
Oracle® Data Relationship
Management Suite
Administrator's Guide

Release 11.2.x
F13691-06
July 2022

Oracle Data Relationship Management Suite Administrator's Guide, Release 11.2.x

F13691-06

Copyright © 1999, 2022, Oracle and/or its affiliates.

Primary Author: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Documentation Accessibility

 Documentation Feedback

1 Revision History

2 About Data Relationship Management Suite

3 Getting Started

Administering Data Relationship Management Applications 3-1

Accessing Data Relationship Management 3-1

Changing Passwords 3-2

Troubleshooting and Tips 3-2

4 Managing Users

User Permissions 4-1

User Roles 4-7

Analytics Roles 4-11

Creating Users 4-12

User Authentication 4-13

Modifying Users 4-14

Changing Passwords 4-14

Locking Out Users 4-15

Unlocking Users 4-15

Changing User Roles and Assignments 4-15

Deleting Users 4-16

Viewing User Login Status 4-16

System Defined Users 4-16

iii

Common User Provisioning 4-17

Prerequisites 4-17

Provisioning Users and Groups 4-17

Synchronizing Data Relationship Management Users and Group Membership 4-18

Manual Synchronization 4-18

Scheduled Synchronization 4-18

Partial Synchronization 4-19

5 Managing Node Access Groups

Workflow Group Type Node Access Levels 5-2

Creating Node Access Groups 5-3

Editing Node Access Groups 5-4

Deleting Node Access Groups 5-4

Assigning Node Access Group Security 5-4

6 Managing Object Access Groups

Creating Object Access Groups 6-2

Editing Object Access Groups 6-2

Deleting Object Access Groups 6-3

7 Managing Domains

Creating Domains 7-1

Editing Domains 7-2

Deleting Domains 7-2

8 Managing Property Categories

Property Categories 8-1

Creating Property Categories 8-2

Editing Property Categories 8-3

Deleting Property Categories 8-3

9 Managing Property Definitions

Data Types 9-2

External Lookups 9-4

Creating Properties 9-5

Using Hierarchy Constraints 9-9

Editing Property Definitions 9-10

iv

Deleting Properties 9-10

10

Managing Validations

Validation Classes 10-1

Validation Levels 10-4

Creating Validations 10-6

Creating a Script Validation for Move 10-7

Assigning Validations 10-7

Editing Validations 10-8

Deleting Validations 10-8

11

Managing Formulas

Working with Functions 11-1

Special Characters 11-1

Literals 11-2

Format String Parameter 11-2

Date-Time Format Strings 11-4

Formula Evaluation 11-6

Formula Syntax Checks 11-6

Property Names in the Syntax Check 11-7

Considerations for Using Formulas 11-7

Creating Formulas 11-9

Function Definitions 11-10

Function Groups 11-60

12

Managing Dynamic Scripts

Execution Contexts 12-1

Derived Properties Using Scripts 12-1

Validations Using Scripts 12-2

Governance Requests Using Scripts 12-3

Enumeration Constants 12-4

Supported JavaScript Data Types 12-4

Data Type Conversions 12-6

Formatting Numbers 12-7

Formatting Dates 12-9

Data Relationship Management Objects 12-11

Execution Environment 12-24

v

Creating Dynamic Scripts 12-25

13

Managing Node Types

Defining Node Types 13-1

Editing Node Types 13-1

Deleting Node Types 13-2

Working with Node Glyphs 13-2

14

Working with System Preferences

System Preferences 14-1

Setting Transaction History Logging Levels 14-10

Setting Up Change Approval 14-11

Configuring System Preferences 14-12

15

Working with External Connections

Defining External Connections 15-1

Editing External Connections 15-5

Deleting External Connections 15-5

16

Configuring Governance Workflows

Managing Workflow Tasks 16-1

Task Properties 16-1

Task and Property Instructions 16-1

Task Validations 16-2

Calculated Name and Parent Properties 16-2

External Commits 16-3

Creating Workflow Tasks 16-3

Editing Workflow Tasks 16-6

Copying Workflow Tasks 16-7

Deleting Workflow Tasks 16-7

Managing Workflow Models 16-7

Workflow Stages 16-7

Model Filters 16-12

Request and Claim Duration 16-13

Creating Workflow Models 16-13

Editing Workflow Models 16-15

Copying Workflow Models 16-15

Renaming Workflow Models 16-16

vi

Hiding Workflow Models 16-16

Deleting Workflow Models 16-16

17

Managing Data Relationship Management Analytics

Accessing Data Relationship Analytics 17-2

Working with Preferences 17-2

Working with Execution Plans 17-3

Creating Execution Plans 17-3

Editing Execution Plans 17-4

Inactivating and Reactivating Execution Plans 17-5

Deleting Execution Plans 17-5

Viewing Activity 17-5

18

Integrating External Workflow Applications

External Requests 18-1

19

Migrating Data Relationship Management Metadata

Opening the Migration Utility 19-2

Extracting Metadata 19-2

Loading Metadata 19-4

Comparing Metadata 19-5

Viewing Metadata 19-6

Metadata File Restrictions 19-7

Generating Reports 19-7

vii

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Documentation Accessibility

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Documentation Feedback

To provide feedback on this documentation, click the feedback button at the bottom of the
page in any Oracle Help Center topic. You can also send email to epmdoc_ww@oracle.com.

ix

1
Revision History

The following topics have been updated in this release of the guide:

Topic Change

Data Types Added note to both Float and Integer that 0
will export if no default value has been
defined.
Added information that data types Date, Date/
Time, and Time are formatted in the invariant
culture.

Function Definitions Updated the Equals function to say that the
comparison is case sensitive.

Creating Dynamic Scripts Added note that when calculating parent
names, any use of special characters must
follow the standard JavaScript rules for
escaping special characters.

Migrating Data Relationship Management
Metadata

Added a note to indicate that the connection
string, user ID, and password for external
connections do not migrate with migration
loads and extracts.
Added a new section called "Migrating Core
Property Configurations and Settings".

Data Relationship Management Objects Updated description for the
NodeNamePendingInRequest method for
RequestItemObject.

Calculated Name and Parent Properties Added note to clarify behavior when name or
parent is manually overridden.

Creating Workflow Models Added note to Recalculate Task Properties
bullet in step 6 to clarify behavior when name
or parent is manually overridden.

Managing Dynamic Scripts Updated description for NodeExists(abbrev) in
HierarchyObject Methods table
Added 2 new properties to
RequestItemDetailObject:
• CalcValue
• HasCalcValue

Notifications Various updates to clarify and update
notification behavior.

Supported JavaScript Data Types Added note to clarify using an Array.

Creating a Script Validation for Move Added new topic Creating a Script Validation
for Move

1-1

Topic Change

System Preferences Added a note to description for the
FindByProperties system preference.
Updated descriptions for
SharedNodeDelimiter and
SharedNodeSequenceSeparator system
preferences.

Function Definitions Clarified the local use of several functions.

Troubleshooting and Tips Added a new section "Troubleshooting and
Tips" to the Getting Started chapter.
Added workaround information about pasting
into fields.
Added application performance information.

Validation Classes Added recommendation that UniqueProp
validation use indexed properties.

Chapter 1

1-2

2
About Data Relationship Management Suite

Oracle Data Relationship Management Suite consists of:

• Oracle Data Relationship Management

• Oracle Data Relationship Management Read Only Access

• Oracle Data Relationship Steward

• Oracle Data Relationship Governance

• Oracle Data Relationship Management Analytics

• Oracle Data Relationship Management for Oracle Hyperion Enterprise Planning Suite

• Oracle Data Relationship Management for Oracle Hyperion Financial Close Suite

2-1

3
Getting Started

Related Topics

• Administering Data Relationship Management Applications

• Accessing Data Relationship Management

• Troubleshooting and Tips

Administering Data Relationship Management Applications
Oracle Data Relationship Management uses applications to manage data and service user
requests for accessing and changing data. A single Data Relationship Management
installation can support one or more applications. Each application uses its own system
metadata and security configuration to manage and access data. The same application can
support multiple data sets and multiple users with various levels of access to common and
restricted sets of data. However, all system metadata within an application is shared and
administered by the same users. Any changes to system metadata take effect immediately
and all users and data may be affected. If different user groups need to be isolated from any
metadata changes being made by another group, it is recommended that each group use a
separate application.

Applications are created in the Configuration Console which is accessible from the Data
Relationship Management primary application server. For more information on creating a new
application, see "Creating an Application" in the Oracle Data Relationship Management
Installation Guide .

A new Data Relationship Management application includes core metadata objects such as
property definitions and categories and a default administrative user. This initial configuration
enables the default user to perform four tasks to build, populate, and provision the
application:

• Create versions and hierarchies

• Define user metadata objects such as queries, compares, imports, blenders, and exports

• Set up and configure system metadata objects including domains, property definitions,
validations, and node types

• Add users and configure security to access product features, objects, and data

This guide covers the administration tasks related to system metadata and user security for
Data Relationship Management applications. See the Oracle Data Relationship Management
User's Guide for information on managing versions, hierarchies, and user metadata objects.

Accessing Data Relationship Management
To start the Oracle Data Relationship Management client:

1. Select Start, then Programs, then Oracle EPM System, then Data Relationship
Management, then Web Client .

3-1

2. Enter your user name and password.

User names and passwords are case-sensitive.

3. Select an application and click Log On.

For more information, see Changing Passwords.

Changing Passwords
To change a password:

1. From the Oracle Data Relationship Management Home page, select Preferences.

2. Click Change My Password.

3. Type the current password.

4. Type the new password.

Note:

When a user is authenticated natively and the PasswordPolicyEnabled
system preference is set to True, a password must contain three of the
following elements:

• Uppercase letters

• Lowercase letters

• Numbers

• Special characters

Note:

Otherwise, the password is not restricted unless by an external directory
when the user is authenticated via Oracle Hyperion Shared Services.

5. Type the new password again.

6. Click OK.

Troubleshooting and Tips
Pasting Into Entry Fields

In some cases, content cannot be pasted from the clipboard by using right click and
then Paste. To workaround this issue, use Ctrl-V or click Edit and then select Paste to
paste content from the clipboard.

Application Performance

In order to maintain application performance, a standard programming practice has
been employed to leverage a feature known as String Interning which provides more

Chapter 3
Troubleshooting and Tips

3-2

rapid access to string data. String Interning is where an immutable copy of each string is
stored once and is maintained for subsequent access while the application is running.
Therefore, as data is accessed and content is managed, the apparent memory footprint of the
engine will grow incrementally until the application is restarted.

Chapter 3
Troubleshooting and Tips

3-3

4
Managing Users

Related Topics

• User Permissions

• User Roles

• Creating Users

• User Authentication

• Modifying Users

• Deleting Users

• Viewing User Login Status

• System Defined Users

• Common User Provisioning

User Permissions
Oracle Data Relationship Management uses three levels of permissions to control user
access to product features and data. Some higher-level permissions also include lower-level
permissions. If a user is granted higher-level permission, then all lower-level permissions are
also granted. For example, if a user is granted a Level 1 permission, they are also granted all
Level 2 and 3 permissions below it.

Version Permissions

Table 4-1 Version Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Versions––User has
access to Version and Hierarchy
menu options

Browse Versions––Users have
access to any version that they are
granted rights to in Node Access
Groups

NA

Create Versions––Users can
manage (update/delete) any version
of which they are the owner. User
has access to Version menu options.

Note: The user who creates a
version is the owner until a user with
Manage Versions permission
changes the owner.

NA

4-1

Table 4-1 (Cont.) Version Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Hierarchies––Users have
access to Hierarchy menu options.

Browse Hierarchies––Users have
access to any hierarchy that they are
granted rights to in Node Access
Groups. Users have access to Node
menu options if they have Edit node
access or greater.

Create Hierarchies––Users can
manage (update/delete) any
hierarchy of which they are the
owner. Users have access to
Hierarchy menu options. Users can
disable node types for any hierarchy
of which they are the owner.

Note: The user who creates a
hierarchy is the owner until a user
with Manage Hierarchies permission
changes the owner.

Request Permissions

Table 4-2 Request Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Requests––Users can
delete any request in the system that
has not already been committed.

Create Requests––Users can query
any request in the system and can
manage (update/delete) any request
of which they are the owner.

NA

Workflow Participant––Users can
participate in requests using
governance workflow models.

NA NA

Query Permissions

Table 4-3 Query Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Queries––Users
have access to system queries and
to Query menu options. Users have
restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security.

Manage User Queries––Users have
access to view and run User and
Standard queries. Users do not have
access to Query menu options for
Standard Queries. Users have
restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security.

Run Query––Users can view and
run any Standard query. Users have
restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security. Users have
access to Node menu options if they
have Edit node access or greater.

Chapter 4
User Permissions

4-2

Table 4-3 (Cont.) Query Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Standard Queries––Users
have access to Query menu options
for Standard queries. Users have
restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security.

NA

Compare Permissions

Table 4-4 Compare Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Compares––
Users have access to system
compares and Compare menu
options. Users have restricted
access to Version, Hierarchy, Node,
and Property selectors based on
Node Access Group assignments
and Property Category security.

Manage User Compares––Users
have access to view and run User
and Standard compares. Users do
not have access to Compare menu
options for Standard Compares.
Users have restricted access to
Version, Hierarchy, Node, and
Property selectors based on Node
Access Group assignments and
Property Category security.

Run Compare––Users can view and
run any Standard compare. Users
have restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security. Users have
access to Node menu options if they
have Edit node access or greater.

Manage Standard Compares––
Users have access to Compare
menu options for Standard
compares. Users have restricted
access to Version, Hierarchy, Node,
and Property selectors based on
Node Access Group assignments
and Property Category security.

NA

Import Permissions

Table 4-5 Import Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Imports––Users
have access to system imports and
Import menu options. Users have
restricted access to Property
selector based on Property Category
security.

Manage User Imports––Users have
access to view and run User and
Standard imports. Users do not have
access to Import menu options for
Standard Imports. Users have
restricted access to Property
selector based on Property Category
security.

Run Import––Users can view and
run any Standard import. Users have
restricted access to Property
selector based on Property Category
security.

Chapter 4
User Permissions

4-3

Table 4-5 (Cont.) Import Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Standard Imports––Users
have access to Import menu options
for Standard imports. Users have
restricted access to Property
selector based on Property Category
security.

NA

Blender Permissions

Table 4-6 Blender Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Blenders––Users
have access to system blenders and
Blender menu options. Users have
restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security.

Manage User Blenders––Users
have access to view and run User
and Standard blenders. Users do not
have access to Blender menu
options for Standard Blenders.

Run Blender––Users can view and
run any Standard blender. Users
have restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security.

Manage Standard Blenders––
Users have access to Blender menu
options for Standard blenders. Users
have restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security.

NA

Export Permissions

Table 4-7 Export Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Exports––Users
have access to system exports and
Export menu options. Users have
restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security.

Manage User Exports––Users have
access to view and run User and
Standard exports and books. Users
do not have access to Export menu
options for Standard exports and
books. Users have restricted access
to Version, Hierarchy, Node, and
Property selectors based on Node
Access Group assignments and
Property Category security

Run Export––Users can view and
run any Standard exports. Users
have restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security.

Chapter 4
User Permissions

4-4

Table 4-7 (Cont.) Export Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Standard Exports––Users
have access to Export menu options
for Standard exports and books.
Users have restricted access to
Version, Hierarchy, Node, and
Property selectors based on Node
Access Group assignments and
Property Category security.

NA

Script Permissions

Table 4-8 Script Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Run Action Script––Users can run
action scripts. Users have restricted
access to Version, Hierarchy, Node,
and Property selectors based on
Node Access Group assignments
and Property Category security.

NA NA

Audit Permissions

Table 4-9 Audit User Transaction Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Audit User Transactions––Users
can query any transactions that they
performed. Transactions can include
data and metadata changes and
logged actions such as Login and
running asynchronous operations.
Users have restricted access to
Version, Hierarchy, Node, and
Property selectors based on Node
Access Group assignments and
Property Category security.

NA NA

Chapter 4
User Permissions

4-5

Table 4-10 Audit Data Transaction Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Audit Data Transactions––Users
can query any transactions for data
objects they have access to in
Permissions or Node Access
Groups. Transactions can include
transactions performed by the user
and changes made by other users.
For node-level transactions, users
can query transactions for a node
and all of its descendants (Include
Child Nodes option), assuming the
user also has read access to all
descendants. Users have restricted
access to Version, Hierarchy, Node,
and Property selectors based on
Node Access Group assignments
and Property Category security.

NA NA

Table 4-11 Audit System Transaction Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Audit System Transactions––
Users can query any transactions
that they performed. Transactions
can include data and metadata
changes and logged actions such as
Login and running asynchronous
operations.

NA NA

Application Permissions

Table 4-12 Application Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Application Manage Categories Browse Categories––Users have
access to any property category that
they are granted rights to in Property
Category security.

Manage Properties Browse Properties––Users have
access to all properties for the
property categories that they are
granted rights to in Property
Category security.

Manage Property Lists––User can
manage lists of values and lookup
tables for property definitions.

Manage Validations NA

Manage Node Types NA

Chapter 4
User Permissions

4-6

Table 4-12 (Cont.) Application Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Preferences NA

Access Permissions

Table 4-13 Access Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Access Manage Users––Users cannot
edit or delete their own user
profile.

NA

Manage Roles––Users cannot
edit their own role assignment.

NA

Manage Access Groups––
Users cannot edit their own
Node Access Group assignment.

NA

Manage Property Access––
Users cannot edit their own
Property Category assignment.

NA

User Roles
Oracle Data Relationship Management permissions are assigned to users using Roles. Each
user role is associated with a set of permissions that provide access to product features or
data. A user can be assigned one or more roles which grants them the combined permissions
from all roles. If a user is assigned two roles that have conflicting levels of access, the user is
granted the higher level of access.

Data Relationship Management provides the following user roles with assigned permissions
marked:

Table 4-14 User Roles - Permissions

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manage

r

Anony
mous
User

Applica
tion

Admini
strator

Data
Creator

Data
Manage

r

Interact
ive

User

Workflo
w User

Govern
ance
User

Manage
Versions

X

Browse
Versions

X X X X X X X

Create
Versions

X

Chapter 4
User Roles

4-7

Table 4-14 (Cont.) User Roles - Permissions

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manage

r

Anony
mous
User

Applica
tion

Admini
strator

Data
Creator

Data
Manage

r

Interact
ive

User

Workflo
w User

Govern
ance
User

Manage
Hierarchi
es

X

Browse
Hierarchi
es

X X X X X X X

Create
Hierarchi
es

X

Manage
Request
s

X

Create
Request
s

X X

Manage
System
Queries

X

Manage
User
Queries

X X X

Run
Query

X X

Manage
Standar
d
Queries

X

Manage
System
Compar
es

X

Manage
User
Compar
es

X X X

Run
Compar
e

X X

Manage
Standar
d
Compar
es

X

Chapter 4
User Roles

4-8

Table 4-14 (Cont.) User Roles - Permissions

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manage

r

Anony
mous
User

Applica
tion

Admini
strator

Data
Creator

Data
Manage

r

Interact
ive

User

Workflo
w User

Govern
ance
User

Manage
System
Imports

X

Manage
User
Imports

X X

Run
Import

Manage
Standar
d
Imports

X

Manage
System
Blenders

X

Manage
User
Blenders

X X

Run
Blender

Manage
Standar
d
Blenders

X

Manage
System
Exports

X

Manage
User
Exports

X X X

Run
Export

X X

Manage
Standar
d
Exports

X

Run
Action
Script

X X X X

Audit
User
Transacti
ons

X X X X X X

Chapter 4
User Roles

4-9

Table 4-14 (Cont.) User Roles - Permissions

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manage

r

Anony
mous
User

Applica
tion

Admini
strator

Data
Creator

Data
Manage

r

Interact
ive

User

Workflo
w User

Govern
ance
User

Audit
Data
Transacti
ons

X X X X

Audit
System
Transacti
ons

X X

Manage
Applicati
on

X

Manage
Categori
es

Browse
Categori
es

X X X X X X X

Manage
Properti
es

Browse
Properti
es

X X X X X X X

Manage
Property
Lists

X

Manage
Validatio
ns

Manage
Node
Types

X

Manage
Preferen
ces

Manage
Access

Manage
Users

X

Manage
Roles

X

Chapter 4
User Roles

4-10

Table 4-14 (Cont.) User Roles - Permissions

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manage

r

Anony
mous
User

Applica
tion

Admini
strator

Data
Creator

Data
Manage

r

Interact
ive

User

Workflo
w User

Govern
ance
User

Manage
Access
Groups

X

Manage
Property
Access

X

Workflo
w
Participa
nt

X

Analytics Roles
Oracle Data Relationship Management Analytics roles can be combined to support multiple
functions. For example, a user with the Analytics User, Governance Manager, and Data
Manager roles would have access to all dashboards and the admin console. A user with the
Access Manager and Application Administrator roles would have access to all reports.

Table 4-15 Analytics Roles for Dashboards and Admin Console

Role Dashboards and Admin Console Permissions

Request Model Change Growth Admin
Console

Analytics User X X Browse
Version and
Hierarchies

Governance
Manager

X X Browse
Version and
Hierarchies

Application
Administrator

X N/A

Data Manager X N/A

Table 4-16 Analytics Roles for Reports

Role Reports

User Role
Assignment

Access
Group

Membership

Hierarchy
Access
Group

Assignment

Workflow
Access
Group

Assignment

Object
Access
Group

Authorizatio
n

User Login
Activity

Metadata
Object
Usage

Chapter 4
User Roles

4-11

Table 4-16 (Cont.) Analytics Roles for Reports

Role Reports

Access
Manager

X X X X X

Application
Administrato
r

X X X

Data
Manager

X X

Creating Users
When you create users, you define a unique name and assign roles. If a user is not
assigned the Data Manager role, node access groups and property categories can be
assigned to the user to control their access to data.

Note:

The @@ prefix on a user ID indicates an internal only user. You cannot
create users with this prefix. Other @@ users include @@SYSTEM and
@@STANDARD.

To create users:

1. On the Home page, select Administer.

2. From New, select User.

3. Enter a unique user name and the full name of the user.

Note:

Department, Phone, and Email Address are optional. Data governance
workflow users must have an email address configured to receive email
notifications.

4. If mixed authentication is enabled for a Oracle Data Relationship Management
application, select the authentication method for the user.

• Internal––User is authenticated within Data Relationship Management.

• CSS (External)––User is authenticated externally via Oracle Hyperion Shared
Services.

5. Optional: Select from the following options:

• Password does not expire––PasswordDuration system preference setting is
ignored.

Chapter 4
Creating Users

4-12

• Login session does not expire––IdleTime system preference setting is ignored.

Note:

If this option is selected, the maximum allowable idle time is 24 hours. After
24 hours of idle time, the login session expires.

• User is exempt from lockout measures––lockout restrictions are disregarded for
this user.

6. On the Roles tab, select roles from the Available list to assign to the user. Use the
arrows to move roles to the Selected list.

Note:

For additional information on roles, see User Roles.

7. On the Node Access Groups tab, select groups from the Available list to assign to the
user. Use the arrows to move the groups to the Selected list.

8. On the Property Categories tab. select categories from the Available list to assign to
the user. Use the arrows to move the categories to the Selected list

9. For each category in the selected list, do the following:

a. Click in the Action column and set the user's access (Read or Edit) to the
category.

b. Select in the Action column to save the change.

10. Click .

The Change Password dialog box is displayed.

11. Enter a password for the user.

12. Enter the password again.

13. Optional: Select User must change password at next login to require the user to
change their password the next time they log in.

14. Click OK.

User Authentication
Oracle Data Relationship Management supports users that are natively authenticated by the
application using stored password information or users that are authenticated by an external
user directory. Each Data Relationship Management application is configured to support one
or both types of users.

You set up application authentication on the Authentication Settings tab of the Data
Relationship Management Console. For more information, see the Oracle Data Relationship
Management Installation Guide .

Values defined for the following system preferences determine the characteristics of user
passwords and when passwords expire for internal authenticated users:

Chapter 4
User Authentication

4-13

• PasswordPolicyEnabled––If enabled, the password must contain three of the
following elements:

– Uppercase letters

– Lowercase letters

– Numbers

– Special characters

• PasswordMaxLength––Determines the maximum character length for passwords.

• PasswordMinLength––Determines the minimum character length for passwords.

• PasswordDuration––Determines the number of days a password is valid.

• PasswordWarningPeriod––Indicates how many days before (-) or after (+) the
password expiration date to warn users to change their password before no longer
allowing them to log in. A negative value, for example -3, indicates the user is
warned at login during the 3 days prior to password expiration. A positive value, for
example 5, indicates the user is warned at login during the 5 days after their
password has expired. After the five-day period, the user cannot login without
changing the password.

Note:

Changes to the PasswordDuration and PasswordWarningPeriod values
do not affect users until the next password change. For example, if
PasswordDuration is set to 30 days and the password for User1 was
changed 26 days ago, the password expires in 4 days. If you change the
PasswordDuration value to 60 days, the password for User1 still expires
in 4 days. After the user changes the password, the new password
expires in 60 days.

Modifying Users
You can change a user password, lockout or unlock a user, or change role, group, or
category assignments.

Changing Passwords
To change a user password:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Click .

5. Enter a new password for the user.

6. Enter the password again.

7. Optional: Select User must change password at next login to require the user
to change their password the next time they log in.

Chapter 4
Modifying Users

4-14

8. Click OK.

Locking Out Users
You can lockout a user to prevent their access to a Oracle Data Relationship Management
application. When you lockout a user, you can provide a custom reason for the lockout. This
reason is displayed to the user when attempting to log into the application.

To lock out a user:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Click .

5. Enter a reason for the lockout.

6. Click OK.

Unlocking Users
Unlocking a locked out user will enable their access to the application.

To unlock a user:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Click .

5. Click OK.

Changing User Roles and Assignments
To change user roles and assignments:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. On the Roles tab, select roles from the Available list to assign to the user. Use the
arrows to move roles to the Selected list.

5. On the Node Access Groups tab, select groups from the Available list to assign to the
user. Use the arrows to move the groups to the Selected list.

6. On the Property Categories tab. select categories from the Available list to assign to
the user. Use the arrows to move the categories to the Selected list.

7. For each category in the selected list, do the following:

a. Click and set the user's access (Read or Edit) to the category.

Chapter 4
Modifying Users

4-15

b. Select to save the change.

8. Click .

Deleting Users
Users that are no longer active can be deleted from an application. When a user is
deleted, all of the user-level metadata objects associated with the user are also
deleted. These metadata objects include queries, compares, imports, blenders,
exports, and books.

To delete a user:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Click Delete this Item to confirm the deletion.

Viewing User Login Status
For each user, you can view login statistics and information:

• The date and time of the user's last valid login

• The number of invalid login attempts

• Whether the user is locked out

• The date and time the user was locked out

• The reason for the lockout

To view user login status:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Select the Login Status tab.

System Defined Users
Oracle Data Relationship Management applications include four default users which
are added during the creation of an application repository.

• ADMIN––The default administrative user for an application. The password for this
user is initially configured during the repository creation process.

• @PROCESS––An internal user set up to handle inter-process communication
between server components. This user is not accessible or configurable in the
Web client. Transactions are logged for this user each time an application engine
is started.

Chapter 4
Deleting Users

4-16

• @STANDARD––An internal user set up to manage user metadata objects in the
Standard object access group. This user is not accessible or configurable in the Web
client.

• @SYSTEM––An internal user set up to manage user metadata objects in the System
object access group. This user is not accessible or configurable in the Web client.

Common User Provisioning
The Common User Provisioning feature enables users and groups to be provisioned to
Oracle Data Relationship Management applications using Oracle Hyperion Shared Services.
This configuration allows Data Relationship Management users to be provisioned in a
common location along with other Oracle EPM applications. Common User Provisioning also
eliminates the need to separately provision users in the Data Relationship Management
application. Provisioning information can be synchronized from Shared Services to Data
Relationship Management on-demand or a scheduled basis.

When a synchronization takes place, the following actions are performed in Data Relationship
Management:

• Add or update users

– User name

– Full name

– Email address

• Assign roles to users

• Assign users to node access groups

• Assign users to property categories

• Remove user roles (if de-provisioned in Shared Services

When you enable Common User Provisioning, all external Data Relationship Management
users and their roles are managed in Shared Services and cannot be managed in Data
Relationship Management.

Prerequisites
Common User Provisioning is disabled by default in Oracle Data Relationship Management
and should only be turned on after completing the following prerequisite steps:

1. Add Data Relationship Management user roles in Oracle Hyperion Shared Services––
See "Configuring Shared Services Database with Data Relationship Management User
Roles" in Oracle Data Relationship Management Installation Guide .

2. Register Data Relationship Management applications with Shared Services––See
"Configuring EPM Registry Settings" in Oracle Data Relationship Management
Installation Guide .

3. Enable Common User Provisioning––See "Configuring Common User Provisioning" in
Oracle Data Relationship Management Installation Guide .

Provisioning Users and Groups
Any user or group accessible in Oracle Hyperion Shared Services can be provisioned for a
Oracle Data Relationship Management application using Common User Provisioning. Groups

Chapter 4
Common User Provisioning

4-17

(containing groups and/or users) and individual users may be provisioned for a Data
Relationship Management application. Users and groups provisioned for a Data
Relationship Management application in Shared Services, are synchronized in Data
Relationship Management when a synchronization task is run. Users can be
provisioned separately to multiple registered Data Relationship Management
applications.

See "Provisioning Users and Groups" in the Oracle EPM System User Security
Administration Guide.

Synchronizing Data Relationship Management Users and Group
Membership

Full synchronization of user and group changes from Oracle Hyperion Shared
Services to Oracle Data Relationship Management application can be performed
manually or scheduled to run in the background. The synchronization creates or
updates users in the Data Relationship Management application and updates group
membership on node access groups or property categories that are configured to be
managed externally.

The results for a synchronization display how many users were created and updated,
how many node access groups were updated, and how many property categories
were updated. A list of error and warning messages that were generated while running
the synchronization are also displayed. You can copy the results and paste to an
external editor for further review or usage.

Manual Synchronization
In Oracle Data Relationship Management, when Common User Provisioning is
enabled, a user with the Access Manager role can manually synchronize users and
groups managed in Oracle Hyperion Shared Services. The results of the job are
displayed and can also be viewed on the Jobs page of the Audit task.

To manually synchronize users and groups:

1. On the Home page, select Administer.

2. From the toolbar, select (Common User Provisioning Synchronize).

Scheduled Synchronization
In Oracle Data Relationship Management, when Common User Provisioning is
enabled, synchronization can be scheduled to run in the background at a specified
time every 24 hours. The results of the scheduled job can be viewed by navigating to
the job on the Jobs page of the Audit task.

• For information on viewing jobs, see "Viewing Job History" in Oracle Data
Relationship Management User's Guide .

• For information on scheduling synchronization, see "Configuring Common User
Provisioning" in Oracle Data Relationship Management Installation Guide .

Chapter 4
Common User Provisioning

4-18

Partial Synchronization
Partial, real-time synchronization is performed automatically in these scenarios for users and
groups managed in Oracle Hyperion Shared Services:

• User Login––Provisioning information for the individual user being authenticated is
automatically synchronized before a session is created.

• Node Access Group Membership––User membership for an individual node access
group is automatically synchronized when the group is saved.

• Property Category Membership––User membership for an individual property category is
automatically synchronized when the category is saved.

Chapter 4
Common User Provisioning

4-19

5
Managing Node Access Groups

Oracle Data Relationship Management controls granular user access to hierarchy nodes and
their properties using node access groups. You can assign users to groups that are granted
access to specific nodes in a subset of hierarchies within a Data Relationship Management
version. Node access groups use inheritance to assign similar access to descendant nodes
of a hierarchy node where an access level has been explicitly assigned. This level of access
can be overridden at a lower level or can be locked to prevent overrides.

Typically, node access groups represent functional areas of an organization, and a user may
require assignment to multiple groups. If assigned access levels conflict, the highest security
level is used.

There are two types of node access groups. The group type controls the type of data access
that can be assigned to users of that group. Each node access group can be of only a single
group type.

• Interactive––Users have direct access to browse, search, and modify data based on the
level of access assigned

• Workflow––Users have restricted access to browse, search, and modify data using
governance workflows based on the level of access assigned

Table 5-1 Interactive Group Type–Node Access Levels

Level Description Example Usage

Read Enables read-only access––no
changes permitted

View and report

LimitedInsert Enables insertion of a node for
which the user has (at least)
global insert privilege.

Insert

Edit Enables property values to be
edited

Edit

Insert Enables nodes to be inserted,
moved, or, removed

Edit, insert, copy, move, remove

Inactivate Enables nodes to be inactivated
and reactivated

Edit, insert, move, remove,
inactivate, reactivate

Add Enables nodes to be added or
deleted

Edit, insert, copy, move, remove,
inactivate, reactivate, add, delete

Keep the following information in mind:

• Access levels are cumulative; assignment of the Edit access level implies that the Read
Only and LimitedInsert access levels are granted. Assignment of the Add access level
implies that all other access levels are granted.

• Node access group security is only applied at the hierarchy level. Node access groups do
not control access to global lists of nodes such as orphans.

5-1

• Access levels are assigned separately for limb and leaf nodes which allows you to
define a different level of access for each. This capability is useful when a user
should be able to maintain the roll-up structure of a hierarchy but not edit any
properties of leaf nodes or when a user can insert leaf nodes to an existing roll-up
structure but not reorganize the structure itself.

• Node access groups are defined only by a user with the Access Manager role.

• Node access groups use local inheritance for access assignment to related nodes.
A node access group can be defined as global in order to use global inheritance
based on the level of access assigned to a controlling hierarchy.

• Global node access groups can be created and must have a controlling hierarchy
defined for each version. This is done by assigning controlled node access groups
to a hierarchy. See the see the Oracle Data Relationship Management User's
Guide for more information.

• Interactive and Workflow node access groups handle the visibility of nodes in
hierarchies differently. An interactive access group provides users visibility to the
entire hierarchy if the group has access to any node in the hierarchy. In contrast, a
workflow access group provides users limited visibility to only nodes in hierarchies
to which they have been assigned access. For both group types, members of the
group cannot view hierarchies to which they have not been assigned access.

Workflow Group Type Node Access Levels
Users with the Governance User role use the Workflow node access levels to
determine their access to data.

Table 5-2 Workflow Group Type–Node Access Levels

Level Description

Notify Enables notification of change requests for a
node

Submit Enables nodes to be submitted as part of a
change request

Approve Enables nodes to be approved as part of a
change request

Enrich Enables nodes to be enriched as part of a
change request

Commit Enables changes for a node to be committed
to Oracle Data Relationship Management

Workflow node access levels are cumulative for hierarchy access but are also filtered
by workflow stage.

Table 5-3 Workflow Node Access Levels by Hierarchy Access

Hierarchy Access Stage Access

Access Submit Approve Enrich Commit

Notify Notify Notify Notify Notify

Submit Submit Notify Notify Notify

Chapter 5
Workflow Group Type Node Access Levels

5-2

Table 5-3 (Cont.) Workflow Node Access Levels by Hierarchy Access

Hierarchy Access Stage Access

Access Submit Approve Enrich Commit

Approve Submit Approve Notify Notify

Enrich Submit Approve Enrich Notify

Commit Submit Approve Enrich Commit

Creating Node Access Groups
To create a node access group:

1. On the Home page, select Administer.

2. From New, select Node Access Group.

3. Enter a name, label, and description for the group.

Note:

The node access group will be assigned to the Custom namespace. The Fully
Qualified Name for the group must be unique. The Label field is filled in
automatically after entering the name. The node access group label is a user-
friendly descriptor that is displayed for all features aside of application
administration. Multiple node access groups can have the same Label for
convenience purposes.

4. Select a Group Type for the node access group.

• Interactive––To use interactive access levels; see Interactive Node Access Levels.

• Workflow––To use workflow-oriented access to versions, hierarchies, and nodes in
the context of submitting, enriching, approving, committing, and being notified of
requests. See Workflow Node Access Levels.

5. Optional: Select Global to make the group a global node access group.

Note:

Global node access groups must have a controlling hierarchy defined in every
version where the group will be used. After a group is created, you can assign it
to a single hierarchy in each version as a controlled node access group.

6. If using Common User Provisioning, from External Group select a user group
provisioned to the Oracle Data Relationship Management application in Oracle Hyperion
Shared Services. Users in this external group will be assigned membership to the node
access group when a synchronization from Shared Services takes place.

7. Select users from the Available list to assign to the group. Use the arrows to move users
to the Selected list.

Chapter 5
Creating Node Access Groups

5-3

8. Click .

Editing Node Access Groups
To edit a node access group:

1. On the Home page, select Administer.

2. Under Security, expand Node Access Groups.

3. Select a group and click .

4. Select users from the Available list to assign to the group. Use the arrows to move
users to the Selected list.

5. Click .

Deleting Node Access Groups
To delete a node access group:

1. On the Home page, select Administer.

2. Under Security, expand Node Access Groups.

3. Select a group and click .

4. Click Delete this Item to confirm the deletion.

Note:

Deleting a node access group removes the assignment of the group from
the users as well as from any hierarchy nodes.

Assigning Node Access Group Security
Node Access Group security is applied to data by a user with the Data Manager role.

Note:

Before assigning node access group security, ensure that appropriate node
access groups are created and appropriate users are assigned to the
groups.

To set node access group security:

1. Open a version and hierarchy, and select a node.

2. From Nodes, select Assign, then Node Access.

3. In the Property Grid, select the Leaf Access or Limb Access category.

Chapter 5
Editing Node Access Groups

5-4

4. Assign the level of access for each node access group.

The level of access available for assignment for each node access group is based on its
group type (interactive or workflow).

5. Click Save.

Note:

You must assign both Limb and Leaf Workflow NAG access to at least one Leaf and
one antecedent Limb node to a value other than "None" to be able to visualize
node(s) to choose in the DRG Node Selector. Typically Limb WNAG access is set
on the Top Node in a hierarchy.

Chapter 5
Assigning Node Access Group Security

5-5

6
Managing Object Access Groups

Object access groups in Oracle Data Relationship Management determine which metadata
objects users have access to, including exports, books, imports, blenders, compares,
queries, version variables, and external connections.

Table 6-1 Types of Object Access Groups

Object Access Group Type Description Permissions

User Each user has a core object access
group for their personal metadata
objects.

A user has Run and Manage
permissions to their own object
access group.

Standard A core object access group named
Standard is available for all public
objects.

All users have implicit Run
permission to objects in the
Standard object access group.

Only users with Manage Standard
[Object] role permissions have
Manage permission for the Standard
object access group.

System A core object access group named
System is available for all system
operation/integration objects.

Only users with Data Manager or
Application Administrator roles have
Manage permission for the System
object access group.

Custom Custom object access groups Only users with Access Manager
role can create, edit, or delete
custom object access groups. Users
with Run permission may execute
objects in the group.

Custom object access groups provide a specific group of users access to a subset of user
metadata objects – queries, compares, imports, blenders, exports, and books. Object access
groups define a list of users and node access groups and set the permission level (Run or
Manage) for each user and node access group. Metadata objects are assigned to object
access groups at the time they are created, and they may subsequently be copied or moved
to a different group.

• Run––Users can run objects in the group but cannot edit and save changes to the
objects

• Manage––Users can create, edit, or delete objects in the group and run them

Guidelines for using object access groups are:

• An object access group enables users to be members of the group either directly or
through their node access group assignments. Both are not required.

• Users and node access groups may be assigned to more than one object access group.

• Each user in the object access group is assigned either Manage or Run permission.

6-1

• A user's permission assignment in the object access group may override the
user's role security. For example, an Interactive User role with Manage permission
in an object access group may create or modify objects within the object access
group.

• Core object access groups such as User, Standard, and System are managed
implicitly based on user existence and their role assignments.

• When saving or copying a user metadata object, the user must assign the object
to an object access group for which that user has Manage permission.

• A user metadata object may be assigned to only one object access group.

• Data Manager role users have implicit Manage permission to the core Standard
object access group and may be explicitly assigned to a custom object access
group.

• Application Administrator role users have implicit Manage permission for all
standard, system, and custom object access groups. These users require the
ability to migrate metadata objects for any object access group.

Creating Object Access Groups
To create a custom object access group:

1. On the Home page, select Administer.

2. From New, select Object Access Group.

3. Enter a name for the group. A description is optional.

4. On the Users tab, select users from the Available list to assign to the group. Use
the arrows to move users to the Selected list.

Note:

By default, each user is granted Run access. To change a user's access,

click . Then from Access, select Manage.

5. On the Node Access Groups tab, select node access groups from the Available
list to assign to the group. Use the arrows to move node access groups to the
Selected list.

Note:

By default, each node access group is granted Run access. To change a

group's access, click . Then from Access, select Manage.

6. Click .

Editing Object Access Groups
To edit a custom object access group:

Chapter 6
Creating Object Access Groups

6-2

1. On the Home page, select Administer.

2. Under Security, expand Object Access Groups.

3. Select a group, and then click .

4. On the Users and Node Access Groups tabs, make changes to selected users and
groups and to access permissions.

5. Click .

Deleting Object Access Groups
To delete an object access group:

1. On the Home page, select Administer.

2. Under Security, expand Object Access Groups.

3. Select a group, and then click .

4. Click Delete this Object Access Group to confirm the deletion.

Caution:

When an object access group is deleted, all metadata objects assigned to it are
also deleted. This operation cannot be undone

Chapter 6
Deleting Object Access Groups

6-3

7
Managing Domains

Domains are used to manage referential integrity for multiple sets of nodes from different
sources within the same Oracle Data Relationship Management application. A domain is a
registered list of nodes of a common type which enables consistent management of these
nodes in different versions within the same application. A domain provides a simple method
for:

• Qualifying node names to ensure uniqueness

• Sharing identifying properties across versions

• Restricting certain types of changes such as renaming, promoting, demoting, and
deleting nodes

• Assigning validations to ensure consistency of business rules regardless of version

Domain nodes are global nodes in a version with membership to a domain. Domain nodes
cannot be renamed and cannot be removed from a domain after being assigned as a
member. A domain node must have a unique name, regardless of domain assignment. The
name of a domain node may represent the natural identifier of the node or may be qualified
with a prefix or suffix to ensure referential integrity when used with nodes of different domains
in the same version. The domain node description and inactive status/date are shared by a
domain node in any version where it exists.

Creating Domains
To create a domain:

1. From the Home page, select Administer.

2. From New, select Domain.

3. Enter the following information:

• Name

• Description (optional)

• Qualifier (optional)––Text used for fully qualifying a node name. No two domains can
use the same qualifier text. Select Prefix or Suffix to denote the location of the
qualifier.

Note:

After a domain has nodes assigned to it, the qualifier text cannot be
changed.

• Delimiter (optional)––A single, optional character used to separate the domain
qualifier text from the node name.

7-1

Note:

After a domain has nodes assigned to it, the delimiter cannot be
changed.

• Allow Node Delete––Select if you want to give users the ability to delete
nodes from the version.

• Allow Leaf Edit––Select if you want to give users the ability to change the leaf
system property value for nodes in the domain.

4. From the Available Validations list, select the node-level validations to be
enforced for members of the domain and move them to the Selected Validations
list.

Note:

Domain-level validation assignments override assignment values for the
same validation that were set at the node or inherited from an ancestor
node, hierarchy, or version level assignment.

5. Click .

Editing Domains
A domain may be edited after it is created, with two exceptions:

• The name cannot be changed

• The qualifier and delimiter cannot be changed after nodes have been assigned to
it

To edit a domain:

1. From the Home page, select Administer.

2. Select a domain and click .

3. Make changes to the domain and click .

Deleting Domains
A domain may be deleted. The domain node records are also removed when the
domain is deleted.

Note:

If a domain with nodes assigned is deleted, all nodes that are assigned to the
domain revert back to non-domain nodes.

Chapter 7
Editing Domains

7-2

To delete a domain:

1. From the Home page, select Administer.

2. Select a domain and click .

3. Select Delete this Domain.

Chapter 7
Deleting Domains

7-3

8
Managing Property Categories

Related Topics

• Property Categories

• Creating Property Categories

• Editing Property Categories

• Deleting Property Categories

Property Categories
Property categories enable the grouping of Oracle Data Relationship Management properties
and are used to control the assignment of security privileges to sets of properties. Core
properties available by default are only located in a single property category. Custom
properties created by application administrators can be associated with multiple property
categories.

Data Relationship Management includes the core property categories described in the
following table.

Table 8-1 Property Categories

Category Description

System Properties related to the basic identifying
characteristics of a node, such as ID, name, and
description.

The only change that can be made to this
category is assigning the read-only flag for
individual users. Users with read access cannot
edit values but can view them. Properties cannot
be assigned to this category.

Shared Info Provides information about which nodes are
primary/shared, a list of related shared nodes, and
identifies whether the primary node is missing.

This category is only displayed when Shared
Nodes is enabled via system preferences.

Note: All properties in this category are read only.

Stats Properties that provide statistical information
about a node such as number of children and
number or siblings

Note: All properties in this category are read only.

Validation Validations assigned for the node—one property
for each validation

Leaf Access Node security groups and their leaf access levels
for the node—one property for each group

8-1

Table 8-1 (Cont.) Property Categories

Category Description

Limb Access Node security groups and their limb access levels
for the node—one property for each group

Note:

Not all property categories are visible to all users because user access can
be restricted to specific categories and the node types can be filtered. The
Validation, Leaf Access, and Limb Access categories are available only to
users assigned the Data Manager role and are only accessible when
assigning validations or node access group security.

Creating Property Categories
To create a property category:

1. From the Home page, select Administer.

2. From New, select Property Category.

3. Enter a name and description for the property category.

4. If using Common User Provisioning, from External Group - Edit and External
Group - Read, select a user group provisioned to the Oracle Data Relationship
Management application in Oracle Hyperion Shared Services. Users in these
external groups will be assigned membership to the property category with the
specified level of access (edit or read) when a synchronization from Shared
Services takes place.

5. On the Properties tab, select properties from the Available list to assign to the
property category and use the arrows to move the properties to the Selected list.

Note:

You can use Ctrl+Click or Shift+Click to select multiple properties.
Double-click a property to select or deselect it.

6. Use the arrows to reorder the selected properties or click to alphabetize the
selected properties.

7. On the Users tab, select users from the Available list to assign to the property
category and use the arrows to move the users to the Selected list.

8. Select the row for a user in the selected list and click in the Action column.

9. From the Access column, select Read or Edit to assign the user a level of access
to the property category.

10. Click in the Action column to save the change or to discard the change.

Chapter 8
Creating Property Categories

8-2

11. Click .

Editing Property Categories
To edit a property category:

1. From the Home page, select Administer.

2. Select a property category and click .

3. On the Properties tab, select properties from the Available list to assign to the property
category and use the arrows to move the properties to the Selected list.

Note:

You can use Ctrl+Click or Shift+Click to select multiple properties. Double-
click a property to select or deselect it.

4. Use the arrows to reorder the selected properties or click to alphabetize the selected
properties.

5. On the Users tab, select users from the Available list to assign to the property category
and use the arrows to move the users to the Selected list.

6. Select the row for a user in the selected list and click in the Action column.

7. From the Access column, select Read or Edit to assign the user a level of access to the
property category.

8. Click in the Action column to save the change or to discard the change.

9. Click .

Deleting Property Categories
To delete a property category:

1. From the Home page, select Administer.

2. Under Metadata, expand Property Categories.

3. Select a property category and click .

4. Select Delete this Item to confirm the deletion.

Note:

The deletion of a property category does not result in the deletion of properties
associated with the category. These properties remain available within the
application.

Chapter 8
Editing Property Categories

8-3

9
Managing Property Definitions

Property definitions are used to manage the attributes of versions, hierarchies, and nodes in
Oracle Data Relationship Management. Properties can store a variety of different data types
including text, numeric, date, and references to other data objects. Properties can store
explicit values, use inheritance to automatically assign values to descendant nodes, or be
calculated based on a formula or lookup table. Property categories can be used to group and
organize properties into related sets to simplify their usage and control user access.

System-defined properties that are available by default are used with standard product
functionality. User-defined property definitions can be created by application administrators to
manage additional attributes that are necessary to support business or system integration
requirements.

Property definitions in Data Relationship Management can come from a variety of sources.
For example, properties can be:

• System-defined in Data Relationship Management

• User-defined properties created by an application administrator

• Loaded from application templates used with other Oracle products

• Loaded from another Data Relationship Management application or environment using
the Migration Utility

Namespaces

Namespaces are used in property definitions to avoid conflicts where properties from different
sources have similar names and need to remain separate for data integrity purposes.
Property names are differentiated using a namespace prefixing convention.

Table 9-1 Property Definition Example Using Namespaces

Field Example

Fully Qualified Name Custom.AccountType

Namespace Custom

Name AccountType

Label AccountType

There are special rules in Data Relationship Management that apply to namespaces to
ensure that conflicts do not occur:

• System-defined properties use the "Core" namespace.

• User-defined properties use the "Custom" namespace.

• Other namespaces are reserved for use by Data Relationship Management application
templates for other Oracle products.

9-1

Data Types
Property data types are described in the following table.

Table 9-2 Property Data Types

Property Data Type Description

Associated Group Associated node group. Points to multiple
nodes. The nodes point back to the
Associated Group node and to each other.
Analogy: Fraternity.

Note: This data type should only be used with
global node level properties.

Caution: Associated node properties that are
loaded by an import may not correctly point to
all other nodes as a result of their not yet
existing in the version based on the order in
which nodes are imported.

Associated Node Associated node. Points to a single other
node. The node pointed to points back to the
Associated Node node. Analogy: Marriage.

Note: This data type should only be used with
global node level properties.

Caution: Associated node properties that are
loaded by an import may not correctly point to
all other nodes as a result of their not yet
existing in the version based on the order in
which nodes are imported.

Associated Nodes Associated node list. Points to multiple nodes.
The nodes pointed to point back to the
Associated Nodes but not each other.
Analogy: Friends.

Note: This data type should only be used with
global node level properties.

Caution: Associated node properties that are
loaded by an import may not correctly point to
all other nodes as a result of their not yet
existing in the version based on the order in
which nodes are imported.

Boolean True or False

Date Date values are formatted in the invariant
culture. This allows for a predictable response
and action can be taken to re-format the
result, if desired.

Caution: The default, maximum, and
minimum values must be entered in English
(United States) format.

Chapter 9
Data Types

9-2

Table 9-2 (Cont.) Property Data Types

Property Data Type Description

Date/Time Date and time values are formatted in the
invariant culture. This allows for a predictable
response and action can be taken to re-format
the result, if desired.

Caution: The default, maximum, and
minimum values must be entered in English
(United States) format.

Float Floating point value is formatted based on the
regional settings associated with the user's
session.

Note: If a default value is not defined, then 0
is output for the value when exported.

Formatted Memo Formatted memo — retains all formatting
(spaces, tabs, new lines, and so on) to the
text. Also allows for hyperlink text to be
included in the formatted memo. See the
Hyperlink data type for details on formatting
URLs for hyperlinks.

Note: Non URL text is not suppressed when
both text and hyperlink is used in property
value.

Global Node Points to a node in a version; when value is
assigned it shows node name only in the value
field of the property grid

Group List of comma-delimited items

Hierarchy Points to a hierarchy

Hierarchy Group Points to a hierarchy group.

Hierarchy group properties allow hierarchies to
be grouped in multiple ways based on the
context in which you want to view them. You
can group hierarchies within the same version
in different ways based on usage.

Hyperlink Allows for hyperlink capability for URL text.
Multiple URL input is separated by Carriage
Return-Linefeed (CRLF, or 0x0D0A) with no
spaces. Entered URLs are displayed as
navigable hyperlinks. Only the parsed,
delimited URLs or formatted URLs are
displayed. URLs should follow this format:

[url=http_URL]URL_Title[/url]

where http_URL specifies the hyperlink text
and URL_Title specifies the text displayed to
the user.

For example, this markup example: [url=http://
support.oracle.com]Oracle Support[/url] would
render in the property grid as Oracle Support.

Integer Integer value

If a default value is not defined, then 0 is
output for the value when exported.

Chapter 9
Data Types

9-3

http://support.oracle.com

Table 9-2 (Cont.) Property Data Types

Property Data Type Description

Leaf Node Points to a leaf node in a hierarchy. When
value is assigned it shows hierarchy name and
node name in the value field of the Property
Grid.

Limb Node Points to a limb node in a hierarchy. When
value is assigned it shows hierarchy name and
node name in the value field of the Property
Grid.

List Group Check list of items. Multiple items can be
selected from the list.

Memo Memo field — formatting is not saved and data
is merged into a single line of text. Also
hyperlink in the memo. See the Hyperlink data
type for details on formatting URLs for
hyperlinks.

Note: Non URL text is not suppressed when
both text and hyperlink is used in property
value.

Multiple Node Points to multiple nodes

Node Points to a node in a hierarchy; when value is
assigned, it shows hierarchy name and node
name in the value field of the property grid.

Node Properties Points to the properties of a node

Property Points to a property

Range List Defines a range of values; accepts only
integer values

Sort Integer value that is used for sorting

Sort Property Points to a Sort property

Standard Query Points to a standard query

String String value

Time Time values are formatted in the invariant
culture. This allows for a predictable response
and action can be taken to re-format the
result, if desired.

Caution: The default, maximum, and
minimum values must be entered in English
(United States) format.

Version Points to a version

External Lookups
External Lookup Properties are properties that access an external data source for their
list of selectable values. The external data source is accessed using external
operations. The external lookup property type allows for return of a recordset from
Oracle or SQL Server databases. Use the results of an external lookup to select an
item from an external list of values for use as a property value or to calculate request

Chapter 9
External Lookups

9-4

item property values using data from an external source. External lookups for property lists
are accessible in Data Relationship Management and Data Relationship Governance.

Creating Properties
To create a property definition:

1. On the Home page, select Administer.

2. From New, select Property Definition.

3. Enter a name for the property.

Note:

The property is assigned to the Custom namespace. The Fully Qualified Name
and Label fields are filled in automatically after entering the name. The Fully
Qualified Name for the property must be unique. The property label is a user-
friendly descriptor that is displayed for property definitions for all features aside
of application administration. Multiple properties can have the same Label as
long as they are not in the same namespace. The property Description is an
optional, long descriptor that is displayed at the bottom of the Property Editor.

4. Define parameters for the property:

Note:

Not all parameters below are displayed. The parameters displayed depend on
the selected data type.

• Data Type––See Property Data Types

You can restrict the list of nodes displayed to a user by selecting a data type:
Associated Group, Associated Node, Associated Nodes, Global Node, Leaf Node,
Limb Node, Multiple Node, or Node. After you select a data type, the Constraints tab
is displayed.

• Property Level––Level of property definition:

– Local node––Property values are managed for nodes in a specific hierarchy and
accessible only at this level.

– Global node––Property values are managed for nodes in a version but also
accessible at a local node level.

– Hierarchy––Property values are managed for hierarchies but also accessible at
a local node level.

– Version––Property values are managed for versions but also accessible at a
global or local node level.

Chapter 9
Creating Properties

9-5

Note:

If defining a global node inherited property, you must define a
controlling hierarchy for the global property. You do with on the
Home page on the Hierarchies tab by assigning controlled properties
to a hierarchy.

• Property Type

– Defined––Values are defined by the user and stored.

– Lookup––Lookup based on another property and a lookup table.

– Derived––Calculated by using a Deriver class.

Note:

Derived properties using the Script deriver class may be used for
version, hierarchy, and node properties. The Formula deriver
class may only be used for global or local node properties.

– External Lookup––Lookup using an external data source.

Note:

Values are retrieved from an external data source in real-time. If
multiple values are returned, a specific value must be selected
for the property.

• Default Value––Default value for the property

• Domain––For any property where the data type is Node, Limb Node,
LeafNode, MultiNode, Associated Node, Associated Nodes, or Associated
Group (all of which represent a node or nodes stored as the value), a Domain
drop-down is available. The drop-down contains all the domains defined in the
system and you can optionally select one of the existing domains.

• Column Width––Width for fixed-width columns if the property type is Defined.

• Minimum Value/Length––Value or length for the property based on data type.

• Maximum Value/Length––Value or length for the property based on data
type.

5. Select from these options:

• Inherited––Defines the property as Inheriting

Chapter 9
Creating Properties

9-6

Note:

This option has no effect on the Derived property type except in the special
case where property derivers, such as AncestorProp or DualAncestorProp,
are used and the property is global. In such cases, although the property is
not literally inheriting values, enable the Inherited option to allow the
specification of a controlling hierarchy.

• Overrideable––Allows property to be overridden in the property grid.

Note:

This option is enabled only for the Derived property type.

• List––Allows property values to be selected only from a predefined list of values.

Note:

Property values stored for a list property can be limited to only values in the
list using the EnforceListProps system preference.

Note:

A list of values can be used for a defined property or a derived,
overrideable property.

• Hidden––Hides the property in the property grid.

• Indexed––Creates an index for the property to improve performance of searches,
property queries, and validations. This option is available only for defined, string data
type properties.

Note:

Indexed properties can increase memory usage on the application server
and should only be used for properties most likely to be used in searches,
queries, and validations that check uniqueness.

6. Do any of the following:

• To assign a property to categories, select categories from the Available list and
move them to the Selected list.

• If you selected the Defined property type along with the List option, on the List
Values tab do the following:

a. Click Add and enter a value to the list.

Chapter 9
Creating Properties

9-7

b. Click Save in the Action column for the row.

Note:

Use Move or Delete for each row to reorder or delete list values.
Use Edit or double-click a row to edit it and Cancel to cancel
edits.

• If you selected the Lookup property type, select the Lookup Table tab and do
the following:

a. Click Add to enter a new key-value pair to the list.

b. Click Save in the Action column for the row.

Note:

Use Move or Delete for each row to reorder or delete list values.
Use Edit or double-click a row to edit it and Cancel to cancel
edits.

• If you selected a data type that allows hierarchy constraints, select the
Constraints tab and do the following:

a. Select a property from Hierarchy Group Property and then select a
hierarchy group.

In the node selector, users will see nodes only from hierarchies that
belong to the selected hierarchy group.

Note:

Only the default Core property type is supported by Oracle Data
Relationship Management Analytics.

b. Optional: Select Enforce Constraint on Server Property Update to
validate this constraint when the property is updated via the Web client,
imports, action scripts, or the Web Service API.

• If you selected the Derived property type, select the Parameters tab and
define a formula or script for the derived property.

For more information on formulas, see Creating Formulas. For more
information on scripts, see Creating Dynamic Scripts.

• If you selected the External Lookup property type, select the External
Lookup tab and enter the following information:

– External connection––Select a database or Web service connection

– Operation––Select the external operation to perform

– For each parameter configure:

* Parameter source type––Select Literal or Property.

Chapter 9
Creating Properties

9-8

* Source––If Literal was selected for source type, then enter a literal value in
the Param Source column. When the external operation is called for this
External Lookup property, the literal value is passed in for the current
parameters. If Property was selected for source type, then select a property
to provide the parameter value for the external operation. When the External
Lookup is executed, the parameter value comes from the selected property
on the current node or request item.

– In Column/Property Mappings, select which result column in the selected
lookup result will supply the value for the external lookup property. Click Add to
add additional columns which can be mapped to different properties, so that
when the external lookup value is selected, other property values get updated
automatically.

The first Column/Property mapping is automatically defined and cannot be
deleted. This mapping is for the current property. A column must be selected, and
defaults to the first column stored on the operation. You can modify the column
value for the first row but not the property value. For additional mappings, you
can select and edit the Column Name and the Result Column.

7. Click .

Using Hierarchy Constraints
Hierarchy constraints can limit the hierarchies and nodes available for viewing and selection
when updating a node data type property value. A hierarchy constraint is an optional
configuration for property definitions which use a node data type. The hierarchy constraint
feature uses hierarchy groups and hierarchy group properties, which must be configured
before you can assign hierarchy constraints.

You can use a hierarchy constraint with the following data types:

• Associated Group

• Associated Node

• Associated Nodes

• Global Node

• Leaf Node

• Limb Node

• Multiple Node

• Node

Chapter 9
Creating Properties

9-9

Note:

The Associated Group, Associated Node, and Associated Nodes node data
types may require additional consideration when setting up a hierarchy
constraint because associated nodes create a cross-reference. If a hierarchy
constraint is defined, care should be taken that the hierarchy group include
all hierarchies that may be associated with one another. An example is a
cross-reference between nodes in Employee and Cost-Center hierarchies. It
may be necessary to create a separate hierarchy group property and
hierarchy group to be used for hierarchy constraints.

Editing Property Definitions
If a property definition is modified from a Defined property type to a non-editable type
such as Derived or Lookup, then the following conditions apply:

• The confirmation message when switching to a non-stored property type is
modified to state that pending updates to change request items may be affected.

• Pending property updates for in-flight requests are no longer displayed, validated
or committed for items with that task assigned.

To edit a property definition:

1. On the Home page, select Administer.

2. Under Metadata, expand Property Definitions.

3. Expand Core or Custom depending on the type of property definition.

4. Double-click a property.

5. Modify any parameters that can be edited.

Caution:

If you change the Property Type from a defined value (RWDerived or
Defined) to a value that does not allow storage (Derived or Lookup),
defined property values are deleted and this data will be lost. Before
making this type of change, you must confirm that the potential for data
loss is acceptable.

For more information see Creating Properties.

6. Click .

Deleting Properties
If a property definition is deleted from Oracle Data Relationship Management, then the
following conditions apply:

Chapter 9
Editing Property Definitions

9-10

• The dependency check for property definitions is modified to include workflow metadata
references, and the user must confirm the deletion. Property definition dependencies for
workflow metadata consist of the following

– Workflow Task Properties

– Workflow Task Validation Properties

– Change Request Item Details

• Upon confirmation, if a property is deleted, then each dependent reference to the
property is also deleted, including assignment to workflow tasks, pending updates to in-
flight requests, and historical change requests.

• As with interactive deletion of a property definition, transaction history is always retained.

To delete a property:

1. From the Home page, select Administer.

2. Under Metadata, expand Property Definitions.

3. Select a property and click .

4. Select Delete Property Definition to confirm the deletion.

Caution:

The deletion of a property definition will also result in the deletion of all values
stored for the property as well as the removal of the property from all metadata
objects where it was being used.

Chapter 9
Deleting Properties

9-11

10
Managing Validations

Validations enable business rules to be enforced on versions, hierarchies, nodes, and
properties. Validations can be run in either real time or batch, or both modes. Real-time
validations are run at the time of modification and prevent changes from being saved if the
action would violate the rules being enforced. Batch validations can be explicitly run before or
after edits are made to identify data conditions that are invalid and need to be addressed.

Validation Classes
Validation classes allow different types of business rules to be enforced. Some validation
classes can be used generically while other classes are used for specific purposes.
Validations can be created from a set of existing validation classes. Many business rules on
nodes can be enforced with a validation class that uses a query for its logic. This enables
validations to leverage queries that have been created for analysis purposes to also manage
data integrity. Rules for versions and hierarchies or special cases for nodes can be
accomplished using other validation classes. A few of the validation classes are used for
product testing purposes only and should not be used in a production environment.

Table 10-1 Validation Classes

Validation Class Level Description Parameters

BoolNodeInHier Node Verifies that the specified
boolean property has no
True values in the specified
hierarchy

Property, Hierarchy

ContainAllProp Global Node Verifies that the specified
hierarchy contains all
nodes where the specified
property is True

Hierarchy, Property

ContainAllWith Global Node Verifies that the specified
hierarchy contains all
nodes for which the
specified property has the
specified value

Hierarchy, Property, Value

CustPropQuery Node Verifies using predefined
query and expected result

Only a local property query
can be used.

Property query name,
Failure value

DateRangeCheck Node Verifies that the From Date
is earlier than or equal to
the To Date

From Date Property, To
Date Property

Formula Node Verifies a node using
business logic expressed
in a formula. A formula
result of False results in a
validation failure.

Formula

10-1

Table 10-1 (Cont.) Validation Classes

Validation Class Level Description Parameters

GlobalPropQuery Global Node Verifies using predefined
query and expected result

Property query name,
Failure value

HierContainsRef Node Hierarchy contains a
reference to the node when
a Boolean property is True,
or if the node is a leaf node
and a third Boolean
property is True.

Hierarchy name, Boolean
property for all nodes,
Boolean property for leaf
nodes

HierFail Hierarchy Automatically fails at
hierarchy level for testing
purposes

none

InvalidNameLength Node Verifies that the node name
is not equal to a specified
length.

Length

MaxChildren Version Verifies that the number of
children per node do not
exceed specified limit

Maximum number of
children

MaxHierNodes Hierarchy Verifies that the number of
nodes in the hierarchy
does not exceed specified
limit

Maximum number of nodes

MaxVersionNodes Version Verifies that the number of
nodes in the version does
not exceed specified limit

Maximum number of nodes

MergeEquiv Merge Verifies that the affected
node and merge node
have the same value for
the specified property

Global node property

MergePropSet Merge Verifies that if the affected
node property value is set
(overridden), the merge
node property value is set
for the specified property
(Property values need not
be the same)

Property

MixedKids Node Checks for nodes with both
limb and leaf children.

None

NoBoolBranch Node Verifies that the specified
boolean property is set to
True at least once on a
specified branch

Property

NodeFail Global Node Automatically fails nodes at
the version level for testing
purposes

none

NodeFailRandom Node Automatically fails the
specified percentage of
nodes for testing purposes

Failure percentage

Chapter 10
Validation Classes

10-2

Table 10-1 (Cont.) Validation Classes

Validation Class Level Description Parameters

NoDefaults Node Verifies that no default
values are used for the
specified property

Property

NoPropBranch Node Verifies that the specified
property is set at least
once on a specified branch

Property

PropEquivBool Node Property equivalency when
a third boolean property is
True.

Boolean property to
evaluate, First Property,
Second Property

PropLength Node Verifies that the specified
property is at least
minimum length and no
more than maximum length

Property, Minimum Length,
Maximum Length

PropRemove Remove Prevents the removal of a
node if the property or
properties specified (in the
prop1, prop2 and prop3
parameters) are equal to
the specified values (in the
value1, value2, value3
parameters).

Property1, Property2,
Property3, Value1, Value2,
Value3

RequiredField Node Verifies that, for all nodes
for which the specified
property has a specified
value, each property in the
required list has a value:

• If the Reject Default
Records flag is True,
each property in
required list must have
a value other than the
default

• If the Reject Default
Records flag is False,
then default values are
acceptable

Property, Value, Reject
Default Records, Required
Properties

Script Node, Hierarchy, Version,
Global Nodes, Move,
Remove, Merge

Verifies data using a
dynamic script. A return
value of True passes the
validation. A return value of
False results in failure of
the validation.

Script

SingleBoolBranch Node Verifies that the specified
boolean property is set to
True only once per branch

Property

SinglePropBranch Node Verifies that the specified
property is set only once
per branch

Property

StrandedParent Node Verifies that all limb nodes
have children

none

Chapter 10
Validation Classes

10-3

Table 10-1 (Cont.) Validation Classes

Validation Class Level Description Parameters

StrPropEqual Node Fails for all nodes for which
the specified property
equals the specified value

Property, Value

UniqueProp Node Verifies that the specified
property has no duplicate
values within a hierarchy

If Include Defaults is False,
then nodes with the default
value are not included.

If Exclude Shared is True,
then shared nodes are not
considered when checking
uniqueness of property
values.

Property, Include Defaults,
Exclude Shared

It is recommended that the
UniqueProp validation use
indexed properties.

UniquePropBranch Node Verifies that the specified
property has unique value
within a branch

Property

VersionFail Version Automatically fails at the
version level for testing
purposes

none

VersionUnique2Prop Global Node Verifies that specified
properties have no
duplicate values within a
version

If Include Defaults is False,
then nodes with the default
value are not included.

If Exclude Shared is True,
then shared nodes are not
considered when checking
uniqueness of property
values.

First property, Second
property, Include Defaults,
Exclude Shared

VersionUniqueProp Global Node Verifies that the specified
property has no duplicate
values within a version

If Include Defaults is False,
then nodes with the default
value are not included.

If Exclude Shared is True,
then shared nodes are not
considered when checking
uniqueness of property
values.

Property, Include Defaults,
Exclude Shared

Validation Levels
The validation level defines the scope of a business rule. For node validations, the
level can also include the type of action that needs to be performed in order for the
validation to run. The following table defines each validation level and indicates:

Chapter 10
Validation Levels

10-4

• Whether the validation can run in batch mode, real-time mode, or both.

• Where the validation gets assigned.

• On which object the validation operates.

Table 10-2 Validation Levels

Validation Level Runs in Batch or Real-
time

Where Assigned Operates On

Node––Reviews node
relationships and
properties to ensure
criteria are met.

Use to determine whether
a node level string property
value has a valid length.

Real-time or Batch Version, Hierarchy, or Node Local Node

Hierarchy––Reviews
properties in a hierarchy to
ensure criteria are met.
Can be assigned and run
at the hierarchy or version
levels.

Use to ensure that a
hierarchy has no more than
10,000 nodes.

Batch Version or Hierarchy Hierarchy

Version––Reviews the
properties of a version.

Use to ensure that a
version contains no more
than 100,000 nodes.

Batch Version Version

Global Node––Assigned
at a version level. Validates
every node in the version
regardless of hierarchy,
including orphans. Only
properties defined as
global are reviewed.

Use to ensure that all
nodes within a version
have a unique property
value.

Batch Version Global Node

Merge––Runs when an
operation requiring a
merge (for example, a
delete or an inactivate) is
performed. Assigned at the
version level.

Use to ensure that a leaf
node is merged only into
another leaf node.

Real-time Version Global Node

Chapter 10
Validation Levels

10-5

Table 10-2 (Cont.) Validation Levels

Validation Level Runs in Batch or Real-
time

Where Assigned Operates On

Move––A validation
triggered when an attempt
is made to move a node.
Assigned at the hierarchy
level.

Use to prevent moving of
cost centers within a
hierarchy.

Real-time Hierarchy Local Node

Remove––Similar to the
Move level. Runs when an
attempt is made to remove
or delete a node from a
hierarchy. Can be used to
prevent specified types of
nodes from being deleted.

Use to prevent the deletion
of cost center nodes from a
hierarchy.

Real-time Version or Hierarchy Global Node

Creating Validations
To create a validation:

1. On the Home page, select Administer.

2. From New, select Validation.

3. Enter a name for the validation.

Note:

The validation will be assigned to the Custom namespace. The Fully
Qualified Name for the validation must be unique. The Label field is filled
in automatically after entering the name. The validation label is a user-
friendly descriptor that is displayed for validations for all features aside of
application administration. Multiple validations can have the same Label
as long as they are not in the same namespace.

4. Enter the message to display to the user if the validation fails.

5. Select a validation class. See Validation Classes.

Note:

The valid levels are populated depending on the class selected.

Chapter 10
Creating Validations

10-6

6. For classes that can be run in real time at the node level, select a level that includes a
type of action.

7. Select from the following options for the validation:

• RealTime––Runs when a change is made

• Batch––Runs when explicitly requested

• Inherited––Runs for selected node and its descendants

Note:

Depending on the validation class you select, some of these options may not be
available or parameters are displayed for which you may need to edit values.

8. Define the parameters for the selected validation class.

See Validation Classes for the parameters for each validation class. For more information
on creating formulas, see Creating Formulas. For more information on creating scripts,
see Creating Dynamic Scripts.

9. Click .

Creating a Script Validation for Move
To create a script validation for a Move:

1. On the Home page, select Administer.

2. From New, select Validation.

3. From Class, select Script.

By default, validation level is Node and run mode is Batch.

4. Under Run this Validation, select Real Time.

This enables the validation to be triggered on a particular action (such as Move).

5. From Level, select Move.

Note:

The Level option is above the Real Time option that you selected in step 4.

6. Save the validation.

Assigning Validations
After you create validations, you can assign them to versions, hierarchies, domains, and
nodes. Multiple validations can be assigned at the same time.

Chapter 10
Assigning Validations

10-7

Note:

When assigned at a domain level, validations are inherited by all nodes that
are members of that domain. When assigned at the version level, validations
are inherited by all hierarchies and nodes within the version. When assigned
at the hierarchy level, validations are inherited by all nodes within the
hierarchy.

For information on assigning validations to domains, see Managing Domains. For
information on assigning validations to versions, hierarchies, and nodes, see the
Oracle Data Relationship Management User's Guide .

Editing Validations
To edit a validation:

1. On the Home page, select Administer.

2. Under Metadata, expand Validations.

3. Select a validation and click .

4. Make changes to the validation.

Note:

The Class, Level, and Mode of Operation parameters cannot be modified
after a validation has been saved.

5. Click Save.

Deleting Validations
When you delete a validations, all validation assignments to versions, hierarchies, and
nodes are also deleted.

To delete a validation:

1. From the Home page, select Administer.

2. Under Metadata, expand Validations.

3. Select a validation and click .

4. Select Delete this Item to confirm the deletion.

Chapter 10
Editing Validations

10-8

11
Managing Formulas

Formulas enable you to define complex logic for derived properties and validations using a
native formula language in Oracle Data Relationship Management. Formulas are composed
of functions and string literals and must follow specific syntax rules.

For more information, see:

• Creating Properties

• Managing Validations

Working with Functions
Function names are case-insensitive and should be immediately followed by parentheses,
regardless of whether parameters are required.

Function parameters must be of the expected type and number. Parameters can be nested
functions or string literals. If parameters are of incorrect type, an error is reported. In the case
of too few parameters, a list index out of bounds error is reported. In the case of too many
parameters, additional parameters are ignored.

Special Characters
In certain functions for which parameter values contain special characters (for example:
comma, space, tab), use brackets ([]). For example,
FlipList(PropValue(Custom.NodeList),[comma]) performs the FlipList function on the
comma-delimited list returned from the function call PropValue(Custom.NodeList).

The following functions can take comma, space, or tab, in brackets ([]), for the Delimiter
parameter: ArrayCount, ArrayIndex, ArrayItem, FlipList, Intersection, ListContains,
PadList, RangeListContains, IsRangeListSubset, MinList, MaxList, AvgList, SumList,
SortList, ListDistinct, ListNodePropValues, and ListNodesWith.

The ReplaceStr function, which requires parameters for the old and new patterns, can take
comma, space, tab, crlf, cr, lf, openparen, or closeparen, in brackets ([]), in addition to
normal text strings.

Note:

Parameter values that contain literal commas will result in this syntax error, "Invalid
number of parameters". A comma-delimited list passed in as the result of a function
call is a valid use and will be handled as expected. For example:

Invalid syntax: FlipList(a,b,c,[comma])
Valid syntax: FlipList(PropValue(Custom.NodeList),[comma]) where
Custom.NodeList value = a,b,c

11-1

Literals
Any value that is not a valid function name followed by parentheses is considered a
literal. A literal can be a string, integer, floating-point, or boolean literal. In a string
literal, spaces are treated as a character. Therefore, do not use extra spaces in
formulas unless they are necessary to derive the appropriate result. You can use the
Remove Spaces option to strip spaces from the formula before saving.

Format String Parameter
Format strings passed to the string formatting routines contain two types of objects —
literal characters and format specifiers. Literal characters are copied verbatim to the
resulting string. Format specifiers get a property value from the specified property and
apply formatting to it. Only one specifier can exist in the format string.

Format specifiers use the following form:

 "%"["-"][width]["."prec]type

Table 11-1 Format String Characters

Character Description

% Indicates start of a format specifier

["—"] Left justification indicator (optional)

Left justifies the result by adding blanks after
the value. The default is to right-justify the
result by adding blanks before the value.

[width] Width specifier (optional)

Sets the minimum field width for a conversion.
If the resulting string is shorter than the
minimum field width, it is padded with blanks
to increase the field width.

["." prec] Precision specifier (optional)

type Conversion type character

Conversion characters may be specified in
uppercase or lowercase. For all floating-point
formats, the actual characters used as decimal
and thousand separators are obtained from
the DecimalSeparator and
ThousandSeparator global variables or their
TFormatSettings equivalent. Valid values for
type are listed in the following table.

Chapter 11
Working with Functions

11-2

Table 11-2 Format String Type Values

Type Value Description

d Decimal

The property value must be an integer. The value
is converted to a string of decimal digits. If the
format string contains a precision specifier, it
indicates that the resulting string must contain at
least the specified number of digits; if the value
has fewer digits, the resulting string is left-padded
with zeros.

u Unsigned decimal

Similar to d but no sign is output.

e Scientific

The property value must be a floating-point value.
The value is converted to a string of the form "-
d.ddd...E+ddd". The resulting string starts with a
minus sign if the number is negative. One digit
always precedes the decimal point. The total
number of digits in the resulting string (including
the one before the decimal point) is given by the
precision specifier in the format string; a default
precision of 15 is assumed if no precision specifier
is present. The "E" exponent character in the
resulting string is always followed by a plus or
minus sign and at least three digits.

f Fixed

The property value must be a floating-point value.
The value is converted to a string of the form "-
ddd.ddd...". The resulting string starts with a
minus sign if the number is negative. The number
of digits after the decimal point is given by the
precision specifier in the format string; a default of
two decimal digits is assumed if no precision
specifier is present.

g General

The property value must be a floating-point value.
The value is converted to the shortest possible
decimal string using fixed or scientific format. The
number of significant digits in the resulting string
is given by the precision specifier in the format
string; a default precision of 15 is assumed if no
precision specifier is present. Trailing zeros are
removed from the resulting string, and a decimal
point appears only if necessary. The resulting
string uses fixed point format if the number of
digits to the left of the decimal point in the value is
less than or equal to the specified precision, and if
the value is greater than or equal to 0.00001.
Otherwise the resulting string uses scientific
format.

Chapter 11
Working with Functions

11-3

Table 11-2 (Cont.) Format String Type Values

Type Value Description

n Number

The property value must be a floating-point value.
The value is converted to a string of the form "-
d,ddd,ddd.ddd...". The "n" format corresponds to
the "f" format, except that the resulting string
contains thousand separators.

m Money

The property value must be a floating-point value.
The value is converted to a string that represents
a currency amount. The conversion is controlled
by the CurrencyString, CurrencyFormat,
NegCurrFormat, ThousandSeparator,
DecimalSeparator, and CurrencyDecimals global
variables or their equivalent in a TFormatSettings
data structure. If the format string contains a
precision specifier, it overrides the value given by
the CurrencyDecimals global variable or its
TFormatSettings equivalent.

s String

The property value must be a character, a string,
or a PChar value. The string or character is
inserted in place of the format specifier. The
precision specifier, if present in the format string,
specifies the maximum length of the resulting
string. If the property value is a string that is
longer than this maximum, the string is truncated.

x Hexadecimal

The property value must be an integer value. The
value is converted to a string of hexadecimal
digits. If the format string contains a precision
specifier, it indicates that the resulting string must
contain at least the specified number of digits; if
the value has fewer digits, the resulting string is
left-padded with zeros.

Date-Time Format Strings
Date-time format strings specify the formatting of date-time values (such as
TDateTime) when they are converted to strings. Date-time format strings are
composed from specifiers that represent values to be inserted into the formatted
string. Some specifiers (such as "d") format numbers or strings. Other specifiers (such
as "/") refer to locale-specific strings from global variables. The case of the specifiers is
ignored in formats, except for the "am/pm" and "a/p" specifiers.

Specifier Display

c Date followed by time

Note: The time is not displayed if the date-
time value indicates midnight precisely.

Chapter 11
Working with Functions

11-4

Specifier Display

d Day as a number without a leading zero (1–
31)

dd Day as a number with a leading zero (01–31)

ddd Day as an abbreviation (Sun-Sat)

dddd Day as a full name (Sunday-Saturday)

ddddd Short format of date

dddddd Long format of date

e Year in the current period/era as a number
without a leading zero (Japanese, Korean, and
Taiwanese locales only)

ee Year in the current period/era as a number
with a leading zero (Japanese, Korean, and
Taiwanese locales only)

g Period/era as an abbreviation (Japanese and
Taiwanese locales only)

gg Period/era as a full name (Japanese and
Taiwanese locales only)

m Month as a number without a leading zero (1–
12)

Caution: If the "m" specifier immediately
follows an "h" or "hh" specifier, the minute
rather than the month is displayed.

mm Month as a number with a leading zero (01–
12)

Caution: If the "mm" specifier immediately
follows an "h" or "hh" specifier, the minute
rather than the month is displayed.

mmm Month as an abbreviation (Jan-Dec)

mmmm Month as a full name (January-December)

yy Year as a two-digit number (00–99)

yyyy Year as a four-digit number (0000–9999)

h Hour without a leading zero (0–23)

hh Hour with a leading zero (00–23)

n Minute without a leading zero (0–59)

nn Minute with a leading zero (00–59)

s Second without a leading zero (0–59)

ss Second with a leading zero (00–59)

z Millisecond without a leading zero (0–999)

zzz Millisecond with a leading zero (000–999)

t Time using the format given by the
ShortTimeFormat global variable

tt Time using the format given by the
LongTimeFormat global variable

Chapter 11
Working with Functions

11-5

Specifier Display

am/pm Uses the 12-hour clock for the preceding "h"
or "hh" specifier, and displays "am" for any
hour before noon, and "pm" for any hour after
noon. The am/pm specifier can use lower,
upper, or mixed case, and the result is
displayed accordingly.

a/p Uses the 12-hour clock for the preceding "h"
or "hh" specifier, and displays "a" for any hour
before noon, and "p" for any hour after noon.
The a/p specifier can use lower, upper, or
mixed case, and the result is displayed
accordingly.

ampm Uses the 12-hour clock for the preceding "h"
or "hh" specifier

/ Date separator character given by the regional
settings

: Time separator character given by the regional
settings

'xx'/"xx" Characters enclosed in single or double
quotation marks are displayed as-is and do
not affect formatting.

Formula Evaluation
You can test formulas when you create or modify a property definition or validation.
The formula is evaluated using the supplied property values to calculate the result of
the formula. This process may find logic or implementation errors in the formula that a
simple syntax validation may miss. The formula result and any formula error or status
message is displayed.

Formulas are evaluated left to right, with evaluation of functions and string literals
performed as they are encountered. By this method, nested functions are evaluated
before additional parameters that are displayed to the right of the nested function.
Functions can be nested explicitly in the formula or they can be implicitly nested by
retrieving the value of another formula property. Circular references (property formulas
that refer to the property itself, either explicitly or implicitly) should be avoided in most
cases. Oracle Data Relationship Management detects and prevents harmful circular
references, but they should not be used unless they are necessary and well
understood.

Formula Syntax Checks
Formula syntax is verified for the following before a formula is saved:

• Function names are correct.

• Property names are correct.

• An equal number of open and close parentheses are present.

• The actual number of parameters is at least the expected number of parameters
for each function

Chapter 11
Formula Evaluation

11-6

Functions such as Concat can take any number of parameters. The parameter count
validation verifies that the actual number of parameters is equal to or greater than the
expected number of parameters. Thus too many parameters do not generate an error, but too
few parameters do.

The syntax validation does not evaluate the formula, therefore errors may occur if invalid
constants are entered. For example: IntToStr(ABC,3) passes the syntax validation, but
generates an error in the Oracle Data Relationship Management application. You must
evaluate each formula to avoid this type of error prior to saving.

Property Names in the Syntax Check
In order to accurately perform a syntax validation on property names, functions that require
property names are partially evaluated for those rare cases in which a property name is not a
literal but is the result of a function.

Consider these examples:

• The formula PropValue(Concat(Core.Abbrev)) is valid, but the Concat function has to be
evaluated (not just validated for syntax) to verify the property name.

• The formula PropValue(If(NodeIsLeaf(),Core.Abbrev,Custom.Label)) is valid, but the
If function has to be evaluated to verify the property name.

If the property name in question comprises only part of the formula, only the parts needed to
determine property names are evaluated. For example, in the formula
Add(PropValue(Concat(Core.,I,D)),If(NodeIsLeaf(),0,1), the only part of the formula
evaluated for the syntax validation is the Concat function and its parameters.

The fact that these formula parts are evaluated becomes significant in cases such as
PropValue(PropValue(NodeType)). For this formula, the syntax validation fails unless a value
is supplied for the Custom.NodeType property.

Considerations for Using Formulas
Data Type Conversion

Some functions require that data values be of a specific data type to be properly evaluated.
For example, functions that perform mathematical calculations require that input arguments
are integer or floating point values, whereas string manipulation functions require that string
values be provided as input. In some cases, data values must be converted from one data
type to another to be successfully derived. Oracle Data Relationship Management provides a
set of functions to handle data type conversions within formulas.

Property Level Restrictions

Generally, property definitions created to manage data at a lower level of granularity can
reference other properties that manage data at a higher level of granularity.

• Local Node––May refer to other local node, global node, hierarchy, or version properties

• Global Node––May refer to other global node or version properties

• Hierarchy––May refer to other hierarchy or version properties (Lookup only)

• Version––May refer to other version properties (Lookup only)

Chapter 11
Considerations for Using Formulas

11-7

Referencing Properties from Other Nodes

It is common for a derived property or validation to evaluate or retrieve a property
value from a different node than the current node for which the formula is being
calculated. Data Relationship Management provides several functions that enable you
to access property values from nodes within the same version.

• NodePropValue

• ParentPropValue

• HierNodePropValue

• AncestorProp

• DualAncestorProp

• AscNodeProp

• ReplacePropValue

• ListPropValues

• ListNodePropValues

Referencing Local Node Properties from Global Node Properties

Global node properties do not require a hierarchy context to return a value, whereas
local node properties do require a hierarchy to be specified. Derived properties or
validations that are calculated for a global node cannot reference local node property
values using the standard PropValue or NodePropValue functions. Global node
properties may reference local node property values using the HierNodePropValue
function whereby a particular hierarchy must be specified to retrieve the value of the
property for a specific local node in the hierarchy.

Nesting Functions

Combining functions into the same formula is referred to as nesting functions. The
output of one function is used as an input argument for another function in the formula.
When evaluating nested functions, Data Relationship Management executes the
innermost function first and then works its way outward. Functions may be nested
explicitly within the same formula or nested implicitly by using one formula that refers
to a property that uses a different formula.

Using Properties as Variables for Other Properties

Data Relationship Management enables you to use a combination of nested functions,
references to other properties or nodes, and literal values, which may result in lengthy
or complex formulas. You can use separate property definitions to modularize formula
logic and simplify the formula syntax required to achieve the same results. This
approach may significantly improve the ease of maintenance for these formulas.

In addition, formulas may evaluate the same data or perform the same calculation
multiple times within the same property definition or across multiple property
definitions for a given node. When this logic is embedded in a much larger formula or
implemented within property definitions, these checks and calculations are performed
multiple times, which may affect the performance for operations that require the
properties to be calculated. You can minimize redundant processing by isolating the
duplicate formula logic within a separate property definition.

Chapter 11
Considerations for Using Formulas

11-8

Using Recursion to Traverse Hierarchy Relationships

Business rules for nodes at lower levels of a hierarchy may require the evaluation of property
values from ancestor nodes above them. One way to allow these property values to be
referenced by lower-level nodes is to enable inheritance on the property definition that
manages the values that must be referenced. However, in many cases, using an inheritance
for a property definition is not appropriate.

You can use specific hierarchical formula functions with a self-reference to the current
property definition to recurse up a branch of a hierarchy to retrieve or evaluate property
values for ancestor nodes.

ParentPropValue––Use this function to recurse up a branch of ancestors in the current
hierarchy. For example: If(Equals(Integer,PropValue(Core.Level),1),Label
Only,ParentPropValue(Essbase.DataStorage))
HierNodePropValue––Use this function to recurse up a branch of ancestors in another
hierarchy. For example:
If(Equals(Boolean,PropValue(Custom.PlanPoint),True),Abbrev(),HierNodePropValue(G
eography,HierNodePropValue(Geography,Abbrev(),Core.Parent),Custom.PlanMember))

Creating Formulas
Formulas are created in the formula editor which is available on the Parameters tab for
creating or editing derived property definitions and validations.

To create a formula:

1. You can enter a text formula or insert functions and properties in the following ways on
the Parameters tab:

• To insert a function, place your cursor in the formula and click Insert Function. A list
of functions is displayed. Expand a function to view its input parameters. Enter the
parameter values and click OK.

• To insert a property, place your cursor in the formula and click Insert Property. A list
of properties is displayed. Select a property and click OK.

2. Make selections from the following options:

• Remove Spaces––Selected by default. If selected, all spaces in the formula are
removed when the formula is evaluated and when the property is saved. To preserve
spaces to be evaluated as literal values in the formula, disable this option.

• To evaluate the formula, select an option:

– Evaluate with Selected Node––Click and select a node. The node's current
property values are used in the formula. Click Evaluate. The result is displayed
at the bottom of the formula designer.

– Evaluate with Scratch Pad––Enter property values manually. Values can also
be copied from a node and then modified for the evaluation. In the Copy From

Node, click and select a node to display its property values in the grid. Use
the filter row below the column headings to filter the list of properties. Use the
Edit buttons in the Action column to modify property values for evaluation with
the formula. Click Evaluate. The Evaluation Result is displayed at the bottom of
the formula designer.

3. To test the formula, click Evaluate.

Chapter 11
Creating Formulas

11-9

Function Definitions
Following is an alphabetical listing of available functions used with derived formula
property definitions.

Abbrev

Description

Returns the name (Abbrev) of the current node.

Syntax

Abbrev(): String

Example

Abbrev()

Return value is the name of the node.

Add

Description

Adds two specified integer values and returns the result.

Syntax

Add(Int1,Int2:Integer):Integer

Example

Add(1,4)

Return value is 5.

AddedBy

Description

Returns the value of the Added By change tracking property.

Syntax

AddedBy():String

Example

AddedBy()

Chapter 11
Function Definitions

11-10

Returns the name of the user who added the current node to the version.

AddedOn

Description

Returns the value of the Added On change tracking property as a date/time.

Syntax

AddedOn():Date/Time

Example

AddedOn()

Returns the date and time at which the current node was added to the version.

AddFloat

Description

Adds two specified float values and returns the result.

Syntax

AddFloat(Float1,Float2:Float):Float

Example

AddFloat(2.14,3.75)

The return value is 5.89.

AncestorProp

Description

Returns a property value of the first ancestor where a property equals a specified value.

This function is local in scope and will not function properly if used in a global context.

Note:

If the current node is valid for the criteria, then it will be returned.

Syntax

AncestorProp(Operator:String,Property:String,Value:String,FromTop:Boolean,Ret
urnProp:String)

Chapter 11
Function Definitions

11-11

Operator is the operator to use when comparing the property with the value. Valid
values: =, <, >, >=, and <=.

Property is the name of the property to use.

Value is the value to compare.

FromTop specifies whether to search from the top node of the hierarchy. If False, the
search is performed starting from the current node.

ReturnProp is the name of the property to return.

And

Description

Returns True if all specified Boolean expressions evaluate to True.

Syntax

And(Expression1,Expression2,...ExpressionN:Boolean):Boolean

Example

And(1,T,True)

Return value is True.

ArrayCount

Description

Returns the number of items in a specified list (array).

Syntax

ArrayCount(List:String,Delimiter:String):Integer

List specifies the list of strings in which to search.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

Chapter 11
Function Definitions

11-12

Example

ArrayCount(Diet Cola;Root Beer;Cola,[comma])

Return value is 3.

ArrayIndex

Description

Returns the position of the first occurrence of the specified item within the list (array). Returns
zero (0) if the item is not found.

Syntax

ArrayIndex(Item:String,List:String,Delimiter:String):Integer

Item specifies the string value to test.

List specifies the list of strings in which to search.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include brackets
around the name.

Example

ArrayIndex(Cola,Diet Cola;Root Beer;Cola,[comma])

Return value is 3.

ArrayItem

Description

Returns the item in the list (array) at the specified index position.

Syntax

ArrayItem(List:String,Delimiter:String,Index:Integer):String

List specifies the list of strings in which to search.

Chapter 11
Function Definitions

11-13

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

Index is the position of the string in the list. A negative value indicates the last item in
the list.

Example

ArrayItem(Diet Cola;Root Beer;Cola,;,3)

Return value is Cola.

AscNodeProp

Description

Returns a property value of the associated node referenced by the specified property.

Syntax

AscNodeProp(LookUpProperty,ReturnProperty)

LookupProperty is the name of the property that points to the node. Property must be
datatype Node or AscNode.

ReturnProperty is the name of the property of the associated node to return. Property
must be global.

AvgList

Description

Returns the average of the items in a list, ignoring blank items. Returns a blank string
if the list contains an item not of the specified item type.

Syntax

AvgList(InputList:String,Delimiter:String,ItemType:String):String

InputList specifies the list to use.

Chapter 11
Function Definitions

11-14

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include brackets
around the name.

ItemType indicates the expected item data type for list members. Valid values: integer, float,
and datetime. The default value is float.

Example

AvgList(1;2;3,[comma],Integer)

Return value is 2.

BoolToStr

Description

Returns a Boolean value converted to True or False. Returns False if the input does not
represent a Boolean value.

Syntax

BoolToStr(Expression:Boolean):String

Example

BoolToStr(1)

Return value is True.

Changed

Description

Returns the value of the Node Changed change tracking property as a Boolean.

Syntax

Changed()

Chapter 11
Function Definitions

11-15

ChangedBy

Description

Returns the name of the user who last updated the current node in the version.

Syntax

ChangedBy():String

Example

ChangedBy()

ChangedOn

Description

Returns the value of the Changed On change tracking property.

Syntax

ChangedOn():Date/Time

Example

ChangedOn()

Returns the date and time at which the current node was last updated in the version.

Concat

Description

Concatenates two or more specified strings into one and returns the result.

Syntax

Concat(Item1,Item2,... ItemN:String):String

Example

Concat(Abbrev,-,Descr())

If current node name is 100 and current node description is Colas, then return value is
100–Colas.

ConcatWithDelimiter

Description

Concatenates two or more strings into one delimited list and returns the result.

Chapter 11
Function Definitions

11-16

Syntax

ConcatWithDelimiter(Delimiter:String,SkipBlanks:Boolean,Items:String)

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include brackets
around the name.

SkipBlanks indicates whether to skip blank values in the list of strings. Valid values: 1, 0, T,
F, t, f.

Items specifies the list of strings to concatenate.

Example

ConcatWithDelimiter([comma],1,Item1,Item2,Item3,Item4)

Return value is Item1; Item2; Item3; Item4.

Decode

Description

Returns the input string with all instances of [openparen], [closeparen], [comma], [tab],
[space], [crlf], [cr], and [lf] replaced by the appropriate character.

Note:

This function is for upgrading property definition names that use special characters.
These special characters can cause parsing issues with derived property formulas.
This function is used primarily to convert existing properties using deprecated
deriver classes to the Formula deriver class.

Syntax

Decode(CodedString:String):String

CodedString is the string value on which to perform the function.

Chapter 11
Function Definitions

11-17

DefaultProp

Description

Returns the default value for the property.

Syntax

DefaultProp(Property:String)

Property is the name of the property to use.

Descr

Description

Returns the description of the current node.

Syntax

Descr():String

Example

If current node description is Colas, then return value is Colas.

Divide

Description

Divides two specified integer values and returns the result.

Syntax

Divide(Int1,Int2:Integer):Integer

Example

Divide(200,10)

Return value is 20.

DivideFloat

Description

Divides two floating-point numbers (float) and returns the result.

Syntax

Divide(Float1,Float2:Float):Float

Chapter 11
Function Definitions

11-18

Example

DivideFloat(2.535,1.5)

The return value is 1.69.

DualAncestorProp

Description

Returns a property value of the first ancestor where two properties equal the specified values.

This function is local in scope and will not function properly if used in a global context.

Syntax

DualAncestorProp(Operator1:String,Property1:String,Value1:String,Operator2:St
ring,Property2:String,Value2:String,FromTop:Boolean,ReturnProp:String):String

Operator1 is the operator to use when comparing the first property and value. Valid values:
=, <, >, >=, and <=.

Property1 is the name of the first property to check.

Value1 is the first value to compare.

Operator2 is the operator to use when comparing the second property and value. Valid
values: =, <, >, >=, and <=.

Property2 is the name of the second property to check.

Value2 is the second value to compare.

FromTop specifies whether to search from the top node of the hierarchy. If False, the search
is performed starting from the current node.

ReturnProp is the name of the property of the ancestor to return.

Equals

Description

Returns True if two specified values are equal. This function is case-sensitive.

Syntax

Equals(ParamType:String,Param1:String,Param2:String):Boolean

ParamType is the data type to use for comparing values. Valid values: string, integer, float,
date. The default value is integer.

Param1 is the first value to compare.

Param2 is the second value to compare.

Chapter 11
Function Definitions

11-19

Example

Equals(integer,01,1)

Return value is True.

FlipList

Description

Returns a string representing the reverse of the specified list.

Syntax

FlipList(List,Delimiter:String):String

List specifies the list of strings to flip.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

Example

FlipList(DietCola;Orange Soda;Root Beer;Lemonade,[comma])

Return value is Lemonade,Root Beer,Orange Soda,Diet Cola.

FloatToStr

Description

Returns a float value converted to a string. Returns zero (0) if the input value does not
represent a float.

Syntax

FloatToStr(Float1:Float):String

Chapter 11
Function Definitions

11-20

Example

FloatToStr(1.001)

Return value is 1.001.

Format

Description

Formats the value using a specified format string parameter type identifier and parameter
value of the specified type. This function is limited to one value parameter.

Syntax

Format(Format:String,ParamType:String, ValueToFormat:String):String

Format is the format to apply.

ParamType is the data type to use for comparing values. Valid values: string, integer, float,
date. The default value is integer.

ValueToFormat is the value on which to perform the function.

Example

Format('%8.2f',Float,123.456)

Return value is 123.46.

FormattedDate

Description

Returns the value of a date property formatted using the specified format string.

Syntax

FormattedDate(PropertyName:String,FormatString:String): String

PropertyName is the name of the property to use.

FormatString specifies the date format to apply.

GreaterThan

Description

Compares two values and returns True if the first value is greater than the second value.

Syntax

GreaterThan(Value1:Integer,Value2:Integer,ParamType:String):Boolean

Chapter 11
Function Definitions

11-21

Value1 is the first value to compare.

Value2 is the second value to compare.

ParamType is the data type to use for comparing values. Valid values: string, integer,
float, date. The default value is integer.

Example

GreaterThan(1,2)

The return value is False.

GreaterThanOrEqual

Description

Compares two values and returns True if the first value is greater than or equal to the
second value.

Syntax

GreaterThanOrEqual(Value1:Integer,Value2:Integer,ParamType:String):Bool
ean

Value1 is the first value to compare.

Value2 is the second value to compare.

ParamType is the data type to use for comparing values. Valid values: string, integer,
float, date. The default value is integer.

Example

GreaterThanOrEqual(2,2)

The return value is True.

HasCharacters

Description

Returns True if the specified Input contains characters from the Character Classes,
Special Characters, or Characters listed in CharList.

Syntax

HasCharacters(Input:String,CharList:String):Boolean

Input is the string value to test.

CharList is a list of characters to test, including optional special values. Special
character values are enclosed in brackets and separated by a comma. Valid values:
[alpha], [numeric], [whitespace], [punctuation], [uppercase], [lowercase], [comma],
[space], [tab], [crlf], [cr], [lf], [openparen], and [closeparen].

Chapter 11
Function Definitions

11-22

HasChildWith

Description

Returns True if the specified expression is True for any child of the current node.

Syntax

HasChildWith(Expression:Boolean):Boolean

Example

HasChildWith(GreaterThan(ID(),200))

If the current node has any children with an ID greater than 200, then return value is True.

HasParentNode

Description

Returns True if the current local node has a parent node.

This function is local in scope and will not function properly if used in a global context.

Syntax

HasParentNode():Boolean

Example

HasParentNode()

If the node is a child of the top node of a hierarchy or any descendant node, then the return
value is True.

HasSiblingWith

Description

Returns True if the specified expression is True for any sibling of the current node.

This function is local in scope and will not function properly if used in a global context.

Syntax

HasSiblingWith(Expression:Boolean):Boolean

Example

HasSiblingWith(PropValue(Leaf))

If any of the children are leaves, then the return value is True.

Chapter 11
Function Definitions

11-23

HierNodePropValue

Description

Returns the value of the specified property of the specified node in the specified
hierarchy.

Syntax

HierNodePropValue(HierAbbrev:String,NodeAbbrev:String,PropAbbrev:String
):String

HierAbbrev is the name of the hierarchy to use.

NodeAbbrev is the name of the node to use.

PropAbbrev is the name of the property to use.

Example

HierNodePropValue(Assets,1000,Description)

If the description for node 1000 in the Assets hierarchy is "Banking", then the return
value is Banking.

ID

Description

Returns the ID of the current node.

Syntax

ID():Integer

Example

ID()

If the current node ID is 2000, then the return value is 2000.

If

Description

Returns the value of the TrueResult parameter if the specified expression evaluates to
True. Otherwise, it returns the value of the FalseResult parameter.

Syntax

If(Expression:Boolean, TrueResult:String,FalseResult:String):String

Expression is a Boolean expression to evaluate.

Chapter 11
Function Definitions

11-24

TrueResult is the string value to return if the condition is True.

FalseResult is the string value to return if the condition is False.

Example

If(Equals(String,Descr(),),Abbrev(),Concat(Abbrev,-,Descr()))

If the node name is Colas and the current node description is blank, then the return value is
Colas.

If the node name is 100 and the current node descriptions is Colas, then the return value is
100–Colas.

InheritedPropOrigin

Description

Returns the name of the node from where an inherited property value originates. If the
specified property is global, then the origin hierarchy is also returned. Returns False if the
specified property is not inheriting, or if the node or property is not found.

This function can be local in scope if a local property is passed in the parameters.

Syntax

InheritedPropOrigin(PropAbbrev:String,Node:String):String

Example

InheritedPropOrigin(Custom.AccountType,Abbrev())

PropAbbrev is the name of the property to use.

Node is the name of the node to use.

InRange

Description

Returns True if the specified value falls within a specified range of values. If the input
parameter is a string, the Min and Max parameters specify a string length range to check. For
other types, Min and Max specify a numeric or date value range to check.

Note:

If MinExclusive/MaxExclusive is True, then values equal to the Min/Max are
included in the range, otherwise they are excluded.

Chapter 11
Function Definitions

11-25

Syntax

InRange(DataType:String,Input:String,Min:String,Max:String,MinExclusive
:String,MaxExclusive:String):Boolean

DataType is the data type to use. Valid values: string, integer, float, and datetime.

Input is the string value to test.

Min is the minimum value for length or range check.

Max is the maximum value for length or range check.

MinExclusive specifies whether to exclude the Min value from the range to check.

MaxExclusive specifies whether to exclude the Max value from the range to check.

Example

InRange(Integer,5,1,10,False,False)

Return value is True.

InternalPrefix

Description

Returns the non-numeric prefix from the name of the current node.

Syntax

InternalPrefix()

Intersection

Description

Returns the set of items common to both specified lists of values. The ordering of the
results is based on how the items appear in the first list specified.

Syntax

Intersection(List1:String,List2:String,Delimiter:String):String

List1 specifies a list of strings in which to search.

List2 specifies a list of strings in which to search.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Chapter 11
Function Definitions

11-26

Note:

You must use the name of the delimiter (not the character) and include brackets
around the name.

Example

Intersection(A;B;C;D;E,C;E;F;A,[comma])

The return value is A,C,E.

IntToStr

Description

Returns the specified integer value converted to a string data type. Returns zero (0) if the
input value does not represent an integer.

Syntax

IntToStr(Int1:Integer):String

Example

IntToStr(12345)

The return value is 12345.

InvertedLevel

Description

Returns the maximum depth of descendants below the current node.

Syntax

InvertedLevel()

IsAlpha

Description

Returns True if the specified string contains only alphabetical characters (case-insensitive).

Syntax

IsAlpha(String:String):Boolean

Chapter 11
Function Definitions

11-27

Example

IsAlpha(A23D)

The return value is False.

IsAlphaNumeric

Description

Returns True if the specified string contains only alphabetical or numeric characters
(not case-sensitive).

Syntax

IsAlphaNumeric(String:String,AllowBlanks:Boolean):Boolean

String is the string value to test.

AllowBlanks specifies whether a blank string should be treated as numeric. Default is
False.

Example

IsAlphaNumeric(ABC123,True)

Returns True.

IsBlank

Description

Returns True if the specified input value is an empty string (zero length).

Syntax

IsBlank(Input:String):Boolean

Example

IsBlank(Descr())

Returns True if the node description is blank.

IsBottomNode

Description

Returns True if the specified node has no child nodes. Returns False if the node is not
found.

Chapter 11
Function Definitions

11-28

Syntax

IsBottomNode(Node:String):Boolean

Node is the name of the node to use.

Example

IsBottomNode(Abbrev)

Returns True if the node does not have children.

IsDataType

Description

Returns True if the input value matches the specified data type.

Syntax

IsDataType(DataType:String,Input:String):Boolean

DataType is the data type to use. Valid values: boolean, string, integer, float, and datetime.

Input is the string value to test.

Example

IsDataType(123,Integer)

Returns True.

IsDefinedPropVal

Description

Returns True if the specified property for the specified node has a defined (overridden) value.
Returns False if the node or property is not found.

This function can be local in scope if a local property is passed in the parameters.

Syntax

IsDefinedPropVal(PropAbbrev:String,Node:String):Boolean

PropAbbrev is the name of the property to use.

Node is the name of the node to use.

Example

IsDefinedPropVal(Custom.AccountType,Abbrev())

Chapter 11
Function Definitions

11-29

Returns True if the Account Type property has a defined (overridden) value.

IsNodeAbove

Description

Returns True if the first node is an ancestor of the second node in the current
hierarchy. Returns False if Node1 or Node2 is not found.

This function is local in scope and will not function properly if used in a global context.

Syntax

IsNodeAbove(Node1:String,Node2:String):Boolean

Node1 is the name of the first node to use.

Node2 is the name of the second node to use.

Example

IsNodeAbove(Parent,Child)

Returns True if node parent is an ancestor of the child node.

IsNodeBelow

Description

Returns True if the first node is a descendant of the second node in the current
hierarchy. Returns False if Node1 or Node2 is not found.

Syntax

IsNodeBelow(Node1:String,Node2:String):Boolean

Node1 is the name of the first node to use.

Node2 is the name of the second node to use.

Example

IsNodeBelow(Child,Parent)

Returns True if node child is descendant of the parent node.

IsNumeric

Description

Returns True if the specified value contains only numeric characters (0-9).

Chapter 11
Function Definitions

11-30

Syntax

IsNumeric(String: String,AllowBlanksAsNumeric:Boolean):Boolean

String is the string value to test.

AllowBlanksAsNumeric specifies whether to allow a blank value to be considered a string.
The default value is False.

Example

IsNumeric(12345)

The return value is True.

IsRangeListSubset

Description

Returns True if the specified value is a subset of the specified range list.

Syntax

IsRangeListSubset(RangeList:Range List,SubsetRangeList:Range
List,Delimiter:String):Boolean

RangeList is a list of integer ranges to search, separated by the specified delimiter.

SubsetRangeList is a subset list of integer ranges to search, separated by the specified
delimiter.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include brackets
around the name.

Length

Description

Returns the number of characters in the specified string value.

Chapter 11
Function Definitions

11-31

Syntax

Length(String:String):Integer

Example

Length(Desc())

If the description for the current node is Colas, then the return value is 5.

LessThan

Description

Compares two values and returns True if the first value is less than the second value.

Syntax

LessThan(Value1:Integer,Value2:Integer,ParamType:String):Boolean

Value1 is the first value to compare.

Value2 is the second value to compare.

ParamType is the data type to use for comparing values. Valid values: string, integer,
float, date. The default value is integer.

Example

LessThan(1,2)

The return value is True.

LessThanOrEqual

Description

Compares two values and returns True if the first value is less than or equal to the
second value.

Syntax

LessThanOrEqual(Value1:Integer,Value2:Integer,ParamType:String):Boolean

Value1 is the first value to compare.

Value2 is the second value to commpare.

ParamType is the data type to use for comparing values. Valid values: string, integer,
float, date. The default value is integer.

Chapter 11
Function Definitions

11-32

Example

LessThanOrEqual(3,3)

The return value is True.

ListAncestors

Description

Returns a comma-delimited list of the names of the current node’s ancestors, starting from
the top node. Returns a blank string if the current node is not a local node.

This function is local in scope and will not function properly if used in a global context.

Syntax

ListAncestors(SortOrder:String):String

SortOrder specifies the sort order for the return list of nodes. Supported sort order values:

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Note:

You must use brackets around the SortOrder parameter.

Example

ListAncestors([alpha])

If A, B, C, and D are children of Z, Z is a child of Y, and the current node is D, then the return
value is Z,Y.

ListChildren

Description

Returns a comma-delimited list of children for the current node.

Syntax

ListChildren(SortOrder:String):String

SortOrder specifies the sort order for the return list of nodes. Supported sort order values:

Chapter 11
Function Definitions

11-33

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Note:

You must use brackets around the SortOrder parameter.

Example

ListChildren([alpha])

If A, B, C, and D are children of Z and the current node is Z, then the return value is A,
B, C, D.

ListContains

Description

Returns True if the specified list contains the specified value.

Syntax

ListContains(List:String,Item:String,Delimiter: String):Boolean

List specifies the list of strings in which to search.

Item specifies the string value on which to perform the function.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

Example

ListContains(PropValue(NodeList),Colas,[comma])

Chapter 11
Function Definitions

11-34

The return value is True.

ListDescendants

Description

Returns a comma-delimited list of descendants for the current node.

Syntax

ListDescendants(SortOrder:String):String

SortOrder specifies the sort order for the return list of nodes. Supported sort order values:

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Note:

You must use brackets around the SortOrder parameter.

Example

ListDescendants([hier])

If A, B, C, and D are children of Z, Z is a child of Y, and the current node is Y, then the return
value is Z, A, B, C, D.

ListDistinct

Description

Returns a distinct list of items from a specified list, with duplicates removed.

Syntax

ListDistinct(InputList:String,Delimiter:String):String

InputList specifies the list to use.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Chapter 11
Function Definitions

11-35

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

Example

ListDistinct(A;B:C;A;D,[comma])

The return value is A,B,C,D.

ListNodePropValues

Description

Returns a list of property values for the specified property for a specified list of nodes.
Returns a blank string in the list, for any node that cannot be found.

This function can be local in scope if a local property is passed in the parameters.

Syntax

ListNodePropValues(NodeList:String,Delimiter:String,PropAbbrev:String):
String

NodeList is a comma-delimited list of node names.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

PropAbbrev is the name of the property to use.

Example

ListNodePropValues(100;200;300,[comma],Core.Leaf)

Returns True,True,True if nodes 100, 200, and 300 are leaf nodes.

Chapter 11
Function Definitions

11-36

ListNodesWith

Description

Returns a list of nodes from the specified node list where the specified expression evaluates
to True.

Syntax

ListNodesWith(NodeList:String,Delimiter:String,Expression:String):String

NodeList is a comma-delimited list of node names.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include brackets
around the name.

Expression is a Boolean expression to evaluate.

Example

ListNodesWith(100;200;300,[comma],NodeIsLeaf())

Returns True,True,True if nodes 100, 200, and 300 are leaf nodes.

ListRelatedNodesWith

Description

Returns a list of nodes related to the current node where the specified expression evaluates
to True.

This function is local in scope if the relationship parameter is Ancestors or Siblings.

Syntax

ListRelatedNodesWith(Relation:String,Expression:String,SortOrder:String,Max:I
nteger):String

Relation can be:

• Ancestors––Local properties can be referenced in the specified expression

Chapter 11
Function Definitions

11-37

• Siblings––Local properties can be referenced in the specified expression

• Children––Local and global properties can be referenced in the specified
expression

• Descendants––Local and global properties can be referenced in the specified
expression

Expression is a Boolean expression to evaluate.

SortOrder specifies the sort order for the return list of nodes. Supported sort order
values:

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Note:

You must use brackets around the SortOrder parameter.

Max is an integer value indicating the maximum number of nodes to return. Zero or no
value indicates no limit, and all nodes are returned.

Example

ListRelatedNodesWith(children,True,[alpha],1000)

Returns 100,200,300 if the nodes are children of the current node.

ListSiblings

Description

Returns a comma-delimited list of siblings (peers) of the current node.

This function is local in scope and will not function properly if used in a global context.

Syntax

ListSiblings(SortOrder:String):String

SortOrder specifies the sort order for the return list of nodes. Supported sort-order
values:

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Chapter 11
Function Definitions

11-38

Example

ListSiblings([alpha])

If A, B, C, and D are children of Z and the current node is B, then the return value is A, C, D.

LowerCase

Description

Returns the specified string value converted to lower case.

Syntax

LowerCase(String:String):String

Example

LowerCase(HOBBES)

The return value is hobbes.

LTrim

Description

Returns the specified value with all spaces trimmed from the beginning of the string.

Syntax

LTrim(String: String): String

Example

LTrim(" 101203")

The return value is 101203.

MaxList

Description

Returns the maximum item from the specified list, ignoring blank items. Returns a blank string
if the list contains an item not of the specified type.

Syntax

MaxList(InputList: String,Delimiter: String,ItemType: String)

InputList specifies the list to use.

Chapter 11
Function Definitions

11-39

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

ItemType indicates the expected item data type for list members. Valid values: integer,
float, and datetime. The default value is float.

Example

MaxList(1;2;3,[comma],Integer)

Return value is 3.

MinList

Description

Returns the minimum item from the specified list, ignoring blank items. Returns a blank
string if the list contains an item not of the specified type.

Syntax

MinList(InputList:String,Delimiter:String,ItemType:String)

InputList specifies the list to use.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

ItemType indicates the expected item data type for list members. Valid values: integer,
float, and datetime. The default value is float.

Chapter 11
Function Definitions

11-40

Example

MinList(1;2;3,[comma],Integer)

Return value is 1.

Modulus

Description

Returns the modulus (remainder) of the division of two specified integers.

Syntax

Modulus(Dividend: Integer, Divisor: Integer): Integer

Dividend is the numerator of the fraction being divided.

Divisor is the denominator of the fraction being divided.

Example

Modulus(5,2)

The return value is 1.

Multiply

Description

Multiplies two specified integers and returns the result.

Syntax

Multiply(Int1: Integer, Int2: Integer): Integer

Example

Multiply(2,5)

The return value is 10.

MultiplyFloat

Description

Multiplies two specified floating-point numbers (float) and returns the result.

Syntax

Multiply(Float1: Float, Float2: Float): Float

Chapter 11
Function Definitions

11-41

Example

MultiplyFloat(4.76,2.3)

The return value is 10.948.

NextSibling

Description

Returns the next sibling for the current node based on the sort order used for the
current hierarchy.

This function is local in scope and will not function properly if used in a global context.

Syntax

NextSibling(): String

Example

NextSibling()

If A, B, C, and D are children of Z and the current node is B, then the return value is C.

NodeAccessGroups

Description

Returns a comma-delimited list of node access groups for the current user for the
current node.

This function is local in scope and will not function properly if used in a global context.

Syntax

NodeAccessGroups(): String

Example

NodeAccessGroups()

The return value is Accounts, Finance.

NodeExists

Description

Returns True if the specified node exists.

Chapter 11
Function Definitions

11-42

Syntax

NodeExists(NodeAbbrev: string): Boolean

NodeAbbrev is the name of the node to use.

Example

NodeExists(2000)

If node 2000 exists, then the return value is True.

NodeInHier

Description

Returns True if the specified node exists in the specified hierarchy.

Syntax

NodeInHier(NodeAbbrev, HierAbbrev: string): Boolean

NodeAbbrev is the name of the node to use.

HierAbbrev is the name of the hierarchy to use.

Example

NodeInHier(2000,Assets)

If the node 2000 is in the Assets hierarchy, then the return value is True.

NodeIsLeaf

Description

Returns True if the current node is a leaf node.

Syntax

NodeIsLeaf(): Boolean

Example

NodeIsLeaf()

If the current node is a leaf, then the return value is True.

Chapter 11
Function Definitions

11-43

NodeIsValidForPropertyHiers

Description

Returns True if the specified node satisfies the hierarchy constraint for the specified
property. Also returns True if the property does not store node values or if no
constraint is defined for the property.

This function can be local in scope if a local property is passed in the parameters.

Syntax

NodeIsValidForPropertyHiers(NodeAbbrev: String, PropAbbrev: String):
Boolean

NodeAbbrev is the name of the node to use.

PropAbbrev is the name of the property to use.

NodePropValue

Description

Returns the value of the specified property of the specified node in the current
hierarchy for a local node or in the current version for a global node.

This function can be local in scope if a local property is passed in the parameters.

Syntax

NodePropValue(NodeAbbrev: String, PropAbbrev: String): String

NodeAbbrev is the name of the node to use.

PropAbbrev is the name of the property to use.

Example

NodePropValue(2000,Abbrev())

Return value is 2000.

Not

Description

Returns the Boolean opposite of the specified Boolean expression.

Syntax

Not(Expression: Boolean): Boolean

Chapter 11
Function Definitions

11-44

Example

Not(NodeIsLeaf())

If the node is a limb, then the return value is True.

Now

Description

Returns the current system date and/or time.

Syntax

Now([DateTimeType: String]): DateTime

DataTimeType is optional for specifying which date portion to return. Valid values: Date,
Time, Datetime. The default value is Date.

Example

Now()

Returns the current date and time; for example 3/25/2010 9:20:44 AM.

Now(Time)

Returns only the current time; for example 9:20:44 AM.

Now(Date)

Returns only the current date; for example 3/25/2010.

NumChildWith

Description

Returns the number of children for the current node where the specified expression evaluates
to True.

Syntax

NumChildWith(Expression: Boolean): Integer

Example

NumChildWith(NodeIsLeaf())

If the node has two leaf children, then the return value is 2.

Chapter 11
Function Definitions

11-45

NumDescendantsWith

Description

Returns the number of descendants for the current node where the specified
expression evaluates to True.

Syntax

NumDescendantsWith(Expression: Boolean): Integer

Example

NumDescendantsWith(NodeIsLeaf())

If the node has two children and each child has 10 leaf children, then the return value
is 20.

Or

Description

Returns True if any of the specified Boolean expressions evaluate to True.

Syntax

Or(Expression1, Expression2,... ExpressionN: Boolean): Boolean

Example

Or(NodeIsLeaf(),Equals(Integer,PropValue(Level),3))

If the current node is a leaf or is at level 3 in the hierarchy, then the return value is
True.

OrigPropValue

Description

Returns the value of the specified property for the originating node when using the
HasSiblingWith or NumDescendantsWith functions.

This function can be local in scope if a local property is passed in the parameters.

Syntax

OrigPropValue(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Chapter 11
Function Definitions

11-46

Example

HasSiblingWith(GreaterThan(OrigPropValue(ID),ID())

If the current node's ID is 200 and it has any siblings with a node ID greater than 200, then
the return value is True.

PadChar

Description

Returns a specified string lengthened using a specified pad character. Padding can be on the
left or right of the original string. The resulting string is at least as long as the number of digits
specified. If the original string is longer than the number of digits specified, the original list is
returned.

Syntax

PadChar(String: String, PadChar: String; PadLeft: Boolean; NewLength:
Integer): String

String is the string value on which to perform the function.

PadChar is the character to use for padding the string.

PadLeft specifies whether to pad the string on the left. Valid values: 1, 0, T, F, t, or f.

NewLength is an integer specifying the length of the result.

Example

PadChar(102,0,1,6)

The return value is 000102.

PadList

Description

Returns a specified list lengthened using a specified pad character. Padding can be on the
left or right of the original list. The resulting list is at least as long as the number of digits
specified. If the original list is longer than the number of digits specified, the original list is
returned.

Syntax

PadList(String, DelimChar, PadChr:String, PadLeft: Boolean,
NewLength:Integer): String

StringList is the list of strings to apply padding to, separated by the specified delimiter.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

Chapter 11
Function Definitions

11-47

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
square brackets around the name.

PadChar is the character to use for padding the string.

PadLeft specifies whether to pad the string on the left. Valid values: 1, 0, T, F, t, or f.

NewLength is an integer specifying the length of the result.

Example

PadList(1;2;3;4,;,T,3)

The return value is 001;002;003,004.

ParentPropValue

Description

Returns the value of the specified property of the current node’s parent node. Returns
a blank string if the node has no parent, or if the current node is not a local node.

This function is local in scope and will not function properly if used in a global context.

Syntax

ParentPropValue(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Example

ParentPropValue(Abbrev)

If the parent node name is Colas, then the return value is Colas.

Pos

Description

Returns the position (index) of the first character of the specified substring within the
specified string using a case-sensitive search. A zero value is returned if the substring
is not found within the string value.

Chapter 11
Function Definitions

11-48

Syntax

Pos(SubString: String, String: String): Integer

Substring is the string value for which to search.

String is the string value on which to perform the function.

Example

Pos(D,ABCDEFG)

The return value is 4.

PreviousSibling

Description

Returns the previous sibling for the current node based on the sort order used for the current
hierarchy.

This function is local in scope and will not function properly if used in a global context.

Syntax

PreviousSibling(): String

Example

PreviousSibling()

If A, B, C, and D are children of Z and the current node is B, then the return value is A.

PropControllingHier

Description

Returns the name of the controlling hierarchy of the specified property in the current version.

Syntax

PropControllingHier(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Example

PropControllingHier(TimeBalance)

The return value is Accounts.

Chapter 11
Function Definitions

11-49

PropDefaultValue

Description

Returns the default value of the specified property definition.

Syntax

PropDefaultValue(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Example

PropDefaultValue(Currency)

The return value is USD.

PropertyCategories

Description

Returns a comma-delimited list of property categories for the current user.

Syntax

PropertyCategories(AccessType: String) :String

AccessType is the access level for a property category. Valid values: ReadOnly,
ReadWrite, or Both.

Example

PropertyCategories(Both)

The return value is System, All, Essbase, Enterprise, HFM, Planning.

PropMaxValue

Description

Returns the maximum value of the specified property definition.

Syntax

PropMaxValue(PropAbbrev: String): Integer

PropAbbrev is the name of the property to use.

Chapter 11
Function Definitions

11-50

Example

PropMaxValue(Volume)

The return value is 10.

PropMinValue

Description

Returns the minimum value of the specified property definition.

Syntax

PropMinValue(PropAbbrev: String): Integer

PropAbbrev is the name of the property to use.

Example

PropMinValue(Volume)

The return value is 1.

PropValue

Description

Returns the value of the specified property for the current node.

This function can be local in scope if a local property is passed in the parameters.

Syntax

PropValue(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Example

PropValue(Volume)

The return value is 2.

RangeListContains

Description

Returns True if the specified list of ranges contains the specified value.

Chapter 11
Function Definitions

11-51

Syntax

RangeListContains(RangeList: String, Value: Integer, Delimiter:
String): Boolean

RangeList is a list of integer ranges to search, separated by the specified delimiter.
For example, 1-100, 201-300

Value is an integer value to search for in the list of ranges.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

Example

RangeListContains(PropValue(MyRangeList),1,[Comma])

If the property MyRangeList' has a value of 1-10, 101-10000, then the return value is
True, because 1 is contained in the specified range. However,
RangeListContains(PropValue(MyRangeList),11,[Comma]) returns False, because 11
is not contained in the specified range.

Note:

If you change MyRangeList to "1-5,6-10,101-1000", Data Relationship
Management replaces this value with "1-10,101-1000", because it verifies
RangeList and combines ranges with contiguous boundaries.

ReplacementAbbrev

Description

Returns the replacement (merge) node name for the current node if the node is
inactive and a merge node is specified.

Syntax

ReplacementAbbrev(): String

Chapter 11
Function Definitions

11-52

Example

ReplacementAbbrev()

ReplacePropValue

Description

Returns the specified property value for the current node's replacement (merge) node if the
node is inactive and a merge node is specified.

This function can be local in scope if a local property is passed in the parameters.

Syntax

ReplacePropValue(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Example

ReplacePropValue(Description)

ReplaceStr

Description

Returns the string with instances of the old pattern replaced by the new pattern.

Syntax

ReplaceStr(String: String,OldPattern: String,NewPattern: String,ReplaceAll:
Boolean): String

String is the string value on which to perform the function.

NewPattern is the string value with which to replace the found string.

OldPattern is the string value to search for.

ReplaceAll specifies whether to replace all occurrences of the search string with the replace
string. Valid values: 1, 0, T, F, t, or f.

Example

ReplaceStr(A1;A2;A3,A,B,T)

The return value is B1;B2;B3.

Chapter 11
Function Definitions

11-53

RTrim

Description

Returns the specified value with all spaces trimmed from the end of the string.

Syntax

RTrim(String: String): String

String is the string value on which to perform the function.

Example

RTrim("100 "))

The return value is 100.

SortList

Description

Returns the specified list in a sorted order.

Syntax

SortList(InputList: String,Delimiter: String,IgnoreCase:
Boolean,ItemType: String)

InputList specifies the list to use.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
square brackets around the name.

IgnoreCase specifies whether to ignore case when sorting. Default value is False.

ItemType indicates the target data type for result list items. Valid values: string,
integer, float date, time, and datetime. The default value is string. If nay item cannot be
converted to the specified type, the function returns a blank string.

Chapter 11
Function Definitions

11-54

StripPadChar

Description

Removes a specified pad character from the beginning of a specified string and returns the
modified value. If the original string contains fewer pad characters than are specified for
StripCount, the original string value is returned.

Syntax

StripPadChar(String: String, PadChar: String, StripCount: Integer): String

String is the string value on which to perform the function.

PadChar is the character to use for padding the string.

StripCount is an integer specifying the number of characters to remove from the string. Zero
removes all padded characters.

Example

StripPadChar(0003333,0,6)

The return value is 3333.

StrToBool

Description

Returns a Boolean value based on the specified string. If the string starts with a Y, T, or 1
(one) regardless of case or following characters, a True value is returned. If the string starts
with N, F, or 0 (zero) regardless of case or following characters, a False value is returned.

Syntax

StrToBool(String: String): Boolean

String is the string value on which to perform the function.

Example

StrToBool(0)

The return value is False.

StrToFloat

Description

Returns the float value of the specified string. Returns zero (0) for a space or blank string.

If the specified string does not represent a floating point number, an error is returned.

Chapter 11
Function Definitions

11-55

Syntax

StrToFloat(String: String): Float

String is the string value on which to perform the function.

Example

StrToFloat(11.101)

The return value is 11.101.

StrToInt

Description

Returns the integer value of the specified string. Returns zero (0) for a space or blank
string.

If the specified string does not represent an integer number, an error is returned.

Syntax

StrToInt(String: String): Integer

String is the string value on which to perform the function.

Example

StrToInt(101)

The return value is 101.

Stuff

Description

Returns the specified value with the specified characters replaced by the specified
string.

Syntax

Stuff(PropAbbrev: String, CharsToReplace: String, ReplacementChars:
String): String

PropAbbrev is the name of the property to use.

CharsToReplace is the string value to search for.

ReplacementChars is the string value with which to replace the found string.

Chapter 11
Function Definitions

11-56

Example

Stuff(Abbrev(),GEO,RIO)

If Abbrev is GEO101, then the return value is RIO101.

SubString

Description

Returns a portion of the specified string starting at the specified index and containing the
specified number of characters.

Syntax

SubString(String: String, Index: Integer, Count: Integer): String

SubString is the string value on which to perform the function.

Index is an integer representing the index position to start searching for the substring. Zero
indicates the first character position in the string.

Count is a number representing the number of characters to search, beginning from the
starting index.

Example

SubString(Colas,1,2)

The return value is Co.

Subtract

Description

Subtracts the second integer value from the first value and returns the result.

Syntax

Subtract(Minuend: Integer,Subtrahend: Integer): Integer

Minuend is an integer value

Subtrahend is an integer value.

Example

Subtract(10,2)

The return value is 8.

Chapter 11
Function Definitions

11-57

SubtractFloat

Description

Subtracts the second floating-point value from the first value and returns the result.

Syntax

SubtractFloat(Minuend,Subtrahend: Float): Float

Minuend is floating point value

Subtrahend is floating point value.

Example

SubtractFloat(8.09,3.76)

The return value is 4.33.

SumList

Description

Returns the sum of the items in a list, ignoring blank items. Returns a blank string if the
list contains an item not of the specified item type.

Syntax

SumList(InputList: String,Delimiter: String,ItemType: String):Integer

InputList specifies the list to use.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note:

You must use the name of the delimiter (not the character) and include
brackets around the name.

ItemType indicates the expected item data type for list members. Valid values: integer,
and float. The default value is float.

Chapter 11
Function Definitions

11-58

Example

SumList(1;2;3,;,Integer)

Return value is 6.

Trim

Description

Returns the specified value with all spaces trimmed from the beginning and end of the string.

Syntax

Trim(String: String): String

String is the string value on which to perform the function.

Example

Trim(" 101 ")

The return value is 101.

UpperCase

Description

Returns a string value converted to uppercase.

Syntax

UpperCase(String: String): String

String is the string value on which to perform the function.

Example

UpperCase(smaller)

The return value is SMALLER.

UserName

Description

Returns the user name for the current user.

Syntax

UserName(): String

Chapter 11
Function Definitions

11-59

Example

UserName()

Return value is the user name.

XOr

Description

Returns True if one and only one of the specified Boolean expressions evaluates to
True.

Syntax

XOr(Expression1:Boolean, Expression2: Boolean): Boolean

Example

XOr(NodeIsLeaf(),Equals(Integer,PropValue(Level),3))

If the node is either a leaf or is at level 3 in the hierarchy, the return value is True.

Function Groups
The following table groups functions by use.

Table 11-3 Function Groups

Function Group Functions

Aggregate • AvgList
• MaxList
• MinList
• SumList

Change Tracking • AddedBy
• AddedOn
• Changed
• ChangedBy
• ChangedOn
• Now

Comparison • Equals
• GreaterThan
• GreaterThanOrEqual
• InRange
• IsBlank
• IsRangeListSubset
• LessThan
• LessThanOrEqual
• RangeListContains

Chapter 11
Function Groups

11-60

Table 11-3 (Cont.) Function Groups

Function Group Functions

Conditional • And
• If
• Not
• Or
• XOr

Data Type • BoolToStr
• FloatToStr
• IntToStr
• IsDataType
• IsNumeric
• StrToBool
• StrToFloat
• StrToInt

List • ArrayCount
• ArrayIndex
• ArrayItem
• Intersection
• ListContains
• ListDistinct
• ListNodePropValues
• ListNodesWith
• SortList

Mathematical • Add
• AddFloat
• Divide
• DivideFloat
• Modulus
• Multiply
• MultiplyFloat
• Subtract
• SubtractFloat

Node • Abbrev
• ID
• InternalPrefix
• NodeExists
• NodeInHier
• NodeIsLeaf

Chapter 11
Function Groups

11-61

Table 11-3 (Cont.) Function Groups

Function Group Functions

Property • AncestorProp
• AscNodeProp
• DefaultProp
• Descr
• DualAncestorProp
• HierNodePropValue
• InheritedPropOrigin
• IsDefinedPropVal
• NodePropValue
• OrigPropValue
• ParentPropValue
• PropControllingHier
• PropDefaultValue
• PropMaxValue
• PropMinValue
• PropValue
• ReplacePropValue

Relationship • Children
• HasChildWith
• HasParentNode
• HasSiblingWith
• InvertedLevel
• IsBottomNode
• IsNodeAbove
• IsNodeBelow
• ListAncestors
• ListChildren
• ListDescendants
• ListRelatedNodesWith
• ListSiblings
• NextSibling
• NumChildWith
• NumDescendantsWith
• PreviousSibling
• ReplacementAbbrev

Chapter 11
Function Groups

11-62

Table 11-3 (Cont.) Function Groups

Function Group Functions

String Manipulation • Concat
• ConcatWithDelimiter
• Decode
• FlipList
• Format
• FormattedDate
• HasCharacters
• IsAlpha
• IsAlphaNumeric
• Length
• LowerCase
• LTrim
• PadChar
• PadList
• Pos
• ReplaceStr
• RTrim
• StripPadChar
• Stuff
• SubString
• Trim
• UpperCase

User • NodeAccessGroups
• PropertyCategories
• UserName

Chapter 11
Function Groups

11-63

12
Managing Dynamic Scripts

Dynamic scripting enables you to develop business logic for derived properties and
validations using JavaScript. Dynamic scripts provide a more robust and better performing
alternative to formulas, using a standard scripting language. Scripts allow for better
organization and less complexity of logic through the use of multiple statements, variables,
and in-line comments. Dynamic scripts also provide support for advanced concepts like
looping and regular expressions.

Execution Contexts
There are several contexts for executing a script: property context, validation context, and
request item property context. Each context defines different initial parameters and returns a
different type of result.

Derived Properties Using Scripts
The Script deriver class enables dynamic scripts to be used by derived properties. Derived
properties using scripts are available for versions, hierarchies, and nodes.

Table 12-1 Property Level Descriptions

Property Level Parameter Object

Version version VersionObject

Hierarchy hierarchy HierarchyObject

Global Node node NodeObject

Local Node node LocalNodeObject

For more information, see:

• Node Derived Properties

• Version and Hierarchy Properties

Node Derived Properties

In this context, you are passed a parameter called node. For global properties, the node is a
NodeObject. For local properties the node is a LocalNodeObject. A script for a derived
property must return a value and the value must be appropriate to the data type of the
property that is being evaluated or executed. If the value returned by a script does not match
the property data type, then it will be coerced: for example, a null value being returned for a
Boolean property will be treated as false.

12-1

Note:

Not all Oracle Data Relationship Management property data types have a
JavaScript representation. See Data Type Conversions.

Version and Hierarchy Properties

In this context, you use a version parameter referencing a VersionObject or a
hierarchy parameter referencing a HierObject. When defining your scripts, a version
may not be loaded when the script is evaluated or executed. If a version or hierarchy
derived property only accesses other version and hierarchy level properties, then the
property is calculated regardless of the version load status. If a version or hierarchy
derived property attempts to access node level information, then the version must be
loaded or the property calculation will produce an error value. For example, if a
version-level property attempts to get the list of orphans, that property will produce an
error value when the version is not loaded; after the version is loaded, that same
property will produce the correct value.

Validations Using Scripts
The Script validation class enables dynamic scripts to be used with validations. There
are several different validation levels and some have different parameters. Following
are the validation levels and parameters:

Table 12-2 Validation Levels and Parameters

Level Parameter Description

Any level validation Provides information about the
validation currently executing

Hierarchy hierarchy HierarchyObject for the hierarchy
being validated

GlobalNode node NodeObject for the global node
being validated

Node node LocalNodeObject for the node being
validated

Remove node NodeObject for the node being
validated

Move node LocalNodeObject for the node being
moved

Chapter 12
Execution Contexts

12-2

Table 12-2 (Cont.) Validation Levels and Parameters

Level Parameter Description

move An object that contains information
about the move:

OldParent––LocalNodeObject for the
original parent

NewParent––LocalNodeObject for
the destination parent

IsPost/IsPre––Indicates whether this
script is running just before the move
or just after the move has been
completed. The script will usually be
run twice, once before the move and
once after the move.

Values––During the pre-move
phase, simple key-value pairs can be
stored in this object (for example,
Values["key"] = "value"). During the
post-move phase, these values are
present, enabling you to store
information about the pre-move state
and compare it to the post-move
state. All values are converted to
String, Number, or Date objects.
Complex objects are not currently
supported.

Merge node The node being deleted or
inactivated

merge An object that contains information
about the merge:

Target––NodeObject for the target of
the merge

IsInactivate––True if this is an
inactivate operation

IsDelete––True if this is a delete
operation

Version version VersionObject for the version being
validated

Governance Requests Using Scripts
Dynamic scripts may be used with workflow tasks in a governance request. Scripts are run in
the context of a current request item and are used for calculating values to be used by the
item, such as the Name or Parent of the node being updated.

Table 12-3 Governance parameters

Parameter Description

requestitem Current RequestItemObject for the request being
calculated

Chapter 12
Execution Contexts

12-3

Enumeration Constants
Certain properties are numbers that correspond to named constants, making your
code easier to understand and maintain. For example, instead of using:

if(nodeProp.PropOrigin == 2) you can use if(nodeProp.PropOrigin ==
PropOrigin.Overridden)

Property Enumeration Constants

• DataType––Boolean, LeafNode, Date, Time, Float, Integer, Sort, Group, Node,
LimbNode, String, Hier, Version, ListGroup, MultiNode, AscNode, AscNodes,
AscGroup, Memo, FormatMemo, SortProp, Property, Query, StdQuery,
GlobalNode, NodeProps, RangeList, DateTime, Hyperlink, HierarchyGroup

• PropLevel––Node, Hier, Version

• PropOrigin––Default, Inherited, Overridden, InheritedHier, InheritedVer, Derived,
InheritedDomain, Unknown

• PropType––Invalid, System, Defined, Lookup, Derived, Stats, Validation,
Verification, LimbAccessGroup, LeafAccessGroup, UserSpecific, RWDerived,
SharedInfo

Validation Enumeration Constants

• ValidationLevel––Node, Hier, Version, GlobalNodes, Merge, Move, Remove

• ValidationType––None, RealTime, Batch, Both

Request Enumeration Constants

• WorkflowAction––AddLeaf, AddLimb, Update, Inactivate, Insert, Move, Remove,
Delete

• WorkflowStageType––Submit, Enrich, Approve, Commit

• WorkflowStatus––None, Draft, Submitted, Calculated, Validated, PushedBack,
Pending, Assigned, Claimed, Escalated, DeEscalated, Rejected, Committed

Note:

The WorkflowStatus enumeration is used to return the
RequestObject.Status current value for a request. However, some values
are used internally only. The valid values for RequestObject.Status are:
Draft, Submitted, Pending, Claimed, Escalated, Rejected, or Commited.

Supported JavaScript Data Types
Standard JavaScript data types are available, and Oracle Data Relationship
Management uses them wherever possible. For example, dates are represented using
the Date object. Functions are themselves objects, and a function invoked with new
creates an object whose prototype points to the function's constructor prototype just as
in any ECMA-compliant JavaScript environment.

Chapter 12
Enumeration Constants

12-4

Note:

JavaScript Document Object Model (DOM) objects are not supported in Data
Relationship Management scripts.

You must be familiar JavaScript syntax and built-in objects, including what methods are
available. Some of the available data types:

• Array––Includes length, pop, push, concat, join, reverse, slice, shift, sort, and so on

Note:

Due to changes in the JavaScript boxing of items by caching mechanisms, not
all Array functions will work as expected or as they did in previous releases. For
example, indexOf in JavaScript will compare objects based on memory
locations, not the string or text value of items. Therefore, other methodologies
should be considered when inspecting arrays. IndexOf() uses "===" comparison
in JavaScript and there is not a single definition of "==" that is available. You
can use JavaScript design patterns to implement your own specialIndexOf() to
provide a "=="-style comparison.

• Boolean––Represents True and False

• Date––Includes Date.parse(), month, day, year, and so on

• Error––Uses try/catch error handling and access error.message

• Function––Supports the standard call and apply functionality

• Math––Includes random, max, pow, round, sin, cos, floor, sqrt, log, and so on

• Number––All numbers in JavaScript are of the floating-point type number

• RegExp––You can use language support for Regular Expressions or access them
explicitly

• String––Includes concat, indexOf, lastIndexOf, substr, split, splice, search, replace,
toUpperCase, toLowerCase, and so on

Globally available functions like parseInt, parseFloat, isNaN, decodeURI, encodeURI are also
available.

Print Function

The print function allows you to output debug information while creating scripts. The results
are displayed in the Warnings section of the script editor. Although the print function produces
only output in a testing context, the engine must still construct the arguments; therefore,
comment out any print statements before saving a script for production use.

Format Function

The Format function provides a much richer string formatting mechanism than standard
JavaScript. The first parameter is a string that contains format specifiers surrounded with
curly braces. Escape braces by doubling them, for example "{{" becomes "{" in the output.
Format specifiers start at zero and increase incrementally. If you omit a specifier from a

Chapter 12
Supported JavaScript Data Types

12-5

sequence, the equivalent parameter to the Format function is ignored. For example,
"{1}" ignores the first value parameter to Format and uses the second.

There is one shortcut. You can call Format and pass a format specifier without braces
and pass only one argument. The result is equivalent to Format("{0:<specifier>",
<argument>)

The format specifiers work similarly to other languages like Java or C#. The syntax is
{<paramnum>} or {<paramnum>;<format>}, where paramnum is a positive whole
integer starting at zero and increasing sequentially. The format param depends on the
type of the object passed in as that parameter.

The format parameters generally return values appropriate to the user's locale; for
example, in the US "{0:0.00}" returns "1.23" while in Europe it returns "1,23").
Alternately, you can use the escaping support to explicitly override the locale and
output the same value for all users. For example, "#\,###\,##0" would format a number
using commas as thousands separators in all regions, regardless of culture settings.

Data Type Conversions
Not all Oracle Data Relationship Management property definition data types have
corresponding representations in JavaScript. For any that do not have a corresponding
representation, the StringValue and Value will be identical and you must ensure that
you understand how to parse the string value. If returning a value for a property of one
of these data types, you are also responsible for ensuring you return a proper string
representation of that data type. If the stored value does not have a valid conversion to
the property’s data type, then the value will be undefined.

List properties will return an Array with each element of the array containing objects of
the type appropriate to the data type. For example, a Date property marked List would
return an Array containing Date objects.

Lookup properties may not always return the data type expected when the lookup
target is invalid, the key is not found in the lookup table, or the value in the lookup
table is not valid for the data type. For example, if the value for a key-value pair is
"TEST," but the data type is Date, then the result will be Undefined.

Following are the Data Relationship Management data types with their corresponding
representation in JavaScript.

Table 12-4 Data Type Comparison

Property Definition Data Type JavaScript Data Type

AscGroup NodeObject Array

AscNode NodeObject

AscNodes NodeObject Array

Boolean Boolean

Date Date

DateTime DateTime

Float Number

FormatMemo String

GlobalNode NodeObject

Chapter 12
Supported JavaScript Data Types

12-6

Table 12-4 (Cont.) Data Type Comparison

Property Definition Data Type JavaScript Data Type

Group String Array

Hier HierObject

Hierarchy Group String (hierarchy group name)

Hyperlink String (representing the URL)

Integer Number

LeafNode LocalNodeObject

LimbNode LocalNodeObject

ListGroup String Array

Memo String

MultiNode LocalNodeObject array

Node LocalNodeObject

NodeProps PropDefObject array

Query String (query name)

Property PropDefObject

Sort Number

SortProp PropDefObject

StdQuery String (query name)

String String

Time String

Version String (version name)

When calling another JavaScript derived property (or a derived property of a different node),
because the value returned by that deriver is not converted to its string representation
immediately, you can pass complex objects between derivers and delay coercion until the
final result is returned by calling toString() on that complex object (except as noted for built-in
conversions such as from Arrays).

Formatting Numbers
Numbers can only be formatted with a single shortcut character such as "G", or a composite
of specifiers, such as "##0,000.0". If you attempt to use a shortcut character in a format
specifier larger than one character, it will be copied to the output unchanged (treated as a
literal character).

Run your production exports with the appropriate culture selected to ensure the output is
correctly formatted.

Table 12-5 Single Character Shortcut Numeric Formats

Format Description

D Whole number (with locale-aware negative sign
for negative numbers)

Chapter 12
Supported JavaScript Data Types

12-7

Table 12-5 (Cont.) Single Character Shortcut Numeric Formats

Format Description

D<precision> Whole number formatted to at least <precision>
digits, zero-padded if necessary. For example, 123
with "{0:D5}" will output 12300.

E Exponential (scientific) notation "1.234E+10"

F Floating point number "123.456" (with locale-
aware decimal separator and negative sign for
negative numbers)

F<precision> Floating point number rounded to <precision>
significant digits after the decimal

G General number format

N Generalized Numeric format "123,456.789" (with
locale-aware group/decimal separators and
negative sign for negative numbers)

N<precision> Generalized Numeric rounded to <precision>
digits after the decimal

P Percent (for 0.20146 outputs "20.14%" with locale-
aware group/decimal separators and negative sign
for negative numbers)

P<precision> Percent rounded to <precision> significant digits
(for 0.205 "{0:P0" outputs "21%")

X Hexadecimal (base-16) output "4D2"

Table 12-6 Numeric Format Specifiers

Format Description

0 Zero placeholder, outputs digit if present,
otherwise zero

Digit placeholder, outputs digit if present,
otherwise does not produce output

. Locale-specific decimal separator

, When placed between placeholders, outputs a
locale-specific group separator (for 123456789
"{0:#,#}" outputs "123,456,789"). When one or
more are placed immediately to the left of the
decimal point (or implicit decimal point) the
number is divided by 1000 for every comma
(for 123456789 "{0:#,##0,,}" outputs "1,235").

% Multiplies the number by 100 and outputs a
locale-specific percentage symbol at the given
location

E<sign>0 Exponential notation. At least one zero is
required, with the number of zeros specifying
the minimum digits in the exponent. <sign> is
optional and can be:

• + (always output sign +/- as required)
• - (output - sign only for negative numbers)

Chapter 12
Supported JavaScript Data Types

12-8

Table 12-6 (Cont.) Numeric Format Specifiers

Format Description

\<char> Escape character (<char> is treated as literal
output)

; Section separator. If present, allows definition
of different formats for positive numbers,
negative numbers, and zeros.

• One section "{0:#,#;}"––Identical to no
section

• Two sections "{0:#,#;-#,0}"––The first
section applies to positive numbers and
zero, the second section applies to
negative numbers

• Three sections "{0:#,#;-#,0;zero}"––The
first section applies to positive numbers,
the second section applies to negative
numbers (If empty, the first section is
used for negative numbers also), the third
section applies to zero

Any other character Copied to output unchanged

Formatting Dates
Dates can be formatted with a single shortcut character, such as: "G," or a composite of
specifiers, such as "HH:mm". If you want to use a single character as a regular specifier and
not a shortcut, prefix the string with %. For example: "%m" outputs the unpadded minute
instead of the Month+Day.

Table 12-7 Single Character Shortcut Date Formats

Format Description

t Short Time "4:05 PM"

T Long Time "4:05:07 PM"

d Short Date "3/9/2013"

D Long Date "Friday, March 09, 2013"

f Long Date + Short Time "Friday, March 09, 2013
4:05 PM"

F Long Date + Long Time "Friday, March 09, 2013
4:05:07 PM"

g Short Date + Short Time "3/9/2013 4:05 PM"

G Short Date + Long Time "3/9/2013 4:05:07 PM"
(default)

m Month + Day "March 09"

y Month + Year "March, 2013"

r RFC 1123 "Fri, 09 Mar 2013 16:05:07 GMT"

s Sortable Date/Time "2013-03-09T16:05:07"

Chapter 12
Supported JavaScript Data Types

12-9

Table 12-7 (Cont.) Single Character Shortcut Date Formats

Format Description

u Universal Sortable Date/Time "2013-03-09
16:05:07Z"

Table 12-8 Date Format Specifiers (more than one character)

Format Description
Examples are for 2013-04-05 04:07:09 PM
CST

yy Year "13"

yyyy Year "2013"

M Month "4"

MM Month "04"

MMM Month "Apr"

MMMM Month "April"

d Day "5"

dd Day "05"

ddd Day "Sun"

dddd Day "Sunday"

h 12-Hour "4"

hh 12-Hour "04"

H 24-Hour "16" (if 4 AM "4")

HH 24-Hour "16" (if 4 AM "04")

m Minute "7"

MM Minute "07"

s Seconds "9"

ss Seconds "09"

f Fractions of a second (Can be repeated 1-4
times for more precision)

F Fractions of a second without trailing zeros
(Can be repeated 1-4 times)

t AM or PM designator "P" (blank for 24-hour
only cultures)

tt AM or PM designator "PM" (blank for 24-hour
only cultures)

z GMT offset "-6"

zz GMT offset "-06"

zzz GMT offset "-06:00"

: Time separator (locale-specific)

/ Date separator (locale-specific)

Chapter 12
Supported JavaScript Data Types

12-10

Table 12-8 (Cont.) Date Format Specifiers (more than one character)

Format Description
Examples are for 2013-04-05 04:07:09 PM
CST

\<char> Escape character (<char> is treated as literal
output), for example: "{0:HH\h}" outputs "16h"

Any other character Copied to output unchanged

Data Relationship Management Objects
Following are the Oracle Data Relationship Management objects with methods and
properties described.

SysObject

One SysObject, called Sys, is automatically created. This object is available in all contexts,
and provides general functions as well as information about the Data Relationship
Management application. There are no properties for this object.

Table 12-9 SysObject Methods

Name Description

FormattedDate (value, formatString) Formats dates according to the Formula system
rules. Useful for backward compatibility to exactly
match old Formula properties.

• value must be a Date object or a valid
datetime string

• formatString must be a valid formatting string
(see the FormattedDate function)

GetNextID(key) Returns the next available integer ID for a given
string key value

GetPropDef(abbrev) Returns a PropDefObject for the given property
name. The name must be the fully qualified name.

GetRequestByID(int) Returns a workflow request by ID.

GetSysPrefValue(abbrev) Returns the value of the given system preference
(for example, HierNodeSeparator)

InRange(dataType, input, min, max, minExclusive,
maxExclusive)

Corresponds to the formula function InRange.
Required parameters are dataType, input, and
min.

IsNodeAbove(ancestor, child) Returns True if ancestor is above child in the
hierarchy. Returns False if parameters are not
LocalNodeObjects or are not in the same
hierarchy.

IsNodeBelow(descendant, parent) Returns True if descendant is below parent in the
hierarchy. Returns False if parameters are not
LocalNodeObjects or are not in the same
hierarchy.

Chapter 12
Data Relationship Management Objects

12-11

Table 12-9 (Cont.) SysObject Methods

Name Description

RunFormula(node, propDef, formulaString) Runs a Data Relationship Management formula
and returns the string results

• node is either a NodeObject or
LocalNodeObject. Your formula string must
not make references to local properties when
passing in a NodeObject, or an error will
result. When passing a LocalNodeObject, you
can reference all available global and local
properties.

• propDef––To be parsed or executed correctly,
some formula functions require a property
definition. When you use those functions, you
must supply a property definition. Generally,
the property definition characteristics (like
Level, Global vs Local, and Type) must
match, but it doesn't have to be the actual
property that the formulaString is for. They
can be unrelated. In most formulas, you can
pass null for this parameter. Syntax is
Sys.GetPropDef(abbrev). For example:

Sys.RunFormula(node,
Sys.GetPropDef("Custom.MyProp1"),
 "Concat(Prop value ',
PropValue(Custom.MyProp2),' ,is,
,valid)");

• formulaString is a legacy Data Relationship
Management Formula; white space is
considered a literal part of the Formula so it
must be removed if necessary.

Note: This is not considered a best practice
and should be used only when necessary to
achieve an exact match with legacy behavior.
Performance is decreased when using this
method.

PropDefObject

There are no methods for this object.

Table 12-10 PropDefObject Properties

Name Description

Abbrev The property definition name (including fully
qualified namespace)

Cascade True if the property values are inherited

ColumnWidth The default export column width

DataType A DataType enumeration value, for example
DataType.String (see Enumeration Constants)

Chapter 12
Data Relationship Management Objects

12-12

Table 12-10 (Cont.) PropDefObject Properties

Name Description

Descr Description

DefaultValue Default Value of the property definition. The
type depends on the data type of the property
definition.

EditorLabel Label

Global True if property is a Global Node property

Hidden True if property is hidden from the property
grid

ID ID

Level A PropLevel enumeration value, for example,
PropLevel.Node (see Enumeration Constants)

List True if prop lets user select from a list of
values

ListValues Array of values from which a user can select

LookupValues Lookup key-value pairs for a lookup property.
Use the Key and Value properties of the
objects in this array.

MaxValue Maximum value

MinValue Minimum value

Namespace Namespace of property definition

PropType A PropType enumeration value, for example,
PropType.Defined (see Enumeration
Constants)

PropClass Deriver class (Formula or Script)

ReadOnly True if property is read-only (such as a Core
stats property)

VersionObject

Table 12-11 VersionObject Properties

Name Description

Abbrev Name

Descr Description

HierCount Number of hierarchies

ID ID

NodeCount Number of nodes

Chapter 12
Data Relationship Management Objects

12-13

Table 12-12 VersionObject Methods

Name Description

GetHierarchies() Gets an array of all the hierarchies in the
version that are available to the current user

GetGlobalNodes() Gets an array of all the global nodes
(NodeObjects) in the version

GetOrphans() Gets an array of all the orphans
(NodeObjects) in the version

HierByAbbrev(abbrev) Gets a HierarchyObject by name

HierByID(id) Gets a HierarchyObject by ID

NodeByAbbrev(abbrev) Gets a NodeObject by name

NodeByID(id) Gets a NodeObject by ID

NodeExists(abbrev) Returns True if a global node exists with the
given name

Prop(abbrev) Gets the NodePropObject for the given
property of the version

PropValue(abbrev) Gets the value of the given property of the
version. The return type depends on the data
type of the property definition.

HierarchyObject

Table 12-13 HierarchyObject Properties

Name Description

Abbrev Name

Descr Description

HierarchyUrl Hierarchy URL

ID ID

NodeCount Number of nodes in hierarchy

SharedNodesEnabled True if shared nodes are enabled

TopNode The LocalNodeObject top node

Version The VersionObject

VersionAbbrev Name of version

VersionID ID of version

Table 12-14 HierarchyObject Methods

Name Description

NodeByAbbrev(abbrev) Gets a NodeObject by name

NodeByID(id) Gets a NodeObject by ID

NodeExists(abbrev) Returns True if a local node with the given
name exists

Chapter 12
Data Relationship Management Objects

12-14

Table 12-14 (Cont.) HierarchyObject Methods

Name Description

Prop(abbrev) Gets the NodePropObject for the given
property of the version

PropValue(abbrev) Gets the value of the given property of the
version. The return type depends on the data
type of the property definition.

Common Node Properties and Methods

Some properties and methods are common to both NodeObject and LocalNodeObject
although these two objects do not share a prototype chain.

In all cases where the value can differ because of the global or local context, the correct
value is returned for that context. For example, when calling GetChildren() on a NodeObject,
the resulting Array will contain NodeObjects. When making the same call on a
LocalNodeObject, the resulting Array will contain LocalNodeObjects.

Table 12-15 Common Properties for NodeObject and LocalNodeObject

Name Description

Abbrev Core.Abbrev

AddedBy Core.AddedBy

AddedOn Core.AddedOn

Changed Core.Changed

ChangedBy Core.ChangedBy

ChangedOn Core.ChangedOn

ChildNodeCount Number of child nodes

Descr Core.Descr

DomainAbbrev Core.DomainAbbrev

DomainNodeAbbrev Core.DomainNodeAbbrev

ID Core.ID

Inactive Core.Inactive

IsPrimary True if the node is the primary for a shared node;
False if node is not shared or not the primary

IsShared True if the node is a shared node

Leaf Core.Leaf

NodeApproved Core.NodeApproved

Version The node’s owner VersionObject

VersionAbbrev The node’s version name

VersionID The node’s version ID

Chapter 12
Data Relationship Management Objects

12-15

Table 12-16 Common Methods for NodeObject and LocalNodeObject

Name Description

GetChildren(sorted) Gets an Array of the direct children of this
node, optionally in sorted order. Default for
sorted is False.

GetDescendants(inclusive, sorted) Gets an Array of the descendants of this node,
optionally including this node and/or in sorted
order. Default for inclusive is True. Default for
sorted is False.

NodeByAbbrev(abbrev) Gets a NodeObject by name

NodeByID(id) Gets a NodeObject by ID

NodeExists(abbrev) Returns True if a global node with the given
name exists

Prop(abbrev) Gets the NodePropObject for the given
property of the version

PropValue(abbrev) Gets the value of the given property of the
version. The return type depends on the data
type of the property definition.

LocalNodeObject

Oracle recommends that you use the various xxxWith functions to locate other nodes
in the hierarchy. For example ChildrenWith executes much faster than calling
GetChildren() and iterating the results. Similarly, GetReferenceInHier is much faster
and easier to use than calling GetReferences() and iterating the results.

Table 12-17 LocalNodeObject Properties

Name Description

GlobalNode Global NodeObject for the current node

Hier HierarchyObject for the hierarchy the node is
in

HierAbbrev Core.HierAbbrev

HierID Core.HierID

Level Number representing the node’s level in the
hierarchy

MissingPrimary True if the primary node is not found

NodeUrl Node URL

Parent LocalNodeObject for the parent node of this
node. Null is returned for the top node of a
hierarchy.

ParentNodeAbbrev Name of parent node

Chapter 12
Data Relationship Management Objects

12-16

Table 12-17 (Cont.) LocalNodeObject Properties

Name Description

Primary The primary node for this shared node. If the
primary is not in this hierarchy, returns the
primary in the first hierarchy in which it occurs.
If you need the list of hierarchies in which the
primary appears, call GetReferences() on the
returned primary node. If a shared node or
primary cannot be found, returns null.

PrimaryNotInHier True if the primary node exists but not in this
hierarchy

Table 12-18 LocalNodeObject Methods

Name Description

AncestorsWith(func, maxResults, searchFromTop,
inclusive)

Searches the ancestor chain for nodes that satisfy
the given function. This is the fastest way to locate
ancestors. Returns an Array of LocalNodeObject
results.

• Func must be a function that takes a single
node argument and returns True if the node
should be included in the results or False if it
fails the test.

• maxResults is optional and defaults to 1. Use
0 for no limit (all nodes that pass the
condition).

• searchFromTop is optional and defaults to
False. Use True to start at the top of the
hierarchy.

• inclusive is optional and defaults to False.
Use True to include the current node in the
potential matches (it must still pass the test).

ChildrenWith(func, maxResults) Searches the node’s child list for nodes that
satisfy the given function. This is the fastest way
to find children. Returns an Array of
LocalNodeObject results.

• func must be a function that takes a single
node argument and returns True if the node
should be included in the results or False if it
fails the test.

• maxResults is optional and defaults to 1. Use
0 for no limit (all children that pass the
condition).

Chapter 12
Data Relationship Management Objects

12-17

Table 12-18 (Cont.) LocalNodeObject Methods

Name Description

DescendantsWith(func, maxResults, inclusive,
depthFirst)

Searches the descendant chain for nodes that
satisfy the given function. This is the fastest way
to find descendants Returns an Array of
LocalNodeObject results.

• func must be a function that takes a single
node argument and returns True if the node
should be included in the results or False if it
fails the test.

• maxResults is optional and defaults to 1. Use
0 for no limit (all nodes that pass the
condition).

• inclusive is optional and defaults to False.
Use True to include the current node in the
potential matches (it must still pass the test).

• depthFirst is optional and defaults to True. If
True, each branch is examined all the way to
its tips before backing up the tree and moving
to the next branch. If False, all the children of
a node are examined first, then each child's
nodes are examined, and so on. If you have a
good idea of where the node may be in the
tree, picking the correct value here can
greatly speed up the search.

GetAncestorEnumerator() Gets a NodeEnumeratorObject that enumerates
the ancestor nodes

GetAncestors(inclusive) Gets an Array of LocalNodeObject ancestors

GetChildEnumerator(sorted) Gets a NodeEnumeratorObject that enumerates
the child nodes. If sorted is True, then the children
will be in sorted order.

GetDescendantEnumerator() Gets a NodeEnumeratorObject that enumerates
the descendant nodes

GetImplicitly SharedDescendants(inclusive) Gets the child nodes of the primary node this
shared node is related to

GetInvertedLevel() Equivalent to the formula InvertedLevel function

GetReferences() Gets an Array of LocalNodeObjects that are
references for this node (all hierarchies this node
appears in)

GetReferenceInHier(hierAbbrev) Gets the reference to this node in the given
hierarchy. If the hierarchy is not accessible or this
node does not exist in that hierarchy, then the
result will be null.

NextSibling() Gets the next sibling of this node in the sort order

PreviousSibling() Gets the previous sibling of this node in the sort
order

Chapter 12
Data Relationship Management Objects

12-18

Table 12-18 (Cont.) LocalNodeObject Methods

Name Description

SiblingsWith(func, maxResults, inclusive) Searches the node’s siblings for nodes that satisfy
the given function. Returns an Array of
LocalNodeObject results.

• func must be a function that takes a single
node argument and returns True if the node
should be included in the results or False if it
fails the test.

• maxResults is optional and defaults to 1. Use
0 for no limit (all ancestors that pass the
condition).

• inclusive is optional and defaults to False.
Use True to include the current node in the
potential matches (it must still pass the test).

NodePropObject

Table 12-19 NodePropObject Properties

Name Description

Abbrev The name of the property definition

ControllingHierarchy The HierarchyObject for the property definition's
controlling hierarchy in this version. If the property
is not a global node property, does not have a
controlling hierarchy, or the controlling hierarchy is
not found, then the return value will be null.

Locked True if the value is locked

Origin A PropOrigin enumeration value, for example,
PropOrigin.Overridden (see Enumeration
Constants)

Owner The object that this value is associated with
(VersionObject, HierarchyObject, NodeObject, or
LocalNodeObject)

PropType A PropType enumeration value, for example,
PropType.Defined (see Enumeration Constants)

StringValue The raw string value of this property. In the case
of Derived or RWDerived properties this may be
the property definition default value or the
overridden value.

Value The interpreted value of this property (for
example, for DataType.Float and
DataType.Integer, this value will be a Number
object). Not all DataTypes necessarily have a non-
string representation.

Chapter 12
Data Relationship Management Objects

12-19

Table 12-20 NodePropObject Methods

Name Description

GetPropDef() Gets the PropDefObject for the node prop

RangeListObject

The RangeListObject represents a RangeList of values and can be used to inspect a
RangeList property without having to manually parse strings. A new RangeListObject
can also be constructed to return from a derived property of the appropriate data type.

Constructor Example

var x = new RangeListObject();

var y = new RangeListObject("1-10,20-25");

var z = new RangeListObject([{start:1, end:10},{start:20, end:25}]);

Table 12-21 RangeListObject Constructor Parameters

Parameters Optional Description

ranges True Range values for initialization. This
parameter is optional. Two formats
are accepted:

• Array––An array where each
element of the array is an object
that has a start and end
property indicating the range.
Any object in the array that does
not have these properties is
ignored.

• String––A comma-separated list
of string entries. Each entry
contains the start and end
values separated by a dash (-)
or equals (=) symbol.

Table 12-22 RangeListObject Properties

Name Description

Ranges An Array of objects. Each object has two
properties:

• start––The start of the range entry
• end––The end of the range entry
This property is read-only. To modify the range
use the methods below.

Chapter 12
Data Relationship Management Objects

12-20

Table 12-23 RangeListObject Methods

Name Description

AddRange(start, end) Adds a new range to the range list. This may
expand an existing range entry or create a new
one. To add a single number to the list, use it for
both the start and end parameters. Both
parameters will be coerced to integers if
necessary.

Contains(value) Returns True if the value is in the range list,
otherwise False.

value will be coerced to an integer if necessary.

IsSupersetOf(range) Returns True if the current RangeListObject is a
superset of the given RangeListObject. Passing
another type of object is an error.

RemoveRange(start, end) Removes a range from the list. This removal may
split an existing range entry into two or remove an
entry entirely. To remove a single number from the
list use it for both the start and end parameters.
Both parameters will be coerced to integers if
necessary.

NodeEnumeratorObject

A NodeEnumeratorObject is a more efficient way to operate on a list of nodes. Instead of
building the entire list all at once, the enumerator grabs only one node at a time as needed. If
you find what you are looking for halfway through the list, you can abandon the enumerator.
Properties and methods that return an Array of node objects must build the entire array
immediately, whether you access the items at the end of the array or not.

The enumerator starts with a null Current value. You must call MoveNext() to advance the
enumerator to the first node in the list.

Note:

A good practice is to use the With methods like AncestorsWith or SiblingsWith
methods when you need to find only a few nodes out of all possible matches and
need to iterate the list only one time. If you need to cycle over the list of ancestor
nodes multiple times or you know you will need most or all of the ancestors, then an
enumerator may be faster.

Table 12-24 NodeEnumeratorObject Methods

Name Description

GetCurrent() The current node (either a NodeObject or
LocalNodeObject depending on the context).

MoveNext() Advances the enumerator to the next node.
Returns False if there are no more nodes to
enumerate.

Chapter 12
Data Relationship Management Objects

12-21

ValidationObject

Table 12-25 ValidationObject Properties

Name Description

Abbrev Name of the validation (including fully-qualified
namespace)

Descr Description

EditorLabel Label

Cascade True if validation assignment is inherited

ValidationClass Name of validation class

ValidationLevel A ValidationLevel enumeration value, for
example ValidationLevel.Node (see
Enumeration Constants).

ValidationType A ValidationType enumeration value, for
example ValidationType.Batch (see
Enumeration Constants).

Validation Scripts

• The validation script returns a JavaScript object that contains a property named
"success". If the script returns a Boolean value or a non-Boolean object (for
example, Number or String), then its value is converted to Boolean using standard
JavaScript conversion rules and then assigned to the success property. The script
can optionally return a JavaScript array of values in a property named parameters.
The array values are substituted into the failure message of the validation using
string substitution.

• You can return a Boolean value (True or False). If you return True, the validation
succeeds; otherwise it fails. If you do not return a value, it is considered the same
as returning False.

• If you return a non-Boolean object, such as Number or String, it is converted to
Boolean then returned. Standard JavaScript conversion applies. Numbers equal to
zero, empty strings, and null or undefined objects are interpreted as false. All other
values are true.

• If you return a complex object that contains a property named "success," that
success property is converted to Boolean and used as the return value of the
validation. You can optionally return an Array of values in a property named
"parameters." This is a JavaScript Array object, that needs to be populated and
then used in the parametrized Failure Message. The parameters are substituted
into the failure message of the validation using string substitution. You should
return the correct number of values corresponding to the placeholders in the
failure message. If you return extra parameters they are ignored. If you do not
return enough parameters, the missing parameters are considered empty strings.

RequestObject

The RequestObject represents a governance request, including request header, and
items. The Items property represents a list of the request items added to the request.
A key attribute is the Version property, the target version for the request including its
hierarchies and nodes, all accessible via the relevant script objects.

Chapter 12
Data Relationship Management Objects

12-22

Table 12-26 RequestObject Properties

Name Description

ID ID

Title Title of request

Version Target version for request

ModelName Workflow model for request

StageName Current stage of request

StageType WorkflowStageType enumeration value, for
example, WorkflowStageType.Submit (see
Enumeration Constants)

Status WorkflowStatus enumeration value, for example,
WorkflowStatus.Submitted (see Enumeration
Constants)

Items List of RequestItemObject added to the request

RequestItemObject

The RequestItemObject represents an individual request item for a governance request,
including information about the current task and the node being updated, along with the
details (property values) for the item. The Request property provides access to the full
request object for the item, including header properties and other items.

The NodeNamePendingInRequest method is used for identifying potential node name
conflicts with other in-flight requests for the target version, returning True if an item on
another pending request contains an Add item for the same node name.

Table 12-27 RequestItemObject Properties

Name Description

ItemID Item ID

RequestID Request ID

Request Request object to which the item belongs

NodeName Core.Abbrev of node being updated

Description Core.Descr of node being updated

HierarchyName Hierarchy of node being updated

ParentName Core.Parent of node being updated

TaskName Workflow task name of request item

TaskAction WorkflowAction enumeration value, for example,
WorkflowAction.AddLimb (see Enumeration
Constants)

TaskDomain Domain name (if any) of workflow task

ItemDetails List of RequestItemDetailObject for request item

Chapter 12
Data Relationship Management Objects

12-23

Table 12-28 RequestItemObject Methods

Name Description

NodeNamePendingInRequest(name) Accepts a parameter of a specific node name
to test. Returns True if an in-flight request
other than the current one for the version
contains an AddLimb/Leaf item with the
specified name.

RequestItemDetailObject

The RequestItemDetailObject represents an individual request item detail for a
governance request, corresponding to a single property value.

Table 12-29 RequestItemDetailObject Properties

Name Description

CalcValue Calculated value of property

HasCalcValue Returns True if the value is calculated

Modified Returns True if the value was modified in the
request

PropertyName Name of property

Value Value of property

Execution Environment
The Oracle Data Relationship Management engine is a multithreaded, multimachine
environment and scripts may execute simultaneously on multiple threads and across
machines. While you can create values and store them in the global scope, you should
not rely on this behavior because when your script executes on another thread that
global value will not be present. Similarly, global values are not updated across Data
Relationship Management engine instances or machines. In addition, becauseData
Relationship Management supports multiple live versions, if you rely on calculating a
value for a node and storing that value in the global scope, you may produce incorrect
values if a different script accesses the property for another node.

Note:

For the same reason that you should not store variables in the global scope,
you should also avoid modifying the built-in Data Relationship Management
object prototypes, because you cannot be sure that your modifications have
been made across all engine instances and threads.

Setting Script Timeouts

To prevent excessive engine locks, scripts that take too long to execute without
returning a value are terminated based on a time-out setting. The script time-out can
be set for each property definition and validation.

Chapter 12
Execution Environment

12-24

The time-out is per execution context, so if an export is exporting the script property of 100
nodes and the time-out for the property is set to 30 seconds, then the export may take up to
50 minutes, because each node can take 30 seconds to evaluate its property. However if a
script property calls another script property, then it does not increase the time-out. For
example, if PropA has a 10 second time-out, PropB has a 20 second time-out, and PropA
calls PropB which then starts a long-running calculation, when 10 seconds have elapsed, the
evaluation of PropA is terminated because its original time-out was exceeded.

Preventing Infinite Loops

A script that results in an infinite loop (also known as a stack overflow) is a serious error
which can cause a server process to terminate unexpectedly. Although Data Relationship
Management attempts to prevent such scripts from executing, you should exercise caution
when writing self-referencing, or recursive, scripts. Always test new scripts in a development
environment before deploying to production.

A simplified example of a script that will loop infinitely is shown below. Because the script
includes a call to itself, but never terminates execution, the engine executing the function will
eventually terminate due to lack of resources. Lastly, because the script never calls the Data
Relationship Management engine, there is no chance to catch the overflow and stop the
script.

function badFunc(a) { badFunc(a); }

badFunc("oops");

Performance Considerations

For the best performance, avoid referencing formula-derived properties from a script, and
vice versa. Scripts in general offer the best opportunity for performance tuning optimization,
compared to formulas, due to considerations such as just-in-time (JIT) compilation for native
hardware, including 64-bit processors. Scripts are also tuned by the JIT compiler for actual
execution characteristics and will run faster over time.

Creating Dynamic Scripts
Dynamic scripts are created in the script editor which is available on the Parameters tab for
derived property definitions and validations.

The script editor is also available when calculating a Name or Parent during a governance
workflow task.

Note:

When calculating parent names, any use of special characters must follow the
standard JavaScript rules for escaping special characters. For more information,
see "Naming Nodes" in Oracle Data Relationship Management User's Guide .

To create a dynamic script:

1. Enter the script in the text area.

Chapter 12
Creating Dynamic Scripts

12-25

Note:

To insert a property, place your cursor in the script and click Insert
Property. A list of properties is displayed. Select a property and click
OK.

2. Make selections from the following options:

• Script Timeout––The number of seconds until the script times out.

• To evaluate the script with a selected node, click and select a node. The
node's current property values are used in the script. Click Evaluate. The
result is displayed at the bottom of the script designer.

3. To test the script, click Evaluate.

Chapter 12
Creating Dynamic Scripts

12-26

13
Managing Node Types

Node types enable hierarchy nodes to be viewed and managed differently based on their
relationships and attribution. Nodes of a specific node type share the same characteristics:

• Properties

• Validations

• Glyph

A hierarchy can have nodes of different node types and the same node can be of different
node types in different hierarchies. Examples of node type usage include GL accounts, cost
centers, consolidation entities, product groups, forecast points, and so on.

To categorize nodes by node type:

1. Determine the node types that are necessary to categorize nodes within a hierarchy.

2. Identify properties that are relevant (or not relevant) to each node type.

3. Identify validations that are relevant (or not relevant) to each node type.

4. Optionally, assign a glyph to each node type.

Defining Node Types
To define a node type:

1. On the Home page, select Administer.

2. From New, select Node Type.

3. Enter a name and description for the node type.

4. Optional: Select a glyph to use for the node type

5. On the Properties tab, select properties from the Available list to associate with the node
type. Use the arrows to move properties to the Selected list.

6. On the Validations tab, select validations from the Available list to associate with the
node type. Use the arrows to move validations to the Selected list.

7. Click Save.

Editing Node Types
To edit a node type:

1. On the Home page, select Administer.

2. Under Metadata, expand Node Types.

3. Select a node type and click .

4. Do any of the following:

13-1

• Edit the description.

• Change the glyph to use for the node type

• Add or remove properties

• Add or remove validations

5. Click Save.

Deleting Node Types
To delete a node type:

1. On the Home page, select Administer.

2. Under Metadata, expand Node Types.

3. Select a node type and click .

4. Click Delete this Item to confirm the deletion.

Working with Node Glyphs
Glyphs are images that are associated to node types and are displayed as the icon for
a node in the Oracle Data Relationship Management user interface. You can create
new glyphs and modify existing glyphs. You can also delete glyphs that you no longer
want to use. Glyphs must be provided in a PNG format.

To add a node glyph:

1. On the Home page, select Administer.

2. From New, select Glyph.

3. Enter a name for the glyph and add a description.

4. Click Browse and select the PNG file.

5. Click Upload.

6. Click Save.

To modify a node glyph:

1. On the Home page, select Administer.

2. Under Metadata, expand Glyphs.

3. Select a glyph and click .

4. Click Browse a select the different PNG file.

5. Click Upload.

6. Click Save.

To delete a glyph:

1. On the Home page, select Administer.

2. Under Metadata, expand Glyphs.

3. Select a glyph and click .

Chapter 13
Deleting Node Types

13-2

4. Click Delete this Item to confirm the deletion.

Chapter 13
Working with Node Glyphs

13-3

14
Working with System Preferences

System Preferences enable administrative users to edit settings that control the behavior of
Oracle Data Relationship Management.

System Preferences
The following table describes Oracle Data Relationship Management system preferences.

Table 14-1 System Preferences

System Preference Type Description

AllowAsOf Boolean True forces capture of core actions
and creates a baseline version to
allow the creation of As-Of versions.
If this preference is set to False, As-
Of versions cannot be created.

Default value is True.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

AllowNextIDGeneration Boolean True enables automatic Next ID
generation.

Default value is False.

AllowNextIDKeyCreation Role List of roles allowed to create a new
key in NextID feature.

Default values are Interactive User,
Data Creator, Data Manager.

AllowPru Boolean True enables the pruning option
which allows a non-admin user to
remove a node that has children. If
False, a non-admin user cannot
remove a node that has children.

Default value is True.

AllowRelaxedMove Boolean When a node is moved, True allows
the new parent to take precedence
over any conflicting parental
relationships for the node in other
hierarchies.

Default value is False.

AllwSpac Boolean True allows spaces in node names.

Default is True.

14-1

Table 14-1 (Cont.) System Preferences

System Preference Type Description

AnalyticsNodeCountUpdateTime String Specifies a time of day, in local time
using 24-hour format, when the node
counts for versions and hierarchies
for all loaded, normal versions are to
be updated. For example, 2:15 PM
would be entered as "1415". The
default time is 3:00 AM.

ApprovalGroups String Comma-delimited list of approval
groups.

ApprovalGroupTrackProperties String Delimited list of approval properties
tracked by groups.

ApprovalPropertyByApprovalGroup String Global boolean approval property by
approval group.

AuthMethod String User authentication method:

• Internal––Users are only
authenticated within Data
Relationship Management.

• CSS (External)––Users are only
authenticated externally.
Requires access to Shared
Services.

• Mixed––Users are authenticated
internally or externally based on
a setting for each individual
user.

Default value is Internal.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

CopyLcl Boolean True copies local values when a
node is copied.

Default value is True.

DefaultCurrentVersion Version Default current version. This
preference can be set using the
Make Default option for versions.

DefaultPreviousVersion Version Default previous version. This
preference can be set using the
Make Default option for versions.

DefaultPropCopyMode String Default property copy mode.

Valid values are Overridden,
Selected, and ForceAll.

Default value is Overridden.

EnablePropCopyOptions Role List of roles allowed access to the
property copy options.

Default values are Interactive User,
Data Creator, Data Manager.

Chapter 14
System Preferences

14-2

Table 14-1 (Cont.) System Preferences

System Preference Type Description

EnforceListProps Boolean True allows updates to a List
Property with values from the pre-
defined list only.

Default value is True.

FiltrChr String Set of characters for the Replace
function on the Output Option screen
of exports.

FindByProperties Property List of properties available to search
with when browsing a hierarchy.

The properties displayed are those
to which a user has access. Also, the
properties displayed may not be
applicable to all hierarchies.

Note: The ADMIN user cannot be
added to custom Property
Categories in Data Relationship
Management. As a consequence, if
a property listed in the
FindByProperties system preference
is not added to a Property Category
that ADMIN is already a member of,
then ADMIN will not be able to
perform a Find with that property in
the Hierarchy Browse window.

FindWildCardAppend Boolean True appends an asterisk (*) to the
Find criteria when Exact Match is not
selected.

Default value is False.

FindWildCardPrepend Boolean True prepends an asterisk (*) to the
Find criteria when Exact Match is not
selected.

Default value is False.

GlobalPropLocalOverride Property List of properties to exclude from
local checks on global properties.
These are used when
GlobalPropLocalSecurity is enabled.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

Chapter 14
System Preferences

14-3

Table 14-1 (Cont.) System Preferences

System Preference Type Description

GlobalPropLocalSecurity Boolean True enforces local security on global
properties. Changes to global
properties are checked against local
security (node access levels) for the
user for all hierarchies where the
node exists.

Default value is False.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

HierSep String Hierarchy and node separator
character.

Default value is tilde (~).

IdleTime Integer Number of minutes to session time
out on the application server.

Default value is 60.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

Inactivate Role List of user roles allowed to
inactivate nodes.

Default value is all roles.

InactiveChanges Role List of roles allowed to change
inactive nodes.

Default values are Data Manager,
Application Administrator, Access
Manager.

InvDescr String List of invalid characters for node
description property.

InvName String List of invalid characters for node
name.

Note: Characters in this list cannot
be used as the delimiter with shared
nodes.

Chapter 14
System Preferences

14-4

Table 14-1 (Cont.) System Preferences

System Preference Type Description

JobResultsMaxSize Integer For jobs that are run using the Client
File option, maximum size (in bytes)
of results saved to the Job History.
Job results exceeding this size are
not saved to the Job History. The
default value is 10,000,000 bytes. A
negative value indicates that all
results, regardless of size, are saved
to the Job History.

Caution: Disabling
JobResultsMaxSize by setting to a
negative value is strongly
discouraged because this can
significantly impact performance for
large jobs.

Note: JobResultsMaxSize does not
apply to Exports run using the
Server File or Database Table
options.

JobResultsRetentionAge Integer Number of days to retain archived
job result detail in history. A value of
zero indicates that job results are
never purged from history.

Note: Job results are purged to
manage database size. Disabling the
purge may result in significant
database growth over time.

LeafEdit Role List of roles allowed to change the
Leaf property.

Default values are Data Manager,
Data Creator, Application
Administrator, Access Manager.

LockoutInactivity Integer Maximum number of days of
inactivity before a user is locked out.

Default value is 30; zero indicates no
maximum.

LockoutInvalidLogins Integer Maximum number of invalid logins
before a user is locked out.

Default value is 6; zero indicates no
maximum.

Chapter 14
System Preferences

14-5

Table 14-1 (Cont.) System Preferences

System Preference Type Description

LossLevel String Loss level to capture.

Valid values are:

• Defined
• All
Default value is Defined. Selecting
All can significantly impact system
performance for removed or deleted
nodes with many property values.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

LRUPropertyCacheSize Integer Maximum size for the LRU property
cache. The LRU Property cache
stores calculated values that may be
accessed multiple times. Generally,
the default for this preference should
be used and should not be changed.

MaxDescr Integer Maximum number of characters for
node description. Valid values are 12
to 255.

Default value is 80.

MaxLeaf Integer Maximum number of characters for
the leaf name. Valid values are 3 to
20.

Default value is 255.

MaxLimb Integer Maximum number of characters for
the limb name. Valid values are 3 to
20.

Default value is 255.

NodeApprovedSecurity Role List of roles allowed to view and
update. the NodeApproved system
property for nodes

PasswordDuration Integer Number of days that a user
password is valid. Valid values are 1
to 9999.

Default value is 30.

PasswordMaxLength Integer Maximum number of characters for
user password. Valid values are 0 to
255. Zero indicates no minimum.

Default value is zero.

PasswordMinLength Integer Minimum number of characters for
user password. Valid values are 0 to
9999. Zero indicates no minimum.

Default value is 6.

Chapter 14
System Preferences

14-6

Table 14-1 (Cont.) System Preferences

System Preference Type Description

PasswordPolicyEnabled Boolean True requires the password to
contain three of the following
elements:

• Uppercase letters
• Lowercase letters
• Numbers
• Special characters
Default value is True.

PasswordWarningPeriod Integer Positive or negative number to
indicate how many days before (-) or
after (+) the password expiration
date to warn users to change their
password before no longer allowing
them to log in. Valid values are -30 to
30.

Default value is 1.

RenameLeaf Role List of roles allowed to rename leaf
nodes.

Default values are Data Manager,
Application Administrator, Access
Manager.

RenameLimb Role List of roles allowed to rename limb
nodes.

Default value is all roles.

ReqMerge Boolean True requires merge for inactivates
or deletes when UseMerge is
enabled.

Default value is False.

SharedNodeDelimiter String Specifies the delimiter between the
node name and the shared node
suffix.

The SharedNodeDelimiter character
should not be used anywhere that
would affect node names.

Default value is colon (:).

Caution: Different characters must
be used when setting up the
SharedNodeDelimiter and
SharedNodeSequenceSeparator
system preferences. For example, if
the SharedNodeDelimiter is a colon,
the SharedNodeSequenceSeparator
character cannot be a colon.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

Chapter 14
System Preferences

14-7

Table 14-1 (Cont.) System Preferences

System Preference Type Description

SharedNodeIdentifier String Specifies the identifier to be used
after the shared node delimiter.

Default value is Shared.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

SharedNodeMaintenanceEnabled Boolean True enables shared nodes.

Default value is False.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

SharedNodeNamingType String Specifies the alternate name for
shared nodes. Valid values are:
Suffix or Prefix.

Default is Suffix

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

SharedNodeSequenceLength Integer Specifies the length of the
uniqueness key when using numeric
sequence type.

Default value is 3.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

SharedNodeSequenceSeparator String Specifies the separator character to
be placed after the shared node
identifier.

Default value is dash (-).

Caution: Different characters must
be used when setting up the
SharedNodeDelimiter and
SharedNodeSequenceSeparator
system preferences. For example, if
the SharedNodeDelimiter is a colon,
the SharedNodeSequenceSeparator
character cannot be a colon.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

Chapter 14
System Preferences

14-8

Table 14-1 (Cont.) System Preferences

System Preference Type Description

SharedNodeSequenceType String Specifies the type of uniqueness key.
Valid values are Numeric or
Ancestors.

Default is Numeric.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

SortLimbsFirst Boolean True controls the sorting of limb
nodes first followed by leaf nodes. If
False, limb and leaf nodes can be
sorted together. This preference
affects hierarchy exports, display,
and node lists.

Default value is True.

TopNodeParentString String Used in Import and Export to denote
parent value for a top node.

Default value is None.

TransactionLevels String List of transaction levels to capture.
Turning on As-Of or specifying result
or loss actions forces core actions to
be captured.

Valid values are:

• Logged Action
• Core Action
• Result Action
• Loss Action
Note: Transactions at the Admin
level are always logged regardless of
this system preference.

Default values are Logged Action,
Core Action, Result Action, Loss
Action.

Note: A change to this preference
requires a restart of the Data
Relationship Management
application.

UpName Boolean True uses uppercase always for the
node name

Default value is False

UseChangeApproval Boolean True enables change approval.

Default value is False.

Chapter 14
System Preferences

14-9

Table 14-1 (Cont.) System Preferences

System Preference Type Description

UseMerge Boolean True enables use of Merge
methodology for inactivated and
deleted nodes.

Note: If ReqMerge is True, then the
system requires a merge node to be
specified. If ReqMerge is False, then
a merge node is optional unless the
node approved property is True. The
node approved property is set to
True when a version is finalized or
when it is specifically set to True by a
user with appropriate access.

Default value is False.

ValSec Boolean True checks node access group
security to determine whether a user
can run batch validations for a node.

Default value is False.

WarnHL Integer Maximum number of nodes to be
displayed for lists such as
Descendants, Children, Query
Results, and so on. Minimum value
is 1000. If set to a value less than
1000, then 1000 nodes are
displayed.

Default value is 5000.

For more information, see:

• Setting Transaction History Logging Levels

• Setting Up Change Approval

Setting Transaction History Logging Levels
You must have application administrator privileges to set Oracle Data Relationship
Management Transaction History logging levels. Set the TransactionLevels system
preference to specify the action types to capture in the transaction history.

Local Security for Global Properties

You use two system preferences — GlobalPropLocalSecurity and
GlobalPropLocalOverride — to control local security on global properties.

To set Transaction History logging levels:

1. In the Data Relationship Management Web client, select Administer.

2. Under Metadata, expand the System Preferences and edit the
TransactionLevels preference.

3. In TransactionLevels, select transaction level types:

Chapter 14
System Preferences

14-10

• Logged Action records basic logging information, such as users logging in and
logging out.

• Core Action records actions that change the version, hierarchy, or node information,
such as Add Node, Change Property, or Move Node.

• Result Action records actions that result from core actions. For example, if the "clear
all below" core action is performed, then properties are cleared from individual nodes.
Clearing properties from the individual nodes is a result action.

• Loss Action records loss of data due to a core action. For example, when a node is
deleted, the defined properties for that node are deleted, which is a loss action. Loss
actions are controlled by the LossLevel system preference.

Note:

If the Loss Action is specified, or if the AllowAsOf system preference is
turned on, then Core Actions are tracked, even if not set in the
TransactionLevels system preference.

4. Set the LossLevel preference:

• Defined––Only values that are specifically set at the node are tracked when the node
is deleted.

• All Items––Derived, default, and inherited values are tracked in the LossAction.

5. Stop and restart the application, or restart the Data Relationship Management service.

Setting Up Change Approval
The change approval system in Oracle Data Relationship Management enables you to define
approval groups and tie them to an approval flag that is triggered by a set of properties or
special actions. This allows normal users to make changes and approvers to run a query and
then set the approval flag as needed.

The systems preferences that determine the behavior of the change approval in Data
Relationship Management are:

• UseChangeApproval––Set to True to turns on use of change approval.

• ApprovalGroups––A comma-delimited list of the names for the approval groups used in
the system.

• ApprovalGroupTrackProperties––If UseChangeApproval is True, defines properties that
are tracked that will trigger a change of the approval flag to False for this group. The
format is xxx[a,b,c],yyy[d,e,f]... where xxx and yyy are sales groups defined in the
ApprovalGroups preference and a,b,c,d,e,f are property names. For example,
Sales[Custom.SalesGroup,{NodeMove}],Treasury[Custom.AccountDescription,
{NodeAdd}].

Special actions that can be included in the property list are:

– {NodeAdd}––Triggers the Approval Needed mechanism on an added node.

– {NodeInactivate}––Triggers the Approval Needed mechanism on an inactivated node.

– {NodeReactivate}––Triggers the Approval Needed mechanism on a reactivated node.

– {NodeInsert}––Triggers the Approval Needed mechanism on an inserted node.

Chapter 14
System Preferences

14-11

– {NodeRemove}––Triggers the Approval Needed mechanism on a removed
node.

– {NodeMove}––Triggers the Approval Needed mechanism on a moved node.

• ApprovalPropertyByApprovalGroup––If UseChangeApproval is True, defines the
global, boolean property to set to False if any of the trigger properties are changed
or the special actions are used. The format is xxx:bbbb,yyy:cccc…where xxx and
yyy are sales groups defined in the ApprovalGroups preference and bbbb and
cccc are the names for the global, boolean properties to be used to store the
approval flag for the groups, for example,
Sales:Custom.SalesApprovedFlag,Treasury:Custom.TreasuryApprovedFlag.

Configuring System Preferences
To configure System Preferences:

1. On the Home page, select Administer.

2. Under Metadata, expand System Preferences.

3. Select a system preference and click .

4. Modify the value and click Save.

Chapter 14
Configuring System Preferences

14-12

15
Working with External Connections

Application administrators can define and configure common connections to external file
systems, databases, and Web services. Imports, exports and books can share file and
database connections to minimize maintenance of connectivity information. Database and
Web service connections can be configured with external operations to lookup data in an
external system or commit data changes to an external system. External connections enable
the application server to directly access, read, or write data to these resources.

Note:

You must set up external resources before defining external connections.

External Operations

External operations can be defined for Web service or database external connections.
External operations are configured as either lookup or commit. Lookup operations read data
from an external system. Commit operations write data to an external system. Database and
Web service connections can support multiple operations. For more information, see External
Commits and External Lookups.

Defining External Connections
To define an external connection:

1. On the Home page, select Administer.

2. From New, select External Connection.

3. Enter a name and description.

4. From Object Access, select Standard, System or a custom group.

5. Select a connection type: Server File, FTP, Database, or Web Service.

6. Do one of the following:

• If you selected Server File, enter a UNC path to the server and click .

15-1

Note:

The Windows user account used by the Oracle Data Relationship
Management application server is automatically used for Server File
connections. The default Windows user account used for the Oracle
DRM Server Processes Windows service is Local System
account. The account used for the service must be able to access
the UNC path for proper Server File connectivity. Additionally, the
UNC path must have the appropriate permissions for the service
account to read and write files.

• If you selected FTP, enter the following information:

– Host Server

– User ID

– User Password

– Click .

• If you selected Database:

– Select the Data Access Provider: Oracle, SqlServer, or OleDb.

* Enter a Database Connection Timeout value

* Enter a Database Command Timeout value

– Enter the Connection String.

– Enter your user ID and password

Note:

To establish a writable external connection, the administrator
must have SELECT, INSERT, and DELETE access. A user who
has only SELECT access can establish a read-only external
connection to tables and views.

– Click .

– On the Allowed Objects tab, to filter a large list, do any of the following:

* Select or enter a schema/owner, using wildcards if needed.

* Enter the name of an object, using wildcards if needed.

* Select Include Views to include views where the privilege is at least
SELECT. Note that views are always read only.

* Select Include Read-Only Tables to include tables where the
privilege is at least SELECT but does not include both INSERT and
DELETE.

* Click and then select objects from the Available list. Use the
arrows to move objects to the Selected list.

Chapter 15
Defining External Connections

15-2

* Optional: To use the Quick Add section, enter the schema/owner and name
of the object that you want to add and click the arrow to move it to the
Selected list.

– To add an external operation, click the External Operations tab, click Add, and
then do the following:

* Enter Name for the operation. The name must be unique for the parent
External Connection.

* Enter Description text describing the purpose of the operation.

* Select the Operation Type––Lookup or Commit. This selection is used to
filter the list of operations available for selection with the External Lookup and
External Commit features.

* Select the Database Operation Type––Statement or Stored Procedure.

* If you selected Statement, click Add, and then do the following:

* Enter parameters to be passed in when calling the operation:

* Parameter Name––Name of the parameter. No white space is
allowed.

* Parameter Description––Description of the parameter

* Test Value––Value used for testing the operation. The value is
stored for reuse.

* In the SQL Statement field, enter a single SQL statement to be
executed. You can use substitution parameters in the SQL statement
to pass runtime values. Substitution parameter formatting is
<%ParamKey%>, where <% and %> denote a substitution
parameter and ParamKey is the name of the parameter to be used
for substitution. For example, <%TopNode%>.

* Click to test the operation. The Rollback option rollbacks any
changes made to the database by the script. Rollback is selected by
default. When an operation is tested, the parameter’s test values are
inserted into the statement and executed. Click the Result tab to
view the results of the test.

* If you selected Stored Procedure:

* Enter the Stored Procedure Name to execute, may include package
name as prefix.

* Enter Name for the operation. The name must be unique for the
parent External Connection.

* Enter Description text describing the purpose of the operation.

* View the list of parameters for the stored procedure. Select True for
Results Param to return the parameter in Data Relationship
Management operation result. Only one parameter may be selected
as a result parameter. Result parameters are only returned for
Lookup operations. For Commit operations, success or failure only is
indicated.

* Test Value––Value used for testing the operation. The value is
stored for reuse.

Chapter 15
Defining External Connections

15-3

* Click to test the operation. The Rollback option rollbacks
any changes made to the database by the stored procedure.
Rollback is selected by default. When an operation is tested,
the parameter’s test values are inserted into the stored
procedure and executed. Click the Result tab to view the
results of the test.

• If you selected Web Service:

– Select the Protocol: HTTP or HTTPS.

– Enter the Hostname

– Enter the Port––If port 0 is specified, standard ports 80 and 443 are used
for HTTP and HTTPS respectively

– Select the Authentication Type––If set to Basic, then User ID and
Password can be saved.

– Enter User ID and Password.

– To add an external operation, click Add and then do the following:

* Enter Name for the operation. The name must be unique for the
parent External Connection.

* Enter Description text describing the purpose of the operation.

* Select the Operation Type––Lookup or Commit. This selection is
used to filter the list of operations available for selection with the
External Lookup and External Commit features.

* On the Request tab, click Add, and then enter parameters to be
passed in when calling the operation:

* Parameter Name––Name of the parameter. No white space is
allowed.

* Parameter Description––Description of the parameter

* Test Value––Value used for testing the operation. The value is
stored for reuse.

* From HTTP Action select GET, POST, PUT, or DELETE.

Note:

Only POST and PUT allow sending HTTP Body content.

* Enter the HTTP URI for the Web service message.

* Enter the raw content of the HTTP Header.

* Enter the text content of the HTTP Body.

* Response tab––Displays the full outgoing and incoming messages for
the Web service operation. Parameters used in the outgoing message
will have their test values inserted into the request. The HTTP body of
the incoming message returned by the Web service is expected to be
in XML or JSON format. For external lookup operations, the incoming
message needs to be converted to a tabular format (rows and

Chapter 15
Defining External Connections

15-4

columns) for use with external lookup properties. To handle this conversion,
XPath expressions can be used. The List Identifier Expression parameter
identifies the elements in the incoming message which are the rows of the
result set. The Result Columns identify the attributes of the row elements
which are displayed as columns in the result set.

To preview the results of the List Identifier Expression and Result Columns
configurations, click the Preview tab. The results are displayed in a data grid.

You can use substitution parameters in the URI, HTTP Header, and HTTP Body
to pass runtime values to the external operation. Substitution parameter
formatting is <%ParamKey%>, where <% and %> denote a substitution
parameter and ParamKey is the name of the parameter to be used for
substitution. For example, <%TopNode%>.

To test the configuration, click . The HTTP Request is built and sent to the
endpoint. The user-interface automatically switches to the Response tab and
displays the full outgoing message and incoming response. Parameters used in
the outgoing message will have their test values inserted into the request.

7. Click to validate the selected items to verify that they are accessible at the
appropriate level through the connection user name and password.

8. Click to save the external connection.

Editing External Connections
To edit an external connection:

1. On the Home page, select Administer.

2. Under Metadata, expand External Connections.

3. Select an external connection and click .

4. Make changes as required.

5. Click to save the external connection.

Deleting External Connections
When you delete an external connection, all import and export profiles using the connection
are affected.

To delete an external connections:

1. From the Home page, select Administer.

2. Under Metadata, expand External Connections.

3. Select an external connection and click .

4. Select Delete this Item to confirm the deletion.

Chapter 15
Editing External Connections

15-5

16
Configuring Governance Workflows

Governance workflows are formalized processes used to control the entry, approval,
validation, and commitment of changes to nodes, relationships, and property values.

Application administrators define workflow tasks and workflow models to govern change
requests submitted by business users and remediation requests submitted by data stewards.

It is recommended that you read "Governance Workflows" in the Oracle Data Relationship
Management User's Guide for additional information on governance workflow concepts.

Managing Workflow Tasks
A workflow task is a single set of changes performed by a user for a local node within the
context of a request. Request items in requests are controlled by workflow tasks.

A workflow task consists of an action type, instructions for the user, properties to be viewed
or edited, and validations. The action type for a workflow task specifies the basic type of
action being performed, such as adding, moving, or updating nodes. Each action type defines
rules regarding the selection of nodes and parents, application of property updates, and the
actions to perform when the request is validated and committed.

Note:

The following actions are not supported in workflow requests:

• Merging nodes

• Annulling nodes

• Reactivating nodes

• Inserting orphan nodes

• Adding domain nodes where the domain is different from the parent

Task Properties
Workflow task properties can be configured to control which properties are displayed for
request items, whether they are editable, and if values are required. Editable properties may
be configured as required. Default properties for an action type may not be removed from the
task.

Task and Property Instructions
You can add instructions on the request page to help guide users through the creation,
enrichment, and approval of a request item. Instructions can be defined for workflow tasks
and their properties. Task instructions are displayed for the originating task of a request item

16-1

when an item is viewed in a Submit, Enrich, or Commit stage. Task instructions for an
Update workflow task assigned to an Approve or Enrich stage are displayed instead of
the originating task instructions. Task property instructions can be displayed for
individual request item properties.

Hyperlinks can be included in task and property instructions. URLs can be inserted
directly into the instructions field or the URL can use the syntax
[url=http_URL]URL_Title[/url] where http_URL specifies the hyperlink text and
URL_Title specifies the text displayed to the user. For example, this example:
[url=http://support.oracle.com]Oracle Support[/url] would render in the property grid as
Oracle Support.

Task Validations
Task validations are optional, node-level validations which must be successfully
executed for request items before a request can be submitted or approved for a
particular workflow stage. Validations configured to run in batch mode are available for
selection as task validations. Task validations can be associated with task properties in
order to link the validation messages with specific properties which may need to be
corrected.

Calculated Name and Parent Properties
The Name and Parent properties used in workflow tasks identify the node and
hierarchy location for which changes are being made. The values of these properties
are often manually defined by a user or loaded from a source file. The Calculate Name
and Calculate Parent options available for workflow tasks can be used to calculate the
values of these properties using a dynamic script instead of having to define or load
the values explicitly.

The Calculate Name option is available for workflow tasks using the Add Leaf or Add
Limb action types. The Calculate Parent option is available for those tasks as well as
Insert and Move tasks. The calculation logic of the script(s) may access the following
data sources:

• NextID function

• Properties of the version for the request

• Hierarchies and their properties in the version

• Nodes and their properties

• Hierarchy relationships between nodes

• Properties of the request

• Request items and their properties

• Request item tasks and their action type

Calculation of the Name and Parent properties takes place when a governance
request is calculated in the stage where a request item is added using a workflow task
with these options enabled. The values may be recalculated in the originating stage for
a request item or in a later stage which has been configured to recalculate these
properties.

Chapter 16
Managing Workflow Tasks

16-2

Note:

If a workflow model has been set up to allow Recalculated Task Properties and the
calculated Name or Parent is manually overridden, then the Name or Parent will not
be calculated again during that stage or any subsequent stage.

External Commits
External commits can be optionally configured on workflow tasks to immediately synchronize
approved changes in a governance request to an external target system when the request is
committed. For example, an external operation can run an SQL statement that inserts,
updates, or deletes data, or it can invoke a SOAP or REST Web service to create, update, or
delete data in an external system. When you use external commits in Oracle Data
Relationship Governance, external data updates can be initiated after a Data Relationship
Governance request is successfully committed. The external data source is accessed using
external operations defined for database and Web service connections.

After a Data Relationship Governance request has been successfully committed, external
operations for each item are performed as configured by each item’s task.

• Operations are performed synchronously in the order defined, by item and task.

• Operations are performed in the context of the local node for the request item, allowing
output parameters to be based on properties which may not be selected for the task.

• If an error occurs during an external operation, the error message is added to the request
item as an External Commit Failure.

• Request activity is updated with success or failure after each external operation.

• If a Commit Status property is defined for the external operation, then that property will be
updated to True if the operation completed with no errors, and updated to False if the
operation completed with errors.

• If any external operations did not complete successfully, then Data Managers and
Commit stage participants are notified.

Creating Workflow Tasks
To create a workflow task:

1. On the Home page, select Administer.

2. From New, select Workflow Task.

3. Enter a name for the workflow task.

4. From Action Type, select the type of action for the task:

• Add Leaf––Adds a leaf node with global and local properties

• Add Limb––Adds a limb node with global and local properties

• Delete––Updates a node’s global/local properties and deletes the node

• Inactivate–Updates a node’s global and local properties and inactivates the node

• Insert––Inserts a node into a hierarchy and updates its global/local properties

• Move––Moves a node to a different parent and updates its global/local properties

Chapter 16
Managing Workflow Tasks

16-3

• Remove––Updates a node’s global/local properties and removes the node

• Update––Updates global and local properties for a node

Note:

If users intend to upload items to a request from a file, the following
properties are required to be defined in the task (and the files to be
uploaded by the users):

– For Add actions: Name, Parent, Description

– For Insert actions: Name, Parent

– For Move actions: Name, Parent

• Reactivate -- Updates a node’s global and local properties and re-activates an
inactive node.

5. Optional: Do any of these tasks:

• Enter text for users in the Instructions field.

URLs can be inserted directly into the instructions field or the URL can use the
syntax [url=http_URL]URL_Title[/url] where http_URL specifies the
hyperlink text and URL_Title specifies the text displayed to the user. For
example, this example: [url=http://support.oracle.com]Oracle Support[/url]
would render in the property grid as Oracle Support.

• Select a Hierarchy Group on which to filter.

Note:

The hierarchy group selected for the workflow task is used with the
hierarchy group property configured for the workflow model to filter
hierarchies available for selection for the task.

• Select a Domain for the node for Add Limb or Add Leaf tasks.

Note:

The domain configured for a workflow task must match a domain
used by the target version for request items using the task. If the
domain for the task is not used by the version, the request item node
cannot be added to the version.

Note:

If a domain is assigned, then the Description property for Add Limb
and Add Leaf tasks is required.

Chapter 16
Managing Workflow Tasks

16-4

6. On the Properties tab, select properties from the Available list to assign to the task. Use
the arrows to move properties to the Selected list. Use the up and down arrows to order
the properties.

7. Click for a property to update these options:

• Editable––Select to allow the property to be edited.

• Required––Select to make the property required.

• Calculate––For Add Limb or Add Leaf tasks, select to calculate the Name value from
a dynamic script. If selected, then the Editable option for the Name property is False
and disabled. When you select this option, the Calculate Name tab becomes
available and then you can enter the script for calculating the Name value.

To calculate the Parent value from a dynamic script for Add Limb, Add Leaf, Move,

and Insert tasks, click next to a parent node and then select Calculate. If
selected, then the Editable option for the Parent property is False and disabled.
When you select this option, the Calculate Parent tab becomes available and then
you can enter the script for calculating the Parent value. For information on writing
dynamic scripts, see Managing Dynamic Scripts.

• Custom Label––Optional: Enter an alternate label for the property. This label
displays in the property label column on item details.

• Property Instructions––Optional: Enter specific instructions for the property. The
property does not have to be editable to add instructions. Instructions display above
the property value in the item details.

URLs can be inserted directly into the instructions field or the URL can use the syntax
[url=http_URL]URL_Title[/url] where http_URL specifies the hyperlink text and
URL_Title specifies the text displayed to the user. For example, this example:
[url=http://support.oracle.com]Oracle Support[/url] would render in the property grid
as Oracle Support.

Click to save changes or to cancel changes.

8. On the Validations tab, select validations from the Available list to assign to the task.
Use the arrows to move validations to the Selected list.

9. Click associate validations with specific task properties. If the selected validation fails,
the validation message will be displayed for the specified properties.

Click to save changes or to cancel changes.

10. If you selected to calculate the name or parent, select the Calculate Name or Calculate
Parent tab and then do the following:

• Enter a dynamic script to calculate the name or parent. For information on writing
dynamic scripts, see Creating Dynamic Scripts.

• Enter the following information:

– Request ID––Specifies the request ID to use when evaluating the script.

– Request Item Number––Specifies the request item number to use when
evaluating the script.

– Script Timeout––The number of seconds until the script times out.

• Optional: Select Hidden to specify the hidden property for the name or parent that
you are calculating. If selected, then the calculated name or parent is not displayed in
the request item details.

Chapter 16
Managing Workflow Tasks

16-5

• Click Evaluate. The results are displayed at the bottom of the script designer.

11. Optional: Select the External Commit tab, click Add, and then configure the
following settings:

• External connection––Select the external connection

• Operation––Select the external operation to perform

Note:

The operation must have been defined as a Commit type operation
in the connection.

• For each external operation parameter configure:

– Parameter source type––Select Literal or Property

– Source––If Literal was selected for source type, then enter a literal value
in the Param Source column. When the external operation is called, the
literal value is passed in for the current parameters. If Property was
selected for source type, then select a property to provide the parameter
value for the external operation. When the External Commit is executed,
the parameter value comes from the selected property on the current node
or request item.

• Commit Status property––Select a Boolean property to indicate if the node
had any external commit errors. This property is set for the node in the target
version for the request. In the event of external commit failure, this property
can be used to identify changes in the version which were not committed
successfully to the external system.

12. Click to save the workflow task.

Editing Workflow Tasks
The list of properties and validations for a workflow task can be edited after the task
has been created. The action type for a workflow task cannot be modified after the
task is saved.

Request item properties for existing requests will be affected when task properties are
added, removed, changed from editable to read-only, or reordered for a workflow task.
Task properties which are removed will no longer be displayed for request items using
the task. Property values defined for request items using task properties changed from
editable to read-only will be discarded.

To edit a workflow task:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Tasks.

3. Select a task, and then click .

4. On the Properties and Validations tabs, make changes to property and
validations selections.

5. Click .

Chapter 16
Managing Workflow Tasks

16-6

Copying Workflow Tasks
You can create a workflow task by copying an existing task. The action type, properties, and
validations are copied and can be edited before saving.

To copy a workflow task:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Tasks.

3. Right-click the task that you want to copy and select Copy.

4. Enter a new name for the task.

5. Make any other changes to the task and then click to save the workflow task.

Deleting Workflow Tasks
A workflow task may be deleted if it is not assigned to any model which is assigned to a
change request. If a task is assigned to a model that cannot be deleted, then the task cannot
be deleted.

To delete a workflow task:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Tasks.

3. Select a workflow task, and then click .

4. Click Delete this Workflow Task to confirm the deletion.

Managing Workflow Models
A workflow model defines a set of change management tasks of defined types that can be
included together in a single request, based on that model. The model defines the set of
approvals and enrichment steps required before the changes can be committed to a version.

Workflow Stages
Workflow stages are defined for each workflow model and cannot be shared across workflow
models.

Stage Types

When a stage is assigned to a workflow model, the stage type attribute defines the type of
participation for users in that stage of the workflow.

Chapter 16
Managing Workflow Models

16-7

Table 16-1 Workflow Stage Types

Workflow Stage Type Description Action Types

Submit The Submit stage is used to define
the initial request items to be
included in a request. Multiple
workflow tasks may be associated
with this stage type. At least one
request item must be added to a
request during the Submit stage.

AddLeaf or Add Limb tasks can be
optionally configured with dependent
workflow tasks. The system adds a
request item for the original workflow
task as well as an additional request
item for each dependent task.

A primary task cannot also be a
dependent task. The primary and
dependent tasks are considered a
related group when you are
calculating the name of the add item
on the primary task. If you delete a
primary task while the name
calculation is still pending, non-Add
dependent tasks are also deleted.

Note: Each request has only one
Submit stage. You cannot define
workflow stage criteria for this stage.

• Add Limb
• Add Leaf
• Update
• Inactivate
• Insert
• Move
• Remove
• Delete

Enrich The Enrich stage is used to update
request items that were added in the
Submit stage or add request items.
You can define workflow stage
criteria for this stage.

An Enrich stage has a single
workflow task associated with it. A
typical Enrich stage uses a workflow
task with an Update action for the
existing request items. However,
some Enrich stages may require that
additional line items be created, for
example:

• The insertion of a single node
into multiple hierarchies

• Update the local properties of a
single node in several
hierarchies

This stage occurs between the
Submit and Commit stages.

Note: Any number of Enrich stages
may be defined for a workflow
model.

• Update (existing request items)
• Insert (add new items)
• Move (add new items)
• All action types available for the

Submit stage

Chapter 16
Managing Workflow Models

16-8

Table 16-1 (Cont.) Workflow Stage Types

Workflow Stage Type Description Action Types

Approve The Approve stage is used to view
and approve all request items that
were added in the Submit stage or
added or updated during an Enrich
stage. Users cannot add or edit
request items during an Approve
stage. You can define workflow stage
criteria for this stage.

An Approve stage uses a single
workflow task to view properties and
run validations for request items
while the request is in the stage.
Update tasks are available for use in
Approve stages in a read-only mode.
To update properties of request
items in an intermediate stage, use
an Enrich stage type instead.

This stage occurs between the
Submit and Commit stages.

Note: Any number of approval
stages may be defined for a workflow
model.

Update (existing request items)

Commit The Commit stage is used to provide
a final approval of the request to
trigger the commit of the request
items in a request to a target
versions. A committing user must
approve all request items in a
request. You can define workflow
stage criteria for this stage but a
request cannot be split at this stage.

A Commit stage does not have a
workflow task associated with it.
Instead, the commit stage displays
the superset of properties and runs
the superset of validations available
for the request items for previous
Submit and Enrich stages. Users in
the Commit stage can make updates
to any editable properties displayed
for request items to allow for final
adjustments.

This is the final workflow stage.

Note: Each request has only one
Commit stage.

N/A

Stage Conditions

Stage conditions can be used to alter the workflow path of a particular request based on
specified criteria evaluated for the items in the request. You set up a condition for the stage
and select what action should be taken if the condition is met, for example whether a request

Chapter 16
Managing Workflow Models

16-9

can enter the stage or if some request items are split off into a separate request. A
workflow stage condition can be evaluated based on these criteria:

• Property Criteria––Use property query operators and literal values to evaluate as
stage criteria for the stage.

• Selected Validations––Select one or more validations to run as stage criteria for
the stage. You can select this option for an Approve, Enrich, or Commit stage.

• Task Validations––Failures of validations assigned to the workflow tasks. When
selected, validations assigned to the task are also run as stage criteria for the
stage. You can select this option for an Approve or Enrich stage. This option is not
available if the task assigned to the stage does not have any validations assigned
to it.

If any of the request items meet the stage condition for a workflow stage, then one of
these actions can be taken:

• Enter Stage––For Approve, Enrich, or Commit stages, the request is assigned to
users in the stage. The request enters the stage and workflow processing
continues for that stage.

• Split Request Items––For Approve or Enrich stages, request items that meet the
stage condition are moved into a separate, submitted request using the same
workflow model. The new request enters the workflow stage and is assigned to
users in the stage. Items not meeting the stage condition remain in the original
request and the stage is skipped for the original request. If all request items meet
stage criteria, the request is not split and the Split stage is entered.

If the request items do not meet the stage condition for a workflow stage, the stage is
skipped and the request moves to the next stage in the workflow model.

Approval Methods

You select which users must approve a stage in a request:

• Any Group––Any user from an assigned node access group may approve the
request in order to advance it to the next workflow stage. The node access group
must be assigned to the hierarchy with access to the current stage type or greater.
If none of the assigned access groups to the stage have proper data access to the
request items in the request, the stage may be skipped as long as required values
are provided and validations pass for all request items.

• All Groups––At least one user from all assigned node access groups must
approve the request before it advances to the next stage. If none of the assigned
access groups to the stage have proper data access to the request items in the
request, the request is escalated to Data Managers for resolution.

Reapproval

If a request is pushed back to a previous stage and the request items are modified
while pushed back, the changes to the request may require reapproval by users who
have already provided their initial approval for the original request. This option
determines whether changes made in each stage while in pushback mode are
required to be reapproved by other users. Select one of the following options:

• Current––Changes to the request in this stage must be reapproved for the current
stage only. After approval, the request is assigned to the user who previously
pushed back the request.

Chapter 16
Managing Workflow Models

16-10

• All––Changes to the request in this stage must be reapproved for subsequent stages.

Separation of Duties

Workflow stages can be optionally configured to require a separate approving user who has
not submitted or approved for any other stage in the request. When the Separation of Duties
option is enabled, a user who has submitted or approved for another workflow stage may not
claim the request in the stage where the option is enabled. Note the following exceptions:

• The submitter may claim a request pushed back to the Submit stage.

• Prior approvers for the stage may claim a request pushed back to an Approve or Enrich
stage.

• Data Manager role users may claim any request assigned to them regardless of prior
approval.

Notifications

Notifications include both Web client alerts and e-mail notifications. You can set up if and
when alerts and notifications are sent to workflow users for a workflow stage. Notifications
are filtered to specific users based on the Notify setting for the stage and the type of workflow
event that triggered the notification.

Note:

Users do not receive notifications for actions they perform.

Select from these Notify options for each stage:

• None––No users are notified of actions performed for this workflow stage.

• Assignees––Users who belong to any workflow node access group currently assigned to
the request are notified when Assign, Approve, Commit, or Reject actions occur.

Assignees are only notified if they are members of a workflow access group assigned to
the stage with a Notify setting of either Assignees or Assignees and Participants.

• Participants

– When Commit or Reject actions occur, users who have submitted or claimed the
request are notified.

– When Approve or Promote actions occur, users who have submitted the request are
notified.

Participants are only notified if they are members of a workflow node access group
assigned to the stage with a Notify setting of either Participants or Assignees and
Participants.

• Assignees and Participants––Assignees and participants are notified.

The following table lists actions that trigger notifications and the recipients of the notifications
based on the Notify setting of each stage.

Chapter 16
Managing Workflow Models

16-11

Table 16-2 Workflow Alerts

Workflow
Action

Notifications Sent To

Assignees Submitter Participants Notify Users

Assign X

Approve X X X

Promote X X

Escalate X X

Reject X X X

Commit X X X

Note:

Notify Users are users who are members of a workflow node access group
assigned to a stage with only Notify access to request items. They are only
notified if the Notify setting is either Assignees or Assignees and
Participants. If the Notify option is None or Participants, then these users are
not notified

Dependent Workflow Tasks

Dependent workflow tasks can be used to automatically perform a workflow task in a
governance request when another task is being performed. For example, when a node
is being added, the node can also be inserted into other hierarchies in order to ensure
synchronization across all hierarchies when the request is committed. Dependent
tasks can be configured for primary workflow tasks using an Add Leaf and Add Limb
action type.

When a request item is added to a request, the selected task for the item is the
primary task. If the primary task is configured with dependent tasks, additional request
items will be automatically added to the request for each dependent task.

Model Filters
You can restrict the versions, hierarchies, and node types that users can view and
select for a particular type of request.

• Version Variable––Limits the selection of a version for request items in a request
of a particular workflow model.

• Hierarchy Group Property––Limits the hierarchies from which nodes can be
selected for request items in a request for a particular workflow model.

• Hierarchy Group––Required if a Hierarchy Group Property is specified.

• Node Types––Limits the nodes that can be added as request items to a request of
a particular workflow model.

Chapter 16
Managing Workflow Models

16-12

Request and Claim Duration
The workflow model for a request may be configured with a request or claim duration interval
to control automatic handling of the request by a governance workflow based on an
estimated amount of time expected for a particular type of request.

• Request Duration––Indicates the expected number of days that a request should take to
be approved and committed. After the age of a request exceeds the request durations,
the request is marked as Overdue.

• Claim Duration––Indicates the expected number of days that a request should be
claimed for a workflow stage by a governance user. After the age of a request exceeds
the claim duration, the request is automatically unclaimed to make it available for other
assigned users to claim.

Note:

A value of zero for either option indicates that the Overdue and automatically
Unclaimed functionality is disabled for the workflow model.

Creating Workflow Models
To create a workflow model:

1. On the Home page, select Administer.

2. From New, select Workflow Model.

3. Enter a name, label, and description for the workflow model.

The name is the unique name for the workflow model. The label is a user-friendly label
for the workflow model and can be the same as the name. The description is optional.

URLs can be inserted directly into the description field or the URL can use the syntax
[url=http_URL]URL_Title[/url] where http_URL specifies the hyperlink text and
URL_Title specifies the text displayed to the user. For example, this example: [url=http://
support.oracle.com]Oracle Support[/url] would render in the property grid as Oracle
Support.

4. Optional: Enter the number of days for Request Duration and Claim Duration

5. On the Workflow Stages tab, double click a stage (Submit or Commit) or click Add
Stage.

6. On the Stage tab, configure the following options. See Workflow Stages for additional
information on these options.

• Label––Enter a label for the stage. The stage label can be edited at any time even
after requests exist for the model.

• Type––Select the stage type. The stage type can be edited until requests exist for
the model; then it cannot be changed.

• Workflow Method––Specify which node access groups must approve a stage in a
request.

Chapter 16
Creating Workflow Models

16-13

• Re-Approval––Specify whether changes made only in the current stage or in
all stages require reapproval.

• Notify––Specify to whom notification and alerts are sent.

• Separation of Duties––Select to require a separate approving user who has
not submitted or approved for any other stage in the request.

• Recalculate Task Properties––Select for use with external lookup properties
or to allow a calculated name or parent value to be recalculated. This option is
required when data is input in a later workflow stage which is used to calculate
the final Name or Parent for a request item.

Note:

If a workflow model has been set up to allow Recalculated Task
Properties and the calculated Name or Parent is manually
overridden, then the Name or Parent will not be calculated again
during that stage or any subsequent stage.

7. For Submit stage tasks only, on the Tasks tab, configure tasks for the stage:

• Select tasks to assign to the stage using the left and right arrow buttons

• Position the tasks in the desired order using the up and down arrow buttons.

• If a task is a dependent task, you need to set the primary task that it is

dependent on. For the dependent task, click and from the Primary Task
drop-down list, select the primary task.

Note:

Only Add Limb or Add Leaf tasks can be set as primary tasks.
Primary tasks cannot be hidden and cannot also be dependent
tasks.

• Hidden––If selected for a dependent task, then the task does not display in
the Add Items dialog within requests.

Note:

Selected tasks are editable until requests exist for the model, then they
cannot be changed.

8. On the Node Access Groups tab, select workflow node access groups to be
associated with the workflow stage.

Only node access groups of the Workflow type can be assigned to a stage.

9. Optional: To add criteria for a workflow stage, on the Condition tab, select the

type of condition, select the action to perform, and then click :

• Type

Chapter 16
Creating Workflow Models

16-14

– Property Criteria––Select one or more properties to evaluate as stage criteria
for the stage. Click Add to insert a criteria row. Select a Property and Operator
for the row, and enter a Value.

– Selected Validations––Select one or more validations to run as stage criteria for
the stage. Click the arrow to move validations to the Selected list.

– Task Validations––Select to run validations assigned to the task as stage
criteria.

• Action––Select an action to perform (Enter Stage or Split Request Items) for the
workflow stage when stage criteria are met. See Stage Conditions for more
information.

10. Click to save the workflow stage.

11. Optional: On the Filters tab, make selections to restrict the versions, hierarchies, and
node types that users can view and select for a particular type of request.

12. Optional: Click Add Stage to add Enrich or Approve stages to the workflow model, and
then follow steps 6-8 for each stage added.

13. Click to save the workflow model.

Editing Workflow Models
Workflow models for which requests have been created are restricted from certain edits in
order to ensure existing requests are not negatively affected during workflow processing and
their content is not altered after the requests have completed. For models that have change
requests these editing restrictions apply:

• Workflow stages for the model may not be added, removed or reordered.

• The stage type for a stage may not be changed.

• The task for a workflow stage on the model may not be changed.

To edit a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

3. Select a model and then click .

4. Make changes to the workflow model and click .

Copying Workflow Models
You can create a workflow model by copying an existing model. All workflow stages, model
filters, and duration settings are copied and can be edited before saving. In situations where
an existing workflow model being used for current requests needs to be edited to handle
future requests differently, the model can be copied and the changes made to the new model.
The edited copy of the model can then be used for newly created requests.

To copy a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

Chapter 16
Editing Workflow Models

16-15

3. Select the model that you want to copy and then click .

4. Enter a new name for the model.

5. Make any other changes to the model and then click to save the workflow
model.

Renaming Workflow Models
To support different workflow requirements over time, workflow models may be copied
to apply edits to their configuration. In these cases, the model copy can be renamed to
match the name of the original workflow model with which governance users are
already familiar.

To rename a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

3. Select the model that you want to rename and then click .

4. Enter a new name for the model and then click .

Hiding Workflow Models
Workflow models can be hidden to prevent users from creating new requests using
those models. Existing requests created prior to a workflow model being hidden will
continue through the model to completion. When a workflow model is copied and
modified in order to replace the original model, the original model can be hidden so
that only one instance of the model is available for new requests.

Note:

Requests using the workflow model that you choose to hide will continue
their process flow to completion.

To hide a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

3. Select the model that you want to hide and then click .

4. Select Hidden and then click .

Deleting Workflow Models
A workflow model may be deleted only if there are no requests associated with it
(including in-flight or historical requests). Completed requests are retained until the
version for the request is deleted, requiring that the workflow model also be available
in order to view the requests.

Chapter 16
Renaming Workflow Models

16-16

Tip:

Consider the information in Hiding Workflow Models to determine if this may be a
more appropriate option.

To delete a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

3. Select a model, and then click .

4. Click Delete this Workflow Model to confirm the deletion.

Chapter 16
Deleting Workflow Models

16-17

17
Managing Data Relationship Management
Analytics

Oracle Data Relationship Management Analytics provides dashboards for change tracking,
growth analysis, request monitoring, workflow model performance, and participant and user
group performance. The Data Relationship Management Analytics Dashboards are:

• Change––Provides aggregated views of changes that have occurred in the Oracle Data
Relationship Management system over time. Metrics in this dashboard are based on
committed requests and all interactive changes. This dashboard includes change actions
such as adds, updates, moves, and deletes across node and property changes to lend
change perspectives by hierarchy, node type, property category, and so on. Users can
understand change trends by change method, interactive, or workflow to ratify
governance uptake. Users can drill into each change contextually to inspect transaction
details and export these details to a flat file for further analysis offline.

• Growth––Provides analysis of how versions and hierarchies have changed over time by
displaying the number of orphan and shared nodes, the total number of nodes, and the
total increase or decrease in nodes from a previous version (for lineaged versions) and
the total increase or decrease in the last 30 days for non-lineaged versions.

• Requests––Displays key performance indicators as they relate to open Oracle Data
Relationship Governance requests allowing you to identify bottlenecks and requests that
are overdue or near due, and provides the ability drill-back into Data Relationship
Governance requests to make changes to a request.

• Model––Provides analysis of Data Relationship Governance workflow model design by
displaying historical performance of requests that are completed (committed or rejected),
including participant behavior trends, resource workload, and the ability to drill-back into
Data Relationship Governance requests. Workflow model analysis reports on
performance of completed requests processed by each workflow model to understand
model performance based on service level agreements, level of automation achieved,
cycle time, resources committed, request workload, throughput, and participant
engagement.

• Reports––Used to view user and group membership, security, and activity. Information
provided includes user role assignments, access group assignment reports, and user
login activity.

– User Role Assignment Report––Provides a list of users by role or roles by user
with counts by licensed user types.

– Access Group Membership Report––Provides a list of users by interactive and
workflow user groups.

– Object Access Group Authorization Report––Provides mapping of users and user
groups to specific Data Relationship Management objects.

– Hierarchy Access Group Assignment Report––Provides data grants of users and
groups to nodes in a hierarchy.

– Workflow Access Group Assignment Report––Provides data grants of users and
groups to workflow model stages.

17-1

– User Login Activity Report––Provides trend reports for user login activity
over time.

– Metadata Object Usage Report––Provides frequency distribution and aging
information for Data Relationship Management objects: queries, compares,
imports, exports, blenders, and books.

Accessing Data Relationship Analytics
Before configuring Oracle Data Relationship Management Analytics ensure the
following tasks have been completed:

• Set up Analytics URL––Provides the link to Data Relationship Management
Analytics from Oracle Data Relationship Management. See "Configuring Analytics
URL" in Oracle Data Relationship Management Installation Guide .

• Set up Web farm––Enables drillback from Data Relationship Management
Analytics to Data Relationship Management. See "Configuring Web Servers" in
Oracle Data Relationship Management Installation Guide .

• Version lineage has been set up––Version lineage allows Data Relationship
Management Analytics to aggregate changes across lineages and across multiple
versions. See "Editing Version Properties" in Oracle Data Relationship
Management User's Guide .

• Set up in Data Relationship Management when hierarchy and version node counts
are updated. Node counts are updated when a version is opened, saved, or closed
and as specified in a system preference. See AnalyticsNodeCountUpdateTime in
System Preferences.

• Set hierarchy group property to the default Core property type. Only the default
Core property type is supported in Data Relationship Management Analytics. See
Step 6 of Creating Properties.

In Data Relationship Management, click the Analytics link.

Note:

The Analytics link is available only if the user is assigned to any of these
roles: Analytics User, Governance Manager, Access Manager, Data
Manager, Application Administrator.

Working with Preferences
Before creating execution plans, preferences need to be configured.

To set preferences:

1. Click .

2. Optional: Do the following:

Chapter 17
Accessing Data Relationship Analytics

17-2

• Batch Size––Enter a batch size value. Used for model analysis. The default value is
250 MB and should not be changed unless absolutely necessary. The larger the
batch size the larger the memory and database requirements.

• Initial Extract Date––Set the date from which data will be extracted for all Oracle
Data Relationship Management Analytics tasks.

3. Click Save.

Working with Execution Plans
Predefined tasks extract the information from Oracle Data Relationship Management and
return it to the specific Oracle Data Relationship Management Analytics dashboard where it
can be filtered and reviewed. Jobs consist of dashboard-specific tasks. Multiple jobs can be
included in an execution plan.

Execution plans consist of a schedule and one or more jobs and their tasks. Execution plans
can be configured to run daily, weekly, or monthly and can be scheduled to run as Simple
(run now or run at a future date/time) or as Cron (using a Cron expression to indicate
scheduling information). Execution plans can be edited, inactivated when not in use, and
deleted when no longer needed.

Table 17-1 Job Tasks

Jobs Tasks

Change Analysis Transaction Fact Table

Transaction Aggregate

Transaction Property Aggregate

Version Lineage

User Activity Reports Transaction Fact Table

Growth Analysis Version Lineage

Hierarchy Counts

Version Counts

Model Analysis Model Analysis

Creating Execution Plans
To create an execution plan:

1. In the Oracle Data Relationship Management Analytics dashboard, select Settings.

2. Click Create and enter the following information:

• Name––Enter a name for the execution plan

• Schedule Type––Select from the following options:

– Simple––Use to specify a start and end date

– Cron––Use to specify a Cron expression

• Scheduler Timeframe––Select Run Now or Future.

3. Click Next.

4. Do the following:

Chapter 17
Working with Execution Plans

17-3

• If you selected Simple as the Schedule Type and Run Now for the Scheduler
Timeframe, do the following:

a. Optional: Select Truncate and Load to truncate any tables associated
with this job and reload based on the initial extract date in the system. If
not selected, then an incremental load runs.

b. Click OK if you are sure you want to truncate and load.

• If you selected Simple as the Schedule Type and Future for the Scheduler
Timeframe, do the following:

a. Select the Frequency to run the execution plan: Daily, Weekly, or Monthly.

b. Click to enter the start date and time.

c. Optional: Click to enter the end date and time.

• If you selected Cron as the Schedule Type, enter a Cron expression for when
the scheduler will run.

5. Click Next.

6. Select jobs to add to the execution plan. User the Move, Move All, Remove, and
Remove All buttons to move jobs from the Available list to the Selected list.

7. Click Next.

8. Review the execution plan settings and then click Schedule Plan.

Note:

For execution plans to run, the Scheduler must be started. To start the

Scheduler, click and select Start.

9. Click OK to confirm scheduling plan.

Editing Execution Plans
When you edit an execution plan, all fields are editable except for the plan name.

To edit an execution plan:

1. Select the plan to edit.

2. Click and make changes to the plan by following steps 2-9 in Creating
Execution Plans.

Chapter 17
Working with Execution Plans

17-4

Note:

You cannot change the plan name. If you need to change the plan name, delete
the plan and create a new plan.

Inactivating and Reactivating Execution Plans
When an execution plan is inactivated, any future scheduled plans are removed from the
scheduler and the plan is moved to the Inactive Plan tab. To reactivate the plan, on the
Inactive Plans tab, edit the plan and then schedule it.

To inactivate an execution plan:

1. Select and then select the plan to inactivate.

2. Click next to the plan name.

To reactivate an execution plan:

1. Select and then select the plan to reactivate.

2. Click and make changes to the plan by following steps 2-9 in Creating Execution
Plans.

Note:

You cannot change the plan name. If you need to change the plan name, delete
the plan and create a new plan.

Deleting Execution Plans
To delete an execution plan:

1. Select the execution plan that you want to delete.

2. Click next to the plan name.

3. Click OK to confirm the deletion.

Viewing Activity
In the Recent Activity section, you can view the results of execution plans that have been run.
You can view the start and end time of the execution plan, the duration of the run, the number
of records processed, and the status of the run. Note that if you schedule multiple jobs in the
same plan and more than one job includes a task that another job has already run, the
execution will skip the task in subsequent jobs and will show as Skipped Duplicate in the
execution plan results.

Chapter 17
Working with Execution Plans

17-5

To view results of execution plans that have been run:

1. Click or click .

2. Expand the execution plan that you want to view by clicking the arrow to the left of
the plan name. You can expand jobs within the plan to review the associated
tasks.

3. Optional: Click the filter bar and set filter options:

• Timeframe––Enter the number days for which to show plan activity. For
example, if you enter 2, then plan activity from the last 2 days is displayed.

• Name––Select All or select execution plan names to include in the results.

• Status––Select All or select execution plan statuses to include in the results.
Plan statuses are Complete, Partial Failure, Failed, and Processing.

Note:

The Status filter criteria only applies to execution plan status, not to
job or task status.

Chapter 17
Working with Execution Plans

17-6

18
Integrating External Workflow Applications

External workflow applications can be used to process proposed changes to Oracle Data
Relationship Management from an external source. The Web Service API provides an
external request interface which allows multiple changes to be grouped together for validation
and commitment of the changes as a single unit of work during an external workflow process.
API users must have the Workflow User role in order to participate with external requests.
This request interface is generic and does not support the use of workflow models, workflow
tasks, or the Worklist page in the Web Client. These generic, external requests are recorded
in and only accessible from the Request History.

For more information on API support for external requests, see the "Oracle Data Relationship
Management API Reference".

External Requests
You can create external requests to:

• Add hierarchies

• Add nodes

• Insert and move nodes

• Activate, inactivate and remove nodes

• Update properties

• Remove property values

External requests can be stored in a draft state for approval and validated against a Oracle
Data Relationship Management version without committing the changes to the version
immediately. External requests in this pending approval state can be updated by multiple
users at different times and re-validated as needed. The transactions in a request are
committed to a Data Relationship Management version when the request is approved.

Note:

After an external request has been approved, the request cannot be modified and
the request cannot be deleted until the associated version is deleted.

An external request consists of the following elements:

• Target Data Relationship Management version.

• Owner of the request — A valid Data Relationship Management user ID.

• Custom workflow ID — Identifier for the request in a workflow application.

• Custom workflow label — Short description for the request in a workflow application.

• Custom workflow status — Manages the status of the request in a workflow application.

18-1

• Custom workflow info — Stores extra information needed by a workflow
application.

• Request comments — Annotation for the request.

• Created by –– User who created the initial request.

• Created date –– Date when the request was created.

• Updated by –– User who last updated the request.

• Updated date –– Date when the request was last updated.

• Approved By –– User who approved the request.

• Approved Date –– Date when the request was approved.

• Validated Flag –– Indicates whether the request has been validated since it was
last updated.

• Approved Flag –– Indicates whether the request has been approved.

• Additional batch validations that should be applied to only the actions in the
request during a validate or approve operation

• List of action items that affect hierarchies and nodes for the current request

Chapter 18
External Requests

18-2

19
Migrating Data Relationship Management
Metadata

The Oracle Data Relationship Management Migration Utility provides application
administrators the ability to move metadata object types between Data Relationship
Management applications.

In the Migration Utility, you can:

• Extract metadata object types from a Data Relationship Management application to an
XML file and generate an HTML report from the results

• Load metadata from an XML file into a Data Relationship Management application

• Compare metadata differences between two sources, create an XML file with the
differences, and generate an HTML report from the results

• View metadata in an XML file and generate an HTML report from the file

You can extract, load, compare, and view the following types of metadata:

• Property Definitions

• Property Categories

• Validations

• Node Types

• Glyphs

• Node Access Groups

• Hierarchy Groups

• Queries (Standard, System, and Custom)

• Compares (Standard, System, and Custom)

• Domains

• Version Variables (Standard, System, and Custom)

• Exports (Standard, System, and Custom)

• Export Books (Standard, System, and Custom)

• Imports (Standard, System, and Custom)

• Blenders (Standard, System, and Custom)

• System Preferences

• External Connections (Standard, System, and Custom)

External Connections display the connection name only; object access group name
prefixes are not added.

19-1

Note:

Connection string, user ID, and password do not migrate with migration
loads and extracts.

• Object Access Groups

• Workflow Tasks

• Workflow Models

Migrating Core Property Configurations and Settings

The following core property configurations and settings can be migrated between
instances of Data Relationship Management (on same release) using the Metadata
Migration Utility:

• Core.DefaultDisplayBy [Default Display Properties]

• Core.DefaultPasteProps [Default Paste Properties]

• Core.DefaultSynchBy [Default Match By]

• Core.EnableSharedNodes [Enable Shared Nodes]

• Core.HierarchyNodeType [Hierarchy Node Type]

• Core.IDLengthLeafProp [ID Length Leaf Property]

• Core.IDLengthLimbProp [ID Length Limb Property]

• Core.PrefillLeafProp [Prefill Leaf Property]

• Core.PrefillLimbProp [Prefill Limb Property]

• Core.SortOrder [Sort Order]

• Core.StandardHierSort [Standard Hierarchy Sort]

Opening the Migration Utility
By default, the Migration Utility is installed to:

MIDDLEWARE_HOME\EPMSystem11R1\products\DataRelationshipManagement\client
To open the Migration Utility, double click Data Relationship Management Migration
Utility.

Extracting Metadata
You can select the types of metadata to extract from a Oracle Data Relationship
Management application. You extract the information into an XML file which you can
then view, load into another Data Relationship Management application, compare to
another XML file, or compare to another Data Relationship Management application.
You can also use this file for backup, storage, and auditing purposes.

You can generate a report from the information in the XML file that is created.

To extract metadata from a Data Relationship Management application:

Chapter 19
Opening the Migration Utility

19-2

1. On the Main Menu, click Extract.

2. Enter Data Relationship Management connection information and click Log In.

3. Select the object types or objects to extract and click Next.

Note:

Click the plus sign in the hierarchy tree to see objects. Select the checkbox for
an object type to select the object type and all of its objects, or select the
checkbox for the objects that you want to extract. Click on an object name to
display the object type definition in a new window.

4. Optional: Click Find to search for a metadata object type or object.

Note:

Any object type containing the text entered is returned. To navigate to a
particular object in the results, click the Jump To link.

5. Review the summary information.

Note:

The Migration Utility performs additional checks for object types that have
dependencies. For example, an export may depend on property definitions or a
property definition may reference another property definition. If there are
dependencies missing in the summary, you may select specific dependencies
to include. You can include all excluded dependencies or exclude all
dependencies.

Note:

Increasing the page size allows you to define the number of object types to
view on a page.

6. Optional: Enter metadata details for this extract.

You can enter the following information:

• Title––Maximum of 255 characters

• Purpose––Formatted memo

• Usage––Formatted memo

• Application Version––Maximum of 20 characters

• File Version––Maximum of 20 characters

7. Click Run Extract.

Chapter 19
Extracting Metadata

19-3

8. Do any of the following:

• Click Download the Metadata File to open or save the XML file.

• Click View the Metadata File to view the XML file details.

• Click Load the Metadata File to load the XML file into a Data Relationship
Management application. For more information, see Loading Metadata.

• Click Generate Reports for the Metadata File to generate a report from the
XML file. For more information, see Generating Reports.

Loading Metadata
Only files with the Oracle Data Relationship Management XML format can be loaded
into a Data Relationship Management application. A log file is created after a load is
performed and displays the following severities of data: audit, information, warning,
and error message.

Note:

Before loading a metadata file, it is recommended that you perform an
extract of existing metadata in case you want to revert back to the previous
configuration. It is also a good idea to perform a database backup before
loading metadata, particularly if you are loading a migration file into a
production environment.

To load metadata from an XML file into a Data Relationship Management application:

1. On the Main Menu, click Load.

2. Click Browse, select the XML file that you want to load, and click Upload.

Note:

Migration files must be UTF-8 encoded.

3. Review the uploaded file information and click Next.

4. Enter Data Relationship Management connection information and click Log In.

5. Select the object types or objects to load and click Next.

Note:

Click the plus sign in the hierarchy tree to see objects. Select the
checkbox for an object type to select the object type and all of its objects,
or select the checkbox for the objects that you want to load. Click on an
object name to display the object type definition in a new window.

6. Review the summary information and click Next.

Chapter 19
Loading Metadata

19-4

Note:

Page size allows you to define the number of object types to view on a page.

7. Optional: Select Continue Load After Error for the load to continue even if errors are
encountered.

8. Click Run Load.

9. Review the load results.

You can change the view of the log file by selecting the severity of detail to display: audit,
information, warning, and error. To save the log file, click Download.

Note:

The log items can be sorted by any column using the column header links.

Comparing Metadata
You can compare two metadata sources. You can compare metadata differences between
two Oracle Data Relationship Management applications, between two XML files, or between
a Data Relationship Management application and an XML file. You can generate an XML file
containing the differences between the two metadata sources. The results can be used to
restore data, undo unauthorized changes, or find wrong object type configurations.

You can generate a report from the information in the XML file that is created.

To compare metadata:

1. On the Main Menu, click Difference.

2. From the Source #1 drop-down list, select the type of source: Server Connection or XML
File.

3. Do one of the following:

• If you selected Server Connection, enter Data Relationship Management
connection information and click Log In.

• If you selected XML File, click Browse and select the XML file that you want to use
in the comparison and click Upload.

4. If you uploaded a file, review the uploaded file information and click Next. Otherwise, skip
to the next step.

5. Repeat steps 2–4 for Source #2.

6. Click Next.

7. Select the object types to include in a difference file by using the following actions:

• Select a filter

• Click > to select a object type from Source #1.

• Click < to select a object type from Source #2.

• Click X to deselect a object type.

Chapter 19
Comparing Metadata

19-5

• Click the left column header to select all objects from Source #1 based on the
selected filter.

• Click the right column header to select all objects from Source #2 based on
the selected filter.

• Click the center column header to deselect all objects based on selected filter.

• Click the page links at the top of the compare results to switch to a different
page.

Note:

Page size allows you to define the number of object types to view on a
page.

8. Click Create Difference File.

9. Do any of the following:

• Click Download the Metadata Difference File to open or save the XML file.

• Click View the Metadata Difference File to view the XML file details.

• Click Load the Metadata Difference File to load the file into an Data
Relationship Management application. For more information, see Loading
Metadata.

• Click Generate Reports for the Metadata File to generate a report from the
XML file. For more information, see Generating Reports.

Viewing Metadata
You can view a metadata file and generate a report from the information in it.

To view metadata in an XML file:

1. On the Main Menu, click View File.

2. Click Browse and select the XML file that you want to view and click Upload.

3. Review the uploaded file information and click Next.

4. Click the plus signs in the hierarchy tree to view metadata objects.

5. Optional: Click Find to search for an item in the file.

Note:

Any object type containing the text is returned. To navigate to a particular
object in the results, click the Jump To link.

6. Optional: Click the Reports tab to generate an HTML report from the file.

Chapter 19
Viewing Metadata

19-6

Metadata File Restrictions
The default limit for uploaded files in the Migration Utility is 4 MB. When loading or viewing a
large metadata file using the Migration Utility, the following error may occur if the size of the
file exceeds the configured limit.

"Unexpected Error There was an unexpected error trying to process your request: Maximum
request length exceeded."

For information on configuring a larger file size, see "Configuring Migration Utility" in the
Oracle Data Relationship Management Installation Guide .

Generating Reports
You can generate an HTML report from an XML file generated after an extract, from a
difference report, and from a metadata file that you are viewing.

To generate an HTML report:

1. Do one of the following:

• After extracting metadata or creating a difference report, click Generate Reports for
the Metadata File.

• After viewing a metadata file, click Reports.

2. Do one of the following:

• Click View Report to display the report.

• Click Download Report to save the report.

Chapter 19
Metadata File Restrictions

19-7

	Contents
	Documentation Accessibility
	Documentation Feedback
	1 Revision History
	2 About Data Relationship Management Suite
	3 Getting Started
	Administering Data Relationship Management Applications
	Accessing Data Relationship Management
	Changing Passwords

	Troubleshooting and Tips

	4 Managing Users
	User Permissions
	User Roles
	Analytics Roles

	Creating Users
	User Authentication
	Modifying Users
	Changing Passwords
	Locking Out Users
	Unlocking Users
	Changing User Roles and Assignments

	Deleting Users
	Viewing User Login Status
	System Defined Users
	Common User Provisioning
	Prerequisites
	Provisioning Users and Groups
	Synchronizing Data Relationship Management Users and Group Membership
	Manual Synchronization
	Scheduled Synchronization
	Partial Synchronization

	5 Managing Node Access Groups
	Workflow Group Type Node Access Levels
	Creating Node Access Groups
	Editing Node Access Groups
	Deleting Node Access Groups
	Assigning Node Access Group Security

	6 Managing Object Access Groups
	Creating Object Access Groups
	Editing Object Access Groups
	Deleting Object Access Groups

	7 Managing Domains
	Creating Domains
	Editing Domains
	Deleting Domains

	8 Managing Property Categories
	Property Categories
	Creating Property Categories
	Editing Property Categories
	Deleting Property Categories

	9 Managing Property Definitions
	Data Types
	External Lookups
	Creating Properties
	Using Hierarchy Constraints

	Editing Property Definitions
	Deleting Properties

	10 Managing Validations
	Validation Classes
	Validation Levels
	Creating Validations
	Creating a Script Validation for Move

	Assigning Validations
	Editing Validations
	Deleting Validations

	11 Managing Formulas
	Working with Functions
	Special Characters
	Literals
	Format String Parameter
	Date-Time Format Strings

	Formula Evaluation
	Formula Syntax Checks
	Property Names in the Syntax Check

	Considerations for Using Formulas
	Creating Formulas
	Function Definitions
	Function Groups

	12 Managing Dynamic Scripts
	Execution Contexts
	Derived Properties Using Scripts
	Validations Using Scripts
	Governance Requests Using Scripts

	Enumeration Constants
	Supported JavaScript Data Types
	Data Type Conversions
	Formatting Numbers
	Formatting Dates

	Data Relationship Management Objects
	Execution Environment
	Creating Dynamic Scripts

	13 Managing Node Types
	Defining Node Types
	Editing Node Types
	Deleting Node Types
	Working with Node Glyphs

	14 Working with System Preferences
	System Preferences
	Setting Transaction History Logging Levels
	Setting Up Change Approval

	Configuring System Preferences

	15 Working with External Connections
	Defining External Connections
	Editing External Connections
	Deleting External Connections

	16 Configuring Governance Workflows
	Managing Workflow Tasks
	Task Properties
	Task and Property Instructions
	Task Validations
	Calculated Name and Parent Properties
	External Commits
	Creating Workflow Tasks
	Editing Workflow Tasks
	Copying Workflow Tasks
	Deleting Workflow Tasks

	Managing Workflow Models
	Workflow Stages
	Model Filters
	Request and Claim Duration

	Creating Workflow Models
	Editing Workflow Models
	Copying Workflow Models
	Renaming Workflow Models
	Hiding Workflow Models
	Deleting Workflow Models

	17 Managing Data Relationship Management Analytics
	Accessing Data Relationship Analytics
	Working with Preferences
	Working with Execution Plans
	Creating Execution Plans
	Editing Execution Plans
	Inactivating and Reactivating Execution Plans
	Deleting Execution Plans
	Viewing Activity

	18 Integrating External Workflow Applications
	External Requests

	19 Migrating Data Relationship Management Metadata
	Opening the Migration Utility
	Extracting Metadata
	Loading Metadata
	Comparing Metadata
	Viewing Metadata
	Metadata File Restrictions
	Generating Reports

