

[1] Oracle® TimesTen In-Memory Database
Scaleout User's Guide

Release 18.1

E61194-08

July 2020

Oracle TimesTen In-Memory Database Scaleout User's Guide, Release 18.1

E61194-08

Copyright © 1996, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such
programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S.
Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract
for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xi

Audience... xi
Related documents... xii
Conventions .. xii
Documentation Accessibility ... xiii

What's New.. xv

New features in release 18.1.4.1.0 ... xv
New features in release 18.1.3.1.0 ... xv
New features in release 18.1.2.1.0 ... xv
New features in release 18.1.1.2.0 ... xvi

1 Overview of TimesTen Scaleout

Introducing TimesTen Scaleout .. 1-1
TimesTen Scaleout features ... 1-2

In-memory database .. 1-3
Performance .. 1-3
Persistence and durability... 1-3
SQL and PL/SQL functionality.. 1-3
Transactions .. 1-4
Scalability .. 1-4
Data transparency .. 1-4
High availability and fault tolerance... 1-4
Centralized management .. 1-5

TimesTen Scaleout architecture .. 1-5
Instances .. 1-7

Management instances ... 1-7
Data instances.. 1-8

Installations ... 1-9
K-safety .. 1-9

Understanding replica sets ... 1-10
Understanding data spaces .. 1-10
Assigning hosts to data space groups... 1-11

Data distribution ... 1-13
Defining the distribution map for a database.. 1-13

iv

Defining the distribution scheme for tables... 1-14
Backups... 1-15
Internal and external networks ... 1-15

Central configuration of the grid ... 1-16
Planning your grid .. 1-17

Determine the number of hosts and membership servers .. 1-17
Define the network parameters of each host and membership server.................................... 1-20
Define the locations for the installation directory and instance home of each instance....... 1-21
Ensure you have all the information you need to deploy a grid ... 1-22

Database connections ... 1-23
Comparison between TimesTen Scaleout and TimesTen Classic .. 1-24

How supported TimesTen features are documented in this book .. 1-25

2 Prerequisites and Installation of TimesTen Scaleout

General prerequisites .. 2-1
Operating system prerequisites... 2-1

Understanding the TimesTen users group and the operating system user 2-2
The TimesTen users group .. 2-2
The operating system user... 2-2
Create the TimesTen users group and the OS user.. 2-3

Configuring the operating system kernel parameters.. 2-3
Configure shmmax and shmall... 2-3
Configure HugePages .. 2-5
Modify the memlock settings.. 2-6
Set the semaphore values... 2-7

Network requirements .. 2-8
Internal network... 2-8

Syntax for internal addresses .. 2-9
External network .. 2-9

Installing TimesTen Scaleout ... 2-10
Verifying the installation.. 2-11

Run the ttInstallationCheck utility .. 2-11
Review the installation directory and subdirectories... 2-11

Setting passwordless SSH ... 2-12

3 Setting Up the Membership Service

Overview of the TimesTen Scaleout membership service... 3-1
Tracking the instance status ... 3-1
Recovering from a network partition error.. 3-3

Using Apache ZooKeeper as the membership service.. 3-5
Installing Apache ZooKeeper .. 3-6
Configuring Apache ZooKeeper as the membership service .. 3-7
Starting the membership servers ... 3-12
Configure a grid as a membership service client .. 3-13

v

4 Setting Up a Grid

Configure your grid ... 4-1
Creating the initial management instance.. 4-2
Creating a grid.. 4-4
Adding the standby management instance.. 4-6
Calculating the number of hosts and data instances for the grid ... 4-8

Calculate the number of data instances to create ... 4-8
Calculate the number of hosts you need to support your data instances 4-9

Assigning hosts to data space groups .. 4-10
Adding data instances .. 4-11

Create a host for a data instance .. 4-12
Create the installation for the data instance... 4-13
Create the data instance .. 4-14
Create data instances by duplicating the configuration of an existing host 4-16

Applying the changes made to the model... 4-18
Model versioning ... 4-18
Apply the latest version of the model... 4-19

Setting instances to automatically start at system startup .. 4-20
Description of the physical topography of the grid ... 4-20

Assigning hosts to physical groups.. 4-22
Removing the physical layout of the hosts .. 4-24
Deleting physical groups .. 4-25

Propose data space group assignments ... 4-25

5 Managing a Database

Creating a database .. 5-1
Create a database definition ... 5-2

Creating a database definition file.. 5-2
Adding a database definition to the model... 5-4

Create a database based on the database definition ... 5-4
Define the distribution map of the database.. 5-5
Open the database for user connections ... 5-6

Connecting to a database .. 5-7
Create a connectable .. 5-7

Creating a connectable file... 5-7
Creating a connectable based on the connectable file ... 5-8

Connect to a database using ODBC and JDBC drivers .. 5-9
Establishing direct connections from a data instance.. 5-9
Establishing client connections from a TimesTen Client .. 5-9
Redirecting client connections ... 5-12

Verify if your database is a distributed database ... 5-13
Defining table distribution schemes... 5-13

Hash .. 5-13
Reference .. 5-14
Duplicate .. 5-16
Materialized views as a secondary form of distribution... 5-16

vi

Determining the value of the PermSize attribute ... 5-19
Bulk loading data into a database .. 5-21

Populating a table with the ttBulkCp utility ... 5-22
Populate a table from a single location... 5-23
Populate a table from several locations .. 5-23

Populating a table with the ttLoadFromOracle built-in procedure... 5-25
Enable communication to an Oracle database... 5-25
Populate a table from a single location... 5-26
Populate a table from several locations .. 5-26

Unloading a database from memory ... 5-27
Reloading a database into memory.. 5-30
Modifying the connection attributes of a database .. 5-30

Modify the connection attributes in a database definition ... 5-30
Modify the connection attributes in a connectable .. 5-32

Destroying a database .. 5-33

6 Understanding Distributed Transactions in TimesTen Scaleout

Transaction manager.. 6-2
Status of the participants... 6-2

Durability settings ... 6-3
Durability set to 1 ... 6-3
Durability set to 0 ... 6-3

Epoch transactions .. 6-3
EpochInterval attribute .. 6-4
CreateEpochAtCommit attribute.. 6-5

Two-phase commit protocol... 6-6
Phase 0: Transaction... 6-6
Phase 1: Prepare phase .. 6-6
Phase 2: Commit phase ... 6-6
Two-phase commit failure analysis... 6-7

Troubleshooting distributed transactions... 6-8
Global transaction id.. 6-9
Managing in-doubt transactions.. 6-9

7 Using SQL in TimesTen Scaleout

Overview of SQL .. 7-1
Overview of PL/SQL.. 7-2
Working with tables .. 7-2
Altering tables... 7-2
Understanding materialized views... 7-4
Understanding indexes ... 7-5
Using sequences ... 7-6

Understanding batch allocation... 7-6
Performing DML operations .. 7-9
Using pseudocolumns ... 7-9
Using the TT_CommitDMLOnSuccess hint .. 7-10
Using optimizer hints ... 7-11

vii

TT_GridQueryExec ... 7-11
TT_PartialResult .. 7-15

Understanding ROWID in data distribution... 7-17
Understanding system views .. 7-17

8 Maintaining and Upgrading a Grid

Maintaining the model of a grid ... 8-1
Modifying a grid... 8-2

Modifying objects in a grid... 8-2
Modify a host... 8-3
Modify an instance ... 8-3

Deleting objects from a grid ... 8-3
Delete an instance ... 8-3
Delete an installation .. 8-5
Delete a host... 8-5
Delete a physical group.. 8-6

Reconfiguring membership servers .. 8-6
View the current membership configuration ... 8-7
Add membership servers... 8-7
Enable the new membership configuration .. 8-7

Redistributing data in a database ... 8-8
Adding elements to the distribution map .. 8-9
Removing elements from the distribution map.. 8-12

Replace an element with another element ... 8-13
Remove a replica set .. 8-15

Stopping a grid .. 8-17
Restarting a grid .. 8-17
Upgrading a grid.. 8-18

Upgrade a grid to a patch-compatible release .. 8-19
Create an installation from a new release on every host ... 8-19
Upgrade management instances ... 8-20
Upgrade data instances... 8-23
Optional: Delete the installation of the previous release on every host 8-25

Upgrade a grid to a not patch-compatible release ... 8-25
Destroying a grid ... 8-26

9 Monitoring TimesTen Scaleout

Using the ttStats utility ... 9-1
View the configuration of the ttStats utility ... 9-2
Configure the ttStats utility .. 9-2
Monitor a database with the ttStats utility ... 9-3
Create a snapshot with the ttStats utility.. 9-5
Create a report between two snapshots with the ttStats utility .. 9-6

Using SQL Developer to work with TimesTen Scaleout ... 9-7
Monitoring the management instances.. 9-7

Monitor the free space of the management instance .. 9-7

viii

Modify retention values of previous grid models and warning threshold of the management
instance 9-8
Resize the management instance ... 9-9

Grid with a single management instance .. 9-9
Grid with active and standby management instances ... 9-10

Collecting grid logs ... 9-12
Retrieving diagnostic information... 9-13
Verifying clock synchronization across all instances .. 9-13

10 Migrating, Backing Up and Restoring Data

Migrating a database from TimesTen Classic to TimesTen Scaleout... 10-1
Working with repositories... 10-4

Create a repository.. 10-5
Attach a repository.. 10-6
Detach a repository ... 10-6
List repositories and collections.. 10-7

Backing up and restoring a database... 10-7
Back up a database.. 10-9
Back up a database into a remote repository (WAN-friendly)... 10-9

Recommendations for staged backups ... 10-10
Create a staged backup ... 10-12

Check the status of a backup ... 10-12
Delete a backup ... 10-13
Restore a database... 10-13
Check the status of a restore .. 10-14

Exporting and importing a database.. 10-15
Export a database .. 10-15
Check the status of a database export .. 10-16
Delete a database export .. 10-16
Import a database export ... 10-17
Check the status of a database import ... 10-17

Determining the size of a backup or export... 10-18

11 Recovering from Failure

Displaying the database, replica set and element status ... 11-2
Recovering from transient errors ... 11-5

Retry transient errors.. 11-5
Communications error ... 11-6
Software error .. 11-6
Host or data instance failure.. 11-6
Heavy load or temporary communication failure ... 11-7

Recovering from a data distribution error.. 11-7
Tracking the automatic recovery for an element... 11-8
Availability despite the failure of one element in a replica set ... 11-9
Recovering when a single element fails in a replica set .. 11-10

Troubleshooting based on element status ... 11-10
Recovering a replica set after an element goes down.. 11-14

ix

Remove and replace a failed element in a replica set .. 11-15
Unavailability of data when a full replica set is down or fails .. 11-15

Recovering from a down replica set... 11-16
Transaction behavior with a down replica set... 11-16
Durably recovering a failed replica set when Durability=1 .. 11-17
Recovering a failed replica set when Durability=0... 11-18

Recovering when the replica set has a permanently failed element 11-20
Evicting the element in the permanently failed replica set when k = 1 11-22
Evicting all elements in a permanently failed replica set when k = 2 11-26
Maintaining database consistency after an eviction ... 11-29

Recovering when a data instance is down.. 11-29
Database recovery ... 11-30
Client connection failover ... 11-30

Configuring TCP keep-alive parameters ... 11-31
Managing failover for the management instances ... 11-33

Status for management instances ... 11-34
Starting, stopping and switching management instances... 11-35
Active management instance failure .. 11-35

Single management instance fails.. 11-35
Active management instance fails ... 11-36

Standby management instance failure... 11-39
Standby management instance recovers ... 11-39
Standby management instance experiences permanent failure...................................... 11-40

Both management instances fail ... 11-41
Bring back both management instances ... 11-42
Bring back one of the management instances.. 11-44

Performance recommendations .. 11-45
Set a timeout for create channel requests .. 11-45

A Example for Deploying a Grid and Database

TimesTen Scaleout prerequisites ... A-2
Ensure that TimesTen Scaleout supports the OS installed on each host A-2
Configure all hosts in the same internal network .. A-2
Create a TimesTen user group and OS user.. A-2
Set the Linux system kernel parameters .. A-2
Set the memlock settings for the instance administrator .. A-3
Set the semaphore values... A-3

Install TimesTen Scaleout ... A-3
Set passwordless SSH between all hosts.. A-4

Set up the membership service... A-4
Install ZooKeeper .. A-4
Configure the ZooKeeper servers... A-4
Start the ZooKeeper servers... A-5
Create the client configuration file ... A-5

Deploy a grid and database ... A-5
Create a database definition file.. A-6
Create a connectable file... A-6

x

Create a SQL script file for your database... A-6
Create a configuration file for the ttGridRollout utility .. A-8
Create a grid and database .. A-9
Connect to the database ... A-12

B TimesTen Scaleout Environment

Environment variables ... B-1
Setting environment variables... B-1
Environment variable descriptions .. B-2

TIMESTEN_HOME environment variable .. B-2
NLS_LANG environment variable.. B-2
Shared library path environment variable ... B-2
PATH environment variable .. B-2
Temporary directory environment variable .. B-2
TNS_ADMIN environment variable... B-3
Java environment variables .. B-3

Instance home directory and subdirectories ... B-4
Managing a development or test environment ... B-4

Index

xi

Preface

Oracle TimesTen In-Memory Database (TimesTen) is a relational database that is
memory-optimized for fast response and throughput. The database resides entirely in
memory at runtime and is persisted to the file system.

■ Oracle TimesTen In-Memory Database in classic mode, or TimesTen Classic, refers
to single-instance and replicated databases (as in previous releases).

■ Oracle TimesTen In-Memory Database in grid mode, or TimesTen Scaleout, refers
to a multiple-instance distributed database. TimesTen Scaleout is a grid of
interconnected hosts running instances that work together to provide fast access,
fault tolerance, and high availability for in-memory data.

■ TimesTen alone refers to both classic and grid modes (such as in references to
TimesTen utilities, releases, distributions, installations, actions taken by the
database, and functionality within the database).

■ TimesTen Application-Tier Database Cache, or TimesTen Cache, is an Oracle
Database Enterprise Edition option. TimesTen Cache is ideal for caching
performance-critical subsets of an Oracle database into cache tables within a
TimesTen database for improved response time in the application tier. Cache tables
can be read-only or updatable. Applications read and update the cache tables
using standard Structured Query Language (SQL) while data synchronization
between the TimesTen database and the Oracle database is performed
automatically. TimesTen Cache offers all of the functionality and performance of
TimesTen Classic, plus the additional functionality for caching Oracle Database
tables.

■ TimesTen Replication features, available with TimesTen Classic or TimesTen
Cache, enable high availability.

TimesTen supports standard application interfaces JDBC, ODBC, and ODP.NET;
Oracle interfaces PL/SQL, OCI, and Pro*C/C++; and the TimesTen TTClasses library
for C++.

This guide provides:

■ Background information to help you understand how TimesTen Scaleout works.

■ Step-by-step instructions and examples that show how to perform the most
commonly needed tasks to work with TimesTen Scaleout.

Audience
To work with this guide, you should be familiar with TimesTen, SQL (Structured
Query Language), and database operations.

xii

Related documents
TimesTen documentation is available at:
https://docs.oracle.com/database/timesten-18.1.

Oracle Database documentation is also available on the Oracle documentation website.
This may be especially useful for Oracle Database features that TimesTen supports but
does not attempt to fully document, such as OCI and Pro*C/C++.

Conventions
TimesTen Classic is supported on multiple platforms. Unless otherwise indicated, the
information in this guide applies to all supported platforms. The term Windows refers
to all supported Windows platforms. The term UNIX applies to all supported UNIX
platforms. The term Linux is used separately.

TimesTen Scaleout is only supported on the Linux platform. The information in the
Oracle TimesTen In-Memory Database Scaleout User's Guide applies only to the Linux
platform.

See the Oracle TimesTen In-Memory Database Release Notes (README.html) in your
installation directory for specific platform versions supported by TimesTen.

This document uses the following text conventions:

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database.

Convention Meaning

boldface Boldface type indicates graphical user interface elements
associated with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates code, commands, URLs, function
names, attribute names, directory names, file names, text that
appears on the screen, or text that you enter.

italic monospace Italic monospace type indicates a placeholder or a variable in a
code example for which you specify or use a particular value. For
example:

LIBS = -Ltimesten_home/install/lib -ltten

Replace timesten_home with the path to the TimesTen instance
home directory.

[] Square brackets indicate that an item in a command line is
optional.

{ } Curly braces indicate that you must choose one of the items
separated by a vertical bar (|) in a command line.

| A vertical bar separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use
more than one argument on a single command line.

% or $ The percent sign or dollar sign indicates the UNIX shell prompt,
depending on the shell that is used.

xiii

TimesTen documentation uses these variables to identify path, file and user names:

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

The number (or pound) sign indicates the prompt for the UNIX
root user.

Convention Meaning

installation_dir The path that represents the directory where the current release of
TimesTen is installed.

timesten_home The path that represents the home directory of a TimesTen
instance.

release or rr The first two parts in a release number, with or without the dot.
The first two parts of a release number represent a major
TimesTen release. For example, 181 or 18.1 represents TimesTen
Release 18.1.

DSN TimesTen data source name (for the TimesTen database).

Note: TimesTen release numbers are reflected in items such as
TimesTen utility output, file names, and directory names, all of which
are subject to change with every minor or patch release. The
documentation cannot always be up to date. It seeks primarily to
show the basic form of output, file names, directory names, and other
code that may include release numbers. You can confirm the current
release number by looking at Oracle TimesTen In-Memory Database
Release Notes or executing the ttVersion utility.

Convention Meaning

xiv

xv

What's New

This section summarizes new features and functionality of TimesTen Release 18.1 that
are documented in this guide, providing links into the guide for more information.

New features in release 18.1.4.1.0
This release of TimesTen Scaleout adds a new type of backup: staged backups. This
type of backup eliminates the overhead of creating local copies of the checkpoint and
log files and reduces the network traffic of creating a remote copy in the repository.
Staged backups are ideal for when you want to make regular backups on a second site
that is independent to your main site. See "Back up a database into a remote repository
(WAN-friendly)" on page 10-9 for more information.

To increase the performance of database import operations, the ttGridAdmin dbImport
command now enables you to use multiple threads to import database objects with the
use of the -numThreads option. See "Import a database export" on page 10-17 for more
information.

If any request to create a channel between elements hangs due to software issues or
network failures, then all channel create requests could be blocked. You can set a
timeout for how long to wait for a channel create request to a remote element. See "Set
a timeout for create channel requests" on page 11-45 for more information.

New features in release 18.1.3.1.0
As always, you can evict a replica set from the distribution map for your grid with the
ttGridAdmin dbDistribute -evict command. However, now you must make sure
that all pending requests for adding or removing elements are applied before
requesting the eviction of a replica set. That is, you can no longer combine
ttGridAdmin -add or -remove operations with a request to evict. See "Remove and
replace a failed element in a replica set" on page 11-15 for details.

New features in release 18.1.2.1.0
This release of TimesTen Scaleout adds support to importing a client DSN into a
TimesTen Client system on Windows. See "Establishing client connections from a
TimesTen Client" on page 5-9 for further details.

You can attempt to terminate all user connections to a database with ttGridAdmin
dbDisconnect command. See "Unloading a database from memory" on page 5-27 for
more information.

You can attempt a re-synchronization of your data if the data distribution process is
interrupted or fails to complete. Re-synchronization involves executing the

xvi

ttGridAdmin dbDistribute -resync operation. See "Recovering from a data
distribution error" on page 11-7 for full details.

New features in release 18.1.1.2.0
You can specify the TT_DMLCommitOnSuccess hint to enable or disable a commit
operation as part of DML execution. See "Using the TT_CommitDMLOnSuccess hint"
on page 7-10 for more information.

1

Overview of TimesTen Scaleout 1-1

1Overview of TimesTen Scaleout

The following sections describe the features and components of Oracle TimesTen
In-Memory Database in grid mode (TimesTen Scaleout).

■ Introducing TimesTen Scaleout

■ TimesTen Scaleout features

■ TimesTen Scaleout architecture

■ Central configuration of the grid

■ Planning your grid

■ Database connections

■ Comparison between TimesTen Scaleout and TimesTen Classic

Introducing TimesTen Scaleout
TimesTen Scaleout delivers high performance, fault tolerance, and scalability within a
highly available in-memory database that provides persistence and recoverability. As
shown in Figure 1–1, TimesTen Scaleout delivers these features by distributing the data
of a database across a grid of multiple instances running on one or more hosts.

Note: For an overview of Oracle TimesTen In-Memory Database in
classic mode (TimesTen Classic), see "Overview for the Oracle
TimesTen In-Memory Database" in the Oracle TimesTen In-Memory
Database Introduction.

Note: TimesTen Scaleout identifies physical or virtual systems as
hosts. Each host represents a different system. You determine the
name that TimesTen Scaleout uses as identifier for each host.

TimesTen Scaleout features

1-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

Figure 1–1 A grid distributes data across many instances over multiple hosts

TimesTen Scaleout enables you to:

■ Create a grid that is a set of interconnected instances installed on one or more
hosts.

■ Create one or more in-memory, SQL relational, ACID-complaint databases.

■ Distribute the data of each database across the instances in the grid in a highly
available manner using a shared-nothing architecture.

■ Connect applications to your database with full access to all the data, no matter
what the distribution of the data is across the database.

■ Maintain one or more copies of your data. Your choice to maintain more than one
copy protects you from data loss in the event of a single failure.

■ Add or remove instances from your grid to:

– Expand or shrink the storage capacity of your database as necessary.

– Expand or shrink the computing resources of your database to meet the
performance requirements of your applications.

TimesTen Scaleout features
TimesTen Scaleout provides key capabilities, such as:

■ In-memory database

■ Performance

■ Persistence and durability

■ SQL and PL/SQL functionality

■ Transactions

■ Scalability

■ Data transparency

■ High availability and fault tolerance

■ Centralized management

host1 host2 host3

host4 host5 host6

instance

instanceinstance

instance

instance

instance

TimesTen Scaleout features

Overview of TimesTen Scaleout 1-3

In-memory database
A database in TimesTen is a memory-optimized relational database that empowers
applications with the responsiveness and high throughput required by today's
enterprises and industries. Databases fit entirely in physical memory (RAM) and
provide standard SQL interfaces.

TimesTen is designed with the knowledge that all data resides in memory. As a result,
access to data is simpler and more direct resulting in a shorter code path and simpler
algorithms and internal data structures. Thus, TimesTen delivers performance by
optimizing data residency at run time. By managing data in memory and optimizing
data structures and access algorithms accordingly, database operations execute with
maximum efficiency, achieving dramatic gains in responsiveness and throughput.

Performance
TimesTen Scaleout achieves high performance by distributing the data of each
database across instances in the grid in a shared-nothing architecture. TimesTen
Scaleout spreads the work for the database across those instances in parallel, which
computes the results of your SQL statements faster.

Persistence and durability
Databases in TimesTen are persistent across power failures and crashes. TimesTen
accomplishes this by periodically saving to a file system:

■ All data through checkpoint files.

■ Changes made by transactions through transaction log files.

In TimesTen Scaleout, the data in your database is distributed into elements. Each
element keeps its own checkpoint and transaction log files. As a result, the data stored
in each element is independently durable. Each instance in a grid manages one
element of a database. In the event of a failure, an instance can automatically recover
the data stored in its element from the checkpoint and transaction logs files while the
remaining instances continue to service applications.

TimesTen Scaleout also enables you to keep multiple copies of your data to increase
durability and fault tolerance.

You can change the durability settings of a database according to your performance
and data durability needs. For example, you may choose if data is flushed to the file
system with every commit or periodically in batches in order to operate at a higher
performance level.

SQL and PL/SQL functionality
Applications use SQL and PL/SQL to access data in a database. Any developer
familiar with SQL can be immediately productive developing applications with
TimesTen Scaleout.

For more information on SQL, see Chapter 7, "Using SQL in TimesTen Scaleout" in this
guide and the Oracle TimesTen In-Memory Database SQL Reference. For more information
on PL/SQL, see Table 1–9 and the Oracle TimesTen In-Memory Database PL/SQL
Developer's Guide.

TimesTen Scaleout features

1-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

Transactions
TimesTen Scaleout supports transactions that provide atomic, consistent, isolated and
durable (ACID) access to data.

For more information, see Chapter 6, "Understanding Distributed Transactions in
TimesTen Scaleout" in this guide and "Transaction Management" in the Oracle TimesTen
In-Memory Database Operations Guide.

Scalability
TimesTen Scaleout enables you to transparently distribute the data of a database across
multiple instances, which are located on separate hosts, to dramatically increase
availability, performance, storage capacity, processing capacity, and durability. When
TimesTen Scaleout distributes the data of your database across multiple instances, it
uses the in-memory resources provided by the hosts running those instances.

TimesTen Scaleout enables you to add or remove instances in order to control both
performance and the storage capacity of your database. Adding instances expands the
memory capacity of your database. It also improves the throughput of your workload
by providing the additional computing resources of the hosts running those instances.
If your business needs change, then removing instances (and their hosts) enables you
to meet your targets with fewer resources.

Data transparency
While TimesTen Scaleout distributes your data across multiple instances, applications
do not need to know how data is distributed. When an application connects to any
instance in the grid, it has access to all of the data of the database without having to
know where specific data is located.

Knowledge about the distribution of data is never required in TimesTen Scaleout, but
it can be used to tune the performance of your application. You can use this
knowledge to exploit locality where possible. See "Using pseudocolumns" on page 7-9
for more information.

High availability and fault tolerance
TimesTen Scaleout automatically recovers from most transient failures, such as a
congested network. TimesTen Scaleout recovers from software failures by recovering
from checkpoint and transaction log files. Permanent failures, such as hardware
failures, may require intervention by the user.

TimesTen Scaleout provides high availability and fault tolerance when you have
multiple copies of data located across separate hosts. TimesTen Scaleout provides a
feature called K-safety (k) where the value you set for k during the creation of the grid
defines the number of copies of your data that will exist in the grid. This feature
ensures that your database continues to operate in spite of various faults, as long as a
single copy of the data is accessible.

■ To have only a single copy of the data, set k to 1. This setting is not recommended
for production environments.

■ To have two copies of the data, set k to 2. A grid can be fault tolerant with this
setting. Thus, if one copy fails, another copy of the data exists. Ensure you locate
each copy of the data on distinct physical hardware for maximum data safety.

TimesTen Scaleout provides fault tolerance for both software and hardware failures:

TimesTen Scaleout architecture

Overview of TimesTen Scaleout 1-5

■ Software failures are often transient. When one copy of the data is unavailable due
to a software error, SQL statements are automatically redirected to the other copy
of the data (if possible). In the meantime, TimesTen Scaleout synchronizes the data
on the failed system with the rest of the database. TimesTen Scaleout does not
require any user intervention to recover as long as the instances are still running.

■ Hardware failures may eventually require user intervention. In some cases, all that
is required is to restart the host.

TimesTen Scaleout provides a membership service to help resolve failures in a
consistent manner. The membership service provides a consistent list of instances that
are up. This is useful if a network error splits the hosts into two separate groups that
cannot communicate with each other.

Centralized management
You do not need to log onto every host within a grid in order to perform management
activities. Instead, you conduct all management activity from a single instance using
the ttGridAdmin utility. The ttGridAdmin utility is the main utility you use to define,
deploy, and check on the status of each database.

You can also use the ttGridRollout utility or the Oracle SQL Developer GUI (both of
which use the ttGridAdmin utility under the covers to execute all requests) to facilitate
creating, deploying, and managing your grid:

■ If you are creating a grid for the first time, you can use the ttGridRollout utility
to define and deploy your grid. After creation, use either the ttGridAdmin utility
or Oracle SQL Developer to manage your grid.

■ You can create and manage any grid using Oracle SQL Developer, which is a
graphical user interface (GUI) tool that gives database developers a convenient
way to create, manage, and explore a grid and its components. You can also
browse, create, edit, and drop particular database objects; run SQL statements and
scripts; manipulate and export data; and view and create reports. See the Oracle
SQL Developer Oracle TimesTen In-Memory Database Support User's Guide for more
information.

TimesTen Scaleout architecture
One OS user creates and manages a grid. This user is called the instance administrator.
See "Instance administrator" in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide for details on the instance administrator. TimesTen
Scaleout enables the instance administrator to:

■ Configure whether the grid creates one or two copies of your data by using
K-safety.

■ Create one or two management instances through which the grid is managed.

■ Create multiple data instances in which data is contained and managed.

■ Set up a membership service to track which data instances are operational at any
moment. The membership service consists of three or more membership servers.

■ Create one or more databases.

■ Create one or more repositories to store backups for your databases.

TimesTen Scaleout architecture

1-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

Figure 1–2 Grid structure

A database consists of multiple elements, where each element stores a portion of data
from its database. Each data instance contains one element of each database. If you
create multiple databases in the grid, then each data instance contains multiple
elements (one from each database).

For each database you create, you decide which elements participate in data
distribution. Usually, all elements participate, but when you bring online new data
instances, you decide when the elements of those new data instances begin to
participate in database operations. You need to explicitly add elements into the
distribution map of database for them to participate in database operations. Likewise,
you need to remove elements from the distribution map (which stops them from
participating in database operations) before you can remove their data instances from
the grid.

Upon including an element into the distribution map, each element of a database is
automatically placed into a replica set. Each replica set contains the same number of
elements as the value set for K-safety. Elements in the same replica set hold the same
data.

The following sections provide a more detailed description of these components and
their responsibilities within a grid:

■ Instances

■ Installations

■ K-safety

■ Data distribution

Client
applications

Membership servers

External
Network

Internal
Network

Management
instances

Data
instances

Instance
administrator

Direct-mode
applications

TimesTen Scaleout architecture

Overview of TimesTen Scaleout 1-7

■ Backups

■ Internal and external networks

Instances
A grid uses instances to manage, contain, and distribute one or more copies of your
data. An instance is a running copy of the TimesTen software. When you create an
instance on a host, you associate it with a TimesTen installation. An installation can be
used by a single instance or shared by multiple instances. Each instance normally
resides on its own host to provide maximum data availability and as a safeguard
against data loss should one host fail.

Each instance has an associated instance administrator (who created the instance) and
an instance home. The instance home is the location for the instance on your host. The
same instance administrator manages all instances in the grid.

TimesTen Scaleout supports two types of instances:

■ Management instances

■ Data instances

Management instances
Management instances control a grid and maintain the model, which is the central
configuration of a grid. To ensure that the administrator can easily control a grid, all
management activity is executed through a single management instance using the
ttGridAdmin utility.

TimesTen Scaleout enables you to create two management instances to provide for
high availability and guard against a single management instance failure that could
impede grid management. Consider having two management instances a best practice
for a production environment. Once created, TimesTen Scaleout configures both
management instances in an active standby configuration. You always execute all
management operations through the active management instance. The standby
management instance exists purely as a safeguard against failure of the active
management instance.

If you create two management instances, as shown in Figure 1–3, then all information
used by the active management instance is automatically replicated to the standby
management instance. Thus, if the active management instance fails, you can promote
the standby management instance to become the new active management instance
through which you continue to manage the grid.

Note: See "Central configuration of the grid" on page 1-16 for more
details on the model.

Note: See "Managing failover for the management instances" on
page 11-33 for details on how TimesTen Scaleout replicates
information for the management instances.

TimesTen Scaleout architecture

1-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

Figure 1–3 Administrator manages the grid through management instances

Consider that:

■ You can manage a grid through a single management instance without a standby
management instance. However, it is not recommended for production
environments.

■ If both management instances fail, databases in the grid continue to operate. Some
management operations are unavailable until you restart at least one of the
management instances.

Data instances
Data instances store one element per database in the grid. Data instances execute SQL
statements and PL/SQL blocks. A grid distributes the data within each database
across data instances. You manage all data instances through the active management
instance, as shown in Figure 1–4.

active
management instance

standby
management instance

instance
administrator

Internal
Network

TimesTen Scaleout architecture

Overview of TimesTen Scaleout 1-9

Figure 1–4 Management instances manage a grid of multiple data instances

Installations
Instances need an installation of a TimesTen distribution to operate. An installation is
read-only and can be used locally or shared across multiple instances. You create the
installation of the initial management instance by extracting a TimesTen distribution
on any given location on the system defined as the host of the management instance.
TimesTen Scaleout can locally create any subsequent installation on the rest of the
hosts in the grid and associate the new installations with the instances run by those
hosts. All instances that run on the same host may share the same installation.

As long as an installation can be accessed by multiple hosts that installation can be
shared by instances in those hosts. However, sharing an installation on a shared file
server, such as NFS, between multiple instances on separate hosts may reduce
availability. If the shared network storage or the network connecting all of the hosts to
the NFS server fails or has performance issues then all instances sharing that
installation are impacted. Thus, while sharing an installation on a shared file server
across instances may be a valid option for a development environment, you may want
to evaluate whether this is advisable for a production environment.

K-safety
You configure your grid to create either single or multiple copies of the data of each
database within your grid. TimesTen Scaleout uses its implementation of K-safety (k)
to manage one or multiple copies of your data. You specify the number of copies you
want of your data by setting k to 1 or 2 when you create the grid.

You improve data availability and fault tolerance when you specify that the grid
creates two copies of data located across separate hosts.

■ If you set k to 1, TimesTen Scaleout stores a single copy of the data (which is not
recommended for production environments).

When k is set to 1, then the following may occur if one or more elements fail:

– Any data contained in the element is unavailable until the element recovers.

– Any data contained in the element is lost if the element does not recover.

active
management instance

standby
management instance

instance
administrator

Internal
Network

data
instances

TimesTen Scaleout architecture

1-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

Even though there is only a single copy of the data, the data is still distributed
across separate elements to increase capacity and data accessibility.

■ If you set k to 2, then TimesTen Scaleout stores two copies of the data. A grid can
tolerate multiple faults when you have two copies of the data.

If one element fails, the second copy of the data is accessed to provide the
requested data. K-safety enables availability to your data as long as one of the
copies of the data is available. Where possible, locate each copy of the data on
distinct physical hardware for maximum data safety.

The following sections describe how multiple copies are managed and organized.

■ Understanding replica sets

■ Understanding data spaces

■ Assigning hosts to data space groups

Understanding replica sets
Each element of a database is automatically placed into a replica set depending on the
value of k, where:

■ If you set k to 1, then each replica set contains a single element.

■ If you set k to 2, then each replica set contains two elements (where each element is
an exact copy of the other element in the replica set).

Thus, each replica set contains the same number of elements as the value set for k.

When k is set to 2, any change made to the data in one element is also made to the
other element in the replica set to keep the data consistent on both elements in the
replica set at all times. Because of the transparency capabilities of TimesTen Scaleout,
you can initiate transactions on any element, even if the requested data is not
contained in that element or if the requested data spans multiple replica sets. If an
element fails, then the other element in the replica set is accessed to provide the
requested data. All data in the database is available as long as one element in each
replica set is functioning.

Understanding data spaces
Each database consists of a set of elements, where each element stores a portion of data
from its database. The grid organizes the elements for each database into data spaces.

Each database consists of either one or two data spaces. When k is set to 2, the
elements within each replica set are assigned to separate data spaces.

Figure 1–5 shows how two copies of the data are organized within two data spaces,
where each data space contains the elements that make up a single copy of the data of
the database. One copy is contained within data space 1 and the second copy is
contained in data space 2. There are three replica sets and the elements of each replica
set are assigned to a separate data space. Thus, each element in data space 1 is
identical to its partner element in data space 2.

TimesTen Scaleout architecture

Overview of TimesTen Scaleout 1-11

Figure 1–5 Two copies, each in own data space

As your needs grow or diminish, you may add or remove replica sets to a grid. When
you add data instances, the grid automatically creates elements for each database.
However, the data is not automatically redistributed when you add or remove a data
instance. You decide when it is appropriate to assign an element to a replica set and
redistribute the data across all the elements in each data space.

Assigning hosts to data space groups
You decide how the data is physically located by assigning hosts into data space
groups that represents the physical organization of your grid. As discussed in
"Understanding data spaces" on page 1-10, copies of the data are organized logically
into data spaces. Each data space should use separate physical resources. Shared
physical resources can include similar racks, the same power supply, or the same
storage. Be aware that if all elements in a single replica set are stored on hosts that
share a physical component, then data stored in that replica set becomes unavailable if
that shared physical component fails.

TimesTen Scaleout requires you to assign all hosts that will run data instances into
data space groups. When using K-safety, there are k copies of the data and the same
number of data space groups (which are numbered from 1 to k). You should assign
hosts that share the same physical resources into the same data space group. The
elements in data instances running on hosts that are assigned to the same data space
group are in the same data space. Each data space contains a full copy of all data in the
database.

If you ensure that the hosts in one data space group do not share physically resources
with the hosts in another data space group, then hosts in separate data space groups
are less likely to fail simultaneously. This scenario makes it likely that all data in the
database is available, even if a single hardware failure takes down multiple hosts. For
example, you may ensure that all of the hosts in one data space group are plugged into
a power supply that is separate from the power supply for the hosts in another data
space group. If that is the case, pulling one plug does not power down both hosts in a
single replica set, thus making some data unavailable.

data space 2data space 1

instance 1

replica set 1

replica set 2

replica set 3

instance 2

instance 3 instance 4

instance 5 instance 6

TimesTen Scaleout architecture

1-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

Figure 1–6 shows a grid configured where k is set to 2, so the grid contains two data
space groups. There are two racks, each with two power sources and three hosts. Three
hosts have been assigned to each data space group. TimesTen Scaleout creates replica
sets such that such that one element in each replica set is in each data space group.

Figure 1–6 Hosts organized into data space groups

The process for assigning hosts to a data space group includes deciding how you will
physically separate the hosts supporting the data spaces.

■ If the physical topology of your grid is simple, you can assign each host yourself to
each data space group.

■ If the physical topology of your grid is complex, TimesTen Scaleout can
recommend an appropriate data space group for each host based on the physical
resources shared among those hosts by the use of physical groups.

Describe your physical topology with physical groups If you have a complex configuration
where analyzing the physical dependencies make it difficult to assign multiple hosts to
separate data space groups, you can ask TimesTen Scaleout to recommend how to
assign your hosts to data space groups. In order to do this, TimesTen Scaleout needs to
know the physical topology of where your hosts are co-located or those that use the
same resources. You can describe the physical topology of your grid where each host is
identified with its physical dependencies using physical groups. The physical group
informs TimesTen Scaleout what hosts share the same physical resources. Hosts
grouped into the same physical group are likely to fail together.

For example, multiple hosts can be grouped if they:

Note: Associating your host within a physical groups is optional.

host 8

da
ta

 s
pa

ce
 g

ro
up

 2

replica set 1

replica set 2

replica set 3

host 6

host 4

instance

host 7

host 5

host 3

instance

instanceinstance

instanceinstance

da
ta

 s
pa

ce
 g

ro
up

 1

rack 2

power 3

power 4

rack 1

power 1

power 2

TimesTen Scaleout architecture

Overview of TimesTen Scaleout 1-13

■ Use the same power supply.

■ Reside in the same rack consisting of several shelves.

■ Reside on the same shelf.

Once all of your hosts are assigned to physical groups, TimesTen Scaleout can suggest
which hosts should be assigned to each data space group to minimize your risk. See
"Description of the physical topography of the grid" on page 4-20 for more details on
assigning hosts to a physical group.

Data distribution
You can create one or more databases within a grid. Each database is independent,
with separate users, schemas, tables, persistence, and data distribution. TimesTen
Scaleout manages the distribution of the data according to the defined distribution
map and the distribution scheme for each table.

■ Defining the distribution map for a database

■ Defining the distribution scheme for tables

Defining the distribution map for a database
You decide on the number of data instances in a grid, which dictates the maximum
number of elements and replica sets for any one database. Each data instance hosts one
element of each database in the grid. Thus, the data instances in a grid can manage one
or more databases simultaneously. If you create multiple databases in the grid, then
each data instance will contain multiple elements (one element from each database).

Each database consists of multiple replica sets, where each replica set stores a portion
of data from its database. You define which elements of the available data instances
store data of the database with a distribution map. Once the distribution map is
defined and applied, TimesTen Scaleout automatically assigns each element to a
replica set and distributes the data to its corresponding replica set, where each element
communicates with other elements of different replica sets to provide a single database
image. The details of how data is distributed may vary for each table of a database
based on the distribution scheme of the table.

Once you add the elements of the data instances that will manage and contain the data
of each database to the distribution map, you can explicitly request that the data be
distributed across the resulting replica sets.

As the needs of your business change, you can increase the capacity of a database by
increasing the number of replica sets in the grid. To can accomplish this by:

1. Adding new hosts to the grid. The number of hosts you add must be proportional
to the number of replica sets you want to add and the value of K-safety. For
example, if you want to add another replica set to a database in a grid with k set to
2, you need to add a host for data space group 1 and another for data space group
2.

2. Creating an installation to support data instances on each new host.

3. Creating a data instance on each new host.

Note: TimesTen Scaleout stores the composition of the distribution
map, or how every data instance associates with each other, in a
partition table that is managed by the ttGridAdmin utility.

TimesTen Scaleout architecture

1-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

4. Adding the elements of the new data instances to the distribution map of each
database you want to increase its capacity. TimesTen Scaleout automatically
creates new replica sets as appropriate.

5. Redistributing the data across all replica sets.

When you add new data instances or remove existing data instances to the grid,
the grid does not automatically re-distribute the data stored in the database across
the replica sets of those new or remaining data instances. Instead, you decide
when is the appropriate time to re-distribute the data across the existing data
instances. Redistribution can negatively impact your operational database. You
should redistribute in small increments to minimize the impact. The larger the
number of data instances that you have, the less of an impact it is to incrementally
add or remove a single replica set.

If you need to replace a data instance with a new data instance in the same data space
group, this action does not require a redistribution of all data.

To reduce your capacity, remove the data instances that manage a replica set from the
distribution map and redistribute the data across the remaining data instances in the
grid.

Defining the distribution scheme for tables
TimesTen Scaleout distributes the data in a database across replica sets. All tables in a
database are present in every replica set. You define the distribution scheme for each
table in a database in the CREATE TABLE statement. The distribution scheme describes
how the rows of the table are distributed across the grid.

How the data is distributed is defined by one of the following distribution schemes
specified during table creation.

■ Hash: The data is distributed based on the hash of the primary key or a composite
of multiple columns that are specified by the user. A given row is present in a
replica set chosen by the grid. Rows are evenly distributed across the replica sets.
This is the default method as it is appropriate for most tables.

See Figure 1–7 for an example of a table, terry.customers, with a hash
distribution scheme. Each element belongs to a different replica set.

Figure 1–7 Table with hash distribution

■ Reference: Distributes the data of a child table based on the location of the parent
table that is identified by the foreign key. That is, a given row of a child table is
present in the same replica set as its parent table. This distribution scheme
optimizes the performance of joins by distributing related data within a single
replica set. Thus, this distribution scheme is appropriate for tables that are
logically children of a single parent table as parent and child tables are often
referenced together in queries.

element

terry.customers

1 Danette Acosta ...

5 Christian Aguilar ...

7 Rita Alexander ...

cust_id* first_name last_name ...

...

element

terry.customers

6 Lorenzo Alexander ...

8 Karri Allen ...

9 Wyatt Allen ...

cust_id* first_name last_name ...

...

element

terry.customers

2 Fernando Acosta ...

3 Criselda Adams ...

4 Elsie Aguilar ...

cust_id* first_name last_name ...

...

TimesTen Scaleout architecture

Overview of TimesTen Scaleout 1-15

See Figure 1–8 for an example of a child table, accounts, with a reference
distribution scheme to a parent table, customers. Each element belongs to a
different replica set.

Figure 1–8 Table with reference distribution

■ Duplicate: Distributes full identical copies of data to all the elements of a database.
That is, all rows are present in every element. This distribution scheme optimizes
the performance of reads by storing identical data in every data instance. This
distribution scheme is appropriate for tables that are relatively small, frequently
read, and infrequently modified.

See Figure 1–9 for an example of a table, account_type, with a duplicate
distribution scheme. Each element belongs to a different replica set.

Figure 1–9 Table with duplicate distribution

Backups
TimesTen Scaleout enables you to create backups of the databases in your grid and
restore them to the same grid or another grid with a similar topology. TimesTen
Scaleout also enables you to export your databases to a grid with a different topology.
You define a repository as a location for your database backups, exports, and
collections of log files. Multiple grids may use the same repository.

Internal and external networks
For most production environments, TimesTen Scaleout requires a single private
internal network and at least one external network.

■ Internal network: Instances in a grid communicate with each other over a single
internal network using the TCP protocol. In addition, instances communicate with
membership servers through this network. Membership servers use this network
to communicate among themselves.

element

terry.accounts

1 9132244898 ... 1

acct_id* phone ... cust_id

5 3132244902 ... 5

7 5202244904 ... 7

...

terry.customers

1 Danette Acosta ...

5 Christian Aguilar ...

7 Rita Alexander ...

cust_id* first_name last_name ...

...

element

terry.accounts

6 6302244903 ... 6

acct_id* phone ... cust_id

8 4022244905 ... 8

9 3132244906 ... 9

...

terry.customers

6 Lorenzo Alexander ...

8 Karri Allen ...

9 Wyatt Allen ...

cust_id* first_name last_name ...

...

element

terry.accounts

2 9522244899 ... 2

acct_id* phone ... cust_id

3 2122244900 ... 3

4 9372244901 ... 4

...

terry.customers

2 Fernando Acosta ...

3 Criselda Adams ...

4 Elsie Aguilar ...

cust_id* first_name last_name ...

...

element

terry.account_type

I Individual

type* description

F Family

H Home

B Business

element

terry.account_type

I Individual

type* description

F Family

H Home

B Business

element

terry.account_type

I Individual

type* description

F Family

H Home

B Business

Central configuration of the grid

1-16 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ External networks: Applications use the external network to connect to data
instances to access a database. Applications do not need external network access to
management instances or membership servers.

See "Network requirements" on page 2-8 for more information.

Central configuration of the grid
TimesTen Scaleout maintains a single central configuration of the grid. This
configuration is called the model. The model represents the logical topology of a grid.
The model contains a set of objects that represent components of a grid, such as
installations, hosts, database definitions, and instances.

You can have several different versions of the model. Each time you apply changes to
the model, the grid saves the model as a version. Only one version of the model can be
active in the grid at any given time.

■ The latest model is the model within which you are making changes, but has not
yet been applied. If you are in the process of modifying a model, then this version
describes a future desired structure of a grid that only becomes the current model
when you apply it.

■ The current version of the model (the model that was most recently applied)
always describes the current structure of the grid.

■ Previous model versions describe what the grid structure used to be.

Perform the following when creating a desired structure for your grid:

1. You design the desired structure of your grid by adding or removing grid
components (such as installations, hosts, and instances) to the latest model.

2. Once you complete the desired structure of a model, you apply the model to cause
these changes to take effect. This version of the model becomes the current version
of the model.

3. After you apply the model, TimesTen Scaleout attempts to implement the current
model in the operational grid.

It is not guaranteed that all components of the current model are running. For
example, if your grid has 10 hosts configured, but only 6 of them are running at
the moment, the definition of all 10 is still in the model.

Every time you use the ttGridAdmin utility to add a grid component, such as an
installation, host or instance, you add model objects corresponding to these grid
components to the model. Each model object specifies the attributes and relationships
of the grid component.

Some model objects have relationships to other model objects. Figure 1–10 shows how
the relationship is stored between model objects. That is, the host, installation and
instances have a relationship where:

■ The installation model object points to the host model object on which it is
installed.

■ Both the management instance model object and the data instance model object
point to an installation model object of the installation that the instance will use
and a host model object on which the instance is installed.

Figure 1–10 shows two different types of relationships between the hosts, installation,
and instances that is stored within the model.

Planning your grid

Overview of TimesTen Scaleout 1-17

■ You install a single installation on a host with one data instance, where the data
instance points to the installation and to the host on which it exists.

■ You create multiple data instances on a single host where they all share a single
installation. Each data instance points to the same host and the same installation.
The installation points to the host on which it is installed. To increase availability,
avoid using multiple data instances on a single host.

Figure 1–10 Example of a model

Any time you add or remove model objects from the model, these changes do not
immediately impact a grid until you explicitly apply these changes. After you apply
the changes, TimesTen Scaleout implements the current model into the operational
grid. For example, if you add a new installation model object and data instance model
object to the latest version of the model, applying the changes to the model performs
all of the necessary operations to create and initialize both the installation and the data
instance in that host.

Planning your grid
Before you configure a grid and database in TimesTen Scaleout, gather the information
necessary for creating a grid:

■ Determine the number of hosts and membership servers

■ Define the network parameters of each host and membership server

■ Define the locations for the installation directory and instance home of each
instance

■ Ensure you have all the information you need to deploy a grid

Determine the number of hosts and membership servers
You need to determine how many hosts and membership servers you are going to use
based on these considerations:

■ Membership servers: In a production environment, you need an odd number of
membership servers greater than or equal to three to ensure a majority quorum in
case one or more membership servers fail. You should ensure that:

installation

instance

host

Management instance on a single
host that uses its own installation

installation

instance

instance

instance
host

Multiple data instances on a single host
where each shares a single installation

Planning your grid

1-18 Oracle TimesTen In-Memory Database Scaleout User's Guide

– Each membership server uses independent physical resources (such as power,
network nodes, and storage) from each other.

– Membership servers do not run on the same system as hosts with data
instances.

■ Management instances: You need two management instances to ensure some
measure of availability to the configuration and management capabilities of your
grid. Ensure that hosts with management instances use independent physical
resources (such as power, network nodes, and storage) from each other.

■ Data instances: You determine the number of hosts you require for data instances
based on the level of K-safety and the number of replica sets. For example, if you
set k to 2 and you decide to have three replica sets, you need six data instances.

Also, the level of K-safety determines how many data space groups or
independent physical locations you must have for your hosts. Ensure that the
hosts with data instances assigned to data space group 1 use independent physical
resources than hosts with data instances that are assigned to data space group 2.

Figure 1–11 shows an example of a setup of three membership servers, one repository,
two management instances, and six data instances. The example co-locates a
membership server with repository for a total of 11 hosts.

Figure 1–11 Example of a grid

Internal
network

External
network

Client
applications

Instance
administrator

ms_host1

host4 host5

host2host1

host3 host7 host8host6

ms_host3ms_host2

Data instances

Membership servers RepositoryManagement instances

Planning your grid

Overview of TimesTen Scaleout 1-19

Figure 1–12 shows how the hosts with data instances in this example are organized
into two data space groups for a grid with k set to 2. The hosts of each data space
group share a rack.

Figure 1–12 Example of hosts organized into data space groups

See Table 1–1 for an example of how you might assign the hosts with data instances
into data space groups based on the physical resources they share.

Table 1–1 Systems and their roles

Host name
Membership
server Repository

Management
instance Data instance

Data space
group

Physical
resources

ms_host1 Yes Yes N/A N/A N/A Rack 1

ms_host2 Yes N/A N/A N/A N/A Rack 2

ms_host3 Yes N/A N/A N/A N/A Rack 2

host1 N/A N/A Yes N/A N/A Rack 1

host2 N/A N/A Yes N/A N/A Rack 2

host3 N/A N/A N/A Yes 1 Rack 1

host4 N/A N/A N/A Yes 2 Rack 2

host5 N/A N/A N/A Yes 1 Rack 1

host 8

da
ta

 s
pa

ce
 g

ro
up

 2

replica set 1

replica set 2

replica set 3

host 6

host 4

instance

host 7

host 5

host 3

instance

instanceinstance

instanceinstance

da
ta

 s
pa

ce
 g

ro
up

 1

rack 2rack 1

Planning your grid

1-20 Oracle TimesTen In-Memory Database Scaleout User's Guide

Define the network parameters of each host and membership server
Ensure that you know the network addresses and TCP/IP ports that you expect each
host and membership server to use. See "Network requirements" on page 2-8 for
details on using internal and external networks in your grid.

See Table 1–2 for an example of the internal and external addresses of the topology
described in Table 1–1.

You need to consider which TCP/IP ports each instance will use, especially if your
setup is behind a firewall. You must define the TCP/IP ports for the following:

■ Membership servers: You must define three port numbers (client, peer, and leader)
for each membership server. See Table 3–1, " zoo.cfg configuration parameters" for
details on these port numbers.

■ Management instances: There are three port numbers (daemon, server, and
management) for each management instance. TimesTen Scaleout sets the default
values for the daemon, server, and management ports if you do not specify them.

■ Data instances: There are two port numbers (daemon and server) for each data
instance. TimesTen Scaleout sets the default values for the daemon and server
ports if you do not specify them.

host6 N/A N/A N/A Yes 2 Rack 2

host7 N/A N/A N/A Yes 1 Rack 1

host8 N/A N/A N/A Yes 2 Rack 2

Table 1–2 Internal and external addresses

Host name Internal address External address

ms_host1 ms-host1 N/A

ms_host2 ms-host2 N/A

ms_host3 ms-host3 N/A

host1 int-host1 N/A

host2 int-host2 N/A

host3 int-host3 ext-host3.example.com

host4 int-host4 ext-host4.example.com

host5 int-host5 ext-host5.example.com

host6 int-host6 ext-host6.example.com

host7 int-host7 ext-host7.example.com

host8 int-host8 ext-host8.example.com

Note: All systems must be part of the same private network. It is
recommended that you create an external network for applications
outside of your private network to connect to your database.

Table 1–1 (Cont.) Systems and their roles

Host name
Membership
server Repository

Management
instance Data instance

Data space
group

Physical
resources

Planning your grid

Overview of TimesTen Scaleout 1-21

If a firewall is in place, you must open all the ports mentioned above plus the local
ephemeral ports for the internal network, except the server ports assigned to each
instance. The server ports assigned to each instance must be open for the external
network.

See Table 1–3 for an example of the TCP/IP ports assigned to each membership server
or instance. The example uses the default values for each port.

Define the locations for the installation directory and instance home of each instance
You must define the locations for the installation directory and the instance home that
you expect your grid to use. Defining the locations for these grid objects includes
defining the name TimesTen Scaleout uses to identify them. Consider these while
defining these locations:

■ In the case of the instance home, TimesTen Scaleout adds the instance name to the
defined location. For example, if you define /grid as the location for an instance
named instance1, the full path for the instance home of that instance becomes
/grid/instance1.

■ A similar behavior applies for installation objects. Instead of adding the
installation name, TimesTen Scaleout adds the release version to the defined
location. For example, if you define /grid as the location of the installation, the
full path for the installation becomes /grid/tt18.1.4.1.0.

TimesTen Scaleout creates the locations you define for the installation directory and
instance home if they do not exist already.

See Table 1–4 for an example of the locations for the membership server installation.
You must create these locations on their respective systems prior to installing the
membership server.

Table 1–3 TCP/IP ports

Host name
Membership server
(client/peer/leader)

Management instance
(daemon/server/management)

Data instance
(daemon/server)

ms_host1 2181 / 2888 / 3888 N/A N/A

ms_host2 2181 / 2888 / 3888 N/A N/A

ms_host3 2181 / 2888 / 3888 N/A N/A

host1 N/A 6624 / 6625 / 3754 N/A

host2 N/A 6624 / 6625 / 3754 N/A

host3 N/A N/A 6624 / 6625

host4 N/A N/A 6624 / 6625

host5 N/A N/A 6624 / 6625

host6 N/A N/A 6624 / 6625

host7 N/A N/A 6624 / 6625

host8 N/A N/A 6624 / 6625

Table 1–4 installation of the membership servers

Host name Installation location

ms_host1 /grid/membership

ms_host2 /grid/membership

Planning your grid

1-22 Oracle TimesTen In-Memory Database Scaleout User's Guide

See Table 1–5 for an example of the installation directory and instance home locations
for the management instances.

See Table 1–6 for an example of the installation directory and instance home locations
for the data instances.

See Table 1–7 for an example of the location for the repository.

Ensure you have all the information you need to deploy a grid
To verify that you have all the information you need before you start deploying your
grid, answer the questionnaire provided in Table 1–8.

ms_host3 /grid/membership

Table 1–5 installation directory and instance home of the management instances

Host name Installation name Installation directory Instance name Instance home

host1 installation1 /grid/tt18.1.4.1.0 instance1 /grid/instance1

host2 installation1 /grid/tt18.1.4.1.0 instance1 /grid/instance1

Table 1–6 installation directory and instance home of the data instances

Host name Installation name Installation directory Instance name Instance home

host3 installation1 /grid/tt18.1.4.1.0 instance1 /grid/instance1

host4 installation1 /grid/tt18.1.4.1.0 instance1 /grid/instance1

host5 installation1 /grid/tt18.1.4.1.0 instance1 /grid/instance1

host6 installation1 /grid/tt18.1.4.1.0 instance1 /grid/instance1

host7 installation1 /grid/tt18.1.4.1.0 instance1 /grid/instance1

host8 installation1 /grid/tt18.1.4.1.0 instance1 /grid/instance1

Table 1–7 Repository

Host name Repository location

ms_host1 /grid/repository

Table 1–8 Questionnaire

Question Source of information

What will your K-safety setting be? "K-safety" on page 1-9

How many membership servers will you have? "Determine the number of hosts and
membership servers" on page 1-17 and
Chapter 3, "Setting Up the Membership
Service"

How many management instances will you have? "Management instances" on page 1-7

How many replica sets will you have? "Data instances" on page 1-8 and
"Understanding replica sets" on
page 1-10

Table 1–4 (Cont.) installation of the membership servers

Host name Installation location

Database connections

Overview of TimesTen Scaleout 1-23

Database connections
You can access a database either with a direct connection from a data instance or a
client/server connection over an external network.

■ Direct connection: An application connects directly to a data instance of a database
that they specify.

An application using a direct connection runs on the same system as the database.
A direct connection provides extremely fast performance as no inter-process
communication (IPC) of any kind is required. However, if the specified data
instance is down, the connection is not forwarded to another data instance and an
error is returned.

■ Client/server connection: An application using a client/server connection may run
on a data instance or on any host with access to the external network. Client
applications are automatically connected to a working data instance.

All exchanges between client and server are sent over a TCP/IP connection. If the
client and server reside on separate hosts in the internal network, they
communicate by using sockets and TCP/IP.

If a data instance fails, TimesTen Scaleout automatically re-connects to another
working data instance. You can configure options to control this process, if
necessary.

Where will you store your database backups? "Backups" on page 1-15 and "Define the
locations for the installation directory
and instance home of each instance" on
page 1-21

How many hosts are you going to use for your grid? "Determine the number of hosts and
membership servers" on page 1-17

Which of those hosts are going to run management
instances?

"Management instances" on page 1-7

Which of those hosts are going to run data instances? "Data instances" on page 1-8

What will be the data space group assignments of
each host with a data instance?

"Assigning hosts to data space groups"
on page 1-11

How will you organize your hosts and membership
servers across independent physical resources?

"Assigning hosts to data space groups"
on page 1-11

Will you use a single network or separate internal
and external networks for your grid?

"Internal and external networks" on
page 1-15

What is the DNS name or IP address of each host
and membership server?

"Define the network parameters of each
host and membership server" on
page 1-20

Which TCP/IP ports will you use for each instance? "Define the network parameters of each
host and membership server" on
page 1-20

What will be the location for the installation files of
each membership server?

"Define the locations for the installation
directory and instance home of each
instance" on page 1-21

What will be the locations for the installation
directory and instance home of each instance?

"Define the locations for the installation
directory and instance home of each
instance" on page 1-21

Table 1–8 (Cont.) Questionnaire

Question Source of information

Comparison between TimesTen Scaleout and TimesTen Classic

1-24 Oracle TimesTen In-Memory Database Scaleout User's Guide

If your workload only requests data from the local element, then a direct connection is
the best method for your application as this provides faster access than a client/server
connection. However, if your workload entails that your application may need to
switch between data instances for whichever data instance is readily available and
retrieves data from the multiple elements, then a client/server connection may
provide better throughput.

Comparison between TimesTen Scaleout and TimesTen Classic
The term TimesTen alone, without TimesTen Scaleout or Classic, typically applies to
both single-instance and multiple-instance, such as in references to TimesTen utilities,
releases, distributions, installations, actions taken by the database, and functionality
within the database.

■ TimesTen Scaleout refers to TimesTen In-Memory Database in grid mode.
TimesTen Scaleout is a multiple-instance environment that contains distributed
databases.

■ TimesTen Classic refers to TimesTen In-Memory Database in classic mode. Classic
mode is a single-instance environment and databases as in previous releases.

– The Oracle TimesTen Application-Tier Database Cache (TimesTen Cache)
product combines the responsiveness of the TimesTen Classic with the ability
to cache subsets of an Oracle database for improved response time in the
application tier.

TimesTen Scaleout supports and includes most of the features of TimesTen Classic; it
does not support any of the features of the TimesTen Cache. The following list
describes what features are not supported in TimesTen Scaleout from both of the
previous products:

Note: If desired, you can specify that a client/server connection
connects to a specific data instance.

Note: For more information about TimesTen Classic features, see the
Oracle TimesTen In-Memory Database Operations Guide.

Table 1–9 TimesTen Classic features that are unsupported in TimesTen Scaleout

TimesTen Classic feature

Supported in
TimesTen
Scaleout (Y/N) Description

Cache Connect option for
caching data from the Oracle
database

N None of the features documented in the Oracle TimesTen
Application-Tier Database Cache User's Guide are supported for
TimesTen Scaleout. However, TimesTen Scaleout provides
facilities for loading data from an Oracle Database.

Replication: both the active
standby pair and classic
replication schemes

N Data protection and fault tolerance can be provided through
the K-safety feature of TimesTen Scaleout. Thus, none of the
features documented in the Oracle TimesTen In-Memory
Database Replication Guide are supported for TimesTen
Scaleout. See "K-safety" on page 1-9 for more details.

Bitmap indexes N

LOB support N TimesTen Scaleout does not support LOB columns in tables.

Column-based compression N Column-based compression within tables

Comparison between TimesTen Scaleout and TimesTen Classic

Overview of TimesTen Scaleout 1-25

How supported TimesTen features are documented in this book
Throughout the Oracle TimesTen In-Memory Database Scaleout User's Guide, the
TimesTen Classic features that are included within TimesTen Scaleout are documented
as follows:

Aging policy for tables N

RAM policy N TimesTen Scaleout supports the manually loading and
unloading of the database through the ttGridAdmin utility by
system administrators.

X/Open XA standard and the
Java Transaction API (JTA)

N

TimesTen Classic Transaction
Log API (XLA) and the
JMS/XLA Java API

N

Oracle Clusterware N

Index Advisor N

Online upgrade N

PL/SQL Y While PL/SQL anonymous blocks are fully supported,
user-created stored procedures, packages and functions are
not supported. You can, however, call procedures and invoke
functions from TimesTen-provided packages from your
anonymous blocks.

TimesTen Scaleout does not support SQL statements that
create, alter or drop functions, packages, procedures.

SQL statements Y TimesTen Scaleout does not support:

■ MERGE

■ Since the Cache Connect feature, active standby pair
replication scheme, and classic replication schemes are
not supported, neither are the data definition language
(DDL) statements that create these objects.

TimesTen Scaleout partially supports:

■ ROWID data type

The semantics of ROWID are different in TimesTen Classic
than in TimesTen Scaleout. For details, see Chapter 7,
"Using SQL in TimesTen Scaleout" in this guide and
"ROWID data type" in the Oracle TimesTen In-Memory
Database SQL Reference.

■ CREATE [ASYNCHRONOUS] MATERIALIZED VIEW

The CREATE MATERIALIZED VIEW statement is supported
in a limited capacity. See "CREATE MATERIALIZED
VIEW" in the Oracle TimesTen In-Memory Database SQL
Reference for details.

■ Global temporary tables do not support any form of
distribution. When you create a global temporary table,
you cannot use any of the DISTRIBUTE BY clauses. Global
temporary tables are materialized only in the element
where the connection is established.

Table 1–9 (Cont.) TimesTen Classic features that are unsupported in TimesTen Scaleout

TimesTen Classic feature

Supported in
TimesTen
Scaleout (Y/N) Description

Comparison between TimesTen Scaleout and TimesTen Classic

1-26 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ If the feature is supported completely as it is within TimesTen Classic, this book
provides a small section describing the feature with a cross-reference to the
description in other TimesTen books, such as the Oracle TimesTen In-Memory
Database Operations Guide, Oracle TimesTen In-Memory Database SQL Reference and
Oracle TimesTen In-Memory Database Reference.

■ If the feature is used as a base with additional support provided for the unique
requirements of TimesTen Scaleout, then the new addition is described and a
cross-reference link is provided to the feature in other TimesTen books, such as the
Oracle TimesTen In-Memory Database Operations Guide, Oracle TimesTen In-Memory
Database SQL Reference and Oracle TimesTen In-Memory Database Reference.

■ If the feature is not supported, no cross-reference is provided in this book.

2

Prerequisites and Installation of TimesTen Scaleout 2-1

2Prerequisites and Installation of TimesTen
Scaleout

This chapter focuses on the prerequisites needed to successfully deploy TimesTen
Scaleout. These sections discuss the requirements for each host used in the grid:

■ General prerequisites

■ Operating system prerequisites

■ Network requirements

■ Installing TimesTen Scaleout

■ Setting passwordless SSH

General prerequisites
TimesTen Scaleout is only supported on the Linux platform. For the supported Linux
platform versions, see the "Platforms and configurations" section in the documentation
library. For the most recent information about your particular TimesTen release, see the
Oracle TimesTen In-Memory Database Release Notes (README.html) in your installation
directory.

Perform these steps on all hosts that will run the management and data instances and
membership servers for the grid:

■ Install the same operating system version and release on each host.

■ Configure all hosts in the same internal network.

When you set up your network, you must create a single internal network for all
the grid components to communicate with each other. While clients may use the
same internal network to connect to instances, you may wish to create an external
network for client connections.

■ Install and configure NTP (Network Time Protocol). Clocks must be synced.

■ Ensure all instances in the grid can communicate with all other instances in the
grid over the internal network on any port.

■ To avoid problems before and after installation, confirm your file system has
sufficient space. (See "Storage provisioning for TimesTen" in Oracle TimesTen
In-Memory Database Operations Guide for more information.)

Operating system prerequisites
These sections discuss the operating system prerequisites:

Operating system prerequisites

2-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Understanding the TimesTen users group and the operating system user

■ Configuring the operating system kernel parameters

Understanding the TimesTen users group and the operating system user
These sections describe and show how to create both the TimesTen users group and
the operating system user (which will serve as the instance administrator):

■ The TimesTen users group

■ The operating system user

■ Create the TimesTen users group and the OS user

The TimesTen users group
TimesTen restricts access to the installation and the instances created from that
installation to members of a single operating system group. This group, called the
TimesTen users group, owns the installation and the instances created from the
installation. Create this group (for example, timesten) and add the desired operating
system users prior to installation. Once you create the TimesTen users group, you
cannot change the name of the group or the group ID. See "Create the TimesTen users
group and the OS user" on page 2-3 for more information.

Note that:

■ The instance administrator's primary group must be the TimesTen users group.

■ Users who wish to access databases through TimesTen utilities or direct mode
applications must be members of the TimesTen users group. This group can be the
user's primary or secondary group.

■ Users connecting to a database through a client connection do not have to be
members of the TimesTen users group.

The operating system user
The instance administrator for all instances in your grid is the operating system user
who creates the active management instance. This user then becomes the instance
administrator of all other instances in TimesTen Scaleout, including the second
management instance and all data instances.

Note that:

■ The instance administrator cannot be the root user.

■ The instance administrator configures the grid, creates and manages the databases
in the grid, starts and stops the databases in the grid, performs all management
activities, and performs backup and restore operations.

■ You cannot change the instance administrator after that administrator creates the
active management instance.

■ The instance administrator is a member of the TimesTen users group. See "The
TimesTen users group" on page 2-2 for more information.

■ The instance administrator's user name and UID, and the group name and the
group id (GID) of the TimesTen users group must be the same on all hosts in the
grid, including the hosts on which the management and data instances exist, as
well as any of the SCP repository hosts.

■ The installation and the instances must have the same owner (the instance
administrator).

Operating system prerequisites

Prerequisites and Installation of TimesTen Scaleout 2-3

Create the TimesTen users group and the OS user
In this example, instanceadmin is the name of the operating system user and timesten
is the name of the TimesTen users group.

1. Create the TimesTen users group. Name the group timesten with group ID 10000.

sudo groupadd -g 10000 timesten

2. Create the instanceadmin user with UID 55000 and assign this user to the
timesten primary group. Then, create a password for the instanceadmin user.

sudo useradd -u 55000 -g timesten instanceadmin
sudo passwd instanceadmin

Configuring the operating system kernel parameters
You must configure kernel parameters on the hosts that run instances.

For hosts that run data instances:

■ Configure shmmax and shmall

■ Configure HugePages

■ Modify the memlock settings

■ Set the semaphore values

For hosts that run management instances:

■ Configure shmmax and shmall

■ Modify the memlock settings (optional)

■ Set the semaphore values

Configure shmmax and shmall
A database in TimesTen Scaleout consists of elements, where each element stores a
portion of data from the database. Each element resides in a shared memory segment.
On Linux, shared memory segments consists of pages, where the default page size is
normally 4 kB (4,096 bytes). You can verify the default page size by running the
getconf PAGESIZE command:

% getconf PAGESIZE
4096

Configure these shared memory kernel parameters to control the size of the shared
memory segment:

■ shmmax: The maximum size of a single shared memory segment expressed in bytes.
The value must be large enough to accommodate the size of the total shared
memory segment for the element.

■ shmall: The total size of all shared memory segments system wide. The value is
expressed in multiples of the page size (4 kB) and must be greater or equal to the
value of shmmax. It is recommended that you set the value of shmall to less than or
equal to the total amount of physical RAM. To display the total amount of physical
memory, run the Linux cat /proc/meminfo command.

The size of the element is based on the values of the PermSize, TempSize, LogBufMB and
Connections connection attributes. The element sizing formula is:

PermSize + TempSize + LogBufMB + 1 + (0.042 * Connections)

Operating system prerequisites

2-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

The PermSize, TempSize, and LogBufMB values are expressed in MB (megabytes).
PermSize, TempSize, LogBufMB, and Connections are connection attributes that you
define in your database definition file. If you do not define values for these attributes,
TimesTen uses the default values. See "PermSize," "TempSize," and "LogBufMB" in the
Oracle TimesTen In-Memory Database Reference for details on each connection attribute.

See "Determining the value of the PermSize attribute" on page 5-19 for information on
determining the PermSize value. See "Modifying the connection attributes of a
database" on page 5-30 for information on modifying the PermSize or TempSize
attribute.

As an example, assume each element has a PermSize value of 32 GB (32,768 MB), a
TempSize value of 4 GB (4,096 MB), a LogBufMB value of 1 GB (1,024 MB) and a
Connections value of 2,048. Applying the sizing formula, the size of each element is:

37975 MB (32768 MB + 4096 MB + 1024 MB + 1 + (0.042 MB * 2048))

In this example, to size shmmax and shmall:

1. As the root user, edit the /etc/sysctl.conf file, modifying kernel.shmmax and
kernel.shmall. Assuming the size of the element is 37,975 MB and the shmmax and
shmall values must be greater than the size of the element, for this example, set
shmmax to 48 GB (51,539,607,552 bytes) and shmall to 56 GB (60,129,542,144 bytes =
58,720,256 kB /4 kB page size = 14,680,064 kB pages).

sudo vi /etc/sysctl.conf
...
kernel.shmmax=51539607552
kernel.shmall=14680064

2. To reload the settings from the modified /etc/sysctl.conf file:

sudo /sbin/sysctl -p

3. Run the Linux ipcs lm command to display the current shmmax and shmall
settings. The max seg size (kbytes) is the shmmax value and the max total
shared memory (kbytes) is the shmall value. The shmmax value expressed in kB is
50,331,658 (51,539,607,552 bytes) and the shmall value expressed in kB is
58,720,256 (60,129,542,144 bytes).

% ipcs -lm

------ Shared Memory Limits --------
max number of segments = 4096
max seg size (kbytes) = 50331648
max total shared memory (kbytes) = 58720256
min seg size (bytes) = 1

Notes: For hosts that will run management instances, size shmmax
and shmall based on a shared memory segment size of at least 400
MB. You can increase the settings of shmmax and shmall if there are
other applications that require them to be greater.

The shmmax and shmall values must be the same on each of the hosts
that will run data instances. Similarly, the values must be the same on
each host that will run management instances.

Operating system prerequisites

Prerequisites and Installation of TimesTen Scaleout 2-5

Configure HugePages
You can configure HugePages for more efficient memory management. For hosts that
will run management instances, there is no requirement to configure HugePages. For
hosts that will run data instances, if the element's shared memory segment is greater
than 256 GB, you must configure HugePages. Once configured, the memory allocated
for HugePages is taken from the total RAM on the Linux system and is not available for
any other use. In addition, the HugePages memory segment is automatically locked
and cannot be swapped to the file system.

To configure HugePages, you need to know:

■ The maximum size of the shared memory segment for the element

■ The HugePages page size on your Linux system

■ The group ID of the instance administrator

Using the examples in the "Configure shmmax and shmall" on page 2-3 section, where
the size of the element is 37,975 MB and the shmmax value is 48 GB and the "Create the
TimesTen users group and the OS user" on page 2-3 section, where the group ID of the
instanceadmin user is 10000:

■ The size of the total shared memory segment is 48 GB.

■ The HugePages page size is 2,048 kB. (This value is fixed for each platform and is
not configurable.)

To determine the HugePages page size, run the Linux cat /proc/meminfo|grep
Hugepagesize command:

% cat /proc/meminfo | grep Hugepagesize
Hugepagesize: 2048 kB

■ The group ID is 10,000.

To determine the group ID of the instance administrator, log in as the
instanceadmin user, and run the Linux id command:

% id
uid=55000(instanceadmin) gid=10000(g10000)groups=10000(g10000)

To configure HugePages:

1. Determine the number of HugePages by dividing the size of the total shared
memory segment (expressed in MB) by the value of Hugepagesize (expressed in
MB). In this example, the total shared memory segment for the element is 48 GB
(49,152 MB) and the Hugepagesize value is 2,048 kB (2 MB):

49152 MB/ 2 MB = 24576

2. As the root user, edit the /etc/sysctl.conf file, and set vm.nr_hugepages to the
number of HugePages (24,576 in the example) and set vm.hugetlb_shm_group to
the group ID of the instance administrator (10,000 in the example). The latter
setting restricts access to HugePages to members of the group.

sudo vi /etc/sysctl.conf
...

Note: The settings for shmmax and shmall in these examples can be
increased if there are other applications that require them to be
greater.

Operating system prerequisites

2-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

...
vm.nr_hugepages=24576
vm.hugetlb_shm_group=10000

3. Reload the settings from the modified /etc/sysctl.conf file:

sudo /sbin/sysctl -p

4. To verify that you have configured HugePages correctly, run the Linux
cat/proc/meminfo|grep HugePages command and verify the value for HugePages_
Total is 24,576 and the value for HugePages_Free is 24,576.

% cat /proc/meminfo|grep HugePages
HugePages_Total: 24576
HugePages_Free: 24576
...

Modify the memlock settings
The memlock entries in the /etc/security/limits.conf file control the amount of
memory a user can lock. These entries are set at the system level and are different than
the MemoryLock connection attribute setting. For hosts that will run management
instances, setting the memlock settings is optional. For hosts that will run data
instances, set the hard memlock and soft memlock entries (expressed in kB) to the size
of the shared memory segment for each element. If HugePages are configured, the
memlock values must be large enough to accommodate the size of the shared memory
segment or the element will not be loaded into memory.

For example, for the instanceadmin user, assuming a total shared memory segment
size of 48 GB (49,152 MB), set the memlock entries to 50,331,648 kB (49,152 * 1,024):

Notes:

■ For hosts that will run data instances, HugePages for these hosts
must be the same.

■ Because HugePages must be allocated in contiguous available
memory space, the requested allocation may not be granted, or
may be only partially granted, until after the system is restarted.
Check the HugePages_Total and HugePages_Free values from
/proc/meminfo. Restarting grants the full allocation, assuming
enough memory is available in the system.

■ If a database less than or equal to 256 GB does not fit into the
available HugePages space, regular pages are used. If a database
greater than 256 GB does not fit into the HugePages space, the
database cannot be loaded into memory.

■ The TimesTen PL/SQL shared memory segment consumes some
of the configured HugePages allocation, determined by the value
of the PLSQL_MEMORY_SIZE connection attribute. See "PLSQL_
MEMORY_SIZE" in the Oracle TimesTen In-Memory Database
Reference for more information.

■ On Linux, the HugePages segment is automatically locked such
that the memory segment is not a candidate to be swapped to the
file system. Therefore, if you configure HugePages, you do not
need to set the MemoryLock connection attribute.

Operating system prerequisites

Prerequisites and Installation of TimesTen Scaleout 2-7

1. As the root user, edit the /etc/security/limits.conf file, and set the memlock
entries to 50,331,648 kB for the instanceadmin user. This value indicates the total
amount of memory the instanceadmin user can lock.

sudo vi /etc/security/limits.conf
...
...
instanceadmin soft memlock 50331648
instanceadmin hard memlock 50331648

2. As the instanceadmin user, log out and log in again for the changes to take effect.

Set the semaphore values
TimesTen has an upper bound on the maximum number of connections to the
database. The database connections consist of:

■ User connections: established by user applications

■ System connections: established internally by TimesTen (set at 48 connections)

The number of user connections is the sum of all user connections across all elements
of the grid, not just the user connections to the local grid element. For example, if the
grid will support 10,000 concurrent applications, each host running the data instance
must be configured to support the 10,000 connections (plus the system connections).

Each user and system connection (a database connection) is assigned one semaphore,
such that the total semaphores for a database are:

Total semaphores = user connections (N) + system connections (48) +
 other required connections (107)

Total semaphores = N + 155

The semaphore settings are located in the kernel.sem configuration directive in
/etc/sysctl.conf:

kernel.sem = SEMMSL SEMMNS SEMOPM SEMMNI
where:

■ SEMMSL is the maximum number of semaphores per array. Configure this value to
155 plus the number of connections.

■ SEMMNS is the maximum number of semaphores system wide. Use the formula
SEMMNS = (SEMMNI * SEMMSL) as a guideline.

■ SEMOPM is the maximum number of operations for each semop call.

■ SEMMNI is the maximum number of arrays.

Follow these steps to configure the SEMMSL and SEMMNS settings (Ensure that the user is
root):

1. View the existing kernel parameter settings:

/sbin/sysctl -a | grep kernel.sem
kernel.sem = 2500 320000 1000 1280

Notes: For hosts that will run data instances, the memlock settings for
these hosts must be the same. Similarly, if you set memlock settings for
hosts that will run management instances, the memlock settings for
these hosts must be the same.

Network requirements

2-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

2. Edit the /etc/sysctl.conf file, changing semmsl (the first value in kernel.sem) to
155 plus the number of connections. For hosts that will run management instances,
the number of connections is 400. For hosts that will run data instances, the
number of connections is not fixed. In this example, to support up to 3,845
connections, set the semmsl value to 4,000 (155 + 3,845). Change semmns (the second
value in kernel.sem) to 400,000.

sudo vi /etc/sysctl.conf
...
...
kernel.sem = 4000 400000 2000 2560

3. Reload the settings from the modified /etc/sysctl.conf file:

sudo /sbin/sysctl -p

Network requirements
For most production environments, TimesTen Scaleout requires a single private
internal network and at least one external network. This section describes the
requirements for those networks.

■ Internal network

■ External network

Internal network
Instances in a grid communicate with each other over a single internal network using
the TCP protocol. TimesTen Scaleout uses this network to perform all SQL, backup,
and management operations required by the grid and its databases. In addition,
instances communicate with membership servers through this network. Membership
servers use this network to communicate among themselves.

Ensure that your internal network has these characteristics:

■ High bandwidth. The faster the network the better, in terms of throughput
(gigabits per second). For production environments, ensure at minimum a 10
Gigabit Ethernet network or equivalent.

■ Low latency. To reduce network latency (time to transmit a message from one host
to another) to a minimum, the hosts and membership servers attached to your
internal network should either:

– Span a single data center within a small number of racks.

– Span multiple data centers within a small geographic region (city or suburb)
connected by a metropolitan area network (MAN). Only recommended with a
10 GbE network or better.

– Not span multiple data regions (states or provinces) connected by a wide area
network (WAN).

■ IPv4 or IPv6 addresses.

■ No network address translation (NAT).

Note: For hosts that will run data instances, the semaphore values
for these hosts must be the same. Similarly, for hosts that will run
management instances, the semaphore values for these hosts must be
the same.

Network requirements

Prerequisites and Installation of TimesTen Scaleout 2-9

■ No TCP packet filtering.

For an on-premises environment, ensure your internal network meets these
requirements:

■ If your internal network consists of a single network segment, all hosts are
connected to a single Ethernet switch or equivalent.

■ If your internal network consists of multiple network segments, those segments
are connected through bridges instead of IP routers.

■ If your internal network uses a MAN, ensure that the MAN can provide the
required bandwidth and latency for your workload.

Syntax for internal addresses
When you define a host for your grid, you must specify a single value for the internal
address of that host. Optionally, you specify a value for that the external address of
that host. The value you specify for the internal address of a host can be either an IPv4
address, an IPv6 address or a name that resolves into one or more IPv4 or IPv6
addresses. For example:

■ A dot-decimal IPv4 address such as 192.168.1.1

■ A colon-hexadecimal IPv6 address such as 2606:fe80::f816:3eff:fe15:44b3

■ A name specified in the /etc/hosts file such as host1

■ A name defined in a private Domain Name Server (DNS) such as
int-host1.example.com

If you use a name to define the internal address of a host:

■ If the name resolves to multiple IP addresses, those addresses must be on the same
network segment.

■ Every host in the grid must be able to resolve a name to the same addresses. For
example, if you use the hosts file to define a name, then the hosts file on each host
in the grid must contain identical entries for that name.

External network
A grid may optionally use one or more public external networks. These networks
enable applications running on machines that are not part of the grid to create
client/server connections to databases in the grid. You cannot perform any grid or
database management operations through an external network.

While the performance of an external network is important, it is less important than
the performance of the internal network. If the internal network performs poorly or
unreliably, the grid and its databases may perform poorly or unreliably for all users.
Conversely, if an external network performs poorly or unreliably, it may only affect the
applications connected to the databases in the grid through that network. As a result,
there are fewer requirements for an external network than for the internal network.

Your external networks should have these characteristics:

■ Bandwidth based on the requirements of your client/server applications.

■ Latency based on the requirements of your client/server applications.

■ IPv4 or IPv6 addresses.

■ TCP connectivity to the server port of each data instance.

■ Any combination of network technologies (VPN, routers, LAN, WAN, etcetera).

Installing TimesTen Scaleout

2-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

If your grid uses a single external network, then the value you specify for the external
address of a host can be in any of the forms described in the "Syntax for internal
addresses" on page 2-9 section. If your grid uses multiple external networks, then you
must use a name to define the external address of a host. The name must resolve to at
least one IP address for each external network you use.

Installing TimesTen Scaleout
When you unpack the TimesTen distribution on a host, you create an installation (that
is read only). Do not add, alter, or remove files or directories within the installation,
unless you are deleting the installation.

The installation may be a full installation or a client-only installation. A client-only
installation supports the client use of TimesTen:

The operating system user that you designated as the instance administrator creates
the installation by:

1. Downloading the TimesTen distribution on the host that will contain the active
management instance. The distribution is a ZIP file where the ZIP file name
indicates the platform, release number, and the type of distribution. For example,
timesten181410.server.linux8664.zip.

2. Unpacking the ZIP file to create a TimesTen installation. The installation includes
the binaries and the support files from which you can create a grid (and all of its
components), membership servers, and clients

Only the first installation is created manually by the instance administrator on the host
containing the active management instance. Additional installations used by
additional instances are created by TimesTen Scaleout utilities. See "Configure your
grid" on page 4-1 for information on when to create additional installations for
additional instances.

After you download the distribution, follow these steps:

1. Log in as the instance administrator to the host that will contain the initial
management instance. In this example, instanceadmin is the name of the instance
administrator. You can verify the instance administrator with the Linux id
command.

2. Create the desired directory for the installation such as /grid/installation1.

% mkdir -p /grid/installation1

3. Extract and unpack the distribution file into the directory. This example unpacks
the installation using the unzip command:

% unzip /timesten181410.server.linux8664.zip -d /grid/installation1
[...UNZIP OUTPUT...]

Type Description

Full installation Use the TimesTen full distribution for this type of installation (for
example, timesten181410.server.linux8664.zip).

Client-only
installation

You can connect and access databases in TimesTen Classic through a
client. Use the full installation (for example,
timesten181410.server.linux8664.zip) to unpack the distribution and
then specify ttInstanceCreate -clientonly. See "Database
connections" on page 1-23 for details on the types of clients and how
they connect to a database.

Installing TimesTen Scaleout

Prerequisites and Installation of TimesTen Scaleout 2-11

The top level directory of the installation is the TimesTen release. For example, the
directory created under /grid/installation1 is:

dr-xr-x--- 19 instanceadmin timesten 4096 Mar 2 22:07 tt18.1.4.1.0

Verifying the installation
These sections provide details on how to verify your installation:

■ Run the ttInstallationCheck utility

■ Review the installation directory and subdirectories

Run the ttInstallationCheck utility
The ttInstallationCheck utility, located in the installation_dir/tt18.1.4.1.0/bin
directory, verifies the success or failure of the installation. This utility generates an
error if the checksum value for the installation differs from the original checksum
value. Checksum values are different if there are any of these changes to the
installation directory or files:

■ Contents of a file

■ Name of a file

■ Addition of a file to a directory

■ Removal of file from a directory

■ Changes to the permissions of a file or directory

In this example, the installation is verified:

% ttInstallationCheck
This installation has been verified.

In this example, permissions on a file were changed, and ttInstallationCheck
generates an error:

% ttInstallationCheck
Cannot validate the installation in /grid/installation1/tt18.1.4.1.0.

See "ttInstallationCheck" in the Oracle TimesTen In-Memory Database Reference for
detailed information on the ttInstallationCheck utility.

Review the installation directory and subdirectories
A TimesTen full installation includes these subdirectories located under the top-level
installation_dir/tt18.1.4.1.0 directory.

■ 3rdparty: Includes resources for:

– Apache ZooKeeper

– Java Message Service (JMS)

■ bin: TimesTen utilities and executables

■ grid: Files and resources for TimesTen Scaleout

■ include: TimesTen include files, among them timesten.h (for TimesTen ODBC
features) and tt_errCode.h (for information about TimesTen error codes)

■ lib: TimesTen libraries

Setting passwordless SSH

2-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ plsql: Files and resources for TimesTen PL/SQL

■ ttoracle_home: Oracle Database Instant Client files and resources, for OCI,
Pro*C/C++, and ODP.NET

Setting passwordless SSH
The instance administrator must be able to use SSH to log without a password to all
hosts within a grid for the management instances and ttGridAdmin utility to be able
set up and manage the grid and all its members.

Specifically, all hosts with management instances need passwordless SSH access for
the instance administrator to all hosts with instances and repositories. Also, hosts with
data instances need passwordless SSH access for the instance administrator to all hosts
with repositories.

The ttGridAdmin gridSshConfig command is able to set for the current user the
required passwordless SSH access. Ensure that you execute the command with the
user you intend for instance administrator.

Before setting up a grid, you can run the ttGridAdmin gridSshConfig command while
providing the addresses or DNS names that you will later use to host management
instances, data instance, and repositories. When prompted, enter the OS password of
the user executing the command. The user and password must already be set on all
systems and be identical. See "Understanding the TimesTen users group and the
operating system user" on page 2-2 for more information on the instance
administrator.

% grid/installation1/tt18.1.4.1.0/bin/ttGridAdmin gridSshConfig
 -mgmtAddress int-host1 int-host2
 -dataAddress int-host3 int-host4 int-host5 int-host6 int-host7 int-host8
Enter password:
Setup ssh configuration on local system...............................OK
Setup ssh configuration on int-host1..................................OK
Setup ssh configuration on int-host2..................................OK
Setup ssh configuration on int-host3..................................OK
Setup ssh configuration on int-host4..................................OK
Setup ssh configuration on int-host5..................................OK
Setup ssh configuration on int-host6..................................OK
Setup ssh configuration on int-host7..................................OK
Setup ssh configuration on int-host8..................................OK
Setup passwordless ssh from local system to int-host1.................OK
Setup passwordless ssh from local system to int-host2.................OK
Setup passwordless ssh from local system to int-host3.................OK
Setup passwordless ssh from local system to int-host4.................OK
Setup passwordless ssh from local system to int-host5.................OK
Setup passwordless ssh from local system to int-host6.................OK
Setup passwordless ssh from local system to int-host7.................OK
Setup passwordless ssh from local system to int-host8.................OK
Setup passwordless ssh from int-host1 to int-host1....................OK
Setup passwordless ssh from int-host1 to int-host2....................OK
Setup passwordless ssh from int-host1 to int-host3....................OK
Setup passwordless ssh from int-host1 to int-host4....................OK
Setup passwordless ssh from int-host1 to int-host5....................OK
Setup passwordless ssh from int-host1 to int-host6....................OK
Setup passwordless ssh from int-host1 to int-host7....................OK

Note: A client-only installation does not include the 3rdparty or the
grid directories.

Setting passwordless SSH

Prerequisites and Installation of TimesTen Scaleout 2-13

Setup passwordless ssh from int-host1 to int-host8....................OK
Setup passwordless ssh from int-host2 to int-host1....................OK
Setup passwordless ssh from int-host2 to int-host2....................OK
Setup passwordless ssh from int-host2 to int-host3....................OK
Setup passwordless ssh from int-host2 to int-host4....................OK
Setup passwordless ssh from int-host2 to int-host5....................OK
Setup passwordless ssh from int-host2 to int-host6....................OK
Setup passwordless ssh from int-host2 to int-host7....................OK
Setup passwordless ssh from int-host2 to int-host8....................OK

Passwordless ssh working between hosts:

From\To int-host1 int-host2 int-host3 int-host4 int-host5 ... int-host8
--------- --------- --------- --------- --------- --------- ... ---------
us Yes Yes Yes Yes Yes ... Yes
int-host1 Yes Yes Yes Yes Yes ... Yes
int-host2 Yes Yes Yes Yes Yes ... Yes
int-host3 N/A N/A N/A N/A N/A ... N/A
int-host4 N/A N/A N/A N/A N/A ... N/A
int-host5 N/A N/A N/A N/A N/A ... N/A
int-host6 N/A N/A N/A N/A N/A ... N/A
int-host7 N/A N/A N/A N/A N/A ... N/A
int-host8 N/A N/A N/A N/A N/A ... N/A

For a grid where the latest version of the model has yet to be applied and new hosts
and instances were added to the model, run the ttGridAdmin gridSshConfig
command on the active management instance. The ttGridAdmin utility then will query
the latest version of the model and set up the appropriate SSH connectivity amongst
the hosts described in the model.

% ttGridAdmin gridSshConfig
Enter password:
Setup ssh configuration on local system...............................OK
Setup ssh configuration on int-host1..................................OK
Setup ssh configuration on int-host2..................................OK
Setup ssh configuration on int-host3..................................OK
Setup ssh configuration on int-host4..................................OK
Setup ssh configuration on int-host5..................................OK
Setup ssh configuration on int-host6..................................OK
Setup ssh configuration on int-host7..................................OK
Setup ssh configuration on int-host8..................................OK
Setup passwordless ssh from local system to int-host1.................OK
Setup passwordless ssh from local system to int-host2.................OK
Setup passwordless ssh from local system to int-host3.................OK
Setup passwordless ssh from local system to int-host4.................OK
Setup passwordless ssh from local system to int-host5.................OK
Setup passwordless ssh from local system to int-host6.................OK
Setup passwordless ssh from local system to int-host7.................OK
Setup passwordless ssh from local system to int-host8.................OK
Setup passwordless ssh from int-host1 to int-host1....................OK
Setup passwordless ssh from int-host1 to int-host2....................OK
Setup passwordless ssh from int-host1 to int-host3....................OK
Setup passwordless ssh from int-host1 to int-host4....................OK
Setup passwordless ssh from int-host1 to int-host5....................OK
Setup passwordless ssh from int-host1 to int-host6....................OK
Setup passwordless ssh from int-host1 to int-host7....................OK
Setup passwordless ssh from int-host1 to int-host8....................OK
Setup passwordless ssh from int-host2 to int-host1....................OK
Setup passwordless ssh from int-host2 to int-host2....................OK
Setup passwordless ssh from int-host2 to int-host3....................OK

Setting passwordless SSH

2-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

Setup passwordless ssh from int-host2 to int-host4....................OK
Setup passwordless ssh from int-host2 to int-host5....................OK
Setup passwordless ssh from int-host2 to int-host6....................OK
Setup passwordless ssh from int-host2 to int-host7....................OK
Setup passwordless ssh from int-host2 to int-host8....................OK

Passwordless ssh working between hosts:

From\To int-host1 int-host2 int-host3 int-host4 int-host5 ... int-host8
--------- --------- --------- --------- --------- --------- ... ---------
us Yes Yes Yes Yes Yes ... Yes
int-host1 Yes Yes Yes Yes Yes ... Yes
int-host2 Yes Yes Yes Yes Yes ... Yes
int-host3 N/A N/A N/A N/A N/A ... N/A
int-host4 N/A N/A N/A N/A N/A ... N/A
int-host5 N/A N/A N/A N/A N/A ... N/A
int-host6 N/A N/A N/A N/A N/A ... N/A
int-host7 N/A N/A N/A N/A N/A ... N/A
int-host8 N/A N/A N/A N/A N/A ... N/A

For more information on the ttGridAdmin gridSshConfig command, see "Configure
SSH (gridSshConfig)" in the Oracle TimesTen In-Memory Database Reference.

3

Setting Up the Membership Service 3-1

3Setting Up the Membership Service

This chapter discusses how to set up your membership service.

■ Overview of the TimesTen Scaleout membership service

■ Using Apache ZooKeeper as the membership service

■ Installing Apache ZooKeeper

■ Configuring Apache ZooKeeper as the membership service

■ Starting the membership servers

■ Configure a grid as a membership service client

Overview of the TimesTen Scaleout membership service
The TimesTen Scaleout membership service enables a grid to operate in a consistent
manner, even if it encounters a network failure between instances that interrupts
communication and cooperation between the instances.

The TimesTen Scaleout membership service performs the following:

■ Tracking the instance status. This helps instances maintain communication
between each other.

■ Recovering from a network partition error, once the communications fault is fixed.

Tracking the instance status
A grid is a collection of instances that reside on multiple hosts that communicate over
a single private network. The membership service knows which instances are active.
When each instance starts, it connects to a membership server within the membership
service to register itself, as shown in Figure 3–1. If one of the membership servers fails,
the instances that were connected to the failed membership server transparently
reconnect to one of the available membership servers.

Overview of the TimesTen Scaleout membership service

3-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

Figure 3–1 Instances register with the membership servers

Each instance maintains a persistent connection to one of the membership servers, so
that it can query the active instance list. If the network between the membership
servers and the instances is down, the instances refuse to perform until the network is
fixed and communication is restored with the membership servers.

Figure 3–2 demonstrates how data instances in a grid connect to each other, where
each data instance connects to every other data instance in a grid. It also shows how
each data instance in this example maintains a persistent connection with one of the
membership servers.

Figure 3–2 Data instances communicating with each other

host3host2 host4

membership servers

host1 host5 host6

ms_host1 ms_host2 ms_host3

host1 host2

host3 host4

ms_host1 ms_host2

ms_host3

Overview of the TimesTen Scaleout membership service

Setting Up the Membership Service 3-3

If a data instance loses a connection to another instance, it queries the active instance
list on its membership server to verify if the "lost" instance is up. If the "lost" instance is
up, then the data instance makes an effort to re-establish a connection with that
instance. Otherwise, to avoid unnecessary delays, no further attempts are made to
establish communication to the "lost" instance.

When a "lost" instance restarts, it registers itself with the membership service and
proactively informs all other instances in a grid that it is up. When it is properly
synchronized with the rest of a grid, the recovered instance is once again used to
process transactions from applications.

In Figure 3–3, the host1 data instance is not up. If the host2 data instance tries to
communicate with the host1 data instance, it discovers a broken connection. The
host2 data instance queries the active instance list on its membership server, which
informs it that the host1 data instance is not on the active instance list. If the host1
data instance comes back up, it registers itself again with the membership service,
which then includes it in the list of active instances in this grid.

Figure 3–3 Instance reacts to a dead connection

Recovering from a network partition error
A network partition error splits the instances involved in a single grid into two
subsets. With a network partition error, each subset of instances is unable to
communicate with the other subset of instances.

Figure 3–4 shows a network partition that would return inconsistent results to
application queries without the membership service, since the application could access
one subset of instances without being able to contact the disconnected subset of
instances. Any updates made to one subset of instances would not be reflected in the
other subset. If an application connects to the host1 data instance, then the query
returns results from the host1 and host3 data instances; but any data that resides on

host1 host2

host3 host4

ms_host1 ms_host2

ms_host3

????

Retrieve status
on host1.instance1

from active instance list

Overview of the TimesTen Scaleout membership service

3-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

the host2 and host4 data instances is not available because there is no connection
between the two subsets.

Figure 3–4 Network partition failure

If you encounter a network partition, the membership service provides a resolution.
Figure 3–5 shows a grid with four instances and three membership servers. A network
communications error has split a grid into two subsets where host1 and host3 no
longer know about or communicate with host2 and host4. In addition, the ms_host1
membership server is not in communication with the other two membership servers.

For the membership service to work properly to manage the status of a grid, there
must be a majority of active membership servers of the total servers created that can
communicate with each other in order to work properly. If a membership server fails,
the others continue to serve requests as long as a majority is available.

For example:

■ A membership service that consists of three membership servers can handle one
membership server failure.

■ A membership service of five membership servers can handle two membership
server failures.

■ A membership service of six membership servers can handle only two failures
since three membership servers are not a majority.

Note: When you configure the number of membership servers, you
should always create an odd number of membership servers to serve
as the membership service. If you have an even number of
membership servers and a network partition error occurs, then each
subset of a grid might have the same number of membership servers
where neither side would have a majority. Thus, both sides of the
network partitioned grid would stop working.

host1

network failure

host3

host2

host4

Using Apache ZooKeeper as the membership service

Setting Up the Membership Service 3-5

If the number of remaining membership servers falls below the number needed for a
majority, the remaining membership servers refuse all requests until at least a majority
of membership servers are running. In addition, data instances that cannot
communicate with the membership service cannot execute any transactions. You must
research the failure issue and restart any failed membership servers.

Because of the communications failure, the ms_host1 membership server does not
know about the other two membership servers. Since there are not enough
membership servers that it does know to constitute a majority, the ms_host1
membership server can no longer accept incoming requests from the host1 and host3
data instances. And the host1 and host3 data instances cannot execute any
transactions until the failed membership server is restarted.

Figure 3–5 Network partition with membership service

To discover if there may be a network partition, you will see errors in the daemon log
about elements losing contact with their membership server.

Once you resolve the connection error that caused your grid to split into two, all of the
membership servers reconnect and synchronize the membership information. In our
example in Figure 3–5, the ms_host1 membership server rejoins the membership
service. After which, the host1 and host3 data instances also rejoin this grid as active
instances.

Using Apache ZooKeeper as the membership service
Apache ZooKeeper is a third-party, open-source centralized service that maintains
information for distributed systems and coordinates services for multiple hosts.
TimesTen Scaleout uses Apache ZooKeeper to provide its membership service, which
tracks the status of all instances and provides a consistent view of the instances that
are active within a grid.

host1 host2

host3 host4

ms_host1 ms_host2

ms_host3

network failure
not accepting
any requests
since not a

majority

host1 and host3
are cut off from activity

on host2 and host4

host2 and host4
are cut off from activity

on host1 and host3

Installing Apache ZooKeeper

3-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

TimesTen Scaleout requires that you install and configure Apache ZooKeeper to work
as the membership service for a grid. Each membership server in a grid is an Apache
ZooKeeper server.

If you create a second grid, you can use the same ZooKeeper servers to act as the
membership service for the second grid. However, all ZooKeeper servers should act
only as a membership service for TimesTen Scaleout.

For ZooKeeper servers in a production environment, it is advisable to:

■ Configure an odd number of replicated ZooKeeper servers on separate hosts. Use
a minimum of three ZooKeeper servers for your membership service. If you have
n Zookeeper servers, you should have (n/2+1) ZooKeeper servers alive as a
majority. A larger number of ZooKeeper servers increases reliability.

■ It is recommended (but not required) that you use hosts for your membership
servers that are separate from any hosts used for instances. If you do locate your
ZooKeeper servers and instances on separate hosts, then this guarantees that if the
host fails, you do not lose both the instance and one of the membership servers.

■ Avoid having ZooKeeper servers be subject to any single point of failure. For
example, use independent physical racks, power sources, and network locations.

■ Your Zookeeper servers could share the same physical infrastructure as your data
instances. For example, if your data instances are spread across two physical racks,
you could host your Zookeeper servers in these same two racks.

For example, you configure your grid with an active and standby management
instance, two data space groups (each with three data instances), and three
ZooKeeper servers configured in your grid. If you have two data racks, the best
way to organize your hosts is to:

– Locate one of the management instances on rack 1 and the other management
instance on rack 2.

– Locate two of the ZooKeeper servers on rack 1 and the third on rack 2.

– Locate the hosts for data instances for data space group 1 on rack 1 and the
hosts for the data instances for data space group 2 on rack 2.

Thus, if rack 2 loses power or its ethernet connection, this grid continues to work
since rack 1 has the majority of ZooKeeper servers. If rack 1 fails, you lose the
majority of the ZooKeeper servers and need to recover your ZooKeeper servers. A
grid does not work without at least a majority of the configured ZooKeeper
servers active.

Installing Apache ZooKeeper
On each host on which you intend to provide a membership server, install the
TimesTen-specific Apache ZooKeeper distribution, which is a ZooKeeper TAR file

Note: Since membership servers are ZooKeeper servers, see the
Apache ZooKeeper documentation on how to use and manage
ZooKeeper servers at http://zookeeper.apache.org.

Note: For more directions for best practices for your ZooKeeper
servers, go to: http://zookeeper.apache.org.

Configuring Apache ZooKeeper as the membership service

Setting Up the Membership Service 3-7

located in the installation_dir/tt18.1.4.1.0/3rdparty directory of the TimesTen
installation.

1. Create a directory for the ZooKeeper installation on each host that you intend to
act as one of the membership servers. You may install the ZooKeeper distribution
file into any directory with any name you wish.

2. From a host where you have already installed TimesTen Scaleout, copy the
ZooKeeper apache-zookeeper-3.5.8-bin.tar.gz file from installation_
dir/tt18.1.4.1.0/3rdparty to the desired directory on each host.

3. Unpack the provided Apache ZooKeeper distribution using the standard
operating system tar command into the desired location on each host intended to
be a membership server.

The following example on Linux unpacks an Apache ZooKeeper installation into the
zkdir directory (a subdirectory of the current directory). A TimesTen Scaleout
installation on host1 is located in /swdir/TimesTen/tt18.1.4.1.0.

On the ms1_host membership server, create the zkdir directory.

% mkdir -p zkdir

Copy the apache-zookeeper-3.5.8-bin.tar.gz file from the installation_
dir/tt18.1.4.1.0/3rdparty directory on host1 to the zkdir directory you created on
ms1_host.

% tar -C zkdir -xzvf
/swdir/TimesTen/tt18.1.4.1.0/3rdparty/apache-zookeeper-3.5.8-bin.tar.gz
[...TAR OUTPUT...]

Configuring Apache ZooKeeper as the membership service
To configure each Apache ZooKeeper server to act as a membership server for your
grid, you need to configure the following configuration files on each host that hosts a
membership server:

■ zoo.cfg configuration file: In replicated mode, each membership server has a
zoo.cfg configuration file. The zoo.cfg configuration file identifies all of the
membership servers involved in the membership service, where each membership
server is identified by its DNS (or IP address) and port number.

Important:

■ Using Apache ZooKeeper as a membership service for TimesTen
Scaleout requires Java release 1.8 (JDK 8) or greater on each
ZooKeeper server.

■ All hosts that contain data instances, management instances and
membership servers must be connected to the same private
network.

Note: The version of the ZooKeeper distribution that TimesTen
Scaleout provides is shown in the name of the TAR file provided in
the installation_dir/18.1.4.1.0/3rdparty directory. For example,
the apache-zookeeper-3.5.8-bin.tar.gz file in this example shows
that the provided Apache ZooKeeper distributed version is 3.5.8.

Configuring Apache ZooKeeper as the membership service

3-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

All configuration parameters in the zoo.cfg on each membership server must be
exactly the same, except for the client port. The client port can be different (but is
not required to be different) for each membership server. The client port can be the
same if each membership server runs on a different host.

Place the zoo.cfg file in the Apache ZooKeeper installation /conf directory. For
example, if you unpacked the apache-zookeeper-3.5.8-bin.tar.gz file into the
/swdir/zkdir directory on each membership server, then you would place the
zoo.cfg file into the following directory:

/swdir/zkdir/apache-zookeeper-3.5.8-bin/conf/zoo.cfg

■ myid configuration file: Provides the number that identifies this particular
membership server. Each membership server is identified by a unique number. For
example, if you have 5 servers, they must be identified with unique integers of 1,
2, 3, 4 and 5.

This number corresponds to the definition of the host in the zoo.cfg file by the x
in the server.x parameter. All zoo.cfg files must have a listing for all
membership servers. For example, if you have 5 membership servers, they are
configured as server.1, server.2, and so on in the zoo.cfg file.

The myid configuration file on each host contains a single line with the integer
number of that server. For example, the 2nd membership server is identified in
zoo.cfg as server.2 and in its myid configuration file is a single line with a 2.

The myid configuration file is a text file located in the Apache ZooKeeper data
directory of the membership server. The location of the data directory is
configured with the dataDir parameter in the zoo.cfg file. For example, if you
configure the data directory to be /swdir/zkdir/3.5.8/data, then you would
place the myid text configuration file as follows:

/swdir/zkdir/apache-zookeeper-3.5.8-bin/data/myid

Table 3–1 shows the commonly used configuration parameters for the zoo.cfg file.

Table 3–1 zoo.cfg configuration parameters

Parameter Description

tickTime The unit of time (in milliseconds) used for each tick for both
initLimit and syncLimit parameters. For the best
performance, you should set this to the recommended setting of
250 milliseconds. This parameter is required to run the
membership server in replicated mode.

initLimit The timeout (in ticks) for how long the membership servers
have to connect to the leader. For the best performance, you
should set this to the recommended setting of 40 ticks. This
parameter is required to run the membership server in
replicated mode.

syncLimit The limit of how out of date a membership server can be from a
leader. This limit (in ticks) specifies how long is allowed
between sending a request and receiving an acknowledgement.
For best performance, you should set this recommended setting
to 12 ticks. This parameter is required to run the membership
server in replicated mode.

Configuring Apache ZooKeeper as the membership service

Setting Up the Membership Service 3-9

dataDir You decide on and create the data directory location to store the
ZooKeeper data, snapshots and its transaction logs.

When creating the directory where the transaction logs are
written, it is important to your performance that the transaction
logs are written to non-volatile storage. A dedicated device for
your transaction logs is key to consistent good performance.
Logging your transactions to a busy device adversely effects
performance.

clientPort The port on which to listen for client connections. The default is
port 2181.

autopurge.snapRetainCount Defines the number of most recent snapshots and
corresponding Apache ZooKeeper transaction logs to keep in
the dataDir and dataLogDir respectively. Defaults to 3.

autopurge.purgeInterval The time interval in hours for when to trigger the purge of
older snapshots and corresponding Apache ZooKeeper
transaction logs. Set to a positive integer (1 and above) to
enable the auto purge. Defaults to 0. We recommend that you
set this to 1.

minSessionTimeout The minimum session timeout in milliseconds that the server
will allow the client to negotiate. Defaults to 2 times the
tickTime.

maxSessionTimeout The maximum session timeout in milliseconds that the server
will allow the client to negotiate. Defaults to 20 times the
tickTime.

Table 3–1 (Cont.) zoo.cfg configuration parameters

Parameter Description

Configuring Apache ZooKeeper as the membership service

3-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

All membership servers that are installed should be run in replicated mode. To run
your membership servers in replicated mode, you need to include the tickTime,
initLimit, and syncLimit parameters and provide the host name with two port
numbers for each membership server.

The following example demonstrates the zoo.cfg membership server configuration
file, where there are three membership servers installed on hosts whose DNS names
are ms_host1, ms_host2 and ms_host3. All three membership servers are configured to
run in replicated mode.

The number of milliseconds of each tick
tickTime=250

server.x=[systemName]:nnn
nn:nnnnn

The configuration for each membership server is identified by
the server.x parameter. The list of hosts defined by this
parameter designate all of the membership servers used by the
membership service. This list must correlate to the same list of
membership servers in each zoo.cfg file on each membership
server in the membership service.

This parameter is required to run the membership server in
replicated mode.

The x is the identifying integer number for the membership
server, which is also configured in the myid configuration file on
the membership server.

The systemName parameter specifies the DNS (or IP address) of
the host on which the membership server is installed and will
run. If no systemName is provided for the server, the default is
localhost.

Define two port numbers after each server name.

■ First port number: Used by peers to connect to and
communicate with other peers. This port connects
followers to the leader.

■ Second port number: Used for leader election among the
membership servers. If necessary, this port is used to elect a
new leader in case of failure.

For a production environment, each of the membership servers
should be configured on different hosts. In this case, the
convention is to assign the same port numbers, such as:

server.1=system1:2888:3888
server.2=system2:2888:3888
server.3=system3:2888:3888

However, for a testing environment, you may want to place all
membership servers on the same host. In this case, you need to
configure all membership servers with different ports.

4lw.commands.whitelist Enables the specified Zookeeper four-letter-words commands.
TimesTen Scaleout utilities like ttGridRollout require some of
these commands to operate properly.

Note: For more details on replicated mode, go to:
http://zookeeper.apache.org.

Then, refer to the Getting Started > Running Replicated ZooKeeper
section of the documentation.

Table 3–1 (Cont.) zoo.cfg configuration parameters

Parameter Description

Configuring Apache ZooKeeper as the membership service

Setting Up the Membership Service 3-11

The number of ticks that the initial synchronization phase can take
initLimit=40
The number of ticks that can pass between
sending a request and getting an acknowledgement
syncLimit=12
The directory where you want the ZooKeeper data stored.
dataDir=/swdir/zkdir/apache-zookeeper-3.5.8-bin/data
The port at which the clients will connect
clientPort=2181
Every hour, keep the latest three Apache ZooKeeper snapshots and
transaction logs and purge the rest
autopurge.snapRetainCount=3
autopurge.purgeInterval=1
The minimum and maximum allowable timeouts for Apache ZooKeeper sessions.
Actual timeout is negotiated at connect time.
minSessionTimeout=2000
maxSessionTimeout=10000
The membership servers
server.1=ms_host1:2888:3888
server.2=ms_host2:2888:3888
server.3=ms_host3:2888:3888
Enabled Zookeeper four-letter-words commands
4lw.commands.whitelist=stat, ruok, conf, isro

This example creates a myid text file on three hosts, where each is a membership server.
Each myid text file contains a single-line with the server id (an integer) corresponding
to one of the membership servers configured in the zoo.cfg file. The server id is the
number x in the server.x= entry of the configuration file. The myid text file must be
located within the data directory on each membership server. The data directory
location is /swdir/zkdir/apache-zookeeper-3.5.8-bin/data.

■ Create a myid text file in the /swdir/zkdir/apache-zookeeper-3.5.8-bin/data
directory on ms_host1 for its membership server. The myid text file contains the
value 1.

■ Create a myid text file in the /swdir/zkdir/apache-zookeeper-3.5.8-bin/data
directory on ms_host2 for its membership server. The myid text file contains the
value 2.

■ Create a myid text file in the /swdir/zkdir/apache-zookeeper-3.5.8-bin/data
directory on ms_host3 for its membership server. The myid text file contains the
value 3.

When the membership server starts up, it identifies which server it is in by the integer
configured in the myid file in the ZooKeeper data directory.

Note: There is a sample file that explains some of the parameters for
your zoo.cfg file in the Apache ZooKeeper installation /conf
directory called zoo_sample.cfg. However, it does not have all of the
recommended parameters or settings for TimesTen Scaleout. Use zoo_
sample.cfg for reference only.

Note: For full details of the configuration parameters that can exist
in the Apache ZooKeeper zoo.cfg configuration file, see
http://zookeeper.apache.org.

Starting the membership servers

3-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

Starting the membership servers
Before you can start the membership server with the zkServer.sh shell script, you
need to set the maximum Java heap size, which determines if ZooKeeper swaps to the
file system. The Java maximum heap size should not be larger than the amount of
available real memory. Edit the zkEnv.sh shell script to add a new line with the
JVMFLAGS environment variable setting the maximum Java heap size to 4 GB. Upon
startup, the zkServer.sh shell script sources the zkEnv.sh shell script to include this
new environment variable.

The ZooKeeper shell scripts are located in the ZooKeeper server /bin directory. For
example, if you unpacked the apache-zookeeper-3.5.8-bin.tar.gz file into the
/swdir/zkdir directory on each membership server, then the zkEnv.sh and
zkServer.sh shell scripts are located in the /swdir/zkdir/bin directory.

The following example edits the zkEnv.sh shell script and adds the JVMFLAGS=Xmx4g
configuration within the zkEnv.sh script after the line for ZOOKEEPER_PREFIX.

ZOOBINDIR="${ZOOBINDIR:-/usr/bin}"
ZOOKEEPER_PREFIX="${ZOOBINDIR}/.."
JVMFLAGS=-Xmx4g

Start each membership server by running the zkServer.sh start shell script on each
server.

% setenv ZOOCFGDIR /swdir/zkdir/apache-zookeeper-3.5.8-bin/conf
% /swdir/zkdir/apache-zookeeper-3.5.8-bin/bin/zkServer.sh start

You can verify the status for each membership server by executing the zkServer.sh
status command on each membership server:

% /swdir/zkdir/apache-zookeeper-3.5.8-bin/bin/zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /swdir/zkdir/apache-zookeeper-3.5.8-bin/conf/zoo.cfg
Mode: { leader | follower }

If the membership server is not running, is not in replicated mode, or there is not a
majority executing, these errors are displayed:

ZooKeeper JMX enabled by default
Using config: /swdir/zkdir/apache-zookeeper-3.5.8-bin/conf/zoo.cfg
Error contacting service. It is probably not running.

Additionally, you can verify if a membership sever is running in a non-error state with
the ruok ZooKeeper command. The command returns imok if the server is running.
There is no response otherwise. From a machine within the network, run:

% echo ruok | nc ms_host1 2181
imok

For statistics about performance and connected clients, use the stat ZooKeeper
command. From a machine within the network, run:

% echo stat | nc ms_host1 2181

Once the membership servers are started, you can create your grid. See "Configure a
grid as a membership service client" on page 3-13 for details on how to create a grid
that knows about your membership servers.

Configure a grid as a membership service client

Setting Up the Membership Service 3-13

Configure a grid as a membership service client
A grid must know how to connect to each of the membership servers. Thus, you must
provide a ZooKeeper client configuration file to the ttGridAdmin utility when you
create a grid that details all of the membership servers. You can name the ZooKeeper
client configuration file with any prefix as long as the suffix is .conf.

The ZooKeeper client configuration file specifies all membership servers that
coordinate with each other to provide a membership service. Within the client
configuration file is a single line with the Servers parameter that provides the DNS (or
IP address) and client port numbers for each membership server. The configuration
information for these hosts must:

■ Use the same DNS (or IP address) as what you specified in the server.x
parameters in each of the individual zoo.cfg files on each membership server.

■ Provide the same client port number as what is specified in the clientPort
parameter specified in each of the individual zoo.cfg files on each membership
server.

In our example, we use the membership.conf file as the ZooKeeper client
configuration file. For this example, there are three hosts that support three
membership servers, where ms_host1 listens on client port 2181, ms_host2 listens on
client port 2181, and ms_host3 listens on client port 2181.

Servers ms_host1!2181,ms_host2!2181,ms_host3!2181

A grid knows how to reach these membership servers because the ZooKeeper client
configuration file is provided as an input parameter when you create your grid. See
"Creating a grid" on page 4-4 for more details.

Once you provide the ZooKeeper client configuration file to the ttGridAdmin
command when a grid is created, the ZooKeeper client configuration file is no longer
needed and can be discarded.

Note: You can modify the list of provided membership servers for a
grid by importing a new list of membership servers. See
"Reconfiguring membership servers" on page 8-6 for details.

Configure a grid as a membership service client

3-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

4

Setting Up a Grid 4-1

4Setting Up a Grid

This chapter discusses how to create and configure a grid in TimesTen Scaleout.

■ Configure your grid

■ Description of the physical topography of the grid

Configure your grid
A grid is a set of associated instances that contain the distributed data of one or more
databases. There are two types of instances in a grid:

■ Management instances control a grid and maintain the model, which is the
central configuration of a grid. You can configure up to two management instances
to provide availability for the management of the grid.

■ Data instances store the data of every database managed by the grid.

These sections describe the tasks to set up a grid:

■ Creating the initial management instance

■ Creating a grid

■ Adding the standby management instance

■ Calculating the number of hosts and data instances for the grid

■ Assigning hosts to data space groups

■ Adding data instances

■ Applying the changes made to the model

■ Setting instances to automatically start at system startup

Configure your grid

4-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

Creating the initial management instance
TimesTen Scaleout uses management instances to configure and manage a grid. A
management instance stores and maintains the model, a comprehensive list of the
objects that give shape to a grid.

To ensure high availability for the management of the grid, TimesTen Scaleout enables
you to create a standby management instance in an active standby configuration. It is
highly recommended that you configure a standby management instance, which
would be available in the case of a failure of the active management instance. If you
only have a single management instance and it fails, the databases remain operational,
but most management operations are unavailable until the management instance is
restored. The steps to set up a standby management instance are discussed later in this
chapter.

The ttInstanceCreate utility creates new instances. You create the initial management
instance with the ttInstanceCreate utility by including the -grid option to enable the
instance for TimesTen Scaleout management. Once you create a grid from this
instance, all subsequent instances associated with the grid are created through the
ttGridAdmin utility. All instances in the grid share the same OS username as instance
administrator.

Note: While this chapter describes the tasks necessary to completely
configure a grid by using the command line and the ttGridAdmin
utility, it is also possible to configure a grid by using Oracle SQL
Developer. See "Working with TimesTen Scaleout" in the Oracle SQL
Developer Oracle TimesTen In-Memory Database Support User's Guide for
more information.

Additionally, TimesTen Scaleout provides the ttGridRollout to
quickly set up a simple grid with a single database for development
and testing purposes. See "ttGridRollout" in the Oracle TimesTen
In-Memory Database Reference and "Deploy a grid and database" on
page A-5 in this document for more information on the utility and an
example of its use, respectively.

Important:

■ TimesTen Scaleout stores multiple versions of the model that may
describe a previous, present, or desired structure of a grid. See
"Model versioning" on page 4-18 for more information on how
these versions of the model are created or managed.

■ Most model objects have a user-defined name. TimesTen Scaleout
uses those names to define relationships between model objects.
In general, each type of model object has its own namespace. See
"Grid objects and object naming" in the Oracle TimesTen In-Memory
Database Reference for further details.

■ See "Central configuration of the grid" on page 1-16 for a complete
list of the types of model objects and their descriptions.

Configure your grid

Setting Up a Grid 4-3

Figure 4–1 Grid scenario

On a host with a TimesTen 18.1 installation, create a management instance in a location
of your choice, for example, the/grid directory.

% /grid/tt18.1.4.1.0/bin/ttInstanceCreate -name instance1 -location
 /grid -grid
Creating instance in /grid/instance1 ...
INFO: Mapping files from the installation to /grid/instance1/install

NOTE: The TimesTen daemon startup/shutdown scripts have not been installed.

Note: The tasks described in this and the next several sections use a
scenario of a grid with a K-safety (k) set to 2 and that consists of eight
hosts: two hosts with a TimesTen installation and a management
instance, and two data space groups with three hosts each, each host
with a TimesTen installation and a data instance. Figure 4–1 shows a
graphical representation of this scenario.

Note: See Chapter 2, "Prerequisites and Installation of TimesTen
Scaleout" for information on how to install TimesTen and its
prerequisites for TimesTen Scaleout.

da
ta

 s
pa

ce
 g

ro
up

 1

host 1

installation 1

management
instance 1
(active)

host 2

installation 2

management
instance 2
(standby)

host 3

installation 3

data
instance 1

host 5

installation 5

data
instance 3

host 7

installation 7

data
instance 5

da
ta

 s
pa

ce
 g

ro
up

 2

host 4

installation 4

data
instance 2

host 6

installation 6

data
instance 4

host 8

installation 8

data
instance 6

Configure your grid

4-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

The startup script is located here :
 '/grid/instance1/startup/tt_instance1'

Run the 'setuproot' script :
 /grid/instance1/bin/setuproot -install
This will move the TimesTen startup script into its appropriate location.

The 18.1.4.1 Release Notes are located here :
 '/grid/tt18.1.4.1.0/README.html'

Ensure that you set the environment variables for the instance1 management instance
with the ttenv script (ttenv.csh or ttenv.sh) appropriate for your shell.

For a Bourne-type shell, such as sh, bash, zsh, or ksh:

$. /grid/instance1/bin/ttenv.sh

For a csh or tcsh shell:

% source /grid/instance1/bin/ttenv.csh

For more information on the ttInstanceCreate utility, see "ttInstanceCreate" in the
Oracle TimesTen In-Memory Database Reference.

See "Environment variables" on page B-1 for more information on the environment
variables.

Creating a grid
You can manipulate the state and configuration of a grid with the ttGridAdmin utility.
All operations that require the use of the ttGridAdmin utility must be performed by
the instance administrator and from the active management instance, unless stated
otherwise. Use this utility to perform all the operations related to the configuration
and maintenance of a grid, which include:

■ Creating a new grid

■ Creating and removing model objects such as hosts and instances

Note:

■ TimesTen Scaleout sets instance1 as the default instance name of
new instances when you create them with the ttGridAdmin utility.
Subsequent instances that you create on the same host require that
you provide a different name for the instances. The example uses
instance1 to stay in line with the default value. You may use the
name of your choice.

■ TimesTen Scaleout creates a subdirectory with the instance name
in the specified location. TimesTen Scaleout creates all instance
files in this subdirectory. For example, the instance files of the
instance1 management instance are allocated in the
/grid/instance1 directory of the local system.

■ TimesTen Scaleout sets the default values for the TCP/IP port
numbers of the instance daemon and server (6624 and 6625,
respectively) if you do not specify a value for the port numbers.
Use the -daemonPort or -csPort options of the ttInstanceCreate
utility to set different values for the port numbers.

Configure your grid

Setting Up a Grid 4-5

■ Creating and destroying databases

■ Defining and modifying how the user data is distributed across the available data
instances

■ Modifying the attributes of model objects such as the connection attributes of the
databases

■ Querying the status of the grid and its databases

■ Maintaining the different versions of the model

■ Applying the changes made to the latest version to the model to the operational
grid.

The ttGridAdmin gridCreate command performs the next operations:

■ Starts the active management instance.

■ Creates a grid with a user-defined name.

■ Creates the required number of data space groups as indicated by the value of
K-safety.

■ Defines the client configuration of the membership service. See Chapter 3, "Setting
Up the Membership Service" for details on the membership service and the
required ZooKeeper client configuration file.

■ Adds the management instance and its associated host and installation as model
objects to the latest version of the model.

Create a grid with k set to 2. Specify a name for the grid, the internal address or the
internal and external address of the local system, and provide the ZooKeeper client
configuration file.

% ttGridAdmin gridCreate grid1 -k 2 -internalAddress int-host1
 -externalAddress ext-host1.example.com -membershipConfig
 /tmp/membership.conf
Grid grid1 created

To create the grid1 grid, TimesTen Scaleout starts the instance1 management
instance. Then, the instance1 management instance creates the grid1 grid and its

Note: For more information on the ttGridAdmin utility, see
"ttGridAdmin" in the Oracle TimesTen In-Memory Database Reference.

Note:

■ If you do not specify the -host option of the ttGridAdmin
gridCreate command, TimesTen Scaleout sets the hostname of the
local system as the name of the host in the model.

■ TimesTen Scaleout automatically identifies the local TimesTen
installation as the installation1 installation.

■ TimesTen Scaleout sets the default value for the TCP/IP port
number of the replication agent of the active management
instance (3754) if you do not specify a value for the port number.
Use the -mgmtPort option in the ttGridAdmin gridCreate
command to specify a different value for the port number.

Configure your grid

4-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

model. Finally, the instance1 management instance performs these operations in the
model of the grid1 grid:

■ Creates a host object, host1, in the model to represent the local system.

■ Creates an installation object, installation1, in the model to represent the local
TimesTen installation.

■ Creates an instance object, instance1, in the model.

■ Associates the installation1 installation with both the host1 host and the
instance1 instance.

■ Creates two data space groups (since k is set to 2).

Figure 4–2 shows a graphical representation of the model after the creation of the
grid1 grid.

Figure 4–2 The model after creating a grid

For more information on the ttGridAdmin gridCreate command, see "Create a grid
(gridCreate)" in the Oracle TimesTen In-Memory Database Reference.

Adding the standby management instance
TimesTen Scaleout enables you to create a second management instance for a grid.
When two management instances exist in a grid, the configuration of the grid is
replicated from the active management instance to the standby management instance
using an active standby configuration. Replication between the active and standby
management instances is asynchronous. See "Managing failover for the management
instances" on page 11-33 for more information on how TimesTen Scaleout uses an
active standby configuration for the management instances.

TimesTen Scaleout automatically configures the second management instance as the
standby. All operations that use and manipulate the configuration of the grid must be
performed from the active management instance with the ttGridAdmin utility.

It is highly recommended that every management instance that you configure in a grid
is located on a different host. Those hosts should be in different failure domains (with
independent power, storage, and other resources). You must manually add every host

Important: From this point forward, the described tasks only add
and modify model objects to the latest version of the model and do
not make any changes on the systems associated with such model
objects until the changes made to the latest version of the model are
applied. See "Applying the changes made to the model" on page 4-18
for full details.

da
ta

 s
pa

ce
 g

ro
up

 1

host1

installation1

instance1

da
ta

 s
pa

ce
 g

ro
up

 2

Configure your grid

Setting Up a Grid 4-7

to the model by providing the communication parameters (fully qualified domain or
IP address) of the system they are associated with.

The ttGridAdmin hostCreate command defines a host object in the model. This
command enables you to create an instance (management or data) and copy the
attributes, such as the data space group, of an existing host by using the -like option.
In addition, you have the option to copy the associated installations and instances by
using the -cascade option along with the -like option.

Create a standby management instance and its associated installation by duplicating
the host associated with the active management instance, host1.instance1. Ensure
that you identify the fully qualified domain name or IP address of the new host.

% ttGridAdmin hostCreate -internalAddress int-host2 -externalAddress
 ext-host2.example.com -like host1 -cascade
Host host2 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

Figure 4–3 shows a graphical representation of the model of the grid1 grid after
creating the host2 host, host2.installation1 installation and host2.instance1
management instance.

Note:

■ If you do not specify a name for the host, TimesTen Scaleout sets
the OS hostname of the remote system as the name of the new
host.

■ Any additional options you define in the ttGridAdmin
hostCreate command will overwrite the attributes inherited from
the existing host in the new host. In this example, TimesTen
Scaleout uses the same values for the daemon, server, and
management ports (6624, 6625, and 3754, respectively) as the
values set for the host1.instance1 management instance.

■ This example uses the -like and -cascade options of the
ttGridAdmin hostCreate command to create the standby
management instance and its associated host and installation.
Alternatively, you can create them separately. See "Adding data
instances" on page 4-11 for more details.

Configure your grid

4-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

Figure 4–3 The model after creating the standby management instance

Notice that the names assigned to the installation and management instance created
for the host2 host are identical to the names assigned to the host1 host, a result of the
cascade operation. This does not generate a conflict, since the fully qualified names are
different. See "Grid objects and object naming" in the Oracle TimesTen In-Memory
Database Reference for more information.

For more information on the ttGridAdmin hostCreate command, see "Create a host
(hostCreate)" in the Oracle TimesTen In-Memory Database Reference.

Calculating the number of hosts and data instances for the grid
A database is distributed across multiple data instances that collectively provide a
single database image. Data instances reside on hosts. You create each host and data
instance that is to be included in the grid. Thus, you need to calculate how many hosts
and data instances to create when you are designing your grid.

The number of copies of the data that you define for the value of K-Safety (k) is a
factor for how many data instances and hosts that you need to create for your grid. If
you define a duplicate copy of the data by setting k set to 2, then you need twice as
many data instances and hosts as when a single copy of the data is requested with k
set to 1.

■ Calculate the number of data instances to create

■ Calculate the number of hosts you need to support your data instances

Calculate the number of data instances to create
The number of data instances that you create depends on two factors:

Note: 2 is the maximum number that you can assign as the value for
k.

da
ta

 s
pa

ce
 g

ro
up

 1

host1

installation1

instance1

host2

installation1

instance1

da
ta

 s
pa

ce
 g

ro
up

 2

Configure your grid

Setting Up a Grid 4-9

■ The value of k: If you set k to 1, the number of data instances you create equals the
number of elements you desire for each database. If you set k to 2, then you need
to create twice as many data instances, one set of data instances to manage each
copy of the database contained within the replica sets.

■ The number of replica sets across which you want the data distributed: The
number of data instances you create is dictated by the number of elements in all
replica sets, since each data instance manages one element of each database.

All elements that make up a single copy of the database are assigned within a data
space. If you set k to 2 for two copies of the database, then each replica set contains
two elements, where each element is an exact copy of the other element in the
replica set. Each data space contains one of the replica elements of each replica set.

To calculate the number of replica sets across which you want the data distributed,
determine the maximum of the two values below:

– Database size versus host memory size. The size of the database and the
amount of memory you have on each host determines the number of replica
sets you want. For example, if you have a two Terabyte database and hosts
with 512 Gigabytes of memory each, then you need at least four replica sets to
hold all of the data. More likely that you will need five hosts, since you cannot
use all of the memory on each host for the data.

– Throughput. Even if your database is small enough to fit in the memory of a
single host, you need to spread your data over multiple hosts if a single host
cannot handle the number of transactions per second that your applications
require.

Once you decide on the number of replica sets, you can calculate the number of data
instances.

For the equation to find the number of data instances required, r represents the
number of replica sets (where each replica set contains 1 or 2 elements) and k
represents the K-safety value which denotes the number of copies of the data and
subsequently, the number of elements in each replica set. To create enough data
instances, you need to create k * r data instances.

number of data instances = k * r

For example, if you set k to 2 for two copies of the database and each copy of the
database is to be distributed across three replica sets, then you need to create 6 data
instances where three data instances contain replica elements for data space 1 and
three data instances contain the replica elements for data space 2.

See "Understanding data spaces" on page 1-10 for more details on data spaces. See
"Understanding replica sets" on page 1-10 for more details on replica sets.

Calculate the number of hosts you need to support your data instances
To calculate the number of physical or virtual systems for a production deployment of
your grid involves considering:

Note: Each data space logically contains a full copy of the data for
the database. Since there are k copies of the data, there are k data
spaces.

Data instances are assigned to data spaces based on how hosts are
assigned to data space groups.

Configure your grid

4-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Hosts for the membership servers. See "Using Apache ZooKeeper as the
membership service" on page 3-5 for details on the number of hosts needed for the
membership servers.

■ Hosts for the management instances. See "Adding the standby management
instance" on page 4-6 for details on the number of hosts needed for the
management instances.

■ Hosts for the data instances. This section describes how many hosts you need to
support the number of data instances in your grid.

The number of hosts that you need depends on the how many data instances you
install on each host. The following is described in "Data instances" on page 1-8.

Each data instance normally resides on a separate host to provide maximum data
availability and as a guard against data loss should one of the hosts fail. However, you
might want to run multiple data instances on a single host if:

■ The hosts in the grid contain a large amount of computing resources.

■ For experimentation of a larger grid before deployment, you might want to test a
larger grid configuration on a smaller number of hosts.

Thus, to decide on the number of hosts:

■ If you install a single data instance on each host, then the number of hosts required
is the same number of data instances in the grid. For example, if you have six data
instances, then you would create six hosts.

■ If you install more than one data instance on each host, then the number of hosts
required depends on how many data instances are on each host. For example, if
you have eight data instances and you want to install two data instances on each
host, then you only need four hosts.

Once you create the hosts for data instances, you assign them to a data space group.
See "Assigning hosts to data space groups" on page 4-10 for details.

Assigning hosts to data space groups
Data instances will not be created on hosts that are not part of a data space group. The
number of data space groups depends on the value set for k. If k is set to 2, then you
will have two data space groups.

As described in "Assigning hosts to data space groups" on page 1-11, adding hosts to
data space groups specifies the physical location of your data. The hosts in one data
space group should be physically separate from the group of hosts in another data
space group to protect each full copy of the database from hardware failures.

Figure 4–4 is an example of a grid with two data space groups, each containing a
single copy of the data. Six hosts contain data instances with the three replica sets that
support two copies of the data in a K-safety environment where k is set to 2. Three
hosts with data instances that contain a single copy of the data are assigned to data
space group 1; the other three hosts with data instances that contain the second copy of
the data are assigned to data space group 2.

Configure your grid

Setting Up a Grid 4-11

Figure 4–4 DataSpaceGroup example

You assign the hosts to data space groups so that there is an equal number of hosts in
each data space group. However, you can assign the hosts to each data space group
later or ask TimesTen Scaleout to recommend host assignments for you.

■ You can assign the host to the data space group as part of the host creation with
the -dataspacegroup option of the ttGridAdmin hostCreate command. "Adding
data instances" on page 4-11 shows examples of this option.

■ You can create the host and assign it to a data space group later with the
ttGridAdmin hostModify -dataspacegroup command.

■ If you have a complicated physical topology, you can use the ttGridAdmin
dataSpaceGroupSuggest command to receive data space group assignment
recommendations from TimesTen Scaleout for multiple hosts with the
ttGridAdmin dataSpaceGroupSuggest command. See "Description of the physical
topography of the grid" on page 4-20 for more details on this method.

Adding data instances
A data instance contains an element for every single database defined in the grid. An
element stores a portion of the data of a single database. The data may be distributed
among a number of elements equal to the number of data instances defined in the
grid.

Perform the following tasks to create data instances in a grid:

■ Create a host for a data instance

Note: TimesTen Scaleout cannot create data instances on a host
unless the host has been assigned to a data space group.

host 8

da
ta

 s
pa

ce
 g

ro
up

 2

replica set 1

replica set 2

replica set 3

host 6

host 4

instance

host 7

host 5

host 3

instance

instanceinstance

instanceinstance

da
ta

 s
pa

ce
 g

ro
up

 1

rack 2

power 3

power 4

rack 1

power 1

power 2

Configure your grid

4-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Create the installation for the data instance

■ Create the data instance

■ Create data instances by duplicating the configuration of an existing host

Create a host for a data instance
As with a host associated with a management instance, for every system you intend to
use to store a portion of the data of a database, you must manually add the system as a
host model object. Likewise, you must provide the communication parameters (fully
qualified domain or IP address) of the system. Although, each host can have more
than one data instance, it is recommended that you only configure one data instance
per host.

To create a data instance, you need to associate the host with a data space group. All
data space groups must be associated with the same number of data instances. If you
follow the recommendation of one data instance per host, all data space groups must
be associated with the same number of hosts.

As mentioned in "Adding the standby management instance" on page 4-6, the
ttGridAdmin hostCreate command creates a host in the grid. You can associate the
host with a data space group or physical group at host creation or later.

Create a host for a data instance and associate it with data space group 1. Ensure that
you identify the fully qualified domain name or IP address of the host.

% ttGridAdmin hostCreate -internalAddress int-host3 -externalAddress
 ext-host3.example.com -dataSpaceGroup 1
Host host3 created in Model

Figure 4–5 shows a graphical representation of the model of the grid1 grid after
creating the host3 host.

Note: Remember that the operations described in the following
sections only modify the latest version of the model and do not
become part of the operational grid until those changes are applied.
See "Applying the changes made to the model" on page 4-18 for full
details.

Note: If you do not initially associate a host with a data space group,
you have the option to let TimesTen Scaleout analyze the model after
you have created all the hosts and suggest which hosts to associate
with each data space group, based on the physical groups associated
with each host, with the use of the ttGridAdmin
dataSpaceGroupSuggest command. See "Describe your physical
topology with physical groups" on page 1-12 and "Assigning hosts to
data space groups" on page 4-10 for more information.

Note: If you do not specify a name for the host, TimesTen Scaleout
sets the OS hostname of the remote system as the name of the new
host.

Configure your grid

Setting Up a Grid 4-13

Figure 4–5 The model after adding a host for a data instance

For more information on the ttGridAdmin hostCreate command, see "Create a host
(hostCreate)" in the Oracle TimesTen In-Memory Database Reference.

Create the installation for the data instance
Every host must have an installation associated with it. A host can either have its own
copy of the installation files or share an installation with one or more hosts through
network-attached storage. For shared installations, an installation model object with
the location of the shared installation files must be associated with the host.

For more information on how to share a TimesTen installation, see "Copying an
installation on Linux/UNIX" in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide.

The ttGridAdmin installationCreate command creates an installation in the grid
and associates it with a host.

Create an installation in a directory of your choice in the host3 host, for example, the
/grid directory.

% ttGridAdmin installationCreate host3 -location /grid
Installation installation1 on Host host3 created in Model

Note:

■ If you do not specify a name for the installation, TimesTen
Scaleout sets installation1 as the name of the installation. Any
subsequent installation associated with the same host requires
that you provide a name for it.

■ If the management instance running the command has only one
installation associated with it and the source for the installation
files is not specified in the -source option of the ttGridAdmin
installationCreate command, TimesTen Scaleout copies the
installation files from the installation associated with the
management instance running the command.

da
ta

 s
pa

ce
 g

ro
up

 1

host1

installation1

instance1

host2

installation1

instance1

host3

da
ta

 s
pa

ce
 g

ro
up

 2

Configure your grid

4-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

Figure 4–6 shows a graphical representation of the model of the grid1 grid after
creating the installation1 installation in the host3 host.

Figure 4–6 The model after adding an installation for the data instance

For more information on the ttGridAdmin installationCreate command, see "Create
an installation (installationCreate)" in the Oracle TimesTen In-Memory Database Reference.

Create the data instance
The ttGridAdmin instanceCreate command creates an instance in the grid and
associates it with a host and installation.

Create a data instance in the location of your choice in the host3 host, for example, the
/grid directory.

% ttGridAdmin instanceCreate host3 -location /grid
Instance instance1 on Host host3 created in Model

da
ta

 s
pa

ce
 g

ro
up

 1

host1

installation1

instance1

host2

installation1

instance1

da
ta

 s
pa

ce
 g

ro
up

 2

host3

installation1

Configure your grid

Setting Up a Grid 4-15

Figure 4–7 shows a graphical representation of the model of the grid1 grid after
creating a data instance.

Figure 4–7 The model after adding a data instance

For more information on the ttGridAdmin instanceCreate command, see "Create an
instance (instanceCreate)" in the Oracle TimesTen In-Memory Database Reference.

Note:

■ If you do not specify a name for the instance, TimesTen Scaleout
sets instance1 as the name of the instance. Any subsequent
instances associated with the same host requires that you provide
a name for it.

■ Because the host3 host only has the installation1 installation
associated with it, the installation1 installation is associated
with the instance1 data instance by default and there is no need
to specify the -installation option.

■ TimesTen Scaleout defines an instance as a data instance by
default. Use the -type management option of the ttGridAdmin
instanceCreate command to create a management instance.

■ TimesTen Scaleout creates a subdirectory with the instance name
in the specified location. TimesTen Scaleout allocates all instance
files in this subdirectory. For example, the instance files of the
instance1 data instance are allocated in the /grid/instance1
directory of the host3 host.

■ TimesTen Scaleout sets the default values for the TCP/IP port
numbers of the instance daemon and server (6624 and 6625,
respectively) if you do not specify a value for the port numbers.
Use the -daemonPort or -csPort options of the ttGridAdmin
instanceCreate utility to set different values for the port
numbers.

da
ta

 s
pa

ce
 g

ro
up

 1

host1

installation1

instance1

host2

installation1

instance1

da
ta

 s
pa

ce
 g

ro
up

 2

host3

installation1

instance1

Configure your grid

4-16 Oracle TimesTen In-Memory Database Scaleout User's Guide

Create data instances by duplicating the configuration of an existing host
As mentioned in "Adding the standby management instance" on page 4-6, you can
create an instance (management or data) by duplicating the configuration of an
existing host, including its associated installations and instances with the -like and
-cascade options of the ttGridAdmin hostCreate command.

■ The -like option identifies the host to be duplicated and associates the new host
with the same physical groups and data space group. You can override the
physical groups and data space group associated with the new host by providing
different parameters in the -physicalGroup and -dataSpaceGroup options,
respectively.

■ The -cascade option duplicates the configuration of the installations and data
instances associated with the specified host.

Create five data instances based on the same attributes defined for the host3 host and
its associated installation and data instance. Also, associate three hosts with data space
group 2, instead of data space group 1. Ensure that you identify the fully qualified
domain name of the new hosts.

% ttGridAdmin hostCreate -internalAddress int-host4 -externalAddress
 ext-host4.example.com -like host3 -cascade -dataSpaceGroup 2
Host host4 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host5 -externalAddress
 ext-host5.example.com -like host3 -cascade
Host host5 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host6 -externalAddress
 ext-host6.example.com -like host4 -cascade
Host host6 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host7 -externalAddress
 ext-host7.example.com -like host3 -cascade
Host host7 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host8 -externalAddress
 ext-host8.example.com -like host4 -cascade
Host host8 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

Configure your grid

Setting Up a Grid 4-17

Figure 4–8 shows a graphical representation of the model of the grid1 grid after
duplicating the host3 host as the host4, host5, host6, host7, and host8 hosts and their
associated installations and instances.

Figure 4–8 The model after duplicating an existing host

For more information on the ttGridAdmin hostCreate command, see "Create a host
(hostCreate)" in the Oracle TimesTen In-Memory Database Reference.

Note:

■ If you do not specify a name for the host, TimesTen Scaleout sets
the OS hostname of the remote system as the name of the new
host.

■ Any additional option you define in the ttGridAdmin hostCreate
command will overwrite the attributes inherited from the existing
host in the new host, as shown with the addition of the
-dataSpaceGroup 2 parameter in the command that creates the
host6 host.

■ Notice that the ttGridAdmin hostCreate commands that create
the host6 and host8 hosts use the host4 host as reference in the
-like option.

da
ta

 s
pa

ce
 g

ro
up

 1

host1

installation1

instance1

host2

installation1

instance1

host3

installation1

instance1

host5

installation1

instance1

host7

installation1

instance1

da
ta

 s
pa

ce
 g

ro
up

 2

host4

installation1

instance1

host6

installation1

instance1

host8

installation1

instance1

Configure your grid

4-18 Oracle TimesTen In-Memory Database Scaleout User's Guide

Applying the changes made to the model
The latest version of the model describes the desired structure of a grid, not its current
structure. Any changes made to the latest version of the model are not immediately
reflected in the operational configuration of a grid. Changes made to the latest version
of the model need to be explicitly applied to the grid.

Model versioning
Management instances store multiple versions of the model. Only one version of the
model can be active in the grid at any given time.

TimesTen Scaleout classifies model versions as follows:

■ Current version: The current version of the model describes the operational
configuration of the grid. This version, and all previous versions, is read-only.

■ Latest version: The latest version of the model can be modified and has yet to be
applied to the grid. This version is read/write.

When you create a grid, the version 1 model is initially populated with the
configuration of the first host, installation, and management instance, and the version
1 model is recognized as the latest version of the model. Any subsequent changes that
you make to the model are added to the latest version of the model (version 1). When
you implement these changes with the ttGridAmin modelApply command, a new
latest version of the model (version 2) is created for future changes and the previous
latest version of the model (version 1) becomes the current version of the model.

Every time you run the ttGridAdmin modelApply command, TimesTen Scaleout:

1. Makes the latest version of the model (version n) read-only.

2. Creates a writable copy (version n+1) of the latest version of the model.

3. Attempts to apply the changes previously made to the version n model to the
operational grid.

4. Identifies the version n model as the current version of the model.

5. Identifies the version n+1 model as the latest version of the model.

The ttGridAdmin utility enables the user to perform several operations regarding the
model, like:

■ Applying the changes made to the latest version of the model

■ Comparing two versions of the model

■ Exporting a version of the model into a flat file in JSON format

■ Importing a flat file in JSON format as the latest version of the model

■ Listing all the available versions of the model

Previous versions of the model are automatically stored. With the ttGridAdmin
gridModify command, you can specify the retention period for old versions of the
model either in terms of days, in terms of the number of stored versions, or both.
TimesTen Scaleout by default retains the last 10 versions for a period of 30 days.

For more information on model operations or the ttGridAdmin gridModify utility, see
"Model operations" or "Modify grid settings (gridModify)", respectively, in the Oracle
TimesTen In-Memory Database Reference.

Configure your grid

Setting Up a Grid 4-19

Apply the latest version of the model
The ttGridAdmin modelApply command attempts to apply the changes made to the
latest version of the model into the operational grid. If, for example, you add a new
data instance to the latest version of the model, running this command performs all of
the necessary operations to create and initialize the instance in the specified host. Some
of the operations that the ttGridAdmin modelApply command performs include these:

■ Identify and delete any object removed from the latest version of the model.

■ Create new installations.

■ Create new instances, data and management.

■ Overwrite the configuration files of all instances. The new versions of these files
include any new entries found in the latest version of the model.

■ Verify the SSH connectivity between hosts.

■ Start new instances.

Apply all the changes made to the latest version of the model of the grid1 grid.

% ttGridAdmin modelApply
Creating new model version..OK
Exporting current model (version 1)...................................OK
Identifying any changed management instances..........................OK
Identifying any deleted objects.......................................OK
Verifying installations...OK
Verifying instances...OK
Creating new instances..OK
Updating grid state...OK
Configuring instance authentication...................................OK
Pushing new configuration files to each instance......................OK
Making model version 1 current, version 2 writable....................OK
Checking ssh connectivity of new instances............................OK
Starting new management instance......................................OK
Configuring standby management instance...............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete

Given all the tasks you performed in the previous sections, the ttGridAdmin
modelApply command performs the following operations:

1. Creates a copy of the installation files on every configured host:

2. Creates the instance home directory and files for the standby management
instance and data instances on their associated hosts:

3. Makes the latest version of the model read-only and a creates a new writable
model.

4. Verifies SSH connectivity to every configured host.

5. Starts the daemons of the standby management instance and data instances.

Note: If you recently added new instances to the model or have yet
to set the required passwordless SSH access to the hosts managing
instances, either manually set the required passwordless SSH access
for the instance administrator or use the ttGridAdmin gridSshConfig
command before applying the latest version of the model. See "Setting
passwordless SSH" on page 2-12 for more information.

Description of the physical topography of the grid

4-20 Oracle TimesTen In-Memory Database Scaleout User's Guide

6. Configures the active and standby management instances.

For more information on the ttGridAdmin modelApply command, see "Apply the
latest version of the model (modelApply)" in the Oracle TimesTen In-Memory Database
Reference.

Setting instances to automatically start at system startup
Optionally, you can configure data instances to automatically start or shut down every
time their systems boot or shut down, respectively. Each instance needs to be
configured independently and only after its creation has been applied to the current
version of the model.

To accomplish this, the root user must run the setuproot script with the -install
option. You can find this script in the timesten_home/bin directory of every instance
of the grid. For example:

From the host of the host3.instance1 data instance:

% /grid/instance1/bin/setuproot -install
Would you like to install the TimesTen daemon startup scripts into /etc/init.d?
 [yes]

For more information on how to use the setuproot script, see "Start an instance
automatically at system startup" in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide.

Description of the physical topography of the grid
As described in "Assigning hosts to data space groups" on page 1-11, TimesTen
Scaleout requires you to assign the hosts that will contain a data instance into a data
space group.

The example provided in "Adding data instances" on page 4-11, demonstrates how to
assign hosts to a data space group during host creation with the ttGridAdmin
hostCreate -dataSpaceGroup option:

% ttGridAdmin hostCreate -internalAddress int-host3 -externalAddress
 ext-host3.example.com -dataSpaceGroup 1
Host host3 created in Model

However, if your physical topography is complicated so that it is difficult to decide on
the best assignments of hosts to data space groups, you can ask TimesTen Scaleout to
recommend assignments of hosts to data space groups using the ttGridAdmin
dataSpaceGroupSuggest command. In order to accomplish this, you need to inform
TimesTen Scaleout of the physical topology of where your hosts are co-located or hosts
that use the same resources. You can inform TimesTen Scaleout of all physical
hardware for each host with the physical group.

Note: The hosts in one data space group should not share physical
resources with the hosts in another data space group to protect each
full copy of the database from hardware failures.

Description of the physical topography of the grid

Setting Up a Grid 4-21

Your physical topology may include buildings, transformers, air conditioners, racks,
fans, top of rack switches, hypervisors, storage filers and power sources. For example,
the following production environment includes:

■ 2 buildings, each with their own transformer.

■ 5 air conditioners in rooms within the 2 buildings.

■ 9 racks of servers in these rooms, each with several hosts.

■ 18 power surge protectors in which the hosts are plugged.

Instead of determining what would be the best data space group assignment for the
hosts that share these resources, you can assign hosts to physical groups to identify
where the hosts are located and what physical resources they share. This informs

Important: If you are going to use physical groups to have TimesTen
Scaleout recommend assignments, you should not assign hosts to data
space groups upon host creation. Hosts can only be assigned to data
space groups once.

2 buildings,
each with their

own transformer

across the two buildings are 5 air conditioners

across the two buildings are 9 racks of servers

on the 9 racks of servers are 18 surge power strips

Description of the physical topography of the grid

4-22 Oracle TimesTen In-Memory Database Scaleout User's Guide

TimesTen Scaleout of similar potential points of failure. Thus, when TimesTen Scaleout
recommends assignment of hosts to data space groups using the ttGridAdmin
dataSpaceGroupSuggest command, it physically separates the hosts that contain the
separate copies of the data.

Create and manage the physical topography of your grid by:

■ Assigning hosts to physical groups

■ Propose data space group assignments

Assigning hosts to physical groups
Assigning hosts to physical groups to denote the physical topology is optional and
only necessary when you want TimesTen Scaleout to assign hosts to data space
groups.

The example in this section assigns the hosts to physical groups using the same host
configuration of the example used in this chapter. In production, you would not use
physical groups for this small example as you can easily identify which hosts should
be in which data space group.

Figure 4–9 Hosts attached to physical resources

Let us assume that:

■ Hosts 3, 4, and 5 share an air conditioner.

Note: See "Assigning hosts to data space groups" on page 4-10 for
more details on data space groups. See "Get recommendations for data
space group assignments (dataSpaceGroupSuggest)" in the Oracle
TimesTen In-Memory Database Reference for more details on the
ttGridAdmin dataSpaceGroupSuggest command.

host 8

host 7

host 5

host 4

host 3

rack 1 rack 2

power 1

power 2

power 3

power 4

air cond 1 air cond 2

host 6

Description of the physical topography of the grid

Setting Up a Grid 4-23

■ Hosts 3, 4 and 5 are on the same rack.

■ Hosts 3 and 4 share a power source.

■ Host 5 has its on power source.

■ Hosts 6, 7 and 8 share an air conditioner.

■ Hosts 6, 7 and 8 are on the same rack.

■ Hosts 6 and 7 share a power source.

■ Host 8 has its own power source.

To identify which hosts are connected to which physical resources:

1. Define a physical group, which is simply a container object that groups hosts
together to show that there is a shared physical resource. This enables TimesTen
Scaleout to separate different copies of the data to hosts that do not share physical
aspects.

2. Assign hosts to physical groups either when creating the host with the
ttGridAdmin hostCreate command or when modifying the host with the
ttGridAdmin hostModify command.

You can assign a host to one or more physical groups, as appropriate. If they are
assigned to a similar rack and share a power source, you can assign the host to
both of these physical groups.

See "Create a host (hostCreate)" and "Modify a host (hostModify)" in the Oracle
TimesTen In-Memory Database Reference for more details on these ttGridAdmin
commands.

Example 4–1 Example of hosts that are physically located on two separate racks

This example shows how you would create physical groups to model the shared
resources and assign hosts to these physical groups.

1. Define the physical group: Use the ttGridAdmin physicalCreate command to
create:

■ rack1 and rack2 to model the physical racks in the lab.

■ aircond1 and aircond2 to model the air conditioners.

■ power1, power2, power3 and power4 to model the power surge protectors.

2. Assign hosts to the physical group: Use the ttGridAdmin hostModify to assign the
hosts to each shared physical resource using the -physicalgroup option:

■ host3, host4 and host5 are on the rack1.

■ host3, host4 and host5 share aircond1.

■ host3 and host4 share power1.

■ host5 has its own power2.

■ host6, host7 and host8 are on rack2.

■ host6, host7 and host8 share an aircond2.

■ host6 and host7 share power3.

■ host8 has its own power4.

Description of the physical topography of the grid

4-24 Oracle TimesTen In-Memory Database Scaleout User's Guide

% ttGridAdmin physicalCreate rack1
 PhysicalGroup rack1 created.
% ttGridAdmin physicalCreate rack2
 PhysicalGroup rack2 created.
% ttGridAdmin physicalCreate aircond1
 PhysicalGroup aircond1 created.
% ttGridAdmin physicalCreate aircond2
 PhysicalGroup aircond2 created.
% ttGridAdmin physicalCreate power1
 PhysicalGroup power1 created.
% ttGridAdmin physicalCreate power2
 PhysicalGroup power2 created.
% ttGridAdmin physicalCreate power3
 PhysicalGroup power3 created.
% ttGridAdmin physicalCreate power4
 PhysicalGroup power4 created.
% ttGridAdmin hostModify host3 -physicalgroup rack1 aircond1 power1
 Host host3 modified in Model
% ttGridAdmin hostModify host4 -physicalgroup rack1 aircond1 power1
 Host host4 modified in Model
% ttGridAdmin hostModify host5 -physicalgroup rack1 aircond1 power2
 Host host5 modified in Model
% ttGridAdmin hostModify host6 -physicalgroup rack2 aircond2 power3
 Host host6 modified in Model
% ttGridAdmin hostModify host7 -physicalgroup rack2 aircond2 power3
 Host host7 modified in Model
% ttGridAdmin hostModify host8 -physicalgroup rack2 aircond2 power4
 Host host8 modified in Model

Removing the physical layout of the hosts
If you want to remove a physical description of how the hosts are organized
physically, use the -nophysicalgroup option with the ttGridAdmin hostModify
command. The host3 host was originally associated with the physical groups rack1,
aircond1 and power1. By executing the following command, host3 is not assigned to
any physical groups.

% ttGridAdmin hostModify host3 -nophysicalgroup
 Host host3 modified in Model

Note: If a host was already associated with a physical group before
you execute the -physicalgroup option of the ttGridAdmin
hostModify command, these physical groups are removed and the
only physical groups associated with the host are those that are
specified on the current command line.

However, you can add physical groups in addition to those physical
groups that are already assigned to the existing host by using the
-addPhysicalGroup option on the ttGridAdmin hostModify
command.

Note: You can use the ttGridAdmin modelExport command to see
which hosts are assigned to a physical group.

Description of the physical topography of the grid

Setting Up a Grid 4-25

Deleting physical groups
You can delete a physical group only if no hosts are assigned to it. The following
deletes the rack1 physical group after removing the host1 and host2 hosts assigned to
it:

% ttGridAdmin hostModify host3 -nophysicalgroup
 Host host3 modified in Model
% ttGridAdmin hostModify host4 -nophysicalgroup
 Host host4 modified in Model
% ttGridAdmin hostModify host5 -nophysicalgroup
 Host host5 modified in Model
% ttGridAdmin physicalDelete rack1
 PhysicalGroup rack1 deleted.

Propose data space group assignments
You can use the ttGridAdmin dataSpaceGroupSuggest command to propose an
assignment of hosts to different data space groups based on how the hosts are
currently assigned to physical groups. You can either accept the proposed assignments
or specify your own assignments.

The ttGridAdmin dataSpaceGroupSuggest command makes recommendations on
how to assign hosts so that the hosts that contain one copy of the data do not share
resources with the hosts that contain the copy of the data. Once the ttGridAdmin
command assigns the hosts to their data space groups, the assignment cannot be
changed.

See "Get recommendations for data space group assignments
(dataSpaceGroupSuggest)" in the Oracle TimesTen In-Memory Database Reference for
more details on the ttGridAdmin dataSpaceGroupSuggest command.

Example 4–2 Requesting TimesTen Scaleout assign hosts to data spaces

This example shows ttGridAdmin dataSpaceGroupSuggest command, which writes
its recommendations into the recommendations.sh file. You can execute this file as it
contains the ttGridAdmin hostModify commands necessary for assigning hosts to the
recommended data space groups.

% ttGridAdmin dataSpaceGroupSuggest /tmp/recommendations.sh
% more /tmp/recommendations.sh
#!/bin/sh
Recommendations generated by ttGridAdmin -dataSpaceGroupSuggest

TIMESTEN_HOME=/grid/instance1
export TIMESTEN_HOME
. $TIMESTEN_HOME/bin/ttenv.sh > /dev/null 2>/dev/null

Number of possibilities evaluated: 126
#
Number of usable possibilities found: 10
(A 'usable' possibility is one that is compatible with pre-existing
assignments of Hosts to DataSpaceGroups)
#
Number of 'ideal' possibilities found: 1
(An 'ideal' possibility is one where no PhysicalGroups span multiple
DataSpaceGroups)
#
Possibilities evaluated (best 10 displayed):
...
#

Description of the physical topography of the grid

4-26 Oracle TimesTen In-Memory Database Scaleout User's Guide

This script, if executed, would implement the only 'ideal' configuration found.
Even though this recommendation was 'ideal', you should carefully evaluate it
prior to running this script.
Host host1 is already in DataSpaceGroup 1
ttGridAdmin hostModify host3 -dataSpaceGroup 2
ttGridAdmin hostModify host4 -dataSpaceGroup 2
ttGridAdmin hostModify host5 -dataSpaceGroup 2
ttGridAdmin hostModify host6 -dataSpaceGroup 1
ttGridAdmin hostModify host7 -dataSpaceGroup 1
ttGridAdmin hostModify host8 -dataSpaceGroup 1

If you decide to accept these recommendations, execute the provided shell script,
which in our example is recommendations.sh. Once executed, all hosts are assigned to
the designated data space groups.

% sh /tmp/recommendations.sh
Host host3 modified in Model
Host host4 modified in Model
Host host5 modified in Model
Host host6 modified in Model
Host host7 modified in Model
Host host8 modified in Model

5

Managing a Database 5-1

5Managing a Database

This chapter discusses how to create and configure a database in TimesTen Scaleout.

■ Creating a database

■ Connecting to a database

■ Defining table distribution schemes

■ Determining the value of the PermSize attribute

■ Bulk loading data into a database

■ Unloading a database from memory

■ Reloading a database into memory

■ Modifying the connection attributes of a database

■ Destroying a database

Creating a database
The process of creating a database involves these tasks:

■ Create a database definition

■ Create a database based on the database definition

■ Define the distribution map of the database

■ Open the database for user connections

Note:

■ These tasks assume that you have already created and configured
a grid. See "Configure your grid" on page 4-1 for more
information on how to set up a grid and the grid scenario on
which the examples in this chapter are based.

■ Run the commands provided in the examples from the active
management instance, unless stated otherwise. For more
information on how to set the environment variables for the active
management instance, see "Creating the initial management
instance" on page 4-2 or "Environment variables" on page B-1.

Creating a database

5-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

Create a database definition
A database definition contains the description of a database. It defines the database
name, as well as the attributes of the database. Once a database definition is added to
the current version of the model, it can be used to create a database. Each database has
one or more connectables associated with it. Connectables specify how applications
connect to the database. Connectables are discussed in "Connecting to a database" on
page 5-7.

Creating a database definition file
To create a database definition, you need a database definition file. The database
definition file must use .dbdef as the file name suffix. The name of the database
definition derives from the name of the database definition file. For example, a
database definition file named database1.dbdef creates a database definition named
database1.

In the database definition file, you specify the connection attributes for the database.
The types of connection attributes that a database definition supports are:

■ Data store attributes are associated with a database when it is created. They can
only be modified by recreating the database.

The most commonly used data store attributes are:

– DataStore: Defines the full path and file name prefix of the checkpoint files for
every element of the database. Required.

– LogDir: Defines the file system directory of the transaction log files for every
element of the database.

– DatabaseCharacterSet: Defines the character set to be used by the database.
Required.

– Durability: Defines the degree of durability for transactions.

■ First connection attributes are associated with a database when it is loaded into
memory. They can only be modified when the database is unloaded from memory
and reloaded with different values for the first connection attributes.

The most commonly used first connection attributes are:

– PermSize: Defines the allocated size of the permanent memory region of each
element of the database. The permanent memory region contains persistent
database objects, such as tables. TimesTen Scaleout only writes the contents of
the permanent memory region to the file system.

Note: Database definition names have the same restrictions as Data
Source Names. See "Specifying Data Source Names to identify
TimesTen databases" in the Oracle TimesTen In-Memory Database
Operations Guide for more information.

Note: Ensure that you set the appropriate durability setting based on
your business needs and data loss tolerance. See "Durability settings"
on page 6-3 for more information.

Creating a database

Managing a Database 5-3

– TempSize: Defines the allocated size of the temporary memory region of each
element of the database. The temporary memory region contains the transient
data generated when executing a statement.

■ PL/SQL first connection attributes define the behavior of a database regarding
PL/SQL operations and are associated with the database when it is loaded into
memory. They can only be modified when the database is unloaded from memory
and reloaded with different values for the PL/SQL first connection attributes.

■ Server connection attributes define the behavior of the database regarding
connections and are associated with the database when it is loaded into memory.
They can only be modified when the database is unloaded from memory and
reloaded with different values for the server connection attributes.

Create a database definition file as shown in Example 5–1.

Example 5–1 Database definition file

The following example creates a database definition file named database1.dbdef that
defines:

■ The full path for the checkpoint files as /disk1/databases/database1

■ The directory for the log files as /disk2/logs

■ The database character set as AL32UTF8

■ The durability setting as 0.

■ 32 GB for the permanent memory region of every element

■ 4 GB for the temporary memory region of every element

■ 1 GB for the internal transaction log buffer of every element

■ An upper limit of 2048 user-specified concurrent connections to the database

vi /mydir/database1.dbdef

DataStore=/disk1/databases/database1
LogDir=/disk2/logs
DatabaseCharacterSet=AL32UTF8
Durability=0
PermSize=32768
TempSize=4096

Note: Each host must have sufficient main memory to accommodate
as many elements of the database as data instances associated with the
host. For more details on setting region sizes, see "Determining the
value of the PermSize attribute" on page 5-19 in this document and
"Specifying the memory region sizes of a database" and "Storage
provisioning for TimesTen" in the Oracle TimesTen In-Memory Database
Operations Guide.

Note: TimesTen Scaleout adds any connection attribute in the
database definition file that is not a data store, first connection,
PL/SQL first connection, or server connection attribute to a
connectable that TimesTen Scaleout creates by default. See "Create a
connectable" on page 5-7 for more information.

Creating a database

5-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

LogBufMB=1024
Connections=2048

For a complete description of all the connection attributes, see "Connection Attributes"
in the Oracle TimesTen In-Memory Database Reference.

Adding a database definition to the model
The ttGridAdmin dbdefCreate command creates a database definition based on a
database definition file. TimesTen Scaleout uses the name of the database definition
file to name the database definition.

Create the database1 database definition based on the database1.dbdef file.

% ttGridAdmin dbdefCreate /mydir/database1.dbdef
Database Definition database1 created.

The ttGridAdmin dbdefCreate command also creates a connectable of the same name,
which includes any general connection attribute found in the database definition file.
Considering that the database1.dbdef file in Example 5–1 includes no general
connection attribute, the database1 connectable contains no attributes. This
connectable is always set for direct connections only.

Add the database1 database definition to the current version of the model.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each instance......................OK
...
ttGridAdmin modelApply complete

TimesTen Scaleout adds a database1 connectable to the configuration files of every
data instance based on the attributes defined in the database1 database definition.

For more information on the ttGridAdmin dbdefCreate or ttGridAdmin modelApply
command, see "Create a database definition (dbdefCreate)" in the Oracle TimesTen
In-Memory Database Reference or "Applying the changes made to the model" on
page 4-18 in this document, respectively.

Create a database based on the database definition
In TimesTen Scaleout, user data is distributed to a set of elements that form a database.
Each data instance in the current version of the model contains one element of every
user database in the grid.

You can create a database based on the attributes stored in a database definition. On
database creation, every data instance creates an element of the database and loads it
into memory.

The process of creating an element of the database on every data instance is
asynchronous. The daemon of each data instance performs the operations necessary to
create and load the element into memory independently, as soon as it realizes that
there is a new database flagged for creation.

Note: TimesTen Scaleout overwrites the configuration files every
time you apply the changes made to the latest version of the model to
the operational grid. For this reason, you must refrain from modifying
these files without the assistance of the ttGridAdmin utility.

Creating a database

Managing a Database 5-5

The ttGridAdmin dbCreate command creates a database based on a database
definition.

Create the database1 database based on the database1 database definition.

% ttGridAdmin dbCreate database1
Database database1 creation started

Wait until all data instances report that they have loaded their element of the database
into memory before proceeding with the definition of the distribution map. You can
verify the status of the database creation process with the ttGridAdmin dbStatus
command as shown in Example 5–2.

Example 5–2 Verifying the status of the database creation process

The example shows a status summary for the database1 database. Notice that the
report shows all elements of the database as loaded.

% ttGridAdmin dbStatus database1 -element
Database database1 element level status as of Wed Jan 10 14:34:08 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host3 instance1 1 loaded 2018-01-10 14:33:23
host4 instance1 2 loaded 2018-01-10 14:33:21
host5 instance1 3 loaded 2018-01-10 14:33:23
host6 instance1 4 loaded 2018-01-10 14:33:23
host7 instance1 5 loaded 2018-01-10 14:33:23
host8 instance1 6 loaded 2018-01-10 14:33:23

For more information on the ttGridAdmin dbCreate or ttGridAdmin dbStatus
command, see "Create a database (dbCreate)" or "Monitor the status of a database
(dbStatus)", respectively, in the Oracle TimesTen In-Memory Database Reference.

Define the distribution map of the database
TimesTen Scaleout allows for elastic scalability. You can increase or reduce the number
of elements in your database according to your business needs. When you add new
data instances to a grid, TimesTen Scaleout does not automatically re-distribute the
data stored in the database across the elements of the new or remaining instances. The
way the data is distributed in TimesTen Scaleout is defined by the data space group
associated to each host in the grid and the elements of the data instances defined in the
distribution map of the database.

The ttGridAdmin dbDistribute command with the -add option adds the element of a
data instance to the distribution map of a database. Using all as the parameter for the
-add option adds the elements of all the available data instances in the grid. The all
parameter is typically used for the initial definition of the distribution map of a new
database.

Add all the elements of the available data instances in the grid1 grid to the
distribution map of the database1 database.

Note: TimesTen Scaleout blocks DDL and DML statements during
operations that change the distribution map of the database. Ensure
that you make changes to the distribution map while there are no
open transactions, such as during a maintenance period or scheduled
outage.

Creating a database

5-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

% ttGridAdmin dbDistribute database1 -add all -apply
Distribution map updated

For more information on the ttGridAdmin dbDistribute command, see "Set or modify
the distribution scheme of a database (dbDistribute)" in the Oracle TimesTen In-Memory
Database Reference.

Open the database for user connections
For an application to be able to connect to a database, the database needs to be open
for user connections. As with the database creation process, the process of opening
elements is asynchronous. The daemon of every data instance performs the operations
necessary to open its element as soon as it realizes that the database is flagged for
opening.

The ttGridAdmin dbOpen command opens a database for user connections.

Open the database1 database for user connections.

% ttGridAdmin dbOpen database1
Database database1 open started

You can verify the status of the database opening process with the ttGridAdmin
dbStatus command as shown in Example 5–3.

Example 5–3 Verifying the status of the database opening process

The example shows a status summary for the database1 database. Notice that the
report shows all elements of the database as open.

% ttGridAdmin dbStatus database1 -element
Database database1 element level status as of Wed Jan 10 14:34:43 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host3 instance1 1 opened 2018-01-10 14:34:43
host4 instance1 2 opened 2018-01-10 14:34:43
host5 instance1 3 opened 2018-01-10 14:34:42
host6 instance1 4 opened 2018-01-10 14:34:42
host7 instance1 5 opened 2018-01-10 14:34:42
host8 instance1 6 opened 2018-01-10 14:34:42

For more information on the ttGridAdmin dbOpen or ttGridAdmin dbStatus
command, see "Open a database (dbOpen)" or "Monitor the status of a database
(dbStatus)", respectively, in the Oracle TimesTen In-Memory Database Reference.

Note:

■ The instance administrator can connect to the database without it
being open for user connections.

■ Before you open the database to user connections, you may want
to create your database users. See "Creating or identifying a
database user" in the Oracle TimesTen In-Memory Database Security
Guide.

Also, you may want to have the SQL schema defined which
includes the distribution scheme of each table, as shown in
"Defining table distribution schemes" on page 5-13.

Connecting to a database

Managing a Database 5-7

Connecting to a database
To be able to connect to a database, every element of the database needs to be created,
loaded into memory, added to the distribution map, and opened for user connections.
All these operations are covered in the previous section, "Creating a database" on
page 5-1.

A connectable defines a name that applications can use to connect to a database. The
connectable may have the same name as the database or may have a different name.
There are two types of connectables:

■ Direct connectable: Defines a name by which applications may connect to a
database through direct communication.

■ Client/server connectable: Defines a name by which applications may connect to a
database through client/server communication.

TimesTen Scaleout enables you to create multiple connectables with different sets of
connection attributes defined for a single database.

Connectables support these types of connection attributes:

■ General connection attributes are set by each connection and persist for the
duration of that connection.

■ NLS general connection attributes define the connection-specific behavior of the
database regarding globalization.

■ PL/SQL general connection attributes define the connection-wise behavior of the
database regarding PL/SQL operations.

■ TimesTen Client connection attributes define the connection parameters for
client/server connections.

For a complete description of all the connection attributes, see "Connection Attributes"
in the Oracle TimesTen In-Memory Database Reference.

Create a connectable
TimesTen Scaleout creates a direct connectable by default for every database definition
added to the grid, this connectable enables applications to create direct connections to
the database from any data instance in the distribution map of the database. TimesTen
Scaleout uses the name assigned to the database definition to name the connectable.
You need to create a client/server connectable to establish client/server connections to
a database.

The tasks to create a connectable are:

■ Creating a connectable file

■ Creating a connectable based on the connectable file

Creating a connectable file
A connectable file specifies the attributes to use to connect to a database. The
connectable file must use .connect as file name suffix. The file name prefix of the
connectable file sets the name of the connectable. For example, a connectable file
named database1CS.connect creates a connectable named database1cs.

Connecting to a database

5-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

Create a client/server connectable file with the connection attributes for the database1
database as the one shown in Example 5–4.

Example 5–4 Connectable file

The example shows the contents of a connectable file named database1CS.connect
that sets AL32UTF8 as the connection character set and terry as the user ID for the
connection.

ConnectionCharacterSet=AL32UTF8
UID=terry

Creating a connectable based on the connectable file
The ttGridAdmin connectableCreate command creates a connectable based on a
connectable file.

Create the database1CS connectable based on the database1CS.connect connectable
file.

% ttGridAdmin connectableCreate -dbdef database1 -cs /mydir/database1CS.connect
Connectable database1CS created.

Apply the creation of the database1CS connectable to the current version of the model
to make the connectable available for use.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each instance......................OK
...
ttGridAdmin modelApply complete

For more information on the ttGridAdmin connectableCreate or ttGridAdmin
modelApply command, see "Create a connectable (connectableCreate)" in the Oracle

Note: Connectable names have the same restrictions as Data Source
Names. See "Specifying Data Source Names to identify TimesTen
databases" in the Oracle TimesTen In-Memory Database Operations Guide
for more information.

Note: If you do not provide a user ID, TimesTen utilizes the OS user
ID of the user that sends the connection request as the UID. In this
case, connection requests coming from systems other than the
localhost fail since the OS user ID cannot be authenticated. See "UID
and PWD" in the Oracle TimesTen In-Memory Database Reference and
"Authentication in TimesTen" in the Oracle TimesTen In-Memory
Database Security Guide for more information.

Note:

■ The -cs option enables the connectable for client connections
instead of direct connections.

■ Use the -only option to establish client connections only to the
element of the specified data instance.

Connecting to a database

Managing a Database 5-9

TimesTen In-Memory Database Reference or "Applying the changes made to the model"
on page 4-18 in this document, respectively.

Connect to a database using ODBC and JDBC drivers
Applications can use the ODBC direct driver, the ODBC client driver, or an ODBC
driver manager to connect to a database. See "Connecting to TimesTen with ODBC and
JDBC drivers" in the Oracle TimesTen In-Memory Database Operations Guide for more
information.

The following topics discuss how to use those DSNs to establish direct and client
connections to a database:

■ Establishing direct connections from a data instance

■ Establishing client connections from a TimesTen Client

■ Redirecting client connections

Establishing direct connections from a data instance
TimesTen Scaleout automatically creates a direct connectable that includes any general
connection attribute included in the database definition file. TimesTen Scaleout uses
the name of the database definition to name the connectable. When the connectable is
applied to the current version of the model, TimesTen Scaleout defines a DSN in every
data instance with the same name as the connectable. This allows ODBC and JDBC
applications to connect to the database associated with the connectable.

You may use the ttIsql utility from a data instance to establish direct connections to a
database.

From the host3.instance1 data instance, connect to the database1 database using the
database1 connectable.

% ttIsql -connStr "DSN=database1"

Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1";
Connection successful: DSN=database1;UID=pat;DataStore=/disk1/databases/database1;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;LogDir=/disk2/logs;
PermSize=32768;TempSize=4096;TypeMode=0;
(Default setting AutoCommit=1)
Command>

For more information on the ttIsql utility, see "Using the ttIsql Utility" in the Oracle
TimesTen In-Memory Database Operations Guide.

Establishing client connections from a TimesTen Client
A client/server connectable enables all data instances to accept connections from a
TimesTen Client instance or applications using the TimesTen Client driver. However,

Note: The example connects to the database as the instance
administrator, which is defined for all instances (data and
management) of the grid1 grid. For more information on database
users, see "Overview of TimesTen users" in the Oracle TimesTen
In-Memory Database Security Guide.

Connecting to a database

5-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

to establish a client connection from a TimesTen Client that is not part of the grid, you
have to create a client DSN in the system or user odbc.ini file of the TimesTen Client.

The ttGridAdmin gridClientExport command exports every client/server
connectable available for the grid into a file that is formatted to replace the system or
user odbc.ini file used by the TimesTen Client.

Export the client/server connectables of the grid1 grid into a file.

% ttGridAdmin gridClientExport /mydir/sys.odbc.ini

Example 5–5 shows the content of the resulting file.

Example 5–5 Exported odbc.ini file

[ODBC Data Sources]
database1CS=TimesTen 18.1.4 Client Driver

[database1CS]
TTC_SERVER_DSN=DATABASE1
External address/port info for host3.instance1
TTC_SERVER1=host3.example.com/6625
External address/port info for host4.instance1
TTC_SERVER2=host4.example.com/6625
External address/port info for host5.instance1
TTC_SERVER3=host5.example.com/6625
External address/port info for host6.instance1
TTC_SERVER4=host6.example.com/6625
External address/port info for host7.instance1
TTC_SERVER5=host7.example.com/6625
External address/port info for host8.instance1
TTC_SERVER6=host8.example.com/6625
ConnectionCharacterSet=AL32UTF8
UID=terry

For more information on the ttGridAdmin gridClientExport command, see "Export
sys.odbc.ini for client/server connections outside grid (gridClientExport)" in the Oracle
TimesTen In-Memory Database Reference.

Adding a client DSN to a TimesTen Client on Linux or UNIX To add a client DSN to a
TimesTen Client on Linux or UNIX, either replace the system or user odbc.ini file of
the TimesTen Client with the file you just created, or copy the contents of the file into
the system or user odbc.ini file. Then, from the TimesTen Client, connect to the
database1 database using the database1CS DSN with the ttIsqlCS utility.

% ttIsqlCS -connStr "DSN=database1CS"

Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1CS;UID=terry;
Enter password for 'terry':
Connection successful: DSN=database1CS;TTC_SERVER=host3.example.com;
TTC_SERVER_DSN=DATABASE1;UID=terry;DATASTORE=/disk1/databases/database1;
DATABASECHARACTERSET=AL32UTF8;CONNECTIONCHARACTERSET=AL32UTF8;
PERMSIZE=32768;TEMPSIZE=4096;TYPEMODE=0;
(Default setting AutoCommit=1)
Command>

Connecting to a database

Managing a Database 5-11

For more information on the ttIsqlCS utility and the TimesTen Client, see "Working
with the TimesTen Client and Server" in the Oracle TimesTen In-Memory Database
Operations Guide.

Adding a client DSN to a TimesTen Client on Windows You can add a client DSN to a
TimesTen Client on Windows by using the ttInstallDSN utility included in the
TimesTen Client Release 18.1. The ttInstallDSN utility creates a system DSN based on
the contents of the output file of the ttGridAdmin gridClientExport command. You
will need to make the file or its contents available to the Windows system where the
TimesTen Client is installed.

C:\>ttInstallDSN -f C:\Users\terry\Downloads\sys.odbc.ini

Found the following DSNs in available 'C:\Users\terry\Downloads\sys.odbc.ini'.
0 : database1CS
[Please select the DSN to be imported:]
0
Adding DSN 'database1CS'.

From the TimesTen Client system, you can now connect to the database1 database
using the database1CS DSN with the ttIsql utility.

C:\>ttIsql -connStr "DSN=database1CS"

Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1CS;UID=terry;
Enter password for 'terry':
Connection successful: DSN=database1CS;TTC_SERVER=host3.example.com;
TTC_SERVER_DSN=DATABASE1;UID=terry;DATASTORE=/disk1/databases/database1;
DATABASECHARACTERSET=AL32UTF8;CONNECTIONCHARACTERSET=AL32UTF8;
PERMSIZE=256;TEMPSIZE=128;TYPEMODE=0;
(Default setting AutoCommit=1)
Command>

Note: The example connects to the database with the terry user,
which has at least CREATE SESSION privileges on the database. For
more information on database users and how to create them, see
"Creating or identifying a database user" in the Oracle TimesTen
In-Memory Database Security Guide.

Note: You must run the ttInstallDSN utility as administrator of
Windows with the environment variables for the TimesTen Client set.
See "Setting environment variables for TimesTen" in the Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide
for further details.

Note: The example connects to the database with the terry user,
which has at least CREATE SESSION privileges on the database. For
more information on database users and how to create them, see
"Creating or identifying a database user" in the Oracle TimesTen
In-Memory Database Security Guide.

Connecting to a database

5-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

For more information on the ttInstallDSN utility, see "ttInstallDSN" in the Oracle
TimesTen In-Memory Database Reference.

For more information on the ttIsql utility and the TimesTen Client, see "Working
with the TimesTen Client and Server" in the Oracle TimesTen In-Memory Database
Operations Guide.

Using a connection string to establish a client connection Alternatively, you can connect to a
specific element by defining in the connection string the address of the host associated
with that element, the database name, and a database user with at least CREATE
SESSION privileges. (The client TCP/IP port is only necessary if the instance is not
running with the default port.)

% ttIsqlCS -connStr "TTC_SERVER=host3.example.com;TTC_SERVER_DSN=database1;
 TCP_Port=6625;UID=terry"

Redirecting client connections
When an application connects to a client/server connectable a TCP/IP connection is
established to one of the data instances in the grid. However, if the instance is busy
then the instance can automatically redirect the client connection to another instance in
the grid.

By default, a client connection can be automatically redirected to any available
instance within the grid. However, you can limit or change this behavior with:

■ The TTC_Redirect connection attribute, which defines how a client is redirected.

– Automatic redirection: By default, this connection attribute is set to 1 so that a
client connection is automatically redirected to any available instance within
the grid if the current instance is busy or unavailable. The connection is
redirected to the instance with the fewest number of client connections.

– Elements within a single replica set: If you want the client to connect to
instances with elements within a single replica set (because the data you are
interested in is contained within this replica set), then set the TTC_Redirect
attribute to 0. Then, the client connects only to the instances with elements in
the same replica set. If the connection is rejected, then a connection error is
returned.

■ The TTC_Redirect_Limit connection attribute, which limits how many times the
client is redirected. The number of instances in your grid may be of a size that you
want to limit the number of redirected client connection attempts for performance
reasons. You can set the TTC_Redirect_Limit attribute to the number of
connection redirection attempts. For example, setting TTC_Redirect_Limit limits
the number of client connection redirection attempts to other instances to 10
attempts. If the client does not connect within this number of attempts, a
connection error is returned.

If the client connection cannot be redirected to a suitable instance, then the client
connection fails. See "Client connection failover" on page 11-30 for more information
on the client failover process.

For more information on the TTC_Redirect or TTC_Redirect_Limit connection
attributes, see "TTC_REDIRECT" or "TTC_Redirect_Limit", respectively, in the Oracle
TimesTen In-Memory Database Reference.

See "Modify the connection attributes in a connectable" on page 5-32 for information
on how to modify TimesTen Client connection attributes.

Defining table distribution schemes

Managing a Database 5-13

Verify if your database is a distributed database
If you want to verify that the database you are connected to is indeed a distributed
database (TimesTen Scaleout) and not a single-instance database (TimesTen Classic),
call for the value of the ttGridEnable attribute with the ttConfiguration built-in
procedure. The built-in procedure returns ttGridEnable=1 for databases in a grid.

Command> CALL ttConfiguration('ttGridEnable');
< TTGridEnable, 1 >
1 row found.
Command>

For more information on the ttConfiguration built-in procedure, see
"ttConfiguration" in the Oracle TimesTen In-Memory Database Reference.

Defining table distribution schemes
In TimesTen Scaleout, data is distributed across the elements of the grid. How the data
is distributed is defined by the distribution scheme specified in the DISTRIBUTE BY
clause of the CREATE TABLE statement. Regardless of how the data is distributed or on
which element specific data is located, applications can access all the data in the
database while connecting to a single element. However, there are some considerations
you should take into account when defining the distribution scheme of a table.

The available data distribution schemes for a table in TimesTen Scaleout are:

■ Hash

■ Reference

■ Duplicate

■ Materialized views as a secondary form of distribution

Hash
The hash distribution scheme distributes data based on the hash of the primary key or
a set of user-specified columns. The hash key determines in which replica set a row
should be stored. Any given row in the table is stored in only one replica set. If the
table does not have a primary key or a user-specified distribution column, TimesTen
Scaleout distributes the data based on the hash of a hidden column that TimesTen
Scaleout adds for this purpose. This distribution scheme is adaptive to topology
changes and uses consistent hashing. In other words, a row with an specific value in
the hash key columns will always be allocated on the same replica set, provided that
the topology does not change. If the topology changes, the location of the row may
change when the data is re-distributed.

Important: Before you start creating database objects, see
"Authentication in TimesTen" in the Oracle TimesTen In-Memory
Database Security Guide.

Defining table distribution schemes

5-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

Create the customers table that uses a DISTRIBUTE BY HASH clause, which distributes
data based on the hash of the cust_id primary key column.

CREATE TABLE customers (
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL
) DISTRIBUTE BY HASH;

Figure 5–1 shows the data distribution for the customers table in the database1
database, as configured in "Creating a database" on page 5-1. TimesTen Scaleout
distributes the data to each element based on the hash of the cust_id column.

Figure 5–1 Table distributed by hash

For more information on the hash distribution scheme, see "CREATE TABLE" in the
Oracle TimesTen In-Memory Database SQL Reference.

Reference
The reference distribution scheme distributes the data of a child table based on the
location of the corresponding parent row of a foreign key constraint. This distribution
scheme optimizes the performance of joins by distributing related data on a single
element. When you join the parent and child tables, TimesTen Scaleout does not need
to access different elements because all of the data is stored on the same element. The
parent table can be distributed by hash or reference, which allows for a multi-tiered
reference distribution.

Note: If you create a table without specifying a DISTRIBUTE BY
clause, TimesTen Scaleout defines a hash distribution scheme on the
table. In addition, if a column is not specified in the DISTRIBUTE BY
HASH clause, TimesTen Scaleout selects the primary key columns as the
key columns of the distribution scheme. If a primary key is not
defined, TimesTen Scaleout creates a hidden column as the hash key.

Note: Ensure you declare the child key columns of a foreign key
constraint as NOT NULL when you use the DISTRIBUTE BY REFERENCE
clause.

host3.instance1

element

terry.customers

1 Danette Acosta ...

5 Christian Aguilar ...

7 Rita Alexander ...

cust_id* first_name last_name ...

...

host5.instance1

element

terry.customers

6 Lorenzo Alexander ...

8 Karri Allen ...

9 Wyatt Allen ...

cust_id* first_name last_name ...

...

host7.instance1

element

terry.customers

2 Fernando Acosta ...

3 Criselda Adams ...

4 Elsie Aguilar ...

cust_id* first_name last_name ...

...

Defining table distribution schemes

Managing a Database 5-15

Create the customers parent table that uses a DISTRIBUTE BY HASH clause that
distributes data based on the hash of the cust_id primary key column. Then, create
the accounts child table that uses a DISTRIBUTE BY REFERENCE clause that distributes
the data in the accounts table based on the location of the corresponding value of the
referenced column, customers(cust_id), in the fk_customer foreign key.

CREATE TABLE customers (
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL
) DISTRIBUTE BY HASH;

CREATE TABLE accounts (
 account_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 phone VARCHAR2(15) NOT NULL,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL,
 CONSTRAINT fk_customer
 FOREIGN KEY (cust_id)
 REFERENCES customers(cust_id)
) DISTRIBUTE BY REFERENCE (fk_customer);

Figure 5–2 shows the data distribution for the customers table in the database1
database, as configured in "Creating a database" on page 5-1. TimesTen Scaleout
distributes the data in the customers table to each replica set based on the hash of the
cust_id primary key column. The figure also shows the data distribution for the
accounts table, which is based on the location of the corresponding value of the
referenced column, cutomers(cust_id), in the fk_customer foreign key.

Figure 5–2 Table distributed by reference

For more information on the reference distribution scheme, see "CREATE TABLE" in
the Oracle TimesTen In-Memory Database SQL Reference.

element

terry.accounts

1 9132244898 ... 1

acct_id* phone ... cust_id

5 3132244902 ... 5

7 5202244904 ... 7

...

terry.customers

1 Danette Acosta ...

5 Christian Aguilar ...

7 Rita Alexander ...

cust_id* first_name last_name ...

...

host3.instance1

element

terry.accounts

6 6302244903 ... 6

acct_id* phone ... cust_id

8 4022244905 ... 8

9 3132244906 ... 9

...

terry.customers

6 Lorenzo Alexander ...

8 Karri Allen ...

9 Wyatt Allen ...

cust_id* first_name last_name ...

...

host5.instance1

element

terry.accounts

2 9522244899 ... 2

acct_id* phone ... cust_id

3 2122244900 ... 3

4 9372244901 ... 4

...

terry.customers

2 Fernando Acosta ...

3 Criselda Adams ...

4 Elsie Aguilar ...

cust_id* first_name last_name ...

...

host7.instance1

Defining table distribution schemes

5-16 Oracle TimesTen In-Memory Database Scaleout User's Guide

Duplicate
The duplicate distribution scheme distributes identical copies of the data of a table to
all the elements of a database. This distribution scheme optimizes the performance of
reads and joins against the table by ensuring that all data access is local. However,
inserts and updates are more resource intensive than other distribution schemes.

Create the account_type table that uses a DUPLICATE clause that distributes the data to
all the elements of a database.

CREATE TABLE account_type (
 type CHAR(1) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
) DUPLICATE;

Figure 5–3 shows the data distribution for the account_type table in the database1
database, as configured in "Creating a database" on page 5-1. TimesTen Scaleout
creates a copy of the data on all the elements of the database.

Figure 5–3 Table distributed by duplicate

For more information on the duplicate distribution scheme, see "CREATE TABLE" in
the Oracle TimesTen In-Memory Database SQL Reference.

Materialized views as a secondary form of distribution
Materialized views enable you to create a secondary form of distribution for a table
and can be useful in scenarios such as:

■ If you have a table with a primary key and a unique column and you distribute
the table by hash based on the primary key column, TimesTen Scaleout would
need to connect to every element of the database to verify the uniqueness of the
values inserted or updated in the unique column. In this case, the hash
distribution scheme cannot guarantee that duplicate values are located in the same
element. If you additionally create a materialized view of the table that is
distributed by hash based on the unique column, TimesTen Scaleout would be able
to verify the uniqueness of the values in the unique column more efficiently since
the location of the row in the materialized view would be determined by the value
in the unique column. It is also recommended to create an index on the
materialized view for the unique column to get optimum query performance. See
Example 5–6 for an example of this scenario.

■ If you have a table with two independent groups of columns that are commonly
joined in queries, consider distributing the table by hash based on one of the
groups of columns. This will optimize the queries against this group of columns.
Then, to optimize queries against the second groups of columns, create a
materialized view of the table that is distributed by hash based on the second
group of columns. See Example 5–7 for an example of this scenario.

host3.instance1

element

terry.account_type

I Individual

type* description

F Family

H Home

B Business

host5.instance1

element

terry.account_type

I Individual

type* description

F Family

H Home

B Business

host7.instance1

element

terry.account_type

I Individual

type* description

F Family

H Home

B Business

Defining table distribution schemes

Managing a Database 5-17

Consider the following when using materialized views in TimesTen Scaleout:

■ Distribution is limited to the hash distribution scheme only.

■ The hash key column must be explicitly specified, even if you intend to use the
primary key as the hash key.

■ The SQL optimizer may re-write a query against a base table to use an available
materialized view instead if it detects that it may improve the execution time of
the query.

Example 5–6 Materialized view with an unique column as hash key

This example creates the customers parent table that uses a DISTRIBUTE BY HASH
clause, which distributes data based on the hash of the cust_id primary key column.
The example also creates the accounts child table that uses a DISTRIBUTE BY
REFERENCE clause. TimesTen Scaleout distributes the data in the accounts table based
on the location to the corresponding value of the cust_id foreign key column. Finally,
the example creates the phone_mv materialized view that uses a DISTRIBUTE BY HASH
clause, which distributes data based on the hash of the phone unique column. This
example enables you to validate the uniqueness of the values of the phone column in
the accounts table while only reviewing the data contained in single data instance for
a specific phone value.

CREATE TABLE customers (
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL
) DISTRIBUTE BY HASH;

CREATE TABLE accounts (
 account_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 phone VARCHAR2(16) NOT NULL UNIQUE,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2,0) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL,
 CONSTRAINT fk_customer
 FOREIGN KEY (cust_id)
 REFERENCES customers(cust_id)
) DISTRIBUTE BY REFERENCE (fk_customer);

CREATE MATERIALIZED VIEW phone_mv
 DISTRIBUTE BY HASH (phone)
 AS SELECT phone FROM accounts;

Example 5–7 Materialized views for independent column groups

This example creates the customers table that uses a DISTRIBUTE BY HASH clause,
which distributes data based on the hash of the cust_id primary key column. The
example also creates the accounts table that uses a DISTRIBUTE BY HASH clause, which
distributes data based on the hash of the account_id primary key column. Then,
creates the call_records table that uses a DISTRIBUTE BY HASH clause, which
distributes data based on the hash of the call_id primary key column.

Defining table distribution schemes

5-18 Oracle TimesTen In-Memory Database Scaleout User's Guide

CREATE TABLE customers (
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 account_id NUMBER(10,0),
 member_since DATE NOT NULL
) DISTRIBUTE BY HASH;

CREATE TABLE accounts (
 account_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 phone VARCHAR2(15) NOT NULL,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2,0) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL UNIQUE
) DISTRIBUTE BY HASH;

CREATE TABLE call_records (
 call_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 caller NUMBER(10,0) NOT NULL,
 receiver NUMBER(10,0) NOT NULL,
 call_time TIMESTAMP NOT NULL,
 code INT NOT NULL
) DISTRIBUTE BY HASH;

Consider that you need a report on the accounts and customers that made a call with
an specific code, like shown in the following query.

SELECT accounts.account_id, customers.cust_id, call_records.code
 FROM accounts, customers, call_records
 WHERE customers.cust_id = call_records.caller
 AND call_records.code = ?
 AND customers.account_id = accounts.account_id;

To optimize the join between the customers and call_records tables, the example
creates the customers_calls_mv materialized view on the call_records table based
on the caller column.

CREATE MATERIALIZED VIEW customers_calls_mv
 DISTRIBUTE BY HASH (caller)
 AS SELECT caller, code FROM call_records;

Also, to optimize the join between the customers and accounts tables, the example
creates the customes_account_mv materialized view on the customers table based on
the account_id column.

CREATE MATERIALIZED VIEW customers_account_mv
 DISTRIBUTE BY HASH (account_id)
 AS SELECT account_id FROM customers;

For more information on materialized views, see "CREATE MATERIALIZED VIEW" in
the Oracle TimesTen In-Memory Database SQL Reference.

Determining the value of the PermSize attribute

Managing a Database 5-19

Determining the value of the PermSize attribute
You must have enough memory available in both the permanent and temporary
memory regions of every element for the database to operate successfully. You can
monitor the amount of memory allocated, in-use, and in-use high-water for this two
regions for the local element or all elements of the database by querying the
SYS.V$MONITOR and SYS.GV$MONITOR system views, respectively, as shown in
Example 5–8.

Example 5–8 Monitoring the memory regions of an element

Command> SELECT elementid, perm_allocated_size, perm_in_use_size,
 perm_in_use_high_water, temp_allocated_size, temp_in_use_size,
 temp_in_use_high_water FROM sys.v$monitor;

 ELEMENTID: 1
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30338
 PERM_IN_USE_HIGH_WATER: 30338
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21073
 TEMP_IN_USE_HIGH_WATER: 24600

1 row found.
Command> SELECT elementid, perm_allocated_size, perm_in_use_size,
 perm_in_use_high_water, temp_allocated_size, temp_in_use_size,
 temp_in_use_high_water FROM sys.gv$monitor;

 ELEMENTID: 1
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30338
 PERM_IN_USE_HIGH_WATER: 30338
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21073
 TEMP_IN_USE_HIGH_WATER: 24600

 ELEMENTID: 3
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30289
 PERM_IN_USE_HIGH_WATER: 30322
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21070
 TEMP_IN_USE_HIGH_WATER: 24470

 ELEMENTID: 5
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30289
 PERM_IN_USE_HIGH_WATER: 30322
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 20943
 TEMP_IN_USE_HIGH_WATER: 24407

 ELEMENTID: 2
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30338
 PERM_IN_USE_HIGH_WATER: 30338
 TEMP_ALLOCATED_SIZE: 131072

Determining the value of the PermSize attribute

5-20 Oracle TimesTen In-Memory Database Scaleout User's Guide

 TEMP_IN_USE_SIZE: 20943
 TEMP_IN_USE_HIGH_WATER: 24470

 ELEMENTID: 4
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30289
 PERM_IN_USE_HIGH_WATER: 30322
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21006
 TEMP_IN_USE_HIGH_WATER: 24407

 ELEMENTID: 6
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30289
 PERM_IN_USE_HIGH_WATER: 30322
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21006
 TEMP_IN_USE_HIGH_WATER: 24470
1 row found.

If necessary, increase the amount of memory allocated for either region by increasing
the value of the PermSize or TempSize attribute. See "Modify the connection attributes
in a database definition" on page 5-30 for information on how to modify the PermSize
or TempSize attribute of a database.

You can estimate the value of the PermSize attribute based on the SQL schema and the
expected number of rows for each table of the database with the ttSize utility. For
example, if you eventually expect to insert 1,000,000 rows into the customers table, the
table will need about 287 MB (300,448,527 bytes = 286.53 MB) available, as shown in
Example 5–9.

Example 5–9 Estimating the size of a table

% ttSize -tbl terry.customers -rows 1000000 database1

 Rows = 1000000

Total in-line row bytes = 300442597

Indexes:
 Range index TERRY.CUSTOMERS adds 5930 bytes
 Total index bytes = 5930

Total = 300448527

However, the ttSize utility is optimized for databases in TimesTen Classic. A database
in TimesTen Scaleout uses 8 to 16 bytes more per row than a similar database in
TimesTen Classic. Consider adding to the value calculated by the ttSize utility from 8
to 16 bytes per row for a more accurate estimate. In the case of the customers table, if
you add 16 bytes per row to the value calculated by the ttSize utility, you will need
about 302 MB (316,448,527 bytes = 301.79 MB) available.

If you repeat this estimate for every table of the database, you can get a rough idea of
the size of the permanent memory region a database requires across all hosts by
adding the estimated size of every table. However, the PermSize attribute defines the
amount of memory allocated for an element, not the whole database. To determine

Bulk loading data into a database

Managing a Database 5-21

how much of the size estimated for each table you must assign to each element you
have to take into consideration the distribution scheme of the table:

■ For a table using a hash or reference distribution scheme, divide the number of
rows by the number of replica sets before doing the estimation with the ttSize
utility.

■ For a table using a duplicate distribution scheme, use the total number of rows for
the estimation. After all, you find every row of a table using a duplicate
distribution on every element of the database.

Considering that the customers table uses a hash distribution scheme and that the
database1 database consists of three replica sets, each element should be able to store
333,334 rows, which represents 101 MB (100,209,711 + 16 * 333,334 bytes = 100.65 MB)
in the permanent memory region (defined by the PermSize attribute) for just the
customers table, as shown in Example 5–10.

Example 5–10 Estimating the size of a table in a single element

% ttSize -tbl terry.customers -rows 333334 database1

Rows = 333334

Total in-line row bytes = 100203781

Indexes:
 Range index TERRY.CUSTOMERS adds 5930 bytes
 Total index bytes = 5930

Total = 100209711

For more information on the ttSize utility, see "ttSize" in the Oracle TimesTen
In-Memory Database Reference.

Bulk loading data into a database
TimesTen Scaleout enables you to load data into a database from various sources. You
can load data into a specific table either from a file by using the ttBulkCp utility or an
Oracle database table by using the ttLoadFromOracle built-in procedure.

Both the ttBulkCp utility and ttLoadFromOracle built-in procedure support in
TimesTen Scaleout a localOnly filter option that enables you to load only the rows
that are hashed to the local element and its replicas. If you use the localOnly filter
option, the ttBulkCp utility and ttLoadFromOracle built-in procedure ignore rows that
are hashed to remote elements that are not a replica of the local element. Regardless of
the options you specify, the ttBulkCp utility and ttLoadFromOracle built-in procedure
do not copy duplicate rows into a table.

Note: Consider that tables with a reference distribution scheme may
reference key values unevenly. If your data uses one or more key
values as reference more often then any other key value available, it is
possible that dividing the number of rows by the number of replica
sets would be an inaccurate calculation. You should take special
considerations based on the composition of your data.

Bulk loading data into a database

5-22 Oracle TimesTen In-Memory Database Scaleout User's Guide

With the localOnly filter option enabled and depending of the distribution scheme of
the table, the ttBulkCp utility and ttLoadFromOracle built-in procedure behave as
follows:

■ Hash: Retain and insert rows that have hash key values that are hashed to the
elements of the local data instance and its replicas. They ignore rows that are
hashed to the remaining elements.

■ Reference: Retain and insert rows whose reference key value references to a hash
or reference key value that is hashed to the local element and its replicas. They
ignore rows that are hashed to the remaining elements.

■ Duplicate: Ignore the localOnly option. They insert rows into the elements of all
data instances.

The advantages of using the localOnly filter option are:

■ It requires less network bandwidth to distribute the data during the bulk loading
operation.

■ It allows a failed bulk loading operation to be retried independent of other
elements.

The disadvantages of using the localOnly filter option are:

■ The source file must be available to all hosts, or at least to one host for each replica
set of the grid. This only applies for bulk loading operations with the ttBulkCp
utility.

■ You must run a bulk loading operation on an element of every replica set.

■ Every bulk loading operation must process the entire data set, even though it
ignores any rows hashed to a different replica set.

These sections describe how to load data into a table in TimesTen Scaleout.

■ Populating a table with the ttBulkCp utility

■ Populating a table with the ttLoadFromOracle built-in procedure

Populating a table with the ttBulkCp utility
The ttBulkCp utility with the -i option enables you to load data from a file. This
option uses standard INSERT SQL statements to load data into a specific table of a
database. The ttBulkCp utility inserts each row into its corresponding element based
on the distribution scheme of the table.

Note: The following examples consider the same grid scenario as the
one described in "Define the distribution map of the database" on
page 5-5.

Note:

■ Unlike operations performed with the ttGridAdmin utility, the
ttBulkCp utility (and the ttBulkCpCS utility) must be run on a
data instance instead of the active management instance, and its
use is not limited to the instance administrator.

■ Ensure that the user running the command or the one specified in
the connection string has INSERT privileges on the specified table.

Bulk loading data into a database

Managing a Database 5-23

These sections describe the options for loading data into a database while using the
ttBulkCp utility.

■ Populate a table from a single location

■ Populate a table from several locations

Populate a table from a single location
If the source file is only available to a single data instance, run the ttBulkCp utility
with the -i option to insert the rows of the specified database into their corresponding
element based on the distribution scheme of the specified database.

From the data instance with access to the source file, insert all rows in the file into the
customers table of the database1 database.

% ttBulkCp -i -connStr "DSN=database1;UID=terry" customers
 /mydir/customers_data.dmp
Enter password for 'terry':

/mydir/customers_data.dmp:
 1000 rows inserted
 1000 rows total

For more information on using the ttBulkCp utility, see "Bulk copy data using the
ttBulkCp utility" in the Oracle TimesTen In-Memory Database Operations Guide and
"ttBulkCp" in the Oracle TimesTen In-Memory Database Reference.

Populate a table from several locations
If the source file is available to any given host in the grid, run the ttBulkCp utility with
the -i and -localOnly options on one data instance of each replica set of the database
to insert the rows hashed to the local element and its replicas from a file into a table.

Use the ttGridAdmin dbStatus -replicaset command from the active management
instance (in this example the active management instance is host1.instance1) to help
you determine the data instances associated with each replica set.

% ttGridAdmin dbStatus database1 -replicaset
Database database1 Replica Set status as of Thu Jan 11 13:17:29 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host3 instance1 opened 2018-01-10 14:34:43
 2 2 host4 instance1 opened 2018-01-10 14:34:43
 2 1 3 host5 instance1 opened 2018-01-10 14:34:42
 2 4 host6 instance1 opened 2018-01-10 14:34:42
 3 1 5 host7 instance1 opened 2018-01-10 14:34:42
 2 6 host8 instance1 opened 2018-01-10 14:34:42

Insert the rows hashed to the local element and its replica from the source file into the
customers table of the database1 database. Ensure you run the ttBulkCp utility on one
data instance of each replica set available, the host3.instance1, host5.instance1,
and host7.instance1 data instances for example.

On the host3.instance1 data instance:

% ttBulkCp -i -localOnly -connStr "DSN=database1;UID=terry" customers
 /mydir/customers_data.dmp
Enter password for 'terry':

/mydir/customers_data.dmp:

Bulk loading data into a database

5-24 Oracle TimesTen In-Memory Database Scaleout User's Guide

 339 rows inserted
 661 rows not inserted (ignored)
 1000 rows total

On the host5.instance1 data instance:

% ttBulkCp -i -localOnly -connStr "DSN=database1;UID=terry" customers
 /mydir/customers_data.dmp
Enter password for 'terry':

/mydir/customers_data.dmp:
 327 rows inserted
 673 rows not inserted (ignored)
 1000 rows total

On the host7.instance1 data instance:

% ttBulkCp -i -localOnly -connStr "DSN=database1;UID=terry" customers
 /mydir/customers_data.dmp
Enter password for 'terry':

/mydir/customers_data.dmp:
 334 rows inserted
 666 rows not inserted (ignored)
 1000 rows total

For more information on the ttGridAdmin dbStatus command, see "Monitor the
status of a database (dbStatus)" in the Oracle TimesTen In-Memory Database Reference.

For more information on using the ttBulkCp utility, see "Bulk copy data using the
ttBulkCp utility" in the Oracle TimesTen In-Memory Database Operations Guide and
"ttBulkCp" in the Oracle TimesTen In-Memory Database Reference.

Note: For this example where the element of the host4.instance1
data instance is defined as the replica of the element of the
host3.instance1 data instance, the same rows inserted into the
customers table in the element of the host3.instance1 data instance
are inserted into the customers table in the element of the
host4.instance1 data instance.

Note: For this example where the element of the host6.instance1
data instance is defined as the replica of the element of the
host5.instance1 data instance, the same rows inserted into the
customers table in the element of the host5.instance1 data instance
are inserted into the customers table in the element of the
host6.instance1 data instance.

Note: For this example where the element of the host8.instance1
data instance is defined as the replica of the element of the
host7.instance1 data instance, the same rows inserted into the
customers table in the element of the host7.instance1 data instance
are inserted into the customers table in the element of the
host8.instance1 data instance.

Bulk loading data into a database

Managing a Database 5-25

Populating a table with the ttLoadFromOracle built-in procedure
The ttLoadFromOracle built-in procedure enables you to load data from an Oracle
database.

These sections describe how to load data from a Oracle database into a database while
using the ttLoadFromOracle built-in procedure.

■ Enable communication to an Oracle database

■ Populate a table from several locations

Enable communication to an Oracle database
For the ttLoadFromOracle built-in procedure to be able to import data from an Oracle
database table into a database table, TimesTen Scaleout must be able to recognize and
communicate with the Oracle database. For this to happen, you need to:

■ Import the contents of the sqlnet.ora file

■ Import the contents of the tnsnames.ora file

■ Apply the changes made to the latest version of the model

Import the contents of the sqlnet.ora file The ttGridAdmin SQLNetImport command
imports the contents of a sqlnet.ora file into the latest version of the model.

Import the contents of the sqlnet.ora file.

% ttGridAdmin SQLNetImport /mydir/sqlnet.ora
SQLNet configuration file /mydir/sqlnet.ora imported

Import the contents of the tnsnames.ora file The ttGridAdmin TNSNamesImport command
imports the contents of a tnsnames.ora file into the latest version of the model.

Import the contents of the tnsnames.ora file.

% ttGridAdmin TNSNamesImport /mydir/tnsnames.ora
TNSNames configuration file /mydir/tnsnames.ora imported

Apply the changes made to the latest version of the model The ttGridAdmin modelApply
command applies the changes made to the latest version of the model into the
operational grid.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

See "Applying the changes made to the model" on page 4-18 for more information on
the ttGridAdmin modelApply command.

Note: Importing the contents of both the sqlnet.ora and
tnsnames.ora files is also relevant for applications that use OCI,
Pro*C/C++, or ODP.NET to communicate with an Oracle Database.
See "Oracle Database operations" in the Oracle TimesTen In-Memory
Database Reference for further details.

Bulk loading data into a database

5-26 Oracle TimesTen In-Memory Database Scaleout User's Guide

Populate a table from a single location
The following example connects with the ttIsql utility to the database1 database to
copy the rows from the terry.customers table of an Oracle database into the
terry.customers table of the database1 database.

From a connection to the element of any data instance:

Command> call ttLoadFromOracle('terry', 'customers', 'SELECT * FROM
 terry.customers');
< 1000 >
1 row found.

For more information on the ttLoadFromOracle built-in procedure, see
"ttLoadFromOracle" in the Oracle TimesTen In-Memory Database Reference.

Populate a table from several locations
Call the ttLoadFromOracle built-in procedure with the localOnly=Y parameter to copy
the rows hashed to a local element and its replicas from an Oracle database table into a
TimesTen Scaleout database table. If you use the localOnly=Y parameter, the
ttLoadFromOracle built-in procedure ignores rows that are hashed to remote elements
that are not a replicas of the local element.

The following example connects with the ttIsql utility to the database1 database to
copy the rows hashed to the local element and its replicas from the terry.customers
table of an Oracle database into the terry.customers table of the database1 database.
If necessary, use the ttGridAdmin dbStatus -replicaset command from the active
management instance (in this example the active management instance is
host1.instance1) to help you determine the data instances associated with each
replica set.

% ttGridAdmin dbStatus database1 -replicaset
Database database1 Replica Set status as of Thu Jan 11 13:17:29 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host3 instance1 opened 2018-01-10 14:34:43
 2 2 host4 instance1 opened 2018-01-10 14:34:43
 2 1 3 host5 instance1 opened 2018-01-10 14:34:42
 2 4 host6 instance1 opened 2018-01-10 14:34:42
 3 1 5 host7 instance1 opened 2018-01-10 14:34:42
 2 6 host8 instance1 opened 2018-01-10 14:34:42

Ensure you call the ttLoadFromOracle built-in procedure on one replica of each replica
set available, the host3.instance1, host5.instance1, and host7.instance1 data
instances for example.

From a connection to the element of the host3.instance1 data instance:

Command> call ttLoadFromOracle('terry', 'customers', 'SELECT * FROM

Note: Ensure that the database user has the INSERT privilege on the
table the built-in procedure copies data into.

Note: Ensure that the database user has the INSERT privilege on the
table the built-in procedure copies data into.

Unloading a database from memory

Managing a Database 5-27

 terry.customers', 4, 'localOnly=Y');
< 339 >
1 row found.

From a connection to the element of the host5.instance1 data instance:

Command> call ttLoadFromOracle('terry', 'customers', 'SELECT * FROM
 terry.customers', 4, 'localOnly=Y');
< 327 >
1 row found.

From a connection to the element of the host7.instance1 data instance:

Command> call ttLoadFromOracle('terry', 'customers', 'SELECT * FROM
 terry.customers', 4, 'localOnly=Y');
< 334 >
1 row found.

For more information on the ttGridAdmin dbStatus command or ttLoadFromOracle
built-in procedure, see "Monitor the status of a database (dbStatus)" or
"ttLoadFromOracle", respectively, in the Oracle TimesTen In-Memory Database Reference.

Unloading a database from memory
In TimesTen Scaleout, a database is automatically loaded into memory upon creation.
Once loaded into memory, a database remains in memory until the database is
explicitly unloaded. Closing all connections to the database will not automatically
unload the database from memory.

One of the reasons you may need to unload a database is to modify the value of a first
connection attribute, like increasing the value of the PermSize attribute.

To unload a database from memory, perform these tasks:

Note: For this example where the element of the host4.instance1
data instance is defined as the replica of the element of the
host3.instance1 data instance, the same rows inserted into the
customers table in the element of the host3.instance1 data instance
are inserted into the customers table in the element of the
host4.instance1 data instance.

Note: For this example where the element of the host6.instance1
data instance is defined as the replica of the element of the
host5.instance1 data instance, the same rows inserted into the
customers table in the element of the host5.instance1 data instance
are inserted into the customers table in the element of the
host6.instance1 data instance.

Note: For this example where the element of the host8.instance1
data instance is defined as the replica of the element of the
host7.instance1 data instance, the same rows inserted into the
customers table in the element of the host7.instance1 data instance
are inserted into the customers table in the element of the
host8.instance1 data instance.

Unloading a database from memory

5-28 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Close the database to user connections. The ttGridAdmin dbClose command disables
new user connections to a database.

■ Disconnect all applications from the database. The ttGridAdmin dbDisconnect
command terminates all user connections to a database.

■ Unload the database from memory. The ttGridAdmin dbUnload command unloads
every element of the database from the memory of their respective hosts.

Close the database1 database from user connections.

% ttGridAdmin dbClose database1
Database database1 close started

Verify that all the elements of the database1 database are closed to user connections.

% ttGridAdmin dbStatus database1 -elements
Database database1 element level status as of Tue Nov 27 13:35:45 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host3 instance1 1 loaded 2018-11-27 13:35:43
host4 instance1 2 loaded 2018-11-27 13:35:43
host5 instance1 3 loaded 2018-11-27 13:35:43
host6 instance1 4 loaded 2018-11-27 13:35:43
host7 instance1 5 loaded 2018-11-27 13:35:43
host8 instance1 6 loaded 2018-11-27 13:35:43

Disconnect all applications from the database1 database. You must stop the workload
and gracefully disconnect every application from the database. If you are unable to
individually disconnect every application from the database, use the ttGridAdmin
dbDisconnect command to disconnect all user connections from the database as
shown in Example 5–11.

Example 5–11 Disconnecting applications from a database

The example disconnects all user connections from the database1 database once all
open transactions commit or roll back.

% ttGridAdmin dbDisconnect database1 -transactional
Database database1 dbDisconnect started

Use the ttGridAdmin dbDisconnectStatus command to check the status of the
disconnection process.

% ttGridAdmin dbDisconnectStatus database1

Note: The ttGridAdmin dbClose command does not close existing
connections to the database, but instead disallows the creation of new
user connections. You must terminate all open connections
independently. Closing a database is an asynchronous operation that
is performed independently to each element by its data instance.

Also, the instance administrator can always create new connections to
a database regardless of the database being closed or not.

Note: The ttGridAdmin dbStatus utility displays the status of an
element as loaded instead of opened when the element is closed to
user connections.

Unloading a database from memory

Managing a Database 5-29

Database Host Instance Elem State Started
--------- ----- --------- ---- ------------ ------------------------
database1 Complete 2018-11-27T13:38:43.000Z
 host3 instance1 1 Disconnected
 host4 instance1 2 Disconnected
 host5 instance1 3 Disconnected
 host6 instance1 4 Disconnected
 host7 instance1 5 Disconnected
 host8 instance1 6 Disconnected

Then, verify that there are no connections to the database with the -connections
option of ttGridAdmin dbStatus command.

% ttGridAdmin dbStatus database1 -connections
Host Instance ConnId Name Pid Type CHost CAddr CPid
---- -------- ------ ---- --- ---- ----- ----- ----

Unload the database1 database.

% ttGridAdmin dbUnload database1
Database database1 unload started

The unloading of the database is an asynchronous operation that is performed
independently by each data instance. This operation returns an error if there is an open
user connection to the database.

You can verify the status of the database unloading process with the ttGridAdmin
dbStatus command as shown in Example 5–12.

Example 5–12 Verifying the status of the unloading process of a database

The example shows a status summary for the database1 database. Notice that the
report shows all elements of the database as closed and unloaded.

% ttGridAdmin dbStatus database1
Database database1 summary status as of Tue Nov 27 13:41:18 PST 2018

created,unloaded,closed
Completely created elements: 6 (of 6)
Completely loaded elements: 0 (of 6)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 0 (of 3)

Note: If the -transactional option fails or takes too long, use the
-immediate option of the ttGridAdmin dbDisconnect command to
force a rollback on all open transactions and disconnect the
applications.

Furthermore, if the -immediate option fails to close all connections,
you can use the -abort option. This option ungracefully disconnects
all applications and may cause loss of data.

Note: If you used the ttGridAdmin dbDisconnect -abort command,
some elements may be invalidated and the ttGridAdmin dbUnload
command may fail. Use the -force option of the ttGridAdmin
dbUnload command to allow the unload to proceed anyway. This
option may cause loss of data.

Reloading a database into memory

5-30 Oracle TimesTen In-Memory Database Scaleout User's Guide

Open elements: 0 (of 6)

For more information on the ttGridAdmin dbClose, ttGridAdmin dbDisconnect,
ttGridAdmin dbDisconnectStatus, ttGridAdmin dbUnload, or ttGridAdmin dbStatus
command, see "Close a database (dbClose)", "Force all connections to disconnect
(dbDisconnect)", "Check status of forced disconnection (dbDisconnectStatus)", "Unload
a database (dbUnload)", or "Monitor the status of a database (dbStatus)", respectively,
in the Oracle TimesTen In-Memory Database Reference.

Reloading a database into memory
To reload a database into memory, perform these the tasks:

■ Load the database into memory. The ttGridAdmin dbLoad command loads every
element of the database into memory of their respective hosts.

■ Open the database for user connections. The ttGridAdmin dbOpen command enables
the database for user connections.

Load all the elements of the database1 database into memory.

% ttGridAdmin dbLoad database1
Database database1 load started

Open the database1 database for user connections.

% ttGridAdmin dbOpen database1
Database database1 open started

For more information on the ttGridAdmin dbLoad or ttGridAdmin dbOpen command,
see "Load a database into memory (dbLoad)" or "Open a database (dbOpen)",
respectively, in the Oracle TimesTen In-Memory Database Reference.

Modifying the connection attributes of a database
There are three types of connection attributes based on their persistence:

■ Attributes that are set on database creation and that cannot be modified. You store
the value assigned for these attributes in the database definition.

■ Attributes that are set when the database is loaded into memory and that can only
be modified upon unloading and reloading the database into memory. You store
the value assigned for these attributes in the database definition.

■ Attributes that are set by each connection to the database and persist for the
duration of that connection. You store the value assigned for these attributes in a
connectable.

These sections describe how to modify the connection attributes of a database
depending on where they are stored:

■ Modify the connection attributes in a database definition

■ Modify the connection attributes in a connectable

Modify the connection attributes in a database definition
To modify a database definition is to modify the assigned value of the connection
attributes that a database definition supports. The types of connection attributes that a
database definition supports and that can be modified after database creation are:

Modifying the connection attributes of a database

Managing a Database 5-31

■ First connection attributes

■ PL/SQL first connection attributes

■ TimesTen Server connection attributes

TimesTen Scaleout assigns the default value to any supported attribute not explicitly
specified in the database definition. Attributes with the default value assigned can be
modified by including the attribute in the database definition. Once you add or
modify the attributes defined in a database definition and apply the changes to current
version of the model, TimesTen Scaleout overwrites the configuration files of every
data instance with the new attributes in the DSN associated with the database
definition.

To modify the values assigned to the attributes supported by a database definition,
perform these tasks:

1. If you don't have access to the file that you used to create (or modify) the database
definition, export the contents of the database1 database definition to a file.

% ttGridAdmin dbdefExport database1 /mydir/database1.dbdef

Example 5–13 shows the contents of the exported file.

Example 5–13 Exported database definition file

DbDef GUID ED157D81-D915-490B-AC80-353234E8516E Exported 2016-06-14 14:52:32
[database1]
Connections=2048
DatabaseCharacterSet=AL32UTF8
DataStore=/disk1/databases/database1
Durability=0
LogBufMB=1024
LogDir=/disk2/logs
PermSize=32768
TempSize=4096

2. Modify the value of the PermSize attribute from 32768 and 49152 in the exported
database definition file, as shown in Example 5–14.

Example 5–14 Modified database definition file

DbDef GUID ED157D81-D915-490B-AC80-353234E8516E Exported 2016-06-14 14:52:32
[database1]
Connections=2048
DatabaseCharacterSet=AL32UTF8
DataStore=/disk1/databases/database1
Durability=0
LogBufMB=1024
LogDir=/disk2/logs
PermSize=49152
TempSize=4096

Note: You cannot modify data store attributes after database
creation. To use a different value for a data store attribute, you need to
destroy and re-create the database. See "Destroying a database" on
page 5-33 and "Creating a database" on page 5-1 for details on how to
destroy and re-create a database.

Modifying the connection attributes of a database

5-32 Oracle TimesTen In-Memory Database Scaleout User's Guide

3. Import the contents of the modified database definition file into the database1
database definition.

% ttGridAdmin dbdefModify /mydir/database1.dbdef
Database Definition DATABASE1 modified.

4. Apply the changes to the database1 database definition to the current version of
the model.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

5. Unload the database1 database as shown in "Unloading a database from memory"
on page 5-27.

6. Restart the database1 database as shown in "Reloading a database into memory"
on page 5-30 to bring the changes you made to the database1 database definition
into effect.

For a complete description of all the connection attributes, see "Connection Attributes"
in the Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin dbdefExport, ttGridAdmin dbdefModify,
or ttGridAdmin modelApply command, see "Export a database definition
(dbdefExport)", "Modify a database definition (dbdefModify)", or "Apply the latest
version of the model (modelApply)", respectively, in the Oracle TimesTen In-Memory
Database Reference.

Modify the connection attributes in a connectable
To modify a connectable is to modify the assigned value of the connection attributes
that a connectable supports. The types of connection attributes that a connectable
supports are:

■ General connection attributes

■ NLS general connection attributes

■ PL/SQL connection attributes

■ TimesTen Client connection attributes

TimesTen Scaleout assigns the default value to any supported attribute not explicitly
specified in the connectable. Attributes with the default value assigned can be
modified by including the attribute in the connectable. Once you add or modify the
attributes defined in a connectable and apply the changes to current version of the
model, TimesTen Scaleout overwrites the configuration files of every data instance
with the new attributes in the DSN associated with the connectable.

To modify the values assigned to the attributes supported by a connectable, perform
these tasks:

1. If you don't have access to the file that you used to create (or modify) the
connectable, export the contents of the database1CS connectable to a file.

% ttGridAdmin connectableExport database1CS /mydir/database1CS.connect

Example 5–15 shows the contents of the exported file.

Destroying a database

Managing a Database 5-33

Example 5–15 Exported connectable file

Connectable GUID E3175374-EC83-4826-A78C-8E3D21A0EFF6 Exported 2016-06-07
 12:40:47
[database1CS]
ConnectionCharacterSet=AL32UTF8
UID=terry

2. Modify the value of the SQLQueryTimeout connection attribute to 300 in the
exported connectable file, as shown in Example 5–16.

Example 5–16 Modified connectable file

Connectable GUID E3175374-EC83-4826-A78C-8E3D21A0EFF6 Exported 2016-06-07
 12:40:47
[database1CS]
ConnectionCharacterSet=AL32UTF8
UID=terry
SQLQueryTimeout=300

3. Import the contents of the modified connectable file into the database1CS
connectable.

% ttGridAdmin connectableModify /mydir/database1CS.connect
Connectable DATABASE1CS modified.

4. Apply the changes to the database1CS connectable to the current version of the
model.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

For a complete description of all the connection attributes, see "Connection Attributes"
in the Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin connectableExport, ttGridAdmin
connectableModify, or ttGridAdmin modelApply command, see "Export a connectable
(connectableExport)", "Modify a connectable (connectableModify)", or "Apply the
latest version of the model (modelApply)", respectively, in the Oracle TimesTen
In-Memory Database Reference.

Destroying a database
Before you attempt to destroy a database, ensure you backup all your data, since it will
be discarded in the destruction process. See "Backing up and restoring a database" on
page 10-7 for more information on how to backup your data in TimesTen Scaleout.

The ttGridAdmin dbDestroy command performs these operations in order to destroy
a database:

■ Delete the checkpoint and log files of the database stored on every data instance.

■ Delete the entries in the management instance that keep track of the status of the
database, including the entry that recorded the creation of the database.

However, before you can destroy a database, you must unload the database. See
"Unloading a database from memory" on page 5-27 for details.

Destroying a database

5-34 Oracle TimesTen In-Memory Database Scaleout User's Guide

Destroy the database1 database.

% ttGridAdmin dbDestroy database1
Database DATABASE1 destroy started

You may also want to delete the database definition associated with the database. The
ttGridAdmin dbdefDelete command deletes a database definition in the latest version
of the model. This command also deletes any connectable associated with the database
definition.

Delete the database1 database definition and its associated connectables from the
latest version of the model.

% ttGridAdmin dbdefDelete database1
Database Definition database1 deleted

Apply the deletion of the database1 database definition to the current version of the
model.

% ttGridAdmin modelApply
...
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

TimesTen Scaleout removes the database definition and its connectables from the grid.

For more information on the ttGridAdmin dbDestroy, ttGridAdmin dbdefDelete, or
ttGridAdmin modelApply command, see "Destroy a database (dbDestroy)", "Delete a
database definition (dbdefDelete)", or "Apply the latest version of the model
(modelApply)", respectively, in the Oracle TimesTen In-Memory Database Reference.

6

Understanding Distributed Transactions in TimesTen Scaleout 6-1

6Understanding Distributed Transactions in
TimesTen Scaleout

In TimesTen Scaleout, distributed transactions are processed by a two-phase commit
protocol. This chapter discusses how TimesTen Scaleout maintains ACID-compliant
databases through distributed transactions.

The following terminology is related to understanding the distributed transaction
processing algorithms that TimesTen Scaleout employs:

■ Participant: An element that executes one or more SQL statements from a
distributed transaction. Not all elements in a database participate in every
transaction. An element only becomes a participant of a transaction if one or more
operations of that transaction requires access to the data stored in the element.

■ Transaction manager: The thread of the application (or of the TimesTen Server, for
a client/server application) that is connected to the database and initiates the
transaction. The transaction manager coordinates the transaction operations with
all participants.

■ Prepare-to-commit log record: A type of log record written to the transaction log
of the database during the prepare phase of the two-phase commit protocol. It
contains the commit decision for the transaction.

■ Durable log record: Participants write a prepare-to-commit or commit log record
synchronously to the transaction log. Nondurable log records are asynchronously
written by the participants.

■ Distributed transaction: A transaction with two or more participants.

■ Single-element transaction: A transaction with only one participant.
Single-element transactions do not use the two-phase commit protocol.
Single-element transactions are only possible in a grid with K-safety set to 1.

■ In-doubt transaction: A transaction where a participant wrote a
prepare-to-commit log record, but the commit log record is not present in the
transaction log. If the transaction manager wrote the prepare-to-commit log record
to the transaction log, which means there is a known commit decision, then the
transaction is not in-doubt.

Note: Each element maintains its own independent set of checkpoint
and transaction log files. They behave in the same manner as the
checkpoint and transaction log files of a database in TimesTen Classic.
See "Checkpoint operations" and "Transaction logging" in the Oracle
TimesTen In-Memory Database Operations Guide for more information.

Transaction manager

6-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Remote connection: A connection from the transaction manager to a participant of
the transaction.

This chapter includes the following topics:

■ Transaction manager

■ Durability settings

■ Two-phase commit protocol

■ Troubleshooting distributed transactions

Transaction manager
Applications connect to a database in TimesTen Scaleout by connecting to one element
of the database. Each transaction executed by a connection requires a transaction
manager. For client/server applications the transaction manager is the thread in the
TimesTen Scaleout server that is acting as a proxy for the application. For direct mode
applications the transaction manager is the thread in the application that connects to
TimesTen Scaleout. The transaction manager coordinates the execution of statements
on elements (participants), or more specifically:

■ If the application issues a commit or rollback, the transaction manager ensures that
all participants have consistent data based on the commit or rollback decision from
the two-phase commit protocol.

■ If a participant returns an error, such as a constraint violation, the transaction
manager coordinates the response. The transaction manager ensures that
TimesTen Scaleout returns the appropriate error message to the user and that all
participants release the allotted resources.

■ If a participant fails, the transaction manager creates a state that the failed
participant uses during its recovery to restore to a consistent state.

■ If the participant where the transaction manager resides fails, participants classify
the transaction as in-doubt if they completed the prepare phase but did not receive
the commit decision and are no longer able to reach the transaction manager.

Status of the participants
When a participant completes the execution of a statement, it sends a message to the
transaction manager. The message includes information about the number of rows
affected. If the message specifies that:

■ The participant modified the affected rows, such as with a INSERT, UPDATE, or
DELETE operation, the transaction manager flags the participant as a write
participant.

■ The participant did not modify any rows, then the transaction manager flags the
participant as a read participant.

The read or write status of a participant affects the way the transaction manager
processes a commit operation:

■ If all participants are read participants, then the transaction manager handles the
commit without going through the prepare phase. In other words, read
participants perform the commit operation without needing a consensus from the
other participants.

■ If there are one or more write participants, then the transaction manager handles
the commit as a two-phase operation.

Durability settings

Understanding Distributed Transactions in TimesTen Scaleout 6-3

Durability settings
You control how durable your transactions are with the Durability attribute. This
attribute defines if transactions create durable prepare-to-commit log records.
Regardless of the setting of this attribute, transactions that include DDL statements
create durable prepare-to-commit and commit log records. The Durability attribute
supports two different values:

■ Durability set to 1

■ Durability set to 0

Durability set to 1
If you set the Durability attribute to 1, participants write durable prepare-to-commit
log records and nondurable commit log records for distributed transactions. Having
the Durability attribute set 1 ensures that committed transactions are recoverable in
the case of a failure. This is the default setting of the Durability attribute when
K-safety is set to 1.

For more information on the Durability attribute, see "Durability" in the Oracle
TimesTen In-Memory Database Reference.

Durability set to 0
If you set the Durability attribute to 0, participants write nondurable
prepare-to-commit and commit log records for distributed transactions. To ensure a
measure of durability, TimesTen Scaleout provides the following new features that are
generally exclusive to databases with the Durability attribute set to 0:

■ Epoch transactions

■ EpochInterval attribute

■ CreateEpochAtCommit attribute

Epoch transactions
An epoch transaction is a distributed transaction that creates a durable commit log
record that marks a globally consistent point in time across all elements of a database.
Epoch transactions are durably committed on every element of the database. An epoch
transaction ensures that the database is consistent up to the timestamp of the epoch
transaction. In other words, an epoch transaction ensures that any transaction already
in the commit phase is recoverable.

Transactions in a grid with K-safety set to 2 and a database with the Durability
attribute set to 0 are durable under normal conditions, since TimesTen Scaleout writes
durable prepare-to-commit log records of transactions that involve a replica set with a
failed element until the failed element recovers. Only if both elements of the replica set
fail simultaneously, a transaction may become nondurable. However, TimesTen
Scaleout enables you to promote transactions to epoch transactions. An epoch
transactions and all transactions committed before it are more resilient to catastrophic

Note: TimesTen Scaleout uses Lamport timestamps to provide
partial ordering for transactions that commit on different elements of a
database. Each element has a Lamport timestamp that is updated by,
among others, prepare and commit operations. The transaction
manager logs the Lamport timestamp of every committed transaction.

Durability settings

6-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

failures, since you can recover a database to the consistent point marked by the epoch
commit log record of the epoch transaction.

Before promoting a transaction, consider that a commit for an epoch transaction is
more expensive than a commit for a regular transaction, because it creates durable log
records for both the prepare-to-commit and commit phase and involves every element
of the database, including those that were not participants before the promotion of the
transaction to an epoch transaction.

Use these built-in procedures and system view to promote and manage epoch
transactions:

■ The ttEpochCreate built-in procedure promotes a transaction to an epoch
transaction, including read-only transactions.

■ The ttDurableCommit built-in procedure promotes a write transaction to an epoch
transaction.

■ The SYS.V$EPOCH_SESSION system view stores the Lamport timestamp of the latest
epoch transaction that the connection created since the second-to-last checkpoint
operation.

Example 6–1 Promoting a transaction to an epoch transaction

The example shows and verifies the promotion of a write transaction to an epoch
transaction.

Command> autocommit OFF;
Command> INSERT INTO transactions VALUES (txn_seq.NEXTVAL, 189, SYSDATE, NULL,
 'A', 5.49);
Command> SELECT epoch FROM sys.v$epoch_session;
< 1023.1 >
1 row found.
Command> CALL ttEpochCreate();
Command> COMMIT;
Command> SELECT epoch FROM sys.v$epoch_session;
< 1024.1 >
1 row found.

For more information on the ttEpochCreate or ttDurableCommit built-in procedure,
see "ttEpochCreate" or "ttDurableCommit", respectively, in the Oracle TimesTen
In-Memory Database Reference.

For more information on the SYS.V$EPOCH_SESSION system view, see "SYS.V$EPOCH_
SESSION" in the Oracle TimesTen In-Memory Database System Tables and Views Reference.

EpochInterval attribute
Each epoch commit log record is associated to a specific checkpoint file on every
element. In the case of an unexpected failure of an element, the recovery process must

Note:

■ See "Recovering a replica set after an element goes down" on
page 11-14 for more information on how to recover failed element
in a replica set.

■ See "Recovering from a down replica set" on page 11-16 for more
information on how to recover a failed replica set.

Durability settings

Understanding Distributed Transactions in TimesTen Scaleout 6-5

use the checkpoint file on each element that is associated with the latest epoch commit
log record, which is not necessarily the latest checkpoint available on the element.

You can configure a database to generate periodic epoch transactions at an specified
interval with the EpochInterval first connection attribute. The value set for the
EpochInterval attribute must be less than one half of the value set for the
CkptFrequency first connection attribute, so that there is at least one epoch transaction
for every checkpoint operation. If you set the CkptFrequency attribute to a value
greater than zero and the EpochInterval attribute to a value greater than one half of
the value set for the CkptFrequency attribute, TimesTen Scaleout will re-adjust the
EpochInterval attribute to one half of value set for the CkptFrequency attribute.

For more information on the EpochInterval or CkptFrequency attribute, see
"EpochInterval" or "CkptFrequency", respectively, in the Oracle TimesTen In-Memory
Database Reference.

CreateEpochAtCommit attribute
You can configure a connection to promote every write transaction committed by that
connection to an epoch transaction with the CreateEpochAtCommit general connection
attribute. If you set the CreateEpochAtCommit attribute to 1, you ensure that every
transaction you commit during the connection is recoverable in the case of failure.
However, as with any epoch transaction, commits operations are more expensive than
with regular transactions, so it is recommended that you limit CreateEpochAtCommit=1
for critical operations only.

When the Durability attribute is set to 0, the transaction manager and the participants
behave differently depending of the settings of the CreateEpochAtCommit attribute, as
shown on Table 6–1.

Setting both the Durability and CreateEpochAtCommit attributes to 0 provides the
best performance. In this case, call the ttEpochCreate or ttDurableCommit built-in
procedures to ensure that you have durable records of important transactions.

For more information on the Durability or CreateEpochAtCommit attribute, see
"Durability" or "CreateEpochAtCommit", respectively, in the Oracle TimesTen
In-Memory Database Reference. For more information on the ttEpochCreate or
ttDurableCommit built-in procedure, see "ttEpochCreate" or "ttDurableCommit",
respectively, in the Oracle TimesTen In-Memory Database Reference.

Note: Even though the DurableCommits attribute is intended for
databases in TimesTen Classic, the attribute emulates the behavior of
the CreateEpochAtCommit attribute when set to 1 for a database in
TimesTen Scaleout. See "DurableCommits" in the Oracle TimesTen
In-Memory Database Reference.

Table 6–1 Participants behavior on commit based on CreateEpochAtCommit setting

CreateEpochAtCommit Commit behavior

0 Participants write nondurable prepare-to-commit and
commit log records for every distributed transaction to
commit.

1 Promotes every transaction to an epoch transaction.

Two-phase commit protocol

6-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

Two-phase commit protocol
Ensure that you understand the concepts covered in "Transaction manager" on
page 6-2 and "Durability settings" on page 6-3 before reading this section.

As previously mentioned, distributed transactions follow a two-phase commit
protocol. TimesTen Scaleout implements the two-phase commit protocol as follows:

Phase 0: Transaction
1. An application establishes a connection to a database. Every connection is

associated with a specific element of the database, which becomes the transaction
manager for all distributed transactions initiated from that connection.

2. The application executes one or more SQL statements. The transaction manager
sends the statements to all the participants for execution. Based on the returned
results of the execution of the SQL statement, the transaction manager identifies
and updates the status of the participants.

3. The application issues a commit.

Phase 1: Prepare phase
1. The transaction manager sends a prepare message to all participants. The message

includes the identity of the transaction manager and all the participants.

2. Each participant, once it receives the prepare message, performs either of these
actions:

■ If the participant is a write participant, it writes a prepare-to-commit log
record that stores information to subsequently either commit or rollback the
transaction. The participant also locks the modified rows to prevent read
operations.

■ If the participant is a read participant, it identifies the transaction as read-only.

3. The participant sends a prepare response to the transaction manager with its vote
for the commit decision:

■ A write participant only votes 'Yes' if it was able to write the
prepare-to-commit log record.

■ A read participant always votes 'Yes' and commits the transaction without
waiting for the commit decision. In this case, the commit operation consists on
releasing all locks and temporary resources related to the transaction.

Phase 2: Commit phase
1. Once the transaction manager receives the prepare response from at least one

element in every replica set participating in the transaction, it writes a
prepare-to-commit log record that includes the commit decision. The transaction
manager bases the commit decision on the scenarios described in Table 6–2.

Note: If Durability is set to 1, the participant writes a durable
prepare-to-commit log record.

Two-phase commit protocol

Understanding Distributed Transactions in TimesTen Scaleout 6-7

2. The transaction manager sends a message to all write participants with the commit
decision.

3. All write participants, including the transaction manager, commit or rollback the
transaction based on the commit decision.

Figure 6–1 shows the two-phase commit protocol as implemented for distributed
transactions in TimesTen Scaleout.

Figure 6–1 Two-phase commit protocol

Two-phase commit failure analysis
There are several types of potential failures that may affect the operation of a database
for outstanding distributed transactions. Table 6–3 summarizes these failure types and
describes how TimesTen Scaleout responds to them.

Table 6–2 Scenarios for commit decision

Scenarios Decision

All write participants send a 'Yes' vote in their prepare response and
within them there is at least one element for each participating replica
set. (Failed participants do not affect the commit decision once they are
identified as failed as long as its replica sends a response.)

Commit

Any write participant sends a 'No' vote in their prepare response. Roll back

Transaction manager Participant

State 1

Sends prepare message

Sends prepare response

Writes prepare-to-commit log record
(Durable only if Durability=1 or transaction is promoted to epoch)

Writes prepare-to-commit log record with commit decision
(Durable only if Durability=1 or transaction is promoted to epoch)

Sends commit decision

Writes commit log record Writes commit log record

State 2

State 3

State 1

State 2

State 3

PR
EP

A
RE

 P
H

A
SE

C
O

M
M

IT
 P

H
A

SE

(Durable only if transaction is promoted to epoch)

Troubleshooting distributed transactions

6-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

Troubleshooting distributed transactions
In TimesTen Classic, a transaction may need to wait for a resource held by another
transaction. If that resource is protected by a lock, the transaction waits for the lock to
be released. It is possible that the other transaction is waiting on an external event that
is not represented as database lock, so the deadlock detector does not resolve the
problem. The following are possible resources that can cause a transaction to wait:

■ a semaphore wait

■ a latch wait

■ an I/O event

■ an unattended open transaction

■ a long running operation

In TimesTen Scaleout, these cases still apply, and there is an additional possible case.
When an element fails, all the transactions initiated from that element have lost their
transaction manager. If the remote participants did not receive the commit decision for
a transaction after sending their prepare response, then the participants must wait to
commit or rollback the now in-doubt transaction. Also, if a participant fails after
sending its prepare response but before receiving the commit decision, the transaction
becomes an in-doubt transaction for the failed participant.

Table 6–3 Failure types in a distributed transaction

Failure Action

Transaction manager fails. If the transaction manager fails (for example, the application
terminates), the main daemon for that instance catches the
failure and informs the subdaemon. The subdaemon sends a
commit or rollback message to all participants depending on the
state of the transaction.

The host of the transaction
manager fails.

If the host of the transaction manager fails, the daemon and all
subdaemons fail. Each participant will recognize this failure
when their TCP connection to the transaction manager closes or
times out.

Once a participant recognizes the failure, the participant rolls
back any transaction that has not reached the prepare phase. If
the participant already sent its prepare response, it will ask other
participants for the commit decision and perform one of the
following actions:

■ If at least one of the other participants received the commit
decision, then the asking participant will fullfil the commit
decision.

■ If none of the other participants received the commit
decision, then the asking participant waits for the
transaction manager to recover.

All elements from a
participating replica set fail
before writing a
prepare-to-commit log
record.

The transaction manager decides to rollback the transaction.

Participant fails after
writing a prepare-to-commit
log record.

The participant, once it recovers, requests the commit decision
from one of the other participants.

Participant is busy. The transaction manager waits until it receives a prepare
response from the participant.

Troubleshooting distributed transactions

Understanding Distributed Transactions in TimesTen Scaleout 6-9

Global transaction id
The global transaction id uniquely identifies a transaction across all the elements of a
database. The global transaction id is composed of these parameters:

■ The element id of the transaction manager

■ The connection id of the transaction manager or local transaction id

■ A counter for the transactions issued from the connection

See Example 6–2 for details on how to retrieve the global transaction id of an
outstanding transaction in TimesTen Scaleout.

Example 6–2 Retrieving the global transaction id

This example shows how to retrieve the global transaction id from within the
connection issuing the transaction. The SYS.V$XACT_ID system view stores all the
parameters necessary to construct the global transaction id of a transaction.

Command> autocommit 0;
Command> INSERT INTO transactions VALUES (txn_seq.NEXTVAL, 342, SYSDATE, NULL,
 'A', 8.33);
1 row inserted.
Command> SELECT elementId, xactId, counter FROM sys.v$xact_id;
< 3, 1, 148 >
1 row found.

For more information on the SYS.V$XACT_ID system view, see "SYS.V$XACT_ID" in the
Oracle TimesTen In-Memory Database System Tables and Views Reference.

Managing in-doubt transactions
TimesTen Scaleout resolves in-doubt transactions automatically during element
recovery. The prepare-to-commit log record of the transaction contains the information
about other participants. To resolve the in-doubt transaction, the recovering element
requests the commit decision from one of the participants listed in the
prepare-to-commit log record.

In the case of a transaction manager failure, TimesTen Scaleout should be able to
resolve an in-doubt transaction as long as one participant from each write replica set is
available. However, if none of the participants have the commit decision and not all
write replica sets are available, TimesTen Scaleout cannot resolve the in-doubt
transaction. If TimesTen Scaleout failed to resolve an in-doubt transaction, use the
ttXactAdmin utility to force the commit or rollback of the transaction.

You may use the ttXactAdmin utility to verify the state of every outstanding
transaction, as shown in Example 6–3. If the transaction state is in-doubt, you can
externally commit or rollback the transaction with the same utility, as shown in
Example 6–4 or Example 6–5, respectively.

Important: For most cases, you should always roll back an
unresolved in-doubt transaction. However, if you decide to externally
commit the transaction, you first will need to evict any unreachable
participating replica set to ensure a consistent database. Evicting a
replica set implies losing all the data stored in that replica set.

See "Unavailability of data when a full replica set is down or fails" on
page 11-15 for more information on evicting replica sets.

Troubleshooting distributed transactions

6-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

Example 6–3 Verifying the state of every outstanding transaction

This example shows how to retrieve the status of every outstanding transaction that
the element of the data instance running the command is a participant. The
ttXactAdmin utility only retrieves information related to the element of the data
instance executing the command.

% ttXactAdmin -connStr "DSN=database1"
2016-12-14 11:00:36.995
/disk1/databases/database1
TimesTen Release 18.1.4.1.0
ElementID 3

Program File Name: _ttIsql
XactID PID Context State Loghold Last ID
3.1.148 26247 0x13b3ff0 Active -1.-1 [-1:2]

 Resource ResourceID Mode SqlCmdID Name
 Database 0x01312d0001312d00 IX 0
 HashedKey ffffffffe5a341d5 SF 284478280 PAT.ACCOUNTS
 Table 2367304 IRC 284478280 PAT.ACCOUNTS
 EndScan AAAVVUAAAA9AAAAGjO En 284478280 PAT.TRANSACTIONS
 Table 2367320 IRC 284478280 PAT.TRANSACTIONS

 Begin Time: 10:59:21.695

Example 6–4 Committing an in-doubt transaction

The example uses the ttXactAdmin utility to commit transaction 3.1.148. This
command can only be successfully run if the transaction manager is down and its
replica set is evicted from the database. See "Recovering from a down replica set" on
page 11-16 for more information on when and how to evict a failed replica set.

% ttXactAdmin -connStr "DSN=database1" -xactIdCommit 3.1.148

Example 6–5 Rolling back an in-doubt transaction

The example uses the ttXactAdmin utility to roll back transaction 3.1.148.

% ttXactAdmin -connStr "DSN=database1" -xactIdRollback 3.1.148

For more information on the ttXactAdmin utility, see "ttXactAdmin" in the Oracle
TimesTen In-Memory Database Reference.

7

Using SQL in TimesTen Scaleout 7-1

7Using SQL in TimesTen Scaleout

This chapter describes how to use SQL to work with databases in TimesTen Scaleout.
Topics include:

■ Overview of SQL

■ Overview of PL/SQL

■ Working with tables

■ Altering tables

■ Understanding materialized views

■ Understanding indexes

■ Using sequences

■ Performing DML operations

■ Using pseudocolumns

■ Using the TT_CommitDMLOnSuccess hint

■ Using optimizer hints

■ Understanding ROWID in data distribution

■ Understanding system views

Overview of SQL
A database consists of elements. Each element stores a portion of your data. You
manipulate and query the data in the database through SQL operations from any
element. For example, you can use the CREATE USER statement to create a user in your
database from any element. After TimesTen Scaleout creates the user, this user is
available in all elements of the database. You can issue DDL and DML statements from
any element which TimesTen Scaleout then applies to all elements in your database.
You can issue a SELECT statement to execute a query that is prepared from one element
and executed on other elements in the query with the result returned to the originating
element.

Overview of PL/SQL

7-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

Overview of PL/SQL
Applications can use PL/SQL to access and manipulate data. Anonymous blocks are
fully supported. PL/SQL is executed on the element to which the application is
connected. SQL statements that are invoked from PL/SQL are executed across the grid
as with any other SQL.

See the Oracle TimesTen In-Memory Database PL/SQL Developer's Guide for detailed
information on PL/SQL and the "Examples Using TimesTen SQL in PL/SQL" chapter
in the Oracle TimesTen In-Memory Database PL/SQL Developer's Guide for examples. For
unsupported PL/SQL features, see Table 1–9, " TimesTen Classic features that are
unsupported in TimesTen Scaleout" for information.

Working with tables
Tables are the objects used to define how to distribute data in your database. Each
user-defined table has a defined distribution scheme. TimesTen Scaleout manages the
distribution of data according to this defined distribution scheme. The distribution
scheme defines how the rows of data in the table are distributed across the grid. The
CREATE TABLE statement allows you to specify a distribution clause to define the
distribution scheme for the table. When you create the table, it exists on every element
of the database. Rows of data in the table exist on different elements of the database.

For detailed information on the syntax and semantics for creating, altering, and
dropping tables, see "CREATE TABLE" in the Oracle TimesTen In-Memory Database SQL
Reference. See "Data distribution" on page 1-13 or "Defining table distribution schemes"
on page 5-13 for more information on defining distribution schemes.

Altering tables
You can alter tables in TimesTen Scaleout to change defaults or add and drop columns
and constraints. However, you cannot change the distribution scheme unless the table
is empty. In addition, you cannot drop a constraint that is named in the DISTRIBUTE BY
REFERENCE clause. See "ALTER TABLE" in the Oracle TimesTen In-Memory Database SQL
Reference for more information.

Table 7–1, " ALTER TABLE rules for distribution schemes" shows the rules associated
with altering tables. Supporting examples follow.

Notes:

■ The syntax and semantics for SQL statements, functions, and the
like are detailed in the Oracle TimesTen In-Memory Database SQL
Reference.

■ See "Summary of SQL statements supported in TimesTen" in the
Oracle TimesTen In-Memory Database SQL Reference for information
on the SQL statements supported in TimesTen Scaleout.

Altering tables

Using SQL in TimesTen Scaleout 7-3

Examples include:

■ Example 7–1, "Use ALTER TABLE to add a primary key constraint"

■ Example 7–2, "Use ALTER TABLE to change the distribution key"

Example 7–1 Use ALTER TABLE to add a primary key constraint

This example creates the mytable table without a primary key or distribution clause.
The table is distributed by hash on a hidden column. Then the ALTER TABLE statement
is used to add a primary key constraint. The operation succeeds but the distribution
key is not changed.

Command> CREATE TABLE mytable (col1 NUMBER NOT NULL, col2 VARCHAR2 (32));
Command> describe mytable;

Table SAMPLEUSER.MYTABLE:
 Columns:
 COL1 NUMBER NOT NULL
 COL2 VARCHAR2 (32) INLINE
 DISTRIBUTE BY HASH

1 table found.
(primary key columns are indicated with *)

Now alter the table to add the primary key. The operation succeeds. The distribution
scheme and distribution key do not change.

Command> ALTER TABLE mytable ADD CONSTRAINT c1 PRIMARY KEY (col1);
Command> describe mytable;

Table SAMPLEUSER.MYTABLE:
 Columns:
 *COL1 NUMBER NOT NULL
 COL2 VARCHAR2 (32) INLINE
 DISTRIBUTE BY HASH

1 table found.
(primary key columns are indicated with *)

Example 7–2 Use ALTER TABLE to change the distribution key

This example shows that you can use the ALTER TABLE statement to change the
distribution key, but only if the table is empty.

Command> CREATE TABLE mytable2 (col1 NUMBER NOT NULL, col2 VARCHAR2 (32))
DISTRIBUTE BY HASH (col1,col2);

Table 7–1 ALTER TABLE rules for distribution schemes

ALTER statement Comment

CREATE TABLE t1 (c1 NUMBER,
 c2 VARCHAR2 (10));

ALTER TABLE t1
 DISTRIBUTE BY HASH (c1);

The operation succeeds if the table is empty. If the
table is not empty, the operation fails because the
distribution key cannot be changed on tables that
are not empty.

CREATE TABLE t1...CONSTRAINT fk1...
 DISTRIBUTE BY REFERENCE(fk1);

ALTER TABLE t1 DROP CONSTRAINT(fk1);

The operation fails. The foreign key is used to
distribute the table.

Understanding materialized views

7-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

Command> describe mytable2;

Table SAMPLEUSER.MYTABLE2:
 Columns:
 COL1 NUMBER NOT NULL
 COL2 VARCHAR2 (32) INLINE
 DISTRIBUTE BY HASH (COL1, COL2)

1 table found.
(primary key columns are indicated with *)

Use the ALTER TABLE statement to change the distribution key to col1. The operation
succeeds because the table is empty.

Command> ALTER TABLE mytable2 DISTRIBUTE BY HASH (col1);
Command> describe mytable2;

Table SAMPLEUSER.MYTABLE2:
 Columns:
 COL1 NUMBER NOT NULL
 COL2 VARCHAR2 (32) INLINE
 DISTRIBUTE BY HASH (COL1)

1 table found.
(primary key columns are indicated with *)

Understanding materialized views
Materialized views provide a second mechanism for distributing rows of data. (The
first mechanism is tables.) See "Materialized views as a secondary form of distribution"
on page 5-16 for more information.

Materialized views are useful as global indexes to reduce or eliminate multi-element
access (broadcasts). See "Understanding indexes" on page 7-5 for more information.

Additional considerations:

■ Specify the DISTRIBUTE BY HASH distribution scheme. DISTRIBUTE BY REFERENCE
and DUPLICATE clauses are not supported.

■ You must specify the DISTRIBUTE BY HASH clause and specify a set of columns in
the DISTRIBUTE BY clause. Even if you distribute the materialized view by primary
key, you must specify the primary key in the distribution clause.

■ Create a unique index for a materialized view if there is a unique column on the
detail table, but only create it if the unique column is used as the distribution key
for the materialized view. This will increase performance if the columns are
frequently used in DML operations and queries.

■ The unique index columns and primary key columns must be a super set of the
distribution key columns.

■ Consider creating a materialized view on a table along with any indexes after the
table is populated to decrease the time it takes to populate the table.

See "CREATE MATERIALIZED VIEW" in the Oracle TimesTen In-Memory Database SQL
Reference for more information on materialized views.

Understanding indexes

Using SQL in TimesTen Scaleout 7-5

Understanding indexes
When you create an index, TimesTen Scaleout creates the index on all elements that are
in the distribution map. TimesTen Scaleout populates each element's index with the
rows that are stored on that element. When you drop an index, TimesTen Scaleout
drops the index on all elements.

Indexed access that does not include all columns of the distribution key requires
multi-element access (a broadcast across all elements). To avoid broadcasts, thereby
optimizing index access, consider creating a materialized view and an index on the
materialized view. Example 7–3, "Use materialized view as a global index" illustrates
how to create a materialized view to optimize index access.

Example 7–3 Use materialized view as a global index

The accounts table is distributed by reference based on cust_id. To increase the
performance of an UPDATE statement in which the distribution key is not used, consider
creating a materialized view and distribute the materialized view on the column(s) not
included in the distribution key (account_id, in this example). Then, create an index
on the account_id column. Use the ttIsql set timing command to illustrate the
difference in execution times.

Use the ttIsql describe command to describe the accounts table.

Command> SELECT status FROM accounts WHERE account_id = 500;
< 10 >
1 row found.

Command> autocommit off;
Command> set timing on;

Command> UPDATE accounts SET status=20 WHERE account_id=500;
1 row updated.
Execution time (SQLExecute) = 1.018369 seconds.

Command> set timing off;
Command> SELECT status FROM accounts WHERE account_id = 500;
< 20 >
1 row found.

Command> rollback;
Command> SELECT status FROM accounts WHERE account_id = 500;
< 10 >
1 row found.

Command> CREATE MATERIALIZED VIEW account_id_mv
 DISTRIBUTE BY HASH (account_id) AS SELECT * FROM accounts;
1010000 rows materialized.
Command> CREATE UNIQUE HASH INDEX account_index_mv ON account_id_mv (account_id);

Command> autocommit off;
Command> set timing on;
Command> UPDATE accounts SET status=20 WHERE account_id=500;
1 row updated.
Execution time (SQLExecute) = 0.002601 seconds.

Note: There are storage and overhead costs incurred for DML
operations against the columns that are defined in the materialized
view. This is a key tuning trade-off in TimesTen Scaleout.

Using sequences

7-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

Command> set timing off;
Command> rollback;
Command> SELECT status FROM accounts WHERE account_id = 500;
< 10 >
1 row found.

Using sequences
The CREATE SEQUENCE statement creates a new sequence number generator that can
subsequently be used by multiple users to generate unique BIGINT data types. As with
materialized views and tables, once you create the sequence object, sequence values
can be retrieved from any element of the database.

The values are retrieved from the sequence in blocks and cached in order to reduce the
overhead of performing a globally coordinated update on the sequence object every
time a value is retrieved. While the values returned from a sequence in TimesTen
Scaleout are guaranteed to be unique, they are not guaranteed to be sequential.

The BATCH clause is specific to TimesTen Scaleout. The batch value configures the range
of unique sequence values stored in the element. Each element has its own batch. An
element will get a new batch when its local batch is consumed. There is one element
that owns the sequence and is responsible for allocating batch sequence blocks to other
elements.

Sequence values are unique, but across elements the values might not be returned in
monotonic order. Within a single element, sequence values are in monotonic order. But
over time, across elements, sequence values are not returned monotonically. However,
the monotonic property is guaranteed within an element.

If your application records events and tags each event with a sequence value, the
application cannot assume that event 100, for example, happened after event 80. If
your application needs to make this assumption, then set BATCH to 1. However, there is
substantial communication overhead if you set BATCH to 1.

In summary, unless the BATCH value is set to 1, the order of sequence values is not
guaranteed to be maintained across all elements. However, no matter what the batch
value is, the uniqueness of the sequence value is guaranteed to be maintained across
all elements. In addition, the order of sequence values is guaranteed to be maintained
within an element.

You can change the default batch value of an existing sequence by issuing the ALTER
SEQUENCE statement. The batch value is the only alterable clause. See "CREATE
SEQUENCE" and "ALTER SEQUENCE" in the Oracle TimesTen In-Memory Database
SQL Reference for more information. Use the DROP SEQUENCE statement to drop a
sequence. See "DROP SEQUENCE" in the Oracle TimesTen In-Memory Database SQL
Reference for information on dropping a sequence.

Understanding batch allocation
Deciding what to set for the batch value depends on these considerations:

■ If you set the value to 1, sequence values are issued in monotonic order, no matter
how many elements exist. However, there is substantial communication overhead
with a value of 1, which results in a detrimental impact on performance. Unless
absolutely necessary, do not set the value to 1 as it will directly impact the
performance of your system.

Using sequences

Using SQL in TimesTen Scaleout 7-7

■ If you set the value greater than 1, unique sequence values are not issued in strict
order across all elements. If your connection retrieves multiple values from a
sequence, there is no guarantee that the values will be consecutive or contiguous.
If multiple connections retrieve values from a sequence, there may be gaps in the
range of values retrieved.

■ You should consider setting batch to a high value to avoid excessive
communication among elements (unless it is necessary to set the batch value to 1
for the proper functioning of your application).

■ The unique sequence value within the batch boundary cannot be greater than
MAXVALUE. For example, if a sequence increments by 1, has a batch value of 3, and a
maximum value of 5, the first batch includes 1, 2, and 3. The second batch includes
4 and 5 only.

■ The batch value must be greater or equal to the cache value.

■ If you do not specify a batch value, the default is 10 million. Each element starts
with its own set of 10 million values. If the 10 million values are used up, the
element gets 10 million more. The minimum and maximum values and the
number of unique values are determined by the MINVALUE, MAXVALUE, and
INCREMENT BY values.

■ Each element in a replica set has different batches.

Examples of batch assignment:

■ Example 7–4, "Illustrate batch assignment for three elements"

■ Example 7–5, "Illustrate a second batch assignment for three elements"

Example 7–4 Illustrate batch assignment for three elements

This example creates the myseq sequence with a batch value of 100. Then, from the
connection that is connected to element 1, the example issues a SELECT...NEXTVAL
query. The example then issues a second and third SELECT...NEXTVAL query from the
connection that is connected to element 2 and the connection that is connected to
element 3 respectively. The example illustrates the allocation of batch assignment for
each element. In this example:

■ Element 1 receives a batch of 1-100.

■ Element 2 receives a batch of 101-200.

■ Element 3 receives a batch of 201-300.

From the connection that is connected to element 1 (demonstrated by SELECT
elementId# FROM dual), create the myseq sequence specifying a batch value of 100.
Then, issue a SELECT...NEXTVAL query. Observe the value 1 is returned.

Command> SELECT elementId# FROM dual;
< 1 >
1 row found.
Command> CREATE SEQUENCE myseq BATCH 100;
Command> SELECT myseq.NEXTVAL FROM dual;
< 1 >
1 row found.

From the connection that is connected to element 2, first verify the connection to
element 2, then issue a SELECT...NEXTVAL query. Observe the value 101 is returned.

Command> SELECT elementId# FROM dual;
< 2 >
1 row found.

Using sequences

7-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

Command> SELECT myseq.NEXTVAL FROM dual;
< 101 >
1 row found.

From the connection that is connected to element 3, first verify the connection to
element 3, then issue a SELECT...NEXTVAL query. Observe the value 201 is returned.

Command> SELECT elementId# FROM dual;
< 3 >
1 row found.
Command> SELECT myseq.NEXTVAL FROM dual;
< 201 >
1 row found.

Example 7–5 Illustrate a second batch assignment for three elements

This example creates the myseq2 sequence with a batch value of 100. Then, from the
connection that is connected to element 1, the example issues a SELECT...NEXTVAL
query. The example then issues a second and third SELECT...NEXTVAL query from the
connection that is connected to element 3 and the connection that is connected to
element 2 respectively. The example illustrates the allocation of batch assignment for
each element. In this example:

■ Element 1 receives a batch of 1-100.

■ Element 3 receives a batch of 101-200.

■ Element 2 receives a batch of 201-300.

From the connection that is connected to element 1 (demonstrated by SELECT
elementId# FROM dual), create the myseq2 sequence specifying a batch value of 100.
Then, issue a SELECT...NEXTVAL query. Observe the value 1 is returned.

Command> SELECT elementId# FROM dual;
< 1 >
1 row found.
Command> CREATE SEQUENCE myseq2 BATCH 100;
Command> SELECT myseq2.NEXTVAL FROM dual;
< 1 >
1 row found.

From the connection that is connected to element 3, first verify the connection to
element 3, then issue a SELECT...NEXTVAL query. Observe the value 101 is returned.

Command> SELECT elementId# FROM dual;
< 3 >
1 row found.
Command> SELECT myseq2.NEXTVAL FROM dual;
< 101 >
1 row found.

From the connection that is connected to element 2, first verify the connection to
element 2, then issue a SELECT...NEXTVAL query. Observe the value 201 is returned.

Command> SELECT elementId# FROM dual;
< 2 >
1 row found.
Command> SELECT myseq2.NEXTVAL FROM dual;
< 201 >
1 row found.

Using pseudocolumns

Using SQL in TimesTen Scaleout 7-9

Performing DML operations
TimesTen Scaleout supports the INSERT, DELETE, and UPDATE, and SELECT DML
operations. The MERGE operation is not supported.

All data in all elements is accessible from everywhere. You can query or modify data in
any or all elements. Transactions obey ACID rules. TimesTen Scaleout provides read
committed semantics for isolation level. Readers do not block writers and writers do
not block readers.

Using pseudocolumns
A pseudocolumn is an assigned value used in the same context as a column, but is not
stored. Pseudocolumns are not actual columns in a table but behave like columns. You
can perform select operations, but you cannot perform insert, update, or delete
operations on a pseudocolumn.

Use the replicaSetId# pseudocolumn to determine the replica set in which the row is
stored. This pseudocolumn returns a NOT NULL TT_INTEGER data type.

See "Pseudocolumns in TimesTen Scaleout" in the Oracle TimesTen In-Memory Database
SQL Reference for information on the additional pseudocolumns supported in
TimesTen Scaleout.

Examples include:

■ Example 7–6, "Use replicaSetId# to locate data"

■ Example 7–7, "Use replicaSetId# with a table that has a duplicate distribution
scheme"

Example 7–6 Use replicaSetId# to locate data

This example issues a query on the customers table, returning the replica set in which
the data is stored (as determined by replicaSetId#).

Command> SELECT replicasetid#, cust_id,last_name,first_name
 FROM customers WHERE cust_id BETWEEN 910 AND 920
 ORDER BY cust_id, last_name, first_name;
< 2, 910, Riley, Tessa >
< 1, 911, Riley, Rashad >
< 1, 912, Riley, Emma >
< 1, 913, Rivera, Erin >
< 1, 914, Roberts, Ava >
< 1, 915, Roberts, Lee >
< 2, 916, Roberts, Clint >
< 3, 917, Robertson, Faith >
< 2, 918, Robinson, Miguel >
< 2, 919, Robinson, Mozell >
< 3, 920, Rodgers, Darryl >
11 rows found.

Example 7–7 Use replicaSetId# with a table that has a duplicate distribution scheme

This example first uses the ttIsql describe command on the account_status table to
validate the table has a duplicate distribution scheme. The example then issues a query
to return the replicasetId#. The example then repeats the same query from a
different connection. The example shows that the data returned is located on the
replica set to which the application is connected and thus is present in every element
in the database (duplicate distribution scheme).

Using the TT_CommitDMLOnSuccess hint

7-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

Command> describe account_status;

Table SAMPLEUSER.ACCOUNT_STATUS:
 Columns:
 *STATUS NUMBER (2) NOT NULL
 DESCRIPTION VARCHAR2 (100) INLINE NOT NULL
 DUPLICATE

1 table found.
(primary key columns are indicated with *)

Query the dual table to return the replica set to which the application is connected. In
this example, the replica set is 1.

Command> SELECT replicaSetId# FROM dual;
< 1 >
1 row found.

Command> SELECT replicaSetId#,* FROM account_status;
< 1, 10, Active - Account is in good standing >
< 1, 20, Pending - Payment is being processed >
< 1, 30, Grace - Automatic payment did not process successfully >
< 1, 40, Suspend - Account is in process of being disconnected >
< 1, 50, Disconnected - You can no longer make calls or receive calls >
5 rows found.

Issue a second query from a different ttIsql session running on a different data
instance:

Command> SELECT elementid# from dual;
< 6>
1 row found.

Command> SELECT replicaSetId#, * FROM account_status;
< 3, 10, Active - Account is in good standing >
< 3, 20, Pending - Payment is being processed >
< 3, 30, Grace - Automatic payment did not process successfully >
< 3, 40, Suspend - Account is in process of being disconnected >
< 3, 50, Disconnected - You can no longer make calls or receive calls >
5 rows found.

Using the TT_CommitDMLOnSuccess hint
The TT_CommitDMLOnSuccess hint is used to enable or disable a commit operation as
part of DML execution. You can specify the hint at the connection level or at the
statement level.

While using this hint (TT_CommitDMLOnSuccess set to 1):

■ At statement level, if a statement encounters an error while executing, the
transaction remains active and the database consistent.

■ For transactions that impact a single replica set, the commit operation uses a
one-phase commit instead of a two-phase commit protocol.

There is no difference in performance if you set autocommit to 1 or if you set the TT_
CommitDMLOnSuccess hint to 1.

See "TT_CommitDMLOnSuccess optimizer hint" in the Oracle TimesTen In-Memory
Database SQL Reference for detailed information.

Using optimizer hints

Using SQL in TimesTen Scaleout 7-11

Using optimizer hints
The TimesTen query optimizer is a cost-based optimizer that determines the most
efficient way to execute a given query by considering possible query plans. A query
plan in TimesTen Scaleout is affected by the distribution scheme and the distribution
keys of a hash distribution scheme as well as the column and table statistics, the
presence or absence of indexes, the volume of data, the number of unique values, and
the selectivity of predicates. You can manually examine a query plan by running the
ttIsql explain command. See "The TimesTen Query Optimizer" in the Oracle TimesTen
In-Memory Database Operations Guide for more information.

You can use optimizer hints to influence the execution plan generated by the
optimizer. There are two optimizer hints that are specific to TimesTen Scaleout. These
hints are valid at the statement and the connection levels. At the statement level, the
hints are valid for SELECT statements only:

■ TT_GridQueryExec

■ TT_PartialResult

See "Optimizer hints supported in TimesTen Scaleout only" in the Oracle TimesTen
In-Memory Database SQL Reference for information on the optimizer hints specific to
TimesTen Scaleout. See "Use optimizer hints to modify the execution plan" in the
Oracle TimesTen In-Memory Database Operations Guide for more information on all
optimizer hints.

TT_GridQueryExec
The TT_GridQueryExec optimizer hint enables you to specify whether the query
should return data from the local element or from all elements, including the elements
in a replica set when K-safety is set to 2.

If you do not specify this hint, the query is executed in one logical data space. It is
neither local nor global. Exactly one full copy of the data is used to compute the query.

Valid options for this hint are LOCAL and GLOBAL:

■ LOCAL: TimesTen Scaleout executes the queries in the local element only. Data is
retrieved locally from the element to which you are connected. If the local element
does not have a full copy of the data, TimesTen Scaleout returns partial results.

■ GLOBAL: TimesTen Scaleout retrieves data from all elements, including copies of the
rows from all tables from all replica sets to generate the results. This results in
duplicate data returned if K-safety is set to 2 or if tables have a duplicate
distribution scheme.

As with all queries, the element that you are directly connected to and issue the SQL
query from prepares the query and sends it to all other elements in the grid. The
request is executed on elements that are up and the results are reported locally on the
connected element.

See "TT_GridQueryExec optimizer hint" in the Oracle TimesTen In-Memory Database
SQL Reference for information on the syntax and semantics for this hint.

The distribution scheme is a determining factor in the number of rows returned. For
example, Table 7–2 shows the number of rows used in query for the three distribution
schemes. k represents the number of copies (k=2 in our example), e represents one
element from each replica set (e=3 in our example), and r represents the number of
rows in the table.

Using optimizer hints

7-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

Examples include:

■ Example 7–8, "Use TT_GridQueryExec on a hash distribution scheme table"

■ Example 7–9, "Use TT_GridQueryExec on a duplicate distribution scheme table"

■ Example 7–10, "Use TT_GridQueryExec on a reference distribution scheme table"

Example 7–8 Use TT_GridQueryExec on a hash distribution scheme table

This example uses the ttIsql describe command on the customers table to illustrate
the table is distributed by hash. The example executes a SELECT COUNT (*) query on
the customers table to return the number of rows in the table (1000). From the
connection that is connected to element 4, the example uses the TT_GridQueryExec
(Local) and (Global) optimizer hints to return the number of rows. The rows
returned differ based on whether Local or Global was specified in the TT_
GridQueryExec hint.

Command> describe customers;

Table SAMPLEUSER.CUSTOMERS:
 Columns:
 *CUST_ID NUMBER (10) NOT NULL
 FIRST_NAME VARCHAR2 (30) INLINE NOT NULL
 LAST_NAME VARCHAR2 (30) INLINE NOT NULL
 ADDR1 VARCHAR2 (64) INLINE
 ADDR2 VARCHAR2 (64) INLINE
 ZIPCODE VARCHAR2 (5) INLINE
 MEMBER_SINCE DATE NOT NULL
 DISTRIBUTE BY HASH (CUST_ID)

1 table found.
(primary key columns are indicated with *)

Command> SELECT COUNT (*) FROM customers;
< 1000 >
1 row found.

Table 7–2 TT_GridQueryExec optimizer hint

Option Table Type Number of rows used in query

LOCAL Duplicate distribution scheme table

Distributed by hash table

Distributed by reference table

r

r/e (Assumes uniform distribution)

r/e (Assumes uniform distribution)

GLOBAL Duplicate distribution scheme table

Distributed by hash table

Distributed by reference table

e*k*r

k*r

k*r

Note: Reads do not get a distributed lock and return committed data.
For the examples that use the TT_GridQueryExec(GLOBAL) optimizer
hint, if a write to a replica set happens between the reads to its
replicas, it is possible that the count will not match for all replicas.
This is expected behavior because each replica is afforded read
committed isolation.

Using optimizer hints

Using SQL in TimesTen Scaleout 7-13

Issue a SELECT elementId# FROM dual query to determine the local element
connection (4).

Command> SELECT elementId# FROM dual;
< 4 >
1 row found.

From this connection, issue a SELECT query supplying the TT_GridQueryExec(LOCAL)
optimizer hint. Expect approximately 333 rows to be returned (1000/3).

Command> SELECT /*+TT_GridQueryExec(LOCAL)*/ COUNT (*), elementId#
 FROM customers GROUP BY elementId#;
< 326, 4 >
1 row found.

Now issue a SELECT query supplying the TT_GridQueryExec(GLOBAL) optimizer hint.
Expect 2000 rows returned (k=2 * r=1000 = 2000). Validate the results by using the SUM
function to calculate the total rows returned for all 6 elements.

Command> SELECT /*+TT_GridQueryExec(GLOBAL)*/ COUNT (*), elementId#
 FROM customers GROUP BY elementId#
 ORDER BY elementId#;
< 338, 1 >
< 338, 2 >
< 326, 3 >
< 326, 4 >
< 336, 5 >
< 336, 6 >
6 rows found.

Command> SELECT SUM (338+338+326+326+336+336) FROM dual;
< 2000 >
1 row found.

Validate the total count using the TT_GridQueryExec(GLOBAL) hint.

Command> SELECT/*+TT_GridQueryExec(GLOBAL)*/ COUNT(*) FROM customers;
< 2000 >
1 row found.

Example 7–9 Use TT_GridQueryExec on a duplicate distribution scheme table

This example uses the ttIsql describe command on the account_status table to
illustrate the table is a duplicate distribution scheme. The example executes a SELECT
COUNT (*) query on the account_status table to return the number of rows in the
table (5). From the connection that is connected to element 2, the example uses the TT_
GridQueryExec (Local) and (Global) optimizer hints to return the number of rows.
The rows return differ based on whether Local or Global was specified in the TT_
GridQueryExec hint.

Command> describe account_status;
Table SAMPLEUSER.ACCOUNT_STATUS:
 Columns:
 *STATUS NUMBER (2) NOT NULL
 DESCRIPTION VARCHAR2 (100) INLINE NOT NULL
 DUPLICATE

1 table found.
(primary key columns are indicated with *)

Command> SELECT count (*) FROM account_status;

Using optimizer hints

7-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

< 5 >
1 row found.

Command> SELECT elementId# FROM dual;
< 2 >
1 row found.

Issue a SELECT query supplying the TT_GridQueryExec(LOCAL) optimizer hint. Expect
approximately 5 rows to be returned (r = 5).

Command> SELECT /*+TT_GridQueryExec(LOCAL)*/ COUNT (*),elementId#
 FROM account_status GROUP BY elementId#;
< 5, 2 >
1 row found.

Now issue a SELECT query supplying the TT_GridQueryExec(GLOBAL) optimizer hint.
Expect 30 rows returned (e=3 *k=2 * r=5= 30).

Command> SELECT /*+TT_GridQueryExec(GLOBAL)*/ COUNT (*),elementId#
 FROM account_status GROUP BY elementId#
 ORDER BY elementId#;
< 5, 1 >
< 5, 2 >
< 5, 3 >
< 5, 4 >
< 5, 5 >
< 5, 6 >
6 rows found.

Validate the total count using the TT_GridQueryExec(GLOBAL) hint.

Command> SELECT /*+TT_GridQueryExec(GLOBAL)*/ COUNT (*) FROM account_status;
< 30 >
1 row found.

Example 7–10 Use TT_GridQueryExec on a reference distribution scheme table

This example uses the ttIsql describe command on the accounts table to illustrate
the table is distributed by reference. The example executes a SELECT COUNT (*) query
on the accounts table to return the number of rows in the table (1010). From the
connection that is connected to element 1, the example uses the TT_GridQueryExec
(Local) and (Global) optimizer hint to return the number of rows. The rows returned
differ based on whether Local or Global was specified in the TT_GridQueryExec hint.

Command> describe accounts;
Table SAMPLEUSER.ACCOUNTS:
 Columns:
 *ACCOUNT_ID NUMBER (10) NOT NULL
 PHONE VARCHAR2 (15) INLINE NOT NULL
 ACCOUNT_TYPE CHAR (1) NOT NULL
 STATUS NUMBER (2) NOT NULL
 CURRENT_BALANCE NUMBER (10,2) NOT NULL
 PREV_BALANCE NUMBER (10,2) NOT NULL
 DATE_CREATED DATE NOT NULL
 CUST_ID NUMBER (10) NOT NULL
 DISTRIBUTE BY REFERENCE (FK_CUSTOMER)
1 table found.
(primary key columns are indicated with *)

Command> SELECT COUNT (*) FROM accounts;
< 1010 >

Using optimizer hints

Using SQL in TimesTen Scaleout 7-15

1 row found.

Command> SELECT elementId# FROM dual;
< 1 >
1 row found.

Issue a SELECT query supplying the TT_GridQueryExec(LOCAL) optimizer hint. Expect
approximately 336 rows to be returned (1010/3).

Command> SELECT /*+TT_GridQueryExec(LOCAL)*/ COUNT (*), elementId#
 FROM accounts GROUP BY elementId#;
< 339, 1>
1 row found.

Now issue a SELECT query supplying the TT_GridQueryExec(GLOBAL) optimizer hint.
Expect 2020 rows returned (k=2 * r=1010 = 2020). Validate the results by using the SUM
function to calculate the total rows returned for all 6 elements.

Command> SELECT /*+TT_GridQueryExec(GLOBAL)*/ COUNT (*), elementId#
 FROM accounts GROUP BY elementId#
 ORDER BY elementId#;
< 339, 1 >
< 339, 2 >
< 332, 3 >
< 332, 4 >
< 339, 5 >
< 339, 6 >
6 rows found.

Command> SELECT SUM (339+339+332+332+339+339) FROM dual;
< 2020 >
1 row found.

Validate the total count using the TT_GridQueryExec(GLOBAL) hint.

Command> SELECT/*+TT_GridQueryExec(GLOBAL)*/ COUNT(*) FROM accounts;
< 2020 >
1 row found.

TT_PartialResult
The TT_PartialResult optimizer hint enables you to specify whether the query
should return partial results or error if data is not available.

Use TT_PartialResult(1) to direct the query to return partial results if all elements in
a replica set are not available.

Use TT_PartialResult(0) to direct the query to return an error if the required data is
not available in the case where all elements in a replica set are not available. If at least
one element from each replica set is available or the data required by the query is
available, the optimizer returns the query result correctly without error.

The default is TT_PartialResult(0).

See "TT_PartialResult optimizer hint" in the Oracle TimesTen In-Memory Database SQL
Reference for information on the syntax and semantics for this hint.

Example 7–11 Examine results using TT_PartialResult

In this example, select the elementId#, replicaSetId#, and dataspaceId#
pseudocolumns to locate the row of data involved in the query. Force elements 3 and 4
to be unavailable. Set TT_PartialResult to 0 to return an error if the replica set is

Using optimizer hints

7-16 Oracle TimesTen In-Memory Database Scaleout User's Guide

unavailable. Then, set TT_PartialResult to 1 to return partial results from the
elements that are available.

Command> SELECT elementId#,replicasetId#,dataspaceId#, last_name,first_name
 FROM customers WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 4, 2, 2, Whitaker, Ariel >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 4, 2, 2, White, Dona >
< 4, 2, 2, White, Ellyn >
< 4, 2, 2, White, Nora >
< 4, 2, 2, White, Phylis >
8 rows found.

Command> SELECT /*+TT_PartialResult(0)*/ elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name like ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 4, 2, 2, Whitaker, Ariel >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 4, 2, 2, White, Dona >
< 4, 2, 2, White, Ellyn >
< 4, 2, 2, White, Nora >
< 4, 2, 2, White, Phylis >
8 rows found.

Command> SELECT /*+TT_PartialResult(1)*/ elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 4, 2, 2, Whitaker, Ariel >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 4, 2, 2, White, Dona >
< 4, 2, 2, White, Ellyn >
< 4, 2, 2, White, Nora >
< 4, 2, 2, White, Phylis >
8 rows found.

Element 4 is no longer available. Expect same results. Element 3 is available.

Command> SELECT /*+TT_PartialResult(1)*/ elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 3, 2, 1, Whitaker, Ariel >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 3, 2, 1, White, Dona >
< 3, 2, 1, White, Ellyn >
< 3, 2, 1, White, Nora >
< 3, 2, 1, White, Phylis >
8 rows found.

Command> SELECT /*+TT_PartialResult(0)*/ elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 3, 2, 1, Whitaker, Ariel >

Understanding system views

Using SQL in TimesTen Scaleout 7-17

< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 3, 2, 1, White, Dona >
< 3, 2, 1, White, Ellyn >
< 3, 2, 1, White, Nora >
< 3, 2, 1, White, Phylis >
8 rows found.

Now element 3 becomes unavailable. Replica set 2 is unavailable. Expect TT_
PartialResult set to 1 to return partial results. Expect TT_PartialResult set to 0 to
return an error.

Command> SELECT /*+TT_PartialResult(1)*/ elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
3 rows found.

Command> SELECT /*+TT_PartialResult(0)*/ elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
 3723: Replica set 2 down
The command failed.

Understanding ROWID in data distribution
TimesTen Scaleout requires a unique id for row distribution. It uses ROWID to ensure
uniqueness across all elements.

For tables with a duplicate distribution scheme where K-safety is set to 1 and for all
tables (no matter what the distribution scheme is) where K-safety is set to 2, the
physical location of each copy of a row is different, so each copy of the row has
different ROWID values. In this case, when using ROWID based access, TimesTen Scaleout
returns the value of the ROWID in the first data space. If the row in the first data space is
not available, TimesTen Scaleout returns the ROWID in the next (second) data space.

Since ROWID is the identifier of a specific copy of a row, if that copy is not available, you
cannot access the row by ROWID. In this case, you should access the row by primary
key.

See "ROWID pseudocolumn" in the Oracle TimesTen In-Memory Database SQL Reference
for more information.

Understanding system views
There are several local (V$) global (GV$) system views you can query to retrieve
metadata information about your database.

■ The V$ views contain data for the element to which your application is connected.

■ The GV$ views contain the contents of the V$ view for every element of the
database.

Note: Applications should not store ROWID values in the database
and try to use these values later. Applications can fetch the ROWID in a
transaction and then use the ROWID later in the same transaction.

Understanding system views

7-18 Oracle TimesTen In-Memory Database Scaleout User's Guide

In addition, there are several views that you can query that are based on TimesTen
built-in procedures. See "System Tables and Views" in the Oracle TimesTen In-Memory
Database System Tables and Views Reference for more information.

8

Maintaining and Upgrading a Grid 8-1

8Maintaining and Upgrading a Grid

This chapter discusses how to maintain and modify a grid in TimesTen Scaleout.

■ Maintaining the model of a grid

■ Modifying a grid

■ Redistributing data in a database

■ Stopping a grid

■ Restarting a grid

■ Upgrading a grid

■ Destroying a grid

Maintaining the model of a grid
The model is a comprehensive list of the objects that give shape to a grid. Depending
of the version of the model, the model may either describe a previous, present, or
desired structure of a grid.

The ttGridAdmin utility has several commands that enable you to review any stored
version of the model:

■ Compare different versions of the model

■ Export a version of the model

■ Import a model as the latest version of the model

■ List the available versions of the model

For more information on the different versions of the model or model operations, see
"Model versioning" on page 4-18 in this document or "Model operations" in the Oracle
TimesTen In-Memory Database Reference, respectively.

Note:

■ The following sections consider the grid and database generated
by the examples found in "Configure your grid" on page 4-1 and
"Creating a database" on page 5-1 as the grid and database
configuration on which the commands are run.

■ All the tasks described in the next sections require that you run
the ttGridAdmin utility from the active management instance as
the instance administrator, unless stated otherwise.

Modifying a grid

8-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

Modifying a grid
TimesTen Scaleout defines several different types of objects in the model to give shape
to a grid:

■ Data space groups

■ Hosts

■ Installations

■ Instances

■ Physical groups

Additionally, there are two types of model objects that describe the databases that the
grid manages and that, in conjunction, define the names by which you connect to these
databases. These types of objects are:

■ Database definitions

■ Connectables

You can create, modify, or delete objects in the model. Consider that changes you make
to the model only take effect after you apply them to the current version of the model.

The following sections describe how to modify or delete the objects that give shape to
a grid:

■ Modifying objects in a grid

■ Deleting objects from a grid

■ Reconfiguring membership servers

Modifying objects in a grid
Of the objects in the model that give shape to a grid, only hosts and instances can be
modified. Physical groups or installations can only be deleted. These sections describe
how to modify the attributes of the hosts and instances in a grid:

■ Modify a host

■ Modify an instance

Note: See "Central configuration of the grid" on page 1-16 for a
complete list of the types of model objects and their descriptions.

Note:

■ See "Configure your grid" on page 4-1 for details on how to create
the objects that give shape to a grid.

■ See "Creating a database" on page 5-1, "Modifying the connection
attributes of a database" on page 5-30, or "Destroying a database"
on page 5-33 for details on how to create, modify, or delete the
objects that define a database, respectively.

■ See "Applying the changes made to the model" on page 4-18 for
details on the versions of the model and applying changes to the
current version of the model.

Modifying a grid

Maintaining and Upgrading a Grid 8-3

Modify a host
You can modify certain attributes of a host with ttGridAdmin hostModify command.
The name and communication parameters (internal or external DNS names or IP
addresses) of a host cannot be modified. Once you assign a host to a data space group
and apply that assignment to the current version of the model, you cannot change it.
You can modify the assignments to physical groups at any time. However, once a host
is assigned to a data space group, its physical group assignments are no longer
relevant.

See "Assigning hosts to physical groups" on page 4-22 for an example where several
hosts are modified.

For more information on the ttGridAdmin hostModify command, see "Modify a host
(hostModify)" in the Oracle TimesTen In-Memory Database Reference.

Modify an instance
You can modify the installation associated with an instance with ttGridAdmin
instanceModify command. Also, this command enables you to modify the TCP/IP
port number of the replication agent of a management instance, but only if there is not
a second management instance available. In other words, you can only modify the
TCP/IP port number of the replication agent of a management instance if the port is
not in use. See "Upgrade a grid to a patch-compatible release" on page 8-19 for an
example where several instances are modified.

For more information on the ttGridAdmin instanceModify command, see "Modify an
instance (instanceModify)" in the Oracle TimesTen In-Memory Database Reference.

Deleting objects from a grid
This section describes how to delete objects from a grid:

■ Delete an instance

■ Delete an installation

■ Delete a host

■ Delete a physical group

Delete an instance
Depending on the type of instance you want to delete, follow either of the next
procedures:

■ Delete a data instance

■ Delete a management instance

Delete a data instance Before you can delete a data instance from a grid, you need to
remove the element of the data instance from the distribution map of every database,
as shown next:

1. Remove the element of the data instance from the distribution map of every
database as shown in "Removing elements from the distribution map" on
page 8-12.

2. Delete the data instance from the latest version of the model.

% ttGridAdmin instanceDelete host7.instance1
Instance instance1 on Host host7 deleted from Model

Modifying a grid

8-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

3. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply
...
Identifying any deleted objects.......................................OK
Stopping deleted instances..OK
Deleting instances..OK
...
ttGridAdmin modelApply complete

For more information on the ttGridAdmin instanceDelete command, see "Delete an
instance (instanceDelete)" in the Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

Delete a management instance Only the standby management instance can be deleted
from a grid. If you intend to delete the active management instance in a grid with two
management instances, first switch the standby management instance to active with
the ttGridAdmin mgmtActiveSwitch command, then proceed.

If you intend to delete the active management instance in a grid with only one
management instance, consider destroying the grid in a graceful manner. See
"Destroying a grid" on page 8-26 for details on how to gracefully destroy a grid.

To delete the standby management instance from a grid, perform these tasks:

1. Confirm that the instance you want to delete is the standby management instance.

% ttGridAdmin mgmtStatus
Host Instance Reachable RepRole(Self) Role(Active) Role(Self) Seq RepAgent
RepActive Message
----- --------- --------- ------------- ------------ ---------- --- --------
--------- -------
host1 instance1 Yes Active Unknown Active 338 Up
Yes
host2 instance1 Yes Standby Unknown Standby 338 Up No

2. Delete the standby management instance from the latest version of the model.

% ttGridAdmin instanceDelete host2.instance1
Instance instance1 on Host host2 deleted from Model

3. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply
...
Unconfiguring standby management instance.............................OK
Identifying any deleted objects.......................................OK
Stopping deleted instances..OK
Deleting instances..OK
...
ttGridAdmin modelApply complete

Important: For availability, we highly recommend that you always
have an active and a standby management instance in your grid. Only
delete the standby management instance if you intend to replace it
with another one as soon as possible.

Modifying a grid

Maintaining and Upgrading a Grid 8-5

For more information on the ttGridAdmin mgmtActiveSwitch command, see "Starting,
stopping and switching management instances" on page 11-35 in this document and
"Switch the active management instance (mgmtActiveSwitch)" in the Oracle TimesTen
In-Memory Database Reference.

For more information on the ttGridAdmin instanceDelete command, see "Delete an
instance (instanceDelete)" in the Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

Delete an installation
You may want to delete an installation if you just performed an upgrade operation to a
new release of TimesTen Scaleout. Deleting an installation does not remove the
installation files, since the files may be still in use if the location of the files is shared by
other installations in this or any other grid. See "Upgrade a grid to a patch-compatible
release" on page 8-19 for more information on upgrade and cleanup operations, which
includes deleting the previous release installation model object and files.

However, if you are deleting an installation because you are removing its associated
host from the topology of the grid, see "Delete a host" on page 8-5 for details on how to
delete a host and its associated objects, which includes the installation model object
and files.

Delete a host
Before you can delete a host from a grid, you must ensure that other model objects
associated with the host are not in use, as shown next:

1. Remove the element of every data instance associated with the host from the
distribution map of every database, as shown in "Removing elements from the
distribution map" on page 8-12.

2. Delete every instance and installation associated with the host, and then, delete
the host from the latest version of the model. You can either delete each object
separately, as shown in Example 8–1, or use the -cascade of option of the
ttGridAdmin hostDelete command to delete the host and every instance and
installation associated with it, as shown in Example 8–2.

Example 8–1 Delete a host and all its associated objects separately.

% ttGridAdmin instanceDelete host7.instance1
Instance instance1 on Host host7 deleted from Model

% ttGridAdmin installationDelete host7.installation1
Installation installation1 on Host host7 deleted from Model

% ttGridAdmin hostDelete host7
Host host7 deleted from Model

Example 8–2 Delete a host and all its associated objects

% ttGridAdmin hostDelete host8 -cascade
Instance instance1 on Host host8 deleted from Model
Installation installation1 on Host host8 deleted from Model
Host host8 deleted from Model

3. Apply the changes made to the latest version of the model.

Modifying a grid

8-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

% ttGridAdmin modelApply
...
Identifying any deleted objects.......................................OK
Stopping deleted instances..OK
Deleting instances..OK
Deleting installations from model.....................................OK
Deleting any hosts that are no longer in use..........................OK
...
ttGridAdmin modelApply complete

4. If the installation files associated with the installation model objects you just
deleted are not in use by any other installation object in this or any other grid, then
delete the files. Ensure that you change the permissions of the directory so that
you can delete all files.

% cd /grid
% chmod -R 750 tt18.1.4.1.0/
% rm -rf tt18.1.4.1.0/

For more information on the ttGridAdmin instanceDelete, ttGridAdmin
installationDelete, or ttGridAdmin hostDelete command, see "Delete an instance
(instanceDelete)", "Delete an installation (installationDelete)", or "Delete a host
(hostDelete)", respectively, in the Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

Delete a physical group
Before you can delete a physical group from a grid, you must ensure that it is not in
use, as shown next:

1. Remove the physical group from every host associated with it.

% ttGridAdmin hostModify host3 -removePhysicalGroup rack1
Host host3 modified in Model

2. Delete the physical group form the latest version of the model.

% ttGridAdmin physicalDelete rack1
PhyscialGroup RACK1 deleted.

3. Apply the changes made to latest version of the model.

% ttGridAdmin modelApply

For more information on the ttGridAdmin hostModify or ttGridAdmin
physicalDelete command, see "Modify a host (hostModify)" or "Delete a physical
group (physicalDelete)", respectively, in the Oracle TimesTen In-Memory Database
Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

Reconfiguring membership servers
These sections describe how to view and modify your current membership
configuration:

■ View the current membership configuration

Modifying a grid

Maintaining and Upgrading a Grid 8-7

■ Add membership servers

■ Enable the new membership configuration

For more information on membership servers, see the Apache ZooKeeper
documentation at http://zookeeper.apache.org.

View the current membership configuration
To view your current membership configuration, run the ttGridAdmin
membershipConfigExport command. This lists the membership servers and the ports
used.

% ttGridAdmin membershipConfigExport
Servers ms_host1!2181,ms_host2!2181,ms_host3!2181

For more information on the ttGridAdmin membershipConfigExport command, see
"Export the membership configuration file (membershipConfigExport)" in the Oracle
TimesTen In-Memory Database Reference.

Add membership servers
You can add a new server to the list of membership servers to reflect your desired
membership configuration. To add the ms_host4 server and its client port 2181:

1. Create a new server configuration file, for example, membership2.conf. For more
information on the ZooKeeper client configuration file, see "Configuring Apache
ZooKeeper as the membership service" on page 3-7.

2. Append the new membership server and port to the current list of membership
servers.

Servers ms_host1!2181,ms_host2!2181,ms_host3!2181,ms_host4!2181

Enable the new membership configuration
To enable your new membership configuration, perform these tasks:

1. Replace the ZooKeeper client configuration file in the latest version of the model
with the newly created file.

% ttGridAdmin membershipConfigImport membership2.conf
Membership configuration file membership2.conf imported

2. Run the ttGridAdmin modelApply command to apply the changes to the latest
version of the model.

% ttGridAdmin modelApply
Creating new model version..OK
Exporting current model (version 3)...................................OK
Identifying any changed management instances..........................OK
Identifying any deleted objects.......................................OK
Verifying installations...OK
Verifying instances...OK
Updating grid state...OK
Pushing new configuration files to each instance......................OK
Making model version 3 current, version 4 writable....................OK
ttGridAdmin modelApply complete

3. Stop and restart every instance in the grid. For more information on stopping and
restarting a grid, see "Stopping a grid" on page 8-17 and "Restarting a grid" on
page 8-17 respectively.

Redistributing data in a database

8-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

For more information on the ttGridAdmin membershipConfigImport command, see
"Import the membership configuration file (membershipConfigImport)" in the Oracle
TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

Redistributing data in a database
You can increase or decrease the number of elements in which your data is distributed.
However, this requires more than just adding or removing data instances from the
current version of the model; you must also add or remove the elements of the data
instances from the distribution map of the database.

The different tasks for maintaining the distribution map of a database are:

■ Add a replica set to the distribution map. When you add a replica set to the
distribution map (and the distribution map is applied), TimesTen Scaleout
re-distributes a portion of the data in the elements of each replica set to the
elements of the newly added replica set.

■ Remove a replica set without a replacement from the distribution map. If the removed
replica set is not replaced with another replica set, when the distribution map is
applied, the data stored in the elements of the removed replica set is evenly
re-redistributed into the elements of the remaining replica sets.

■ Remove a data instance and replace it with another data instance that is not already
defined in the distribution map. In this case, when the distribution map is applied,
the data is copied from the element of the removed data instance to the element of
the new data instance; the data stored in the elements of the other replica sets is
not re-distributed.

■ Evict a replica set from the distribution map. If all elements in a replica set have
unrecoverable failures, evict the replica set from the distribution map. Evicting a
replica set results in data loss. When you evict a replica set from the distribution
map, you can either:

– Evict the replica set without a replacement. If the evicted replica set is not replaced
with another replica set, when the distribution map is applied, the data in the
evicted replica set is lost and the data stored in the elements of the other
replica sets is not re-distributed.

– Evict and replace the replica set with another replica set that is not already defined in
the distribution map. When the distribution map is applied, since the data in the
elements of the evicted replica set is lost, the element of the new replica set is
empty and the data stored in the elements of the other replica sets is not
re-distributed.

See "Recovering when the replica set has a permanently failed element" on
page 11-20 for information on how to evict failed replica sets from the
distribution map.

The ttGridAdmin dbDistribute command can add and remove elements and evict
replica sets from the distribution map of a database, then redistribute existing data
across the resulting replica sets. Your existing data is redistributed once you apply the
change to distribution map with the ttGridAdmin dbDistribute -apply command.

Redistributing data in a database

Maintaining and Upgrading a Grid 8-9

■ Adding elements to the distribution map

■ Removing elements from the distribution map

Figure 8–1 shows the database schema and topology of the elements of the database1
database that the examples in the following sections use.

Figure 8–1 Data spaces and replica sets

Adding elements to the distribution map
To increase the number of elements in which your data is distributed, you need to first
increase the number of data instances associated with the grid. Also, you must ensure
that you have the same number of data instances to each data space group. For
example, in a grid with k set to 2, you must add an equal number of data instances to
data space group 1 and data space group 2.

If you are adding elements to the distribution map of the database with the intention
of increasing the amount of memory available in the permanent memory region,
consider increasing the size of the permanent memory region instead. You can
accomplish this by modifying the value of the PermSize attribute.

Note: Data distribution cannot execute concurrently with DDL or
DML statements. As a result, the ttGridAdmin dbDistribute -apply
command terminates with an error if you are currently executing any
DDL or DML statements that insert, update, or delete data. Any DML
statements that insert, update or delete while data distribution is in
process are blocked until data distribution completes. However, you
can execute any read-only statements while data distribution is in
process.

data space 1

host3.instance1

element

terry.customers

distribute by hash

terry.accounts

distribute by reference

terry.account_type

distribute by duplicate

host5.instance1

element

terry.customers

distribute by hash

terry.accounts

distribute by reference

terry.account_type

distribute by duplicate

host7.instance1

element

terry.customers

distribute by hash

terry.accounts

distribute by reference

terry.account_type

distribute by duplicate

replica set 1 replica set 2 replica set 3

data space 2

host4.instance1

element

terry.customers

distribute by hash

terry.accounts

distribute by reference

terry.account_type

distribute by duplicate

host6.instance1

element

terry.customers

distribute by hash

terry.accounts

distribute by reference

terry.account_type

distribute by duplicate

host8.instance1

element

terry.customers

distribute by hash

terry.accounts

distribute by reference

terry.account_type

distribute by duplicate

Redistributing data in a database

8-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

Add a data instance for each data space group available to the current version of the
model.

% ttGridAdmin hostCreate -internalAddress int-host9.example.com -externalAddress
 ext-host9.example.com -like host3 -cascade -dataSpaceGroup 1
Host host9 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host10.example.com -externalAddress
 ext-host10.example.com -like host3 -cascade -dataSpaceGroup 2
Host host10 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin modelApply
...
Verifying installations...OK
Creating new installations..OK
Verifying instances...OK
Creating new instances..OK
...
Checking ssh connectivity of new instances............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete

Figure 8–2 shows an example of the hash distribution of the customers table in the
database1 database. Notice that the element of the host9.instance1 data instance is
empty. Even though the host9 host is assigned to data space group 1, element 7 is not
considered part of data space 1 until the host9.instance1 data instance is added to
the distribution map of the database1 database.

Note:

■ Every host with a data instance must have enough physical
memory available to support the value of the PermSize attribute.
See "Determining the value of the PermSize attribute" on
page 5-19 and "Modify the connection attributes in a database
definition" on page 5-30 for more information on how to calculate
and modify the value of the PermSize attribute.

■ Consider that even when rows are re-distributed to the elements
of the new data instances, the memory previously used by these
rows in their original elements is still in use by a table page and
can only be used by new rows of the same table.

Note: See "Adding data instances" on page 4-11 and "Applying the
changes made to the model" on page 4-18 for more information on
how to add data instances to a grid.

Redistributing data in a database

Maintaining and Upgrading a Grid 8-11

Figure 8–2 Data distribution of a table

Add the element of the host9.instance1 data instance to the distribution map of the
database1 database.

% ttGridAdmin dbDistribute database1 -add host9.instance1
Element host9.instance1 has been marked to be added
Distribution map change enqueued

To ensure that the distribution map of the database remains balanced, add the element
of the data instance that will hold the replica of the element of the host9.instance1
data instance, host10.instance1, to the distribution map of the database1 database.

% ttGridAdmin dbDistribute database1 -add host10.instance1 -apply
Element host10.instance1 has been marked to be added
Distribution map updated

Figure 8–3 shows how some of the data stored in the elements inside data space 1 in
Figure 8–2 is re-distributed into the element of the new data instance,
host9.instance1.

Note: Ensure that you only use the -apply option when you are
done adding all new elements to the distribution map of the database
to avoid TimesTen Scaleout returning an error.

data space 1

host3.instance1

element

terry.customers

1 Danette Acosta ...

5 Christian Aguilar ...

7 Rita Alexander ...

cust_id* first_name last_name ...

...

host5.instance1

element

terry.customers

6 Lorenzo Alexander ...

8 Karri Allen ...

9 Wyatt Allen ...

cust_id* first_name last_name ...

...

host7.instance1

element

terry.customers

2 Fernando Acosta ...

3 Criselda Adams ...

4 Elsie Aguilar ...

cust_id* first_name last_name ...

...

host9.instance1

element
replica set 1 replica set 2 replica set 3 no assignment

Redistributing data in a database

8-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

Figure 8–3 Data distribution after adding an element (and its replica)

You can verify the progress of the redistribution operation from any element of the
database with the ttDistributionProgress built-in procedure.

Command> call ttDistributionProgress();
< 2018-12-04 14:49:48.872975, 1, 2, 1, Data Checkpoint, <NULL>, <NULL>, <NULL>,
 <NULL>, <NULL>, 1910, 0, 176, 1910, 8, 8 >
1 row found.

For more information on the ttGridAdmin hostCreate or ttGridAdmin dbDistribute
command, see "Create a host (hostCreate)" or "Set or modify the distribution scheme of
a database (dbDistribute)", respectively, in the Oracle TimesTen In-Memory Database
Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

For more information on the ttDistributionProgress built-in procedure, see
"ttDistributionProgress" in the Oracle TimesTen In-Memory Database Reference.

Removing elements from the distribution map
You can remove and replace elements from the distribution map with the following in
mind:

■ Remove and replace a single element:

– If you have a grid where k is set to 1, you can remove and replace the element
only if both the element and data instance are operational.

– If you have a grid where k is set to 2, you can remove and replace a single
element within a replica set by removing the element and replacing it with
another element as long as the other element in the replica set is operational.

See "Replace an element with another element" on page 8-13 and "Remove a
replica set" on page 8-15 for more information on how to use the ttGridAdmin
dbDistribute command with the -remove option.

data space 1
replica set 1 replica set 2 replica set 3 replica set 4

host7.instance1

element

terry.customers

14 Patricia Alvarez ...

15 Christen Anderson ...

18 Janis Andrews ...

cust_id* first_name last_name ...

...

host9.instance1

element

terry.customers

1 Danette Acosta ...

6 Lorenzo Alexander ...

15 Christen Anderson ...

cust_id* first_name last_name ...

...

host3.instance1

element

terry.customers

1 Danette Acosta ...

5 Christian Aguilar ...

7 Rita Alexander ...

cust_id* first_name last_name ...

...

host5.instance1

element

terry.customers

6 Lorenzo Alexander ...

8 Karri Allen ...

9 Wyatt Allen ...

cust_id* first_name last_name ...

...

Redistributing data in a database

Maintaining and Upgrading a Grid 8-13

■ Evict an entire replica set:

– If all the elements of a replica set have failed, then the data stored in the
replica set is unavailable. "Recovering when the replica set has a permanently
failed element" on page 11-20 describes what happens when a replica set fails,
how TimesTen Scaleout recovers the replica set, or how you can evict the
entire replica set if the elements in the replica set cannot be automatically
recovered.

The ttGridAdmin dbDistribute command with the -remove option removes an
element from the distribution map of a database. When you remove a an element from
the distribution map of a database, you have these options:

■ Replace an element with another element

■ Remove a replica set

Replace an element with another element
If the removed element is replaced with the element of a new data instance and you
apply this change to the distribution map of the database, the data in the replica set is
copied to the element of the new data instance. The data stored in the other replica sets
is not re-distributed. Consider doing this when you want to replace a host with
another one or a host must be shut down, but you do not want to modify the way your
data is being distributed.

Add a data instance to the current version of the model.

% ttGridAdmin hostCreate -internalAddress int-host9.example.com -externalAddress
 ext-host9.example.com -like host3 -cascade -dataSpaceGroup 1
Host host9 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin modelApply
...
Verifying installations...OK
Creating new installations..OK
Verifying instances...OK
Creating new instances..OK
...
Checking ssh connectivity of new instances............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete

Figure 8–4 shows an example of the hash distribution of the customers table in the
database1 database. Notice that the element of the host9.instance1 data instance is
empty. Even though the host9 host is assigned to data space group 1, its element is not
part of a replica set until it is added to the distribution map of the database1 database.

Note: "Remove and replace a failed element in a replica set" on
page 11-15 has more information on how to resolve failure issues of a
single element within a replica set.

Note: See "Adding data instances" on page 4-11 and "Applying the
changes made to the model" on page 4-18 for more information on
how to add data instances to a grid.

Redistributing data in a database

8-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

Figure 8–4 Data distribution of a table

Remove the element of the host7.instance1 data instance and replace it with the
element of the host9.instance1 data instance in the distribution map of the
database1 database.

% ttGridAdmin dbDistribute database1 -remove host7.instance1
 -replaceWith host9.instance1 -apply
Element host7.instance1 has been marked to be removed and replaced by element
host9.instance1
Distribution map updated

Figure 8–5 shows how the data previously stored in the element of the
host7.instance1 data instance is copied to its replacement.

Figure 8–5 Data distribution after replacing an element

data space 1

host3.instance1

element

terry.customers

1 Danette Acosta ...

5 Christian Aguilar ...

7 Rita Alexander ...

cust_id* first_name last_name ...

...

host5.instance1

element

terry.customers

6 Lorenzo Alexander ...

8 Karri Allen ...

9 Wyatt Allen ...

cust_id* first_name last_name ...

...

host7.instance1

element

terry.customers

2 Fernando Acosta ...

3 Criselda Adams ...

4 Elsie Aguilar ...

cust_id* first_name last_name ...

...

host9.instance1

element
replica set 1 replica set 2 replica set 3 no assignment

data space 1

host3.instance1

element

terry.customers

1 Danette Acosta ...

5 Christian Aguilar ...

7 Rita Alexander ...

cust_id* first_name last_name ...

...

host5.instance1

element

terry.customers

6 Lorenzo Alexander ...

8 Karri Allen ...

9 Wyatt Allen ...

cust_id* first_name last_name ...

...

host9.instance1

element

terry.customers

2 Fernando Acosta ...

3 Criselda Adams ...

4 Elsie Aguilar ...

cust_id* first_name last_name ...

...

host7.instance1

element
replica set 1 replica set 2 replica set 3 no assignment

Redistributing data in a database

Maintaining and Upgrading a Grid 8-15

To destroy the checkpoints and transaction logs of the removed element, use the
ttGridAdmin dbDestroy -instance command.

% ttGridAdmin dbDestroy database1 -instance host7.instance1
Database database1 instance host7 destroy started

For more information on the ttGridAdmin dbDistribute or ttGridAdmin dbDestroy
command, see "Set or modify the distribution scheme of a database (dbDistribute)" or
"Destroy a database (dbDestroy)", respectively, in the Oracle TimesTen In-Memory
Database Reference.

Remove a replica set
If you remove the element of a data instance without a replacement from the
distribution map of a database, you must also remove its replica. In other words, you
must remove the replica set in its entirety. When you remove a replica set, TimesTen
Scaleout re-distributes the data stored in the replica set to the remaining replica sets.
Consider doing this when you want to scale down the number of hosts in which your
data is stored.

Figure 8–6 shows an example of the hash distribution of the customers table in the
database1 database.

Figure 8–6 Data distribution of a table

Remove the element of the host7.instance1 data instance from the distribution map
of the database1 database.

% ttGridAdmin dbDistribute database1 -remove host7.instance1
Element host7.instance1 has been marked to be removed

Important: Consider that the database size is defined by the value of
the PermSize attribute times the number of replica sets available.
Removing one replica set from the distribution map of the database
will remove as many MB from the database size as MB set in the
PermSize attribute. See "Determining the value of the PermSize
attribute" on page 5-19 for more information on how to determine the
database size of a database.

Before removing a replica set, ensure that the remaining replica sets
will have enough space to store a portion of the data stored in the
replica set you are about to remove. If necessary, increase the database
size by increasing the value of the PermSize attribute. See "Modify the
connection attributes in a database definition" on page 5-30 for more
information on how to increase the value of the PermSize attribute.

data space 1

host3.instance1

element

terry.customers

1 Danette Acosta ...

5 Christian Aguilar ...

7 Rita Alexander ...

cust_id* first_name last_name ...

...

host5.instance1

element

terry.customers

6 Lorenzo Alexander ...

8 Karri Allen ...

9 Wyatt Allen ...

cust_id* first_name last_name ...

...

host7.instance1

element

terry.customers

2 Fernando Acosta ...

3 Criselda Adams ...

4 Elsie Aguilar ...

cust_id* first_name last_name ...

...

replica set 1 replica set 2 replica set 3

Redistributing data in a database

8-16 Oracle TimesTen In-Memory Database Scaleout User's Guide

Distribution map change enqueued

To ensure that the distribution map of the database remains balanced, remove the
element of the data instance holding the replica of the element of the host7.instance1
data instance from the distribution map of the database1 database.

% ttGridAdmin dbDistribute database1 -remove host8.instance1 -apply
Element host8.instance1 has been marked to be removed
Distribution map updated

Figure 8–7 shows how removing a replica set from the distribution map of a database
removes its elements from their previously assigned data spaces. The figure also
shows how the data previously stored in the removed replica set is re-distributed to
the replica sets still within each data space.

Figure 8–7 Data distribution after removing a replica set

To destroy the checkpoints and transaction logs of the removed replica set, use the
ttGridAdmin dbDestroy -instance command.

% ttGridAdmin dbDestroy database1 -instance host7.instance1
Database database1 instance host7 destroy started
% ttGridAdmin dbDestroy database1 -instance host8.instance1
Database database1 instance host8 destroy started

For more information on the ttGridAdmin dbDistribute or ttGridAdmin dbDestroy
command, see "Set or modify the distribution scheme of a database (dbDistribute)" or
"Destroy a database (dbDestroy)", respectively, in the Oracle TimesTen In-Memory
Database Reference.

Note:

■ To find out which data instance holds the replica of the element of
another data instance, use the ttGridAdmin dbStatus command
while specifying the -replicaset option.

■ Ensure that you only use the -apply option when you are done
removing all the necessary data instances from the distribution
map of the database to avoid TimesTen Scaleout returning an
error.

data space 1

host3.instance1

element

terry.customers

1 Danette Acosta ...

3 Criselda Adams ...

5 Christian Aguilar ...

cust_id* first_name last_name ...

7 Rita Alexander ...

10 Delbert Allen ...

...

host5.instance1

element

terry.customers

2 Fernando Acosta ...

4 Elsie Aguilar ...

6 Lorenzo Alexander ...

cust_id* first_name last_name ...

8 Karri Allen ...

9 Wyatt Allen ...

...

host7.instance1

element

replica set 1 replica set 2 no assignment

Restarting a grid

Maintaining and Upgrading a Grid 8-17

Stopping a grid
Gracefully stopping a grid can only occur if the grid has no loaded databases. Once
you ensure that all databases are unloaded, you can proceed to stop the grid, as shown
next:

1. Unload all databases. See "Unloading a database from memory" on page 5-27 for
details.

2. Stop all data instances.

% ttGridAdmin instanceExec -type data ttDaemonAdmin -stop
Overall return code: 0
Commands executed on:
 host3.instance1 rc 0
 host4.instance1 rc 0
 host5.instance1 rc 0
 host6.instance1 rc 0
 host7.instance1 rc 0
 host8.instance1 rc 0
Return code from host3.instance1: 0
Output from host3.instance1:
TimesTen Daemon (PID: 4498, port: 6624) stopped.
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 4536, port: 6624) stopped.
Return code from host5.instance1: 0
Output from host5.instance1:
TimesTen Daemon (PID: 4492, port: 6624) stopped.
Return code from host6.instance1: 0
Output from host6.instance1:
TimesTen Daemon (PID: 4510, port: 6624) stopped.
Return code from host7.instance1: 0
Output from host7.instance1:
TimesTen Daemon (PID: 4539, port: 6624) stopped.
Return code from host8.instance1: 0
Output from host8.instance1:
TimesTen Daemon (PID: 4533, port: 6624) stopped.

3. If there is an standby management instance, stop it.

% ttGridAdmin mgmtStandbyStop
Standby management instance host2.instance1 stopped

4. Stop the active management instance.

% ttGridAdmin mgmtActiveStop
Active management instance stopped

For more information on the ttGridAdmin instanceExec command, see "Execute a
command or script on grid instances (instanceExec)" in the Oracle TimesTen In-Memory
Database Reference.

Restarting a grid
To restart a grid, you must first restart all instances before attempting to reload any
database, as shown next:

1. Follow the step that matches the configuration of your grid:

Upgrading a grid

8-18 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ If your grid has a single management instance configuration, start the
management instance.

% ttGridAdmin mgmtActiveStart
This management instance is now the active

■ If your grid has an active standby configuration, follow the instructions
described in "Bring back both management instances" on page 11-42 to
determine the best candidate for the active role and restart both the active and
standby management instances.

2. Start all data instances.

% ttGridAdmin instanceExec -type data ttDaemonAdmin -start
Overall return code: 0
Commands executed on:
 host3.instance1 rc 0
 host4.instance1 rc 0
 host5.instance1 rc 0
 host6.instance1 rc 0
 host7.instance1 rc 0
 host8.instance1 rc 0
Return code from host3.instance1: 0
Output from host3.instance1:
TimesTen Daemon (PID: 19072, port: 6624) startup OK.
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 19144, port: 6624) startup OK.
Return code from host5.instance1: 0
Output from host5.instance1:
TimesTen Daemon (PID: 19210, port: 6624) startup OK.
Return code from host6.instance1: 0
Output from host6.instance1:
TimesTen Daemon (PID: 19247, port: 6624) startup OK.
Return code from host7.instance1: 0
Output from host7.instance1:
TimesTen Daemon (PID: 19284, port: 6624) startup OK.
Return code from host8.instance1: 0
Output from host8.instance1:
TimesTen Daemon (PID: 19315, port: 6624) startup OK.

3. Reload all databases as shown in "Reloading a database into memory" on
page 5-30.

For more information on the ttGridAdmin mgmtActiveStart and ttGridAdmin
mgmtStandbyStart commands, see "Management instance operations" in the Oracle
TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin instanceExec command, see "Execute a
command or script on grid instances (instanceExec)" in the Oracle TimesTen In-Memory
Database Reference.

Upgrading a grid
This section discusses how to upgrade your grid to either a patch-compatible release
or a not patch-compatible release.

Upgrading a grid

Maintaining and Upgrading a Grid 8-19

■ Upgrade a grid to a patch-compatible release

■ Upgrade a grid to a not patch-compatible release

Upgrade a grid to a patch-compatible release
Upgrading a grid to a patch-compatible release consists of ensuring that every instance
uses for its operations the installation files provided by a newer patchset (or patch)
release of TimesTen, for example, upgrading the installation from a 18.1.x to a 18.1.y
release.

To upgrade a grid to a newer patch-compatible release, perform these tasks:

1. Create an installation from a new release on every host

2. Upgrade management instances

3. Upgrade data instances

4. Optional: Delete the installation of the previous release on every host

Create an installation from a new release on every host
You may use the ttGridAdmin installationList command to determine the hosts
that need to be upgraded and the location of the current installations, as shown in
Example 8–3.

Example 8–3 List of hosts and installations

The example uses the ttGridAdmin installationList command to display the hosts
and their associated installations of the grid1 grid.

% ttGridAdmin installationList
Host Install Location Comment
----- ------------- ---------------------------- -------
host1 installation1 /grid/tt18.1.4.1.0
host2 installation1 /grid/tt18.1.4.1.0
host3 installation1 /grid/tt18.1.4.1.0
host4 installation1 /grid/tt18.1.4.1.0
host5 installation1 /grid/tt18.1.4.1.0
host6 installation1 /grid/tt18.1.4.1.0
host7 installation1 /grid/tt18.1.4.1.0
host8 installation1 /grid/tt18.1.4.1.0

Create an installation from the new TimesTen release on every host defined in the
model.

% ttGridAdmin installationCreate host1.installation2 -location
 /grid -source host1:/mydir/timesten181420.server.linux8664.zip

Note: To check if your version of TimesTen is patch compatible with
the target TimesTen release for upgrade, see the README.html file in
the target TimesTen distribution.

Note: If the default name for installations, installation1, is already
in use, you need to provide a name for the new installation. The
example uses installation2 as the name for the new installation on
every host of the grid.

Upgrading a grid

8-20 Oracle TimesTen In-Memory Database Scaleout User's Guide

Installation installation2 on Host host1 created in Model

% ttGridAdmin installationCreate host2.installation2 -location
 /grid -source host1:/mydir/timesten181420.server.linux8664.zip
Installation installation2 on Host host2 created in Model

% ttGridAdmin installationCreate host3.installation2 -location
 /grid -source host1:/mydir/timesten181420.server.linux8664.zip
Installation installation2 on Host host3 created in Model

% ttGridAdmin installationCreate host4.installation2 -location
 /grid -source host1:/mydir/timesten181420.server.linux8664.zip
Installation installation2 on Host host4 created in Model

% ttGridAdmin installationCreate host5.installation2 -location
 /grid -source host1:/mydir/timesten181420.server.linux8664.zip
Installation installation2 on Host host5 created in Model

% ttGridAdmin installationCreate host6.installation2 -location
 /grid -source host1:/mydir/timesten181420.server.linux8664.zip
Installation installation2 on Host host6 created in Model

% ttGridAdmin installationCreate host7.installation2 -location
 /grid -source host1:/mydir/timesten181420.server.linux8664.zip
Installation installation2 on Host host7 created in Model

% ttGridAdmin installationCreate host8.installation2 -location
 /grid -source host1:/mydir/timesten181420.server.linux8664.zip
Installation installation2 on Host host8 created in Model

Apply the changes made to the latest version of the model. TimesTen copies the
installation files to the location specified for each host.

% ttGridAdmin modelApply

For more information on the ttGridAdmin installationList or ttGridAdmin
installationCreate command, see "List installations (installationList)" or "Create an
installation (installationCreate)", respectively, in the Oracle TimesTen In-Memory
Database Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

Upgrade management instances
How you upgrade your management instances depends on whether you have one or
two management instances configured in your grid. Follow the procedure that better
applies to your configuration:

■ Upgrading management instances in an active standby configuration

■ Upgrading a single management instance

Upgrading management instances in an active standby configuration When you have an
active standby configuration for your management instances, you can upgrade each
management instance separately without any interruption of service by ensuring that
an active management instance is always up.

1. Stop the standby management instance.

Upgrading a grid

Maintaining and Upgrading a Grid 8-21

% ttGridAdmin mgmtStandbyStop
Standby management instance host2.instance1 stopped

2. Modify the standby management instance to use the new installation.

% ttGridAdmin instanceModify host2.instance1 -installation installation2
Instance instance1 on Host host2 modified in Model

3. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply

4. Start the standby management instance by running the ttGridAdmin
mgmtStandbyStart command on the standby management instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

5. Verify that the standby management instance is operational and synchronized
with the active management instance with the ttGridAdmin mgmtStatus
command.

% ttGridAdmin mgmtStatus
Host Instance Reachable RepRole(Self) Role(Active) Role(Self) Seq RepAgent
 RepActive

host1 instance1 Yes Active Unknown Active 445 Up Yes
host2 instance1 Yes Standby Unknown Standby 445 Up No

6. On the standby management instance, switch the active and standby management
instances.

% ttGridAdmin mgmtActiveSwitch
This is now the active management instance

TimesTen Scaleout stops the active management instance and promotes the
standby management instance to active.

7. On the new active management instance, modify the installation of the old active
management instance.

% ttGridAdmin instanceModify host1.instance1 -installation installation2
Instance instance1 on Host host1 modified in Model

8. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply

9. On the old active management instance, start the instance as a standby
management instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

Note: Ensure that the sequence number matches in both instances to
ensure that both instances are communicating properly and
synchronized. If the sequence number does not match, run the
ttGridAdmin mgmtExamine command for instructions on how to
proceed. See "Examine management instances (mgmtExamine)" in the
Oracle TimesTen In-Memory Database Reference for more information on
the ttGridAdmin mgmtExamine command.

Upgrading a grid

8-22 Oracle TimesTen In-Memory Database Scaleout User's Guide

10. Verify that the standby management instance is operational and synchronized
with the active management instance.

% ttGridAdmin mgmtStatus
Host Instance Reachable RepRole(Self) Role(Active) Role(Self) Seq RepAgent
 RepActive

host1 instance1 Yes Standby Unknown Standby 451 Up No
host2 instance1 Yes Active Unknown Active 451 Up Yes

For more information on the ttGridAdmin mgmtStandbyStop, ttGridAdmin
mgmtStandbyStart, and ttGridAdmin mgmtStatus commands, see "Management
instance operations" in the Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin instanceModify command, see "Modify an
instance (instanceModify)" in the Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin mgmtActiveSwitch command, see "Starting,
stopping and switching management instances" on page 11-35 in this document and
"Switch the active management instance (mgmtActiveSwitch)" in the Oracle TimesTen
In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

Upgrading a single management instance In a single management instance configuration,
you need to restart the active management instance for the new installation to take
effect, as shown next:

1. Modify the active management instance to use the new installation.

% ttGridAdmin instanceModify host1.instance1 -installation installation2
Instance instance1 on Host host1 modified in Model

2. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply

3. Stop the active management instance.

% ttGridAdmin mgmtActiveStop
Active management instance stopped

4. Restart the active management instance.

% ttGridAdmin mgmtActiveStart
This management instance is now the active

For more information on the ttGridAdmin instanceModify command, see "Modify an
instance (instanceModify)" in the Oracle TimesTen In-Memory Database Reference.

Note: Ensure that the sequence number matches in both instances to
ensure that both instances are communicating properly and
synchronized. If the sequence number does not match, run the
ttGridAdmin mgmtExamine command for instructions on how to
proceed. See "Examine management instances (mgmtExamine)" in the
Oracle TimesTen In-Memory Database Reference for more information on
the ttGridAdmin mgmtExamine command.

Upgrading a grid

Maintaining and Upgrading a Grid 8-23

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin mgmtActiveStop and ttGridAdmin
mgmtActiveStart, see "Management instance operations" in the Oracle TimesTen
In-Memory Database Reference.

Upgrade data instances
Before you can restart a data instance so that the new installation takes effect, you need
to unload all databases:

1. Unload all databases as shown in "Unloading a database from memory" on
page 5-27.

2. Stop all data instances.

% ttGridAdmin instanceExec -type data ttDaemonAdmin -stop
Overall return code: 0
Commands executed on:
 host3.instance1 rc 0
 host4.instance1 rc 0
 host5.instance1 rc 0
 host6.instance1 rc 0
 host7.instance1 rc 0
 host8.instance1 rc 0
Return code from host3.instance1: 0
Output from host3.instance1:
TimesTen Daemon (PID: 4498, port: 6624) stopped.
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 4536, port: 6624) stopped.
Return code from host5.instance1: 0
Output from host5.instance1:
TimesTen Daemon (PID: 4492, port: 6624) stopped.
Return code from host6.instance1: 0
Output from host6.instance1:
TimesTen Daemon (PID: 4510, port: 6624) stopped.
Return code from host7.instance1: 0
Output from host7.instance1:
TimesTen Daemon (PID: 4539, port: 6624) stopped.
Return code from host8.instance1: 0
Output from host8.instance1:
TimesTen Daemon (PID: 4533, port: 6624) stopped.

3. Modify all the data instances to use the new installations.

% ttGridAdmin instanceModify host3.instance1 -installation installation2
Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host4.instance1 -installation installation2
Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host5.instance1 -installation installation2

Note: You can perform this step before unloading the databases or
stopping the data instances if you want to reduce the down time the
databases incur during the upgrading operation.

Upgrading a grid

8-24 Oracle TimesTen In-Memory Database Scaleout User's Guide

Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host6.instance1 -installation installation2
Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host7.instance1 -installation installation2
Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host8.instance1 -installation installation2
Instance instance1 on Host host3 modified in Model

4. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply

5. Restart all data instances.

% ttGridAdmin instanceExec -type data ttDaemonAdmin -start
Overall return code: 0
Commands executed on:
 host3.instance1 rc 0
 host4.instance1 rc 0
 host5.instance1 rc 0
 host6.instance1 rc 0
 host7.instance1 rc 0
 host8.instance1 rc 0
Return code from host3.instance1: 0
Output from host3.instance1:
TimesTen Daemon (PID: 19072, port: 6624) startup OK.
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 19144, port: 6624) startup OK.
Return code from host5.instance1: 0
Output from host5.instance1:
TimesTen Daemon (PID: 19210, port: 6624) startup OK.
Return code from host6.instance1: 0
Output from host6.instance1:
TimesTen Daemon (PID: 19247, port: 6624) startup OK.
Return code from host7.instance1: 0
Output from host7.instance1:
TimesTen Daemon (PID: 19284, port: 6624) startup OK.
Return code from host8.instance1: 0
Output from host8.instance1:
TimesTen Daemon (PID: 19315, port: 6624) startup OK.

6. Restart all databases as shown in "Reloading a database into memory" on
page 5-30.

For more information on the ttGridAdmin instanceExec or ttGridAdmin
instanceModify command, see "Execute a command or script on grid instances
(instanceExec)" or "Modify an instance (instanceModify)", respectively, in the Oracle
TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

Optional: Delete the installation of the previous release on every host
To avoid assigning the wrong installation to new instances, it is recommended that
you delete the installation model objects of the previous release for each host in the

Upgrading a grid

Maintaining and Upgrading a Grid 8-25

model, as shown in Example 8–4.

Example 8–4 Deleting the installations of a previous release

The example uses the ttGridAdmin installationDelete command to delete the
installation model objects that are no longer in use from the model of the grid1 grid.

% ttGridAdmin installationDelete host1.installation1
Installation installation1 on Host host1 deleted from Model

% ttGridAdmin installationDelete host2.installation1
Installation installation1 on Host host2 deleted from Model

% ttGridAdmin installationDelete host3.installation1
Installation installation1 on Host host3 deleted from Model

% ttGridAdmin installationDelete host4.installation1
Installation installation1 on Host host4 deleted from Model

% ttGridAdmin installationDelete host5.installation1
Installation installation1 on Host host5 deleted from Model

% ttGridAdmin installationDelete host6.installation1
Installation installation1 on Host host6 deleted from Model

% ttGridAdmin installationDelete host7.installation1
Installation installation1 on Host host7 deleted from Model

% ttGridAdmin installationDelete host8.installation1
Installation installation1 on Host host8 deleted from Model

Then, the example uses the ttGridAdmin modelApply to apply the changes made to the
latest version of the model.

% ttGridAdmin modelApply

Furthermore, if the installation files associated with the installation model objects you
just deleted are not in use by any other installation object in this or any other grid, then
delete the files on every host. Ensure that you change the permissions of the directory
so that you can delete all files, as shown in Example 8–5.

Example 8–5 Deleting the installation files of a previous release

% cd /grid
% chmod -R 750 tt18.1.4.1.0/
% rm -rf tt18.1.4.1.0/
For more information on the ttGridAdmin installationDelete command, see "Delete
an installation (installationDelete)" in the Oracle TimesTen In-Memory Database Reference.

Upgrade a grid to a not patch-compatible release
Generally, all patchset (and patch) releases of the same major release of TimesTen are
patch compatible. For exceptions or major release upgrades, you need to migrate the
data from your current databases to databases in a different grid, one based on the
target upgrade release.

To upgrade a grid to a newer release that is not patch compatible with your current
release, perform these tasks:

Destroying a grid

8-26 Oracle TimesTen In-Memory Database Scaleout User's Guide

1. Install the newer TimesTen distribution, as shown in "Installing TimesTen
Scaleout" on page 2-10.

2. Using your new TimesTen installation, set up a new grid and databases to import
the data of your current databases, as shown in "Configure your grid" on page 4-1
and "Creating a database" on page 5-1.

3. Export the data from your current databases and import it into the databases of
your new grid, as shown in "Exporting and importing a database" on page 10-15.

4. Optional: Destroy your previous grid, as shown in "Destroying a grid" on
page 8-26.

Destroying a grid
Gracefully destroying a grid consists in destroying all databases and deleting every
object of the model, as shown next:

1. Unload all databases as shown in "Unloading a database from memory" on
page 5-27.

2. Destroy all databases as shown in "Destroying a database" on page 5-33.

3. Delete all hosts, installations, and instances from the latest version of model,
except for the active management instance and its associated host and installation.

% ttGridAdmin hostDelete host2 -cascade
Instance instance1 on Host host2 deleted from Model
Installation installation1 on Host host2 deleted from Model
Host host2 deleted from Model

% ttGridAdmin hostDelete host3 -cascade
Instance instance1 on Host host3 deleted from Model
Installation installation1 on Host host3 deleted from Model
Host host3 deleted from Model

% ttGridAdmin hostDelete host4 -cascade
Instance instance1 on Host host4 deleted from Model
Installation installation1 on Host host4 deleted from Model
Host host4 deleted from Model

% ttGridAdmin hostDelete host5 -cascade
Instance instance1 on Host host5 deleted from Model
Installation installation1 on Host host5 deleted from Model
Host host5 deleted from Model

% ttGridAdmin hostDelete host6 -cascade
Instance instance1 on Host host6 deleted from Model
Installation installation1 on Host host6 deleted from Model
Host host6 deleted from Model

% ttGridAdmin hostDelete host7 -cascade
Instance instance1 on Host host7 deleted from Model
Installation installation1 on Host host7 deleted from Model
Host host7 deleted from Model

Note: The new grid does not need to match the topography (K-safety
value and number of replica sets) of your current grid.

Destroying a grid

Maintaining and Upgrading a Grid 8-27

% ttGridAdmin hostDelete host8 -cascade
Instance instance1 on Host host8 deleted from Model
Installation installation1 on Host host8 deleted from Model
Host host8 deleted from Model

4. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply
...
Unconfiguring standby management instance.............................OK
Identifying any deleted objects.......................................OK
Stopping deleted instances..OK
Deleting instances..OK
Deleting installations from model.....................................OK
Deleting any hosts that are no longer in use..........................OK
...
ttGridAdmin modelApply complete

5. Stop the active management instance.

% ttGridAdmin mgmtActiveStop
Active management instance stopped

6. Destroy the active management instance.

% /grid/tt18.1.4.1.0/bin/ttInstanceDestroy

** WARNING **

 The uninstallation has been executed by a non-root user.
 If the TimesTen daemon startup scripts were installed,
 you must run $TIMESTEN_HOME/bin/setuproot -uninstall
 to remove them. If you proceed with this uninstallation, you
 will have to remove the startup scripts manually.

** WARNING **

 All the files in the directory :

 /grid/instance1

 will be removed, including any files that you or other users
 may have created.

 Are you sure you want to completely remove this instance? [yes]

NOTE: /grid/instance1/info contains information related to the data
 storesthat have been created with this release. If you remove
 /grid/instance1/info you will no longer be able to access your
 data stores, nor would you be able to restore nor migrate your data.

 Would you also like to remove all files in
 /grid/instance1/info? [no] yes

NOTE: /grid/instance1/conf contains information related to the
 instance configuration.

 Would you also like to remove all files in
 /grid/instance1/conf? [no] yes
/grid/instance1 Removed
The TimesTen instance instance1 has been destroyed.

Destroying a grid

8-28 Oracle TimesTen In-Memory Database Scaleout User's Guide

7. Delete the installation files on each system with a TimesTen installation. Ensure
that you change the permissions of the directory so that you can delete all files.

% cd /grid
% chmod -R 750 tt18.1.4.1.0/
% rm -rf tt18.1.4.1.0/

For more information on the ttGridAdmin hostDelete, ttGridAdmin mgmtActiveStop,
or ttInstanceDestroy command, see "Delete a host (hostDelete)", "Stop the active
management instance (mgmtActiveStop)", or "ttInstanceDestroy", respectively, in the
Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see "Applying the
changes made to the model" on page 4-18 in this document and "Model operations" in
the Oracle TimesTen In-Memory Database Reference.

9

Monitoring TimesTen Scaleout 9-1

9Monitoring TimesTen Scaleout

The following sections discusses how to monitor a grid and database in TimesTen
Scaleout.

■ Using the ttStats utility

■ Monitoring the management instances

■ Collecting grid logs

■ Retrieving diagnostic information

■ Verifying clock synchronization across all instances

There are several ways to monitor a grid and database:

■ The ttStats utility - This utility enables you to monitor database metrics
(statistics, states, and other information) or take and compare snapshots of metrics.
See "Using the ttStats utility" on page 9-1 for more information.

■ SQL Developer - SQL Developer enables you to create, manage, and explore a grid
and its components. Additionally, you can also browse, create, edit and drop
particular database objects; run SQL statements and scripts; manipulate and
export data; view and create reports; and view database metrics. For more
information, see "Using SQL Developer to work with TimesTen Scaleout" on
page 9-7.

Using the ttStats utility
The ttStats utility enables you to monitor database metrics (statistics, states, and
other information), automatically captures system snapshots, and take and compare
snapshots of metrics. The ttStats utility can perform the following functions.

■ Monitor and display database performance metrics in real-time, calculating rates
of change during each preceding interval.

Monitoring and analyzing reports of the database helps you determine the overall
performance of your grid. By knowing the overall performance of your database, you
can take preventive measures that ensure that your database is running with optimal
conditions.

There are several differences in how ttStats works in TimesTen Classic and TimesTen
Scaleout. For more information, see "ttStats" in the Oracle TimesTen In-Memory Database
Reference. For details on the TT_STATS PL/SQL package, see "TT_STATS" in the Oracle
TimesTen In-Memory Database PL/SQL Packages Reference.

The following sections describe how to use the ttStats utility:

■ View the configuration of the ttStats utility

Using the ttStats utility

9-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Configure the ttStats utility

■ Monitor a database with the ttStats utility

■ Create a snapshot with the ttStats utility

■ Create a report between two snapshots with the ttStats utility

View the configuration of the ttStats utility
The ttStatsConfigGet built-in procedure enables you to view the configuration
settings of the ttStats utility. This built-in shows the values of the pollSec,
retentionDays, and retainMinutes parameters which set the collection settings of the
ttStats utility.

This following example shows the collection settings of the ttStats utility:

Command> call ttStatsConfigGet();

< POLLSEC, 30 >
< RETENTIONDAYS, 62 >
< RETAINMINUTES, 120 >
3 rows found.

The pollSec, retentionDays, and retainMinutes parameters, which are only
supported in TimesTen Scaleout, enable you to set the polling interval, purging time
for aggregated data, and purging time for raw data for TimesTen Scaleout statistics,
respectively. The polling interval parameter, pollsec, determines the interval, in
seconds, at which the ttStats daemon collects metrics of the database.

The value of the polling interval does not affect the performance of the database.
However, a polling interval of 10 seconds tends to use six times less space than a
polling interval of 60 seconds. Most metrics get aggregated and use around 6 MB
(even up to 10 years worth of metrics) of PermSize space on each element. However,
some metrics such as log holds, top SQL commands, and checkpoint history cannot be
aggregated. You can use the ttStats -snapshotInfo utility to determine how much
PermSize is being used for your metrics.

For more information of the ttStatsConfigGet built-in procedure and the ttStats
utility, see "ttStatsConfigGet" and "ttStats", respectively, in the Oracle TimesTen
In-Memory Database Reference.

Configure the ttStats utility
The ttStatsConfig built-in procedure controls the configuration settings of the
ttStats utility and when ttStats automatically takes system snapshots. Call the
ttStatsConfig built-in procedure to modify statistics collection parameters that affect
the ttStats utility. For more information on the parameters of the ttStatsConfig
built-in procedure and the SYS.V$STATS_CONFIG system view, see "ttStatsConfig" in the
Oracle TimesTen In-Memory Database Reference and "SYS.V$STATS_CONFIG" in the
Oracle TimesTen In-Memory Database System Tables and Views Reference, respectively.

The polling interval parameter, pollsec, determines the interval, in seconds, at which
the ttStats daemon collects metrics of the database.

The following example returns the current value of the polling interval for TimesTen
Scaleout statistics:

SQL> SELECT VALUE FROM SYS.V$STATS_CONFIG WHERE PARAM='POLLSEC';
< 30 >
1 row found.

Using the ttStats utility

Monitoring TimesTen Scaleout 9-3

The following example sets the polling interval of TimesTen Scaleout statistics to 45
seconds:

Command> call ttStatsConfig('pollsec', 45);
< POLLSEC, 45 >
1 row found.

The retention time interval, retentionDays, determines the interval, in days, at which
the ttStats daemon drops metrics of the database. For example, if the retention time
interval is 62 days, the ttStats daemon drops the 1st day's snapshot on the 63rd day.
Ensure that you have sufficient PermSize to support the desired retention time
interval.

The following example returns the current value of the retention time interval for
TimesTen Scaleout statistics:

SQL> SELECT VALUE FROM SYS.V$STATS_CONFIG WHERE PARAM='RETENTIONDAYS';
< 62 >
1 row found.

The following example sets the retention time interval for TimesTen Scaleout statistics
to 30 days:

Command> call ttStatsConfig('retentionDays', 30);
< RETENTIONDAYS, 30 >
1 row found.

The purging time interval, retainMinutes, determines the interval, in minutes, in
which the ttStats daemon purges raw metrics of the database. For example, if the
retention time interval is 120 minutes, the ttStats daemon purges the raw metrics
every 120 minutes.

The following example returns the current value of the purging time interval for
TimesTen Scaleout statistics:

SELECT VALUE FROM SYS.V$STATS_CONFIG WHERE PARAM='RETAINMINUTES';
< 120 >
1 row found.

The following example sets the purging time interval for TimesTen Scaleout statistics
to 60 minutes:

Command> call ttStatsConfig('retainMinutes', 60);
< RETAINMINUTES, 60 >
1 row found.

Monitor a database with the ttStats utility
Use the ttStats -monitor utility to monitor your database workload on a local
instance in real-time. You can specify the -duration or -iterations option to set the
length of time that the ttStats utility monitors the TimesTen Scaleout. Monitoring
continues until the limit of the -duration or -iterations options is reached or when
you use Ctrl-C. You can also specify an interval time, -interval, which sets the time
interval between sets of metrics that are displayed, in seconds. These options can be
specified together. You can specify the following options:

■ -duration: This option sets the duration of how long the ttStats utility runs, in
seconds. After this duration, the utility exits.

The following example monitors a database for 60 seconds:

Using the ttStats utility

9-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

% ttStats -monitor -duration 60 database1
Connected to TimesTen Version 18.01.0002.0001 Oracle TimesTen IMDB version
18.1.2.1.0.

Waiting for 10 seconds for the next snapshot
Description Current Rate/Sec Notes
date.2017-Feb-22 11:33:41 1456169621 1 sample #, not rate
cmdcache.id:278352904.preps 142072 1 COMMIT
cmdcache.id:283596680.execs 135242 1 SELECT COUNT(*) FROM
SYS.TTSTATS
cmdcache.id:283613080.execs 340200 3 SELECT COUNT(*) FROM
SYS.TTSTATS
cmdcache.id:283619720.execs 135242 1 INSERT INTO
SYS.TTSTATS_SQL_COMM
connections.count 15
db.joins.nested_loop 22874 1
db.table.full_scans 136618 2
lock.locks_granted.immediate 24138575 291
log.buffer.bytes_inserted 4887634664 52988
log.buffer.insertions 41123321 447
log.file.writes 247855 2
log.forces 183285 1
log.log_bytes_per_transaction 0
loghold.bookmark.log_force_lsn 88/46899200
loghold.bookmark.log_write_lsn 88/46899464
loghold.checkpoint_hold_lsn 88/41543680 database1.ds0
loghold.checkpoint_hold_lsn 88/33990656 database1.ds1
plsql.GetHitRatio 0.714 0.000
plsql.GetHits 380.000 0.200
plsql.Gets 532.000 0.200
plsql.PinHitRatio 0.989 0.000
plsql.PinHits 34556.000 0.500
plsql.Pins 34933.000 0.500
stmt.executes.count 1103839 12
stmt.executes.inserts 280246 2
stmt.executes.selects 777408 9
stmt.prepares.count 173038 1
txn.commits.count 233082 2
txn.commits.durable 182275 1
...

■ -iterations: This option sets the number of iterations that the ttStats utility
performs when gathering and displaying metrics. After these iterations, the utility
exits.

The following example sets the number of iterations to 3:

% ttStats -monitor -iterations 3 database1
Connected to TimesTen Version 18.01.0002.0001 Oracle TimesTen IMDB version
18.1.2.1.0.

Waiting for 10 seconds for the next snapshot
Description Current Rate/Sec Notes
date.2017-Feb-22 11:54:34 1456170874 1 sample #, not rate
connections.count 15
lock.locks_granted.immediate 24195281 1
log.log_bytes_per_transaction 0
loghold.bookmark.log_force_lsn 88/61253632
loghold.bookmark.log_write_lsn 88/61253896
loghold.checkpoint_hold_lsn 88/55470080 database1.ds0
loghold.checkpoint_hold_lsn 88/48414720 database1.ds1

Using the ttStats utility

Monitoring TimesTen Scaleout 9-5

plsql.GetHitRatio 0.730 0.000
plsql.GetHits 410.000 0.200
plsql.Gets 562.000 0.200
plsql.PinHitRatio 0.989 0.000
plsql.PinHits 34667.000 0.200
plsql.Pins 35044.000 0.200
stmt.executes.count 1106494 1
stmt.executes.selects 779348 1
...

■ -interval: This option sets the time interval between sets of metrics that are
displayed, in seconds.

The following example sets the interval time to 30 seconds:

% ttStats -interval 30 -monitor database1
Connected to TimesTen Version 18.01.0002.0001 Oracle TimesTen IMDB version
18.1.2.1.0.

Waiting for 30 seconds for the next snapshot
Description Current Rate/Sec Notes
date.2017-Feb-19 15:18:38 1455923918 1 sample #, not rate
connections.count 15
lock.locks_granted.immediate 12536701 1
log.log_bytes_per_transaction 0
loghold.bookmark.log_force_lsn 45/13309952
loghold.bookmark.log_write_lsn 45/13310216
loghold.checkpoint_hold_lsn 45/4683776 database1.ds0
loghold.checkpoint_hold_lsn 45/11804672 database1.ds1
plsql.GetHitRatio 0.700 0.000
plsql.GetHits 355.000 0.067
plsql.Gets 507.000 0.067
plsql.PinHitRatio 0.980 0.000
plsql.PinHits 18201.000 0.067
plsql.Pins 18578.000 0.067
...

Create a snapshot with the ttStats utility
Use the ttStats -snapshot utility to associate a snapshot ID with the latest system
generated snapshot of your database. Snapshots are used to create reports that show
you database metrics. When a system generated snapshot gets automatically purged,
the associated user snapshots will also be purged.

The following example uses the ttStats -snapshot utility to create a snapshot. The
-description command is required when you use the -snapshot command. The
-description command lets you provide any description or notes for the snapshot,
for example to distinguish it from other snapshots.

% ttStats -snapshot -description 1 database1
Connected to TimesTen Version 18.01.0002.0001 Oracle TimesTen IMDB version
18.1.2.1.0.
Snapshot ID was 88412

You can reference the snapshot that was created from the example with a snapshot ID
of 1.

Using the ttStats utility

9-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

Create a report between two snapshots with the ttStats utility
Use the ttStats -report utility to create a report between two snapshots of your
TimesTen Scaleout database. ttStats reports show the change in statistics between
two snapshots of your database. The -outputFile option enables you to specify a file
path and name where the report is to be written. Use one of the following set of
options to define the start and end points of the report:

■ The -snap1 and -snap2 options to specify snapshot IDs. The report period must
span at least four existing snapshot ID values. Therefore, you must have at least
three snapshots between -snap1 and -snap2.

■ The -timestamp1 and -timestamp2 options to specify timestamps.

You can use the ttStats -snapshotInfo command to view available snapshots for
your database.

The following example uses the ttStats -snapshotInfo utility to return the IDs and
timestamps of available snapshots. This command also returns information about
aggregated snapshots as well as the values of the ttStatsConfig built-in procedure.

% ttStats -snapshotInfo database1
Connected to TimesTen Version 18.01.0002.0001 Oracle TimesTen IMDB version
18.1.2.1.0.
There are 2 user snapshots:
Snapshot ID User comment When snapshot occurred
============ ================ ======================
 88412 1 2018-02-09 13:28:50
 88412 2 2018-02-10 11:13:55
 88412 3 2018-02-10 18:39:50
 88412 4 2018-02-11 08:10:12
 88412 5 2018-02-12 17:23:46
There are 151 AGGREGATED snapshots:
 Oldest snapshot 2880, 2018-01-04 15:37:29
 Newest snapshot 88412, 2018-02-03 10:00:26
There are 240 NON AGGREGATED snapshots:
 Oldest snapshot 88173, 2018-02-03 08:00:42
 Newest snapshot 88412, 2018-02-03 10:00:26

There are about 16.3 MB of metrics stored in ttStats SYS tables

 The PollSec was 30
 The RetentionDays was 62
 The RetainMinutes was 120

The following example creates a report, snapreport.txt, between the snapshots with
ID 1 and ID 5:

% ttStats -report -snap1 1 -snap2 5 -outputFile snapreport.txt database1
Connected to TimesTen Version 18.01.0002.0001 Oracle TimesTen IMDB version
18.1.2.1.0.
Report snapreport.txt was created.

The following example creates a report, timereport.txt, between two timestamps:

% ttStats -report -timestamp1 2018-02-22 12:50:31 -timestamp2 2018-02-23 09:15:23
 -outputFile snapreport.txt database1
Connected to TimesTen Version 18.01.0002.0001 Oracle TimesTen IMDB version
18.1.2.1.0.
Report timereport.txt was created.

Monitoring the management instances

Monitoring TimesTen Scaleout 9-7

For more information about the tables of metrics that a ttStats report generates and
the ttStats utility, see "Report examples" and "ttStats", respectively, in the Oracle
TimesTen In-Memory Database Reference.

Using SQL Developer to work with TimesTen Scaleout
Oracle SQL Developer is a graphical user interface (GUI) tool that gives database
developers a convenient way to create, manage, and explore a grid and its
components. You can also browse, create, edit and drop particular database objects;
run SQL statements and scripts; manipulate and export data; view and create reports;
and view database metrics.

For more information, see Oracle SQL Developer Oracle TimesTen In-Memory Database
Support User's Guide.

Monitoring the management instances
Management instances store metadata used to manage the grid. It is recommended
that you use an active and a standby instance to have high availability for this
metadata. If you use a single management instance and that management instance is
down, the grid continues to operate but you cannot perform certain management
operations for your grid.

A management instance can get full because it stores information about your grid,
previous grid model versions, and logs of your grid. It is important for the
management instances to have enough free space to function properly. If your
management instance begins to get full, any command that you run with the
ttGridAdmin utility outputs a warning.

You can perform these tasks to maintain the management instances:

■ Monitor the free space of the management instance

■ Modify retention values of previous grid models and warning threshold of the
management instance

■ Resize the management instance

Monitor the free space of the management instance
When you create a grid, the grid sets a used-space warning threshold for the
management instance. If the size of your management instance reaches this threshold,
commands that you run with the ttGridAdmin utility output warnings that the
management instance is getting full.

This example shows the output of a ttGridAdmin instanceCreate command for a
grid where the management instance is almost full.

% ttGridAdmin instanceCreate host5 -location /grid

Instance instance1 on Host host5 created in Model
Warning: the TTGRIDADMIN database is 91% full; Temp space: 57%

Note: When you use a ttGridAdmin command and you see a
warning that your management instance is getting full, TimesTen
Scaleout deletes old grid model versions and logs based on the
retention days and retention versions parameters of your grid.

Monitoring the management instances

9-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

Use the gridDisplay command of the ttGridAdmin utility on your management
instance to see the current used-space warning threshold for the management instance,
and retention days and quantity of previous versions of the grid model that TimesTen
Scaleout stores.

This example shows the output of the ttGridAdmin gridDisplay command.

% ttGridAdmin gridDisplay

Grid name: grid1
Grid GUID: 864C0CB2-AF40-4047-A711-7A9F9F0E7D6C
Created: 2018-12-12 12:20:32.000000
Major Release: 18.1.4
Created Release: 18.1.4.1.0
K: 2
Admin Userid: instanceadmin
Admin UID: 4133
Admin Group: admins
Admin GID: 900
Retain Days: 30
Retain Versions: 10
Warn Threshold: 90
Perm In Use Pct: 91
Temp In Use Pct: 57

For more information about the ttGridAdmin gridDisplay command and the default
values for the retention of previous grid models and warning threshold of the
management instance, see "Display information about the grid (gridDisplay)" and
"Modify grid settings (gridModify)", respectively, in the Oracle TimesTen In-Memory
Database Reference.

See "Resize the management instance" on page 9-9 for more information on resizing
the grid administration database.

Modify retention values of previous grid models and warning threshold of the
management instance

In some cases, you may want to increase or decrease the retention values of previous
grid models or the current used-space warning threshold for the management
instance.

This example sets the current used-space warning threshold for the management
instance to 80%.

% ttGridAdmin gridModify -warnThresh 80

Grid Definition modified.

This example sets the retention days value to 60 and the retention versions value to 15.
These values ensure that TimesTen Scaleout only deletes previous grid models that are
older than 60 days and are at least 16 grid model versions old.

% ttGridAdmin gridModify -retainDays 60 -retainVersions 15

Note: If you specify either the -retainDays or the -retainVersions
parameter as 0, then only the other parameter is used. If you set both
parameters values to 0, TimesTen Scaleout never automatically deletes
previous grid model versions.

Monitoring the management instances

Monitoring TimesTen Scaleout 9-9

Grid Definition modified.

For more information about the ttGridAdmin gridModify command, see "Modify grid
settings (gridModify)" in the Oracle TimesTen In-Memory Database Reference.

Resize the management instance
In some cases, you may want to resize the management instance because it is getting
full.

Depending on if your grid has a single management instance or an active and a
standby management instances, follow one of these procedures:

■ Grid with a single management instance

■ Grid with active and standby management instances

Grid with a single management instance
To resize the management instance of a grid with one management instance, ensure
that you are connected to the management instance.

1. Export the database definition.

% ttGridAdmin dbdefExport TTGRIDADMIN /tmp/ttgridadmin.dbdef

Example 9–1 shows the contents of the exported file.

Example 9–1 Exported database definition file

DbDef GUID CF85D379-E776-41C6-A271-ACB6A2033BBB Exported 2018-03-24 14:31:52
[TTGRIDADMIN]
AutoCreate=0
Connections=100
DBUUID=C12C4FAE-5732-4307-A08F-5F7FBF9BF1C0
DataStore=!!TIMESTEN_HOME!!/grid/admin/database/!!TTGRIDADMIN!!
DatabaseCharacterSet=AL32UTF8
DurableCommits=1
LockWait=120
Overwrite=0
PLSQL=1
PLSQL_TIMEOUT=0
PermSize=200
TempSize=100

2. With a text editor, modify the value of the PermSize connection attribute to a
larger value.

Example 9–2 shows the contents of the modified database definition file. In this
example, the new value of the PermSize connection attribute is 400.

Example 9–2 Modified database definition file

DbDef GUID CF85D379-E776-41C6-A271-ACB6A2033BBB Exported 2018-03-24 14:31:52
[TTGRIDADMIN]
AutoCreate=0
Connections=100
DBUUID=C12C4FAE-5732-4307-A08F-5F7FBF9BF1C0
DataStore=!!TIMESTEN_HOME!!/grid/admin/database/!!TTGRIDADMIN!!
DatabaseCharacterSet=AL32UTF8
DurableCommits=1

Monitoring the management instances

9-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

LockWait=120
Overwrite=0
PLSQL=1
PLSQL_TIMEOUT=0
PermSize=400
TempSize=100

3. Import the contents of the modified database definition file into the TTGRIDADMIN
database definition.

% ttGridAdmin dbdefModify /tmp/ttgridadmin.dbdef
Database Definition TTGRIDADMIN modified.

4. Apply the changes of the TTGRIDADMIN database definition file to the current
version of the model.

% ttGridAdmin modelApply
...
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

5. Stop the management instance.

% ttGridAdmin mgmtActiveStop

Active management instance stopped

6. Start the management instance.

% ttGridAdmin mgmtActiveStart

This management instance is now the active

You have successfully resized your management instance.

Grid with active and standby management instances
To resize the management instances of a grid with active and standby management
instances, ensure that you are connected to the active management instance.

1. Export the database definition of the grid administration database.

% ttGridAdmin dbdefExport TTGRIDADMIN /tmp/ttgridadmin.dbdef

Example 9–3 shows the contents of the exported file.

Example 9–3 Exported database definition file

DbDef GUID CF85D379-E776-41C6-A271-ACB6A2033BBB Exported 2018-03-24 14:31:52
[TTGRIDADMIN]
AutoCreate=0
Connections=100
DBUUID=C12C4FAE-5732-4307-A08F-5F7FBF9BF1C0
DataStore=!!TIMESTEN_HOME!!/grid/admin/database/!!TTGRIDADMIN!!
DatabaseCharacterSet=AL32UTF8

Note: Stopping the management instance does not impact existing
databases. However, you are unable to perform management
operations until you start the management instance.

Monitoring the management instances

Monitoring TimesTen Scaleout 9-11

DurableCommits=1
LockWait=120
Overwrite=0
PLSQL=1
PLSQL_TIMEOUT=0
PermSize=200
TempSize=100

2. With a text editor, modify the value of the PermSize connection attribute to a
larger value.

Example 9–4 shows the contents of the modified database definition file. In this
example, the new value of the PermSize connection attribute is 400.

Example 9–4 Modified database definition file

DbDef GUID CF85D379-E776-41C6-A271-ACB6A2033BBB Exported 2018-03-24 14:31:52
[TTGRIDADMIN]
AutoCreate=0
Connections=100
DBUUID=C12C4FAE-5732-4307-A08F-5F7FBF9BF1C0
DataStore=!!TIMESTEN_HOME!!/grid/admin/database/!!TTGRIDADMIN!!
DatabaseCharacterSet=AL32UTF8
DurableCommits=1
LockWait=120
Overwrite=0
PLSQL=1
PLSQL_TIMEOUT=0
PermSize=400
TempSize=100

3. Import the contents of the modified database definition file into the TTGRIDADMIN
database definition.

% ttGridAdmin dbdefModify /tmp/ttgridadmin.dbdef
Database Definition TTGRIDADMIN modified.

4. Apply the changes of the TTGRIDADMIN database definition file to the current
version of the model.

% ttGridAdmin modelApply
...
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

5. From the standby management instance, stop the management instance.

% ttGridAdmin mgmtStandbyStop

Standby management instance host2.instance1 stopped

6. From the standby management instance, start the management instance.

% ttGridAdmin mgmtStandbyStart

Standby management instance started

Note: This procedure does not impact existing databases or affect
operations of the grid.

Collecting grid logs

9-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

7. From the standby management instance, promote the standby management
instance to be the new active management instance and shut down the original
active management instance.

% ttGridAdmin mgmtActiveSwitch

This is now the active management instance

8. From the original active management instance, start the new standby management
instance.

% ttGridAdmin mgmtStandbyStart

Standby management instance started

You have successfully resized your management instances. Additionally, your original
active management instance is now the standby management instance and the original
standby management instance is now the active management instance. This does not
affect operations of your grid.

Collecting grid logs
TimesTen Scaleout enables you to collect various logs from every host that is part of
your grid. These logs are useful for troubleshooting errors that you may encounter
while using your grid or database. You can collect these logs with the ttGridAdmin
gridLogCollect command:

■ ttGridAdmin.log

Shows support messages about the grid.

■ tterrors.log

Shows any error or warning messages that the TimesTen daemon encountered.

■ ttmesg.log

Shows support messages about the TimesTen daemon.

■ Configuration files

Configuration files that are stored in the timesten_home/conf/ directory of each
instance.

This example collects the logs for a grid and stores these logs in the repository repo1.
By default, TimesTen Scaleout names your collection of logs with the current date and
time, Lyyyymmddhhss. The prefix of the backup name, L, stands for logs.

Note: The logs are stored in the timesten_home/diag/ directory. This
directory contains multiple tterrors.log and ttmesg.log files that
are appended with numbers. The logs without the appended number
are the most recent log files.

Note: Before collecting logs for your grid, ensure that you have
configured a repository. See "Working with repositories" on page 10-4
for more information on repositories.

Verifying clock synchronization across all instances

Monitoring TimesTen Scaleout 9-13

% ttGridAdmin gridLogCollect -repository repo1

Logs copied to collection L20170331143740 in repository repo1

The ttGridAdmin gridLogCollect command creates a collection directory in the
repository. The collection directory contains a directory for every host of your grid
where each host directory contains logs for that specific host.

Retrieving diagnostic information
TimesTen Scaleout enables you to retrieve diagnostic information for a whole grid.
This diagnostic information can be useful for the Oracle Support team to be able to
diagnose any issue that might come up with your grid.

The following example retrieves diagnostic information for your whole grid by using
the ttGridAdmin utility from the management instance. You can then provide this file
to the Oracle Support team.

% ttGridAdmin gridDump /tmp/grid.status.txt

Verifying clock synchronization across all instances
It is important to ensure that the system clocks of every host in your grid are roughly
synchronized. Synchronized system clocks ensure that timestamps of transactions and
logs are accurate on all hosts.

This example outputs the system date and time of every host in the grid.

% ttGridAdmin hostExec date

Commands executed on:

 host1 rc 0
 host2 rc 0
 host3 rc 0
 host4 rc 0
 host5 rc 0
 host6 rc 0
Return code from host1: 0
Output from host1:
Fri Mar 31 18:16:51 PDT 2018
Return code from host2: 0
Output from host2:
Fri Mar 31 18:16:49 PDT 2018
Return code from host3: 0
Output from host3:
Fri Mar 31 18:16:51 PDT 2018
Return code from host4: 0
Output from host4:
Fri Mar 31 18:16:51 PDT 2018
Return code from host5: 0
Output from host5:
Fri Mar 31 18:16:50 PDT 2018

Note: You can add the -name parameter to specify a collection name.
For example, ttGridAdmin gridLogCollect -repository repo1
-name mylogs creates a collection of logs named mylogs.

Verifying clock synchronization across all instances

9-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

Return code from host6: 0
Output from host6:
Fri Mar 31 18:16:52 PDT 2018

In case that the system clock of a host is not synchronized with the other hosts, adjust
the system clock on that specific host. You can use the Network Time Protocol (NTP) to
ensure that the system clock of your hosts are synchronized.

10

Migrating, Backing Up and Restoring Data 10-1

10Migrating, Backing Up and Restoring Data

The following chapter discusses how to migrate data from a TimesTen Classic
database, work with repositories, and how to back up and restore data in a TimesTen
Scaleout database.

■ Migrating a database from TimesTen Classic to TimesTen Scaleout

■ Working with repositories

■ Backing up and restoring a database

■ Exporting and importing a database

■ Determining the size of a backup or export

Migrating a database from TimesTen Classic to TimesTen Scaleout
TimesTen Scaleout enables you to migrate a database from TimesTen Classic to
TimesTen Scaleout. TimesTen Scaleout supports and includes most of the features of
TimesTen Classic; it does not support any of the features of the TimesTen Cache or
TimesTen Replication. See "Comparison between TimesTen Scaleout and TimesTen
Classic" on page 1-24 for more information on what features are supported in
TimesTen Scaleout. These procedures are for TimesTen Classic databases. You cannot
migrate the following objects:

■ Tables containing a LOB column.

■ Tables that contain ROWID columns.

■ Tables with in-memory columnar compression.

■ Tables with aging policies.

■ Cache groups.

■ Replication schemes.

Prerequisites before migrating a database from TimesTen Classic to TimesTen Scaleout:

■ Create a grid with management and data instances. See Chapter 4, "Setting Up a
Grid" for more information.

■ Create a backup of your TimesTen Classic database. See "ttBackup" and "ttRestore"
in Oracle TimesTen In-Memory Database Reference for more information.

See "Backing up and restoring a database" in the Oracle TimesTen In-Memory
Database Installation, Migration, and Upgrade Guide.

■ After you have created a backup of your TimesTen Classic database, consider
removing LOB columns from your tables. TimesTen Scaleout cannot import a table

Migrating a database from TimesTen Classic to TimesTen Scaleout

10-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

with LOB columns and the import process displays an error message if a table
contains LOB columns. Use the ALTER TABLE statement with the DROP keyword to
drop these columns. See "ALTER TABLE" in the Oracle TimesTen In-Memory
Database SQL Reference for more information.

■ In case that you have tables with ROWID columns consider not using ROWID based
access in your applications. The semantics of ROWID columns are different in
TimesTen Classic than in TimesTen Scaleout. See "Understanding ROWID in data
distribution" on page 7-17 for more information.

■ Understand the performance trade-off between table distribution schemes. See
"Defining table distribution schemes" on page 5-13 for more information.

The procedures in this section explain how to remove the objects that cannot be
migrated from your TimesTen Classic database.

To migrate a database from TimesTen Classic to a TimesTen Scaleout database, export
your database schema, and migrate supported objects out of the TimesTen Classic
database. Then restore these into a new TimesTen Scaleout database.

1. Disconnect all applications from your TimesTen Classic database.

2. On the TimesTen Classic instance, export the database schema with the -list
option of the ttSchema utility. The -list option only specifies objects that are
supported in TimesTen Scaleout. Ensure that you replace database1 with the name
of your database:

% ttSchema -list tables,views,sequences,synonyms database1 >
/tmp/database1.schema

For more information about the ttSchema utility, see "ttSchema" in the Oracle
TimesTen In-Memory Database Reference.

3. On the TimesTen Classic instance, save a copy of your database with the
ttMigrate utility.

% ttMigrate -c database1 /tmp/database1.data

Saving user PUBLIC
User successfully saved.
...
Sequence successfully saved.

For more information about the ttMigrate utility, see "ttMigrate" in the Oracle
TimesTen In-Memory Database Reference.

4. Copy the database schema and the migrate object files to a file system that is
accessible by one of your data instances. You can choose any data instance and
you need to complete all further procedures from this same data instance unless
stated otherwise.

5. On your selected data instance, use a text editor to edit the database schema file to
remove SQL statements and clauses that are not supported in TimesTen Scaleout
and add distribution scheme clauses for your tables. This is the database schema
file that you created in step 3.

Remove the following SQL statements:

■ CREATE CACHE GROUP

■ CREATE REPLICATION

■ CREATE ACTIVE STANDBY PAIR

Migrating a database from TimesTen Classic to TimesTen Scaleout

Migrating, Backing Up and Restoring Data 10-3

■ CREATE INDEX (Before removing these statements review the note below)

Remove the following CREATE TABLE clauses:

■ COMPRESS BY

■ FOREIGN KEY (Before removing these statements review the note above)

■ AGING

Add CREATE USER statements to create the schema owners referenced by the
objects in database1.schema. For example, hr.employees, would require a CREATE
USER hr IDENTIFIED BY password statement. You also may need to add privileges
to these users if you want to log in as the users.

Add distribution scheme clauses for all of your table definitions. If you do not
specify a distribution scheme for a CREATE TABLE statement, TimesTen Scaleout
distributes the data of that table with the DISTRIBUTE BY HASH distribution
scheme.

Before adding distribution schemes to your table definitions, ensure that you
understand the performance trade-off between the distribution schemes. For more
information on distribution schemes in a TimesTen Scaleout database, see
"Defining table distribution schemes" on page 5-13 for more information.

6. From a TimesTen Scaleout management instance, create a TimesTen Scaleout
database. See "Creating a database" on page 5-1 for more information.

7. On your selected data instance, log in as the instance administrator to create the
database schema from the database schema file. Ensure that you replace new_
database1 with the name of your new TimesTen Scaleout database:

% ttIsql -connStr "DSN=new_database1" -f /tmp/database1.schema

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=new_database1";
Connection successful:
...
exit;
Disconnecting...
Done.

Note: CREATE INDEX statements are supported in TimesTen Scaleout,
but it is more efficient to create indexes once your data has been
distributed. However, for child tables which you want to distribute
with the DISTRIBUTE BY REFERENCE distribution scheme, you should
not remove the FOREIGN KEY clause of the child table, nor the CREATE
INDEX statement of the referenced parent table. Step 9 restores your
indexes once your data has been inserted into your TimesTen Scaleout
database.

Note: When you use the DISTRIBUTE BY REFERENCE distribution
scheme, ensure that you declare the child key columns of a foreign key
constraint as NOT NULL.

Working with repositories

10-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

8. On your selected data instance, use the following ttMigrate command to restore
rows for all user tables:

% ttMigrate -r -gridRestoreRows new_database1 /tmp/database1.data

Restoring table HR.EMPLOYEES
...
 10/10 rows restored.
Table successfully restored.

9. On your selected data instance, use the following ttMigrate command to restore
indexes and foreign keys:

% ttMigrate -r -gridRestoreFinale new_database1 /tmp/database1.data

Restoring table HR.EMPLOYEES
...
 10/10 rows restored.
Table successfully restored.

Once the database is operational on TimesTen Scaleout, create a backup of the
TimesTen Scaleout database to have a valid restoration point for your database. See
"Backing up and restoring a database" on page 10-7 for more information. Once you
have created a backup of your database, you may remove the database schema file (in
this example, /tmp/database1.schema) and the ttMigrate copy of your database (in
this example, /tmp/database1.data).

Working with repositories
In a grid, a repository is used to store backups of databases, database exports, and
collections of log files and configuration files. TimesTen Scaleout enables you to define
a repository as a directory path mounted using NFS on each host or as a directory path
that is not directly mounted on each host. Multiple grids can use a single repository.

A repository contains a number of collections. A collection can be a backup of a
database, a database export, or a set of saved daemon logs and configuration files.
Collections are essentially subdirectories that use the name of the collection and are
stored inside of a repository. Each collection can contain a combination of files and
sub-collections.

Note: It can be useful to redirect the output of the ttIsql command to
an output file. You can then review this output to ensure that the
command ran successfully. To redirect output to a file, add >
myoutput.txt after the ttIsql -connStr "DSN=new_database1" -f
/tmp/database1.schema command.

Note: If you did not remove FOREIGN KEY clauses in step 5 because
you are using a DISTRIBUTE BY REFERENCE distribution scheme, you
may see error messages that TimesTen Scaleout is unable to create
some foreign keys. If you already created these foreign keys in step 5,
you can ignore these messages.

Working with repositories

Migrating, Backing Up and Restoring Data 10-5

Ensure that you create your repository where there is enough file system space to store
your database backups, database exports, and collections of log and configuration
files.

You must create a repository for your grid before attempting to backup a database,
export a database, or create a daemon log collection.

TimesTen Scaleout enables you to perform the following procedures with repositories:

■ Create a repository

■ Attach a repository

■ Detach a repository

■ List repositories and collections

Create a repository
Before you back up a database, export a database, or create a daemon log collection,
you need to configure a repository for your grid. Depending on the value of the
-method parameter, the ttGridAdmin repositoryCreate command creates a
repository as a directory path mounted using NFS on each host or as a directory path
that is accessible on each host with SSH or SCP.

The mount (NFS) method can only be used if all instances are on the same network
and all instances must use the same NFS. The SCP method can be used on any system
but may be slower for larger grids.

Example 10–1 Create a repository as a directory path mounted using NFS on each host

This example creates a repository as a directory path mounted using NFS on each host
of your grid. Ensure that the directory specified by the -path parameter exists and is
accessible by the instance administrator on each element. This directory must have the
same identical mount path on every element. For example, if the directory path is
mounted at /repositories on one element, it must be mounted at /repositories on
all elements.

% ttGridAdmin repositoryCreate repo1 -path /repositories -method mount
Repository repo1 created

Example 10–2 Create a repository as a directory path that is accessible on each host
with SSH or SCP

This example creates a repository as a directory path that is not directly mounted on
each host of your grid. Ensure that the path value specified by the -path parameter
exists on the host that you specify with the -address parameter. The address
parameter is the fully qualified domain name of the host on which the repository
exists. Also, ensure that each host can use the scp command to access files in the path
value specified by the -path parameter. You can use the ttGridAdmin gridSshConfig
command to verify that your hosts can communicate through SSH with each other. For
more information, see "Configure SSH (gridSshConfig)" in the Oracle TimesTen
In-Memory Database Reference.

% ttGridAdmin repositoryCreate repo2 -path /repositories -method scp -address

Note: For more information on valid names for repositories, see
"Grid objects and object naming" in the Oracle TimesTen In-Memory
Database Reference.

Working with repositories

10-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

host1.example.com
Repository repo2 created

For more information about the ttGridAdmin repositoryCreate command, see
"Create a repository (repositoryCreate)" in the Oracle TimesTen In-Memory Database
Reference.

Attach a repository
Multiple grids can use a single repository as long as each grid is associated with that
repository. If you have an existing repository, you can attach it to another grid as long
as each host from your grid has access to the path of the repository. Depending on the
value of the -method parameter, you can attach a repository as a directory path
mounted using NFS on each host or as a directory path that is accessible on each host
with SSH or SCP. However, you can only attach a repository with the same -method as
which was used to create it. For example, if you created a repository with -method
mount, you can only attach it to another grid with -method mount.

Example 10–3 Attach a repository as a directory path mounted using NFS on each host

This example attaches a repository as a directory path mounted using NFS on each
host of your grid. Ensure that the path value specified by the -path parameter exists
and is accessible by the instance administrator on each host of your grid.

The name of the repository needs to be the same on each grid to which you attach your
repository.

% ttGridAdmin repositoryAttach repo1 -path /repositories -method mount
Repository repo1 attached

Example 10–4 Attach a repository as a directory path that is accessible on each host
with SSH or SCP

This example attaches a repository as a directory path that is not directly mounted on
each host of your grid. Ensure that each host can use the scp command to access files
in the path value specified by the -path parameter. The address parameter is the fully
qualified domain name of the host on which the repository exists.

The name of the repository needs to be the same on each grid to which you attach your
repository.

% ttGridAdmin repositoryAttach repo2 -path /repositories -method scp -address
host1.example.com
Repository repo2 attached

For more information about the ttGridAdmin repositoryAttach command, see
"Attach a repository (repositoryAttach)" in the Oracle TimesTen In-Memory Database
Reference.

Detach a repository
TimesTen Scaleout enables you to detach, but not destroy, a repository from a grid
when you no longer need to use that repository with your grid.

To detach a repository from a grid, specify the name of the repository to detach from
your grid:

% ttGridAdmin repositoryDetach repo1
Repository repo1 detached

Backing up and restoring a database

Migrating, Backing Up and Restoring Data 10-7

Detaching a repository from a grid does not delete the directory or the contents of that
repository.

For more information about the ttGridAdmin repositoryDetach command, see
"Detach a repository (repositoryDetach)" in the Oracle TimesTen In-Memory Database
Reference.

List repositories and collections
TimesTen Scaleout enables you to view a list of all repositories that are attached to a
grid and all collections within the repository.

To view a list of all repositories that are attached to a grid:

% ttGridAdmin repositoryList
Repository Method Location Address
---------- ------ ------------------- --------
repo1 mount /repositories/repo1

To view a list of all collections that are part of every repository that are attached to a
grid:

% ttGridAdmin repositoryList -contents
Repository Collection Type Date Details
---------- ------------- ------------- ------------------------ ------------------
repo1 B20170222145544 Backup 2017-02-22T14:55:48.000Z Database database1
repo1 B20170615142115 Backup 2017-06-15T14:21:20.000Z Database database1
repo2 L20170615143145 gridLogCollect 2017-06-15T14:31:48.000Z
repo2 L20170616102242 gridLogCollect 2017-06-16T10:22:50.000Z

For more information about the ttGridAdmin repositoryList command, see "List
repositories (repositoryList)" in the Oracle TimesTen In-Memory Database Reference.

Backing up and restoring a database
The TimesTen Scaleout backup and restore functionality is essential in order to protect
your data. It is recommended to perform regular backups in order to minimize the
risks of potential data loss. When you perform a backup of a database, TimesTen
Scaleout performs the backup asynchronously on each replica set and creates a
sub-collection for each replica set that is backed up.

When you are considering backing up and restoring a TimesTen Scaleout database,
keep in mind that:

■ The current grid topology must be the same size or larger than the topology from
the grid of the database backup. If your current grid topology is not large enough
for n replica sets, TimesTen Scaleout displays an error message. That is, if you
backup a database with three replica sets and you want to restore into a database
that has only two replica sets, this operation will fail. However, you can use the
export and import feature of TimesTen Scaleout to import a database from a grid
topology with more replica sets into a database of a grid topology with less replica
sets. See "Exporting and importing a database" on page 10-15 for more

Note: You can add the name of a repository to only view the
collections that are part of a specific repository. For example,
ttGridAdmin repositoryList repo1 -contents shows all collections
of the repo1 repository.

Backing up and restoring a database

10-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

information.

■ You can restore a backup into a grid of the same grid topology, even the same grid
from which the backup was created. That is, if you create a backup of a database
where there are three replica sets, then you can restore into the same grid or a new
grid where there are three replica sets.

■ You can restore a backup into a grid that has a larger topology than the grid where
the backup was created. If you back up a database that has n replica sets, the
restore operation creates a database with exactly n replica sets. However, if your
current grid topology is larger than the original grid topology, TimesTen Scaleout
creates the additional elements, but TimesTen Scaleout does not add these
elements to the distribution map of the database and no data is stored on these
elements. Instead, the restore only populates the same number of replica sets as
the original grid topology. That is, if you create a backup of a grid where there are
three replica sets, you can restore a backup into a new grid where there are four
replica sets. However, the restore only populates three of those four replica sets.
Thus, in order to populate all replica sets, you must redistribute the data across all
replica sets after the restore using the ttGridAdmin dbDistribute command. See
"Redistributing data in a database" on page 8-8 for more information.

■ There are two type of backups: normal or staged.

– Normal backups can be performed either on a repository mounted using NFS
on each host of your grid or on a repository where each host of your grid uses
SSH/SCP to connect to it. The time it takes to create a normal backup varies
based on the size of your database, but you should expect every backup to
take roughly the same time to complete.

– Staged backups can only be performed on a repository where each host of
your grid uses SSH/SCP to connect to it. Even though the first staged backup
may take a similar time to complete as a normal backup (or even longer based
on the performance of your network), all subsequent staged backups should
take only a small fraction of that time to complete. Staged backups are ideal
when you want to make regular backups on a second site that is independent
to your main site.

See "Determining the size of a backup or export" on page 10-18 for information on
the file system space each backup operation requires.

TimesTen Scaleout enables you to perform the following procedures with backups:

■ Back up a database

■ Back up a database into a remote repository (WAN-friendly)

■ Check the status of a backup

■ Delete a backup

■ Restore a database

■ Check the status of a restore

Note: If the database where the data would be restored is from a
version of TimesTen Scaleout that is not patch-compatible, such as for
a major upgrade, then you cannot backup and restore a database.
Instead, you must export and import that database. See "Exporting
and importing a database" on page 10-15 for more information.

Backing up and restoring a database

Migrating, Backing Up and Restoring Data 10-9

Back up a database
Regular backups minimize the risks for potential data loss. Before attempting to back
up your database, ensure that you have configured a repository for your grid. See
"Working with repositories" on page 10-4 for more information.

This example creates a backup of the database database1 and stores that backup in the
repository repo1. By default, TimesTen Scaleout names your backup with the current
date and time, Byyyymmddhhss. The prefix of the backup name, B, stands for backup.
Ensure that you run the ttGridAdmin dbBackup command on a management instance.

% ttGridAdmin dbBackup database1 -repository repo1
dbBackup B20170222145544 started

Depending on the size of your database, the number of replica sets that your database
uses, the performance of your secondary storage device, and the performance of your
network the backup time varies. The ttGridAdmin dbBackup command only starts the
backup process and the output does not indicate that the backup is complete. Use the
ttGridAdmin dbBackupStatus command to see the status of your backup. See "Check
the status of a backup" on page 10-12 for more information.

For more information about the ttGridAdmin dbBackup command, see "Back up a
database (dbBackup)" in the Oracle TimesTen In-Memory Database Reference.

Back up a database into a remote repository (WAN-friendly)
Normal backups to repositories using the SCP method require two copies of the most
recent checkpoint and transaction logs files for each replica set. One copy consists of
the checkpoint and log files of one element for each replica set, which are temporarily
copied to a directory in the instance home. The second copy consists of the same
checkpoint and log files per replica set after they are sent and stored at the repository,
which construct the backup itself.

TimesTen Scaleout enables you to create staged backups to SCP repositories. This type
of backup eliminates the overhead of creating local copies of the checkpoint and log
files and reduces the network traffic required to create a remote copy in the repository.
To accomplish this, staged backups use symbolic links instead of temporary local files
(with the exception of the latest log file) and maintain a staging directory on the
repository with the checkpoint and log files per replica set used for the latest backup.
The next staged backup will copy the latest log files from each replica set and
synchronize the rest of the files in the staging directory over the network. Finally, the
repository uses the resulting files in the staging directory to create the backup, which
removes the load of that task from the data instances and network.

Note: You can add the -name parameter to specify a backup name.
For example, ttGridAdmin dbBackup database1 -repository repo1
-name mybackup creates a backup named mybackup.

Backing up and restoring a database

10-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

The next sections describe the recommended settings for staged backups and how to
create a staged backup:

■ Recommendations for staged backups

■ Create a staged backup

Recommendations for staged backups
Consider these before starting staged backups for your database:

■ Prerequisites

■ SSH config file

■ BackupFailThreshold attribute

■ File system space

■ WAN throughput

Prerequisites Staged backups have these prerequisites:

■ Passwordless SSH access: Staged backups require that all hosts with instances
(data and management) have passwordless SSH access for the instance
administrator to the system hosting the repository. See "Setting passwordless SSH"
on page 2-12 for more information.

■ The rsync command: Staged backups require that the rsync command is available
on hosts with data instances and on the system allocating the repository.

SSH config file Staged backups depend on SSH for data transport and control. On every
host with a data instance, consider updating the SSH configuration file for the instance
administrator (/home/instance_administrator/.ssh/config) or the global SSH
configuration file (/etc/ssh/ssh_config) to improve the reliability of staged backups.
These options may prove useful:

■ HostName: You can use this option to specify multiple aliases for the repository.
SSH tries them in order. Provide a list of multiple aliases in a different order to
every host.

■ Port: SSH uses by default port 22. You may need to use a different port number if
SSH has to pass through a NAT gateway.

■ BindAddress or BindInterface: You can use these options to control which
Ethernet interface SSH will use to contact the repository.

■ ConnectionAttempts: By default SSH only makes one connection attempt. You can
use this option to set how many connection attempts SSH will make before
aborting and returning a failure notification.

Note:

■ The system hosting the repository makes use of the Linux cp and
rsync commands and the TimesTen ttTransferAgent utility to
perform staged backup operations. The ttTransferAgent utility is
copied to the staging directory at the beginning of a staged
backup if it is not already available from a previous staged
backup.

■ See "Working with repositories" on page 10-4 for more
information on SCP repositories.

Backing up and restoring a database

Migrating, Backing Up and Restoring Data 10-11

■ ConnectTimeout: By default SSH uses the system TCP timeout. You can use this
option to set the timeout (in seconds) to establish a SSH connection. Consider
increasing this connection timeout on high-latency WAN links.

■ ProxyJump: You can use this option to set bastion hosts to serve as proxies to
connect to the repository. The hosts with a data instance may be able to access the
bastion hosts but not other hosts, like the repository. Likewise, the bastion hosts
may be able to access the remote repository. You can configure multiple bastion
hosts for high availability.

■ ServerAliveCountMax: You can use this option to set the maximum number of
keepalive messages sent through the encrypted channel by a host without
receiving any message back from the repository. The connection is terminated after
reaching this threshold. You must use this option in conjunction with the
ServerAliveInterval option.

■ ServerAliveInterval: You can use this option to set the time (in seconds) between
receiving no data from the repository and the host sending a keepalive message.
This serves to detect if the repository has crashed or the network has gone down.

On the system hosting the repository, consider setting this option in the global SSH
daemon configuration file (/etc/ssh/sshd_config):

■ MaxStartups: You can use this option the set the maximum number of concurrent
unauthenticated connections to the SSH daemon. Consider setting the start
parameter to a value larger than the number of replica sets and the full parameter
to ten times the value of the start parameter. For example, if you have ten replica
sets, set this option as:

MaxStartups 15:30:150

BackupFailThreshold attribute The BackupFailThreshold first connection attribute
determines the number of transactions log files that can accumulate in the LogDir
directory since the start of a backup before TimesTen is forced to release the hold on
checkpoint operations. If a checkpoint is initiated before the completion of a backup,
the backup is invalidated.

Set the BackupFailThreshold attribute to a value that is high enough to ensure the safe
completion of your backup. For example, if a backup typically takes n seconds to
complete and your database creates m transaction log files per second, then set
BackupFailthreshold to a value greater than n * m. The number of log files generated
by your database per any given unit of time is directly proportional to your write
workload and inversely proportional to the value set for the LogFileSize attribute.

See "Modifying the connection attributes of a database" on page 5-30 for information
on how to modify the value of a first connection attribute.

For more information on the BackupFailThreshold, LogDir, and LogFileSize
connection attributes, see "Connection Attributes" in the Oracle TimesTen In-Memory
Database Reference.

File system space To avoid out-of-space failures due to staged backups, ensure that:

■ The file system used by each data instance has enough space for one transaction
log file (LogFileSize) in the instance home plus enough space to store in LogDir
all the transaction log files that may be generated while the backup operation is in
progress (BackupFailThreshold * LogFileSize).

■ The file system used by the repository has enough space to store as many backups
you wish to retain plus enough space in the staging directory for 1.25 backups for
all staged backups of the same database.

Backing up and restoring a database

10-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

See "Determining the size of a backup or export" on page 10-18 for information on
the file system space each backup operation requires.

For more information on the LogFileSize, LogDir, and BackupFailThreshold
connection attributes, see "Connection Attributes" in the Oracle TimesTen In-Memory
Database Reference.

WAN throughput The minimum WAN throughput required by a subsequent staged
backup depends on the aggregate size of the database, the desired time for the backup
to take, and the speed-up factor provided by the staging repository and the defined
transfer compression. You will need to perform a series of staged backups to test how
much the performance of your network and overall setup (plus the inherent
advantages subsequent staged backups over normal backups provide) reduces the
backup time for regular staged backups under typical workload conditions. Consider
this formula:.

Minimum WAN throughput = file size of a backup/(desired backup time * (first
staged backup time/average subsequent staged backups time))

See "Determining the size of a backup or export" on page 10-18 for information on the
file system space each backup operation requires.

Create a staged backup
This example creates a staged backup named stgbackup1 of the database1 database
and stores that backup in the scprepo1 repository. The staged backup is set to use an
aggregate network traffic of 62 MB per second and a compression level of 9 for that
network traffic.

% ttGridAdmin dbBackup database1 -repository scprepo1 -name stgbackup1 -backupType
staged -bwlimit 62 -compression 9
dbBackup stgbackup1 started

Depending on the size of your database, the number of replica sets that your database
uses, the performance of your secondary storage device, and the performance of your
network the backup time varies. The ttGridAdmin dbBackup command only starts the
backup process and the output does not indicate that the backup is complete. Use the
ttGridAdmin dbBackupStatus command to see the status of your backup. See "Check
the status of a backup" on page 10-12 for more information.

For more information about the ttGridAdmin dbBackup command, see "Back up a
database (dbBackup)" in the Oracle TimesTen In-Memory Database Reference.

Check the status of a backup
The ttGridAdmin dbBackupStatus command enables you to view the progress of all
backup processes for a specific database.

This example displays the status of all backup processes for the database database1.

% ttGridAdmin dbBackupStatus database1
Database Backup Repository Host Instance Elem State Started Finished
--------- --------------- --------- ----- --------- ---- --------- ---------------------- --------
database1 B20170222145544 repo1 Completed 2017-02-22T14:55:44.000Z Y
 host4 instance1 2 Complete

Note: Ensure that you run the ttGridAdmin dbBackup command as
the instance administrator on the active management instance.

Backing up and restoring a database

Migrating, Backing Up and Restoring Data 10-13

 host5 instance1 3 Complete

Ensure that the ttGridAdmin dbBackupStatus output shows that the overall state of
the backup process is marked as Completed. In case that you see a state value of
Failed, perform these tasks:

■ Use the ttGridAdmin dbStatus database1 -details command to ensure that the
host and instance of that element are up and running. If at least one host from each
replica set is up, the ttGridAdmin dbBackup command can create a full backup of
your database. For more information, see "Monitor the status of a database
(dbStatus)" in the Oracle TimesTen In-Memory Database Reference.

■ Ensure that the repository where you are attempting to create the backup has
enough free file system space to create a backup of your database.

If the backup failed, you may attempt to perform another backup using a different
backup name. If a new backup name does not perform a successful backup, diagnose
the issue and perform any necessary fixes. After you have resolved the problem, use
the ttGridAdmin dbBackupDelete to delete any failed backups. TimesTen Scaleout
does not automatically delete a failed backup. Then, use the ttGridAdmin dbBackup
command to start a new backup. Depending on your available file system space, you
can use these commands in any order. See "Delete a backup" on page 10-13 and "Back
up a database" on page 10-9 for more information.

For more information about the ttGridAdmin dbBackupStatus command, see "Display
the status of a database backup (dbBackupStatus)" in the Oracle TimesTen In-Memory
Database Reference.

Delete a backup
TimesTen Scaleout does not automatically delete backups. In some cases, you may
want to delete backups that have failed or old backups to free up file system space.

Use the ttGridAdmin repositoryList -contents command to view all of your
available backups and their respective repositories. See "List repositories and
collections" on page 10-7 for more information.

This example deletes the backup named B20170222145544 from repository repo1.

% ttGridAdmin dbBackupDelete -repository repo1 -name B20170222145544
Backup B20170222145544 deleted

TimesTen Scaleout deletes the collection and all of the sub-collections that are part of
the backup.

For more information about the ttGridAdmin dbBackupDelete command, see "Delete a
database backup (dbBackupDelete)" in the Oracle TimesTen In-Memory Database
Reference.

Restore a database
Before attempting to restore a database, consider the following:

■ The database definition name must not be in use by other databases when you
attempt to perform a database restore. For example, you cannot name the restored
database database1 if another database is using the database1 name.

■ The database definition of the backed up database does not need to match the
database name of the database that you are restoring. For example, you can restore
a backup of the payroll database to the new_payroll database definition.

Backing up and restoring a database

10-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ The K-safety value of the database that you backed up does not need to match the
K-safety value of the restore database.

■ The database definition must have at least as many connections as the database
definition of the backed up database.

This example restores the database res_db1 from the backup B20170222145544 from
repository repo1. Ensure that you run the ttGridAdmin dbRestore command on the
management instance.

% ttGridAdmin dbRestore res_db1 -repository repo1 -backup B20170222145544
dbRestore B20170222145544 started

Depending on the size of your backup, the number of replica sets that your database
uses, the performance of your secondary storage device, and the performance of your
network the restore time varies. The ttGridAdmin dbRestore command only starts the
restore process and the output does not indicate that the restore is complete. The
restore process is performed asynchronously on every element. Use the ttGridAdmin
dbRestoreStatus command to see the status of your restore. See "Check the status of a
restore" on page 10-14 for more information.

For more information about the ttGridAdmin dbRestore command, see "Restore a
database (dbRestore)" in the Oracle TimesTen In-Memory Database Reference.

Check the status of a restore
The ttGridAdmin dbRestoreStatus command enables you to view the progress of the
restore process for a specific database.

This example displays the status of all restore processes for the database res_db1.

% ttGridAdmin dbRestoreStatus res_db1
Database Restore Repository Host Instance Elem State Started Finished
-------- ------- ---------- ----- --------- ---- -- -
res_db1 mybkup repo1 Restore_Finale_Complete 2017-03-03T13:19:39.000Z Y
 host3 instance1 Restore_Instance_Complete
 host4 instance1 Restore_Instance_Complete
 host5 instance1 Restore_Instance_Complete
 host6 instance1 Restore_Finale_Comnplete

Ensure that the ttGridAdmin dbRestoreStatus output shows that the restore has been
completed for every element of your grid. The restore operation is fully completed
when the State column of the row with the database name is marked as Completed.

Ensure that the ttGridAdmin dbRestoreStatus output shows that the overall state of
the restore process is marked as Completed. In case that you see a state value of Failed
or Restore_Instance_Failed for an element or an overall state of Restore_Finale_
Failed or Restore_Init_Failed, stop the database with ttGridAdmin dbClose and
ttGridAdmin dbUnload commands. Once you have stopped the database, use the
ttGridAdmin dbDestroy command to delete the database that did not restore
successfully. Then, attempt the restore operation again. See "Unloading a database
from memory" on page 5-27 and "Destroying a database" on page 5-33 for more
information.

Note: Ensure that the res_db1 database definition exists before
attempting to perform a restore. You do not need to create a database
from this database definition. See "Create a database definition" on
page 5-2 for more information.

Exporting and importing a database

Migrating, Backing Up and Restoring Data 10-15

For more information about the ttGridAdmin dbRestoreStatus command, see
"Display the status of a database restore (dbRestoreStatus)" in the Oracle TimesTen
In-Memory Database Reference.

Exporting and importing a database
The TimesTen Scaleout export and import functionality enables you to migrate data
between two grid databases.

In these circumstances you must export a database:

■ The source database is from a version of TimesTen Scaleout that is not
patch-compatible such as for a major upgrade. See "Upgrading a grid" on
page 8-18 for more information on both types of upgrades (patch-compatible or
otherwise).

■ The destination database is in a grid topology that has fewer replica sets than the
grid topology where the database is exported.

When you export a database, TimesTen Scaleout performs the export asynchronously
of each replica set and creates a sub-collection for each replica set that is exported.

See "Determining the size of a backup or export" on page 10-18 for information on the
file system space each export operation requires.

TimesTen Scaleout enables you to perform the following procedures with database
exports:

■ Export a database

■ Check the status of a database export

■ Delete a database export

■ Import a database export

■ Check the status of a database import

Export a database
Before attempting to export a database, ensure that you have configured a repository
for your grid. See "Working with repositories" on page 10-4 for more information.

Ensure that you disconnect all application connections to the database before
performing a database export to ensure that no applications are modifying data during
the database export operation. Also, ensure that you close the database to prevent any
new connections to the database. Any transaction committed during an export
operation may result in an inconsistent database.

This example creates a database export of the database database1 and stores that
export in the repository repo1. By default, TimesTen Scaleout names your database
export with the current date and time, Myyyymmddhhss. Ensure that you run the
ttGridAdmin dbExport command on a management instance.

% ttGridAdmin dbExport database1 -repository repo1
dbExport M20170302144218 started

Note: You can add the -name parameter to specify a database export
name. For example, ttGridAdmin dbExport database1 -repository
repo1 -name myexport creates a database export named myexport.

Exporting and importing a database

10-16 Oracle TimesTen In-Memory Database Scaleout User's Guide

Depending on the size of your database, the number of replica sets that your database
uses, the performance of your secondary storage device, and the performance of your
network the database export time varies. Use the ttGridAdmin dbExportStatus
command to see the status of your database export. See "Check the status of a database
export" on page 10-16 for more information.

For more information about the ttGridAdmin dbExport command, see "Export a
database (dbExport)" in the Oracle TimesTen In-Memory Database Reference.

Check the status of a database export
The ttGridAdmin dbExportStatus command enables you to view the progress of all
database export processes for a specific database.

This example displays the status of all database export processes for the database
database1.

% ttGridAdmin dbExportStatus database1
Database Export Repository Host Instance Elem State Started
--------- --------------- ---------- ---- -------- ---- ---------- ------------------------
database1 M20170321073022 repo1 Completed 2017-03-21T07:30:27.000Z
 host3 instance1 Complete
 host5 instance1 Complete

Ensure that the ttGridAdmin dbExportStatus output shows that a database export has
been completed for every replica set of your grid. In case that you see a state value of
Failed for an element, perform these tasks:

■ Use the ttGridAdmin dbStatus database1 -details command to ensure that the
host and instance of that element are up and running. For more information, see
"Monitor the status of a database (dbStatus)" in the Oracle TimesTen In-Memory
Database Reference.

■ Ensure that the repository where you are attempting to create the backup has
enough free file system space to create a backup of your database.

After you have resolved the issues that caused the export to fail, use the ttGridAdmin
dbExportDelete to delete the failed database export. TimesTen Scaleout does not
automatically delete a failed database export. Then, use the ttGridAdmin dbExport
command to start a new database export. See "Delete a database export" on page 10-16
and "Export a database" on page 10-15 for more information.

For more information about the ttGridAdmin dbExportStatus command, see "Display
the status of a database export (dbExportStatus)" in the Oracle TimesTen In-Memory
Database Reference.

Delete a database export
TimesTen Scaleout does not automatically delete database exports. In some cases, you
may want to delete database exports that have failed or old database exports to free up
file system space.

Use the ttGridAdmin repositoryList -contents command to view all of your
available database exports and their respective repositories. See "List repositories and
collections" on page 10-7 for more information.

This example deletes the database export named M20170321073022 from repository
repo1.

% ttGridAdmin dbExportDelete -repository repo1 -name M20170321073022

Exporting and importing a database

Migrating, Backing Up and Restoring Data 10-17

Export M20170321073022 deleted

TimesTen Scaleout deletes all of the sub-collections that are part of the database export.

For more information about the ttGridAdmin dbExportDelete command, see "Delete a
database export (dbExportDelete)" in the Oracle TimesTen In-Memory Database Reference.

Import a database export
Before attempting to import a database export, consider the following:

■ The database to which you import must exist when you attempt to perform a
database import. The database can either contain data or be empty. It is not
necessary to create the users or tables of the original database.

■ The database name of the database that you exported does not need to match the
database name of the database where you are importing the database export. For
example, you can import a database export of the payroll database in the new_
payroll database.

■ The K-safety value of the database that you exported does not need to match the
K-safety value of the grid where you are importing the database export.

■ Ensure that you disconnect all application connections to the database before
performing a database import to ensure that no applications are modifying data
during the database import operation. Also, ensure that you close the database to
prevent any new connections to the database. Any transaction committed during
an import operation may result in an inconsistent database. See "Close a database
(dbClose)" in the Oracle TimesTen In-Memory Database Reference for more
information.

This example imports the database import_db from the database export
M20170321073022 from repository repo1. Ensure that you run the ttGridAdmin
dbImport command on a management instance.

% ttGridAdmin dbImport import_db -repository repo1 -name M20170321073022
-numThreads 8
dbImport M20170321073022 started

Depending on the size of your database export, the number of replica sets that your
database uses, the performance of your secondary storage device, and the
performance of your network the import time varies. To increase the performance of
the import operation, use the -numThreads option to specify the number threads that
concurrently read rows from the export database and insert them into the import
database.

For more information about the ttGridAdmin dbImport command, see "Import a
database (dbImport)" in the Oracle TimesTen In-Memory Database Reference.

Check the status of a database import
The ttGridAdmin dbImportStatus command enables you to view the progress of the
import process for a specific database.

This example displays the status of all import processes for the database import_db.

Note: Ensure that the import_db database exists before attempting to
perform a restore. See "Create a database definition" on page 5-2 for
more information.

Determining the size of a backup or export

10-18 Oracle TimesTen In-Memory Database Scaleout User's Guide

% ttGridAdmin dbImportStatus import_db
Database Import Repository Host Instance Elem State Started
--------- ----------------------------- -------- ---- ---------- ----------------------------------
database1 M20170321073022 repo1 Import_Finale_Complete2017-03-21T10:30:27.000Z
 host3 instance1 1 Import_Rows_Complete
 host5 instance1 1 Import_Rows_Complete

Ensure that the ttGridAdmin dbImportStatus output shows that the import operation
has been completed for every element of your grid. The import operation is fully
completed when the State column of the row with the database name is marked as
Completed.

In case that you see a state value of Failed for an element, use the ttGridAdmin
dbDestroy command to delete the database that did not import successfully. Then,
recreate the database and attempt the import operation again. See "Destroying a
database" on page 5-33 for more information.

For more information about the ttGridAdmin dbImportStatus command, see "Display
the status of a database import (dbImportStatus)" in the Oracle TimesTen In-Memory
Database Reference.

Determining the size of a backup or export
Every database backup and export stored in a repository requires file system space (in
megabytes) that is equivalent to the value assigned to the PermSize attribute plus the
sum of file sizes of the transaction log files created after the latest checkpoint, per
replica set.

The file size of transaction log files and how many are typically written between
background checkpoints is dependent of the configuration of your database. Your
typical workload and the settings of attributes like CkptFrequency, CkptLogVolume,
and LogFileSize have direct impact in determining how many transaction log files
would need to be considered for a backup or export operation. See "Storage
provisioning for transaction log files" in the Oracle TimesTen In-Memory Database
Operations Guide for more information.

Additionally, each data instance requires available temporary file system space
(/instance_home/grid/admin/temp/) that is equivalent to the size of a database
backup or database export divided by the number of replica sets for every normal
backup, export, restore, or import operation. Staged backups only require temporary
file system space equivalent to one transaction log file (LogFileSize).

11

Recovering from Failure 11-1

11Recovering from Failure

Error conditions and failure situations can impact availability. If the error condition
can be recovered automatically, then normal operations resume. However, there may
be situations where you need to intervene to recover from failure.

TimesTen Scaleout has included error and failure detection with automatic recovery
for many error and failure situations in order to maintain a continuous operation for
all applications using TimesTen Scaleout. Errors and failure situations can include:

■ Software errors.

■ Network outage or other communication channel failures. A communication
channel is a TCP connection.

■ One or more machines hosting a data instance unexpectedly reboots or crashes.

■ The main TimesTen daemon for an instance or any of its sub-daemons fail.

■ An element becomes slow or unresponsive either from a hang situation or as a
result of a heavy load.

■ A machine or rack of machines hosting data instances are unexpectedly brought
down for unknown reasons.

The response necessary for error conditions and failure situations are as follows:

■ Transient errors: A transient error is due to a temporary condition that TimesTen
Scaleout is usually able to quickly resolve. You can immediately retry the failed
transaction, which normally succeeds.

■ Element failure: When an element fails, TimesTen Scaleout can automatically
recover the element most of the time. However, there are certain element failure
situations where you may be required to fix the problem. The application response
to an element failure may differ depending on the configuration of the grid and
the database. After the problem is fixed, either TimesTen Scaleout recovers the
element and operations continue or you supply a new element to take the place of
the failed element.

■ Replica set failure: If all of the elements in a replica set fail, there is a method for
TimesTen Scaleout to automatically recover the elements (once the original failure
issue has been fixed). The element with the latest changes, known as the seed
element, is recovered first. Then, all subsequent elements are recovered from the
seed element.

■ Database failure: If all replica sets fail, the database is considered failed. You need
to reload the database for recovery. How a database recovers when the database
reloads depends on the value for the Durability attribute.

Displaying the database, replica set and element status

11-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Data distribution failure: You can attempt a re-synchronization of your data if the
data distribution process is interrupted or fails to complete. Re-synchronization
involves executing the ttGridAdmin dbDistribute -resync operation.

The following sections describe the error or failure situations and recovery:

■ Displaying the database, replica set and element status

■ Recovering from transient errors

■ Recovering from a data distribution error

■ Tracking the automatic recovery for an element

■ Availability despite the failure of one element in a replica set

■ Unavailability of data when a full replica set is down or fails

■ Recovering when a data instance is down

■ Database recovery

■ Client connection failover

■ Managing failover for the management instances

■ Performance recommendations

Displaying the database, replica set and element status
The element status shows:

■ If the element is loaded (opened).

■ If the element is in process of a change, such as being opened (opening), loaded
(creating, loading), unloaded (unloading), destroyed (destroying) or closed
(closing).

■ If the element or its data instance has failed and is waiting on the seed element to
recover, then the status displayed is waiting for seed. The element that failed
with the latest changes, known as the seed element, is recovered first to the latest
transaction in the checkpoint and transaction log files. The other element in the
replica set is copied from the seed element of the replica set.

■ If the element is not up (evicted or down).

The following examples show how to display the status of the database, data space
groups, replica sets and elements. See "Troubleshooting based on element status" on
page 11-10 for details on how to respond to each status.

Example 11–1 Displaying the status of the database and all elements

You can use the ttGridAdmin dbStatus -all command to list the current status for
the database, all elements, replica sets and data space groups in your database.

The first section describes the status of the overall database. In this example, the
database has been created, loaded, and open. The status also shows the total number
of created, loaded and open elements.

The database status shows the progression of the database being first created, then
loaded and finally opened. In bringing down the database, the reverse order is
performed, where the database is first closed, then unloaded and finally destroyed.

% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 07:37:28 PST 2018

Displaying the database, replica set and element status

Recovering from Failure 11-3

created,loaded-complete,open
Completely created elements: 6 (of 6)
Completely loaded elements: 6 (of 6)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Open elements: 6 (of 6)

However, if the database status shows that the database is created, loaded and closed,
then the database has not yet been opened. The following example shows that the
database is not open yet, but that the distribution map has been updated, showing the
created and loaded replica sets. Note that none of the elements are opened until the
database is opened.

% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 07:37:01 PST 2018

created,loaded-complete,closed
Completely created elements: 6 (of 6)
Completely loaded elements: 6 (of 6)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Open elements: 0 (of 6)

The second section provides information about the elements: the host and instance
name in which each element exists, the number assigned to the element, and the status
of the element.

Database database1 element level status as of Thu Feb 22 07:37:28 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host3 instance1 1 opened 2018-02-22 07:37:25
host4 instance1 2 opened 2018-02-22 07:37:25
host5 instance1 3 opened 2018-02-22 07:37:25
host6 instance1 4 opened 2018-02-22 07:37:25
host7 instance1 5 opened 2018-02-22 07:37:25
host8 instance1 6 opened 2018-02-22 07:37:25

The third section provides information about the replica sets. In this example, there are
three replica sets. In addition to information about the elements, it also provides the
number of the replica set in which each element exists, identified by the RS column.
The data space group in which each element exists (within its data instance within its
host) is identified with the DS column. Notice that each replica set has one element in
each data space group.

Database database1 Replica Set status as of Thu Feb 22 07:37:28 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host3 instance1 opened 2018-02-22 07:37:25
 2 2 host4 instance1 opened 2018-02-22 07:37:25
 2 1 3 host5 instance1 opened 2018-02-22 07:37:25
 2 4 host6 instance1 opened 2018-02-22 07:37:25
 3 1 5 host7 instance1 opened 2018-02-22 07:37:25
 2 6 host8 instance1 opened 2018-02-22 07:37:25

The final section organizes the information about the elements to show which
elements are located in each data space group, shown under the DS column. In this

Displaying the database, replica set and element status

11-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

example, there are two data space groups. The elements are organized either under
data space group 1 or 2.

Database database1 Data Space Group status as of Thu Feb 22 07:37:28 PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host3 instance1 opened 2018-02-22 07:37:25
 2 3 host5 instance1 opened 2018-02-22 07:37:25
 3 5 host7 instance1 opened 2018-02-22 07:37:25
 2 1 2 host4 instance1 opened 2018-02-22 07:37:25
 2 4 host6 instance1 opened 2018-02-22 07:37:25
 3 6 host8 instance1 opened 2018-02-22 07:37:25

The following shows the status if you evicted one of your replica sets without
replacement. While the database is loaded and opened, it shows that there are six
created elements, but only four of those are loaded. There is one less replica set in all
displayed sections and the evicted elements are shown as evicted with their status.

% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 07:52:08 PST 2018

created,loaded-complete,open
Completely created elements: 6 (of 6)
Completely loaded elements: 4 (of 6)
Completely created replica sets: 2 (of 2)
Completely loaded replica sets: 2 (of 2)

Open elements: 4 (of 6)

Database database1 element level status as of Thu Feb 22 07:52:08 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------- ------------------- -------
host3 instance1 1 evicted 2018-02-22 07:52:06
host4 instance1 2 evicted 2018-02-22 07:52:06
host5 instance1 3 opened 2018-02-22 07:37:25
host6 instance1 4 opened 2018-02-22 07:37:25
host7 instance1 5 opened 2018-02-22 07:37:25
host8 instance1 6 opened 2018-02-22 07:37:25

Database database1 Replica Set status as of Thu Feb 22 07:52:08 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 3 host5 instance1 opened 2018-02-22 07:37:25
 2 4 host6 instance1 opened 2018-02-22 07:37:25
 2 1 5 host7 instance1 opened 2018-02-22 07:37:25
 2 6 host8 instance1 opened 2018-02-22 07:37:25

Database database1 Data Space Group status as of Thu Feb 22 07:52:08 PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 3 host5 instance1 opened 2018-02-22 07:37:25
 2 5 host7 instance1 opened 2018-02-22 07:37:25
 2 1 4 host6 instance1 opened 2018-02-22 07:37:25
 2 6 host8 instance1 opened 2018-02-22 07:37:25

Recovering from transient errors

Recovering from Failure 11-5

See "Troubleshooting based on element status" on page 11-10 in this guide and
"Database management operations" and "Monitor the status of a database (dbStatus)"
in the Oracle TimesTen In-Memory Database Reference for full details on the different
status options.

Recovering from transient errors
Because a grid spans multiple hosts, there is an opportunity for multiple types of
failure, many of which can be transient errors. For the most part, TimesTen Scaleout
can detect transient errors and adapt to them quickly. Most errors in the grid are
transient with error codes designated as Transient, which may cause a specific API,
SQL statement or transaction to fail. Most of the time, the application can retry the
exact same operation with success.

The potential impacts of a transient error are:

■ The execution of a particular statement failed. Your application should re-execute
the statement.

■ The execution of a particular transaction failed. Your application should roll back
the transaction and perform the operations of the transaction again.

■ The connection to the data instance fails. If you are using a client/server
connection, then the TimesTen Scaleout routes the connection to another active
data instance. See "Client connection failover" on page 11-30 for full details.

The following sections describe how TimesTen Scaleout recovers the element from the
more common transient errors:

■ Retry transient errors

■ Communications error

■ Software error

■ Host or data instance failure

■ Heavy load or temporary communication failure

Retry transient errors
While TimesTen Scaleout automatically handles the source of most transient errors,
your application may retry the entire transaction when receiving the error described in
Table 11–1.

Your applications can check for the transient error as follows:

■ ODBC or JDBC applications check for the SQLSTATE TT005 error to determine if
the application should retry the transaction. See "Retrying after transient errors
(ODBC)" in the Oracle TimesTen In-Memory Database C Developer's Guide and
"Retrying after transient errors (JDBC)" in the Oracle TimesTen In-Memory Database
Java Developer's Guide for more details.

Table 11–1 SQLSTATE and ORA errors for retrying after transient failure

SQLSTATE ORA errors PL/SQL
exceptions

Error message

TT005 ORA-57005 Exception
-57005

Transient transaction failure due to
unavailability of a grid resource. Roll back the
transaction and then retry the transaction.

Recovering from transient errors

11-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ OCI and Pro*C applications check for the ORA-57005 error to determine if the
application should retry a SQL statement or transaction. See "Transient errors
(OCI)" in the Oracle TimesTen In-Memory Database C Developer's Guide for more
details.

■ PL/SQL applications check for the -57005 PL/SQL exception to determine if the
application should retry the transaction. See "Retrying after transient errors
(PL/SQL)" in the Oracle TimesTen In-Memory Database PL/SQL Developer's Guide for
more details.

Communications error
The following describes the type of communications that might fail:

■ Communication between elements: Used to execute SQL statements within
transactions and stream data between elements, as required. If there is a
communications error while the application is executing a transaction, then you
must roll back the transaction. When you retry the transaction, communications
are recreated and work continues.

■ Communication between data instances: The data instances communicate with
each other for creating communication as well as sending or receiving recovery
messages. If there is a break in the communication between the data instances,
then communications are automatically recovered when you retry the operation.

■ Communication between data instances and the ZooKeeper membership servers:
Each data instance communicates with the ZooKeeper membership service
through one of the defined ZooKeeper servers. If communications fail between a
data instance and the ZooKeeper server with which it has been communicating,
then the data instance attempts to connect to another ZooKeeper server. If the data
instance cannot connect to any ZooKeeper server, then the data instance considers
itself to be down.

See "Recovering when a data instance is down" on page 11-29 for details on what
to do when a data instance is down.

Software error
If a software error causes an element to be unloaded, then an error is returned to the
active application. After rolling back the transaction, the application can continue
executing transactions as long as one element from each replica set is open.

TimesTen Scaleout attempts to reload the element. Once opened, the element can
accept transactions again.

Host or data instance failure
If the host that contains a data instance crashes or if the data instance crashes, then an
error is returned to the active application. Since the data instance is down, the element
status is displayed as down. If the data instance restarts (whether from automatic

Note: You can manually initiate the reload of an element by
reloading the database with the ttGridAdmin dbload command. If
element status is load failed, fix what caused the element load to fail
and then reload the element with the ttGridAdmin dbload command.
See "Load a database into memory (dbLoad)" in the Oracle TimesTen
In-Memory Database Reference for details.

Recovering from a data distribution error

Recovering from Failure 11-7

recovery or manual intervention), the element within the data instance most likely
recovers. Monitor the status of the element with the ttGridAdmin dbStatus command
to verify if it did recover.

Heavy load or temporary communication failure
A transient failure may occur if an element becomes slow or unresponsive due to
heavy load. During a database operation, a transient failure can occur for many
reasons.

■ A query timeout may occur if one or more hosts of the TimesTen Scaleout are
overloaded and are slow to respond.

■ A transient failure occurs with a temporary suspension of communication, such as
unplugging from the network to reset communications.

Recovering from a data distribution error
Your existing data is redistributed once you apply the change to the distribution map
with the ttGridAdmin dbDistribute -apply command. (See "Redistributing data in a
database" on page 8-8 for full details.) You receive an error if you request a data
distribution or a reset while a data distribution is in progress.

TimesTen spawns multiple processes to perform data distribution. In addition, the
active management instance communicates with the data instances to facilitate data
distribution. The active management instance stores metadata to track the progress of
each data distribution. Thus, the data distribution could fail if a critical process fails,
an instance fails, or communication fails between the active management instance and
the data instances.

The following error message displays if the dbDistribute -apply command fails
during data distribution:

% ttGridAdmin dbDistribute database1 -apply
Error : Distribution failed, error message lost due to process failure

There are a few failure cases where the active management instance may not know
about the success or failure of a data distribution operation and the metadata may be
left in an intermediate state. This could occur if the process in which the dbDistribute
-apply was executed dies or is killed.

Do not re-initiate another dbDistribute -apply command if the data distribution fails
or does not complete. Instead, execute the dbDistribute -resync command. The
dbDistribute -resync command examines the metadata in the active management
instance to determine if a dbDistribute -apply operation was in progress but did not
complete (neither committing nor rolling back the changes). If so, the dbDistribute
-resync command re-synchronizes the metadata in the database with the metadata in
the active management instance (if they do not have matching states).

■ If the dbDistribute -resync command succeeds, the re-synchronization may
result in committing or rolling back the metadata changes of the previous
dbDistribute -apply operation.

Note: See "Troubleshooting based on element status" on page 11-10
for information on how to respond to the element status. See
"Recovering when a data instance is down" on page 11-29 on how to
manually recover a data instance.

Tracking the automatic recovery for an element

11-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ If the dbDistribute -resync command fails, you can either:

– Execute the dbDistribute -apply command to attempt the same distribution.

– Execute the dbDistribute -reset command to discard all distribution
settings that have not yet been applied, then attempt a new data distribution
with the dbDistribute -apply command.

The following example shows the output when the dbDistribute -resync command
successfully completes the data distribution operation:

% ttGridAdmin dbDistribute -resync
Distribution map updated

The following example shows the output when the dbDistribute -resync command
rolls back the data distribution operation:

% ttGridAdmin dbDistribute database1 -resync
Distribution map Rolled Back

The following example shows the output when the dbDistribute -resync command
discovers that there is no data distribution in progress.

% ttGridAdmin dbDistribute database1 -resync
No DbDistribute is currently in progress

The following example shows the output when the dbDistribute -resync command
discovers that the data distribution is still in progress.

% ttGridAdmin dbDistribute database1 -resync
Distribute is still in progress. Wait for dbDistribute to complete, then call
resync

An error displays if the re-synchronization fails. For example, you might attempt to
re-synchronize a data distribution when there are no active data instances. In this case,
the following error displays:

% ttGridAdmin dbDistribute database1 -resync
Error : Could not connect to data instance to retrieve partition table version

See "Set or modify the distribution scheme of a database (dbDistribute)" in the Oracle
TimesTen In-Memory Database Reference for more details.

Tracking the automatic recovery for an element
If an element becomes unloaded, TimesTen Scaleout attempts to reload the element if
the database is supposed to be loaded. During this time, the element status changes to
loading as the element is being automatically recovered by TimesTen Scaleout.

You can monitor the element status with the ttGridAdmin dbStatus -element
command. This example shows that the element on the host3.instance1 data instance
is in the process of recovering by showing a status of loading.

% ttGridAdmin dbStatus database1 -element
Database database1 element level status as of Wed Jan 10 14:34:08 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host3 instance1 1 loading 2018-01-10 14:33:23
host4 instance1 2 opened 2018-01-10 14:33:21
host5 instance1 3 opened 2018-01-10 14:33:23
host6 instance1 4 opened 2018-01-10 14:33:23

Availability despite the failure of one element in a replica set

Recovering from Failure 11-9

host7 instance1 5 opened 2018-01-10 14:33:23
host8 instance1 6 opened 2018-01-10 14:33:23

See "Availability despite the failure of one element in a replica set" on page 11-9 and
"Unavailability of data when a full replica set is down or fails" on page 11-15 for more
details on what happens when an element or a full replica set goes down.

Availability despite the failure of one element in a replica set
A main goal for TimesTen Scaleout is to provide access to the data even if there are
failures. When k = 2, the data contained within a replica set is available as long as at
least one element in the replica set is up. If an element in the replica set goes down and
then recovers, then the element is automatically re-synchronized with the other
element in its replica set.

The following example shows a grid where k = 2. Three replica sets are created, each
with two elements in the replica set. The element on the host4.instance1 data
instance fails. TimesTen Scaleout automatically re-connects to the element within the
host3.instance1 data instance to continue executing the transaction. While the
element on the host4.instance1 data instance is unavailable or in the middle of
recovering, the element on the host3.instance1 data instance handles all transactions
for the replica set. Once the element on the host4.instance1 data instance recovers,
both elements in the replica set can handle transactions.

Figure 11–1 K-safety reacts to one data instance failure

Multiple failures in different replica sets do not result in loss of functionality, as long as
there is one element up in each replica set. You may lose data if an entire replica set
fails.

Note: If k = 1, any element failure results in the replica set being
down because the replica set contains only a single element. See
"Unavailability of data when a full replica set is down or fails" on
page 11-15 for details on recovery when an element permanently fails
when k = 1.

data space 2data space 1

host3.instance1

inst3

replica set 1

replica set 2

replica set 3

FAILLED

host4.instance1

host5.instance1 host6.instance1

host7.instance1 host8.instance1

Recovering when a single element fails in a replica set

11-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

The following example shows a grid where k = 2 with three replica sets. In this
example, the elements in the host4.instance1, host5.instance1, and
host8.instance1 data instances fail. However, your transactions continue to execute
since there is at least one element available in each replica set.

Figure 11–2 K-safety reacts to multiple data instance failures

Recovering when a single element fails in a replica set
See the following sections on how to respond when a single element fails within a
replica set when k=2:

■ Troubleshooting based on element status

■ Recovering a replica set after an element goes down

■ Remove and replace a failed element in a replica set

Troubleshooting based on element status
For some of the element states, you may be required to intervene. When you display
the element status, you can respond to each of these element states. Table 11–2 shows
details on each element status and a recommendation of how to respond to changes in
the element status.

Table 11–2 Element status

Status Meaning Notes and recommendations

close failed The attempt to close the
element failed.

Refer to the ttGridAdmin dbStatus
command output for information about the
failure.

You can try ttGridAdmin dbClose again.

closing The element is in the
process of closing.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
closed. You can unload the database when
some elements are still closing, but you
would have to use the ttGridAdmin
dbUnload -force command.

data space 2data space 1

host3.instance1

inst3

replica set 1

replica set 2

replica set 3

FAILLED

host4.instance1

host5.instance1 host6.instance1

host7.instance1 host8.instance1

FAILLED

FAILLED

Recovering when a single element fails in a replica set

Recovering from Failure 11-11

create failed The attempt to create the
element failed.

Refer to the ttGridAdmin dbStatus output
for information about the failure. A
common issue is that there are not enough
semaphores to create the element or there is
something wrong with the directory
(incorrect permissions) for the checkpoint
files. See "Set the semaphore values" on
page 2-7 for details on how to set enough
semaphores.

You can use the ttGridAdmin dbCreate
command with the -instance
hostname[.instancename] option to retry
the creation of the element on that data
instance. See Example 11–2, "Retrying
element creation" for details.

creating The element is being
created.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
created.

destroy failed The attempt to destroy
the element failed.

Refer to the ttGridAdmin dbStatus
command output for information about the
failure.

If the element status is destroy failed,
you can retry the destroy of the element on
the data instance with the ttGridAdmin
dbDestroy command with the -instance
hostname[.instancename] option. See
Example 11–4, "Destroying an evicted
element or an element where a destroy
failed" for an example.

destroyed The element has been
destroyed.

Element no longer exists.

Note: When the last element of a database
is destroyed, no record of the database,
including element status, will exist.

destroying The element is being
destroyed.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
destroyed.

down The data instance where
this element is located is
not running.

If the data instance is down, the status of an
element is down.

Try to restart the data instance by using the
instanceExec command to execute
ttDaemonAdmin -start, using the
instanceExec option -only
hostname[.instancename].

See Example 11–3, "Restart a data instance
that is down" and "Recovering when a data
instance is down" on page 11-29 for more
details on how to manually restart a data
instance.

evicted The element was evicted
or removed through
ttGridAdmin
dbDistribute and has
been removed from the
distribution map.

When the element status is evicted,
destroy the element of the data instance
with the ttGridAdmin dbDestroy command
with the -instance
hostname[.instancename] option. See
Example 11–4, "Destroying an evicted
element or an element where a destroy
failed" for more information.

Table 11–2 (Cont.) Element status

Status Meaning Notes and recommendations

Recovering when a single element fails in a replica set

11-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

evicted (loaded) The element was evicted
or removed through
ttGridAdmin
dbDistribute but
removal from the
distribution map has not
yet begun.

Wait, and run ttGridAdmin dbStatus
command again to see when the element is
unloaded.

When the element status is evicted,
destroy the element with the ttGridAdmin
dbDestroy command with the -instance
hostname[.instancename] option. See
Example 11–4, "Destroying an evicted
element or an element where a destroy
failed" for more information.

evicted (unloading) The element was evicted
or removed through
ttGridAdmin
dbDistribute and is
being removed from the
distribution map.

Wait, and run ttGridAdmin dbStatus
command again to see when the element is
unloaded.

When the element status is evicted,
destroy the element of the data instance
with the ttGridAdmin dbDestroy command
with the -instance
hostname[.instancename] option. See
Example 11–4, "Destroying an evicted
element or an element where a destroy
failed" for more information.

load failed The attempt to load the
element failed.

Refer to the ttGridAdmin dbStatus
command output for information about the
failure.

You can try again to load the element with
the ttGridAdmin dbLoad command with
the -instance hostname[.instancename]
option.

loaded The element is loaded. Element is loaded and can now be opened.
You can confirm if the element is in the
distribution map with the ttGridAdmin
dbStatus -replicaset command.

loading The element is being
loaded.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
loaded.

opened The element is open. Normal status for a functioning element.
Database connections are possible through
the element.

open failed The attempt to open the
element failed.

Refer to the ttGridAdmin dbStatus
command output for information about the
failure.

You can try ttGridAdmin dbOpen again.

opening The element is in the
process of opening.

Wait, and run ttGridAdmin dbStatus
command again to see when the element is
open.

uncreated The element should be
created, but creation has
not yet started.

Wait, and run the ttGridAdmin dbStatus
command again to see when creation
begins (status creating).

unloaded The element has been
unloaded.

Database is ready to be loaded again
(ttGridAdmin dbLoad) or destroyed
(ttGridAdmin dbDestroy).

You can run the ttGridAdmin dbLoad
command to reload the database.

Table 11–2 (Cont.) Element status

Status Meaning Notes and recommendations

Recovering when a single element fails in a replica set

Recovering from Failure 11-13

The following sections demonstrate how to respond with different scenarios where a
single element in the replica set has failed:

■ Retrying element creation

■ Restart a data instance that is down

unloading The element is being
unloaded.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
unloaded.

waiting for seed The element will be
loaded, but not until after
the other element in its
replica set is loaded.

Note the status of the other element in the
replica set.

■ If the status of the other element is
loading, then this element will load as
soon as the status of the other element
is loaded.

■ If the status of the other element is
load failed, then address that
problem. See the entry for load failed
above.

■ If the status of the other element is
down, then the element cannot recover.
Restart the data instance as indicated
within the element down status
information in this table.

■ If both elements in the replica set are in
the waiting for seed state, then the
only way to recover the replica set is to
either:

- Reload the database with the
ttGridAdmin dbLoad command. See
"Database recovery" on page 11-30 for
details.

- If a reload of the database does not
recover the elements and if your
Durability=0, then you may need to
evict the replica set, unload and reload
the database with the ttGridAdmin
dbDistribute -evict, unLoad and
dbLoad commands. See "Recovering a
failed replica set when Durability=0"
on page 11-18 for details.

Note: The notes and recommendations column often refers to
ttGridAdmin commands. For more information on these commands
within the Oracle TimesTen In-Memory Database Reference, see "Monitor
the status of a database (dbStatus)" for ttGridAdmin dbStatus,
"Create a database (dbCreate)" for ttGridAdmin dbCreate, "Open a
database (dbOpen)" for ttGridAdmin dbOpen, "Load a database into
memory (dbLoad)" for ttGridAdmin dbLoad, "Unload a database
(dbUnload)" for ttGridAdmin dbUnload, "Close a database (dbClose)"
for ttGridAdmin dbClose, "Destroy a database (dbDestroy)" for
ttGridAdmin dbDestroy, and "Execute a command or script on grid
instances (instanceExec)" for ttGridAdmin instanceExec.

Table 11–2 (Cont.) Element status

Status Meaning Notes and recommendations

Recovering when a single element fails in a replica set

11-14 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Destroying an evicted element or an element where a destroy failed

Example 11–2 Retrying element creation

If the creation of the element failed, then retry the creation of the element with the
ttGridAdmin dbCreate -instance command on the same data instance where the
element should exist.

% ttGridAdmin dbCreate database1 -instance host3
Database database1 creation started

Example 11–3 Restart a data instance that is down

When a data instance is down, the element within the data instance is down. You
restart the daemon of the data instance by using the ttGridAdmin instanceExec
-only command to execute the ttDaemonAdmin -start command. See "Recovering
when a data instance is down" on page 11-29 for more details.

% ttGridAdmin instanceExec -only host4.instance1 ttDaemonAdmin -start
Overall return code: 0
Commands executed on:
 host4.instance1 rc 0
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 15491, port: 14000) startup OK.

Example 11–4 Destroying an evicted element or an element where a destroy failed

If you evict an element, you still need to destroy the element to free up the file system
space used by the element. After which, you may decide to create a new element. See
"Unavailability of data when a full replica set is down or fails" on page 11-15 for more
details on eviction.

When the element status is destroy failed or evicted, destroy the element of the
data instance with the ttGridAdmin dbDestroy -instance command.

% ttGridAdmin dbDestroy database1 -instance host3
Database database1 destroy started

Recovering a replica set after an element goes down
When k = 2, all active elements in the same replica set are transactionally
synchronized. Any DML or DDL statements applied to one element in a replica set are
also applied to all other elements in the replica set. When one element in the replica set
is not up, the other element can continue to execute DML or DDL statements.

■ If the failed element recovers, it was unavailable for a time and fell behind
transactionally. Before this element can resume its part in the replica set in the
grid, it must synchronize its data with the active element of its replica set.

■ If the element permanently fails, such as a file system failure, you need to remove
that element from the replica set and replace it with another element with the
ttGridAdmin dbDistribute -remove -replaceWith command. See "Replace an
element with another element" on page 8-13 for details.

TimesTen Scaleout automatically re-synchronizes and restores the data on the restored
or new element in the replica set with the following methods:

■ Log-based catch up: This process transfers the transaction logs from the active
element in the replica set and applies transaction records that are missing on the

Unavailability of data when a full replica set is down or fails

Recovering from Failure 11-15

recovering element. This operation applies the DML or DDL statements that
occurred while the element was not participating in the replica set.

Transactions that are started while one of the elements of the replica set is down
must be replayed when recovering the down element. The log-based catch up
process waits for any open transactions to commit or roll back before replaying
them from the transaction log. If the down element is in the recovery process for
an extended period of time, then there may be an open transaction (on the active
element) preventing the completion of the log-based catch up process for the
recovering element. Use the ttXactAdmin utility to check for open transactions.
Resolve any open transactions by either committing or rolling them back.

■ Duplicate: TimesTen Scaleout duplicates the active element either to a recovering
element or to a new element that replaces a failed element. The duplication
operation copies all checkpoint and log files of the active element to the recovering
element.

However, since the active element continues to accept transactions during the
duplicate operation, there may be additional transaction log records that are not a
part of the copied transaction log files. After completing the duplicate operation,
TimesTen Scaleout contacts the active element and performs a log-based catch up
operation to bring the new element completely up to date.

Remove and replace a failed element in a replica set
When k = 2, if an element cannot be recovered automatically, then you have to
investigate what caused the failure. You may discover a problem that can be fixed,
such as a drive that needs to be remounted. However, you may discover a problem
that cannot be fixed, such as a drive that is completely destroyed. Most permanent,
unrecoverable failures are normally related to hardware failures.

■ If you can, fix the problem with the host or the data instance and then perform one
of the following:

– Restart the data instance. See "Recovering when a data instance is down" on
page 11-29 for directions on how to restart the data instance.

– Reload the TimesTen database with the ttGridAdmin dbload command, which
attempts to reload the element.

■ If you cannot fix the problem with the host or data instance, then the data on the
element may be in a state where it cannot be retrieved. In this case, you must
remove the element and replace it with another element. Once replaced, the active
element updates the new element with the data for this replica set.

If one of your hosts is encountering multiple errors (even though it has been able to
automatically recover), you may decide to replace it with another host that is more
reliable.

To replace an element without data loss, execute the ttGridAdmin dbDistribute
-remove -replaceWith command, which takes the data that exists on the element you
want to replace and redistributes to a new element. See "Replace an element with
another element" on page 8-13 for more details.

Unavailability of data when a full replica set is down or fails
If all elements in a single replica set are down or failed, the data stored in the down
replica set is unavailable. In order to guard against full replica set failure, distribute
your elements in a way that reduces the chances of full replica set failure. See

Unavailability of data when a full replica set is down or fails

11-16 Oracle TimesTen In-Memory Database Scaleout User's Guide

"Assigning hosts to data space groups" on page 1-11 for details on installing data
instances on hosts that are physically separated from each other.

The following sections describe the transaction behavior when a replica set is down,
how TimesTen Scaleout may recover the replica set, and what you can do if the replica
set needs intervention to fully recover.

■ Recovering from a down replica set

■ Recovering when the replica set has a permanently failed element

Recovering from a down replica set
As described in Table 11–3, if you have a down or failed replica set, the outcome of
preserving your data successfully may depend on how you set the Durability
connection attribute. See "Durability settings" on page 6-3 for more details on
Durability connection attribute settings.

The following sections describe what happens with new transactions after a replica set
goes down or how the replica set recovers depends on the Durability connection
attribute value.

■ Transaction behavior with a down replica set

■ Durably recovering a failed replica set when Durability=1

■ Recovering a failed replica set when Durability=0

Transaction behavior with a down replica set
The following list describes what occurs for your transaction when there is a down
replica set.

■ Transactions with queries that access rows only within active replica sets (and no
rows within a down replica set) succeed. Queries that try to access data within a
down replica set fail. Your application should retry the transaction when the
replica set has recovered.

A global read with a partial results hint that does not require data from the down
replica set succeeds.

For example, if both elements in replica set 1 failed and the queries within the
transaction require data from replica set 1, then the transaction fails. Your
application should perform the transaction again.

Table 11–3 Potential for transaction recovery based on Durability value

Durability value Affect on transactions when a replica set fails

1 Participants synchronously write a prepare-to-commit or commit log
record to the transaction log for distributed transactions. This ensures
that committed transactions have the best possible chance of being
preserved. If a replica set goes down, all transaction log records have
been durably committed to the file system and can be recovered by
TimesTen Scaleout.

0 Participants asynchronously write prepare-to-commit and commit log
records for distributed transactions. If an entire replica set goes down,
transaction log records are not guaranteed to be durably committed to
the file system. There is a chance for data loss, depending on how the
elements within the replica set fail or go down.

Unavailability of data when a full replica set is down or fails

Recovering from Failure 11-17

■ Transactions with any DDL statement fail when there is a down replica set as DDL
statements require all replica sets to be available. Your application should roll back
the transaction.

■ Transactions with any DML statements fail if the transaction tries to update at
least one row on elements in a down replica set. Your application should roll back
the transaction. When Durability=0, this scenario may encounter data loss. See
"Recovering a failed replica set when Durability=0" on page 11-18 for full details.

■ When Durability=1, transactions with DML that do not require data from the
down replica set succeeds. For example, if both elements in replica set 1 failed,
then the transaction succeeds only if any SELECT, INSERT, INSERT...SELECT,
UPDATE or DELETE statements do not depend on data that was stored in replica set
1.

Durably recovering a failed replica set when Durability=1
The following sections describe the process for recovery of a failed replica set when
Durability=1.

If all elements in the replica set go down, even temporarily, TimesTen Scaleout might
be able to automatically recover the full replica set (if the initial issue is resolved) by:

1. Determining and recovering the seed element. The element that failed with the
latest changes, known as the seed element, is recovered first. The seed element is
recovered to the latest transaction in the checkpoint and transaction log files.

2. After recovery of the element is complete, TimesTen Scaleout checks for in-doubt
transactions.

When an element is loaded from the file system (from checkpoint and transaction
log files) to recover after a transient failure or unexpected termination, any
two-phase commit transactions that were prepared, but not committed, are left
pending. This is referred to as an in-doubt transaction. When a transaction has been
interrupted, there may be a doubt of whether the entire transaction was
committed with the two-phase commit protocol.

– If there are no in-doubt transactions, operation proceeds as normal.

– If there are in-doubt transactions, normal processing that includes this replica
set does not continue until all in-doubt transactions are resolved. If there are
any in-doubt transactions, TimesTen Scaleout checks the transaction log to
determine whether the transaction committed or was prepared to commit on
any of the participants. The transaction log records contain information about
other participants in the transaction. See Table 11–4 for how TimesTen Scaleout
resolves in-doubt transactions.

If an element fails during this process and then comes back up after the
transaction commits or rolls back, the element recovers itself by requesting the
result of the other participating elements.

3. After the seed element is recovered, the other element in the replica set is
recovered from the seed element using the duplicate and log-based catch up
methods. See "Recovering a replica set after an element goes down" on page 11-14
for details on the duplicate and log-based catch up methods.

Unavailability of data when a full replica set is down or fails

11-18 Oracle TimesTen In-Memory Database Scaleout User's Guide

However, if you cannot recover the elements in a down replica set, then you may need
to either remove and replace one of the elements or evict the entire replica set. See
"Recovering when the replica set has a permanently failed element" on page 11-20 for
details.

Recovering a failed replica set when Durability=0
The following describes the process for recovery of a failed replica set when
Durability=0.

If you set Durability=0, you are acknowledging that there is a chance of data loss
when a replica set fails. However, TimesTen Scaleout attempts to avoid data loss if the
elements fail at separate times.

■ If only a single element of the replica set fails, then TimesTen Scaleout attempts to
switch the remaining element in the replica set (when k = 2) into durable mode.
That is, in order to limit data loss (which would occur if the remaining element
fails when Durability=0), TimesTen Scaleout changes the durability behavior of
the element as if it was configured with Durability=1.

If TimesTen Scaleout can switch the remaining element in the replica set into
durable mode, then the participating element synchronously writes
prepare-to-commit log records to the file system for distributed transactions. Then,
if this element also fails so that the entire replica set is down, TimesTen Scaleout
recovers the replica set from the transaction log records. Thus, no transaction is
lost in this scenario and TimesTen Scaleout automatically recovers the replica set
as when you have set Durability=1. See "Durably recovering a failed replica set
when Durability=1" on page 11-17 for details on recovering after the single
element is recovered.

■ If TimesTen Scaleout cannot switch the replica set into durable mode before the
final surviving element fails, then you may encounter data loss depending on
whether the replica set encounters a temporary or permanent failure.

– Temporary replica set failure when elements are non-durable: Since neither
element in the replica set synchronously wrote prepare-to-commit log records
for distributed transactions that the replica set was involved in before going

Table 11–4 How TimesTen Scaleout resolves an in-doubt transaction

Failure Action

At least one participant received the commit
log record; all other participants at least
receive the prepare-to-commit log record.

The transaction commits on all participants

All participants in the transaction received
the prepare-to-commit log record.

The transaction commits on all participants.

At least one participant did not receive the
prepare-to-commit log record.

The transaction manager notifies all participants
to undo the prepare-to-commit, which is a
prelude to a roll back of the transaction.

■ If the transaction was executed with
autocommit 1, then the transaction
manager rolls back the transaction.

■ If the transaction was executed with
autocommit 0, then the transaction
manager throws an error informing the
application that it must roll back the
transaction.

Unavailability of data when a full replica set is down or fails

Recovering from Failure 11-19

down, then any transactions that committed after the last successful epoch
transaction are lost.

If both elements show the waiting for seed status, then there was no switch
into durable mode before the replica set went down. If this is the case, epoch
recovery is necessary and any transactions committed after latest successful
epoch transaction are lost. When the elements in this replica set recover, they
may remain in the waiting for seed status, since neither element is able to
recover with the transaction logs. Instead, you must perform epoch recovery
by either recovering or evicting the replica set, followed by unloading and
reloading the database. See "Process when replica set fails when in a
non-durable state" on page 11-19 for details.

– Permanent replica set failure: If you cannot recover either element in the
replica set, you may have to evict these elements. This results in a loss of the
data on that replica set. See "Recovering when the replica set has a
permanently failed element" on page 11-20 for details.

Process when replica set fails when in a non-durable state
When a replica set goes down and the state is non-durable, transactions may continue
to commit into the database until TimesTen Scaleout realizes that the replica set is
down. Once TimesTen Scaleout realizes that a replica set is down (after a failed epoch
transaction execution), then the database is switched to read-only to minimize the
number of lost transactions. During epoch recovery, the database is reloaded to the last
successful epoch transaction, effectively losing any transactions that committed after
that last successful epoch transaction. In this scenario, the value of the EpochInterval
connection attribute not only determines the amount of time between the epoch
transactions, but also determines the approximate amount of time during which you
can lose committed transactions.

Figure 11–3 shows the actions across a time span of eight intervals.

Figure 11–3 Durability=0 and a replica set fails

1. An epoch transaction commits successfully.

2. Transactions may continue after the successful epoch transaction. Any committed
transactions after the last successful epoch transaction are lost after epoch recovery
as neither element in the down replica set was able to durably flush the transaction
logs.

Note: The database is set to read-only when the epoch transaction
fails due to a down replica set; TimesTen Scaleout does not set the
database to read-only if the epoch transaction fails for other reasons.

Last common epoch before failure.

Replica set 1 goes down.

Epoch transaction fails. Database becomes read-only.

Database reloads to the last common epoch.
Epoch transaction is run.

1
2
3
4
5
6
7
8

time
span operation during each interval

Unavailability of data when a full replica set is down or fails

11-20 Oracle TimesTen In-Memory Database Scaleout User's Guide

3. Replica set 1 goes down without either element switching to durable mode.

4. Transactions may continue after the replica set goes down if the database has not
yet been set to read-only. Any transactions that commit after the last successful
epoch transaction are lost after epoch recovery as neither element in the down
replica set was able to durably flush the transaction logs.

5. The next epoch transaction fails since not all replica sets are up. TimesTen Scaleout
informs all data instances that the database is now read-only. All applications will
fail when executing a DML, DDL, or commit statements within open transactions.
You must roll back each transaction.

6. The replica set must be recovered or evicted.

■ Recover the down replica set. If multiple replica sets are down, the database
cannot enter read-write mode until all replica sets are recovered or replaced.

■ If you cannot recover either element in the replica set, you may have to evict
the replica set, which results in a loss of the data on that replica set. See
"Recovering when the replica set has a permanently failed element" on
page 11-20 for details.

7. You perform an epoch recovery by unloading and reloading the database to the
last successful epoch transaction to recover the database consistently with only a
partial data loss. Any transactions that commit after the last successful epoch are
lost when the database is unloaded and reloaded to the last successful epoch
transaction. See "Load a database into memory (dbLoad)" for information on the
ttGridAdmin dbLoad command and "Unload a database (dbUnload)" for
information on the ttGridAdmin dbUnload command.

8. A new epoch transaction is successful. Database is set to read-write. Normal
transaction behavior resumes.

Recovering when the replica set has a permanently failed element
If an element in the replica set or a full replica set is unrecoverable because there has
been a permanent failure, then you need to remove the failed element or evict the
failed replica set. Permanent failure can occur when a host permanently fails or if all
elements in the replica set fail.

Note: Sequences may be incremented while the replica set is down.

Note: The behavior of transactions after a replica set goes down
depends on the type of statements within the transactions, as
described in "Transaction behavior with a down replica set" on
page 11-16.

Note: The ttGridAdmin dbStatus command shows the state of the
database, including if it is in read-only or read-write mode.

Note: If you want to ensure that the data for a transaction is always
recovered, you can promote a transaction to be an epoch transaction.
See "Epoch transactions" on page 6-3 for more details.

Unavailability of data when a full replica set is down or fails

Recovering from Failure 11-21

■ If all elements within a replica set permanently fail, you must evict the entire
replica set, which results in the permanent loss of the data on the elements within
that replica set.

When k = 1, then the permanent failure of one element is a replica set failure.
When k = 2, both elements in a replica set must fail in order for the replica set to be
considered failed. If k = 2 and the replica set permanently fails, you need to evict
both elements of the replica set simultaneously.

Evicting the replica set removes it from the distribution for the grid. However, you
cannot evict the replica set if the failed replica set is the only replica set in the
database. In this case, save any checkpoint files, transaction log files or daemon log
files (if possible) and then destroy and recreate the database.

When a replica set goes down:

– If Durability=0, the database goes into read-only mode.

– If Durability=1, then all transactions that include the failed replica set are
blocked until you evict the failed replica set. However, all transactions that do
not involve the failed replica set continue to work as if nothing was wrong.

■ If k = 2 and only one element of a replica set fails, the active element takes over all
of the requests for data until the failed element can be replaced with a new
element. Thus, no data is lost with the failure. The active element in the replica set
processes the incoming transactions. You can simply remove and replace the failed
element with a new element that is duplicated from the active element in the
replica set. The active element provides the base for a duplicate for the new
element. See "Replace an element with another element" on page 8-13 for details
on how to remove and replace a failed element.

You can evict the replica set from the distribution map for your grid with the
ttGridAdmin dbDistribute -evict command. Make sure that all pending requests
for adding or removing elements are applied before requesting the eviction of a replica
set.

You have the following options when you evict a replica set:

■ Evict the replica set without replacing it immediately.

If the data instances and hosts for this replica set have not failed, then you can
recreate the replica set using the same data instances. This is a preferred option if
there are other databases on the grid and the hosts are fine.

In this case, you must:

1. Evict the elements of the failed replica set, while the data instances and hosts
are still up.

When you evict the replica set, the data is lost within this replica set, but the
other replica sets in the database continue to function. There is now one fewer
replica set in your grid.

2. Eliminate all checkpoint and transaction logs for the elements within the
evicted replica set if you want to add new elements to the distribution map on
the same data instances which previously held the evicted elements.

Note: If you know about problems that TimesTen Scaleout is not
aware of and that a replica set needs to be evicted, you can evict and
replace a replica set as needed.

Unavailability of data when a full replica set is down or fails

11-22 Oracle TimesTen In-Memory Database Scaleout User's Guide

3. Destroy the elements of the evicted replica set, while the data instances and
hosts are still up.

4. Optionally, you can replace the evicted replica set with a new replica set either
on the same data instances and hosts if they are still viable or on new data
instances and hosts. Add the new elements to the distribution map. This
restores the grid to its expected configuration.

■ Evict the replica set and immediately replace it with a new replica set to restore the
grid to its expected configuration.

1. Create new data instances and hosts to replace the data instances and hosts of
the failed replica set.

2. Evict the elements of the failed replica set, while replacing it with a new
replica set. When you evict the replica set, the data is lost within this replica
set, but the other replica sets in the database continue to function.

Use the ttGridAdmin dbDistribute -evict -replaceWith command to evict
and replace the replica set with a new replica set, where each new element is
created on a new data instance and host. The elements of the new replica set
are added to the distribution map. However, the remaining data from the
other replica sets are not redistributed to include the new replica. Thus, the
new replica set remains empty until you insert data.

3. Destroy the elements of the evicted replica set.

The following sections demonstrate how to evict a failed replica set when you have
one or two elements in the replica set:

■ Evicting the element in the permanently failed replica set when k = 1

■ Evicting all elements in a permanently failed replica set when k = 2

■ Maintaining database consistency after an eviction

Evicting the element in the permanently failed replica set when k = 1
The example shown in Figure 11–4 shows a TimesTen database that has been
configured with k set to 1 with three data instances: host1.instance1,
host2.instance1 and host3.instance1. The element on the host2.instance1 data
instance fails because of a permanent hardware failure.

Unavailability of data when a full replica set is down or fails

Recovering from Failure 11-23

Figure 11–4 Grid database where k = 1

The following examples demonstrate the eviction options:

■ Example 11–5, "Evict the element to potentially replace at another time"

■ Example 11–6, "Evict and replace the data instance without re-distribution"

Example 11–5 Evict the element to potentially replace at another time

If you cannot recover a failed element, you evict the replica set.

The following example:

1. Evicts the replica set for the element on the host2.instance1 data instance with
the ttGridAdmin dbDistribute -evict command.

2. Destroys the checkpoint and transaction logs for only this element within the
evicted replica set with the ttGridAdmin dbDestroy -instance command.

% ttGridAdmin dbDistribute database1 -evict host2.instance1 -apply
Element host2.instance1 evicted
Distribution map updated

% ttGridAdmin dbDestroy database1 -instance host2.instance1
Database database1 instance host2 destroy started

% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 16:44:15 PST 2018

created,loaded-complete,open
Completely created elements: 2 (of 3)
Completely loaded elements: 2 (of 3)

Note: Alternatively, see the instructions in "Remove and replace a
failed element in a replica set" on page 11-15 if the data instance or
host on which the element exists is not reliable.

data space 1

host1.instance1

replica set 1

replica set 2

replica set 3

host2.instance1

host3.instance1

FAIILEED

Unavailability of data when a full replica set is down or fails

11-24 Oracle TimesTen In-Memory Database Scaleout User's Guide

Open elements: 2 (of 3)

Database database1 element level status as of Thu Feb 22 16:44:15 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- --------- ------------------- -------
host1 instance1 1 opened 2018-02-22 16:42:14
host2 instance1 2 destroyed 2018-02-22 16:44:01
host3 instance1 3 opened 2018-02-22 16:42:14

Database database1 Replica Set status as of Thu Feb 22 16:44:15 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 1 3 host3 instance1 opened 2018-02-22 16:42:14

Database database1 Data Space Group status as of Thu Feb 22 16:44:15 PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 3 host3 instance1 opened 2018-02-22 16:42:14

This example creates a new element for the replica set as the data instance and host are
still viable. Then, adds the new elements to the distribution map.

1. Creates a new element with the ttGridAdmin dbCreate -instance command on
the same data instance where the previous element existed before its replica set
was evicted.

2. Adds the new element into the distribution map with the ttGridAdmin
dbDistribute -add command.

% ttGridAdmin dbCreate database1 -instance host2
Database database1 creation started
% ttGridAdmin dbDistribute database1 -add host2 -apply
Element host2 is added
Distribution map updated
% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 16:53:17 PST 2018

created,loaded-complete,open
Completely created elements: 3 (of 3)
Completely loaded elements: 3 (of 3)

Open elements: 3 (of 3)

Database database1 element level status as of Thu Feb 22 16:53:17 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host1 instance1 1 opened 2018-02-22 16:42:14
host3 instance1 3 opened 2018-02-22 16:42:14
host2 instance1 4 opened 2018-02-22 16:53:14

Database database1 Replica Set status as of Thu Feb 22 16:53:17 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------

Unavailability of data when a full replica set is down or fails

Recovering from Failure 11-25

 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 1 3 host3 instance1 opened 2018-02-22 16:42:14
 3 1 4 host2 instance1 opened 2018-02-22 16:53:14

Database database1 Data Space Group status as of Thu Feb 22 16:53:17 PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 3 host3 instance1 opened 2018-02-22 16:42:14
 3 4 host2 instance1 opened 2018-02-22 16:53:14

Example 11–6 Evict and replace the data instance without re-distribution

To recover the initial capacity with the same number of replica sets as you started with
for the database, evict and replace the evicted element using the ttGridAdmin
dbDistribute -evict -replaceWith command.

The following example:

1. Creates a new host (identified as host4), installation, data instance and element.

2. Evicts the replica set that contains the failed element on the host2.instance1 data
instance and replaces the evicted element with the element on the
host4.instance1 data instance using the ttGridAdmin dbDistribute -evict
-replaceWith command.

The data that exists on the elements on the host1.instance1 and
host3.instance1 data instances is not redistributed to the new element on the
host4.instance1 data instance. The element on the host4.instance1 data
instance is empty.

3. Destroys the element on the host2.instance1 data instance with the ttGridAdmin
dbDestroy -instance command.

% ttGridAdmin hostCreate host4 -address myhost.example.com -dataspacegroup 1
Host host4 created in Model
% ttGridAdmin installationCreate -host host4 -location
/timesten/host4/installation1
Installation installation1 on Host host4 created in Model
% ttGridAdmin instanceCreate -host host4 -location /timesten/host4
Instance instance1 on Host host4 created in Model
% ttGridAdmin modelApply
Copying Model...OK
Exporting Model Version 2...OK
Marking objects 'Pending Deletion'....................................OK
Deleting any Hosts that are no longer in use..........................OK
Verifying Installations...OK
Creating any missing Installations....................................OK
Creating any missing Instances..OK
Adding new Objects to Grid State......................................OK
Configuring grid authentication.......................................OK
Pushing new configuration files to each Instance......................OK
Making Model Version 2 current..OK
Making Model Version 3 writable.......................................OK
Checking ssh connectivity of new Instances............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete
% ttGridAdmin dbDistribute database1 -evict host2.instance1
 -replaceWith host4.instance1 -apply
Element host2.instance1 evicted
Distribution map updated

Unavailability of data when a full replica set is down or fails

11-26 Oracle TimesTen In-Memory Database Scaleout User's Guide

% ttGridAdmin dbDestroy database1 -instance host2
Database database1 instance host2 destroy started
% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 17:04:21 PST 2018

created,loaded-complete,open
Completely created elements: 3 (of 4)
Completely loaded elements: 3 (of 4)

Open elements: 3 (of 4)

Database database1 element level status as of Thu Feb 22 17:04:21 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- --------- ------------------- -------
host1 instance1 1 opened 2018-02-22 16:42:14
host3 instance1 3 opened 2018-02-22 16:42:14
host2 instance1 4 destroyed 2018-02-22 17:04:11
host4 instance1 5 opened 2018-02-22 17:03:18

Database database1 Replica Set status as of Thu Feb 22 17:04:21 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 1 3 host3 instance1 opened 2018-02-22 16:42:14
 3 1 5 host4 instance1 opened 2018-02-22 17:03:18

Database database1 Data Space Group status as of Thu Feb 22 17:04:21 PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 3 host3 instance1 opened 2018-02-22 16:42:14
 3 5 host4 instance1 opened 2018-02-22 17:03:18

Evicting all elements in a permanently failed replica set when k = 2
If k = 2 and the replica set permanently fails, then you need to evict both elements of
the replica set simultaneously.

Figure 11–5 shows where replica set 1 fails.

Unavailability of data when a full replica set is down or fails

Recovering from Failure 11-27

Figure 11–5 Failed replica set

For the example shown in Figure 11–5, replica set 1 contains elements that exist on
both the host3.instance1 and host4.instance1 data instances. The replica set fails in
an unrepairable way. When you execute the ttGridAdmin dbDistribute command to
evict the replica set, specify the data instances of both elements in the replica set that
are being evicted.

% ttGridAdmin dbDistribute database1 -evict host3.instance1
 -evict host4.instance1 -apply
Element host3.instance1 evicted
Element host4.instance1 evicted
Distribution map updated

Replacing the replica set with new elements with no data redistribution If you cannot recover
either element in the replica set, you evict both elements in the replica set
simultaneously. To recover the initial capacity with the same number of replica sets as
you started with for the database, evict and replace the evicted elements in the failed
replica set using the ttGridAdmin dbDistribute -evict -replaceWith command.

The following example:

1. Creates new elements in the host9.instance1 and host10.instance1 data
instances.

2. Evicts the replica set with the failed elements on the host3.instance1 and
host4.instance1 data instances, replacing them with new elements in the
host9.instance1 and host10.instance1 data instances.

The data that exists on the elements in the active replica sets is not redistributed to
include the new elements on the host9.instance1 and host10.instance1 data
instances. The elements on the host9.instance1 and host10.instance1 data
instances are empty.

3. Destroys the elements on the host3.instance1 and host4.instance1 data
instances with the ttGridAdmin dbDestroy -instance command.

The new replica set is now listed as replica set 1 with the elements from the
replaced elements located in the host9.instance1 and host10.instance1 data
instances.

data space 2data space 1

host3.instance1

inst3

replica set 1

replica set 2

replica set 3

FAILLED

host4.instance1

host5.instance1 host6.instance1

host7.instance1 host8.instance1

FAILLED

FAILLED

Unavailability of data when a full replica set is down or fails

11-28 Oracle TimesTen In-Memory Database Scaleout User's Guide

% ttGridAdmin hostCreate host9 -internalAddress int-host9 -externalAddress
 ext-host9.example.com -like host3 -cascade
Host host9 created in Model
Installation installation1 created in Model
Instance instance1 created in Model
% ttGridAdmin hostCreate host10 -internalAddress int-host10 -externalAddress
 ext-host10.example.com -like host4 -cascade
Host host10 created in Model
Installation installation1 created in Model
Instance instance1 created in Model
% ttGridAdmin dbDistribute database1 -evict host3.instance1
 -replaceWith host9.instance1 -evict host4.instance1
 -replaceWith host10.instance1 -apply
Element host3.instance1 evicted
Element host4.instance1 evicted
Distribution map updated
% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Fri Feb 23 10:22:57 PST 2018

created,loaded-complete,open
Completely created elements: 8 (of 8)
Completely loaded elements: 6 (of 8)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Open elements: 6 (of 8)

Database database1 element level status as of Fri Feb 23 10:22:57 PST 2018

Host Instance Elem Status Date/Time of Event Message
------ --------- ---- ------- ------------------- -------
 host3 instance1 1 evicted 2018-02-23 10:22:28
 host4 instance1 2 evicted 2018-02-23 10:22:28
 host5 instance1 3 opened 2018-02-23 07:28:23
 host6 instance1 4 opened 2018-02-23 07:28:23
 host7 instance1 5 opened 2018-02-23 07:28:23
 host8 instance1 6 opened 2018-02-23 07:28:23
host10 instance1 7 opened 2018-02-23 10:22:27
 host9 instance1 8 opened 2018-02-23 10:22:27

Database database1 Replica Set status as of Fri Feb 23 10:22:57 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ------ --------- ------ ------------------- -------
 1 1 8 host9 instance1 opened 2018-02-23 10:22:27
 2 7 host10 instance1 opened 2018-02-23 10:22:27
 2 1 3 host5 instance1 opened 2018-02-23 07:28:23
 2 4 host6 instance1 opened 2018-02-23 07:28:23
 3 1 5 host7 instance1 opened 2018-02-23 07:28:23
 2 6 host8 instance1 opened 2018-02-23 07:28:23

Database database1 Data Space Group status as of Fri Feb 23 10:22:57 PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ------ --------- ------ ------------------- -------
 1 1 8 host9 instance1 opened 2018-02-23 10:22:27
 2 3 host5 instance1 opened 2018-02-23 07:28:23
 3 5 host7 instance1 opened 2018-02-23 07:28:23
 2 1 7 host10 instance1 opened 2018-02-23 10:22:27
 2 4 host6 instance1 opened 2018-02-23 07:28:23

Recovering when a data instance is down

Recovering from Failure 11-29

 3 6 host8 instance1 opened 2018-02-23 07:28:23

% ttGridAdmin dbDestroy database1 -instance host3
Database database1 instance host3 destroy started
% ttGridAdmin dbDestroy database1 -instance host4
Database database1 instance host4 destroy started

Maintaining database consistency after an eviction
Eviction of an entire replica set results in data loss, which can leave the database in an
inconsistent state. For example, if the parent records were stored in an evicted replica
set, then any child rows on other elements in a different replica set are in a table
without a corresponding foreign key parent.

To ensure that you maintain database consistency after an eviction, fix all foreign key
references by performing one of the following steps:

■ Delete any child row that does not have a corresponding parent.

■ Drop the foreign key constraint for any child row that does not have a
corresponding parent.

Recovering when a data instance is down
If the error is a hardware error involving the host, then fix the problem with the host
and reload the data instance with the ttGridAdmin dbLoad command. During reload,
TimesTen Scaleout attempts to recover the element within that data instance.

If a data instance is down, you should restart it. If a data instance is not running, then
all of the elements that the data instance manages are down.

The ttGridAdmin dbStatus -element command shows if a data instance (and thus its
element) is considered down.

% ttGridAdmin dbStatus database1 -element

Database database1 element level status as of Wed Mar 8 14:07:11 PST 2017

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host3 instance1 1 opened 2017-03-08 13:58:06
host4 instance1 2 down
host5 instance1 3 opened 2017-03-08 13:58:06
host6 instance1 4 opened 2017-03-08 13:58:09
host7 instance1 5 opened 2017-03-08 13:58:09
host8 instance1 6 opened 2017-03-08 13:58:09

When a data instance is down (due to a hardware or software failure), all
communication channels to its managed elements are shut down and no new
connections are allowed to access these elements until all the data instance is restored
and the element that it manages is recovered.

If the data instance is down, you restart it by restarting its TimesTen daemon. Once
restarted, the data instance connects to a ZooKeeper server. If it does not immediately
connect, it continues to try to connect to a ZooKeeper server. After connection, the data
instance loads its element.

Note: If the data instance fails to connect to any ZooKeeper server, it
may be in an unending loop as it continues to try to connect.

Database recovery

11-30 Oracle TimesTen In-Memory Database Scaleout User's Guide

You can manually restart the daemon for that data instance by using the instanceExec
command to execute the TimesTen ttDaemonAdmin -start command, using the
instanceExec command options of -only hostname[.instancename].

% ttGridAdmin instanceExec -only host4.instance1 ttDaemonAdmin -start
Overall return code: 0
Commands executed on:
 host4.instance1 rc 0
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 15491, port: 14000) startup OK.

For more information, see "Execute a command or script on grid instances
(instanceExec)" in the Oracle TimesTen In-Memory Database Reference or
"ttDaemonAdmin" in the Oracle TimesTen In-Memory Database Reference.

If you know what caused the error that caused the data instance to fail, then reload the
database with the ttGridAdmin dbLoad command after you fix the problem.

% ttGridAdmin dbLoad database1

You can verify the results with the ttGridAdmin dbStatus command.

Database recovery
You reload the database to initiate database recovery when either all of the data
instances are down or both elements in a replica set show the waiting for seed state.

To reload the database:

1. Run the ttGridAdmin dbStatus command to see the status of all elements within
their respective replica sets.

2. Resolve any issues with the elements of the database, as denoted by each element
status, as described in Table 11–2, " Element status".

3. Execute the ttGridAdmin dbload command to reload your database, as described
in "Reloading a database into memory" on page 5-30.

Client connection failover
When constructing a highly available system, you want to ensure that:

■ Client application connections are automatically routed to an active data instance
for that database.

■ If an existing client connection to a data instance fails, the client is automatically
reconnected to another active data instance in the database.

Note: If an element of a replica set shows the waiting for seed
status, but the seed element does not recover, then evaluate the host
and data instance for that element to see if you need to intervene on
either a hardware or software error.

If the seed element still does not recover after reloading the database,
then evict the down replica set. See "Recovering when the replica set
has a permanently failed element" on page 11-20 for details. If
Durability=0, then evict the replica set and then unload and reload
the database to perform epoch recovery. See "Recovering a failed
replica set when Durability=0" on page 11-18 for details.

Client connection failover

Recovering from Failure 11-31

■ If the data instance to which a client is connected fails, then that client is
automatically reconnected to another active data instance in the database.

By default, if a connection fails, then the client automatically attempts to reconnect to
another data instance (if possible). Consider the following details on how to prepare
for and respond to a connection failure:

■ The TTC_REDIRECT client connection attribute defines how a client is redirected. By
default, TTC_REDIRECT is set to 1 for automatic redirection. If set to 0 and the initial
connection attempt to the desired data instance fails, then an error is returned and
there are no further connection attempts. See "TTC_REDIRECT" in the Oracle
TimesTen In-Memory Database Reference for more details.

■ The TTC_NoReconnectOnFailover client connection attribute defines whether
TimesTen should reconnect after a failover. The default is 0, which indicates that
TimesTen should attempt to reconnect. Setting this to 1 specifies that TimesTen
performs typical client failover, but without reconnecting. This is useful where an
application does its own connection pooling or attempts to reconnect to the
database on its own after failover. See "TTC_NoReconnectOnFailover" in the
Oracle TimesTen In-Memory Database Reference for more details.

■ Most connection failures tend to be software failures. Reconnecting to another data
instance takes some time during which the connection is not available until the
client failover process is completed. Any attempt to use the connection during the
client failover processing time generates a native error. See "JDBC support for
automatic client failover" in the Oracle TimesTen In-Memory Database Java
Developer's Guide or "Using automatic client failover in your application" in the
Oracle TimesTen In-Memory Database C Developer's Guide for the native errors that
can be received.

■ If you receive a native error in response to an operation within your application,
your application should place all recovery actions within a loop with a short delay
before each subsequent attempt, where the total number of attempts is limited. If
you do not limit the number of attempts, then the application may appear to hang
if the client failover process does not complete successfully. See "Application
action in the event of failover" in the Oracle TimesTen In-Memory Database Java
Developer's Guide or "Application action in the event of failover" in the Oracle
TimesTen In-Memory Database C Developer's Guide for an example on how to write a
retry block within your application for automatic client failover.

Configuring TCP keep-alive parameters
One of the ways that a client connection can fail is with a network failure, such as
disconnecting a cable or a host that is hanging or crashing. When the client connection
is lost, then client connection failover is initiated. However, when a TCP connection is
started, you can configure the TCP keep-alive parameters for the connection to ensure
reliable and rapid detection of connection failures.

Note: See "Connecting to a database" on page 5-7 for details on how
a client connects to a data instance in a grid.

Client connection failover

11-32 Oracle TimesTen In-Memory Database Scaleout User's Guide

You can control the per connection keep-alive settings with the following parameters:

■ TTC_TCP_KEEPALIVE_TIME_MS: The duration time (in milliseconds) between the last
data packet sent and the first probe. The default is 10000 milliseconds.

■ TTC_TCP_KEEPALIVE_INTVL_MS: The time interval (in milliseconds) between
subsequential probes. The default is 10000 milliseconds.

■ TTC_TCP_KEEPALIVE_PROBES: The number of unacknowledged probes to send
before considering the connection as failed and notifying the client. The default is
set to 2 unacknowledged probes.

If you keep the default settings, then TimesTen Scaleout sends the first probe after 10
seconds (the TTC_TCP_KEEPALIVE_TIME_MS setting).

■ If there is a response, then the connection is alive and the TTC_TCP_KEEPALIVE_
TIME_MS timer is reset.

■ If there is no response, then TimesTen Scaleout sends another probe after this
initial probe at 10 second intervals (the TTC_TCP_KEEPALIVE_INTVL_MS setting). If
no response is received after 2 successive probes, then this connection is aborted
and TimesTen Scaleout redirects the connection to another data instance.

For example, you could modify the TCP keep alive settings in the client/server
connectable to have a shorter wait time for the initial probe of 50000 milliseconds, and
to check for a connection every 20000 milliseconds for a maximum number of 3 times
as follows:

TTC_TCP_KEEPALIVE_TIME_MS=50000
TTC_TCP_KEEPALIVE_INTVL_MS=20000
TTC_TCP_KEEPALIVE_PROBES=3

See "TTC_TCP_KEEPALIVE_TIME_MS", "TTC_TCP_KEEPALIVE_INTVL_MS", and
"TTC_TCP_KEEPALIVE_PROBES" in the Oracle TimesTen In-Memory Database Reference
for more information on these connection attributes.

Note: You can also detect that there is a problem with the connection
by setting the TTC_Timeout attribute, which sets a maximum time limit
for a network operation that is completed by using the TimesTen client
and server. The TTC_Timeout attribute also determines the maximum
number of seconds a TimesTen client application waits for the result
from the corresponding TimesTen Server process before timing out.

TimesTen Scaleout recommends configuring the TCP keep-alive
parameters for determining a failed TCP connection in addition to the
TTC_TIMEOUT attribute, as some database operations may unexpectedly
take longer than the value set for the TTC_TIMEOUT attribute.

Refer to "TTC_Timeout" in Oracle TimesTen In-Memory Database
Reference for more information about that attribute.

Note: The Linux client platform converts this value to seconds by
truncating the last three digits off of the value of TTC_TCP_KEEPALIVE_
TIME_MS. Thus, a setting of 2500 milliseconds becomes 2 seconds,
instead of 2.5 seconds.

Managing failover for the management instances

Recovering from Failure 11-33

Managing failover for the management instances
You conduct all management activity from a single management instance, called the
active management instance. However, it is highly recommended that you configure
two management instances, where the standby management instance is available in
case the active management instance goes down or fails.

■ If you only have a single management instance and it goes down, the databases
remain operational. However, most management operations are unavailable until
the management instance is restored.

■ If you configure both the active and standby management instances in your grid
and only the active management instance is alive, then you can configure and
manage the entire grid from this one management instance.

If both management instances are down, then:

■ You can still access all databases in the grid. However, since all management
actions are requested through the active management instance, you cannot
manage your grid until the active management instance is restored.

■ If data instances or their elements in the grid go down or fail, they cannot recover,
restart or rejoin the grid until the active management instance is restored.

As shown in Figure 11–6, all management information used by the active management
instance is automatically replicated to the standby management instance. Thus, if the
active management instance goes down or fails, you can promote the standby
management instance to become the new active management instance through which
you continue to manage the grid.

Figure 11–6 Active standby configuration for management instances

The following sections describes how you can manage the management instances:

■ Status for management instances

■ Starting, stopping and switching management instances

■ Active management instance failure

Note: You cannot add a third management instance.

active
management instance

standby
management instance

instance
administrator

Internal
Network

Managing failover for the management instances

11-34 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Standby management instance failure

■ Both management instances fail

Status for management instances
You use the ttGridAdmin mgmtExamine command for both the status for the
management instances and to see if there are any issues that need to be resolved. This
command recommends any corrective actions you can execute to fix any open issues,
if necessary.

The following example shows both management instances working:

% ttGridAdmin mgmtExamine
Both active and standby management instances are up. No action required.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive
--
host1 instance1 Yes Active Active 598 Up Yes
host2 instance1 Yes Standby Standby 598 Up No

If one of the management instances goes down or fails, the output shows that the
management instance role is Unknown and a message states that its replication agent is
down. The output provides recommended commands to restart the management
instance.

% ttGridAdmin mgmtExamine
Active management instance is up, but standby is down

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive Message
----- --------- --------- ------------- ---------- --- -------- --------- --------
host1 instance1 Yes Active Active 600 Up No
host2 instance1 No Unknown Unknown Down No Management
 database is not available

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x host2.example.com
 /timesten/host2/instance1/bin/ttenv ttGridAdmin mgmtStandbyStart

For each management instance displayed:

■ Host and Instance show the name of the management instance and the name of
the host where it is located.

■ Reachable indicates whether the command was successful in reaching the
management instance to determine its state.

■ RepRole(Self) indicates the recorded role, if any, known by the replication agents
for replicating data between management instances. While Role(Self) indicates the
recorded role known within the database for the management instances. Both of
these should show the same role. If the roles are different, the ttGridAdmin
mgmtExamine command will try to determine the commands that would rectify the
error.

■ Seq is the sequence number of the most recent change on the management
instance. If the Seq values are the same, then the two management instances are
synchronized; otherwise, the one with the larger Seq value has the more recent
data.

■ RepAgent indicates whether a replication agent is running on each management
instance.

Managing failover for the management instances

Recovering from Failure 11-35

■ RepActive indicates whether changes by the ttGridAdmin mgmtStatus command,
which is invoked internally by the ttGridAdmin mgmtExamine command, to
management data on the management instance were successful.

■ Message provides any further information about the management instance.

See "Examine management instances (mgmtExamine)" in the Oracle TimesTen
In-Memory Database Reference for more details.

Starting, stopping and switching management instances
Most ttGridAdmin commands are executed through the active management instance.
However, when you manage recovery for an active management instance, you may be
required to execute ttGridAdmin commands on the standby management instance.

When starting, stopping, or promoting a standby management instance:

■ You can execute the ttGridAdmin mgmtStandbyStop command on either
management instance. The grid knows where the standby management instance is
and stops it.

■ You must execute the ttGridAdmin mgmtStandbyStart command on the
management instance that you wish to become the standby management instance.
The ttGridAdmin mgmtStandbyStart command assumes that you want the current
instance to become the standby management instance.

■ If the active management instance is down, you must execute the ttGridAdmin
mgmtActiveSwitch command on the standby management instance to promote it
to be the active management instance.

For those commands that require you to execute commands on the standby
management instance, remember to set the environment with the ttenv script (as
described in "Creating the initial management instance" on page 4-2) after you log onto
the host and before you execute the ttGridAdmin utility.

Active management instance failure
You should re-activate an active management instance after a failure as soon as
possible to make sure that everything continues to run as expected.

■ Single management instance fails

■ Active management instance fails

Single management instance fails
While it is not recommended, you can manage the grid with a single active
management instance with no standby management instance. If the single active
management instance fails and recovers, re-activate the active management instance as
follows:

1. Verify that there is only one management instance acting as the active
management instance and that it has failed with the ttGridAdmin mgmtExamine
command:

% ttGridAdmin mgmtExamine
The only defined management instance is down. Start it.
Recommendation: define a second management instance

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive

host1 instance1 No Unknown Unknown Down No

Managing failover for the management instances

11-36 Oracle TimesTen In-Memory Database Scaleout User's Guide

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin -start

2. After determining the reason for the failure and resolving that issue, execute the
ttGridAdmin mgmtActiveStart command to re-activate the active management
instance.

% ttGridAdmin mgmtActiveStart
This management instance is now the active

3. Re-execute the ttGridAdmin mgmtExamine command to verify that the active
management instance is up. Follow any commands it displays if the management
instance is not up.

Active management instance fails
If the active management instance fails, then you can no longer execute ttGridAdmin
commands on it.

■ Promote the standby management instance on the host2 host to be the new active
management instance.

■ Create a new standby management instance by either:

– Recovering the failed management instance on host1 up as the new standby
management instance. This causes the new active management instance to
replicate all management information to the new standby management
instance.

– Deleting the failed active management instance if the failed management
instance has permanently failed, then creating a new standby management
instance.

Figure 11–7 Switch from a failed active

For example, your environment has two management instances where the active
management instance is on host1 and the standby management instance is on host2.
Then, if the active management instance on host1 fails, then you can no longer execute
ttGridAdmin commands on it. As shown in Figure 11–7, you must promote the
standby management instance on host2 to become the new active management
instance.

original standby

ttGridAdmin

new active

host1 host2

original active

FAILED

Managing failover for the management instances

Recovering from Failure 11-37

1. Log in to the host2 host on which the standby management instance exists and set
the environment with the ttenv script (as described in "Creating the initial
management instance" on page 4-2) on the host with the standby management
instance.

2. Execute the ttGridAdmin mgmtActiveSwitch command on the standby
management instance. TimesTen promotes the standby management instance into
the new active management instance. You can now continue to manage your grid
with the new active management instance.

% ttGridAdmin mgmtActiveSwitch
This is now the active management instance

3. Verify that the old standby management instance is now the new active
management instance with the ttGridAdmin mgmtExamine command:

% ttGridAdmin mgmtExamine
Active management instance is up, but standby is down

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive

host2 instance1 Yes Active Active 622 Up Yes
host1 instance1 No Unknown Unknown Down No
Management database is not available

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttGridAdmin
mgmtStandbyStart

Once the new active management instance is processing requests, ensure that a new
standby management instance is created by one of the following methods:

■ Failed management instance can be recovered

■ Failed management instance encounters a permanent failure

Failed management instance can be recovered If the failed active management instance can
be recovered, you need to perform the following tasks:

Figure 11–8 The failed management instance can be recovered

1. If you can recover the failed management instance, as shown in Figure 11–8, then
bring back up the failed host on which the old active management instance
existed. Then, execute the ttGridAdmin mgmtStandbyStart command on this host,
which re-initiates the management instance as the new standby management
instance. It also re-creates the active standby configuration between the new active

original standby

ttGridAdmin

original standby

new active new standby

original active

Switching the original standby and the original
active management instances, provides the
following configuration:

ttGridAdmin

new active

host1 host2

original active

FAAIILLEEDD

host2 host1

Managing failover for the management instances

11-38 Oracle TimesTen In-Memory Database Scaleout User's Guide

and standby management instances and replicates all management information on
the active management instance to the standby management instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

2. Verify that the active and standby management instances are as expected in their
new roles with the ttGridAdmin mgmtExamine command:

% ttGridAdmin mgmtExamine
Both active and standby management instances are up. No action required.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive

host2 instance1 Yes Active Active 603 Up Yes
host1 instance1 Yes Standby Standby 603 Up No

Failed management instance encounters a permanent failure If the failed active management
instance has failed permanently, you need to perform the following tasks:

Figure 11–9 The active management instance fails permanently

1. Remove the permanently failed active management instance from the model with
the ttGridAdmin instanceDelete command.

% ttGridAdmin instanceDelete host1.instance1
Instance instance1 on Host host1 deleted from Model

2. Add a new standby management instance with its supporting host and installation
to the model.

% ttGridAdmin hostCreate host9 -address host9.example.com
Host host9 created in Model
% ttGridAdmin installationCreate -host host9 -location
 /timesten/host9/installation1
Installation installation1 on Host host9 created in Model
% ttGridAdmin instanceCreate -host host9 -location /timesten/host9
 -type management
Instance instance1 on Host host9 created in Model

Note: If there are no other instances on the host where the failed
active management instance existed, you may want to delete the host
and the installation.

original standby
ttGridAdmin

new active new standby

host1 host2 host9

original active

FAAIILLEED

Managing failover for the management instances

Recovering from Failure 11-39

3. Apply the configuration changes to remove the failed active management instance
and add in a new standby management instance to the grid by executing the
ttGridAdmin modelApply command.

% ttGridAdmin modelApply
Copying Model...OK
Exporting Model Version 2...OK
Unconfiguring standby management instance.............................OK
Marking objects 'Pending Deletion'....................................OK
Stop any Instances that are 'Pending Deletion'........................OK
Deleting any Instances that are 'Pending Deletion'....................OK
Deleting any Hosts that are no longer in use..........................OK
Verifying Installations...OK
Creating any missing Installations....................................OK
Creating any missing Instances..OK
Adding new Objects to Grid State......................................OK
Configuring grid authentication.......................................OK
Pushing new configuration files to each Instance......................OK
Making Model Version 2 current..OK
Making Model Version 3 writable.......................................OK
Checking ssh connectivity of new Instances............................OK
Starting new management instance......................................OK
Configuring standby management instance...............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete

The ttGridAdmin modelApply command initiates the active standby configuration
between the active and standby management instances and replicates the
management information on the active management instance to the standby
management instance.

4. Verify that the active and standby management instances are as expected in their
new roles with the ttGridAdmin mgmtExamine command:

% ttGridAdmin mgmtExamine
Both active and standby management instances are up. No action required.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive

host2 instance1 Yes Active Active 603 Up Yes
host9 instance1 Yes Standby Standby 603 Up No

Standby management instance failure
How you re-activate the standby management instance depends on the type of failure
as described in the following sections:

■ Standby management instance recovers

■ Standby management instance experiences permanent failure

Standby management instance recovers
If the standby management instance recovers, then:

1. Check the status with the ttGridAdmin mgmtExamine command:

% ttGridAdmin mgmtExamine
Active management instance is up, but standby is down

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive Message

Managing failover for the management instances

11-40 Oracle TimesTen In-Memory Database Scaleout User's Guide

host1 instance1 Yes Active Active 605 Up No
host2 instance1 No Unknown Unknown Down No
Management database is not available

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttGridAdmin
mgmtStandbyStart

2. Log into the host with the standby management instance. If you have not done so
already, set the environment with the ttenv script (as described in "Creating the
initial management instance" on page 4-2).

3. Once you bring the failed management instance back up, then execute the
ttGridAdmin mgmtStandbyStart command on the host with the standby
management instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

This command re-integrates the standby management instance in your grid,
initiates the active standby configuration between the active and standby
management instances and replicates all management information on the active
management instance to the standby management instance.

Standby management instance experiences permanent failure
If the standby management instance has permanently failed, perform the following
commands:

■ Delete the failed standby management instance on the host2 host.

■ Create a new standby management instance on the host9 host to take over the
duties of the failed standby management instance. Then, the active management
instance replicates the management information to the new standby management
instance.

Figure 11–10 The standby management instance fails permanently

host2

a
ct

iv
e

sta
n

d
by

ttGridAdmin

new active

new standby

FAILLEED

host1

host9

Managing failover for the management instances

Recovering from Failure 11-41

1. Remove the permanently failed standby management instance from the model
with the ttGridAdmin instanceDelete command.

% ttGridAdmin instanceDelete host2.instance1
Instance instance1 on Host host2 deleted from Model

2. Add a new standby management instance with its supporting host and installation
to the model.

% ttGridAdmin hostCreate host9 -address host9.example.com
Host host9 created in Model
% ttGridAdmin installationCreate -host host9 -location
/timesten/host9/installation1
Installation installation1 on Host host9 created in Model
% ttGridAdmin instanceCreate -host host9 -location /timesten/host9
-type management
Instance instance1 on Host host9 created in Model

3. Apply the configuration changes to remove the failed standby management
instance and add in a new standby management instance to the grid by executing
the ttGridAdmin modelApply command, as shown in "Applying the changes made
to the model" on page 4-18.

% ttGridAdmin modelApply
Copying Model...OK
Exporting Model Version 9...OK
Unconfiguring standby management instance.............................OK
Marking objects 'Pending Deletion'....................................OK
Stop any Instances that are 'Pending Deletion'........................OK
Deleting any Instances that are 'Pending Deletion'....................OK
Deleting any Hosts that are no longer in use..........................OK
Verifying Installations...OK
Creating any missing Instances..OK
Adding new Objects to Grid State......................................OK
Configuring grid authentication.......................................OK
Pushing new configuration files to each Instance......................OK
Making Model Version 9 current..OK
Making Model Version 10 writable......................................OK
Checking ssh connectivity of new Instances............................OK
Starting new management instance......................................OK
Configuring standby management instance...............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete

The ttGridAdmin modelApply command initiates the active standby configuration
between the active and standby management instances and replicates the
management information on the active management instance to the standby
management instance.

Both management instances fail
You must restart the management instances to return the grid to its full functionality
and to be able to manage the grid through the active management instance.

Note: If there are no other instances on the host where the failed
management instance existed, you may want to delete the host and
the installation.

Managing failover for the management instances

11-42 Oracle TimesTen In-Memory Database Scaleout User's Guide

If both of the management instances are down, you need to discover which
management instance has the latest changes on it to decide which management
instance is to become the new active management instance.

The following describes the methods to perform when both management instances are
down:

■ Bring back both management instances

■ Bring back one of the management instances

Bring back both management instances
If you can bring back both management instances:

1. Execute the ttGridAdmin mgmtExamine command on one of the management
instances to discover which is the appropriate one to become the active
management instance. The ttGridAdmin mgmtExamine command evaluates both
management instances and prints out the highest sequence number for the
management instance that has more management data. It is this management
instance that should be re-activated as the active management instance.

% ttGridAdmin mgmtExamine
One or more management instance is down.
Start them and run mgmtExamine again.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive Message
--
host1 instance1 No Unknown Unknown Down No
Management database is not available
host2 instance1 No Unknown Unknown Down No
Management database is not available

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin -start
-force
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttDaemonAdmin -start
-force
sleep 30
/timesten/host1/instance1/bin/ttenv ttGridAdmin mgmtExamine

2. Execute the recommended commands listed by the ttGridAdmin mgmtExamine
command. The commands for this example result in restarting the daemons for
each management instance:

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin -start
-force

Note: If both management instances fail permanently, call Oracle
Support.

Note: If you have not done so already, set the environment with the
ttenv script (as described in "Creating the initial management
instance" on page 4-2).

Managing failover for the management instances

Recovering from Failure 11-43

TimesTen Daemon (PID: 3858, port: 11000) startup OK.
% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttDaemonAdmin -start
-force

TimesTen Daemon (PID: 4052, port: 12000) startup OK.

3. Re-execute the ttGridAdmin mgmtExamine command to verify that both
management instances are up. If either of the management instances are not up,
then the ttGridAdmin mgmtExamine command may suggest another set of
commands to run.

In this example, the second invocation of the ttGridAdmin mgmtExamine command
shows that the management instances are not up. Thus, this example shows that
the command next requests that you:

a. Stop the main daemon of the data instance for both management instances.

b. Execute the ttGridAdmin mgmtActiveStart command on the management
instance with the higher sequence number provided by the ttGridAdmin
mgmtExamine command. This re-activates the active management instance.

c. Execute the ttGridAdmin mgmtStandbyStart command on the management
instance that you want to act as the standby management instance. This
command assigns the other management instance as the standby management
instance in TimesTen Scaleout, initiates the active standby configuration
between the active and standby management instances and synchronizes the
management information on the active management instance to the standby
management instance.

% ttGridAdmin mgmtExamine
Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive Message
--
host1 instance1 Yes Active Active 581 Down No
host2 instance1 Yes Standby Standby 567 Down No

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin -stop
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttDaemonAdmin -stop
sleep 30
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttGridAdmin
mgmtActiveStart
sleep 30
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttGridAdmin
mgmtStandbyStart

Executing these commands restarts both the active and standby management
instances:

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin -stop
TimesTen Daemon (PID: 3858, port: 11000) stopped.

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttDaemonAdmin -stop
TimesTen Daemon (PID: 3859, port: 12000) stopped.

Managing failover for the management instances

11-44 Oracle TimesTen In-Memory Database Scaleout User's Guide

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttGridAdmin
mgmtActiveStart
This management instance is now the active

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttGridAdmin
mgmtStandbyStart
Standby management instance started

Continue to re-execute the ttGridAdmin mgmtExamine command until you receive
the message that both management instances are up.

% ttGridAdmin mgmtExamine
Both active and standby management instances are up. No action required.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive Message
--
host1 instance1 Yes Active Active 567 Up Yes
host2 instance1 Yes Standby Standby 567 Up No

Bring back one of the management instances
As soon as you notice that your standby management instance is down, it is important
that you recreate it as soon as possible. If not, then your grid topology may be
dramatically different than it was before if your active management instance also goes
down. That is, if the active management instance goes down or fails in such a way that
the best option is to bring back up the standby management instance that has been
down for a while, then this may result in an incorrect grid topology as follows:

■ If you had recently added instances to your grid, they may be gone.

■ If you had recently deleted instances from your grid, they may be back.

■ If you had recently created databases, they may have been deleted.

■ If you had recently destroyed databases, they might be recreated.

If you can bring back only one of the management instances, re-activate this instance
as the active management instance. The following example assumes that the
management instance on the host2 host is down and the management instance on the
host1 host was able to be brought back.

1. Execute the ttGridAdmin mgmtActiveStart command on the management
instance on host1. This re-activates as the active management instance.

% ttGridAdmin mgmtActiveStart
This management instance is now the active

2. Remove the permanently failed standby management instance from the model
with the ttGridAdmin instanceDelete command.

% ttGridAdmin instanceDelete host2.instance1
Instance instance1 on Host host2 deleted from Model

Note: If there are no other instances on the host where the down
management instance existed, you may want to delete the host and
the installation.

Performance recommendations

Recovering from Failure 11-45

3. Add a new standby management instance with its supporting host and installation
to the model.

% ttGridAdmin hostCreate host9 -address host9.example.com
Host host9 created in Model
% ttGridAdmin installationCreate -host host9 -location
/timesten/host9/installation1
Installation installation1 on Host host9 created in Model
% ttGridAdmin instanceCreate -host host9 -location /timesten/host9
-type management
Instance instance1 on Host host9 created in Model

4. Apply the configuration changes to remove the failed standby management
instance and add in a new standby management instance to the grid by executing
the ttGridAdmin modelApply command.

% ttGridAdmin modelApply
Copying Model...OK
Exporting Model Version 9...OK
Unconfiguring standby management instance.............................OK
Marking objects 'Pending Deletion'....................................OK
Stop any Instances that are 'Pending Deletion'........................OK
Deleting any Instances that are 'Pending Deletion'....................OK
Deleting any Hosts that are no longer in use..........................OK
Verifying Installations...OK
Creating any missing Instances..OK
Adding new Objects to Grid State......................................OK
Configuring grid authentication.......................................OK
Pushing new configuration files to each Instance......................OK
Making Model Version 9 current..OK
Making Model Version 10 writable......................................OK
Checking ssh connectivity of new Instances............................OK
Starting new management instance......................................OK
Configuring standby management instance...............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete

The ttGridAdmin modelApply command initiates the active standby configuration
between the active and standby management instances and replicates the
management information on the active management instance to the standby
management instance.

Performance recommendations
Enhance your performance by setting a timeout for the channel create.

Set a timeout for create channel requests
Each element communicates over channels to all other elements. However, if any
request to create a channel between elements hangs due to software issues or network
failures, then all channel create requests could be blocked. Since open channels are
required for element communication, we need to detect any hangs within the channel
creation process.

You can set a timeout (in milliseconds) to wait for a response to a channel create
request to a remote element with the ChannelCreateTimeout general connection
attribute. See "ChannelCreateTimeout" in the Oracle TimesTen In-Memory Database
Reference for full details.

Performance recommendations

11-46 Oracle TimesTen In-Memory Database Scaleout User's Guide

A

Example for Deploying a Grid and Database A-1

AExample for Deploying a Grid and Database

This appendix provides an example for how to install, create, and deploy a simple grid
using the ttGridRollout utility.

The following sections show a simple example that installs TimesTen Scaleout, sets up
three membership servers, and configures a database in a grid with k set to 2. The grid
configuration consists of two management instances and six data instances.

■ TimesTen Scaleout prerequisites

■ Install TimesTen Scaleout

■ Set up the membership service

■ Deploy a grid and database

Note:

■ See Chapter 1, "Overview of TimesTen Scaleout" to get
familiarized with the concepts discussed in this appendix.

■ See Chapter 2, "Prerequisites and Installation of TimesTen
Scaleout" for a more comprehensive description of TimesTen
Scaleout prerequisites and its installation process.

Note: While this appendix describes how to quickly set up a grid
with a single database for development and testing purposes by using
the ttGridRollout utility, it is also possible to configure a grid by
using:

■ The ttGridAdmin utility: Uses the command line to set up a grid
with one or more databases. It provides access to the full range of
configuration, management, and monitoring capabilities of
TimesTen Scaleout. See "Configure your grid" on page 4-1 for
more information.

■ Oracle SQL Developer: Uses a GUI that provides the some of the
same functionality as the ttGridAdmin utility. See "Working with
TimesTen Scaleout" in the Oracle SQL Developer Oracle TimesTen
In-Memory Database Support User's Guide for more information.

TimesTen Scaleout prerequisites

A-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

TimesTen Scaleout prerequisites
Before you install TimesTen Scaleout and configure your grid, ensure that your hosts
fulfill certain prerequisites.

■ Ensure that TimesTen Scaleout supports the OS installed on each host

■ Create a TimesTen user group and OS user

■ Set the Linux system kernel parameters

■ Set the memlock settings for the instance administrator

Ensure that TimesTen Scaleout supports the OS installed on each host
Once you know which systems you are going to use as hosts in your grid, ensure that
TimesTen Scaleout supports the platform and operating system installed on each host.
All hosts must run the same platform and OS version and release.

For a list of the operating systems that TimesTen Scaleout supports, see the Oracle
TimesTen In-Memory Database Release Notes that are located in the installation directory.

Configure all hosts in the same internal network
Create a single internal network for all hosts to communicate with each other. Client
connections to the database may be handled through a external network, if available.

See "Network requirements" on page 2-8 for more information.

Create a TimesTen user group and OS user
Create the GID for the TimesTen users group and the username and UID for the role of
instance administrator. Ensure that they exist and are the same on all hosts.

% sudo groupadd -g 10000 timesten
% sudo useradd -u 55000 -g timesten instanceadmin
% sudo passwd instanceadmin

See "Understanding the TimesTen users group and the operating system user" on
page 2-2 for more information.

Set the Linux system kernel parameters
Configure the following parameters of the system kernel on all hosts with a data
instance. These values are based on your database requirements:

% sudo vi /etc/sysctl.conf

...
kernel.shmmax=51539607552
kernel.shmall=14680064
vm.nr_hugepages=24576
vm.hugetlb_shm_group=10000
...

Note: The parameters defined for every system in the topology of
this example is based on the scenario described in "Planning your
grid" on page 1-17.

Install TimesTen Scaleout

Example for Deploying a Grid and Database A-3

Enable these settings without restarting on all modified hosts. Consider that the
HugePages parameters may require a system reboot to take full effect.

sudo /sbin/sysctl -p

See "Configure shmmax and shmall" on page 2-3 and "Configure HugePages" on
page 2-5 for more information on how you calculate the values for these parameters.

Set the memlock settings for the instance administrator
Set the recommended memlock settings for the instance administrator based on the
shared memory segment of each host.

% sudo vi /etc/security/limits.conf

...
instanceadmin soft memlock 50331648
instanceadmin hard memlock 50331648
...

See "Modify the memlock settings" on page 2-6 for more information on how you
calculate the values for these parameters.

Set the semaphore values
Configure the semaphore values of the system kernel on all hosts based on your
database requirements:

% sudo vi /etc/sysctl.conf

...
kernel.sem = 4000 400000 2000 2560
...

Enable this setting without restarting the system on all modified hosts.

sudo /sbin/sysctl -p

See "Set the semaphore values" on page 2-7 for more information on how you calculate
the values for this parameter.

Install TimesTen Scaleout
Unpack a TimesTen Scaleout distribution in the location you defined for the host of
your active management instance. For this example, the location is the /grid directory
on the host1 host. TimesTen Scaleout automatically sets /grid/tt18.1.4.1.0 as the
location for the installation of the management instance when the grid is created.

% mkdir -p /grid
% unzip /mydir/timesten181410.server.linux8664.zip -d /grid
...

See "Installing TimesTen Scaleout" on page 2-10 for more information on how to install
TimesTen Scaleout.

Note: Unless stated otherwise and up to the end of this appendix,
you should run all commands on the system that you defined for the
host of the active management instance.

Set up the membership service

A-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

Set passwordless SSH between all hosts
Use the ttGridAdmin gridSshConfig command to set up the required passwordless
SSH access between the internal network addresses of all hosts for the instance
administrator.

% /grid/tt18.1.4.1.0/bin/ttGridAdmin gridSshConfig
 -mgmtAddress int-host1 int-host2
 -dataAddress int-host3 int-host4 int-host5 int-host6 int-host7 int-host8

See "Setting passwordless SSH" on page 2-12 for more information.

Set up the membership service
TimesTen Scaleout includes Apache ZooKeeper as a third party membership service.
You can find the ZooKeeper installation files in the installation_
dir/tt18.1.4.1.0/3rdparty/apache-zookeeper-3.5.8-bin.tar.gz file of a TimesTen
Scaleout installation.

To configure and initialize the membership service as required for TimesTen Scaleout,
complete the next steps:

1. Install ZooKeeper

2. Configure the ZooKeeper servers

3. Start the ZooKeeper servers

4. Create the client configuration file

Install ZooKeeper
Unpack Apache ZooKeeper on each system that you defined for the role of a
membership server.

% mkdir -p /grid/membership
% tar -zvxf apache-zookeeper-3.5.8-bin.tar.gz -C /grid/membership

Configure the ZooKeeper servers
Once the installation files are available on all the systems defined as membership
servers, create the zoo.cfg and myid configuration files on those systems.

% vi /grid/membership/apache-zookeeper-3.5.8-bin/conf/zoo.cfg

tickTime=250
initLimit=40
syncLimit=12
dataDir=grid/membership/apache-zookeeper-3.5.8-bin/data
clientPort=2181
server.1=ms-host1:2888:3888
server.2=ms-host2:2888:3888
server.3=ms-host3:2888:3888
autopurge.snapRetainCount=3
autopurge.purgeInterval=1

Note: See "Overview of the TimesTen Scaleout membership service"
on page 3-1 for a more comprehensive description of the membership
service in TimesTen Scaleout, including the configuration of Apache
ZooKeeper.

Deploy a grid and database

Example for Deploying a Grid and Database A-5

4lw.commands.whitelist=stat, ruok, conf, isro

Ensure that in the myid file you assign the same n value as in the server.n parameter
of the zoo.cfg file. For example, since the ms-host1 system is identified as server.1 in
the zoo.cfg file, then the myid file of that system must contain a single line with a 1.

% vi /grid/membership/apache-zookeeper-3.5.8-bin/conf/myid

1

Also, create the location specified for the dataDir parameter.

% mkdir -p /grid/membership/apache-zookeeper-3.5.8-bin/data

See "Configuring Apache ZooKeeper as the membership service" on page 3-7 for more
information on the parameters included in the zoo.cfg and myid configuration files.

Start the ZooKeeper servers
Start the ZooKeeper server on all the systems that you defined for the role of a
membership server.

% /grid/membership/apache-zookeeper-3.5.8-bin/bin/zkServer.sh start

If you want to verify that ZooKeeper is running properly, use:

% /grid/membership/apache-zookeeper-3.5.8-bin/bin/zkCli.sh -server ms-host1:2181

Create the client configuration file
The client configuration file identifies the host names and client TCP/IP ports of all
membership servers.

Create a client configuration file in a directory on the system defined as the host of the
active management instance, as shown in Example A–1.

Example A–1 Sample client configuration file: membership.conf

% vi /mydir/membership.conf

Servers ms-host1!2181,ms-host2!2181,ms-host3!2181

Deploy a grid and database
TimesTen Scaleout provides several options for you to successfully configure and
deploy a grid. One of those options is the ttGridRollout utility. The ttGridRollout
utility uses the parameters you define in a configuration file to deploy a grid and
database from start to finish without needing further input from you. This utility uses
ttGridAdmin commands to perform the operations related to the initial configuration
and deployment of a grid and database. You can find the ttGridRollout utility in the
bin directory of a TimesTen Scaleout installation.

■ Create a database definition file

■ Create a connectable file

■ Create a SQL script file for your database

■ Create a configuration file for the ttGridRollout utility

■ Create a grid and database

Deploy a grid and database

A-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

■ Connect to the database

For more information on the ttGridRollout utility, see "ttGridRollout" in the Oracle
TimesTen In-Memory Database Reference.

Create a database definition file
The database definition file (suffix of .dbdef) contains the data store and first
connection attributes of a database. You must name the file as database_name.dbdef.
For example, for a database named database1, the database definition file would be
database1.dbdef.

Create a database definition file in a directory on the system defined as the host of the
active management instance, as shown in Example A–2.

Example A–2 Database definition file

% vi /mydir/database1.dbdef

[database1]
DataStore=/disk1/databases/database1
LogDir=/disk2/logs
DatabaseCharacterSet=AL32UTF8
Durability=0
PermSize=32768
TempSize=4096
LogBufMB=1024
Connections=2048

See "Creating a database definition file" on page 5-2 for more information on the
database definition file.

Create a connectable file
The connectable file (suffix of .connect) contains the general connection attributes for
a connection to a database. TimesTen Scaleout supports connectables that can be either
for direct or client/server connections to the database.

Create a connectable file in a directory on the system defined as the host of the active
management instance, as shown in Example A–3.

Example A–3 Connectable file

% vi /mydir/database1CS.connect

ConnectionCharacterSet=AL32UTF8

See "Creating a connectable file" on page 5-7 for more information on the connectable
file.

Create a SQL script file for your database
The SQL script file contains the SQL statements to create SQL objects for your
database.

Create a SQL script file in a directory on the system defined as the host of the active
management instance, as shown in Example A–4.

Deploy a grid and database

Example for Deploying a Grid and Database A-7

Example A–4 SQL script file

% vi /mydir/database1.sql

CREATE USER terry IDENTIFIED BY password;

GRANT CREATE SESSION TO terry;

CREATE TABLE terry.account_type
(
 type CHAR(1) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
)
DUPLICATE;

CREATE TABLE terry.account_status
(
 status NUMBER(2,0) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
)
DUPLICATE;

CREATE TABLE terry.customers
(
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL
)
DISTRIBUTE BY HASH;

CREATE TABLE terry.accounts
(
 account_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 phone VARCHAR2(16) NOT NULL,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2,0) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL,
 CONSTRAINT fk_customer
 FOREIGN KEY (cust_id)
 REFERENCES terry.customers(cust_id),
 CONSTRAINT fk_acct_type
 FOREIGN KEY (account_type)
 REFERENCES terry.account_type(type),
 CONSTRAINT fk_acct_status
 FOREIGN KEY (status)
 REFERENCES terry.account_status(status)
)
DISTRIBUTE BY REFERENCE (fk_customer);

Note: See "Defining table distribution schemes" on page 5-13 for
details on the CREATE TABLE statements and their distribution schemes
included in the database1.sql file.

Deploy a grid and database

A-8 Oracle TimesTen In-Memory Database Scaleout User's Guide

CREATE TABLE terry.transactions
(
 transaction_id NUMBER(10,0) NOT NULL,
 account_id NUMBER(10,0) NOT NULL ,
 transaction_ts TIMESTAMP NOT NULL,
 description VARCHAR2(60),
 optype CHAR(1) NOT NULL,
 amount NUMBER(6,2) NOT NULL,
 PRIMARY KEY (account_id, transaction_id, transaction_ts),
 CONSTRAINT fk_accounts
 FOREIGN KEY (account_id)
 REFERENCES terry.accounts(account_id)
)
DISTRIBUTE BY REFERENCE (fk_accounts);

CREATE SEQUENCE terry.txn_seq CACHE 100 BATCH 1000000;

Create a configuration file for the ttGridRollout utility
The configuration file for the ttGridRollout utility defines all the necessary
parameters to successfully create and deploy a grid and database in TimesTen
Scaleout.

Create a configuration file for the ttGridRollout utility, as shown in Example A–5.
The configuration file in Example A–5:

■ Names the grid as grid1.

■ Defines the membership servers provided by the membership.conf file.

■ Defines the location for the installation files for every installation object as
/grid/tt18.1.4.1.0 on their respective host.

■ Defines the location for the instance files of every instance object as /grid on their
respective hosts.

■ Creates the database definition provided by the database1.dbdef file.

■ Creates the client/server connectable provided by the database1CS.connect file.

■ Adds the SQL schema provided by the database1.sql file to the database1
database.

■ Creates two management instances, including their respective hosts and
installations.

■ Creates six data instances, including their respective hosts and installations,
evenly assigned to two data space groups. The ttGridRollout utility sets K-safety
to 2 at grid creation to satisfy the need of two data space groups.

Example A–5 ttGridRollout configuration file

% vi /mydir/grid1.conf

grid_name = grid1
zoo_conf = /mydir/membership.conf
instance_location = /grid

Note: See "Define the network parameters of each host and
membership server" on page 1-20 for details on the attributes used for
every instance in this example.

Deploy a grid and database

Example for Deploying a Grid and Database A-9

installation_location = /grid
dbdef_file = /mydir/database1.dbdef
cs_connect_files = /mydir/database1CS.connect
init_script = /mydir/database1.sql
mgmt_instances = [
 { "host":"host1", "address":"int-host1", "instance":"instance1",
 "daemonport":6624, "csport":6625, "mgmtport":3754},
 { "host":"host2", "address":"int-host2", "instance":"instance1",
 "daemonport":6624, "csport":6625, "mgmtport":3754}
]
data_instances = [
 { "host":"host3", "internalAddress":"int-host3",
 "externalAddress":"ext-host3.example.com", "dataspacegroup":1,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host4", "internalAddress":"int-host4",
 "externalAddress":"ext-host4.example.com", "dataspacegroup":2,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host5", "internalAddress":"int-host5",
 "externalAddress":"ext-host5.example.com", "dataspacegroup":1,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host6", "internalAddress":"int-host6",
 "externalAddress":"ext-host6.example.com", "dataspacegroup":2,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host7", "internalAddress":"int-host7",
 "externalAddress":"ext-host7.example.com", "dataspacegroup":1,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host8", "internalAddress":"int-host8",
 "externalAddress":"ext-host8.example.com", "dataspacegroup":2,
 "instance":"instance1", "daemonport":6624, "csport":6625}
]

Create a grid and database
Use the ttGridRollout utility to create a grid and database based on the configuration
file you provide.

% /grid/tt18.1.4.1.0/bin/ttGridRollout /mydir/grid1.conf
INFO: Checking Zookeeper on ms-host1!2181 -- OK
INFO: Checking Zookeeper on ms-host2!2181 -- OK
INFO: Checking Zookeeper on ms-host3!2181 -- OK
INFO: Checking the address for the management database -- OK
INFO: Checking connectivity to int-host1 -- OK

==

/grid/tt18.1.4.1.0/bin/ttInstanceCreate -grid -location /grid -name
 instance1 -daemonport 6624 -csport 6625
Creating instance in /grid/instance1 ...

NOTE: The TimesTen daemon startup/shutdown scripts have not been installed.

The startup script is located here :
'/grid/instance1/startup/tt_instance1'

Run the 'setuproot' script :
/grid/instance1/bin/setuproot -install
This will move the TimesTen startup script into its appropriate location.

The 18.1.4.1 Release Notes are located here :
 '/grid/tt18.1.4.1.0/README.html'

Deploy a grid and database

A-10 Oracle TimesTen In-Memory Database Scaleout User's Guide

/grid/instance1/bin/ttenv ttGridAdmin gridCreate grid1 -k 2 -host host1 -address
 int-host1 -membership zookeeper -membershipConfig /mydir/membership.conf
 -mgmtport 3754
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host2 -address int-host2
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host2 -location /grid
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host2.instance1 -location
 /grid -type management -daemonport 6624 -csport 6625 -mgmtport 3754
/grid/instance1/bin/ttenv ttGridAdmin modelApply
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host3 -externaladdress int-host3
 -internaladdress ext-host3.example.com -dataspacegroup 1
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host3 -location /grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host4 -externaladdress int-host4
 -internaladdress ext-host4.example.com -dataspacegroup 2
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host4 -location /grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host5 -externaladdress int-host5
 -internaladdress ext-host5.example.com -dataspacegroup 1
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host5 -location /grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host6 -externaladdress int-host6
 -internaladdress ext-host6.example.com -dataspacegroup 2
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host6 -location /grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host7 -externaladdress int-host7
 -internaladdress ext-host7.example.com -dataspacegroup 1
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host7 -location /grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host8 -externaladdress int-host8
 -internaladdress ext-host8.example.com -dataspacegroup 2
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host8 -location
 /grid
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host3.instance1 -location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host4.instance1 -location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host5.instance1 -location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host6.instance1 -location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host7.instance1 -location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host8.instance1 -location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin dbdefCreate /mydir/database1.dbdef
/grid/instance1/bin/ttenv ttGridAdmin modelApply
/grid/instance1/bin/ttenv ttGridAdmin dbCreate -wait 180 database1
/grid/instance1/bin/ttenv ttGridAdmin dbDistribute database1 -add all -apply
/grid/instance1/bin/ttenv ttGridAdmin dbOpen -wait 180 database1
/grid/instance1/bin/ttenv ttGridAdmin connectableCreate -dbdef database1 -cs
 /mydir/database1CS.connect
/grid/instance1/bin/ttenv ttGridAdmin modelApply
/grid/instance1/bin/ttenv ttGridAdmin instanceExec -only host3.instance1 "ttIsql
 database1 <<EOF
CREATE USER terry IDENTIFIED BY password;

GRANT CREATE SESSION TO terry;

CREATE TABLE terry.account_type
(
 type CHAR(1) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
)
DUPLICATE;

Deploy a grid and database

Example for Deploying a Grid and Database A-11

CREATE TABLE terry.account_status
(
 status NUMBER(2,0) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
)
DUPLICATE;

CREATE TABLE terry.customers
(
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL
)
DISTRIBUTE BY HASH;

CREATE TABLE terry.accounts
(
 account_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 phone VARCHAR2(16) NOT NULL,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2,0) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL,
 CONSTRAINT fk_customer
 FOREIGN KEY (cust_id)
 REFERENCES terry.customers(cust_id),
 CONSTRAINT fk_acct_type
 FOREIGN KEY (account_type)
 REFERENCES terry.account_type(type),
 CONSTRAINT fk_acct_status
 FOREIGN KEY (status)
 REFERENCES terry.account_status(status)
)
DISTRIBUTE BY REFERENCE (fk_customer);

CREATE TABLE terry.transactions
(
 transaction_id NUMBER(10,0) NOT NULL,
 account_id NUMBER(10,0) NOT NULL ,
 transaction_ts TIMESTAMP NOT NULL,
 description VARCHAR2(60),
 optype CHAR(1) NOT NULL,
 amount NUMBER(6,2) NOT NULL,
 PRIMARY KEY (account_id, transaction_id, transaction_ts),
 CONSTRAINT fk_accounts
 FOREIGN KEY (account_id)
 REFERENCES terry.accounts(account_id)
)
DISTRIBUTE BY REFERENCE (fk_accounts);

CREATE SEQUENCE terry.txn_seq CACHE 100 BATCH 1000000;

EOF"

Deploy a grid and database

A-12 Oracle TimesTen In-Memory Database Scaleout User's Guide

==
6-instance (3x2) grid successfully created.

Management Instance Locations

- int-host1:/grid/instance1
- int-host2:/grid/instance1

Please source ttenv script under Management Instances for grid management via
 "ttGridAdmin" commands.

 For example, to use the first management instance, on int-host1:
 sh: . /grid/instance1/bin/ttenv.sh
 csh: source /grid/instance1/bin/ttenv.csh

Data Instance Locations

- host3.instance1 ==> int-host3:/grid/instance1
- host4.instance1 ==> int-host4:/grid/instance1
- host5.instance1 ==> int-host5:/grid/instance1
- host6.instance1 ==> int-host6:/grid/instance1
- host7.instance1 ==> int-host7:/grid/instance1
- host8.instance1 ==> int-host8:/grid/instance1

Please source ttenv script under Data Instances for database operations.

 For example, to use instance1, on int-host3:
 sh: . /grid/instance1/bin/ttenv.sh
 csh: source /grid/instance1/bin/ttenv.csh

Connect to the database
Connect to your database through a direct or client connection. For a direct connection,
set your environment to one of the data instances, host3.instance1 for example, and
use the database1 connectable to connect to the database.

% source /grid/instance1/bin/ttenv.csh
...
% ttIsql -connStr "DSN=database1;UID=terry"

See "Connecting to a database" on page 5-7 for more information on how to connect to
a database in TimesTen Scaleout.

B

TimesTen Scaleout Environment B-1

BTimesTen Scaleout Environment

This appendix provides reference material on:

■ Environment variables

■ Instance home directory and subdirectories

■ Managing a development or test environment

Environment variables
These sections discuss environment variables:

■ Setting environment variables

■ Environment variable descriptions

Setting environment variables
You set environment variables for a terminal window, which enables the window to
run commands for a particular instance. Here is a list of situations where you should
set your environment variables:

■ After you create the active management instance

■ Before using ttGridAdmin or any TimesTen utility

■ Before executing a direct mode application on a host running a data instance

■ Before executing a client server application on a host running a client (or data)
instance

You set the environment variables by sourcing the ttenv shell script (ttenv.sh or
ttenv.csh). TimesTen creates the scripts after you create an instance. These scripts are
located in the grid/instance1/bin directory (where grid/instance1 is the full path of
the instance). By sourcing these scripts, the environment variables required to use a
TimesTen Scaleout instance are set.

The environment variables include TIMESTEN_HOME, PATH, LD_LIBRARY_PATH (or
equivalent) and TNS_ADMIN.

For example:

For a Bourne-type shell, such as sh, bash, zsh, or ksh:

% ./ttenv.sh

For a csh or tcsh shell:

% source ttenv.csh

Environment variables

B-2 Oracle TimesTen In-Memory Database Scaleout User's Guide

Environment variable descriptions
These sections provide more details on the environment variables:

■ TIMESTEN_HOME environment variable

■ NLS_LANG environment variable

■ Shared library path environment variable

■ PATH environment variable

■ Temporary directory environment variable

■ TNS_ADMIN environment variable

■ Java environment variables

TIMESTEN_HOME environment variable
The TIMESTEN_HOME environment variable specifies the home directory of the TimesTen
Scaleout instance. You explicitly set this variable when sourcing the ttenv script.

NLS_LANG environment variable
The character set specified in the database definition file is used by default for the
connection, if not overridden by NLS_LANG or if not in the connectable. While setting
the character set explicitly is recommended, the default is normally AMERICAN_
AMERICA.US7ASCII. To use the environment variable to set the character set, do the
following:

NLS_LANG=.WE8ISO8859P1

For more information, see:

■ "Character sets" in Oracle TimesTen In-Memory Database C Developer's Guide for
more information.

■ "Supported character sets" in Oracle TimesTen In-Memory Database Reference for
more information.

Shared library path environment variable
The shared library path environment variable is set when sourcing ttenv. This
environment variable specifies the path for shared libraries. The ttenv script adds
$TIMESTEN_HOME/install/lib to LD_LIBRARY_PATH.

PATH environment variable
TimesTen provides utilities for managing and debugging your applications. For these
utilities to be available, the path for executables in $TIMESTEN_HOME/bin and
$TIMESTEN_HOME/install/bin must be designated in the PATH setting. The path is
updated to include these directories when you source ttenv.

In addition, to compile programs, be sure the location of the compiler for your
programming language is in the PATH setting.

Temporary directory environment variable
TMPDIR specifies the location of the temporary directory, which TimesTen uses during
recovery and other operations.

Environment variables

TimesTen Scaleout Environment B-3

TNS_ADMIN environment variable
The TNS_ADMIN environment variable specifies the full path to the directory where the
tnsnames.ora file is located.

■ For TimesTen OCI, Pro*C/C++, or ODP.NET, set the TNS_ADMIN environment
variable to indicate the full path to the directory where the tnsnames.ora file is
located.

■ TimesTen Scaleout automatically populates the tnsnames.ora file on all instances
with entries for all the connectables. Do not manually configure these entries, as
the related configuration files are owned by TimesTen Scaleout.

■ The tnsnames and related information for additional entries, such as for Oracle
database connections (as applicable), are brought in and distributed through the
ttGridAdmin TNSNamesImport and SQLNetImport commands. See "Import TNS
names (TNSNamesImport)" and "Import a sqlnet file (SQLNetImport)" in Oracle
TimesTen In-Memory Database Reference for more information.

Java environment variables
For Java applications, there are additional environment variables of interest. These
sections provide information about additional environment variables or considerations
that affect Java applications:

■ CLASSPATH environment variable

■ PATH environment variable settings for Java

CLASSPATH environment variable Java classes and class libraries are found on the class
path, as specified by the CLASSPATH environment variable. Before executing a Java
program that loads any of the TimesTen JDBC drivers, the CLASSPATH setting must
include the class library file and path:

$TIMESTEN_HOME/install/lib/ttjdbcjdk_ver.jar

where jdk_ver indicates the JDK version. For JDK8, jdk_ver is 8 and the file name is
ttjdbc8.jar.

CLASSPATH elements are separated by colons. For example (sh type shell):

CLASSPATH=.:$TIMESTEN_HOME/install/lib/ttjdbc7.jar
export CLASSPATH

Or (csh type shell):

setenv CLASSPATH .:$TIMESTEN_HOME/install/lib/ttjdbc7.jar

To check the JDK version:

% java -version

PATH environment variable settings for Java For Java applications, ensure that the locations
of the java and javac executables are in the PATH setting.

Note: If multiple JAR files are listed in the CLASSPATH, ensure that the
TimesTen JAR file is listed first.

Instance home directory and subdirectories

B-4 Oracle TimesTen In-Memory Database Scaleout User's Guide

Instance home directory and subdirectories
When you create an instance, each instance includes these subdirectories within
$TIMESTEN_HOME:

■ bin: TimesTen utilities and executables tailored and specific to the instance

This includes ttenv, which sets environment variables appropriately for the
TimesTen environment for your session, and setuproot.sh, which can be run as
root to cause data instances to be automatically started whenever the operating
system reboots.

Note that ttenv also puts the bin directory in your path.

■ conf: Contains the timesten.conf file, which is the TimesTen instance
configuration file

■ diag: Diagnostic output, including the daemon log and error log

■ grid: Files and resources for TimesTen Scaleout

■ info: Working directory of the TimesTen daemon, containing persistent state about
the TimesTen instance

■ install: Symbolic link referencing the installation associated with this instance.

■ plsql: Contains this subdirectory:

– utl_file_dir: The only directory that can be read from or written to by
PL/SQL blocks using the UTL_FILE package

■ startup: Contains a script that can be added to /etc/init.d to cause the instance
to be automatically started at system startup and stopped at system shutdown.

Managing a development or test environment
If you have a test or a development environment where you are creating, using and
then destroying multiple grids, you may need to purge the membership server meta
data for any grid that is destroyed and will not be used again.

TimesTen Scaleout creates membership server meta data to represent each
independent grid on each instance in a grid. If you know that a particular grid has
been destroyed and is never going to be used again, then you can perform the
following on one instance:

1. Locate the timesten.conf configuration file in the /conf directory under the
instance home directory.

2. Identify the membership server entries in the timesten.conf configuration file
with the grid_guid and grid_name parameters, such as:

grid_guid=4012FC64-8B9X-45D1-A16C-ED52C3098CAD
grid_name=mygrid

Notes:

■ TimesTen Scaleout updates configuration files as needed. Do not
update them manually.

■ Client-only instances do not include the grid or the startup
directories.

Managing a development or test environment

TimesTen Scaleout Environment B-5

The membership server entry has the naming structure of grid_name.grid_guid
and exists within the /oracle/timesten/grid/membership directory.

3. Execute the zkCli.sh command to connect to the membership servers.

./zkCli.sh -server ms_host1:2181

4. Using the zkCli.sh rmr command, delete the membership server entries.

rmr
/oracle/timesten/grid/membership/mygrid.4012FC64-8B9B-45D1-A16C-ED52C3098CAD

Note: It is imperative that you identify the correct grid to avoid
deleting a membership server of an active grid.

Managing a development or test environment

B-6 Oracle TimesTen In-Memory Database Scaleout User's Guide

Index-1

Index

A
active management instance

failure, 11-33, 11-35
permanent failure, 11-38
recover, 11-35, 11-37
start, 4-5, 11-36

ALTER TABLE statement, 7-2
Apache ZooKeeper

as membership service, 1-5
configuration, 3-7
replicated mode, 3-10

autopurge.purgeInterval configuration
parameter, 3-9

autopurge.snapRetainCount configuration
parameter, 3-9

B
back up, 10-1

into repository, 10-4
backup

list, 10-16
normal, 10-9
staged, 10-9

bulk loading data, 5-21

C
central configuration, 1-16
ChannelCreateTimeout connection attribute, 11-45
checkpoint files, 1-3
checkpoint log files

directory, 1-21
CLASSPATH environment variable

description, B-3
client connection, 5-9

failover, 11-30
timing, 11-31

redirecting, 5-12
clientPort configuration parameter, 3-9
client/server connectable, 5-7
clock

synchronization, 9-13
collection

collection.json file, 10-4

list, 10-7
log files, 9-12
metadata file, 10-4
overview, 10-4

collection.json file, 10-4
communication error, 11-6

between data instance and ZooKeeper
server, 11-6

between data instances, 11-6
between elements, 11-6

configuration
central, 1-16
model, 1-16

connect
database, A-12

.connect file, 5-7
connectable, 5-7

client/server, 5-7, 5-9
connection attributes, 5-7
create, 5-4, 5-7, 5-8, A-6
direct, 5-7
export, 5-32
file, 5-7
import, 5-33
modify, 5-33
modify connection attributes, 5-32
naming, 5-7
specifies DSN, 5-9

connection
client, 5-9
client-server, 1-23
close, 5-27
direct, 1-23, 5-9
failover, 11-30

timing, 11-31
id, 6-9
redirecting, 5-12
remote, 6-2

connection attributes, 5-2
connectable, 5-7
data store attributes, 5-2
first connection attributes, 5-2
modify, 5-30
PL/SQL

first connection attributes, 5-3
Server connection attributes, 5-3

Index-2

types, 5-7
connections

maximum, 2-7
Connections connection attribute, 2-3
CREATE MATERIALIZED VIEW statement, 7-4
CREATE SEQUENCE statement, 7-6

BATCH clause, 7-6
CREATE TABLE statement, 7-2

DISTRIBUTE BY clause, 5-13
CREATE USER SQL statement, 7-1
CreateEpochAtCommit attribute, 6-5

D
daemon

attributes, see timesten.conf file
restart, 11-30

data
bulk loading, 5-21
distribution, 5-5

across data instances, 1-8
materialized view, 5-16, 7-4
table, 7-2

distribution map, 1-13, 5-4
durability, 1-3
element, 1-13
import Oracle data, 5-25
K-safety manages multiple copies, 1-9
migrate, 10-15
multiple copies, 1-4

replica sets, 1-10
persistence, 1-3
recovery, 1-3
redistributing data, 1-13
restore, 10-1
table population, 5-22, 5-25
transparency, 1-4

data instance, 1-6
add, 4-11, 5-5
associate with host, 4-12
automatic startup, 4-20
create, 4-14

duplicate configuration, 4-16
distributing data, 1-8
down, 11-14, 11-29
element, 4-11
evict, 8-8
failure, 11-6
number to create, 4-8
overview, 1-7, 1-8, 4-1
planning, 1-17
recover, 11-14, 11-29
remove, 5-5
replace, 5-5
restart, 11-14
upgrade, 8-18
use installation, 4-15

data space
full copy of data, 1-10
overview, 1-10

data space group, 1-18
assign hosts, 4-10
associate host, 4-12
create, 4-5
host assignments, 4-11
recommend assignments, 4-25

data store connection attributes, 5-2
database

backup, 10-7, 10-12
delete, 10-13
status, 10-7

configure, 5-1
connect, 5-6, 5-7, 5-9, A-12
connecting, 5-2
create, 5-1, 5-4
definition, 5-2
destroy, 5-33
export, 10-4, 10-15

delete, 10-16
status, 10-16

failure, 11-1
import, 10-15, 10-17

status, 10-17
in-memory, 1-3
load, 5-30
managing, 5-1
metrics, 9-1
migrating, 10-15
monitor, 9-1, 9-3
open, 5-6, 5-30
path, 1-21
performance, 1-3
recovery, 11-30
region sizing, 5-3
relational, 1-3
reload

readiness, 11-30
restart, 5-30
restore, 10-7, 10-13

status, 10-14
snapshot

report, 9-6
staged backup, 10-9
state, 9-1
statistics, 9-1
status, 5-5, 11-2
stop, 5-27
unload, 5-27

database definition, 5-2
connection attributes, 5-2
create, 5-2, 5-4
.dbdef file, 5-2
default connectable, 5-7
delete, 5-34
export, 5-31
import, 5-32
modify connection attributes, 5-30
naming, 5-2

DatabaseCharacterSet connection attribute, 5-2
dataDir configuration parameter, 3-9

Index-3

DataStore connection attribute, 1-21, 5-2
DDL

failed replica set, 11-17
DDL statements, 7-1
DELETE statement, 7-9
description, B-2
direct connectable, 5-7

default, 5-7
direct connection, 5-9
DISTRIBUTE BY clause, 5-13
DISTRIBUTE BY REFERENCE clause, 7-2
distribution map, 5-4

add data instance, 5-5
define, 5-5
definition, 5-5
overview, 1-13
remove data instance, 5-5

distribution scheme, 1-14, 7-2
duplicate, 1-14
hash, 1-14
reference, 1-14
table, 5-13

DML statements, 7-1
DSN, 5-7

client, 5-10, 5-11
database definition, 5-2
defined in connectable, 5-9

duplicate, 11-17
duplicate distribution scheme, 1-14
duplicate element, 11-15
durability, 1-3, 6-3

durable commit, 6-3
nondurable commit, 6-3
nondurable prepare, 6-3

Durability connection attribute, 6-3, 11-16, 11-18,
11-30

E
element

automatic recovery, 11-8
communication

performance, 11-45
contained within replica set, 1-10
create, 11-2, 11-14
create failed, 11-14
data distribution, 1-13
destroy, 11-11, 11-12, 11-14
down, 11-2, 11-6, 11-14
evict, 11-2
evicted, 11-11, 11-12, 11-14
failure, 11-1, 11-9, 11-14

permanent, 11-14
temporary, 11-14

heavy load, 11-7
id, 6-9
load, 5-5, 11-2
load failed, 11-6
loading, 11-8
open, 5-6

organized within data space, 1-10
overview, 1-6, 1-7, 1-13, 4-11
permanently failed, 11-20
recovery, 11-14

duplicate, 11-15, 11-17
log-based catch up, 11-15, 11-17

remove and replace, 11-15, 11-20
seed, 11-16
sizing, 2-3
slow, 11-7
state, 11-2
unloaded, 11-6, 11-8

environment
setup, 11-35

environment variables, 4-4, B-1
CLASSPATH, B-3
Java, B-3
NLS_LANG, B-2
PATH, B-2, B-3
setting, 4-4
settings, B-1
TIMESTEN_HOME, B-2
TMP or TMPDIR, B-2
TNS_ADMIN, B-3

epoch transaction, 6-3
automatically generate, 6-4, 6-5
promote, 6-3

EpochInterval attribute, 6-4
error

communications, 11-6
element failure, 11-1
recovery, 11-1
replica set, 11-1
software, 11-6
transient, 11-1, 11-5

response, 11-5
evict

replica set, 11-20
eviction

maintain consistency, 11-29
external network, 2-9

F
failure

data instance, 11-6
database, 11-1
element, 11-1

permanent, 11-20
host, 11-6
recovery, 11-1
replica set, 11-1

fault tolerance, 1-4
first connection attributes, 5-2

G
general connection attributes, 5-7
global index

use materialized view, 7-4

Index-4

global system view, 7-17
global transaction id, 6-9
Grid

install, 2-1
grid

administration, 4-5
configuration, 4-1, 4-4

model, 1-16
configure, 1-17
create, 4-4, 4-5
create host, 4-7
deploy, A-5
destroy, 8-26
distributing data, 1-8
high availability, 4-2
installation, 1-9
instances

overview, 1-7
logs

collect, 9-12
management, 4-2
membership service, 3-13
model

retention values, 9-8
monitor, 9-1
name, 4-5
performance, 1-3
physical topology, 4-20
planning, A-1
prerequisites, A-2
restart, 8-17
setup, 4-1
SQL Developer, 9-7
state, 4-4
stop, 8-17
structure, 1-5

model, 4-18
upgrade, 8-18

H
hash distribution scheme, 1-14
high availability, 1-4, 4-2
host

associate installation, 4-13
associate with data space group, 4-12
create, 4-7
failure, 11-6
name

default, 4-5
hostModify command

-dataspacegroup option, 4-11
hosts

assign to data space group, 4-10
number to create, 4-8

HugePages, 2-5

I
index

create, 7-5
drop, 7-5
global

use materialized view, 7-4
local to element, 7-5

in-doubt transaction, 6-1, 6-9, 11-17
initLimit configuration parameter, 3-8
INSERT statement, 7-9
install, 2-1

NTP, 2-1
prerequisites, 2-1
TimesTen Scaleout, 2-10

installation, 1-9, 3-1
associate with data instance, 4-15
create, 4-13
default name, 4-5
Linux/UNIX, 3-7
operating system group assignment, 2-2
path, 1-21
shared, 4-13
upgrade, 8-18
verify, 2-11

instance
automatic startup, 4-20
binary location, B-4
create, 4-2, 4-7

define type, 4-15
data

planning, 1-17
default name, 4-4
directories, B-4
directory, 4-4
environment variables, 4-4
files, 4-4
management

planning, 1-17
operating system group, 2-2
path, 1-21

instance administrator, 4-2
connect, 5-6
creates grid, 1-5
use ttGridAdmin utility

manipulate state, 4-4
instanceExec command, 11-14
instances

overview, 1-7
internal network, 2-8

J
Java environment variables, B-3

K
K-safety

guard against failure, 11-9
manage multiple copies of data, 1-9
number of copies of data, 1-4
overview, 1-9

Index-5

L
Lamport timestamp, 6-3
Linux

HugePages, 2-5
memlock settings, 2-6
semaphore values, 2-7

load failed
element, 11-6

local system view, 7-17
localOnly filter option, 5-21
log files

description, 9-12
log-based catch up, 11-15, 11-17
LogBufMB connection attribute, 2-3
LogDir connection attribute, 1-21, 5-2

M
management

centralized, 1-5
management instance

active, 1-7, 4-2
active standby configuration, 1-7
automatic startup, 4-20
consequences of full failure, 11-44
create, 4-2
current used-space warning threshold, 9-8
delete, 11-41
failover, 11-33
failure, 11-41
failure tolerance, 4-6
grid administration, 4-5
manage grid, 1-7
monitor free space, 9-7
overview, 1-7, 4-1
permanent failure, 11-38
planning, 1-17
recover, 11-37
standby, 1-7, 4-6

overview, 4-2
start, 11-35
status, 11-34
stop, 11-35
switch, 11-35
upgrade, 8-18
used-space warning threshold, 9-8

materialized view, 7-4
data distribution, 5-16

maxSessionTimeout configuration parameter, 3-9
membership server

TCP/IP port, 1-20
membership servers

planning, 1-17
replicated mode, 3-10
starting, 3-12

membership service, 1-5
as client, 3-13
configuration, 3-7, 4-5
set up, A-4

memlock settings, 2-6

memory
region sizing, 5-3

memory management
setting HugePages, 2-5

MERGE statement
unsupported, 7-9

migrate, 10-1
minSessionTimeout configuration parameter, 3-9
mode

import sqlnet.ora file, 5-25
model

applying changes, 1-16, 4-18
grid structure, 4-2
import tnsnames.ora file, 5-25
multiple versions, 4-2
objects, 4-2

create, 4-5
relationships, 4-2
types, 4-2

overview, 1-16, 4-2
retention, 4-18
versions, 4-18

myid configuration file, 3-7

N
network

external network, 1-20, 2-9
internal network, 2-1, 2-8
planning, 1-20
private network, 1-20
requirements, 2-8

NLS general connection attributes, 5-7
NLS_LANG environment variable

description, B-2

O
ODBC

client driver, 5-9
direct driver, 5-9
driver, 5-9

odbc.ini file
create, 5-9
Linux, 5-10
UNIX, 5-10
Windows, 5-11

operating system group
TimesTen users group, 2-2

optimizer hint, 7-11
TT_GridQueryExec, 7-11
TT_PartialResult, 7-15

Oracle SQL Developer, 1-5
creating a grid, 4-2

overview, 1-6, 5-2

P
participant

transaction, 6-1
status, 6-2

Index-6

passwordless SSH, 2-12, A-4
PATH environment variable, B-2

description, B-2, B-3
performance, 1-3, 11-45

element communication, 11-45
PermSize connection attribute, 2-3, 5-2
persistence, 1-3
physical group

assigning hosts, 4-22
create, 4-23
defining physical topology, 1-12
delete, 4-24
overview, 4-20
remove objects, 4-24

physical topology
definition, 4-20

planning, 1-18
PL/SQL, 1-3

first connection attributes, 5-3
general connection attributes, 5-7

prerequisites, 3-1, A-2
private network, 1-20
pseudocolumn, 7-9

Q
query plan, 7-11
Quick Start

ttGridRollout utility, 4-2

R
recovery

duplicate, 11-17
log-based catch up, 11-17
options, 11-1

reference distribution scheme, 1-14
region sizing, 5-3
replica set

eviction, 11-20
failure, 11-1, 11-9, 11-15

DDL implications, 11-17
DML implications, 11-17
query implications, 11-17

one element fails, 11-9
overview, 1-7, 1-10
permanently failed, 11-20
recovery, 11-15, 11-16

duplicate, 11-15
replicaSetId# pseudocolumn, 7-9
replicated mode, 3-10
repository, 10-1

attach, 10-5, 10-6
create, 10-5
detach, 10-5, 10-6
list, 10-7, 10-16
log files, 10-4
store backup, 10-4

ROWID value, 7-17

S
scalability, 1-4, 1-11
SELECT statement, 7-1, 7-9
semaphore values

setting, 2-7
sequence, 7-6

batch allocation, 7-6
specify range, 7-6

server configuration parameter, 3-10
Server connection attributes, 5-3
setuproot script

-install option, 4-20
location, B-4

shared library path environment variable
description, B-2

shared memory
kernel parameter, 2-3

shared-nothing architecture, 1-2, 1-3
shmall parameter, 2-3
shmmax parameter, 2-3
software error, 11-6
SQL, 1-3, 7-1

ALTER TABLE statement, 7-2
CREATE MATERIALIZED VIEW statement, 7-4
CREATE TABLE statement, 7-2
CREATE USER statement, 7-1
DDL statements, 7-1
DELETE statement, 7-9
DML statements, 7-1
INSERT statement, 7-9
MERGE statement

unsupported, 7-9
SELECT statement, 7-1, 7-9
UPDATE statement, 7-9
use in TimesTen Scaleout, 7-1

SQL Developer
create grid, 9-1, 9-7
manage grid, 9-1, 9-7

sqlnet.ora file
import, 5-25

standby management instance, 4-6
create, 11-41
create replacement, 11-36, 11-38
failure, 11-33, 11-39
permanent failure, 11-40
promote to active, 11-35, 11-36
recovery, 11-39
start, 11-40

statistics
modify collection parameters, 9-2

syncLimit configuration parameter, 3-8
system view

global, 7-17
local, 7-17

T
table, 7-2

alter, 7-2
distribute data, 7-2

Index-7

distribution scheme, 1-14, 5-4, 5-13
population, 5-22

TCP/IP
port numbers

default, 4-4, 4-15
specify values, 4-4, 4-15

TCP/IP port, 1-20
temporary directory, B-2
TempSize connection attribute, 2-3, 5-2
tickTime configuration parameter, 3-8, 3-10
TimesTen

supported features in TimesTen Scaleout, 1-24,
1-25

TimesTen Classic
comparison to TimesTen Scaleout, 1-24

TimesTen Client connection attributes, 5-7
TimesTen In-Memory Database in grid mode, see

TimesTen Scaleout
TimesTen Scaleout

back up, 10-1
comparison to TimesTen Classic, 1-24
database, 1-13, 5-1
elastic scalability, 5-5
fault tolerance, 1-4
features, 1-1
grid, 1-1
high availability, 1-4
install, 2-10
installation, 1-9, 3-1
migrate, 10-1
overview, 1-1
performance, 1-3
prerequisites, 3-1
scalability, 1-4, 1-11
transparency, 1-10
upgrade, 8-18

TimesTen users group, 2-2
TIMESTEN_HOME environment variable

description, B-2
TMP environment variable

description
TMPDIR environment variable, B-2

TNS_ADMIN environment variable
description, B-3

tnsnames.ora file
import, 5-25

transaction
ACID, 1-4
counter, 6-9
distributed, 6-1
durability, 6-3
epoch, 6-3

generate, 6-4, 6-5
global transaction id, 6-9
identification, 6-9
in-doubt, 6-1, 6-9, 11-17
management, 6-1
multiple instances, 1-4
participant, 6-1

status, 6-2

replica set failure, 11-16
single-element, 6-1
troubleshooting, 6-8
two-phase commit, 1-4
two-phase commit protocol, 6-1

transaction log file, 1-3
transaction log files

directory, 1-21
transaction manager, 6-1

failure, 6-7
overview, 6-2

transient error, 11-5
response, 11-5
types, 11-5

transparency, 1-10
TT_CommitDMLOnSuccess directive, 7-10
TT_GridQueryExec optimizer hint, 7-11
TT_PartialResult optimizer hint, 7-15
ttBulkCp utility, 5-22

localOnly filter option, 5-21
TTC_REDIRECT connection attribute, 5-12
TTC_REDIRECT_LIMIT connection attribute, 5-12
TTC_TCP_KEEPALIVE_INTVL_MS connection

attribute, 11-32
TTC_TCP_KEEPALIVE_PROBES connection

attribute, 11-32
TTC_TCP_KEEPALIVE_TIME_MS connection

attribute, 11-32
ttDaemonAdmin utility

start command, 11-14, 11-30
ttDurableCommit built-in procedure, 6-4
ttenv script, 4-4, 11-35

location, B-4
ttEpochCreate built-in procedure, 6-4
tterrors.log file, 9-12
ttGridAdmin utility, 1-5, 1-7, 4-2, 4-11, 11-14

configuration, 4-4
connectableCreate command, 5-8
connectableExport command, 5-32
connectableModify command, 5-33
create grid, 4-4
dataSpaceGroupSuggest command, 4-11, 4-20,

4-25
dbBackup command, 10-9, 10-12
dbBackupDelete command, 10-13
dbBackupStatus command, 10-9, 10-12
dbClose command, 5-27
dbCreate command, 11-14
dbdefCreate command, 5-4
dbdefDelete command, 5-34
dbdefExport command, 5-31
dbdefModify command, 5-32
dbDestroy command, 5-33, 11-11, 11-12, 11-14
dbDistribute command, 3-xv, 8-8, 11-14, 11-15,

11-21
dbExport command, 10-15
dbExportDelete command, 10-16
dbExportStatus command, 10-16
dbImport command, 10-17
dbImportStatus command, 10-17

Index-8

dbLoad command, 5-30, 11-6, 11-15, 11-29
dbOpen command, 5-6, 5-30
dbRestore command, 10-14
dbRestoreStatus command, 10-14
dbStatus command, 5-5, 10-13, 11-2, 11-8, 11-30
dbUnload command, 5-27, 11-30
gridClientExport command, 5-9
gridCreate command, 4-5

-membership option, 3-13
gridDisplay command, 9-8
gridLogCollect command, 9-13
gridModify command, 4-18, 9-8
gridSshConfig command, 2-12
hostCreate command, 4-7

-cascade option, 4-7, 4-16
-dataspacegroup option, 4-11
-like option, 4-7, 4-16

hostExec command
date, 9-13

hostModify command
-nophysicalgroup option, 4-24

installationCreate command, 4-13
-source option, 4-13

instanceCreate command, 4-14
-csPort option, 4-15
-daemonPort option, 4-15
-installation option, 4-15
-type command, 4-15

instanceDelete command, 11-38
mgmtActiveStart command, 11-36
mgmtActiveSwitch command, 11-35, 11-37
mgmtExamine command, 11-34, 11-35, 11-37,

11-38, 11-39, 11-42
mgmtStandbyStart command, 11-35, 11-37, 11-40
mgmtStandbyStop command, 11-35
modelApply command, 4-18
physicalCreate command, 4-23
physicalDelete command, 4-24
repositoryAttach command, 10-6
repositoryCreate command, 10-5
repositoryDetach command, 10-6
repositoryList command, 10-7, 10-16
SQLNetImport command, 5-25
TNSNamesImport command, 5-25

ttGridAdmin.log file, 9-12
ttGridRollout utility, 4-2, A-5
ttInstallationCheck utility, 2-11
ttInstanceCreate utility, 4-2

-csPort option, 4-4
-daemonPort option, 4-4

ttISql utility
explain command, 7-11

ttLoadFromOracle built-in procedure, 5-21, 5-25
localOnly filter option, 5-25

ttmesg.log file, 9-12
ttStats utility

configuration, 9-2
create report, 9-6
monitor database, 9-1, 9-3

ttStatsConfig built-in procedure, 9-2

modify statistics, 9-2
ttStatsConfigGet built-in procedure, 9-2

pollSec parameter, 9-2
retainMinutes parameter, 9-2
retentionDays parameter, 9-2

ttXactAdmin utility, 6-9
two-phase commit protocol, 1-4, 6-1, 6-6

failure, 6-7

U
UPDATE statement, 7-9
upgrade

TimesTen Scaleout, 8-18
user

operating system group, 2-2

Z
zoo.cfg configuration file, 3-7

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility

	What's New
	New features in release 18.1.4.1.0
	New features in release 18.1.3.1.0
	New features in release 18.1.2.1.0
	New features in release 18.1.1.2.0

	1 Overview of TimesTen Scaleout
	Introducing TimesTen Scaleout
	TimesTen Scaleout features
	In-memory database
	Performance
	Persistence and durability
	SQL and PL/SQL functionality
	Transactions
	Scalability
	Data transparency
	High availability and fault tolerance
	Centralized management

	TimesTen Scaleout architecture
	Instances
	Management instances
	Data instances

	Installations
	K-safety
	Understanding replica sets
	Understanding data spaces
	Assigning hosts to data space groups

	Data distribution
	Defining the distribution map for a database
	Defining the distribution scheme for tables

	Backups
	Internal and external networks

	Central configuration of the grid
	Planning your grid
	Determine the number of hosts and membership servers
	Define the network parameters of each host and membership server
	Define the locations for the installation directory and instance home of each instance
	Ensure you have all the information you need to deploy a grid

	Database connections
	Comparison between TimesTen Scaleout and TimesTen Classic
	How supported TimesTen features are documented in this book

	2 Prerequisites and Installation of TimesTen Scaleout
	General prerequisites
	Operating system prerequisites
	Understanding the TimesTen users group and the operating system user
	The TimesTen users group
	The operating system user
	Create the TimesTen users group and the OS user

	Configuring the operating system kernel parameters
	Configure shmmax and shmall
	Configure HugePages
	Modify the memlock settings
	Set the semaphore values

	Network requirements
	Internal network
	Syntax for internal addresses

	External network

	Installing TimesTen Scaleout
	Verifying the installation
	Run the ttInstallationCheck utility
	Review the installation directory and subdirectories

	Setting passwordless SSH

	3 Setting Up the Membership Service
	Overview of the TimesTen Scaleout membership service
	Tracking the instance status
	Recovering from a network partition error

	Using Apache ZooKeeper as the membership service
	Installing Apache ZooKeeper
	Configuring Apache ZooKeeper as the membership service
	Starting the membership servers
	Configure a grid as a membership service client

	4 Setting Up a Grid
	Configure your grid
	Creating the initial management instance
	Creating a grid
	Adding the standby management instance
	Calculating the number of hosts and data instances for the grid
	Calculate the number of data instances to create
	Calculate the number of hosts you need to support your data instances

	Assigning hosts to data space groups
	Adding data instances
	Create a host for a data instance
	Create the installation for the data instance
	Create the data instance
	Create data instances by duplicating the configuration of an existing host

	Applying the changes made to the model
	Model versioning
	Apply the latest version of the model

	Setting instances to automatically start at system startup

	Description of the physical topography of the grid
	Assigning hosts to physical groups
	Removing the physical layout of the hosts
	Deleting physical groups

	Propose data space group assignments

	5 Managing a Database
	Creating a database
	Create a database definition
	Creating a database definition file
	Adding a database definition to the model

	Create a database based on the database definition
	Define the distribution map of the database
	Open the database for user connections

	Connecting to a database
	Create a connectable
	Creating a connectable file
	Creating a connectable based on the connectable file

	Connect to a database using ODBC and JDBC drivers
	Establishing direct connections from a data instance
	Establishing client connections from a TimesTen Client
	Redirecting client connections

	Verify if your database is a distributed database

	Defining table distribution schemes
	Hash
	Reference
	Duplicate
	Materialized views as a secondary form of distribution

	Determining the value of the PermSize attribute
	Bulk loading data into a database
	Populating a table with the ttBulkCp utility
	Populate a table from a single location
	Populate a table from several locations

	Populating a table with the ttLoadFromOracle built-in procedure
	Enable communication to an Oracle database
	Populate a table from a single location
	Populate a table from several locations

	Unloading a database from memory
	Reloading a database into memory
	Modifying the connection attributes of a database
	Modify the connection attributes in a database definition
	Modify the connection attributes in a connectable

	Destroying a database

	6 Understanding Distributed Transactions in TimesTen Scaleout
	Transaction manager
	Status of the participants

	Durability settings
	Durability set to 1
	Durability set to 0
	Epoch transactions
	EpochInterval attribute
	CreateEpochAtCommit attribute

	Two-phase commit protocol
	Phase 0: Transaction
	Phase 1: Prepare phase
	Phase 2: Commit phase
	Two-phase commit failure analysis

	Troubleshooting distributed transactions
	Global transaction id
	Managing in-doubt transactions

	7 Using SQL in TimesTen Scaleout
	Overview of SQL
	Overview of PL/SQL
	Working with tables
	Altering tables
	Understanding materialized views
	Understanding indexes
	Using sequences
	Understanding batch allocation

	Performing DML operations
	Using pseudocolumns
	Using the TT_CommitDMLOnSuccess hint
	Using optimizer hints
	TT_GridQueryExec
	TT_PartialResult

	Understanding ROWID in data distribution
	Understanding system views

	8 Maintaining and Upgrading a Grid
	Maintaining the model of a grid
	Modifying a grid
	Modifying objects in a grid
	Modify a host
	Modify an instance

	Deleting objects from a grid
	Delete an instance
	Delete an installation
	Delete a host
	Delete a physical group

	Reconfiguring membership servers
	View the current membership configuration
	Add membership servers
	Enable the new membership configuration

	Redistributing data in a database
	Adding elements to the distribution map
	Removing elements from the distribution map
	Replace an element with another element
	Remove a replica set

	Stopping a grid
	Restarting a grid
	Upgrading a grid
	Upgrade a grid to a patch-compatible release
	Create an installation from a new release on every host
	Upgrade management instances
	Upgrade data instances
	Optional: Delete the installation of the previous release on every host

	Upgrade a grid to a not patch-compatible release

	Destroying a grid

	9 Monitoring TimesTen Scaleout
	Using the ttStats utility
	View the configuration of the ttStats utility
	Configure the ttStats utility
	Monitor a database with the ttStats utility
	Create a snapshot with the ttStats utility
	Create a report between two snapshots with the ttStats utility

	Using SQL Developer to work with TimesTen Scaleout
	Monitoring the management instances
	Monitor the free space of the management instance
	Modify retention values of previous grid models and warning threshold of the management instance
	Resize the management instance
	Grid with a single management instance
	Grid with active and standby management instances

	Collecting grid logs
	Retrieving diagnostic information
	Verifying clock synchronization across all instances

	10 Migrating, Backing Up and Restoring Data
	Migrating a database from TimesTen Classic to TimesTen Scaleout
	Working with repositories
	Create a repository
	Attach a repository
	Detach a repository
	List repositories and collections

	Backing up and restoring a database
	Back up a database
	Back up a database into a remote repository (WAN-friendly)
	Recommendations for staged backups
	Create a staged backup

	Check the status of a backup
	Delete a backup
	Restore a database
	Check the status of a restore

	Exporting and importing a database
	Export a database
	Check the status of a database export
	Delete a database export
	Import a database export
	Check the status of a database import

	Determining the size of a backup or export

	11 Recovering from Failure
	Displaying the database, replica set and element status
	Recovering from transient errors
	Retry transient errors
	Communications error
	Software error
	Host or data instance failure
	Heavy load or temporary communication failure

	Recovering from a data distribution error
	Tracking the automatic recovery for an element
	Availability despite the failure of one element in a replica set
	Recovering when a single element fails in a replica set
	Troubleshooting based on element status
	Recovering a replica set after an element goes down
	Remove and replace a failed element in a replica set

	Unavailability of data when a full replica set is down or fails
	Recovering from a down replica set
	Transaction behavior with a down replica set
	Durably recovering a failed replica set when Durability=1
	Recovering a failed replica set when Durability=0

	Recovering when the replica set has a permanently failed element
	Evicting the element in the permanently failed replica set when k = 1
	Evicting all elements in a permanently failed replica set when k = 2
	Maintaining database consistency after an eviction

	Recovering when a data instance is down
	Database recovery
	Client connection failover
	Configuring TCP keep-alive parameters

	Managing failover for the management instances
	Status for management instances
	Starting, stopping and switching management instances
	Active management instance failure
	Single management instance fails
	Active management instance fails

	Standby management instance failure
	Standby management instance recovers
	Standby management instance experiences permanent failure

	Both management instances fail
	Bring back both management instances
	Bring back one of the management instances

	Performance recommendations
	Set a timeout for create channel requests

	A Example for Deploying a Grid and Database
	TimesTen Scaleout prerequisites
	Ensure that TimesTen Scaleout supports the OS installed on each host
	Configure all hosts in the same internal network
	Create a TimesTen user group and OS user
	Set the Linux system kernel parameters
	Set the memlock settings for the instance administrator
	Set the semaphore values

	Install TimesTen Scaleout
	Set passwordless SSH between all hosts

	Set up the membership service
	Install ZooKeeper
	Configure the ZooKeeper servers
	Start the ZooKeeper servers
	Create the client configuration file

	Deploy a grid and database
	Create a database definition file
	Create a connectable file
	Create a SQL script file for your database
	Create a configuration file for the ttGridRollout utility
	Create a grid and database
	Connect to the database

	B TimesTen Scaleout Environment
	Environment variables
	Setting environment variables
	Environment variable descriptions
	TIMESTEN_HOME environment variable
	NLS_LANG environment variable
	Shared library path environment variable
	PATH environment variable
	Temporary directory environment variable
	TNS_ADMIN environment variable
	Java environment variables

	Instance home directory and subdirectories
	Managing a development or test environment

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	Z

