FormParent.class);
 }
 catch(JDERestServiceException e)
 {
 //get more specific error string
 String error = JDERestServiceProvider.handleServiceException(e);
 System.out.println(error);
 }
 catch(Exception e)
 {
 //handle other exceptions
 System.out.println(e.getMessage());
 }

13

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

return p0115_W0115A;

}

Placing Events in the Proper Order
Place the events in the request in the order you want them to execute, for example, populate a filter field value and then
press the Find button. Remember that the FDA Form Service Request event occurs before the events you add to this list.
Do not set the Find On Entry option when using the event model; the extra "find" is not necessary because it executes
before the events you requested.

Considering Hidden Filters and Hidden QBE
By default, values are not written to hidden filter fields or hidden QBE columns. You must use the Form Service Event in
FDA to show the fields and columns first. Then you can add values to these fields and subsequently run the query.

Available Actions or Events
The preceding examples in this chapter only show some of the operations you can perform in a form service request.
The tables in this section describe other operations you may want to perform.

Form Service Request Events

Action or Event Description Parameters

Set Control Value

Sets the value of a control on a form, like
filter fields or any other form control.

controlID ("25")

value("Bob" or "01/01/2015")

Set QBE Value

Sets the value of a QBE column.

controlID ("1[42]" or "1_2[25]")

value ("Jill" or "55")

Set Checkbox Value

Sets the value of a check box.

controlID ("77")

value ("on" or "off")

Set Radio Button

Sets the value of a radio button.

controlID ("87")

value ("87")

Set Combo Value

Sets the value of a combo box entry.

controlID ("125")

value (2) - The index of the entry.

14

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Action or Event Description Parameters

Do Action

Presses a button or Hyper Item.

controlID ("156")

Select Row

Selects the specified row in a grid.

controlID ("1.30") - The grid ID, dot, then a
row index (zero based).

Select All Rows

Select all rows in the specified grid (if
multiple selection is allowed).

controlID ("1") - The grid ID.

Un Select All Rows

Un-selects all rows in the specified grid (if
multiple selection is allowed).

controlID ("1") - The grid ID.

Un Select Row

Un-selects the specified row in a grid.

controlID ("1.30") - The grid ID, dot, then a
row index (zero based).

Click Grid Cell

Clicks the hyperlink in a grid cell (if the cell is
enabled as a link).

controlID ("1.5.22") - The grid ID, dot, row
index, dot, grid column ID.

Click Grid Column Aggregation
(Available starting with
EnterpriseOne Tools 9.2.0.2.)

Clicks the icon for aggregation of a column
(if available in the application).

"command": "ClickGridColumnAggregate",

controlID ("1.24") – The grid ID, dot, then grid
column ID.

You must include the capability in the used
capability list in order to perform this action.

Next Grid Page (Available
starting with EnterpriseOne
Tools 9.2.1.)

Clicks the > icon on the grid so the next set
of records can be returned. This is especially
useful in an application stack call in which
the application stays open and you can keep
retrieving additional records.

"command":"NextGrid",

"controlID":"1"

In addition to interacting with fields on the form, you can interact with grids using grid action events. If you use a grid
action event, you must include "grid" as a required capability in the LoginEnvironment constructor. See Understanding
AIS Server Capabilities for more information.

The types of grid action events include:

• Selecting grid rows

This action enables you to delete records in the grid by sending a row select event, followed by a delete button
press event, and then finally an OK button press event. This is the exact sequence that a user would follow to
delete a record in an EnterpriseOne application.

• Inserting grid rows

This action enables you to insert one or more rows into a grid, setting the column value for each row. This
includes text entry columns, drop-down columns, or check box columns. You must include an OK button
pressed event to commit the inserts.

15

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

• Updating grid rows

This action enables you to update one or more existing grid rows by setting the column values for each row.
This includes text entry columns, drop-down columns, or check box columns. You must include an OK button
pressed event to commit the updates.

The following table describes the commands that you can use in grid column events to set values for a cell in a grid
insert or update event:

Grid Column Events in a Form Service Request

Grid Column Events Description Parameters

Set Grid Cell Value

Sets the value of a cell in a grid.

"value": "720",

"command": "SetGridCellValue",

"columnID": "28"

Set Grid Combo Value

Sets the value of a dropdown column in a
grid. The value you send is the 'Code' for the
UDC associated with that column.

"value": "ABC",

"command": "SetGridComboValue",

"columnID": "43"

Determining the Maximum Records Returned in a Form Service
Request
In a form service request that returns rows in a grid, the AIS Server will return a maximum of 100 rows by default. If you
want to return all records, include the following method in the form service request:

formRequest.setMaxPageSizeUnlimited();

Using Turbo Mode (API 1.4.2 and EnterpriseOne Tools 9.2.1)
To increase transaction performance and reduce form service request processing time on the AIS Server, you can add
the Turbo Mode parameter to a form service request. There are two levels for Turbo Mode: Low and High.

Setting the Turbo Mode to "Low" reduces processing time by:

• Fetching associated descriptions in the grid (for grid columns) only when specifically requested in the service
request.

• Formatting grid columns only when requested.

• Not using associated descriptions in event rule code.

• Adding columns to return column IDs only when required by internal processing.

16

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Setting the Turbo Mode to "High" provides the best performance and further reduces processing time by:

• Populating business view grid columns only when requested.

• Creating internal grid cell structures only for requested columns.

• Adding columns to return column IDs only when required by internal processing.

CAUTION: Using Turbo Mode can result in issues in the AIS client depending on the processing that is removed. You
must make sure that the reduced processing does not impact the data returned to your application. Also, if you are
relying on calculated fields, you need to request both the calculated fields and the fields used in the calculation in the
return control IDs.

The following code shows the available Turbo Mode options in the API:

FormRequest formRequest = new FormRequest(loginEnv);
formRequest.setTurboMode(FormRequest.TURBO_MODE_HIGH);
formRequest.setTurboMode(FormRequest.TURBO_MODE_LOW);

The following is an example of Turbo Mode in JSON code:

{
"formName": "P01012_W01012";
"turboMode ": "Low";

}

Batch Form Service
If you make several sequential calls to forms without any data dependencies between them, consider using the Batch
Form Service. Batch form service requests are used to execute multiple EnterpriseOne forms during a single request,
which improves your AIS client's performance.

Use the AIS Client Class Generator to generate the classes for all the forms that you need to call in the batch request.
Then declare a parent class that contains all of the same forms in the order in which they appear in the batch request
(including an index number).

Example - Batch Form Service Request shows a batch form service request that calls the same form three times with
different inputs each time, followed by a call to another form.

Example - Batch Form Service Request
public class BatchRequestParent {

 private P54HS220_W54HS220A fs_0_P54HS220_W54HS220A;
 private P54HS220_W54HS220A fs_1_P54HS220_W54HS220A;
 private P54HS220_W54HS220A fs_2_P54HS220_W54HS220A;
 private P54HSPT_S54HSPTA fs_3_P54HSPT_S54HSPTA;

 public BatchRequestParent() {
 super();
 }

17

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 public void setFs_0_P54HS220_W54HS220A(P54HS220_W54HS220A fs_0_P54HS220_W54HS220A) {
 this.fs_0_P54HS220_W54HS220A = fs_0_P54HS220_W54HS220A;
 }

 public P54HS220_W54HS220A getFs_0_P54HS220_W54HS220A() {
 return fs_0_P54HS220_W54HS220A;
 }

 public void setFs_1_P54HS220_W54HS220A(P54HS220_W54HS220A fs_1_P54HS220_W54HS220A) {
 this.fs_1_P54HS220_W54HS220A = fs_1_P54HS220_W54HS220A;
 }

 public P54HS220_W54HS220A getFs_1_P54HS220_W54HS220A() {
 return fs_1_P54HS220_W54HS220A;
 }

 public void setFs_2_P54HS220_W54HS220A(P54HS220_W54HS220A fs_2_P54HS220_W54HS220A) {
 this.fs_2_P54HS220_W54HS220A = fs_2_P54HS220_W54HS220A;
 }

 public P54HS220_W54HS220A getFs_2_P54HS220_W54HS220A() {
 return fs_2_P54HS220_W54HS220A;
 }

 public void setFs_3_P54HS230_W54HS230A(P54HS230_W54HS230A fs_3_P54HS230_W54HS230A) {
 this.fs_3_P54HS230_W54HS230A = fs_3_P54HS230_W54HS230A;
 }

 public P54HS230_W54HS230A getFs_3_P54HS230_W54HS230A() {
 return fs_3_P54HS230_W54HS230A;
 }

 public void setFs_4_P54HS240_W54HS240A(P54HS240_W54HS240A fs_4_P54HS240_W54HS240A) {
 this.fs_4_P54HS240_W54HS240A = fs_4_P54HS240_W54HS240A;
 }

 public P54HS240_W54HS240A getFs_4_P54HS240_W54HS240A() {
 return fs_4_P54HS240_W54HS240A;
 }

 public void setFs_3_P54HSPT_S54HSPTA(P54HSPT_S54HSPTA fs_3_P54HSPT_S54HSPTA) {
 this.fs_3_P54HSPT_S54HSPTA = fs_3_P54HSPT_S54HSPTA;
 }

 public P54HSPT_S54HSPTA getFs_3_P54HSPT_S54HSPTA() {
 return fs_3_P54HSPT_S54HSPTA;
 }
}

Example - Deserialize the Response to the BatchRequestParent
This sample code shows how after calling forms, you can call the service and deserialize the response to the
BatchRequestParent.

public BatchRequestParent batcRequest(){

 BatchRequestParent batchParent = null;
 try{

18

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 // Get resource bundle for incident category text
 BatchFormRequest batchFormRequest = new BatchFormRequest(loginEnv);

 //recentIncidents - Index 0
 SingleFormRequest formRequest = new SingleFormRequest();
 //formRequest.setFindOnEntry("TRUE");

 formRequest.setReturnControlIDs("1[19,20,21,27,28,41,45,46,47,48,49,50,51,52,54,55,92,174,177,178,181]");
 formRequest.setFormName("P54HS220_W54HS220A");

 //create event holder
 FSREvent recentFSREvent = new FSREvent();
 //add filter actions in order
 // Incident From Date
 recentFSREvent.setFieldValueDate(loginEnv, "150", cal.getTime());
 // Potential Incident
 recentFSREvent.setQBEValue("1[30]", "0");
 // Exclude from Safety Statistics
 recentFSREvent.setQBEValue("1[39]", "0");
 // Press Find Button
 recentFSREvent.doControlAction("15");
 //add event holder to the form request
 formRequest.addFSREvent(recentFSREvent);

 batchFormRequest.getFormRequests().add(formRequest);

 //recentInjuryIllnessIncidents - Index 1
 formRequest = new SingleFormRequest();
 //formRequest.setFindOnEntry("TRUE");

 formRequest.setReturnControlIDs("1[19,20,21,27,28,41,45,46,47,48,49,50,51,52,54,55,92,174,177,178,181]");
 formRequest.setFormName("P54HS220_W54HS220A");

 //create event holder
 FSREvent injuryFSREvent = new FSREvent();
 //add filter actions in order
 // Incident From Date
 injuryFSREvent.setFieldValueDate(loginEnv, "150", cal.getTime());
 // Potential Incident
 injuryFSREvent.setQBEValue("1[30]", "0");
 // Exclude from Safety Statistics
 injuryFSREvent.setQBEValue("1[39]", "0");
 // Injury/Illness checkbox
 injuryFSREvent.setQBEValue("1[33]", "1");
 // Press Find Button
 injuryFSREvent.doControlAction("15");
 //add event holder to the form request
 formRequest.addFSREvent(injuryFSREvent);

 batchFormRequest.getFormRequests().add(formRequest);

 // recentEnvironmentalIncidents - Index 2
 formRequest = new SingleFormRequest();
 //formRequest.setFindOnEntry("TRUE");

 formRequest.setReturnControlIDs("1[19,20,21,27,28,41,45,46,47,48,49,50,51,52,54,55,92,174,177,178,181]");
 formRequest.setFormName("P54HS220_W54HS220A");

 //create event holder
 FSREvent environFSREvent = new FSREvent();
 //add filter actions in order
 // Incident From Date
 environFSREvent.setFieldValueDate(loginEnv, "150", cal.getTime());
 // Potential Incident
 environFSREvent.setQBEValue("1[30]", "0");
 // Exclude from Safety Statistics
 environFSREvent.setQBEValue("1[39]", "0");
 // Environmental checkbox
 environFSREvent.setQBEValue("1[34]", "1");
 // Press Find Button
 environFSREvent.doControlAction("15");
 //add event holder to the form request
 formRequest.addFSREvent(environFSREvent);

19

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 batchFormRequest.getFormRequests().add(formRequest);

 // scoreboard - Index 3
 formRequest = new SingleFormRequest();
 formRequest.setFindOnEntry("TRUE");
 formRequest.setReturnControlIDs("1_20|1_22");
 formRequest.setFormName("P54HSPT_S54HSPTA");
 batchFormRequest.getFormRequests().add(formRequest);

 String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, batchFormRequest,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.BATCH_FORM_SERVICE_URI);

//de-serialize the JSON string into the batchParent object
batchParent = loginEnv.getObjectMapper().readValue(response, BatchRequestParent.class);

}
 catch(JDERestServiceException e)
 {
 //get more specific error string
 String error = JDERestServiceProvider.handleServiceException(e);
 System.out.println(error);
 }
 catch(Exception e)
 {
 //handle other exceptions
 System.out.println(e.getMessage());
 }

 return batchParent;
}

Application Stack Service
The application stack service enables an AIS client to interact with multiple applications running in an ongoing
EnterpriseOne web client session. The application stack service enables more complex interactions with applications
that have cross-form transaction boundaries, for example where you do not want to save the header until the details are
added.

The application stack service supports form interconnects in EnterpriseOne to receive data from the resulting form. For
example, you may want to use an existing sequence of tasks in EnterpriseOne that involves interacting with multiple
forms to perform a transaction: open an initial form; select a record and navigation to a second form; perform an update
that might automatically flow to a third form where you enter more data; and then finally complete the transaction. The
application stack service allows for this type of interaction with EnterpriseOne forms.

To use the application stack service, you must first create an ApplicationStack object, which contains these three types
of operations:

• Open. Open starts a new stack, opening the first form and performing any operations included in the
FormRequest.

• Execute. Subsequent actions on that application stack must use the Execute operation, where you can pass an
ActionRequest with any actions to be performed on the currently open form.

• Close. You can pass a Close operation to close the stack and any open forms on it.

Each response to a stack request includes the current form which might be the form originally requested, or it could be
a new form if navigation to a new form occurred.

Make sure that you are executing actions on the right form. You should use the
getLastAppStackResponse().checkSuccess method before executing actions so you can be sure of the current form.

20

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

You must include the form in the request for actions. If the form in the request does not match the current form on the
stack, the actions will not execute.

The sample code in Example - Application Stack performs operations in a stack of applications in this order:

1. Opens the stack first with the Address Book find/browse form (P01012_W0101B).
2. Executes an action to select a record on that form.
3. Executes another action on the P01012_W01012A form and updates the Name field.
4. Executes another action to press the OK button.
5. Executes another action to press the Close button on W01012A to close the form.
6. Closes the stack.

Example - Application Stack
public void appStack() throws Exception
{

loginEnv.getUsedCapabilities().add("applicationStack");
ApplicationStack appStackAddress = new ApplicationStack();
FormRequest formRequest = new FormRequest(loginEnv);
formRequest.setReturnControlIDs("1");
formRequest.setFormName("P01012_W01012B");

formRequest.setReturnControlIDs("54|1[19,20]");
formRequest.setFormServiceAction("R");
formRequest.setMaxPageSize("5");
FSREvent findFSREvent = new FSREvent();

findFSREvent.setFieldValue("54", "E");
findFSREvent.doControlAction("15"); // Find button
formRequest.addFSREvent(findFSREvent);

ObjectWriter writer = loginEnv.getObjectMapper().writerWithDefaultPrettyPrinter();
out.println(writer.writeValueAsString(formRequest));

//open P01012_W01012B
String response = appStackAddress.open(loginEnv, formRequest);
out.println(writer.writeValueAsString(loginEnv.getObjectMapper().readTree(response)));

//check if in find browse
if (appStackAddress.getLastAppStackResponse().checkSuccess("P01012_W01012B"))
{
//select a record
ActionRequest actionRequest = new ActionRequest();
actionRequest.setReturnControlIDs("28"); //the form changes these return control IDs are
 for the next form
actionRequest.setFormOID("W01012B");
FSREvent selectFSREvent = new FSREvent();
selectFSREvent.selectRow("1", 3);
selectFSREvent.doControlAction("14"); //select button
actionRequest.addFSREvent(selectFSREvent);

response = appStackAddress.executeActions(loginEnv, actionRequest);
out.println(writer.writeValueAsString(loginEnv.getObjectMapper().readTree(response)));

//check if in fix inspect
if (appStackAddress.getLastAppStackResponse().checkSuccess("P01012_W01012A"))

21

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

{
//Change name - now on form A
ActionRequest actionRequestName = new ActionRequest();
actionRequestName.setReturnControlIDs("54|1[19,20]"); //form is going to change again
 these are for the next form
actionRequestName.setFormOID("W01012A");
FSREvent updateFSREvent = new FSREvent();

updateFSREvent.setFieldValue("28", "AIS APP Stack TEST"); //change name field
updateFSREvent.doControlAction("11"); //ok

actionRequestName.addFSREvent(updateFSREvent);

response = appStackAddress.executeActions(loginEnv, actionRequestName);
out.println(writer.writeValueAsString(loginEnv.getObjectMapper().readTree(response)));

 //IMPORTANT: here you would have to de-serialize the response to check if there were
 errors on the form after pressing okay, if so you could continue to close the A form and
 go back to the B form
if (appStackAddress.getLastAppStackResponse().checkSuccess("P01012_W01012A"))
{
//press find again (to see name change) then close the stack
ActionRequest actionRequestClose = new ActionRequest();
FSREvent closeFSREvent = new FSREvent();
actionRequestClose.setReturnControlIDs("54|1[19,20]"); //form is changing these are the
 controls of the returned form
actionRequestClose.setFormOID("W01012A");
closeFSREvent.doControlAction("12"); //close
actionRequestClose.addFSREvent(closeFSREvent);

response = appStackAddress.close(loginEnv, actionRequestClose);
out.println(writer.writeValueAsString(loginEnv.getObjectMapper().readTree(response)));
}
}

}

}

Media Object Operations
Media objects in EnterpriseOne store file attachments and text attachments. The media object operations in the AIS
Client Java API use the following items to identify individual media object attachments for a record:

• Media object name, for example GT00202.

• Media object key to identify the record. This is a bar delimited key string, for example 6540|3|1.

• Sequence number to identify the individual attachment for a record.

Get Text
This operation returns the text in the first text attachment, as shown in the code in Example - Media Object Get Text
Operation:

22

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Example - Media Object Get Text Operation
try{
MediaObjectGetTextRequest moGetText = new MediaObjectGetTextRequest(loginEnv);

moGetText.setFormName("P01012_W01012B");
moGetText.setVersion("ZJDE0001");
moGetText.setMoStructure("ABGT");

//set mo key - in this case it's just AB number
moGetText.addMoKeyValue("7");

MediaObjectGetTextResponse response = MediaObjectOperations.getTextMediaObject(loginEnv,
 moGetText);

System.out.println(response.getText());
}
catch (Exception e){
//handle exception
}

Update Text
This operation updates (replaces or appends to) the first text media object, as shown in the code in Example - Media
Object Update Text Operation:

Example - Media Object Update Text Operation
try{
MediaObjectUpdateTextRequest moSetText = new MediaObjectUpdateTextRequest(loginEnv);
moSetText.setFormName("P01012_W01012B");
moSetText.setVersion("ZJDE0001");
moSetText.setMoStructure("ABGT");

//set mo key
moSetText.addMoKeyValue("7");
moSetText.setAppendText(true);
//set text
moSetText.setInputText("Append This text");

MediaObjectUpdateTextResponse response =
 MediaObjectOperations.updateTextMediaObject(loginEnv, moSetText);

System.out.println("Status " + response.getUpdateTextStatus());
}
catch (Exception e){
//handle exception
}

List
MediaObjectListRequest is the input to the media object getMediaObjectList operation. The following table describes
the attributes in the request that control the list that is returned:

23

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Field Type Description

includeURLs

boolean

Valid values are:

• True

• False

When true, includes the URL for downloading the
media object, which can be used in conjunction with
a download request at a later time. This only applies
to the media object file type.

includeData

boolean

Valid values are:

• True

• False

When true, if the file is an image, it includes the
base64 encoded data for a thumbnail sized image.

moTypes

String

Use a constant defined in
MediaObjectListRequestValid, which includes these
constants:

• MediaObjectListRequest.MO_TYPE_TEXT

• MediaObjectListRequest.MO_TYPE_FILE

• MediaObjectListRequest.MO_TYPE_QUEUE

• MediaObjectListRequest.MO_TYPE_URL

extensions

String

File extensions to include in the response, which
enables you to filter out undesired extensions.

thumbnailSize

<String> int

Size of the thumbnail image returned as base64
data.

The code in Example - Saving Thumbnail Images for Image Media Object Attachments is an example of saving the
set of thumbnail images for image media object attachments. It includes specified extensions for the first file type
attachments. The includeData value is set to include the thumbnail data. If the file is not a PDF (a non-image type), the
thumbnail data is saved to a local file.

Example - Saving Thumbnail Images for Image Media Object Attachments
import Java.awt.image.BufferedImage;
import sun.misc.BASE64Decoder;

public void listMediaObject() throws Exception
{
final String MO_STRUCTURE = "ABGT";
final String MO_APP = "P01012_W01012B";
final String MO_VERSION = "ZJDE0001";
final String MO_KEY = "479";
final int MO_THUMBSIZE = 50;
final String FILE_LOCATION = "C:\\temp\\AISClientDownloads\\";

//set request info include URLs so they don't have to be fetched later
MediaObjectListRequest mediaObjectListRequest = new MediaObjectListRequest(loginEnv);
mediaObjectListRequest.setFormName(MO_APP);

24

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

mediaObjectListRequest.setVersion(MO_VERSION);
mediaObjectListRequest.setIncludeURLs(false);
mediaObjectListRequest.setIncludeData(true);
mediaObjectListRequest.setMoStructure(MO_STRUCTURE);
mediaObjectListRequest.setThumbnailSize(MO_THUMBSIZE); //available in tools 9.1.5+ only

//set the moKey
mediaObjectListRequest.addMoKeyValue(MO_KEY);

// - Date Example, if MO key includes a date value -
//mediaObjectListRequest.addMoKeyValue(AISClientUtilities.convertMillisecondsToYMDString(mydate.getTime()));

//I only want
filesmediaObjectListRequest.addMoType(mediaObjectListRequest.MO_TYPE_FILE);
mediaObjectListRequest.addMoType(mediaObjectListRequest.MO_TYPE_QUEUE);

//I only want these types
mediaObjectListRequest.addExtension("jpg");
mediaObjectListRequest.addExtension("gif");
mediaObjectListRequest.addExtension("jpeg");
mediaObjectListRequest.addExtension("pdf");

//get the list of available files for this media object
MediaObjectListResponse mediaObjectListResponse = MediaObjectOperations.getMediaObjectList(loginEnv,
 mediaObjectListRequest);

if (mediaObjectListResponse != null)
{

for (int i = 0; i < mediaObjectListResponse.getMediaObjects().length; i++)
{

FileAttachment fileAt = new FileAttachment();
fileAt.setThumbFileLocation(mediaObjectListResponse.getMediaObjects()[i].getThumbFileLocation());
fileAt.setItemName(mediaObjectListResponse.getMediaObjects()[i].getItemName());
fileAt.setFileName(mediaObjectListResponse.getMediaObjects()[i].getFile());
fileAt.setDownloadUrl(mediaObjectListResponse.getMediaObjects()[i].getDownloadUrl());
fileAt.setSequence(mediaObjectListResponse.getMediaObjects()[i].getSequence());

//if it's an image, save the thumnail data to a file
if (!fileAt.getFileName().contains("pdf"))
{
BufferedImage image = decodeToImage(mediaObjectListResponse.getMediaObjects()[i].getData());
if (image != null)
{
File file = new File(fileAt.getFileName());

File outputfile = new File(FILE_LOCATION + "thumb_" + file.getName());
ImageIO.write(image, "jpg", outputfile);
}

}
}

}
}
 public static BufferedImage decodeToImage(String imageString)
 {

 BufferedImage image = null;
 byte[] imageByte;
 try
 {
 BASE64Decoder decoder = new BASE64Decoder();
 imageByte = decoder.decodeBuffer(imageString);
 ByteArrayInputStream bis = new ByteArrayInputStream(imageByte);
 image = ImageIO.read(bis);
 bis.close();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

25

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 return image;
 }

Upload
To upload a file, you need to provide the media object data structure key information:

• A string with the location of the local file to be uploaded.

• A name for the item. If you do not supply a name, the file name is used.

The code in Example - Media Object Upload uploads a file to the Address Book media object for address book number
479. The response to the upload request will print the name and sequence number of the new record.

Example - Media Object Upload
public void uploadFile(String fileLocation, String itemName) throws Exception
{

final String MO_STRUCTURE = "ABGT";
final String MO_APP = "P01012_W01012B";
final String MO_VERSION = "ZJDE0001";
final String MO_KEY = "479";

MediaObjectUploadRequest mediaObjectUploadRequest = new
 MediaObjectUploadRequest(loginEnv);
mediaObjectUploadRequest.setFormName(MO_APP);
mediaObjectUploadRequest.setVersion(MO_VERSION);
mediaObjectUploadRequest.setMoStructure(MO_STRUCTURE);

//set the moKey
mediaObjectUploadRequest.addMoKeyValue(MO_KEY);

String fileLocation = "C:\\temp\\images\\IMG_20001.jpg";
String itemName = "Joe's Photo";
FileAttachment newFileAttachment = new FileAttachment();
newFileAttachment.setFileLocation(fileLocation);
newFileAttachment.setItemName(itemName);

//set the file to the new one they just saved
mediaObjectUploadRequest.setFile(newFileAttachment);

//Upload to Server
MediaObjectUploadResponse response = MediaObjectOperations.uploadMediaObject(loginEnv,
 mediaObjectUploadRequest);

out.println("NEW MO: " + response.getItemName());
out.println("NEW MO SEQ: " + response.getSequence());

}

26

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Download
To download a file, you can provide the following input:

• downloadURL. (String) (Optional) If you requested this value from the list request, send it to the server and it
will save the step of fetching this URL. If you do not pass a value, the URL will be fetched by AIS.

• sequence. (int) (Required) The sequence number of the attachment for this media object record.

• height. (int) (Optional) If the file you are downloading is an image, the AIS Server will scale the image to the
requested height.

• width. (int) (Optional) If the file you are downloading is an image, the AIS Server will scale the image to the
requested width.

• fileName. (String) (Required) Provide a name for the downloaded file, if desired you can use the same name
returned in the list response.

The code in Example - Media Object Download is an example of downloading a media object attachment. Executing the
getMediaObjectList operation produces a FileAttachment object that contains the sequence and media object file name.
It passes the FileAttachment object into this method where a call is made to downloadMediaObject operation (passing a
desired file location). The response will include the location of the saved file.

Example - Media Object Download
public void downloadFile(FileAttachment fileAt) throws Exception
{

final String MO_STRUCTURE = "ABGT";
final String MO_APP = "P01012_W01012B";
final String MO_VERSION = "ZJDE0001";
final String MO_KEY = "479";
final String FILE_LOCATION = "C:\\temp\\AISClientDownloads\\";

//set the download request info - don't need mo key because we have the list already
MediaObjectDownloadRequest mediaObjecDownloadRequest = new
 MediaObjectDownloadRequest(loginEnv);

mediaObjecDownloadRequest.setFormName(MO_APP);
mediaObjecDownloadRequest.setVersion(MO_VERSION);
mediaObjecDownloadRequest.setMoStructure(MO_STRUCTURE);
mediaObjecDownloadRequest.setWidth(700);
mediaObjecDownloadRequest.addMoKeyValue(MO_KEY);
mediaObjecDownloadRequest.setSequence(fileAt.getSequence());
mediaObjecDownloadRequest.setFileName(fileAt.getFileName());

// download the file and save to file location
MediaObjectDownloadResponse mediaObjecDownloadResponse =
 MediaObjectOperations.downloadMediaObject(loginEnv, mediaObjecDownloadRequest,
 FILE_LOCATION);

out.println("Downloaded File: " + mediaObjecDownloadResponse.getFile().getFileLocation());

}

27

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Add URL (API 1.0)
To add a URL type media object, provide the media object keys as well as the URL text, such as:

http://www.domainname.com.

The code in Example - Adding a URL Media Object is an example of adding a URL type media object:

Example - Adding a URL Media Object
public void addURL() throws Exception {

 final String MO_STRUCTURE = "ABGT";
 final String MO_APP = "P01012_W01012B";
 final String MO_VERSION = "ZJDE0001";
 final String MO_KEY = "479";
 final String URL_TEXT = "http://www.google.com";

 //set request info include URLs so they don't have to be fetched later
 MediaObjectAddUrlRequest mediaObjectAddUrlRequest = new
 MediaObjectAddUrlRequest(loginEnv);

 mediaObjectAddUrlRequest.setFormName(MO_APP);
 mediaObjectAddUrlRequest.setVersion(MO_VERSION);
 mediaObjectAddUrlRequest.setMoStructure(MO_STRUCTURE);

 mediaObjectAddUrlRequest.addMoKeyValue(MO_KEY);
 mediaObjectAddUrlRequest.setUrlText(URL_TEXT);

 MediaObjectAddUrlResponse mediaObjectAddUrlResponse = new MediaObjectAddUrlResponse();

 mediaObjectAddUrlResponse = MediaObjectOperations.addUrlMediaObject(loginEnv,
 mediaObjectAddUrlRequest);

 System.out.println("Saved URL: " + mediaObjectAddUrlResponse.getSaveURL());
 System.out.println("Sequence: " + mediaObjectAddUrlResponse.getSequence());

}

Delete
To delete a media object file, provide the media object keys and the individual sequence of the attachment you want to
delete.

The code in Example - Deleting a Media Object is an example of deleting a media object file. This example assumes the
FileAttachment object has already been created. It uses the sequence and location values from that object to request
the delete operation.

Example - Deleting a Media Object
public void deleteFile(FileAttachment fileAt) throws Exception
{

28

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

MediaObjectDeleteRequest mediaObjectDelete = new MediaObjectDeleteRequest(loginEnv);

//set request info
mediaObjectDelete.setFormName(MO_APP);
mediaObjectDelete.setVersion(MO_VERSION);
mediaObjectDelete.setMoStructure(MO_STRUCTURE);

//set mo key
mediaObjectDelete.addMoKeyValue(MO_KEY);
mediaObjectDelete.setSequence(fileAt.getSequence());
mediaObjectDelete.setFileLocation(fileAt.getFileLocation());

//call delete operation to remove from E1 server and remove from local file system
MediaObjectDeleteResponse response = MediaObjectOperations.deleteMediaObject(loginEnv,
 mediaObjectDelete);

System.out.println("MO Delete Response Status " + response.getDeleteStatus());

}

Processing Option Service
The AIS Server provides a processing option service that enables you to retrieve the processing option fields and values
for an application and version in EnterpriseOne.

The key strings can be derived by creating a type definition on the PO Data Structure in Object Management
Workbench (OMW). The italicized portion of the #define below shows the key string for the example.

#define IDERRmnNetQuebecTaxCredit_27 27L

There are six supported data types. These are based on the data item used in the Processing Option Design Aid for each
option.

You can get the type of the option before attempting to cast it, which is the recommended method. Or you can just cast
it to the type you expect, because it is unlikely to change. The default is String, so you will always be able to get to a
string version of the option value.

Type Code Type Constant Java Type JDE DD Type

1

STRING_TYPE

String

String

2

CHAR_TYPE

String

Character

9

BIG_DECIMAL_TYPE

BIG Decimal

Math Numeric

11

DATE_TYPE

Date

Date

15

INTEGER_TYPE

Integer

Integer

29

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Type Code Type Constant Java Type JDE DD Type

55

CALENDAR_TYPE

Calendar

Utime

The code in Example - Retrieving Processing Options with the Processing Option Service is an example of retrieving
processing options for P0801, version ZJDE0001. First it populates the request values and calls the poRequest service.
After deserializing the response to a ProcessingOptionSet object, it uses the getOptionValue method to retrieve the
value for a specific processing option based on the key string.

Example - Retrieving Processing Options with the Processing
Option Service
public void processingOption()throws Exception{

//add capability to used (or add during login to required)
loginEnv.getUsedCapabilities().add("processingOption");
ProcessingOptionRequest poRequest = new ProcessingOptionRequest(loginEnv);
poRequest.setApplicationName("P0801"); //application
poRequest.setVersion("ZJDE0001"); //version

String response =
JDERestServiceProvider.jdeRestServiceCall(loginEnv, poRequest,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.PO_SERVICE);

//response can be serialized to ProcessingOptionSet class
ProcessingOptionsSet poSet = loginEnv.getObjectMapper().readValue(response,
 ProcessingOptionsSet.class);

//get the value for quebec tax credit using key string
BigDecimal quebecTaxCred = (BigDecimal)poSet.getOptionValue("mnNetQuebecTaxCredit_27");

System.out.println("mnNetQuebecTaxCredit_27 value: " + quebecTaxCred);
}

Task Authorization Service
The task authorization service enables you to retrieve the authorized tasks in a specific EnterpriseOne task view or
under a specific task within a task view.

The code in Example - Retrieving Tasks with the Task Authorization Service is an example of retrieving the tasks under
task view 18.

Example - Retrieving Tasks with the Task Authorization Service
public void taskAuthorization() throws Exception
{

String taskViewId = "18";

30

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

loginEnv.getRequiredCapabilities().add("taskAuthorization");
TaskAuthorizationRequest taksAuthReq = new TaskAuthorizationRequest(loginEnv);
taksAuthReq.setTaskViewId(taskViewId);

String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, taksAuthReq,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.TASK_AUTHORIZATION);

//response can be serialized to TaskAuthorizationResponse class
TaskAuthorizationResponse taskAuthResp = loginEnv.getObjectMapper().readValue(response,
 TaskAuthorizationResponse.class);
System.out.println(writer.writeValueAsString(taskAuthResp));

 }

The TaskAuthorizationResponse object contains and array of Task type object, each with its own array of Task type
objects. Although the structure supports an "infinite" number of levels, the service returns only two levels below the top
task view or menu requested. You may call the service again to drill down two more levels, and so on.

To drill down another two levels, pass values in for taskViewId, taskId, and parentTaskId (which you received from the
original request). The results will include children two levels down from the taskViewId passed.

Note:

• JD Edwards EnterpriseOne Tools Solution Explorer Guide for information about tasks and task views in
EnterpriseOne.

31

olink:EOTSX00025

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Logging Service
The logging service enables the AIS client to log a message in the AIS Server log. The code in Example - Logging Service
Code is an example of using the logging service.

Example - Logging Service Code
//do this once and it will be stored in the login environment to be used over and over,
 values are optional, they will just show as null in the log if you don't set them
loginEnv.setApplicationName("My Client Application");
loginEnv.setApplicationVersion("Client Version");

//do this every time you want to send a log to AIS
AISClientLogger.log(loginEnv, "Warn Log sent from Client to AIS
 Server",AISClientLogger.WARN);

In this example, the log entry in the AIS Server log would be:

AIS LOG REQUEST: --Level 2 --Application: My Client Application --Application Version:
 Client Version --User: jde --Device Name: javaclient --Log Message: Warn Log sent from
 Client to AIS Server

Query Support
The AIS Client Java API supports sending an ad hoc query to EnterpriseOne. Starting with EnterpriseOne release 9.2.0.2
and AIS Client Java API 1.3.1, it also supports invoking an existing query. You can configure an AIS client to perform one
or the other, not both.

You can include an ad hoc query in a form service request. You can include an invocation of an existing query in a form
service request or data service request.

This section contains the following topics:

• Adding an Ad Hoc Query

• Adding a Request to an Existing (Saved) Query (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)

• Additional Query Capabilities (API 1.4.2 and EnterpriseOne Tools 9.2.1)

Adding an Ad Hoc Query
You can configure a form service request to send ad hoc queries to EnterpriseOne web client application forms that
support the query control.

32

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

To add a query, you include a single query object in the form service request. A query object includes parameters that
contain the same query criteria that you would use to set up a query in EnterpriseOne. The parameters determine:

• How the query runs.

You can configure query option parameters to load grid records in the form or clear all other fields in the form
before the query runs. You can also specify whether the results of the query should match all (AND) or any (OR)
of the conditions specified in the query.

• The conditions of the query.

The query object includes condition parameters that specify the control ID of the columns or fields that you
want to query and an operator for filtering results that are equal to, greater than, or less than a particular value.

Note: Queries will work only if the field or columns identified in the query are part of the business view.

• The value used for the search criteria in the query.

The query object includes value parameters that specify the value or range of values that you want displayed in
the query results.

Before you add a query object to a form service request, access the form in the EnterpriseOne web client and use the
query control to gather the criteria for the query object parameters. For more information about setting up a query, see
"Understanding the Query Control" in the JD Edwards EnterpriseOne Tools Using and Approving User Defined Objects
Guide .

Also, in the EnterpriseOne form, you need to identify the control ID of the field or column that you want to query, and
verify that the field or column is part of the business view. To do so, click the Help button (question mark in the upper
right corner of a form) and then click the Item Help option to access field-level help. With the field level help activated,
you can click in a field or column to access the control ID and business view information, which is displayed under the
Advanced Options section as shown in Example - Example of Control ID and Business View Information Displayed under
Advanced Options in the EnterpriseOne Web Client Item Help.

Example - Example of Control ID and Business View Information Displayed under
Advanced Options in the EnterpriseOne Web Client Item Help

In the Item Help, the syntax of the control ID is 1.20 with 1 representing the grid ID and 20 representing the column ID,
which are separated by a dot (.). In the parameter for the query request, the same control ID must be presented with the
following syntax: 1[20]. See Table 4: Query Condition Parameters for more information.

33

olink:EOTPR166
olink:EOTPR166

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Query Object Parameters
The following tables provide descriptions of the option, condition, and value parameters for a query object.

Query Option Parameters

Parameter Description Values

autoFind

Directs the query to automatically press Find
on the form to populate the grid records. You
do not need to include events to press the
Find button if you use autoFind.

true, false

matchType

Determines if you want the query to search
for records that match all (AND) or any (OR)
of the specified conditions.

MATCH_ALL, MATCH_ANY

autoClear

Determines if you want to clear all other fields
on the form (for example default filter fields).

true, false

Query Condition Parameters

Parameter Description Value

controlId

The control ID that the condition applies to.
This is the field that you add to the query
from the form when using the web client
to create a Query. It is either a filter field or
a grid column that is associated with the
business view.

Example of control IDs:

"28", "1[34]"

operator

The comparison operation to use with the
query.

For all types, valid values are:

BETWEEN, LIST, EQUAL, NOT_
EQUAL, LESS, LESS_EQUAL,
 GREATER, GREATER_EQUAL

For strings, valid values are:

STR_START_WITH, STR_END_
WITH, STR_CONTAIN, STR_
BLANK, STR_NOT_BLANK

Query Value Parameters

Parameter Description Value

content

This is either a literal value to be used in
the comparison operation, or it relates to a
special value ID.

Examples of values are:

"23", "Joe", "2"

34

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Parameter Description Value

specialValueId

This is a special value, mostly for dates
that might be the current day (TODAY), or
calculated dates from the current day. For
calculated dates, the content field is used in
the calculation.

Valid values are:

LITERAL, TODAY, TODAY_
PLUS_DAY, TODAY_MINUS_DAY,
 TODAY_PLUS_MONTH, TODAY_
MINUS_MONTH, TODAY_PLUS_
YEAR, TODAY_MINUS_YEAR

Example - Query - Java API
The sample code in this example shows a query executed in the W42101C form. This query attempts to match the
following specified conditions:

• Line Number equal to 2.

• Requested Date within the last 2 years.

• Sold To between 7000 and 8000.

• Company is one of the values in the list "00070,00077".

The response will contain the JSON for the form with the matching records in the grid.

 public void queryP42101() throws Exception
 {

 loginEnv.getUsedCapabilities().add("query");
 FormRequest formRequest = new FormRequest(loginEnv);
 formRequest.setFormName("P42101_W42101C");
 formRequest.setReturnControlIDs("350|360|41[129,130,116,125]");
 formRequest.setFormServiceAction(formRequest.ACTION_READ);
 formRequest.setFindOnEntry("TRUE");
 formRequest.setMaxPageSize("20");
 Query query = new Query(loginEnv);

 //auto find
 query.setAutoFind(true);

 //match all
 query.setMatchType(Query.MATCH_ALL);

 //clear any defaulted filters
 query.setAutoClear(false);

 //line number equals 2
 NumberCondition condN = query.addNumberCondition("41[129]",
 NumericOperator.EQUAL());
 condN.setValue(2);

 //Requested Date within two years from today
 DateCondition condD = query.addDateCondition("41[116]", DateOperator.GREATER());
 condD.setSpecialDateValue(DateSpecialValue.TODAY_MINUS_YEAR(), 2);

 //Sold To 125
 BetweenCondition condST = query.addBetweenCondition("41[125]");
 condST.setValues("7000", "8000");

35

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 //company in list
 ListCondition list1 = query.addListCondition("360");
 list1.addValue("00070");
 list1.addValue("00077");

 //set it in the request
 formRequest.setQuery(query);

 ObjectWriter writer = loginEnv.getObjectMapper().writerWithDefaultPrettyPrinter();
 out.println(writer.writeValueAsString(formRequest));

 String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, formRequest,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.FORM_SERVICE_URI);

}

Adding a Request to an Existing (Saved) Query (API 1.3.1 and
EnterpriseOne Tools 9.2.0.2)
The AIS Client Java API includes a QueryObjectName parameter in both the FormServiceRequest and
DataServiceRequest objects. You can include a query object name in this parameter to invoke an existing query in
EnterpriseOne through a form service request or a data service request.

You can locate the query object name in the EnterpriseOne web client.

CAUTION: In a data service request, do NOT use the queryObjectName parameter if the DataService type is a
COUNT. The result will not be accurate because a saved query cannot be applied to a COUNT type data service
request.

Additional Query Capabilities (API 1.4.2 and EnterpriseOne Tools
9.2.1)
This sections describes the following services for working with saved queries and ad hoc queries:

• List Available Queries

• Get Query Details

• Complex Query

• Application Query In Data

• Query Combining

• Query with Aggregation

36

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

List Available Queries
The "list available queries" service retrieves a list of available queries for an application for the current user. Example -
LIst Available Queries is an example of the Java code. Example - LIst Available Queries is an example of the response in
JSON.

Example - LIst Available Queries
//create the request
ListAvailableQueriesRequest queriesRequest = new ListAvailableQueriesRequest(loginEnv);
//Pass in the application name and form name.
queriesRequest.setAppName("P01012");
queriesRequest.setFormName("W01012B");
//excute the call
ListAvailableQueriesResponse responseObjects = queriesRequest.execute();
//Response contains a list of UDO objects grouped by their UDO status
//Get the omwObjectName for the first (0) shared (4) query object
String omwObjectName =
 responseObjects.getUdoObjects().get(4).getItems().get(0).getOmwObjectName()

Example - List Available Queries JSON Response
{
 "managerTitle" : "Query Manager",
 "udoObjects" : [{
 "group" : "Personal",
 "items" : [{
 "name" : "6001",
 "omwObjectName" : "QRY01012B_1607180001CUST",
 "user" : "JDE",
 "description" : "6001",
 "app" : "P01012",
 "form" : "W01012B",
 "version" : "ZJDE0001"
 }]
 }, {
 "group" : "Pending Approval",
 "items" : [{
 "name" : "Simple EE Search",
 "omwObjectName" : "QRY01012B_1606300001CUST",
 "user" : "JDE",
 "description" : "Simple EE Search",
 "app" : "P01012",
 "form" : "W01012B",
 "version" : "ZJDE0001"
 }]
 }, {
 "group" : "Rework"
 }, {
 "group" : "Reserved"
 }, {
 "group" : "Shared",
 "items" : [{
 "name" : "All",
 "omwObjectName" : "QRY01012B_1602160001CUST",
 "user" : "*PUBLIC",
 "description" : "All in the name",
 "app" : "P01012",
 "form" : "W01012B",

37

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 "version" : "ZJDE0001"
 }]
 }],
 "activeObject" : {
 "name" : "C",
 "omwObjectName" : "QRY01012B_1608240001CUST",
 "user" : "JDE",
 "description" : "C"
 }
}

Get Query Details
The "get query details" service retrieves the details of an individual query by passing the omwObjectName. Example
- Get Query Details is an example of the Java code. Example - Get Query Details JSON Response is an example of the
response in JSON.

Example - Get Query Details
//create the request
GetQueryByKeyRequest getindividual = new GetQueryByKeyRequest(loginEnv);
//set the OMW object name getindividual.setOmwObjectName("QRY01012B_1603150008CUST");
//execute the request
GetQueryByKeyResponse resp = getindividual.execute();

Example - Get Query Details JSON Response
{
 "activeObject" : {
 "name" : "6001",
 "omwObjectName" : "QRY01012B_1603150008CUST",
 "user" : "*PUBLIC",
 "description" : "6001",
 "metaData" : {
 "bsvw" : "V0101E",
 "andQuery" : true,
 "autoClear" : false,
 "autoFind" : true,
 "conditions" : [{
 "leftServerId" : "qbe0_1.19",
 "leftId" : "qbe0_1.0",
 "ddAlias" : "AN8",
 "table" : "F0101",
 "dataType" : 0,
 "display" : "Address Number (QBE)",
 "rightWidth" : 84,
 "maxLength" : 8,
 "operatorId" : 5,
 "rightOperand" : [{
 "value" : "6001",
 "svId" : 0
 }]
 }]
 }
 }
}

38

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Complex Query
The complex query service provides the capability to combine multiple ad hoc query objects with AND/OR relationships
in a single service request. Use this service to add more complex filtering than is available in a single query object.

Example - Complex Query shows a complex query that will find and return records that contain the words "red" AND
"bike" in any of the four specified columns.

Example - Complex Query
DataRequest f4101 = new DataRequest(loginEnv);
f4101.setDataServiceType(DataRequest.TYPE_BROWSE);
f4101.setTargetName("F4101");
f4101.setTargetType(DataRequest.TARGET_TABLE);
f4101.setFindOnEntry(FormRequest.TRUE);
 f4101.setReturnControlIDs("F4101.ITM|F4101.DSC1|F4101.DSC2|F4101.SRTX|
F4101.LITM");

f4101.setOutputType(loginEnv, DataRequest.GRID_DATA_OUTPUT_TYPE);

f4101.addOrderBy(loginEnv, "F4101", "ITM", OrderByDirection.ORDER_DIRECT_ASCENDING());

Query red = new Query(loginEnv);
red.setMatchType(Query.MATCH_ANY);
red.addStringCondition("F4101.DSC1", StringOperator.CONTAINS(), "red");
red.addStringCondition("F4101.DSC2", StringOperator.CONTAINS(), "red");
red.addStringCondition("F4101.SRTX", StringOperator.CONTAINS(), "red");
red.addStringCondition("F4101.LITM", StringOperator.CONTAINS(), "red");

Query bike = new Query(loginEnv);
bike.setMatchType(Query.MATCH_ANY);
bike.addStringCondition("F4101.DSC1", StringOperator.CONTAINS(), "bike");
bike.addStringCondition("F4101.DSC2", StringOperator.CONTAINS(), "bike");
bike.addStringCondition("F4101.SRTX", StringOperator.CONTAINS(), "bike");
bike.addStringCondition("F4101.LITM", StringOperator.CONTAINS(), "bike");

ComplexQuery complexQuery = new ComplexQuery();
complexQuery.setAutoFind(true);
complexQuery.addQueryAnd(red);
//put an AND operator between the two conditions
complexQuery.addQueryAnd(bike);

f4101.setQuery(complexQuery);

String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, f4101,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.DATA_SERVICE_URI);

Application Query In Data
The "application query in data" service provides the capability to invoke a saved query within a data service call. The
"application query in data" service can invoke a saved query associated to an application form.

The data service provides data query or count requests over tables or business views. However, users most often build
their queries in the application form, not in the EnterpriseOne Data Browser. Application forms use the same business
views that are available to data service calls. Therefore, in the "application query in data" service, you can specify the
business view associated with the form that contains the saved queries. This enables you to call a saved query in a form
when calling a data service over that same business view.

39

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

To identify the business view associated with a form that contains the saved queries, you can run a form service request
in demo mode using the setFormServiceDemo(true) method. The response displays the business view name, for
example:

"bsvwName" : "V060116B",

You can use the available query service to identify the queries defined for that form and their OMW object IDs. You can
then pass the query ID into the queryObjectName parameter of the data request, for example:

dataRequest.setQueryObjectName(loginEnv, "QRY0801A_1606010003CUST");

The query associated with the application can then be applied to the data request call.

Query Combining
The query combining service provides the capability to include both a saved query and an ad hoc query in form service
and data service requests. Query combining enables you to apply both sets of filters, essentially putting an AND
operation between them. This can be useful if you want to include a generic query that you always want to apply (the
saved query) with an ad hoc query that can change on each request to filter the results even further.

Query with Aggregation
The "query with aggregation" service provides the capability to include a saved query, ad hoc query, or both in a data
aggregation request. This enables you to reduce the records included in any aggregation. If you include both, the saved
query and ad hoc query are applied using an AND operation.

Jargon Service
The jargon service enables you to retrieve data item descriptions for any EnterpriseOne data dictionary item based on
the users language and jargon (system) code. This service depends on language packs applied to the EnterpriseOne
system as well as data item description overrides entered with jargon codes. If there is no language pack or overrides,
the base data item description is returned.

The capability name for the jargon service is "jargon". The AIS Server must have this capability to be able to process
jargon service requests.

Example - Jargon Service Java API
In this example, several data items are loaded into the JargonRequest object, the service is called, and the descriptions
in the response are printed out.

public void jargonService() throws Exception
 {
 //this uses the jargon capability
 loginEnv.getRequiredCapabilities().add("jargon");

 //create the request object, seeding it with a default system code of 01
 JargonRequest jargonRequest = new JargonRequest(loginEnv, "01"); // with default
 system code

 //fill the list in the request with data items
 jargonRequest.addDataItem("AN8"); //uses default system code

40

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 jargonRequest.addDataItem("MCU","04"); //use system code 04 for this one
 jargonRequest.addDataItem("PAN8");
 jargonRequest.addDataItem("ITM","55");

 //call the jargon service
 String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv,
 jargonRequest, JDERestServiceProvider.POST_METHOD,
 JDERestServiceProvider.JARGON_SERVICE);

 //response can be serialized to JargonResponse class
 JargonResponse jargonResponse = loginEnv.getObjectMapper().readValue(response,
 JargonResponse.class);

 //print the response
 if(jargonResponse != null)
 {
 if(jargonResponse.getRequestedItems() != null &&
 jargonResponse.getRequestedItems().size() >0)
 {
 for(JargonResponseItem item: jargonResponse.getRequestedItems())
 {
 System.out.println("Item " + item.getSzDict() + " " +
 item.getRowDescription());
 }
 }
 }
 }

Data Service (API 1.1.0)
This section contains the following topics:

• Understanding the Data Service

• Determining the Maximum Records Returned in a Data Service

• Data Service Data Aggregation (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)

• Data Service Data Aggregation - Currency Decimals Support (API 1.3.3 and EnterpriseOne Tools 9.2.0.3)

Understanding the Data Service
The AIS Server provides an endpoint called "dataservice" for data query or count requests over tables or business views.

Data service calls are made using the DataRequest object. If you use the data service, you must include the
"dataservice" capability in the required or used capabilities list.

Data Service Request Required Parameters

Parameter Description Values

targetName The name of the table or view to count or query. Example values: F0101 or V4210A

41

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Parameter Description Values

targetType

The object type to count or query: table or business view.

DataRequest.TARGET_TABLE

DataRequest.TARGET_VIEW

dataServiceType

The type of operation to be performed: count or query
(represented by the value BROWSE).

DataRequest.TYPE_COUNT

DataRequest.TYPE_BROWSE

Data Service Request Optional Parameters

Parameter Description Values

findOnEntry

This parameter determines if the service performs an
automatic find.

FormRequest.TRUE

FormRequest.FALSE

returnControlIDs

The columns of the table or business view to be returned
in a query response (pipe delimited).

Example values:

F0101.AN8|F0101.PA8|F0101.ALPH

query

A query object which is built using column IDs for the
control IDs.

OrderBy (Available
starting with
EnterpriseOne Tools
9.2.0.5 and API 1.4.0)

For calls to an EnterpriseOne Find/Browse form, you
can include an order by clause, using the column names
(F0101.AN8) and ascending or descending order. Results
are sorted by the requested columns, in the order they
were added.

Example - Data Service Java API
This example shows both a browse and a count of the F0101 table, including a query. The response from the browse is
assembled into a class (not included) that was generated with the AIS Client Class Generator for F0101 data service. The
count response is assembled into a simple HashMap and printed.

//add to the used capabilities
loginEnv.getUsedCapabilities().add(AISClientCapability.DATA_SERVICE);
loginEnv.getUsedCapabilities().add(AISClientCapability.DATA_SERVICE_ORDERBY);

//create a new DataReqeust
DataRequest f0101 = new DataRequest(loginEnv);

//Set table information, this is a browse of F0101
f0101.setDataServiceType(DataRequest.TYPE_BROWSE);
f0101.setTargetName("F0101");
f0101.setTargetType(DataRequest.TARGET_TABLE);
f0101.setFindOnEntry(FormRequest.TRUE);

//set return control ids, only these three columns will be in the response

42

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

f0101.setReturnControlIDs("F0101.AN8|F0101.ALPH|F0101.AT1");

//only return the first 10 records
f0101.setMaxPageSize("10");

//create a new query, for address numbers greater than 7000
Query greaterQ = new Query(loginEnv);
greaterQ.setAutoFind(true);
greaterQ.setMatchType(Query.MATCH_ALL);
greaterQ.addStringCondition("F0101.AN8", StringOperator.GREATER(), "7000");
f0101.setQuery(greaterQ);

//order byf0101.addOrderBy(loginEnv,"F0101", "AT1",
 OrderByDirection.ORDER_DIRECT_ASCENDING());f0101.addOrderBy(loginEnv,"F0101", "AN8",
 OrderByDirection.ORDER_DIRECT_DESCENDING())

//execute the data request
String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, f0101,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.DATA_SERVICE_URI);

//marshal the response to a formparent class generated by the class generator
DATABROWSE_F0101_FormParent f010Data
 =loginEnv.getObjectMapper().readValue(response,DATABROWSE_F0101_FormParent.class);

//modify the type to count, and get a count response for the same query
f0101.setDataServiceType(DataRequest.TYPE_COUNT);
String countresponse = JDERestServiceProvider.jdeRestServiceCall(loginEnv, f0101,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.DATA_SERVICE_URI);

//loop through the records in the response printing out the values
ArrayList<DATABROWSE_F0101_GridRow> rowSet =
 f010Data.getFs_DATABROWSE_F0101().getData().getGridData().getRowset();
if (rowSet.size() > 0)
{
 for (DATABROWSE_F0101_GridRow row: rowSet)
 {
System.out.println("Name: " + row.getSAlphaName_54().getValue());
System.out.println("Number: " + row.getMnAddressNumber_51().getValue());
System.out.println("Search Type: " + row.getSSchTyp_59().getValue());

System.out.println(" ");
 }
}
else
{
 fail("No Records in Reponse");
}

//marshal and print out the count response
HashMap countRespMap = loginEnv.getObjectMapper().readValue(countresponse, HashMap.class);

HashMap countMap = (HashMap)countRespMap.get("ds_F0101");
System.out.println(countMap.get("count"));

43

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Determining the Maximum Records Returned in a Data Service
In a service request that returns rows in a grid, the AIS Server will return a maximum of 100 rows by default. If you want
to return all records, include the following method in the form service request:

dataRequest.setMaxPageSizeUnlimited();

Data Service Data Aggregation (API 1.3.1 and EnterpriseOne Tools
9.2.0.2)
Data service data aggregation provides the capability to request an aggregation of values in a data service request.
To perform aggregation functions over records from tables or business views, you must add both dataservice and
dataServiceAggregation to the used capabilities list before using the aggregation APIs.

The following aggregation information is sent in the DataRequest object attribute:

aggregation, AggregationInfo object

You can also include a query in a data service data aggregation. See Query with Aggregation in this guide for more
information.

Aggregation Arrays
An aggregation consists of the following three arrays of objects:

• aggregations Array

• groupBy Array

• orderBy array

aggregations Array

An array of columns with their associated aggregation type.

groupBy Array

An array of columns to group by.

Starting with API 1.4.2 and EnterpriseOne Tools 9.2.1, if grouping by a date field, you have the following additional
options:

• Use the specialHandling field of the column in the groupBy array to indicate desired date formatting for the
date groups. Possible specialHandling values are:

◦ "User" – Uses the EnterpriseOne user's preferred date format.

◦ "CALQTR" – Uses the four digit year and two digit month format, for example 2016-10.

◦ SimpleDateFormat - Uses the simple date format that you supply, such as yyyy-MM-dd. Refer to the
following Java documentation for the types of date format strings:

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

• Use APIs to create group by requests with these values:

44

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

//add a group by for users date preferenceaggregation.addAggregationGroupBy("F4211",

"DRQJ",AggregationInfo.DATE_USER_FORMATED)

//OR add a group by with SimpleDateFormatSimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
aggregation.addAggregationGroupBy("F4211", "DRQJ",sdf);

By default, the output of date groups is milliseconds.

The following code is an example of JSON for an aggregation object with a special date format used for groupBy:

"aggregation" : {
 "aggregations" : [{
 "column" : "UPRC",
 "aggregation" : "SUM"
 }, {
 "column" : "*",
 "aggregation" : "COUNT"
 }],
 "groupBy" : [{
 "column" : "F4211.DRQJ",
 "specialHandling" : "yyyy-MM-dd"
 }],
 "orderBy" : [{
 "column" : "F4111.DRQJ",
 "direction" : "ASC"
 }]
 }

orderBy array

An array of columns to order by with the direction. There are two possible directions to order by:

• Ascending, which uses the following constant:

OrderByDirection.ORDER_DIRECT_ASCENDING()

• Descending, which uses the following constant:

OrderByDirection.ORDER_DIRECT_DESCENDING()

You can also order by an aggregation result.

Aggregation Types
The following table describes the seven column-specific aggregation types that are available. You can combine more
than one type in a single request. Based on the results of a find or query, multiple aggregations can be performed over
multiple columns.

Column-specific Aggregation Types

Aggregation Constant

Sum

AggregationType.AGG_TYPE_SUM()

Minimum

AggregationType.AGG_TYPE_MIN()

45

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Aggregation Constant

Maximum

AggregationType.AGG_TYPE_MAX()

Average

AggregationType.AGG_TYPE_AVG()

Count Distinct

AggregationType.AGG_TYPE_COUNT_DISTINCT()

Average Distinct

AggregationType.AGG_TYPE_AVG_DISTINCT()

Sum Distinct

AggregationType.AGG_TYPE_SUM_DISTINCT()

In addition, there is an aggregation type for performing a count called Count* that is available through the following API:

AggregationInfo_addCount();

Example of Coding an Aggregation Type Data Request
Example - Calling an Aggregation Type Data Request shows how to call an aggregation type data request. In the
example, two data requests are sent in a single batch to the AIS Server. The first one is an aggregation of columns in
V0101 without a Groupby array. The second is an aggregation request over F060116 with a Groupby array.

At the end of the data request, the AggregationResponseHelper methods are used to get the specific aggregations
from the responses. If there is a Groupby array in the response, the helper will return an ArrayNode, which you will have
to iterate with to get individual aggregate values for each group. Specific AggregationResponseHelper methods are
provided for consuming a batch response.

Example - Calling an Aggregation Type Data Request
//Set used capabilities in login environment
 loginEnv.getUsedCapabilities().add(AISClientCapability.DATA_SERVICE);
 loginEnv.getUsedCapabilities().add(AISClientCapability.DATA_SERVICE_AGGREGATION);

 //create a new data request for V0101
 DataRequest dataAggregation = new DataRequest(loginEnv);

 //set type to aggregation
 dataAggregation.setDataServiceType(DataRequest.TYPE_AGGREGATION);
 dataAggregation.setTargetName("V0101");
 dataAggregation.setTargetType(DataRequest.TARGET_VIEW);

 //create aggergation info object
 AggregationInfo aggregation = new AggregationInfo(loginEnv);

 //add desired aggregations
 aggregation.addAggrigationColumn("AN8", AggregationType.AGG_TYPE_SUM());
 aggregation.addAggrigationColumn("AN8", AggregationType.AGG_TYPE_AVG());
 aggregation.addAggrigationColumn("AT1", AggregationType.AGG_TYPE_COUNT_DISTINCT());
 aggregation.addCount(); //this is for COUNT *

 //add aggregation to request
 dataAggregation.setAggregation(aggregation);

46

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 //query can be combined with aggregation
 Query an8Query = new Query(loginEnv);
 an8Query.setAutoFind(true);
 an8Query.setMatchType(Query.MATCH_ALL);

 an8Query.addNumberCondition("F0101.AN8", NumericOperator.LESS(), 6001);
 dataAggregation.setQuery(an8Query);

 //create a second datat request for F060116 aggregatoin
 DataRequest dataAggregation2 = new DataRequest(loginEnv);
 dataAggregation2.setFindOnEntry(true);
 dataAggregation2.setDataServiceType(DataRequest.TYPE_AGGREGATION);
 dataAggregation2.setTargetName("F060116");
 dataAggregation2.setTargetType(DataRequest.TARGET_TABLE);

 //create aggregation info object and add desired aggredgations
 AggregationInfo aggregation2 = new AggregationInfo(loginEnv);
 aggregation2.addAggrigationColumn("SAL", AggregationType.AGG_TYPE_SUM());
 aggregation2.addAggrigationColumn("SAL", AggregationType.AGG_TYPE_AVG());
 aggregation2.addAggrigationColumn("SAL", AggregationType.AGG_TYPE_AVG_DISTINCT());
 aggregation2.addAggrigationColumn("SAL", AggregationType.AGG_TYPE_MAX());
 aggregation2.addAggrigationColumn("SAL", AggregationType.AGG_TYPE_MIN());
 aggregation2.addAggrigationColumn("SAL", AggregationType.AGG_TYPE_SUM_DISTINCT());
 aggregation2.addCount();
 aggregation2.addAggrigationColumn("AN8", AggregationType.AGG_TYPE_COUNT_DISTINCT());

 //add desired group by columnst
 aggregation2.addAggrigationGroupBy("HMCO");
 aggregation2.addAggrigationGroupBy("HMCU");

 //add desired order by with direction
 aggregation2.addAggrigationOrderBy("HMCO", OrderByDirection.ORDER_DIRECT_DESCENDING());

 //set the aggregation info in the request
 dataAggregation2.setAggregation(aggregation2);

 //add these two requests to a batch data request
 BatchDataRequest batchDataRequest = new BatchDataRequest(loginEnv);
 batchDataRequest.getDataRequests().add(dataAggregation);
 batchDataRequest.getDataRequests().add(dataAggregation2);

 //call the service
 String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, batchDataRequest,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.DATA_SERVICE_URI);

 //get the number of distinct AT1 values
 JsonNode distinct = AggregationResponseHelper.getSimpleAggregateValueBatch(response,
 "V0101", 0, AggregationType.AGG_TYPE_COUNT_DISTINCT(), "AT1");
 if (distinct != null)
 {
 System.out.println("AT1 Distinct: " + distinct.asInt());
 }

 //get the count *
 System.out.println("Count: " +AggregationResponseHelper.getCountBatch(response, "V0101",
 0));

47

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

//get the grouped aggregations from the F060116 response, loop trhough and add the
 specific one (average to a hash map by group by)
 ArrayNode array = AggregationResponseHelper.getAggregateValuesArrayBtach(response,
 "F060116", 1);
 HashMap<String, Object> chartMap = new HashMap<String, Object>();
 for (Iterator groups = array.iterator(); groups.hasNext();)
 {
 JsonNode aGroup = (JsonNode) groups.next();
 JsonNode groupByInfo = aGroup.get(AggregationResponseHelper.GROUP_BY);
 JsonNode average = aGroup.get("SAL_SUM");

 chartMap.put(groupByInfo.get("HMCO").asText().trim() + "-" +
 groupByInfo.get("HMCU").asText().trim(), average.asDouble());
 }

 //print the map
 System.out.println("SAL SUM by HMCO/HMCU Map: " + chartMap);

Data Service Data Aggregation - Currency Decimals Support (API
1.3.3 and EnterpriseOne Tools 9.2.0.3)
The AggregationInfo.CurrencyProcessing class provides the capability to account for currency when performing data
aggregation. This class enables you to specify the proper currency trigger for the data, which is originally defined in the
table event rules in EnterpriseOne.

Currency data aggregation applies the correct number of decimal places to aggregated data based on the currency of
the data. Use this class only if the table you are aggregating over has a currency table trigger in EnterpriseOne, and the
columns you are aggregating are the currency columns processed in the table trigger. If you do not define currency
processing in your request, numeric aggregated fields are given the number of display decimals defined in the data
dictionary for that field. For more information about how currency is configured in EnterpriseOne, see "Using Currency"
in the JD Edwards EnterpriseOne Tools Development Guidelines for Application Design Guide .

The following information is required for decimal processing in currency data aggregation:

• Processing type. You can choose from the following seven different processing modes, which are defined as
constants in the AggregationInfo.CurrencyProcessing class:

◦ COMPANY. Applies the currency code that is defined for the company in the key values.

◦ CURRENCYCODE. Applies the currency code defined in the key values.

◦ MCU. Applies the currency code of the business unit defined in the key values.

◦ AID. Applies the currency code of the account ID defined in the key values.

◦ LEDGERTYPE_COMPANY_CURRENCYCODE. Applies the currency of either the ledger type, company, or
currency code (in this order) defined in the key values.

◦ LEDGERTYPE_CURRENCYCODE. Applies the currency of either the ledger type or currency code (in this
order) defined in the key values.

◦ STATIC. Applies a single currency code set as a string in the currency code field.

• Key columns. Depending on the specified processing type, add key field columns from the table in the
expected order.

• Currency columns. These are the columns that decimal processing will be applied to. You only need to add
a column here once, even if you have several aggregations over that column. Identify each distinct column

48

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

to which the currency processing should apply. If you do not identify currency columns here, then currency
processing will be applied to all columns identified as currency columns in the data dictionary. A currency
column is defined in the data dictionary with class CURRENCY.

• Currency code. This field is used only for STATIC currency processing. Use it to set a string value (for example
"USD") for the currency code to be used for all of the currency columns.

• As If Currency. (API 1.4.2 and EnterpriseOne Tools 9.2.1) This field is used to indicate a single currency for all of
the response values. The exchange rate table value for the date specified (or today's date if not specified) will be
used to calculate the values for the specified currency. In the response, results will be grouped only by defined
"group by" fields because only one currency is present.

• As If Currency Date. (API 1.4.2 and EnterpriseOne Tools 9.2.1) Specify a date to determine which exchange rate
is used for currency conversions to the 'as if' currency. If not specified, the current date is used.

When the proper currency processing is defined, it effects the result set received. At minimum, the data will always be
grouped by the key columns defined in the currency processing. This is in addition to any other "group by" columns you
have requested, if any.

Currency Processing Warning
If currency processing cannot determine the currency decimals to apply to a currency column, the output will display a
message that currency was not processed. In this case, display decimals defined in the data dictionary for the column
will be applied to the value instead of currency decimals. The following example shows the message that appears when
currency is not processed:

 "groupBy" : {
 "F0911Z1.LT" : "AA",
 "F0911Z1.CRCD" : " "
 },
 "F0911Z1.AA_SUM" : 3569.07,
 "F0911Z1.AA_SUM_CURRENCYINFO" : {
 "processedCurrency" : false
 },
 "COUNT" : 47

 }

Example of Coding for Currency
This section provides an example of how to identify the currency processing type for a column in EnterpriseOne, and
then it describes how to specify that currency processing type in the data service so that the proper currency is applied
to the data aggregation.

The aggregation in this example uses the Expense Report Detail Table (F20112). The F20112 table has two business
functions defined in the table event rules, one that processes domestic amounts and another that processes foreign
amounts. The amount used in this example aggregation is a foreign amount, specifically the EXPFAMT (Expense
Amount).

The following image shows Event Rules Design in EnterpriseOne with the second business function selected because
this is the one that operates on EXPFAMT.

49

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

In this function, the Expense Amount (F20112.EXPFAMT) field is processed based on a single key value, a currency code
Currency Code - From (F20112.CRCD), as shown in the following image:

50

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

The following information has been identified in EnterpriseOne, which is enough information to code the data
aggregation request:

• Type = CURRENCYCODE

• Key column = CRCD

• Currency column = EXPFAMT

51

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

The following example code shows how to apply the preceding values to the data service request so that the request
applies currency to the data aggregation:

//specify all three used capabilities needed for the request
loginEnv.getUsedCapabilities().add(AISClientCapability.DATA_SERVICE);
loginEnv.getUsedCapabilities().add(AISClientCapability.DATA_SERVICE_AGGREGATION);
loginEnv.getUsedCapabilities().add(AISClientCapability.AGGREGATION_CURRENCY_DECIMAL);

//create the request for the F20112 table, aggregation type
DataRequest dataAggregation = new DataRequest(loginEnv);
dataAggregation.setDataServiceType(DataRequest.TYPE_AGGREGATION);
dataAggregation.setFindOnEntry(true);
dataAggregation.setTargetName("F20112");
dataAggregation.setTargetType(DataRequest.TARGET_TABLE);
//define the aggregation, we are requesting a sum and average of the EXPFAMT
AggregationInfo aggregation = new AggregationInfo(loginEnv);
aggregation.addAggregationColumn("F20112.EXPFAMT", AggregationType.AGG_TYPE_SUM());
aggregation.addAggregationColumn("F20112.EXPFAMT", AggregationType.AGG_TYPE_AVG());
dataAggregation.setAggregation(aggregation);

//group by employee
aggregation.addAggregationGroupBy("F20112. EMPLOYID");

//create a currency processing object
AggregationInfo.CurrencyProcessing currency = new
 AggregationInfo.CurrencyProcessing(loginEnv);
//select the CURRENCYCODE type of processing
currency.setType(AggregationInfo.CurrencyProcessing.CURRENCYCODE);
//add the key column of CRCD
currency.addToKeyCols("F20112.CRCD");
//add the currency column to be processed as EXPFAMT
currency.addToCurrencyCols("F20112.EXPFAMT");
aggregation.setCurrency(currency);

String response =
 JDERestServiceProvider.jdeRestServiceCall(loginEnv, dataAggregation,
 JDERestServiceProvider.POST_METHOD,
 JDERestServiceProvider.DATA_SERVICE_URI);

//process the response, which will be by employee and currency code because the request
 included group by of employee and the currency processing key was currency code

ArrayNode array = AggregationResponseHelper.getAggregateValuesArray(response, "F20112");

System.out.printf("%-10s %10s %10s %n", "EE ID", "Average","Currency");
System.out.printf("%-10s %10s %10s %n", "----", "------","-------");
for (Iterator groups = array.iterator(); groups.hasNext();) {
JsonNode aGroup = (JsonNode) groups.next();
JsonNode groupByInfo = aGroup.get(AggregationResponseHelper.GROUP_BY);
JsonNode average = aGroup.get("F20112.EXPFAMT_AVG");
JsonNode curencyCode = aGroup.get("currencyCode");
System.out.printf("%-10s %10s %10s %n",
 groupByInfo.get("F20112.EMPLOYID").asText().trim(),
 average.asText(),curencyCode.asText());
 }

The following image shows the charting of data used in this example:

52

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

To better understand the processing of the response, the JSON response looks like this:

{
 "ds_F20112" : {
 "output" : [{
 "groupBy" : {
 "F20112.EMPLOYID" : 6002
 },
 "F20112.EXPFAMT_SUM" : 3532.88,
 "F20112.EXPFAMT_AVG" : 235.53,
 "currencyCode" : "USD"
 }, {
 "groupBy" : {
 "F20112.EMPLOYID" : 6001
 },
 "F20112.EXPFAMT_SUM" : 128773,
 "F20112.EXPFAMT_AVG" : 64387,
 "currencyCode" : "JPY"
 }, {
 "groupBy" : {
 "F20112.EMPLOYID" : 6001
 },
 "F20112.EXPFAMT_SUM" : 343.02,
 "F20112.EXPFAMT_AVG" : 343.02,
 "currencyCode" : "USD"
 }, {
 "groupBy" : {
 "F20112.EMPLOYID" : 5651
 },
 "F20112.EXPFAMT_SUM" : 214.06,
 "F20112.EXPFAMT_AVG" : 71.35,
 "currencyCode" : "USD"
 }, {
 "groupBy" : {
 "F20112.EMPLOYID" : 5127
 },
 "F20112.EXPFAMT_SUM" : 2845.0,
 "F20112.EXPFAMT_AVG" : 1422.5,
 "currencyCode" : "USD"
 }, {
 "groupBy" : {
 "F20112.EMPLOYID" : 7702
 },
 "F20112.EXPFAMT_SUM" : 175.4,
 "F20112.EXPFAMT_AVG" : 175.4,
 "currencyCode" : "CAD"

53

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 }
]
 }
}

As If Currency Coding Example (API 1.4.2 and EnterpriseOne Tools 9.2.1)
The following example code shows what the code in Example of Coding for Currency would look like using As If
currency:

//create a currency processing object
AggregationInfo.CurrencyProcessing currency = new
 AggregationInfo.CurrencyProcessing(loginEnv);
//select the CURRENCYCODE type of processing
currency.setType(AggregationInfo.CurrencyProcessing.CURRENCYCODE);
//add the key column of CRCD
currency.addToKeyCols("F20112.CRCD");
//add the currency column to be processed as EXPFAMT
currency.addToCurrencyCols("F20112.EXPFAMT");
currency.setAsIfCurrency("USD");
aggregation.setCurrency(currency);

The line highlighted in bold is the Java code line for As If currency, which was added to the currency processing object.
The code line specifies that all values should be changed to USD.

The following code shows the JSON output for this example:

{
 "ds_F20112": {
 "output": [
 {
 "groupBy": {
 "F20112.EMPLOYID": 6002
 },
 "F20112.EXPFAMT_SUM": 5232.88,
 "F20112.EXPFAMT_AVG": 290.72,
 "currencyCode": "USD",
 "currencyDecimals": 2
 },
 {
 "groupBy": {
 "F20112.EMPLOYID": 6001
 },
 "F20112.EXPFAMT_SUM": 1218.42,
 "F20112.EXPFAMT_AVG": 609.21,
 "currencyCode": "USD",
 "currencyDecimals": 2
 },
 {
 "groupBy": {
 "F20112.EMPLOYID": 5651
 },
 "F20112.EXPFAMT_SUM": 214.06,
 "F20112.EXPFAMT_AVG": 71.35,
 "currencyCode": "USD",
 "currencyDecimals": 2
 },
 {
 "groupBy": {
 "F20112.EMPLOYID": 5127

54

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 },
 "F20112.EXPFAMT_SUM": 2845,
 "F20112.EXPFAMT_AVG": 1422.5,
 "currencyCode": "USD",
 "currencyDecimals": 2
 },
 {
 "groupBy": {
 "F20112.EMPLOYID": 7702
 },
 "F20112.EXPFAMT_SUM": 918,
 "F20112.EXPFAMT_AVG": 306,
 "currencyCode": "USD",
 "currencyDecimals": 2
 }
]
 }
}

The following image shows the charting of the data in this example:

Understanding the Preference Service (API 1.3.1 and
EnterpriseOne Tools 9.2.0.2)
The preference service enables an AIS client to save and retrieve user-level information that is stored by user, role, or
*PUBLIC in the User Overrides Table (F98950) in EnterpriseOne.

The keys to the information are the Type (UOTY), User ID (USER), Sequence (SEQ) and Object Name (OBNM). The data
is a string and is stored in the blob column BINDTA. All preference records are written with Type=PS.

Starting with AIS Client Java API 1.4.2 and EnterpriseOne Tools 9.2.1, the following four additional key fields allow for
more distinct records: Form Name (FMNM), DelimitedControlIDs (IDLST), Version (VERS), and Language (LNGP). See
Example - Preference Service Java API for a code example with these fields.

The AIS Client Java API enables you to save a serialized HashMap of data to this table using the methods in the
PreferencesService object. For the get operation, the data is de-serialized to a HashMap and returned.

It is important to note that the data is stored as serialized values. For example, a Date object will be stored as the Long
time, and you must convert it back to a date after the response is returned.

If a client application has multiple sets of data that need to be saved separately, a sequence field is available as a key. If
you do not specify a sequence, the default sequence is zero.

Set and put actions are performed on behalf of the logged in user, established with the LoginEnvironment. All records
for the users are stored in the USER column. You can use the User Overrides application (P98950) in EnterpriseOne to

55

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

manage the records in the User Overrides Table (F98950). In P98950, you can copy records to different roles including
*PUBLIC. The record will be retrieved from P98950 based on the user, role, or *PUBLIC hierarchy.

Example - Preference Service Java API
//Add the preference service to the used capabilities
loginEnv.getUsedCapabilities().add(AISClientCapability.PREFEERNCE_SERVICE);
//create a new preference service object used to call the service
PreferenceService prefService = new PreferenceService(loginEnv);

//create a hashmap to store the valuse
HashMap<String,Object> preferenceData = new HashMap<String,Object>();

preferenceData.put("pref1", "Preference 1 String");
preferenceData.put("pref2", new BigDecimal("15.45"));
preferenceData.put("pref3",8);
preferenceData.put("pref4", new Date());

//call setPreferences to write the preference for the current logged in user based on the
 client id (Object Name), no sequence used so it will be saved as zero sequence
prefService.setPreferences("AIS_CLIENT", preferenceData);

// create a hashmap to store the retrieved values
HashMap<String,Object> preferenceDataOut
=prefService.getPreferences("AIS_CLIENT ");

//print response showing values were received
out.println("Recieved: " + preferenceDataOut);
//get individual value
out.println("Recieved Pref 2: " + preferenceDataOut.get("pref2"));

Example - Preference Service with Additional Key Fields (API 1.4.2
and EnterpriseOne Tools 9.2.1)
 //Add the preference service to the used capabilities
 loginEnv.getUsedCapabilities().add(AISClientCapability.PREFEERNCE_SERVICE);
 //create a new preference service object used to call the service
 PreferenceService prefService = new PreferenceService(loginEnv);

 //create a hashmap to store the valuse
 HashMap<String,Object> preferenceData = new HashMap<String,Object>();

 preferenceData.put("pref1", "Preference 1 String");
 preferenceData.put("pref2", new BigDecimal("15.45"));
 preferenceData.put("pref3",8);
 preferenceData.put("pref4", new Date());

 //call setPreferences to write the preference for the current logged in user based
 on the client id (Object Name), no sequence used so it will be saved as zero sequence
 additional fields of Form Name, ID List, Version and Language are passed. You can pass
 null for any of these values also, and they will not be populated.
 prefService.setPreferences("AIS_CLIENT","W01012A", "10","ZJDE0001","E",
 preferenceData);

56

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 // create a hashmap to store the retrieved values
 HashMap<String,Object> preferenceDataOut=
 prefService.getPreferences("AIS_CLIENT","W01012A", "10","ZJDE0001","E");

 //print response showing values were received
 out.println("Recieved: " + preferenceDataOut);
 //get individual value
 out.println("Recieved Pref 2: " + preferenceDataOut.get("pref2"));

Watchlist Service (API 1.4.0 and EnterpriseOne Tools
9.2.0.3)
Use the following watchlist URI to invoke a watchlist:

/jderest/watchlist

In the WatchlistRequest, you provide a watchlist ID or watchlist object name, which you can locate in the information
about the watchlist in the EnterpriseOne web client.

Additionally, in a watchlist request, you can force an update so that the watchlist data is fetched from the database
instead of the cache. You can request that the watchlist be set to dirty, so the next request will be fetched from the
database and not from cache.

Use the WatchListResponse object to marshal the JSON response to an object. This enables access to all of the
information about the watchlist including the record count and all threshold information.

Example - Watchlist Request
WatchListRequest wlr = new WatchListRequest(loginEnv);
wlr.setWatchlistObjectName("OVW4210E_1512070001JDE");

String response =
 JDERestServiceProvider.jdeRestServiceCall(loginEnv, wlr,
 JDERestServiceProvider.POST_METHOD,
 JDERestServiceProvider.WATCHLIST_SERVICE);

 if (!response.contains("invalid")) {
 WatchListResponse wlrs = loginEnv.getObjectMapper().readValue(response,
 WatchListResponse.class);
 System.out.println("Watchlist Form: " + wlrs.getFormtitle());
 System.out.println("Watchlist Description: " + wlrs.getDescription());
 System.out.println("Watchlist Count: " + wlrs.getRowcount().getRecords());
 System.out.println("Watchlist Warning: " + wlrs.isIsWarning());
 System.out.println("Watchlist Critical: " + wlrs.isIsCritical());
 }

57

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Additional Supported Output Types for Form Service and
Data Service (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)
You can use the outputType parameter to enable the requester to control the format of the JSON response from either a
form service or a data service.

Valid values in the outputType parameter for the supported output types are:

• GRID_DATA_OUTPUT_TYPE

This output type returns only data in the grid in simplified name-value pairs.

• VERSION2_OUTPUT_TYPE

This output type returns column-level information moved out of the grid row cell to a columnInfo section. Only
cell specific information in each grid row cell is returned. Only non-default values are returned for fields on form
and in the grid.

Note: For Application Stack calls, the output type must be set at the top level ApplicationStack object; all responses
for that stack object will have the indicated output type. For example:

ApplicationStack appStackObj = new ApplicationStack();
appStackObj.setOutputType(FormRequest.VERSION2_OUTPUT_TYPE);

Grid Data Output Type (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)
Grid Data output type returns data in simple name value pairs, with no additional metadata describing each field.

Form Request Usage
 FormRequest formRequest = new FormRequest(loginEnv);
 formRequest.setOutputType(FormRequest.GRID_DATA_OUTPUT_TYPE);

Example - Form Request Response
{
 "fs_P0801_W0801A": {
 "title": "Work With Employee Information",
 "data": {
 "gridData": {
 "columns": {
 "z_AN8_14": "Employee No",
 "z_ALPH_15": "Alpha Name",
 "z_HMCO_24": "Home Company",
 "z_DST_409": "Date Started"
 },
 "rowset": [
 {
 "z_DST_409": "20110410",
 "z_AN8_14": 6002,
 "z_HMCO_24": "00001",
 "z_ALPH_15": "Abbott, Dominique"

58

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 },
 {
 "z_DST_409": "20100418",
 "z_AN8_14": 6044,
 "z_HMCO_24": "00001",
 "z_ALPH_15": "Abrams, Brooke"
 },
 {
 "z_DST_409": "20170302",
 "z_AN8_14": 6078,
 "z_HMCO_24": "00001",
 "z_ALPH_15": "Aiken, Gwen"
 },
 {
 "z_DST_409": "20130101",
 "z_AN8_14": 8985155,
 "z_HMCO_24": "00200",
 "z_ALPH_15": "Allan, Murray"
 },
 {
 "z_DST_409": "19720613",
 "z_AN8_14": 7747,
 "z_HMCO_24": "00077",
 "z_ALPH_15": "Almeida, Wendy"
 }
],
 "summary": {
 "records": 5,
 "moreRecords": true
 }
 }
 },
 "errors": [],
 "warnings": []
 },
 "stackId": 1,
 "stateId": 1,
 "rid": "e62ee1e430768855",
 "currentApp": "P0801_W0801A_ZJDE0001",
 "timeStamp": "2015-09-03:10.44.47",
 "sysErrors": []
}

Data Request Usage
 DataRequest f0101 = new DataRequest(loginEnv);
 f0101.setOutputType(DataRequest.GRID_DATA_OUTPUT_TYPE);

Example - Data Request Response
{
 "fs_DATABROWSE_F0101": {
 "title": "Data Browser - F0101 [Address Book Master]",
 "data": {
 "gridData": {
 "columns": {
 "F0101_AN8": "Address Number",
 "F0101_ALPH": "Alpha Name",
 "F0101_AT1": "Sch Typ"
 },

59

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 "rowset": [
 {
 "F0101_AT1": "O",
 "F0101_AN8": 1,
 "F0101_ALPH": "Financial/Distribution Company"
 },
 {
 "F0101_AT1": "O",
 "F0101_AN8": 9,
 "F0101_ALPH": "Multi-Site Target Company"
 },
 {
 "F0101_AT1": "O",
 "F0101_AN8": 20,
 "F0101_ALPH": "Marketing Company"
 },
 {
 "F0101_AT1": "F",
 "F0101_AN8": 27,
 "F0101_ALPH": "Eastern Area Distribution Center"
 },
 {
 "F0101_AT1": "O",
 "F0101_AN8": 28,
 "F0101_ALPH": "Prueba - Argentina - 28"
 }
],
 "summary": {
 "records": 5,
 "moreRecords": true
 }
 }
 },
 "errors": [],
 "warnings": []
 },
 "stackId": 2,
 "stateId": 1,
 "rid": "e62ee1e430768855",
 "currentApp": "DATABROWSE_F0101",
 "timeStamp": "2015-09-03:10.44.48",
 "sysErrors": []
}

Example - Using Jackson Libraries to Iterate Through Rows and Get Values
JsonNode node = loginEnv.getObjectMapper().readTree(response);
JsonNode array =
 node.path("fs_DATABROWSE_F0101").path("data").path("gridData").path("rowset");
for (Iterator<JsonNode> rows = array.iterator(); rows.hasNext();)
{
 JsonNode aRow = rows.next();
 System.out.println("Name: " +aRow.get("F0101_ALPH"));
}

60

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Version2 Output Type (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)
The AIS Client Class Generator version 2.0.0 supports generating classes for both the original output and the Version2
output type.

Form Request Usage

 loginEnv.getUsedCapabilities().add(AISClientCapability.OUTPUT_TYPE);
 formRequest.setOutputType(FormRequest.VERSION2_OUTPUT_TYPE);

Data Request Usage

 loginEnv.getUsedCapabilities().add(AISClientCapability.OUTPUT_TYPE);
 dataRequest.setOutputType(DataRequest.VERSION2_OUTPUT_TYPE);

When using the AIS Client Class Generator, make sure to choose Version 2 for the Output Version. You can use the
classes generated with Version 2 in the same way as you used classes generated in the original version - Version 1.

Orchestration Support (API 1.1.0)
The AIS Server supports form service request calls from orchestrations. The AIS Server must be configured to work with
orchestrations. See "Prerequisites" in the JD Edwards EnterpriseOne Tools Orchestrator Guide for Studio Version 8 and
Prior for more information.

This section describes how to invoke the orchestration using the AIS Client API.

Orchestrator requests are stateless. The entire orchestration is executed in a single call and returns the results of the
orchestration.

Example - Using JDE Standard Input Format for an Orchestration
This example uses the JDE Standard input format. The orchestration must be configured to accept this input format.

OrchestrationRequest req = new OrchestrationRequest(AIS_SERVER ,USER_NAME,
 PASSWORD,DEVICE_NAME);

req.setOrchestration("GetAddressBook_Simple");
req.getInputs().add(new OrchestrationInputValue("AddressBookNumber", "7500"));
req.getInputs().add(new OrchestrationInputValue("SearchType", "E"));

try{

 String output = req.executeOrchestrationRequest();

 //consume output, you can deserialize it to a class generated by the AIS Class Generator

}
catch(Exception e)
{
 //handle exceptions

61

olink:EOTOT115
olink:EOTOT115

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

}

Example - Using Generic Input for an Orchestration
This example uses the Generic input format. The orchestration must be configured to accept this input format.

OrchestrationRequest req = new OrchestrationRequest(AIS_SERVER ,USER_NAME,
 PASSWORD,DEVICE_NAME);

orchRequest.setOrchestration("AddCBM");

//populate values to send from this instance, simple name value pairs hash map
HashMap<String,String> vals = new HashMap<String,String>();
vals.setSerialNumber("02a0bd30-d883-11e4-b9d6-1681e6b88ec1");
Date jDate = new Date();
vals.put("date",String.valueOf(jDate.getTime()));
SimpleDateFormat sdf = new SimpleDateFormat("hh:mm:ss");
vals.put("time",sdf.format(jDate));
vals.put("temperature","201");
vals.put("description","Temp 201");

try
{

 String response = orchRequest.executeOrchestrationRequest(values);

//consume response, you can deserialize it to a class generated by the AIS Class Generator

}
catch(Exception e)
{
 //handle exceptions
}

Next Page Processing for Application Stack and Data
Request (API 2.0.0 and EnterpriseOne Tools Release
9.2.1.2)
Use the "next link" capability to fetch data in easily manageable data sets over several successive service calls. This
capability is available in version 2 AIS services. Therefore, you must include v2 in the URI to access the "next link"
capability in an application stack or data request, for example:

http://<ais_server>:<port>/jderest/v2/appstack

http://<ais_server>:<port>/jderest/v2/dataservice

62

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Next Page for Application Stack
An application stack response may include one or more grids. If any of the grids indicate more records are available
("moreRecords" : true), then the response will include a links section. Example - Links Section in an Application Stack
Response shows a links section in an application stack response.

Example - Links Section in an Application Stack Response
"links" : [{
 "rel" : "next",
 "href" : "http:// <ais_server>:<port>//jderest/v2/appstack/next?
stackId=1&stateId=1&rid=5b5e9d49dac52bb2&fullGridId=1&formOID=W0801A&token=044hq8nL%2FEHTb3dhe3XqPxl15jr
%2FoFlXX0yEOI%2FixZTNdU
%3DMDE5MDEzOTEyNTY5MTE3MzA1Njk3NjIxOTEwLjEzOS4xMTUuNTUxNDgyNTA5NTc2MjI5&outputType=GRID_DATA&returnControlIDs=1[14,15]",
 "context" : "1"
 }]

To request the next page of data, use the URL provided in the links section to perform a POST or a GET operation for
that URL.

To request the last page of data, use the URL provided in the links section to perform a POST or GET operation for that
URL.

It is important to note that the size of each data set is determined up front in the first request to the grid in the form.
The maxPageSize input parameter indicates the number of records to return with each call. For example, if you set this
value to 10, you will receive 10 records in the first call and up to 10 more in every subsequent link call.

The period of time that the current data set remains open is determined by the resultSetTimeout setting for the
EnterpriseOne HTML Server, which you can configure in Server Manager. The default for this setting is 60 seconds.
Although unlikely to occur, you must consider the possibility that the result set will time out and throw an exception
when calling the next link. In the case of a timeout, you will have to start over and re-run the original fetch to refresh the
data set.

The following is an example of the JSON response for a timeout:

Status: 500
{
 "sysErrors": [
 {
 "TITLE": "JAS_MSG347: The query results expired. Refresh them by clicking
 Find again.",
 "DESC": "JAS_MSG347: The query results expired. Refresh them by clicking Find
 again."
 }
]
}

AIS Client API Next Page for Application Stack
In the AIS Client Java API 2.0.0, the Application Stack API contains objects for getting and executing a response link.

Example - Next Page Processing through the ApplicationStack API shows an application stack with a request for data
from P0801 with maxPageSize set to 25. It will execute any next page links until the last record has been fetched and no
links remain.

63

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

Example - Next Page Processing through the ApplicationStack API
 public void nextPageLinks() throws Exception
 {

 ApplicationStack appStackAddress = new ApplicationStack();
 FormRequest formRequest = new FormRequest(loginEnv);
 formRequest.setFormName("P0801_W0801A");
 formRequest.setVersion("ZJDE0001");
 formRequest.setReturnControlIDs("1[14,15]");
 formRequest.setFormServiceAction("R");
 formRequest.setMaxPageSize("25");
 formRequest.setFindOnEntry(true);

 //open P0801_W0801A
 String response = appStackAddress.open(loginEnv, formRequest);

 //Add Code here to marshal the response...

 //continue fetching more records until no more 'next' links are received
 while(appStackAddress.getLastAppStackResponse().getLinks()!=null && !
appStackAddress.getLastAppStackResponse().getLinks().isEmpty()
 && appStackAddress.getLastAppStackResponse().getLinks().get(0).getRel().equals("next"))
 {

 //get more
 response =
 appStackAddress.executeLink(loginEnv,appStackAddress.getLastAppStackResponse().getLinks().get(0));
 //Add Code here to marshal each response...

 }

 //close
 response = appStackAddress.close(loginEnv);

 }

In this example, if the result set times out, the system throws a JDERestServiceException with the following message:

JDE Rest Service Call Failed: Status: 500 {"sysErrors":[{"TITLE":"JAS_MSG347: The query results expired. Refresh

them by clicking Find again.","DESC":"JAS_MSG347: The query results expired. Refresh them by clicking Find

again."}]}

Next Page for Data Service
For data service calls, you must set the enableNextPageProcessing parameter to "true" in the first call if you expect to
receive next page links. This keeps the data set open waiting to receive the next page requests. When configured in the
first call, if there are additional records to be fetched, the Data Service response will include a links section, as shown in
Example - Links Section in a Data Service Response.

Example - Links Section in a Data Service Response
"links": [{
 "rel": "next",
 "href": "http://<ais_server>:<port>/jderest/v2/dataservice/next?
stackId=1&stateId=1&rid=48e401e5950224d&fullGridId=54&formOID=V0101&token=044hUE
%2B82ZUWZB7MLBBIwG6uX%2FgYKiZFEgsPV99bul%2FYjQ
%3DMDE5MDEyNTE3OTEzMDczODg5MzA4MDE3MTE0OC44Ny4xOS40NjE0ODI1MTE0NjM4NTQ
%3D&outputType=GRID_DATA&returnControlIDs=F0101.AN8|F0101.AT1|F0101.ALPH"
 }]

64

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

As with the application stack, the size of each data set is determined up front using the maxPageSize parameter in the
first request to a grid in a form.

But data service next page processing has an additional request parameter called nextPageTimeInterval that effects a
process in the background referred to as "data dripping." When this parameter is not used, data dripping occurs where
data is fetched from the database silently in the background at five second intervals awaiting the next call. When the
next call occurs, it fetches whatever is remaining up to the maxPageSize.

If you set nextPageTimeInterval to 1000 milliseconds or less, data dripping is turned off. You can still perform next calls,
but the entire next section is fetched at the time of the next call.

If you set nextPageTimeInterval to a value greater than 1000, but less than the configured jdbj.ini resultSetTimeout,
then the records will be silently fetched for the time interval provided.

In any case, it is possible that the result set will time out and the next link call will throw an exception. In the case of a
timeout, you will have to start over and re-run the original fetch to refresh the data set.

The JSON response for a time out looks like this:

Status: 500
{
 "sysErrors": [
 {
 "TITLE": "JAS_MSG347: The query results expired. Refresh them by clicking
 Find again.",
 "DESC": "JAS_MSG347: The query results expired. Refresh them by clicking Find
 again."
 }
]
}

AIS Client API Next Page for Data Service
In the AIS Client Java API 2.0.0, the data service API contains objects for processing links in the response from a data
service call.

shows a data service request with records fetched from F0101 in 100 record chunks and marshaled into an object. It will
execute any next page links until the end of the record set is printed and no links remain.

Example
 public void nextPageDataRequest() throws Exception
 {
 DataRequest f0101 = new DataRequest(loginEnv);
 f0101.setDataServiceType(DataRequest.TYPE_BROWSE);
 f0101.setTargetName("F0101");
 f0101.setTargetType(DataRequest.TARGET_TABLE);
 f0101.setFindOnEntry(FormRequest.TRUE);
 f0101.setReturnControlIDs("F0101.AN8|F0101.ALPH|F0101.AT1");
 f0101.setMaxPageSize("100");
 f0101.setEnableNextPageProcessing(true);

 String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, f0101,
 JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.DATA_SERVICE_URI);

65

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 4
Performing AIS Form Service Calls

 //marshal to generated class
 DATABROWSE_F0101_FormParent f010Data =
 loginEnv.getObjectMapper().readValue(response, DATABROWSE_F0101_FormParent.class);

 //loop while there are next records, print out each 100 record set

 while(f010Data != null){
 ArrayList<DATABROWSE_F0101_GridRow> rowSet =
 f010Data.getFs_DATABROWSE_F0101().getData().getGridData().getRowset();
 if (rowSet.size() > 0)
 {
 for (DATABROWSE_F0101_GridRow row: rowSet)
 {
 System.out.print("Number: " + row.getMnAddressNumber_51()+ ", ");
 System.out.print("Name: " + row.getSAlphaName_52() + ", ");

 System.out.println("Search Type: " + row.getSSchTyp_53());

 }
 }
 //stop the loop this might be the last one
 f010Data = null;

 //try to fetch the next set
 try
 {
 DataRequestLinks drLinks = loginEnv.getObjectMapper().readValue(response,
 DataRequestLinks.class);
 if (drLinks.getLinks() != null && drLinks.getLinks().size() > 0)
 {
 response = drLinks.executeLink(loginEnv, drLinks.getLinks().get(0));
 //marshal each response
 f010Data = loginEnv.getObjectMapper().readValue(response,
 DATABROWSE_F0101_FormParent.class);
 }

 }
 catch(JDERestServiceException e)
 {
 System.out.println(e.getMessage());
 }

 }
 }

In this example, it the result set times out, the system throws a JDERestServiceException with the following message:

JDE Rest Service Call Failed: Status: 500 {"sysErrors":[{"TITLE":"JAS_MSG347: The query results expired. Refresh

them by clicking Find again.","DESC":"JAS_MSG347: The query results expired. Refresh them by clicking Find

again."}]}

66

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 5
Glossary

5 Glossary

AIS Server
A REST services server that when configured with an EnterpriseOne HTML Server, enables access to EnterpriseOne
forms and data.

AIS Server capability
A behavior of the AIS Server that an AIS client can use to perform a particular EnterpriseOne task, such as update a grid
record or fetch a processing option.

AIS client
An application that uses the AIS Server to communicate with EnterpriseOne.

AIS Server endpoint
An endpoint on the AIS Server that provides a service for the AIS client. An AIS client can access an AIS Server endpoint
through a URL. In turn, the endpoint performs a particular service for the AIS client in EnterpriseOne.

AIS service
A service in an AIS Server endpoint. An AIS service interacts with EnterpriseOne based on input from an AIS client and
provides a response in JSON format.

form service request
An AIS Server call that retrieves data from a form in EnterpriseOne. Form service requests, formatted as REST service
calls that use POST, contain form service events or commands that invoke actions on an EnterpriseOne form.

67

JD Edwards EnterpriseOne Tools
Application Interface Services Client Java API Developers
Guide

Chapter 5
Glossary

instantiate
A Java term meaning "to create." When a class is instantiated, a new instance is created.

JDeveloper Project
An artifact that JDeveloper uses to categorize and compile source files.

JSON (JavaScript Object Notation)
A light-weight format used for the interchange of data between the AIS Server and EnterpriseOne.

processing option
A data structure that enables users to supply parameters that regulate the running of a batch program or report. For
example, you can use processing options to specify default values for certain fields, to determine how information
appears or is printed, to specify date ranges, to supply runtime values that regulate program execution, and so on.

QBE
An abbreviation for query by example. In JD Edwards EnterpriseOne, the QBE line is the top line on a detail area that is
used for filtering data.

serialize
The process of converting an object or data into a format for storage or transmission across a network connection link
with the ability to reconstruct the original data or objects when needed.

68

	 Application Interface Services Client Java API Developers Guide
	Preface
	Understanding the AIS Client Java API
	Overview
	Accessing AIS Server Endpoints with the AIS Client Java API

	Getting Started
	Certifications (Formerly Known as Minimum Technical Requirements)
	Prerequisites

	Configuring the Login Environment
	Configuring the Login
	Example - Examples for Obtaining a Login Environment

	Configuring the Logout

	Performing AIS Form Service Calls
	Understanding AIS Server Capabilities
	Example - Capabilities in LoginEnvironment Constructor
	Example - Capability Exception

	Understanding the AIS Client Class Generator
	Understanding Form Service Requests
	Overview
	Form Service Request Structure
	Control ID Notation for Return Control IDs
	Example - Requesting fields and grid columns on a traditional form.
	Example - Requesting main form fields, subform fields, main form grid columns, and subform grid columns.

	Reading Data
	Example - Form Service Request for Reading Data

	Adding Data
	Example - Form Service Request for Adding Data

	Deleting Data
	Example - Form Service Request for Deleting Data

	Placing Events in the Proper Order
	Considering Hidden Filters and Hidden QBE
	Available Actions or Events
	Determining the Maximum Records Returned in a Form Service Request
	Using Turbo Mode (API 1.4.2 and EnterpriseOne Tools 9.2.1)

	Batch Form Service
	Example - Batch Form Service Request
	Example - Deserialize the Response to the BatchRequestParent

	Application Stack Service
	Example - Application Stack

	Media Object Operations
	Get Text
	Example - Media Object Get Text Operation

	Update Text
	Example - Media Object Update Text Operation

	List
	Example - Saving Thumbnail Images for Image Media Object Attachments

	Upload
	Example - Media Object Upload

	Download
	Example - Media Object Download

	Add URL (API 1.0)
	Example - Adding a URL Media Object

	Delete
	Example - Deleting a Media Object

	Processing Option Service
	Example - Retrieving Processing Options with the Processing Option Service

	Task Authorization Service
	Example - Retrieving Tasks with the Task Authorization Service

	Logging Service
	Example - Logging Service Code

	Query Support
	Adding an Ad Hoc Query
	Example - Example of Control ID and Business View Information Displayed under Advanced Options in the EnterpriseOne Web Client Item Help
	Query Object Parameters
	Example - Query - Java API

	Adding a Request to an Existing (Saved) Query (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)
	Additional Query Capabilities (API 1.4.2 and EnterpriseOne Tools 9.2.1)
	List Available Queries
	Example - LIst Available Queries
	Example - List Available Queries JSON Response

	Get Query Details
	Example - Get Query Details
	Example - Get Query Details JSON Response

	Complex Query
	Example - Complex Query

	Application Query In Data
	Query Combining
	Query with Aggregation

	Jargon Service
	Example - Jargon Service Java API

	Data Service (API 1.1.0)
	Understanding the Data Service
	Example - Data Service Java API

	Determining the Maximum Records Returned in a Data Service
	Data Service Data Aggregation (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)
	Aggregation Arrays
	Aggregation Types
	Example of Coding an Aggregation Type Data Request
	Example - Calling an Aggregation Type Data Request

	Data Service Data Aggregation - Currency Decimals Support (API 1.3.3 and EnterpriseOne Tools 9.2.0.3)
	Currency Processing Warning
	Example of Coding for Currency
	As If Currency Coding Example (API 1.4.2 and EnterpriseOne Tools 9.2.1)

	Understanding the Preference Service (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)
	Example - Preference Service Java API
	Example - Preference Service with Additional Key Fields (API 1.4.2 and EnterpriseOne Tools 9.2.1)

	Watchlist Service (API 1.4.0 and EnterpriseOne Tools 9.2.0.3)
	Example - Watchlist Request

	Additional Supported Output Types for Form Service and Data Service (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)
	Grid Data Output Type (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)
	Form Request Usage
	Example - Form Request Response
	Data Request Usage
	Example - Data Request Response
	Example - Using Jackson Libraries to Iterate Through Rows and Get Values

	Version2 Output Type (API 1.3.1 and EnterpriseOne Tools 9.2.0.2)

	Orchestration Support (API 1.1.0)
	Example - Using JDE Standard Input Format for an Orchestration
	Example - Using Generic Input for an Orchestration

	Next Page Processing for Application Stack and Data Request (API 2.0.0 and EnterpriseOne Tools Release 9.2.1.2)
	Next Page for Application Stack
	Example - Links Section in an Application Stack Response

	AIS Client API Next Page for Application Stack
	Example - Next Page Processing through the ApplicationStack API

	Next Page for Data Service
	Example - Links Section in a Data Service Response

	AIS Client API Next Page for Data Service
	Example

	Glossary
	AIS Server
	AIS Server capability
	AIS client
	AIS Server endpoint
	AIS service
	form service request
	instantiate
	JDeveloper Project
	JSON (JavaScript Object Notation)
	processing option
	QBE
	serialize

