Interface ModelDeployment

  • All Superinterfaces:
    AutoCloseable
    All Known Implementing Classes:
    ModelDeploymentClient

    @Generated(value="OracleSDKGenerator",
               comments="API Version: 20240424")
    public interface ModelDeployment
    extends AutoCloseable
    Model deployments are a managed resource in the OCI Data Science service to use to deploy machine learning models as HTTP endpoints in OCI.

    Deploying machine learning models as web applications (HTTP API endpoints) serving predictions in real time is the most common way that models are productionized. HTTP endpoints are flexible and can serve requests for model predictions.

    For more information, see [Model Deployments](https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-about.htm)

    This service client uses CircuitBreakerUtils.DEFAULT_CIRCUIT_BREAKER for all the operations by default if no circuit breaker configuration is defined by the user.

    • Method Detail

      • refreshClient

        void refreshClient()
        Rebuilds the client from scratch.

        Useful to refresh certificates.

      • setEndpoint

        void setEndpoint​(String endpoint)
        Sets the endpoint to call (ex, https://www.example.com).
        Parameters:
        endpoint - The endpoint of the service.
      • getEndpoint

        String getEndpoint()
        Gets the set endpoint for REST call (ex, https://www.example.com)
      • setRegion

        void setRegion​(Region region)
        Sets the region to call (ex, Region.US_PHOENIX_1).

        Note, this will call setEndpoint after resolving the endpoint. If the service is not available in this Region, however, an IllegalArgumentException will be raised.

        Parameters:
        region - The region of the service.
      • setRegion

        void setRegion​(String regionId)
        Sets the region to call (ex, ‘us-phoenix-1’).

        Note, this will first try to map the region ID to a known Region and call setRegion.

        If no known Region could be determined, it will create an endpoint based on the default endpoint format (Region.formatDefaultRegionEndpoint(Service, String) and then call setEndpoint.

        Parameters:
        regionId - The public region ID.
      • useRealmSpecificEndpointTemplate

        void useRealmSpecificEndpointTemplate​(boolean realmSpecificEndpointTemplateEnabled)
        Determines whether realm specific endpoint should be used or not.

        Set realmSpecificEndpointTemplateEnabled to “true” if the user wants to enable use of realm specific endpoint template, otherwise set it to “false”

        Parameters:
        realmSpecificEndpointTemplateEnabled - flag to enable the use of realm specific endpoint template
      • predict

        PredictResponse predict​(PredictRequest request)
        Invoking a model deployment calls the predict endpoint of the model deployment URI.

        This endpoint takes sample data as input and is processed using the predict() function in score.py model artifact file

        Parameters:
        request - The request object containing the details to send
        Returns:
        A response object containing details about the completed operation
        Throws:
        BmcException - when an error occurs. This operation uses RetryConfiguration.SDK_DEFAULT_RETRY_CONFIGURATION as default if no retry strategy is provided. The specifics of the default retry strategy are described here https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/javasdkconcepts.htm#javasdkconcepts_topic_Retries

        Example: Click <a href=“https://docs.oracle.com/en-us/iaas/tools/java-sdk-examples/3.67.0/modeldeployment/PredictExample.java.html"target=”_blank"rel=“noopener noreferrer”>here to see how to use Predict API.

      • predictWithResponseStream

        PredictWithResponseStreamResponse predictWithResponseStream​(PredictWithResponseStreamRequest request)
        Invoking a model deployment calls the predictWithResponseStream endpoint of the model deployment URI to get the streaming result.

        This endpoint takes sample data as input and is processed using the predict() function in score.py model artifact file

        Parameters:
        request - The request object containing the details to send
        Returns:
        A response object containing details about the completed operation
        Throws:
        BmcException - when an error occurs. This operation uses RetryConfiguration.SDK_DEFAULT_RETRY_CONFIGURATION as default if no retry strategy is provided. The specifics of the default retry strategy are described here https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/javasdkconcepts.htm#javasdkconcepts_topic_Retries

        Example: Click <a href=“https://docs.oracle.com/en-us/iaas/tools/java-sdk-examples/3.67.0/modeldeployment/PredictWithResponseStreamExample.java.html"target=”_blank"rel=“noopener noreferrer”>here to see how to use PredictWithResponseStream API.