Meta Llama 3.2 90B Vision

Review performance benchmarks for the meta.llama-3.2-90b-vision-instruct (Meta Llama 3.2 90B Vision) model hosted on one Large Generic V2 unit of a dedicated AI cluster in OCI Generative AI.

Random Length

This scenario mimics text generation use cases where the size of the prompt and response are unknown ahead of time. Because of the unknown prompt and response lengths, we've used a stochastic approach where both the prompt and response length follow a normal distribution. The prompt length follows a normal distribution with a mean of 480 tokens and a standard deviation of 240 tokens. The response length follows a normal distribution with a mean of 300 tokens and a standard deviation of 150 tokens.

Concurrency Token-level Inference Speed (token/second) Token-level Throughput (token/second) Request-level Latency (second) Request-level Throughput (Request per minute) (RPM)
1 48.75 47.98 6.37 9.40
2 47.28 92.89 6.63 18.00
4 45.10 176.53 6.65 35.80
8 42.53 333.45 7.04 67.80
16 38.39 597.84 7.95 119.70
32 29.86 929.18 10.12 187.40
64 30.00 933.09 20.11 187.20
128 30.03 934.30 39.85 186.00
256 30.05 932.61 76.19 187.79

Chat

This scenario covers chat and dialog use cases where the prompt and responses are short. The prompt and response length are each fixed to 100 tokens.

Concurrency Token-level Inference Speed (token/second) Token-level Throughput (token/second) Request-level Latency (second) Request-level Throughput (Request per minute) (RPM)
1 50.20 48.67 2.05 29.20
2 49.53 96.67 2.06 58.00
4 49.08 188.00 2.12 112.80
8 48.40 356.00 2.23 213.60
16 47.26 645.33 2.44 387.20
32 42.22 1,077.33 2.90 646.40
64 44.95 1,162.65 5.41 697.59
128 44.92 1,162.64 10.84 697.58
256 45.02 1,162.21 21.58 697.32

Generation Heavy

This scenario is for generation and model response heavy use cases. For example, a long job description generated from a short bullet list of items. For this case, the prompt length is fixed to 100 tokens and the response length is fixed to 1,000 tokens.

Concurrency Token-level Inference Speed (token/second) Token-level Throughput (token/second) Request-level Latency (second) Request-level Throughput (Request per minute) (RPM)
1 49.15 48.33 20.37 2.90
2 48.73 96.67 20.57 2.90
4 48.17 186.67 20.85 11.20
8 47.53 373.33 21.20 22.40
16 46.69 720.00 21.75 43.20
32 41.65 1,279.99 24.54 76.80
64 41.92 1,279.98 47.75 76.80
128 41.93 1,279.96 91.49 76.80
256 41.88 1,279.93 166.93 76.80

RAG

The retrieval-augmented generation (RAG) scenario has a very long prompt and a short response such as summarizing use cases. The prompt length is fixed to 2,000 tokens and the response length is fixed to 200 tokens.

Concurrency Token-level Inference Speed (token/second) Token-level Throughput (token/second) Request-level Latency (second) Request-level Throughput (Request per minute) (RPM)
1 47.83 44.33 4.47 13.30
2 46.14 82.67 4.79 24.80
4 45.18 145.33 5.46 43.60
8 44.67 234.67 6.74 70.40
16 43.43 336.00 9.34 100.80
32 32.74 394.66 15.61 118.40
64 33.25 416.00 30.12 124.80
128 33.28 405.32 59.98 121.60
256 33.27 394.60 116.63 118.38