

[1] Oracle® TimesTen In-Memory Database
C Developer's Guide

Release 18.1

E61199-08

July 2020

Oracle TimesTen In-Memory Database C Developer's Guide, Release 18.1

E61199-08

Copyright © 1996, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such
programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S.
Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract
for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xi

Audience.. xii
Related documents... xii
Conventions .. xii
Documentation Accessibility ... xiii

What's New.. xv

New features in Release 18.1.1.2.0 .. xv
New features in Release 18.1.1.1.0 .. xv

1 C Development Environment

Setting the environment for development .. 1-1
Linking options .. 1-1

Considerations for linking without an ODBC driver manager... 1-1
Considerations for linking with an ODBC driver manager... 1-2

Compiling and linking applications .. 1-3
Compiling and linking applications on Windows .. 1-3
Compiling and linking applications on Linux or UNIX... 1-4

TimesTen Quick Start and sample applications .. 1-5

2 Working with TimesTen Databases in ODBC

Managing TimesTen database connections .. 2-1
SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect functions.................... 2-2
Connecting to and disconnecting from a database ... 2-3
Setting connection attributes programmatically ... 2-6
Using a default DSN .. 2-6

Managing TimesTen data ... 2-7
TimesTen include files... 2-8
SQL statement execution within C applications.. 2-8

SQLExecDirect and SQLExecute functions ... 2-8
Executing a SQL statement.. 2-9

Preparing and executing queries and working with cursors .. 2-9
TimesTen deferred prepare ... 2-11
Prefetching multiple rows of data .. 2-12
Optimizing query performance .. 2-12

iv

Binding parameters and executing statements... 2-13
SQLBindParameter function .. 2-14
Determination of parameter type assignments and type conversions 2-14
Binding input parameters... 2-17
Binding output parameters .. 2-17
Binding input/output parameters .. 2-19
Binding duplicate parameters in SQL statements... 2-19
Binding duplicate parameters in PL/SQL ... 2-20
Considerations for floating point data.. 2-21
Using SQL_WCHAR and SQL_WVARCHAR with a driver manager............................ 2-21

Working with REF CURSORs ... 2-21
Working with DML returning (RETURNING INTO clause) ... 2-23
Working with rowids ... 2-25
Working with LOBs .. 2-25

About LOBs... 2-26
Differences between TimesTen LOBs and Oracle Database LOBs 2-26
LOB programming interfaces... 2-26
Using the LOB simple data interface in ODBC ... 2-27
Using the LOB piecewise data interface in ODBC .. 2-27
Passthrough LOBs in ODBC... 2-28

Making and committing changes to the database.. 2-28
Using additional TimesTen data management features.. 2-30

Using CALL to execute procedures and functions .. 2-30
Setting a timeout or threshold for executing SQL statements .. 2-31

Setting a timeout duration for SQL statements ... 2-31
Setting a threshold duration for SQL statements .. 2-32

Features for use with TimesTen Cache .. 2-32
Setting temporary passthrough level with the ttOptSetFlag built-in procedure 2-33
Determining passthrough status ... 2-33
Managing cache groups .. 2-33

Setting globalization options ... 2-33
TT_NLS_SORT ... 2-34
TT_NLS_LENGTH_SEMANTICS ... 2-34
TT_NLS_NCHAR_CONV_EXCP.. 2-34

Features for use with replication .. 2-34
Handling Errors ... 2-35

Checking for errors ... 2-35
 Error and warning levels .. 2-36

Fatal errors .. 2-36
Non-fatal errors .. 2-36
Warnings ... 2-36
Abnormal termination... 2-37

Recovering after fatal errors .. 2-37
Retrying after transient errors (ODBC).. 2-37

Using automatic client failover in your application... 2-38
Functionality of automatic client failover.. 2-39
Configuration of automatic client failover .. 2-41

v

Failover callback functions .. 2-41
Application action in the event of failover .. 2-45

Application steps for failover... 2-45
Failover delay and retry settings ... 2-45

Client routing API for TimesTen Scaleout... 2-51
Creating a grid map and distribution .. 2-51
Setting the distribution key values ... 2-53
Getting the element location given a set of key values.. 2-53

Get the element IDs ... 2-54
Get the replica set ID ... 2-55

Supported data types.. 2-56
Restrictions... 2-57
Failure modes .. 2-57

3 TimesTen Support for OCI

Overview of OCI .. 3-1
Overview of TimesTen OCI support.. 3-2

OCI in TimesTen .. 3-2
Globalization support.. 3-3

Character sets... 3-3
Additional globalization features ... 3-3

TimesTen restrictions and differences .. 3-4
Oracle Database features not supported ... 3-4
Additional TimesTen OCI restrictions... 3-5
Additional TimesTen OCI differences ... 3-5

The ttSrcScan utility ... 3-6
Getting started with TimesTen OCI... 3-6

Environment variables for TimesTen OCI ... 3-6
Compiling and linking OCI applications ... 3-7
Connecting to a TimesTen database from OCI.. 3-8

Using the tnsnames naming method to connect .. 3-8
Using an easy connect string to connect.. 3-9
Configuring whether to use tnsnames.ora or easy connect... 3-10

OCI error handling.. 3-11
OCI error reporting.. 3-11
Transient errors (OCI) ... 3-11

Signal handling and diagnostic framework considerations ... 3-12
Use of additional features with TimesTen OCI .. 3-12

TimesTen deferred prepare ... 3-12
Parameter binding features in TimesTen OCI .. 3-12

Duplicate parameter bindings in TimesTen OCI .. 3-13
Associative array bindings in TimesTen OCI .. 3-13

TimesTen Cache with TimesTen OCI .. 3-17
Specifying the Oracle Database password in OCI for TimesTen Cache.......................... 3-18
Determining the number of cache groups affected by an action 3-18

LOBs in TimesTen OCI... 3-18
LOB locators in OCI... 3-19

vi

Temporary LOBs in OCI ... 3-20
Differences between TimesTen LOBs and Oracle Database LOBs in OCI 3-20
Using the LOB simple data interface in OCI.. 3-20
Using the LOB locator interface in OCI .. 3-22
OCI client-side buffering .. 3-26
LOB prefetching in OCI .. 3-26
Passthrough LOBs in OCI... 3-27

Use of PL/SQL in OCI to call a TimesTen built-in procedure ... 3-29
TimesTen OCI support reference... 3-29

Supported OCI calls.. 3-30
Supported handles and attributes .. 3-34
Supported descriptors .. 3-35
Supported OCI-defined constants .. 3-35
Supported parameter attributes.. 3-37

4 TimesTen Support for Pro*C/C++

Overview of the Oracle Pro*C/C++ Precompiler ... 4-1
Overview of TimesTen support for Pro*C/C++ ... 4-1

TimesTen OCI support .. 4-2
Embedded SQL support and restrictions ... 4-2
Semantic checking restrictions ... 4-2
Embedded PL/SQL restrictions... 4-3
Transaction restrictions ... 4-3
Connection restrictions.. 4-3
Summary of unsupported or restricted executable commands and clauses............................. 4-4
The ttSrcScan utility ... 4-5

Getting started with TimesTen Pro*C/C++... 4-5
Environment and configuration for TimesTen Pro*C/C++ .. 4-5
Building a Pro*C/C++ application.. 4-5
Connecting to a TimesTen database from Pro*C/C++ .. 4-6

Connection syntax and parameters.. 4-6
Using tnsnames or easy connect ... 4-7
Specifying the Oracle Database password in Pro*C/C++ for TimesTen Cache................ 4-7

Error reporting and handling... 4-8
Additional features of TimesTen Pro*C/C++ ... 4-8

Associative array bindings in TimesTen Pro*C/C++... 4-8
LOBs in TimesTen Pro*C/C++ .. 4-9

Using the LOB simple data interface in Pro*C/C++ .. 4-10
Using the LOB locator interface in Pro*C/C++... 4-10

TimesTen Pro*C/C++ Precompiler options.. 4-13
Precompiler option support .. 4-13
Setting precompiler options .. 4-15

5 XLA and TimesTen Event Management

XLA concepts ... 5-1
XLA basics ... 5-2
How XLA reads records from the transaction log .. 5-2

vii

About XLA and materialized views.. 5-3
About XLA bookmarks ... 5-4

Creating or reusing a bookmark... 5-4
How bookmarks work ... 5-4
Replicated bookmarks.. 5-5
XLA bookmarks and transaction log holds... 5-6

About XLA data types ... 5-7
Access control impact on XLA ... 5-8
XLA limitations .. 5-8
XLA sample application.. 5-9

Writing an XLA event-handler application... 5-9
Obtaining a database connection handle... 5-10
Initializing XLA and obtaining an XLA handle.. 5-10
Specifying which tables to monitor for updates... 5-11
Retrieving update records from the transaction log .. 5-12
Inspecting record headers and locating row addresses .. 5-15
Inspecting column data .. 5-17

Obtaining column descriptions.. 5-18
Reading fixed-length column data .. 5-19
Reading NOT INLINE variable-length column data.. 5-20
Null-terminating returned strings... 5-22
Converting complex data types ... 5-23
Detecting null values ... 5-25
Putting it all together: a PrintColValues() function .. 5-25

Handling XLA errors .. 5-28
Dropping a table that has an XLA bookmark ... 5-30
Deleting bookmarks.. 5-31
Terminating an XLA application .. 5-32

Using XLA as a replication mechanism .. 5-34
Checking table compatibility between databases .. 5-35

Checking table and column descriptions ... 5-35
Checking table and column versions .. 5-35

Replicating updates between databases .. 5-36
Handling timeout and deadlock errors ... 5-37
Checking for update conflicts.. 5-38
Replicating updates to a non-TimesTen database.. 5-38

Other XLA features ... 5-39
Changing the location of a bookmark.. 5-39
Passing application context ... 5-39

6 Distributed Transaction Processing: XA

Overview of XA .. 6-1
X/Open DTP model... 6-2
Two-phase commit... 6-2

Using XA in TimesTen .. 6-3
TimesTen database requirements for XA ... 6-3
Global transaction recovery in TimesTen... 6-3

viii

Considerations in using standard XA functions with TimesTen.. 6-4
xa_open() .. 6-4
xa_close() .. 6-4
Transaction id (XID) parameter .. 6-4

TimesTen tt_xa_context function to obtain ODBC handle from XA connection...................... 6-5
Considerations in calling ODBC functions over XA connections in TimesTen........................ 6-6

Autocommit ... 6-6
Local transaction COMMIT and ROLLBACK .. 6-6
Closing open cursors .. 6-6

XA resource manager switch.. 6-6
xa_switch_t... 6-6
tt_xa_switch ... 6-7

XA error handling in TimesTen ... 6-8
XA support through the Windows ODBC driver manager.. 6-8

Issues to consider ... 6-8
Linking to the TimesTen ODBC XA driver manager extension library..................................... 6-8

Configuring Tuxedo to use TimesTen XA .. 6-8
Update the $TUXDIR/udataobj/RM file ... 6-9
Build the Tuxedo transaction manager server... 6-9
Update the GROUPS section in the UBBCONFIG file... 6-10
Compile the servers .. 6-10

7 ODBC Application Tuning

Bypass driver manager if appropriate .. 7-1
Using arrays of parameters for batch execution ... 7-1
Avoid excessive binds ... 7-2
Avoid SQLGetData .. 7-2
Avoid data type conversions .. 7-3
Bulk fetch rows of TimesTen data .. 7-3
Optimize queries .. 7-3

8 TimesTen Utility API

ttBackup ... 8-3
ttDestroyDataStore... 8-7
ttDestroyDataStoreForce... 8-9
ttRamGrace ... 8-11
ttRamLoad... 8-12
ttRamPolicy .. 8-13
ttRamUnload .. 8-15
ttRepDuplicateEx .. 8-16
ttRestore .. 8-21
ttUtilAllocEnv .. 8-23
ttUtilFreeEnv .. 8-25
ttUtilGetError ... 8-27
ttUtilGetErrorCount.. 8-29
ttXactIdRollback .. 8-31

ix

9 XLA Reference

About XLA functions... 9-1
About return codes .. 9-1
About parameter types (input, output, input/output) .. 9-1
About results output by functions... 9-2
About required privileges... 9-2

Summary of XLA functions by category.. 9-2
XLA core functions .. 9-2
XLA data type conversion functions... 9-3
XLA replication functions ... 9-4

XLA function reference ... 9-5
ttXlaAcknowledge.. 9-6
ttXlaClose .. 9-8
ttXlaConvertCharType .. 9-9
ttXlaDateToODBCCType... 9-10
ttXlaDecimalToCString .. 9-11
ttXlaDeleteBookmark.. 9-13
ttXlaError.. 9-14
ttXlaErrorRestart ... 9-16
ttXlaGetColumnInfo ... 9-17
ttXlaGetLSN ... 9-19
ttXlaGetTableInfo .. 9-20
ttXlaGetVersion ... 9-21
ttXlaNextUpdate ... 9-22
ttXlaNextUpdateWait ... 9-24
ttXlaNumberToBigInt... 9-26
ttXlaNumberToCString .. 9-27
ttXlaNumberToDouble... 9-28
ttXlaNumberToInt... 9-29
ttXlaNumberToSmallInt... 9-30
ttXlaNumberToTinyInt .. 9-31
ttXlaNumberToUInt.. 9-32
ttXlaOraDateToODBCTimeStamp.. 9-33
ttXlaOraTimeStampToODBCTimeStamp.. 9-34
ttXlaPersistOpen.. 9-35
ttXlaRowidToCString ... 9-37
ttXlaSetLSN .. 9-38
ttXlaSetVersion .. 9-39
ttXlaTableByName .. 9-40
ttXlaTableStatus... 9-41
ttXlaTableVersionVerify... 9-44
ttXlaTimeToODBCCType .. 9-46
ttXlaTimeStampToODBCCType... 9-47
ttXlaVersionColumnInfo.. 9-48
ttXlaVersionCompare ... 9-49
ttXlaVersionTableInfo... 9-51

XLA replication function reference ... 9-52

x

ttXlaApply.. 9-53
ttXlaCommit... 9-55
ttXlaGenerateSQL.. 9-56
ttXlaLookup ... 9-58
ttXlaRollback.. 9-60
ttXlaTableCheck .. 9-61

C data structures used by XLA.. 9-63
ttXlaNodeHdr_t... 9-64
ttXlaUpdateDesc_t .. 9-65

Special update data formats ... 9-68
Locating the row data following a ttXlaUpdateDesc_t header ... 9-72

ttXlaVersion_t .. 9-73
ttXlaTblDesc_t.. 9-74
ttXlaTblVerDesc_t ... 9-75
ttXlaColDesc_t ... 9-76
tt_LSN_t.. 9-79
tt_XlaLsn_t ... 9-80

10 TimesTen ODBC Support

TimesTen ODBC 3.5 support .. 10-2
Using ODBC 3.5 with TimesTen ... 10-2
Client/server cross-release restrictions with ODBC 3.5.. 10-2
ODBC 3.5 new and replacement function support .. 10-3
ODBC 3.5 data type support notes ... 10-4
Environment attribute support for ODBC 3.5... 10-4
Attribute support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr 10-5
Attribute support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr 10-5
TimesTen field identifiers for ODBC 3.5 SQLColAttribute .. 10-6
Information type support for ODBC 3.5 SQLGetInfo.. 10-7
TimesTen SQL keywords for ODBC 3.5 .. 10-12

TimesTen ODBC 2.5 support .. 10-12
Using ODBC 2.5 with TimesTen ... 10-13
ODBC 2.5 function support ... 10-13
Option support for ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption 10-16
Option support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption 10-18
Column descriptor support for ODBC 2.5 SQLColAttributes.. 10-19
Information type support for ODBC 2.5 SQLGetInfo.. 10-19
TimesTen SQL keywords for ODBC 2.5 .. 10-25

ODBC API incompatibilities with previous versions of TimesTen ... 10-26
ODBC 3.5 function signatures that have changed.. 10-27
ODBC 2.5 function signatures that have changed.. 10-30
ODBC data types that have changed ... 10-32

Index

xi

Preface

Oracle TimesTen In-Memory Database (TimesTen) is a relational database that is
memory-optimized for fast response and throughput. The database resides entirely in
memory at runtime and is persisted to the file system.

■ Oracle TimesTen In-Memory Database in classic mode, or TimesTen Classic, refers
to single-instance and replicated databases (as in previous releases).

■ Oracle TimesTen In-Memory Database in grid mode, or TimesTen Scaleout, refers
to a multiple-instance distributed database. TimesTen Scaleout is a grid of
interconnected hosts running instances that work together to provide fast access,
fault tolerance, and high availability for in-memory data.

■ TimesTen alone refers to both classic and grid modes (such as in references to
TimesTen utilities, releases, distributions, installations, actions taken by the
database, and functionality within the database).

■ TimesTen Application-Tier Database Cache, or TimesTen Cache, is an Oracle
Database Enterprise Edition option. TimesTen Cache is ideal for caching
performance-critical subsets of an Oracle database into cache tables within a
TimesTen database for improved response time in the application tier. Cache tables
can be read-only or updatable. Applications read and update the cache tables
using standard Structured Query Language (SQL) while data synchronization
between the TimesTen database and the Oracle database is performed
automatically. TimesTen Cache offers all of the functionality and performance of
TimesTen Classic, plus the additional functionality for caching Oracle Database
tables.

■ TimesTen Replication features, available with TimesTen Classic or TimesTen
Cache, enable high availability.

TimesTen supports standard application interfaces JDBC, ODBC, and ODP.NET;
Oracle interfaces PL/SQL, OCI, and Pro*C/C++; and the TimesTen TTClasses library
for C++.

This document covers TimesTen support for ODBC, OCI, and Pro*C/C++.

The following topics are discussed in the preface:

■ Audience

■ Related documents

■ Conventions

■ Documentation Accessibility

xii

Audience
This guide is for anyone developing or supporting applications that use TimesTen
through ODBC, OCI, or Pro*C/C++.

In addition to familiarity with the particular programming interface you use, you
should be familiar with TimesTen, SQL (Structured Query Language), and database
operations.

Related documents
TimesTen documentation is available at
https://docs.oracle.com/database/timesten-18.1.

Oracle Database documentation is also available on the Oracle documentation website.
This may be especially useful for Oracle Database features that TimesTen supports but
does not attempt to fully document, such as OCI and Pro*C/C++.

In particular, the following Oracle Database documents may be of interest.

■ Oracle Call Interface Programmer's Guide

■ Pro*C/C++ Programmer's Guide

■ Oracle Database Globalization Support Guide

■ Oracle Database Net Services Administrator's Guide

■ Oracle Database SQL Language Reference

This manual frequently refers to ODBC API reference documentation for further
information. This is available from Microsoft or a variety of third parties. For example:

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-refere
nce

See Chapter 10, "TimesTen ODBC Support" for details of TimesTen ODBC support.

Conventions
TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows applies to all
supported Windows platforms. The term UNIX applies to all supported UNIX
platforms. The term Linux is used separately. Refer to "Platforms and compilers" in
Oracle TimesTen In-Memory Database Release Notes (README.html) in your installation
directory for specific platform versions supported by TimesTen.

This document uses the following text conventions:

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database.

Convention Meaning

italic Italic type indicates terms defined in text, book titles, or emphasis.

monospace Monospace type indicates code, commands, URLs, function names,
attribute names, directory names, file names, text that appears on the
screen, or text that you enter.

xiii

In addition, TimesTen documentation uses the following special conventions.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

italic monospace Italic monospace type indicates a placeholder or a variable in a code
example for which you specify or use a particular value. For example:

LIBS = -Ltimesten_home/install/lib -ltten

Replace timesten_home with the path to the TimesTen instance home
directory.

[] Square brackets indicate that an item in a command line is optional.

{ } Curly braces indicated that you must choose one of the items separated
by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line. An ellipsis in a code
example indicates that what is shown is only a partial example.

% or $ The percent sign or dollar sign indicates the UNIX shell prompt,
depending on the shell that is used.

The number (or pound) sign indicates the UNIX root prompt.

Convention Meaning

installation_dir The path that represents the directory where TimesTen is installed.

timesten_home The path that represents the home directory of a TimesTen instance.

release or rr The first two parts in a release number, with or without the dot. The
first two parts of a release number represent a major TimesTen release.
For example, 181 or 18.1 represents TimesTen Release 18.1.

DSN TimesTen data source name (for the TimesTen database).

Note: TimesTen release numbers are reflected in items such as
TimesTen utility output, file names, and directory names, all of which
are subject to change with every minor or patch release. The
documentation cannot always be up to date. It seeks primarily to
show the basic form of output, file names, directory names, and other
code that may include release numbers. You can confirm the current
release number by looking at Oracle TimesTen In-Memory Database
Release Notes or executing the ttVersion utility.

Convention Meaning

xiv

xv

What's New

This section summarizes new features and functionality of TimesTen Release 18.1 that
are documented in this guide, providing links into the guide for more information.

New features in Release 18.1.1.2.0
■ TimesTen Scaleout includes a new client routing API that enables C client

applications to route connections to a grid element based on the key value for a
hash distribution key. This feature enables the client application to connect to the
element that stores the row with the specified key value, avoiding unnecessary
communication between the element storing the row and the element connected to
your application. For more information, see "Client routing API for TimesTen
Scaleout" on page 2-51.

New features in Release 18.1.1.1.0
■ TimesTen supports ODBC 3.51 core interface conformance.

■ To run ODBC applications that were used with previous versions of TimesTen, be
aware of the following:

– The TimesTen driver is ODBC-compliant; however, in this release, more recent
ODBC header files are provided with the TimesTen installation on Linux and
UNIX platforms. The result is that some API signatures in TimesTen ODBC
have changed.

– Changes were made to update some functions to be 64-bit compliant
according to the ODBC 3.51 standard.

– These and other changes may necessitate application code changes on any
platform.

See "ODBC API incompatibilities with previous versions of TimesTen" on
page 10-26 for details.

■ In the ODBC header files provided with this release, the return code SQL_NO_DATA_
FOUND (meaning no more rows are returned) is defined in sqlext.h. Applications
using SQL_NO_DATA_FOUND must include this file, which is included by timesten.h.

Important: Even if none of the required code changes applies to your
applications, it is recommended that you recompile and relink existing
ODBC applications in TimesTen 18.1.

xvi

■ There are new error codes for manual retry after transient errors. TimesTen
automatically resolves most transient errors (which is particularly important for
TimesTen Scaleout), but if your application detects certain error codes, it is
suggested to retry the current transaction or most recent API call, as applicable.
Refer to "Retrying after transient errors (ODBC)" on page 2-37 and "Transient
errors (OCI)" on page 3-11 for details.

1

C Development Environment 1-1

1C Development Environment

This chapter provides information about the C development environment and related
considerations for developing TimesTen applications. These topics are covered:

■ Setting the environment for development

■ Linking options

■ Compiling and linking applications

■ TimesTen Quick Start and sample applications

Setting the environment for development
Environment variable settings for TimesTen are discussed in "Environment variables"
in the Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.
Refer to that discussion for details.

Relevant scripts, in the timesten_home/bin directory, are ttenv.sh and ttenv.csh for
Linux and UNIX platforms (where which you use depends on your shell) and
ttenv.bat for Windows platforms.

Linking options
A TimesTen application can link specifically with the TimesTen ODBC direct driver or
ODBC client driver without a driver manager, or can link with a driver manager.

Considerations for linking without an ODBC driver manager
Applications to be used solely with TimesTen can link specifically with either the
TimesTen ODBC direct driver or the ODBC client driver, without a driver manager.
This avoids the performance overhead of a driver manager and is the simplest way to
access TimesTen. However, developers of applications linked without a driver
manager should be aware of the following issues.

Notes:

■ The ttenv scripts also configure access to the Oracle Instant
Client, required for OCI programming.

■ To ensure proper execution of OCI and Pro*C/C++ programs to
be run on TimesTen, do not set ORACLE_HOME (or unset it if it was
set previously) for OCI and Pro*C/C++ compilations.

Linking options

1-2 Oracle TimesTen In-Memory Database C Developer's Guide

■ The application can connect only to a DSN (data source name) that uses the driver
with which it is linked. It cannot connect to a database of any other vendor, nor
can it connect to a TimesTen DSN of a different TimesTen driver. (A DSN is a
logical name that identifies a TimesTen database and the set of connection
attributes used for connecting to the database.)

■ Windows ODBC tracing is not available.

■ The ODBC cursor library is not available.

■ Applications cannot use ODBC functions that are usually implemented by a driver
manager, such as SQLDataSources and SQLDrivers.

■ Applications that use SQLCancel to close a cursor instead of SQLFreeStmt(...,
SQL_CLOSE) receive a return code of SQL_SUCCESS_WITH_INFO and a SQL state of
01S05. This warning is intended to be used by the driver manager to manage its
internal state. Applications should treat this warning as success.

Considerations for linking with an ODBC driver manager
Applications that link with the ODBC driver manager can connect to any DSN that
references an ODBC driver and can even connect simultaneously to multiple DSNs
that use different ODBC drivers. Note, however, that driver managers are not available
by default on most non-Windows platforms. In addition, using a driver manager may
add significant synchronization overhead to every ODBC function call and has the
following limitations:

■ The TimesTen option TT_PREFETCH_COUNT cannot be used with applications that
link with a driver manager. For more information on using TT_PREFETCH_COUNT,
see "Prefetching multiple rows of data" on page 2-12.

■ Applications cannot set or reset the TimesTen-specific TT_PREFETCH_CLOSE
connection option. For more information about using the TT_PREFETCH_CLOSE
connection option, see "Optimizing query performance" on page 2-12.

■ Transaction Log API (XLA) calls cannot be used when applications are linked with
a driver manager.

■ The ODBC C types SQL_C_BIGINT, SQL_C_TINYINT, and SQL_C_WCHAR are not
supported for an application linked with a driver manager when used with
TimesTen. You cannot call methods that have any of these types in their signatures.

■ The driver manager does not support LOB locator APIs or LOB data types, which
are not part of the ODBC standard. However, you can use the LOB simple data
interface or piecewise data interface as documented in "Working with LOBs" on
page 2-25.

Note: TimesTen supplies a sample driver manager for Windows and
for Linux or UNIX with the Quick Start sample applications. (See
"TimesTen Quick Start and sample applications" on page 1-5.) It
supports the TimesTen direct driver and client driver and ODBC 2.5
and does not have the functionality or performance limitations
described above. Applications that must concurrently use both direct
connections and client/server connections to the database can use this
driver manager to achieve this with very little impact on performance.

Compiling and linking applications

C Development Environment 1-3

Compiling and linking applications
This section discusses compiling and linking C applications on Windows and on Linux
or UNIX.

Compiling and linking applications on Windows
To compile TimesTen applications on Windows, you are not required to specify the
location of the ODBC include files. These files are included with Microsoft Visual C++.
However, to use TimesTen features you must indicate the location of the TimesTen
include files in the /I compiler option setting. (See "TimesTen include files" on
page 2-8.)

Link the appropriate libraries, as follows:

■ Directly link to the driver manager: odbc32.lib

Note that odbc32.lib is for 64-bit systems too.

■ Directly link to TimesTen:

– For direct mode: tten181.lib and ttdv181.lib

– For client/server mode: ttclient181.lib

The Makefile in Example 1–1 shows how to build a TimesTen application on Windows
systems. This example assumes that timesten_home\install\lib has already been
added to the LIB environment variable (which is accomplished when you execute
ttenv.bat).

Example 1–1 Building a TimesTen application in Windows

CFLAGS = "/Itimesten_home\install\include"
LIBSDM = ODBC32.LIB
LIBS = tten181.lib ttdv181.lib
LIBSDEBUG = tten181d.lib ttdv181d.lib
LIBSCS = ttclient181.lib

Link with the ODBC driver manager
appldm.exe:appl.obj

Important:

■ Applications should include timesten.h, the TimesTen include
file. This automatically includes standard ODBC files as well. See
"TimesTen include files" on page 2-8.

■ Include TimesTen files before any other include files and link
TimesTen libraries before any other libraries.

■ TimesTen compiles against ODBC 2.5 by default. To compile an
ODBC 3.5 application, use the compiler setting -DODBCVER=0x0351.

Note:

■ On Windows, there is only one TimesTen instance per installation,
and timesten_home refers to installation_dir\instance.

■ The timesten_home/install directory is a symbolic link to
installation_dir.

Compiling and linking applications

1-4 Oracle TimesTen In-Memory Database C Developer's Guide

 $(CC) /Feappldm.exe appl.obj $(LIBSDM)

Link directly with the TimesTen
ODBC production driver
appl.exe:appl.obj
 $(CC) /Feappl.exe appl.obj\
 $(LIBS)

Link directly with the TimesTen
ODBC debug driver
appldebug.exe:appl.obj
 $(CC) /Feappldebug.exe appl.obj\
 $(LIBSDEBUG)

Link directly with the TimesTen
ODBC client driver
applcs.exe:appl.obj
 $(CC) /Feapplcs.exe appl.obj\
 $(LIBSCS)

Compiling and linking applications on Linux or UNIX
On Linux or UNIX platforms:

■ Compile TimesTen applications using the TimesTen header files in the include
directory of the TimesTen installation.

■ Link with the TimesTen ODBC direct driver or client driver, each of which is
provided as a shared library.

On Linux or UNIX, applications using the SQL_C_ULONG, SQL_C_SLONG, SQL_C_USHORT
or SQL_C_SSHORT ODBC data types must specify the TT_USE_ALL_TYPES preprocessor
option while compiling. This is typically done using the -DTT_USE_ALL_TYPES C
compiler option.

To use the TimesTen include files if you are using TimesTen features, add the following
to the C compiler command, where timesten_home/install is a symbolic link to
installation_dir, the TimesTen installation directory. (See "TimesTen include files"
on page 2-8.)

-Itimesten_home/install/include

To link with the TimesTen ODBC direct driver, add the following to the link command
for the libtten.so library:

-Ltimesten_home/install/lib -ltten

Important:

■ Applications should include timesten.h, the TimesTen include
file. This automatically includes standard ODBC files as well. See
"TimesTen include files" on page 2-8.

■ Include TimesTen files before any other include files and link
TimesTen libraries before any other libraries.

■ TimesTen compiles against ODBC 2.5 by default. To compile an
ODBC 3.5 application, use the compiler setting -DODBCVER=0x0351.

TimesTen Quick Start and sample applications

C Development Environment 1-5

The -L option tells the linker to search the TimesTen lib directory for library files. The
-ltten option links in the TimesTen ODBC direct driver.

To link with the TimesTen ODBC client driver, add the following to the link command
for the libttclient.so library:

-Ltimesten_home/install/lib -lttclient

On AIX, when linking applications with the TimesTen ODBC client driver, the C++
runtime library must be included in the link command (because the client driver is
written in C++ and AIX does not link it automatically) and must follow the client
driver:

-Ltimesten_home/install/lib -lttclient -lC_r

You can use Makefiles in subdirectories under the Quick Start sample_code directory
(see "TimesTen Quick Start and sample applications" on page 1-5), or you can use
Example 1–2 to guide you in creating your own Makefile.

Example 1–2 Makefile to link the application

CFLAGS = -Itimesten_home/install/include
LIBS = -Ltimesten_home/install/lib -ltten
LIBSDEBUG = -Ltimesten_home/install/lib -lttenD
LIBSCS = -Ltimesten_home/install/lib -lttclient

Link directly with the TimesTen
ODBC production driver
appl:appl.o
 $(CC) -o appl appl.o $(LIBS)

Link directly with the TimesTen ODBC debug driver
appldebug:appl.o
 $(CC) -o appldebug appl.o $(LIBSDEBUG)

Link directly with the TimesTen client driver
applcs:appl.o
 $(CC) -o applcs appl.o $(LIBSCS)

TimesTen Quick Start and sample applications
The TimesTen Classic Quick Start and TimesTen Scaleout sample applications are
available from the TimesTen GitHub location. For the TimesTen Classic Quick Start,
there is a complete set of tutorials, how-to instructions, and sample applications. For
TimesTen Scaleout, there are ODBC and JDBC sample applications.

After you have configured your environment, you can confirm that everything is set
up correctly by compiling and running the sample applications. For TimesTen Classic,
applications are located under the Quick Start sample_code directory. For instructions
on compiling and running them, see the instructions in the subdirectories. For
TimesTen Scaleout, clone the oracle-timesten-examples GitHub repository and
follow the instructions in the README files.

For TimesTen Classic, the following are included:

Note: To directly link your application to the debug TimesTen ODBC
driver, substitute -lttenD for -ltten on the link line.

TimesTen Quick Start and sample applications

1-6 Oracle TimesTen In-Memory Database C Developer's Guide

■ Schema and setup: The build_sampledb script (.sh on Linux or UNIX or .bat on
Windows) creates a sample database and schema. Run this script before using the
sample applications.

■ Environment and setup: The ttquickstartenv script (.sh or .csh on Linux or
UNIX or .bat on Windows), a superset of the ttenv script typically used for
TimesTen setup, sets up the environment. Run this script each time you enter a
session where you want to compile or run any of the sample applications.

■ Sample applications and setup: The Quick Start provides sample applications and
their source code for ODBC, OCI, and Pro*C/C++.

2

Working with TimesTen Databases in ODBC 2-1

2Working with TimesTen Databases in ODBC

This chapter covers TimesTen programming features and describes how to use ODBC
to connect to and use the TimesTen database. It includes the following topics:

■ Managing TimesTen database connections

■ Managing TimesTen data

■ Using additional TimesTen data management features

■ Handling Errors

■ Using automatic client failover in your application

■ Client routing API for TimesTen Scaleout

TimesTen supports:

■ ODBC 2.5, Extension Level 1, as well as Extension Level 2 features that are
documented in Chapter 10, "TimesTen ODBC Support"

■ ODBC 3.51 core interface conformance

Managing TimesTen database connections
For TimesTen Scaleout, refer to Oracle TimesTen In-Memory Database Scaleout User's
Guide for information about creating a database and connecting to a database, using
either a direct connection or a client/server connection. See "Creating a database" and
"Connecting to a database".

For TimesTen Classic, Oracle TimesTen In-Memory Database Operations Guide contains
information about creating a DSN for the database. The type of DSN you create

Notes:

■ For using OCI to access TimesTen from a C application, see
Chapter 3, "TimesTen Support for OCI".

■ For using Pro*C/C++ to access TimesTen from a C application, see
Chapter 4, "TimesTen Support for Pro*C/C++".

■ For accessing TimesTen from a C++ application, see Oracle
TimesTen In-Memory Database TTClasses Guide.

■ For accessing TimesTen from a C# application, see Oracle Data
Provider for .NET Oracle TimesTen In-Memory Database Support
User's Guide.

Managing TimesTen database connections

2-2 Oracle TimesTen In-Memory Database C Developer's Guide

depends on whether your application connects directly to the database or connects
through a client:

■ If you intend to connect directly to the database, refer to "Managing TimesTen
Databases" in Oracle TimesTen In-Memory Database Operations Guide. There are
sections on creating a DSN for a direct connection from Linux or UNIX or from
Windows.

■ If you intend to create a client connection to the database, refer to "Working with
the TimesTen Client and Server" in Oracle TimesTen In-Memory Database Operations
Guide. There are sections on creating a DSN for a client/server connection from
Linux or UNIX or from Windows.

The rest of this section covers the following topics:

■ SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect functions

■ Connecting to and disconnecting from a database

■ Setting connection attributes programmatically

■ Using a default DSN

SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect functions
The following ODBC functions are available for connecting to a database and related
functionality:

■ SQLConnect: Loads a driver and connects to the database. The connection handle
points to where information about the connection is stored, including status,
transaction state, results, and error information.

■ SQLDriverConnect: This is an alternative to SQLConnect when more information is
required than what is supported by SQLConnect, which is just data source (the
database), user name, and password.

■ SQLAllocConnect: Allocates memory for a connection handle within the specified
environment.

■ SQLDisconnect: Disconnect from the database. Takes the existing connection
handle as its only argument.

Refer to ODBC API reference documentation for additional details about these
functions.

Notes:

■ ODBC applications can connect to a database by referencing either
its attributes (host, port number, and so on) or its data source
name (DSN). In TimesTen Classic, users can create DSNs directly.
In TimesTen Scaleout, a DSN is created for each connectable you
define in the grid.

■ In TimesTen, the user name and password must be for a valid user
who has been granted CREATE SESSION privilege to connect to the
database.

■ A TimesTen connection cannot be inherited from a parent process.
If a process opens a database connection before creating (forking)
a child process, the child must not use the connection.

Managing TimesTen database connections

Working with TimesTen Databases in ODBC 2-3

Connecting to and disconnecting from a database
This section provides examples of connecting to and disconnecting from the database.

Example 2–1 Connect and disconnect (excerpt)

This code fragment invokes SQLConnect and SQLDisconnect to connect to and
disconnect from the database named FixedDs. The first invocation of SQLConnect by
any application causes the creation of the FixedDs database. Subsequent invocations of
SQLConnect would connect to the existing database.

#include <timesten.h>
SQLRETURN retcode;
SQLHDBC hdbc;

...
retcode = SQLConnect(hdbc,
 (SQLCHAR*)"FixedDs", SQL_NTS,
 (SQLCHAR*)"johndoe", SQL_NTS,
 (SQLCHAR*)"opensesame", SQL_NTS);
...
retcode = SQLDisconnect(hdbc);
...

Example 2–2 Connect and disconnect (complete program)

This example contains a complete program that creates, connects to, and disconnects
from a database. The example uses SQLDriverConnect instead of SQLConnect to set up
the connection, and uses SQLAllocConnect to allocate memory. It also shows how to
get error messages. (In addition, you can refer to "Handling Errors" on page 2-35.)

#include <timesten.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

static void chkReturnCode(SQLRETURN rc, SQLHENV henv,
 SQLHDBC hdbc, SQLHSTMT hstmt,
 char* msg, char* filename,
 int lineno, BOOL err_is_fatal);
#define DEFAULT_CONNSTR "DSN=sampledb;PermSize=32"

int
main(int ac, char** av)
{
 SQLRETURN rc = SQL_SUCCESS;
 /* General return code for the API */
 SQLHENV henv = SQL_NULL_HENV;
 /* Environment handle */
 SQLHDBC hdbc = SQL_NULL_HDBC;
 /* Connection handle */
 SQLHSTMT hstmt = SQL_NULL_HSTMT;
 /* Statement handle */
 SQLCHAR connOut[255];
 /* Buffer for completed connection string */
 SQLSMALLINT connOutLen;
 /* Number of bytes returned in ConnOut */
 SQLCHAR *connStr = (SQLCHAR*)DEFAULT_CONNSTR;
 /* Connection string */
 rc = SQLAllocEnv(&henv);
 if (rc != SQL_SUCCESS) {

Managing TimesTen database connections

2-4 Oracle TimesTen In-Memory Database C Developer's Guide

 fprintf(stderr, "Unable to allocate an "
 "environment handle\n");
 exit(1);
 }
 rc = SQLAllocConnect(henv, &hdbc);
 chkReturnCode(rc, henv, SQL_NULL_HDBC,
 SQL_NULL_HSTMT,
 "Unable to allocate a "
 "connection handle\n",
 __FILE__, __LINE__, 1);

 rc = SQLDriverConnect(hdbc, NULL,
 connStr, SQL_NTS,
 connOut, sizeof(connOut),
 &connOutLen,
 SQL_DRIVER_NOPROMPT);
 chkReturnCode(rc, henv, hdbc, SQL_NULL_HSTMT,
 "Error in connecting to the"
 " database\n",
 __FILE__, __LINE__, 1);
 rc = SQLAllocStmt(hdbc, &hstmt);
 chkReturnCode(rc, henv, hdbc, SQL_NULL_HSTMT,
 "Unable to allocate a "
 "statement handle\n",
 __FILE__, __LINE__, 1);

 /* Your application code here */

 if (hstmt != SQL_NULL_HSTMT) {
 rc = SQLFreeStmt(hstmt, SQL_DROP);
 chkReturnCode(rc, henv, hdbc, hstmt,
 "Unable to free the "
 "statement handle\n",
 __FILE__, __LINE__, 0);
 }

 rc = SQLDisconnect(hdbc);
 chkReturnCode(rc, henv, hdbc,
 SQL_NULL_HSTMT,
 "Unable to close the "
 "connection\n",
 __FILE__, __LINE__, 0);

 rc = SQLFreeConnect(hdbc);
 chkReturnCode(rc, henv, hdbc,
 SQL_NULL_HSTMT,
 "Unable to free the "
 "connection handle\n",
 __FILE__, __LINE__, 0);

 rc = SQLFreeEnv(henv);
 chkReturnCode(rc, henv, SQL_NULL_HDBC,
 SQL_NULL_HSTMT,
 "Unable to free the "
 "environment handle\n",
 __FILE__, __LINE__, 0);
 return 0;
 }
}

Managing TimesTen database connections

Working with TimesTen Databases in ODBC 2-5

static void
chkReturnCode(SQLRETURN rc, SQLHENV henv,
 SQLHDBC hdbc, SQLHSTMT hstmt,
 char* msg, char* filename,
 int lineno, BOOL err_is_fatal)
{
 #define MSG_LNG 512
 SQLCHAR sqlState[MSG_LNG];
 /* SQL state string */
 SQLINTEGER nativeErr;
 /* Native error code */
 SQLCHAR errMsg[MSG_LNG];
 /* Error msg text buffer pointer */
 SQLSMALLINT errMsgLen;
 /* Error msg text Available bytes */
 SQLRETURN ret = SQL_SUCCESS;
 if (rc != SQL_SUCCESS &&
 rc != SQL_NO_DATA_FOUND) {
 if (rc != SQL_SUCCESS_WITH_INFO) {
 /*
 * It's not just a warning
 */
 fprintf(stderr, "*** ERROR in %s, line %d:"
 " %s\n",
 filename, lineno, msg);
 }
 /*
 * Now see why the error/warning occurred
 */
 while (ret == SQL_SUCCESS ||
 ret == SQL_SUCCESS_WITH_INFO) {
 ret = SQLError(henv, hdbc, hstmt,
 sqlState, &nativeErr,
 errMsg, MSG_LNG,
 &errMsgLen);
 switch (ret) {
 case SQL_SUCCESS:
 fprintf(stderr, "*** %s\n"
 "*** ODBC Error/Warning = %s, "
 "TimesTen Error/Warning "
 " = %d\n",
 errMsg, sqlState,
 nativeErr);
 break;
 case SQL_SUCCESS_WITH_INFO:
 fprintf(stderr, "*** Call to SQLError"
 " failed with return code of "
 "SQL_SUCCESS_WITH_INFO.\n "
 "*** Need to increase size of"
 " message buffer.\n");
 break;
 case SQL_INVALID_HANDLE:
 fprintf(stderr, "*** Call to SQLError"
 " failed with return code of "
 "SQL_INVALID_HANDLE.\n");
 break;
 case SQL_ERROR:
 fprintf(stderr, "*** Call to SQLError"
 " failed with return code of "
 "SQL_ERROR.\n");

Managing TimesTen database connections

2-6 Oracle TimesTen In-Memory Database C Developer's Guide

 break;
 case SQL_NO_DATA_FOUND:
 break;
 } /* switch */
 } /* while */
 if (rc != SQL_SUCCESS_WITH_INFO && err_is_fatal) {
 fprintf(stderr, "Exiting.\n");
 exit(-1);
 }
}

Setting connection attributes programmatically
You can set or override connection attributes programmatically by specifying a
connection string when you connect to a database.

Refer to "Managing TimesTen Databases" in Oracle TimesTen In-Memory Database
Operations Guide for general information about connection attributes. General
connection attributes require no special privilege. First connection attributes are set
when the database is first loaded, and persist for all connections. Only the instance
administrator can load a database with changes to first connection attribute settings.
Refer to "Connection Attributes" in Oracle TimesTen In-Memory Database Reference for
additional information, including specific information about any particular connection
attribute.

Example 2–3 Connect and use store-level locking

This code fragment connects to a database named mydsn and indicates in the
SQLDriverConnect call that the application should use a passthrough setting of 3. Note
that PassThrough is a general connection attribute.

SQLHDBC hdbc;
SQLCHAR ConnStrOut[512];
SQLSMALLINT cbConnStrOut;
SQLRETURN rc;

rc = SQLDriverConnect(hdbc, NULL,
 "DSN=mydsn;PassThrough=3", SQL_NTS,
 ConnStrOut, sizeof (ConnStrOut),
 &cbConnStrOut, SQL_DRIVER_NOPROMPT);

Using a default DSN
In TimesTen Classic, a default DSN, simply named default, can be defined in the
odbc.ini or sys.odbc.ini file. See "Setting up a default DSN in TimesTen Classic" in
Oracle TimesTen In-Memory Database Operations Guide for information about defining a
default DSN.

Note: Each direct connection to a database opens several files. An
application with many threads, each with a separate connection, has
several files open for each thread. Such an application can exceed the
maximum allowed (or configured maximum) number of file
descriptors that may be simultaneously open on the operating system.
In this case, configure your system to allow a larger number of open
files. See "Limits on number of open files" in Oracle TimesTen
In-Memory Database Reference.

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-7

The associated data source would be connected to in the following circumstances
when SQLConnect or SQLDriverConnect is called.

For SQLConnect, if a default DSN has been defined, it is used if ServerName specifies a
data source that cannot be found, is a null pointer, or is specifically set to a value of
default. For reference, here is the SQLConnect calling sequence:

SQLRETURN SQLConnect(
 SQLHDBC ConnectionHandle,
 SQLCHAR * ServerName,
 SQLSMALLINT NameLength1,
 SQLCHAR * UserName,
 SQLSMALLINT NameLength2,
 SQLCHAR * Authentication,
 SQLSMALLINT NameLength3);

Use default as the server name. The user name and authentication values are used as
is.

For SQLDriverConnect, if a default DSN has been defined, it is used if the connection
string does not include the DSN keyword or if the data source cannot be found. For
reference, here is the SQLDriverConnect calling sequence:

SQLRETURN SQLDriverConnect(
 SQLHDBC ConnectionHandle,
 SQLHWND WindowHandle,
 SQLCHAR * InConnectionString,
 SQLSMALLINT StringLength1,
 SQLCHAR * OutConnectionString,
 SQLSMALLINT BufferLength,
 SQLSMALLINT * StringLength2Ptr,
 SQLUSMALLINT DriverCompletion);

Use default as the DSN keyword. The user name and password are used as is.

Be aware of the following usage notes when in direct mode versus client/server mode
with a driver manager:

■ When you are not using a driver manager, TimesTen manages this functionality.
The default DSN must be a TimesTen database.

■ When you are using a driver manager, the driver manager manages this
functionality. The default DSN need not be a TimesTen database.

Managing TimesTen data
This section provides detailed information on working with data in a TimesTen
database. It includes the following topics.

■ TimesTen include files

■ SQL statement execution within C applications

■ Preparing and executing queries and working with cursors

■ TimesTen deferred prepare

■ Prefetching multiple rows of data

■ Optimizing query performance

■ Binding parameters and executing statements

■ Working with REF CURSORs

Managing TimesTen data

2-8 Oracle TimesTen In-Memory Database C Developer's Guide

■ Working with DML returning (RETURNING INTO clause)

■ Working with rowids

■ Working with LOBs

■ Making and committing changes to the database

TimesTen include files
To use TimesTen features, include the TimesTen files shown in the following table, as
applicable. They are located in the include directory of the TimesTen installation.

Set the include path appropriately to access any files that are to be included. See
"Compiling and linking applications" on page 1-3 for related information.

SQL statement execution within C applications
"Working with Data in a TimesTen Database" in Oracle TimesTen In-Memory Database
Operations Guide describes how to use SQL to manage data. This section describes
general formats used to execute a SQL statement within a C application. The following
topics are covered:

■ SQLExecDirect and SQLExecute functions

■ Executing a SQL statement

SQLExecDirect and SQLExecute functions
There are two ODBC functions to execute SQL statements:

■ SQLExecute: Executes a statement that has been prepared with SQLPrepare. After
the application is done with the results, they can be discarded and SQLExecute can
be run again using different parameter values.

Include file Description

timesten.h TimesTen ODBC features

This file includes the appropriate version of sql.h: the
TimesTen version on Linux or UNIX systems or the system
version on Windows systems.

This file also includes sqltypes.h, sqlext.h, and sqlucode.h.
On Windows systems, it also includes windows.h.

tt_errCode.h TimesTen error codes (optional—see notes)

This file maps TimesTen error codes to defined constants.

Notes:

■ If you include sql.h directly (instead of through timesten.h), on
Windows you must include the system version of sql.h, not the
TimesTen version.

■ Type definitions previously in sqlunix.h are now in sqltypes.h;
however, sqlunix.h still exists (as an empty file) for backward
compatibility.

■ There are alternatives to including tt_errCode.h. One is to move
any desired constant definitions to timesten.h. Another is to
reference the corresponding integer values directly in your code.

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-9

This is typically used for DML statements with bind parameters, or statements
that are being executed more than once.

■ SQLExecDirect: Prepares and executes a statement.

This is typically used for DDL statements or for DML statements that would
execute only a few times and without bind parameters.

Refer to ODBC API reference documentation for details about these functions.

Executing a SQL statement
You can use the SQLExecDirect function as shown in Example 2–4.

The next section, "Preparing and executing queries and working with cursors", shows
usage of the SQLExecute and SQLPrepare functions.

Example 2–4 Executing a SQL statement with SQLExecDirect

This code sample creates a table, NameID, with two columns: CustID and CustName. The
table maps character names to integer identifiers.

#include <timesten.h>
SQLRETURN rc;
SQLHSTMT hstmt;
...
rc = SQLExecDirect(hstmt, (SQLCHAR*)
 "CREATE TABLE NameID (CustID INTEGER, CustName VARCHAR(50))",
 SQL_NTS);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 ... /* handle error */

Preparing and executing queries and working with cursors
This section shows the basic steps of preparing and executing a query and working
with cursors. Applications use cursors to scroll through the results of a query,
examining one result row at a time.

In the ODBC setting, a cursor is always associated with a result set. This association is
made by the ODBC driver. The application can control cursor characteristics, such as
the number of rows to fetch at one time, using SQLSetStmtOption options documented
in "Option support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption" on
page 10-18. The steps involved in executing a query typically include the following.

1. Use SQLPrepare to prepare the SELECT statement for execution.

2. Use SQLBindParameter, if the statement has parameters, to bind each parameter to
an application address. See "SQLBindParameter function" on page 2-14. (Note that
Example 2–5 below does not bind parameters.)

3. Call SQLBindCol to assign the storage and data type for a column of results,
binding column results to local variable storage in your application.

4. Call SQLExecute to execute the SELECT statement. See "SQLExecDirect and
SQLExecute functions" on page 2-8.

5. Call SQLFetch to fetch the results. Specify the statement handle.

Important: In TimesTen, any operation that ends your transaction,
such as a commit or rollback, closes all cursors associated with the
connection.

Managing TimesTen data

2-10 Oracle TimesTen In-Memory Database C Developer's Guide

6. Call SQLFreeStmt to free the statement handle. Specify the statement handle and
either SQL_CLOSE, SQL_DROP, SQL_UNBIND, or SQL_RESET_PARAMS.

Refer to ODBC API reference documentation for details on these ODBC functions.
Examples are shown throughout this chapter and in the TimesTen sample applications.
See "TimesTen Quick Start and sample applications" on page 1-5.

Example 2–5 Executing a query and working with the cursor

This example illustrates how to prepare and execute a query using ODBC calls. Error
checking has been omitted to simplify the example. In addition to ODBC functions
mentioned previously, this example uses SQLNumResultCols to return the number of
columns in the result set, SQLDescribeCol to return a description of one column of the
result set (column name, type, precision, scale, and nullability), and SQLBindCol to
assign the storage and data type for a column in the result set. These are all described
in detail in ODBC API reference documentation.

#include <timesten.h>

SQLHSTMT hstmt;
SQLRETURN rc;
int i;
SQLSMALLINT numCols;
SQLCHAR colname[32];
SQLSMALLINT colnamelen, coltype, scale, nullable;
SQLULEN collen [MAXCOLS];
SQLLEN outlen [MAXCOLS];
SQLCHAR* data [MAXCOLS];

/* other declarations and program set-up here */

/* Prepare the SELECT statement */
rc = SQLPrepare(hstmt,
(SQLCHAR*) "SELECT * FROM EMP WHERE AGE>20",
SQL_NTS);
/* ... */

/* Determine number of columns in result rows */
rc = SQLNumResultCols(hstmt, &numCols);

/* ... */

/* Describe and bind the columns */
for (i = 0; i < numCols; i++) {
 rc = SQLDescribeCol(hstmt,
 (SQLSMALLINT) (i + 1),
 colname,(SQLSMALLINT)sizeof(colname), &colnamelen, &coltype, &collen[i],
 &scale, &nullable);

 /* ... */

 data[i] = (SQLCHAR*) malloc (collen[i] +1); //Allocate space for column data.
 rc = SQLBindCol(hstmt, (SQLSMALLINT) (i + 1),
 SQL_C_CHAR, data[i],

Note: By default (when connection attribute PrivateCommands=0),
TimesTen shares prepared statements between connections, so
subsequent prepares of the same statement on different connections
execute very quickly.

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-11

 COL_LEN_MAX, &outlen[i]);

 /* ... */

}
/* Execute the SELECT statement */
rc = SQLExecute(hstmt);

/* ... */

/* Fetch the rows */
if (numCols > 0) {
 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS ||
 rc == SQL_SUCCESS_WITH_INFO) {
 /* ... "Process" the result row */
 } /* end of for-loop */
 if (rc != SQL_NO_DATA_FOUND)
 fprintf(stderr,
 "Unable to fetch the next row\n");

/* Close the cursor associated with the SELECT statement */
 rc = SQLFreeStmt(hstmt, SQL_CLOSE);
}

TimesTen deferred prepare
In standard ODBC, a SQLPrepare call compiles a SQL statement so that information
about the statement, such as column descriptions for the result set, is available to the
application and accessible through calls such as SQLDescribeCol. To accomplish this,
the SQLPrepare call must communicate with the server for processing.

This is in contrast, for example, to expected behavior under Oracle Call Interface
(OCI), where a prepare call is expected to be a lightweight operation performed on the
client to simply extract names and positions of parameters.

To avoid unwanted round trips between client and server, and also to make the
behavior consistent with OCI expectations, the TimesTen client library implementation
of SQLPrepare performs what is referred to as a "deferred prepare", where the request
is not sent to the server until required. Examples of when the round trip would be
required:

■ When there is a SQLExecute call. Note that if there is a deferred prepare call that
has not yet been sent to the server, a SQLExecute call on the client is converted to a
SQLExecDirect call.

■ When there is a request for information about the query that can only be supplied
by the SQL engine, such as when there is a SQLDescribeCol call, for example.
Many such calls in standard ODBC can access information previously returned by
a SQLPrepare call, but with the deferred prepare functionality the SQLPrepare call
is sent to the server and the information is returned to the application only as
needed.

The deferred prepare implementation requires no changes at the application or user
level; however, be aware that calling any of the following functions may result in a

Note: Deferred prepare functionality is not implemented (and not
necessary) with the TimesTen direct driver.

Managing TimesTen data

2-12 Oracle TimesTen In-Memory Database C Developer's Guide

round trip to the server if the required information from a previously prepared
statement has not yet been retrieved:

■ SQLColAttributes

■ SQLDescribeCol

■ SQLDescribeParam

■ SQLNumResultCols

■ SQLNumParams

■ SQLGetStmtOption (for options that depend on the statement having been
compiled by the SQL engine)

Also be aware that when calling any of these functions, any error from an earlier
SQLPrepare call may be deferred until one of these calls is executed. In addition, these
calls may return errors specific to SQLPrepare as well as errors specific to themselves.

Prefetching multiple rows of data
A TimesTen extension to ODBC enables applications to prefetch multiple rows of data
into the ODBC driver buffer. This can improve performance of client/server
applications.

The TT_PREFETCH_COUNT ODBC statement option determines how many rows a
SQLFetch call prefetches. Note that this option provides no benefit for an application
using a direct connection to TimesTen.

You can set TT_PREFETCH_COUNT in a call to either SQLSetStmtOption or
SQLSetConnectOption (which sets the option default value for all statements
associated with the connection). The value can be any integer from 0 to 128, inclusive.
Following is an example.

rc = SQLSetConnectOption(hdbc, TT_PREFETCH_COUNT, 100);

With this setting, the first SQLFetch call on the connection prefetches 100 rows.
Subsequent SQLFetch calls fetch from the ODBC buffer instead of from the database,
until the buffer is depleted. After it is depleted, the next SQLFetch call fetches another
100 rows into the buffer, and so on.

To disable prefetch, set TT_PREFETCH_COUNT to 1.

When you set the prefetch count to 0, TimesTen uses a default prefetch count
according to the isolation level you have set for the database, and sets TT_PREFETCH_
COUNT to that value. With Read Committed isolation level, the default prefetch value is
5. With Serializable isolation level, the default is 128. The default prefetch value is a
good setting for most applications. Generally, a higher value may result in better
performance for larger result sets, at the expense of slightly higher resource use.

You can also see "Option support for ODBC 2.5 SQLSetStmtOption and
SQLGetStmtOption" on page 10-18 for information about statement options, including
TT_PREFETCH_COUNT and SQL_TXN_ISOLATION.

Optimizing query performance
A TimesTen extension to ODBC enables applications to optimize read-only query
performance in client/server applications by using the TT_PREFETCH_CLOSE ODBC
connection option. Set TT_PREFETCH_CLOSE to TT_PREFETCH_CLOSE_ON using
SQLSetConnectOption.

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-13

All transactions should be committed when executed, including read-only
transactions. When TT_PREFETCH_CLOSE is set to TT_PREFETCH_CLOSE_ON, the server
automatically closes the cursor and commits the transaction after the server has
prefetched all rows of the result set for a read-only query. This enhances performance
by reducing the number of network round-trips between client and server.

The client should still free the statement with SQLFreeStmt(SQL_CLOSE) and commit
the transaction with SQLTransact(SQL_COMMIT), but those calls are executed in the
client and do not require a network round trip between the client and server.

The following example shows how to use the TT_PREFETCH_CLOSE option.

SQLSetConnectOption (hdbc, TT_PREFETCH_CLOSE, TT_PREFETCH_CLOSE_ON);
SQLExecDirect (hstmt, "SELECT * FROM T", SQL_NTS);
while (SQLFetch (hstmt) != SQL_NO_DATA_FOUND)
{
// do the processing and error checking
}
SQLFreeStmt (hstmt, SQL_CLOSE);
SQLTransact(SQL_COMMIT);

Binding parameters and executing statements
This section discusses how to bind input or output parameters for SQL statements.
The following topics are covered.

■ SQLBindParameter function

■ Determination of parameter type assignments and type conversions

■ Binding input parameters

■ Binding output parameters

■ Binding input/output parameters

■ Binding duplicate parameters in SQL statements

■ Binding duplicate parameters in PL/SQL

■ Considerations for floating point data

■ Using SQL_WCHAR and SQL_WVARCHAR with a driver manager

Notes:

■ Do not use multiple statement handles for the same connection
when TT_PREFETCH_CLOSE is set to TT_PREFETCH_CLOSE_ON. The
server may fetch all of the result set, commit the transaction, and
close the statement handle before the client is finished, resulting in
the closing of all statement handles.

■ This option is ignored for TimesTen direct connections and for
SELECT FOR UPDATE statements.

Note: The term "bind parameter" as used in TimesTen developer
guides (in keeping with ODBC terminology) is equivalent to the term
"bind variable" as used in TimesTen PL/SQL documents (in keeping
with Oracle Database PL/SQL terminology).

Managing TimesTen data

2-14 Oracle TimesTen In-Memory Database C Developer's Guide

SQLBindParameter function
The ODBC SQLBindParameter function is used to bind parameters for SQL statements.
This could include input, output, or input/output parameters.

To bind an input parameter through ODBC, use the SQLBindParameter function with a
setting of SQL_PARAM_INPUT for the fParamType argument. Refer to ODBC API
reference documentation for details about the SQLBindParameter function. Table 2–1
provides a brief summary of its arguments.

To bind an output or input/output parameter through ODBC, use the
SQLBindParameter function with a setting of SQL_PARAM_OUTPUT or SQL_PARAM_INPUT_
OUTPUT, respectively, for the fParamType argument. As with input parameters, use the
fSqlType, cbColDef, and ibScale arguments (as applicable) to specify data types.

Determination of parameter type assignments and type conversions
Bind parameter type assignments are determined as follows.

■ Parameter type assignments for statements that execute in TimesTen are
determined by TimesTen. Specifically:

– For SQL statements that execute within TimesTen, the TimesTen query
optimizer determines data types of SQL parameters.

■ Parameter type assignments for statements that execute in Oracle Database, or
according to Oracle Database functionality, are determined by the application as
follows.

Table 2–1 SQLBindParameter arguments

Argument Type Description

hstmt SQLHSTMT Statement handle

ipar SQLUSMALLINT Parameter number, sequentially from left to right, starting
with 1

fParamType SQLSMALLINT Indicating input or output: SQL_PARAM_INPUT, SQL_PARAM_
OUTPUT, or SQL_PARAM_INPUT_OUTPUT

fCType SQLSMALLINT C data type of the parameter

fSqlType SQLSMALLINT SQL data type of the parameter

cbColDef SQLULEN The precision of the parameter, such as the maximum
number of bytes for binary data, the maximum number of
digits for a number, or the maximum number of characters
for character data

ibScale SQLSMALLINT The scale of the parameter, referring to the maximum
number of digits to the right of the decimal point, where
applicable

rgbValue SQLPOINTER Pointer to a buffer for the data of the parameter

cbValueMax SQLLEN Maximum length of the rgbValue buffer, in bytes

pcbValue SQLLEN* Pointer to a buffer for the length of the parameter

Note: Refer to "Data Types" in Oracle TimesTen In-Memory Database
SQL Reference for information about precision and scale of TimesTen
data types.

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-15

– For SQL statements that execute within Oracle Database—that is, passthrough
statements from the TimesTen Application-Tier Database Cache (TimesTen
Cache)—the application must specify data types through its calls to the ODBC
SQLBindParameter function, according to the fSqlType, cbColDef, and
ibScale arguments of that function, as applicable.

– For PL/SQL blocks or procedures that execute within TimesTen, where the
PL/SQL execution engine has the same basic functionality as in Oracle
Database, the application must specify data types through its calls to
SQLBindParameter (the same as for SQL statements that execute within Oracle
Database).

So regarding host binds for PL/SQL (the variables, or parameters, that are
preceded by a colon within a PL/SQL block), note that the type of a host bind
is effectively declared by the call to SQLBindParameter, according to fSqlType
and the other arguments as applicable, and is not declared within the PL/SQL
block.

The ODBC driver performs any necessary type conversions between C values and
SQL or PL/SQL types. For any C-to-SQL or C-to-PL/SQL combination that is not
supported, an error occurs. These conversions can be from a C type to a SQL or
PL/SQL type (input parameter), from a SQL or PL/SQL type to a C type (output
parameter), or both (input/output parameter).

Table 2–2 documents the mapping between ODBC types and SQL or PL/SQL types.

Note: The TimesTen binding mechanism (early binding) differs from
that of Oracle Database (late binding). TimesTen requires the data
types before preparing queries. As a result, there will be an error if the
data type of each bind parameter is not specified or cannot be inferred
from the SQL statement. This would apply, for example, to the
following statement:

SELECT 'x' FROM DUAL WHERE ? = ?;

You could address the issue as follows, for example:

SELECT 'x' from DUAL WHERE CAST(? as VARCHAR2(10)) =
 CAST(? as VARCHAR2(10));

Table 2–2 ODBC SQL to TimesTen SQL or PL/SQL type mappings

ODBC type (fSqlType) SQL or PL/SQL type TimesTen support notes

SQL_BIGINT NUMBER No notes

SQL_BINARY RAW(p) No notes

SQL_BIT PLS_INTEGER No notes

SQL_CHAR CHAR(p) No notes

SQL_DATE DATE No notes

SQL_DECIMAL NUMBER No notes

SQL_DOUBLE NUMBER No notes

SQL_FLOAT BINARY_DOUBLE No notes

SQL_INTEGER PLS_INTEGER No notes

SQL_INTERVAL_DAY N/A See notes after this table.

Managing TimesTen data

2-16 Oracle TimesTen In-Memory Database C Developer's Guide

SQL_INTERVAL_DAY_TO_HOUR N/A See notes after this table.

SQL_INTERVAL_DAY_TO_MINUTE N/A See notes after this table.

SQL_INTERVAL_DAY_TO_SECOND N/A See notes after this table.

SQL_INTERVAL_HOUR N/A See notes after this table.

SQL_INTERVAL_HOUR_TO_MINUTE N/A See notes after this table.

SQL_INTERVAL_HOUR_TO_SECOND N/A See notes after this table.

SQL_INTERVAL_MINUTE N/A See notes after this table.

SQL_INTERVAL_MINUTE_TO_SECOND N/A See notes after this table.

SQL_INTERVAL_MONTH N/A See notes after this table.

SQL_INTERVAL_YEAR N/A See notes after this table.

SQL_INTERVAL_YEAR_TO_MONTH N/A See notes after this table.

SQL_INTERVAL_SECOND N/A See notes after this table.

SQL_NUMERIC NUMBER No notes

SQL_REAL BINARY_FLOAT No notes

SQL_REFCURSOR REF CURSOR No notes

SQL_ROWID ROWID No notes

SQL_SMALLINT PLS_INTEGER No notes

SQL_TIME TIME TimesTen does not support
TIMEZONE. TIME data type values are
stored without making any
adjustment for time difference.
Applications must assume one time
zone and convert TIME values to
that time zone before sending the
values to the database.

SQL_TIMESTAMP TIMESTAMP(s) Same consideration as for TIME.

SQL_TINYINT PLS_INTEGER No notes

SQL_VARBINARY RAW(p) No notes

SQL_VARCHAR VARCHAR2(p) No notes

SQL_WCHAR NCHAR(p) No notes

SQL_WVARCHAR NVARCHAR2(p) No notes

Table 2–2 (Cont.) ODBC SQL to TimesTen SQL or PL/SQL type mappings

ODBC type (fSqlType) SQL or PL/SQL type TimesTen support notes

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-17

Binding input parameters
For input parameters to PL/SQL in TimesTen, use the fSqlType, cbColDef, and
ibScale arguments (as applicable) of the ODBC SQLBindParameter function to specify
data types. This is in contrast to how SQL input parameters are supported, as noted in
"Determination of parameter type assignments and type conversions" on page 2-14.

In addition, the rgbValue, cbValueMax, and pcbValue arguments of SQLBindParameter
are used as follows for input parameters:

■ rgbValue: Before statement execution, points to the buffer where the application
places the parameter value to be passed to the application.

■ cbValueMax: For character and binary data, indicates the maximum length of the
incoming value that rgbValue points to, in bytes. For all other data types,
cbValueMax is ignored, and the length of the value that rgbValue points to is
determined by the length of the C data type specified in the fCType argument of
SQLBindParameter.

■ pcbValue: Points to a buffer that contains one of the following before statement
execution:

– The actual length of the value that rgbValue points to

Note: For input parameters, this would be valid only for character or binary
data.

– SQL_NTS for a null-terminated string

– SQL_NULL_DATA for a null value

Binding output parameters
For output parameters from PL/SQL in TimesTen, as noted for input parameters
previously, use the fSqlType, cbColDef, and ibScale arguments (as applicable) of the
ODBC SQLBindParameter function to specify data types.

In addition, the rgbValue, cbValueMax, and pcbValue arguments of SQLBindParameter
are used as follows for output parameters:

Notes:

■ The notation (p) indicates precision is according to the
SQLBindParameter argument cbColDef.

■ The notation (s) indicates scale is according to the
SQLBindParameter argument ibScale.

■ The SQL_INTERVAL_xxxx types are supported only for computing
values, such as in SQL expressions, not as database column types.

■ Most applications should use SQL_VARCHAR rather than SQL_CHAR
for binding character data. Use of SQL_CHAR may result in
unwanted space padding to the full precision of the parameter
type.

■ Regarding TIME and TIMESTAMP, for example, an application can
assume its time zone to be Pacific Standard Time. If the
application is using TIME and TIMESTAMP values from Pacific
Daylight Time or Eastern Standard Time, for example, the
application must convert TIME and TIMESTAMP to Pacific
Standard Time.

Managing TimesTen data

2-18 Oracle TimesTen In-Memory Database C Developer's Guide

■ rgbValue: During statement execution, points to the buffer where the value
returned from the statement should be placed.

■ cbValueMax: For character and binary data, indicates the maximum length of the
outgoing value that rgbValue points to, in bytes. For all other data types,
cbValueMax is ignored, and the length of the value that rgbValue points to is
determined by the length of the C data type specified in the fCType argument of
SQLBindParameter.

Note that ODBC null-terminates all character data, even if the data is truncated.
Therefore, when an output parameter has character data, cbValueMax must be
large enough to accept the maximum data value plus a null terminator (one
additional byte for CHAR and VARCHAR parameters, or two additional bytes for
NCHAR and NVARCHAR parameters).

■ pcbValue: Points to a buffer that contains one of the following after statement
execution:

– The actual length of the value that rgbValue points to (for all C types, not just
character and binary data)

Note: This is the length of the full parameter value, regardless of whether the
value can fit in the buffer that rgbValue points to.

– SQL_NULL_DATA for a null value

Example 2–6 Binding output parameters

This example shows how to prepare, bind, and execute a PL/SQL anonymous block.
The anonymous block assigns bind parameter a the value 'abcde' and bind parameter
b the value 123.

SQLPrepare prepares the anonymous block. SQLBindParameter binds the first
parameter (a) as an output parameter of type SQL_VARCHAR and binds the second
parameter (b) as an output parameter of type SQL_INTEGER. SQLExecute executes the
anonymous block.

{
 SQLHSTMT hstmt;
 char aval[11];
 SQLLEN aval_len;
 SQLINTEGER bval;
 SQLLEN bval_len;

 SQLAllocStmt(hdbc, &hstmt);

 SQLPrepare(hstmt,
 (SQLCHAR*)"begin :a := 'abcde'; :b := 123; end;",
 SQL_NTS);

 SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_VARCHAR,
 10, 0, (SQLPOINTER)aval, sizeof(aval), &aval_len);

 SQLBindParameter(hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_SLONG, SQL_INTEGER,
 0, 0, (SQLPOINTER)&bval, sizeof(bval), &bval_len);

 SQLExecute(hstmt);
 printf("aval = [%s] (length = %d), bval = %d\n", aval, (int)aval_len, bval);
}

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-19

Binding input/output parameters
For input/output parameters to and from PL/SQL in TimesTen, as noted for input
parameters previously, use the fSqlType, cbColDef, and ibScale arguments (as
applicable) of the ODBC SQLBindParameter function to specify data types.

In addition, the rgbValue, cbValueMax, and pcbValue arguments of SQLBindParameter
are used as follows for input/output parameters:

■ rgbValue: This is first used before statement execution as described in "Binding
input parameters" on page 2-17. Then it is used during statement execution as
described in the preceding section, "Binding output parameters". Note that for an
input/output parameter, the outgoing value from a statement execution is the
incoming value to the statement execution that immediately follows, unless that is
overridden by the application. Also, for input/output values bound when you are
using data-at-execution, the value of rgbValue serves as both the token that would
be returned by the ODBC SQLParamData function and as the pointer to the buffer
where the outgoing value is placed.

■ cbValueMax: For character and binary data, this is first used as described in
"Binding input parameters" on page 2-17. Then it is used as described in the
preceding section, "Binding output parameters". For all other data types,
cbValueMax is ignored, and the length of the value that rgbValue points to is
determined by the length of the C data type specified in the fCType argument of
SQLBindParameter.

Note that ODBC null-terminates all character data, even if the data is truncated.
Therefore, when an input/output parameter has character data, cbValueMax must
be large enough to accept the maximum data value plus a null terminator (one
additional byte for CHAR and VARCHAR parameters, or two additional bytes for
NCHAR and NVARCHAR parameters).

■ pcbValue: This is first used before statement execution as described in "Binding
input parameters" on page 2-17. Then it is used after statement execution as
described in the preceding section, "Binding output parameters".

Binding duplicate parameters in SQL statements
In TimesTen, multiple occurrences of the same parameter name in a SQL statement are
considered to be distinct parameters. (This is consistent with Oracle Database support
for binding duplicate parameters.)

Important: For character and binary data, carefully consider the
value you use for cbValueMax. A value that is smaller than the actual
buffer size may result in spurious truncation warnings. A value that is
greater than the actual buffer size may cause the ODBC driver to
overwrite the rgbValue buffer, resulting in memory corruption.

Managing TimesTen data

2-20 Oracle TimesTen In-Memory Database C Developer's Guide

Consider this query:

SELECT * FROM employees
 WHERE employee_id < :a AND manager_id > :a AND salary < :b;

When parameter position numbers are assigned, a number is given to each parameter
occurrence without regard to name duplication. The application must, at a minimum,
bind a value for the first occurrence of each parameter name. For any subsequent
occurrence of a given parameter name, the application has the following choices.

■ It can bind a different value for the occurrence.

■ It can leave the parameter occurrence unbound, in which case it takes the same
value as the first occurrence.

In either case, each occurrence has a distinct parameter position number.

To use a different value for the second occurrence of a in the SQL statement above:

SQLBindParameter(..., 1, ...); /* first occurrence of :a */
SQLBindParameter(..., 2, ...); /* second occurrence of :a */
SQLBindParameter(..., 3, ...); /* occurrence of :b */

To use the same value for both occurrences of a:

SQLBindParameter(..., 1, ...); /* both occurrences of :a */
SQLBindParameter(..., 3, ...); /* occurrence of :b */

Parameter b is considered to be in position 3 regardless.

The SQLNumParams ODBC function returns 3 for the number of parameters in the
example.

Binding duplicate parameters in PL/SQL
Discussion in the preceding section, "Binding duplicate parameters in SQL
statements", does not apply to PL/SQL, which has its own semantics. In PL/SQL, you
bind a value for each unique parameter name. An application executing the following
block, for example, would bind only one parameter, corresponding to :a.

DECLARE
 x NUMBER;
 y NUMBER;
BEGIN
 x:=:a;
 y:=:a;
END;

An application executing the following block would also bind only one parameter:

Notes:

■ This discussion applies only to SQL statements issued directly
from ODBC, not through PL/SQL, for example. (Regarding
PL/SQL statements, see the next section "Binding duplicate
parameters in PL/SQL".)

■ "TimesTen mode" for binding duplicate parameters, and the
DuplicateBindMode connection attribute, are deprecated.

■ The use of "?" for parameters, not supported in Oracle Database, is
supported by TimesTen.

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-21

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);
END

And the same for the following CALL statement:

...CALL proc(:a, :a)...

An application executing the following block would bind two parameters, with :a as
the first parameter and :b as the second parameter. The second parameter in each
INSERT statement would take the same value as the first parameter in the first INSERT
statement:

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);
 INSERT INTO tab1 VALUES(:b, :a);
END

Considerations for floating point data
The BINARY_DOUBLE and BINARY_FLOAT data types store and retrieve the IEEE floating
point values Inf, -Inf, and NaN. If an application uses a C language facility such as
printf, scanf, or strtod that requires conversion to character data, the floating point
values are returned as "INF", "-INF", and "NAN". These character strings cannot be
converted back to floating point values.

Using SQL_WCHAR and SQL_WVARCHAR with a driver manager
Applications using the Windows driver manager may encounter errors from
SQLBindParameter with SQL state S1004 (SQL data type out of range) when passing an
fSqlType value of SQL_WCHAR or SQL_WVARCHAR. This problem can be avoided by
passing one of the following values for fSqlType instead.

■ SQL_WCHAR_DM_SQLBINDPARAMETER_BYPASS instead of SQL_WCHAR

■ SQL_WVARCHAR_DM_SQLBINDPARAMETER_BYPASS instead of SQL_WVARCHAR

These type codes are semantically identical to SQL_WCHAR and SQL_WVARCHAR but avoid
the error from the Windows driver manager. They can be used in applications that link
with the driver manager or link directly with the TimesTen ODBC direct driver or
ODBC client driver.

See "SQLBindParameter function" on page 2-14 for information about that ODBC
function.

Working with REF CURSORs
REF CURSOR is a PL/SQL concept, a handle to a cursor over a SQL result set that can
be passed between PL/SQL and an application. In TimesTen, the cursor can be opened
in PL/SQL then the REF CURSOR can be passed to the application. The results can be
processed in the application using ODBC calls. This is an OUT REF CURSOR (an OUT
parameter with respect to PL/SQL). The REF CURSOR is attached to a statement
handle, enabling applications to describe and fetch result sets using the same APIs as
for any result set.

Take the following steps to use a REF CURSOR. Assume a PL/SQL statement that
returns a cursor through a REF CURSOR OUT parameter. Note that REF CURSORs use
the same basic steps of prepare, bind, execute, and fetch as in the cursor example in
"Preparing and executing queries and working with cursors" on page 2-9.

Managing TimesTen data

2-22 Oracle TimesTen In-Memory Database C Developer's Guide

1. Prepare the PL/SQL statement, using SQLPrepare, to be associated with the first
statement handle.

2. Bind each parameter of the statement, using SQLBindParameter. When binding the
REF CURSOR output parameter, use an allocated second statement handle as
rgbValue, the pointer to the data buffer.

The pcbValue, ibScale, cbValueMax, and pcbValue arguments are ignored for REF
CURSORs.

See "SQLBindParameter function" on page 2-14 and "Binding output parameters"
on page 2-17 for information about these and other SQLBindParameter arguments.

3. Call SQLBindCol to bind result columns to local variable storage.

4. Call SQLExecute to execute the statement.

5. Call SQLFetch to fetch the results. After a REF CURSOR is passed from PL/SQL to
an application, the application can describe and fetch the results as it would for
any result set.

6. Use SQLFreeStmt to free the statement handle.

These steps are demonstrated in the example that follows. Refer to ODBC API
reference documentation for details on these functions. See "PL/SQL REF CURSORs"
in Oracle TimesTen In-Memory Database PL/SQL Developer's Guide for additional
information about REF CURSORs.

Example 2–7 Executing a query and working with a REF CURSOR

This example, using a REF CURSOR in a loop, demonstrates the basic steps of
preparing a query, binding parameters, executing the query, binding results to local
variable storage, and fetching the results. Error handling is omitted for simplicity. In
addition to the ODBC functions summarized earlier, this example uses SQLAllocStmt
to allocate memory for a statement handle.

refcursor_example(SQLHDBC hdbc)
{
 SQLCHAR* stmt_text;
 SQLHSTMT plsql_hstmt;
 SQLHSTMT refcursor_hstmt;
 SQLINTEGER deptid;
 SQLINTEGER depts[3] = {10,30,40};
 SQLINTEGER empid;
 SQLCHAR lastname[30];
 SQLINTEGER i;

 /* allocate 2 statement handles: one for the plsql statement and
 * one for the ref cursor */
 SQLAllocStmt(hdbc, &plsql_hstmt);
 SQLAllocStmt(hdbc, &refcursor_hstmt);

 /* prepare the plsql statement */
 stmt_text = (SQLCHAR*)
 "begin "
 "open :refc for "

Important: For passing REF CURSORs between PL/SQL and an
application, TimesTen supports only OUT REF CURSORs, from
PL/SQL to the application, and supports a statement returning only a
single REF CURSOR.

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-23

 "select employee_id, last_name "
 "from employees "
 "where department_id = :dept; "
 "end;";
 SQLPrepare(plsql_hstmt, stmt_text, SQL_NTS);

 /* bind parameter 1 (:refc) to refcursor_hstmt */
 SQLBindParameter(plsql_hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_REFCURSOR,
 SQL_REFCURSOR, 0, 0, refcursor_hstmt, 0, 0);

 /* bind parameter 2 (:deptid) to local variable deptid */
 SQLBindParameter(plsql_hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_INTEGER, 0, 0, &deptid, 0, 0);

 /* loop through values for :deptid */
 for (i=0; i<3; i++)
 {
 deptid = depts[i];

 /* execute the plsql statement */
 SQLExecute(plsql_hstmt);
 /*
 * The result set is now attached to refcursor_hstmt.
 * Bind the result columns and fetch the result set.
 */

 /* bind result column 1 to local variable empid */
 SQLBindCol(refcursor_hstmt, 1, SQL_C_SLONG,
 (SQLPOINTER)&empid, 0, 0);

 /* bind result column 2 to local variable lastname */
 SQLBindCol(refcursor_hstmt, 2, SQL_C_CHAR,
 (SQLPOINTER)lastname, sizeof(lastname), 0);

 /* fetch the result set */
 while(SQLFetch(refcursor_hstmt) != SQL_NO_DATA_FOUND){
 printf("%d, %s\n", empid, lastname);
 }

 /* close the ref cursor statement handle */
 SQLFreeStmt(refcursor_hstmt, SQL_CLOSE);
 }

 /* drop both handles */
 SQLFreeStmt(plsql_hstmt, SQL_DROP);
 SQLFreeStmt(refcursor_hstmt, SQL_DROP);
}

Working with DML returning (RETURNING INTO clause)
You can use a RETURNING INTO clause, referred to as DML returning, with an INSERT,
UPDATE, or DELETE statement to return specified items from a row that was affected by
the action. This eliminates the need for a subsequent SELECT statement and separate
round trip in case, for example, you want to confirm what was affected by the action.

With ODBC, DML returning is limited to returning items from a single-row operation.
The clause returns the items into a list of output parameters. Bind the output
parameters as discussed in "Binding parameters and executing statements" on
page 2-13.

Managing TimesTen data

2-24 Oracle TimesTen In-Memory Database C Developer's Guide

SQL syntax and restrictions for the RETURNING INTO clause in TimesTen are
documented as part of "INSERT", "UPDATE", and "DELETE" in Oracle TimesTen
In-Memory Database SQL Reference.

Refer to "RETURNING INTO Clause" in Oracle Database PL/SQL Language Reference for
details about DML returning.

Example 2–8 DML returning

This example is adapted from Example 2–10 on page 2-29, with bold text highlighting
key portions.

void
update_example(SQLHDBC hdbc)
{
 SQLCHAR* stmt_text;
 SQLHSTMT hstmt;
 SQLINTEGER raise_pct;
 char hiredate_str[30];
 char last_name[30];
 SQLLEN hiredate_len;
 SQLLEN numrows;

 /* allocate a statement handle */
 SQLAllocStmt(hdbc, &hstmt);

 /* prepare an update statement to give a raise to one employee hired
 before a given date and return that employee's last name */
 stmt_text = (SQLCHAR*)
 "update employees "
 "set salary = salary * ((100 + :raise_pct) / 100.0) "
 "where hire_date < :hiredate and rownum = 1 returning last_name into "
 ":last_name";
 SQLPrepare(hstmt, stmt_text, SQL_NTS);

 /* bind parameter 1 (:raise_pct) to variable raise_pct */
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_DECIMAL, 0, 0, (SQLPOINTER)&raise_pct, 0, 0);

 /* bind parameter 2 (:hiredate) to variable hiredate_str */
 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_TIMESTAMP, 0, 0, (SQLPOINTER)hiredate_str,
 sizeof(hiredate_str), &hiredate_len);
 /* bind parameter 3 (:last_name) to variable last_name */
 SQLBindParameter(hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_CHAR,
 SQL_VARCHAR, 30, 0, (SQLPOINTER)last_name,
 sizeof(last_name), NULL);
 /* set parameter values to give a 10% raise to an employee hired before
 * January 1, 1996. */
 raise_pct = 10;
 strcpy(hiredate_str, "1996-01-01");
 hiredate_len = SQL_NTS;

 /* execute the update statement */
 SQLExecute(hstmt);

 /* tell us who the lucky person is */
 printf("Gave raise to %s.\n", last_name);

 /* drop the statement handle */
 SQLFreeStmt(hstmt, SQL_DROP);

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-25

 /* commit the changes */
 SQLTransact(henv, hdbc, SQL_COMMIT);

}

This returns "King" as the recipient of the raise.

Working with rowids
Each row in a database table has a unique identifier known as its rowid. An application
can retrieve the rowid of a row from the ROWID pseudocolumn. Rowids can be
represented in either binary or character format.

An application can specify literal rowid values in SQL statements, such as in WHERE
clauses, as CHAR constants enclosed in single quotes.

As noted in Table 2–2 on page 2-15, the ODBC SQL type SQL_ROWID corresponds to the
SQL type ROWID.

For parameters and result set columns, rowids are convertible to and from the C types
SQL_C_BINARY, SQL_C_WCHAR, and SQL_C_CHAR. SQL_C_CHAR is the default C type for
rowids. The size of a rowid would be 12 bytes as SQL_C_BINARY, 18 bytes as SQL_C_
CHAR, and 36 bytes as SQL_C_WCHAR.

Refer to "ROWID data type" and "ROWID pseudocolumn" in Oracle TimesTen
In-Memory Database SQL Reference for additional information about rowids and the
ROWID data type, including usage and life.

Working with LOBs
TimesTen Classic supports LOBs (large objects). This includes CLOBs (character
LOBs), NCLOBs (national character LOBs), and BLOBs (binary LOBs).

This section provides a brief overview of LOBs and discusses their use in ODBC,
covering the following topics:

■ About LOBs

■ Differences between TimesTen LOBs and Oracle Database LOBs

■ LOB programming interfaces

■ Using the LOB simple data interface in ODBC

■ Using the LOB piecewise data interface in ODBC

■ Passthrough LOBs in ODBC

You can also refer to the following:

■ "LOBs in TimesTen OCI" on page 3-18 and "LOBs in TimesTen Pro*C/C++" on
page 4-9 for information specific to those APIs

■ "LOB data types" in Oracle TimesTen In-Memory Database SQL Reference for
additional information about LOBs in TimesTen

■ Oracle Database SecureFiles and Large Objects Developer's Guide for general
information about programming with LOBs (but not specific to TimesTen
functionality)

Note: TimesTen does not support the PL/SQL type UROWID.

Managing TimesTen data

2-26 Oracle TimesTen In-Memory Database C Developer's Guide

About LOBs
A LOB is a large binary object (BLOB) or character object (CLOB or NCLOB). In
TimesTen, a BLOB can be up to 16 MB and a CLOB or NCLOB up to 4 MB. LOBs in
TimesTen have essentially the same functionality as in Oracle Database, except as
noted otherwise. (See the next section, "Differences between TimesTen LOBs and
Oracle Database LOBs".)

LOBs may be either persistent or temporary. A persistent LOB exists in a LOB column
in the database. A temporary LOB exists only within an application. There are
circumstances where a temporary LOB is created implicitly. For example, if a SELECT
statement selects a LOB concatenated with an additional string of characters, TimesTen
creates a temporary LOB to contain the concatenated data. In TimesTen ODBC, any
temporary LOBs are managed implicitly.

Temporary LOBs are stored in the TimesTen temporary data region.

Differences between TimesTen LOBs and Oracle Database LOBs
Be aware of the following:

■ A key difference between the TimesTen LOB implementation and the Oracle
Database implementation is that in TimesTen, a LOB used in an application does
not remain valid past the end of the transaction. All such LOBs are invalidated
after a commit or rollback, whether explicit or implicit. This includes after any
DDL statement.

■ TimesTen does not support BFILEs, SecureFiles, array reads and writes for LOBs,
or callback functions for LOBs.

■ TimesTen does not support binding arrays of LOBs.

■ TimesTen does not support batch processing of LOBs.

■ Relevant to BLOBs, there are differences in the usage of hexadecimal literals in
TimesTen. see the description of HexadecimalLiteral in "Constants" in Oracle
TimesTen In-Memory Database SQL Reference.

LOB programming interfaces
There are three programmatic approaches, as follows, for accessing LOBs from
TimesTen in a C or C++ program.

■ Simple data interface (ODBC, OCI, Pro*C/C++, TTClasses): Use binds and
defines, as with other scalar types, to transfer LOB data in a single chunk.

■ Piecewise data interface (ODBC): Use advanced forms of binds and defines to
transfer LOB data in multiple pieces. This is sometimes referred to as streaming or
using data-at-exec (at program execution time). TimesTen supports the piecewise
data interface through polling loops to go piece-by-piece through the LOB data.
(Another piecewise approach, using callback functions, is supported by Oracle
Database but not by TimesTen.)

■ LOB locator interface (OCI, Pro*C/C++): Select LOB locators using SQL then
access LOB data through APIs that are similar conceptually to those used in
accessing a file system. Using the LOB locator interface, you can work with LOB
data in pieces or in single chunks. (See "LOBs in TimesTen OCI" on page 3-18 and
"LOBs in TimesTen Pro*C/C++" on page 4-9.)

The LOB locator interface offers the most utility if it is feasible for you to use it.

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-27

Using the LOB simple data interface in ODBC
The simple data interface enables applications to access LOB data by binding and
defining, just as with other scalar types. For the simple data interface in ODBC, use
SQLBindParameter to bind parameters and SQLBindCol to define result columns. The
application can bind or define using a SQL type that is compatible with the
corresponding variable type, as follows.

■ For BLOB data, use SQL type SQL_LONGVARBINARY and C type SQL_C_BINARY.

■ For CLOB data, use SQL type SQL_LONGVARCHAR and C type SQL_C_CHAR.

■ For NCLOB data, use SQL type SQL_WLONGVARCHAR and C type SQL_C_WCHAR.

SQLBindParameter and SQLBindCol calls for LOB data would be very similar to such
calls for other data types, discussed earlier in this chapter.

Using the LOB piecewise data interface in ODBC
The piecewise interface enables applications to access LOB data in portions, piece by
piece. An application binds parameters or defines results similarly to how those
actions are performed for the simple data interface, but indicates that the data is to be
provided or retrieved at program execution time ("at exec"). In TimesTen, you can
implement the piecewise data interface through a polling loop that is repeated until all
the LOB data has been read or written.

For the piecewise data interface in ODBC, use SQLParamData with SQLPutData in a
polling loop to bind parameters, as shown in Example 2–9 below, and SQLGetData in a
polling loop to retrieve results. See the preceding section, "Using the LOB simple data
interface in ODBC", for information about supported SQL and C data types for BLOBs,
CLOBs, and NCLOBs.

Example 2–9 Using SQLPutData, ODBC piecewise data interface

This program excerpt uses SQLPutData with SQLParamData in a polling loop to insert
LOB data piece-by-piece into the database. The CLOB column contains the value
"123ABC" when the code is executed.

...
 /* create a table */
 create_stmt = "create table clobtable (c clob)";
 rc = SQLExecDirect(hstmt, (SQLCHAR *)create_stmt, SQL_NTS);
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 /* initialize an insert statement */
 insert_stmt = "insert into clobtable values(?)";
 rc = SQLPrepare(hstmt, (SQLCHAR *)insert_stmt, SQL_NTS);
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 /* bind the parameter and specify that we will be using
 * SQLParamData/SQLPutData */
 rc = SQLBindParameter(
 hstmt, /* statement handle */

Note: Binding a CLOB or NCLOB with a C type of SQL_C_BINARY is
prohibited.

Note: Similar piecewise data access has already been supported for
the various APIs in previous releases of TimesTen, for var data types.

Managing TimesTen data

2-28 Oracle TimesTen In-Memory Database C Developer's Guide

 1, /* colnum number */
 SQL_PARAM_INPUT, /* param type */
 SQL_C_CHAR, /* C type */
 SQL_LONGVARCHAR, /* SQL type (ignored) */
 2, /* precision (ignored) */
 0, /* scale (ignored) */
 0, /* putdata token */
 0, /* ignored */
 &pcbvalue); /* indicates use of SQLPutData */
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 pcbvalue = SQL_DATA_AT_EXEC;

 /* execute the statement -- this should return SQL_NEED_DATA */
 rc = SQLExecute(hstmt);
 if(rc != SQL_NEED_DATA){/* ...error handling... */}

 /* while we still have parameters that need data... */
 while((rc = SQLParamData(hstmt, &unused)) == SQL_NEED_DATA){

 memcpy(char_buf, "123", 3);
 rc = SQLPutData(hstmt, char_buf, 3);
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 memcpy(char_buf, "ABC", 3);
 rc = SQLPutData(hstmt, char_buf, 3);
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 }
...

Passthrough LOBs in ODBC
Passthrough LOBs, which are LOBs in Oracle Database accessed through TimesTen,
are exposed as TimesTen LOBs and are supported by TimesTen in much the same way
that any TimesTen LOB is supported, but note the following:

■ TimesTen LOB size limitations do not apply to storage of LOBs in the Oracle
database through passthrough.

■ As with TimesTen local LOBs, a passthrough LOB used in an application does not
remain valid past the end of the transaction.

Making and committing changes to the database
Autocommit is enabled by default (according to the ODBC specification), so that any
DML change you make, such as an update, insert, or delete, is committed
automatically. It is recommended, however, that you disable this feature and commit
(or roll back) your changes explicitly. Use the SQL_AUTOCOMMIT option in a
SQLSetConnectOption call to accomplish this:

rc = SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

With autocommit disabled, you can commit or roll back a transaction using the
SQLTransact ODBC function, such as in the following example to commit:

rc = SQLTransact(henv, hdbc, SQL_COMMIT);

Refer to ODBC API reference documentation for details about these functions.

Managing TimesTen data

Working with TimesTen Databases in ODBC 2-29

You can refer to "Transaction overview" in Oracle TimesTen In-Memory Database
Operations Guide for additional information about transactions.

Example 2–10 Updating the database and committing the change

This example prepares and executes a statement to give raises to selected employees,
then manually commits the changes. Assume autocommit has been previously
disabled.

update_example(SQLHDBC hdbc)
{
 SQLCHAR* stmt_text;
 SQLHSTMT hstmt;
 SQLINTEGER raise_pct;
 char hiredate_str[30];
 SQLLEN hiredate_len;
 SQLLEN numrows;

 /* allocate a statement handle */
 SQLAllocStmt(hdbc, &hstmt);

 /* prepare an update statement to give raises to employees hired before a
 * given date */
 stmt_text = (SQLCHAR*)
 "update employees "
 "set salary = salary * ((100 + :raise_pct) / 100.0) "
 "where hire_date < :hiredate";
 SQLPrepare(hstmt, stmt_text, SQL_NTS);

 /* bind parameter 1 (:raise_pct) to variable raise_pct */
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_DECIMAL, 0, 0, (SQLPOINTER)&raise_pct, 0, 0);

 /* bind parameter 2 (:hiredate) to variable hiredate_str */
 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_TIMESTAMP, 0, 0, (SQLPOINTER)hiredate_str,
 sizeof(hiredate_str), &hiredate_len);

 /* set parameter values to give a 10% raise to employees hired before
 * January 1, 1996. */
 raise_pct = 10;

Notes:

■ Autocommit mode applies only to the top-level statement
executed by SQLExecute or SQLExecDirect. There is no awareness
of what occurs inside the statement, and therefore no capability
for intermediate autocommits of nested operations.

■ All open cursors on the connection are closed upon transaction
commit or rollback in TimesTen.

■ The SQLRowCount function can be used to return information about
SQL operations. For UPDATE, INSERT, and DELETE statements, the
output argument returns the number of rows affected. See
"Managing cache groups" on page 2-33 regarding special
TimesTen functionality. Refer to ODBC API reference
documentation for general information about SQLRowCount and its
arguments.

Using additional TimesTen data management features

2-30 Oracle TimesTen In-Memory Database C Developer's Guide

 strcpy(hiredate_str, "1996-01-01");
 hiredate_len = SQL_NTS;

 /* execute the update statement */
 SQLExecute(hstmt);

 /* print the number of employees who got raises */
 SQLRowCount(hstmt, &numrows);
 printf("Gave raises to %d employees.\n", numrows);

 /* drop the statement handle */
 SQLFreeStmt(hstmt, SQL_DROP);

 /* commit the changes */
 SQLTransact(henv, hdbc, SQL_COMMIT);

}

Using additional TimesTen data management features
Preceding sections discussed key features for managing TimesTen data. This section
covers the additional features listed here.

■ Using CALL to execute procedures and functions

■ Setting a timeout or threshold for executing SQL statements

■ Features for use with TimesTen Cache

■ Setting globalization options

■ Features for use with replication

Using CALL to execute procedures and functions
TimesTen Classic supports each of the following syntax formats from any of its
programming interfaces to call PL/SQL procedures (procname) or PL/SQL functions
(funcname) that are standalone or part of a package, or to call TimesTen built-in
procedures (procname).

CALL procname[(argumentlist)]

CALL funcname[(argumentlist)] INTO :returnparam

CALL funcname[(argumentlist)] INTO ?

TimesTen ODBC also supports each of the following syntax formats:

{ CALL procname[(argumentlist)] }

{ ? = [CALL] funcname[(argumentlist)] }

{ :returnparam = [CALL] funcname[(argumentlist)] }

The following ODBC example calls the TimesTen ttCkpt built-in procedure.

rc = SQLExecDirect (hstmt, (SQLCHAR*) "call ttCkpt",SQL_NTS);

These examples call a PL/SQL procedure myproc with two parameters:

rc = SQLExecDirect(hstmt, (SQLCHAR*) "{ call myproc(:param1, :param2) }",SQL_NTS);

Using additional TimesTen data management features

Working with TimesTen Databases in ODBC 2-31

rc = SQLExecDirect(hstmt, (SQLCHAR*) "{ call myproc(?, ?) }",SQL_NTS);

The following shows several ways to call a PL/SQL function myfunc:

rc = SQLExecDirect (hstmt, (SQLCHAR*) "CALL myfunc() INTO :retparam",SQL_NTS);

rc = SQLExecDirect (hstmt, (SQLCHAR*) "CALL myfunc() INTO ?",SQL_NTS);

rc = SQLExecDirect (hstmt, (SQLCHAR*) "{ :retparam = myfunc() }",SQL_NTS);

rc = SQLExecDirect (hstmt, (SQLCHAR*) "{ ? = myfunc() }",SQL_NTS);

See "CALL" in Oracle TimesTen In-Memory Database SQL Reference for details about CALL
syntax.

Setting a timeout or threshold for executing SQL statements
TimesTen offers two ways to limit the time for SQL statements or procedure calls to
execute, by either setting a timeout duration or setting a threshold duration. This
applies to any SQLExecute, SQLExecDirect, or SQLFetch call.

If a timeout duration is reached, the statement stops executing and an error is thrown.
If a threshold duration is reached, a warning is written to the support log but
execution continues.

This section covers the following topics:

■ Setting a timeout duration for SQL statements

■ Setting a threshold duration for SQL statements

Setting a timeout duration for SQL statements
To control how long SQL statements should execute before timing out, you can set the
SQL_QUERY_TIMEOUT option using a SQLSetStmtOption or SQLSetConnectOption call to
specify a timeout value, in seconds. A value of 0 indicates no timeout. Despite the
name, this timeout value applies to any executable SQL statement, not just queries.

In TimesTen, you can specify this timeout value for a connection, and therefore any
statement on the connection, by using either the SQLQueryTimeout general connection
attribute (in seconds) or the SQLQueryTimeoutMsec general connection attribute (in
milliseconds). The default value of each is 0, for no timeout. (Also see
"SQLQueryTimeout" and "SQLQueryTimeoutMsec" in Oracle TimesTen In-Memory
Database Reference.)

Despite the names, these timeout values apply to any executable SQL statement, not
just queries.

A call to SQLSetConnectOption with the SQL_QUERY_TIMEOUT option overrides any
previous query timeout setting. A call to SQLSetStmtOption with the SQL_QUERY_
TIMEOUT option overrides the connection setting for the particular statement.

Notes:

■ A user's own procedure takes precedence over a TimesTen built-in
procedure with the same name, but it is best to avoid such naming
conflicts.

■ TimesTen does not support using SQL_DEFAULT_PARAM with
SQLBindParameter for a CALL statement.

Using additional TimesTen data management features

2-32 Oracle TimesTen In-Memory Database C Developer's Guide

The query timeout limit has effect only when a SQL statement is actively executing. A
timeout does not occur during commit or rollback. For transactions that update, insert,
or delete a large number of rows, the commit or rollback phases may take a long time
to complete. During that time the timeout value is ignored.

See "Choose SQL and PL/SQL timeout values" in Oracle TimesTen In-Memory Database
Operations Guide for considerations regarding the SQL query timeout with respect to
other timeout settings.

Setting a threshold duration for SQL statements
You can configure TimesTen to write a warning to the support log when the execution
of a SQL statement exceeds a specified time duration, in seconds. Execution continues
and is not affected by the threshold.

By default, the application obtains the threshold from the QueryThreshold general
connection attribute setting (refer to "QueryThreshold" in Oracle TimesTen In-Memory
Database Reference). The default value is 0, for no warnings. Setting the TT_QUERY_
THRESHOLD option in a SQLSetConnectOption call overrides the connection attribute
setting for the current connection. Despite the name, the threshold applies to any
executable SQL statement.

To set the threshold with SQLSetConnectOption:

RETCODE SQLSetConnectOption(hdbc, TT_QUERY_THRESHOLD, seconds);

Setting the TT_QUERY_THRESHOLD option in a SQLSetStmtOption call overrides the
connection attribute setting, and any setting through SQLSetConnectOption, for the
statement. It applies to SQL statements executed using the ODBC statement handle.

To set the threshold with SQLSetStmtOption:

RETCODE SQLSetStmtOption(hstmt, TT_QUERY_THRESHOLD, seconds);

You can retrieve the current value of TT_QUERY_THRESHOLD by using the
SQLGetConnectOption or SQLGetStmtOption ODBC function:

RETCODE SQLGetConnectOption(hdbc, TT_QUERY_THRESHOLD, paramvalue);

RETCODE SQLGetStmtOption(hstmt, TT_QUERY_THRESHOLD, paramvalue);

Features for use with TimesTen Cache
This section discusses features related to the use of TimesTen Cache in TimesTen
Classic:

■ Setting temporary passthrough level with the ttOptSetFlag built-in procedure

■ Determining passthrough status

■ Managing cache groups

See Oracle TimesTen Application-Tier Database Cache User's Guide for information about
TimesTen Cache.

Note: If both a lock timeout value and a SQL query timeout value
are specified, the lesser of the two values causes a timeout first.
Regarding lock timeouts, you can refer to "ttLockWait" (built-in
procedure) or "LockWait" (general connection attribute) in Oracle
TimesTen In-Memory Database Reference, or to "Check for deadlocks and
timeouts" in Oracle TimesTen In-Memory Database Troubleshooting Guide.

Using additional TimesTen data management features

Working with TimesTen Databases in ODBC 2-33

See "PassThrough" in Oracle TimesTen In-Memory Database Reference for information
about that general connection attribute. See "Setting a passthrough level" in Oracle
TimesTen Application-Tier Database Cache User's Guide for information about
passthrough settings.

Setting temporary passthrough level with the ttOptSetFlag built-in procedure
TimesTen provides the ttOptSetFlag built-in procedure for setting various flags,
including the PassThrough flag to temporarily set the passthrough level. You can use
ttOptSetFlag to set PassThrough in a C application as in the following example that
sets the passthrough level to 1. The setting affects all statements that are prepared until
the end of the transaction.

rc = SQLExecDirect (hstmt, "call ttOptSetFlag ('PassThrough', 1)",SQL_NTS);

See "ttOptSetFlag" in Oracle TimesTen In-Memory Database Reference for more
information about that built-in procedure.

Determining passthrough status
You can call the SQLGetStmtOption ODBC function with the TT_STMT_PASSTHROUGH_
TYPE statement option to determine whether a SQL statement is to be executed in the
TimesTen database or passed through to the Oracle database for execution. This is
shown in the following example.

rc = SQLGetStmtOption(hStmt, TT_STMT_PASSTHROUGH_TYPE, &passThroughType);

You can make this call after preparing the SQL statement. It is useful with
PassThrough settings of 1 or 2, where the determination of whether a statement is
actually passed through is not made until compilation time. If TT_STMT_PASSTHROUGH_
NONE is returned, the statement is to be executed in TimesTen. If TT_STMT_
PASSTHROUGH_ORACLE is returned, the statement is to be passed through to Oracle
Database for execution.

See "Setting a passthrough level" in Oracle TimesTen Application-Tier Database Cache
User's Guide for information about PassThrough settings.

Managing cache groups
In TimesTen Cache, following the execution of a FLUSH CACHE GROUP, LOAD CACHE
GROUP, REFRESH CACHE GROUP, or UNLOAD CACHE GROUP statement, the ODBC function
SQLRowCount returns the number of cache instances that were flushed, loaded,
refreshed, or unloaded.

For related information, see "Determining the number of cache instances affected by an
operation" in Oracle TimesTen Application-Tier Database Cache User's Guide.

Refer to ODBC API reference documentation for general information about
SQLRowCount.

Setting globalization options
TimesTen extensions to ODBC enable an application to set options for linguistic sorts,
length semantics for character columns, and error reporting during character set
conversion. These options can be used in a call to SQLSetConnectOption. The options

Note: TT_STMT_PASSTHROUGH_TYPE is supported with
SQLGetStmtOption only, not with SQLSetStmtOption.

Using additional TimesTen data management features

2-34 Oracle TimesTen In-Memory Database C Developer's Guide

are defined in the timesten.h file (noted in "TimesTen include files" on page 2-8).

For more information about linguistic sorts, length semantics, and character sets, see
"Globalization Support" in Oracle TimesTen In-Memory Database Operations Guide.

This section includes the following TimesTen ODBC globalization options.

■ TT_NLS_SORT

■ TT_NLS_LENGTH_SEMANTICS

■ TT_NLS_NCHAR_CONV_EXCP

TT_NLS_SORT
This option specifies the collating sequence used for linguistic comparisons. See
"Monolingual linguistic sorts" and "Multilingual linguistic sorts" in Oracle TimesTen
In-Memory Database Operations Guide for supported linguistic sorts.

It takes a string value. The default is "BINARY".

Also see the description of the NLS_SORT general connection attribute, which has the
same functionality, in "NLS_SORT" in Oracle TimesTen In-Memory Database Reference.
Note that TT_NLS_SORT, being a runtime option, takes precedence over the NLS_SORT
connection attribute.

TT_NLS_LENGTH_SEMANTICS
This option specifies whether byte or character semantics is used. The possible values
are as follows.

■ TT_NLS_LENGTH_SEMANTICS_BYTE (default)

■ TT_NLS_LENGTH_SEMANTICS_CHAR

Also see the description of the NLS_LENGTH_SEMANTICS general connection attribute,
which has the same functionality, in "NLS_LENGTH_SEMANTICS" in Oracle TimesTen
In-Memory Database Reference. Note that TT_NLS_LENGTH_SEMANTICS, being a runtime
option, takes precedence over the NLS_LENGTH_SEMANTICS connection attribute.

TT_NLS_NCHAR_CONV_EXCP
This option specifies whether an error is reported when there is data loss during an
implicit or explicit character type conversion between NCHAR or NVARCHAR2 data and
CHAR or VARCHAR2 data during SQL operations. The option does not apply to
conversions done by ODBC as a result of binding.

The possible values are:

■ TRUE: Errors during conversion are reported.

■ FALSE: Errors during conversion are not reported (default).

Also see the description of the NLS_NCHAR_CONV_EXCP general connection attribute,
which has the same functionality, in "NLS_NCHAR_CONV_EXCP" in Oracle TimesTen
In-Memory Database Reference. Note that TT_NLS_NCHAR_CONV_EXCP, being a runtime
option, takes precedence over the NLS_NCHAR_CONV_EXCP connection attribute.

Features for use with replication
For applications that employ replication, you can improve performance by using
parallel replication, which uses multiple threads acting in parallel to replicate and apply
transactional changes to databases in a replication scheme. TimesTen Classic supports
the following types of parallel replication:

Handling Errors

Working with TimesTen Databases in ODBC 2-35

■ Automatic parallel replication (ReplicationApplyOrdering=0): Parallel replication
over multiple threads that automatically enforces transactional dependencies and
all changes applied in commit order. This is the default.

■ Automatic parallel replication with disabled commit dependencies
(ReplicationApplyOrdering=2): Parallel replication over multiple threads that
automatically enforces transactional dependencies, but does not enforce
transactions to be committed in the same order on the subscriber database as on
the master database. In this mode, you can optionally specify replication tracks.

See "Configuring parallel replication" in Oracle TimesTen In-Memory Database Replication
Guide for additional information and usage scenarios.

In an ODBC application that uses parallel replication and specifies replication tracks,
you can specify the track number for transactions on a connection through the TT_
REPLICATION_TRACK connection option, as noted in "Option support for ODBC 2.5
SQLSetConnectOption and SQLGetConnectOption" on page 10-16. (Alternatively, use
the general connection attribute ReplicationTrack or the ALTER SESSION parameter
REPLICATION_TRACK.)

Handling Errors
This section includes the following topics:

■ Checking for errors

■ Error and warning levels

■ Recovering after fatal errors

■ Retrying after transient errors (ODBC)

Checking for errors
An application should check for errors and warnings on every call. This saves
considerable time and effort during development and debugging. The sample
applications provided with TimesTen show examples of error checking. See "TimesTen
Quick Start and sample applications" on page 1-5.

Errors can be checked using either the TimesTen error code (error number) or error
string, as defined in the installation_dir/include/tt_errCode.h file. Entries are in
the following format:

#define tt_ErrMemoryLock 712

For a description of each message, see "List of errors and warnings" in Oracle TimesTen
In-Memory Database Error Messages and SNMP Traps.

After calling an ODBC function, check the return code. If the return code is not SQL_
SUCCESS, use an error-handling routine that calls the ODBC function SQLError to
retrieve the errors on the relevant ODBC handle. A single ODBC call may return
multiple errors. The application should be written to return all errors by repeatedly
calling the SQLError function until all errors are read from the error stack. Continue
calling SQLError until the return code is SQL_NO_DATA_FOUND. (SQL_NO_DATA_FOUND is
defined in sqlext.h, which is included by timesten.h.)

Refer to ODBC API reference documentation for details about the SQLError function
and its arguments.

Handling Errors

2-36 Oracle TimesTen In-Memory Database C Developer's Guide

For more information about writing a function to handle standard ODBC errors, see
"Retrieving errors and warnings" in Oracle TimesTen In-Memory Database Error Messages
and SNMP Traps.

Example 2–11 Checking an ODBC function call for errors

This example shows that after a call to SQLAllocConnect, you can check for an error
condition. If one is found, an error message is displayed and program execution is
terminated.

rc = SQLAllocConnect(henv, &hdbc);

if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr,
 "Unable to allocate a connection handle:\n%s\n",
 err_buf);
 exit(-1);
}

 Error and warning levels
When operations are not completely successful, TimesTen can return fatal errors,
non-fatal errors, or warnings.

Fatal errors
Fatal errors are those that make the database inaccessible until after error recovery.
When a fatal error occurs, all database connections are required to disconnect. No
further operations may complete. Fatal errors are indicated by TimesTen error codes
846 and 994. Error handling for these errors should be different from standard error
handling. In particular, the application error-handling code should roll back the
current transaction and disconnect from the database.

Also see "Recovering after fatal errors" on page 2-37.

Non-fatal errors
Non-fatal errors include simple errors such as an INSERT statement that violates
unique constraints. This category also includes some classes of application and process
failures.

TimesTen returns non-fatal errors through the normal error-handling process.
Application should check for errors and appropriately handle them.

When a database is affected by a non-fatal error, an error may be returned and the
application should take appropriate action.

An application can handle non-fatal errors by modifying its actions or, in some cases,
rolling back one or more offending transactions.

Warnings
TimesTen returns warnings when something unexpected occurs that you may want to
know about. Here are some events that cause TimesTen to issue a warning:

■ Checkpoint failure

■ Use of a deprecated feature

■ Truncation of some data

Handling Errors

Working with TimesTen Databases in ODBC 2-37

■ Execution of a recovery process upon connect

■ Replication return receipt timeout

Application developers should have code that checks for warnings, as they can
indicate application problems.

Abnormal termination
In some cases, such as process failure, no error is returned, but TimesTen automatically
rolls back the transactions of the failed process.

Recovering after fatal errors
When fatal errors occur, TimesTen performs a full cleanup and recovery procedure:

■ Every connection to the database is invalidated. To avoid out-of-memory
conditions in the server, applications are required to disconnect from the
invalidated database. Shared memory from the old TimesTen instance is not freed
until all active connections at the time of the error have disconnected. Inactive
applications still connected to the old TimesTen instance may have to be manually
terminated.

■ The database is recovered from the checkpoint and transaction log files upon the
first subsequent initial connection.

■ The recovered database reflects the state of all durably committed transactions and
possibly some transactions that were committed non-durably.

■ No uncommitted or rolled back transactions are reflected.

Retrying after transient errors (ODBC)
TimesTen automatically resolves most transient errors (which is particularly important
for TimesTen Scaleout), but if your application detects the following SQLSTATE value, it
is suggested to retry the current transaction:

■ TT005: Transient transaction failure due to unavailability of resource. Roll back the
transaction and try it again.

In ODBC 3.5, SQLSTATE is returned by the SQLGetDiagRec function or indicated in the
SQL_DIAG_SQLSTATE field of the SQLGetDiagField function. In ODBC 2.5, SQLSTATE is
returned by the SQLError function. This SQLSTATE may be encountered by any of the
following functions. Unless indicated otherwise, these functions apply to either ODBC
2.5 or ODBC 3.5.

■ Catalog functions (such as SQLTables and SQLColumns)

■ SQLCancel

■ SQLCloseCursor (ODBC 3.5)

■ SQLDisconnect

Notes:

■ Search the entire error stack for errors returning these SQL states
before deciding whether it is appropriate to retry.

■ Example 2–13 in "Failover delay and retry settings" on page 2-45
also shows how to retry for transient errors.

Using automatic client failover in your application

2-38 Oracle TimesTen In-Memory Database C Developer's Guide

■ SQLExecDirect

■ SQLExecute

■ SQLFetch

■ SQLFetchScroll (ODBC 3.5)

■ SQLFreeStmt (ODBC 2.5)

■ SQLGetData

■ SQLGetInfo

■ SQLPrepare

■ SQLPutData

■ SQLEndTran (ODBC 3.5)

■ SQLTransact (ODBC 2.5)

Using automatic client failover in your application
Automatic client failover is for use in High Availability scenarios, for either TimesTen
Scaleout or TimesTen Classic. There are two scenarios for TimesTen Classic, one with
active standby pair replication and one referred to as generic automatic client failover.

If there is a failure of the database or database element to which the client is connected,
then failover (connection transfer) to an alternate database or database element occurs:

■ For TimesTen Scaleout, failover is to an element from a list returned by TimesTen
of available elements in the grid.

■ For TimesTen Classic with active standby replication, failover is to the new active
(original standby) database.

■ For TimesTen Classic using generic automatic client failover, where you can ensure
that the schema and data are consistent on both databases, failover is to a database
from a list that is configured in the client odbc.ini file.

A typical use case for generic automatic failover is a set of databases using
read-only caching, where each database has the same set of cached data. For
example, if you have several read-only cache groups, then you would create the
same read-only cache groups on all TimesTen Classic databases included in the list
of failover servers. When the client connection fails over to an alternate TimesTen
database, the cached data is consistent because TimesTen Cache automatically
refreshes the data (as needed) from the Oracle database.

Applications are automatically reconnected to the new database or database element.
TimesTen provides features that enable applications to be alerted when this happens,
so they can take any appropriate action.

This section discusses the TimesTen implementation of automatic client failover as it
applies to application developers, covering the following topics.

■ Functionality of automatic client failover

■ Configuration of automatic client failover

■ Failover callback functions

■ Application action in the event of failover

For TimesTen Scaleout, see "Client connection failover" in Oracle TimesTen In-Memory
Database Scaleout User's Guide for additional information. For TimesTen Classic, see

Using automatic client failover in your application

Working with TimesTen Databases in ODBC 2-39

"Using automatic client failover" in Oracle TimesTen In-Memory Database Operations
Guide.

Functionality of automatic client failover
If a database or database element to which a client is connected fails, failover to an
alternate database or database element occurs. When failover occurs, be aware of the
following:

■ The client has a new connection but using the same ODBC connection handle. No
state from the original connection is preserved, however, other than the handle
itself. The application must open new ODBC statement handles and descriptor
handles.

■ If you register a failover callback function (see "Failover callback functions" on
page 2-41.), a failover listener thread will be created within the client process to
listen for failover event and invoke the callback function.

All client statement handles from the original connection are marked as invalid. API
calls on these statement handles generally return SQL_ERROR with distinctive failover
error codes defined in tt_errCode.h:

■ Native error 30105 with SQL state 08006

■ Native error 47137

The exception to this is for SQLError, SQLFreeStmt, SQLGetDiagRec, and
SQLGetDiagField calls (depending on your version of ODBC), which behave normally.

In addition, note the following:

■ The socket to the original database or database element is closed. There is no need
to call SQLDisconnect. TimesTen performs the equivalent, cleaning up the
connection handle and confirming resources are freed.

■ In connecting to the new TimesTen database or database element, the same
connection string and DSN definition from the original connection request are
used, with the appropriate server name.

■ It is up to the application to open new statement handles and reexecute necessary
SQLPrepare calls.

■ If a failover has already occurred and the client is already connected to the new
database or database element:

– For TimesTen Scaleout, the next failover request results in an attempt to
connect to the next element in the list that was returned by TimesTen at the
time of the original connection.

Notes:

■ Automatic client failover applies only to client/server
connections. The functionality described here does not apply to
direct connections.

■ Automatic client failover is complementary to Oracle Clusterware
in situations where Oracle Clusterware is used, though the two
features are not dependent on each other. You can also refer to
"Using Oracle Clusterware to Manage Active Standby Pairs" in
Oracle TimesTen In-Memory Database Replication Guide for
information about Oracle Clusterware.

Using automatic client failover in your application

2-40 Oracle TimesTen In-Memory Database C Developer's Guide

– For TimesTen Classic with active standby replication, the next failover request
results in an attempt to reconnect to the original active database. If that fails,
alternating attempts are made to connect to the two servers until there is a
timeout, and the connection is blocked during this period.

– For TimesTen Classic using generic automatic client failover, the next failover
request results in an attempt to connect to the next database in the list that is
configured in the client odbc.ini file. This could be the next database
sequentially or one chosen at random from the list, according to the setting of
the TTC_Random_Selection connection attribute, which is described in
"Configuration of automatic client failover" on page 2-41.

The timeout value is according to the TimesTen client connection attribute TTC_
Timeout (default 60 seconds). (Refer to "TTC_Timeout" in Oracle TimesTen
In-Memory Database Reference for information about that attribute.)

■ Failover connections are created only as needed, not in advance.

During failover, TimesTen can optionally make callbacks to a user-defined function
that you register. This function takes care of any custom actions you want to occur in a
failover situation. (See "Failover callback functions" on page 2-41.)

The following public connection options are propagated to the new connection. The
corresponding general connection attribute is shown in parentheses where applicable.
The TT_REGISTER_FAILOVER_CALLBACK option is used to register your callback
function.

SQL_ACCESS_MODE
SQL_AUTOCOMMIT
SQL_TXN_ISOLATION (Isolation)
SQL_OPT_TRACE
SQL_QUIET_MODE
TT_PREFETCH_CLOSE
TT_CLIENT_TIMEOUT (TTC_TIMEOUT)
TT_REGISTER_FAILOVER_CALLBACK

The following options are propagated to the new connection if they were set through
connection attributes or SQLSetConnectOption calls, but not if set through TimesTen
built-in procedures or ALTER SESSION.

TT_NLS_SORT (NLS_SORT)
TT_NLS_LENGTH_SEMANTICS (NLS_LENGTH_SEMANTICS)
TT_NLS_NCHAR_CONV_EXCP (NLS_NCHAR_CONV_EXCP)
TT_DYNAMIC_LOAD_ENABLE (DynamicLoadEnable)
TT_DYNAMIC_LOAD_ERROR_MODE (DynamicLoadErrorMode)
TT_NO_RECONNECT_ON_FAILOVER (TTC_NoReconnectOnFailover)

The following options are propagated to the new connection if they were set on the
connection handle.

SQL_QUERY_TIMEOUT
TT_PREFETCH_COUNT

See "Connection Attributes" in Oracle TimesTen In-Memory Database Reference for
information about TimesTen connection attributes.

Note: If you issue an ALTER SESSION statement anytime after the
initial database connection, you must re-issue the statement after a
failover.

Using automatic client failover in your application

Working with TimesTen Databases in ODBC 2-41

Configuration of automatic client failover
Refer to "Configuring automatic client failover for TimesTen Classic" in Oracle TimesTen
In-Memory Database Operations Guide or "Client connection failover" in the Oracle
TimesTen In-Memory Database Scaleout User's Guide for complete details on managing
client connection failover in TimesTen.

In TimesTen Classic, failover DSNs must be specifically configured through TTC_
Server2 and TTC_Servern connection attributes.

Be aware of these TimesTen connection attributes:

■ TTC_NoReconnectOnFailover: If this is set to 1 (enabled), TimesTen is instructed to
do all the usual client failover processing except for the automatic reconnect. (For
example, statement and connection handles are marked as invalid.) This is useful
if the application does its own connection pooling or manages its own
reconnection to the database after failover. The default value is 0 (reconnect). Also
see "TTC_NoReconnectOnFailover" in Oracle TimesTen In-Memory Database
Reference.

■ TTC_REDIRECT: If this is set to 0 and the initial connection attempt to the desired
database or database element fails, then an error is returned and there are no
further connection attempts. This does not affect subsequent failovers on that
connection. Also see "TTC_REDIRECT" in Oracle TimesTen In-Memory Database
Reference.

■ TTC_Random_Selection: For TimesTen Classic using generic automatic client
failover, the default setting of 1 (enabled) specifies that when failover occurs, the
client randomly selects an alternative server from the list provided in TTC_Servern
attribute settings. If the client cannot connect to the selected server, it keeps
redirecting until it successfully connects to one of the listed servers. With a setting
of 0, TimesTen goes through the list of TTC_Servern servers sequentially. Also see
"TTC_Random_Selection" in Oracle TimesTen In-Memory Database Reference.

Failover callback functions
If there are custom actions you would like to have occur when there is a failover, you
can have TimesTen make a callback to a user-defined function for such actions. This
function is called when the attempt to connect to the new database or database
element begins, and again after the attempt to connect is complete. This function could
be used, for example, to cleanly restore statement handles.

The function API is defined as follows.

typedef SQLRETURN (*ttFailoverCallbackFcn_t)
 (SQLHDBC, /* hdbc */
 SQLPOINTER, /* foCtx */
 SQLUINTEGER, /* foType */

Note: Setting any of TTC_Server2, TTC_Server_DSN2, TTC_Servern,
or TCP_Port2 implies that you intend to use automatic client failover.
For the active standby pair scenario, it also means a new thread is
created for your application to support the failover mechanism.

Note: If you set any of these in odbc.ini or the connection string, the
settings are applied to the failover connection. They cannot be set as
ODBC connection options or ALTER SESSION attributes.

Using automatic client failover in your application

2-42 Oracle TimesTen In-Memory Database C Developer's Guide

 SQLUINTEGER); /* foEvent */

Where:

■ hdbc is the ODBC connection handle for the connection that failed.

■ foCtx is a pointer to an application-defined data structure, for use as needed.

■ foType is the type of failover. In TimesTen, the only supported value for this is TT_
FO_SESSION, which results in the session being reestablished. This does not result
in statements being re-prepared.

■ foEvent indicates the event that has occurred, with the following supported
values:

– TT_FO_BEGIN: Beginning failover.

– TT_FO_ABORT: Failover failed. Retries were attempted for the interval specified
by TTC_Timeout (minimum value 60 seconds for active standby failover)
without success.

– TT_FO_END: Successful end of failover.

– TT_FO_ERROR: A failover connection failed but will be retried.

Note that TT_FO_REAUTH is not supported by TimesTen client failover.

Use a SQLSetConnectOption call to set the TimesTen TT_REGISTER_FAILOVER_CALLBACK
option to register the callback function, specifying an option value that is a pointer to a
structure of C type ttFailoverCallback_t that is defined as follows in the timesten.h
file and refers to the callback function.

typedef struct{
 SQLHDBC appHdbc;
 ttFailoverCallbackFcn_t callbackFcn;
 SQLPOINTER foCtx;
} ttFailoverCallback_t;

Where:

■ appHdbc is the ODBC connection handle, and should have the same value as hdbc
in the SQLSetConnectOption calling sequence. (It is required in the data structure
due to driver manager implementation details, in case you are using a driver
manager.)

■ callbackFcn specifies the callback function. (You can set this to NULL to cancel
callbacks for the given connection. The failover would still happen, but the
application would not be notified.)

■ foCtx is a pointer to an application-defined data structure, as in the function
description earlier.

Set TT_REGISTER_FAILOVER_CALLBACK for each connection for which a callback is
desired. The values in the ttFailoverCallback_t structure are copied when the
SQLSetConnectOption call is made. The structure need not be kept by the application.
If TT_REGISTER_FAILOVER_CALLBACK is set multiple times for a connection, the last
setting takes precedence.

Using automatic client failover in your application

Working with TimesTen Databases in ODBC 2-43

Example 2–12 Failover callback function and registration

This example shows the following features.

■ A globally defined user structure type, FOINFO, and the structure variable
foStatus of type FOINFO

■ A callback function, FailoverCallback(), that updates the foStatus structure
whenever there is a failover

■ A registration function, RegisterCallback(), that does the following:

– Declares a structure, failoverCallback, of type ttFailoverCallback_t.

– Initializes foStatus values.

– Sets the failoverCallback data values, consisting of the connection handle, a
pointer to foStatus, and the callback function (FailoverCallback).

– Registers the callback function with a SQLSetConnectOption call that sets TT_
REGISTER_FAILOVER_CALLBACK as a pointer to failoverCallback.

/* user defined structure */
struct FOINFO
{
 int callCount;
 SQLUINTEGER lastFoEvent;
};
/* global variable passed into the callback function */
struct FOINFO foStatus;

/* the callback function */
SQLRETURN FailoverCallback (SQLHDBC hdbc,
 SQLPOINTER pCtx,
 SQLUINTEGER FOType,
 SQLUINTEGER FOEvent)
{
 struct FOINFO* pFoInfo = (struct FOINFO*) pCtx;

 /* update the user defined data */
 if (pFoInfo != NULL)
 {
 pFoInfo->callCount ++;
 pFoInfo->lastFoEvent = FOEvent;

 printf ("Failover Call #%d\n", pFoInfo->callCount);
 }

 /* the ODBC connection handle */

Notes:

■ Because the callback function executes asynchronously to the
main thread of your application, it should generally perform only
simple tasks, such as setting flags that are polled by the
application. However, there is no such restriction if the application
is designed for multithreading. In that case, the function could
even make ODBC calls, for example, but it is only safe to do so if
the foEvent value TT_FO_END has been received.

■ It is up to the application to manage the data pointed to by the
foCtx setting.

Using automatic client failover in your application

2-44 Oracle TimesTen In-Memory Database C Developer's Guide

 printf ("Failover HDBC : %p\n", hdbc);

 /* pointer to user data */
 printf ("Failover Data : %p\n", pCtx);

 /* the type */
 switch (FOType)
 {
 case TT_FO_SESSION:
 printf ("Failover Type : TT_FO_SESSION\n");
 break;

 default:
 printf ("Failover Type : (unknown)\n");
 }

 /* the event */
 switch (FOEvent)
 {
 case TT_FO_BEGIN:
 printf ("Failover Event: TT_FO_BEGIN\n");
 break;

 case TT_FO_END:
 printf ("Failover Event: TT_FO_END\n");
 break;

 case TT_FO_ABORT:
 printf ("Failover Event: TT_FO_ABORT\n");
 break;

 case TT_FO_REAUTH:
 printf ("Failover Event: TT_FO_REAUTH\n");
 break;

 case TT_FO_ERROR:
 printf ("Failover Event: TT_FO_ERROR\n");
 break;

 default:
 printf ("Failover Event: (unknown)\n");
 }

 return SQL_SUCCESS;
}

/* function to register the callback with the failover connection */
SQLRETURN RegisterCallback (SQLHDBC hdbc)
{
 SQLRETURN rc;
 ttFailoverCallback_t failoverCallback;

 /* initialize the global user defined structure */
 foStatus.callCount = 0;
 foStatus.lastFoEvent = -1;

 /* register the connection handle, callback and the user defined structure */
 failoverCallback.appHdbc = hdbc;
 failoverCallback.foCtx = &foStatus;
 failoverCallback.callbackFcn = FailoverCallback;

Using automatic client failover in your application

Working with TimesTen Databases in ODBC 2-45

 rc = SQLSetConnectOption (hdbc, TT_REGISTER_FAILOVER_CALLBACK,
 (SQLULEN)&failoverCallback);

 return rc;
}

When a failover occurs, the callback function would produce output such as the
following:

Failover Call #1
Failover HDBC : 0x8198f50
Failover Data : 0x818f8ac
Failover Type : TT_FO_SESSION
Failover Event: TT_FO_BEGIN

Application action in the event of failover
This section discusses these topics:

■ Application steps for failover

■ Failover delay and retry settings

Application steps for failover
If you receive any of the error conditions noted in "Functionality of automatic client
failover" on page 2-39 in response to an operation in your application, then application
failover is in progress. Perform these recovery actions:

1. Issue a rollback on the connection. Until you do this, no further processing is
possible on the connection.

2. Clean up all objects from the previous connection. None of the state or objects
associated with the previous connection are preserved, but proper cleanup
through the relevant API calls is still strongly recommended.

3. Assuming TTC_NoReconnectOnFailover=0 (the default), sleep briefly, as discussed
in the next section, "Failover delay and retry settings". If TTC_
NoReconnectOnFailover=1, then you must instead manually reconnect the
application to an alternate database or database element.

4. Recreate and reprepare all objects related to your connection.

5. Restart any in-progress transactions from the beginning.

Failover delay and retry settings
The reconnection to another database or database element during automatic client
failover may take some time. If your application attempts recovery actions before
TimesTen has completed its client failover process, you may receive another failover
error condition as listed in "Functionality of automatic client failover" on page 2-39.

Therefore, your application should place all recovery actions within a loop with a
short delay before each subsequent attempt, where the total number of attempts is
limited. If you do not limit the number of attempts, the application may appear to
hang if the client failover process does not complete successfully. For example, your
recovery loop could use a retry delay of 100 milliseconds with a maximum number of
retries limited to 100 attempts. The ideal values depend on your particular application
and configuration.

Using automatic client failover in your application

2-46 Oracle TimesTen In-Memory Database C Developer's Guide

Example 2–13 illustrates this point (as well as retrying transient errors, discussed in
"Retrying after transient errors (ODBC)" on page 2-37).

Example 2–13 Handling transient errors and client failover errors

/*
 * The following code snippet is a simple illustration of how you might handle
 * the retrying of transient and connection failover errors in a C/ODBC
 * application. In the interests of simplicity code that is not directly
 * relevant to the example has been omitted (...). A real application
 * would of course be more complex.
 *
 * This example uses the ODBC 3.5 API.
 */

// define maximum retry counts and failover retry delay
#define MAX_TE_RETRIES 30
#define MAX_FO_RETRIES 100
#define FO_RETRY_DELAY 100 // milliseconds

// function return values
#define SUCCESS 0
#define FAILURE (-1)

// constants for categorising errors
#define ERR_OTHER 1
#define ERR_TRANSIENT 2
#define ERR_FAILOVER 3

// SQLSTATES and native errors
#define SQLSTATE_TRANSIENT "TT005"
#define SQLSTATE_FAILOVER "08006"
#define NATIVE_FAILOVER1 47137
#define NATIVE_FAILOVER2 30105

// SQL statements
SQLCHAR * sqlQuery = (SQLCHAR *)"SELECT ...";
SQLCHAR * sqlUpdate = (SQLCHAR *)"UPDATE ...";

// Database connection handle
SQLHDBC dbConn = SQL_NULL_HDBC;

// Statement handles
SQLHSTMT stmtQuery = SQL_NULL_HSTMT;
SQLHSTMT stmtUpdate = SQL_NULL_HSTMT;

// ODBC return code
SQLRETURN rc;

// Retry counters
int teRetries; // transient errors
int foRetries; // failover errors
int foDelay = FO_RETRY_DELAY; // failover retry delay in ms

// Function to sleep for a specified number of milliseconds
void
sleepMs(unsigned int ms)
{
 struct timespec rqtm, rmtm;

Using automatic client failover in your application

Working with TimesTen Databases in ODBC 2-47

 rqtm.tv_sec = (time_t)(ms / 1000);
 rqtm.tv_nsec = (long)(ms % 1000000);

 while (nanosleep(&rqtm, &rmtm))
 rqtm = rmtm;
} // sleepMs

// Function to check error stack for transient or failover errors.
// In a real application lots of other kinds of checking would also
// go in here to identify other errors of interest. We'd probably also
// log the errors to an error log.
int
errorCategory(SQLHANDLE handle, SQLSMALLINT handleType)
{
 SQLRETURN rc;
 SQLSMALLINT i = 1;
 SQLINTEGER native_error;
 SQLCHAR sqlstate[LEN_SQLSTATE+1];
 SQLCHAR msgbuff[1024];
 SQLSMALLINT msglen;

 native_error = 0;
 sqlstate[0] = '\0';
 rc = SQLGetDiagRec(handleType, handle, i, sqlstate, &native_error,
 msgbuff, sizeof(msgbuff), &msglen);
 while (rc == SQL_SUCCESS)
 {
 if (strcmp(sqlstate, SQLSTATE_TRANSIENT) == 0)
 return ERR_TRANSIENT;
 else
 if (native_error == NATIVE_FAILOVER1)
 return ERR_FAILOVER;
 else
 if ((strcmp(sqlstate, SQLSTATE_FAILOVER) == 0) &&
 (native_error == NATIVE_FAILOVER2))
 return ERR_FAILOVER;
 rc = SQLGetDiagRec(handleType, handle, ++i, sqlstate,
 &native_error, msgbuff, sizeof(msgbuff),
 &msglen);
 }

 return ERR_OTHER;
} // errorCategory

// Function to perform a rollback
void
rollBack(SQLHDBC hDbc)
{
 SQLRETURN rc;

 rc = SQLEndTran(SQL_HANDLE_DBC, hDbc, SQL_ROLLBACK);
 // Report/log errors (a rollback failure is very, very bad).
 ...
} // rollBack

// Function to prepare all statements, bind parameters and bind
// columns.
int
prepareAll(void)
{

Using automatic client failover in your application

2-48 Oracle TimesTen In-Memory Database C Developer's Guide

 SQLRETURN rc;

 // Prepare the SQL statements and check for errors.
 rc = SQLPrepare(stmtQuery, sqlQuery, SQL_NTS);
 if (rc != SQL_SUCCESS)
 {
 rollBack(dbConn);
 return errorCategory(stmtQuery, SQL_HANDLE_STMT);
 }
 rc = SQLPrepare(stmtUpdate, sqlUpdate, SQL_NTS);
...
 // Bind parameters and colums
...

 return SUCCESS; // indicate success
} // prepareAll

// Function to execute a specific application transaction handling
// retries.
int
txnSomeTransaction(...)
{
 SQLRETURN rc;
 SQLLEN rowcount = 0;
 int needReprepare = 0;
 int result;

 // Initialize retry counters
 teRetries = MAX_TE_RETRIES;
 foRetries = MAX_FO_RETRIES;

 // main retry loop
 while ((teRetries > 0) && (foRetries > 0))
 {

 // Do we need to re-prepare?
 while (needReprepare && (foRetries > 0))
 {
 msSleep(retryDelay); // delay before proceeding
 result = prepareAll();
 if (result == SUCCESS)
 needReprepare = 0;
 else
 if (result != ERR_FAILOVER)
 goto err;
 else
 foRetries--;
 }

 // First execute the query

 // Set input values for query
 ...

 // Execute query
 rc = SQLExecute(stmtQuery);
 if (rc != SQL_SUCCESS)
 {
 result = errorCategory(stmtQuery, SQL_HANDLE_STMT);
 rollBack(dbConn);

Using automatic client failover in your application

Working with TimesTen Databases in ODBC 2-49

 switch (result)
 {
 case ERR_OTHER:
 goto err;
 break;
 case ERR_TRANSIENT:
 teRetries--;
 continue; // retry loop
 break;
 case ERR_FAILOVER:
 foRetries--;
 needReprepare = 1;
 continue; // retry loop
 break;
 }
 }

 // Process results
 while ((rc = SQLFetch(stmtQuery)) == SQL_SUCCESS)
 {
 // process next row
 ...
 }
 if ((rc != SQL_SUCCESS) && (rc != SQL_NO_DATA))
 {
 result = errorCategory(stmtQuery, SQL_HANDLE_STMT);
 rollBack(dbConn);
 switch (result)
 {
 case ERR_OTHER:
 goto err;
 break;
 case ERR_TRANSIENT:
 teRetries--;
 continue; // retry loop
 break;
 case ERR_FAILOVER:
 foRetries--;
 needReprepare = 1;
 continue; // retry loop
 break;
 }
 }

 // Now execute the update

 // Set input values for update
 ...

 // Execute update
 rc = SQLExecute(stmtUpdate);
 if (rc != SQL_SUCCESS)
 {
 ...
 }

 // Check number of rows affected
 rc = SQLRowCount(stmtUpdate, &rowcount);
 if (rc != SQL_SUCCESS)
 {

Using automatic client failover in your application

2-50 Oracle TimesTen In-Memory Database C Developer's Guide

 ...
 }
 // Check rowcount and handle unexpected cases
 if (rowcount != 1)
 {
 ...
 }

 // Finally, commit
 rc = SQLEndTran(SQL_HANDLE_DBC, dbConn, SQL_COMMIT);
 if (rc != SQL_SUCCESS)
 {
 ...
 }

 return SUCCESS; // all good
 } // retry loop

err:
 // if we get here, we ran out of retries or had some other non-retryable
 // error. Report/log it etc. then return failure
 ...

 return FAILURE;
} // txnSomeTransaction

// Main code
int
main (int argc, char * argv[])
{
 int status = 0; // final exit code

 // Open the connection to the database and allocate statement handles
 ...

 // Disable auto-commit (this is essential)
 rc = SQLSetConnectAttr(dbConn,
 SQL_ATTR_AUTOCOMMIT,
 SQL_AUTOCOMMIT_OFF,
 0);
 ...

 // Prepare all statements, bind etc.
 if (prepareAll() != SUCCESS)
 {
 ...
 }

 // Do stuff until we are finished
 while (...)
 {
 ...
 if (txnSomeTransaction(...) != SUCCESS)
 {
 ...
 goto fini;
 }
 ...

Client routing API for TimesTen Scaleout

Working with TimesTen Databases in ODBC 2-51

 }

fini: // cleanup etc.
 // Release all resources (ODBC and non-ODBC)
 ...
 // Disconnect from database
 ...

 // Return final exit code
 return status;
} //main

Client routing API for TimesTen Scaleout
To increase performance, TimesTen Scaleout enables your client application to route
connections to an element based on the key value for a hash distribution key. You
provide a key value and TimesTen Scaleout returns an array of element IDs (or the
replica set ID) where the database allocated that value. This enables the client
application to connect to the element that stores the row with the specified key value,
avoiding unnecessary communication between the element storing the row and the
one connected to your application.

This section includes the next topics:

■ Creating a grid map and distribution

■ Setting the distribution key values

■ Getting the element location given a set of key values

■ Supported data types

■ Restrictions

■ Failure modes

Creating a grid map and distribution
TimesTen Scaleout includes two new objects for client routing in the timesten.h file:

■ TTGRIDMAP: A grid map is a lookup table that maps the topology of a grid. You
create a grid map by calling the ttGridMapCreate function with a valid ODBC
connection. The function returns a handle to a TTGRIDMAP object.

Use the ttGridMapFree function to free a grid map.

Note: This feature is not supported with driver managers.

Note:

■ A TTGRIDMAP object is not strongly associated with the HDBC
connection. Freeing either object does not free the other.

■ A grid map can be shared among many grid distributions and
across application threads. Only one grid map is required per
application process per database.

Client routing API for TimesTen Scaleout

2-52 Oracle TimesTen In-Memory Database C Developer's Guide

■ TTGRIDDIST: A grid distribution is an ordered set of types and values that
represent the distribution key columns of a table or tables. For distribution keys
composed of multiple columns, the order of the types and values must be the
same as for the distribution key columns of the table.

You create a grid distribution by calling the ttGridDistCreate function with the C
type, SQL type, length, scale, and precision of the distribution key columns of a
table. The function returns a handle to a TTGRIDDIST object. Table 2–3 provides a
brief summary of the arguments of the ttGridDistCreate function.

Use the ttGridDistFree function to free a grid distribution.

Example 2–14 Create a grid map and distribution

This example creates TTGRIDMAP and TTGRIDDIST objects. Then, the example calls the
ttGridMapCreate function to create a grid map using an existing ODBC connection.
Later, the example calls the ttGridDistCreate function to create a grid distribution
based on a distribution key composed of two columns. Finally, the example frees the
grid distribution and map with the ttGridDistFree and ttGridMapFree functions,
respectively.

Note:

■ A TTGRIDDIST object is not associated with a given table. You can
use the same TTGRIDDIST object for any table that uses the same
types and values in their distribution key columns.

■ A grid distribution cannot be shared across threads. However,
multiple grid distributions in different threads can be created
using the same grid map.

Table 2–3 ttGridDistCreate arguments

Argument Type Description

hdbc SQLHDBC Connection handle

map TTGRIDMAP Grid map handle

cTypes[] SQLSMALLINT Array of C bind types in the same order as the distribution
key columns

sqlTypes[] SQLSMALLINT Array of SQL bind types in the same order as the
distribution key columns

precisions[] SQLULEN Array of precision values in the same order as the
distribution key columns

scales[] SQLSMALLINT Array of scale values in the same order as the distribution
key columns

maxSizes[] SQLLEN Array of maximum column size values in the same order
as the distribution key columns

nCols SQLUSMALLINT Number of columns in the distribution key

*dist TTGRIDDIST Grid distribution handle (OUT)

Note: The parameters for ttGridDistCreate are similar to those
used in a subsequent SQLBindParameter ODBC call.

Client routing API for TimesTen Scaleout

Working with TimesTen Databases in ODBC 2-53

TTGRIDMAP map;
TTGRIDDIST dist;

ttGridMapCreate(hdbc, &map);

SQLSMALLINT cTypes[] = { SQL_C_LONG, SQL_C_CHAR };
SQLSMALLINT sqlTypes[] = { SQL_INTEGER, SQL_CHAR };
SQLLEN maxSizes[] = { 4, 20 };

ttGridDistCreate(hdbc, map, cTypes, sqlTypes, NULL, NULL, maxSizes, 2, &dist);

...

ttGridDistFree(hdbc, dist);
ttGridMapFree(hdbc, map);

Setting the distribution key values
With the grid map and distribution defined, set the key values in order to determine
the elements in which they are allocated. Call the ttGridDistValueSet function to set
the key value for one of the columns in the distribution key. For distribution keys
composed of multiple columns, call this function once for every column in the
distribution key. Table 2–4 provides a brief summary of the arguments of the
ttGridDistValueSet function.

Example 2–15 Set the distribution key values

The example first calls the ttGridDistClear function to clear any previously defined
key values for the distribution key columns. Then, the example calls the
ttGridDistValueSet function for every column in the distribution key and sets the
key value for each column.

ttGridDistClear(hdbc, dist);

ttGridDistValueSet(hdbc, dist, 1, empId, sizeof(empId));
ttGridDistValueSet(hdbc, dist, 2, "SALES", SQL_NTS);

Getting the element location given a set of key values
Once you set the distribution key values, you can either call for the location of the key
values by element IDs or replica set ID:

■ Get the element IDs

■ Get the replica set ID

Table 2–4 ttGridDistValueSet arguments

Argument Type Description

hdbc SQLHDBC Connection handle

dist TTGRIDDIST Grid distribution handle

position SQLSMALLINT Position of the column in the distribution key

value SQLPOINTER Key value pointer

valueLen SQLLEN Length of the key value

Client routing API for TimesTen Scaleout

2-54 Oracle TimesTen In-Memory Database C Developer's Guide

Get the element IDs
Call the ttGridDistElementGet function to obtain the corresponding element IDs that
represent the location of the provided key values. The function returns an array of
element IDs. The application is responsible for allocating the return array. The length
of the array is based on the value of K-safety of the grid. For example, in a grid with
K-safety set to 2, there must be at least two elements in the array. Table 2–5 provides a
brief summary of the arguments of the ttGridDistElementGet function.

Example 2–16 Get the array of element IDs for the current key values

The example gets the array of element IDs associated with the current key values (set
by the ttGridDistValueSet function) by calling the ttGridDistElementGet function.

SQLSMALLINT elementIds[2];

ttGridDistElementGet(hdbc, dist, elementIds, 2);

With the location of the set of key values available, your application can use the
element IDs to select a connection to one of the elements, prepare a statement, bind
values, and execute the statement.

Example 2–17 shows the client routing API with most of its objects and functions in
use.

Example 2–17 Client routing API

#include <timesten.h>

...

TTGRIDMAP map;
TTGRIDDIST dist;

/* Create a grid map using any existing connection. */
ttGridMapCreate(hdbc, &map);

/* The distribution key has two columns: one with TT_INTEGER as data type and
 * one with CHAR(20), in that order. Precision and scale are not necessary. */
SQLSMALLINT cTypes[] = { SQL_C_LONG, SQL_C_CHAR };

Table 2–5 ttGridDistElementGet arguments

Argument Type Description

hdbc SQLHDBC Connection handle

dist TTGRIDDIST Grid distribution handle

elemIds[] SQLSMALLINT Array of element IDs where the key values are allocated
(IN/OUT)

elemIdSize SQLSMALLINT Value of K-safety

Note: The elementIds array must be of a length equal or greater
than the value of K-safety of the grid.

Note: The connection attempt can be subject to a failover event and
the application may not connect to the expected element.

Client routing API for TimesTen Scaleout

Working with TimesTen Databases in ODBC 2-55

SQLSMALLINT sqlTypes[] = { SQL_INTEGER, SQL_CHAR };
SQLLEN maxSizes[] = { 4, 20 };

/* Create grid distribution from the grip map and the specified distribution
 * key column paremeters. */
ttGridDistCreate(hdbc, map, cTypes, sqlTypes, NULL, NULL, maxSizes, 2, &dist);

/* Execution loop. */
while (...)
{
 SQLSMALLINT elementIds[2];

 /* Clear the existing key values from the distribution map */
 ttGridDistClear(hdbc, dist);

 /* Set the key values for the grid distribution. */
 ttGridDistValueSet(hdbc, dist, 1, key1, sizeof(key1));
 ttGridDistValueSet(hdbc, dist, 2, key2, SQL_NTS);

 /* Get the corresponding element IDs for current key values*/
 ttGridDistElementGet(hdbc, dist, elementIds, 2);

 /* The application uses the element IDs to select a connection to
 * one of the elements, prepare a statement, bind values, and execute
 * the statement. */
 ...
}

/* Free the grid distribuion and map. */
ttGridDistFree(hdbc, dist);
ttGridMapFree(hdbc, map);

Example 2–18 shows a query that may help you associate an element ID with a
connection string.

Example 2–18 Connection string for each element ID

The example assembles a connection string for each element of the database by
querying the SYS.V$DISTRIBUTION_CURRENT system view. The connection string
includes the TTC_REDIRECT=0 attribute to ensure a connection to the specified element
or its replica. If the connection to all replicas fails, then a connection error is returned.

select 'TTC_REDIRECT=0;
TTC_SERVER='||hostexternaladdress||'/'||serverport,mappedelementid
 from SYS.V$DISTRIBUTION_CURRENT;
< TTC_REDIRECT=0;TTC_SERVER=ext-host3.example.com/6625, 1 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host4.example.com/6625, 2 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host5.example.com/6625, 3 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host6.example.com/6625, 4 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host7.example.com/6625, 5 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host8.example.com/6625, 6 >
6 rows found.

Get the replica set ID
Call the ttGridDistReplicaGet function to obtain the corresponding replica set ID
that represents the location of the provided key values. Table 2–6 provides a brief
summary of the arguments of the ttGridDistReplicaGet function.

Client routing API for TimesTen Scaleout

2-56 Oracle TimesTen In-Memory Database C Developer's Guide

Example 2–19 Get the replica set ID for the current key values

The example gets the replica set ID associated with the current key values (set by the
ttGridDistValueSet function) by calling the ttGridDistReplicaGet function.

SQLSMALLINT replicaSetId;

ttGridDistReplicaGet(hdbc, dist, replicaSetId);

As with element IDs in Example 2–18, you can use the replica set ID with the
SYS.V$DISTRIBUTION_CURRENT system view to look up the communication parameters
of the elements in that replica set.

Supported data types
The TTGRIDDIST object is created using the C types and SQL types available from
ODBC. Table 2–7 shows the supported C types and SQL types with their
corresponding Database SQL types.

The TTGRIDDIST object supports all signed and unsigned data type variants. For
example, it supports both SQL_C_SLONG and SQL_C_ULONG.

You can set NULL values by specifying SQL_NULL_DATA for the valueLen parameter of
the ttGridDistValueSet function. The NULL value will always map to the same replica
set or element IDs.

Table 2–6 ttGridDistReplicaGet arguments

Argument Type Description

hdbc SQLHDBC Connection handle

dist TTGRIDDIST Grid distribution handle

*replicaSetId SQLSMALLINT Replica set ID where the key values are allocated (OUT)

Table 2–7 List of supported types

C types ODBC SQL types Database SQL types

SQL_C_TINYINT SQL_TINYINT TT_TINYINT

SQL_C_SMALLINT SQL_SMALLINT TT_SMALLINT

SQL_C_LONG SQL_INTEGER TT_INTEGER

SQL_C_BIGINT SQL_BIGINT TT_BIGINT

SQL_C_CHAR SQL_CHAR CHAR

SQL_C_CHAR SQL_VARCHAR VARCHAR, VARCHAR2

SQL_C_WCHAR SQL_WCHAR NCHAR

SQL_C_WCHAR SQL_WVARCHAR NVARCHAR

SQL_C_SQLT_NUM SQL_DOUBLE NUMBER

SQL_C_SQLT_NUM SQL_DECIMAL NUMBER(p,s)

SQL_C_SQLT_VNU SQL_DOUBLE NUMBER

SQL_C_SQLT_VNU SQL_DECIMAL NUMBER(p,s)

Client routing API for TimesTen Scaleout

Working with TimesTen Databases in ODBC 2-57

Restrictions
Client routing has these restrictions:

■ It does not have implicit connection or statement management.

■ It does not support date, time, or timestamp data types.

■ It does not support explicit type conversion. Applications must specify key values
in canonical byte format.

■ It does not support character set conversion. It ignores the connection character
set.

■ Changes in the topology of the grid require that applications free and recreate the
grid map.

Failure modes
The client routing API may return an error in these scenarios:

■ Incorrect types and values to describe the distribution key columns of the table. In this
case, the API will still compute an array of element IDs, but these may not
correspond to the real location of the desired key values.

■ Unrecognized type codes. If you call the ttGridDistCreate function with
unrecognized type codes, the function returns an error.

■ Not enough values set for the grid distribution. If you do not provide enough values
for the distribution key through the ttGridDistValueSet function, then the
ttGridDistElementGet or ttGridDistReplicaGet function would return an error.

■ Invalid size of the element IDs array. If you do not provide an array of at least the size
of the value of K-safety, the ttGridDistElementGet function would return an
error.

Client routing API for TimesTen Scaleout

2-58 Oracle TimesTen In-Memory Database C Developer's Guide

3

TimesTen Support for OCI 3-1

3TimesTen Support for OCI

TimesTen and TimesTen Cache support the Oracle Call Interface (OCI) for C or C++
programs.

This chapter provides an overview and TimesTen-specific information regarding OCI,
especially emphasizing differences between using OCI with TimesTen versus with
Oracle Database. For complete information about OCI, you can refer to Oracle Call
Interface Programmer's Guide in the Oracle Database library.

Also note that Chapter 2, "Working with TimesTen Databases in ODBC", contains
information that may be of general interest regarding TimesTen features.

The following topics are covered:

■ Overview of OCI

■ Overview of TimesTen OCI support

■ Getting started with TimesTen OCI

■ Use of additional features with TimesTen OCI

■ TimesTen OCI support reference

Overview of OCI
OCI is an API that provides functions you can use to access the database and control
SQL execution. OCI supports the data types, calling conventions, syntax, and
semantics of the C and C++ programming languages. You compile and link an OCI
program much as you would any C or C++ program. There is no preprocessing or
precompilation step.

The OCI library of database access and retrieval functions is in the form of a dynamic
runtime library that can be linked into an application at runtime. The OCI library
includes the following functional areas:

■ SQL access functions

■ Data type mapping and manipulation functions

The following are among the many useful features that OCI provides or supports:

■ Statement caching

■ Dynamic SQL

■ Facilities to treat transaction control, session control, and system control
statements like DML statements

■ Description functionality to expose layers of server metadata

Overview of TimesTen OCI support

3-2 Oracle TimesTen In-Memory Database C Developer's Guide

■ Ability to associate commit requests with statement executions to reduce round
trips

■ Optimization of queries using transparent prefetch buffers to reduce round trips

■ Thread safety that eliminates the need for mutual exclusive locks on OCI handles

For general information about OCI, you can refer to Oracle Call Interface Programmer's
Guide, included with the Oracle Database documentation set.

Overview of TimesTen OCI support
This chapter contains information specific to using OCI with TimesTen and TimesTen
Cache. For supported features, TimesTen OCI syntax and usage is the same as that in
Oracle Database.

This section covers the following topics:

■ OCI in TimesTen

■ Globalization support

■ TimesTen restrictions and differences

■ The ttSrcScan utility

OCI in TimesTen
TimesTen OCI support enables you to run many existing OCI applications with
TimesTen direct connections or client/server connections. It also enables you to use
other features, such as Pro*C/C++ and ODP.NET, that use OCI as a database interface.
(You can also call PL/SQL from OCI, Pro*C/C++, and ODP.NET applications.)
Figure 3–1 shows where OCI support is positioned in the TimesTen architecture.

TimesTen provides Oracle Instant Client as the OCI client library. This is configured
through the appropriate ttenv script, discussed in "Environment variables" in Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Figure 3–1 OCI in the TimesTen architecture

JDBC TTClasses (C++) OCI

ODBC driver

Application

SQL engine PL/SQL engine

TimesTen database engine

Pro*C/C++ ODP.NET ODPI-C

Node.js

Python

Overview of TimesTen OCI support

TimesTen Support for OCI 3-3

TimesTen 18.1 OCI is based on Oracle Database release 12.1.0.2 OCI and supports the
contemporary OCI 8 style APIs. For example, the OCIStmtExecute() function is
supported but not the older oexec() function. See "Obsolete OCI Routines" in Oracle
Call Interface Programmer's Guide in the Oracle Database documentation.

Globalization support
This section discusses TimesTen OCI support for globalization.

Character sets
To specify a character set for the connection, OCI programs can set the NLS_LANG
environment variable or call OCIEnvNlsCreate(). The ConnectionCharacterSet
setting in the sys.odbc.ini or user odbc.ini file is used by default if not overridden
by NLS_LANG or OCIEnvNlsCreate(). Setting the character set explicitly is
recommended. The default is typically AMERICAN_AMERICA.US7ASCII.

Note that because TimesTen OCI does not support language or locale (territory)
settings, the language and territory components of NLS_LANG, such as AMERICAN_
AMERICA above, are ignored. Even when not specifying the language and locale,
however, you must still have the period in front of the character set when setting NLS_
LANG. For example, either of the following would work, although AMERICAN_AMERICA is
ignored:

NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1

Or:

NLS_LANG=.WE8ISO8859P1

Additional globalization features
TimesTen OCI also supports the following additional globalization features. These can
be set as environment variables, TimesTen general connection attributes, or TimesTen
ODBC connection options. For the connection options, the names here are prepended

Notes:

■ TimesTen character sets are compatible with Oracle Database.

■ An NLS_LANG environment setting overrides the TimesTen default
character set.

■ On Windows, the NLS_LANG setting is searched for in the registry if
it is not in the environment. If your OCI or Pro*C/C++ program
has trouble connecting to TimesTen, verify that the NLS_LANG
setting under HKEY_LOCAL_MACHINE\Software\ORACLE\, if that key
exists, is valid and indicates a character set supported by
TimesTen.

■ Refer to "Choosing a Locale with the NLS_LANG Environment
Variable" in Oracle Database Globalization Support Guide for further
information about NLS_LANG.

■ The TimesTen default character set is AMERICAN_
AMERICA.US7ASCII. Refer to "Supported character sets" in Oracle
TimesTen In-Memory Database Reference.

■ Refer to "OCIEnvNlsCreate()" in Oracle Call Interface Programmer's
Guide for information about that OCI call.

Overview of TimesTen OCI support

3-4 Oracle TimesTen In-Memory Database C Developer's Guide

by "TT_". An environment variable setting takes precedence over a corresponding
connection attribute or connection option setting. A connection option setting takes
precedence over a corresponding connection attribute setting.

■ NLS_LENGTH_SEMANTICS: By default, the lengths of character data types CHAR and
VARCHAR2 are specified in bytes, not characters. For single-byte character encoding
this works well. For multibyte character encoding, you can use NLS_LENGTH_
SEMANTICS to create CHAR and VARCHAR2 columns using character-length semantics
instead. Supported settings are BYTE (default) and CHAR. (NCHAR and NVARCHAR2
columns are always character-based. Existing columns are not affected.)

■ NLS_SORT: This specifies the type of sort for character data. It overrides the default
value from NLS_LANG. Valid values are BINARY or any linguistic sort name
supported by TimesTen. For example, to specify the German linguistic sort
sequence, set NLS_SORT=German.

■ NLS_NCHAR_CONV_EXCP: This determines whether an error is reported when there is
data loss during an implicit or explicit character type conversion between NCHAR or
NVARCHAR data and CHAR or VARCHAR2 data. Valid settings are TRUE and FALSE. The
default value is FALSE, resulting in no error being reported.

Refer to "Globalization Support" in Oracle TimesTen In-Memory Database Operations
Guide and "Setting Up a Globalization Support Environment" in Oracle Database
Globalization Support Guide for additional information on these environment variables
and related features. See "Option support for ODBC 2.5 SQLSetConnectOption and
SQLGetConnectOption" on page 10-16 for information about TimesTen connection
option support.

TimesTen restrictions and differences
This section discusses the following areas of restrictions and differences for OCI in
TimesTen compared to in Oracle Database:

■ Oracle Database features not supported

■ Additional TimesTen OCI restrictions

■ Additional TimesTen OCI differences

Oracle Database features not supported
TimesTen does not support OCI calls that are related to functionality that does not
exist in TimesTen or TimesTen Cache. For example, TimesTen and TimesTen Cache do
not support these Oracle Database features:

■ Advanced Queuing

■ Any Data

■ Object support

■ Collections

■ Cartridge Services

■ Direct path loading

■ Date/time intervals

■ Iterators

■ BFILEs

■ Cryptographic Toolkit

Overview of TimesTen OCI support

TimesTen Support for OCI 3-5

■ XML DB support

■ Spatial Services

■ Event handling

■ Session switching

■ Scrollable cursors

Additional TimesTen OCI restrictions
TimesTen OCI has the following restrictions:

■ Asynchronous calls are not supported.

■ Connection pooling and session pooling are not supported.

■ Describing objects with OCIDescribeAny() is supported only by name. Describing
PL/SQL objects is not supported. (Also see the entry for this function under
"Supported OCI calls" on page 3-30.)

■ TimesTen Client/Server automatic client failover is not supported.

■ The TNSPING utility does not recognize connections to TimesTen.

■ Retrieving implicit ROWID values from INSERT, UPDATE, and DELETE statements is
not supported. (This is supported for SELECT FOR UPDATE statements, however.)

■ TimesTen built-in procedures that return result sets are not supported directly. You
can, however, use PL/SQL for this purpose, as shown in "Use of PL/SQL in OCI
to call a TimesTen built-in procedure" on page 3-29.

■ Only a single REF CURSOR can be returned from a PL/SQL block, procedure call,
or function call.

■ Binding and defining of structures through OCIBindArrayOfStruct() and
OCIDefineArrayOfStruct() is supported for SQL statements but not for PL/SQL.
(Also see the entries for these functions under "Supported OCI calls" on
page 3-30.)

■ Oracle Database utilities such as SQL*Plus and SQL*Loader are not supported. (In
TimesTen, you can use ttIsql instead of SQL*Plus and ttBulkCp instead of
SQL*Loader. See "Utilities" in Oracle TimesTen In-Memory Database Reference.)

■ Array binding, the ability to bind arrays into PL/SQL statements, is supported for
associative arrays (index-by tables or PL/SQL tables) but is not supported for
varrays (variable size arrays) or nested tables. (See "Associative array bindings in
TimesTen OCI" on page 3-13.)

Additional TimesTen OCI differences
Be aware of the following points.

■ Both TimesTen and Oracle Database support XA, but TimesTen does not support
XA through OCI.

■ With OCI, TimesTen automatically disables autocommit for DML statements.
Transactions should be explicitly committed or rolled back when finished.

■ There are differences in the usage of hexadecimal literals in TimesTen. See the
description of HexadecimalLiteral in "Constants" in Oracle TimesTen In-Memory
Database SQL Reference.

Getting started with TimesTen OCI

3-6 Oracle TimesTen In-Memory Database C Developer's Guide

The ttSrcScan utility
If you have an existing OCI program and want to see whether it uses OCI features that
TimesTen does not support, you can use the ttSrcScan command line utility to scan
your program for unsupported functions, types, type codes, attributes, modes, and
constants. This is a standalone utility that can be run without TimesTen or Oracle
Database being installed and runs on any platform supported by TimesTen. It reads
source code files as input and creates HTML and text files as output. If the utility finds
unsupported items, then they are logged and alternatives are suggested. Specify an
input file or directory for the program to be scanned and an output directory for the
ttSrcScan reports. Other options are available as well.

The ttSrcScan utility is available on the Oracle Technology Network site. See the
README file there for additional information.

Getting started with TimesTen OCI
This section discusses the following topics for getting started with a TimesTen OCI
application:

■ Environment variables for TimesTen OCI

■ Compiling and linking OCI applications

■ Connecting to a TimesTen database from OCI

■ OCI error handling

■ Signal handling and diagnostic framework considerations

Environment variables for TimesTen OCI
Environment variables for executing a TimesTen OCI application are described in
Table 3–1. Settings apply to both direct connections and client/server connections
except as noted.

After creating an instance, you can set your environment as appropriate through the
timesten_home/bin/ttenv script applicable to your operating system. See
"Environment variables" in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide for information about ttenv.

Note: To ensure proper generation of OCI programs to be run on
TimesTen, do not set ORACLE_HOME for OCI compilations (or unset it if
it was set previously).

Table 3–1 Environment variables for TimesTen OCI

Variable Required or optional Settings

LD_LIBRARY_PATH (Linux or UNIX)

PATH (Windows)

Required Must be set so that the TimesTen
Instant Client directory precedes
the Oracle Database libraries in
the path. The path is set properly
if you use the following script
under timesten_home:

bin/ttenv

Getting started with TimesTen OCI

TimesTen Support for OCI 3-7

Compiling and linking OCI applications
No changes are required between Oracle Database and TimesTen for the steps to
compile and link an OCI application.

TNS_ADMIN Required if you use the
tnsnames naming
method

Specifies the directory where the
tnsnames.ora file is located. This
is also where TimesTen looks for
a sqlnet.ora file.

See "Connecting to a TimesTen
database from OCI" on page 3-8.

TWO_TASK (Linux or UNIX)

LOCAL (Windows)

Optional You can use this, whichever is
appropriate for your platform,
instead of specifying the dbname
argument in your OCI logon call.
The setting consists of a valid
TNS name or easy connect string.

See "Connecting to a TimesTen
database from OCI" on page 3-8
for more information.

NLS_LANG Optional See "Character sets" on page 3-3.
Only the character set component
is honored and it must indicate a
character set supported by
TimesTen. The language and
territory values are ignored.

This environment variable
overrides the TimesTen default
character set.

NLS_SORT Optional See "Additional globalization
features" on page 3-3. The sort
order must be a value supported
by TimesTen.

This overrides the TimesTen NLS_
SORT general connection
attribute.

NLS_LENGTH_SEMANTICS Optional See "Additional globalization
features" on page 3-3.

This overrides the TimesTen NLS_
LENGTH_SEMANTICS general
connection attribute.

NLS_NCHAR_CONV_EXCP Optional See "Additional globalization
features" on page 3-3.

This overrides the TimesTen NLS_
NCHAR_CONV_EXCP general
connection attribute.

Note: Refer to "NLS general connection attributes" in Oracle TimesTen
In-Memory Database Reference for information about the NLS
connection attributes mentioned in the table.

Table 3–1 (Cont.) Environment variables for TimesTen OCI

Variable Required or optional Settings

Getting started with TimesTen OCI

3-8 Oracle TimesTen In-Memory Database C Developer's Guide

OCI programs that use the Oracle Client library shipped with TimesTen do not have to
be recompiled or relinked to be executed with TimesTen unless there has been a major
upgrade to the Oracle version provided with TimesTen.

Connecting to a TimesTen database from OCI
TimesTen OCI uses the Oracle Instant Client to connect to the TimesTen database. You
can connect to the database through either the tnsnames or the easy connect naming
method, similarly to how you would connect to an Oracle database through those
methods.

This section covers the following topics for TimesTen Classic:

■ Using the tnsnames naming method to connect

■ Using an easy connect string to connect

■ Configuring whether to use tnsnames.ora or easy connect

Refer to "Configuring Naming Methods" in Oracle Database Net Services Administrator's
Guide for additional information about tnsnames, easy connect, and the tnsnames.ora
file.

Using the tnsnames naming method to connect
TimesTen supports tnsnames syntax. You can use a TimesTen tnsnames.ora entry the
same way you would use an Oracle Database tnsnames.ora entry.

The syntax of a TimesTen entry in tnsnames.ora is as follows:

tns_entry = (DESCRIPTION =
 (CONNECT_DATA =
 (SERVICE_NAME = dsn)
 (SERVER = timesten_direct | timesten_client)))

Notes:

■ Be aware that in TimesTen Scaleout, TimesTen will automatically
populate the tnsnames.ora file and sqlnet.ora file, as applicable,
on all instances with entries for all TimesTen connectables you
have defined. See "Connectable operations" in Oracle TimesTen
In-Memory Database Reference. The instructions here are not
relevant, as the user is not allowed to manually configure those
entries. The tnsnames, sqlnet, and related information for
additional entries, such as for Oracle database connections (as
applicable), is brought in and distributed through the
ttGridAdmin TNSNamesImport and SQLNetImport commands. See
"Oracle Database operations" in Oracle TimesTen In-Memory
Database Reference.

■ Although the sqlnet mechanism is used for a TimesTen OCI
connection, the connection goes through the TimesTen ODBC
driver, not the Oracle Database sqlnet driver.

■ For TimesTen Classic, you can use the ttInstanceCreate
-tnsadmin option or the ttInstanceModify -tns_admin option (in
addition to the TNS_ADMIN environment variable) to set the
tnsnames location. See "ttInstanceCreate" and "ttInstanceModify"
in Oracle TimesTen In-Memory Database Reference.

Getting started with TimesTen OCI

TimesTen Support for OCI 3-9

Where tns_entry is the arbitrary TNS name you assign to the entry. You can use this
as the dbname argument in OCILogon(), OCILogon2(), and OCIServerAttach() calls.

DESCRIPTION and CONNECT_DATA are required as shown.

For SERVICE_NAME, dsn must be a TimesTen DSN that is configured in the
sys.odbc.ini or user odbc.ini file that is visible to a user running the OCI
application. On Windows, the DSN can be specified by using the ODBC Data Source
Administrator. See "Managing TimesTen Databases" in Oracle TimesTen In-Memory
Database Operations Guide.

For SERVER, timesten_direct specifies a direct connection to TimesTen or timesten_
client specifies a client/server connection. If you choose timesten_client, the DSN
must be configured as a client/server database.

As always, the host and port of the TimesTen server are determined from entries in the
sys.ttconnect.ini file, according to the DSN. See "Working with the TimesTen Client
and Server" in Oracle TimesTen In-Memory Database Operations Guide.

Here is a sample tnsnames.ora entry for a direct connection:

my_tnsname = (DESCRIPTION =
 (CONNECT_DATA =
 (SERVICE_NAME = my_dsn)
 (SERVER = timesten_direct)))

You can use the TNS name, my_tnsname, in either of the following ways:

■ Specify "my_tnsname" for the dbname argument in your OCI logon call.

■ Specify an empty string for dbname and set TWO_TASK or LOCAL to "my_tnsname".

For example:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"my_tnsname", (ub4)strlen((char*)"my_tnsname"), OCI_DEFAULT));

Refer to "Connect, Authorize, and Initialize Functions" in Oracle Call Interface
Programmer's Guide for details about OCI logon calling sequences.

Or on a UNIX system, for example, you can set TWO_TASK to "my_tnsname" and use an
OCI logon call with an empty string for dbname:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"", (ub4)0, OCI_DEFAULT));

Using an easy connect string to connect
TimesTen supports easy connect syntax, which enhances the Instant Client package by
enabling connections to be made without configuring tnsnames.ora. An easy connect
string has syntax similar to a URL, in the following format:

[//]host[:port]/service_name:server[/instance]

The initial double-slash is optional. A host name must be specified to satisfy easy
connect syntax, but is otherwise ignored by TimesTen. The name "localhost" is
typically used by convention. Any value specified for the port is also ignored. For
client/server connections, the host and port of the TimesTen server are determined
from entries in the sys.ttconnect.ini file, according to the TimesTen DSN.

Getting started with TimesTen OCI

3-10 Oracle TimesTen In-Memory Database C Developer's Guide

Specify the DSN for service_name. Specify timesten_client or timesten_direct, as
appropriate, for server.

TimesTen ignores the instance field and does not require that it be specified.

For example, the following easy connect string connects to a TimesTen server using the
client/server libraries. Assume a DSN ttclient in the sys.odbc.ini file is resolved as
a client/server data source and connects to the corresponding host and port specified
in the sys.ttconnect.ini file:

"localhost/ttclient:timesten_client"

The following easy connect string is for a direct connection to TimesTen. Assume the
DSN ttdirect is defined in sys.odbc.ini:

"localhost/ttdirect:timesten_direct"

You can use an easy connect string in either of the following ways:

■ Specify it for the dbname argument in your OCI logon call.

■ Specify an empty string for dbname and set TWO_TASK or LOCAL to the easy connect
string, in quotes.

For example:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"localhost/ttclient:timesten_client",
 (ub4)strlen((char*)"localhost/ttclient:timesten_client"), OCI_DEFAULT));

Refer to "Connect, Authorize, and Initialize Functions" in Oracle Call Interface
Programmer's Guide for details about OCI logon calling sequences.

Or on a UNIX system, for example, you can set TWO_TASK to
"localhost/ttclient:timesten_client" and use an OCI logon call with an empty
string for dbname, as follows.

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"", (ub4)0, OCI_DEFAULT));

Configuring whether to use tnsnames.ora or easy connect
If a sqlnet.ora file is present, it specifies the naming methods that are tried and the
order in which they are tried. The Instant Client looks for a sqlnet.ora file at the TNS_
ADMIN location, if applicable. If TNS_ADMIN has not been set but ORACLE_HOME has been
(such as if you had a previous Instant Client installation), the default sqlnet.ora
location is the Oracle Database default location as noted in "Parameters for the
sqlnet.ora File" in Oracle Database Net Services Reference.

If sqlnet.ora is found and does not indicate a particular naming method, you cannot
use that method. If sqlnet.ora is not found, you can use either method.

In TimesTen, you can access sample copies of tnsnames.ora and sqlnet.ora in the
timesten_home/install/network/admin/samples directory. Here is the sqlnet.ora
file that TimesTen provides, which supports both tnsnames and easy connect
("EZCONNECT"):

To use ezconnect syntax or tnsnames, the following entries must be
included in the sqlnet.ora configuration.
#

Getting started with TimesTen OCI

TimesTen Support for OCI 3-11

NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

With this file, TimesTen first looks for tnsnames syntax in your OCI logon calls. If it
cannot find tnsnames syntax, it looks for easy connect syntax.

OCI error handling
This section discusses these topics:

■ OCI error reporting

■ Transient errors (OCI)

OCI error reporting
Errors under TimesTen OCI applications return Oracle Database error codes. TimesTen
attempts to report the same error code as Oracle Database would under similar
conditions. The error messages may come from either the TimesTen error catalog or
the Oracle Database error catalog. Some error messages may indicate the
accompanying TimesTen error code if appropriate.

Fatal errors are those that make the database inaccessible until after error recovery.
When a fatal error occurs, all database connections are required to disconnect in order
to avoid out-of-memory conditions. No further operations may complete. Shared
memory from the old TimesTen instance is not freed until all active connections at the
time of the error have disconnected.

Fatal errors in OCI are indicated by the Oracle Database error code ORA-03135 or
ORA-00600. Error handling for these errors should be different from standard error
handling. In particular, the application error-handling code should have a disconnect
from the database.

Transient errors (OCI)
TimesTen automatically resolves most transient errors (which is particularly important
for TimesTen Scaleout), but if your application detects the following error, it is
suggested to retry the current transaction:

■ ORA-57005: Transient transaction failure due to unavailability of resource. Roll
back the transaction and try it again.

This is returned in the errcodep parameter in OCIErrorGet() and may be encountered
by any of the following OCI calls:

■ OCIBindArrayOfStruct()

■ OCIBindByName()

■ OCIBindByPos()

■ OCIDefineArrayOfStruct()

■ OCIDefineByPos()

■ OCIDescribeAny()

■ OCILogoff()

■ OCILogon()

Note: Search the entire error stack for errors returning these error
types before deciding whether it is appropriate to retry.

Use of additional features with TimesTen OCI

3-12 Oracle TimesTen In-Memory Database C Developer's Guide

■ OCILogon2()

■ OCIPing()

■ OCISessionBegin()

■ OCISessionEnd()

■ OCISessionGet()

■ OCISessionRelease()

■ OCIStmtExecute()

■ OCIStmtFetch()

■ OCIStmtFetch2()

■ OCIStmtGetBindInfo()

■ OCIStmtPrepare()

■ OCIStmtPrepare2()

■ OCIStmtRelease()

■ OCITransCommit()

■ OCITransRollback()

Signal handling and diagnostic framework considerations
The OCI diagnostic framework installs signal handlers that may impact any signal
handling that you use in your application. You can disable OCI signal handling by
setting DIAG_SIGHANDLER_ENABLED=FALSE in the sqlnet.ora file. Refer to "Fault
Diagnosability in OCI" in Oracle Call Interface Programmer's Guide for information.

Use of additional features with TimesTen OCI
This section covers the following topics for developers using TimesTen OCI:

■ TimesTen deferred prepare

■ Parameter binding features in TimesTen OCI

■ TimesTen Cache with TimesTen OCI

■ LOBs in TimesTen OCI

■ Use of PL/SQL in OCI to call a TimesTen built-in procedure

TimesTen deferred prepare
In OCI, a prepare call is expected to be a lightweight operation performed on the
client. To enable TimesTen to be consistent with this expectation, and to avoid
unwanted round trips between client and server, the TimesTen client library
implementation of SQLPrepare performs what is referred to as a deferred prepare, where
the request is not sent to the server until required. See "TimesTen deferred prepare" on
page 2-11.

Parameter binding features in TimesTen OCI
This section discusses features relating to binding parameters into SQL or PL/SQL
from an OCI application:

Use of additional features with TimesTen OCI

TimesTen Support for OCI 3-13

■ Duplicate parameter bindings in TimesTen OCI

■ Associative array bindings in TimesTen OCI

Duplicate parameter bindings in TimesTen OCI
In TimesTen OCI, as in ODBC (as discussed in "Binding duplicate parameters in SQL
statements" on page 2-19), multiple occurrences of the same parameter name are
considered to be distinct parameters. However, OCI allows multiple occurrences to be
bound with a single call to OCIBindByPos(). Consider this query:

SELECT * FROM employees
 WHERE employee_id < :a AND manager_id > :a AND salary < :b;

The two occurrences of parameter a are considered to be separate parameters, but you
have the option of binding both occurrences with a single call to OCIBindByPos():

OCIBindByPos(..., 1, ...); /* both occurrences of :a */
OCIBindByPos(..., 3, ...); /* occurrence of :b */

Or you can bind the two occurrences of a separately:

OCIBindByPos(..., 1, ...); /* first occurrence of :a */
OCIBindByPos(..., 2, ...); /* second occurrence of :a */
OCIBindByPos(..., 3, ...); /* occurrence of :b */

Note that in both cases, parameter b is considered to be in position 3.

Associative array bindings in TimesTen OCI
Associative arrays, formerly known as index-by tables or PL/SQL tables, are
supported as IN, OUT, or IN OUT bind parameters in TimesTen PL/SQL, such as from
an OCI application. This enables arrays of data to be passed efficiently between an
application and the database.

An associative array is a set of key-value pairs. In TimesTen, for associative array
binding (but not for use of associative arrays only within PL/SQL), the keys, or
indexes, must be integers—BINARY_INTEGER or PLS_INTEGER. The values must be
simple scalar values of the same data type. For example, there could be an array of
department managers indexed by department numbers. Indexes are stored in sort
order, not creation order.

You can declare an associative array type and then an associative array from PL/SQL
as in the following example (note the INDEX BY):

declare
 TYPE VARCHARARRTYP IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;
 x VARCHARARRTYP;
 ...

For Pro*C/C++, see "Associative array bindings in TimesTen Pro*C/C++" on page 4-8.

For related information, see "Using associative arrays from applications" in Oracle
TimesTen In-Memory Database PL/SQL Developer's Guide.

Note: OCI also allows parameters to be bound by name, rather than
by position, using OCIBindByName(). In this case, the same value is
used for any parameters that have the same name.

Use of additional features with TimesTen OCI

3-14 Oracle TimesTen In-Memory Database C Developer's Guide

TimesTen supports associative array binds in OCI by supporting the maxarr_len and
*curelep parameters of the OCIBindByName() and OCIBindByPos() functions. These
parameters are used to indicate that the binding is for an associative array.

The complete calling sequences for those functions are as follows:

sword OCIBindByName (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 const OraText *placeholder,
 sb4 placeh_len,
 void *valuep,
 sb4 value_sz,
 ub2 dty,
 void *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

sword OCIBindByPos (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 ub4 position,
 void *valuep,
 sb4 value_sz,
 ub2 dty,
 void *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

The maxarr_len and *curelep parameters are used as follows when you bind an
associative array. (They should be set to 0 if you are not binding an associative array.)

■ maxarr_len: This is an input parameter indicating the maximum array length. This
is the maximum number of elements that the associative array can accommodate.

■ *curelep: This is an input/output parameter indicating the current array length. It
is a pointer to the actual number of elements in the associative array before and
after statement execution.

For additional information about these functions, see "OCIBindByName()" and
"OCIBindByPos()" in Oracle Call Interface Programmer's Guide.

In Example 3–1, an OCI application binds an integer array and a character array to
corresponding OUT associative arrays in a PL/SQL procedure.

Notes: Note the following restrictions in TimesTen:

■ The following types are not supported in binding associative
arrays: LOBs, REF CURSORs, TIMESTAMP, ROWID.

■ Associative array binding is not allowed in passthrough
statements.

■ General bulk binding of arrays is not supported in TimesTen OCI.
Varrays and nested tables are not supported as bind parameters.

Use of additional features with TimesTen OCI

TimesTen Support for OCI 3-15

Example 3–1 Binding to an associative array from OCI

Assume the following SQL setup.

DROP TABLE FOO;

CREATE TABLE FOO (CNUM INTEGER,
 CVC2 VARCHAR2(20));

INSERT INTO FOO VALUES (null,
 'VARCHAR 1');
INSERT INTO FOO VALUES (-102,
 null);
INSERT INTO FOO VALUES (103,
 'VARCHAR 3');
INSERT INTO FOO VALUES (-104,
 'VARCHAR 4');
INSERT INTO FOO VALUES (105,
 'VARCHAR 5');
INSERT INTO FOO VALUES (106,
 'VARCHAR 6');
INSERT INTO FOO VALUES (107,
 'VARCHAR 7');
INSERT INTO FOO VALUES (108,
 'VARCHAR 8');

COMMIT;

Assume the following PL/SQL package definition. This has the INTEGER associative
array type NUMARRTYP and the VARCHAR2 associative array type VCHARRTYP, used for
output associative arrays c1 and c2, respectively, in the definition of procedure P1.

CREATE OR REPLACE PACKAGE PKG1 AS
 TYPE NUMARRTYP IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;
 TYPE VCHARRTYP IS TABLE OF VARCHAR2(20) INDEX BY BINARY_INTEGER;

 PROCEDURE P1(c1 OUT NUMARRTYP,c2 OUT VCHARRTYP);

END PKG1;
/

CREATE OR REPLACE PACKAGE BODY PKG1 AS

 CURSOR CUR1 IS SELECT CNUM, CVC2 FROM FOO;

 PROCEDURE P1(c1 OUT NUMARRTYP,c2 OUT VCHARRTYP) IS
 BEGIN
 IF NOT CUR1%ISOPEN THEN
 OPEN CUR1;
 END IF;
 FOR i IN 1..8 LOOP
 FETCH CUR1 INTO c1(i), c2(i);
 IF CUR1%NOTFOUND THEN
 CLOSE CUR1;
 EXIT;
 END IF;
 END LOOP;
 END P1;

END PKG1;

Use of additional features with TimesTen OCI

3-16 Oracle TimesTen In-Memory Database C Developer's Guide

The following OCI program calls PKG1.P1, binds arrays to the P1 output associative
arrays, and prints the contents of those associative arrays. Note in particular the
OCIBindByName() function calls to do the binding.

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCISvcCtx *svchp;
static OCIError *errhp;
static OCISession *authp;
static OCIStmt *stmthp;
static OCIBind *bndhp[MAXCOLS];
static OCIBind *dfnhp[MAXCOLS];

STATICF VOID outbnd_1()
{
 int i;
 int num[MAXROWS];
 char* vch[MAXROWS][20];

 unsigned int numcnt = 5;
 unsigned int vchcnt = 5;

 unsigned short alen_num[MAXROWS];
 unsigned short alen_vch[MAXROWS];
 unsigned short rc_num[MAXROWS];
 unsigned short rc_vch[MAXROWS];

 short indp_num[MAXROWS];
 short indp_vch[MAXROWS];

/* Assume the process is connected and srvhp, svchp, errhp, authp, and stmthp
 are all allocated/initialized/etc. */

 char *sqlstmt = (char *)"BEGIN PKG1.P1(:c1, :c2); END; ";

 for (i = 0; i < MAXROWS; i++)
 {
 alen_num[i] = 0;
 alen_vch[i] = 0;
 rc_num[i] = 0;
 rc_vch[i] = 0;
 indp_num[i] = 0;
 indp_vch[i] = 0;
 }

 DISCARD printf("Running outbnd_1.\n");
 DISCARD printf("\n----> %s\n", sqlstmt);
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (unsigned int)strlen((char *)sqlstmt),
 (unsigned int) OCI_NTV_SYNTAX, (unsigned int) OCI_DEFAULT));

 bndhp[0] = 0;
 bndhp[1] = 0;

 checkerr(errhp, OCIBindByName(stmthp, &bndhp[0], errhp,
 (char *) ":c1", (sb4) strlen((char *) ":c1"),
 (dvoid *) &num[0], (sb4) sizeof(num[0]), SQLT_INT,
 (dvoid *) &indp_num[0], (unsigned short *) &alen_num[0],
 (unsigned short *) &rc_num[0],
 (unsigned int) MAXROWS, (unsigned int *) &numcnt,

Use of additional features with TimesTen OCI

TimesTen Support for OCI 3-17

 (unsigned int) OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bndhp[1], errhp,
 (char *) ":c2", (sb4) strlen((char *) ":c2"),
 (dvoid *) vch[0], (sb4) sizeof(vch[0]), SQLT_CHR,
 (dvoid *) &indp_vch[0], (unsigned short *) &alen_vch[0],
 (unsigned short *) &rc_vch[0],
 (unsigned int) MAXROWS, (unsigned int *) &vchcnt,
 (unsigned int) OCI_DEFAULT));

 DISCARD printf("\nTo execute the PL/SQL statement.\n");

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (unsigned int) 1,
 (unsigned int) 0, (const OCISnapshot*) 0,
 (OCISnapshot*) 0, (unsigned int) OCI_DEFAULT));

 DISCARD printf("\nHere are the results:\n\n");

 DISCARD printf("Column 1, INTEGER: \n");
 for (i = 0; i < numcnt; i++)
 {
 if (indp_num[i] == -1)
 DISCARD printf("-NULL- ");
 else
 DISCARD printf("%5d, ", num[i]);
 DISCARD printf("ind = %d, len = %d, rc = %d\n",
 indp_num[i], alen_num[i], rc_num[i]);
 }

 DISCARD printf("\nColumn 2, VARCHAR2(20): \n");
 for (i = 0; i < vchcnt; i++)
 {
 if (indp_vch[i] == -1)
 DISCARD printf("-NULL- ");
 else
 DISCARD printf("%.*s, ", alen_vch[i], vch[i]);
 DISCARD printf("ind = %d, len = %d, rc = %d\n",
 indp_vch[i], alen_vch[i], rc_vch[i]);
 }

 DISCARD printf("\nDone\n");
 return;
}

TimesTen Cache with TimesTen OCI
This section discusses TimesTen OCI features related to using TimesTen Cache in
TimesTen Classic:

■ Specifying the Oracle Database password in OCI for TimesTen Cache

■ Determining the number of cache groups affected by an action

Note: The alen_* arrays are arrays of lengths; the rc_* arrays are
arrays of return codes; the indp_* arrays are arrays of indicators.

Use of additional features with TimesTen OCI

3-18 Oracle TimesTen In-Memory Database C Developer's Guide

Specifying the Oracle Database password in OCI for TimesTen Cache
To use TimesTen Cache, there must be a cache user in the TimesTen database with the
same name as an Oracle Database user who can select from and update the cached
Oracle Database tables. This Oracle Database user, for example, can be the cache
administration user or a schema user. The password of the TimesTen cache user can be
different from the password of the Oracle Database user with the same name. See
"Setting Up a Caching Infrastructure" in Oracle TimesTen Application-Tier Database Cache
User's Guide for details.

For use of OCI with TimesTen Cache, TimesTen enables you to pass the Oracle
Database user's password through OCI by appending it to the password field in an
OCILogon() or OCILogon2() call when you log in to TimesTen. Use the attribute
OraclePWD in the connect string, such as in the following example:

text *cacheuser = (text *)"cacheuser1";
text *cachepwds = (text *)"ttpassword;OraclePWD=oraclepassword";
text *ttdbname = (text *)"tt_tnsname";
....
OCILogon2(envhp, errhp, &svchp,
 (text *)cacheuser, (ub4)strlen(cacheuser),
 (text *)cachepwds, (ub4)strlen(cachepwds),
 (text *)ttdbname, (ub4)strlen(ttdbname), OCI_DEFAULT));

You must always specify OraclePWD, even if the Oracle Database user's password is the
same as the TimesTen user's password.

Note the following for the example:

■ The name of the TimesTen Cache user, as well as the name of the Oracle Database
user who can access the cached Oracle Database tables, is cacheuser1.

■ The password of the TimesTen Cache user is ttpassword.

■ The password of the Oracle Database user is oraclepassword.

■ The TNS name of the TimesTen database being connected to is tt_tnsname.

The Oracle database is specified through the TimesTen OracleNetServiceName general
connection attribute in the sys.odbc.ini or user odbc.ini file.

Alternatively, instead of using a TNS name, you could use easy connect syntax or the
TWO_TASK or LOCAL environment variable, as discussed in preceding sections.

Determining the number of cache groups affected by an action
In TimesTen OCI, following the execution of a FLUSH CACHE GROUP, LOAD CACHE GROUP,
REFRESH CACHE GROUP, or UNLOAD CACHE GROUP statement, the OCI function
OCIAttrGet() with the OCI_ATTR_ROW_COUNT argument returns the number of cache
instances that were flushed, loaded, refreshed, or unloaded.

For related information, see "Determining the number of cache instances affected by an
operation" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

LOBs in TimesTen OCI
TimesTen Classic supports LOBs (large objects). This includes CLOBs (character
LOBs), NCLOBs (national character LOBs), and BLOBs (binary LOBs).

See "Working with LOBs" on page 2-25. That section is ODBC-oriented but also
provides some general overview of LOBs, differences between TimesTen and Oracle
Database LOBs, and LOB programming interfaces.

Use of additional features with TimesTen OCI

TimesTen Support for OCI 3-19

This section focuses on LOB locators, temporary LOBs, and OCI LOB APIs and
features.

See "LOB data types" in Oracle TimesTen In-Memory Database SQL Reference for
additional information about LOBs in TimesTen.

For complete information about LOBs and how to use them in OCI, refer to "LOB and
BFILE Operations" in Oracle Call Interface Programmer's Guide, keeping in mind that
TimesTen does not support BFILEs, SecureFiles, array reads and writes for LOBs, or
callback functions for LOBs.

The following topics are covered here for OCI:

■ LOB locators in OCI

■ Temporary LOBs in OCI

■ Differences between TimesTen LOBs and Oracle Database LOBs in OCI

■ Using the LOB simple data interface in OCI

■ Using the LOB locator interface in OCI

■ OCI client-side buffering

■ LOB prefetching in OCI

■ Passthrough LOBs in OCI

LOB locators in OCI
OCI provides the LOB locator interface, where a LOB consists of a LOB locator and a
LOB value. The locator acts as a handle to the value. When an application selects a
LOB from the database, it receives a locator. When it updates the LOB, it does so
through the locator. And when it passes a LOB as a parameter, it is passing the locator,
not the actual value. See "Using the LOB locator interface in OCI" on page 3-22. (Note
that in OCI it is also possible to use the simple data interface, which does not involve a
locator. See "Using the LOB simple data interface in OCI" on page 3-20.)

To update a LOB, your transaction must have an exclusive lock on the row containing
the LOB. You can accomplish this by selecting the LOB with a SELECT ... FOR UPDATE
statement. This results in a writable locator. With a simple SELECT statement, the
locator is read-only. Read-only and writable locators behave as follows:

■ A read-only locator is read consistent, meaning that throughout its lifetime, it sees
only the contents of the LOB as of the time it was selected. Note that this would
include any uncommitted updates made to the LOB within the same transaction
before the LOB was selected.

■ A writable locator is updated with the latest data from the database each time a
write is made through the locator. So each write is made to the most current data
of the LOB, including updates that have been made through other locators.

The following example details behavior for two writable locators for the same LOB:

1. The LOB column contains "XY".

2. Select locator L1 for update.

3. Select locator L2 for update.

Note: The LOB piecewise data interface is not applicable to OCI
applications. (You can, however, manipulate LOB data in pieces
through features of the LOB locator interface.)

Use of additional features with TimesTen OCI

3-20 Oracle TimesTen In-Memory Database C Developer's Guide

4. Write "Z" through L1 at offset 1.

5. Read through locator L1. This would return "ZY".

6. Read through locator L2. This would return "XY", because L2 remains
read-consistent until it is used for a write.

7. Write "W" through L2 at offset 2.

8. Read through locator L2. This would return "ZW". Prior to the write in the
preceding step, the locator was updated with the latest data ("ZY").

Temporary LOBs in OCI
A temporary LOB exists only within an application, and in TimesTen OCI has a
lifetime no longer than the transaction in which it was created (as is the case with the
lifetime of any LOB locator in TimesTen). You can think of a temporary LOB as a
scratch area for LOB data.

An OCI application can instantiate a temporary LOB explicitly, for use within the
application, through the appropriate API. (See "Using the LOB locator interface in
OCI" on page 3-22.) A temporary LOB may also be created implicitly by TimesTen. For
example, if a SELECT statement selects a LOB concatenated with an additional string of
characters, TimesTen implicitly creates a temporary LOB to contain the concatenated
data and an OCI application would receive a locator for the temporary LOB.

Temporary LOBs are stored in the TimesTen temporary data region.

Differences between TimesTen LOBs and Oracle Database LOBs in OCI
A key difference between the LOB implementation for TimesTen versus Oracle
Database is that in TimesTen, LOB locators do not remain valid past the end of the
transaction. All LOB locators are invalidated after a commit or rollback, whether
explicit or implicit. This includes after any DDL statement.

Also see "Differences between TimesTen LOBs and Oracle Database LOBs" on
page 2-26.

Using the LOB simple data interface in OCI
The simple data interface enables applications to access LOB data by binding and
defining, as with other scalar data types. The application can use a LOB type that is
compatible with the corresponding variable type. Use OCIStmtPrepare() to prepare a
statement. For binding parameters, use OCIBindByName() or OCIBindByPos(). For
defining result columns, use OCIDefineByPos().

For example, an OCI application can bind a CLOB parameter by calling
OCIBindByName() with a data type of SQLT_CHR. Use OCIStmtExecute() to execute the
statement. For an NCLOB parameter, use data type SQLT_CHR and set the OCI csform
attribute (OCI_ATTR_CHARSET_FORM) to SQLCS_NCHAR. For a BLOB parameter, you can
use data type SQLT_BIN.

Use of the simple data interface through OCI is shown in the following examples.

Example 3–2 Example table and variables

For examples that follow, assume the table and variables shown here.

Note: The simple data interface, through OCIBindByName(),
OCIBindByPos(), or OCIDefineByPos(), limits bind sizes to 64 KB.

Use of additional features with TimesTen OCI

TimesTen Support for OCI 3-21

person(ssn number, resume clob)

OCIEnv *envhp;
OCIServer *srvhp;
OCISvcCtx *svchp;
OCIError *errhp;
OCISession *authp;
OCIStmt *stmthp;

/* Bind Handles */
OCIBind *bndp1 = (OCIBind *) NULL;
OCIBind *bndp2 = (OCIBind *) NULL;

/* Define Handles */
OCIDefine *defnp1 = (OCIDefine *) NULL;
OCIDefine *defnp2 = (OCIDefine *) NULL;

#define DATA_SIZE 50
#define PIECE_SIZE 10
#define NPIECE (DATA_SIZE/PIECE_SIZE)

char col2[DATA_SIZE];
char col2Res[DATA_SIZE];
ub2 col2len = DATA_SIZE;
sb4 ssn = 123456;
...

text *ins_stmt = (text *)"INSERT INTO PERSON VALUES (:1, :2)";
text *sel_stmt = (text *)"SELECT * FROM PERSON_1 ORDER BY SSN";
...

Example 3–3 Insert LOB data using simple data interface

This example executes an INSERT statement using the simple data interface in OCI. It
uses the table and variables from the preceding Example 3–2, including the INSERT
statement defined through the variable ins_stmt.

for (i=0;i<DATA_SIZE;i++)
 col2[i] = 'A';

/* prepare SQL insert statement */
OCIStmtPrepare (stmthp, errhp, ins_stmt, strlen(ins_stmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

/* bind parameters 1 and 2 using OCI_DEFAULT (not data-at-exec) */
OCIBindByPos (stmthp, &bndp1, errhp, 1, (dvoid *) &ssn, sizeof(ssn),
 SQLT_INT, 0, 0, 0, 0, 0, OCI_DEFAULT);
OCIBindByPos (stmthp, &bndp2, errhp, 2, (dvoid *) col2, col2len,
 SQLT_CHR, 0, 0, 0, 0, 0, OCI_DEFAULT);

/* execute insert statement */
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, 0, 0, OCI_DEFAULT);

Example 3–4 Select LOB data using simple data interface

This example executes a SELECT statement using the simple data interface in OCI. It
uses the table and variables from the earlier Example 3–2, including the SELECT
statement defined through the variable sel_stmt.

/* prepare select statement */
OCIStmtPrepare (stmthp, errhp, sel_stmt, strlen(sel_stmt), OCI_NTV_SYNTAX,

Use of additional features with TimesTen OCI

3-22 Oracle TimesTen In-Memory Database C Developer's Guide

 OCI_DEFAULT);

/* define result columns 1 and 2 using OCI_DEFAULT (not data-at-exec) */
OCIDefineByPos (stmthp, &defnp1, errhp, 1, (dvoid*) &ssn, sizeof(ssn),
 SQLT_INT, 0, 0, 0, OCI_DEFAULT);
OCIDefineByPos (stmthp, &defnp2, errhp, 2, (dvoid *) col2Res, sizeof(col2),
 SQLT_CHR, 0, &col2len, 0, OCI_DEFAULT);

/* execute select statement */
OCIStmtExecute (svchp, stmthp, errhp, (ub4)1, (ub4)0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT));

/* col2Res should now have a DATA_SIZE sized string of 'A's. */

Using the LOB locator interface in OCI
You can use the OCI LOB locator interface to work with either a LOB from the
database or a temporary LOB, either piece-by-piece or in whole chunks.

In order to use the LOB locator interface, the application must have a valid LOB
locator. For a temporary LOB, this may be obtained explicitly through an
OCILobCreateTemporary() call, or implicitly through a SQL statement that results in
creation of a temporary LOB (such as SELECT c1 || c2 FROM myclob). For a persistent
LOB, use a SQL statement to obtain the LOB locator from the database. (There are
examples later in this section.)

Bind types are SQLT_CLOB for CLOBs and SQLT_BLOB for BLOBs. For NCLOBs, use
SQLT_CLOB and also set the OCI csform attribute (OCI_ATTR_CHARSET_FORM) to SQLCS_
NCHAR.

Refer to "LOB Functions" in Oracle Call Interface Programmer's Guide for detailed
information and additional examples for OCI LOB functions, noting that TimesTen
does not support features specifically intended for BFILEs, SecureFiles, array reads
and writes for LOBs, or callback functions for LOBs.

Create a temporary LOB in OCI An OCI application can create a temporary LOB by using
the OCILobCreateTemporary() function, which has an input/output parameter for the
LOB locator, after first calling OCIDescriptorAlloc() to allocate the locator. When you
are finished, use OCIDescriptorFree() to free the allocation for the locator and use
OCILobFreeTemporary() to free the temporary LOB itself.

Important: LOB manipulations through APIs that use LOB locators
result in usage of TimesTen temporary space. Any significant number
of such manipulations may necessitate a size increase for the TimesTen
temporary data region. See "TempSize" in Oracle TimesTen In-Memory
Database Reference.

Notes:

■ If an invalid LOB locator is assigned to another LOB locator using
OCILobLocatorAssign(), the target of the assignment is also freed
and marked as invalid.

■ OCILobLocatorAssign() can be used on a temporary LOB, but
OCILobAssign() cannot.

Use of additional features with TimesTen OCI

TimesTen Support for OCI 3-23

In TimesTen, any duration supported by Oracle Database (OCI_DURATION_SESSION,
OCI_DURATION_TRANSACTION, or OCI_DURATION_CALL) is permissible in the
OCILobCreateTemporary() call; however, in TimesTen the lifetime of the temporary
LOB itself is no longer than the lifetime of the transaction.

Note that the lifetime of a temporary LOB can be shorter than the lifetime of the
transaction in the following scenarios:

■ If OCI_DURATION_CALL is specified

■ If the application calls OCILobFreeTemporary() on the locator before the end of the
transaction

■ If the application calls OCIDurationBegin() to start a user-specified duration for
the temporary LOB, then calls OCIDurationEnd() before the end of the transaction

Following are examples of some of the OCI LOB functions mentioned above. For
details about the use of temporary LOBs and a complete example, see "Temporary
LOB Support" in Oracle Call Interface Programmer's Guide.

if (OCIDescriptorAlloc((void*)envhp, (void **)&tblob,(ub4)OCI_DTYPE_LOB,
 (size_t)0, (void**)0))
{
 printf("failed in OCIDescriptor Alloc in select_and_createtemp \n");
 return OCI_ERROR;
}

...

if (OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE, OCI_DURATION_TRANSACTION))
{
 (void) printf("FAILED: OCILobCreateTemporary() \n");
 return OCI_ERROR;
}

...

if(OCILobFreeTemporary(svchp,errhp,tblob))
{
 printf ("FAILED: OCILobFreeTemporary() call \n");
 return OCI_ERROR;
}

Access the locator of a persistent LOB in OCI An application typically accesses a LOB from
the database by using a SQL statement to obtain or access a LOB locator, then passing
the locator to an appropriate API function.

A LOB that has been created using the EMPTY_CLOB() or EMPTY_BLOB() SQL function
has a valid locator, which an application can then use to insert data into the LOB by
selecting it.

Assume the following table definition:

CREATE TABLE clobtable (x NUMBER, y DATE, z VARCHAR2(30), lobcol CLOB);

Important: In TimesTen, creation of a temporary LOB results in
creation of a database transaction if one is not already in progress. To
avoid error conditions, you must execute a commit or rollback to close
the transaction.

Use of additional features with TimesTen OCI

3-24 Oracle TimesTen In-Memory Database C Developer's Guide

1. Prepare an INSERT statement. For example:

INSERT INTO clobtable (x, y, z, lobcol)
 VALUES (81, sysdate, 'giants', EMPTY_CLOB())
 RETURNING lobcol INTO :a;

Or, to initialize the LOB with some data:

INSERT INTO clobtable (x, y, z, lobcol)
 VALUES (81, sysdate, 'giants', 'The Giants finally won a World Series')
 RETURNING lobcol INTO :a;

2. Bind the LOB locator to :a as shown.

3. Execute the statement. After execution, the locator refers to the newly created
LOB.

Then the application can use the LOB locator interface to read or write LOB data
through the locator.

Alternatively, an application can use a SELECT statement to access the locator of an
existing LOB.

Example 3–5 Select LOB locator using LOB locator interface

This example uses the following table:

person(ssn number, resume clob)

It selects the locator for the LOB column in the PERSON table.

text *ins_stmt = (text *)"INSERT INTO PERSON VALUES (:1, :2)";
text *sel_stmt = (text *)"SELECT * FROM PERSON WHERE SSN = 123456";
text *ins_empty = (text *)"INSERT INTO PERSON VALUES (1, EMPTY_CLOB())";

OCILobLocator *lobp;

ub4 amtp = DATA_SIZE;
ub4 remainder = DATA_SIZE;
ub4 nbytes = PIECE_SIZE;

/* Allocate lob locator */
OCIDescriptorAlloc (envhp, &lobp, OCI_DTYPE_LOB, 0, 0);

/* Insert an empty locator */
OCIStmtPrepare (stmhp, errhp, ins_empty, strlen(ins_empty), OCI_NTV_SYNTAX,
 OCI_DEFAULT);
OCIStmtExecute (svchp, stmhp, errhp, 1, 0, 0, 0, OCI_DEFAULT);

/* Now select the locator */

OCIStmtPrepare (stmhp, errhp, sel_stmt, strlen(sel_stmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

/* Call define for the lob column */
OCIDefineByPos (stmthp, &defnp2, errhp, 1, &lobp, 0 , SQLT_CLOB, 0, 0, 0,
 OCI_DEFAULT);

OCIStmtExecute (svchp, stmhp, errhp, 1, 0, 0, 0, OCI_DEFAULT);

Use of additional features with TimesTen OCI

TimesTen Support for OCI 3-25

Read and write LOB data using the OCI LOB locator interface An OCI application can use
OCILobOpen() and OCILobClose() to open and close a LOB. If you do not explicitly
open and close a LOB, it is opened implicitly before a read or write and closed
implicitly at the end of the transaction.

An application can use OCILobRead() or OCILobRead2() to read LOB data,
OCILobWrite() or OCILobWrite2() to write LOB data, OCILobWriteAppend() or
OCILobWriteAppend2() to append LOB data, OCILobErase() or OCILobErase2() to
erase LOB data, and various other OCI functions to perform a variety of other actions.

For example, consider a CLOB with the content "Hello World!" You can overwrite and
append data by calling OCILobWrite() with an offset of 7 to write "I am a new string".
This would result in CLOB content being updated to "Hello I am a new string". Or, to
erase data from the original "Hello World!" CLOB, you can call OCILobErase() with an
offset of 7 and an amount (number of characters) of 5, for example, to update the
CLOB to "Hello !" (six spaces).

All the OCI LOB locator interface functions are covered in detail in "LOB Functions" in
Oracle Call Interface Programmer's Guide.

Example 3–6 Write and read LOB data using LOB locator interface

This example shows how to write LOB data using the OCI LOB function
OCILobWrite() and how to read data using OCILobRead(). It uses the table and
variables from the preceding Example 3–5.

for (i=0;i<DATA_SIZE;i++)
 col2[i] = 'A';

/*************** Writing to the LOB *****************/

amt = DATA_SIZE;
offset = 1;

/* Write contents of col2 buffer into the LOB in a single chunk via locator lobp
*/
OCILobWrite (svchp, errhp, lobp, &amt, offset, col2, DATA_SIZE, OCI_ONE_PIECE,
 0, 0, 0, SQLCS_IMPLICIT);

/*************** Reading from the LOB *****************/

/* Get the length of the LOB */

Notes:

■ Oracle Database emphasizes use of the "2" versions of the OCI
read and write functions for LOBs (the non-"2" versions were
deprecated in the Oracle Database 11.2 release); however,
currently in TimesTen there is no technical advantage in using
OCILobRead2(), OCILobWrite2(), and OCILobWriteAppend2(),
which are intended for LOBs larger than what TimesTen supports.

■ In using any of the LOB read or write functions, be aware that the
callback function parameter must be set to NULL or 0, because
TimesTen does not support callback functions for LOB
manipulation.

■ Because TimesTen does not support binding arrays of LOBs, the
OCILobArrayRead() and OCILobArrayWrite() functions are not
supported.

Use of additional features with TimesTen OCI

3-26 Oracle TimesTen In-Memory Database C Developer's Guide

OCILobGetLength (svchp, errhp, lobp, &len);
amt = len;

/* Read the LOB data in col2Res in a single chunk */
OCILobRead (svchp, errhp, lobp, &amt, offset, col2Res, DATA_SIZE, 0, 0, 0,
 SQLCS_IMPLICIT);

OCI client-side buffering
OCI provides a facility for client-side buffering on a per-LOB basis. It is enabled for a
LOB by a call to OCILobEnableBuffering() and disabled by a call to
OCILobDisableBuffering().

Enabling buffering for a LOB locator creates a 512 KB write buffer. This size is not
configurable. Data written by the application through the LOB locator is buffered.
When possible, the client library satisfies LOB read requests from the buffer as well.
An application can flush the buffer by a call to OCILobFlushBuffer(). Note that
buffers are not flushed automatically when they become full, and an attempt to write
to the LOB through the locator when the buffer is full results in an error.

The following restrictions apply when you use client-side buffering:

■ Buffering is incompatible with the following functions: OCILobAppend(),
OCILobCopy(), OCILobCopy2(), OCILobErase(), OCILobGetLength(),
OCILobTrim(), OCILobWriteAppend(), and OCILobWriteAppend2().

■ An application can use OCILobWrite() or OCILobWrite2() only to append to the
end of a LOB.

■ LOB data becomes visible to SQL and PL/SQL (server-side) operations only after
the application has flushed the buffer.

■ When a LOB is selected while there are unflushed client-side writes in its buffer,
the unflushed data is not included in the select.

LOB prefetching in OCI
To reduce round trips to the server in client/server connections, LOB data can be
prefetched from the database and cached on the client side during fetch operations.
LOB prefetching in OCI has the same functionality in TimesTen as in Oracle Database.

Configure LOB prefetching through the following OCI attributes. Note that size refers
to bytes for BLOBs and to characters for CLOBs or NCLOBs.

■ OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE: Use this to enable prefetching and specify
the default prefetch size. A value of 0 (default) disables prefetching.

■ OCI_ATTR_LOBPREFETCH_SIZE: Set this attribute for a column define handle to
specify the prefetch size for the particular LOB column.

■ OCI_ATTR_LOBPREFETCH_LENGTH: This attribute can be set TRUE or FALSE (default) to
prefetch LOB metadata such as LOB length and chunk size.

The OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE and OCI_ATTR_LOBPREFETCH_LENGTH
settings are independent of each other. You can use LOB data prefetching
independently of LOB metadata prefetching.

Refer to "Prefetching of LOB Data, Length, and Chunk Size" in Oracle Call Interface
Programmer's Guide for more information and an example.

Note: The above attribute settings are ignored for direct connections
to the database.

Use of additional features with TimesTen OCI

TimesTen Support for OCI 3-27

Passthrough LOBs in OCI
Passthrough LOBs (LOBs in Oracle Database accessed through TimesTen) are exposed
as TimesTen LOBs and are supported by TimesTen in much the same way that any
TimesTen LOB is supported, but note the following:

■ You cannot use OCILobCreateTemporary() to create a passthrough LOB.

■ In addition to copying from one TimesTen LOB to another TimesTen LOB—such as
through OCILobCopy(), OCILobCopy2(), or OCILobAppend()—you can copy from a
TimesTen LOB to a passthrough LOB, from a passthrough LOB to a TimesTen
LOB, or from one passthrough LOB to another passthrough LOB. Any of these
copies the LOB value to the target destination. For example, copying a
passthrough LOB to a TimesTen LOB copies the LOB value into the TimesTen
database.

An attempt to copy a passthrough LOB to a TimesTen LOB when the passthrough
LOB is larger than the TimesTen LOB size limit results in an error.

■ TimesTen LOB size limitations do not apply to storage of LOBs in the Oracle
database through passthrough. If a passthrough LOB is copied to a TimesTen LOB,
the size limit applies to the copy.

■ As with TimesTen local LOBs, a locator for a passthrough LOB does not remain
valid past the end of the transaction.

Example 3–7 Copying between TimesTen LOBs and passthrough LOBs

The examples here highlight key functionality in copying between TimesTen LOBs and
passthrough LOBs on Oracle Database. After the table and data setup, the first
example uses OCILobAppend() to copy LOB data from Oracle Database to TimesTen
and the second example uses OCILobCopy() to copy LOB data from TimesTen to Oracle
Database. (Either call could be used in either case.) Then, for contrast, the third
example uses an UPDATE statement to copy LOB data from Oracle Database to
TimesTen and the fourth example uses an INSERT statement to copy LOB data from
TimesTen to Oracle Database.

 /* Table and data setup */
 call ttoptsetflag(''passthrough'', 3)';
 DROP TABLE oratab';
 CREATE TABLE oratab (i INT, c CLOB)';
 INSERT INTO oratab VALUES (1, ''Copy from Oracle to TimesTen'')';
 INSERT INTO oratab VALUES (2, EMPTY_CLOB())';
 COMMIT;

 call ttoptsetflag(''passthrough'', 0)';
 DROP TABLE tttab';
 CREATE TABLE tttab (i INT, c CLOB)';
 INSERT INTO tttab VALUES (1, ''Copy from TimesTen to Oracle'')';
 INSERT INTO tttab VALUES (2, EMPTY_CLOB())';
 INSERT INTO tttab VALUES (3, NULL)';
 COMMIT;
 /* Table and data setup end */

 /*
 * Below are four OCI pseudocode examples, for copying LOBs between
 * TimesTen and Oracle using OCI API and INSERT/UPDATE statements.
 */

 /* Init OCI Env */

Use of additional features with TimesTen OCI

3-28 Oracle TimesTen In-Memory Database C Developer's Guide

 /* Set the passthrough level to 1 */
 OCIStmtPrepare (..., "call ttoptsetflag(''passthrough'', 1)'", ...);
 OCIStmtExecute (...);

 /*
 * 1. Copy a passthrough LOB on Oracle to a TimesTen LOB */

 /* Select a passthrough locator on Oracle */
 OCIStmtPrepare (..., "SELECT c FROM oratab WHERE i = 1", ...);
 OCIDefineByPos (..., (dvoid *)&ora_loc_1, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /* Select a locator on TimesTen for update */
 OCIStmtPrepare (..., "SELECT c FROM tttab WHERE i = 2 FOR UPDATE", ...);
 OCIDefineByPos (..., (dvoid *)&tt_loc_2, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /* Copy a passthrough LOB on Oracle to a TimesTen LOB */
 OCILobAppend(..., tt_loc_2, ora_loc_1);

 /*
 * 2. Copy a TimesTen LOB to a passthrough LOB on Oracle */

 /* Select a passthrough locator on Oracle for update */
 OCIStmtPrepare (..., "SELECT c FROM oratab WHERE i = 2 FOR UPDATE", ...);
 OCIDefineByPos (..., (dvoid *)&ora_loc_2, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /* Select a locator on TimesTen */
 OCIStmtPrepare (..., "SELECT c FROM tttab WHERE i = 1", ...);
 OCIDefineByPos (..., (dvoid *)&tt_loc_1, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /* Copy a passthrough LOB on Oracle to a TimesTen LOB */
 OCILobCopy(..., ora_loc_2, tt_loc_1, 28, 1, 1);

 /*
 * 3. UPDATE a TimesTen LOB with a passthrough LOB on Oracle */

 /* A passthrough LOB, (selected above in case 1) is bound to an UPDATE statement
 * on TimesTen table */
 OCIStmtPrepare (..., "UPDATE tttab SET c = :1 WHERE i = 3", ...);
 OCIBindByPos (..., (dvoid *)&ora_loc_1, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /*
 * 4. INSERT a passthrough table on Oracle with a TimesTen LOB */

 /* A TimesTen LOB, (selected above in case 2) is bound to an INSERT statement
 * on a passthough table on Oracle */
 OCIStmtPrepare (..., "INSERT INTO oratab VALUES (3, :1)", ...);
 OCIBindByPos (..., (dvoid *)&tt_loc_1, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 OCITransCommit (...);

 /* Cleanup OCI Env */

TimesTen OCI support reference

TimesTen Support for OCI 3-29

Use of PL/SQL in OCI to call a TimesTen built-in procedure
As noted earlier in this chapter, TimesTen built-in procedures that return result sets are
not supported directly through OCI. You can, however, use PL/SQL for this purpose,
as shown in Example 3–8.

Example 3–8 Using PL/SQL in OCI to call a TimesTen built-in procedure

plsql_resultset_example(OCIEnv *envhp, OCIError *errhp, OCISvcCtx *svchp)
{
 OCIStmt *stmhp;
 OCIBind *bindp;

 sb4 passThruValue = -1;
 char v_name[255];
 text *stmt_text;

 /* prepare the plsql statement */
 stmt_text = (text *)
 "declare v_name varchar2(255); "
 "begin execute immediate "
 "'call ttOptGetFlag(''passthrough'')' into v_name, :rc1; "
 "end;";
 OCIStmtPrepare2(svchp, &stmhp, errhp, (text *)stmt_text,
 (ub4)strlen((char *)stmt_text),
 (text *)0, (ub4)0,
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

 /* bind parameter 1 (:v_name) to varchar2 out-parameter */
 OCIBindByPos(stmhp, &bindp, errhp, 1,
 (dvoid*)&v_name, sizeof(v_name), SQLT_CHR,
 (dvoid*)0, (ub2*)0, (ub2*)0, (ub4)0, (ub4*)0,
 OCI_DEFAULT);

 /* execute the plsql statement */
 OCIStmtExecute(svchp, stmhp, errhp, (ub4)1, (ub4)0,
 (OCISnapshot *)0, (OCISnapshot *)0, (ub4)OCI_DEFAULT);

 /* convert the passthrough string value to an integer */
 passThruValue = (sb4)atoi((const char *)v_name);
 printf("Value of the passthrough flag is %d\n", passThruValue);

 /* drop the statement handle */
 OCIStmtRelease(stmhp, errhp, (text *)0, (ub4)0, (ub4)OCI_DEFAULT);
}

TimesTen OCI support reference
This is a reference section for TimesTen support of OCI features, covering the
following areas:

■ Supported OCI calls

■ Supported handles and attributes

■ Supported descriptors

■ Supported OCI-defined constants

■ Supported parameter attributes

TimesTen OCI support reference

3-30 Oracle TimesTen In-Memory Database C Developer's Guide

Supported OCI calls
Table 3–2 lists TimesTen support for OCI calls that are documented for Oracle
Database 12.1 releases.

Some groups of calls are represented with an asterisk in the name. For example, the
calls related to Advanced Queuing, which TimesTen does not support, have names
that start with OCIAQ and are represented in the table as OCIAQ*(). OCI date functions,
which TimesTen does support, are designated by OCIDate*().

Note: TimesTen does not support the following features or related
calls: Advanced Queueing, Any Data, collections, Data Cartridge,
Direct Path Loading, user-defined objects, XML DB.

Table 3–2 TimesTen OCI supported calls

OCI call Notes

OCIAppCtxClearAll() No notes

OCIAppCtxSet() No notes

OCIArrayDescriptorAlloc() No notes

OCIArrayDescriptorFree() No notes

OCIAttrGet() For supported attributes, see "Supported
handles and attributes" on page 3-34.

TimesTen support includes special usage with
cache groups. See "TimesTen Cache with
TimesTen OCI" on page 3-17.

OCIAttrSet() For supported attributes, see "Supported
handles and attributes" on page 3-34.

OCIBindArrayOfStruct() This is supported for SQL statements but not
PL/SQL.

OCIBindByName() The following is an unsupported value for the
mode parameter:

■ OCI_IOV

OCIBindByPos() The following is an unsupported value for the
mode parameter:

■ OCI_IOV

OCIBindDynamic() No notes

OCICharSetConversionIsReplacementUsed() No notes

OCICharSetToUnicode() No notes

OCIClientVersion() No notes

OCIDate*() See Table 3–4 on page 3-35 for information
about descriptor support.

OCIDefineArrayOfStruct() This is supported for SQL statements but not
PL/SQL.

OCIDefineByPos() The following is an unsupported value for the
mode parameter:

■ OCI_IOV

OCIDefineDynamic() No notes

TimesTen OCI support reference

TimesTen Support for OCI 3-31

OCIDescribeAny() PL/SQL objects are not supported.

Describing objects is supported only by name.

For supported attributes, see "Supported
parameter attributes" on page 3-37.

The following are unsupported values for the
objptr_typ parameter:

■ OCI_OTYPE_REF

■ OCI_OTYPE_PTR

The following are unsupported values for the
objtyp parameter:

■ OCI_PTYPE_PKG

■ OCI_PTYPE_FUNC

■ OCI_PTYPE_PROC

■ OCI_PTYPE_SYN

■ OCI_PTYPE_TYPE

When you use the setting OCI_PTYPE_DATABASE
for the objtyp parameter, use the
predetermined name TT_DB_NAME as the
database name for the *objptr parameter.

OCIDescriptorAlloc() No notes

OCIDescriptorFree() No notes

OCIDurationBegin() Supported for LOBs. Regardless of the
duration setting, the duration cannot exceed
the lifetime of the transaction.

OCIDurationEnd() Supported for LOBs. Regardless of the
duration setting, the duration cannot exceed
the lifetime of the transaction.

OCIEnvCreate() The following are unsupported values for the
mode parameter:

■ OCI_EVENTS

■ OCI_NEW_LENGTH_SEMANTICS

■ OCI_NCHAR_LITERAL_REPLACE_ON

■ OCI_NCHAR_LITERAL_REPLACE_OFF

■ OCI_NO_MUTEX (Instead use OCI_ENV_NO_
MUTEX.)

OCIEnvInit() The following are unsupported values for the
mode parameter:

■ OCI_NO_MUTEX

■ OCI_ENV_NO_MUTEX

Note: Use OCIEnvCreate() instead of
OCIEnvInit(). OCIEnvInit() is supported for
backward compatibility.

Table 3–2 (Cont.) TimesTen OCI supported calls

OCI call Notes

TimesTen OCI support reference

3-32 Oracle TimesTen In-Memory Database C Developer's Guide

OCIEnvNlsCreate() The following are unsupported values for the
mode parameter:

■ OCI_EVENTS

■ OCI_NCHAR_LITERAL_REPLACE_ON

■ OCI_NCHAR_LITERAL_REPLACE_OFF

■ OCI_NO_MUTEX (Instead use OCI_ENV_NO_
MUTEX.)

OCIErrorGet() No notes

OCIHandleAlloc() No notes

OCIHandleFree() No notes

OCIInitialize() The following are unsupported values for the
mode parameter:

■ OCI_NO_MUTEX

■ OCI_ENV_NO_MUTEX

Note: Use OCIEnvCreate() instead of
OCIInitialize(). OCIInitialize() is
supported for backward compatibility.

OCIInterval*() See Table 3–4 on page 3-35 for information
about descriptor support.

OCILob*() TimesTen supports OCILob*() functions other
than the following:

■ Functions specifically intended for array
reads and writes

■ Functions specifically intended for BFILEs

■ Functions specifically intended for
SecureFiles

Notes:

■ Regardless of the duration setting in an
OCILobCreateTemporary() call, the LOB
lifetime is no longer than the lifetime of
the transaction.

■ See "Read and write LOB data using the
OCI LOB locator interface" on page 3-25
regarding OCILobRead2(),
OCILobWrite2(), and
OCILobWriteAppend2().

OCILogoff() No notes

OCILogon() No notes

OCILogon2() OCI_DEFAULT is the only supported value for
the mode parameter.

OCIMultiByte*() No notes

OCINls*() No notes

OCINumber*() No notes

OCIParamGet() No notes

OCIParamSet() No notes

OCIPing() No notes

Table 3–2 (Cont.) TimesTen OCI supported calls

OCI call Notes

TimesTen OCI support reference

TimesTen Support for OCI 3-33

OCIRaw*() No notes

OCIRowidToChar() No notes

OCIServer*() OCI_DEFAULT is the only supported value for
the mode parameter of OCIServerAttach.

OCISessionBegin() OCI_CRED_RDBMS is the only supported value
for the credt parameter.

OCI_DEFAULT is the only supported value for
the mode parameter.

OCISessionEnd() No notes

OCISessionGet() TimesTen does not support switching between
sessions.

OCISessionRelease() No notes

OCIStmtExecute() The following are unsupported values for the
mode parameter:

■ OCI_BATCH_ERRORS

■ OCI_STMT_SCROLLABLE_READONLY

Note: Using OCI_COMMIT_ON_SUCCESS results in
improved performance, avoiding an extra
round trip to the server to commit a
transaction.

OCIStmtFetch() No notes

OCIStmtFetch2() The only supported values for the orientation
parameter are OCI_DEFAULT and OCI_FETCH_
NEXT.

OCIStmtGetBindInfo() No notes

OCIStmtPrepare() The only supported value for the language
parameter is OCI_NTV_SYNTAX.

OCIStmtPrepare2() The only supported value for the mode
parameter is OCI_DEFAULT.

For statement caching, TimesTen supports the
key argument to tag a statement for future calls
to OCIStmtPrepare2() or OCIStmtRelease().

OCIStmtRelease() The only supported value for the mode
parameter is OCI_DEFAULT.

For statement caching, TimesTen supports the
key argument to tag a statement. This can be
the key from OCIStmtPrepare2().

OCIString*() No notes

OCIThread*() No notes

OCITransCommit() The only supported value for the mode
parameter is OCI_DEFAULT.

OCITransRollback() No notes

OCIUnicodeToCharSet() No notes

OCIUserCallbackGet() No notes

OCIUserCallbackRegister() No notes

Table 3–2 (Cont.) TimesTen OCI supported calls

OCI call Notes

TimesTen OCI support reference

3-34 Oracle TimesTen In-Memory Database C Developer's Guide

Supported handles and attributes
Table 3–3 lists the handles and attributes that TimesTen OCI supports for
OCIAttrGet() and OCIAttrSet() calls.

See "Handle and Descriptor Attributes" in Oracle Call Interface Programmer's Guide for
information about supported attributes.

OCIWideChar*() No notes

Table 3–3 TimesTen OCI supported handles and attributes

Handle C object Supported attributes

Environment OCIEnv OCI_ATTR_ENV_CHARSET_ID

OCI_ATTR_ENV_NCHARSET_ID

OCI_ATTR_ENV_UTF16

OCI_ATTR_OBJECT

Error OCIError OCI_ATTR_DML_ROW_OFFSET

Service context OCISvcCtx OCI_ATTR_ENV

OCI_ATTR_IN_V8_MODE

OCI_ATTR_SERVER

OCI_ATTR_SESSION

OCI_ATTR_TRANS

Statement OCIStmt OCI_ATTR_BIND_COUNT

OCI_ATTR_CURRENT_POSITION

OCI_ATTR_ENV

OCI_ATTR_FETCH_ROWID

OCI_ATTR_NUM_DML_ERRORS

OCI_ATTR_PARAM_COUNT

OCI_ATTR_PREFETCH_MEMORY

OCI_ATTR_PREFETCH_ROWS

OCI_ATTR_ROW_COUNT

OCI_ATTR_ROWID

OCI_ATTR_ROWS_FETCHED

OCI_ATTR_SQLFNCODE

OCI_ATTR_STATEMENT

OCI_ATTR_STMT_TYPE

Bind OCIBind OCI_ATTR_CHARSET_FORM

OCI_ATTR_CHARSET_ID

OCI_ATTR_MAXCHAR_SIZE

OCI_ATTR_MAXDATA_SIZE

Define OCIDefine OCI_ATTR_CHARSET_FORM

OCI_ATTR_CHARSET_ID

OCI_ATTR_MAXCHAR_SIZE

Table 3–2 (Cont.) TimesTen OCI supported calls

OCI call Notes

TimesTen OCI support reference

TimesTen Support for OCI 3-35

Supported descriptors
Table 3–4 lists the descriptors that TimesTen OCI supports.

Supported OCI-defined constants
Table 3–5 lists the OCI-defined constants that TimesTen OCI supports and the
mappings to TimesTen SQL types.

Describe OCIDescribe OCI_ATTR_PARAM

OCI_ATTR_PARAM_COUNT

Server OCIServer OCI_ATTR_ENV

OCI_ATTR_IN_V8_MODE

OCI_ATTR_SERVER_GROUP

OCI_ATTR_SERVER_STATUS

User session OCISession OCI_ATTR_ACTION

OCI_ATTR_CLIENT_IDENTIFIER

OCI_ATTR_CLIENT_INFO

OCI_ATTR_CURRENT_SCHEMA

OCI_ATTR_DRIVER_NAME

OCI_ATTR_INITIAL_CLIENT_ROLES

OCI_ATTR_MODULE

OCI_ATTR_PROXY_CREDENTIALS

OCI_ATTR_USERNAME

Authentication OCIAuthInfo Same as for user session handle

Transaction OCITrans OCI_ATTR_TRANS_NAME

OCI_ATTR_TRANS_TIMEOUT

Thread OCIThreadHandle N/A

Table 3–4 TimesTen OCI supported descriptors

Descriptor C object

Parameter (read-only) OCIParam

ROWID OCIRowid

ANSI DATE OCIDateTime

TIMESTAMP OCIDateTime

TIMESTAMP WITH TIME ZONE OCIDateTime

TIMESTAMP WITH LOCAL TIME ZONE OCIDateTime

INTERVAL YEAR TO MONTH OCIInterval

INTERVAL DAY TO SECOND OCIInterval

User callback OCIUcb

Table 3–3 (Cont.) TimesTen OCI supported handles and attributes

Handle C object Supported attributes

TimesTen OCI support reference

3-36 Oracle TimesTen In-Memory Database C Developer's Guide

Table 3–5 TimesTen OCI supported OCI-defined constants

OCI-defined constant TimesTen SQL type Notes

SQLT_AFC CHAR No notes

SQLT_AVC CHAR No notes

SQLT_BDOUBLE BINARY_DOUBLE No notes

SQLT_BFLOAT BINARY_FLOAT No notes

SQLT_BIN VARBINARY No notes

SQLT_BLOB BLOB No notes

SQLT_CHR VARCHAR2 No notes

SQLT_CLOB CLOB To write to or read from an NCLOB,
set the character set form (csfrm)
parameter to SQLCS_NCHAR for
applicable function calls.

SQLT_DAT DATE No notes

SQLT_DATE DATE No notes

SQLT_FLT NUMBER, BINARY_FLOAT No notes

SQLT_IBDOUBLE BINARY_DOUBLE No notes

SQLT_IBFLOAT BINARY_FLOAT No notes

SQLT_INT NUMBER, TT_INTEGER, TT_
BIGINT, TT_SMALLINT,
TT_TINYINT

No notes

SQLT_INTERVAL_DS N/A Not stored in TimesTen.

SQLT_INTERVAL_YM N/A Not stored in TimesTen.

SQLT_LBI VARBINARY No notes

SQLT_LNG VARCHAR2 No notes

SQLT_LVB VARBINARY Truncated at 4 MB when stored in
TimesTen.

SQLT_LVC VARCHAR2 Truncated at 4 MB when stored in
TimesTen.

SQLT_NUM NUMBER No notes

SQLT_ODT DATE No notes

SQLT_RDD ROWID Rowids are returned in Oracle
Database format.

SQLT_RSET N/A Only one result set parameter is
allowed for each statement.

Not stored in TimesTen

SQLT_STR VARCHAR2 Null-terminated.

SQLT_TIMESTAMP TIMESTAMP No notes

SQLT_TIMESTAMP_LTZ TIMESTAMP Time zone ignored when stored in
TimesTen.

SQLT_TIMESTAMP_TZ TIMESTAMP Time zone ignored when stored in
TimesTen.

TimesTen OCI support reference

TimesTen Support for OCI 3-37

Supported parameter attributes
Table 3–6 that follows lists supported parameter attributes for OCIDescribeAny() calls.

See "Describing Schema Metadata" in Oracle Call Interface Programmer's Guide for
information about supported attributes.

SQLT_UIN NUMBER, TT_INTEGER, TT_
BIGINT, TT_SMALLINT,
TT_TINYINT

No notes

SQLT_VBI VARBINARY No notes

SQLT_VCS VARCHAR2 No notes

SQLT_VNU NUMBER First byte indicates length of number
(length of succeeding bytes).

SQLT_VST CHAR, VARCHAR2 No notes

Table 3–6 TimesTen OCI supported parameter attributes

Parameter Supported attributes

All parameters OCI_ATTR_NUM_PARAMS

OCI_ATTR_OBJ_NAME

OCI_ATTR_OBJ_SCHEMA

OCI_ATTR_PTYPE

Table and view parameters OCI_ATTR_NUM_COLS

OCI_ATTR_LIST_COLUMNS

PL/SQL procedure and function
parameters

OCI_ATTR_LIST_ARGUMENTS

PL/SQL package subprogram
parameters

OCI_ATTR_LIST_ARGUMENTS

OCI_ATTR_NAME

PL/SQL package parameters OCI_ATTR_LIST_SUBPROGRAMS

Sequence parameters OCI_ATTR_OBJID

OCI_ATTR_MIN

OCI_ATTR_MAX

OCI_ATTR_INCR

OCI_ATTR_CACHE

OCI_ATTR_ORDER

OCI_ATTR_HW_MARK

Table 3–5 (Cont.) TimesTen OCI supported OCI-defined constants

OCI-defined constant TimesTen SQL type Notes

TimesTen OCI support reference

3-38 Oracle TimesTen In-Memory Database C Developer's Guide

Column parameters OCI_ATTR_CHAR_USED

OCI_ATTR_CHAR_SIZE

OCI_ATTR_DATA_SIZE

OCI_ATTR_DATA_TYPE

OCI_ATTR_NAME

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_IS_NULL

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA_NAME

OCI_ATTR_CHARSET_ID

OCI_ATTR_CHARSET_FORM

Argument and result parameters OCI_ATTR_NAME

OCI_ATTR_POSITION

OCI_ATTR_DATA_TYPE

OCI_ATTR_DATA_SIZE

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_LEVEL

OCI_ATTR_IS_NULL

OCI_ATTR_CHARSET_ID

OCI_ATTR_CHARSET_FORM

List parameters OCI_LTYPE_COLUMN

OCI_LTYPE_SCH_OBJ

OCI_LTYPE_DB_SCH

Database parameters OCI_ATTR_VERSION

OCI_ATTR_CHARSET_ID

OCI_ATTR_NCHARSET_ID

OCI_ATTR_LIST_SCHEMAS

OCI_ATTR_MAX_PROC_LEN

OCI_ATTR_MAX_COLUMN_LEN

OCI_ATTR_CURSOR_COMMIT_BEHAVIOR

OCI_ATTR_MAX_CATALOG_NAMELEN

OCI_ATTR_CATALOG_LOCATION

OCI_ATTR_SAVEPOINT_SUPPORT

OCI_ATTR_NOWAIT_SUPPORT

OCI_ATTR_AUTOCOMMIT_DDL

OCI_ATTR_LOCKING_MODE

Table 3–6 (Cont.) TimesTen OCI supported parameter attributes

Parameter Supported attributes

4

TimesTen Support for Pro*C/C++ 4-1

4TimesTen Support for Pro*C/C++

TimesTen and TimesTen Cache support the Oracle Pro*C/C++ Precompiler for C and
C++ applications. You can use the precompiler with embedded SQL and PL/SQL
applications that access a TimesTen database.

This chapter provides an overview and TimesTen-specific information regarding
Pro*C/C++, especially emphasizing differences between using Pro*C/C++ with
TimesTen versus with Oracle Database. For complete information about Pro*C/C++,
you can refer to Pro*C/C++ Programmer's Guide in the Oracle Database library.

Also note that Chapter 2, "Working with TimesTen Databases in ODBC", contains
information that may be of general interest regarding TimesTen features.

This chapter includes the following topics:

■ Overview of the Oracle Pro*C/C++ Precompiler

■ Overview of TimesTen support for Pro*C/C++

■ Getting started with TimesTen Pro*C/C++

■ Additional features of TimesTen Pro*C/C++

■ TimesTen Pro*C/C++ Precompiler options

Overview of the Oracle Pro*C/C++ Precompiler
The Oracle Pro*C/C++ Precompiler enables you to embed SQL statements or PL/SQL
blocks directly into C or C++ code. Further, you can use your C or C++ program host
variables in your embedded SQL or PL/SQL.

You use a precompilation step to convert the Pro*C/C++ source file into a C or C++
source file. The precompiler accepts the Pro*C/C++ file as input, translates embedded
SQL statements into standard Oracle Database runtime library calls, and generates a
modified source code file that you can then compile and link. Pro*C/C++ code is
linked against the Oracle Database precompiler SQLLIB library, which is included in
the TimesTen distribution as part of the Oracle Instant Client.

Overview of TimesTen support for Pro*C/C++
TimesTen support for the Oracle Pro*C/C++ Precompiler depends on TimesTen OCI.
TimesTen OCI depends on the Oracle client library and the TimesTen ODBC libraries.
See Figure 3–1 on page 3-2 to see where OCI and Pro*C/C++ fit in the TimesTen
architecture.

Overview of TimesTen support for Pro*C/C++

4-2 Oracle TimesTen In-Memory Database C Developer's Guide

This chapter contains information specific to using the Oracle Pro*C/C++ Precompiler
with TimesTen. The syntax and usage of the Oracle Pro*C/C++ Precompiler with
TimesTen is essentially the same as with Oracle Database.

The rest of this section includes the following topics.

■ TimesTen OCI support

■ Embedded SQL support and restrictions

■ Semantic checking restrictions

■ Embedded PL/SQL restrictions

■ Transaction restrictions

■ Connection restrictions

■ Summary of unsupported or restricted executable commands and clauses

■ The ttSrcScan utility

TimesTen OCI support
Because TimesTen support of the Oracle Pro*C/C++ Precompiler depends on
TimesTen OCI support, restrictions for TimesTen OCI apply to Pro*C/C++
applications.

In addition, TimesTen does not support OCI calls that are related to functionality that
does not exist in TimesTen.

For more information about TimesTen OCI support, see Chapter 3, "TimesTen Support
for OCI." Much of the information there may apply to Pro*C/C++ applications as well.

Embedded SQL support and restrictions
The TimesTen Pro*C/C++ Precompiler does not support embedded SQL for
functionality that TimesTen and TimesTen Cache do not support. See "TimesTen
restrictions and differences" on page 3-4.

TimesTen provides the following support for SQLLIB functions:

■ SQLErrorGetText (sqlglmt) is supported.

■ SQLRowidGet() is supported following only SELECT FOR UPDATE statements.

In addition, TimesTen support for the Oracle Pro*C/C++ Precompiler has the
following restrictions:

■ REGISTER CONNECT is not supported.

■ Stored Java subprograms are not supported.

Semantic checking restrictions
TimesTen support for the Oracle Pro*C/C++ Precompiler does not provide semantic
checking during precompilation. A SQLCHECK precompiler option setting that specifies
semantic checking is permissible but has no effect.

It is important to be aware, however, that a setting of SEMANTICS results in a database
connection even though precompilation semantic checking is not performed.
Therefore, a setting of SEMANTICS requires the following during precompilation:

■ The database must be running.

Overview of TimesTen support for Pro*C/C++

TimesTen Support for Pro*C/C++ 4-3

■ The USERID precompiler option must be set, either on the command line or in the
pcscfg.cfg configuration file. You must provide the user name and password for
an existing TimesTen user, and a TNS name that points to the database. In the
following example, you are prompted for the password:

USERID=user1@my_tnsname

Alternatively, you can enter USERID=user1/password@my_tnsname, but for security
reasons it is not advisable to specify a password on a command line or in a
configuration file.

See "Connecting to a TimesTen database from Pro*C/C++" on page 4-6 for information
about usage and syntax for TNS names.

See the next section, "Embedded PL/SQL restrictions", for related information about
Pro*C/C++ programs that use PL/SQL.

Embedded PL/SQL restrictions
In TimesTen, if a Pro*C/C++ application contains PL/SQL blocks, then Pro*C/C++
acts as though the SQLCHECK setting is SEMANTICS. It is important to be aware that this
results in a database connection even though precompilation semantic checking is not
performed. Therefore, using PL/SQL in a Pro*C/C++ application requires the
following during precompilation:

■ The database must be running.

■ The USERID precompiler option must be set, specifying an existing TimesTen user.
See the preceding section, "Semantic checking restrictions", for details about
setting this option.

Transaction restrictions
Regarding transactions, TimesTen support for the Oracle Pro*C/C++ Precompiler does
not provide the following:

■ SAVEPOINT SQL statement

■ SET TRANSACTION SQL statement

You can still have transactions with commit and rollback, just not the SET
TRANSACTION SQL statement.

■ Fetch across commits

■ Distributed transactions

Connection restrictions
Regarding connections, TimesTen support for the Oracle Pro*C/C++ Precompiler does
not provide the following:

■ ALTER AUTHORIZATION clause

■ Automatic connections to the database

■ Making connections to the database with SYSDBA or SYSOPER privilege, given that
these privileges do not exist in TimesTen

■ Implicit connections (dblinks) to a TimesTen or Oracle Database

For information about supported connection syntax, see "Connecting to a TimesTen
database from Pro*C/C++" on page 4-6.

Overview of TimesTen support for Pro*C/C++

4-4 Oracle TimesTen In-Memory Database C Developer's Guide

Summary of unsupported or restricted executable commands and clauses
Given TimesTen restrictions, including those noted in the preceding sections, this
section summarizes the Pro*C/C++ EXEC SQL executable commands, categories of
commands, and command clauses that TimesTen does not support or supports only
partially:

■ ALTER AUTHORIZATION

■ CACHE FREE ALL

■ CALL

This is supported only for calling PL/SQL. To call TimesTen built-in procedures,
use dynamic SQL statements.

■ Any "COLLECTION..." command

■ COMMIT FORCE 'some text'

■ COMMIT WORK COMMENT 'some text' RELEASE

The COMMENT clause is not supported.

■ CONNECT BY

■ CONTEXT OBJECT OPTION GET

■ CONTEXT OBJECT OPTION SET

■ DECLARE CURSOR

The WITH HOLD clause is not supported.

■ DECLARE TABLE

Only Oracle Database data types are supported.

■ DECLARE TYPE

■ EXPLAIN PLAN

■ IN SYSDBA MODE

■ IN SYSOPER MODE

■ LOCK TABLE

■ Any "OBJECT..." command

■ PARTITION

■ REGISTER CONNECT

■ RETURN

■ RETURNING

■ SAVEPOINT

■ SET DESCRIPTOR

You cannot set CHARACTER_SET_NAME.

■ SET TRANSACTION

■ START WITH

■ TO SAVEPOINT

Getting started with TimesTen Pro*C/C++

TimesTen Support for Pro*C/C++ 4-5

The ttSrcScan utility
If you have an existing Pro*C/C++ program and want to see whether it uses
Pro*C/C++ features that TimesTen does not support, you can use the ttSrcScan
command line utility to scan your program for unsupported embedded SQL functions
and types. This is a standalone utility that can be run without TimesTen or Oracle
Database being installed and runs on any platform supported by TimesTen. It reads
source code files as input and creates HTML and text files as output. If the utility finds
unsupported items, they are logged and alternatives are suggested. Specify an input
file or directory for the program to be scanned and an output directory for the
ttSrcScan reports. Other options are available as well.

The ttSrcScan utility is available on the Oracle Technology Network site. See the
README file there for additional information.

Getting started with TimesTen Pro*C/C++
This section covers the following topics for getting started with a Pro*C/C++
application for TimesTen:

■ Environment and configuration for TimesTen Pro*C/C++

■ Building a Pro*C/C++ application

■ Connecting to a TimesTen database from Pro*C/C++

■ Error reporting and handling

Environment and configuration for TimesTen Pro*C/C++
The Pro*C/C++ system configuration file pcscfg.cfg contains the precompiler
options for precompilation of your Pro*C/C++ source code. In TimesTen, you must
use the version of this file that TimesTen provides. This typically happens
automatically if you ensure appropriate configuration for TimesTen through the
TimesTen ttenv script.

See "Environment variables" in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide for information about ttenv.

Building a Pro*C/C++ application
Before building a Pro*C/C++ application, you must set up your environment:

1. You can use the TimesTen Classic Quick Start OCI and Pro*C/C++ Makefiles to
implement appropriate environment settings. See "TimesTen Quick Start and
sample applications" on page 1-5.

2. Confirm LD_LIBRARY_PATH or PATH is set so that the Oracle Instant Client directory
precedes the Oracle Database libraries in the path. The path is set properly if you
use the timesten_home/bin/ttenv script.

Then use steps such as the following to build a Pro*C/C++ application. The steps
shown here present a basic example for a UNIX system and assume the program has
no other includes (#include) or links to other libraries. The designation instant_
client represents the directory where Oracle Instant Client is installed.

Note: To ensure proper generation of OCI and Pro*C/C++ programs
to be run on TimesTen, do not set ORACLE_HOME for OCI and
Pro*C/C++ compilations (or unset it if it was set previously).

Getting started with TimesTen Pro*C/C++

4-6 Oracle TimesTen In-Memory Database C Developer's Guide

1. Precompile the Pro*C/C++ source file by using the proc command from your
system prompt. For example:

% proc iname=sample.pc

The proc utility takes a .pc source file as input and produces a .c file.

2. Compile the resulting C code file. On Linux platforms, enter a command similar to
the following:

% gcc -c sample.c -I(instant_client)/sdk/include

3. Link the resulting object modules with modules in SQLLIB. For example:

% gcc -o sample sample.o -L(instant_client) -lclntsh

Connecting to a TimesTen database from Pro*C/C++
This section provides information on connecting to a TimesTen database from a
Pro*C/C++ application. TimesTen Pro*C/C++ and TimesTen OCI use the Oracle
Instant Client to connect to the database. Refer to "Connecting to a TimesTen database
from OCI" on page 3-8 for additional configuration steps to use the tnsnames naming
method or easy connect naming method to connect to the database.

The following topics are covered here for TimesTen Classic:

■ Connection syntax and parameters

■ Using tnsnames or easy connect

■ Specifying the Oracle Database password in Pro*C/C++ for TimesTen Cache

Connection syntax and parameters
TimesTen supports the following connection syntax:

EXEC SQL CONNECT{:user IDENTIFIED BY :pwd | :user_string}
 [[AT{dbname |:host_variable}]USING :connect_string];

The parameters are described in Table 4–1.

Notes:

■ Be aware that in TimesTen Scaleout, TimesTen will automatically
populate the tnsnames.ora file and sqlnet.ora file, as applicable,
on all instances with entries for all TimesTen connectables you
have defined. See "Connecting to a TimesTen database from OCI"
on page 3-8 for additional information.

■ A TimesTen connection cannot be inherited from a parent process.
If a process opens a database connection before creating (forking)
a child process, the child must not use the connection. In
Pro*C/C++, to avoid having a child process inadvertently inherit
a connection from its parent, use EXEC SQL COMMIT RELEASE in the
parent before creating the child.

Table 4–1 Connection parameters

Parameter Description

user User name

Getting started with TimesTen Pro*C/C++

TimesTen Support for Pro*C/C++ 4-7

Using tnsnames or easy connect
To connect to a TimesTen database from a Pro*C/C++ application, you must configure
a TNS name or easy connect string for the database. Perform the tnsnames or easy
connect steps described under "Connecting to a TimesTen database from OCI" on
page 3-8.

From Pro*C/C++, you can use a host variable to specify the user name, password, and
a TNS name. For example:

EXEC SQL CONNECT :dbstring

Where dbstring is set to "user1/password@my_tnsname".

Alternatively, the host variable could specify the user name, password, and an easy
connect string. For example, dbstring could be set to
"user1/password@localhost/ttclient:timesten_client".

Or, if the TWO_TASK or LOCAL environment variable, as applicable for your operating
system, is set to "my_tnsname" or "localhost/ttclient:timesten_client", you could
connect as in the following example:

EXEC SQL CONNECT :user1 IDENTIFIED BY :pwd1

Specifying the Oracle Database password in Pro*C/C++ for TimesTen Cache
To use TimesTen Cache, there must be a cache user in the TimesTen Classic database
with the same name as an Oracle Database user who can select from and update the
cached Oracle Database tables. This Oracle Database user, for example, can be the
cache administration user or a schema user. The password of the TimesTen cache user
can be different from the password of the Oracle Database user with the same name.
See "Setting Up a Caching Infrastructure" in Oracle TimesTen Application-Tier Database
Cache User's Guide for details.

For use of Pro*C/C++ with TimesTen Cache, TimesTen enables you to pass the Oracle
Database user's password through Pro*C/C++ by appending it to the password field
in an EXEC SQL CONNECT call when you log in to TimesTen. Use the attribute OraclePWD
in the connect string, such as in the following example:

text *cacheuser = (text *)"cacheuser1";
text *cachepwds = (text *)"ttpassword;OraclePWD=oraclepassword";
text *dbname = (text *)"tt_tnsname";
....
EXEC SQL CONNECT :cacheuser IDENTIFIED BY :cachepassword AT :dbname

pwd Password

user_string Alternative to separate user and pwd entries

This is a user name and password separated by a slash, such as
user1/password. After an "@" sign, you can also have a database
identifier, instead of using dbname, or a TNS name or easy connect
string, instead of using connect_string. See examples in the next
section, "Using tnsnames or easy connect".

dbname Database identifier declared in a previous DECLARE DATABASE statement

host_variable Variable whose value is a database identifier

connect_string Valid TNS name or easy connect string for a TimesTen database

Table 4–1 (Cont.) Connection parameters

Parameter Description

Additional features of TimesTen Pro*C/C++

4-8 Oracle TimesTen In-Memory Database C Developer's Guide

You must always specify OraclePWD, even if the Oracle Database user's password is the
same as the TimesTen user's password. Furthermore, in the circumstance of specifying
an Oracle Database password for TimesTen Cache, you must use a form of EXEC SQL
CONNECT that specifies the password as a separate host variable. In this example,
cacheuser1 is the name of the TimesTen cache user as well as the name of the Oracle
Database user who can access the cached Oracle Database tables, ttpassword is the
password of the TimesTen cache user, oraclepassword is the password of the Oracle
Database user, and tt_tnsname is the TNS name of the TimesTen database being
connected to. The Oracle database is specified through the TimesTen
OracleNetServiceName general connection attribute in the sys.odbc.ini or user
odbc.ini file.

Alternatively, instead of using the AT clause with a TNS name, you could use the TWO_
TASK or LOCAL environment variable, as discussed in "Connecting to a TimesTen
database from OCI" on page 3-8.

Error reporting and handling
Be aware of the following regarding error conditions and error reporting:

■ Errors under TimesTen Pro*C/C++ applications return Oracle Database error
codes. TimesTen attempts to report the same error code as Oracle Database would
under similar conditions. The error messages may come from either the TimesTen
catalog or the Oracle Database catalog. Some error messages may indicate the
accompanying TimesTen error code if appropriate. Pro*C/C++ applications that
rely on parsing error codes should be checked.

■ TimesTen automatically resolves most transient errors (which is particularly
important for TimesTen Scaleout), but if your application detects an ORA-57005 or
ORA-57007 error, it is suggested to retry the current transaction or most recent API
call, as applicable. See "Transient errors (OCI)" on page 3-11.

■ TimesTen supports the WHENEVER SQLERROR directive, to go to an error handler if
an error occurs, and the WHENEVER NOT FOUND directive, to go to a handling section
if a "no data found" condition occurs. TimesTen does not support the WHENEVER
SQLWARNING directive.

Examples:

EXEC SQL WHENEVER NOT FOUND GOTO close_cursor;
...
EXEC SQL WHENEVER SQLERROR GOTO error_handler;

Additional features of TimesTen Pro*C/C++
This section covers additional features you can use with Pro*C/C++ in TimesTen:

■ Associative array bindings in TimesTen Pro*C/C++

■ LOBs in TimesTen Pro*C/C++

Associative array bindings in TimesTen Pro*C/C++
As discussed in "Associative array bindings in TimesTen OCI" on page 3-13,
associative arrays, formerly known as index-by tables or PL/SQL tables, are supported
as IN, OUT, or IN OUT bind parameters in TimesTen PL/SQL. See that section for
additional information and limitations.

Additional features of TimesTen Pro*C/C++

TimesTen Support for Pro*C/C++ 4-9

You can pass associative arrays between PL/SQL blocks and Pro*C/C++ applications
as well as OCI applications. They can be indexed by a PL/SQL variable of type
BINARY_INTEGER or PLS_INTEGER.

Normally, the entire host array is passed to PL/SQL, but you can use the Pro*C/C++
ARRAYLEN statement to specify a smaller array dimension.

For more information, refer to "PL/SQL Tables", "Host Arrays", and "ARRAYLEN
Statement" under "Embedded PL/SQL" in Pro*C/C++ Programmer's Guide.

Example 4–1 Binding to an associative array from Pro*C/C++

This code excerpt shows the array salary[] being bound from Pro*C/C++ into the
associative array num_tab in PL/SQL.

...
float salary[100];
/* populate the host array */
EXEC SQL EXECUTE
 DECLARE
 TYPE NumTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 median_salary REAL;
 n BINARY_INTEGER;
...
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
 -- compute median
 END;
 BEGIN
 n := 100;
 median_salary := median(:salary, n);
 ...
 END;
END-EXEC;
...

LOBs in TimesTen Pro*C/C++
TimesTen Classic supports LOBs (large objects). This includes CLOBs (character
LOBs), NCLOBs (national character LOBs), and BLOBs (binary LOBs).

See "Working with LOBs" on page 2-25. That section is ODBC-oriented but also
provides a general overview of LOBs, differences between TimesTen and Oracle
Database LOBs, and LOB programming interfaces. Also see "LOBs in TimesTen OCI"
on page 3-18 for information about LOB locators, temporary LOBs, using the simple
data interface or LOB locator interface in OCI, and additional OCI LOB features.

This section focuses on key Pro*C/C++ LOB features and TimesTen-specific support
and restrictions.

See "LOB data types" in Oracle TimesTen In-Memory Database SQL Reference for
additional information about LOBs in TimesTen.

For complete information about LOBs and how to use them in Pro*C/C++, refer to
"LOBs" in Pro*C/C++ Programmer's Guide, keeping in mind that TimesTen does not
support BFILEs, SecureFiles, array reads and writes for LOBs, or callback functions for
LOBs. In particular, see "How to Use LOBs in Your Program" within that chapter.

The following topics are covered for Pro*C/C++:

Additional features of TimesTen Pro*C/C++

4-10 Oracle TimesTen In-Memory Database C Developer's Guide

■ Using the LOB simple data interface in Pro*C/C++

■ Using the LOB locator interface in Pro*C/C++

Using the LOB simple data interface in Pro*C/C++
The simple data interface enables applications to manipulate LOB data similarly to
how they would manipulate other types of scalar data, such as by using EXEC SQL
INSERT and EXEC SQL SELECT. The application can use a LOB type that is compatible
with the corresponding variable type.

An application can use the EMPTY_BLOB() or EMPTY_CLOB() function, as appropriate, to
initialize a persistent LOB. This is similar to using ALLOCATE in the LOB locator
interface, discussed next. Consider the following tables:

EXEC SQL CREATE TABLE lob_table (a_blob BLOB, a_clob CLOB);
...
EXEC SQL INSERT INTO lob_table (a_blob, a_clob)
 VALUES (EMPTY_BLOB(), EMPTY_CLOB());
...
EXEC SQL CREATE TABLE data_table
 (name VARCHAR2(30), length NUMBER(10), bincol BLOB, charcol CLOB);

The following selects LOB data from data_table into myblob and myclob, then inserts
the LOB data into lob_table.

...
OCIBlobLocator *myblob;
OCIClobLocator *myclob;
...
EXEC SQL SELECT bincol, charcol INTO :myblob, :myclob FROM data_table
 WHERE name = :key;
...
// Put data into lob_table.
...
EXEC SQL INSERT INTO lob_table (a_blob, a_clob) VALUES (:myblob, :myclob);

To use an NCLOB, declare the variable as follows:

OCIClobLocator CHARACTER SET IS NCHAR_CS *mynclob;

Using the LOB locator interface in Pro*C/C++
You can use the Pro*C/C++ LOB locator interface to work with either LOBs from the
database or temporary LOBs, either piece-by-piece or in whole chunks.

Important: As indicated in the OCI chapter, in TimesTen a LOB used
in an application does not remain valid past the end of the transaction.

Note: The LOB piecewise data interface is not applicable to OCI or
Pro*C/C++ applications in TimesTen. (You can, however, manipulate
LOB data in pieces through features of the LOB locator interface.)

Note: The simple data interface, through OCI or Pro*C/C++, limits
bind sizes to 64 KB.

Additional features of TimesTen Pro*C/C++

TimesTen Support for Pro*C/C++ 4-11

Refer to "LOB Statements" in Pro*C/C++ Programmer's Guide for detailed information
about Pro*C/C++ statements for LOBs, noting that TimesTen does not support
features specifically intended for BFILEs, SecureFiles, array reads and writes for LOBs,
or callback functions for LOBs.

Refer to the lobdemo1.pc example in "LOBs" in Pro*C/C++ Programmer's Guide for an
end-to-end example.

Also see "Using the LOB locator interface in OCI" on page 3-22 for related information.

Create a temporary LOB in Pro*C/C++ A Pro*C/C++ application can create a temporary
LOB by using the CREATE TEMPORARY embedded SQL feature, after first using the
ALLOCATE feature to allocate the locator. Use FREE to free the allocation for the locator
and FREE TEMPORARY to free the temporary LOB itself. This is shown below.

Also see "Create a temporary LOB in OCI" on page 3-22.

OCIClobLocator *tempclob;
EXEC SQL ALLOCATE :tempclob;
EXEC SQL LOB CREATE TEMPORARY :tempclob;
...
// (Manipulate LOB as desired.)
...
EXEC SQL FREE TEMPORARY :tempclob;
EXEC SQL FREE :tempclob;

Alternatively, to specify the LOB character set (here NCHAR), you can use the
corresponding OCI function:

status = OCILobCreateTemporary(svc, err, tempclob, OCI_DEFAULT, SQLCS_NCHAR,
 OCI_TEMP_CLOB, TRUE, OCI_DURATION_TRANSACTION);

Access the locator of a persistent LOB in Pro*C/C++ An application typically accesses a LOB
from the database by using a SQL statement to obtain a LOB locator, then passing the
locator to an appropriate API function.

Also see "Access the locator of a persistent LOB in OCI" on page 3-23.

The following excerpts are from the previously mentioned lobdemo1.pc example in
"LOBs" in Pro*C/C++ Programmer's Guide. The example uses a CLOB license_txt and
table license_table whose columns are social security number, name, and text
summarizing driving offenses (a CLOB column).

OCIClobLocator *license_txt;
...
EXEC SQL ALLOCATE :license_txt;
...
EXEC SQL SELECT name, txt_summary INTO :name, :license_txt FROM license_table
 WHERE sss = :sss;

Note: If Pro*C/C++ syntax does not provide enough functionality to
fully specify what you want to accomplish for any operation, you can
use the corresponding OCI function as an alternative.

Important: In TimesTen, creation of a temporary LOB results in
creation of a database transaction if one is not already in progress. To
avoid error conditions, execute a commit or rollback to close the
transaction.

Additional features of TimesTen Pro*C/C++

4-12 Oracle TimesTen In-Memory Database C Developer's Guide

Read and write LOB data using the Pro*C/C++ LOB locator interface A Pro*C/C++ application
can use LOB OPEN and LOB CLOSE to open and close a LOB, LOB READ to read LOB data,
LOB WRITE or LOB WRITE APPEND to write or append LOB data, LOB DESCRIBE to obtain
information about a LOB, and various other Pro*C/C++ features to perform a variety
of other actions. All the Pro*C/C++ LOB locator interface features are covered in detail
in "LOBs" in Pro*C/C++ Programmer's Guide.

To write data, use LOB WRITE ONE to write the data in a single chunk. TimesTen does
not support LOB WRITE FIRST, LOB WRITE NEXT, or LOB WRITE LAST (features of the
piecewise data interface).

Also see "Read and write LOB data using the OCI LOB locator interface" on page 3-25.

Here is an example of an EXEC SQL LOB READ statement:

EXEC SQL LOB READ :amt FROM :blob INTO :buffer;

Refer to "Read a File, WRITE a BLOB Example" in "LOBs" in Pro*C/C++ Programmer's
Guide for additional information.

Here is an example of an EXEC SQL LOB WRITE statement (writing the LOB data in one
chunk):

EXEC SQL LOB WRITE ONE :amt FROM :buffer INTO :blob;

Refer to "READ a BLOB, Write a File Example" in "LOBs" in Pro*C/C++ Programmer's
Guide for additional information.

Here is an example of an EXEC SQL LOB WRITE APPEND statement:

EXEC SQL LOB WRITE APPEND :amt FROM :writebuf INTO :blob;

Example 4–2 Write a LOB using Pro*C/C++ LOB locator interface

The following excerpt is from the previously mentioned lobdemo1.pc example in
"LOBs" in Pro*C/C++ Programmer's Guide.

...
OCIClobLocator *a_clob;
char *charbuf;
ub4 ClobLen, WriteAmt;
int CharLen = strlen(charbuf);
int NewCharbufLen = CharLen + DATELENGTH + 4;
varchar *NewCharbuf;
NewCharbuf = (varchar *)malloc(2 + NewCharbufLen);
NewCharbuf->arr[0] = '\n';
NewCharbuf->arr[1] = '\0';
strcat((char *)NewCharbuf->arr, charbuf);
NewCharbuf->arr[CharLen + 1] = '\0';
strcat((char *)NewCharbuf->arr, curdate);
NewCharbuf->len = NewCharbufLen;
EXEC SQL LOB DESCRIBE :a_clob GET LENGTH INTO :ClobLen;
WriteAmt = NewCharbufLen;
EXEC SQL LOB WRITE ONE :WriteAmt FROM :NewCharbuf WITH LENGTH :NewCharbufLen
 INTO :a_clob;

Note: Opening a LOB is similar conceptually, but not technically, to
opening a file. Opening a LOB is more like a hint regarding resources
to be required.

Be aware that a LOB being accessed by OCILobRead(), OCILobWrite(),
or equivalent functionality is opened automatically as necessary.

TimesTen Pro*C/C++ Precompiler options

TimesTen Support for Pro*C/C++ 4-13

...

Example 4–3 Write and append to a LOB using Pro*C/C++ LOB locator interface

This example, like the preceding one, uses LOB WRITE ONE. Then it also uses LOB WRITE
APPEND to append additional data. It writes or appends to the BLOB in 1 K chunks up
to MAX_CHUNKS.

...
 EXEC SQL select b into :blob from t where pk = 1 for update;
 EXEC SQL LOB OPEN :blob READ WRITE;

 // Write/append to the BLOB
 for (i = 0; i < MAX_CHUNKS; i++) {
 if (i==0) { // FIRST CHUNK
 /*
 Write the first piece
 */
 EXEC SQL LOB WRITE ONE :amt FROM :writebuf INTO :blob;

 }
 else { // All Other Chunks
 /*
 At this point, APPEND all the next pieces
 */
 EXEC SQL LOB WRITE APPEND :amt FROM :writebuf INTO :blob ;
 }
 ...
 }
...

TimesTen Pro*C/C++ Precompiler options
This section discusses Pro*C/C++ Precompiler option support by TimesTen.

Precompiler option support
Table 4–2 describes TimesTen Pro*C/C++ Precompiler option support.

Note: TimesTen does not support the following features or related
options: Advanced Queueing, database optimization, user-defined
objects. Also, TimesTen supports only CPOOL=NO and does not support
related options.

Table 4–2 TimesTen Pro*C/C++ Precompiler option support

Option Notes

AUTO_CONNECT Supported value: NO (default)

CHAR_MAP No notes

CLOSE_ON_COMMIT Supported value: YES

The Oracle Database default value of NO is overridden by
TimesTen.

CODE No notes

COMP_CHARSET No notes

TimesTen Pro*C/C++ Precompiler options

4-14 Oracle TimesTen In-Memory Database C Developer's Guide

CONFIG No notes

CPOOL Supported value: NO (default)

CPP_SUFFIX No notes

DB2_ARRAY No notes

DBMS Supported value: NATIVE (default)

DEF_SQLCODE No notes

DEFINE No notes

DYNAMIC No notes

ERRORS No notes

FIPS No notes

HEADER No notes

HOLD_CURSOR No notes

IMPLICIT_SVPT Supported value: NO (default)

INAME No notes

INCLUDE No notes

INTYPE No notes

LINES No notes

LNAME No notes

LTYPE No notes

MAX_ROW_INSERT No notes

MAXLITERAL No notes

MAXOPENCURSORS No notes

MODE No notes

NATIVE_TYPES No notes

NLS_CHAR No notes

NLS_LOCAL Supported value: NO (default)

ONAME No notes

ORACA No notes

PAGELEN No notes

PARSE No notes

PREFETCH No notes

RELEASE_CURSOR No notes

SELECT_ERROR No notes

Table 4–2 (Cont.) TimesTen Pro*C/C++ Precompiler option support

Option Notes

TimesTen Pro*C/C++ Precompiler options

TimesTen Support for Pro*C/C++ 4-15

Setting precompiler options
You can set precompiler options in the following ways.

■ At compile time, either in the configuration file pcscfg.cfg or on the Pro*C/C++
command line

A command line setting takes precedence over a setting in the configuration file.

■ At runtime through the EXEC ORACLE OPTION command

A runtime setting takes precedence over a compile-time setting.

For example, the following shows portions of the configuration file that ships with
TimesTen.

ltype=short
parse=full
close_on_commit=yes
...

The following command line would override the ltype=short setting from the
configuration file:

% proc ltype=long ... iname=sample.pc

The following runtime command would override the ltype=long setting from the
command line:

EXEC ORACLE OPTION LTYPE=NONE;

SQLCHECK Not applicable

Any of the SQLCHECK settings is allowed, but TimesTen does not
support semantic checking during precompilation.

Whenever a Pro*C/C++ application uses PL/SQL, Pro*C/C++
acts as though the SQLCHECK setting is SEMANTICS.

Important: A setting of SEMANTICS (or FULL, which is
synonymous) always results in a connection to the database,
even though precompilation semantic checking is not
performed.

See "Semantic checking restrictions" on page 4-2.

STMT_CACHE No notes

SYS_INCLUDE No notes

THREADS No notes

TYPE_CODE No notes

UNSAFE_NULL No notes

USERID No notes

UTF16_CHARSET Supported value: NCHAR_CHARSET

VARCHAR No notes

Note: TimesTen does not support the default value for CLOSE_ON_
COMMIT. TimesTen supports only CLOSE_ON_COMMIT=YES.

Table 4–2 (Cont.) TimesTen Pro*C/C++ Precompiler option support

Option Notes

TimesTen Pro*C/C++ Precompiler options

4-16 Oracle TimesTen In-Memory Database C Developer's Guide

5

XLA and TimesTen Event Management 5-1

5XLA and TimesTen Event Management

The TimesTen Transaction Log API (XLA), supported by TimesTen Classic, is a set of C
language functions that enable you to implement applications to perform the
following:

■ Monitor TimesTen for changes to specified tables in a local database.

■ Receive real-time notification of these changes.

The primary purpose of XLA is as a high-performance, asynchronous alternative to
triggers.

This chapter includes the following topics:

■ XLA concepts

■ Writing an XLA event-handler application

■ Using XLA as a replication mechanism

■ Other XLA features

For a complete description of each XLA function, see Chapter 9, "XLA Reference".

XLA concepts
This section includes the following topics for using XLA in TimesTen Classic:

■ XLA basics

■ How XLA reads records from the transaction log

■ About XLA and materialized views

■ About XLA bookmarks

■ About XLA data types

■ Access control impact on XLA

■ XLA limitations

■ XLA sample application

XLA functions mentioned here are documented in Chapter 9, "XLA Reference".

Note: In the unlikely event that TimesTen replication solutions
described in Oracle TimesTen In-Memory Database Replication Guide do
not meet your needs, it is possible to use XLA functions to build a
custom data replication solution.

XLA concepts

5-2 Oracle TimesTen In-Memory Database C Developer's Guide

XLA basics
TimesTen XLA obtains update records directly from the transaction log buffer or
transaction log files, so the records are available for as long as they are needed. The
logging model also enables multiple readers to simultaneously read transaction log
updates.

The ttXlaPersistOpen XLA function opens a connection to the database.

When initially created, TimesTen configures a transaction log handle for the same
version as the TimesTen release to which the application is linked.

How XLA reads records from the transaction log
As applications modify a database, TimesTen generates transaction log records that
describe the changes made to the data and other events such as transaction commits.

New transaction log records are always written to the end of the log buffer as they are
generated.

Transaction log records are periodically flushed in batches from the log buffer in
memory to transaction log files on the file system. When XLA is initialized, the XLA
application does not have to be concerned with which portions of the transaction log
are on the file system or in memory. Therefore, the term "transaction log" as used in
this chapter refers to the "virtual" source of transaction update records, regardless of
whether those records are physically located in memory or on the file system.

Applications can use XLA to monitor the transaction log for changes to the database.
XLA reads through the transaction log, filters the log records, and delivers to XLA
applications a list of transaction records that contain the changes to the tables and
columns of interest.

XLA sorts the records into discrete transactions. If multiple applications are updating
the database simultaneously, transaction log records from the different applications are
interleaved in the transaction log.

XLA transparently extracts all transaction log records associated with a particular
transaction and delivers them in a contiguous list to the application.

Only the records for committed transactions are returned. They are returned in the
order in which their final commit record appears in the transaction log. XLA filters out
records associated with changes to the database that have not yet been committed.

If a change is made but then rolled back, XLA does not deliver the records for the
aborted transaction to the application.

Most of these basic XLA concepts are demonstrated in Example 5–1 that follows and
summarized in the bulleted list following the example.

Consider the example transaction log illustrated in Figure 5–1.

Figure 5–1 Records extracted from the transaction log

Transaction Log
Oldest Newest

XLA Application

CT3

BT3BT2 CT1 CT2 CT3

... CT2 AT1 AT3BT1 BT2 BT3CT1 AT2

XLA concepts

XLA and TimesTen Event Management 5-3

Example 5–1 Reading transaction log records

In this example, the transaction log contains the following records:

CT1 - Application C updates row 1 of table W with value 7.7.
BT1 - Application B updates row 3 of table X with value 2.
CT2 - Application C updates row 9 of table W with value 5.6.
BT2 - Application B updates row 2 of table Y with value "XYZ".
AT1 - Application A updates row 1 of table Z with value 3.
AT2 - Application A updates row 3 of table Z with value 4.
BT3 - Application B commits its transaction.
AT3 - Application A rolls back its transaction.
CT3 - Application C commits its transaction.

An XLA application that is set up to detect changes to tables W, Y, and Z would see the
following:

BT2 and BT3 - Update row 2 of table Y with value "XYZ" and commit.
CT1 - Update row 1 of table W with value 7.7.
CT2 and CT3 - Update row 9 of table W with value 5.6 and commit.

This example demonstrates the following:

■ Transaction records of applications B and C all appear together.

■ Although the records for application C begin to appear in the transaction log
before those for application B, the commit for application B (BT3) appears in the
transaction log before the commit for application C (CT3). As a result, the records
for application B are returned to the XLA application ahead of those for
application C.

■ The application B update to table X (BT1) is not presented because XLA is not set
up to detect changes to table X.

■ The application A updates to table Z (AT1 and AT2) are never presented because it
did not commit and was rolled back (AT3).

About XLA and materialized views
You can use XLA to track changes to both tables and materialized views. A
materialized view provides a single source from which you can track changes to
selected rows and columns in multiple detail tables. Without a materialized view, the
XLA application would have to monitor and filter the update records from all of the
detail tables, including records reflecting updates to rows and columns of no interest
to the application.

In general, there are no operational differences between the XLA mechanisms used to
track changes to a table or a materialized view.

For more information about materialized views, see the following:

■ "CREATE MATERIALIZED VIEW" in Oracle TimesTen In-Memory Database SQL
Reference

■ "Understanding materialized views" in Oracle TimesTen In-Memory Database
Operations Guide

XLA concepts

5-4 Oracle TimesTen In-Memory Database C Developer's Guide

About XLA bookmarks
Each XLA reader uses a bookmark to maintain its position in the log update stream.
Each bookmark consists of two pointers that track update records in the transaction
log by using log record identifiers:

■ An Initial Read log record identifier points to the most recently acknowledged
transaction log record. Initial Read log record identifiers are stored in the database,
so they are persistent across database connections, shutdowns, and failures.

■ A Current Read log record identifier points to the record currently being read from
the transaction log.

The rest of this section covers the following:

■ Creating or reusing a bookmark

■ How bookmarks work

■ Replicated bookmarks

■ XLA bookmarks and transaction log holds

Creating or reusing a bookmark
As described in "Initializing XLA and obtaining an XLA handle" on page 5-10, when
you call the ttXlaPersistOpen function to initialize an XLA handle, you have a tag
parameter to identify either a new bookmark or one that exists in the system, and an
options parameter to specify whether it is a new non-replicated bookmark, a new
replicated bookmark, or an existing (reused) bookmark. At this time, the Initial Read
log record identifier associated with the bookmark is read from the database and
cached in the XLA handle (ttXlaHandle_h). It designates the start position of the
reader in the transaction log.

See "ttLogHolds" in Oracle TimesTen In-Memory Database Reference for related
information. That TimesTen built-in procedure returns information about transaction
log holds.

How bookmarks work
When an application first initializes XLA and obtains an XLA handle, its Current Read
log record identifier and Initial Read log record identifier both point to the last record
written to the database, as shown in Figure 5–2 that follows.

Figure 5–2 Log record indicator positions upon initializing an XLA handle

As described in "Retrieving update records from the transaction log" on page 5-12, use
the ttXlaNextUpdate or ttXlaNextUpdateWait function to return a batch of records for
committed transactions from the transaction log in the order in which they were
committed. Each call to ttXlaNextUpdate resets the Current Read log record identifier
of the bookmark to the last record read, as shown in Figure 5–3. The Current Read log
record identifier marks the start position for the next call to ttXlaNextUpdate.

Transaction Log
Oldest Newest

Initial Read log record identifier
Current Read log record identifier

FT1 FT2 FT3 QT4QT1 QT2 QT3ZT1 ZT2 ZT3XT1 ZT4 ZT5XT2 AT1
...

XLA concepts

XLA and TimesTen Event Management 5-5

Figure 5–3 Records retrieved by ttXlaNextUpdate

You can use the ttXlaGetLSN and ttXlaSetLSN functions to reread records, as
described in "Changing the location of a bookmark" on page 5-39. However, calling the
ttXlaAcknowledge function permanently resets the Initial Read log record identifier of
the bookmark to its Current Read log record identifier, as shown in Figure 5–4. After
you have called the ttXlaAcknowledge function to reset the Initial Read log record
identifier, all previously read transaction records are flagged for purging by TimesTen.
Once the Initial Read log record identifier is reset, you cannot use ttXlaSetLSN to go
back and reread any of the previously read transactions.

Figure 5–4 ttXlaAcknowledge resets bookmark

The number of bookmarks created in a database is limited to 64. Each bookmark can
be associated with only one active connection at a time. However, a bookmark over its
lifetime may be associated with many connections. An application can open a
connection, create a new bookmark, associate the bookmark with the connection, read
a few records using the bookmark, disconnect from the database, reconnect to the
database, create a new connection, associate this new connection with the bookmark,
and continue reading transaction log records from where the old connection stopped.

Replicated bookmarks
If you are using an active standby pair replication scheme, you have the option of
using replicated bookmarks according to the options settings in your ttXlaPersistOpen
calls. For a replicated bookmark, operations on the bookmark are replicated to the

Note: A ttXlaAcknowledge call resets the bookmark even if there are
no relevant update records to acknowledge. This may be useful in
managing transaction log space, but should be balanced against the
expense of the operation. Be aware that XLA purges transaction logs a
file at a time. Refer to "ttXlaAcknowledge" on page 9-6 for details on
how the operation works.

Transaction Log
Oldest Newest

Initial Read log record identifier Current Read log record identifier

AT1 AT2 AT3 AT4BT1 BT2 BT3CT1 CT2 CT3DT1 CT4 CT5DT2 DT3ZT4 ZT5XT2

BT1 BT2 AT1BT3 AT2 AT3 AT4

Reader
Records retrieved from the
log by ttXlaNextUpdate()

Initial Read log record identifier
Current Read log record identifier

BT1 BT2 AT1BT3 AT2 AT3 AT4

Reader

Transaction Log
Oldest NewestAT1 AT2 AT3 AT4BT1 BT2 BT3CT1 CT2 CT3DT1 CT4 CT5DT2 DT3...

Records flagged for purging}
ttXlaAcknowledge()

XLA concepts

5-6 Oracle TimesTen In-Memory Database C Developer's Guide

standby database as appropriate. This results in more efficient recovery of your
bookmark positions in the event of failover. Reading resumes from the stream of XLA
records close to the point at which they left off before the switchover to the new active
store. Without replicated bookmarks, reading must go through numerous duplicate
records that were returned on the old active store.

When you use replicated bookmarks, steps must be taken in the following order:

1. Create the active standby pair replication scheme. (This is accomplished by the
create active standby pair operation, or by the ttCWAdmin -create command
in a Clusterware-managed environment.)

2. Create the bookmarks.

3. Subscribe the bookmarks.

4. Start the active standby pair, at which time duplication to the standby occurs and
replication begins. (This is accomplished by the ttRepAdmin -duplicate
command, or by the ttCWAdmin -start command in a Clusterware-managed
environment.)

Be aware of the following usage notes:

■ The position of the bookmark in the standby database is very close to that of the
bookmark in the active database; however, because the replication of acknowledge
operations is asynchronous, you may see a small window of duplicate updates in
the event of a failover, depending on how often acknowledge operations are
performed.

■ You should close and reopen all bookmarks on a database after it changes from
standby to active status, using the ttXlaClose and ttXlaPersistOpen functions.
The state of a replicated bookmark on a standby database does change during
normal XLA processing, as the replication agent automatically repositions
bookmarks as appropriate on standby databases. If you attempt to use a bookmark
that was open before the database changed to active status, you receive an error
indicating that the state of the bookmark was reset and that it has been
repositioned. While it is permissible to continue reading from the repositioned
bookmark in this scenario, you can avoid the error by closing and reopening
bookmarks.

■ It is permissible to drop the active standby pair scheme while replicated
bookmarks exist. The bookmarks of course cease to be replicated at that point, but
are not deleted. If you subsequently re-enable the active standby pair scheme,
these bookmarks are automatically added to the scheme.

■ You cannot delete replicated bookmarks as long as the replication agent is
running.

■ You can only read and acknowledge a replicated bookmark in the active database.
Each time you acknowledge a replicated bookmark, the acknowledge operation is
asynchronously replicated to the standby database.

XLA bookmarks and transaction log holds
You should be aware that when XLA is in use, there is a hold on TimesTen transaction
log files until the XLA bookmark advances. The hold prevents transaction log files
from being purged until XLA can confirm it no longer needs them. If a bookmark
becomes stuck, which can occur if an XLA application terminates unexpectedly or
disconnects without first deleting its bookmark or disabling change tracking, the log
hold persists and there may be an excessive accumulation of transaction log files. This
accumulation may result in file system space being filled.

XLA concepts

XLA and TimesTen Event Management 5-7

For information about monitoring and addressing this situation, see "Monitoring
accumulation of transaction log files" in Oracle TimesTen In-Memory Database Operations
Guide.

About XLA data types
Table 5–1 shows the data type mapping between internal SQL data types and XLA
data types before release 7.0 and since release 7.0. For more information about
TimesTen data types, see "Data Types" in Oracle TimesTen In-Memory Database SQL
Reference.

Table 5–1 XLA data type mapping

Internal SQL data type XLA data type

TT_CHAR TTXLA_CHAR_TT

TT_VARCHAR TTXLA_VARCHAR_TT

TT_NCHAR TTXLA_NCHAR_TT

TT_NVARCHAR TTXLA_NVARCHAR_TT

CHAR TTXLA_CHAR

NCHAR TTXLA_NCHAR

VARCHAR2 TTXLA_VARCHAR

NVARCHAR2 TTXLA_NVARCHAR

TT_TINYINT TTXLA_TINYINT

TT_SMALLINT TTXLA_SMALLINT

TT_INTEGER TTXLA_INTEGER

TT_BIGINT TTXLA_BIGINT

BINARY_FLOAT TTXLA_BINARY_FLOAT

BINARY_DOUBLE TTXLA_BINARY_DOUBLE

NUMBER TTXLA_NUMBER

NUMBER(p,s) TTXLA_NUMBER

FLOAT TTXLA_NUMBER

TT_TIME TTXLA_TIME

TT_DATE TTXLA_DATE_TT

TT_TIMESTAMP TTXLA_TIMESTAMP_TT

DATE TTXLA_DATE

TIMESTAMP TTXLA_TIMESTAMP

TT_BINARY TTXLA_BINARY

TT_VARBINARY TTXLA_VARBINARY

ROWID TTXLA_ROWID

BLOB TTXLA_BLOB

CLOB TTXLA_CLOB

NCLOB TTXLA_NCLOB

XLA concepts

5-8 Oracle TimesTen In-Memory Database C Developer's Guide

XLA offers functions to convert between internal SQL data types and external
programmatic data types. For example, you can use ttXlaNumberToCString to convert
NUMBER columns to character strings. TimesTen provides the following XLA data type
conversion functions:

■ ttXlaDateToODBCCType

■ ttXlaDecimalToCString

■ ttXlaNumberToCString

■ ttXlaNumberToDouble

■ ttXlaNumberToBigInt

■ ttXlaNumberToInt

■ ttXlaNumberToSmallInt

■ ttXlaNumberToTinyInt

■ ttXlaNumberToUInt

■ ttXlaOraDateToODBCTimeStamp

■ ttXlaOraTimeStampToODBCTimeStamp

■ ttXlaRowidToCString

■ ttXlaTimeToODBCCType

■ ttXlaTimeStampToODBCCType

Access control impact on XLA
Access control impacts XLA as follows:

■ Any XLA functionality, such as the following, requires the system privilege XLA:

– Connecting to TimesTen (which also requires the CREATE SESSION privilege) as
an XLA reader, such as by the ttXlaPersistOpen C function

– Executing any other XLA-related TimesTen C functions, documented in
Chapter 9, "XLA Reference"

– Executing any XLA-related TimesTen built-in procedures

The procedures ttXlaBookmarkCreate, ttXlaBookmarkDelete,
ttXlaSubscribe, and ttXlaUnsubscribe are documented in "Built-In
Procedures" in Oracle TimesTen In-Memory Database Reference.

■ A user with the XLA privilege has capabilities equivalent to the SELECT ANY TABLE,
SELECT ANY VIEW, and SELECT ANY SEQUENCE system privileges, and can capture
DDL statement records that occur in the database. Note that as a result, the user
can obtain information about database objects that he or she has not otherwise
been granted access to.

XLA limitations
Be aware of the following limitations when you use TimesTen XLA:

■ XLA is available on all platforms supported by TimesTen. However, XLA does not
support data transfer between different platforms.

■ XLA support for LOBs is limited. See "Specifying which tables to monitor for
updates" on page 5-11 for information.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-9

■ XLA does not support applications linked with a driver manager library or the
client/server library. (The TimesTen driver manager supplied with the TimesTen
Classic Quick Start does support XLA but is not fully supported itself. See the note
regarding this driver manager in "Considerations for linking with an ODBC driver
manager" on page 1-2.)

■ An XLA reader cannot subscribe to a table that uses in-memory column-based
compression.

■ For autorefresh cache groups, the change-tracking trigger on Oracle Database does
not have column-level resolution. (To have that would be very expensive.)
Therefore, the autorefresh feature updates all the columns in the row, and XLA can
only report that all the columns have changed, even if data did not actually change
in all columns.

XLA sample application
The TimesTen Classic Quick Start provides the xlaSimple sample application showing
how to use many of the XLA functions described in this chapter. See "TimesTen Quick
Start and sample applications" on page 1-5.

Most of this chapter, including the sample code shown in "Writing an XLA
event-handler application" starting immediately below, is based on the xlaSimple
application. For this application, a table MYDATA is created in the APPUSER schema.
While you are logged in as APPUSER, you make updates to the table. While you are
logged in as XLAUSER, the xlaSimple application reports on the updates.

To run the application, execute xlaSimple at one command prompt. You are prompted
for the password of XLAUSER (determined when the sample database is created). Start
ttIsql at a separate command prompt, connecting to the TimesTen sample database
as APPUSER. You are prompted for the password of APPUSER (also determined when the
sample database is created).

At the ttIsql command prompt you can enter DML statements to alter the table. Then
you can view the XLA output in the xlaSimple window.

Writing an XLA event-handler application
This section describes the general procedures for writing an XLA application that
detects and reports changes to selected tables in a database. With the possible
exception of "Inspecting column data" on page 5-17, the procedures described in this
section are applicable to most XLA applications.

The following procedures are described:

■ Obtaining a database connection handle

■ Initializing XLA and obtaining an XLA handle

■ Specifying which tables to monitor for updates

■ Retrieving update records from the transaction log

■ Inspecting record headers and locating row addresses

■ Inspecting column data

■ Handling XLA errors

■ Dropping a table that has an XLA bookmark

■ Deleting bookmarks

Writing an XLA event-handler application

5-10 Oracle TimesTen In-Memory Database C Developer's Guide

■ Terminating an XLA application

The example code in this section is based on the xlaSimple sample application.

XLA functions mentioned here are documented in Chapter 9, "XLA Reference".

Obtaining a database connection handle
As with every ODBC application, an XLA application must initialize ODBC, obtain an
environment handle (henv), and obtain a connection handle (hdbc) to communicate
with the specific database.

Initialize the environment and connection handles:

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;

Pass the address of henv to the SQLAllocEnv ODBC function to allocate an
environment handle:

rc = SQLAllocEnv(&henv);

Pass the address of hdbc to the SQLAllocConnect ODBC function to allocate a
connection handle for the database:

rc = SQLAllocConnect(henv, &hdbc);

Call the SQLDriverConnect ODBC function to connect to the database specified by the
connection string (connStr), which in this example is passed from the command line:

static char connstr[CONN_STR_LEN];
...
rc = SQLDriverConnect(hdbc, NULL, (SQLCHAR*)connstr, SQL_NTS, NULL, 0,
 NULL, SQL_DRIVER_COMPLETE);

Call the SQLSetConnectOption ODBC function to turn autocommit off:

rc = SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

Initializing XLA and obtaining an XLA handle
After initializing ODBC and obtaining an environment and connection handle as
described in the preceding section, "Obtaining a database connection handle", you can
initialize XLA and obtain an XLA handle to access the transaction log. Create only one
XLA handle per ODBC connection. If your application uses multiple XLA reader

Important: In addition to files noted in "TimesTen include files" on
page 2-8, an XLA application must include tt_xla.h.

Note: To simplify the code examples, routine error checking code for
each function call has been omitted. See "Handling XLA errors" on
page 5-28 for information on error handling.

Note: After an ODBC connection handle is opened for use by an
XLA application, the ODBC handle cannot be used for ODBC
operations until the corresponding XLA handle is closed by calling
ttXlaClose.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-11

threads (each connected to its own XLA bookmark), create a separate XLA handle and
ODBC connection for each thread.

This section describes how to initialize XLA. Before initializing XLA, initialize a
bookmark. Then initialize an XLA handle as type ttXlaHandle_h:

unsigned char bookmarkName [32];
...
strcpy((char*)bookmarkName, "xlaSimple");
...
ttXlaHandle_h xla_handle = NULL;

Pass bookmarkName and the address of xla_handle to the ttXlaPersistOpen function
to obtain an XLA handle:

rc = ttXlaPersistOpen(hdbc, bookmarkName, XLACREAT, &xla_handle);

The XLACREAT option is used to create a new non-replicated bookmark. Alternatively,
use the XLAREPL option to create a replicated bookmark. In either case, the operation
fails if the bookmark already exists.

To use a bookmark that already exists, call ttXlaPersistOpen with the XLAREUSE
option, as shown in the following example.

#include <tt_errCode.h> /* TimesTen Native Error codes */
...
 if (native_error == 907) { /* tt_ErrKeyExists */
 rc = ttXlaPersistOpen(hdbc, bookmarkName, XLAREUSE, &xla_handle);
 ...
 }

If ttXlaPersistOpen is given invalid parameters, or the application was unable to
allocate memory for the handle, the return code is SQL_INVALID_HANDLE. In this
situation, ttXlaError cannot be used to detect this or any further errors.

If ttXlaPersistOpen fails but still creates a handle, the handle must be closed to
prevent memory leaks.

Specifying which tables to monitor for updates
After initializing XLA and obtaining an XLA handle as described in the preceding
section, "Initializing XLA and obtaining an XLA handle", you can specify which tables
or materialized views you want to monitor for update events.

You can determine which tables a bookmark is subscribed to by querying the
SYS.XLASUBSCRIPTIONS table. You can also use SYS.XLASUBSCRIPTIONS to determine
which bookmarks have subscribed to a specific table.

The ttXlaNextUpdate and ttXlaNextUpdateWait functions retrieve XLA records
associated with DDL events. DDL XLA records are available to any XLA bookmark.
DDL events include CREATAB, DROPTAB, CREAIND, DROPIND, CREATVIEW, DROPVIEW,
CREATSEQ, DROPSEQ, CREATSYN, DROPSYN, ADDCOLS, DRPCOLS, and TRUNCATE transactions.
See "ttXlaUpdateDesc_t" on page 9-65 for information about these event types.

The ttXlaTableStatus function subscribes the current bookmark to updates to the
specified table. Or it determines whether the current bookmark is already monitoring
DML records associated with the table.

Call the ttXlaTableByName function to obtain both the system and user identifiers for a
named table or materialized view. Then call the ttXlaTableStatus function to enable
XLA to monitor changes to the table or materialized view.

Writing an XLA event-handler application

5-12 Oracle TimesTen In-Memory Database C Developer's Guide

Example 5–2 Specifying a table to monitor for updates

This example tracks changes to the MYDATA table.

#define TABLE_OWNER "APPUSER"
#define TABLE_NAME "MYDATA"
...
SQLUBIGINT SYSTEM_TABLE_ID = 0;
...
SQLUBIGINT userID;

rc = ttXlaTableByName(xla_handle, TABLE_OWNER, TABLE_NAME,
 &SYSTEM_TABLE_ID, &userID);

When you have the table identifiers, you can use the ttXlaTableStatus function to
enable XLA update tracking to detect changes to the MYDATA table. Setting the
newstatus parameter to a nonzero value results in XLA tracking changes made to the
specified table.

SQLINTEGER oldstatus;
SQLINTEGER newstatus = 1;
...
rc = ttXlaTableStatus(xla_handle, SYSTEM_TABLE_ID, 0,
 &oldstatus, &newstatus);

The oldstatus parameter is output to indicate the status of the table at the time of the
call.

At any time, you can use ttXlaTableStatus to return the current XLA status of a table
by leaving newstatus null and returning only oldstatus. For example:

rc = ttXlaTableStatus(xla_handle, SYSTEM_TABLE_ID, 0,
 &oldstatus, NULL);
...
if (oldstatus != 0)
 printf("XLA is currently tracking changes to table %s.%s\n",
 TABLE_OWNER, TABLE_NAME);
else
 printf("XLA is not tracking changes to table %s.%s\n",
 TABLE_OWNER, TABLE_NAME);

Retrieving update records from the transaction log
Once you have specified which tables to monitor for updates, you can call the
ttXlaNextUpdate or ttXlaNextUpdateWait function to return a batch of records from
the transaction log. Only records for committed transactions are returned. They are
returned in the order in which they were committed. You must periodically call the
ttXlaAcknowledge function to acknowledge receipt of the transactions so that XLA can
determine which records are no longer needed and can be purged from the transaction

Note: LOB support in XLA is limited, as follows:

■ You can subscribe to tables containing LOB columns, but
information about the LOB value itself is unavailable.

■ ttXlaGetColumnInfo returns information about LOB columns.

■ Columns containing LOBs are reported as empty (zero length) or
null (if the value is actually NULL). In this way, you can tell the
difference between a null column and a non-null column.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-13

log. These functions impact the position of the application bookmark in the transaction
log, as described in "How bookmarks work" on page 5-4. Also see "ttLogHolds" in
Oracle TimesTen In-Memory Database Reference for related information. That TimesTen
built-in procedure returns information about transaction log holds.

Each update record in a transaction returned by ttXlaNextUpdate begins with an
update header described by the ttXlaUpdateDesc_t structure. This update header
contains a flag indicating if the record is the first in the transaction (TT_UPDFIRST) or
the last commit record (TT_UPDCOMMIT). The update header also identifies the table
affected by the update. Following the update header are zero to two rows of data that
describe the update made to that table in the database.

Figure 5–5 that follows shows a call to ttXlaNextUpdate that returns a transaction
consisting of four update records from the transaction log. Receipt of the returned
transaction is acknowledged by calling ttXlaAcknowledge, which resets the bookmark.

Figure 5–5 Update records

Example 5–3 Retrieving update records from the transaction log

The xlaSimple application continues to monitor our table for updates until stopped by
the user.

Before calling ttXlaNextUpdateWait, the example initializes a pointer to the buffer to
hold the returned ttXlaUpdateDesc_t records (arry) and a variable to hold the actual
number of returned records (records). Because the example calls
ttXlaNextUpdateWait, it also specifies the number of seconds to wait (FETCH_WAIT_
SECS) if no records are found in the transaction log buffer.

Next, call ttXlaNextUpdateWait, passing these values to obtain a batch of
ttXlaUpdateDesc_t records in arry. Then process each record in arry by passing it to
the HandleChange() function described in Example 5–4 on page 5-16. After all records
are processed, call ttXlaAcknowledge to reset the bookmark position.

#define FETCH_WAIT_SECS 5
...

Note: The ttXlaAcknowledge function is an expensive operation and
should be used only as necessary.

Note: This example is simplified for clarity. An actual XLA
application would likely read records for multiple transactions before
calling ttXlaAcknowledge.

Transaction Log

ttXlaNextUpdate ttXlaAcknowledge

Update records for a transaction

Update
Header

Data

Update
Header

Data

Update
Header

Data

Update
Header

Data

TT_UPDCOMMITTT_UPDFIRST

Writing an XLA event-handler application

5-14 Oracle TimesTen In-Memory Database C Developer's Guide

SQLINTEGER records;
ttXlaUpdateDesc_t** arry;
int j;

while (!StopRequested()) {

 /* Get a batch of update records */
 rc = ttXlaNextUpdateWait(xla_handle, &arry, 100,
 &records, FETCH_WAIT_SECS);
 if (rc != SQL_SUCCESS {
 /* See "Handling XLA errors" on page 5-28 */
 }

 /* Process the records */
 for(j=0; j < records; j++){
 ttXlaUpdateDesc_t* p;
 p = arry[j];
 HandleChange(p); /* Described in the next section */
 }

 /* After each batch, Acknowledge updates to reset bookmark.*/
 rc = ttXlaAcknowledge(xla_handle);
 if (rc != SQL_SUCCESS {
 /* See "Handling XLA errors" on page 5-28 */
 }
} /* end while !StopRequested() */

The actual number of records returned by ttXlaNextUpdate or ttXlaNextUpdateWait,
as indicated by the nreturned output parameter of those functions, may be less than
the value of the maxrecords parameter. Figure 5–6 shows an example where
maxrecords is 10, the transaction log contains transaction AT that is made up of seven
records, and transaction BT that is made up of three records. In this case, both
transactions are returned in the same batch and both maxrecords and nreturned
values are 10. However, the next three transactions in the log are CT with 11 records, DT
with two records, and ET with two records. Because the commit record for the DT
transaction appears before the CT commit record, the next call to ttXlaNextUpdate
returns the two records for the DT transaction and the value of nreturned is 2. In the
next call to ttXlaNextUpdate, XLA detects that the total records for the CT transaction
exceeds maxrecords, so it returns the records for this transaction in two batches. The
first batch contains the first 10 records for CT (nreturned = 10). The second batch
contains the last CT record and the two records for the ET transaction, assuming no
commit record for a transaction following ET is detected within the next seven records.

See "ttXlaNextUpdate" on page 9-22 and "ttXlaNextUpdateWait" on page 9-24 for
details of the parameters of these functions.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-15

Figure 5–6 Records retrieved when maxrecords=10

XLA reads records from either a memory buffer or transaction log files on the file
system, as described in "How XLA reads records from the transaction log" on page 5-2.
To minimize latency, records from the memory buffer are returned as soon as they are
available, while records not in the buffer are returned only if the buffer is empty. This
design enables XLA applications to see changes as soon as the changes are made and
with minimal latency. The trade-off is that there may be times when fewer changes are
returned than the number requested by the ttXlaNextUpdate or ttXlaNextUpdateWait
maxrecords parameter.

Inspecting record headers and locating row addresses
Now that there is an array of update records where the type of operation each record
represents is known, the returned row data can be inspected.

Each record returned by the ttXlaNextUpdate or ttXlaNextUpdateWait function
begins with an ttXlaUpdateDesc_t header that describes the following:

■ The table on which the operation was performed

■ Whether the record is the first or last (commit) record in the transaction

Note: For optimal throughput, XLA applications should make the
"fetch" and "process record" procedures asynchronous. For example,
you can create one thread to fetch and store the records and one or
more other threads to process the stored records.

‘nret ur ned ’ = 1 0

‘m axreco rds’ reco rds = 10

‘n ret ur ned ’ = 2

Second call t o ttXlaNext Upd ate()
returns DT transaction

First call t o
tt Xl aNextUpdate() returns
both AT and BT transact ions

Third call t o ttXlaNext Up date()
ret urns first 10 records of the
CT t ransacti on

Fourth call to t tXlaNextUpdate()
ret urns t he l ast record of the
CT t ransacti on and the
ET trans action

Transaction Log

Initial Read log
record identifier

Current Read log
record identifier

AT
1

AT
2

AT
3

AT
4

B T
1

B T
2

B T
3

AT
5

AT
6

AT
7

CT
1

CT
3

CT
4

C T
5

DT
1

CT
2

DT
2

CT
6

CT
7

CT
8

CT
9

CT
10

CT
11

ET
1

ET
2

BT1 BT2 AT1BT3 AT2 AT3 AT4 AT6 AT7AT5}
DT

1
DT

2}

CT1 CT2 CT4CT3 CT5 CT6 CT7 CT9 CT10CT8}
‘nret ur ned ’ = 1 0

Current Read log
record identifier

CT
11

ET
1

ET
2

Current Read log
record identifier

Current Read log
record identifier

‘n ret ur ned ’ = 3

}

Writing an XLA event-handler application

5-16 Oracle TimesTen In-Memory Database C Developer's Guide

■ The type of operation it represents

■ The length of the returned row data, if any

■ Which columns in the row were updated, if any

Figure 5–7 shows one of the update records in the transaction log.

Figure 5–7 Address of row data returned in an XLA update record

The ttXlaUpdateDesc_t header has a fixed length and, depending on the type of
operation, is followed by zero to two rows (or tuples) from the database. You can
locate the address of the first returned row by obtaining the address of the
ttXlaUpdateDesc_t header and adding it to sizeof(ttXlaUpdateDesc_t):

tup1 = (void*) ((char*) ttXlaUpdateDesc_t + sizeof(ttXlaUpdateDesc_t));

This is shown in Example 5–4 below.

The ttXlaUpdateDesc_t ->type field describes the type of SQL operation that
generated the update. Transaction records of type UPDATETTUP describe UPDATE
operations, so they return two rows to report the row data before and after the update.
You can locate the address of the second returned row that holds the value after the
update by adding the address of the first row in the record to its length:

if (ttXlaUpdateDesc_t->type == UPDATETUP) {
 tup2 = (void*) ((char*) tup1 + ttXlaUpdateDesc_t->tuple1);
}

This is also shown in Example 5–4.

Example 5–4 Inspecting record headers for SQL operation type

This example passes each record returned by the ttXlaNextUpdateWait function to a
HandleChange() function, which determines whether the record is related to an
INSERT, UPDATE, or CREATE VIEW operation. To keep this example simple, all other
operations are ignored.

The HandleChange() function handles each type of SQL operation differently before
calling the PrintColValues() function described in Example 5–13 on page 5-25.

void HandleChange(ttXlaUpdateDesc_t* xlaP)
{

Address of 'tuple1' row

Address of 'tuple2' row (UPDATETTUP only)

Row Data

Update Header
(ttXlaUpdateDesc_t)

Tuple2

Tuple1

First Transaction
Update Record

Transaction
Commit Record

Transaction Log

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-17

 void* tup1;
 void* tup2;

 /* First confirm that the XLA update is for the table we care about. */
 if (xlaP->sysTableID != SYSTEM_TABLE_ID)
 return ;

 /* OK, it is for the table we are monitoring. */

 /* The last record in the ttXlaUpdateDesc_t record is the "tuple2"
 * field. Immediately following this field is the first XLA record "row". */

 tup1 = (void*) ((char*) xlaP + sizeof(ttXlaUpdateDesc_t));

 switch(xlaP->type) {

 case INSERTTUP:
 printf("Inserted new row:\n");
 PrintColValues(tup1);
 break;

 case UPDATETUP:

 /* If this is an update ttXlaUpdateDesc_t, then following that is
 * the second XLA record "row".
 */

 tup2 = (void*) ((char*) tup1 + xlaP->tuple1);
 printf("Updated row:\n");
 PrintColValues(tup1);
 printf("To:\n");
 PrintColValues(tup2);
 break;

 case DELETETUP:
 printf("Deleted row:\n");
 PrintColValues(tup1);
 break;

 default:
 /* Ignore any XLA records that are not for inserts/update/delete SQL ops. */
 break;

 } /* switch (xlaP->type) */
}

Inspecting column data
As described in "Inspecting record headers and locating row addresses" on page 5-15,
zero to two rows of data may be returned in an update record after the
ttXlaUpdateDesc_t structure. For each row, the first portion of the data is the
fixed-length data, which is followed by any variable-length data, as shown in
Figure 5–8.

Writing an XLA event-handler application

5-18 Oracle TimesTen In-Memory Database C Developer's Guide

Figure 5–8 Column offsets in a row returned in an XLA update record

The procedures for inspecting column data are described in the following sections:

■ Obtaining column descriptions

■ Reading fixed-length column data

■ Reading NOT INLINE variable-length column data

■ Null-terminating returned strings

■ Converting complex data types

■ Detecting null values

■ Putting it all together: a PrintColValues() function

Obtaining column descriptions
To read the column values from the returned row, you must first know the offset of
each column in that row. The column offsets and other column metadata can be
obtained for a particular table by calling the ttXlaGetColumnInfo function, which
returns a separate ttXlaColDesc_t structure for each column in the table. You should
call the ttXlaGetColumnInfo function as part of your initialization procedure. This call
was omitted from the discussion in "Initializing XLA and obtaining an XLA handle" on
page 5-10 for simplicity.

When calling ttXlaGetColumnInfo, specify a colinfo parameter to create a pointer to
a buffer to hold the list of returned ttXlaColDesc_t structures. Use the maxcols
parameter to define the size of the buffer.

Example 5–5 Using column descriptions

The sample code from the xlaSimple application below guesses the maximum number
of returned columns (MAX_XLA_COLUMNS), which sets the size of the buffer xla_column_
defs to hold the returned ttXlaColDesc_t structures. An alternative and more precise
way to set the maxcols parameter would be to call the ttXlaGetTableInfo function
and use the value returned in ttXlaColDesc_t ->columns.

#define MAX_XLA_COLUMNS 128
...
SQLINTEGER ncols;
...

Column Offsets
 (ttXlaColDesc_t->offset + rowAddress)

Address used to locate
variable-length data

Row Data

Update Header
(ttXlaUpdateDesc_t)

Tuple

First Transaction
Update Record

Transaction
Commit Record

Transaction Log

Fixed Length Data Variable Length Data

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-19

ttXlaColDesc_t xla_column_defs[MAX_XLA_COLUMNS];
...
rc = ttXlaGetColumnInfo(xla_handle, SYSTEM_TABLE_ID, userID,
 xla_column_defs, MAX_XLA_COLUMNS, &ncols);
 if (rc != SQL_SUCCESS {
 /* See "Handling XLA errors" on page 5-28 */
}

As shown in Figure 5–9, the ttXlaGetColumnInfo function produces the following
output:

■ A list, xla_column_defs, of ttXlaColDesc_t structures into the buffer pointed to
by the ttXlaGetColumnInfo colinfo parameter

■ An nreturned value, ncols, that holds the actual number of columns returned in
the xla_column_defs buffer

Figure 5–9 ttXlaColDesc_t structures returned by ttXlaGetColumnInfo

Each ttXlaColDesc_t structure returned by ttXlaGetColumnInfo has an offset value
that describes the offset location of that column. How you use this offset value to read
the column data depends on whether the column contains fixed-length data (such as
CHAR, NCHAR, INTEGER, BINARY, DOUBLE, FLOAT, DATE, TIME, TIMESTAMP, and so on) or
variable-length data (such as VARCHAR, NVARCHAR, or VARBINARY).

Reading fixed-length column data
For fixed-length column data, the address of a column is the offset value in the
ttXlaColDesc_t structure, plus the address of the row.

Figure 5–10 Locating fixed-length data in a row

Example 5–6 Reading fixed-length column data

See Example 5–13 on page 5-25 for a complete working example of computations such
as those shown here.

ttXlaGetColumnInfo (....colinfo) buffer

Name Address CustNo Service TStamp Price

MYDATA Table

colName: 'Name'
sysColNum: 1

dataType: CHAR
offset:

etc...

colName: 'ADDRESS'
sysColNum: 2

dataType:VARCHAR2
offset:

etc...

colName: 'CUSTNO'
sysColNum: 3

dataType: NUMBER
offset:

etc...

colName: 'SERVICE'
sysColNum: 4

dataType: NCHAR
offset:

etc...

colName: 'TSTAMP'
sysColNum: 5

dataType:
TIMESTAMP

offset:
etc...

colName: 'PRICE'
sysColNum: 6

dataType: NUMBER
offset:

etc...

ttXlaColDesc_t[0] ttXlaColDesc_t[1] ttXlaColDesc_t[2] ttXlaColDesc_t[3] ttXlaColDesc_t[4] ttXlaColDesc_t[5]

CHAR DataColumn1 = (void*) ((unsigned char*)
 tup1 + ttXlaColDesc_t[0].offset);

tup1 Fixed Length Data Variable Length Data

Writing an XLA event-handler application

5-20 Oracle TimesTen In-Memory Database C Developer's Guide

The first column in the MYDATA table is of type CHAR. If you use the address of the tup1
row obtained earlier in the HandleChange() function (Example 5–4 on page 5-16) and
the offset from the first ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function (Example 5–5 on page 5-18), you can obtain the value of
the first column with computations such as the following:

char* Column1;

Column1 = ((unsigned char*) tup1 + xla_column_defs[0].offset);

The third column in the MYDATA table is of type INTEGER, so you can use the offset from
the third ttXlaColDesc_t structure to locate the value and recast it as an integer using
computations such as the following. The data is guaranteed to be aligned properly.

int Column3;

Column3 = *((int*) ((unsigned char*) tup +
 xla_column_defs[2].offset));

The fourth column in the MYDATA table is of type NCHAR, so you can use the offset from
the fourth ttXlaColDesc_t structure to locate the value and recast it as a SQLWCHAR
type, with computations such as the following:

SQLWCHAR* Column4;

Column4 = (SQLWCHAR*) ((unsigned char*) tup +
 xla_column_defs[3].offset);

Unlike the column values obtained in the above examples, Column4 points to an array
of two-byte Unicode characters. You must iterate through each element in this array to
obtain the string, as shown for the SQL_WCHAR case in Example 5–13 on page 5-25.

Other fixed-length data types can be cast to their corresponding C types. Complex
fixed-length data types, such as DATE, TIME, and DECIMAL values, are stored in an
internal TimesTen format, but can be converted by applications to their corresponding
ODBC C value using the XLA conversion functions, as described in "Converting
complex data types" on page 5-23.

Reading NOT INLINE variable-length column data
For NOT INLINE variable-length data (VARCHAR, NVARCHAR, and VARBINARY), the data
located at ttXlaColDesc_t ->offset is a four-byte offset value that points to the
location of the data in the variable-length portion of the returned row. By adding the
offset address to the offset value, you can obtain the address of the column data in the
variable-length portion of the row. The first eight bytes at this location is the length of
the data, followed by the actual data. For variable-length data, the ttXlaColDesc_t
->size value is the maximum allowable column size. Figure 5–11 shows how to locate
NOT INLINE variable-length data in a row.

Note: Strings returned by XLA are not null-terminated. See
"Null-terminating returned strings" on page 5-22.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-21

Figure 5–11 Locating NOT INLINE variable-length data in a row

Example 5–7 Reading NOT INLINE variable-length column data

See Example 5–13, "Complete PrintColValues() function" for a complete working
example of computations such as those shown here.

Continuing with our example, the second column in the returned row (tup1) is of type
VARCHAR. To locate the variable-length data in the row, first locate the value at the
column's ttXlaColDesc_t ->offset in the fixed-length portion of the row, as shown
in Figure 5–11 above. The value at this address is the four-byte offset of the data in the
variable-length portion of the row (VarOffset). Next, obtain a pointer to the beginning
of the variable-length column data (DataLength) by adding the VarOffset offset value
to the address of VarOffset. The first eight bytes at the DataLength location is the
length of the data. The next byte after DataLength is the beginning of the actual data
(Column2).

void* VarOffset; /* offset of data */
long* DataLength; /* length of data */
char* Column2; /* pointer to data */

VarOffset = (void*) ((unsigned char*) tup1 +
 xla_column_defs[1].offset);
/*
 * If column is out-of-line, pColVal points to an offset
 * else column is inline so pColVal points directly to the string length.
 */

if (xla_column_defs[1].flags & TT_COLOUTOFLINE)
 DataLength = (long*)((char*)VarOffset + *((int*)VarOffset));
else
 DataLength = (long*)VarOffset;
Column2 = (char*)(DataLength+1);

VARBINARY types are handled in a manner similar to VARCHAR types. If Column2 were an
NVARCHAR type, you could initialize it as a SQLWCHAR, get the value as shown in the
above VARCHAR case, then iterate through the Column2 array, as shown for the NCHAR
value, CharBuf, in Example 5–13 on page 5-25.

Note: In the example, DataLength is type long, which is a 64-bit
(eight-byte) type on UNIX-based 64-bit systems. On Windows 64-bit
systems, where long is a four-byte type, the eight-byte type __int64
would be used instead.

Variable Length Data

Data
Length VARCHAR Data

DataLength = (int*)((char*)VarOffset + *((int*)VarOffset))

tup1

VarOffset = (void*) ((unsigned char*)
 tup1+ ttXlaColDesc_t[1].offset);

Column2 = (char*)(DataLength + 1);

Fixed Length Data

Writing an XLA event-handler application

5-22 Oracle TimesTen In-Memory Database C Developer's Guide

Null-terminating returned strings
Strings returned from record row data are not terminated with a null character. You
can null-terminate a string by copying it into a buffer and adding a null character, '\0',
after the last character in the string.

The procedures for null-terminating fixed-length and variable-length strings are
slightly different. The procedure for null-terminating fixed-length strings is described
in Example 5–8. Example 5–9 that follows describes the procedure for null-terminating
variable-length strings of a known size. Example 5–10 then describes the procedure for
strings of an unknown size.

Example 5–8 Null-terminating fixed-length strings

See Example 5–13 on page 5-25 for a complete working example of computations such
as those shown here.

To null-terminate the fixed-length CHAR(10) Column1 string returned in Example 5–6
on page 5-19, establish a buffer large enough to hold the string plus null character.
Next, obtain the size of the string from ttXlaColDesc_t ->size, copy the string into
the buffer, and null-terminate the end of the string, using computations such as the
following. You can now use the contents of the buffer. In this example, the string is
printed:

char buffer[10+1];
int size;

size = xla_column_defs[0].size;
memcpy(buffer, Column1, size);
buffer[size] = '\0';

printf(" Row %s is %s\n", ((unsigned char*) xla_column_defs[0].colName), buffer);

Null-terminating a variable-length string is similar to the procedure for fixed-length
strings, only the size of the string is the value located at the beginning of the
variable-length data offset, as described in "Reading NOT INLINE variable-length
column data" on page 5-20.

Example 5–9 Null-terminating variable-length strings of known size

(See Example 5–13 on page 5-25 for a complete working example of computations such
as those shown here.)

If the Column2 string obtained in Example 5–7 on page 5-21 is a VARCHAR(32), establish
a buffer large enough to hold the string plus null character. Use the value located at
the DataLength offset to determine the size of the string, using computations such as
the following:

char buffer[32+1];

memcpy(buffer, Column2, *DataLength);
buffer[*DataLength] = '\0';

printf(" Row %s is %s\n", ((unsigned char*) xla_column_defs[1].colName), buffer);

If you are writing general purpose code to read all data types, you cannot make any
assumptions about the size of a returned string. For strings of an unknown size,
statically allocate a buffer large enough to hold the majority of returned strings. If a
returned string is larger than the buffer, dynamically allocate the correct size buffer, as
shown in Example 5–10.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-23

Example 5–10 Null-terminating variable-length strings of unknown size

If the Column2 string obtained in Example 5–7 on page 5-21 is of an unknown size, you
might statically allocate a buffer large enough to hold a string of up to 10000
characters. Then check that the DataLength value obtained at the beginning of the
variable-length data offset is less than the size of the buffer. If the string is larger than
the buffer, use malloc() to dynamically allocate the buffer to the correct size.

#define STACKBUFSIZE 10000
char VarStackBuf[STACKBUFSIZE];
char* buffer;

buffer = (*DataLength+1 <= STACKBUFSIZE) ? VarStackBuf :
 malloc(*DataLength+1);

memcpy(buffer,Column2,*DataLength);
buffer[*DataLength] = '\0';

printf(" Row %s is %s\n", ((unsigned char*) xla_column_defs[1].colName), buffer);
if (buffer != VarStackBuf) /* buffer was allocated */
 free(buffer);

Converting complex data types
Values for complex data types such as TT_DATE and TT_TIME are stored in an internal
TimesTen format that can be converted into corresponding ODBC C types using the
XLA type conversion functions. Table 5–2 contains descriptions of these conversion
functions.

Table 5–2 XLA data type conversion functions

Function Converts

ttXlaDateToODBCCType Internal TT_DATE value to an ODBC C value

ttXlaTimeToODBCCType Internal TT_TIME value to an ODBC C value

ttXlaTimeStampToODBCCType Internal TT_TIMESTAMP value to an ODBC C
value

ttXlaDecimalToCString Internal TTXLA_DECIMAL_TT value to a string
value

ttXlaDateToODBCCType Internal TTXLA_DATE_TT value to an ODBC C
value

ttXlaDecimalToCString Internal TTXLA_DECIMAL_TT value to a
character string

ttXlaNumberToBigInt Internal TTXLA_NUMBER value to a TT_BIGINT
value

ttXlaNumberToCString Internal TTXLA_NUMBER value to a character
string

ttXlaNumberToDouble Internal TTXLA_NUMBER value to a long floating
point number value

ttXlaNumberToInt Internal TTXLA_NUMBER value to an integer

ttXlaNumberToSmallInt Internal TTXLA_NUMBER value to a TT_SMALLINT
value

ttXlaNumberToTinyInt Internal TTXLA_NUMBER value to a TT_TINYINT
value

ttXlaNumberToUInt Internal TTXLA_NUMBER value to an unsigned
integer

Writing an XLA event-handler application

5-24 Oracle TimesTen In-Memory Database C Developer's Guide

These conversion functions can be used on row data in the ttXlaUpdateDesc_t types:
UPDATETUP, INSERTTUP and DELETETUP.

Example 5–11 Converting complex data types

(See Example 5–13 on page 5-25 for a complete working example of computations such
as those shown here.)

If you use the address of the tup1 row obtained earlier in the HandleChange() function
(Example 5–4 on page 5-16) and the offset from the fifth ttXlaColDesc_t structure
returned by the ttXlaGetColumnInfo function (Example 5–5 on page 5-18), you can
locate a column value of type TIMESTAMP. Use the ttXlaTimeStampToODBCCType
function to convert the column data from TimesTen format and store the converted
time value in an ODBC TIMESTAMP_STRUCT. You could use code such as the following
to print the values:

void* Column5;
TIMESTAMP_STRUCT timestamp;

Column5 = (void*) ((unsigned char*) tup1 +
 xla_column_defs[4].offset);

rc = ttXlaTimeStampToODBCCType(Column5, ×tamp);
if (rc != SQL_SUCCESS) {
 /* See "Handling XLA errors" on page 5-28 */
}
printf(" %s: %04d-%02d-%02d %02d:%02d:%02d.%06d\n",
 ((unsigned char*) xla_column_defs[i].colName),
 timestamp.year,timestamp.month, timestamp.day,
 timestamp.hour,timestamp.minute,timestamp.second,
 timestamp.fraction);

If you use the address of the tup1 row obtained earlier in the HandleChange() function
(Example 5–4) and the offset from the sixth ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function (Example 5–5), you can locate a column value of type
DECIMAL. Use the ttXlaDecimalToCString function to convert the column data from
TimesTen decimal format to a string. You could use code such as the following to print
the values.

char decimalData[50];

Column6 = (float*) ((unsigned char*) tup +
 xla_column_defs[5].offset);
precision = (short) (xla_column_defs[5].precision);
scale = (short) (xla_column_defs[5].scale);

ttXlaOraDateToODBCTimeStamp Internal TTXLA_DATE value to an ODBC
timestamp

ttXlaOraTimeStampToODBCTimeStamp Internal TTXLA_TIMESTAMP value to an ODBC
timestamp

ttXlaTimeToODBCCType Internal TTXLA_TIME value to an ODBC C
value

ttXlaTimeStampToODBCCType Internal TTXLA_TIMESTAMP_TT value to an
ODBC C value

Table 5–2 (Cont.) XLA data type conversion functions

Function Converts

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-25

rc = ttXlaDecimalToCString(Column6, (char*)&decimalData,
 precision, scale);
if (rc != SQL_SUCCESS) {
 /* See "Handling XLA errors" on page 5-28 */
}

printf(" %s: %s\n", ((unsigned char*) xla_column_defs[5].colName), decimalData);

Detecting null values
For nullable table columns, ttXlaColDesc_t ->nullOffset points to the column's null
byte in the record. This field is 0 (zero) if the column is not nullable, or greater than 0 if
the column can be null.

For nullable columns (ttXlaColDesc_t ->nullOffset > 0), to determine if the column
is null, add the null offset to the address of ttXlaUpdate_t* and check the (unsigned
char) byte there to see if it is 1 (NULL) or 0 (NOT NULL).

Example 5–12 Detecting null values

Check whether Column6 is null as follows:

if (xla_column_defs[5].nullOffset != 0) {
 if (*((unsigned char*) tup +
 xla_column_defs[5].nullOffset) == 1) {
 printf("Column6 is NULL\n");
 }
}

Putting it all together: a PrintColValues() function
Example 5–13 shows a function that checks the ttXlaColDesc_t ->dataType of each
column to locate columns with a data type of CHAR, NCHAR, INTEGER, TIMESTAMP,
DECIMAL, and VARCHAR, then prints the values. This is just one possible approach.
Another option, for example, would be to check the ttXlaColDesc_t ->ColName
values to locate specific columns by name.

The PrintColValues() function handles CHAR and VARCHAR strings up to 50 bytes in
length. NCHAR characters must belong to the ASCII character set.

Example 5–13 Complete PrintColValues() function

The function in this example first checks ttXlaColDesc_t ->nullOffset to see if the
column is null. Next it checks the ttXlaColDesc_t ->dataType field to determine the
data type for the column. For simple fixed-length data (CHAR, NCHAR, and INTEGER), it
casts the value located at ttXlaColDesc_t ->offset to the appropriate C type. The
complex data types, TIMESTAMP and DECIMAL, are converted from their TimesTen
formats to ODBC C values using the ttXlaTimeStampToODBCCType and
ttXlaDecimalToCString functions.

For variable-length data (VARCHAR), the function locates the data in the variable-length
portion of the row, as described in "Handling XLA errors" on page 5-28.

void PrintColValues(void* tup)
{

 SQLRETURN rc ;
 SQLINTEGER native_error;

 void* pColVal;

Writing an XLA event-handler application

5-26 Oracle TimesTen In-Memory Database C Developer's Guide

 char buffer[50+1]; /* No strings over 50 bytes */
 int i;

 for (i = 0; i < ncols; i++)
 {

 if (xla_column_defs[i].nullOffset != 0) { /* See if column is NULL */
 /* this means col could be NULL */
 if (*((unsigned char*) tup + xla_column_defs[i].nullOffset) == 1) {
 /* this means that value is SQL NULL */
 printf(" %s: NULL\n",
 ((unsigned char*) xla_column_defs[i].colName));
 continue; /* Skip rest and re-loop */
 }
 }

 /* Fixed-length data types: */
 /* For INTEGER, recast as int */

 if (xla_column_defs[i].dataType == TTXLA_INTEGER) {

 printf(" %s: %d\n",
 ((unsigned char*) xla_column_defs[i].colName),
 ((int) ((unsigned char*) tup + xla_column_defs[i].offset)));
 }

 /* For CHAR, just get value and null-terminate string */

 else if (xla_column_defs[i].dataType == TTXLA_CHAR_TT
 || xla_column_defs[i].dataType == TTXLA_CHAR) {

 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);

 memcpy(buffer, pColVal, xla_column_defs[i].size);
 buffer[xla_column_defs[i].size] = '\0';

 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName), buffer);
 }

 /* For NCHAR, recast as SQLWCHAR.
 NCHAR strings must be parsed one character at a time */

 else if (xla_column_defs[i].dataType == TTXLA_NCHAR_TT
 || xla_column_defs[i].dataType == TTXLA_NCHAR) {
 SQLUINTEGER j;
 SQLWCHAR* CharBuf;

 CharBuf = (SQLWCHAR*) ((unsigned char*) tup + xla_column_defs[i].offset);

 printf(" %s: ", ((unsigned char*) xla_column_defs[i].colName));

 for (j = 0; j < xla_column_defs[i].size / 2; j++)
 {
 printf("%c", CharBuf[j]);
 }
 printf("\n");
 }
 /* Variable-length data types:
 For VARCHAR, locate value at its variable-length offset and null-terminate.
 VARBINARY types are handled in a similar manner.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-27

 For NVARCHARs, initialize 'var_data' as a SQLWCHAR, get the value as shown
 below, then iterate through 'var_len' as shown for NCHAR above */

 else if (xla_column_defs[i].dataType == TTXLA_VARCHAR
 || xla_column_defs[i].dataType == TTXLA_VARCHAR_TT) {

 long* var_len;
 char* var_data;
 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);
 /*
 * If column is out-of-line, pColVal points to an offset
 * else column is inline so pColVal points directly to the string length.
 */
 if (xla_column_defs[i].flags & TT_COLOUTOFLINE)
 var_len = (long*)((char*)pColVal + *((int*)pColVal));
 else
 var_len = (long*)pColVal;

 var_data = (char*)(var_len+1);

 memcpy(buffer,var_data,*var_len);
 buffer[*var_len] = '\0';

 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName), buffer);
 }
 /* Complex data types require conversion by the XLA conversion methods
 Read and convert a TimesTen TIMESTAMP value.
 DATE and TIME types are handled in a similar manner */

 else if (xla_column_defs[i].dataType == TTXLA_TIMESTAMP
 || xla_column_defs[i].dataType == TTXLA_TIMESTAMP_TT) {

 TIMESTAMP_STRUCT timestamp;
 char* convFunc;

 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);

 if (xla_column_defs[i].dataType == TTXLA_TIMESTAMP_TT) {
 rc = ttXlaTimeStampToODBCCType(pColVal, ×tamp);
 convFunc="ttXlaTimeStampToODBCCType";
 }
 else {
 rc = ttXlaOraTimeStampToODBCTimeStamp(pColVal, ×tamp);
 convFunc="ttXlaOraTimeStampToODBCTimeStamp";
 }

 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "%s() returns an error <%d>: %s",
 convFunc, rc, err_buf);
 TerminateGracefully(1);
 }

 printf(" %s: %04d-%02d-%02d %02d:%02d:%02d.%06d\n",
 ((unsigned char*) xla_column_defs[i].colName),
 timestamp.year,timestamp.month, timestamp.day,
 timestamp.hour,timestamp.minute,timestamp.second,
 timestamp.fraction);
 }

Writing an XLA event-handler application

5-28 Oracle TimesTen In-Memory Database C Developer's Guide

 /* Read and convert a TimesTen DECIMAL value to a string. */

 else if (xla_column_defs[i].dataType == TTXLA_DECIMAL_TT) {

 char decimalData[50];
 short precision, scale;
 pColVal = (float*) ((unsigned char*) tup + xla_column_defs[i].offset);
 precision = (short) (xla_column_defs[i].precision);
 scale = (short) (xla_column_defs[i].scale);

 rc = ttXlaDecimalToCString(pColVal, (char*)&decimalData, precision, scale);
 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "ttXlaDecimalToCString() returns an error <%d>: %s",
 rc, err_buf);
 TerminateGracefully(1);
 }

 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName),
 decimalData);
 }
 else if (xla_column_defs[i].dataType == TTXLA_NUMBER) {
 char numbuf[32];
 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);

 rc=ttXlaNumberToCString(xla_handle, pColVal, numbuf, sizeof(numbuf));
 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "ttXlaNumberToDouble() returns an error <%d>: %s",
 rc, err_buf);
 TerminateGracefully(1);
 }
 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName), numbuf);
 }

 } /* End FOR loop */
}

Handling XLA errors
Each time you call an ODBC or XLA function, you must check the return code for any
errors. If the error is fatal, terminate the program as described in "Terminating an XLA
application" on page 5-32.

An error can be checked using either its error code (error number) or tt_Err string.
For the complete list of TimesTen error codes and error strings, see the timesten_
home/install/include/tt_errCode.h file. For a description of each message, see "List
of errors and warnings" in Oracle TimesTen In-Memory Database Error Messages and
SNMP Traps.

Notes:

■ In the example, var_len is type long, which is a 64-bit (eight-byte)
type on UNIX-based 64-bit systems. On Windows 64-bit systems,
where long is a four-byte type, __int64 would be used instead.

■ See "Terminating an XLA application" on page 5-32 for a sample
TerminateGracefully() method.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-29

If the return code from an XLA function is not SQL_SUCCESS, use the ttXlaError
function to retrieve XLA-specific errors on the XLA handle.

Also see "Checking for errors" on page 2-35.

Example 5–14 Checking the return code and calling the error-handling function

This example, after calling the XLA function ttXlaTableByName, checks to see if the
return code is SQL_SUCCESS. If not, it calls an XLA error-handling function followed by
a function to terminate the application. See "Terminating an XLA application" on
page 5-32.

rc = ttXlaTableByName(xla_handle, TABLE_OWNER, TABLE_NAME,
 &SYSTEM_TABLE_ID, &userID);
if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr,
 "ttXlaTableByName() returns an error <%d>: %s", rc, err_buf);
 TerminateGracefully(1);
}

Your XLA error-handling function should repeatedly call ttXlaError until all XLA
errors are read from the error stack, proceeding until the return code from ttXlaError
is SQL_NO_DATA_FOUND. If you must reread the errors, you can call the
ttXlaErrorRestart function to reset the error stack pointer to the first error. (SQL_NO_
DATA_FOUND is defined in sqlext.h, which is included by timesten.h.)

The error stack is cleared after a call to any XLA function other than ttXlaError or
ttXlaErrorRestart.

Depending on your application, you may be required to act on specific XLA errors,
including those shown in Table 5–3.

Note: In cases where ttXlaPersistOpen cannot create an XLA
handle, it returns the error code SQL_INVALID_HANDLE. Because no
XLA handle has been created, ttXlaError cannot be used to detect
this error. SQL_INVALID_HANDLE is returned only in cases where no
memory can be allocated or the parameters provided are invalid.

Table 5–3 XLA errors and codes

Error Code

tt_ErrDbAllocFailed 802 (transient)

tt_ErrCondLockConflict 6001 (transient)

tt_ErrDeadlockVictim 6002 (transient)

tt_ErrTimeoutVictim 6003 (transient)

tt_ErrPermSpaceExhausted 6220 (transient)

tt_ErrTempSpaceExhausted 6221 (transient)

tt_ErrBadXlaRecord 8024

tt_ErrXlaBookmarkUsed 8029

tt_ErrXlaLsnBad 8031

tt_ErrXlaNoSQL 8034

Writing an XLA event-handler application

5-30 Oracle TimesTen In-Memory Database C Developer's Guide

Example 5–15 Calling the handleXLAerror() function

This example shows handleXLAerror(), the error function for the xlaSimple
application program.

void handleXLAerror(SQLRETURN rc, ttXlaHandle_h xlaHandle,
 SQLCHAR* err_msg, SQLINTEGER* native_error)
{
 SQLINTEGER retLen;
 SQLINTEGER code;
 char* err_msg_ptr;

 /* initialize return codes */
 rc = SQL_ERROR;
 *native_error = -1;
 err_msg[0] = '\0';

 err_msg_ptr = (char*)err_msg;

 while (1)
 {
 int rc = ttXlaError(xlaHandle, &code, err_msg_ptr,
 ERR_BUF_LEN - (err_msg_ptr - (char*)err_msg), &retLen);
 if (rc == SQL_NO_DATA_FOUND)
 {
 break;
 }
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {
 sprintf(err_msg_ptr,
 "*** Error fetching error message via ttXlaError(); rc=<%d>.",rc) ;
 break;
 }
 rc = SQL_ERROR;
 *native_error = code ;
 /* append any other error messages */
 err_msg_ptr += retLen;
 }
}

Dropping a table that has an XLA bookmark
Before you can drop a table that is subscribed to by an XLA bookmark, you must
unsubscribe the table from the bookmark. There are several ways to unsubscribe a
table from a bookmark, depending on whether the application is connected to the
bookmark.

tt_ErrXlaNoLogging 8035

tt_ErrXlaParameter 8036

tt_ErrXlaTableDiff 8037

tt_ErrXlaTableSystem 8038

tt_ErrXlaTupleMismatch 8046

tt_ErrXlaDedicatedConnection 8047

Table 5–3 (Cont.) XLA errors and codes

Error Code

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-31

If XLA applications are connected and using bookmarks that are tracking the table to
be dropped, then perform the following tasks.

1. Each XLA application must call the ttXlaTableStatus function and set the
newstatus parameter to 0. This unsubscribes the table from the XLA bookmark in
use by the application.

2. Drop the table.

If XLA applications are not connected and using bookmarks associated with the table
to be dropped, then perform the following tasks:

1. Query the SYS.XLASUBSCRIPTIONS system table to see which bookmarks have
subscribed to the table you want to drop.

2. Use the ttXlaUnsubscribe built-in procedure to unsubscribe the table from each
XLA bookmark with a subscription to the table.

3. Drop the table.

Deleting bookmarks also unsubscribes the table from the XLA bookmarks. See the next
section, "Deleting bookmarks".

Deleting bookmarks
You may want to delete bookmarks when you terminate an application or drop a table.
Use the ttXlaDeleteBookmark function to delete XLA bookmarks if the application is
connected and using the bookmarks.

As described in "About XLA bookmarks" on page 5-4, a bookmark may be reused by a
new connection after its previous connection has closed. The new connection can
resume reading from the transaction log from where the previous connection stopped.
Note the following:

■ If you delete the bookmark, subsequent checkpoint operations such as the ttCkpt
or ttCkptBlocking built-in procedure free the file system space associated with
any unread update records in the transaction log.

■ If you do not delete the bookmark, when an XLA application connects and reuses
the bookmark, all unread update records that have accumulated since the program
terminated are read by the application. This is because the update records are
persistent in the TimesTen transaction log. However, the danger is that these
unread records can build up in the transaction log files and consume a lot of file
system space.

Writing an XLA event-handler application

5-32 Oracle TimesTen In-Memory Database C Developer's Guide

Example 5–16 Deleting bookmarks

The InitHandler() function in the xlaSimple application deletes the XLA bookmark
upon exit, as shown in the following example.

if (deleteBookmark) {
 ttXlaDeleteBookmark(xla_handle);
 if (rc != SQL_SUCCESS) {
 /* See "Handling XLA errors" on page 5-28 */
 }
 xla_handle = NULL; /* Deleting the bookmark has the */
 /* effect of disconnecting from XLA. */
}
/* Close the XLA connection as described in the next section,
"Terminating an XLA application". */

If the application is not connected and using the XLA bookmark, you can delete the
bookmark either of the following ways:

■ Close the bookmark and call the ttXlaBookmarkDelete built-in procedure.

■ Close the bookmark and use the ttIsql command xladeletebookmark.

Terminating an XLA application
When your XLA application has finished reading from the transaction log, gracefully
exit by rolling back uncommitted transactions and freeing all handles. There are two
approaches to this:

■ Unsubscribe from all tables and materialized views, delete the XLA bookmark,
and disconnect from the database.

Or:

■ Disconnect from the database but keep the XLA bookmark in place. When you
reconnect at a later time, you can resume reading records from the bookmark.

For the first approach, complete the following steps.

Notes:

■ You cannot delete replicated bookmarks while the replication
agent is running.

■ When you reuse a bookmark, you start with the Initial Read log
record identifier in the transaction log file. To ensure that a
connection that reuses a bookmark begins reading where the prior
connection left off, the prior connection should call
ttXlaAcknowledge to reset the bookmark position to the currently
accessed record before disconnecting.

■ See "ttLogHolds" in Oracle TimesTen In-Memory Database Reference
for related information. That TimesTen built-in procedure returns
information about transaction log holds.

■ Be aware that ttCkpt and ttCkptBlocking require ADMIN
privilege. TimesTen built-in procedures and any required
privileges are documented in "Built-In Procedures" in Oracle
TimesTen In-Memory Database Reference.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-33

1. Call ttXlaTableStatus to unsubscribe from each table and materialized view,
setting the newstatus parameter to 0.

2. Call ttXlaDeleteBookmark to delete the bookmark. See "Deleting bookmarks" on
page 5-31.

3. Call ttXlaClose to disconnect the XLA handle.

4. Call the ODBC function SQLTransact with the SQL_ROLLBACK setting to roll back
any uncommitted transaction.

5. Call the ODBC function SQLDisconnect to disconnect from the TimesTen database.

6. Call the ODBC function SQLFreeConnect to free memory allocated for the ODBC
connection handle.

7. Call the ODBC function SQLFreeEnv to free the ODBC environment handle.

For the second approach, maintaining the bookmark, skip the first two steps but
complete the remaining steps.

Be aware that resources should be freed in reverse order of allocation. For example, the
ODBC environment handle is allocated before the ODBC connection handle, so for
cleanup free the connection handle before the environment handle.

Example 5–17 Terminating an XLA application

This example shows TerminateGracefully(), the termination function in the
xlaSimple application.

void TerminateGracefully(int status)
{

 SQLRETURN rc;
 SQLINTEGER native_error ;
 SQLINTEGER oldstatus;
 SQLINTEGER newstatus = 0;

 /* If the table has been subscribed to through XLA, unsubscribe it. */

 if (SYSTEM_TABLE_ID != 0) {
 rc = ttXlaTableStatus(xla_handle, SYSTEM_TABLE_ID, 0,
 &oldstatus, &newstatus);
 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "Error when unsubscribing from "TABLE_OWNER"."TABLE_NAME
 " table <%d>: %s", rc, err_buf);
 }
 SYSTEM_TABLE_ID = 0;
 }

 /* Close the XLA connection. */

 if (xla_handle != NULL) {
 rc = ttXlaClose(xla_handle);
 if (rc != SQL_SUCCESS) {
 fprintf(stderr, "Error when disconnecting from XLA:<%d>", rc);
 }
 xla_handle = NULL;
 }

 if (hstmt != SQL_NULL_HSTMT) {
 rc = SQLFreeStmt(hstmt, SQL_DROP);

Using XLA as a replication mechanism

5-34 Oracle TimesTen In-Memory Database C Developer's Guide

 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when freeing statement handle:\n%s\n", err_buf);
 }
 hstmt = SQL_NULL_HSTMT;
 }

 /* Disconnect from TimesTen entirely. */

 if (hdbc != SQL_NULL_HDBC) {
 rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when rolling back transaction:\n%s\n", err_buf);
 }

 rc = SQLDisconnect(hdbc);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when disconnecting from TimesTen:\n%s\n", err_buf);
 }

 rc = SQLFreeConnect(hdbc);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when freeing connection handle:\n%s\n", err_buf);
 }
 hdbc = SQL_NULL_HDBC;
 }

 if (henv != SQL_NULL_HENV) {
 rc = SQLFreeEnv(henv);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when freeing environment handle:\n%s\n", err_buf);
 }
 henv = SQL_NULL_HENV;
 }
 exit(status);
}

Using XLA as a replication mechanism
TimesTen replication as described in Oracle TimesTen In-Memory Database Replication
Guide is sufficient for most customer needs; however, it is also possible to use XLA
functions to replicate updates from one database to another. Implementing your own
replication scheme on top of XLA in this way is fairly complicated, but can be
considered if TimesTen replication is not feasible for some reason.

In this section, the sending database is referred to as the master and the receiving
database as the subscriber. To use XLA to replicate changes between databases, first
use the ttXlaPersistOpen function to initialize the XLA handles, as described in
"Initializing XLA and obtaining an XLA handle" on page 5-10.

Note: You cannot use XLA to replicate updates between different
platforms.

Using XLA as a replication mechanism

XLA and TimesTen Event Management 5-35

After the XLA handles have been initialized for the databases, take the steps described
in the following sections:

■ Checking table compatibility between databases

■ Replicating updates between databases

■ Handling timeout and deadlock errors

■ Checking for update conflicts

XLA functions mentioned here are documented in Chapter 9, "XLA Reference".

Checking table compatibility between databases
Before transferring update records from one database to the other, verify that the
tables in the master and subscriber databases are compatible with one another:

■ You can check the descriptions of a table and its columns by using the
ttXlaTableByName, ttXlaGetTableInfo, and ttXlaGetColumnInfo functions. See
"Checking table and column descriptions" immediately below.

■ You can check the table and column versions of a specific XLA record by using the
ttXlaVersionTableInfo and ttXlaVersionColumnInfo functions. See "Checking
table and column versions", following shortly.

Checking table and column descriptions
Use the ttXlaTableByName, ttXlaGetTableInfo, and ttXlaGetColumnInfo functions to
return ttXlaTblDesc_t and ttXlaColDesc_t descriptions for each table you want to
replicate. These operations are described in "Specifying which tables to monitor for
updates" on page 5-11 and "Obtaining column descriptions" on page 5-18. You can
then pass these descriptions to the ttXlaTableCheck function. The output parameter,
compat, specifies whether the tables are compatible. A value of 1 indicates
compatibility and 0 indicates non-compatibility. The following example demonstrates
this.

Example 5–18 Checking table and column descriptions for compatibility

SQLINTEGER compat;
ttXlaTblDesc_t table;
ttXlaColDesc_t columns[20];

rc = ttXlaTableCheck(xla_handle, &table, columns, &compat);
if (compat) {
 /* Go ahead and start replicating */
}
else {
 /* Not compatible or some other error occurred */
}

Checking table and column versions
Use the ttXlaVersionTableInfo and ttXlaVersionColumnInfo functions to retrieve
the table structure information of an update record at the time the record was
generated.

The following example verifies that the table associated with the pXlaRecord update
record from the pCmd source is compatible with the hXlaTarget target.

Using XLA as a replication mechanism

5-36 Oracle TimesTen In-Memory Database C Developer's Guide

Example 5–19 Checking table and column versions for compatibility

BOOL CUTLCheckXlaTable (SCOMMAND* pCmd,
 ttXlaHandle_h hXlaTarget,
 const ttXlaUpdateDesc_t* pXlaRecord)
{
 /* locals */
 ttXlaTblVerDesc_t tblVerDescSource;
 ttXlaColDesc_t colDescSource [255];
 SQLINTEGER iColsReturned = 0;
 SQLINTEGER iCompatible = 0;
 SQLRETURN rc;

 /* only certain update record types should be checked */
 if (pXlaRecord->type == INSERTTUP ||
 pXlaRecord->type == UPDATETUP ||
 pXlaRecord->type == DELETETUP)
 {
 /* Get source table description associated with this record */
 /* from the time it was generated. */
 rc = ttXlaVersionTableInfo (pCmd->pCtx->con->hXla,
 (ttXlaUpdateDesc_t*) pXlaRecord, &tblVerDescSource);

 if (rc == SQL_SUCCESS)
 {
 /* Get the source column descriptors for this table */
 /* at the time the record was generated. */
 rc = ttXlaVersionColumnInfo (pCmd->pCtx->con->hXla,
 (ttXlaUpdateDesc_t*) pXlaRecord,
 colDescSource, 255, &iColsReturned);

 if (rc == SQL_SUCCESS)
 {
 /* Check compatibility. */
 rc = ttXlaTableCheck (hXlaTarget,
 &tblVerDescSource.tblDesc, colDescSource,
 &iCompatible);
 }
 }
 }
}

Replicating updates between databases
When you are ready to begin replication, use the ttXlaNextUpdate or
ttXlaNextUpdateWait function to obtain batches of update records from the master
database and ttXlaApply to write the records to the subscriber database. The
following example shows this.

Example 5–20 Replicating updates between databases

int j;
ttXlaHandle_h h;
SQLINTEGER records;
ttXlaUpdateDesc_t** arry;

 do {
 /* get up to 15 updates */
 rc = ttXlaNextUpdate(h,&arry,15,&records);
 if (rc != SQL_SUCCESS) {

Using XLA as a replication mechanism

XLA and TimesTen Event Management 5-37

 /* See "Handling XLA errors" on page 5-28 */
 }

 /* print number of updates returned */
 printf("Records returned by ttXlaNextUpdate : %d\n",records);

 /* apply the received updates */
 for (j=0;j < records;j++) {
 ttXlaUpdateDesc_t* p;

 p = arry[j];
 rc = ttXlaApply(h, p, 0);
 if (rc != SQL_SUCCESS){
 /* See "Handling XLA errors" on page 5-28 and */
 /* "Handling timeout and deadlock errors" below */
 }
 }

 /* print number of updates applied */
 printf("Records applied successfully : %d\n",records);

 } while (records != 0);

Handling timeout and deadlock errors
The return code from ttXlaApply indicates whether the update was successful. If the
return code is not SQL_SUCCESS, then the update may have encountered a transient
problem, such as a deadlock or timeout, or a persistent problem. You can use
ttXlaError to check for errors, such as tt_ErrDeadlockVictim or tt_
ErrTimeoutVictim. Recovery from transient errors is possible by rolling back the
replicated transaction and reexecuting it. Other errors may be persistent, such as those
for duplicate key violations or key not found. Such errors are likely to repeat if the
transaction is reexecuted.

If ttXlaApply returns a timeout or deadlock error before applying the commit record
(ttXlaUpdateDesc_t ->flags = TT_UPDCOMMIT) for a transaction to the subscriber
database, you can do either of the following:

■ Use ttXlaRollback to roll back the transaction.

■ Use ttXlaCommit to commit the changes in the records that have been applied to
the subscriber database.

Important:

■ To ensure that you are sending XLA updates between databases
that have compatible versions of XLA records, use the
ttXlaGetVersion and ttXlaVersionCompare functions on all
databases.

■ If you are packaging data to be replicated across a network, or
anywhere between processes not using the same memory space,
you must ensure that the ttXlaUpdateDesc_t data structure is
shipped in its entirely. Its length is indicated by ttXlaUpdateDesc_
t ->header.length, where the header element is a
ttXlaNodeHdr_t structure that in turn has a length element. Also
see "ttXlaUpdateDesc_t" on page 9-65 and "ttXlaNodeHdr_t" on
page 9-64.

Using XLA as a replication mechanism

5-38 Oracle TimesTen In-Memory Database C Developer's Guide

To enable recovery from transient errors, you should keep track of transaction
boundaries on the master database and store the records associated with the
transaction currently being applied to the subscriber in a user buffer, so you can
reapply them if necessary. The transaction boundaries can be found by checking the
flags member of the ttXlaUpdateDesc_t structure. Consider the following example. If
this condition is true, then the record was committed:

(pXlaRecords [iRecordIndex]->flags & TT_UPDCOMMIT)

If you encounter an error that requires you to roll back a transaction, call
ttXlaRollback to roll back the records applied to the subscriber database. Then call
ttXlaApply to reapply all the rolled back records stored in your buffer.

Checking for update conflicts
If you have applications making simultaneous updates to both your master and
subscriber databases, you may encounter update conflicts. Update conflicts are
described in detail in "Resolving Replication Conflicts" in Oracle TimesTen In-Memory
Database Replication Guide.

To check for update conflicts in XLA, you can set the ttXlaApply test parameter to
compare the old row value (ttXlaUpdateDesc_t ->tuple1) in each record of type
UPDATETUP with the existing row in the subscriber database. If the old row value in the
update description does not match the corresponding row in the subscriber database,
an update conflict is probably the reason. In this case, ttXlaApply does not apply the
update to the subscriber and returns an sb_ErrXlaTupleMismatch error.

Replicating updates to a non-TimesTen database
If you are replicating changes to a non-TimesTen database, you can use the
ttXlaGenerateSQL function to convert the record data into a SQL statement that can be
read by the non-TimesTen subscriber. For update and delete records,
ttXlaGenerateSQL requires a primary key or a unique index on a non-nullable column
to generate the correct SQL.

The ttXlaGenerateSQL function accepts a ttXlaUpdateDesc_t record as a parameter
and outputs its SQL equivalent into a buffer.

Note: An alternative to buffering the transaction records in a user
buffer is to call ttXlaGetLSN to get the transaction log record identifier
of each commit record in the transaction log, as described in
"Changing the location of a bookmark" on page 5-39. If you encounter
an error that requires you to roll back a transaction, you can call
ttXlaSetLSN to reset the bookmark to the beginning of the transaction
in the transaction log and reapply the records. However, the extra
overhead associated with the ttXlaGetLSN function may make this a
less efficient option.

Important: The SQL returned by ttXlaGenerateSQL uses TimesTen
SQL syntax. The SQL statement may fail on a non-TimesTen
subscriber if there are SQL syntax incompatibilities between the two
systems. In addition, the SQL statement is encoded in the connection
character set associated with the XLA handle.

Other XLA features

XLA and TimesTen Event Management 5-39

Example 5–21 Replicating updates to a non-TimesTen database

This example translates a record (record) and stores the resulting SQL output in a
200-character buffer (buffer). The actual size of the buffer is returned in the
actualLength parameter.

ttXlaUpdateDesc_t record;
char buffer[200];
SQLINTEGER actualLength;

rc = ttXlaGenerateSQL(xla_handle, &record, buffer, 200, &actualLength);

if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 if (native_error == 8034) { // tt_ErrXlaNoSQL
 printf("Unable to translate to SQL\n");
 }
}

Other XLA features
The following sections describe how to use additional XLA features:

■ Changing the location of a bookmark

■ Passing application context

Changing the location of a bookmark
At any point during a connection, you can call the ttXlaGetLSN function to query the
system for the Current Read log record identifier. If you must replay a set of updates,
you can use the ttXlaSetLSN function to reset the Current Read log record identifier to
any valid value larger than the Initial Read log record identifier set by the last
ttXlaAcknowledge call. In this context, "larger" only applies if the log record identifiers
being compared are from records in the same transaction. If that is not the case, then
any log record identifier from a transaction that committed before another transaction
is the "smaller" log record identifier, even if the numeric value of the log record
identifier is larger. The only way to enable the Initial Read log record identifier to
move forward to the Current Read log record identifier is by calling the
ttXlaAcknowledge function, which indicates that you have received and processed all
transaction log records up to the Current Read log record identifier. Once you have
called ttXlaAcknowledge on a particular bookmark, you can no longer access
transaction log records with a log record identifier smaller than the Current Read log
record identifier.

Passing application context
Although it is not an XLA function, writers to the transaction log can call the
ttApplicationContext built-in procedure to pass binary data associated with an
application to XLA readers. This procedure specifies a single VARBINARY value that is
returned in the next update record produced by the current transaction. XLA readers
can obtain a pointer to this value as described in "Reading NOT INLINE
variable-length column data" on page 5-20.

Other XLA features

5-40 Oracle TimesTen In-Memory Database C Developer's Guide

To set the context:

1. Declare two program variables for invoking the ttApplicationContext procedure.
The variable contextBuffer is a CHAR array that is declared to be large enough to
accommodate the longest application context that you use. The variable
contextBufferLen is of type INTEGER and is used to convey the actual length of the
context on each call to ttApplicationContext.

2. Initialize a statement handle with a compiled invocation of the
ttApplicationContext built-in procedure:

rc = SQLPrepare(hstmt, "call ttApplicationContext(?)", SQL_NTS);
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_VARBINARY, 0, 0, &contextBuffer,
 sizeof contextBuffer, &contextBufferLen);

3. When the application context must be set later, copy the context value into
contextBuffer, assign the length of the context to contextBufferLen, and invoke
ttApplicationContext with the call:

rc = SQLExecute(hstmt);

The transaction is then committed with the usual call on SQLTransact:

rc = SQLTransact(NULL, hdbc, SQL_COMMIT);

Note: A context value is applied to only one update record. After it
has been applied it is reset. If the same context value should be
applied to multiple updates, then it must be reestablished before each
update.

Note: If a SQL operation fails after a call to ttApplicationContext,
the context may not be stored in the next SQL operation and therefore
may be lost. If this happens, the application can call
ttApplicationContext again before the next SQL operation.

6

Distributed Transaction Processing: XA 6-1

6Distributed Transaction Processing: XA

This chapter describes the implementation of the X/Open XA standard for TimesTen
Classic.

The TimesTen implementation of the XA interfaces is intended for use by transaction
managers in distributed transaction processing (DTP) environments. You can use these
interfaces to write a new transaction manager or to adapt an existing transaction
manager, such as Oracle Tuxedo, to operate with TimesTen resource managers.

The purpose of this chapter is to provide information specific to the TimesTen
implementation of XA and is intended to be used with the following documents:

■ X/Open CAE Specification, Distributed Transaction Processing: The XA Specification,
published by the The Open Group (http://www.opengroup.org)

■ Tuxedo documentation, available through the following location:

https://www.oracle.com/middleware/technologies/tuxedo.html

■ WebLogic documentation, available through the following location:

https://www.oracle.com/middleware/technologies/weblogic.html

This chapter includes the following topics:

■ Overview of XA

■ Using XA in TimesTen

■ XA support through the Windows ODBC driver manager

■ Configuring Tuxedo to use TimesTen XA

Overview of XA
This section provides a brief overview of the following XA concepts:

■ X/Open DTP model

Important:

■ The TimesTen XA implementation does not work with TimesTen
Cache. The start of any XA transaction fails if the cache agent is
running.

■ You cannot execute an XA transaction if replication is enabled.

■ Do not execute DDL statements within an XA transaction.

Overview of XA

6-2 Oracle TimesTen In-Memory Database C Developer's Guide

■ Two-phase commit

X/Open DTP model
Figure 6–1 that follows illustrates the interfaces defined by the X/Open DTP model.

Figure 6–1 Distributed transaction processing model

The TX interface is what applications use to communicate with a transaction manager.
The figure shows an application communicating global transactions to the transaction
manager. In the DTP model, the transaction manager breaks each global transaction
down into multiple branches and distributes them to separate resource managers for
service. It uses the XA interface to coordinate each transaction branch with the
appropriate resource manager.

In the context of TimesTen XA, the resource managers can be a collection of TimesTen
databases, or databases in combination with other commercial databases that support
XA.

Global transaction control provided by the TX and XA interfaces is distinct from local
transaction control provided by the native ODBC interface. It is generally best to
maintain separate connections for local and global transactions. Applications can
obtain a connection handle to a TimesTen resource manager in order to initiate both
local and global transactions over the same connection. See "TimesTen tt_xa_context
function to obtain ODBC handle from XA connection" on page 6-5 for more
information.

Two-phase commit
In an XA implementation, the transaction manager commits the distributed branches
of a global transaction by using a two-phase commit protocol.

1. In phase one, the transaction manager directs each resource manager to prepare to
commit, which is to verify and guarantee it can commit its respective branch of the

Transaction
 Log Buffer

Transaction Manager (TM)Resource Managers (RMs)

XA or JTA Interface

Transaction
Branches

Application
Program (AP)

TX or proprietary
transaction interface

Native interface
(ODBC or JDBC)

Global
transactions

Using XA in TimesTen

Distributed Transaction Processing: XA 6-3

global transaction. If a resource manager cannot commit its branch, the transaction
manager rolls back the entire transaction in phase two.

2. In phase two, the transaction manager either directs each resource manager to
commit its branch or, if a resource manager reported it was unable to commit in
phase one, rolls back the global transaction.

Note the following optimizations:

■ If a global transaction is determined by the transaction manager to have involved
only one branch, it skips phase one and commits the transaction in phase two.

■ If a global transaction branch is read-only, where it does not generate any
transaction log records, the transaction manager commits the branch in phase one
and skips phase two for that branch.

Using XA in TimesTen
The implementation of XA for TimesTen Classic provides an API that is consistent
with the API specified in Distributed Transaction Processing: The XA Specification. This
section describes what you should know when using the TimesTen implementation of
XA, covering the following topics:

■ TimesTen database requirements for XA

■ Global transaction recovery in TimesTen

■ Considerations in using standard XA functions with TimesTen

■ TimesTen tt_xa_context function to obtain ODBC handle from XA connection

■ Considerations in calling ODBC functions over XA connections in TimesTen

■ XA resource manager switch

■ XA error handling in TimesTen

TimesTen database requirements for XA
To guarantee global transaction consistency, TimesTen XA transaction branches must
be durable. The TimesTen implementation of the xa_prepare(), xa_rollback(), and
xa_commit() functions log their actions to the file system, regardless of the value set in
the DurableCommits general connection attribute or by the ttDurableCommit built-in
procedure. (The behavior is equivalent to what occurs with a setting of
DurableCommits=1. See "DurableCommits" in Oracle TimesTen In-Memory Database
Reference for related information.) If you must recover from a failure, both the resource
manager and the TimesTen transaction manager have a consistent view of which
transaction branches were active in a prepared state at the time of failure.

Global transaction recovery in TimesTen
When a database is loaded from the file system to recover after a failure or unexpected
termination, any global transactions that were prepared but not committed are left
pending, or in doubt. Normal processing is not enabled until the disposition of all
in-doubt transactions has been resolved.

Note: The transaction manager considers the global transaction
committed if and only if all branches successfully commit.

Using XA in TimesTen

6-4 Oracle TimesTen In-Memory Database C Developer's Guide

After connection and recovery are complete, TimesTen checks for in-doubt
transactions. If there are no in-doubt transactions, operation proceeds as normal. If
there are in-doubt transactions, other connections may be created, but virtually all
operations are prohibited on those connections until the in-doubt transactions are
resolved. Any other ODBC or JDBC calls result in the following error:

Error 11035 - "In-doubt transactions awaiting resolution in recovery must be
resolved first"

The list of in-doubt transactions can be retrieved through the XA implementation of
xa_recover(), then dealt with through the XA call xa_commit(), xa_rollback(), or
xa_forget(), as appropriate. After all of the in-doubt transactions are cleared,
operation proceeds normally.

This scheme should be adequate for systems that operate strictly under control of the
transaction manager, since the first thing the transaction manager should do after
connect is to call xa_recover().

If the transaction manager is unavailable or cannot resolve an in-doubt transaction,
you can use the ttXactAdmin utility -HCommit or -HAbort option to independently
commit or abort the individual transaction branches. Be aware, however, that these
ttXactAdmin options require ADMIN privilege. See "ttXactAdmin" in Oracle TimesTen
In-Memory Database Reference.

Considerations in using standard XA functions with TimesTen
This section describes some issues concerning the use of TimesTen XA functions,
which are of interest if you are writing your own transaction manager.

xa_open()
The xa_info string used by xa_open() should be a connection string identical to that
supplied to SQLDriverConnect, such as:

"DSN=DataStoreResource;UID=MyName"

XA limits the length of the string to 256 characters. See MAXINFOSIZE in the xa.h header
file.

The xa_open() function automatically turns off autocommit when it opens an XA
connection.

A connection opened with xa_open() must be closed with a call to xa_close().

xa_close()
The xa_info string used by xa_close() should be empty.

Transaction id (XID) parameter
XA uniquely identifies global transactions by using a transaction ID, referred to as an
XID. The XID is a required parameter for XA functions that manipulate a transaction.
Internally, TimesTen maps XIDs to its own transaction identifiers.

The XID defined by the XA standard has some of its members (such as formatID,
gtrid_length, and bqual_length) defined as type long. Historically, this could cause
problems when a 32-bit client application connected to a 64-bit server, or a 64-bit client
application connected to a 32-bit server, because long is a 32-bit integer on 32-bit
platforms and a 64-bit integer on 64-bit platforms (other than 64-bit Windows).
Because of this, TimesTen internally uses only the 32 least significant bits of those XID

Using XA in TimesTen

Distributed Transaction Processing: XA 6-5

members regardless of the platform type of client or server. TimesTen does not support
any value in those XID members that does not fit in a 32-bit integer.

TimesTen tt_xa_context function to obtain ODBC handle from XA connection
TimesTen provides the function tt_xa_context(), which enables you to acquire the
ODBC connection handle associated with an XA connection opened by xa_open().

Syntax
#include <tt_xa.h>
int tt_xa_context(int* rmid, SQLHENV* henv, SQLHDBC* hdbc);

Parameters

Return values
0: Success

1: rmid not found

-1: Invalid parameter

Example
In the following example, assume Tuxedo has used xa_open() and xa_start() to open
a connection to the database and start a transaction. To do further ODBC processing on
the connection, use the tt_xa_context() function to locate the SQLHENV and SQLHDBC
handles allocated by xa_open().

Example 6–1 Using tt_xa_context() to locate handles

do_insert()
{

 SQLHENV henv;
 SQLHDBC hdbc;
 SQLHSTMT hstmt;

 /* retrieve the handles for the current connection */
 tt_xa_context(NULL, &henv, &hdbc);

 /* now we can do our ODBC programming as usual */
 SQLAllocStmt(hdbc, &hstmt);

Parameter Type Description

rmid int The specified resource manager ID

If this is non-null, the function returns the handles
associated with the rmid value.

If the specified rmid is null, the function returns the
handles associated with the first connection on this thread.
For example, specify a null value if the connection has
been opened outside the scope of the user-written code,
where rmid is unknown. This establishes context in the
application environment.

henv out SQLHENV The environment handle associated with the current xa_
open() context

hdbc out SQLHDBC The connection handle associated with the current xa_
open() context

Using XA in TimesTen

6-6 Oracle TimesTen In-Memory Database C Developer's Guide

 SQLExecDirect(hstmt, "insert into t1 values (1)", SQL_NTS);

 SQLFreeStmt(hstmt, SQL_DROP);
}

Considerations in calling ODBC functions over XA connections in TimesTen
This section describes some TimesTen issues to be aware of when calling ODBC
functions using an ODBC handle associated with an XA connection opened by xa_
open().

Autocommit
To simplify operation and prevent possible contradictions, xa_open() automatically
turns off autocommit when it opens an XA connection.

Autocommit may subsequently be turned on or off during local transaction work, but
must be turned off before xa_start() is called to begin work on a global transaction
branch. If autocommit is on, a call to xa_start() returns the following error:

Error 11030 - "Autocommit must be turned off when working on global (XA)
transactions"

Once xa_start() has been called to begin work on a global transaction branch,
autocommit may not be turned on until such work has been completed through a call
to xa_end(). Any attempt to turn on autocommit in this case results in the same error
as above.

Local transaction COMMIT and ROLLBACK
Once work on a global transaction branch has commenced through a call to xa_
start(), attempts to perform a local commit or rollback using SQLTransact results in
the following error:

Error 11031 - "Illegal combination of local transaction and global (XA)
transaction"

Closing open cursors
Any open statement cursors must be closed using SQLFreeStmt with a value of SQL_
CLOSE before calling xa_end() to end work on a global transaction branch. Otherwise,
the following error is returned:

Error 11032 - "XA request failed due to open cursors"

XA resource manager switch
Each resource manager defines a switch in its xa.h header file that provides the
transaction manager with access to the XA functions in the resource managers. The
transaction manager never directly calls an XA interface function. Instead, it calls the
function in the switch table that, in turn, points to the appropriate function in the
resource manager. Then resource managers can be added and removed without the
requirement to recompile the applications.

In the TimesTen implementation of XA, the functions in the XA switch, xa_switch_t,
point to their respective functions defined in a TimesTen switch, tt_xa_switch.

xa_switch_t
The xa_switch_t structure defined by the XA specification is as follows:

Using XA in TimesTen

Distributed Transaction Processing: XA 6-7

/* XA Switch Data Structure */
#define RMNAMESZ 32 /* length of resource manager name, */
 /* including the null terminator */
#define MAXINFOSIZE 256 /* maximum size in bytes of xa_info strings, */
 /* including the null terminator */

struct xa_switch_t
{

 char name[RMNAMESZ]; /* name of resource manager */
 long flags; /* resource manager specific options */
 long version; /* must be 0 */

int (*xa_open_entry)(char*, int, long); /* xa_open function pointer */
int (*xa_close_entry)(char*, int, long); /* xa_close function pointer*/
int (*xa_start_entry)(XID*, int, long); /* xa_start function pointer */
int (*xa_end_entry)(XID*, int, long); /* xa_end function pointer */
int (*xa_rollback_entry)(XID*, int, long); /* xa_rollback function pointer */
int (*xa_prepare_entry)(XID*, int, long); /* xa_prepare function pointer */
int (*xa_commit_entry)(XID*, int, long); /* xa_commit function pointer */
int (*xa_recover_entry)(XID*, long, int, long); /* xa_recover function pointer*/
int (*xa_forget_entry)(XID*, int, long); /* xa_forget function pointer */
int (*xa_complete_entry)(int*, int*, int, long);/* xa_complete function pointer */
};

typedef struct xa_switch_t xa_switch_t;
/*
 * Flag definitions for the RM switch
 */
#define TMNOFLAGS 0x00000000L /* no resource manager features selected */
#define TMREGISTER 0x00000001L /* resource manager dynamically registers */
#define TMNOMIGRATE 0x00000002L /* RM does not support association migration */
#define TMUSEASYNC 0x00000004L /* RM supports asynchronous operations */

tt_xa_switch
The tt_xa_switch names the actual functions implemented by a TimesTen resource
manager. It also indicates explicitly that association migration is not supported. In
addition, dynamic registration and asynchronous operations are not supported.

struct xa_switch_t
tt_xa_switch =
{
 "TimesTen", /* name of resource manager */
 TMNOMIGRATE, /* RM does not support association migration */
 0,
 tt_xa_open,
 tt_xa_close,
 tt_xa_start,
 tt_xa_end,
 tt_xa_rollback,
 tt_xa_prepare,
 tt_xa_commit,
 tt_xa_recover,
 tt_xa_forget,
 tt_xa_complete
};

XA support through the Windows ODBC driver manager

6-8 Oracle TimesTen In-Memory Database C Developer's Guide

XA error handling in TimesTen
The XA specification has a limited and strictly defined set of errors that can be
returned from XA interface calls. The ODBC SQLError function returns XA-defined
errors along with any additional information.

The TimesTen XA-related errors begin at number 11000. Errors 11002 through 11020
correspond to the errors defined by the XA standard.

See "Warnings and Errors" in Oracle TimesTen In-Memory Database Error Messages and
SNMP Traps for the complete list of errors.

XA support through the Windows ODBC driver manager
This section discusses issues and procedures for using XA with the Windows ODBC
driver manager. (Linux or UNIX ODBC driver managers are not considered.)

Issues to consider
XA support through the ODBC driver manager requires special handling. There are
two fundamental problems:

■ The XA interface is not part of the defined ODBC interface. If the XA symbols are
directly referenced in an application, it is not possible to link with only the driver
manager library to resolve all the external references.

■ By design, the driver manager determines which driver .dll file to load at connect
time, when you call SQLConnect or SQLDriverConnect. XA dictates that the
connection should be opened through xa_open(). But the correct xa_open() entry
point cannot be located until the .dll is loaded during the connect operation itself.

Note that the driver manager objective of database portability is generally not
applicable here, since each XA implementation is essentially proprietary. The primary
benefit of driver manager support for XA-enabled applications is to enable
TimesTen-specific applications to run transparently with either the TimesTen direct
driver or the TimesTen Client/Server driver.

Linking to the TimesTen ODBC XA driver manager extension library
On Windows installations, TimesTen provides a driver manager extension library,
ttxadm181.dll, for XA functions. Applications can make XA calls directly, but must
link in the extension library.

To link with the ttxadm181.dll library, applications must include ttxadm181.lib
before odbc32.lib in their link line. For example:

Link with the ODBC driver manager
appldm.exe:appl.obj
 $(CC) /Feappldm.exe appl.obj ttxadm181.lib odbc32.lib

Configuring Tuxedo to use TimesTen XA
To configure Tuxedo to use the TimesTen resource managers, perform the following
tasks.

■ Update the $TUXDIR/udataobj/RM file

■ Build the Tuxedo transaction manager server

■ Update the GROUPS section in the UBBCONFIG file

Configuring Tuxedo to use TimesTen XA

Distributed Transaction Processing: XA 6-9

■ Compile the servers

Update the $TUXDIR/udataobj/RM file
To integrate the TimesTen XA resource manager into the Oracle Tuxedo system,
update the $TUXDIR/udataobj/RM file to identify the TimesTen resource manager, the
name of the TimesTen resource manager switch (tt_xa_switch), and the name of the
library for the resource manager.

On Linux or UNIX platforms, add the following:

TimesTen:tt_xa_switch:-Ltimesten_home/install/lib -ltten

On Windows platforms, add the following:

TimesTen;tt_xa_switch;timesten_home\install\lib\ttdv181.lib

Build the Tuxedo transaction manager server
Use the buildtms command to build a transaction manager server for the TimesTen
resource manager. Then copy the TMS_TT file created by buildtms to the $TUXDIR/bin
directory.

On Linux or UNIX platforms, the commands are the following:

buildtms -o TMS_TT -r TimesTen -v
cp TMS_TT $TUXDIR/bin

On Windows platforms, the commands are the following:

buildtms -o TMS_TT -r TimesTen -v
copy TMS_TT.exe %TUXDIR%\bin

Important: Though TimesTen XA has been demonstrated to work
with the Oracle Tuxedo transaction manager, TimesTen cannot
guarantee the operation of DTP software beyond the TimesTen
implementation of XA.

Notes:

■ The examples in this section use the direct driver. You can also use
the client/server library or driver manager library with the XA
extension library.

■ Information on configuring TimesTen for object-relational
mapping frameworks and application servers, including Oracle
WebLogic Application Server, is available in the TimesTen Classic
Quick Start. See "TimesTen Quick Start and sample applications"
on page 1-5.

Notes:

■ The timesten_home/install directory is a symbolic link to
installation_dir, the path to the TimesTen installation directory.

■ On Windows, there is only one TimesTen instance, and timesten_
home refers to installation_dir\instance.

Configuring Tuxedo to use TimesTen XA

6-10 Oracle TimesTen In-Memory Database C Developer's Guide

Update the GROUPS section in the UBBCONFIG file
For TMSNAME, specify the TMS_TT file created by the buildtms command described in
the preceding section.

TMSNAME=TMS_TT

Enter a line for each TimesTen resource manager that specifies a group name, followed
by the LMID, GRPNO, and OPENINFO parameters. Your OPENINFO string should look like
this:

OPENINFO="TimesTen:DSN=DSNname"

Where DSNname is the name of the database.

Note that on Windows, Tuxedo servers run as user SYSTEM. Add the UID general
connection attribute to the OPENINFO string to specify a user other than SYSTEM:

OPENINFO="TimesTen:DSN=DSNname;UID=user"

Do not specify a CLOSEINFO parameter for any TimesTen resource manager.

Example 6–2 shows the portions of a UBBCONFIG file used to configure two TimesTen
resource managers, GROUP1 and GROUP2.

Example 6–2 Configuring TimesTen resource managers

*RESOURCES
...
*MACHINES
...
ENGSERV LMID=simple
*GROUPS
DEFAULT: TMSNAME=TMS_TT TMSCOUNT=2
GROUP1
 LMID=simple GRPNO=1 OPENINFO="TimesTen:DSN=MyDSN1;UID=MyName"
GROUP2
 LMID=simple GRPNO=2 OPENINFO="TimesTen:DSN=MyDSN2;UID=MyName"
*SERVERS
DEFAULT:
 CLOPT="-A"
simpserv1 SRVGRP=GROUP1 SRVID=1
simpserv2 SRVGRP=GROUP2 SRVID=2

*SERVICES
TOUPPER
TOLOWER

Compile the servers
Set the CFLAGS environment variable to include the timesten_home/install/include
directory that contains the TimesTen include files. Then use the buildserver
command to construct an Oracle Tuxedo ATMI server load module.

On Linux or UNIX platforms, enter the following.

export CFLAGS=-Itimesten_home/install
buildserver -o server -f server.c -r TimesTen -s SERVICE

On Windows platforms, enter the following.

set CFLAGS=-Itimesten_home\install
buildserver -o server -f server.c -r TimesTen -s SERVICE

Configuring Tuxedo to use TimesTen XA

Distributed Transaction Processing: XA 6-11

Example 6–3 shows an example of how to use the buildclient command to construct
the client module (simpcl) and the buildserver command to construct the two server
modules described in the UBBCONFIG file in Example 6–2 above.

Example 6–3 Construct server modules

set CFLAGS=-Itimesten_home\install
buildclient -o simpcl -f simpcl.c
buildserver -v -t -o simpserv1 -f simpserv1.c -r TimesTen -s TOUPPER
buildserver -v -t -o simpserv2 -f simpserv2.c -r TimesTen -s TOLOWER

Notes:

■ The timesten_home/install directory is a symbolic link to
installation_dir, the path to the TimesTen installation directory.

■ On Windows, there is only one TimesTen instance, and timesten_
home refers to installation_dir\instance.

Configuring Tuxedo to use TimesTen XA

6-12 Oracle TimesTen In-Memory Database C Developer's Guide

7

ODBC Application Tuning 7-1

7ODBC Application Tuning

This chapter describes how to tune an ODBC application to run optimally on a
TimesTen database. See "TimesTen Database Performance Tuning" in Oracle TimesTen
In-Memory Database Operations Guide for more general tuning tips.

This chapter includes the following topics:

■ Bypass driver manager if appropriate

■ Using arrays of parameters for batch execution

■ Avoid excessive binds

■ Avoid SQLGetData

■ Avoid data type conversions

■ Bulk fetch rows of TimesTen data

■ Optimize queries

Bypass driver manager if appropriate
Applications that do not need ODBC access to database systems other than TimesTen
should omit the driver manager. This is done by linking the application directly with
the TimesTen direct or client driver, as described in "Linking options" on page 1-1. The
performance improvement is significant.

Using arrays of parameters for batch execution
You can improve performance by using groups, referred to as batches, of statement
executions in your application.

The SQLParamOptions ODBC function enables an application to specify multiple
values for the set of parameters assigned by SQLBindParameter. This is useful for
processing the same SQL statement multiple times with various parameter values. For
example, your application can specify multiple sets of values for the set of parameters
associated with an INSERT statement, and then execute the INSERT statement once to
perform all the insert operations.

TimesTen supports the use of SQLParamOptions with INSERT, UPDATE, DELETE, and
MERGE statements, but not with SELECT statements.

TimesTen recommends the following batch sizes for TimesTen Release 18.1.

In TimesTen Classic:

■ 256 for INSERT statements

Avoid excessive binds

7-2 Oracle TimesTen In-Memory Database C Developer's Guide

■ 32 for UPDATE statements

■ 32 for DELETE statements

■ 32 for MERGE statements

In TimesTen Scaleout:

■ 1024 x (number of elements in the grid) for INSERT statements

■ 32 x (number of elements in the grid) for UPDATE statements

■ 32 x (number of elements in the grid) for DELETE statements

(TimesTen Scaleout does not support MERGE statements.)

Table 7–1 provides a summary of SQLParamOptions arguments. Refer to ODBC API
reference documentation for details.

Assuming the crow value is greater than 1, the rgbValue argument of
SQLBindParameter points to an array of parameter values and the pcbValue argument
points to an array of lengths. (Also see "SQLBindParameter function" on page 2-14.)

In the TimesTen Classic Quick Start, refer to source file bulkinsert.c for a complete
working example of batching. (Also, for programming in C++ with TTClasses, see
bulktest.cpp.) See "TimesTen Quick Start and sample applications" on page 1-5.

Avoid excessive binds
The purpose of a SQLBindCol or SQLBindParameter call is to associate a type
conversion and program buffer with a data column or parameter. For a given SQL
statement, if the type conversion or memory buffer for a given data column or
parameter is not going to change over repeated executions of the statement, it is better
not to make repeated calls to SQLBindCol or SQLBindParameter. Simply prepare once
and bind once to execute many times.

Avoid SQLGetData
SQLGetData can be used for fetching data without binding columns. This can
sometimes have a negative impact on performance because applications have to issue
a SQLGetData ODBC call for every column of every row that is fetched. In contrast,

Table 7–1 SQLParamOptions arguments

Argument Type Description

hstmt SQLHSTMT Statement handle

crow SQLULEN Number of values for each parameter

pirow SQLULEN Pointer to storage for the current row number

Note: When using SQLParamOptions with the TimesTen
Client/Server driver, data-at-execution parameters are not supported.
(An application can pass the value for a parameter either in the
SQLBindParameter rgbValue buffer or with one or more calls to
SQLPutData. Parameters whose data is passed with SQLPutData are
known as data-at-execution parameters. These are commonly used to
send data for SQL_LONGVARBINARY and SQL_LONGVARCHAR parameters
and can be mixed with other parameters.)

Optimize queries

ODBC Application Tuning 7-3

using bound columns requires only one ODBC call for each fetched column. Further,
the TimesTen ODBC driver is more highly optimized for the bound columns method
of fetching data.

SQLGetData can be very useful, though, for doing piecewise fetches of data from long
character or binary columns. (This is discussed for LOBs in "Using the LOB piecewise
data interface in ODBC" on page 2-27.)

Avoid data type conversions
TimesTen instruction paths are so short that even small delays due to data conversion
can cause a relatively large percentage increase in transaction time. To avoid data type
conversions:

■ Match input argument types to expression types.

■ Match the types of output buffers to the types of the fetched values.

■ Match the connection character set to the database character set.

Bulk fetch rows of TimesTen data
TimesTen provides the TT_PREFETCH_COUNT ODBC statement option to enable an
application to fetch multiple rows of data. This feature is available for applications that
use the Read Committed isolation level. For applications that retrieve large amounts of
TimesTen data, fetching multiple rows can increase performance greatly. However,
locks are held on all rows being retrieved until the application has received all the
data, decreasing concurrency. For more information on how to use TT_PREFETCH_
COUNT, see "Prefetching multiple rows of data" on page 2-12.

Optimize queries
TimesTen provides the TT_PREFETCH_CLOSE ODBC connection option to optimize
query performance. For information on how to use this attribute, see "Optimizing
query performance" on page 2-12.

Optimize queries

7-4 Oracle TimesTen In-Memory Database C Developer's Guide

8

TimesTen Utility API 8-1

8TimesTen Utility API

The TimesTen utility library C language functions documented in this chapter provide
programmatic interfaces to some of the command line utilities documented in
"Utilities" in Oracle TimesTen In-Memory Database Reference.

Applications that use this set of C language functions must include ttutillib.h and
link with the appropriate TimesTen utility library:

■ libttutil.so on Linux and UNIX systems for direct connections

■ libttutilcs.so on Linux and UNIX systems for client/server

■ ttutil181.lib on Windows for direct connections

■ ttutilcs181.lib on Windows for client/server

Refer to "Compiling and linking applications on Linux or UNIX" on page 1-4 and
"Compiling and linking applications on Windows" on page 1-3 for additional (general)
linking information.

These functions are not supported with TimesTen Client or for Java applications. They
are supported for TimesTen ODBC applications using the direct driver. (The TimesTen
driver manager supplied with the Quick Start applications does support these
functions but is not fully supported itself. See the note regarding this driver manager
in "Considerations for linking with an ODBC driver manager" on page 1-2.)

Return codes
Unless otherwise indicated, the utility functions return these codes as defined in
ttutillib.h.

Important: Applications must call the ttUtilAllocEnv C function
before calling any other TimesTen utility library function. In addition,
applications must call the ttUtilFreeEnv C function when done using
the TimesTen utility library interface.

Code Description

TTUTIL_SUCCESS Indicates success.

TTUTIL_ERROR Indicates an error occurs.

TTUTIL_WARNING Upon success, indicates a warning has been
generated.

TTUTIL_INVALID_HANDLE Indicates an invalid utility library handle is
specified.

8-2 Oracle TimesTen In-Memory Database C Developer's Guide

Note: The application must call the ttUtilGetError C function to
retrieve all actual error or warning information.

ttBackup

TimesTen Utility API 8-3

ttBackup

8Description
Creates either a full or an incremental backup copy of the database specified by
connStr. You can back up a database either to a set of files or to a stream. You can
restore the database at a later time using either the ttRestore function or the
ttRestore utility.

Also see "ttBackup" in Oracle TimesTen In-Memory Database Reference.

8Required privilege
ADMIN

8Syntax
ttBackup (ttUtilHandle handle, const char* connStr,
 ttBackUpType type, ttBooleanType atomic,
 const char* backupDir, const char* baseName,
 ttUtFileHandle stream)

8Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database to
be backed up.

ttBackup

8-4 Oracle TimesTen In-Memory Database C Developer's Guide

type ttBackupType Specifies the type of backup to be performed.
Valid values are as follows:

■ TT_BACKUP_FILE_FULL: Performs a full file
backup to the backup path specified by the
backupDir and baseName parameters. The
resulting backup is not enabled for
incremental backup.

■ TT_BACKUP_FILE_FULL_ENABLE: Performs a
full file backup to the backup path specified
by the backupDir and baseName parameters.
The resulting backup is enabled for
incremental backup.

■ TT_BACKUP_FILE_INCREMENTAL: Performs an
incremental file backup to the backup path
specified by the backupDir and baseName
parameters, if that backup path contains an
incremental-enabled backup of the
database. Otherwise, an error is returned.

■ TT_BACKUP_FILE_INCR_OR_FULL: Performs
an incremental file backup to the backup
path specified by the backupDir and
baseName parameters of that backup path
contains an incremental-enabled backup of
the database. Otherwise, it performs a full
file backup of the database and marks it
incremental enabled.

■ TT_BACKUP_STREAM_FULL: Performs a stream
backup to the stream specified by the
stream parameter.

■ TT_BACKUP__INCREMENTAL_STOP: Does not
perform a backup. Disables incremental
backups for the backup path specified by
the backupDir and baseName parameters.
This prevents transaction log files from
accumulating for an incremental backup.

Parameter Type Description

ttBackup

TimesTen Utility API 8-5

atomic ttBooleanType Specifies the disposition of an existing backup
with the same baseName and backupDir while
the new backup is being created.

This parameter has an effect only on full file
backups when there is an existing backup with
the same baseName and backupDir. It is ignored
for incremental backups because they augment,
rather than replace, an existing backup. It is
ignored for stream backups because they write
to the given stream, ignoring the baseName and
backupDir parameters.

The following are valid values:

■ TT_FALSE: The existing backup is destroyed
before the new backup begins. If the new
backup fails to complete, neither the new,
incomplete, backup nor the existing backup
can be used to restore the database. This
option should be used only when the
database is being backed up for the first
time, when there is another backup of the
database that uses a different baseName or
backupDir, or when the application can
tolerate a window of time (typically tens of
minutes long for large databases) during
which no backup of the database exists.

■ TT_TRUE: The existing backup is destroyed
only after the new backup has completed
successfully. If the new backup fails to
complete, the old backup is retained and
can be used to restore the database. If there
is an existing backup with the same
baseName and backupDir, the use of this
option ensures that there is no window of
time during which neither the existing
backup nor the new backup is available for
restoring the database, and it ensures that
the existing backup is destroyed only if it
has been successfully superseded by the
new backup. However, it does require
enough file system space for both the
existing and new backups to reside in the
backupDir at the same time.

backupDir const char* Specifies the backup directory for file backups.
It is ignored for stream backups. Otherwise it
must be non-null.

For TT_BACKUP_INCREMENTAL_STOP, it specifies
the directory portion of the backup path that is
to be disabled.

For TT_BACKUP_INCREMENTAL_STOP or a file
backup, an error is returned if NULL is specified.

Parameter Type Description

ttBackup

8-6 Oracle TimesTen In-Memory Database C Developer's Guide

8Example
This example backs up the database for the payroll DSN into C:\backup.

ttUtilHandle utilHandle;
int rc;
rc = ttBackup (utilHandle, "DSN=payroll", TT_BACKUP_FILE_FULL,
 TT_TRUE, "c:\\backup", NULL, TTUTIL_INVALID_FILE_HANDLE);

Upon successful backup, all files are created in the C:\backup directory.

8Note
Each database supports only eight incremental-enabled backups.

8See also
ttRestore
"ttBackup" and "ttRestore" utilities in Oracle TimesTen In-Memory Database Reference

baseName const char* Specifies the file prefix for the backup files in
the backup directory specified by the backupDir
parameter for file backups.

It is ignored for stream backups.

If NULL is specified for this parameter, the file
prefix for the backup files is the file name
portion of the DataStore attribute in the ODBC
definition of the database.

For TT_BACKUP_INCREMENTAL_STOP, this
parameter specifies the base name portion of the
backup path that is to be disabled.

stream ttUtFileHandle For stream backups, this parameter specifies the
stream to which the backup is to be written.

On Linux or UNIX, it is an integer file
descriptor that can be written to by using
write(2). Pass 1 to write the backup to stdout.

On Windows, it is a handle that can be written
to using WriteFile. Pass the result of
GetStdHandle(STD_OUTPUT_HANDLE) to write the
backup to the standard output.

This parameter is ignored for file backups.

The application can pass TTUTIL_INVALID_FILE_
HANDLE for this parameter.

Parameter Type Description

ttDestroyDataStore

TimesTen Utility API 8-7

ttDestroyDataStore

8Description
Destroys a database, including all checkpoint files, transaction logs and daemon
catalog entries corresponding to the database specified by the connection string. It
does not delete the DSN itself defined in the sys.odbc.ini or user odbc.ini file on
Linux or UNIX platforms or in the Windows registry on Windows platforms.

8Required privilege
Instance administrator

8Syntax
ttDestroyDataStore (ttUtilHandle handle, const char* connStr,
 unsigned int timeout)

8Parameters

8Example
This example destroys a database defined by the payroll DSN, consisting of files
C:\dsns\payroll.ds0, C:\dsns\payroll.ds1, and several transaction log files
C:\dsns\payroll.logn.

char errBuff [256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;
...
...
rc = ttDestroyDataStore (utilHandle, "DSN=payroll", 30);
if (rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying the
connection string that describes the database to be
destroyed. All attributes in this connection string,
except the DSN and the DataStore attribute, are
ignored.

timeout unsigned int Specifies the number of times to retry before
returning to the caller. ttDestroyDataStore
continually retries the destroy operation every
second until it is successful or the timeout is
reached. This is useful in those situations where
the destroy fails due to some temporary
condition, such as when the database is in use.

No retry is performed if this parameter value is 0.

ttDestroyDataStore

8-8 Oracle TimesTen In-Memory Database C Developer's Guide

 while ((rc = ttUtilGetError (utilHandle, 0, &retCode,
 &retType, errBuff, sizeof (errBuff), NULL)) !=
 TTUTIL_NODATA)
 {
 ...
 ...
}

ttDestroyDataStoreForce

TimesTen Utility API 8-9

ttDestroyDataStoreForce

8Description
Destroys a database, including all checkpoint files, transaction logs and daemon
catalog entries corresponding to the database specified by the connection string. It
does not delete the DSN itself defined in the sys.odbc.ini or user odbc.ini file on
Linux or UNIX platforms or in the Windows registry on Windows platforms.

8Required privilege
Instance administrator

8Syntax
ttDestroyDataStoreForce (ttUtilHandle handle, const char* connstr,
 unsigned int timeout)

8Parameters

8Example
This example destroys a database defined by the payroll DSN, consisting of files
C:\dsns\payroll.ds0, C:\dsns\payroll.ds1, and several transaction log files
C:\dsns\payroll.logn.

char errBuff [256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;
...
...
rc = ttDestroyDataStoreForce (utilHandle, "DSN=payroll", 30);
if (rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying the
connection string that describes the database to be
destroyed. All attributes in this connection string,
except the DSN and the DataStore attribute, are
ignored.

timeout unsigned int Specifies the number of seconds to retry before
returning to the caller. The
ttDestroyDataStoreForce utility continually
retries the destroy operation every second until it
is successful or the timeout is reached. This is
useful when the destroy fails due to some
temporary condition, such as when the database is
in use.

No retry is performed if this parameter value is 0.

ttDestroyDataStoreForce

8-10 Oracle TimesTen In-Memory Database C Developer's Guide

else
 while ((rc = ttUtilGetError (utilHandle, 0, &retCode,
 &retType, errBuff, sizeof (errBuff), NULL)) !=
 TTUTIL_NODATA)
 {
 ...
 ...
}

ttRamGrace

TimesTen Utility API 8-11

ttRamGrace

8Description
Specifies the number of seconds the database specified by the connection string is kept
in RAM by TimesTen after the last application disconnects from the database.
TimesTen then unloads the database. This grace period can be set or reset at any time
but is only in effect if the RAM policy is TT_RAMPOL_INUSE.

8Required privilege
Instance administrator

8Syntax
ttRamGrace (ttUtilHandle handle, const char* connStr, unsigned int seconds)

8Parameters

8Example
This example sets the RAM grace period of 10 seconds for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamGrace (utilHandle, "DSN=payroll", 10);

8See also
ttRamLoad
ttRamPolicy
ttRamUnload

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database for
which the RAM grace period is set.

seconds unsigned int Specifies the number of seconds TimesTen keeps
the database in RAM after the last application
disconnects from the database. TimesTen then
unloads the database.

ttRamLoad

8-12 Oracle TimesTen In-Memory Database C Developer's Guide

ttRamLoad

8Description
Causes TimesTen to load the database specified by the connection string into the
system RAM. For a permanent database, a call to ttRamLoad is valid only when
RamPolicy is set to TT_RAMPOL_MANUAL. For a temporary database, a call to ttRamLoad
loads the database into RAM.

Refer to "ttRamPolicySet" in Oracle TimesTen In-Memory Database Reference or to
ttRamPolicy for related information.

8Required privilege
Instance administrator

8Syntax
ttRamLoad (ttUtilHandle handle, const char* connStr)

8Parameters

8Example
This example loads the database for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamLoad (utilHandle, "DSN=payroll");

8See also
ttRamGrace
ttRamPolicy
ttRamUnload

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database to
be loaded into RAM.

ttRamPolicy

TimesTen Utility API 8-13

ttRamPolicy

8Description
Defines the policy used to determine when TimesTen loads the database specified by
the connection string into the system RAM.

8Required privilege
Instance administrator

8Syntax
ttRamPolicy (ttUtilHandle handle, const char* connStr,
 ttRamPolicyType policy)

8Parameters

8Example
This example sets the RAM policy to manual for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamPolicy (utilHandle, "DSN=payroll", TT_RAMPOL_MANUAL);

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database for
which the RAM policy is to be set.

policy ttRamPolicyType Specifies the policy used to determine when
TimesTen loads the specified database into
system RAM. Valid values are the following:

■ TT_RAMPOL_ALWAYS: Specifies that the
database should always remain in RAM.

■ TT_RAMPOL_MANUAL: Specifies that the
database can be loaded into RAM explicitly
using either the ttRamLoad C function or
the ttAdmin -ramLoad command. Similarly,
the database can be unloaded from RAM
explicitly by using ttRamUnload C function
or using ttAdmin -ramUnload command.

■ TT_RAMPOL_INUSE: Specifies that the
database is to be loaded into RAM when an
application wants to connect to the
database. This RAM policy may be further
modified using the ttRamGrace C function
or using the ttAdmin -ramGrace command.

If you do not explicitly set the RAM policy for
the specified database, the default RAM policy
is TT_RAMPOL_INUSE.

Note: TT_RAMPOL_INUSE is not supported by
TimesTen Scaleout.

ttRamPolicy

8-14 Oracle TimesTen In-Memory Database C Developer's Guide

8Note
The policy cannot be set for a temporary database.

8See also
ttRamGrace
ttRamLoad
ttRamUnload

ttRamUnload

TimesTen Utility API 8-15

ttRamUnload

8Description
Causes TimesTen to unload the database specified by the connection string from the
system RAM if the TimesTen RAM policy is set to manual. For a permanent database,
this call is valid only when RAM policy is set to TT_RAMPOL_MANUAL. For a temporary
database, a call to ttRamUnload always tries to unload the database from RAM because
RAM policy cannot be set for such a database.

Refer to "ttRamPolicySet" in Oracle TimesTen In-Memory Database Reference or to
ttRamPolicy for related information.

8Required privilege
Instance administrator

8Syntax
ttRamUnload (ttUtilHandle handle, const char* connStr)

8Parameters

8Example
This example unloads the database from RAM for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamUnload (utilHandle, "DSN=payroll");

8Notes
When using this function with a temporary database, TimesTen always attempts to
unload the database.

8See also
ttRamGrace
ttRamLoad
ttRamPolicy

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string for the database to be
unloaded from RAM.

ttRepDuplicateEx

8-16 Oracle TimesTen In-Memory Database C Developer's Guide

ttRepDuplicateEx

8Description
Creates a replica of a remote database on the local system. The process is initiated from
the receiving local system. From there, a connection is made to the remote source
database to perform the duplicate operation.

8Required privilege
Requires an instance administrator on the receiving local database (where
ttRepDuplicateEx is called) and a user with ADMIN privilege on the remote source
database. Create the internal user on the remote source store as necessary.

In addition, be aware of the following requirements to execute ttRepDuplicateEx:

■ The operating system user name of the instance administrator on the receiving
local database must be the same as the operating system user name of the instance
administrator on the remote source database.

■ When ttRepDuplicateEx is called, the uid and pwd data structure elements must
specify the user name and password of the user with ADMIN privilege on the
remote source database. This user name is used to connect to the remote source
database to perform the duplicate operation.

8Syntax
ttRepDuplicateEx (ttUtilHandle handle,
 const char* destConnStr,
 const char* srcDatabase,
 const char* remoteHost,
 ttRepDuplicateExArg* arg
)
typedef struct
{
 unsigned int size; /*set to size of(ttRepDuplicateExArg) */
 unsigned int flags;
 const char* uid;
 const char* pwd;

Notes:

■ This utility has features to recover from a site failure by creating a
disaster recovery (DR) read-only subscriber as part of the active
standby pair replication scheme. See "Using a disaster recovery
subscriber in an active standby pair" in Oracle TimesTen In-Memory
Database Replication Guide for additional information.

■ If the database does not use cache groups, the following items
discussed below are not relevant: cacheuid and cachepwd data
structure elements; TT_REPDUP_NOKEEPCG, TT_REPDUP_
RECOVERINGNODE, TT_REPDUP_INITCACHEDR, and TT_REPDUP_
DEFERCACHEUPDATE flag values.

■ There are elements in the ttRepDuplicateExArg structure that is a
parameter of this utility, localIP and remoteIP, that enable you to
optionally specify which local network interface to use, which
remote network interface to use, or both.

ttRepDuplicateEx

TimesTen Utility API 8-17

 const char* pwdcrypt;
 const char* cacheuid;
 const char* cachepwd;
 const char* localHost;
 int truncListLen;
 const char** truncList;
 int dropListLen;
 const char** dropList;
 int maxkbytesPerSec;
 int remoteDaemonPort;
 int nThreads4initDR;
 const char* localIP
 const char* remoteIP
 int crsManaged;
} ttRepDuplicateExArg

8Parameters

8Struct elements
The ttRepDuplicateExArg structure contains these elements:

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

destConnStr const char* This is a null-terminated string specifying the
connection string for a local database into
which the replica of the remote database is
created.

srcDatabase const char* This is a null-terminated string specifying the
remote source database name. This name is the
last component of the database path name.

remoteHost const char* This is a null-terminated string specifying the
TCP/IP host name of the system where the
remote source database is located.

arg ttRepDuplicateExArg* This is the address of the structure containing
the desired ttRepDuplicateEx arguments. If
NULL is passed in for arg or if the value of arg
->size is invalid, TimesTen returns error
12230, "Invalid argument value", and
TTUTIL_ERROR.

Element Type Description

size unsigned int Size

This must be set up to sizeof
(ttRepDuplicateExArg).

flags unsigned int Bit-wise union of values chosen from the list in
the table of flag values

uid const char* User name of a user on the remote source
database with ADMIN privileges

This user name is used to connect to the remote
source database to perform the duplicate
operation.

ttRepDuplicateEx

8-18 Oracle TimesTen In-Memory Database C Developer's Guide

pwd const char* Password associated with the user ID

pwdcrypt const char* Encrypted password associated with the user ID

cacheuid const char* TimesTen Cache administration user ID

cachepwd const char* TimesTen Cache administration user password

localHost const char* Null-terminated string specifying the TCP/IP
host name of the local system

This element is ignored if remoteRepStart is TT_
FALSE. This explicitly identifies the local host.
This parameter can be null, which is useful if
the local host uses a nonstandard name such as
an IP address.

truncListLen int Number of elements in the truncList

truncList const char** List of non-replicated tables to truncate after
duplicate

dropListLen int Number of elements in dropList

dropList const char** List of non-replicated tables to drop after the
duplicate operation

maxkbytesPerSec int Maximum kilobytes per second

Setting this to a nonzero value specifies that the
duplicate operation should not put more than
maxkbytesPerSec kilobytes of data per second
onto the network. Setting it to 0 or a negative
number indicates that the duplicate operation
should not attempt to limit its bandwidth.

remoteDaemonPort int Remote daemon port

Setting this to 0 results in the daemon port
number for the target database being set to the
port number used for the daemon on the source
database.

This option cannot be used in duplicate
operations for databases with automatic port
configuration.

nThreads4initDR int Number of threads for initialization

For the disaster recovery subscriber, this
determines the number of threads used to
initialize the Oracle database on the disaster
recovery site.

After the TimesTen database is copied to the
disaster recovery system, the Oracle database
tables are truncated and the data from the
TimesTen Classic cache groups is copied to the
Oracle database on the disaster recovery system.

Also see the TT_REPDUP_INITCACHEDR flag below.

localIP const char* A null-terminated string specifying the alias or
IP address (IPv4 or IPv6) of the local network
interface to use for the duplicate operation. Set
this to NULL if you do not want to specify the
local network interface, in which case any
compatible interface may be used.

Element Type Description

ttRepDuplicateEx

TimesTen Utility API 8-19

The ttRepDuplicateExArg flags element is constructed from these values:

remoteIP const char* A null-terminated string specifying the alias or
IP address (IPv4 or IPv6) of the remote network
interface to use for the duplicate operation. Set
this to NULL if you do not want to specify the
remote network interface, in which case any
compatible interface may be used.

Note: You can specify both localIP and
remoteIP, or either one by itself, or neither.

crsManaged int For internal use

This should be set to 0 (default).

Value Description

TT_REPDUP_NOFLAGS Indicates no flags.

TT_REPDUP_COMPRESS Enables compression of the data transmitted
over the network for the duplicate operation.

TT_REPDUP_REPSTART Directs ttRepDuplicateEx to set the
replication state (with respect to the local
database) in the remote database to the start
state before the remote database is copied
across the network. This ensures that all
updates made after the duplicate operation are
replicated from the remote database to the
newly created or restored local database.

TT_REPDUP_RAMLOAD Keeps the database in memory upon
completion of the duplicate operation. It
changes the RAM policy for the database to
manual.

TT_REPDUP_DELXLA Directs ttRepDuplicateEx to remove all the
XLA bookmarks as part of the duplicate
operation.

TT_REPDUP_NOKEEPCG Do not preserve the cache group definitions;
ttRepDuplicateEx converts all cache group
tables into regular tables.

By default, cache group definitions are
preserved.

TT_REPDUP_RECOVERINGNODE Specifies that ttRepDuplicateEx is being used
to recover a failed node for a replication
scheme that has an AWT or autorefresh cache
group. Do not specify TT_REPDUP_
RECOVERINGNODE when rolling out a new or
modified replication scheme to a node. If
ttRepDuplicateEx cannot update metadata
stored on the Oracle database and all
incremental autorefresh cache groups are
replicated, then updates to the metadata are
automatically deferred until the cache and
replication agents are started.

Element Type Description

ttRepDuplicateEx

8-20 Oracle TimesTen In-Memory Database C Developer's Guide

8Example
This example creates a replica of a remote TimesTen DSN, remote_payroll with the
database path name C:\dsns\payroll, to a local DSN local_payroll.

ttUtilHandle utilHandle;
int rc;
ttRepDuplicateExArg arg;

memset(&arg, 0, sizeof(arg));
arg.size = sizeof(ttRepDuplicateExArg);
arg.flags = TT_REPDUP_REPSTART | TT_REPDUP_DELXLA;
arg.localHost = "mylocalhost";
arg.uid="myuid";
arg.pwd="mypwd";
rc=ttRepDuplicateEx(utilHandle,"DSN=local_payroll","payroll","remotehost", &arg);

8See also
ttRepAdmin -duplicate in Oracle TimesTen In-Memory Database Reference

The following built-in procedures are described in "Built-In Procedures" in Oracle
TimesTen In-Memory Database Reference.

ttReplicationStatus
ttRepPolicySet
ttRepStop
ttRepSubscriberStateSet
ttRepSyncGet
ttRepSyncSet

TT_REPDUP_DEFERCACHEUPDATE Forces the deferral of changes to metadata
stored on the Oracle database until the cache
and replication agents are started and the
agents can connect to the Oracle database.
Using this option can cause a full autorefresh
if some incremental cache groups are not
replicated or if ttRepDuplicateEx is being
used for rolling out a new or modified
replication scheme to a node.

TT_REPDUP_INITCACHEDR Initializes disaster recovery. You must also
specify cacheuid and cachepwd in the data
structure. Also see nThreads4initDR in the
data structure.

Value Description

ttRestore

TimesTen Utility API 8-21

ttRestore

8Description
Restores a database specified by the connection string from a backup that has been
created using the ttBackup C function or ttBackup utility. If the database already
exists, ttRestore does not overwrite it.

Also see "ttRestore" in Oracle TimesTen In-Memory Database Reference.

8Required privilege
Instance administrator

8Syntax
ttRestore (ttUtilHandle handle, const char* connStr,
 ttRestoreType type, const char* backupDir,
 const char* baseName, ttUtFileHandle stream,
 unsigned intflags)

8Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database to
be restored.

type ttRestoreType Indicates whether the database is to be restored
from a file or a stream backup. Valid values are
the following:

■ TT_RESTORE_FILE: The database is to be
restored from a file backup located at the
backup path specified by the backupDir
and baseName parameters.

■ TT_RESTORE_STREAM: The database is to be
restored from a stream backup read from
the given stream.

backupDir const char* For TT_RESTORE_FILE, specifies the directory
where the backup files are stored.

For TT_RESTORE_STREAM, this parameter is
ignored.

baseName const char* For TT_RESTORE_FILE, specifies the file prefix for
the backup files in the backup directory
specified by the backupDir parameter.

If NULL is specified, the file prefix for the backup
files is the file name portion of the DataStore
attribute of the database ODBC definition.

For TT_RESTORE_STREAM, this parameter is
ignored.

ttRestore

8-22 Oracle TimesTen In-Memory Database C Developer's Guide

8Example
This example restores the database for the payroll DSN from C:\backup.

ttUtilHandle utilHandle;
int rc;

rc = ttRestore (utilHandle, "DSN=payroll", TT_RESTORE_FILE,
 "c:\\backup", NULL, TTUTIL_INVALID_FILE_HANDLE, 0);

8See also
ttBackup
"ttBackup" and "ttRestore" utilities in Oracle TimesTen In-Memory Database Reference

stream ttUtFileHandle For TT_RESTORE_STREAM, specifies the stream
from which the backup is to be read.

On Linux or UNIX, it is an integer file
descriptor that can be read from using read(2).
Pass 0 to read the backup from stdin.

On Windows, it is a handle that can be read
from using ReadFile. Pass the result of
GetStdHandle(STD_INPUT_HANDLE) to read from
the standard input.

For TT_RESTORE_FILE, this parameter is ignored.
The application can pass TTUTIL_INVALID_FILE_
HANDLE for this parameter.

flags unsigned int This is reserved for future use. Set it to 0.

Parameter Type Description

ttUtilAllocEnv

TimesTen Utility API 8-23

ttUtilAllocEnv

8Description
Allocates memory for a TimesTen utility library environment handle and initializes the
TimesTen utility library interface for use by an application. An application must call
ttUtilAllocEnv before calling any other TimesTen utility library function. In addition,
an application should call ttUtilFreeEnv when it is done using the TimesTen utility
library interface.

8Required privilege
None

8Syntax
ttUtilAllocEnv (ttUtilHandle* handle_ptr, char* errBuff,
 unsigned int buffLen, unsigned int* errLen)

8Parameters

8Return codes
This utility returns the following code as defined in ttutillib.h.

Otherwise, it returns a TimesTen-specific error message as defined in tt_errCode.h
and a corresponding error message in the buffer provided by the caller.

8Example
This example allocates and initializes a TimesTen utility library environment handle
with the name utilHandle.

Parameter Type Description

handle_ptr ttUtilHandle* Specifies a pointer to storage where the
TimesTen utility library environment handle is
returned.

errBuff char* This is a user allocated buffer where error
messages (if any) are returned. The returned
error message is a null-terminated string. If the
length of the error message exceeds buffLen-1,
it is truncated to buffLen-1. If this parameter is
null, buffLen is ignored and TimesTen does not
return error messages to the calling application.

buffLen unsigned int Specifies the size of the buffer errBuff. If this
parameter is 0, TimesTen does not return error
messages to the calling application.

errLen unsigned int* This is a pointer to an unsigned integer where
the actual length of the error message is
returned. If it is NULL, this parameter is ignored.

Code Description

TTUTIL_SUCCESS Returned upon success.

ttUtilAllocEnv

8-24 Oracle TimesTen In-Memory Database C Developer's Guide

char errBuff [256];
int rc;
ttUtilHandle utilHandle;

rc = ttUtilAllocEnv (&utilHandle, errBuff, sizeof(errBuff), NULL);

8See also
ttUtilFreeEnv
ttUtilGetError
ttUtilGetErrorCount

ttUtilFreeEnv

TimesTen Utility API 8-25

ttUtilFreeEnv

8Description
Frees memory associated with the TimesTen utility library handle.

An application must call ttUtilAllocEnv before calling any other TimesTen utility
library function. In addition, an application should call ttUtilFreeEnv when it is done
using the TimesTen utility library interface.

8Required privilege
None

8Syntax
ttUtilFreeEnv (ttUtilHandle handle, char* errBuff,
 unsigned int buffLen, unsigned int* errLen)

8Parameters

8Return codes
This utility returns the following codes as defined in ttutillib.h.

Otherwise, it returns a TimesTen-specific error message as defined in tt_errCode.h
and a corresponding error message in the buffer provided by the caller.

8Example
This example frees a TimesTen utility library environment handle named utilHandle.

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

errBuff char* This is a user-allocated buffer where error
messages are to be returned. The returned error
message is a null-terminated string. If the length
of the error message exceeds buffLen-1, it is
truncated to buffLen-1. If this parameter is
NULL, buffLen is ignored and TimesTen does not
return error messages to the calling application.

buffLen unsigned int Specifies the size of the buffer errBuff. If this
parameter is 0, TimesTen does not return error
messages to the calling application.

errLen unsigned int* This is a pointer to an unsigned integer where
the actual length of the error message is
returned. If it is NULL, this parameter is ignored.

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is specified.

ttUtilFreeEnv

8-26 Oracle TimesTen In-Memory Database C Developer's Guide

char errBuff [256];
int rc;
ttUtilHandle utilHandle;

rc = ttUtilFreeEnv (utilHandle, errBuff, sizeof(errBuff), NULL);

8See also
ttUtilAllocEnv
ttUtilGetError
ttUtilGetErrorCount

ttUtilGetError

TimesTen Utility API 8-27

ttUtilGetError

8Description
Retrieves the errors and warnings generated by the last call to the TimesTen C utility
library functions excluding ttUtilAllocEnv and ttUtilFreeEnv.

8Required privilege
None

8Syntax
ttUtilGetError (ttUtilHandle handle, unsigned int errIndex,
 unsigned int* retCode, ttUtilErrType* retType,
 char* errbuff, unsigned int buffLen,
 unsigned int* errLen)

8Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

errIndex unsigned int Indicates error or warning record to be retrieved
from the TimesTen utility library error array.
Valid values are as follows:

■ 0: Retrieve the next record from the utility
library error array.

■ 1...n: Retrieve the specified record from the
utility library error array, where n is the
error count returned by the
ttUtilGetErrorCount call.

retCode unsigned int* Returns the TimesTen-specific error or warning
codes as defined in tt_errCode.h.

retType ttUtilErrType* Indicates whether the returned message is an
error or warning. The following are valid return
values:

■ TTUTIL_ERROR

■ TTUTIL_WARNING

errBuff char* This is a user allocated buffer where error
messages (if any) are to be returned. The
returned error message is a null-terminated
string. If the length of the error message exceeds
buffLen-1, it is truncated to buffLen-1. If this
parameter is NULL, buffLen is ignored and
TimesTen does not return error messages to the
calling application.

buffLen unsigned int Specifies the size of the buffer errBuff. If this
parameter is 0, TimesTen does not return error
messages to the calling application.

errLen unsigned int* A pointer to an unsigned integer where the
actual length of the error message is returned. If
it is NULL, TimesTen ignores this parameter.

ttUtilGetError

8-28 Oracle TimesTen In-Memory Database C Developer's Guide

8Return codes
This utility returns the following codes as defined in ttutillib.h.

8Example
This example retrieves all error or warning information after calling
ttDestroyDataStore for the DSN named payroll.

char errBuff[256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;

rc = ttDestroyDataStore (utilHandle, "DSN=PAYROLL", 30);
if ((rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
 while ((rc = ttUtilGetError (utilHandle, 0,
 &retCode, &retType, errBuff, sizeof (errBuff),
 NULL)) != TTUTIL_NODATA)
 {
...
...
}

8Notes
Each of the TimesTen C functions can potentially generate multiple errors and
warnings for a single call from an application. To retrieve all of these errors and
warnings, the application must make repeated calls to ttUtilGetError until it returns
TTUTIL_NODATA.

8See also
ttUtilAllocEnv
ttUtilFreeEnv
ttUtilGetErrorCount

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is specified.

TTUTIL_NODATA Returned if no error or warming information is retrieved.

ttUtilGetErrorCount

TimesTen Utility API 8-29

ttUtilGetErrorCount

8Description
Retrieves the number of errors and warnings generated by the last call to the TimesTen
C utility library functions, excluding ttUtilAllocEnv and ttUtilFreeEnv. Each of
these functions can potentially generate multiple errors and warnings for a single call
from an application. To retrieve all of these errors and warnings, the application must
make repeated calls to ttUtilGetError until it returns TTUTIL_NODATA.

8Required privilege
None

8Syntax
ttUtilGetErrorCount (ttUtilHandle handle,
 unsigned int* errCount)

8Parameters

8Return codes
The utility returns the following codes as defined in ttutillib.h.

8Example
This example retrieves the error and warning count information after calling
ttDestroyDataStore for the DSN named payroll.

int rc;
unsigned int errCount;
ttUtilHandle utilHandle;

rc = ttDestroyDataStore (utilHandle, "DSN=payroll", 30);
if (rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n")

else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
{

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

errCount unsigned int* Indicates the number of errors and warnings
generated by the last call, excluding
ttUtilAllocEnv and ttUtilFreeEnv, to the
TimesTen utility library.

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is specified.

ttUtilGetErrorCount

8-30 Oracle TimesTen In-Memory Database C Developer's Guide

rc = ttUtilGetErrorCount(utilHandle, &errCount);
 ...
 ...
}

8Notes
Each of the TimesTen utility library functions can potentially generate multiple errors
and warnings for a single call from an application. To retrieve all of these errors and
warnings, the application must make repeated calls to ttUtilGetError until it returns
TTUTIL_NODATA.

8See also
ttUtilAllocEnv
ttUtilFreeEnv
ttUtilGetError

ttXactIdRollback

TimesTen Utility API 8-31

ttXactIdRollback

8Description
Rolls back the transaction indicated by the transaction ID that is specified. The
intended user of ttXactIdRollback is the ttXactAdmin utility. However, programs that
want to have a thread with the power to roll back the work of other threads must
ensure that those threads call the ttXactIdGet built-in procedure before beginning
work and put the results into a location known to the thread that wishes to roll back
the transaction. (Refer to "ttXactIdGet" in Oracle TimesTen In-Memory Database
Reference.)

8Required privilege
ADMIN

8Syntax
ttXactIdRollback (ttUtilHandle handle, const char* connStr,
 const char* xactId)

8Parameters

8Example
This example rolls back a transaction with the ID 3.4567 in the database named
payroll.

char errBuff [256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;
...
rc = ttXactIdRollback (utilHandle, "DSN=payroll", "3.4567");
if (rc == TTUTIL_SUCCESS)
 printf ("Transaction ID successfully rolled back.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
 while ((rc = ttUtilGetError (utilHandle, 0, &retCode,
 &retType, errBuff, sizeof (errBuff), NULL)) != TTUTIL_NODATA)
 {
 ...
}

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char** Specifies the connection string of the database,
which contains the transaction to be rolled back.

xactId const char* Indicates the transaction ID for the transaction
to be rolled back.

ttXactIdRollback

8-32 Oracle TimesTen In-Memory Database C Developer's Guide

9

XLA Reference 9-1

9XLA Reference

This chapter provides reference information for the Transaction Log API (XLA)
described in Chapter 5, "XLA and TimesTen Event Management". It includes the
following topics:

■ About XLA functions

■ Summary of XLA functions by category

■ XLA function reference

■ XLA replication function reference

■ C data structures used by XLA

About XLA functions
This section provides general information about XLA functions for TimesTen Classic.

About return codes
All of the XLA API functions described in this chapter return a value of type
SQLRETURN, which is defined by ODBC to have one of the following values:

■ SQL_SUCCESS

■ SQL_SUCCESS_WITH_INFO

■ SQL_NO_DATA_FOUND

■ SQL_ERROR

See "Handling XLA errors" on page 5-28 for information on handling XLA errors.

About parameter types (input, output, input/output)
In the function descriptions:

■ All parameters are input-only unless otherwise indicated.

■ Output parameters are prefixed with OUT.

■ Input/output parameters are prefixed with IN OUT.

Note: SQL_NO_DATA_FOUND is defined in sqlext.h, which is included
by timesten.h.

Summary of XLA functions by category

9-2 Oracle TimesTen In-Memory Database C Developer's Guide

About results output by functions
Most routines in this API copy results to application buffers. Those few routines that
produce pointers to buffers containing results are guaranteed as valid only until the
next call with the same XLA handle.

Exceptions to this rule include the following.

■ Buffers remain valid across calls to the ttXlaError function that supplies
diagnostic information.

■ Results returned by ttXlaNextUpdate remain valid until the next call to
ttXlaNextUpdate.

■ For ttXlaAcknowledge, if the application must retain access to the buffers for a
longer time, it must copy the information from the buffer returned by XLA to an
application-owned buffer.

Character string values in XLA are null-terminated, except for actual column values.
Fixed-length CHAR columns are space-padded to their full length. VARCHAR columns
have an explicit length encoded.

XLA uses the same data structures for 64-bit platforms as it has for 32-bit platforms.
The types SQLUINTEGER and SQLUBIGINT refer to 64-bit and 32-bit integers
unambiguously. Issues of alignment and padding are addressed by filling the type
definition so that each SQLUINTEGER value is on a four-byte boundary and each
SQLUBIGINT value is on an eight-byte boundary. For a description of storage
requirements for other TimesTen data types, see "Understanding rows" in Oracle
TimesTen In-Memory Database Operations Guide.

About required privileges
"Access control impact on XLA" on page 5-8 introduces the effects of TimesTen access
control features on XLA functionality. Any XLA functionality requires the system
privilege XLA.

Summary of XLA functions by category
As described in Chapter 5, "XLA and TimesTen Event Management", TimesTen XLA
can be used to detect updates on a TimesTen Classic database or as a toolkit to build
your own replication solution.

This section categorizes the XLA functions based on their use and provides a brief
description of each function. It includes the following categories:

■ XLA core functions

■ XLA data type conversion functions

■ XLA replication functions

XLA core functions
The following table lists all the XLA functions used in typical XLA operations, aside
from data conversion functions which are listed separately below.

Function Description

ttXlaAcknowledge Acknowledges receipt of one or more transaction update
records from the transaction log.

Summary of XLA functions by category

XLA Reference 9-3

See "Writing an XLA event-handler application" on page 5-9 for a discussion on how to
use most of these functions.

XLA data type conversion functions
The following table lists data type conversion functions.

ttXlaClose Closes the XLA handle opened by ttXlaPersistOpen.

ttXlaConvertCharType Converts column data into the connection character set.

ttXlaDeleteBookmark Deletes a transaction log bookmark.

ttXlaError Retrieves error information.

ttXlaErrorRestart Resets error stack information.

ttXlaGetColumnInfo Retrieves information about all the columns in the table.

ttXlaGetLSN Retrieves the log record identifier of the current bookmark for
a database.

ttXlaGetTableInfo Retrieves information about a table.

ttXlaGetVersion Retrieves the current version of XLA.

ttXlaNextUpdate Retrieves a batch of updates from TimesTen.

ttXlaNextUpdateWait Retrieves a batch of updates from TimesTen. Waits for a
specified time if no updates are available in the transaction
log.

ttXlaPersistOpen Initializes a handle to a database to access the transaction log.

ttXlaSetLSN Sets the log record identifier of the current bookmark for a
database.

ttXlaSetVersion Sets the XLA version to be used.

ttXlaTableByName Finds the system and user table identifiers for a table given
the table owner and name.

ttXlaTableStatus Sets and retrieves XLA status for a table.

ttXlaTableVersionVerify Checks whether the cached table definitions are compatible
with the XLA record being processed.

ttXlaVersionColumnInfo Retrieves information about the columns in a table for which
a change update record must be processed.

ttXlaVersionCompare Compares two XLA versions.

Function Description

ttXlaDateToODBCCType Converts a TTXLA_DATE_TT value to an ODBC C
value usable by applications.

ttXlaDecimalToCString Converts a TTXLA_DECIMAL_TT value to a character
string usable by applications.

ttXlaNumberToBigInt Converts a TTXLA_NUMBER value to a SQLBIGINT C
value usable by applications.

ttXlaNumberToCString Converts a TTXLA_NUMBER value to a character
string usable by applications.

ttXlaNumberToDouble Converts a TTXLA_NUMBER value to a long floating
point number value usable by applications.

Function Description

Summary of XLA functions by category

9-4 Oracle TimesTen In-Memory Database C Developer's Guide

For more information about XLA data types, see "About XLA data types" on page 5-7.

XLA replication functions
TimesTen replication as described in Oracle TimesTen In-Memory Database Replication
Guide is sufficient for most TimesTen customer needs; however, it is also possible to
use XLA functions to replicate updates from one database to another. Implementing
your own replication scheme on top of XLA in this way is fairly complicated, but can
be considered if TimesTen replication is not feasible for some reason.

The following table lists functions used exclusively for XLA as a replication
mechanism. (Reference information for these functions is in a separate section from
other XLA functions, "XLA replication function reference" on page 9-52.)

See "Using XLA as a replication mechanism" on page 5-34 for a discussion on how to
use these functions.

ttXlaNumberToInt Converts a TTXLA_NUMBER value to an integer
usable by applications.

ttXlaNumberToSmallInt Converts a TTXLA_NUMBER value to a SQLSMALLINT
C value usable by applications.

ttXlaNumberToTinyInt Converts a TTXLA_NUMBER value to a SQLCHAR C
value usable by applications.

ttXlaNumberToUInt Converts a TTXLA_NUMBER value to an unsigned
integer usable by applications.

ttXlaOraDateToODBCTimeStamp Converts a TTXLA_DATE value to an ODBC
timestamp usable by applications.

ttXlaOraTimeStampToODBCTimeStamp Converts a TTXLA_TIMESTAMP value to an ODBC
timestamp usable by applications.

ttXlaRowidToCString Converts a ROWID value to a character string value
usable by applications.

ttXlaTimeToODBCCType Converts a TTXLA_TIME value to an ODBC C value
usable by applications.

ttXlaTimeStampToODBCCType Converts a TTXLA_TIMESTAMP_TT value to an ODBC
C value usable by applications.

Function Description

ttXlaApply Applies the update to the database associated with the XLA handle.

ttXlaCommit Commits a transaction.

ttXlaGenerateSQL Generates a SQL statement that expresses the effect of an update record.

ttXlaLookup Looks for an update record for a table with a specific key value.

ttXlaRollback Rolls back a transaction.

ttXlaTableCheck Verifies that the named table in the table description received from the
sending database is compatible with the receiving database.

Function Description

XLA function reference

XLA Reference 9-5

XLA function reference

This section provides reference information for XLA core functions and XLA data type
conversion functions. The functions are listed in alphabetical order.

Note: Functions used exclusively for XLA as a replication
mechanism are documented in a separate section, "XLA replication
function reference" on page 9-52.

ttXlaAcknowledge

9-6 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaAcknowledge

9Description
This function is used to acknowledge that one or more records have been read from
the transaction log by the ttXlaNextUpdate or ttXlaNextUpdateWait function.

After you make this call, the bookmark is reset so that you cannot reread any of the
previously returned records. Call ttXlaAcknowledge only when messages have been
completely processed.

Note that ttXlaAcknowledge is an expensive operation that should be used only as
necessary. Calling ttXlaAcknowledge more than once per reading of the transaction log
file does not reduce the volume of the transaction log since XLA only purges
transaction logs a file at a time. To detect when a new transaction log file is generated,
you can find out which log file a bookmark is in by examining the purgeLSN
(represented by the PURGELSNHIGH and PURGELSNLOW values) for the bookmark in the
system table SYS.TRANSACTION_LOG_API. You can then call ttXlaAcknowledge to purge
the old transaction log files. (Note that you must have ADMIN or SELECT ANY TABLE
privilege to view this table.)

The second purpose of ttXlaAcknowledge is to ensure that the XLA application does
not see the acknowledged records if it were to connect to a previously used bookmark
by calling the ttXlaPersistOpen function with the XLAREUSE option. If you intend to
reuse a bookmark, call ttXlaAcknowledge to reset the bookmark position to the current
record before calling ttXlaClose.

See "Retrieving update records from the transaction log" on page 5-12 for a discussion
about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaAcknowledge(ttXlaHandle_h handle)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Notes:

■ The bookmark is only reset for the specified handle. Other
handles in the system may still be able to access those earlier
transactions.

■ The bookmark is reset even if there are no relevant update records
to acknowledge.

Parameter Type Description

handle ttXlaHandle_h Transaction log handle

XLA function reference

XLA Reference 9-7

9Example
rc = ttXlaAcknowledge(xlahandle);

9See also
ttXlaNextUpdate
ttXlaNextUpdateWait

ttXlaClose

9-8 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaClose

9Description
Closes an XLA handle that was opened by ttXlaPersistOpen. See "Terminating an
XLA application" on page 5-32 for a discussion about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaClose(ttXlaHandle_h handle)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

To close the XLA handle opened in the previous example, use the following call:

rc = ttXlaClose(xlahandle);

9See also
ttXlaPersistOpen

Parameter Type Description

handle ttXlaHandle_h ODBC handle for the database

XLA function reference

XLA Reference 9-9

ttXlaConvertCharType

9Description
Converts the column data indicated by the colinfo and tup parameters into the
connection character set associated with the transaction log handle and places the
result in a buffer.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaConvertCharType (ttXlaHandle_h handle,
 ttXlaColDesc_t* colinfo,
 void* tup,
 void* buf,
 size_t buflen)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

colinfo ttXlaColDesc_t* Pointer to the buffer that holds the column
descriptions

tup void* Data to be converted

buf void* Location where the converted data is placed

buflen size_t Size of the buffer where the converted data is
placed

ttXlaDateToODBCCType

9-10 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaDateToODBCCType

9Description
Converts a TTXLA_DATE_TT value to an ODBC C value usable by applications. See
"Converting complex data types" on page 5-23 for a discussion about using this
function.

Call this function only on a column of data type TTXLA_DATE_TT. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaDateToODBCCType(void* fromData,
 out DATE_STRUCT* returnData)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the date value returned from the
transaction log

returnData DATE_STRUCT* Pointer to storage allocated to hold the
converted date

XLA function reference

XLA Reference 9-11

ttXlaDecimalToCString

9Description
Converts a TTXLA_DECIMAL_TT value to a string usable by applications. The scale and
precision values can be obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function. The scale parameter specifies the maximum number of
digits after the decimal point. If the decimal value is larger than 1, the precision
parameter should specify the maximum number of digits before and after the decimal
point. If the decimal value is less than 1, precision equals scale.

Call this function only for a column of type TTXLA_DECIMAL_TT. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

See "Converting complex data types" on page 5-23 for a discussion about using this
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaDecimalToCString(void* fromData,
 out char* returnData,
 SQLSMALLINT precision,
 SQLSMALLINT scale)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example assumes you have obtained the offset, precision, and scale values
from a ttXlaColDesc_t structure and used the offset to obtain a decimal value,
pColVal, in a row returned in a transaction log record.

char decimalData[50];
static ttXlaColDesc_t colDesc[255];

Parameter Type Description

fromData void* Pointer to the decimal value returned from the
transaction log

returnData char* Pointer to storage allocated to hold the
converted string

precision SQLSMALLINT If fromData is greater than 1, the maximum
number of digits before and after the decimal
point

If fromData is less than 1, same as scale

scale SQLSMALLINT Maximum number of digits after the decimal
point

ttXlaDecimalToCString

9-12 Oracle TimesTen In-Memory Database C Developer's Guide

rc = ttXlaDecimalToCString(pColVal, (char*)&decimalData,
 colDesc->precision,
 colDesc->scale);

XLA function reference

XLA Reference 9-13

ttXlaDeleteBookmark

9Description
Deletes the bookmark associated with the specified transaction log handle. After the
bookmark has been deleted, it is no longer accessible and its identifier may be reused
for another bookmark. The deleted bookmark is no longer associated with the
database handle and the effect is the same as having opened the connection with the
XLANONE option.

If the bookmark is in use, it cannot be deleted until it is no longer in use.

See "Deleting bookmarks" on page 5-31 for a discussion about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaDeleteBookmark(ttXlaHandle_h handle)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
Delete the bookmark for xlahandle:

rc = ttXlaDeleteBookmark(xlahandle);

9See also
ttXlaPersistOpen
ttXlaGetLSN
ttXlaSetLSN

Notes:

■ Do not confuse this with the TimesTen built-in procedure
ttXlaBookmarkDelete, documented in "ttXlaBookmarkDelete" in
Oracle TimesTen In-Memory Database Reference.

■ You cannot delete replicated bookmarks while the replication
agent is running.

Parameter Type Description

handle ttXlaHandle_h Transaction log handle

ttXlaError

9-14 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaError

9Description
Reports details of any errors encountered from the previous call on the given
transaction log handle. Multiple errors may be returned through subsequent calls to
ttXlaError. The error stack is cleared following each call to a function other than
ttXlaError itself and ttXlaErrorRestart.

See "Handling XLA errors" on page 5-28 for a discussion about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaError(ttXlaHandle_h handle,
 out SQLINTEGER* errCode,
 out char* errMessage,
 SQLINTEGER maxLen,
 out SQLINTEGER* retLen)

9Parameters

9Returns
Returns SQL_SUCCESS if error information is returned, or SQL_NO_DATA_FOUND if no
more errors are found in the error stack. If the errMessage buffer is not large enough,
ttXlaError returns SQL_SUCCESS_WITH_INFO.

9Example
There can be multiple errors on the error stack. This example shows how to read them
all.

char message[100];
SQLINTEGER code;

for (;;) {
 rc = ttXlaError(xlahandle, &code, message, sizeof (message), &retLen);
 if (rc == SQL_NO_DATA_FOUND)
 break;

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

errCode SQLINTEGER* Code of the error message to be copied into the
errMessage buffer

errMessage char* Buffer to hold the error text

maxLen SQLINTEGER Maximum length of the errMessage buffer

retLen SQLINTEGER* Actual size of the error message

Note: SQL_NO_DATA_FOUND is defined in sqlext.h, which is included
by timesten.h.

XLA function reference

XLA Reference 9-15

 if (rc == SQL_ERROR) {
 printf("Error in fetching error message\n");
 break;
 }
 else {
 printf("Error code %d: %s\n", code, message);
 }
}

9Note
If you use multiple threads to access a TimesTen transaction log over a single XLA
connection, TimesTen creates a latch to control concurrent access. If for some reason
the latch cannot be acquired by a thread, the XLA function returns SQL_INVALID_
HANDLE.

9See also
ttXlaErrorRestart

ttXlaErrorRestart

9-16 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaErrorRestart

9Description
Resets the error stack so that an application can reread the errors. See "Handling XLA
errors" on page 5-28 for a discussion about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaErrorRestart(ttXlaHandle_h handle)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
rc = ttXlaErrorRestart(xlahandle);

9See also
ttXlaError

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

XLA function reference

XLA Reference 9-17

ttXlaGetColumnInfo

9Description
Retrieves information about all the columns in the table. Normally, the output
parameter for number of columns returned, nreturned, is set to the number of
columns returned in colinfo. The systemTableID or userTableID parameter describes
the desired table. This call is serialized with respect to changes in the table definition.

See "Obtaining column descriptions" on page 5-18 for a discussion about using this
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaGetColumnInfo(ttXlaHandle_h handle,
 SQLUBIGINT systemTableID,
 SQLUBIGINT userTableID,
 out ttXlaColDesc_t* colinfo,
 SQLINTEGER maxcols,
 out SQLINTEGER* nreturned)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
For this example, assume the following definitions:

ttXlaColDesc_t colinfo[20];
SQLUBIGINT systemTableID, userTableID;
SQLINTEGER ncols;

To get the description of up to 20 columns using the system table identifier, issue the
following call.

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

systemTableID SQLUBIGINT System ID of table

userTableID SQLUBIGINT User ID of table

colinfo ttXlaColDesc_t* Pointer to the buffer large enough to hold a
separate description for maxcols columns

maxcols SQLINTEGER Maximum number of columns that can be
stored in the colInfo buffer

If the table contains more than maxcols
columns, an error is returned.

nreturned SQLINTEGER* Number of columns returned

ttXlaGetColumnInfo

9-18 Oracle TimesTen In-Memory Database C Developer's Guide

rc = ttXlaGetColumnInfo(xlahandle, systemTableID, 0, colinfo, 20, &ncols);

Likewise, the user table identifier can be used:

rc = ttXlaGetColumnInfo(xlahandle, 0, userTableID, colinfo, 20, &ncols);

See "ttXlaColDesc_t" on page 9-76 for details and an example on how to access the
column data in a returned row.

9See also
ttXlaGetTableInfo
ttXlaDecimalToCString
ttXlaDateToODBCCType
ttXlaTimeToODBCCType
ttXlaTimeStampToODBCCType

XLA function reference

XLA Reference 9-19

ttXlaGetLSN

9Description
Returns the Current Read log record identifier for the connection specified by the
transaction log handle. See "How bookmarks work" on page 5-4 for a discussion about
using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaGetLSN(ttXlaHandle_h handle,
 out tt_XlaLsn_t* LSN)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example returns the Current Read log record identifier, CurLSN.

tt_XlaLsn_t CurLSN;

rc = ttXlaGetLSN(xlahandle, &CurLSN);

9See also
ttXlaSetLSN

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

LSN tt_XlaLsn_t* Current Read log record identifier for the
handle

Note: Be aware that tt_XlaLsn_t, particularly the logFile and
logOffset fields, is used differently than in earlier releases, referring
to log record identifiers rather than sequentially increasing LSNs. See
the note in "tt_XlaLsn_t" on page 9-80.

ttXlaGetTableInfo

9-20 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaGetTableInfo

9Description
Retrieves information about the rows in the table (refer to the description of the
ttXlaTblDesc_t data type.) If the userTableID parameter is nonzero, then it is used to
locate the desired table. Otherwise, the systemTableID value is used to locate the table.
If both are zero, an error is returned. The description is stored in the output parameter
tblinfo. This call is serialized with respect to changes in the table definition.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaGetTableInfo(ttXlaHandle_h handle,
 SQLUBIGINT systemTableID,
 SQLUBIGINT userTableID,
 out ttXlaTblDesc_t* tblinfo)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
For this example, assume the following definitions:

ttXlaTblDesc_t tabinfo;
SQLUBIGINT systemTableID, userTableID;

To get table information using a system identifier, find the system table identifier using
ttXlaTableByName or other means and issue the following call:

rc = ttXlaGetTableInfo(xlahandle, systemTableID, 0, &tabinfo);

Alternatively, the table information can be retrieved using a user table identifier:

rc = ttXlaGetTableInfo(xlahandle, 0, userTableID, &tabinfo);

9See also
ttXlaGetColumnInfo

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

systemTableID SQLUBIGINT System table ID

userTableID SQLUBIGINT User table ID

tblinfo ttXlaTblDesc_t* Row information

XLA function reference

XLA Reference 9-21

ttXlaGetVersion

9Description
This function is used in combination with ttXlaSetVersion to ensure XLA
applications written for older versions of XLA operate on a new version. The
configured version is typically the older version, while the actual version is the newer
one.

The function retrieves the currently configured XLA version and stores it into
configuredVersion parameter. The actual version of the underlying XLA is stored in
actualVersion. Due to calls on ttXlaSetVersion, the results in configuredVersion
may vary from one call to the next, but the results in actualVersion remain the same.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaGetVersion(ttXlaHandle_h handle,
 out ttXlaVersion_t* configuredVersion,
 out ttXlaVersion_t* actualVersion)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
Assume the following directions for this example:

ttXlaVersion_t configured, actual;

To determine the current version configuration, use the following call:

rc = ttXlaGetVersion(xlahandle, &configured, &actual);

9See also
ttXlaVersionCompare
ttXlaSetVersion

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

configuredVersion ttXlaVersion_t* Configured version of XLA

actualVersion ttXlaVersion_t* Actual version of XLA

ttXlaNextUpdate

9-22 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNextUpdate

9Description
This function fetches up to a specified maximum number of update records from the
transaction log and returns the records associated with committed transactions to a
specified buffer. The actual number of returned records is reported in the nreturned
output parameter. This function requires a bookmark to be present in the database and
to be associated with the connection used by the function.

Each call to ttXlaNextUpdate resets the bookmark to the last record read to enable the
next call to ttXlaNextUpdate to return the next list of records.

See "Retrieving update records from the transaction log" on page 5-12 for a discussion
about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaNextUpdate(ttXlaHandle_h handle,
 out ttXlaUpdateDesc_t*** records,
 SQLINTEGER maxrecords,
 out SQLINTEGER* nreturned)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example retrieves up to 100 records and describes a loop in which each record can
be processed:

ttXlaUpdateDesc_t** records;
SQLINTEGER nreturned;
SQLINTEGER i;

rc = ttXlaNextUpdate(xlahandle, &records, 100, &nreturned);
/* Check for errors; if none, process the records */
for (i = 0; i < nreturned; i++) {
 process(records[i]);
}

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

records ttXlaUpdateDesc_t*** Buffer to hold the completed transaction
records

maxrecords SQLINTEGER Maximum number of records to be fetched

nreturned SQLINTEGER* Actual number of returned records, where 0
is returned if no update data is available

XLA function reference

XLA Reference 9-23

9Notes
Updates are generated for all data definition statements, regardless of tracking status.
Updates are generated for data update operations for all tracked tables associated with
the bookmark.

In addition, updates are generated for certain special operations, including assigning
application-level identifiers for tables and columns and changing the tracking status of
a table.

9See also
ttXlaNextUpdateWait
ttXlaAcknowledge

ttXlaNextUpdateWait

9-24 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNextUpdateWait

9Description
This is similar to the ttXlaNextUpdate function, with the addition of a seconds
parameter that specifies the number of seconds to wait if no records are available in
the transaction log. The actual number of seconds of wait time can be up to two
seconds more than the specified seconds value.

Also see "Retrieving update records from the transaction log" on page 5-12.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaNextUpdateWait(ttXlaHandle_h handle,
 out ttXlaUpdateDesc_t*** records,
 SQLINTEGER maxrecords,
 out SQLINTEGER* nreturned,
 SQLINTEGER seconds)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example retrieves up to 100 records and waits for up to 60 seconds if there are no
records available in the transaction log.

ttXlaUpdateDesc_t** records;
SQLINTEGER nreturned;
SQLINTEGER i;

rc = ttXlaNextUpdateWait(xlahandle, &records, 100, &nreturned, 60);
/* Check for errors; if none, process the records */
for (i = 0; i < nreturned; i++) {
 process(records[i]);
}

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

records ttXlaUpdateDesc_t*** Buffer to hold completed transaction records

maxrecords SQLINTEGER Maximum number of records to be fetched

Note: The largest effective value is 1000
records.

nreturned SQLINTEGER* Actual number of records returned, where 0 is
returned if no update data is available within
the seconds wait period

seconds SQLINTEGER Number of seconds to wait if the log is empty

XLA function reference

XLA Reference 9-25

9See also
ttXlaNextUpdate
ttXlaAcknowledge

ttXlaNumberToBigInt

9-26 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNumberToBigInt

9Description
Converts a TTXLA_NUMBER value to a SQLBIGINT value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaNumberToBigInt(void* fromData,
 SQLBIGINT* bint)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

bint SQLBIGINT* The SQLBIGINT value converted from the XLA
number value

XLA function reference

XLA Reference 9-27

ttXlaNumberToCString

9Description
Converts a TTXLA_NUMBER value to a character string usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaNumberToCString(ttXlaHandle_h handle,
 void* fromData,
 char* buf,
 int buflen
 int* reslen)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

buf char* Location where the converted data is placed

buflen int Size of the buffer where the converted data is
placed

reslen int* Number of bytes that were written, assuming
buflen is large enough (otherwise, the number
of bytes that would have been written)

ttXlaNumberToDouble

9-28 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNumberToDouble

9Description
Converts a TTXLA_NUMBER value to a long floating point number value usable by
applications.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaNumberToDouble(void* fromData,
 double* dbl)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

dbl double* The long floating point number value converted
from the XLA number value

XLA function reference

XLA Reference 9-29

ttXlaNumberToInt

9Description
Converts a TTXLA_NUMBER value to a SQLINTEGER value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaNumberToInt(void* fromData,
 SQLINTEGER* ival)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

ival SQLINTEGER* The SQLINTEGER value converted from the XLA
number value

ttXlaNumberToSmallInt

9-30 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNumberToSmallInt

9Description
Converts a TTXLA_NUMBER value to a SQLSMALLINT value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaNumberToSmallInt(void* fromData,
 SQLSMALLINT* smint)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

smint SQLSMALLINT* The SQLSMALLINT value converted from the XLA
number value

XLA function reference

XLA Reference 9-31

ttXlaNumberToTinyInt

9Description
Converts a TTXLA_NUMBER value to a tiny integer value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaNumberToTinyInt(void* fromData,
 SQLCHAR* tiny)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

tiny SQLCHAR* The tiny integer value converted from the XLA
number value

ttXlaNumberToUInt

9-32 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNumberToUInt

9Description
Converts a TTXLA_NUMBER value to an unsigned integer value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaNumberToInt(void* fromData,
 SQLUINTEGER* ival)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

ival SQLUINTEGER* The integer value converted from the XLA
number value

XLA function reference

XLA Reference 9-33

ttXlaOraDateToODBCTimeStamp

9Description
Converts a TTXLA_DATE value to an ODBC timestamp.

Call this function only for a column of type TTXLA_DATE. The data type can be obtained
from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaOraDateToODBCTimeStamp(void* fromData,
 TIMESTAMP_STRUCT* returnData)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the number value returned from
the transaction log

returnData TIMESTAMP_STRUCT* ODBC timestamp value converted from the
XLA Oracle Database DATE value

ttXlaOraTimeStampToODBCTimeStamp

9-34 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaOraTimeStampToODBCTimeStamp

9Description
Converts a TTXLA_TIMESTAMP value to an ODBC timestamp.

Call this function only for a column of type TTXLA_TIMESTAMP. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Syntax
SQLRETURN ttXlaOraTimeStampToODBCTimeStamp(void* fromData,
 TIMESTAMP_STRUCT* returnData)

9Required privilege
XLA

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

Parameter Type Description

fromData void* Pointer to the number value returned from
the transaction log

returnData TIMESTAMP_STRUCT* ODBC timestamp value converted from the
XLA Oracle Database TIMESTAMP value

XLA function reference

XLA Reference 9-35

ttXlaPersistOpen

9Description
Initializes a transaction log handle to a database to enable access to the transaction log.
The hdbc parameter is an ODBC connection handle to a database. Create only one XLA
handle for each ODBC connection. After you have created an XLA handle on an ODBC
connection, do not issue any other ODBC calls over the ODBC connection until it is
closed by ttXlaClose.

The tag is a string that identifies the XLA bookmark (see "About XLA bookmarks" on
page 5-4). The tag can identify a new bookmark, either non-replicated or replicated, or
one that exists in the system, as specified by the options parameter. The handle
parameter is initialized by this call and must be provided on each subsequent call to
XLA.

Some actions can be done without a bookmark. When performing these types of
actions, you can use the XLANONE option to access the transaction log without a
bookmark. Actions that cannot be done without a bookmark are the following:

■ ttXlaAcknowledge

■ ttXlaGetLSN

■ ttXlaSetLSN

■ ttXlaNextUpdate

■ ttXlaNextUpdateWait

Multiple applications can concurrently read from the transaction log. See "Initializing
XLA and obtaining an XLA handle" on page 5-10 for a discussion about using this
function.

When this function is successful, XLA sets the autocommit mode to off.

If this function fails but still creates a handle, the handle must be closed to prevent
memory leaks.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaPersistOpen(SQLHDBC hdbc,
 SQLCHAR* tag,
 SQLUINTEGER options,
 out ttXlaHandle_h* handle)

9Parameters

Note: Space is allocated by this call. Call ttXlaClose to free space
when you are finished.

Parameter Type Description

hdbc SQLHDBC ODBC handle for the database

ttXlaPersistOpen

9-36 Oracle TimesTen In-Memory Database C Developer's Guide

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example opens a transaction log, returns a handle named xlahandle, and creates
a new non-replicated bookmark named mybookmark:

SQLHDBC hdbc;
ttXlaHandle_h xlahandle;

rc = ttXlaPersistOpen(hdbc, (SQLCHAR*)mybookmark,
 XLACREAT, &xlahandle);

Alternatively, create a new replicated bookmark as follows:

SQLHDBC hdbc;
ttXlaHandle_h xlahandle;

rc = ttXlaPersistOpen(hdbc, (SQLCHAR*)mybookmark,
 XLAREPL, &xlahandle);

9Note
Multithreaded applications should create a separate XLA handle for each thread. If
multiple threads must use the same XLA handle, use a mutex to serialize thread access
to that XLA handle so that only one thread can execute an XLA operation at a time.

9See also
ttXlaClose
ttXlaDeleteBookmark
ttXlaGetLSN
ttXlaSetLSN

tag SQLCHAR* Identifier for the XLA bookmark

This can be null, in which case options should
be set to XLANONE. Maximum allowed length is
31.

options SQLUINTEGER Bookmark options:

■ XLANONE: Connect without a bookmark. The
tag field is ignored.

■ XLACREAT: Create a new non-replicated
bookmark. Fails if a bookmark already
exists.

■ XLAREPL: Create a new replicated
bookmark. Fails if a bookmark already
exists.

■ XLAREUSE: Associate with an existing
bookmark (non-replicated or replicated).
Fails if the bookmark does not exist.

handle ttXlaHandle_h* Transaction log handle returned by this call

Parameter Type Description

XLA function reference

XLA Reference 9-37

ttXlaRowidToCString

9Description
Converts a ROWID value to a string value usable by applications.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaRowidToCString(void* fromData, char* buf, int buflen)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
char charbuf[18];
void* rowiddata;
/* ... */
rc = ttXlaRowidToCString(rowiddata, charbuf, sizeof(charbuf));

Parameter Type Description

fromData void* Pointer to the ROWID value returned from the
transaction log

buf char* Pointer to storage allocated to hold the
converted string

buflen int Length of the converted string

ttXlaSetLSN

9-38 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaSetLSN

9Description
Sets the Current Read log record identifier for the database specified by the transaction
handle. The specified LSN value should be returned from ttXlaGetLSN. It cannot be a
user-created value and cannot be earlier than the current bookmark Initial Read log
record identifier.

See "About XLA bookmarks" on page 5-4 for a discussion about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaSetLSN(ttXlaHandle_h handle,
 tt_XlaLsn_t* LSN)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example sets the Current Read log record identifier to CurLSN.

tt_XlaLsn_t CurLSN;

rc = ttXlaSetLSN(xlahandle, &CurLSN);

9See also
ttXlaGetLSN

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

LSN tt_XlaLsn_t* New log record identifier for the handle

Note: Be aware that tt_XlaLsn_t, particularly the logFile and
logOffset fields, is used differently than in earlier releases, referring
to log record identifiers rather than sequentially increasing LSNs. See
the note in "tt_XlaLsn_t" on page 9-80.

XLA function reference

XLA Reference 9-39

ttXlaSetVersion

9Description
Sets the version of XLA to be used by the application. This version must be either the
same as the version received from ttXlaGetVersion or from an earlier version.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaSetVersion(ttXlaHandle_h handle,
 ttXlaVersion_t* version)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
To set the configured version to the value specified in requestedVersion, issue the
following call:

rc = ttXlaSetVersion(xlahandle, &requestedVersion);

9See also
ttXlaVersionCompare
ttXlaGetVersion

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

version ttXlaVersion_t* Desired version of XLA

ttXlaTableByName

9-40 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaTableByName

9Description
Finds the system and user table identifiers for a table or materialized view by
providing the owner and name of the table or view. See "Specifying which tables to
monitor for updates" on page 5-11 for a discussion about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaTableByName(ttXlaHandle_h handle,
 char* owner,
 char* name,
 out SQLUBIGINT* sysTableID,
 out SQLUBIGINT* userTableID)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
To get the system and user table IDs associated with the table PURCHASING.INVOICES,
use the following call:

SQLUBIGINT sysTableID;
SQLUBIGINT userTableID;

rc = ttXlaTableByName(xlahandle, "PURCHASING", "INVOICES",
 &sysTableID, &userTableID);

9See also
ttXlaTableStatus

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

owner char* Owner for the table or view as a string

name char* Name of the table or view

sysTableID SQLUBIGINT* System table ID

userTableID SQLUBIGINT* User table ID

XLA function reference

XLA Reference 9-41

ttXlaTableStatus

9Description
Returns the update status for a table. Identify the table by specifying either a user ID
(userTableID) or a system ID (systemTableID). If userTableID is nonzero, it is used to
locate the table. Otherwise systemTableID is used. If both are zero, an error is
returned.

Specifying a value for newstatus sets the update status to *newstatus. A nonzero
status means the table specified by systemTableID is available through XLA. Zero
means the table is not tracked. Changes to table update status are effective
immediately.

Updates to a table are tracked only if update tracking was enabled for the table at the
time the update was performed. This call is serialized with respect to updates to the
underlying table. Therefore, transactions that update the table run either completely
before or completely after the change to table status.

To use ttXlaTableStatus, the user must be connected to a bookmark. The function
reports inserts, updates, and deletes only to the bookmark that has subscribed to the
table. It reports DDL events to all bookmarks. DDL events include CREATAB, DROPTAB,
CREAIND, DROPIND, CREATVIEW, DROPVIEW, CREATSEQ, DROPSEQ, CREATSYN, DROPSYN,
ADDCOLS, DRPCOLS, TRUNCATE, SETTBL1, and SETCOL1 transactions. See
"ttXlaUpdateDesc_t" on page 9-65 for information about these event types.

See "Specifying which tables to monitor for updates" on page 5-11 for a discussion
about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaTableStatus(ttXlaHandle_h handle,
 SQLUBIGINT systemTableID,
 SQLUBIGINT userTableID,
 out SQLINTEGER* oldstatus,
 SQLINTEGER* newstatus)

9Parameters

Note: DML updates to a table being tracked through XLA do not
prevent ttXlaTableStatus from running. However, DDL updates to
the table being tracked, which take a lock on SYS.TABLES, do delay
ttXlaTableStatus from running in serializable isolation against
SYS.TABLES.

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

systemTableID SQLUBIGINT System ID of table

userTableID SQLUBIGINT User ID of table

ttXlaTableStatus

9-42 Oracle TimesTen In-Memory Database C Developer's Guide

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
The following examples assume that the system or user table identifiers are found
using ttXlaTableByName or some other means.

Assume these declarations for the example:

SQLUBIGINT systemTableID;
SQLUBIGINT userTableID;
SQLINTEGER currentStatus, requestedStatus;

To find the status of a table given its system table identifier, use the following call:

/* Get system table identifier into systemTableID, then ... */
rc = ttXlaTableStatus(xlahandle, systemTableID, 0,
 ¤tStatus, NULL);

The currentStatus value is nonzero if update tracking for the table is enabled, or zero
otherwise.

To enable update tracking for a table given a system table identifier, set the requested
status to 1 as follows:

requestedStatus = 1;

rc = ttXlaTableStatus(xlahandle, systemTableID, 0,
 NULL, &requestedStatus);

You can set a new update tracking status and retrieve the current status in a single call,
as in the following example:

requestedStatus = 1;

rc = ttXlaTableStatus(xlahandle, systemTableID, 0,
 ¤tStatus, &requestedStatus);

The above call enables update tracking for a table by system table identifier and
retrieves the prior update tracking status in the variable currentStatus.

All of these examples can be done using user table identifiers as well. To retrieve the
update tracking status of a table through its user table identifier, use the following call:

/* Get system table identifier into userTableID, then ... */

rc = ttXlaTableStatus(xlahandle, 0, userTableID,
 ¤tStatus, NULL);

oldstatus SQLINTEGER* XLA old status:

■ 1: On

■ 0: Off

newstatus SQLINTEGER* XLA new status:

■ 1: On

■ 0: Off

Parameter Type Description

XLA function reference

XLA Reference 9-43

9See also
ttXlaTableByName

ttXlaTableVersionVerify

9-44 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaTableVersionVerify

9Description
Verifies that the cached table definitions are compatible with the XLA record being
processed. Table definitions change only when the ALTER TABLE statement is used to
add or remove columns.

You can monitor the XLA stream for XLA records of transaction type ADDCOLS and
DRPCOLS to avoid the overhead of using this function. When an XLA record of
transaction type ADDCOLS or DROPCOLS is encountered, refresh the table and column
definitions. See "Inspecting record headers and locating row addresses" on page 5-15
for information about monitoring XLA records for transaction type.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaTableVersionVerify(ttXlaHandle_h handle
 ttXlaTblVerDesc_t* table,
 ttXlaUpdateDesc_t* record
 out SQLINTEGER* compat)

9Parameters

9Returns
Returns SQL_SUCCESS if cached table definition is compatible with the XLA record
being processed. Otherwise, use ttXlaError to report the error.

9Example
This example checks the compatibility of a table.

SQLINTEGER compat;
ttXlaTbVerDesc_t table;
ttXlaUpdateDesc_t* record;
/*
 * Get the desired table definitions into the variable "table"
 */
rc = ttXlaTableVersionVerify(xlahandle, &table, record, &compat);
if (compat) {
/*
 * Compatible
 */

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

table ttXlaTblVerDesc_t* A cached table description

record ttXlaUpdateDesc_t* XLA record to be processed

compat SQLINTEGER* Compatibility information:

■ 1: Tables are compatible.

■ 0: Tables are not compatible.

XLA function reference

XLA Reference 9-45

}
else {
/*
 * Not compatible or some other error occurred
 * If not compatible, issue a call to ttXlaVersionTableInfo and
 * ttXlaVersionColumnInfo to get the new definition.
 */
}

9See also
ttXlaVersionColumnInfo
ttXlaVersionTableInfo

ttXlaTimeToODBCCType

9-46 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaTimeToODBCCType

9Description
Converts a TTXLA_TIME value to an ODBC C value usable by applications. See
"Converting complex data types" on page 5-23 for a discussion about using this
function.

Call this function only for a column of type TTXLA_TIME. The data type can be obtained
from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaTimeToODBCCType (void* fromData,
 out TIME_STRUCT* returnData)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example assumes you have used the offset value returned in a ttXlaColDesc_t
structure to obtain a time value, pColVal, from a row returned in a transaction log
record.

TIME_STRUCT time;

rc = ttXlaTimeToODBCCType(pColVal, &time);

Parameter Type Description

fromData void* Pointer to the time value returned from the
transaction log

returnData TIME_STRUCT* Pointer to storage allocated to hold the
converted time

XLA function reference

XLA Reference 9-47

ttXlaTimeStampToODBCCType

9Description
Converts a TTXLA_TIMSTAMP_TT value to an ODBC C value usable by applications. See
"Converting complex data types" on page 5-23 for a discussion about using this
function.

Call this function only for a column of type TTXLA_TIMSTAMP_TT. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaTimeStampToODBCCType(void* fromData,
 out TIMESTAMP_STRUCT* returnData)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example assumes you have used the offset value returned in a ttXlaColDesc_t
structure to obtain a timestamp value, pColVal, from a row returned in a transaction
log record.

TIMESTAMP_STRUCT timestamp;

rc = ttXlaTimeStampToODBCCType(pColVal, ×tamp);

Parameter Type Description

fromData void* Pointer to the timestamp value returned
from the transaction log

returnData TIMESTAMP_STRUCT* Pointer to storage allocated to hold the
converted timestamp

ttXlaVersionColumnInfo

9-48 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaVersionColumnInfo

9Description
Retrieves information about the columns in a table for which a change update XLA
record must be processed.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaVersionColumnInfo(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 out ttXlaColDesc_t* colinfo,
 SQLINTEGER maxcols,
 out SQLINTEGER* nreturned)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
For this example, assume the following definitions:

ttXlaHandle_h xlahandle
ttXlaUpdateDesc_t* record;
ttXlaColDesc_t colinfo[20];
SQLINTEGER ncols;

The following call retrieves the description of up to 20 columns:

rc = ttXlaVersionColumnInfo(xlahandle, record, colinfo, 20, &ncols);

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

record ttXlaUpdateDesc_t* XLA record to be processed

colinfo ttXlaColDesc_t* A pointer to the buffer large enough to hold a
description for maxcols columns

maxcols SQLINTEGER Maximum number of columns the table can
have

Note: If the table contains more than maxcols
columns, an error is returned.

nreturned SQLINTEGER* Number of columns returned

XLA function reference

XLA Reference 9-49

ttXlaVersionCompare

9Description
Compares two XLA versions and returns a result indicating either that the versions are
the same, or which version is earlier.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaVersionCompare(ttXlaHandle_h handle,
 ttXlaVersion_t* version1,
 ttXlaVersion_t* version2,
 out SQLINTEGER* comparison)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
To compare the configured version against the actual version of XLA, issue the
following call:

ttXlaVersion_t configured, actual;
SQLINTEGER comparision;

rc = ttXlaGetVersion (xlahandle, &configured, &actual);
rc = ttXlaVersionCompare (xlahandle, &configured, &actual,
 &comparison);

9Notes
When connecting two systems with XLA-based replication, use the following protocol.

1. At the primary site, retrieve the XLA version using ttXlaGetVersion. Send this
version information to the standby site.

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

version1 ttXlaVersion_t* Version of XLA to compare with version2

version2 ttXlaVersion_t* Version of XLA to compare with version1

comparison SQLINTEGER* Comparison result:

■ 0: Indicates version1 and version2 match.

■ -1: Indicates version1 is earlier than
version2.

■ +1: Indicates version1 is later than
version2.

ttXlaVersionCompare

9-50 Oracle TimesTen In-Memory Database C Developer's Guide

2. At the standby site, retrieve the XLA version using ttXlaGetVersion. Use
ttXlaVersionCompare to determine which version is earlier. The earlier version
number must be used to ensure proper operation between the two sites. Use
ttXlaSetVersion to specify the version of the interface to use at the standby site.
Send the earlier version number back to the primary site.

3. When the chosen version is received at the primary site, use ttXlaSetVersion to
specify the version of XLA to use.

9See also
ttXlaGetVersion
ttXlaSetVersion

XLA function reference

XLA Reference 9-51

ttXlaVersionTableInfo

9Description
Retrieves the table definition for the change update record that must be processed. The
table description is stored in the tableinfo output parameter.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaVersionTableInfo(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 out ttXlaTblVerDesc_t* tblinfo)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
For this example, assume the following definitions:

ttXlaHandle_h xlahandle;
ttXlaUpdateDesc_t* record;
ttXlaTblVerDesc_t tabinfo;

The following call retrieves a table definition:

rc = ttXlaVersionTableInfo(xlahandle, record, &tabinfo);

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

record ttXlaUpdateDesc_t* XLA record to be processed

tableinfo ttXlaTblVerDesc_t* Information about table definition

XLA replication function reference

9-52 Oracle TimesTen In-Memory Database C Developer's Guide

XLA replication function reference

TimesTen replication as described in Oracle TimesTen In-Memory Database Replication
Guide is sufficient for most customer needs; however, it is also possible to use XLA
functions to replicate updates from one database to another. Implementing your own
replication scheme on top of XLA in this way is fairly complicated, but can be
considered if TimesTen replication is not feasible for some reason.

This section documents the functions that are exclusive to using XLA as a replication
mechanism. Functions are listed in alphabetical order.

XLA replication function reference

XLA Reference 9-53

ttXlaApply

This function is part of XLA replication functionality and is not appropriate for use in
a typical XLA application.

9Description
Applies an update to the database associated with the transaction log handle. The
return value indicates whether the update was successful. The return also shows if the
update encountered a persistent problem. (To see whether the update encountered a
transient problem such as a deadlock or timeout, you must call ttXlaError and check
the error code.)

If the ttXlaUpdateDesc_t record is a transaction commit, the underlying database
transaction is committed. No other transaction commits are performed by ttXlaApply.
If the parameter test is true, the "old values" in the update description are compared
against the current contents of the database for record updates and deletions. If the old
value in the update description does not match the corresponding row in the database,
this function rejects the update and returns an sb_ErrXlaTupleMismatch error.

See "Using XLA as a replication mechanism" on page 5-34 for a discussion about using
this function.

9Required privilege
ADMIN

Additional privileges may be required on the target database for the ttXlaApply
operation. For example, to apply a CREATETAB (create table) record to the target
database, you must have CREATE TABLE or CREATE ANY TABLE privilege, as
appropriate.

9Syntax
SQLRETURN ttXlaApply(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 SQLINTEGER test)

9Parameters

Note: ttXlaApply cannot be used if the table definition was updated
since it was originally written to the transaction log. Unique key and
foreign key constraints are checked at the row level rather than at the
statement level.

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

record ttXlaUpdateDesc_t* Transaction to generate SQL statement

test SQLINTEGER Test for old values:

■ 1: Test on

■ 0: Test off

ttXlaApply

9-54 Oracle TimesTen In-Memory Database C Developer's Guide

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

If test is 1 and ttXlaApply detects an update conflict, an sb_ErrXlaTupleMismatch
error is returned.

9Example
This example applies an update to a database without testing for the previous value of
the existing record:

ttXlaUpdateDesc_t record;
rc = ttXlaApply(xlahandle, &record, 0);

9Note
When calling ttXlaApply, it is possible for the update to timeout or deadlock with
concurrent transactions. In such cases, it is the application's responsibility to roll the
transaction back and reapply the updates.

9See also
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL

XLA replication function reference

XLA Reference 9-55

ttXlaCommit

This function is part of XLA replication functionality and is not appropriate for use in
a typical XLA application.

9Description
Commits the current transaction being applied on the transaction log handle. This
routine commits the transaction regardless of whether the transaction has completed.
You can call this routine to respond to transient errors (timeout or deadlock) reported
by ttXlaApply, which applies the current transaction if it does not encounter an error.

See "Handling timeout and deadlock errors" on page 5-37 for a discussion about using
this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaCommit(ttXlaHandle_h handle)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
rc = ttXlaCommit(xlahandle);

9See also
ttXlaApply
ttXlaRollback
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

ttXlaGenerateSQL

9-56 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaGenerateSQL

This function is part of XLA replication functionality and is not appropriate for use in
a typical XLA application.

9Description
Generates a SQL DML or DDL statement that expresses the effect of the update record.
The generated statement is not applied to any database. Instead, the statement is
returned in the given buffer, whose maximum size is specified by the maxLen
parameter. The actual size of the buffer is returned in actualLen. For update and
delete records, ttXlaGenerateSQL requires a primary key or a unique index on a
non-nullable column to generate the correct SQL.

The generated SQL statement is encoded in the connection character set that is
associated with the ODBC connection of the XLA handle.

Also see "Replicating updates to a non-TimesTen database" on page 5-38.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaGenerateSQL(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 out char* buffer,
 SQLINTEGER maxLen,
 out SQLINTEGER* actualLen)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example generates the text of a SQL statement that is equivalent to the UPDATE
expressed by an update record:

ttXlaUpdateDesc_t record;
char buffer[200];

Note: This function does not currently work with LOB locators.

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

record ttXlaUpdateDesc_t* Record to be translated into SQL

buffer char* Location of the translated SQL statement

maxLen SQLINTEGER Maximum length of the buffer, in bytes

actualLen SQLINTEGER* Actual length of the buffer, in bytes

XLA replication function reference

XLA Reference 9-57

/*
 * Get the desired update record into the varable record.
 */

SQLINTEGER actualLength;

rc = ttXlaGenerateSQL(xlahandle, &record, buffer, 200,
 &actualLength);

9Note
The ttXlaGenerateSQL function cannot generate SQL statements for update records
associated with a table that has been dropped or altered since the record was
generated.

9See also
ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaTableCheck

ttXlaLookup

9-58 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaLookup

This function is part of XLA replication functionality and is not appropriate for use in
a typical XLA application.

9Description
This function looks for a record in the given table with key values according to the
keys parameter. The formats of the keys and result records are the same as for
ordinary rows. This function requires a primary key on the underlying table.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaLookup(ttXlaHandle_h handle,
 ttXlaTableDesc_t* table,
 void* keys,
 out void* result,
 SQLINTEGER maxsize,
 out SQLINTEGER* retsize)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example looks up a record given a pair of integer key values. Before this call,
table should describe the desired table and keybuffer contains a record with the key
columns set.

char keybuffer[100];
char recbuffer[2000];
ttXlaTableDesc_t table;

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

table ttXlaTblDesc_t* Table to search

keys void* A record in the defined structure for the table

Only those columns of the keys record that are
part of the primary key for the table are
examined.

result void* Where the located record is copied

If no record exists with the matching key
columns, an error is returned.

maxsize SQLINTEGER Size of the largest record that can fit into the
result buffer

retsize SQLINTEGER* Actual size of the record

XLA replication function reference

XLA Reference 9-59

SQLINTEGER recordSize;

rc = ttXlaLookup(xlahandle, &table, keybuffer, recbuffer,
 sizeof (recbuffer), &recordSize);

9See also
ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaTableCheck
ttXlaGenerateSQL

ttXlaRollback

9-60 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaRollback

This function is part of XLA replication functionality and is not appropriate for use in
a typical XLA application.

9Description
Rolls back the current transaction being applied on the transaction log handle. You can
call this routine to respond to transient errors (timeout or deadlock) reported by
ttXlaApply.

See "Handling timeout and deadlock errors" on page 5-37 for a discussion about using
this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaRollback(ttXlaHandle_h handle)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
rc = ttXlaRollback(xlahandle);

9See Also
ttXlaApply
ttXlaCommit
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

XLA replication function reference

XLA Reference 9-61

ttXlaTableCheck

This function is part of XLA replication functionality and is not appropriate for use in
a typical XLA application.

9Description
When using XLA as a replication mechanism, this function verifies that the named
table in the ttXlaTblDesc_t structure received from a master database is compatible
with a subscriber database or database associated with the transaction log handle. The
compat parameter indicates whether the tables are compatible.

See "Checking table compatibility between databases" on page 5-35 for a discussion
about using this function.

9Required privilege
XLA

9Syntax
SQLRETURN ttXlaTableCheck(ttXlaHandle_h handle,
 ttXlaTblDesc_t* table,
 ttXlaColDesc_t* columns,
 out SQLINTEGER* compat)

9Parameters

9Returns
Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the
error.

9Example
This example checks the compatibility of a table:

SQLINTEGER compat;
ttXlaTblDesc_t table;
ttXlaColDesc_t columns[20];
/*
 * Get the desired table and column definitions into
 * the variables "table" and "columns"
 */
rc = ttXlaTableCheck(xlahandle, &table, columns, &compat);
if (compat) {
 /* Compatible */

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

table ttXlaTblDesc_t* Table description

columns ttXlaColDesc_t* Column description for the table

compat SQLINTEGER* Compatibility information:

■ 1: Tables are compatible.

■ 0: Tables are not compatible.

ttXlaTableCheck

9-62 Oracle TimesTen In-Memory Database C Developer's Guide

}
else {
 /*
 * Not compatible or some other error occurred
 */
}

9See also
ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaGenerateSQL

C data structures used by XLA

XLA Reference 9-63

C data structures used by XLA

This section describes the C data structures used by the XLA functions described in
this chapter. These structures are defined in the following file:

installation_dir/include/tt_xla.h

You must include this file when building your XLA application.

Table 9–1 Summary of C data structures

C data structure Description

ttXlaNodeHdr_t Describes the record type. Used at the beginning of records returned
by XLA.

ttXlaUpdateDesc_t Describes an update record.

ttXlaVersion_t Describes XLA version information returned by ttXlaGetVersion.

ttXlaTblDesc_t Describes table information returned by ttXlaGetTableInfo.

ttXlaTblVerDesc_t Describes table version returned by ttXlaVersionTableInfo.

ttXlaColDesc_t Describes table column information returned by
ttXlaGetColumnInfo.

tt_LSN_t Describes a log record identifier used by bookmarks. This structure is
used by the ttXlaUpdateDesc_t structure.

tt_XlaLsn_t Describes a log record identifier used by an XLA bookmark.

ttXlaNodeHdr_t

9-64 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNodeHdr_t

Most C data structures begin with a standard header that describes the data record
type and length. The standard header has the type ttXlaNodeHdr_t.

This header has the following fields.

Field Type Description

nodeType char The type of record:

■ TTXLANHVERSION: Version

■ TTXLANHUPDATE: Update

■ TTXLANHTABLEDESC: Table description

■ TTXLANHCOLDESC: Column description

■ TTXLANHSTATUS: Status

■ TTXLANHINVALID: Invalid

byteOrder char Byte order of the record:

■ "1": Big-endian

■ "2": Little-endian

length SQLUINTEGER Total length of record, including all attachments

C data structures used by XLA

XLA Reference 9-65

ttXlaUpdateDesc_t

This structure describes an update operation to a single row (or tuple) in the database.
Each update record returned by a ttXlaNextUpdate or ttXlaNextUpdateWait function
begins with a fixed length ttXlaUpdateDesc_t header followed by zero to two rows
from the database. The row data differs depending on the record type reported in the
ttXlaUpdateDesc_t header:

■ No rows are present in a COMMITONLY record.

■ One row is present in INSERTTUP or DELETETUP.

■ Two rows are present in an UPDATETUP record to report the row data before and
after the update, respectively.

■ Special format rows are present in CREATAB, DROPTAB, CREAIND, DROPIND,
CREATVIEW, DROPVIEW, CREATSEQ, DROPSEQ, CREATSYN, DROPSYN, ADDCOLS, and
DRPCOLS records, which are described in "Special update data formats" on
page 9-68.

The flags field is a bit-map of special options for the record update.

The connID field identifies the ODBC connection handle that initiated the update. This
value can be used to determine if updates came from the same connection.

A separate commit XLA record is generated when a call to the ttApplicationContext
procedure is not followed by an operation that generates an XLA record. See "Passing
application context" on page 5-39 for a description of the ttApplicationContext
procedure.

9Note
XLA cannot receive notification of the following:

■ CREATE VIEW or DROP VIEW for a non-materialized view

■ CREATE GLOBAL TEMPORARY TABLE or DROP TABLE for a temporary table

The only XLA records that can be generated from an ALTER TABLE operation are of the
following types:

■ ADDCOLS or DRPCOLS when columns are added or dropped

■ CREAIND or DROPIND when a unique attribute of a column is modified

While sequence creates (CREATESEQ) and drops (DROPSEQ) are visible through XLA,
sequence increments are not.

All deletes resulting from cascading deletes and aging are visible through XLA. The
flags value (discussed in the following table) indicates when deletes are due to
cascading or aging.

The fields of the update header defined by ttXlaUpdateDesc_t are as follows.

Field Type Description

header ttXlaNodeHdr_t Standard data header

ttXlaUpdateDesc_t

9-66 Oracle TimesTen In-Memory Database C Developer's Guide

type SQLUSMALLINT Record type:

■ CREATAB: Create table.

■ DROPTAB: Drop table.

■ CREAIND: Create index.

■ DROPIND: Drop index.

■ CREATVIEW: Create view.

■ DROPVIEW: Drop view.

■ CREATSEQ: Create sequence.

■ DROPSEQ: Drop sequence.

■ CREATSYN: Create synonym.

■ DROPSYN: Drop synonym.

■ ADDCOLS: Add columns.

■ DRPCOLS: Drop columns.

■ TRUNCATE: Truncate table.

■ INSERTTUP: Insert.

■ UPDATETUP: Update.

■ DELETETUP: Delete.

■ COMMITONLY: Commit.

Field Type Description

C data structures used by XLA

XLA Reference 9-67

flags SQLUSMALLINT Special options on record update:

■ TT_UPDCOMMIT: Indicates that the update record is
the last record for the transaction. (Implied
commit.)

■ TT_UPDFIRST: Indicates that the update record is
the first record for the transaction.

■ TT_UPDREPL: Indicates that this update was the
result of a non-XLA TimesTen replicated update
from another database.

■ TT_UPDCOLS: Indicates the presence of a list
following the last returned row that specifies
which columns in the row were updated. The list
consists of an array of SQLUSMALLINT values, the
first of which is the number of columns that were
updated, followed by the column numbers of the
updated columns. For example, if the first and
third columns are updated, the array is (2, 1, 3) or
(2, 3, 1), depending on the UPDATE statement
used. This array is in all UPDATETUP records.

■ TT_UPDDEFAULT: Indicates that the update record
(either a CREATAB or ADDCOLS) contains default
column values. If set, the default columns are
presented as an array of SQLUSMALLINT values
followed by a string with all the default values
concatenated. The number of SQLUSMALLINT
values in the array equals the number of columns
in the CREATAB or ADDCOLS record.

■ TT_CASCDEL: Indicates that the XLA update was
generated as part of a cascade delete operation.

■ TT_AGING: Indicates that the XLA update was
generated as part of an aging operation.

If the value of a specific column is 0, it indicates that
column does not have a default value. The defaults
for all nonzero values are concatenated in a string and
are presented in order, with the array value indicating
the length of the default value. For example, three
columns with defaults 1 of type INTEGER, no default,
and "apple" of type VARCHAR2(10) is (1,0,5)"1apple".

Decimal values for each of these flags bits is as
follows. (Note that some flag values are for internal
use only.)

TT_UPDCOMMIT 1
TT_UPDFIRST 2
TT_UPDREPL 4
TT_UPDCOLS 8
TT_UPDDEFAULT 64
TT_CASCDEL 256
TT_AGING 512

contextOffset SQLUINTEGER Offset to application-provided context value

This value is 0 if there is no context. A nonzero value
indicates the location of the context relative to the
beginning of the XLA record.

connID SQLUBIGINT Connection ID owning the transaction

sysTableID SQLUBIGINT System-provided identifier of the affected table

userTableID SQLUBIGINT Application-defined table ID of the affected table

Field Type Description

ttXlaUpdateDesc_t

9-68 Oracle TimesTen In-Memory Database C Developer's Guide

Special update data formats
The data contained in an update record follows the ttXlaTblDesc_t header. This
section describes the data formats for the special update records related to specific SQL
operations.

CREATE TABLE

For a CREATE TABLE operation, the special row value consists of the ttXlaTblDesc_t
record describing the new table, followed by the ttXlaColDesc_t records that describe
each column.

ALTER TABLE

For an ALTER TABLE operation, the special row value consists of a ttXlaDropTableTup_
t or ttXlaAddColumnTup_t value, followed by a ttXlaColDesc_t record that describes
the column.

ttXlaDropTableTup_t

For a DROP TABLE operation, the row value is as follows.

ttXlaTruncateTableTup_t

For a TRUNCATE TABLE operation, the row value is as follows.

ttXlaCreateIndexTup_t

For a CREATE INDEX operation, the row value is as follows.

tranID SQLUBIGINT Read-only, system-provided transaction identifier

LSN tt_LSN_t Transaction log record identifier of this operation,
used for diagnostics

tuple1 SQLUINTEGER Length of first row (tuple), or zero

tuple2 SQLUINTEGER Length of second row (tuple), or zero

Note: Be aware that tt_LSN_t, particularly the logFile and
logOffset fields, is used differently than in earlier releases, referring
to log record identifiers rather than sequentially increasing LSNs. See
the note in "tt_LSN_t" on page 9-79.

Field Type Description

tblName char(31) Name of the dropped table

tblOwner char(31) Owner of the dropped table

Field Type Description

tblName char(31) Name of the truncated table

tblOwner char(31) Owner of the truncated table

Field Type Description

C data structures used by XLA

XLA Reference 9-69

ttXlaDropIndexTup_t

For a DROP INDEX operation, the row value is as follows.

ttXlaAddColumnTup_t

For an ADD COLUMN operation, the row value is as follows.

Following this special row are the ttXlaColDesc_t records describing the new
columns.

ttXlaDropColumnTup_t

For a DROP COLUMN operation, the row value is as follows.

Field Type Description

tblName char(31) Name of the table on which the index is defined

tblOwner char(31) Owner of the table on which the index is
defined

ixName char(31) Name of the new index

flag char(31) Index flag:

■ "P": Primary key

■ "F": Foreign key

■ "R": Regular

nixcols SQLUINTEGER Number of indexed columns

ixColsSys SQLUINTEGER(16) Indexed column numbers using system
numbers

ixColsUser SQLUINTEGER(16) Indexed column numbers using user-defined
column IDs

ixType char Type of index:

■ "T": Range

■ "H": Hash

■ "B": Bit map

ixUnique char Uniqueness of index:

■ "U": Unique

■ "N": Non-unique

pages SQLUINTEGER Number of pages for hash indexes

Field Type Description

tblName char(31) Name of the table on which the index was
dropped

tblOwner char(31) Owner of the table on which the index was
dropped

ixName char(31) Name of the dropped index

Field Type Description

ncols SQLUINTEGER Number of additional columns

ttXlaUpdateDesc_t

9-70 Oracle TimesTen In-Memory Database C Developer's Guide

Following this special row is an array of ttXlaColDesc_t records describing the
columns that were dropped.

ttXlaCreateSeqTup_t

For a CREATE SEQUENCE operation, the row value is as follows.

ttXlaDropSeqTup_t

For a DROP SEQUENCE operation, the row value is as follows.

ttXlaViewDesc_t

For a CREATE VIEW operation, the row value is as follows.

Field Type Description

ncols SQLUINTEGER Number of dropped columns

Field Type Description

sqName char(31) Name of sequence

sqOwner char(31) Owner of sequence

cycle char Cycle flag

Indicates whether the sequence number
generator continues to generate numbers after it
reaches the maximum or minimum value:

■ "1": Yes

■ "0": No

minval SQLBIGINT Minimum value of sequence

maxval SQLBIGINT Maximum value of sequence

incr SQLBIGINT Increment between sequence numbers

Positive numbers indicate an ascending
sequence and negative numbers indicate a
descending sequence. In a descending sequence,
the range goes from maxval to minval. In an
ascending sequence, the range goes from minval
to maxval.

Field Type Description

sqName char(31) Name of sequence

sqOwner char(31) Owner of sequence

Note: This applies to either materialized or non-materialized views.

Field Type Description

vwName char(31) Name of view

vwOwner char(31) Owner of view

sysTableID SQLUBIGINT System table ID stored in SYS.TABLES

C data structures used by XLA

XLA Reference 9-71

ttXlaDropViewTup_t

For a DROP VIEW operation, the row value is as follows.

ttXlaCreateSynTup_t

For a CREATE SYNONYM operation, the row value is as follows.

ttXlaDropSynTup_t

For a DROP SYNONYM operation, the row value is as follows.

ttXlaSetTableTup_t

The description of the SET TABLE ID operation uses the previously assigned
application table identifier in the main part of the update record and provides the new
value of the application table identifier in the following special row.

Note: This applies to either materialized or non-materialized views.

Field Type Description

vwName char(31) Name of view

vwOwner char(31) Owner of view

Field Type Description

synName char(31) Name of synonym

synOwner char(31) Owner of synonym

objName char(31) Name of object the synonym points to

objOwner char(31) Owner of object the synonym points to

isPublic char Indicates whether the synonym is public:

■ "1": True

■ "0": False

isReplace char Indicates whether the synonym was created
using CREATE OR REPLACE:

■ "1": True

■ "0": False

Field Type Description

synName char(31) Name of synonym

synOwner char(31) Owner of synonym

isPublic char Indicates whether the synonym is public:

■ "1": True

■ "0": False

Field Type Description

newID SQLUBIGINT New user-defined table ID

ttXlaUpdateDesc_t

9-72 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaSetColumnTup_t

The description of the SET COLUMN ID operation provides the following special row:

ttXlaSetStatusTup_t

A change in a table's replication status provides the following special row:

Locating the row data following a ttXlaUpdateDesc_t header
See "Retrieving update records from the transaction log" on page 5-12 and "Inspecting
record headers and locating row addresses" on page 5-15 for a detailed discussion on
obtaining update records and inspecting the contents of ttXlaUpdateDesc_t headers.
Below is a summary of these procedures.

The update header is immediately followed by the row data. The row data is stored in
an internal format with the offsets given in the ttXlaColDesc_t structure returned by
ttXlaGetColumnInfo.

You can locate the address of the row data by adding the address of the update header
to its size.

For example:

char* Row = (char*)&ttXlaUpdateDesc_t +
 sizeof(ttXlaUpdateDesc_t);

For UPDATETUP records, there are two rows of data following the ttXlaUpdateDesc_t
header. The first row contains the data before the update, and the second row the data
after the update.

Since the new row is right after the old row, you can calculate its address by adding
the address of the old row to its length (tuple1).

For example:

char* oldRow = (char*)&ttXlaUpdateDesc_t +
 sizeof(ttXlaUpdateDesc_t);
char* newRow = oldRow + ttXlaUpdateDesc_t.tuple1;

See "ttXlaColDesc_t" on page 9-76 for details on how to access the column data in a
returned row.

Field Type Description

oldUserColID SQLUINTEGER Previous user-defined column ID value

newUserColID SQLUINTEGER New user-defined column ID value

sysColID SQLUINTEGER System column ID

Field Type Description

oldStatus SQLUINTEGER Previous replication status

newStatus SQLUINTEGER New replication status

C data structures used by XLA

XLA Reference 9-73

ttXlaVersion_t

To permit future extensions to XLA, a version structure ttXlaVersion_t describes the
current XLA version and structure byte order. This structure is returned by the
ttXlaGetVersion function.

This structure has the following fields:

Field Type Description

header ttXlaNodeHdr_t Standard data header

hardware char(16) Name of hardware platform

wordSize SQLUINTEGER Native word size (32 or 64 bits)

TTMajor SQLUINTEGER TimesTen major version

TTMinor SQLUINTEGER TimesTen minor version

TTPatch SQLUINTEGER TimesTen point release number

OS char(16) Name of operating system

OSMajor SQLUINTEGER Operating system major version

OSMinor SQLUINTEGER Operating system minor version

ttXlaTblDesc_t

9-74 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaTblDesc_t

Table information is portrayed through the ttXlaTblDesc_t structure. This structure is
returned by the ttXlaGetTableInfo function.

This structure has the following fields:

The inline row size includes space for all fixed-width columns, null column flags, and
pointer information for variable-length columns. Each varying-length column
occupies four bytes of inline row space.

Note the following if the table has a declared primary key:

■ The nPrimCols value is greater than 0.

■ The primColsSys array contains the column numbers of the primary key, in the
same order in which they were originally declared with the CREATE TABLE
statement.

■ The primColsUser array contains the corresponding application-specified column
identifiers.

Field Type Description

header ttXlaNodeHdr_t Standard data header

tblName char(31) Name of the table, null-terminated

tblOwner char(31) Owner of the table, null-terminated

sysTableID SQLUBIGINT Unique system-defined table identifier

userTableId SQLUBIGINT User-defined table identifier

columns SQLUINTEGER Number of columns

width SQLUINTEGER Inline row size

nPrimCols SQLUINTEGER Number of primary columns

primColsSys SQLUINTEGER(16) System primary key column numbers

primColsUser SQLUINTEGER(16) User-defined primary key column numbers

C data structures used by XLA

XLA Reference 9-75

ttXlaTblVerDesc_t

This data structure contains the table version number and ttXlaTblDesc_t. It is
returned by ttXlaVersionTableInfo. This structure has the following fields:

Field Type Description

tblDesc ttXlaTblDesc_t Table description

tblVer SQLBIGINT System-generated table version number

ttXlaColDesc_t

9-76 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaColDesc_t

Column information is given through this structure, which is returned by the
ttXlaGetColumnInfo function.

The structure has the following fields:

The procedures for obtaining a ttXlaColDesc_t structure and inspecting its contents
are described in "Inspecting column data" on page 5-17. Below is a summary of these
procedures.

The ttXlaColDesc_t structure is returned by the ttXlaGetColumnInfo function. This
structure contains the metadata needed to access column information in a particular
table. For example, you can use the offset field to locate specific column data in the

Field Type Description

header ttXlaNodeHdr_t Standard data header

colName [tt_NameLenMax] char Name of the column

pad0 SQLUINTEGER Pad to four-byte boundary

sysColNum SQLUINTEGER Ordinal number of the column as
determined when the table is created or
subsequently altered

This is the same as the corresponding
COLNUM value in SYS.COLUMNS. (See
"SYS.COLUMNS" in Oracle TimesTen
In-Memory Database System Tables and
Views Reference.)

userColNum SQLUINTEGER Ordinal number of the column if
optionally specified by the user

This is zero or a column number
specified through the
ttSetUserColumnID TimesTen built-in
procedure. (See "ttSetUserColumnID" in
Oracle TimesTen In-Memory Database
Reference.)

dataType SQLUINTEGER Structure in ODBC TTXLA_* code

See "About XLA data types" on page 5-7.

size SQLUINTEGER Maximum or basic size of column

offset SQLUINTEGER Offset to fixed-length part of column

nullOffset SQLUINTEGER Offset to null byte, or zero if not nullable

precision SQLSMALLINT Numeric precision for decimal types

scale SQLSMALLINT Numeric scale for decimal types

flags SQLUINTEGER Column flag:

■ TT_COLPRIMKEY: Column is primary
key.

■ TT_COLVARYING: Column is stored
out of line.

■ TT_COLNULLABLE: Column is
nullable.

■ TT_COLUNIQUE: Column has a
unique attribute defined on it.

C data structures used by XLA

XLA Reference 9-77

row or rows returned in an update record after the ttXlaColDesc_t structure. By
adding the offset to the address of a returned row, you can locate the address to the
column value. You can then cast this value to the corresponding C types according to
the dataType field, or pass it to one of the conversion routines described in
"Converting complex data types" on page 5-23.

TimesTen row data consists of fixed-length data followed by any variable-length data.

■ For fixed length column data, ttXlaColDesc_t returns the offset and size of the
column data. The offset is relative to the beginning of the fixed part of the record.
See Example 9–1 below.

■ For variable-length column data (VARCHAR2, NVARCHAR2, and VARBINARY), offset is
an address that points to a four-byte offset value. By adding the offset address to
the offset value, you can obtain the address of the column data in the
variable-length portion of the row. The first eight bytes at this location is the length
of the data, followed by the actual data. For variable-length data, the returned size
value is the maximum allowable column size. See Example 9–1 below.

For columns that can have null values, nullOffset points to a null byte in the record.
This value is 1 if the column is null, or 0 if it is not null. See "Detecting null values" on
page 5-25 for a discussion.

The flags bits define whether the column is nullable, part of a primary key, or stored
out of line.

The sysColNum value is the system column number to assign to the column. This value
begins with 1 for the first column.

Example 9–1 Copying and printing a VARCHAR2 string

For fixed-length column data, the address of a column is the offset value in the
ttXlaColDesc_t structure, plus the address of the row as follows:

ttXlaColDesc_t colDesc;

void* pColVal = colDesc->offset + row;

The value of the column can be obtained by dereferencing this pointer using a type
pointer that corresponds to the data type. For example, for SQL_INTEGER, the ODBC
type is SQLINTEGER and the value of the column can be obtained by the following:

((SQLINTEGER) pColVal))

In the case of variable-length column data, the pColVal calculated above is the address
of a four-byte offset value. Adding this offset value to the address of pColVal provides
a pointer to the beginning of the variable-length column data. The first eight bytes at
this location is the length of this data (var_len), followed by the actual data (var_
data).

Note: LOB support in XLA is limited, as follows:

■ You can subscribe to tables containing LOB columns, but
information about the LOB value itself is unavailable.

■ ttXlaGetColumnInfo returns information about LOB columns.

■ Columns containing LOBs are reported as empty (zero length) or
null (if the value is actually NULL). In this way, you can tell the
difference between a null column and a non-null column.

ttXlaColDesc_t

9-78 Oracle TimesTen In-Memory Database C Developer's Guide

In this example, a VARCHAR string is copied and printed.

tt_ptrint* var_len = (tt_ptrint*)((char*)pColVal +
 ((int)pColVal));
char* var_data = (char*)(var_len+1);
char* buffer = malloc(*var_len+1);
memcpy(buffer,var_data,*var_len);
buffer[*var_len] = (char)NULL; /* NULL terminate the string */
printf("%s\n",buffer);
free(buffer);

C data structures used by XLA

XLA Reference 9-79

tt_LSN_t

Description of log record identifier used by bookmarks. This structure is used by the
ttXlaUpdateDesc_t structure.

Field Type Description

logFile SQLUBIGINT Higher order portion of log record identifier

logOffset SQLUBIGINT Lower order portion of log record identifier

Note: The logFile and logOffset field names are retained for
backward compatibility, although their usage has changed. In
previous releases the values referred to LSNs, which increased
sequentially, and the values had very specific meanings, indicating the
log file number plus byte offset. Now they refer to log record
identifiers, which are more abstract and do not have a direct
relationship to the log file number and byte offset. All you can assume
about a sequence of log record identifiers is that a log record identifier
B read at a later time than a log record identifier A has a higher value.

tt_XlaLsn_t

9-80 Oracle TimesTen In-Memory Database C Developer's Guide

tt_XlaLsn_t

Description of a log record identifier used by bookmarks. This structure is returned by
the ttXlaGetLSN function and used by the ttXlaSetLSN function.

The checksum is specific to an XLA handle to ensure that every log record identifier is
related to a known XLA connection.

Field Type Description

checksum SQLUINTEGER Checksum used to ensure that it is a valid log
record identifier handle

xid SQLUSMALLINT Transaction ID

logFile SQLUBIGINT Higher order portion of log record identifier

logOffset SQLUBIGINT Lower order portion of log record identifier

Note: The logFile and logOffset field names are retained for
backward compatibility, although their usage has changed. In
previous releases the values referred to LSNs, which increased
sequentially, and the values had very specific meanings, indicating the
log file number plus byte offset. Now they refer to log record
identifiers, which are more abstract and do not have a direct
relationship to the log file number and byte offset. All you can assume
about a sequence of log record identifiers is that a log record identifier
B read at a later time than a log record identifier A has a higher value.

10

TimesTen ODBC Support 10-1

10TimesTen ODBC Support

TimesTen provides an ODBC 3.51 driver that also supports ODBC 2.5 for applications
not using a driver manager, as follows:

■ For ODBC 3.5, TimesTen supports ODBC 3.51 core interface conformance.

■ For ODBC 2.5, TimesTen supports Extension Level 1, as well as Extension Level 2
features that are documented in this chapter.

This chapter covers the details of TimesTen ODBC support, discussing the following
topics, including changes in TimesTen 18.1 that may necessitate code changes in ODBC
applications used with previous versions of TimesTen:

■ TimesTen ODBC 3.5 support

■ TimesTen ODBC 2.5 support

■ ODBC API incompatibilities with previous versions of TimesTen

You can also refer to the following additional resources.

■ Backward compatibility and standards compliance:

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/backwar
d-compatibility-and-standards-compliance

■ Summary of differences between ODBC 2.5 and ODBC 3.5:

https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/behavior
al-changes-and-odbc-3-x-drivers

■ Additional behavioral changes:

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/behavio
ral-changes

■ Writing ODBC 3.x applications:

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/writing
-odbc-3-x-applications

■ ODBC API reference documentation:

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-ref
erence

Also see "TimesTen include files" on page 2-8, for information about #include files for
TimesTen extensions.

TimesTen ODBC 3.5 support

10-2 Oracle TimesTen In-Memory Database C Developer's Guide

TimesTen ODBC 3.5 support
This section covers theses topics for TimesTen ODBC 3.5 support:

■ Using ODBC 3.5 with TimesTen

■ Client/server cross-release restrictions with ODBC 3.5

■ ODBC 3.5 new and replacement function support

■ ODBC 3.5 data type support notes

■ Environment attribute support for ODBC 3.5

■ Attribute support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr

■ Attribute support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr

■ TimesTen field identifiers for ODBC 3.5 SQLColAttribute

■ Information type support for ODBC 3.5 SQLGetInfo

Using ODBC 3.5 with TimesTen
In accordance with the ODBC 3.5 specification, an ODBC 3.5 application calls
SQLSetEnvAttr to set SQL_ATTR_ODBC_VERSION to SQL_OV_ODBC3 directly after calling
SQLAllocHandle, such as in this example:

RetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
...
RetCode = SQLSetEnvAttr(hEnv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER)SQL_OV_ODBC3, 0);
...
RetCode = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
...
RetCode = SQLDriverConnect(hDbc, winHandle, connStr, SQL_NTS,
 outConnStr, outConnStrBufferLen,
 &outConnStrLen, SQL_DRIVER_NOPROMPT);
...

Client/server cross-release restrictions with ODBC 3.5
Previous TimesTen releases support cross-release client/server connections, where the
client version could be either newer or older than the server version (such as an 11.2.2
client connecting to an 11.2.1 server, or an 11.2.1 client connecting to an 11.2.2 server).

Due to changes in ODBC 3.5 functionality, TimesTen clients of Release 18.1 or later
cannot connect to an older TimesTen server when the client declares itself to be ODBC
3.x compliant by specifying SQL_ODBC_OV3 in a SQLSetEnvAttr call (such as shown in
the preceding section).

Important: Because TimesTen 18.1 is a major release, you should
recompile and relink existing ODBC applications. Also see "ODBC
API incompatibilities with previous versions of TimesTen" on
page 10-26.

It is also advisable to link your applications dynamically rather than
statically.

Note: This limitation does not impact ODBC 2.5 applications.

TimesTen ODBC 3.5 support

TimesTen ODBC Support 10-3

ODBC 3.5 new and replacement function support
This section lists ODBC 3.5 new and replacement functions supported by TimesTen.

Note: The TimesTen ODBC driver supports wide-character (W)
function versions for applications not using a driver manager, as
indicated in Table 10–1 and Table 10–8.

Table 10–1 Supported ODBC 3.5 new and replacement functions

Function Notes

SQLAllocHandle With applicable settings for HandleType, replaces ODBC
2.5 functions SQLAllocEnv, SQLAllocConnect, and
SQLAllocStmt.

SQLBulkOperations Call returns "Driver not capable."

SQLCloseCursor Replaces the ODBC 2.5 function SQLFreeStmt when that
function is used with the SQL_CLOSE option.

SQLColAttribute and
SQLColAttributeW

Replaces the ODBC 2.5 function SQLColAttributes.

SQLCopyDesc No notes

SQLEndTran Replaces the ODBC 2.5 function SQLTransact.

SQLFetchScroll TimesTen supports only the SQL_FETCH_NEXT option
(forward scroll).

SQLFreeHandle With applicable settings for HandleType, replaces ODBC
2.5 functions SQLFreeEnv, SQLFreeConnect, and
SQLFreeStmt.

SQLGetConnectAttr and
SQLGetConnectAttrW

Replaces the ODBC 2.5 function SQLGetConnectOption.

SQLGetDescField and
SQLGetDescFieldW

No notes

SQLGetDescRec and
SQLGetDescRecW

No notes

SQLGetDiagField and
SQLGetDiagFieldW

Replaces the ODBC 2.5 function SQLError.

Native error codes are TimesTen errors. You may receive
generic errors such as, "Execution at Oracle failed. Oracle
error code nnn."

When using SQLGetDiagField or SQLGetDiagFieldW:

■ Use TT_MAX_MESSAGE_LENGTH instead of SQL_MAX_
MESSAGE_LENGTH (which is a limit of 512 bytes).

■ Handle a possible return of SQL_SUCCESS_WITH_INFO
(for example, in case the message length exceeded the
input buffer size).

TimesTen ODBC 3.5 support

10-4 Oracle TimesTen In-Memory Database C Developer's Guide

ODBC 3.5 data type support notes
TimesTen supports these data types, new in ODBC 3.5:

■ SQL_C_NUMERIC

■ SQL_C_TYPE_DATE

■ SQL_C_TYPE_TIME

■ SQL_C_TYPE_TIMESTAMP

TimesTen does not support these data types or has limited support:

■ SQL_GUID: TimesTen does not support conversion of this type to a C type.

■ SQL_INTERVAL_xxxx: TimesTen does not support conversion of interval types to C
types.

■ SQL_WCHAR: TimesTen does not support conversion of this type to C numeric types.

Environment attribute support for ODBC 3.5
Table 10–2 lists standard environment attributes supported by TimesTen in ODBC 3.5.

SQLGetDiagRec and
SQLGetDiagRecW

Replaces the ODBC 2.5 function SQLError.

Native error codes are TimesTen errors. You may receive
generic errors such as, "Execution at Oracle failed. Oracle
error code nnn."

When using SQLGetDiagRec or SQLGetDiagRecW:

■ Use TT_MAX_MESSAGE_LENGTH instead of SQL_MAX_
MESSAGE_LENGTH (which is a limit of 512 bytes).

■ Handle a possible return of SQL_SUCCESS_WITH_INFO
(for example, in case the message length exceeded the
input buffer size).

SQLGetEnvAttr No notes

SQLGetStmtAttr and
SQLGetStmtAttrW

Replaces the ODBC 2.5 function SQLGetStmtOption.

SQLSetConnectAttr and
SQLSetConnectAttrW

Replaces the ODBC 2.5 function SQLSetConnectOption.

SQLSetDescField No notes

SQLSetDescRec No notes

SQLSetEnvAttr Required for ODBC applications to set SQL_ATTR_ODBC_
VERSION to SQL_OV_ODBC3.

SQLSetStmtAttr and
SQLSetStmtAttrW

Replaces the ODBC 2.5 function SQLSetStmtOption.

Table 10–2 Standard environment attributes (ODBC 3.5)

Attribute Notes

SQL_ATTR_ODBC_VERSION Supported values SQL_OV_ODBC3 and SQL_OV_ODBC2.

SQL_ATTR_OUTPUT_NTS Supported value SQL_TRUE.

Table 10–1 (Cont.) Supported ODBC 3.5 new and replacement functions

Function Notes

TimesTen ODBC 3.5 support

TimesTen ODBC Support 10-5

Attribute support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr
Table 10–3 lists support of standard attributes by TimesTen for the ODBC 3.5
SQLSetConnectAttr and SQLGetConnectAttr functions. These functions enable you to
set connection attributes after the initial connection or retrieve those settings.

Also see "Attribute support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr" on
page 10-5. Those attributes can also be set using SQLSetConnectAttr, in which case the
value serves as a default for all statements on the connection.

For TimesTen-specific attributes, see "Option support for ODBC 2.5
SQLSetConnectOption and SQLGetConnectOption" on page 10-16. These attributes are
supported for both ODBC 2.5 and ODBC 3.5.

Attribute support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr
Table 10–4 lists standard attributes supported by TimesTen for the ODBC 3.5
SQLSetStmtAttr and SQLGetStmtAttr functions. These functions enable you to set or
retrieve statement attribute settings.

To set an attribute default value for all statements associated with a connection, use
SQLSetConnectAttr.

Notes:

■ An attribute setting through SQLSetConnectAttr or
SQLSetStmtAttr overrides the setting of the corresponding
connection attribute (as applicable).

■ The documentation here also applies to SQLSetConnectAttrW and
SQLGetConnectAttrW.

■ TimesTen also supports the options listed in "Option support for
ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption" on
page 10-16.

Table 10–3 Standard connection attributes (ODBC 3.5)

Attribute Notes

SQL_ATTR_ASYNC_ENABLE Supported setting SQL_ASYNC_ENABLE_OFF.

SQL_ATTR_AUTO_IPD Read-only (get); value is always SQL_TRUE.

SQL_ATTR_CONNECTION_DEAD Read-only (get).

SQL_ATTR_CONNECTION_TIMEOUT Supported setting 0; any other setting reverts to 0.

SQL_ATTR_ENLIST_IN_DTC Driver not capable.

SQL_ATTR_METADATA_ID Supported setting SQL_FALSE.

Notes:

■ An attribute setting through SQLSetConnectAttr or
SQLSetStmtAttr overrides the setting of the corresponding
connection attribute (as applicable).

■ TimesTen also supports the options listed in "Option support for
ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption" on
page 10-18.

TimesTen ODBC 3.5 support

10-6 Oracle TimesTen In-Memory Database C Developer's Guide

TimesTen field identifiers for ODBC 3.5 SQLColAttribute
The SQLColAttribute function returns descriptor information for a column in a result
set.

Refer to ODBC API reference documentation for complete information about this
function and standard column descriptors.

Table 10–5 describes TimesTen-specific field identifiers.

Table 10–4 Standard statement attributes (ODBC 3.5)

Attribute Notes

SQL_ATTR_APP_PARAM_DESC No notes

SQL_ATTR_APP_ROW_DESC No notes

SQL_ATTR_CURSOR_SCROLLABLE Supported setting SQL_NONSCROLLABLE.

SQL_ATTR_CURSOR_SENSITIVITY Supported setting SQL_INSENSITIVE.

SQL_ATTR_ENABLE_AUTO_IPD No notes

SQL_ATTR_IMP_PARAM_DESC Read-only (get).

SQL_ATTR_IMP_ROW_DESC Read-only (get).

SQL_ATTR_METADATA_ID Supported setting SQL_FALSE.

SQL_ATTR_PARAM_BIND_OFFSET_PTR No notes

SQL_ATTR_PARAM_BIND_TYPE No notes

SQL_ATTR_PARAM_OPERATION_PTR No notes

SQL_ATTR_PARAM_STATUS_PTR No notes

SQL_ATTR_PARAMS_PROCESSED_PTR No notes

SQL_ATTR_PARAMSET_SIZE No notes

SQL_ATTR_ROW_ARRAY_SIZE No notes

SQL_ATTR_ROW_BIND_OFFSET_PTR No notes

SQL_ATTR_ROW_STATUS_PTR No notes

SQL_ATTR_ROWS_FETCHED_PTR No notes

Note: This replaces SQLColAttributes (plural) in ODBC 2.5.

Table 10–5 TimesTen field identifiers: SQLColAttribute (ODBC 3.5)

Descriptor Comment/description

TT_COLUMN_INLINE Returns TRUE for columns with inline data, or FALSE
otherwise. This is returned in the SQLColAttribute
CharacterAttributePtr parameter.

TimesTen ODBC 3.5 support

TimesTen ODBC Support 10-7

Information type support for ODBC 3.5 SQLGetInfo
This section covers support in the TimesTen ODBC 3.5 implementation for standard
and TimesTen-specific information types for the ODBC function SQLGetInfo.

Table 10–6 documents TimesTen support for standard information types that were
introduced or renamed in ODBC 3.0, noting the TimesTen-specific correct value or
values returned.

Refer to the following location for standard information:

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlgetinfo-func
tion

Also see "Information type support for ODBC 2.5 SQLGetInfo" on page 10-19. Those
information types are still supported by the TimesTen ODBC 3.5 driver (with some
renamed, as noted).

TT_COLUMN_LENGTH_SEMANTICS For character-type columns, this returns "BYTE" for
columns with byte length semantics and "CHAR" for
columns with character length semantics. For
non-character columns, it returns "". The information is
returned in the SQLColAttribute CharacterAttributePtr
parameter.

This information refers to whether data length is
measured in bytes or characters. Length semantics in
TimesTen are the same as in Oracle Database. See "Length
Semantics" in Oracle Database Globalization Support Guide
for additional information.

Table 10–6 TimesTen support for standard information types: SQLGetInfo (ODBC 3.5)

Information type Notes and correct values returned by TimesTen

SQL_ACTIVE_ENVIRONMENTS 0: Environment objects are allocated from heap.

SQL_AGGREGATE_FUNCTIONS SQL_AF_ALL, SQL_AF_AVG, SQL_AF_COUNT, SQL_
AF_DISTINCT, SQL_AF_MAX, SQL_AF_MIN, SQL_
AF_SUM

SQL_ALTER_DOMAIN 0: ALTER DOMAIN statement not supported.

SQL_ALTER_TABLE SQL_AT_ADD_COLUMN_DEFAULT: ADD COLUMN clause
is supported, with facility to specify column
defaults (FIPS transitional level).

SQL_AT_ADD_COLUMN_SINGLE: ADD COLUMN clause is
supported (FIPS transitional level).

SQL_AT_ADD_CONSTRAINT: ADD COLUMN clause is
supported, with facility to specify column
constraints (FIPS transitional level).

SQL_AT_ADD_TABLE_CONSTRAINT: ADD TABLE
CONSTRAINT clause is supported (FIPS transitional
level).

SQL_AT_DROP_COLUMN_CASCADE: DROP COLUMN ...
CASCADE clause is supported (FIPS transitional
level).

SQL_AT_DROP_COLUMN_DEFAULT: ALTER COLUMN ...
DROP COLUMN DEFAULT clause is supported
(Intermediate level).

Table 10–5 (Cont.) TimesTen field identifiers: SQLColAttribute (ODBC 3.5)

Descriptor Comment/description

TimesTen ODBC 3.5 support

10-8 Oracle TimesTen In-Memory Database C Developer's Guide

SQL_ASYNC_MODE SQL_AM_NONE: Asynchronous mode not supported.

SQL_BATCH_ROW_COUNT 0: Batches of SQL statements not supported.

SQL_BATCH_SUPPORT 0: Batches of SQL statements not supported.

SQL_CATALOG_LOCATION 0: Catalog names as qualifiers not supported.

SQL_QUALIFIER_LOCATION in ODBC 2.5.

SQL_CATALOG_NAME "N": Catalog names as qualifiers not supported.

SQL_CATALOG_NAME_SEPARATOR NULL: Not supported.

SQL_QUALIFIER_NAME_SEPARATOR in ODBC 2.5.

SQL_CATALOG_TERM "data store"

SQL_QUALIFIER_TERM in ODBC 2.5.

SQL_CATALOG_USAGE 0: Catalogs not supported.

SQL_QUALIFIER_USAGE in ODBC 2.5.

SQL_COLLATION_SEQ Current value of the NLS_SORT database
parameter.

Note: Because TimesTen does not have a default
character set, default collation for the default
character is set is not applicable. NLS_SORT is the
collation for the current character set.

SQL_CONVERT_GUID 0: CONVERT function not supported.

SQL_CONVERT_INTERVAL_DAY_TIME 0: CONVERT function not supported.

SQL_CONVERT_INTERVAL_YEAR_MONTH 0: CONVERT function not supported.

SQL_CONVERT_WCHAR 0: CONVERT function not supported.

SQL_CONVERT_WLONGVARCHAR 0: CONVERT function not supported.

SQL_CONVERT_WVARCHAR 0: CONVERT function not supported.

SQL_CREATE_ASSERTION 0: CREATE ASSERTION statement not supported.

SQL_CREATE_CHARACTER_SET 0: CREATE CHARACTER SET statement not
supported.

SQL_CREATE_COLLATION 0: CREATE COLLATION statement not supported.

SQL_CREATE_DOMAIN 0: CREATE DOMAIN statement not supported.

SQL_CREATE_SCHEMA 0: CREATE SCHEMA statement not supported.

Table 10–6 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

TimesTen ODBC 3.5 support

TimesTen ODBC Support 10-9

SQL_CREATE_TABLE To determine which clauses are supported:

SQL_CT_CREATE_TABLE: CREATE TABLE statement is
supported (entry level).

SQL_CT_TABLE_CONSTRAINT: Specifying table
constraints is supported (FIPS transitional level).

SQL_CT_CONSTRAINT_NAME_DEFINITION:
<constraint name definition> clause is
supported for naming column and table
constraints (intermediate level).

To specify the ability to create temporary tables:

SQL_CT_COMMIT_PRESERVE: Deleted rows are
preserved on commit (full level).

SQL_CT_COMMIT_DELETE: Deleted rows are deleted
on commit (full level).

SQL_CT_GLOBAL_TEMPORARY: Global temporary
tables can be created (full level).

To specify the ability to create column constraints:

SQL_CT_COLUMN_CONSTRAINT: Specifying column
constraints is supported (FIPS transitional level).

SQL_CT_COLUMN_DEFAULT: Specifying column
defaults is supported (FIPS transitional level).

SQL_CREATE_TRANSLATION 0: CREATE TRANSLATION statement not supported.

SQL_CREATE_VIEW SQL_CV_CREATE_VIEWS

SQL_CURSOR_SENSITIVITY SQL_SENSITIVE: Cursors are sensitive to changes
made by other cursors within the same
transaction.

SQL_DATETIME_LITERALS SQL_DL_SQL92_DATE, SQL_DL_SQL92_TIME, SQL_
DL_SQL92_TIMESTAMP

SQL_DDL_INDEX SQL_DI_CREATE_INDEX, SQL_DI_DROP_INDEX

SQL_DESCRIBE_PARAMETER "Y": Parameters can be described.

SQL_DM_VER ERROR IM001: Driver does not support this
function. Applies to driver manager only.

SQL_DRIVER_HDESC Pointer to driver descriptor handle.

SQL_DROP_ASSERTION 0: DROP ASSERTION statement not supported.

SQL_DROP_CHARACTER_SET 0: DROP_CHARACTER_SET statement not supported.

SQL_DROP_COLLATION 0: DROP_COLLATION statement not supported.

SQL_DROP_DOMAIN 0: DROP_DOMAIN statement not supported.

SQL_DROP_SCHEMA 0: DROP_SCHEMA statement not supported.

SQL_DROP_TABLE SQL_DT_DROP_TABLE

SQL_DROP_TRANSLATION 0: DROP_TRANSLATION statement not supported.

SQL_DROP_VIEW SQL_DV_DROP_VIEW

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 None: Dynamic cursors not supported.

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 None: Dynamic cursors not supported.

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 SQL_CA1_NEXT, SQL_CA1_SELECT_FOR_UPDATE

Table 10–6 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

TimesTen ODBC 3.5 support

10-10 Oracle TimesTen In-Memory Database C Developer's Guide

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 SQL_CA2_READ_ONLY_CONCURRENCY, SQL_CA2_MAX_
ROWS_SELECT

SQL_INDEX_KEYWORDS SQL_IK_ALL: All keywords supported.

SQL_INFO_SCHEMA_VIEWS None: Views in the INFORMATION_SCHEMA not
supported.

SQL_INSERT_STATEMENT SQL_IS_INSERT_LITERALS, SQL_IS_INSERT_
SEARCHED, SQL_IS_SELECT_INTO

SQL_INTEGRITY "N"

SQL_ODBC_SQL_OPT_IEF in ODBC 2.5.

SQL_KEYSET_CURSOR_ATTRIBUTES1 None: Keyset cursors not supported.

SQL_KEYSET_CURSOR_ATTRIBUTES2 None: Keyset cursors not supported.

SQL_KEYWORDS TT_SQL_KEYWORDS: A character string that contains
a comma-separated list of TimesTen-specific SQL
keywords.

See "TimesTen SQL keywords for ODBC 3.5" on
page 10-12.

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS 0: No specific limit to number of active concurrent
statements in asynchronous mode.

SQL_MAX_CATALOG_NAME_LEN

Alias SQL_MAXIMUM_CATALOG_NAME_LENGTH

0: No specific maximum length.

SQL_MAX_QUALIFIER_NAME_LEN in ODBC 2.5.

SQL_MAX_CONCURRENT_ACTIVITIES

Alias SQL_MAXIMUM_CONCURRENT_ACTIVITIES

0: Allocated from heap, no limit on concurrency.

SQL_ACTIVE_STATEMENTS in ODBC 2.5.

SQL_MAX_DRIVER_CONNECTIONS

Alias SQL_MAXIMUM_DRIVER_CONNECTIONS

sb_DbConnMaxUser: Daemon connections limited
to this value.

SQL_ACTIVE_CONNECTIONS in ODBC 2.5.

SQL_MAX_IDENTIFIER_LEN

Alias SQL_MAXIMUM_IDENTIFIER_LENGTH

sb_ObjNameLenMax

SQL_MAX_ROW_SIZE_INCLUDES_LONG "N"

SQL_MAX_SCHEMA_NAME_LEN

Alias SQL_MAXIMUM_SCHEMA_NAME_LENGTH

sb_ObjNameLenMax

SQL_MAX_OWNER_NAME_LEN in ODBC 2.5.

SQL_ODBC_INTERFACE_CONFORMANCE SQL_OIC_CORE: Minimum level, including basic
interface elements such as connection functions,
functions for preparing and executing an SQL
statement, basic result set metadata functions, and
basic catalog functions.

SQL_PARAM_ARRAY_ROW_COUNTS SQL_PARC_NO_BATCH

SQL_PARAM_ARRAY_SELECTS SQL_PAS_NO_SELECT

SQL_SCHEMA_TERM "owner"

SQL_OWNER_TERM in ODBC 2.5.

Table 10–6 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

TimesTen ODBC 3.5 support

TimesTen ODBC Support 10-11

SQL_SCHEMA_USAGE SQL_OU_DML_STATEMENTS: Schemas supported in
all DML statements.

SQL_OU_PROCEDURE_INVOCATION: Schemas
supported in the ODBC procedure invocation
statement.

SQL_OU_TABLE_DEFINITION: Schemas supported in
CREATE TABLE, CREATE VIEW, ALTER TABLE, DROP
TABLE, and DROP VIEW statements.

SQL_OU_INDEX_DEFINITION: Schemas supported in
CREATE INDEX and DROP INDEX statements.

SQL_OU_PRIVILEGE_DEFINITION: Schemas are
supported in GRANT and REVOKE statements.

SQL_OWNER_USAGE in ODBC 2.5.

SQL_SQL_CONFORMANCE SQL_SC_SQL92_ENTRY: Entry level SQL-92
compliant.

SQL_SQL92_DATETIME_FUNCTIONS None: Datetime scalar functions not supported.

SQL_SQL92_FOREIGN_KEY_DELETE_RULE SQL_SFKD_CASCADE

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE SQL_SFKU_SET_DEFAULT, SQL_SFKU_SET_NULL

SQL_SQL92_GRANT SQL_SG_DELETE_TABLE, SQL_SG_INSERT_TABLE,
SQL_SG_REFERENCES_TABLE, SQL_SG_SELECT_
TABLE, SQL_SG_UPDATE_TABLE (all entry level)

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS SQL_SNVF_EXTRACT

SQL_SQL92_PREDICATES SQL_SP_BETWEEN, SQL_SP_COMPARISON, SQL_SP_
EXISTS, SQL_SP_IN, SQL_SP_ISNOTNULL, SQL_
SP_ISNULL, SQL_SP_LIKE (all entry level)

SQL_SQL92_RELATIONAL_JOIN_OPERATORS SQL_SRJO_CROSS_JOIN (full level), SQL_SRJO_
INNER_JOIN (FIPS transitional level), SQL_SRJO_
LEFT_OUTER_JOIN (FIPS transitional level), SQL_
SRJO_RIGHT_OUTER_JOIN (FIPS transitional level)

SQL_SQL92_REVOKE SQL_SR_DELETE_TABLE, SQL_SR_INSERT_TABLE,
SQL_SR_REFERENCES_TABLE, SQL_SR_SELECT_
TABLE, SQL_SR_UPDATE_TABLE (all entry level)

SQL_SQL92_ROW_VALUE_CONSTRUCTOR None: Row value constructor expressions not
supported.

SQL_SQL92_STRING_FUNCTIONS None: String scalar functions not supported.

SQL_SQL92_VALUE_EXPRESSIONS SQL_SVE_CASE (intermediate level), SQL_SVE_CAST
(FIPS transitional level), SQL_SVE_NULLIF
(intermediate level)

SQL_STANDARD_CLI_CONFORMANCE None: Driver does not conform to CLI standards.

SQL_STATIC_CURSOR_ATTRIBUTES1 SQL_CA1_NEXT, SQL_CA1_SELECT_FOR_UPDATE

SQL_STATIC_CURSOR_ATTRIBUTES2 SQL_CA2_READ_ONLY_CONCURRENCY, SQL_CA2_MAX_
ROWS_SELECT

SQL_TIMEDATE_FUNCTIONS SQL_FN_TD_EXTRACT, SQL_FN_TD_NOW, SQL_FN_
TD_TIMESTAMPADD, SQL_FN_TD_TIMESTAMPDIFF

Table 10–6 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

TimesTen ODBC 2.5 support

10-12 Oracle TimesTen In-Memory Database C Developer's Guide

Table 10–7 describes TimesTen-specific information types.

TimesTen SQL keywords for ODBC 3.5
The list of TimesTen SQL keywords returned for SQL_KEYWORDS in a SQLGetInfo call is
the same in TimesTen ODBC 3.5 support as in ODBC 2.5 support. See "TimesTen SQL
keywords for ODBC 2.5" on page 10-25.

This is different from the list of TimesTen reserved words. For that list, see "Reserved
Words" in Oracle TimesTen In-Memory Database SQL Reference.

TimesTen ODBC 2.5 support
This section covers these topics for TimesTen 2.5 support:

■ Using ODBC 2.5 with TimesTen

■ ODBC 2.5 function support

■ Option support for ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption

SQL_UNION_STATEMENT SQL_U_UNION: Data source supports UNION clause.

SQL_U_UNION_ALL: Data source supports ALL
keyword in the UNION clause. (SQLGetInfo returns
both SQL_U_UNION and SQL_U_UNION_ALL in this
case.)

SQL_UNION in ODBC 2.5.

SQL_XOPEN_CLI_YEAR ERROR IM001: Driver does not support this
function. Applies to driver manager only.

Table 10–7 TimesTen information types: SQLGetInfo

Information type Data type Description

TT_DATA_STORE_INVALID SQLINTEGER Returns 1 if the database is in invalid
state, such as due to a system or
application failure, or 0 if not.

Note: Fatal errors, such as error 846 or
994, invalidate a TimesTen database,
causing this item to be set to 1.

TT_DATABASE_CHARACTER_SET SQLCHAR Returns the name of the database
character set.

TT_DATABASE_CHARACTER_SET_SIZE SQLINTEGER Returns the maximum size of a
character in the database character set,
in bytes.

TT_PLATFORM_INFO Bit mask Returns a bit mask indicating platform
information. Bit 0 has the value 1 for a
64-bit platform. Bit 1 has the value 1
for big-endian, or the value 0 for
little-endian.

TT_REPLICATION_INVALID SQLINTEGER Returns 1 if replication is in a failed
state, or 0 if not.

For additional information, see
"Subscriber failures" in Oracle TimesTen
In-Memory Database Replication Guide.

Table 10–6 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

TimesTen ODBC 2.5 support

TimesTen ODBC Support 10-13

■ Option support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption

■ Column descriptor support for ODBC 2.5 SQLColAttributes

■ Information type support for ODBC 2.5 SQLGetInfo

Using ODBC 2.5 with TimesTen
An ODBC 2.5 application not using a driver manager will continue to work with the
TimesTen 18.1 ODBC driver through its call to SQLAllocEnv.

ODBC 2.5 function support
This section lists ODBC 2.5 functions supported by TimesTen.

Important: Because TimesTen 18.1 is a major release, you should
recompile and relink existing ODBC applications. Also see "ODBC
API incompatibilities with previous versions of TimesTen" on
page 10-26.

It is also advisable to link your applications dynamically rather than
statically.

Notes:

■ The TimesTen ODBC driver supports wide-character (W) function
versions for applications not using a driver manager, as indicated
in Table 10–8.

■ In ODBC 2.5, TimesTen supports some ODBC 3.0 handle types
(such as SQLHDBC and SQLHENV) as well as ODBC 2.0 handle types
(such as HDBC and HENV). TimesTen recommends using ODBC 3.0
handle types. The FAR modifier that is mentioned in ODBC 2.0
documentation is not required.

Table 10–8 Supported ODBC 2.5 functions

Function Notes

SQLAllocConnect No notes

SQLAllocEnv No notes

SQLAllocStmt No notes

SQLBindCol No notes

SQLBindParameter See "SQLBindParameter function" on page 2-14.

SQLCancel SQLCancel can cancel the following:

■ An operation running on an hstmt on another thread

■ An operation running on an hstmt that needs data

SQLCancel cannot cancel the following:

■ TimesTen Cache administrative operations

Do not call SQLCancel directly from a signal handler. Such
code may not be portable.

TimesTen ODBC 2.5 support

10-14 Oracle TimesTen In-Memory Database C Developer's Guide

SQLColAttributes and
SQLColAttributesW

See "Column descriptor support for ODBC 2.5
SQLColAttributes" on page 10-19.

Also see "ODBC 2.5 function signatures that have changed"
on page 10-30.

SQLColumnPrivileges Call returns "driver not capable".

SQLColumns and SQLColumnsW For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLConnect and
ttSQLConnectW

Note the TimesTen name for the "W" function.

SQLDataSources and
SQLDataSourcesW

Available only to programs using a driver manager.

SQLDescribeCol and
SQLDescribeColW

No notes

SQLDescribeParam No notes

SQLDisconnect No notes

SQLDriverConnect and
SQLDriverConnectW

No notes

SQLDrivers and SQLDriversW Available only to programs using a driver manager.

SQLError and SQLErrorW Native error codes are TimesTen errors. You may receive
generic errors such as, "Execution at Oracle failed. Oracle
error code nnn."

When using SQLError or SQLErrorW:

■ Use TT_MAX_MESSAGE_LENGTH (which is a higher limit)
instead of SQL_MAX_MESSAGE_LENGTH (which is a limit of
512 bytes).

■ Handle a possible return of SQL_SUCCESS_WITH_INFO (for
example, in case the message length exceeded the input
buffer size).

SQLExecDirect See SQLExecute.

SQLExecute TimesTen does not support asynchronous statement
execution. (TimesTen does not support the SQL_ASYNC_ENABLE
statement option, as noted later in this chapter.)

SQLFetch The return code is defined as SQL_NO_DATA_FOUND when no
more rows are returned.

SQL_NO_DATA_FOUND is defined in sqlext.h, which is included
by timesten.h.

SQLForeignKeys and
SQLForeignKeysW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLFreeConnect No notes

SQLFreeEnv No notes

SQLFreeStmt No notes

SQLGetConnectOption and
SQLGetConnectOptionW

See "Option support for ODBC 2.5 SQLSetConnectOption and
SQLGetConnectOption" on page 10-16.

Also see "ODBC 2.5 function signatures that have changed"
on page 10-30.

Table 10–8 (Cont.) Supported ODBC 2.5 functions

Function Notes

TimesTen ODBC 2.5 support

TimesTen ODBC Support 10-15

SQLGetCursorName and
SQLGetCursorNameW

You can set or get a cursor name but not reference it, such as
in a WHERE CURRENT OF clause for a positioned update or
delete. TimesTen does not support positioned update or
delete statements.

SQLGetData See "Avoid SQLGetData" on page 7-2.

SQLGetFunctions No notes

SQLGetInfo and SQLGetInfoW See "Information type support for ODBC 2.5 SQLGetInfo" on
page 10-19.

Also see "ODBC 2.5 function signatures that have changed"
on page 10-30.

SQLGetStmtOption See "Option support for ODBC 2.5 SQLSetStmtOption and
SQLGetStmtOption" on page 10-18.

Also see "ODBC 2.5 function signatures that have changed"
on page 10-30.

SQLGetTypeInfo and
SQLGetTypeInfoW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLNativeSql and
SQLNativeSqlW

No notes

SQLNumParams No notes

SQLNumResultCols No notes

SQLParamData No notes

SQLParamOptions See "ODBC 2.5 function signatures that have changed" on
page 10-30.

SQLPrepare and SQLPrepareW No notes

SQLPrimaryKeys and
SQLPrimaryKeysW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLProcedureColumns and
SQLProcedureColumnsW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLProcedures and
SQLProceduresW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLPutData No notes

SQLRowCount In addition to its standard functionality, this is used with
TimesTen cache groups. See "Managing cache groups" on
page 2-33.

SQLSetConnectOption and
SQLSetConnectOptionW

See "Option support for ODBC 2.5 SQLSetConnectOption and
SQLGetConnectOption" under the next section.

Also see "ODBC 2.5 function signatures that have changed"
on page 10-30.

SQLSetCursorName and
SQLSetCursorNameW

You can set or get a cursor name but not reference it, such as
in a WHERE CURRENT OF clause for a positioned update or
delete.

SQLSetParam This is an ODBC 1.0 function, replaced by SQLBindParameter
in ODBC 2.0. Retained for backward compatibility.

SQLSetPos Call returns "driver not capable".

Table 10–8 (Cont.) Supported ODBC 2.5 functions

Function Notes

TimesTen ODBC 2.5 support

10-16 Oracle TimesTen In-Memory Database C Developer's Guide

Option support for ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption
Table 10–9 lists standard options supported by TimesTen for the ODBC 2.5
SQLSetConnectOption and SQLGetConnectOption functions, with notes about the
support. Table 10–10 lists TimesTen-specific options. These functions enable you to set
connection options after the initial connection or retrieve those settings. Some of these
correspond to connection attributes you can set during the connection process, as
noted.

Also see "Option support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption"
on page 10-18. Those options can also be set using SQLSetConnectOption, in which
case the value serves as a default for all statements on the connection.

SQLSetStmtOption See "Option support for ODBC 2.5 SQLSetStmtOption and
SQLGetStmtOption" on page 10-18.

Also see "ODBC 2.5 function signatures that have changed"
on page 10-30.

SQLSpecialColumns and
SQLSpecialColumnsW

TimesTen supports only the SQL_BEST_ROWID option.

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLStatistics and
SQLStatisticsW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLTablePrivileges Call returns "driver not capable".

SQLTables and SQLTablesW For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLTransact No notes

Notes:

■ An option setting through SQLSetConnectOption or
SQLSetStmtOption overrides the setting of the corresponding
connection attribute (as applicable).

■ The documentation here also applies to SQLSetConnectOptionW
and SQLGetConnectOptionW.

■ Where TimesTen connection attributes are mentioned as being
equivalent to ODBC connection options, see "Connection
Attributes" in Oracle TimesTen In-Memory Database Reference for
additional information.

Table 10–9 Standard connection options (ODBC 2.5)

Option Notes

SQL_AUTOCOMMIT No notes

SQL_MAX_ROWS See "ODBC 2.5 function signatures that have changed" on page 10-30
(refer to SQLGetStmtOption or SQLSetStmtOption there).

SQL_NOSCAN No notes

SQL_ODBC_CURSORS Supported for programs using a driver manager

Table 10–8 (Cont.) Supported ODBC 2.5 functions

Function Notes

TimesTen ODBC 2.5 support

TimesTen ODBC Support 10-17

SQL_OPT_TRACE Supported for programs using a driver manager

SQL_OPT_TRACEFILE Supported for programs using a driver manager

SQL_TXN_ISOLATION Supported for vParam is SQL_TXN_READ_COMMITTED or SQL_TXN_
SERIALIZABLE

See "Prefetching multiple rows of data" on page 2-12 for information
about the relationship between prefetching and isolation level. Also
see "Concurrency control through isolation and locking" in Oracle
TimesTen In-Memory Database Operations Guide and "Isolation" in
Oracle TimesTen In-Memory Database Reference.

Table 10–10 TimesTen connection options (ODBC 2.5)

Option Notes

TT_CLIENT_TIMEOUT This is for client/server only and has the same
functionality as the TTC_Timeout TimesTen client
connection attribute.

Also see "Choose SQL and PL/SQL timeout values"
in Oracle TimesTen In-Memory Database Operations
Guide for information about the relationship between
timeout values.

TT_DYNAMIC_LOAD_ENABLE See "Dynamic load configuration" in Oracle TimesTen
Application-Tier Database Cache User's Guide. This has
the same functionality as the DynamicLoadEnable
TimesTen Cache general connection attribute.

TT_DYNAMIC_LOAD_ERROR_MODE See "Returning dynamic load errors" in Oracle
TimesTen Application-Tier Database Cache User's Guide.
This has the same functionality as the
DynamicLoadErrorMode TimesTen Cache connection
attribute.

TT_GRID_ENABLED_DATABASE Read-only (get). This indicates whether the database
is from a TimesTen instance enabled for TimesTen
Scaleout.

TT_NLS_LENGTH_SEMANTICS See "Setting globalization options" on page 2-33. This
has the same functionality as the NLS_LENGTH_
SEMANTICS general connection attribute. There is
related information about the functionality in
"Additional globalization features" on page 3-3.

TT_NLS_NCHAR_CONV_EXCP See "Setting globalization options" on page 2-33. This
has the same functionality as the NLS_NCHAR_CONV_
EXCP general connection attribute. There is related
information about the functionality in "Additional
globalization features" on page 3-3.

TT_NLS_SORT See "Setting globalization options" on page 2-33. This
has the same functionality as the NLS_SORT general
connection attribute. There is related information
about the functionality in "Additional globalization
features" on page 3-3.

TT_NO_RECONNECT_ON_FAILOVER Read-only (get). See "Configuration of automatic
client failover" on page 2-41. This indicates the setting
of the TimesTen connection attribute TTC_
NoReconnectOnFailover (for client connections only).

Table 10–9 (Cont.) Standard connection options (ODBC 2.5)

Option Notes

TimesTen ODBC 2.5 support

10-18 Oracle TimesTen In-Memory Database C Developer's Guide

Option support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption
Table 10–11 lists standard options supported by TimesTen for the ODBC 2.5
SQLSetStmtOption and SQLGetStmtOption functions, with notes about the support.
Table 10–12 lists TimesTen-specific options. These functions enable you to set or
retrieve statement option settings.

To set an option default value for all statements associated with a connection, use
SQLSetConnectOption.

TT_PREFETCH_CLOSE Set to TT_PREFETCH_CLOSE_ON to optimize query
performance. The default setting is TT_PREFETCH_
CLOSE_OFF. Refer to "Optimizing query performance"
on page 2-12 for details.

TT_REGISTER_FAILOVER_CALLBACK See "Using automatic client failover in your
application" on page 2-38. This attribute is client-only.
If you attempt to use it in TimesTen direct mode, SQL_
SUCCESS is returned but no action is taken.

TT_REPLICATION_TRACK See "Features for use with replication" on page 2-34.
For ODBC applications that use parallel replication
and specify replication tracks, this has the same
functionality as the ReplicationTrack general
connection attribute, to specify a track number for the
connection.

TT_ROLLBACK_REQUIRED_ON_FAILOVER Read-only (get). See "Configuration of automatic
client failover" on page 2-41. This indicates the setting
of the TimesTen connection attribute TTC_
RollbackRequiredOnFailover (for client connections
only).

TT_XACT_REQUIRES_FAILOVER_ROLLBACK Read-only (get). If TTC_RollbackRequiredOnFailover
is enabled, returns a nonzero value if the following
are both true, or zero otherwise:

■ The connection has experienced a failover
reconnection.

■ The application has not yet acknowledged,
through a rollback call, that an open transaction
may have been lost.

This is relevant only for client connections.

Notes: An option setting through SQLSetConnectOption or
SQLSetStmtOption overrides the setting of the corresponding
connection attribute (as applicable).

Table 10–11 Standard statement options (ODBC 2.5)

Option Notes

SQL_MAX_ROWS See "ODBC 2.5 function signatures that have changed" on
page 10-30.

SQL_NOSCAN No notes

SQL_QUERY_TIMEOUT See "Setting a timeout duration for SQL statements" on
page 2-31.

Table 10–10 (Cont.) TimesTen connection options (ODBC 2.5)

Option Notes

TimesTen ODBC 2.5 support

TimesTen ODBC Support 10-19

Column descriptor support for ODBC 2.5 SQLColAttributes
The SQLColAttributes function returns descriptor information for a column in a result
set.

Refer to ODBC API reference documentation for complete information about this
function and standard column descriptors.

Table 10–13 describes TimesTen-specific column descriptors.

Information type support for ODBC 2.5 SQLGetInfo
This section covers support in the TimesTen ODBC 2.5 implementation for information
types for the ODBC function SQLGetInfo.

Note: The SQL_MAX_LENGTH option can be set, but any specified value
is overridden with 0 (return all available data).

Table 10–12 TimesTen statement options (ODBC 2.5)

Option Notes

TT_PREFETCH_COUNT See "Prefetching multiple rows of data" on page 2-12.

TT_QUERY_THRESHOLD See "Setting a threshold duration for SQL statements" on
page 2-32. This is to specify a time threshold for SQL
statements, in seconds, after which TimesTen writes a warning
to the support log.

TT_PRIVATE_COMMANDS Commands are not shared with any other connection. See
"PrivateCommands" in Oracle TimesTen In-Memory Database
Reference.

TT_STMT_PASSTHROUGH_TYPE Determines whether a specific prepared statement is passed
through to Oracle Database by the passthrough feature of
TimesTen Cache. The value returned by SQLGetStmtOption can
be either TT_STMT_PASSTHROUGH_NONE or TT_STMT_
PASSTHROUGH_ORACLE.

Note: In TimesTen, this option is supported only with
SQLGetStmtOption.

See "Determining passthrough status" on page 2-33. Also see
"Setting a passthrough level" in Oracle TimesTen Application-Tier
Database Cache User's Guide.

Table 10–13 TimesTen column descriptors: SQLColAttributes

Descriptor Comment/description

TT_COLUMN_INLINE Returns TRUE for columns with inline data, or FALSE
otherwise. This is returned in the SQLColAttributes
pfDesc parameter.

TT_COLUMN_LENGTH_SEMANTICS For character-type columns, this returns "BYTE" for
columns with byte length semantics and "CHAR" for
columns with character length semantics. For
non-character columns, it returns "". The information is
returned in the SQLColAttributes rgbDesc parameter.

This information refers to whether data length is
measured in bytes or characters. Length semantics in
TimesTen are the same as in Oracle Database. See "Length
Semantics" in Oracle Database Globalization Support Guide
for additional information.

TimesTen ODBC 2.5 support

10-20 Oracle TimesTen In-Memory Database C Developer's Guide

Table 10–14 documents TimesTen support for standard information types introduced
in ODBC 1.0 and 2.0, as well as ODBC 3.0 information types supported by the
TimesTen ODBC 2.5 implementation (as indicated), noting the TimesTen-specific
correct value or values returned.

See "Information type support for ODBC 3.5 SQLGetInfo" on page 10-7 for
TimesTen-specific information types, which are supported for both ODBC 3.5 and
ODBC 2.5.

Table 10–14 TimesTen support for standard information types: SQLGetInfo (ODBC 2.5)

Information type Notes and correct values returned by TimesTen

SQL_ACCESSIBLE_PROCEDURES "Y"

SQL_ACCESSIBLE_TABLES "Y"

SQL_ACTIVE_CONNECTIONS sb_DbConnMaxUser: Daemon connections limited to
this value.

SQL_ACTIVE_STATEMENTS 0: Allocated from heap, no limit on concurrency.

SQL_AGGREGATE_FUNCTIONS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_ALTER_TABLE SQL_AT_ADD_COLUMN, SQL_AT_DROP_COLUMN

SQL_BOOKMARK_PERSISTENCE 0: Bookmarks persist through none of the
operations.

SQL_COLUMN_ALIAS "Y"

SQL_CONCAT_NULL_BEHAVIOR SQL_CB_NON_NULL: Result is concatenation of
column or columns with non-null values.

SQL_CONVERT_FUNCTIONS SQL_FN_CVT_CAST

SQL_CONVERT_xxxx 0: CONVERT function not supported.

SQL_CONVERT_WCHAR ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_CONVERT_WLONGVARCHAR ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_CONVERT_WVARCHAR ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_CORRELATION_NAME SQL_CN_ANY: Correlation names are supported and
can be any valid user-defined name.

SQL_CREATE_VIEW ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_CURSOR_COMMIT_BEHAVIOR SQL_CB_CLOSE: Close cursors. For prepared
statements, the application can call SQLExecute on
the statement without calling SQLPrepare again.

TimesTen ODBC 2.5 support

TimesTen ODBC Support 10-21

SQL_CURSOR_ROLLBACK_BEHAVIOR SQL_CB_CLOSE: Close cursors. For prepared
statements, the application can call SQLExecute on
the statement without calling SQLPrepare again.

SQL_DATA_SOURCE_NAME "": Empty string.

SQL_DATA_SOURCE_READ_ONLY "N"

SQL_DATETIME_LITERALS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_DEFAULT_TXN_ISOLATION SQL_TXN_READ_COMMITTED: Dirty reads are not
possible. Non-repeatable reads and phantoms are
possible.

SQL_TXN_SERIALIZABLE: Transactions are
serializable. Dirty reads, non-repeatable reads, or
phantoms are now allowed.

SQL_DRIVER_HDBC Pointer to driver connection handle.

SQL_DRIVER_HENV Pointer to driver environment handle.

SQL_DRIVER_HLIB NULL

Note: If you use a driver manager, this returns the
pointer to the TimesTen library.

SQL_DRIVER_HSTMT Pointer to driver statement handle.

SQL_DRIVER_NAME The file name of the TimesTen ODBC driver library
for your platform.

SQL_DRIVER_ODBC_VER "3.51" for ODBC 3.5; "2.50" for ODBC 2.5.

SQL_DRIVER_VER A string indicating the TimesTen version. For
example, for TimesTen Release 18.1:
"18.01.0001.0001 Oracle TimesTen version
18.1.4.1.0".

SQL_DROP_VIEW. ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_EXPRESSIONS_IN_ORDERBY "Y"

SQL_FETCH_DIRECTION SQL_FD_FETCH_NEXT

SQL_FILE_USAGE SQL_FILE_NOT_SUPPORTED: Driver is not a
single-tier driver.

Table 10–14 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

TimesTen ODBC 2.5 support

10-22 Oracle TimesTen In-Memory Database C Developer's Guide

SQL_GETDATA_EXTENSIONS SQL_GD_ANY_COLUMN: SQLGetData can be called for
any unbound column, including those before the
last bound column. The columns must be called in
order of ascending column number unless SQL_GD_
ANY_ORDER is also returned.

SQL_GD_ANY_ORDER: SQLGetData can be called for
unbound columns in any order. Note that
SQLGetData can be called only for columns after
the last bound column unless SQL_GD_ANY_COLUMN
is also returned.

SQL_GD_BOUND: SQLGetData can be called for bound
columns in addition to unbound columns. A
driver cannot return this value unless it also
returns SQL_GD_ANY_COLUMN.

SQL_GROUP_BY SQL_GB_GROUP_BY_CONTAINS_SELECT: GROUP BY
clause must contain all nonaggregated columns in
the select list, but can also contain columns that are
not in the select list. For example:

SELECT dept, MAX(salary) FROM employee
GROUP BY dept, age;

SQL_IDENTIFIER_CASE SQL_IC_UPPER: SQL identifiers are not
case-sensitive and are stored in uppercase in
system catalog.

SQL_IDENTIFIER_QUOTE_CHAR """: A string with one quote mark, which is the
quote character.

SQL_KEYWORDS TT_SQL_KEYWORDS: A character string that contains
a comma-separated list of TimesTen-specific SQL
keywords.

See "TimesTen SQL keywords for ODBC 2.5" on
page 10-25.

SQL_LIKE_ESCAPE_CLAUSE "Y"

SQL_MAX_BINARY_LITERAL_LEN 16384

SQL_MAX_CHAR_LITERAL_LEN YY_BUF_SIZE

SQL_MAX_COLUMN_NAME_LEN

Alias SQL_MAXIMUM_COLUMN_NAME_LENGTH

sb_ObjNameLenMax

SQL_MAX_COLUMNS_IN_GROUP_BY

Alias SQL_MAXIMUM_COLUMNS_IN_GROUP_BY

MAX_COLUMNS_IN_GB

SQL_MAX_COLUMNS_IN_INDEX MAX_COLUMNS_IN_IDX

SQL_MAX_COLUMNS_IN_ORDER_BY

Alias SQL_MAXIMUM_COLUMNS_IN_ORDER_BY

MAX_COLUMNS_IN_OB

SQL_MAX_COLUMNS_IN_SELECT

Alias SQL_MAXIMUM_COLUMNS_IN_SELECT

MAX_COLUMNS_IN_SELECT

SQL_MAX_COLUMNS_IN_TABLE

Alias SQL_MAXIMUM_COLUMNS_IN_TABLE

MAX_COLUMNS_IN_TBL

SQL_MAX_CURSOR_NAME_LEN

Alias SQL_MAXIMUM_CURSOR_NAME_LENGTH

18

SQL_MAX_INDEX_SIZE 4194304

Table 10–14 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

TimesTen ODBC 2.5 support

TimesTen ODBC Support 10-23

SQL_MAX_OWNER_NAME_LEN sb_ObjNameLenMax

SQL_MAX_PROCEDURE_NAME_LEN sb_NameLenMax - 1

SQL_MAX_QUALIFIER_NAME_LEN 0: No specific maximum length.

SQL_MAX_ROW_SIZE 4194304

SQL_MAX_STATEMENT_LEN

Alias SQL_MAXIMUM_STATEMENT_LENGTH

sb_SqlStringLenMax

SQL_MAX_TABLE_NAME_LEN

Alias SQL_MAXIMUM_TABLE_NAME_LENGTH

sb_ObjNameLenMax

SQL_MAX_TABLES_IN_SELECT

Alias SQL_MAXIMUM_TABLES_IN_SELECT

sb_SqlCorrMax

SQL_MAX_USER_NAME_LEN

Alias SQL_MAXIMUM_USER_NAME_LENGTH

sb_ObjNameLenMax

SQL_MULT_RESULT_SETS "N"

SQL_MULTIPLE_ACTIVE_TXN "Y"

SQL_NEED_LONG_DATA_LEN "N"

SQL_NON_NULLABLE_COLUMNS SQL_NNC_NON_NULL: Columns cannot be nullable.
(The data source supports the NOT NULL column
constraint in CREATE TABLE statements.)

SQL_NULL_COLLATION SQL_NC_HIGH: Null values are sorted at the high
end of the result set, depending on the ASC or DESC
keyword.

SQL_NUMERIC_FUNCTIONS SQL_FN_NUM_ABS, SQL_FN_NUM_CEILING, SQL_FN_
NUM_FLOOR, SQL_FN_NUM_MOD, SQL_FN_NUM_
POWER, SQL_FN_NUM_ROUND, SQL_FN_NUM_SIGN,
SQL_FN_NUM_SQRT

SQL_ODBC_SQL_OPT_IEF "N"

SQL_ODBC_VER N/A, implemented by the driver manager.

SQL_OJ_CAPABILITIES

Alias SQL_OUTER_JOIN_CAPABILITIES

SQL_OJ_LEFT: Left outer joins supported.

SQL_OJ_RIGHT: Right outer joins supported.

SQL_OJ_NOT_ORDERED: Column names in the ON
clause of the outer join do not have to be in the
same order as their respective table names in the
OUTER JOIN clause.

SQL_OJ_INNER: Inner table (right table in a left
outer join or left table in a right outer join) can also
be used in an inner join. This does not apply to full
outer joins, which do not have an inner table.

SQL_OJ_ALL_COMPARISON_OPS: Comparison
operator in the ON clause can be any of the ODBC
comparison operators. If this bit is not set, only the
equals (=) comparison operator can be used in
outer joins.

SQL_ORDER_BY_COLUMNS_IN_SELECT "Y"

SQL_OUTER_JOINS "Y"

SQL_OWNER_TERM "owner"

Table 10–14 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

TimesTen ODBC 2.5 support

10-24 Oracle TimesTen In-Memory Database C Developer's Guide

SQL_OWNER_USAGE SQL_OU_DML_STATEMENTS: Schemas supported in all
DML statements.

SQL_OU_PROCEDURE_INVOCATION: Schemas
supported in the ODBC procedure invocation
statement.

SQL_OU_TABLE_DEFINITION: Schemas supported in
CREATE TABLE, CREATE VIEW, ALTER TABLE, DROP
TABLE, and DROP VIEW statements.

SQL_OU_INDEX_DEFINITION: Schemas supported in
CREATE INDEX and DROP INDEX statements.

SQL_OU_PRIVILEGE_DEFINITION: Schemas are
supported in GRANT and REVOKE statements.

SQL_PARAM_ARRAY_ROW_COUNTS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_PARAM_ARRAY_SELECTS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_POS_OPERATIONS 0: Scrollable cursors not supported.

SQL_PROCEDURE_TERM "procedure"

SQL_PROCEDURES "Y"

SQL_QUALIFIER_LOCATION 0: Catalog names as qualifiers not supported.

SQL_QUALIFIER_NAME_SEPARATOR NULL: Not supported.

SQL_QUALIFIER_TERM "data store"

SQL_QUALIFIER_USAGE 0: Catalogs not supported.

SQL_QUOTED_IDENTIFIER_CASE SQL_IC_SENSITIVE: Quoted identifiers in SQL are
case-sensitive and stored in mixed-case in the
system catalog.

SQL_ROW_UPDATES "N"

SQL_SCROLL_OPTIONS SQL_SO_FORWARD_ONLY: Cursors can scroll only
forward.

SQL_SEARCH_PATTERN_ESCAPE "\\"

SQL_SERVER_NAME "": Empty string.

SQL_SPECIAL_CHARACTERS "@#$": A string indicating the special characters.

SQL_SQL92_RELATIONAL_JOIN_OPERATORS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

SQL_SQL92_VALUE_EXPRESSIONS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
"Information type support for ODBC 3.5
SQLGetInfo" on page 10-7.

Table 10–14 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

TimesTen ODBC 2.5 support

TimesTen ODBC Support 10-25

TimesTen SQL keywords for ODBC 2.5
This section lists the TimesTen SQL keywords returned for SQL_KEYWORDS in a
SQLGetInfo call.

SQL_STRING_FUNCTIONS SQL_FN_STR_CHAR, SQL_FN_STR_CONCAT, SQL_FN_
STR_LCASE, SQL_FN_STR_LEFT, SQL_FN_STR_
LENGTH, SQL_FN_STR_LOCATE, SQL_FN_STR_
LOCATE_2, SQL_FN_STR_LTRIM, SQL_FN_STR_
REPLACE, SQL_FN_STR_RIGHT, SQL_FN_STR_
RTRIM, SQL_FN_STR_SOUNDEX, SQL_FN_STR_
SPACE, SQL_FN_STR_SUBSTRING, SQL_FN_STR_
UCASE

SQL_SUBQUERIES SQL_SQ_CORRELATED_SUBQUERIES, SQL_SQ_
COMPARISON, SQL_SQ_EXISTS, SQL_SQ_IN, SQL_
SQ_INSQL_SQ_QUANTIFIED

SQL_SYSTEM_FUNCTIONS SQL_FN_SYS_IFNULL, SQL_FN_SYS_USERNAME

SQL_TABLE_TERM "table"

SQL_TIMEDATE_ADD_INTERVALS SQL_FN_TSI_FRAC_SECOND, SQL_FN_TSI_SECOND,
SQL_FN_TSI_MINUTE, SQL_FN_TSI_HOUR, SQL_FN_
TSI_DAY, SQL_FN_TSI_WEEK, SQL_FN_TSI_MONTH,
SQL_FN_TSI_QUARTER, SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS SQL_FN_TSI_FRAC_SECOND, SQL_FN_TSI_SECOND,
SQL_FN_TSI_MINUTE, SQL_FN_TSI_HOUR, SQL_FN_
TSI_DAY, SQL_FN_TSI_WEEK, SQL_FN_TSI_MONTH,
SQL_FN_TSI_QUARTER, SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS SQL_FN_TD_TIMESTAMPADD, SQL_FN_TD_NOW, SQL_
FN_TD_TIMESTAMPDIFF

SQL_TXN_CAPABLE

Alias SQL_TRANSACTION_CAPABLE

SQL_TC_DDL_COMMIT: According to the ODBC 2.0
standard, this indicates that transactions can
contain only DML statements, and that DDL
statements encountered in a transaction cause the
transaction to be committed. TimesTen implements
Oracle Database semantics, which allow both DML
and DDL in a transaction, but a DDL statement
causes the transaction to commit.

SQL_TXN_ISOLATION_OPTION

Alias SQL_TRANSACTION_ISOLATION_OPTION

SQL_TXN_READ_COMMITTED, SQL_TXN_
SERIALIZABLE

SQL_UNION SQL_U_UNION: Data source supports UNION clause.

SQL_U_UNION_ALL: Data source supports ALL
keyword in the UNION clause. (SQLGetInfo returns
both SQL_U_UNION and SQL_U_UNION_ALL in this
case.)

SQL_USER_NAME At runtime, returns a string containing the user
name.

Note: If you use InfoType value SQL_DRIVER_HDBC, SQL_DRIVER_
HENV, or SQL_DRIVER_HSTMT, refer to "ODBC 2.5 function signatures
that have changed" on page 10-30.

Table 10–14 (Cont.) TimesTen support for standard information types: SQLGetInfo

Information type Notes and correct values returned by TimesTen

ODBC API incompatibilities with previous versions of TimesTen

10-26 Oracle TimesTen In-Memory Database C Developer's Guide

This is different from the list of TimesTen reserved words. For that list, see "Reserved
Words" in Oracle TimesTen In-Memory Database SQL Reference.

ABS, ACCOUNT, ACTIVE, ADDMONTHS, ADMIN, AFFINITY, AGENT, AGING, ALLOW,
ASCIISTR, ASYNCHRONOUS, AUTHID, AUTOREFRESH, AWT, BATCH, BIG, BIGINT,
BINARY, BINARY_DOUBLE, BINARY_DOUBLE_INFINITY, BINARY_DOUBLE_NAN, BINARY_
FLOAT, BINARY_FLOAT_INFINITY, BINARY_FLOAT_NAN, BITAND, BITMAP, BITNOT,
BITOR, BITXOR, BLOB, BODY, BYTE, BYTES, CACHE, CACHEONLY, CACHE_MANAGER,
CALL, CHECKING, CHR, CLOB, COLUMNAR, COMMITTED, COMPILE, COMPLETE,
COMPRESS, CONCAT, CONFLICT, CONFLICTS, CS, CUBE, CURRENT_SCHEMA, CURRVAL,
CYCLE, DATASTORE, DATASTORE_OWNER, DAYS, DEBUG, DECODE, DEFINED, DEFINER,
DEFINITION, DELETE_FT, DESTROY, DICTIONARY, DIRECTORY, DISABLE,
DISTRIBUTE, DUPLICATE, DURABLE, DURATION, DYNAMIC, ELEMENT, ENABLE,
ENCRYPTED, ENDSEQ, EVERY, EXACT, EXCLUDE, EXIT, EXPIRE, EXTERNALLY,
FACTOR, FAILTHRESHOLD, FAST, FIRST_VALUE, FLUSH, FOLLOWING, FORCE, FORMAT,
FUNCTION, GETDATE, GRID, GROUPING, GROUPING_ID, GROUP_ID, HASH, HEARTBEAT,
HIERARCHY, HOURS, ID, IDENTIFIED, IGNORE, INCREMENT, INCREMENTAL,
INFINITE, INLINE, INSERTONLY, INSTANCE, INSTR, INSTR4, INSTRB, LAST_VALUE,
LATENCY, LENGTH, LENGTH4, LENGTHB, LIBRARY, LIFETIME, LIMIT, LIMIT_FT,
LOAD, LOAD_FT, LOCK, LOG, LONG, LRU, MASTER, MASTERIP, MATCHED,
MATERIALIZED, MAXVALUE, MAXVALUES, MERGE, MIGRATORY, MILLISECOND,
MILLISECONDS, MINUS, MINUTES, MINVALUE, MOD, MODE, MODIFY, MULTI, NAME,
NAN, NCHAR_CS, NCHR, NCLOB, NEXTVAL, NLSSORT, NOBATCH, NOCACHE, NOCYCLE,
NOMAXVALUE, NOMINVALUE, NONDURABLE, NOORDER, NOWAIT, NULLS, NUMBER,
NUMTODSINTERVAL, NUMTOYMINTERVAL, NVARCHAR, NVARCHAR2, NVL, OFF,
OPTIMIZED, ORACLE, ORA_CHAR, ORA_DATE, ORA_FLOAT, ORA_NCHAR, ORA_
NVARCHAR2, ORA_SYSDATE, ORA_TIMESTAMP, ORA_VARCHAR2, OUT, OVER, PACKAGE,
PAGES, PAIR, PARALLEL, PARTITION, PASSWORD, PAUSED, PLSQL_WARNINGS, PORT,
PRECEDING, PRIORITY, PRIVATE, PROPAGATE, PROPAGATOR, PUBLICREAD,
PUBLICROW, QUIT, RANGE, RC, READERS, READONLY, RECEIPT, REFERENCE,
REFRESH, REFRESH_FT, RELAXED, RELEASE, RENAME, REPLACE, REPLICATION,
REPORT, REPORTING, REQUEST, RESUME, RETURN, RETURNING, REUSE, RLE, ROLLUP,
ROUTE, ROW, ROWID, ROWIDONLY, ROWNUM, RR, RTRIM, RU, SECONDS, SELF,
SEQBATCH, SEQCACHE, SEQUENCE, SERVICES, SETS, SETTINGS, SPECIFICATION,
SQL_TSI_DAY, SQL_TSI_FRAC_SECOND, SQL_TSI_HOUR, SQL_TSI_MINUTE, SQL_TSI_
MONTH, SQL_TSI_QUARTER, SQL_TSI_SECOND, SQL_TSI_WEEK, SQL_TSI_YEAR,
STANDARD, STANDBY, START, STARTSEQ, STATE, STATIC, STOPPED, STORE,
SUBSCRIBER, SUBSCRIBERIP, SUBSTR, SUBSTR4, SUBSTRB, SUSPEND, SYNCHRONOUS,
SYNONYM, SYSDATE, SYSDBA, SYSTEM, TAG, TIMEOUT, TIMESTAMPADD,
TIMESTAMPDIFF, TINYINT, TO_BLOB, TO_CHAR, TO_CLOB, TO_DATE, TO_LOB, TO_
NCLOB, TO_NUMBER, TO_TIMESTAMP, TRAFFIC, TRANSMIT, TREE, TRUNC, TRUNCATE,
TRUSTED, TT_BIGINT, TT_BINARY, TT_CHAR, TT_DATE, TT_DECIMAL, TT_HASH, TT_
INT, TT_INTEGER, TT_INTERVAL, TT_NCHAR, TT_NVARCHAR, TT_SMALLINT, TT_
SYSDATE, TT_TIME, TT_TIMESTAMP, TT_TINYINT, TT_VARBINARY, TT_VARCHAR,
TWOSAFE, UID, UNBOUNDED, UNISTR, UNLOAD, UNLOCK, USE, USERMANAGED,
VARBINARY, VARCHAR2, WAIT, WRAPPED, WRITETHROUGH, XLA, XML, XYZZY

ODBC API incompatibilities with previous versions of TimesTen
The TimesTen 18.1 release introduces changes that impact ODBC applications used
with previous versions of TimesTen.

The TimesTen driver is ODBC-compliant; however, in this release, more recent ODBC
header files are provided in the include directory of the TimesTen installation on
Linux and UNIX platforms.

ODBC API incompatibilities with previous versions of TimesTen

TimesTen ODBC Support 10-27

Changes were also made to update some ODBC types and functions to make them
64-bit compatible.

These and other changes may necessitate code changes on any platform. ODBC
changes requiring code updates for ODBC applications fall into the following
categories:

■ ODBC function changes

– Function signature changes: A number of function signatures have changed
for 64-bit programming.

– Changes to the size of option or attribute values: This refers to values of
connection options, statement options, column attributes, or driver and data
source information, either passed or returned. These are now 64-bit values in
the circumstances indicated below.

■ ODBC data type changes

If your existing TimesTen ODBC application uses features described in these sections,
you must update the application as necessary:

■ ODBC 3.5 function signatures that have changed

■ ODBC 2.5 function signatures that have changed

■ ODBC data types that have changed

ODBC 3.5 function signatures that have changed
In previous releases, TimesTen provided partial support for ODBC 3.5 functionality,
including:

■ Handle allocation methods

■ Diagnostic records

■ Wide character functions

■ Attribute set and get functions for handles

■ SQLColAttribute

■ Miscellaneous functions that map directly to 2.5 functionality such as
SQLCloseCursor and SQLEndTran

The functions listed in Table 10–15 have changes to the signature or changes to the size
of attribute values, requiring code updates for ODBC 3.5 applications, as indicated.
Sizes of attribute values apply to values of connection and statement attributes, either
passed or returned.

Important: Even if none of the required code changes applies to your
applications, you should recompile and relink existing ODBC
applications the first time you use a TimesTen 18.1 release.

ODBC API incompatibilities with previous versions of TimesTen

10-28 Oracle TimesTen In-Memory Database C Developer's Guide

Notes:

■ Signature changes apply to either 64-bit or 32-bit environments.
Size changes in option and attribute values apply only to 64-bit
environments.

■ TimesTen ODBC does not return values for options or attributes
related to features that TimesTen does not support. For example:
SQL_ATTR_ASYNC_ENABLE, SQL_ATTR_ENLIST_IN_DTC, SQL_ATTR_
CURSOR_SCROLLABLE, SQL_ATTR_CURSOR_SENSITIVITY, SQL_ATTR_
FETCH_BOOKMARK_PTR, SQL_ATTR_METADATA_ID, SQL_ATTR_
RETRIEVE_DATA, SQL_ATTR_SIMULATE_CURSOR, SQL_ATTR_USE_
BOOKMARKS.

Table 10–15 Changes in ODBC 3.5 functions

Function Signature changes
Size changes in option and
attribute values

SQLColAttribute

SQLColAttributeW

N/A On UNIX platforms: For the
following FieldIdentifier values,
a 64-bit value is returned in
*NumericAttributePtr:

SQL_DESC_AUTO_UNIQUE_VALUE
SQL_DESC_CASE_SENSITIVE
SQL_DESC_CONCISE_TYPE
SQL_DESC_COUNT
SQL_DESC_DISPLAY_SIZE
SQL_DESC_FIXED_PREC_SCALE
SQL_DESC_LENGTH
SQL_DESC_NULLABLE
SQL_DESC_NUM_PREC_RADIX
SQL_DESC_OCTET_LENGTH
SQL_DESC_PRECISION
SQL_DESC_SCALE
SQL_DESC_SEARCHABLE
SQL_DESC_TYPE
SQL_DESC_UNNAMED
SQL_DESC_UNSIGNED
SQL_DESC_UPDATABLE

SQLGetConnectAttr

SQLGetConnectAttrW

*ValuePtr must be
SQLUINTEGER or SQLULEN,
depending on the attribute you
are getting.

Note: TimesTen-specific
attributes (prefixed with TT_)
remain the same data types.

On UNIX platforms: For the
following attributes, a 64-bit value
is returned in *ValuePtr:

SQL_ATTR_ASYNC_ENABLE
SQL_ATTR_ENLIST_IN_DTC
SQL_ATTR_ODBC_CURSORS
SQL_ATTR_QUIET_MODE

ODBC API incompatibilities with previous versions of TimesTen

TimesTen ODBC Support 10-29

SQLGetStmtAttr

SQLGetStmtAttrW

*ValuePtr must be SQLUINTEGER
or SQLULEN, depending on the
attribute you are getting.

Note: TimesTen-specific
attributes (prefixed with TT_)
remain the same data types.

On UNIX platforms: For the
following attributes, a 64-bit value
is returned in *ValuePtr:

SQL_ATTR_APP_PARAM_DESC
SQL_ATTR_APP_ROW_DESC
SQL_ATTR_ASYNC_ENABLE
SQL_ATTR_CONCURRENCY
SQL_ATTR_CURSOR_SCROLLABLE
SQL_ATTR_CURSOR_SENSITIVITY
SQL_ATTR_CURSOR_TYPE
SQL_ATTR_ENABLE_AUTO_IPD
SQL_ATTR_FETCH_BOOKMARK_PTR
SQL_ATTR_ROWS_FETCHED_PTR
SQL_ATTR_IMP_PARAM_DESC
SQL_ATTR_IMP_ROW_DESC
SQL_ATTR_KEYSET_SIZE
SQL_ATTR_MAX_LENGTH
SQL_ATTR_MAX_ROWS
SQL_ATTR_METADATA_ID
SQL_ATTR_NOSCAN
SQL_ATTR_PARAM_BIND_OFFSET_PTR
SQL_ATTR_PARAM_BIND_TYPE
SQL_ATTR_PARAM_OPERATION_PTR
SQL_ATTR_PARAM_STATUS_PTR
SQL_ATTR_PARAMS_PROCESSED_PTR
SQL_ATTR_PARAMSET_SIZE
SQL_ATTR_QUERY_TIMEOUT
SQL_ATTR_RETRIEVE_DATA
SQL_ATTR_ROW_ARRAY_SIZE
SQL_ATTR_ROW_BIND_OFFSET_PTR
SQL_ATTR_ROW_NUMBER
SQL_ATTR_ROW_OPERATION_PTR
SQL_ATTR_ROW_STATUS_PTR
SQL_ATTR_SIMULATE_CURSOR
SQL_ATTR_USE_BOOKMARKS

SQLSetConnectAttr

SQLSetConnectAttrW

*ValuePtr must be
SQLUINTEGER or SQLULEN,
depending on the attribute you
are setting.

Note: TimesTen-specific
attributes (prefixed with TT_)
remain the same data types.

On UNIX platforms: For the
following attributes, a 64-bit value
is passed in *ValuePtr:

SQL_ATTR_ASYNC_ENABLE
SQL_ATTR_ENLIST_IN_DTC
SQL_ATTR_ODBC_CURSORS
SQL_ATTR_QUIET_MODE

Table 10–15 (Cont.) Changes in ODBC 3.5 functions

Function Signature changes
Size changes in option and
attribute values

ODBC API incompatibilities with previous versions of TimesTen

10-30 Oracle TimesTen In-Memory Database C Developer's Guide

ODBC 2.5 function signatures that have changed
The functions listed in Table 10–16 have changes to the signature or changes to the size
of option or attribute values, requiring code updates for ODBC 2.5 applications, as
indicated. Sizes of option or attribute values apply to values of connection options,
statement options, column attributes, or driver and data source information, either
passed or returned.

SQLSetStmtAttr

SQLSetStmtAttrW

*ValuePtr must be
SQLUINTEGER or SQLULEN,
depending on the attribute you
are setting.

Note: TimesTen-specific
attributes (prefixed with TT_)
remain the same data types.

On UNIX platforms: For the
following attributes, a 64-bit value
is passed in *ValuePtr:

SQL_ATTR_APP_PARAM_DESC
SQL_ATTR_APP_ROW_DESC
SQL_ATTR_ASYNC_ENABLE
SQL_ATTR_CONCURRENCY
SQL_ATTR_CURSOR_SCROLLABLE
SQL_ATTR_CURSOR_SENSITIVITY
SQL_ATTR_CURSOR_TYPE
SQL_ATTR_ENABLE_AUTO_IPD
SQL_ATTR_FETCH_BOOKMARK_PTR
SQL_ATTR_IMP_PARAM_DESC
SQL_ATTR_IMP_ROW_DESC
SQL_ATTR_KEYSET_SIZE
SQL_ATTR_MAX_LENGTH
SQL_ATTR_MAX_ROWS
SQL_ATTR_METADATA_ID
SQL_ATTR_NOSCAN
SQL_ATTR_PARAM_BIND_OFFSET_PTR
SQL_ATTR_PARAM_BIND_TYPE
SQL_ATTR_PARAM_OPERATION_PTR
SQL_ATTR_PARAM_STATUS_PTR
SQL_ATTR_PARAMS_PROCESSED_PTR
SQL_ATTR_PARAMSET_SIZE
SQL_ATTR_QUERY_TIMEOUT
SQL_ATTR_RETRIEVE_DATA
SQL_ATTR_ROW_ARRAY_SIZE
SQL_ATTR_ROW_BIND_OFFSET_PTR
SQL_ATTR_ROW_NUMBER
SQL_ATTR_ROW_OPERATION_PTR
SQL_ATTR_ROW_STATUS_PTR
SQL_ATTR_ROWS_FETCHED_PTR
SQL_ATTR_SIMULATE_CURSOR
SQL_ATTR_USE_BOOKMARKS

Table 10–15 (Cont.) Changes in ODBC 3.5 functions

Function Signature changes
Size changes in option and
attribute values

ODBC API incompatibilities with previous versions of TimesTen

TimesTen ODBC Support 10-31

Table 10–16 Changes in ODBC 2.5 functions

Function Signature changes
Size changes in option and
attribute values

SQLColAttributes

SQLColAttributesW

N/A On Linux and UNIX platforms: For
the following fDescType values, a
SQLLEN value is returned in
*pfDesc:

SQL_COLUMN_COUNT
SQL_COLUMN_DISPLAY_SIZE
SQL_COLUMN_LENGTH
SQL_DESC_AUTO_UNIQUE_VALUE
SQL_DESC_CASE_SENSITIVE
SQL_DESC_CONCISE_TYPE
SQL_DESC_FIXED_PREC_SCALE
SQL_DESC_SEARCHABLE
SQL_DESC_UNSIGNED
SQL_DESC_UPDATABLE

SQLGetConnectOption

SQLGetConnectOptionW

The Value parameter must be
SQLUINTEGER or SQLULEN,
depending on the option you
are getting.

Note: TimesTen-specific
options (prefixed with TT_)
remain the same data types.

On Linux and UNIX platforms: For
the option SQL_ATTR_QUIET_MODE,
an HWND value (void * pointer to a
window) is returned in Value.

SQLGetInfo

SQLGetInfoW

N/A On Linux and UNIX platforms: For
the following InfoType values, a
SQLPOINTER value is returned in
*InfoValuePtr:

SQL_DRIVER_HDBC
SQL_DRIVER_HENV
SQL_DRIVER_HSTMT

SQLGetStmtOption The Value parameter must be
SQLUINTEGER or SQLULEN,
depending on the option you
are getting.

Note: TimesTen-specific
options (prefixed with TT_)
remain the same data types.

On Linux and UNIX platforms: For
the following options, a SQLPOINTER
value is returned in Value:

SQL_KEYSET_SIZE
SQL_MAX_LENGTH
SQL_MAX_ROWS
SQL_ROWSET_SIZE

SQLParamOptions On Linux and UNIX platforms:
The crow and pirow
parameters are now declared
as SQLULEN.

N/A

SQLSetConnectOption

SQLSetConnectOptionW

The Value parameter must be
SQLUINTEGER or SQLULEN,
depending on the option you
are setting.

Note: TimesTen-specific
options (prefixed with TT_)
remain the same data types.

On Linux and UNIX platforms: For
the option SQL_ATTR_QUIET_MODE,
an HWND value (void * pointer to a
window) is passed in Value.

ODBC API incompatibilities with previous versions of TimesTen

10-32 Oracle TimesTen In-Memory Database C Developer's Guide

ODBC data types that have changed
Table 10–17 summarizes changes to data types that require code updates for ODBC
applications.

SQLSetPos TimesTen does not support
scrollable cursors. This
function returns a "Driver not
capable" error (S1C00).

Note: The ODBC definition of
SQLSETPOSIROW, the data type
for the irow parameter, has
changed. (See the next section,
"ODBC data types that have
changed".)

N/A

SQLSetStmtOption The Value parameter must be
SQLUINTEGER or SQLULEN,
depending on the option you
are setting.

Note: TimesTen-specific
options (prefixed with TT_)
remain the same data types.

On Linux and UNIX platforms: For
the following options, a SQLPOINTER
value is passed in Value:

SQL_KEYSET_SIZE
SQL_MAX_LENGTH
SQL_MAX_ROWS
SQL_ROWSET_SIZE

Table 10–17 ODBC 2.5 data types that have changed

Data types Explanation

HANDLE
HINSTANCE

On Linux and UNIX platforms: These data types have been
redefined as (void *).

SQLROWCOUNT
SQLROWSETSIZE
SQLTRANSID

These data types have been deprecated. Use SQLULEN instead.

SQLROWOFFSET This data type has been deprecated. Use SQLLEN instead.

SQLSETPOSIROW On Linux and UNIX platforms: This data type has been
redefined as SQLULEN. It is advisable to use SQLULEN directly
instead.

Table 10–16 (Cont.) Changes in ODBC 2.5 functions

Function Signature changes
Size changes in option and
attribute values

Index-1

Index

A
access control

connection attributes, 2-6
impact on XLA, 5-8

acknowledge records have been read, XLA, 9-6
AIX, linking considerations, 1-5
allocating memory, utility library environment

handle, 8-23
application context, passing, XLA, 5-39
applying database updates, XLA, 9-53
array binds--see associative array binds
associative array binds

in OCI, 3-13
in Pro*C, 4-8

AUTOCOMMIT with XA, 6-6
automatic client failover, 2-38

B
backing up a database, 8-3
batch SQL operations, 7-1
bind variable--see binding parameters
binding parameters

associative array binds in OCI, 3-13
associative array binds in Pro*C, 4-8
duplicate parameters in OCI, 3-13
duplicate parameters in PL/SQL, 2-20
duplicate parameters in SQL, 2-19
floating point data, 2-21
input parameters, 2-17
input/output parameters, 2-19
output parameters, 2-17
parameter type assignments and

conversions, 2-14
performance impact, 7-2
precision, 2-14
scale, 2-14
SQL_WCHAR and SQL_WVARCHAR with driver

manager, 2-21
SQLBindParameter, 2-14

bookmarks--see XLA bookmarks
buildtms command, XA, 6-9
built-in procedures

calling TimesTen built-ins, 2-30
ttApplicationContext, 5-39, 9-65

ttXactIdGet, 8-31
bulk fetch, 2-12, 7-3
bulk insert, update, delete (batching), 7-1

C
C language functions--see Utility Library.
cache

autorefresh cache groups and XLA, 5-9
cache groups, cache instances affected, OCI, 3-18
cache groups, cache instances affected,

ODBC, 2-33
get passthrough status, 2-33
Oracle password, specifying, OCI, 3-18
Oracle password, specifying, Pro*C/C++, 4-7
set passthrough level, 2-33

CALL
PL/SQL procedures and functions, 2-30
TimesTen built-in procedures, 2-30

character set
SQLGetInfo info type, 10-12
SQLGetInfo info type for size, 10-12

character set conversion, 2-33
client failover

automatic client failover, 2-38
configuration, 2-41
failover callback functions, 2-41

client routing API
distribution key values, 2-53
failure modes, 2-57
grid distribution, 2-52
grid map, 2-51
key values location, 2-53
overview, 2-51
restrictions, 2-57
supported data types, 2-56

client/server, TimesTen cross-release
restrictions, 10-2

closing a transaction log API handle, XLA, 9-8
column data, inspecting, XLA, 5-17
column descriptors supported, SQLColAttributes

(ODBC 2.5), 10-19
committing a transaction

ODBC, 2-28
XLA, 9-55

compiling applications

Index-2

OCI applications, 3-7
Pro*C/C++ applications, 4-5
UNIX, 1-4
Windows, 1-3

concurrency control, 10-17
connection attributes

first connection attributes, 2-6
general connection attributes, 2-6

connections
attributes, setting programmatically, 2-6
connecting to database, 2-3
default DSN, 2-6
disconnecting from database, 2-3
managing, 2-1
OCI, connecting to database, 3-8
Pro*C/C++, connecting to database, 4-6
SQLConnect, SQLDriverConnect,

SQLAllocConnect, SQLDisconnect, 2-2
SQLSetConnectAttr and SQLGetConnectAttr

supported attributes (ODBC 3.5), 10-5
SQLSetConnectOption and SQLGetConnectOption

supported options (ODBC 2.5), 10-16
cursors

REF CURSORs, 2-21
usage, 2-9

D
data structures, XLA

summary, 9-63
tt_LSN_t, 9-79
tt_XlaLsn_t, 9-80
ttXlaColDesc_t, 9-76
ttXlaNodeHdr_t, 9-64
ttXlaTblDesc_t, 9-74
ttXlaTblVerDesc_t, 9-75
ttXlaUpdateDesc_t, 9-65
ttXlaVersion_t, 9-73

data types
additional type support (ODBC 3.5), 10-4
conversions and performance, 7-3
ODBC 2.0 versus ODBC 3.0 (ODBC 2.5

mode), 10-13
ODBC 3.0 types supported in ODBC 2.5

mode, 10-13
type mapping/conversion for parameter

binding, 2-14
XLA, 5-7

database
applying updates, XLA, 9-53
backing up, 8-3
connection handle, obtaining, XLA, 5-10
destroying, 8-7, 8-9
RAM usage, 8-11, 8-12, 8-13, 8-15
replicating, 8-16
restoring, 8-21

deadlock error, 5-37
deferred prepare

OCI, 3-12
ODBC, 2-11

demos--see sample applications
destroying a database, 8-7, 8-9
diagnostic framework considerations (OCI), 3-12
disaster recovery, 8-16
distributed transaction processing (XA)

also see XA
overview, 6-1
resource manager, 6-2
transaction manager, 6-2
transaction recovery, 6-3

DML returning, 2-23
driver manager

linking with, 1-2
performance impact, 7-1
using SQL_WCHAR and SQL_

WVARCHAR, 2-21
XA, support (Windows), 6-8

dropping a table with XLA bookmark, 5-30
DSN, default, 2-6
duplicate parameter binding

in OCI, 3-13
in ODBC, 2-19

DurableCommit, XA, 6-3

E
easy connect

with OCI, 3-9
with Pro*C/C++, 4-7

environment attributes -- supported attributes (ODBC
3.5), 10-4

environment variables
OCI, 3-6
TimesTen, 1-1

errors
error and warning levels, 2-36
error handling, 2-35
OCI error reporting, 3-11
Pro*C/C++ error reporting, 4-8
recovery, 2-37
transaction log API error handling, 5-28
transient (retry) (OCI), 3-11
transient (retry) (ODBC), 2-37
utility library errors, count, 8-29
utility library errors, retrieving, 8-27

event management (XLA), 5-1
execution of SQL

executing the statement, 2-9
SQLExecDirect and SQLExecute, 2-8

F
failover, 2-38
fetching results

bulk fetch, prefetch, 2-12, 7-3
example, 2-11

field identifiers, TimesTen, SQLColAttribute (ODBC
3.5), 10-6

first connection attributes, 2-6
floating point data, binding, 2-21

Index-3

freeing memory, utility library environment
handle, 8-25

G
general connection attributes, 2-6
globalization options

OCI, 3-3
ODBC, 2-33

I
-I flag (compiling), 1-3, 1-4
include files, TimesTen (#include), 2-8
info types supported, SQLGetInfo (ODBC 2.5), 10-19
info types supported, SQLGetInfo (ODBC 3.5), 10-7
initializing a database handle, XLA, 9-35
input parameters, 2-17
input/output parameters, 2-19
isolation levels, support, 2-12, 7-3, 9-41, 10-17, 10-21,

10-25

K
key not found error, 5-37
keywords

SQL (ODBC 2.5), 10-25
SQL (ODBC 3.5), 10-12

L
-L flag (compiling), 1-4
linking applications

AIX considerations, 1-5
OCI applications, 3-7
Pro*C/C++ applications, 4-5
UNIX, 1-4
Windows, 1-3
with driver manager, 1-2
with TimesTen driver, 1-1

Linux, compiling and linking applications, 1-4
LOBs

OCI, 3-18
ODBC, 2-25
overview, 2-25
Pro*C, 4-9
XLA limitations, 5-8
XLA support, 5-12, 9-77

log record identifier, 5-4

M
materialized views with XLA, 5-3

N
NVARCHAR type, 5-21

O
OCI

architecture in TimesTen, 3-2
call support, 3-30
compiling and linking applications, 3-7
connecting to a TimesTen database, 3-8
deferred prepare, 3-12
descriptor support, 3-35
diagnostic framework considerations, 3-12
easy connect, using, 3-9
environment variables, 3-6
error handling, 3-11
handle support, 3-34
OCI-defined constant support, 3-35
Oracle password, specifying for cache, 3-18
overview, 3-1
parameter attribute support, 3-37
restrictions in TimesTen, 3-4
signal handling considerations, 3-12
statement caching, 3-1, 3-33
TimesTen support, 3-2
tnsnames, using, 3-8

ODBC
additional type support (ODBC 3.5), 10-4
API incompatibilities with previous TimesTen

versions, 10-26
client/server cross-release restrictions,

TimesTen, 10-2
connection options supported (ODBC 2.5), 10-16
connection options supported (ODBC 3.5), 10-5
data types, ODBC 2.0 versus ODBC 3.0 (ODBC 2.5

mode), 10-13
environment attributes supported (ODBC

3.5), 10-4
functions, new and replacement, supported in

TimesTen (ODBC 3.5), 10-3
functions, supported in TimesTen (ODBC

2.5), 10-13
keywords, SQL (ODBC 2.5), 10-25
keywords, SQL (ODBC 3.5), 10-12
SQLColAttribute, TimesTen field identifiers

(ODBC 3.5), 10-6
SQLColAttributes supported column descriptors

(ODBC 2.5), 10-19
SQLGetInfo supported info types ODBC

2.5), 10-19
SQLGetInfo supported info types ODBC

3.5), 10-7
statement options supported (ODBC 2.5), 10-18
statement options supported (ODBC 3.5), 10-5
unicode, wide-character functions, 10-3, 10-13
using ODBC 2.5 in TimesTen, 10-13
using ODBC 3.5 in TimesTen, 10-2

Oracle Call Interface support, 3-1
output parameters, 2-17

P
parallel replication, user-defined, setup and ODBC

support, 2-34
parameter binding

associative array binds in OCI, 3-13

Index-4

associative array binds in Pro*C, 4-8
duplicate parameters in OCI, 3-13
duplicate parameters in PL/SQL, 2-20
duplicate parameters in SQL, 2-19
floating point data, 2-21
input parameters, 2-17
input/output parameters, 2-19
output parameters, 2-17
parameter type assignments and

conversions, 2-14
SQL_WCHAR and SQL_WVARCHAR with driver

manager, 2-21
SQLBindParameter, 2-14

passthrough
get status with TT_STMT_PASSTHROUGH_TYPE

ODBC option, 2-33, 10-19
set level with ttOptSetFlag, 2-33

performance
batch SQL operations, 7-1
binding parameters, 7-2
bulk fetch, prefetch, 2-12, 7-3
data type conversions, 7-3
query optimization, 2-12, 7-3
SQLGetData, 7-2

PL/SQL procedures and functions, calling, 2-30
precision, 2-14
prefetch multiple rows, 2-12, 7-3
preparation of SQL

deferred prepare, 2-11
preparing the statement, 2-9

Pro*C/C++ Precompiler
architecture in TimesTen, 3-2
building an application, 4-5, 4-6
commands and clauses, unsupported or restricted

(summary), 4-4
connecting to a TimesTen database, 4-6
connection restrictions, 4-3
easy connect, using, 4-7
embedded PL/SQL restrictions, 4-3
embedded SQL restrictions, 4-2
error reporting, 4-8
getting started, 4-5
option setting, 4-15
option support, 4-13
Oracle password, specifying for cache, 4-7
overview, 4-1
semantic checking restrictions, 4-2
SQLLIB support, 4-2
TimesTen support, 4-1
tnsnames, using, 4-7
transaction restrictions, 4-3

Q
query optimization, 2-12, 7-3
query results, working with cursors, 2-9
query threshold (or for any statement), 2-32
query timeout (or for any statement), 2-31
Quick Start

OCI Makefile, 3-6

Pro*C/C++ Makefile, 4-5
sample applications, overview, 1-5

R
RAM usage

ttRamGrace, 8-11
ttRamLoad, 8-12
ttRamPolicy, 8-13
ttRamUnload, 8-15

record headers, inspecting, XLA, 5-15
REF CURSORs, 2-21
replicating a database

utility function, 8-16
XLA, using for replication, 5-34

replication invalid, SQLGetInfo info type, 10-12
resource manager, XA, 6-2
restoring a database, 8-21
RETURNING INTO clause, 2-23
rolling back a transaction

utility function, 8-31
XLA, 9-60

rowid
convert ROWID to string, XLA, 9-37
using rowids, ROWID type, 2-25

S
sample applications

overview, 1-5
sb_ErrXlaTupleMismatch error, 5-38, 9-53, 9-54
scale, 2-14
signal handling considerations (OCI), 3-12
SQL keywords

ODBC 2.5, 10-25
ODBC 3.5, 10-12

SQL_NO_DATA_FOUND (SQLFetch), 10-14
SQL_QUERY_TIMEOUT option, 2-31
SQL_WCHAR and SQL_WVARCHAR with driver

manager, 2-21
SQLAllocConnect, 2-2
SQLBindCol, performance, 7-2
SQLBindParameter

arguments, usage, 2-14
performance, 7-2

SQLColAttribute, TimesTen field identifiers (ODBC
3.5), 10-6

SQLColAttributes TimesTen descriptors
TT_COLUMN_INLINE, 10-6, 10-19
TT_COLUMN_LENGTH_SEMANTICS, 10-7,

10-19
SQLColAttributes, supported column descriptors

(ODBC 2.5), 10-19
SQLConnect, 2-2
SQLDisconnect, 2-2
SQLDriverConnect, 2-2, 2-6
SQLExecDirect, 2-8
SQLExecute, 2-8
SQLFetch, SQL_NO_DATA_FOUND, 10-14
SQLGetConnectAttr, supported attributes (ODBC

Index-5

3.5), 10-5
SQLGetConnectOption, supported options (ODBC

2.5), 10-16
SQLGetData and performance, 7-2
SQLGetInfo TimesTen info types

TT_DATA_STORE_INVALID, 10-12
TT_DATABASE_CHARACTER_SET, 10-12
TT_DATABASE_CHARACTER_SET_SIZE, 10-12
TT_PLATFORM_INFO, 10-12
TT_REPLICATION_INVALID, 10-12

SQLGetInfo, supported info types (ODBC 2.5), 10-19
SQLGetInfo, supported info types (ODBC 3.5), 10-7
SQLGetStmtAttr, supported attributes (ODBC

3.5), 10-5
SQLGetStmtOption, supported options (ODBC

2.5), 10-18
SQLGetStmtOption() ODBC function

TT_STMT_PASSTHROUGH_TYPE option, 2-33
SQLLIB support (Pro*C/C++), 4-2
SQLParamOptions function, 7-2
SQLRowCount, 2-29, 2-33
SQLSetConnectAttr, supported attributes (ODBC

3.5), 10-5
SQLSetConnectOption, supported options (ODBC

2.5), 10-16
SQLSetStmtAttr, supported attributes (ODBC

3.5), 10-5
SQLSetStmtOption, supported options (ODBC

2.5), 10-18
statement caching, OCI, 3-1, 3-33
statement execution (SQL)

executing the statement, 2-9
SQLExecDirect and SQLExecute, 2-8

statement options
SQLSetStmtAttr and SQLGetStmtAttr, supported

attributes (ODBC 3.5), 10-5
SQLSetStmtOption and SQLGetStmtOption,

supported options (ODBC 2.5), 10-18
statement preparation (SQL)

deferred prepare, 2-11
preparing the statement, 2-9

T
tables to monitor, XLA, 5-11
threshold for SQL statements, 2-32
TIME and TIMESTAMP limitations, time zone, 2-16
timeout

for SQL statements, 2-31
handing timeout errors, 5-37

TimesTen Cache--see cache
timesten.h

brief description, 2-8
globalization options, 2-33
ttFailoverCallback_t structure, 2-42

tnsnames
with OCI, 3-8
with Pro*C/C++, 4-7

transaction log API
also see XLA

bookmarks, 5-4
closing handle, 9-8
data structures, 9-63
error handling, 5-28
functions, overview, 9-1
functions, summary, 9-2
overview, 5-1
replication, 5-34
sample application, 5-9
tt_LSN_t data structure, 9-79
tt_XlaLsn_t data structure, 9-80
ttXlaAcknowledge, 9-6
ttXlaApply, 9-53
ttXlaClose, 9-8
ttXlaColDesc_t data structure, 9-76
ttXlaCommit, 9-55
ttXlaConvertType, 9-9
ttXlaDateToODBCCType, 9-10
ttXlaDecimalToCString, 9-11
ttXlaDeleteBookmark, 9-13
ttXlaError, 9-14
ttXlaErrorRestart, 9-16
ttXlaGenerateSQL, 9-56
ttXlaGetColumnInfo, 9-17
ttXlaGetLSN, 9-19
ttXlaGetTableInfo, 9-20
ttXlaGetVersion, 9-21
ttXlaLookup, 9-58
ttXlaNextUpdate, 9-22
ttXlaNextUpdateWait, 9-24
ttXlaNodeHdr_t data structure, 9-64
ttXlaNumberToBigInt, 9-26
ttXlaNumberToCString, 9-27
ttXlaNumberToDouble, 9-28
ttXlaNumberToInt, 9-29
ttXlaNumberToSmallInt, 9-30
ttXlaNumberToTinyInt, 9-31
ttXlaNumberToUInt, 9-32
ttXlaOraDateToODBCTimeStamp, 9-33
ttXlaOraTimeStampToODBCTimeStamp, 9-34
ttXlaPersistOpen, 9-35
ttXlaRollback, 9-60
ttXlaRowdToCString, 9-37
ttXlaSetLSN, 9-38
ttXlaSetVersion, 9-39
ttXlaTableByName, 9-40
ttXlaTableCheck, 9-61
ttXlaTableStatus, 9-41
ttXlaTableVersionVerify, 9-44
ttXlaTblDesc_t data structure, 9-74
ttXlaTblVerDesc_t data structure, 9-75
ttXlaTimeStampToODBCCType, 9-47
ttXlaTimeToODBCCType, 9-46
ttXlaUpdateDesc_t data structure, 9-65
ttXlaVersion_t data structure, 9-73
ttXlaVersionColumnInfo, 9-48
ttXlaVersionCompare, 9-49
ttXlaVersionTableInfo, 9-51

transaction manager, XA, 6-2
TT_COLUMN_INLINE SQLColAttribute field

Index-6

identifier (ODBC 3.5), 10-6
TT_COLUMN_INLINE SQLColAttributes descriptor

(ODBC 2.5), 10-19
TT_COLUMN_LENGTH_SEMANTICS

SQLColAttribute field identiifer (ODBC
3.5), 10-7

TT_COLUMN_LENGTH_SEMANTICS
SQLColAttributes descriptor (ODBC 2.5), 10-19

TT_DATA_STORE_INVALID SQLGetInfo info
type, 10-12

TT_DATABASE_CHARACTER_SET SQLGetInfo info
type, 10-12

TT_DATABASE_CHARACTER_SET_SIZE
SQLGetInfo info type, 10-12

tt_ErrBadXlaRecord, 5-29
tt_ErrCondLockConflict, 5-29
tt_ErrDbAllocFailed, 5-29
tt_ErrDeadlockVictim, 5-29
tt_ErrDeadlockVictim error, 5-37
tt_ErrPermSpaceExhausted, 5-29
tt_ErrTempSpaceExhausted, 5-29
tt_ErrTimeoutVictim, 5-29
tt_ErrTimeoutVictim error, 5-37
tt_ErrXlaBookmarkUsed, 5-29
tt_ErrXlaDedicatedConnection, 5-30
tt_ErrXlaLsnBad, 5-29
tt_ErrXlaNoLogging, 5-30
tt_ErrXlaNoSQL, 5-29
tt_ErrXlaParameter, 5-30
tt_ErrXlaTableDiff, 5-30
tt_ErrXlaTableSystem, 5-30
tt_ErrXlaTupleMismatch, 5-30
tt_LSN_t data structure, XLA, 9-79
TT_NLS_LENGTH_SEMANTICS ODBC

option, 2-34
TT_NLS_NCHAR_CONV_EXCP ODBC option, 2-34
TT_NLS_SORT ODBC option, 2-34
TT_PLATFORM_INFO SQLGetInfo info type, 10-12
TT_PREFETCH_CLOSE connection option, 1-2,

2-12, 7-3
TT_PREFETCH_COUNT statement option, 7-3
TT_PREFETCH_COUNT statement options, 2-12
TT_QUERY_THRESHOLD, 2-32
TT_REPLICATION_INVALID SQLGetInfo info

type, 10-12
TT_STMT_PASSTHROUGH_TYPE ODBC

option, 10-19
tt_xa_context() function, XA, 6-5
tt_xa_switch, XA, 6-7
tt_xla.h include file, 5-10
tt_XlaLsn_t data structure, XLA, 9-80
ttApplicationContext, 5-39, 9-65
ttBackup, 8-3
ttCkpt built-in procedure, 5-31
ttCkptBlocking built-in procedure, 5-31
ttDestroyDataStore, 8-7
ttDestroyDataStoreForce, 8-9
ttDurableCommit, XA, 6-3
ttGridDistClear, 2-53
ttGridDistCreate, 2-52

ttGridDistElementGet, 2-54
ttGridDistFree, 2-52
ttGridDistReplicaGet, 2-55
ttGridDistValueSet, 2-53
ttRamGrace, 8-11
ttRamLoad, 8-12
ttRamPolicy, 8-13
ttRamUnload, 8-15
ttRepDuplicateEx, 8-16
ttRestore, 8-21
ttSrcScan utility, 3-6, 4-5
ttUtilAllocEnv, 8-23
ttUtilFreeEnv, 8-25
ttUtilGetError, 8-27
ttUtilGetErrorCount, 8-29
ttXactIdGet built-in procedure, 8-31
ttXactIdRollback, 8-31
ttxadm43.dll library, XA, 6-8
ttXlaAcknowledge, 5-12, 9-6
ttXlaApply, 5-36, 9-53
ttXlaBookmarkDelete built-in procedure, 5-32
ttXlaClose, 9-8
ttXlaColDesc_t, 5-18
ttXlaColDesc_t data structure, XLA, 9-76
ttXlaCommit, 5-37, 9-55
ttXlaConvertCharType, 9-9
ttXlaDateToODBCCType, 5-23, 9-10
ttXlaDecimalToCString, 5-23, 9-11
ttXlaDeleteBookmark, 5-31, 9-13
ttXlaError, 5-29, 9-14
ttXlaErrorRestart, 5-29, 9-16
ttXlaGenerateSQL, 5-38, 9-56
ttXlaGetColumnInfo, 5-18, 9-17
ttXlaGetLSN, 5-38, 9-19
ttXlaGetTableInfo, 5-18, 9-20
ttXlaGetVersion, 9-21
ttXlaHandle_h XLA handle, 5-11
ttXlaLookup, 9-58
ttXlaNextUpdate, 5-12, 9-22
ttXlaNextUpdateWait, 5-12, 9-24
ttXlaNodeHdr_t, 9-64
ttXlaNodeHdr_t data structure, XLA, 9-64
ttXlaNumberToBigInt, 5-23, 9-26
ttXlaNumberToCString, 5-23, 9-27
ttXlaNumberToDouble, 5-23, 9-28
ttXlaNumberToInt, 5-23, 9-29
ttXlaNumberToSmallInt, 5-23, 9-30
ttXlaNumberToTinyInt, 5-23, 9-31
ttXlaNumberToUInt, 5-23, 9-32
ttXlaOraDateToODBCTimeStamp, 5-24, 9-33
ttXlaOraTimeStampToODBCTimeStamp, 5-24, 9-34
ttXlaPersistOpen, 5-11, 9-35
ttXlaRollback, 5-37, 9-60
ttXlaRowdToCString, 9-37
ttXlaSetLSN, 5-38, 9-38
ttXlaSetVersion, 9-39
ttXlaTableByName, 5-11, 9-40
ttXlaTableCheck, 9-61
ttXlaTableStatus, 5-11, 9-41
ttXlaTableVersionVerify, 9-44

Index-7

ttXlaTblDesc_t data structure, XLA, 9-74
ttXlaTblVerDesc_t data structure, XLA, 9-75
ttXlaTimeStampToODBCCType, 5-23, 5-24, 9-47
ttXlaTimeToODBCCType, 5-23, 5-24, 9-46
ttXlaUnsubscribe built-in procedure, 5-31
ttXlaUpdateDesc_t

description, usage, 9-65
rows of data following in update record, 5-17
TT_AGING flag, 9-67
TT_CASCDEL flag, 9-67
TT_UPDCOLS flag, 9-67
TT_UPDCOMMIT flag, 9-67
TT_UPDDEFAULT flag, 9-67
TT_UPDFIRST flag, 9-67
TT_UPDREPL flag, 9-67
ttXlaAddColumnTup_t, 9-69
ttXlaCreateIndexTup_t, 9-68
ttXlaCreateSeqTup_t, 9-70
ttXlaCreateSynTup_t, 9-71
ttXlaDropColumnTup_t, 9-69
ttXlaDropindexTup_t, 9-69
ttXlaDropSeqTup_t, 9-70
ttXlaDropSynTup_t, 9-71
ttXlaDropTableTup_t, 9-68
ttXlaDropViewTup_t, 9-71
ttXlaSetColumnTup_t, 9-72
ttXlaSetStatusTup_t, 9-72
ttXlaSetTableTup_t, 9-71
ttXlaTruncateTableTup_t, 9-68
ttXlaViewDesc_t, 9-70
update header, described, 5-13
what it describes, 5-15

ttXlaVersion_t data structure, XLA, 9-73
ttXlaVersionColumnInfo, 9-48
ttXlaVersionCompare, 9-49
ttXlaVersionTableInfo, 9-51
Tuxedo, configuration for XA, 6-8
two-phase commit protocol, XA, 6-2
type mapping/conversion for parameter

binding, 2-14

U
UBBCONFIG file, XA, 6-10
Unicode, wide-character ODBC functions (ODBC

2.5), 10-13
Unicode, wide-character ODBC functions (ODBC

3.5), 10-3
UNIX, compiling and linking applications, 1-4
update conflicts, XLA, 5-38
update records, retrieving, XLA, 5-12
Utility Library

described, overview, 8-1
ttBackup, back up database, 8-3
ttDestroyDataStore, destroy database, 8-7
ttDestroyDataStoreForce, destroy database, 8-9
ttRamGrace, RAM usage, 8-11
ttRamLoad, RAM usage, 8-12
ttRamPolicy, RAM usage, 8-13
ttRamUnload, RAM usage, 8-15

ttRepDuplicateEx, replicate database, 8-16
ttRestore, restore database, 8-21
ttUtilAllocEnv, allocate library environment

handle, 8-23
ttUtilFreeEnv, free library environment

handle, 8-25
ttUtilGetError, utility library errors, 8-27
ttUtilGetErrorCount, utility library error

count, 8-29
ttXactIdRollback, roll back transaction, 8-31

V
VARBINARY type, 5-21
VARCHAR type, 5-21

W
wide-character ODBC functions, unicode, 10-3,

10-13
Windows, compiling and linking applications, 1-3

X
XA

AUTOCOMMIT with XA, 6-6
driver manager support (Windows), 6-8
DurableCommit, 6-3
resource manager, 6-2
transaction manager, 6-2
transaction recovery, 6-3
tt_xa_context() function, 6-5
tt_xa_switch, 6-7
ttDurableCommit, 6-3
Tuxedo configuration, 6-8
two-phase commit, 6-2
XID parameter, 6-4

xa_close() function, 6-4
xa_open() function, 6-4
xa_switch_t, 6-6
XID parameter, XA, 6-4
XLA

access control, 5-8
acknowledge records have been read, 9-6
also see transaction log API
also see XLA bookmarks
application context, passing, 5-39
applying database updates, 9-53
closing a transaction log API handle, XLA, 9-8
column data, inspecting, 5-17
column information, retrieving, 9-17
committing a transaction, 9-55
concepts, 5-1
data structures, 9-63
data types, 5-7
database connection handle, obtaining, 5-10
dropping a table with bookmark, 5-30
errors, reading transaction log errors, 9-14
errors, resetting the transaction log error

stack, 9-16
event-handler application, 5-9

Index-8

functions, overview, 9-1
functions, summary, 9-2
initializing a database handle, 9-35
limitations, 5-8
LOB support, 5-12, 9-77
materialized views, using, 5-3
record headers, inspecting, 5-15
record, looking up, 9-58
replication using XLA, 5-34
rolling back a transaction, 9-60
sample application, 5-9
table compatibility, verifying, 9-61
table information, retrieving, 9-20, 9-40
table status, 9-41
tables to monitor, specifying, 5-11
terminating XLA application, 5-32
update conflicts, 5-38
update data, retrieving, 9-22
update records, retrieving, 5-12
version, retrieving the Transaction Log API

version, 9-21
version, setting the Transaction Log API

version, 9-39
XLA handle, initializing, 5-10

XLA bookmarks
creating or reusing, 5-4
deleting, 5-31, 9-13
determining tables subscribed to, 5-11
how they work, 5-4
location, changing, 5-39
overview, 5-4
replicated bookmarks, 5-5
reporting DDL events, 5-11

X/Open DTP model, 6-2

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility

	What's New
	New features in Release 18.1.1.2.0
	New features in Release 18.1.1.1.0

	1 C Development Environment
	Setting the environment for development
	Linking options
	Considerations for linking without an ODBC driver manager
	Considerations for linking with an ODBC driver manager

	Compiling and linking applications
	Compiling and linking applications on Windows
	Compiling and linking applications on Linux or UNIX

	TimesTen Quick Start and sample applications

	2 Working with TimesTen Databases in ODBC
	Managing TimesTen database connections
	SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect functions
	Connecting to and disconnecting from a database
	Setting connection attributes programmatically
	Using a default DSN

	Managing TimesTen data
	TimesTen include files
	SQL statement execution within C applications
	SQLExecDirect and SQLExecute functions
	Executing a SQL statement

	Preparing and executing queries and working with cursors
	TimesTen deferred prepare
	Prefetching multiple rows of data
	Optimizing query performance
	Binding parameters and executing statements
	SQLBindParameter function
	Determination of parameter type assignments and type conversions
	Binding input parameters
	Binding output parameters
	Binding input/output parameters
	Binding duplicate parameters in SQL statements
	Binding duplicate parameters in PL/SQL
	Considerations for floating point data
	Using SQL_WCHAR and SQL_WVARCHAR with a driver manager

	Working with REF CURSORs
	Working with DML returning (RETURNING INTO clause)
	Working with rowids
	Working with LOBs
	About LOBs
	Differences between TimesTen LOBs and Oracle Database LOBs
	LOB programming interfaces
	Using the LOB simple data interface in ODBC
	Using the LOB piecewise data interface in ODBC
	Passthrough LOBs in ODBC

	Making and committing changes to the database

	Using additional TimesTen data management features
	Using CALL to execute procedures and functions
	Setting a timeout or threshold for executing SQL statements
	Setting a timeout duration for SQL statements
	Setting a threshold duration for SQL statements

	Features for use with TimesTen Cache
	Setting temporary passthrough level with the ttOptSetFlag built-in procedure
	Determining passthrough status
	Managing cache groups

	Setting globalization options
	TT_NLS_SORT
	TT_NLS_LENGTH_SEMANTICS
	TT_NLS_NCHAR_CONV_EXCP

	Features for use with replication

	Handling Errors
	Checking for errors
	Error and warning levels
	Fatal errors
	Non-fatal errors
	Warnings
	Abnormal termination

	Recovering after fatal errors
	Retrying after transient errors (ODBC)

	Using automatic client failover in your application
	Functionality of automatic client failover
	Configuration of automatic client failover
	Failover callback functions
	Application action in the event of failover
	Application steps for failover
	Failover delay and retry settings

	Client routing API for TimesTen Scaleout
	Creating a grid map and distribution
	Setting the distribution key values
	Getting the element location given a set of key values
	Get the element IDs
	Get the replica set ID

	Supported data types
	Restrictions
	Failure modes

	3 TimesTen Support for OCI
	Overview of OCI
	Overview of TimesTen OCI support
	OCI in TimesTen
	Globalization support
	Character sets
	Additional globalization features

	TimesTen restrictions and differences
	Oracle Database features not supported
	Additional TimesTen OCI restrictions
	Additional TimesTen OCI differences

	The ttSrcScan utility

	Getting started with TimesTen OCI
	Environment variables for TimesTen OCI
	Compiling and linking OCI applications
	Connecting to a TimesTen database from OCI
	Using the tnsnames naming method to connect
	Using an easy connect string to connect
	Configuring whether to use tnsnames.ora or easy connect

	OCI error handling
	OCI error reporting
	Transient errors (OCI)

	Signal handling and diagnostic framework considerations

	Use of additional features with TimesTen OCI
	TimesTen deferred prepare
	Parameter binding features in TimesTen OCI
	Duplicate parameter bindings in TimesTen OCI
	Associative array bindings in TimesTen OCI

	TimesTen Cache with TimesTen OCI
	Specifying the Oracle Database password in OCI for TimesTen Cache
	Determining the number of cache groups affected by an action

	LOBs in TimesTen OCI
	LOB locators in OCI
	Temporary LOBs in OCI
	Differences between TimesTen LOBs and Oracle Database LOBs in OCI
	Using the LOB simple data interface in OCI
	Using the LOB locator interface in OCI
	OCI client-side buffering
	LOB prefetching in OCI
	Passthrough LOBs in OCI

	Use of PL/SQL in OCI to call a TimesTen built-in procedure

	TimesTen OCI support reference
	Supported OCI calls
	Supported handles and attributes
	Supported descriptors
	Supported OCI-defined constants
	Supported parameter attributes

	4 TimesTen Support for Pro*C/C++
	Overview of the Oracle Pro*C/C++ Precompiler
	Overview of TimesTen support for Pro*C/C++
	TimesTen OCI support
	Embedded SQL support and restrictions
	Semantic checking restrictions
	Embedded PL/SQL restrictions
	Transaction restrictions
	Connection restrictions
	Summary of unsupported or restricted executable commands and clauses
	The ttSrcScan utility

	Getting started with TimesTen Pro*C/C++
	Environment and configuration for TimesTen Pro*C/C++
	Building a Pro*C/C++ application
	Connecting to a TimesTen database from Pro*C/C++
	Connection syntax and parameters
	Using tnsnames or easy connect
	Specifying the Oracle Database password in Pro*C/C++ for TimesTen Cache

	Error reporting and handling

	Additional features of TimesTen Pro*C/C++
	Associative array bindings in TimesTen Pro*C/C++
	LOBs in TimesTen Pro*C/C++
	Using the LOB simple data interface in Pro*C/C++
	Using the LOB locator interface in Pro*C/C++

	TimesTen Pro*C/C++ Precompiler options
	Precompiler option support
	Setting precompiler options

	5 XLA and TimesTen Event Management
	XLA concepts
	XLA basics
	How XLA reads records from the transaction log
	About XLA and materialized views
	About XLA bookmarks
	Creating or reusing a bookmark
	How bookmarks work
	Replicated bookmarks
	XLA bookmarks and transaction log holds

	About XLA data types
	Access control impact on XLA
	XLA limitations
	XLA sample application

	Writing an XLA event-handler application
	Obtaining a database connection handle
	Initializing XLA and obtaining an XLA handle
	Specifying which tables to monitor for updates
	Retrieving update records from the transaction log
	Inspecting record headers and locating row addresses
	Inspecting column data
	Obtaining column descriptions
	Reading fixed-length column data
	Reading NOT INLINE variable-length column data
	Null-terminating returned strings
	Converting complex data types
	Detecting null values
	Putting it all together: a PrintColValues() function

	Handling XLA errors
	Dropping a table that has an XLA bookmark
	Deleting bookmarks
	Terminating an XLA application

	Using XLA as a replication mechanism
	Checking table compatibility between databases
	Checking table and column descriptions
	Checking table and column versions

	Replicating updates between databases
	Handling timeout and deadlock errors
	Checking for update conflicts
	Replicating updates to a non-TimesTen database

	Other XLA features
	Changing the location of a bookmark
	Passing application context

	6 Distributed Transaction Processing: XA
	Overview of XA
	X/Open DTP model
	Two-phase commit

	Using XA in TimesTen
	TimesTen database requirements for XA
	Global transaction recovery in TimesTen
	Considerations in using standard XA functions with TimesTen
	xa_open()
	xa_close()
	Transaction id (XID) parameter

	TimesTen tt_xa_context function to obtain ODBC handle from XA connection
	Considerations in calling ODBC functions over XA connections in TimesTen
	Autocommit
	Local transaction COMMIT and ROLLBACK
	Closing open cursors

	XA resource manager switch
	xa_switch_t
	tt_xa_switch

	XA error handling in TimesTen

	XA support through the Windows ODBC driver manager
	Issues to consider
	Linking to the TimesTen ODBC XA driver manager extension library

	Configuring Tuxedo to use TimesTen XA
	Update the $TUXDIR/udataobj/RM file
	Build the Tuxedo transaction manager server
	Update the GROUPS section in the UBBCONFIG file
	Compile the servers

	7 ODBC Application Tuning
	Bypass driver manager if appropriate
	Using arrays of parameters for batch execution
	Avoid excessive binds
	Avoid SQLGetData
	Avoid data type conversions
	Bulk fetch rows of TimesTen data
	Optimize queries

	8 TimesTen Utility API
	ttBackup
	ttDestroyDataStore
	ttDestroyDataStoreForce
	ttRamGrace
	ttRamLoad
	ttRamPolicy
	ttRamUnload
	ttRepDuplicateEx
	ttRestore
	ttUtilAllocEnv
	ttUtilFreeEnv
	ttUtilGetError
	ttUtilGetErrorCount
	ttXactIdRollback

	9 XLA Reference
	About XLA functions
	About return codes
	About parameter types (input, output, input/output)
	About results output by functions
	About required privileges

	Summary of XLA functions by category
	XLA core functions
	XLA data type conversion functions
	XLA replication functions

	XLA function reference
	ttXlaAcknowledge
	ttXlaClose
	ttXlaConvertCharType
	ttXlaDateToODBCCType
	ttXlaDecimalToCString
	ttXlaDeleteBookmark
	ttXlaError
	ttXlaErrorRestart
	ttXlaGetColumnInfo
	ttXlaGetLSN
	ttXlaGetTableInfo
	ttXlaGetVersion
	ttXlaNextUpdate
	ttXlaNextUpdateWait
	ttXlaNumberToBigInt
	ttXlaNumberToCString
	ttXlaNumberToDouble
	ttXlaNumberToInt
	ttXlaNumberToSmallInt
	ttXlaNumberToTinyInt
	ttXlaNumberToUInt
	ttXlaOraDateToODBCTimeStamp
	ttXlaOraTimeStampToODBCTimeStamp
	ttXlaPersistOpen
	ttXlaRowidToCString
	ttXlaSetLSN
	ttXlaSetVersion
	ttXlaTableByName
	ttXlaTableStatus
	ttXlaTableVersionVerify
	ttXlaTimeToODBCCType
	ttXlaTimeStampToODBCCType
	ttXlaVersionColumnInfo
	ttXlaVersionCompare
	ttXlaVersionTableInfo

	XLA replication function reference
	ttXlaApply
	ttXlaCommit
	ttXlaGenerateSQL
	ttXlaLookup
	ttXlaRollback
	ttXlaTableCheck

	C data structures used by XLA
	ttXlaNodeHdr_t
	ttXlaUpdateDesc_t
	ttXlaVersion_t
	ttXlaTblDesc_t
	ttXlaTblVerDesc_t
	ttXlaColDesc_t
	tt_LSN_t
	tt_XlaLsn_t

	10 TimesTen ODBC Support
	TimesTen ODBC 3.5 support
	Using ODBC 3.5 with TimesTen
	Client/server cross-release restrictions with ODBC 3.5
	ODBC 3.5 new and replacement function support
	ODBC 3.5 data type support notes
	Environment attribute support for ODBC 3.5
	Attribute support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr
	Attribute support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr
	TimesTen field identifiers for ODBC 3.5 SQLColAttribute
	Information type support for ODBC 3.5 SQLGetInfo
	TimesTen SQL keywords for ODBC 3.5

	TimesTen ODBC 2.5 support
	Using ODBC 2.5 with TimesTen
	ODBC 2.5 function support
	Option support for ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption
	Option support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption
	Column descriptor support for ODBC 2.5 SQLColAttributes
	Information type support for ODBC 2.5 SQLGetInfo
	TimesTen SQL keywords for ODBC 2.5

	ODBC API incompatibilities with previous versions of TimesTen
	ODBC 3.5 function signatures that have changed
	ODBC 2.5 function signatures that have changed
	ODBC data types that have changed

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

