| static NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics. builder() | Create a new builder. | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. copy(NamedEntityRecognitionModelMetrics model) |  | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. macroF1(Float macroF1) | F1-score, is a measure of a model\u2019s accuracy on a dataset | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. macroPrecision(Float macroPrecision) | Precision refers to the number of true positives divided by the total number of positive
predictions (i.e., the number of true positives plus the number of false positives) | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. macroRecall(Float macroRecall) | Measures the model’s ability to predict actual positive classes. | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. microF1(Float microF1) | F1-score, is a measure of a model\u2019s accuracy on a dataset | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. microPrecision(Float microPrecision) | Precision refers to the number of true positives divided by the total number of positive
predictions (i.e., the number of true positives plus the number of false positives) | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. microRecall(Float microRecall) | Measures the model’s ability to predict actual positive classes. | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics. toBuilder() |  | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. weightedF1(Float weightedF1) | F1-score, is a measure of a model\u2019s accuracy on a dataset | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. weightedPrecision(Float weightedPrecision) | Precision refers to the number of true positives divided by the total number of positive
predictions (i.e., the number of true positives plus the number of false positives) | 
| NamedEntityRecognitionModelMetrics.Builder | NamedEntityRecognitionModelMetrics.Builder. weightedRecall(Float weightedRecall) | Measures the model’s ability to predict actual positive classes. |