e @ .“

JD Edwards
EnterpriseOne
Tools

Event Rules Guide

9.2

JD Edwards EnterpriseOne Tools
Event Rules Guide

9.2
Part Number: E53554-03
Copyright © 2011, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

JD Edwards EnterpriseOne Tools
Event Rules Guide

Contents

Preface

1 Introduction to JD Edwards EnterpriseOne Tools: Event Rules 1
JD Edwards EnterpriseOne Tools: Event Rules Overview 1
JD Edwards EnterpriseOne Tools: Event Rules Implementation 1
2 Understanding Events, Event Rules, and Runtime Processing 3
Events 3
Event Rules 3
Runtime Processing of Event Rules 4
3 Using Event Rules Design 21
Understanding Event Rules Design 21
Understanding Event Rule Validation 22
Understanding If and While Statements 22
Understanding ER Consistency 23
Understanding ER Variables 23
Prerequisites 24
Working with Event Rules Design 24
A Using BrowsER 29
Understanding BrowsER 29
Working with BrowsER 29
5 Debugging Event Rules 31
Understanding Debugging 31
The Debugging Process 31
Debugging Strategies 32
Debug Logs 33
Debugging Event Rules 33

ORACLE

JD Edwards EnterpriseOne Tools
Event Rules Guide

6 Glossary 41
business function 1
business function event rule 11
business view 41
embedded event rule 4
event rule 41
fast path 42
jde.ini 42
jde.log 42
named event rule (NER) 42
subscriber table 42
table conversion 42
table event rules 43
workbench 43
Index 45

ORACLE

JD Edwards EnterpriseOne Tools Preface
Event Rules Guide

Preface

Welcome to the JD Edwards EnterpriseOne documentation.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at rttp://

www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc .

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, Visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info O ViSit http://www.oracle.com/pls/topic/
lookup?ctx=accsid=trs if you are hearing impaired.

Related Information

For additional information about JD Edwards EnterpriseOne applications, features, content, and training, visit the JD
Edwards EnterpriseOne pages on the JD Edwards Resource Library located at:

http://learnjde.com

Conventions

The following text conventions are used in this document:

Convention Meaning

Bold Boldface type indicates graphical user interface elements associated with an action or terms defined in
text or the glossary.

Italics Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular
values.
Monospace Monospace type indicates commands within a paragraph, URLs, code examples, text that appears on a

screen, or text that you enter.

> Oracle by Example Indicates a link to an Oracle by Example (OBE). OBEs provide hands-on, step- by-step instructions,
including screen captures that guide you through a process using your own environment. Access to
OBEs requires a valid Oracle account.

ORACLE

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://learnjde.com

JD Edwards EnterpriseOne Tools Preface
Event Rules Guide

ii

ORACLE

JD Edwards EnterpriseOne Tools Chapter 1
Event Rules Guide Introduction to JD Edwards EnterpriseOne Tools: Event
Rules

1 Introduction to JD Edwards EnterpriseOne
Tools: Event Rules

JD Edwards EnterpriseOne Tools: Event Rules Overview

Oracle's JD Edwards EnterpriseOne Tools for event rules are used to create or modify event rules (ER) in JD Edwards
EnterpriseOne applications. Event rules are connected to certain runtime events and instruct runtime how to respond to
the conditions you choose to define.

JD Edwards EnterpriseOne Tools: Event Rules
Implementation

This section provides an overview of the steps that are required to implement JD Edwards EnterpriseOne Tools for event
rules.

In the planning phase of your implementation, take advantage of all JD Edwards EnterpriseOne sources of information,
including the installation guides and troubleshooting information.

JD Edwards EnterpriseOne Tools Development Tools: Event Rules
Implementation Steps

The following steps need to be performed before working with JD Edwards EnterpriseOne event rules:

1. Configure Oracle's JD Edwards EnterpriseOne Tools Object Management Workbench (OMW).

See "Configuring JD Edwards EnterpriseOne OMW" in the JD Edwards EnterpriseOne Tools Object Management
Workbench Guide .
2. Configure OMW user roles and allowed actions.

See "Configuring User Roles and Allowed Actions" in the JD Edwards EnterpriseOne Tools Object Management
Workbench Guide .
3. Configure OMW functions.

See "Configuring JD Edwards EnterpriseOne OMW Functions" in the JD Edwards EnterpriseOne Tools Object
Management Workbench Guide .
4. Configure OMW activity rules.

See "Configuring Activity Rules" in the JD Edwards EnterpriseOne Tools Object Management Workbench Guide

5. Configure OMW save locations.

See "Configuring Object Save Locations" in the JD Edwards EnterpriseOne Tools Object Management
Workbench Guide .

ORACLE

olink:EOTOM00221
olink:EOTOM00221
olink:EOTOM00222
olink:EOTOM00222
olink:EOTOM00223
olink:EOTOM00223
olink:EOTOM00224
olink:EOTOM00225
olink:EOTOM00225

JD Edwards EnterpriseOne Tools Chapter 1
Event Rules Guide Introduction to JD Edwards EnterpriseOne Tools: Event
Rules

6. Set up default location and printers.

See "Understanding Report Printing Administration Technologies" in the JD Edwards EnterpriseOne Tools
Report Printing Administration Technologies Guide .

ORACLE

olink:EOTRP00100
olink:EOTRP00100

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

2 Understanding Events, Event Rules, and
Runtime Processing

Events

Events are activities that occur on a form, such as entering a form or exiting a field by using Tab. Events can be initiated
by the user or the application. A single control might initiate multiple events. The system also initiates some events,
such as Last Grid Record Has Been Read, when certain actions occur.

Event Rules

This section discusses:

Event rules
Named event rules
Embedded event rules

Event Rules Fundamentals

Event rules (ER) are logic statements that you can create and attach to events. ER is initiated when events occur at
runtime. Oracle's JD Edwards EnterpriseOne software supports two kinds of event rules: named event rules and
embedded event rules.

You can attach multiple event rules to one event. The various kinds of event rules include:

- Conditional statements, such as If/Else/End If.
« While loops.
- Assignments.
- Calls to business functions.
Form or report interconnections.
- Calls to system functions.

- Table 1/O operations.

Named Event Rules

A named event rule (NER) is a series of regular ER statements (such as assignments, business functions, system
function calls, and so forth). A NER encapsulates the series of statements into one reusable component. You can call
a NER the same way as calling a business function. Business functions implement customized business logic using C
language; NERs implement customized business logic using event rule statements.

ORACLE

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

Embedded Event Rules

In addition to NERSs, the other kind of ER is called embedded event rules, or simply event rules. Embedded ER is specific
to a particular table, interactive application, or batch application. Embedded ER for a table is called table event rules or
table triggers. Embedded ER for an interactive application or batch application is called application event rules.

Application Event Rules

You can add business logic that is specific to a particular application. Interactive applications connect ER using Oracle's
JD Edwards EnterpriseOne Form Design Aid (FDA), while batch event rules use Oracle's JD Edwards EnterpriseOne
Report Design Aid (RDA).

Table Event Rules

You can create table-specific event rules, which are ER that you attach to a table using Table Design Event Rules. This
logic runs whenever any JD Edwards EnterpriseOne application accesses that table and uses that ER. For example, to
maintain referential integrity, you might attach ER to a master table that deletes all children when a parent is deleted.
Any JD Edwards EnterpriseOne application that deletes information from that table does not need to have embedded
parent/child logic, because that logic exists in the table.

Note: Be aware that this functionality applies only to JD Edwards EnterpriseOne applications. Other applications that
access the same database table cannot and do not use these ERs.

Runtime Processing of Event Rules

This section discusses:

Runtime processing of event rules.
Runtime data structures.

Form flow.

Fundamentals of Runtime Processing of Event Rules

Runtime processing refers to how, at runtime, the system evaluates various events (such as initializing a form, clicking
a button, and using Tab to move between fields) and their attached ER. ER is attached to events, which in turn are
attached to controls or forms.

FDA provides several different form types, each of which includes predefined fields and features that are specific to
the form type. For example, a find/browse form automatically includes a Find menu option or tool bar button with
appropriate functions attached to it. When users enter search text in a filter or query-by-example (QBE) field, and then
click the Find button on the tool bar, the runtime engine processes logic to fetch a record.

To avoid generating unnecessary ER, you should understand the different field types and associated capabilities that
characterize each form type.

ORACLE

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

Runtime Data Structures

Runtime data structures are structures or blocks of memory that hold data when user is working with an application.
You should know what is happening to each form at runtime. You should know what is in a runtime structure at a given
event point in the runtime process.

The runtime system dynamically creates runtime data structures. For example, if a form contains hidden controls, the
system allocates memory for those controls even though they are not visible on the form. When you pass processing
option (PO) values in a form, the system allocates memory to store the PO value.

Available Objects and Runtime Data Structures

A runtime data structure is made of a variety of objects on a form. An available object is represented by a two-character,
alphabetical code that characterizes the source of data and determines how the object data is used in an interactive
application at runtime. Available objects make up the runtime data structure for a form.

During runtime processing, the system stores data in memory in an internal data structure. Certain fields of the data
structure temporarily store data during runtime. When no longer needed, the data is deleted so that the system can
process another record.

In ER, you can access and modify available objects in order to implement business logic. For example, you can assign a
value to a QBE field to set query criteria for the form.

This table lists the available objects:

Available Object Code Description

BC A column in the business view (BV). BCs for both the form view and the grid view appear in this list.
The system fills these columns with values from the database when it performs a fetch. The system
writes these values to the database during an add or update.

GC A column in the grid. The row that the value references depends on which event is accessing the GC.
During the fetch cycle, it is usually the selected row. In some circumstances, CG objects also denote
a particular physical column in the grid instead of a value. An example is the Set Grid Font system
function.

GB The grid buffer. This buffer is one row of data that is independent of the lines that the system reads
from the database and writes to the grid. The GB enables you to manipulate column data for a line that
you want to insert or update without affecting the present state of the grid. You access the GB through
an available GB object, which appears after the GC objects in the list of available objects in Event Rules
Design. Each grid contains only one instance of each GB column.

FC A control on the form. If the control is a database item, this field corresponds to a BC object.
Furthermore, if the control is not a filter, the FC object represents the same value as the BC object, and
changing one of these results in changing both.

FI A value passed through a form interconnection. You access this object either to read values that are
passed into the form or to set values to be passed back. These objects correspond to the elements of
the form data structure.

ORACLE

JD Edwards EnterpriseOne Tools
Event Rules Guide

Available Object Code

PO

Qc

HC

VA

Y

SL

TP

TK

co

TV

RC

RV

ocC

Chapter 2
Understanding Events, Event Rules, and Runtime
Processing

Description

A value passed from a PO. These values are passed into the application when a user launches it. Any
form in that application can access them. POs can either be entered by the user, or they can be set up
in a particular version of an application.

A cell from the QBE line in the grid. These objects represent the values in any QBE cell on the grid.
They include wild cards, but do not include any comparison operators. Likewise, assignments to these
objects can include wild cards, but not comparison operators. To set comparisons, you must use a
system function.

A hypercontrol item. A hypercontrol item is a menu item or a tool bar item.

ER variables. These objects represent any variables that you set up in ER.

System variables. These objects represent some environment variables that are accessible to ER.

System literals. These objects represent some constant system values that are accessible to ER.

Tab page object.

A column in the table that contains the table ER.

A constant, such as the return code for an error.

Text variables.

Report constants for a batch application.

Report variables (batch application).

An input column (table conversion).

An output column (table conversion).

BC and FC share the same internal structure if an FC is associated with a database item; filter fields are an exception.

Processing Available Objects
When an available object is changed through ER, these actions occur:

- The object in the internal runtime structure is changed.

- If the object is a form control or grid cell, row, or column, the screen is updated with the new value.

A BV form control shares the same value as the corresponding business view item. (Filter fields are an exception to this

rule.) This means that:

- FCdata and BC data are always identical.

ORACLE

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

- Whenever FC data is changed, BC items are changed to the same value.

- Whenever BC values are changed, the FC runtime values also changes to the same values. This change may not
immediately reflected to the screen.

On Control is Exited processing, the value entered into the form control is captured in both the BC and FC item
for that control.

Control is Exited Processing

Control is Exited processing includes these actions:
- The value in the control is saved to internal runtime structures.
- The Control is Exited event is processed.

If the value has changed since the previous time that the control was exited, these steps occur:

- The system processes the Control Exited/Changed-Inline event.

- The system processes the Control Exited/Changed-Async event.

- The system validates the value using edit rules defined for the DD item.

- The form control data is formatted using format rules defined for the DD item and displayed on the screen.

The Trigger Parallel Event system function is available for the Control Exited/Changed-Inline and the Control Exited/
Changed-Async events. This system function will enable a parallel event to run on a separate thread and will not
interfere with existing Event Rules.

Form Flow

Each form type has different properties and event flow. The system provides events for the forms so that you can insert
custom logic. These events occur regardless of whether you add event rule logic for that event.

This example represents how values in the runtime structures are stored in memory compared to how they appear on
the form. This example uses the find/browse form when it is called directly from a menu. The runtime engine processes
events in a certain order. The next sections describe the typical events for the find/browse form and the order in which
they are processed. This process flow can vary depending on specific user interaction and the event rule logic that you
use.

Pre-Dialog Is Initialized
These steps occur before the Dialog is Initialized event is processed and the form appears:

Initialize runtime structures (or clear memory) as shown:

o BC=null
o FC=null
o GC=null

o Fl = Values passed from a calling form (if any).
o PO = Values passed from processing options.

Initialize form controls.

Initialize error handling.

ORACLE

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

Initialize static text.
Initialize helps.
- Create tool bar.
Load form interconnect data into corresponding BC columns and filter fields (if any exist).
Initialize thread handling.

Dialog Is Initialized

The system processes all event rule logic that is attached to the Dialog is Initialized event. When this event starts, the
runtime structures contain these values:

BC = Any Fl values passed.
FC = Any Fl values passed.
- GC=null.
Fl = Values passed from a calling form (if any).
PO = Values passed from POs.

This diagram illustrates the information in the runtime structures just before the system fires Dialog is Initialized:

P Fl LI FC Bz

c c 0 0 0
0 0 0

0 0

0 0

0

0

0

0

0

0

0

The Dialog is Initialized event can be used to initialize the form. After the Dialog is Initialized event is finished, runtime
starts the Post Dialog Is Initialized process.

Post Dialog Is Initialized
Before the system fires the Post Dialog is Initialized event, the runtime structures contain these values:
BC = null (or values already passed in).
FC = null (or values already passed in).
« GC = null (or values already passed in).
Fl = Values passed from a calling form (if any).
PO = Values passed from POs.

ORACLE

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

This diagram illustrates the information in the runtime structures just before the system fires the Post Dialog Is
Initialized event:

P Fl LE i FC BC

L™ 0 0 0 0
0 L™ 0

0 0

0 0

0

0

0

0

0

0

0

The Post Dialog is Initialized event is commonly used to perform these tasks:
- Load filter fields that will be used for the waERE clause in the soL seLECT Statement.
- Load PO values into filter fields.

- Perform any one-time logic for the form, such as fetching a system date.

Building SQL SELECT

After the user clicks Find, the system builds a seLecT statement with a weEre clause. The sor seLEcT statement includes
all columns in the BV. The wrere clause includes any values in the QBE or filter fields. It can also contain values passed
through Set Selection and Set Lower Limit system functions. The wrere clause is then used to get all records that meet
the criteria.

This diagram illustrates the information that appears in the runtime structures just before the system builds the SQL
statement:

ORACLE

JD Edwards EnterpriseOne Tools Chapter 2

Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing
Pa Fl LEL FC BC
L a a a a
0 c
a a
a a
a
a
a
a
a
a
a

Fetching Records

Records are fetched one page at a time (unless page-at-a-time is disabled). The system processes each record fetched
one by one and display it in the grid row.

Page-at-a-Time Processing

Page-at-a-time processing means that the system fetches only a single page worth of records to display. To see the
next page of records, the user clicks the Next button. You can customize the page size for each grid in FDA. A system
administrator can also set a global page size for all grids.

Typically, page-at-a-time processing improves performance and scalability. Although it can be disabled, the JD Edwards
EnterpriseOne standards state that you should not disable it unless you have a valid business reason to do so.

BC Assigned Database Values

After the system fetches each record from the database, it copies the database values to the BC items. Values from each
marked column in the table appear in the BC runtime structure elements.

This diagram illustrates the information in the runtime structures when the system reads the first record:

10
ORACLE

JD Edwards EnterpriseOne Tools
Event Rules Guide

Grid Record Is Fetched

Chapter 2

Understanding Events, Event Rules, and Runtime

PO Fl G0 FZ BC
L 0 46 46 46
0 L L
Ed Ed
DEM 1 Elm
#5
Danw
co
80233
s
DEM
100

Processing

The engine then fires the Grid Record is Fetched event. At this point, the runtime structures have these values:

BC = Values from the database (for the first record read).

FC = Values from the database (if the fields are database fields).

- GC=null.

Fl = Values passed from a calling form (if any).
PO = Values passed from POs.

This diagram illustrates the information in the runtime structures just before the system fires Grid Record is Fetched:

ORACLE

P

Fl

L1

FC

Bz

c

0

46
c

46
c

o 9| 9|9

Ed

1 Elm

D

80233

us

DEM

100

1

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

The Grid Record is Fetched event is commonly used to perform these actions:

- Calculate a value for a work field in the grid.
- Suppress a row from being written to the grid.

After the Grid Rec Is Fetched event fires, the BC values are copied into the GC runtime structure.

This diagram illustrates the information in the runtime structures when the system reads the first record:

!

PO Fl G0 FZ BC
L 0 46 46 46
0 L L
Ed Ed
DEM 1 Elm
#5
Danw
co
80233
s
DEM
100

Write Grid Line-Before

The engine then fires the Write Grid Line-Before event. A this point, the runtime structures have these values:
BC = Values from the database (from the record just read).
FC = Values from the database (if the fields are database fields).
- GC = Values from the database (from the previous read).
FI = Values passed from a calling form (if any).
- PO = Values passed from POs.

This diagram illustrates the information in the runtime structures just before the system fires Write Grid Line-Before:

12
ORACLE

JD Edwards EnterpriseOne Tools
Event Rules Guide

Chapter 2

Understanding Events, Event Rules, and Runtime

PO Fl G0 FZ BC
L 0 46 0 46
L L
Ed Ed
DEM 1 Elm
#5
Danw
co
80233
s
DEM
100

The Write Grid Line-Before event is commonly used to perform these tasks:

- Suppress a grid row from being written.
- Add logic before the user sees a row on the form.
- Change formatting of a grid column.

- Convert any grid value, such as unit of measure.

Processing

- Retrieve additional information for the grid row, such as a description, from tables that are not in the BV.

After the system processes Write Grid Line-Before, the GC elements, which now include the database values for the first

record, are copied to the grid cells on the form.

This diagram illustrates the information that appears in the runtime structures now:

ORACLE

13

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

P Fl LI FC Bz

]
]
]

Ed Ed
DEMN 1 Elm

Danw

80233
us
DEMN
100

Write Grid Line-After
The engine then fires the Write Grid Line-After event. At this point, the runtime structures have these values:
BC = Values from the database (from the first record read).
FC = Values from database (if the field is a database field).
- GC = Values from the database (from the first record read).
Fl = Values passed from a calling form (if any).
PO = Values passed from POs.

The system displays the current record in the grid cells.

This diagram illustrates the information in the runtime structures just before the system fires Write Grid Line-After:

P Fl L1 FC Bz

L 0 i 0 i
c c

Ed Ed
DEM 1 Elm

D

80233
us
DEM
100

14
ORACLE

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

You typically use the Write Grid Line-After event to add logic after the user sees a row on the form.

This diagram illustrates the information in the runtime structures after the system processes Write Grid Line-After:

P Fl (e FC Bz

L 0 47 0 47
L L L
Ban Ban
DEM 1 Fir
#18
Darw
o
80222
us
DEM
110

The system continues to read records from the database and performs the same processing steps. When the system
reads the next record, it performs these processing steps:

- Assign BC values from the database.
Process Grid Rec is Fetched ER.

- Assign BC values to GC.
Process Write Grid Line-Before ER.

- Display values in the grid row on the form.
Process Write Grid Line-After ER.

This process is repeated until there are no more records fetched.

Last Grid Record Has Been Read

When there are no more records fetched from the database, the engine fires Last Grid Record Has Been Read event. At
this point, the runtime structures contain these values:

BC = Values from the database (from the last record read).

FC = Values from the database (if the field is a database field).
- GC = Values from the database (from the last record read).

| = Values passed from a calling form (if any).

PO = Values passed from POs.

The GC values appear on the last grid row.

This diagram illustrates the information in the runtime structures just before the system runs Last Grid Record Has Been
Read:

15
ORACLE

JD Edwards EnterpriseOne Tools
Event Rules Guide

P

Fl

LI

Chapter 2

Understanding Events, Event Rules, and Runtime

FC

Bz

9 Oak

#d0

Danw

co

80212

us

DEMN

G000

Processing

The Last Grid Record Has Been Read event is commonly used to write total lines to the grid and to display totals that are

based on grid values.

Select Button Processing

When a user selects a grid row and clicks the Select button, the BC structure stays the same, however the GC structure
reflects values on the row that is being selected.

This diagram illustrates the information in the runtime structures when the user selects a grid row that is other than the
last fetched row. Note that the BC and GC structures do not contain the same values:

P

Fl

(e

FC

Bz

c

0

48

0

5

ORACLE

c

c

Pag

CHI

Jan

9 Cak

#40

Darw

Boz212

us

DEM

6000

16

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

Button Clicked

The engine then fires the Button Clicked event for the Select button. At this point, the runtime structures have these
values:

BC = Values from the database (from the last record read).

FC = Values from the database (if the field is a database field).
- GC = Values from the selected grid row.

Fl = Values passed from a calling form (if any).

PO = Values passed from processing options.

This diagram illustrates the information in the runtime structures just before the system fires Button Clicked:

PO Fl &G0 FZ BC
L™ 0 48 0 54
L™ L™ L™
Pag Jan
CHI 9 Oak
#400
Danw
o
80212
s
DEM

The Button Clicked event is commonly used to connect to another form.

Use Repeat Business Rules for Grid to repeat ER when multiple rows are selected.

Add Button Processing

Normally, the user does not select a row before an add action, but if a row is highlighted, the system updates the GC
values to reflect the selected row values. The system does not update the database just because the user clicks the row.

The engine pauses for the Button Clicked event to be processed. At this point, the runtime structures have these values:
BC = Values from the database (from the last record read).
FC = Values from the database (if the field is a database field).
- GC = Values from the database (from the selected row).
Fl = Values passed from a calling form (if any).
PO = Values passed from POs.

Because this is an add action, the content of GC is irrelevant at this point. BC and GC do not contain the same values.

This diagram illustrates the information that is in the runtime structures just before the system fires Button Clicked:

17
ORACLE

JD Edwards EnterpriseOne Tools
Event Rules Guide

P Fl LI

Chapter 2

Understanding Events, Event Rules, and Runtime

FC

Bz

Pag

CHI

9 Oak

#400

Danw

co

80212

us

DEMN

G000

Processing

You typically use the Button Clicked event for the Add button to interconnect to another form, such as a fix/inspect or

headerless detail form on which the system actually performs the add action.

Delete Button Processing

When the user selects a grid row and clicks the Delete button, the system does not update the database immediately.
The engine first fires the Button Clicked event for the Delete button. At this point, the runtime structures have these

values:

BC = Values from the database (from the last record read).
FC = Values from the database (if the field is a database field).

- GC = Values from the database (from the selected row).

Fl = Values passed from a calling form (if any).

PO = Values passed from POs.

This diagram illustrates the information in the runtime structures just before the system fires Button Clicked for the

Delete button:

ORACLE

18

JD Edwards EnterpriseOne Tools
Event Rules Guide

P

Fl

LI

Chapter 2

Understanding Events, Event Rules, and Runtime

FC

Bz

Next, the Delete Grid Rec Verify—Before event fires.

Delete Grid Rec Verify-Before

Pag

CHI

9 Oak

#400

Danw

80212

us

DEMN

G000

This diagram illustrates how the engine fires the Delete Grid Rec Verify-Before event:

P

Fl

(e

FC

Bz

c

0

48

0

c

Pag

CHI

9 Cak

#400

Darw

co

Boz212

us

DEM

6000

Processing

Next, the system displays a pop up window for user to confirm the delete. If the delete is confirmed, the Delete Grid Rec

Verify-After event fires.

Delete Grid Rec Verify-After

In the Delete Grid Rec Verify-After event, you might want to perform custom logic to verify that the delete is valid. For
example, other tables might contain dependant records that prevent this record from being deleted as long as they

exist.

ORACLE

19

JD Edwards EnterpriseOne Tools Chapter 2
Event Rules Guide Understanding Events, Event Rules, and Runtime
Processing

The system processes the logic that is attached to this event after the user clicks the OK button in the Verify
confirmation form. If the user clicks the Cancel button in the Verify confirmation form, the logic attached to this event
does not occur.

Next, the Delete Grid Rec From DB-Before event occurs.

Delete Grid Rec From DB-Before

At this point, the runtime structure FC is blank. The system has not yet deleted the record from the database. You can
use the Suppress Delete system function in this event to prevent the system from deleting the record :

After the system processes the Delete Grid Rec From DB-Before event, it builds a soL peLETE statement. Then the
system deletes the current record. When user selects multiple records, all selected records are deleted.

Delete Grid Rec From DB-After

After the records are deleted from the database, the system fires the Delete Grid Rec From DB After event You might use
this event to call a business function to delete information from related tables that are not in the current BV.

All Grid Recs Deleted From DB
After all selected records are deleted, the engine fires the All Grid Recs Deleted from DB event. At this point, FC is blank.

Parallel Event

A parallel processing event in a new thread will occur. The parallel event processing will not interfere with existing Event
Rules.

20
ORACLE

JD Edwards EnterpriseOne Tools Chapter 3
Event Rules Guide Using Event Rules Design

5 Using Event Rules Design

Understanding Event Rules Design

You can use JD Edwards EnterpriseOne Event Rules Design to create event rule (ER) logic for forms and controls on a
form. For example, you want to pass data for a selected record on a find/browse form to a fix/inspect form to revise
that record. You need to create a form interconnection ER and attach it to the Select button option for the Button
Clicked event.

You can create event rules that perform a large variety of tasks, including:

- Perform a mathematical calculation.

- Pass data from a field on a form to a field on another form.

- Count grid rows that are populated with data.

- Interconnect two forms.

- Hide or display a control using a system function.

- Evaluate If/While and Else conditions.

- Assign a value or an expression to a field.

- Create variables or programmer-defined fields at runtime.

- Perform a batch process upon completion of an interactive application.
- Process table input and output, validate data, and retrieve records.

Before you create an ER, consider which control (form, button, field, grid and so on) you want to add the logic in and
what event you want to add the logic for. Answer these questions to determine which event should be used:

« Is the user initializing the form?

- Is the user clicking a button?

- Is the user exiting from a field?

- Is the user changing or exiting from a row?

After you place controls on a form, you can add ERs to any of the event that the control support. Remember that a form
is also a control, and you can create logic that the system automatically processes whenever a form event is fired.

You create ERs by clicking the buttons on the tool bar in JD Edwards EnterpriseOne Event Rules Design. Depending
on the button that you click, a different work areas appear for creating and manipulating the ER line-by-line. Specific
buttons enable you to perform these tasks:

- Attach a business function or system function.
- Create an If/While statement.

- Insert an Else clause in an If statement.

- Assign a value or expression.

- Create a variable.

- Create a form or report interconnection.

- Perform table I/0.

- Find a string in a given ER.

21
ORACLE

JD Edwards EnterpriseOne Tools Chapter 3
Event Rules Guide Using Event Rules Design

- Add comments in the ER code.
Print the ER code.

You can cut or copy an ER and paste it in the same event, form, or application or in a different event, form, or
application. You can also paste ERs into other applications, such as word processing documents. This feature is useful
for documenting the project.

When you paste an ER, the system resolves objects from the source as you paste them. If an object is partially resolved,
the system pastes the closest matching object from the destination ER. A comment line appears above the partially-
resolved line of event rules and in the status bar to indicate that the object is partially resolved. You can set paste
options to display comments before and after a block of pasted ERs. Some objects cannot be resolved in the destination
ER. The system disables these lines of ER and displays a comment. For example, an EndIf statement is commented out
if its associated If statement is missing.

For criteria statements, the paste operation adds whatever is necessary to maintain a clean, logical structure. For
example, if you paste an If statement and no EndIf statement exists, the paste operation adds a matching Endlf
statement to make the logic complete.

Use the System Function button to attach predefined system functions to events. For example, you can attach system
functions to an event that perform these tasks:

Hide or display a control.
Display media objects.
You can attach an existing business function to an event. Business functions include these types of code:
« C code that you generate manually (source language C).
Named Event Rules (NERs) (source language Event Rules).
You typically use business functions for these purposes:

Referential integrity, such as deleting secondary records when a master record is deleted, and for editing
routines.

Large and complex calculations that might otherwise overload the runtime engine.

Understanding Event Rule Validation

When you save an application, the system automatically validates all ERs in the application. If errors occur, details on
the ER event, and the control and line number being executed at the time of the error are displayed in a popup window.
You can also start the validation in FDA by selectingFile, Validate Event Rules.

The error log that the system creates is stored in a file, such as b9\prod\log\p1234.log (where prod is the environment).
If no errors exist, the system does not generate a log.

Understanding If and While Statements

If and While statements are conditional instructions for an ER. They evaluate conditions and dictate the flow of logic
when the ER is activated.

22
ORACLE

JD Edwards EnterpriseOne Tools Chapter 3
Event Rules Guide Using Event Rules Design

Use the If/While button to build conditional logic into an event. When you create an If statement, the system inserts an
Else clause. However, you can use the Delete button to delete the Else clause and then reinsert it using the Insert Else
button. When you delete an If or While statement, the system also deletes the associated Else and Endif or Endwhile
clauses, but not the lines inside of those statements.

You can drag and drop statements line-by-line to change their sequence. Resequencing ER can result in improper
syntax. When you click the Save or OK button, the system verifies the syntax. If it detects syntax errors, you can either
disable the ER and continue or edit the ER to eliminate the errors

To change a statement, double click the line.

To delete a statement, choose the line of the statement, and then click the Delete button.

Understanding ER Consistency

You can check the consistency of events in JD Edwards EnterpriseOne Event Rule Designer. Events can be either
relevant or not relevant. A relevant event is one that is valid and that can be executed by the associated control. A not
relevant event is one that is not executed by the associated control because the properties of that control do not create
the conditions that cause the events to execute. You can change a not relevant event to a relevant event by updating the
properties of the control.

Understanding ER Variables

An ER variable is a variable that you can use within the ER. You must assign a DD item to an ER variable. The DD item
defines the type and default behavior of the variable.

Use ER variables instead of hidden fields. ER variables use fewer system resources at runtime.
After you add an ER variable, you cannot modify it. Instead, you must delete it and create another one.

Each ER variable is available within a scope. The scope of an ER variable determines how you can use it. Different scope
options are available for interactive and batch applications. For example, you can:

- Reference a report variable anywhere in the report.
- Reference an ER variable only within the event in which it was created.

After you create an ER variable, it appears in the available objects list in JD Edwards EnterpriseOne Event Rules Designer
where you added it. Use the ER variable in ERs just as you would use any available object in the list. If you create an
event level variable and do not use it in ERs, FDA automatically deletes it.

The system automatically assigns to each variable one of these prefixes, based on the specified scope:
- frm_ (Form)
- evt_(Event)
- grd_(Grid)
- rpt_(Report)

- sec_ (Section)

23
ORACLE

JD Edwards EnterpriseOne Tools Chapter 3
Event Rules Guide Using Event Rules Design

Prerequisites

Before you complete the tasks in this section:

- Create an application with one or more forms.
- Understand the difference between database items and data dictionary (DD) items.
- Understand the relationship between controls, events, and ER.
- Determine the purpose of each form used in the application.
- Answer these questions:
o Whatlogic is required?
o For which control are you creating logic?
o For which event will the logic occur?
o Which runtime structures are affected?

Working with Event Rules Design

This section provides overviews of assignments and event rules design tool bar buttons, and discusses how to:
- Display event information.
- Assign a value.
- Create an If or a While statement.
- Create an ER variable.
- Attach a system function to an event.

- Attach a business function to an event.

I Note: All event rule keywords are colored blue within Event Rules Design to easily identify.

Understanding Assignments

Use an assignment to assign a field with a fixed value or a mathematical expression. For example, you can create an
assignment that inserts a default value when the user leaves the field. You can also use an assignment to calculate a
value

When you create an expression, calculate only the data items that are of the exact same numerical scale or data type.
For example, do not calculate different currencies or decimal figures that represent different decimal values because the
result of these calculations might compromise data integrity.

Note: You can use the filter capability to search for variables to use in common Event Rule functions like assignments,
system functions, report interconnects, form interconnects, and business function mappings.

24
ORACLE

JD Edwards EnterpriseOne Tools Chapter 3
Event Rules Guide Using Event Rules Design

Understanding Event Rules Design Tool Bar Buttons

The Event Rules Design form displays these tool bar buttons for generating different types of statements:
Event Information

Displays information about event relevance.

« Assignment

Creates an assignment or a complex expression.

Business Function

Attaches an existing business function.

« System Function
Attaches an existing JD Edwards EnterpriseOne system function.
If/While
Creates an If/While conditional statement.

Report Interconnect

Establishes a connection to a batch application or report.

Form Interconnect

Establishes a form interconnection.

Else

Inserts an Else clause, which is valid only within the bounds of If and End If.

- Variable

Creates a programmer-defined field.
- Table /O

Enables ER support for database access. Performs table input and output, data validations, and record retrieval.

Displaying Event Information

To display information about the relevance of an event:

1. On Event Rules Design, select an event.
2. Click the Event Information button.

A not relevant event is displayed in dimmed italic text in the Event combo box. A message box appears that displays any
information known to the system about why a not relevant event is not relevant.

25
ORACLE

JD Edwards EnterpriseOne Tools Chapter 3
Event Rules Guide Using Event Rules Design

Assigning a Value

To assign a value:

On Event Rules Design, select an event.

Click the Assignment/Expression button.

On Assignment, select the To Object that you want to receive the assigned value.
Use one of these methods to determine the From/Object Literal value:

PUWUNA

o Select a From Object in the right-hand column to create a simple statement: [left-hand column] = [right-
hand column].

o Type a literal expression (number, text, and so on) in the text entry box to assign a literal statement: [left-
hand column] = [literal].

o Press the [I(X) button to create a complex expression or advanced mathematical function using
Expression Manager.

Creating an If or a While Statement

To create an If or a While statement:
1. On Event Rules Design, select an event in the Event Rules Design window and click the If/While button.

Each cell in the Criteria Design grid represents a component of the criteria. When you select a cell, a list of valid
options appears.

2. Select either the If or While operators.

3. Select a left operand from the list of available data items.

Right-click to sort the available data items by name or object type. If only one type exists, the sort options are
unavailable. The system groups the available data items by a variety of object types.

Select a logical operator comparison (is equal to, is less than, and so forth).

Select a right operand from the object list.

To assign a literal, select <Literal>.

To create complex If statements, you can select the And option or the Or option, and continue the logic.

ou s

N

Note: To expand or collapse all statement blocks within Event Rules Design, select Expand/Collapse All Statements in
the View menu.

Creating an ER Variable

To create an ER variable:
1. On Event Rules Design, click the Variables button.

The Variables form displays different scope options, depending on whether you are working with an interactive
application, batch application, or NER.

2. Complete the variable naming field located under the Add button.

26
ORACLE

JD Edwards EnterpriseOne Tools Chapter 3
Event Rules Guide Using Event Rules Design

ouvhAuw

Click one of the Scope options (Form or Event) depending on the purpose for which you created the variable.
If you selected Form Scope and you want to use a grid variable, click the Grid option.

Click the DD visual assist to browse for DD items.

Select the DD item to which the variable is associated and click the Add button.

The system automatically assigns a prefix to the variable, based on the type of scope that you choose.

Using Event Rule Variables for Automatic Line Numbering

You can use event rules to create automatic line numbering in form grids. Automatic line numbering means that each
line in the grid will have a unique number and the lines will increment automatically as grid lines are added.

To create automatic line numbering event rules:

1.

Create a variable to hold the value of the line number. Use the data dictionary item LNID.

VA frm LineNumber LNID
Initialize the variable on the Post Dialog is Initialized event.

VA frm LineNumber LNID = 0

On the Grid Record is Fetched event, number the lines as each line is pulled from the database.
If BC LineNumber > VA frm LineNumber LNID

VA frm LineNumber LNID = BC LineNumber

End If
On the Add Last Entry Row to Grid event, increment the line number and assign the new value to the next
available line.

VA frm LineNumber LNID = VA frm LineNumber LNID + 1
GC LineNumber = VA frm LineNumber LNID

Attaching a System Function to an Event

To attach a system function to an event:

uhWNRA

On Event Rules Design, select an event.

Click the 0(S) button.

Select a category in the System Functions box.

Select the system function that you want to attach.

In the Available Objects list, select objects to pass to the system function.

Attaching a Business Function to an Event

To attach a business function to an event:

1.

On Event Rules Design, select an event.

2. Click the 0(B) button.

You can view a description (if one exists) for a business function by choosing Attachments from the Row menu.

27

ORACLE

JD Edwards EnterpriseOne Tools Chapter 3

Event Rules Guide Using Event Rules Design
3. Select a business function and click the Select button.
4. Inthe Available Objects list, select objects to pass to the business function.
5. To assign a literal to a business function parameter, select <Literal> in the Available Objects list.
6. Enter a single value and click the OK button.

10.
n.

Range and List are not valid literals to use with business function parameters.
Indicate the direction of data flow between Value and Data Items, and click the OK button.

As you click the direction arrow, it toggles through these four options:

o Data flows from the source to the target (right-pointing arrow).
o Data flows from the target to the source (left-pointing arrow).
o Data flows from the source to the target, and upon exiting the target, data flows back to the source (bi-

directional arrow).
o No data flow (slashed circle).

If the direction of the items is hard-coded in the data structure for a business function (such as when the
parameters are predetermined to be input, output, or bidirectional), then this predetermined direction
appears here. You must complete the required items that appear in red. The status bar indicates the state
of the flow to the target.

Select the Do Filtering checkbox under Transfer Filtering to transfer the end user dynamic filter criteria to the
business function along with the parameter criteria.

Select the Include in Transaction option to include this business function for transaction processing.

This option appears on transaction forms only.
Select the Asynchronously option to enable asynchronous processing.
Click one of these buttons to add notes:

o Business Function Notes

o Structure Notes

o Parameter Notes

Note: To view the mapped parameters for a business function while in Event Rules Design, right click the business
function and select Expand BSFN. The right click menu option will change to Collapse BSFN. To view the mapped
parameters for all business functions on a specific event select Expand All BSFNs from the View menu. When
expanded the Collapse All BSFNs will be activated in the View menu.

28

ORACLE

JD Edwards EnterpriseOne Tools Chapter 4
Event Rules Guide Using BrowsER

4 Using BrowsER

Understanding BrowsER

You can use JD Edwards EnterpriseOne BrowsER to view event rules (ER) for interactive and batch applications.

JD Edwards EnterpriseOne BrowsER displays the structure of forms within an interactive application, or sections within
a batch application. The forms or sections appear in a hierarchical structure, with events and ER for each event. You can
use JD Edwards EnterpriseOne BrowsER to search and filter ER, and disable or enable ER.

You can select one of these JD Edwards EnterpriseOne BrowsER options to easily view or search for ER code:

Expand Tree
Expand Node
- Show Obiject IDs
Hide Objects with no ER
Filter ER Records

Filter ER Records enables you to show or hide specific ER statements, including:

o Assignments

o Business functions

o Criterion

o Comments

o Form interconnections
o Options

o System functions

- Search ER Records enables you to search for specific ER statements or text within those statements.

Working with BrowsER

To work with JD Edwards EnterpriseOne BrowsER:

1. On Oracle's JD Edwards EnterpriseOne Object Management Workbench (OMW), select an object with ER and
then click the Design button.

2. On Interactive Design, click the Design Tools tab, and then click the Browse Event Rules button.

Alternatively, you can access JD Edwards EnterpriseOne BrowsER directly from within Oracle's JD Edwards
EnterpriseOne Form Design Aid (FDA) or Oracle's JD Edwards EnterpriseOne Report Design Aid (RDA) by
choosing BrowsER from the View menu.

3. On Browsing, click the plus (+) and minus (=) buttons to expand or collapse the hierarchical view of events for
interactive forms or batch report sections.

29
ORACLE

JD Edwards EnterpriseOne Tools Chapter 4
Event Rules Guide Using BrowsER

Each ER appears beneath the event with which it is associated and beside a control that contains event rule
logic. If it does not appear beside a control, then no event rule logic exists on that control.

4. To disable an ER line, select the line and then click Disable button.
5. To enable a disabled line, select the line and then click Enable button.

You cannot print or modify ER from any BrowsER form.

6. To hide objects with no ER, right-click anywhere on the BrowsER window and select Hide objects with no ER
from the popup menu.

7. To start a search or filter, right-click anywhere on the Browsing form and select Search or Filter ER Records from
the popup menu.

30
ORACLE

JD Edwards EnterpriseOne Tools Chapter 5
Event Rules Guide Debugging Event Rules

5 Debugging Event Rules

Understanding Debugging

Debugging is the method you use to determine the state of your program at any point of execution. Use debugging to
help you solve problems and to test and confirm program execution.

Use a debugger to stop program execution so you can see the state of the program at a specific point. This enables
you to view the values of input parameters, output parameters, and variables at the specified point. When program
execution is stopped, you can review the code line-by-line to check such issues as flow of execution and data integrity.

You use Oracle's JD Edwards EnterpriseOne Event Rules Debugger to debug interactive applications, reports (batch
applications), and table conversions.

The Debugging Process

Use the debugging process to determine where problems occur and then fix those problems. Isolate each problem to a
particular area, and then examine exactly how the program operates in that area.

If you change your program while you are debugging with the JD Edwards EnterpriseOne Event Rules Debugger, you
must:

Exit the application.
Rebuild debug information.
Reset breakpoints.
4. Rerun the application.
Features available in the event rule debugger are listed and described in this table:

WN=a

Feature Description
Go Command that resumes program execution after a breakpoint is reached.
Breakpoint Command that tell the debugger to stop when a particular line is reached. You can set breakpoints on

lines of code where you want to start debugging.

Delete Breakpoint Command that removes all breakpoints that you currently have set.

Step, Step Over Command that executes the current line of code. Step lets you run the program one line at a time. You
can use this feature to determine the results of every line of code as it is executed.

Step Into Command used when the current line of code contains a function call. The debugger will step into the
function so that it can be debugged line by line. When the function is complete, the debugger returns
to the next line of code after the function call in the calling routine. Step Into can be used to debug a
second application that is called from within an application.

31
ORACLE

JD Edwards EnterpriseOne Tools Chapter 5

Event Rules Guide Debugging Event Rules
Feature Description
Disconnect Command that disconnects the debugger from the current application. The application continues to

run as if the debugger had not been started.

Debugging Strategies

You can use several strategies to make debugging faster and easier. Begin by observing the nature of the problem.

Is the Program Ending Unexpectedly?

If the program is ending unexpectedly, the cause is likely an unhandled exception. It is an easy problem to track down if
it is happening in the same place: simply set breakpoints at strategic points throughout the code and run the program
until you find the problem.

If other objects are missing, termination is more abrupt. Remember to transfer all Media Object (also called Generic
Text) objects correctly. If an application has a Row exit to an application that does not exist, an unhandled exception in
the program occurs immediately.

Termination of the program is more abrupt and less helpful when other kinds of objects are missing. You must review
all of the pieces of your application to verify that they are all present and correctly built. A common error is to overlook
media objects. If you cannot enter your program at all, a missing object is most likely the problem.

Is the Output of the Program Incorrect?

Incorrect program output typically indicates a flaw within the logic of the code. To help find the error:

- Set a breakpoint in the code prior to the point where the bad output is produced.

- Step through the ER line by line, while monitoring the values of relevant ER variables.

At some point, a variable will probably take on an erroneous value that subsequently produces incorrect output.

If that point occurs before your breakpoint, set another breakpoint earlier in the code and restart the
application.

- Continue this process until you find the statement that is causing the wrong value to be assigned to the
variable.

Where Else Could the Problem Be Coming From?

Spend some time thinking about where the source of the problem might be. If you don't know which ER event is causing
an error, try to isolate it. For example, you might be able to temporarily disable the ER one event at a time to see if the
error still happens. You can try to repeat the processing of a single event by doing unnatural actions in the GUI, like
toggling up and down between grid rows to force the execution of the Row Is Exited event. There are no predefined

32
ORACLE

JD Edwards EnterpriseOne Tools Chapter 5
Event Rules Guide Debugging Event Rules

debugging strategies that will work in any given situation. Be creative and be persistent, until you narrow down the
problem to its source.

Debug Logs

You can output to a file a log of SQL statements and events by changing the line in your jde.ini file under [pesuc] from
output = NONE tO output = FILE, as in this sample. This is a useful debugging tool when you have narrowed a problem to
a specific issue involving the JDEDB APIs.

[DEBUG]

TAMMULTIUSERON=0
Output=FILE

ServerLog=0

LEVEL=BSFN, EVENTS
DebugFile=c:\jdedebug.log
JobFile=c:\jde.log
Frequency=10000
RepTrace=0

The jdedebug.log file can become very large when you set the Output=DEBUG flag. It is very difficult to work through

all the log messages and correlate them to what was happening in the application. One way to aid in this process is to
set breakpoints in the ER, and each time the application stops at a breakpoint, make a separate copy of the jdedebug.log
file. Label each copy, and when you are done, you will have narrowed down the coverage of each portion of the
jdedebug.log file a bit.

Debugging Event Rules

This section provides an overview of the JD Edwards EnterpriseOne Event Rules Debugger and discusses how to:

Debug an application with the JD Edwards EnterpriseOne Event Rules Debugger.
Inspect or modify a variable.

Understanding the Event Rules Debugger

The JD Edwards EnterpriseOne Event Rules Debugger provides the essential debugging tools (such as breakpoints,
step commands, and variable inspection) that you need to debug JD Edwards EnterpriseOne interactive and batch
applications. You can debug both NERs and table ER. The generated debug information for an application includes NER
and table ER information for that application.

Setting up and using JD Edwards EnterpriseOne Event Rules Debugger involves these steps:

1. Launch the ER Debugger.

2. Load into the Debugger the applications to debug.
3. Set any desired breakpoints.

4. Launch the application, report, or table conversion.

Step 4 may be done at any point before, during or after steps 1, 2, or 3.

Step 2 takes a few minutes. The Debugger must read all the specs for the application, and then translate them into a
usable format (Debugging Information Archive, or DIA). For large applications, this is slow. Therefore, once you load an

33
ORACLE

JD Edwards EnterpriseOne Tools Chapter 5
Event Rules Guide Debugging Event Rules

application, you don't want to have to reload it again any time soon (unless you modify the application, of course). For
this reason, the ER Debugger provides a Deactivate feature. Deactivating an application prevents any debugging from
occurring on that application. But when you are ready to debug the application later, you won't have to rebuild the DIA.

Any event on which you want the debugger to stop must have at least one line of ER code. You cannot set a breakpoint
on a comment. When you debug an application and encounter a point at which the interactive or batch application fails,
you can view the code that the application is currently executing, and inspect the live values of variables used in the
code.

By observing specific variables while the program runs, you can isolate where the program begins to fail and what
exactly it is doing. For example, if a counter is supposed to increment by 1, but you observe it incrementing by random
numbers, you know there is a problem with the number or variable you are adding to the counter.

The JD Edwards EnterpriseOne Event Rules Debugger is a standalone tools program. Its screen interface consists of
these main components:

- Object Browse window.

- Object Tree (those applications currently loaded in Debugger).
Event Rules window (ER listing).
Breakpoint Manager.

- Variables List and Variable Watch window.

All windows except the Event Rules window are dockable to any side of the main application. You can click and drag a
window to dock it. When you close the JD Edwards EnterpriseOne Event Rules Debugger, it saves your docking settings
until the next time you run it. Most of these main windows may also be closed by clicking the large toolbar buttons
which control them, or by clicking the 'X" in the top border of the window.

Object Browse Window

The Object Browse window is used to locate applications to load into the debugger. It provides three tab pages, one for
interactive applications, one for UBEs, and one for TCs. You can find the object you want to debug in one of these lists,
and then select it in order to bring it into the debugger.

Once you are done loading objects into the Debugger, you may want to close, or hide, the Object Browse window,
because it takes up screen space that could be more usefully dedicated to one of the other Debugger windows. To hide
this window, toggle the Object Browse Window button in the toolbar, or use the View menu.

Object Tree

The Object Tree view lists applications that have debug information built and are available for debugging. You can
navigate through a tree structure to a specific event and open an Event Rules window for that event. If one of the
objects is a power form with subforms, the subforms are listed under the power form. Form IDs appear next to the form
name.

Event Rules Window

Each Event Rules window displays the ER for one event. The event name and path, along with an abbreviated
description, appear in the title bar for each Event Rules window. The Event Rules window shows the line in the ER that is
currently being executed when the runtime engine is stopped on a line break.

The left side of an Event Rule window displays icons that describe the state of a line in the ER. States include breakpoint,
disabled, or current line of execution.

34
ORACLE

JD Edwards EnterpriseOne Tools Chapter 5
Event Rules Guide Debugging Event Rules

You can use the Event Rules window to set and remove breakpoints. You can use any of these methods:

Double-click the line in ER.

Right-click a line and select Insert Breakpoint or New Breakpoint from the pop-up menu.
- Select a line and press F9.
- Single click in the margin to the left of the ER text.

You cannot set a breakpoint on a comment line. The breakpoint automatically goes to the first code line after the
comment. You cannot set a breakpoint on a data structure member displayed in the ER listing. The breakpoint will
automatically go to the function call above it that "owns" the data structure.

The ER window is also useful to show the values of ER variables during a debugging session. The value of a variable in
the ER listing can be instantly displayed by moving the mouse cursor over the variable. Its value will appear in a Tool Tip
window when the ER Engine is paused (when stopped on a breakpoint or when stepping through code in the debugger).

Variables spelled differently in the ER listing and the variable list will not display.

Variable Tree and Watch Window

When the program is halted at a breakpoint, you can examine the state of your runtime structures and evaluate ER
variables using the Variable Tree and Variable Watch windows.

The Variable Tree and Watch window consists of two panes. The left pane is the Variable Tree pane. It contains a

tree structure that lists the variable types as parent nodes and the variables of each variable type as child nodes. The
variables displayed are those that are in scope of the currently displayed event in the Event Rule window. The right pane
is the Watch pane. It displays variables you select and their most recently known values. Each variable is identified by its
category, name, and the Id of the form, if any, to which it belongs. You can add a variable to the Watch pane by double-
clicking the desired variable in the Variable Tree, or you can right click on the variable in the Variable Tree and select
"Watch Variable" to add it to the Watch list.

You can change the value of variables while you are debugging an application, in order to better understand what
effect that might have on subsequent ER execution. This is a powerful feature, which can also mess up your program
execution and create unwanted side effects. Use it carefully. To change the value of a variable, the application must be
stopped at a line of ER. Double-click the variable in the Watch pane and enter a different value. If the ER engine running
the application accepts the new value, the new value appears in the Watch pane. If you enter an inappropriate value (for
example, you change a numeric value to an alpha value) the new value is not set and the value is not changed. In any
case, the Debugger displays the actual, resulting variable value.

These special values are displayed for variables:
blank
The value for the variable contains only blanks. This value applies to string and character types only.
null
The variable has no value, or a null or empty value.
unknown

The value for the variable could not be obtained from the runtime engine. When adding a variable to the watch
list, the initial value is always unknown. The value is also unknown when the applications are not running, or
when the variable is out of scope.

I Note: Variable inspection and modification is not available for debugging NERs and table ER.

35
ORACLE

JD Edwards EnterpriseOne Tools Chapter 5
Event Rules Guide Debugging Event Rules

Breakpoint Manager

You use breakpoints to define where or when to halt the execution of a program. The Breakpoint Manager tracks the
breakpoints that are set and the location of those breakpoints in an application. When you set a new breakpoint, the
system creates an entry in the Breakpoint Manager. This entry contains the application name, form name, event name,
ER line number, and the breakpoint conditions, if any.

Right-click within Breakpoint Manager to perform these operations:

Delete a breakpoint.

Delete all breakpoints.

Display the ER window in which the breakpoint is set.
- Access breakpoint properties.

Enable or disable a breakpoint.

You can also double-click an entry in Breakpoint Manager to open the Event Rule window in which the breakpoint is set.

Breakpoint State Indicators
Normal breakpoints are indicated by a red circle.

Breakpoint conditions are indicated by a question mark inside the red circle.

A disabled breakpoint is indicated by a hollow circle in the ER listing.

Breakpoint with Condition

Formerly, ER breakpoints existed with no apparent properties. Breakpoints now have Condition and Hit Count
properties which may be set or examined in the Breakpoint Properties dialog.

To set a breakpoint condition in the form of a logical expression:

1. In the Breakpoint Properties dialog click the Condition button.

2. The Breakpoint Condition dialog will now display. In this window you may enter the condition in the available
field or click the Help button. The Help button brings up a dialog that documents the syntax for breakpoint
conditions to assist in creating a condition.

Note: For example one might write a condition using the format of "VariableName = LiteralValue". The
resulting condition might be PO cSelfServiceMode="1".

3. After entering a condition, the developer may use the Validate Condition button to validate the expression.

Note: Checking the Condition checkbox in the Breakpoint Condition dialog enables the Condition. If the
Condition checkbox is not checked then the condition is saved for possible later use, but is not effective.

Avoiding Problems with Breakpoint Conditions
To avoid unnecessary problems it is best to:
- Validate breakpoint conditions as you create them.

- Spell variable names exactly as they appear in the variable list, including spaces and special characters where
present.

36
ORACLE

JD Edwards EnterpriseOne Tools Chapter 5
Event Rules Guide Debugging Event Rules

It is possible to set an invalid condition on a breakpoint. There may even be times when you would do this intentionally.
Invalid conditions fail when evaluated. It is good practice to utilize the Validate Condition button to validate conditions as
you create them.

Misspelled variable names are invalid, of course. The official spelling for all variables is shown in the Debugger's variable
list.

Out-of-scope variables are invalid, depending on the context of the breakpoint in which the condition is set.
Any other syntax violations make an expression invalid.

The Debugger does not validate date and number formats. This validation is done at runtime, and may depend on
certain User Options.

Breakpoint with Hit Count Condition

The second Breakpoint property is the Hit Count condition. The Hit Count condition specifies a certain number of times
the breakpoint must be reached before the debugger will stop on it.

The Hit Count dialog is used by the developer to specify a Hit Count condition. It also shows the current hit count, that
is, the number of times the breakpoint has been reached since the hit count condition was created.

When both an expression Condition and a Hit Count condition are set on a single breakpoint, the debugger stops on the
breakpoint if either condition is met.

Disabled Breakpoint

A breakpoint may be disabled. A disabled breakpoint retains all its conditions and other properties, but the debugger
does not stop on a disabled breakpoint.

Invalid Breakpoints

Invalid breakpoint conditions are logged to jdedebug.log each time the breakpoint having the invalid condition is
reached.

Search Combo Box

You can use the Search combo box on the tool bar to search for ER text. Enter the text that you want to find in the
Search combo box and then press either Enter or F3. If the system locates the search text in your ER text, it highlights
the text. If you press Enter or F3 again, the next occurrence of your search text is located and highlighted.

The search control accommodates regular expression searches. A regular expression search uses special characters to
match text. For example, ~1£: will find every line that starts with If and z£s: will find every line that ends with If.

The special characters that you can use for advanced searches are described in this table:

Character Description

The caret () indicates the beginning of a line. For example, the expression “A matches an A only at
the beginning of a line.

The caret (") immediately after the left bracket ([) is used to exclude any remaining characters within
brackets from matching the target string. For example, the expression [~0-9] indicates that the target
character should not be a digit.

37
ORACLE

JD Edwards EnterpriseOne Tools Chapter 5

Event Rules Guide Debugging Event Rules
Character Description
$ The dollar sign ($) matches the end of a line. For example, the expression abc$ will match the substring

abc only if it is at the end of a line.

The alternation character (|) enables the expression on either side of it to match the target string. For
example, the expression a|b will match a as well as b.

The dot (.) matches any character.

The asterisk (*) indicates that the character to the left of the asterisk in the expression should match O
or more times.

The plus (+) is similar to the asterisk except that at least one match of the character should occur to the
left of the + sign in the expression.

The question mark (?) matches the character to its left O or 1times.

The parentheses affect the order of pattern evaluation and serve as a tagged expression that you can
use to replace a matched substring with another expression.

Brackets that enclose a set of characters indicate that any of the enclosed characters can match the
target character.

Debugging an Application with the Event Rules Debugger

To debug an application with the JD Edwards EnterpriseOne Event Rules Debugger:

uhWNA

From the Cross Application Development Tools menu (GH902), select Debug Application.

Select the object that you want to debug.

Select a form (for interactive applications) or section (for batch applications) and an event to view.
Select the ER line on which you want to set a breakpoint.

Select Debug, Breakpoint.

A red dot appears on the line, indicating the breakpoint.o You can remove the breakpoint by choosing Debug,
Breakpointagain. The Breakpoint command is a toggle, and you can also toggle the value using the Breakpoint
toolbar button.

Run the application.

As your application encounters a breakpoint, the application will pause, and the focus will switch to the Event
Rules Debugger.

When execution stops at a breakpoint, you can use the variables view to inspect and modify the values of
runtime structures.

38

ORACLE

JD Edwards EnterpriseOne Tools Chapter 5
Event Rules Guide Debugging Event Rules

7. From the Debug menu, select one of these options:

o Go

o Disconnect
o Step Over
o StepInto

39
ORACLE

JD Edwards EnterpriseOne Tools Chapter 5
Event Rules Guide Debugging Event Rules

40
ORACLE

JD Edwards EnterpriseOne Tools Chapter 6
Event Rules Guide Glossary

6 Glossary

business function

A named set of user-created, reusable business rules and logs that can be called through event rules. Business
functions can run a transaction or a subset of a transaction (check inventory, issue work orders, and so on). Business
functions also contain the application programming interfaces (APIs) that enable them to be called from a form, a
database trigger, or a non-JD Edwards EnterpriseOne application. Business functions can be combined with other
business functions, forms, event rules, and other components to make up an application. Business functions can be
created through event rules or third-generation languages, such as C. Examples of business functions include Credit
Check and Item Availability.

business function event rule

See named event rule (NER).

business view

A means for selecting specific columns from one or more JD Edwards EnterpriseOne application tables whose data is
used in an application or report. A business view does not select specific rows, nor does it contain any actual data. It is
strictly a view through which you can manipulate data.

embedded event rule

An event rule that is specific to a particular table or application. Examples include form-to-form calls, hiding a field
based on a processing option value, and calling a business function. Contrast with the business function event rule.

event rule

Alogic statement that instructs the system to perform one or more operations based on an activity that can occurin a
specific application, such as entering a form or exiting a field.

A1
ORACLE

JD Edwards EnterpriseOne Tools Chapter 6
Event Rules Guide Glossary

fast path

A command prompt that enables the user to move quickly among menus and applications by using specific commands.

jde.ini

A JD Edwards EnterpriseOne file (or member for iSeries) that provides the runtime settings required for JD Edwards
EnterpriseOne initialization. Specific versions of the file or member must reside on every machine running JD Edwards
EnterpriseOne. This includes workstations and servers.

jde.log

The main diagnostic log file of JD Edwards EnterpriseOne. This file is always located in the root directory on the primary
drive and contains status and error messages from the startup and operation of JD Edwards EnterpriseOne.

named event rule (NER)

Encapsulated, reusable business logic created using event rules, rather that C programming. NERs are also called
business function event rules. NERs can be reused in multiple places by multiple programs. This modularity lends itself
to streamlining, reusability of code, and less work.

subscriber table

Table F98DRSUB, which is stored on the publisher server with the FO8DRPUB table and identifies all of the subscriber
machines for each published table.

table conversion

An interoperability model that enables the exchange of information between JD Edwards EnterpriseOne and third-party
systems using non-JD Edwards EnterpriseOne tables.

42
ORACLE

JD Edwards EnterpriseOne Tools Chapter 6
Event Rules Guide Glossary

table event rules

Logic that is attached to database triggers that runs whenever the action specified by the trigger occurs against the
table. Although JD Edwards EnterpriseOne enables event rules to be attached to application events, this functionality is
application specific. Table event rules provide embedded logic at the table level.

workbench

A program that enables users to access a group of related programs from a single entry point. Typically, the programs
that you access from a workbench are used to complete a large business process. For example, you use the JD Edwards
EnterpriseOne Payroll Cycle Workbench (P07210) to access all of the programs that the system uses to process payroll,
print payments, create payroll reports, create journal entries, and update payroll history. Examples of JD Edwards
EnterpriseOne workbenches include Service Management Workbench (P90CD020), Line Scheduling Workbench
(P3153), Planning Workbench (P13700), Auditor's Workbench (PO9E115), and Payroll Cycle Workbench.

43
ORACLE

JD Edwards EnterpriseOne Tools Chapter 6
Event Rules Guide Glossary

44
ORACLE

JD Edwards EnterpriseOne Tools | Index | 45

Index

A Dialog is Initialized §
Grid Record is Fetched 7/
Add button /7 Last Grid Record Has Been Read /5
All Grid Recs Deleted from DB event 20 Post Dialog is Initialized &
application event rules 4 Write Grid Line—After /4
assignment 24, 26 Write Grid Line-Before /2
automatic line numbering event information 25
creating event rules for 27 event rules 3
application 4
B design 24
embedded 3, 4
business function logic 21
attaching to an event 27 named 3, 3
Button Clicked event for Add Button /7 tab!e 4
Button Clicked event for Delete Button /8 validation .22
Button Clicked event for Select Button /7 event rules runqme data strgcture 5
buttons event rules runtime processing 4
tool bar 25
F
C filter fields
Control is Exited event 7 loading for SQL SELECT 9
controls loading PO values 9
disabling/enabling § form initialization 7
hiding/showing 8, 23 form interconnections /7
D G
data structure 5 grid controls

calculating work field values /2

data structure object codes 5 !
converting values /3

data structure processing 6

database triggers 4 formatting 73

debugger 33 retrieving non-BV data /3
breakpoint manager 36 suppr_essing agridrow /2, 13
event rules window 34 totalling values /6

object browse window 34 Grid Record is Fetched event //

search combo box 37

step by step instructions 38 1
variable tree and watch window 35
debugger features 3/ if and while statement 26
debugging strategies 32
Delete button /8 L
Delete Grid Rec From DB—After event 20
Delete Grid Rec From DB—Before event 20 Last Grid Record Has Been Read event 5

Delete Grid Rec Verify—After event /9
Delete Grid Rec Verify—Before event /9
Dialog is Initialized event § N

named event rules 3
E null pointer errors 32

embedded event rules 4

event 3 0]
All Grid Recs Deleted from DB 20
Button Clicked for Add Button /7
Button Clicked for Delete Button /8

output errors 32

Button Clicked for Select Button /7 P

Control is Exited 7

Delete Grid Rec From DB-After 20 page-at-a-time processing /()
Delete Grid Rec From DB-Before 20 Post Dialog is Initialized event §

Delete Grid Rec Verify—After 79
Delete Grid Rec Verify—Before /9

JD Edwards EnterpriseOne Tools | Index | 46

R

runtime data structure
event rules 5

runtime processing
event rules 4

S

Select button /7
SQL fetches, building 9
system function

attaching to an event 27

T

table event rules 4, 4
tool bar buttons 25

U

unhandled exception 32

\

variable 26
using variables for automatic line numbering 27

W

Write Grid Line—After event /4
Write Grid Line-Before event /2, /12

	 Event Rules Guide
	Preface
	Introduction to JD Edwards EnterpriseOne Tools: Event Rules
	JD Edwards EnterpriseOne Tools: Event Rules Overview
	JD Edwards EnterpriseOne Tools: Event Rules Implementation
	JD Edwards EnterpriseOne Tools Development Tools: Event Rules Implementation Steps

	Understanding Events, Event Rules, and Runtime Processing
	Events
	Event Rules
	Event Rules Fundamentals
	Named Event Rules
	Embedded Event Rules
	Application Event Rules
	Table Event Rules

	Runtime Processing of Event Rules
	Fundamentals of Runtime Processing of Event Rules
	Runtime Data Structures
	Available Objects and Runtime Data Structures
	Processing Available Objects
	Control is Exited Processing

	Form Flow
	Pre-Dialog Is Initialized
	Dialog Is Initialized
	Post Dialog Is Initialized
	Building SQL SELECT
	Fetching Records
	Page-at-a-Time Processing
	BC Assigned Database Values
	Grid Record Is Fetched
	Write Grid Line-Before
	Write Grid Line–After
	Last Grid Record Has Been Read
	Select Button Processing
	Button Clicked
	Add Button Processing
	Delete Button Processing
	Delete Grid Rec Verify–Before
	Delete Grid Rec Verify–After
	Delete Grid Rec From DB–Before
	Delete Grid Rec From DB–After
	All Grid Recs Deleted From DB
	Parallel Event

	Using Event Rules Design
	Understanding Event Rules Design
	Understanding Event Rule Validation
	Understanding If and While Statements
	Understanding ER Consistency
	Understanding ER Variables
	Prerequisites
	Working with Event Rules Design
	Understanding Assignments
	Understanding Event Rules Design Tool Bar Buttons
	Displaying Event Information
	Assigning a Value
	Creating an If or a While Statement
	Creating an ER Variable
	Using Event Rule Variables for Automatic Line Numbering

	Attaching a System Function to an Event
	Attaching a Business Function to an Event

	Using BrowsER
	Understanding BrowsER
	Working with BrowsER

	Debugging Event Rules
	Understanding Debugging
	The Debugging Process
	Debugging Strategies
	Is the Program Ending Unexpectedly?
	Is the Output of the Program Incorrect?
	Where Else Could the Problem Be Coming From?

	Debug Logs
	Debugging Event Rules
	Understanding the Event Rules Debugger
	Object Browse Window
	Object Tree
	Event Rules Window
	Variable Tree and Watch Window
	Breakpoint Manager
	Breakpoint State Indicators
	Breakpoint with Condition
	Avoiding Problems with Breakpoint Conditions
	Breakpoint with Hit Count Condition
	Disabled Breakpoint
	Invalid Breakpoints
	Search Combo Box

	Debugging an Application with the Event Rules Debugger

	Glossary
	business function
	business function event rule
	business view
	embedded event rule
	event rule
	fast path
	jde.ini
	jde.log
	named event rule (NER)
	subscriber table
	table conversion
	table event rules
	workbench

	Index

