

Oracle® TimesTen Application-Tier Database
Cache
User's Guide

Release 18.1

E61196-06

July 2020

Oracle TimesTen Application-Tier Database Cache User's Guide, Release 18.1

E61196-06

Copyright © 2012, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such
programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S.
Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract
for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... ix

Audience... ix
Related documents.. x
Conventions ... x
Documentation Accessibility ... xi

What's New.. xiii

New features in Release 18.1.4.1.0 .. xiii
New features in Release 18.1.3.1.0 .. xiii
New features in Release 18.1.2.2.0 .. xiii
New features in Release 18.1.2.1.0 .. xiv
New features in Release 18.1.1.1.0 .. xiv

1 TimesTen Application-Tier Database Cache Concepts

Overview of cache groups .. 1-1
Cache instance .. 1-3
Cache group types ... 1-3
Transmitting updates between the TimesTen and Oracle databases... 1-4
Loading data into a cache group: Explicitly loaded and dynamic cache groups 1-5

High availability caching solution.. 1-6

2 Getting Started

Setting up the Oracle Database and TimesTen Classic systems... 2-1
Create users in the Oracle database... 2-1
Create a DSN for the TimesTen database... 2-3
Create users in the TimesTen database... 2-3
Set the cache administration user name and password in the TimesTen database 2-4

Creating cache groups ... 2-5
Create the Oracle Database tables to be cached... 2-5
Start the cache agent .. 2-7
Create the cache groups .. 2-7
Start the replication agent for the AWT cache group ... 2-9

Performing operations on the read-only cache group... 2-9
Manually load the cache group.. 2-9
Update the cached Oracle Database table ... 2-10

iv

Performing operations on a dynamically updatable cache group ... 2-11
Dynamically load the cache group ... 2-11
Update the TimesTen cache table ... 2-12

Cleaning up the TimesTen Classic and Oracle Database systems .. 2-13
Stop the replication agent .. 2-13
Drop the cache groups.. 2-14
Stop the cache agent and destroy the TimesTen database.. 2-14
Drop the Oracle Database users and their objects.. 2-14

3 Setting Up a Caching Infrastructure

Configuring your system to cache Oracle Database data in TimesTen Classic........................... 3-1
TimesTen Cache environment variables for UNIX or Linux... 3-1
TimesTen Cache environment variables for Microsoft Windows .. 3-2

Configuring the Oracle database to cache data in TimesTen Classic .. 3-2
Create the Oracle database users ... 3-2
Grant privileges to the Oracle database users ... 3-3
Automatically create Oracle Database objects used to manage data caching........................... 3-4
Manually create Oracle Database objects used to manage data caching 3-5

Configuring a TimesTen database to cache Oracle Database data... 3-6
Define a DSN for the TimesTen database... 3-6
Create the TimesTen users.. 3-7
Grant privileges to the TimesTen users .. 3-8
Set the cache administration user name and password ... 3-9

Testing the connectivity between the TimesTen and Oracle databases 3-10
Managing the cache agent ... 3-11

Set a cache agent start policy ... 3-11

4 Defining Cache Groups

Cache groups and cache tables .. 4-1
Single-table cache group ... 4-3
Multiple-table cache group... 4-4

Creating a cache group .. 4-7
Read-only cache group.. 4-8

Restrictions with read-only cache groups .. 4-10
Asynchronous WriteThrough (AWT) cache group.. 4-11

Managing the replication agent ... 4-13
Configuring parallel propagation to Oracle Database tables .. 4-15
What an AWT cache group does and does not guarantee... 4-21
Restrictions with AWT cache groups.. 4-22
Reporting Oracle Database permanent errors for AWT cache groups 4-23

Synchronous WriteThrough (SWT) cache group ... 4-25
Restrictions with SWT cache groups... 4-27

User-managed cache group ... 4-27
READONLY cache table attribute ... 4-28
PROPAGATE cache table attribute ... 4-29
Examples of user-managed cache groups .. 4-31

AUTOREFRESH cache group attribute ... 4-34

v

AUTOREFRESH cache group attribute overview .. 4-35
Altering a cache group to change the AUTOREFRESH mode, interval or state 4-37
Manually creating Oracle Database objects for autorefresh cache groups...................... 4-37
Disabling full autorefresh for cache groups... 4-38

Using a WHERE clause .. 4-40
Proper placement of WHERE clause in a CREATE CACHE GROUP statement 4-41
Referencing Oracle Database PL/SQL functions in a WHERE clause............................. 4-42

ON DELETE CASCADE cache table attribute.. 4-43
UNIQUE HASH ON cache table attribute .. 4-44

Caching Oracle Database synonyms ... 4-44
Caching Oracle Database LOB data... 4-44
Implementing aging in a cache group... 4-46

LRU aging... 4-46
Time-based aging .. 4-48
Manually scheduling an aging process.. 4-50
Configuring a sliding window.. 4-50

Dynamic cache groups.. 4-51
Replicating cache tables ... 4-53

Create and configure the active database.. 4-53
Create and configure the standby database .. 4-55
Create and configure the read-only subscriber database.. 4-56

5 Cache Group Operations

Transmitting updates between the TimesTen and Oracle databases .. 5-1
Loading and refreshing a cache group ... 5-2

Loading and refreshing an explicitly loaded cache group with autorefresh 5-4
Loading and refreshing a dynamic cache group with autorefresh... 5-4
Loading and refreshing a cache group using a WITH ID clause .. 5-5
Initiating an immediate autorefresh.. 5-6
Loading and refreshing a multiple-table cache group ... 5-6
Improving the performance of loading or refreshing a large number of cache instances 5-6
Example of manually loading and refreshing an explicitly loaded cache group 5-7
Example of manually loading and refreshing a dynamic cache group 5-8

Dynamically loading a cache instance .. 5-10
Dynamic load configuration.. 5-11
Dynamic load guidelines ... 5-11
Examples of dynamically loading a cache instance ... 5-12
Returning dynamic load errors ... 5-15

Flushing a user managed cache group .. 5-16
Unloading a cache group ... 5-16
Determining the number of cache instances affected by an operation 5-17
Setting a passthrough level ... 5-17

PassThrough=0.. 5-18
PassThrough=1.. 5-19
PassThrough=2.. 5-19
PassThrough=3.. 5-20
Considerations for using passthrough... 5-21

vi

Changing the passthrough level for a connection or transaction .. 5-22

6 Managing a Caching Environment

Checking the status of the cache and replication agents .. 6-1
Cache agent and replication connections ... 6-3

Monitoring cache groups .. 6-3
Using the ttIsql utility's cachegroups command ... 6-3
Monitoring autorefresh operations on cache groups.. 6-4
Monitoring AWT cache groups.. 6-4
Configuring a transaction log file threshold for AWT cache groups ... 6-4
Tracking DDL statements issued on cached Oracle Database tables ... 6-5

Managing a caching environment with Oracle Database objects .. 6-7
Impact of failed autorefresh operations on TimesTen databases... 6-9
Dropping Oracle Database objects used by autorefresh cache groups 6-13
Monitoring the cache administration user's tablespace .. 6-14

Defragmenting change log tables in the tablespace... 6-14
Manually defragmenting the change log tables for autorefresh cache groups 6-16

Receiving notification on tablespace usage... 6-16
Recovering from a full tablespace... 6-17

Backing up and restoring a database with cache groups... 6-18
Backing up and restoring using the ttBackup and ttRestore utilities...................................... 6-18
Backing up and restoring with the ttMigrate utility .. 6-19

Changing cache user names and passwords .. 6-21

7 Cache Performance

Dynamic load performance .. 7-1
Managing a cache connection pool to the Oracle database for dynamic load requests 7-1

Enable the cache connection pool... 7-3
Size the cache connection pool.. 7-5
Use the ChildServer connection attribute to identify a child server process 7-6
Apply cache connection pool sizing to currently executing database 7-6
Example demonstrating management of the cache connection pool.................................. 7-6
Limit the number of connections to the Oracle database.. 7-7
Restrictions for the cache connection pool .. 7-8

Improving AWT throughput.. 7-9
Improving AWT throughput with parallel propagation ... 7-9
Improving AWT throughput with SQL array execution ... 7-9

Improving performance for autorefresh operations.. 7-9
Minimizing delay for cached data with continuous autorefresh... 7-10
Reducing contention on TimesTen for dynamic read-only cache groups with incremental
autorefresh 7-10

Requirements for setting DynamicLoadReduceContention.. 7-11
Reducing lock contention for read-only cache groups that use autorefresh and dynamic load....
7-11
Improving performance when reclaiming memory during autorefresh operations 7-12
Executing large transactions with incremental autorefresh read-only cache groups........... 7-13

Using ttCacheAutorefreshXactLimit... 7-14

vii

Example of potential transactional inconsistency... 7-14
Retrieving statistics to evaluate performance when a transaction limit is set 7-18

Configuring a select limit when using incremental autorefresh for read-only cache groups
7-19

How to determine the cache group name for a particular select limit............................. 7-20
Retrieving statistics to evaluate performance when using a select limit 7-20

Retrieving statistics on autorefresh transactions .. 7-20
Caching the same Oracle table on two or more TimesTen databases... 7-21

8 Cleaning up the Caching Environment

Stopping the replication agent .. 8-1
Dropping a cache group .. 8-1
Stopping the cache agent .. 8-2
Destroying the TimesTen databases .. 8-3
Dropping Oracle Database users and objects... 8-3
Scheduling a shutdown of active standby pair with AWT cache groups 8-3

9 Using TimesTen Cache in an Oracle RAC Environment

How TimesTen Cache works in an Oracle RAC environment ... 9-1
Restrictions on using TimesTen Cache in an Oracle RAC environment 9-4
Setting up TimesTen Cache in an Oracle RAC environment.. 9-4

10 Using TimesTen Cache with Data Guard

Components of MAA for TimesTen Cache.. 10-1
TimesTen Cache works with asynchronous Active Data Guard .. 10-2

Configuring the primary and standby Oracle databases .. 10-3
Creating two Oracle Database services .. 10-3

Configuring the active standby pair with read-only cache groups ... 10-7
Recovery after failure when using asynchronous Active Data Guard.................................... 10-8

Failure of the standby Oracle database... 10-8
Failure of the primary Oracle database .. 10-9
Failure of the primary site .. 10-9

TimesTen Cache works with synchronous Data Guard.. 10-11
Configuring the Oracle databases .. 10-12
Configuring the TimesTen database .. 10-14

A Procedure and Privileges for Caching Oracle Database Data in TimesTen
Classic

Quick reference to cache Oracle Database data in TimesTen Classic .. A-1
Required privileges for the cache administration user and the cache manager user A-3

B SQL*Plus Scripts for TimesTen Cache

Installed SQL*Plus scripts... B-1

viii

C Compatibility Between TimesTen and Oracle Databases

Summary of compatibility issues... C-1
Transaction semantics .. C-1
API compatibility .. C-2

JDBC API compatibility ... C-2
java.sql.Connection.. C-2
java.sql.Statement .. C-3
java.sql.ResultSet.. C-3
java.sql.PreparedStatement .. C-3
java.sql.CallableStatement .. C-4
java.sql.ResultSetMetaData .. C-4
Stream support ... C-4

ODBC API compatibility.. C-5
SQL compatibility ... C-5

Schema objects ... C-5
Caching Oracle Database partitioned tables .. C-6

Nonschema objects.. C-6
Differences between Oracle Database and TimesTen tables .. C-6
Data type support ... C-7
SQL operators .. C-7
SELECT statements ... C-8
SQL subqueries.. C-8
SQL functions .. C-8
SQL expressions .. C-10
INSERT/DELETE/UPDATE/MERGE statements.. C-10
TimesTen-only SQL and built-in procedures.. C-11
PL/SQL constructs.. C-12

Mappings between Oracle Database and TimesTen data types .. C-12

Index

ix

Preface

Oracle TimesTen In-Memory Database (TimesTen) is a relational database that is
memory-optimized for fast response and throughput. The database resides entirely in
memory at runtime and is persisted to the file system.

■ Oracle TimesTen In-Memory Database in classic mode, or TimesTen Classic, refers
to single-instance and replicated databases (as in previous releases).

■ Oracle TimesTen In-Memory Database in grid mode, or TimesTen Scaleout, refers
to a multiple-instance distributed database. TimesTen Scaleout is a grid of
interconnected hosts running instances that work together to provide fast access,
fault tolerance, and high availability for in-memory data.

■ TimesTen alone refers to both classic and grid modes (such as in references to
TimesTen utilities, releases, distributions, installations, actions taken by the
database, and functionality within the database).

■ TimesTen Application-Tier Database Cache, or TimesTen Cache, is an Oracle
Database Enterprise Edition option. TimesTen Cache is ideal for caching
performance-critical subsets of an Oracle database into cache tables within a
TimesTen database for improved response time in the application tier. Cache tables
can be read-only or updatable. Applications read and update the cache tables
using standard Structured Query Language (SQL) while data synchronization
between the TimesTen database and the Oracle database is performed
automatically. TimesTen Cache offers all of the functionality and performance of
TimesTen Classic, plus the additional functionality for caching Oracle Database
tables.

■ TimesTen Replication features, available with TimesTen Classic or TimesTen
Cache, enable high availability.

TimesTen supports standard application interfaces JDBC, ODBC, and ODP.NET;
Oracle interfaces PL/SQL, OCI, and Pro*C/C++; and the TimesTen TTClasses library
for C++.

Audience
This guide is for application developers who use and administer TimesTen, and for
system administrators who configure and manage TimesTen databases that cache data
from Oracle databases. To work with this guide, you should understand how
relational database systems work. You should also have knowledge of SQL, and either
Open Database Connectivity (ODBC), Java Database Connectivity (JDBC), or Oracle
Call Interface (OCI).

x

Related documents
TimesTen documentation is available at:

https://docs.oracle.com/database/timesten-18.1

Oracle Database documentation is also available on the Oracle documentation website.
This may be especially useful for Oracle Database features that TimesTen supports but
does not attempt to fully document, such as OCI and Pro*C/C++.

Conventions
TimesTen Classic is supported on multiple platforms. Unless otherwise indicated, the
information in this guide applies to all supported platforms. The term Windows refers
to all supported Windows platforms. The term UNIX applies to all supported UNIX
platforms. The term Linux is used separately. See "Platforms and Compilers" in Oracle
TimesTen In-Memory Database Release Notes (README.html) in your installation directory
for specific platform versions supported by TimesTen.

This document uses the following text conventions:

TimesTen documentation uses these variables to identify path, file and user names:

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database.

Convention Meaning

boldface Boldface type indicates graphical user interface elements
associated with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs,
code in examples, text that appears on the screen, or text that you
enter.

italic monospace Italic monospace type indicates a placeholder or a variable in a
code example for which you specify or use a particular value. For
example:

LIBS = -Ltimesten_home/install/lib -ltten

Replace timesten_home with the path to the TimesTen instance
home directory.

[] Square brackets indicate that an item in a command line is
optional.

{ } Curly braces indicate that you must choose one of the items
separated by a vertical bar (|) in a command line.

| A vertical bar separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use
more than one argument on a single command line.

% or $ The percent sign or dollar sign indicates the UNIX shell prompt,
depending on the shell that is used.

The number (or pound) sign indicates the prompt for the UNIX
root user.

xi

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Convention Meaning

installation_dir The path that represents the directory where the current release of
TimesTen is installed.

timesten_home The path that represents the home directory of a TimesTen
instance.

release or rr The first two parts in a release number, with or without the dot.
The first two parts of a release number represent a major
TimesTen release. For example, 181 or 18.1 represents TimesTen
Release 18.1.

DSN The data source name.

Note: TimesTen release numbers are reflected in items such as
TimesTen utility output, file names and directory names. These details
are subject to change with every minor or patch release, and the
documentation cannot always be up to date. The documentation seeks
primarily to show the basic form of output, file names, directory
names and other code that may include release numbers. You can
confirm the current release number by looking at the Release Notes or
executing the ttVersion utility.

xii

xiii

What's New

This section summarizes new features and functionality of TimesTen Release 18.1 that
are documented in this guide, providing links into the guide for more information.

New features in Release 18.1.4.1.0
You can now set a time interval for how often to perform the calculation of the
fragmentation percentage of the change log tables on the Oracle database. Use the
ttCacheConfig built-in procedure providing the AutorefreshLogMonitorInterval as
the value parameter. See "Defragmenting change log tables in the tablespace" on
page 6-14 for details.

New features in Release 18.1.3.1.0
■ Cache group autorefresh interval set to 0 milleseconds enables continuous

autorefresh, where the next autorefresh cycle is scheduled immediately after the
last autorefresh cycle has ended. See "AUTOREFRESH cache group attribute
overview" on page 4-35 and "Minimizing delay for cached data with continuous
autorefresh" on page 7-10 for details.

■ Applications can have multiple dynamic load requests to the Oracle database,
which could result in too many open connections to the back-end Oracle database.
However, for client/server applications with multiple connections per server, you
can configure TimesTen to use the cache connection pool for all connections to the
Oracle database. The cache connection pool can only be utilized by an application
using a client/server connection as the pooled connections are shared across all
client/server connections. See "Managing a cache connection pool to the Oracle
database for dynamic load requests" on page 7-1 for details.

■ If you notice that your application is timing out because of a lock contention
between autorefresh and dynamic load requests, you can set the
CacheCommitDurable cache configuration parameter to 0 with the ttCacheConfig
built-in procedure. This reduces the occurrence of lock contention between
autorefresh and dynamic load requests in the same application. See "Reducing
lock contention for read-only cache groups that use autorefresh and dynamic load"
on page 7-11 for details.

New features in Release 18.1.2.2.0
You can reduce contention between autorefresh and dynamic load operations for
dynamic read-only cache groups with incremental autorefresh by enabling the
DynamicLoadReduceContention database system parameter. See "Reducing contention
on TimesTen for dynamic read-only cache groups with incremental autorefresh" on

xiv

page 7-10 for details.

New features in Release 18.1.2.1.0
Some applications choose incremental autorefresh instead of full autorefresh mode for
performance reasons. However, a full autorefresh could still be requested in some
situations. You can set the DisableFullAutorefresh cache configuration parameter to
1 to disallow any full autorefresh requests for all cache groups defined with
incremental autorefresh. See "Disabling full autorefresh for cache groups" on page 4-38
for details.

New features in Release 18.1.1.1.0
■ Oracle TimesTen In-Memory Database in classic mode or TimesTen Classic refers

to single-instance environments and databases as in previous releases. TimesTen
Cache is available with TimesTen Classic.

■ TimesTen Cache is supported on multiple platforms. See "Platforms and
configurations" in Oracle TimesTen In-Memory Database Release Notes (README.html)
in your installation directory for specific platform versions supported by
TimesTen.

■ TimesTen Cache works with asynchronous Oracle Active Data Guard. You can
cache tables from an Oracle Active Data Guard with the asynchronous redo
transport mode into read-only cache groups. The read-only cache groups are
replicated within an active standby pair replication scheme. The Active Data
Guard configuration includes a primary Oracle database that communicates over
an asynchronous transport to a single physical standby Oracle database. See
"TimesTen Cache works with asynchronous Active Data Guard" on page 10-2 for
full details.

■ Cache grid and all its components are removed in this release.

■ Cache Advisor is removed from TimesTen in this release.

1

TimesTen Application-Tier Database Cache Concepts 1-1

1TimesTen Application-Tier Database Cache
Concepts

TimesTen Application-Tier Database Cache (TimesTen Cache) is an Oracle Database
product option available with the TimesTen In-Memory Database. It is used as a
database cache at the application tier to cache Oracle Database data and reduce the
workload on the Oracle database. It also provides the connection and transfer of data
between an Oracle database and a TimesTen database, as well as facilitating the
capture and processing of high-volume event flows into a TimesTen database and
subsequent transfer of data into an Oracle database.

You can cache Oracle Database data in a TimesTen database within cache groups. A
cache group in a TimesTen database can cache a single Oracle Database table or a
group of related Oracle Database tables.

This chapter includes the following topics:

■ Overview of cache groups

■ High availability caching solution

Overview of cache groups
Cache groups define the Oracle Database data to be cached in a TimesTen database. A
cache group can be defined to cache all or part of a single Oracle Database table, or a
set of related Oracle Database tables.

Figure 1–1 shows the target_customers cache group that caches a subset of a single
Oracle Database table customer.

Overview of cache groups

1-2 Oracle TimesTen Application-Tier Database Cache User's Guide

Figure 1–1 Single-table cache group

You can cache multiple Oracle Database tables in the same cache group by defining a
root table and one or more child tables. A cache group can contain only one root table.

In a cache group with multiple tables, each child table must reference the root table or
another child table in the same cache group using a foreign key constraint. Although
tables in a multiple-table cache group must be related to each other in the TimesTen
database through foreign key constraints, the corresponding tables do not necessarily
need to be related to each other in the Oracle database. The root table does not
reference any table with a foreign key constraint. See "Multiple-table cache group" on
page 4-4 for more details about the characteristics of a multiple-table cache group.

While you may have multiple TimesTen databases that interact with the same Oracle
database, they will each operate independently. Thus, any data cached in separate
TimesTen databases will each interact with the Oracle database independently.

An Oracle Database table cannot be cached in separate cache groups within the same
TimesTen database. However, the table can be cached in separate cache groups within
different TimesTen databases. If the table is cached in separate AWT cache groups and
the same cache instance is updated simultaneously on multiple TimesTen databases,
there is no guarantee as to the order in which the updates are propagated to the cached
Oracle Database table. In addition, the contents of the updated cache tables can be
inconsistent on the separate TimesTen databases.

Oracle

database

Cache group target_customers

TimesTen

customer

122 West Jim Johnston ...

342 West Jane Stone

663 MidWest Mary J. Warren ...

cust_num* region name ...

...

122 West Jim John...

342 West Jane Stone

customer

Overview of cache groups

TimesTen Application-Tier Database Cache Concepts 1-3

Cache instance
Data is loaded from an Oracle database into a cache group within a TimesTen database
in units called cache instances. A cache instance is defined as a single row in the cache
group's root table together with the set of related rows in the child tables.

Figure 1–2 shows three tables in the customer_orders cache group. The root table is
customer. orders and order_item are child tables. The cache instance identified by the
row with the value 122 in the cust_num primary key column of the customer table
includes:

■ The two rows with the value 122 in the cust_num column of the orders table
(whose value in the ord_num primary key column is 44325 or 65432), and

■ The three rows with the value 44325 or 65432 in the ord_num column of the order_
item table

Figure 1–2 Multiple-table cache group

Cache group types
The most commonly used types of cache groups are:

■ Read-only cache group

A read-only cache group enforces a caching behavior in which committed updates
on cached tables in the Oracle database are automatically refreshed to the cache
tables in the TimesTen database. Using a read-only cache group is suitable for
reference data that is heavily accessed by applications.

See "Read-only cache group" on page 4-8 for details about read-only cache groups.

■ Asynchronous WriteThrough (AWT) cache group

An AWT cache group enforces a caching behavior in which committed updates on
cache tables in the TimesTen database are automatically propagated to the cached

Oracle

database

Cache group customer_orders
TimesTen

Child
Tables

customer

orders

order_item

Data for all customers

customer (Root table)

cust_num region name address

Jim Johnston 231 Main, Needles, CA 92363122 West

West

Midwest

342

663 Mary J. Warren

Jane Stone

673 State, Madison, WI 53787

43 Cope, Palo Alto, CA 94302

orders

cust_num

122

663

ord_num when_placed when_shipped

44325

65432

76543

122

10/7/16

8/24/16

4/2/16

8/27/16

4/8/16

10/7/16

TR3A

1

5

prod_num quantity

SD0744325

44325

65432

order_item

76543 SD07 2

FT094 1

ord_num

Overview of cache groups

1-4 Oracle TimesTen Application-Tier Database Cache User's Guide

tables in the Oracle database in asynchronous fashion. Using an AWT cache group
is suitable for high speed data capture and online transaction processing.

See "Asynchronous WriteThrough (AWT) cache group" on page 4-11 for details
about AWT cache groups.

Other types of cache groups include:

■ Synchronous writethrough (SWT) cache group

An SWT cache group enforces a caching behavior in which committed updates on
cache tables in the TimesTen database are automatically propagated to the cached
tables in the Oracle database in synchronous fashion.

See "Synchronous WriteThrough (SWT) cache group" on page 4-25 for details
about SWT cache groups.

■ User managed cache group

A user managed cache group defines customized caching behavior.

For example, you can define a cache group that does not use automatic refresh or
automatic propagation where committed updates on the cache tables are manually
propagated or flushed to the cached Oracle Database tables.

You can also define a cache group that uses both automatic propagation in
synchronous fashion on every table and automatic refresh.

See "User-managed cache group" on page 4-27 for details about user managed
cache groups.

Transmitting updates between the TimesTen and Oracle databases
Transmitting committed updates between the TimesTen cache tables and the cached
Oracle Database tables keeps these tables in the two databases synchronized.

As shown in Figure 1–3, propagate and flush are operations that transmit committed
updates on cache tables in the TimesTen database to the cached tables in the Oracle
database. Flush is a manual operation and propagate is an automatic operation.

Load, refresh, and autorefresh are operations that transmit committed updates on
cached tables in the Oracle database to the cache tables in the TimesTen database. Load
and refresh are manual operations; autorefresh is an automatic operation.

See "Flushing a user managed cache group" on page 5-16 for information about the
FLUSH CACHE GROUP statement which can only be issued on a user managed cache
group.

See "Asynchronous WriteThrough (AWT) cache group" on page 4-11 and
"Synchronous WriteThrough (SWT) cache group" on page 4-25 for details about how a
propagate operation is processed on AWT and SWT cache groups, respectively.

See "Loading and refreshing a cache group" on page 5-2 for information about the LOAD
CACHE GROUP and REFRESH CACHE GROUP statements.

See "AUTOREFRESH cache group attribute" on page 4-34 for details about an
autorefresh operation.

Overview of cache groups

TimesTen Application-Tier Database Cache Concepts 1-5

Figure 1–3 Transmitting committed updates between the TimesTen and Oracle
databases

Loading data into a cache group: Explicitly loaded and dynamic cache groups
Cache groups are categorized as either explicitly loaded or dynamic.

■ In an explicitly loaded cache group, cache instances are loaded manually into the
TimesTen cache tables from an Oracle database by using a load or refresh
operation or automatically by using an autorefresh operation. The cache tables are
loaded before operations such as queries are performed on the tables. An explicitly
loaded cache group is appropriate when the set of data to cache is static and can be
predetermined before applications begin performing operations on the cache
tables. By default, cache groups are explicitly loaded unless they are defined as
dynamic.

■ In a dynamic cache group, cache instances are loaded into the TimesTen cache
tables on demand from an Oracle database using a dynamic load operation or
manually using a load operation. A manual refresh or an autorefresh operation on
a dynamic cache group can result in existing cache instances being updated or
deleted, but committed updates on Oracle Database data that are not being cached
do not result in new cache instances being loaded into its cache tables. A dynamic
cache group is appropriate when the set of data to cache is small and should not
be preloaded from Oracle Database before applications begin performing
operations on the cache tables.

See "Transmitting updates between the TimesTen and Oracle databases" on page 1-4
for details about cache group load and refresh operations.

Flush

Propagate

Load
Refresh
Autorefresh

Oracle

database

TimesTen

database

cache group

High availability caching solution

1-6 Oracle TimesTen Application-Tier Database Cache User's Guide

See "Loading and refreshing a cache group" on page 5-2 for more details about the
differences between performing a load and a refresh operation on an explicitly loaded
cache group and performing the same operations on a dynamic cache group.

See "Dynamically loading a cache instance" on page 5-10 for details about a dynamic
load operation.

Any cache group type (read-only, AWT, SWT, user managed) can be defined as an
explicitly loaded cache group. All cache group types except a user managed cache
group that uses both the AUTOREFRESH cache group attribute and the PROPAGATE cache
table attribute can be defined as a dynamic cache group.

See "Dynamic cache groups" on page 4-51 for more information about dynamic cache
groups.

High availability caching solution
You can configure TimesTen Cache to achieve high availability of cache tables, and
facilitate failover and recovery while maintaining connectivity to the Oracle database.
A TimesTen database that is a participant in an active standby pair replication scheme
can provide high availability for cache tables in a read-only or an AWT cache group.

An active standby pair provides for fault tolerance of a TimesTen database. Oracle Real
Application Clusters (Oracle RAC) and Data Guard provides for high availability of an
Oracle database.

See "Replicating cache tables" on page 4-53 for information on configuring replication
of cache tables.

See "Using TimesTen Cache in an Oracle RAC Environment" on page 9-1 for more
information on TimesTen Cache and Oracle RAC.

See "Using TimesTen Cache with Data Guard" on page 10-1 for more information on
TimesTen Cache and Data Guard.

2

Getting Started 2-1

2Getting Started

This chapter illustrates the creation and use of cache groups by demonstrating how to
create an explicitly loaded read-only local cache group and a dynamic updatable cache
group. In addition, this chapter describes how to populate cache tables, and how to
observe the transfer of updates between the cache tables in the TimesTen database and
the cached tables in the Oracle database.

■ Setting up the Oracle Database and TimesTen Classic systems

■ Creating cache groups

■ Performing operations on the read-only cache group

■ Performing operations on a dynamically updatable cache group

■ Cleaning up the TimesTen Classic and Oracle Database systems

Setting up the Oracle Database and TimesTen Classic systems
Before you can create a cache group, you must first install TimesTen Classic and then
configure the Oracle Database and TimesTen Classic systems. See Oracle TimesTen
In-Memory Database Installation, Migration, and Upgrade Guide for information about
installing TimesTen Classic.

TimesTen Cache must know which Oracle database to connect to, which credentials to
use when connecting to the Oracle database and which users own the tables in both
TimesTen and Oracle databases.

1. Create users in the Oracle database.

2. Create a DSN for the TimesTen database.

3. Create users in the TimesTen database.

4. Set the cache administration user name and password in the TimesTen database.

Create users in the Oracle database
Before you can use TimesTen Cache, you must create the following users on the Oracle
Database:

Note: It is best to have the TimesTen and Oracle databases on
different systems, to avoid resource contention between them.
TimesTen, being an in-memory database, uses a significant amount of
memory. It may also use a significant amount of CPU time and
generate a significant amount of I/O, depending on the workload.

Setting up the Oracle Database and TimesTen Classic systems

2-2 Oracle TimesTen Application-Tier Database Cache User's Guide

■ A user timesten owns Oracle Database tables that store information about the
cache environment.

■ One or more schema users own the Oracle Database tables to be cached in a
TimesTen database. These may be existing users or new users.

■ A cache administration user creates and maintains Oracle Database objects that
store information used to manage the cache environment and enforce predefined
behaviors of particular cache group types.

Start SQL*Plus on the Oracle Database system from an operating system shell or
command prompt, and connect to the Oracle database instance as the sys user:

% cd timesten_home/install/oraclescripts
% sqlplus sys as sysdba
Enter password: password

Use SQL*Plus to create a default tablespace to be used for storing TimesTen Cache
management objects that should not be shared with other applications. While you may
also store Oracle base tables that are cached in a TimesTen database, we strongly
recommend that this tablespace be used solely by TimesTen Classic for cache
management.

In the following example, the name of the default tablespace is cachetblsp:

SQL> CREATE TABLESPACE cachetblsp;

Next, use SQL*Plus to create a schema user. Grant this user the minimum set of
privileges required to create tables in the Oracle database to be cached in a TimesTen
database. In the following example, the schema user is oratt:

SQL> CREATE USER oratt IDENTIFIED BY oracle;
SQL> GRANT CREATE SESSION, RESOURCE TO oratt;

Then use SQL*Plus to perform the following operations:

■ Create a cache administration user.

■ Run the SQL*Plus script timesten_
home/install/oraclescripts/grantCacheAdminPrivileges.sql to grant the
cache administration user the minimum set of privileges required to perform
cache group operations.

Pass the cache administration user name as arguments to the
grantCacheAdminPrivileges.sql script. In the following example, the cache
administration user name is cacheuser:

SQL> CREATE USER cacheuser IDENTIFIED BY oracle
 DEFAULT TABLESPACE cachetblsp QUOTA UNLIMITED ON cachetblsp;
SQL> @grantCacheAdminPrivileges "cacheuser"
SQL> exit

The privileges that the cache administration user requires depend on the types of
cache groups you create and the operations that you perform on the cache groups.

Note: See the comments in the grantCacheAdminPrivileges.sql
script for the required privileges by the user who executes this script
and the privileges that this user grants to the cache administration
user.

Setting up the Oracle Database and TimesTen Classic systems

Getting Started 2-3

See "Create the Oracle database users" on page 3-2 for more information about the
timesten user, the schema users, and the cache administration user.

Create a DSN for the TimesTen database
In the following data source name (DSN) examples, the net service name of the Oracle
database instance is oracledb and its database character set is AL32UTF8. The TimesTen
database character set must match the Oracle database character set. You can
determine the Oracle database character set by executing the following query in
SQL*Plus as any user:

SQL> SELECT value FROM nls_database_parameters WHERE parameter='NLS_CHARACTERSET';

On UNIX or Linux, in the .odbc.ini file that resides in your home directory or the
timesten_home/conf/sys.odbc.ini file, create a TimesTen DSN cache1 and set the
following connection attributes:

[cache1]
DataStore=/users/OracleCache/ttcache
PermSize=64
OracleNetServiceName=oracledb
DatabaseCharacterSet=AL32UTF8

On Windows, create a TimesTen user DSN or system DSN cache1 and set the
following connection attributes:

■ Data Store Path + Name: c:\temp\ttcache

■ Permanent Data Size: 64

■ Oracle Net Service Name: oracledb

■ Database Character Set: AL32UTF8

Use the default settings for all the other connection attributes.

See "Define a DSN for the TimesTen database" on page 3-6 for more information about
defining a DSN for a TimesTen database that caches data from an Oracle database.

See "Managing TimesTen Databases" in Oracle TimesTen In-Memory Database Operations
Guide for more information about TimesTen DSNs.

Create users in the TimesTen database
In addition to the Oracle Database users, you must create the following TimesTen
users before you can use TimesTen Cache:

■ A cache manager user performs cache group operations. The TimesTen cache
manager user must have the same name as a companion Oracle Database user that
can access the cached Oracle Database tables. The companion Oracle Database
user can be the cache administration user, a schema user, or some other existing
user. For ease of use, making the cache administration user the companion Oracle
Database user of the cache manager user is preferable. The password of the cache
manager user can be different than the password of the companion Oracle
Database user with the same name.

Note: The term "data store" is used interchangeably with "TimesTen
database".

Setting up the Oracle Database and TimesTen Classic systems

2-4 Oracle TimesTen Application-Tier Database Cache User's Guide

■ One or more cache table users own the cache tables. You must create a TimesTen
cache table user with the same name as an Oracle Database schema user for each
schema user who owns or will own Oracle Database tables to be cached in the
TimesTen database. The password of a cache table user can be different than the
password of the Oracle Database schema user with the same name.

The owner and name of a TimesTen cache table is the same as the owner and name
of the corresponding cached Oracle Database table.

Start the ttIsql utility on the TimesTen Classic system from an operating system shell
or command prompt as the instance administrator, and connect to the cache1 DSN to
create the TimesTen database that is to be used to cache data from an Oracle database:

% ttIsql cache1

Use ttIsql to create a cache manager user. Grant this user the minimum set of
privileges required to create cache groups and to perform operations on the cache
groups. In the following example, the cache manager user name is cacheuser, which is
the same name as the cache administration user that was created earlier:

Command> CREATE USER cacheuser IDENTIFIED BY timesten;
Command> GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE TO cacheuser;

Then, use ttIsql to create a cache table user. In the following example, the cache table
user name is oratt, which is the same name as the Oracle Database schema user that
was created earlier:

Command> CREATE USER oratt IDENTIFIED BY timesten;
Command> exit

The privileges that the cache manager user requires depend on the types of cache
groups you create and the operations that you perform on the cache groups. See
"Create the TimesTen users" on page 3-7 for more information about the cache
manager user and the cache table users.

See "Authentication in TimesTen" and "Authorization in TimesTen" in Oracle TimesTen
In-Memory Database Security Guide for more information about TimesTen users and
privileges.

Set the cache administration user name and password in the TimesTen database
Start the ttIsql utility and connect to the cache1 DSN as the cache manager user. In
the connection string, specify the cache manager user name in the UID connection
attribute. Specify the cache manager user's password in the PWD connection attribute.
Specify the password of its companion Oracle user (created with the same name to be
the companion user to the cache manager) in the OraclePWD connection attribute
within the connection string. In this example, the cache administration user is the
companion user to the cache manager user and so its password is provided.

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"

Use ttIsql to call the ttCacheUidPwdSet built-in procedure to set the cache
administration user name and password:

Command> call ttCacheUidPwdSet('cacheuser','oracle');

Note: See "Create the TimesTen users" on page 3-7 for more details
on the cache manager user and its companion Oracle Database user.

Creating cache groups

Getting Started 2-5

The cache administration user name and password need to be set only once in a
TimesTen database. See "Set the cache administration user name and password" on
page 3-9 for information on how to use this setting by the TimesTen database.

Creating cache groups
This section creates a read-only cache group (as shown in Figure 2–1) and an
Asynchronous WriteThrough (AWT) cache group (as shown in Figure 2–2).

Figure 2–1 Single-table read-only cache group

Figure 2–2 Single-table WriteThrough cache group

Complete the following tasks to create a read-only cache group and an AWT cache
group:

1. Create the Oracle Database tables to be cached.

2. Start the cache agent.

3. Create the cache groups.

4. Start the replication agent for the AWT cache group.

Create the Oracle Database tables to be cached
Start SQL*Plus and connect to the Oracle database as the schema user:

% sqlplus oratt/oracle

Use SQL*Plus to create a table readtab as shown in Figure 2–3, and a table writetab as
shown in Figure 2–4:

SQL> CREATE TABLE readtab (keyval NUMBER NOT NULL PRIMARY KEY, str VARCHAR2(32));
SQL> CREATE TABLE writetab (pk NUMBER NOT NULL PRIMARY KEY, attr VARCHAR2(40));

Oracle DatabaseTimesTen

Cache group Cache group

Cache
group
tables

Cache
group
tables

Oracle DatabaseTimesTen

Cache group Cache group

Cache
group
tables

Cache
group
tables

Creating cache groups

2-6 Oracle TimesTen Application-Tier Database Cache User's Guide

Figure 2–3 Creating an Oracle Database table to be cached in a read-only cache group

Figure 2–4 Creating an Oracle Database table to be cached in an AWT cache group

Then use SQL*Plus to insert some rows into the readtab and writetab tables, and
commit the changes:

SQL> INSERT INTO readtab VALUES (1, 'Hello');

Oracle

database

1 Hello

2 World

readtab

Application...

INSERT INTO readtab VALUES (1, 'Hello')
INSERT INTO readtab VALUES (2, 'World')

CREATE TABLE readtab

Application

Oracle

database

100 Oracle

101 CACHE

writetab

...

INSERT INTO writetab VALUES (100, 'TimesTen')
INSERT INTO writetab VALUES (101, 'CACHE')

CREATE TABLE writetab

Creating cache groups

Getting Started 2-7

SQL> INSERT INTO readtab VALUES (2, 'World');

SQL> INSERT INTO writetab VALUES (100, 'TimesTen');
SQL> INSERT INTO writetab VALUES (101, 'CACHE');
SQL> COMMIT;

Next use SQL*Plus to grant the SELECT privilege on the readtab table, and the SELECT,
INSERT, UPDATE and DELETE privileges on the writetab table to the cache
administration user:

SQL> GRANT SELECT ON readtab TO cacheuser;

SQL> GRANT SELECT ON writetab TO cacheuser;
SQL> GRANT INSERT ON writetab TO cacheuser;
SQL> GRANT UPDATE ON writetab TO cacheuser;
SQL> GRANT DELETE ON writetab TO cacheuser;

The SELECT privilege on the readtab table is required to create a read-only cache group
that caches this table and to perform autorefresh operations from the cached Oracle
Database table to the TimesTen cache table.

The SELECT privilege on the writetab table is required to create an AWT cache group
that caches this table. The INSERT, UPDATE, and DELETE privileges on the writetab table
are required to perform write through operations from the TimesTen cache table to the
cached Oracle Database table.

See "Grant privileges to the Oracle database users" on page 3-3 for more information
about the privileges required for the cache administration user to create and perform
operations on a read-only cache group and an AWT cache group.

Start the cache agent
As the cache manager user, use the ttIsql utility to call the ttCacheStart built-in
procedure to start the cache agent on the TimesTen database:

Command> call ttCacheStart;

See "Managing the cache agent" on page 3-11 for more information about starting the
cache agent.

Create the cache groups
As the cache manager user, use the ttIsql utility to create a read-only cache group
readcache that caches the Oracle Database oratt.readtab table and a dynamic AWT
cache group writecache that caches the Oracle Database oratt.writetab table:

Command> CREATE READONLY CACHE GROUP readcache
 AUTOREFRESH INTERVAL 5 SECONDS
 FROM oratt.readtab
 (keyval NUMBER NOT NULL PRIMARY KEY, str VARCHAR2(32));

Command> CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
 FROM oratt.writetab
 (pk NUMBER NOT NULL PRIMARY KEY, attr VARCHAR2(40));

The cache groups readcache and writecache, and their respective cache tables
oratt.readtab and oratt.writetab, whose owners and names are identical to the
cached Oracle Database tables, are created in the TimesTen database. Figure 2–5 shows
that the writecache cache group caches the oratt.writetab table.

Creating cache groups

2-8 Oracle TimesTen Application-Tier Database Cache User's Guide

Figure 2–5 Creating an Asynchronous WriteThrough cache group

Use the ttIsql cachegroups command to view the definition of the readcache and
writecache cache groups:

Command> cachegroups;

Cache Group CACHEUSER.READCACHE:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined

 Root Table: ORATT.READTAB
 Table Type: Read Only

Cache Group CACHEUSER.WRITECACHE:

 Cache Group Type: Asynchronous Writethrough (Dynamic)
 Autorefresh: No
 Aging: LRU on

 Root Table: ORATT.WRITETAB
 Table Type: Propagate

2 cache groups found.

Application...

Oracle

database

100 Oracle

101 CACHE

writetab

TimesTen

database

CREATE READONLY
CACHE GROUP writecache ...

TimesTen cache

writecache

100 Oracle

101 CACHE

oratt.writetab

Performing operations on the read-only cache group

Getting Started 2-9

See "Read-only cache group" on page 4-8 for more information about read-only cache
groups.

See "Asynchronous WriteThrough (AWT) cache group" on page 4-11 for more
information about AWT cache groups.

See "Dynamic cache groups" on page 4-51 for more information about dynamic cache
groups.

Start the replication agent for the AWT cache group
As the cache manager user, use the ttIsql utility to call the ttRepStart built-in
procedure to start the replication agent on the TimesTen database:

Command> call ttRepStart;

The replication agent propagates committed updates on TimesTen cache tables in AWT
cache groups to the cached Oracle Database tables.

See "Managing the replication agent" on page 4-13 for more information about starting
the replication agent.

Performing operations on the read-only cache group
This section shows how to manually load the read-only cache group. Then it shows the
TimesTen cache table being automatically refreshed with committed updates on the
cached Oracle Database table.

Complete the following tasks to perform operations on the read-only cache group:

1. Manually load the cache group.

2. Update the cached Oracle Database table.

Manually load the cache group
As the cache manager user, use the ttIsql utility to load the contents of the Oracle
Database oratt.readtab table into the TimesTen oratt.readtab cache table in the
readcache cache group:

Command> LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;
2 cache instances affected.
Command> exit

Figure 2–6 shows that the Oracle Database data is loaded into the oratt.readtab
cache table.

Performing operations on the read-only cache group

2-10 Oracle TimesTen Application-Tier Database Cache User's Guide

Figure 2–6 Loading a read-only cache group

Start the ttIsql utility and connect to the cache1 DSN as the instance administrator.
Use ttIsql to grant the SELECT privilege on the oratt.readtab cache table to the
cache manager user so that this user can issue a SELECT query on this table.

% ttIsql cache1
Command> GRANT SELECT ON oratt.readtab TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cache1 DSN as the cache manager user,
including the cache manager user password and the password of its companion Oracle
user. Use ttIsql to query the contents of oratt.readtab cache table.

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> SELECT * FROM oratt.readtab;
< 1, Hello >
< 2, World >
2 rows found.

See "Loading and refreshing a cache group" on page 5-2 for more information about
manually loading a cache group.

Update the cached Oracle Database table
Use SQL*Plus, as the Oracle Database schema user, to insert a new row, delete an
existing row, and update an existing row in the Oracle Database readtab table, and
commit the changes:

SQL> INSERT INTO readtab VALUES (3, 'Welcome');
SQL> DELETE FROM readtab WHERE keyval=2;
SQL> UPDATE readtab SET str='Hi' WHERE keyval=1;
SQL> COMMIT;

Since the read-only cache group was created specifying autorefresh with an interval of
5 seconds, the oratt.readtab cache table in the readcache cache group is
automatically refreshed after 5 seconds with the committed updates on the cached
Oracle Database oratt.readtab table as shown in Figure 2–7.

Load Cache Group

TimesTen cache

1 Hello

2 World

oratt.readtab

TimesTen cache

TimesTen

database

readcache

Oracle

database

1 Hello

2 World

readtab

Performing operations on a dynamically updatable cache group

Getting Started 2-11

Figure 2–7 Automatically refresh the TimesTen cache table with Oracle Database
updates

As the cache manager user, use the ttIsql utility to query the contents of the
oratt.readtab cache table after the readcache cache group has been automatically
refreshed with the committed updates on the cached Oracle Database table:

Command> SELECT * FROM oratt.readtab;
< 1, Hi >
< 3, Welcome >
2 rows found.
Command> exit

See "AUTOREFRESH cache group attribute" on page 4-34 for more information about
automatically refreshing cache groups.

Performing operations on a dynamically updatable cache group
This section shows how to dynamically load an AWT cache group. Then it shows
committed updates on the TimesTen cache table being automatically propagated to the
cached Oracle Database table.

Complete the following tasks to perform operations on the AWT cache group:

1. Dynamically load the cache group.

2. Update the TimesTen cache table.

Dynamically load the cache group
Start the ttIsql utility and connect to the cache1 DSN as the instance administrator.
Use ttIsql to grant the SELECT privilege on the oratt.writetab cache table to the
cache manager user so that this user can issue a dynamic load SELECT statement on
this table.

TimesTen cache

1 Hi

3 Welcome

oratt.readtab

TimesTen cache

Application...

TimesTen

database

readcache

1 Hi

readtab

3 Welcome

Automatic refresh

INSERT INTO readtab VALUES (3,'Welcome');
DELETE FROM readtab WHERE keyval=2;
UPDATE readtab SET str='Hi' WHERE keyval=1;

Oracle

database

1 Hi

3 Welcome

readtab

Performing operations on a dynamically updatable cache group

2-12 Oracle TimesTen Application-Tier Database Cache User's Guide

% ttIsql cache1
Command> GRANT SELECT ON oratt.writetab TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cache1 DSN as the cache manager user,
including the cache manager user password and the password of its companion Oracle
user. Use ttIsql to load a cache instance on demand from the Oracle Database
oratt.writetab table to the TimesTen oratt.writetab cache table in the writecache
cache group.

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> SELECT * FROM oratt.writetab WHERE pk=100;
< 100, TimesTen >
1 row found.
Command> exit

In a dynamic cache group, a cache instance can be loaded into its cache tables on
demand with a dynamic load statement. A SELECT, UPDATE, DELETE or INSERT
statement issued on a TimesTen cache table that uniquely identifies a cache instance
results in the cache instance being automatically loaded from the cached Oracle
Database table if the data is not found in the cache table. A dynamically loaded cache
instance consists of a single row in the root table of the cache group, and all the related
rows in the child tables.

See "Dynamically loading a cache instance" on page 5-10 for more information about a
dynamic load operation.

Data can also be manually loaded into the cache tables of a dynamic cache group using
a LOAD CACHE GROUP statement.

Update the TimesTen cache table
Start the ttIsql utility and connect to the cache1 DSN as the instance administrator.
Use ttIsql to grant the INSERT, DELETE, and UPDATE privileges on the oratt.writetab
cache table to the cache manager user so that this user can perform updates on this
table.

% ttIsql cache1
Command> GRANT INSERT ON oratt.writetab TO cacheuser;
Command> GRANT DELETE ON oratt.writetab TO cacheuser;
Command> GRANT UPDATE ON oratt.writetab TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cache1 DSN as the cache manager user. Use
ttIsql to insert a new row, delete an existing row, and update an existing row in the
oratt.writetab cache table, and commit the changes.

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> INSERT INTO oratt.writetab VALUES (102, 'Cache');
Command> DELETE FROM oratt.writetab WHERE pk=101;
Command> UPDATE oratt.writetab SET attr='Oracle' WHERE pk=100;
Command> COMMIT;
Command> exit

The committed updates on the oratt.writetab cache table in the writecache cache
group are automatically propagated to the Oracle Database oratt.writetab table as
shown in Figure 2–8.

Cleaning up the TimesTen Classic and Oracle Database systems

Getting Started 2-13

Figure 2–8 Automatically propagate TimesTen cache table updates to Oracle Database

As the Oracle Database schema user, use SQL*Plus to query the contents of the
writetab table:

SQL> SELECT * FROM writetab;

 PK ATTR
---------- -------------------------------
 100 Oracle
 102 Cache

SQL> exit

Cleaning up the TimesTen Classic and Oracle Database systems
Complete the following tasks to restore the TimesTen Classic and Oracle Database
systems to their original state before creating cache groups:

1. Stop the replication agent.

2. Drop the cache groups.

3. Stop the cache agent and destroy the TimesTen database.

4. Drop the Oracle Database users and their objects.

Stop the replication agent
As the cache manager user, use the ttIsql utility to call the ttRepStop built-in
procedure to stop the replication agent on the TimesTen database:

Command> call ttRepStop;
Command> exit

Oracle

database

100 Oracle

101 CACHE

writetab

Application...

TimesTen

database

INSERT INTO oratt.writetab VALUES (102, 'Cache');
DELETE FROM oratt.writetab WHERE pk=101;
UPDATE oratt.writetab SET attr='Oracle' WHERE pk=100;

(automatic propagate)
Writethrough

TimesTen cache

writecache

100 Oracle

101 CACHE

oratt.writetab

Cleaning up the TimesTen Classic and Oracle Database systems

2-14 Oracle TimesTen Application-Tier Database Cache User's Guide

See "Managing the replication agent" on page 4-13 for more information about
stopping the replication agent.

Drop the cache groups
Start the ttIsql utility and connect to the cache1 DSN as the instance administrator.
Use ttIsql to grant the DROP ANY TABLE privilege to the cache manager user so that
this user can drop the underlying cache tables when dropping the cache groups.

% ttIsql cache1
Command> GRANT DROP ANY TABLE TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cache1 DSN as the cache manager user. Use
ttIsql to drop the readcache read-only cache group and the writecache AWT cache
group.

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> DROP CACHE GROUP readcache;
Command> DROP CACHE GROUP writecache;

The cache groups readcache and writecache, and their respective cache tables
oratt.readtab and oratt.writetab, are dropped from the TimesTen database.

See "Dropping a cache group" on page 8-1 for more information about dropping cache
groups.

Stop the cache agent and destroy the TimesTen database
As the cache manager user, use the ttIsql utility to call the ttCacheStop built-in
procedure to stop the cache agent on the TimesTen database:

Command> call ttCacheStop;
Command> exit

See "Managing the cache agent" on page 3-11 for more information about stopping the
cache agent.

Then use the ttDestroy utility to connect to the cache1 DSN and destroy the TimesTen
database:

% ttDestroy cache1

Drop the Oracle Database users and their objects
Start SQL*Plus and connect to the Oracle database as the sys user. Use SQL*Plus to
drop the timesten user, the schema user oratt, and the cache administration user
cacheuser.

% sqlplus sys as sysdba
Enter password: password
SQL> DROP USER timesten CASCADE;
SQL> DROP USER oratt CASCADE;
SQL> DROP USER cacheuser CASCADE;

Specifying CASCADE in a DROP USER statement drops all objects such as tables and
triggers owned by the user before dropping the user itself.

Next use SQL*Plus to drop the TT_CACHE_ADMIN_ROLE role:

SQL> DROP ROLE TT_CACHE_ADMIN_ROLE;

Cleaning up the TimesTen Classic and Oracle Database systems

Getting Started 2-15

Then use SQL*Plus to drop the default tablespace cachetblsp used by the timesten
user and cache administration user including the contents of the tablespace and its
data file:

SQL> DROP TABLESPACE cachetblsp INCLUDING CONTENTS AND DATAFILES;
SQL> exit

Cleaning up the TimesTen Classic and Oracle Database systems

2-16 Oracle TimesTen Application-Tier Database Cache User's Guide

3

Setting Up a Caching Infrastructure 3-1

3Setting Up a Caching Infrastructure

Before you can start caching Oracle Database data in a TimesTen database, perform
these tasks for setting up the TimesTen Classic and Oracle Database systems:

■ Configuring your system to cache Oracle Database data in TimesTen Classic

■ Configuring the Oracle database to cache data in TimesTen Classic

■ Configuring a TimesTen database to cache Oracle Database data

■ Testing the connectivity between the TimesTen and Oracle databases

■ Managing the cache agent

Configuring your system to cache Oracle Database data in TimesTen
Classic

Configure the environment variables for your particular operating system, as
described in "TimesTen Cache environment variables for UNIX or Linux" on page 3-1
or "TimesTen Cache environment variables for Microsoft Windows" on page 3-2.

Then, install TimesTen. Instructions for installing TimesTen are described in the Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

TimesTen Classic does not support Oracle Name Server for Windows clients.

TimesTen Cache environment variables for UNIX or Linux
The shared library search path environment variable such as LD_LIBRARY_PATH or
SHLIB_PATH must include the timesten_home/install/lib directories. For more
information, see "Shared library path environment variable" in Oracle TimesTen
In-Memory Database Installation, Migration, and Upgrade Guide.

Note: See the Platforms section in the Oracle TimesTen In-Memory
Database Release Notes (README.htm) in your installation directory to
find out which Oracle Database Server releases are supported by the
TimesTen In-Memory Database.

Note: From a product perspective, "TimesTen Cache" is used
interchangeably with "TimesTen Classic" because the TimesTen Cache
product option is included with TimesTen Classic.

Configuring the Oracle database to cache data in TimesTen Classic

3-2 Oracle TimesTen Application-Tier Database Cache User's Guide

The PATH environment variable must include the timesten_home/bin directory.

In the following example, the timesten_home directory is the /timesten/myinstance
directory and TimesTen Classic is installed in the /timesten/myinstance/install
directory:

LD_LIBRARY_PATH=/timesten/myinstance/install/lib
PATH=/timesten/myinstance/bin

TimesTen Cache environment variables for Microsoft Windows
The PATH system environment variable must include the following directories:

■ Oracle_install_dir\bin

■ timesten_home\install\lib

■ timesten_home\bin

In the following example, Oracle Database is installed in the C:\oracle\ora112
directory and TimesTen Classic is installed in the C:\timesten\myinstance directory:

PATH=C:\oracle\ora112\bin;C:\timesten\myinstance\install\lib;C:\timesten\myinstanc
e\bin

Configuring the Oracle database to cache data in TimesTen Classic
The following sections describe the tasks that must be performed on the Oracle
database by the sys user:

■ Create the Oracle database users

■ Grant privileges to the Oracle database users

■ Automatically create Oracle Database objects used to manage data caching

■ Manually create Oracle Database objects used to manage data caching

Create the Oracle database users
You must create a default tablespace and a user timesten that is to own the Oracle
Database tables that store information about cache operations. This tablespace is used
for storing TimesTen Cache management objects that should not be shared with other
applications. While you may also store Oracle base tables that are cached in a
TimesTen database, we strongly recommend that this tablespace be used solely by the
TimesTen database for cache management.

See "Managing a caching environment with Oracle Database objects" on page 6-7 for a
list of Oracle Database tables owned by the timesten user.

Example 3–1 Creating the timesten user and its tables

In the following SQL*Plus example, the default tablespace that is created for the
timesten user is cachetblsp.

% cd timesten_home/install/oraclescripts
% sqlplus sys as sysdba
Enter password: password
SQL> CREATE TABLESPACE cachetblsp;

Create or designate one or more users to own Oracle Database tables that are to be
cached in a TimesTen database. These users are the schema users. These may be
existing users or new users. The tables to be cached may or may not already exist.

Configuring the Oracle database to cache data in TimesTen Classic

Setting Up a Caching Infrastructure 3-3

Example 3–2 Creating a schema user

As the sys user, the following SQL*Plus example creates a schema user oratt.

SQL> CREATE USER oratt IDENTIFIED BY oracle;

Next, you must create a user that creates, owns, and maintains Oracle Database objects
that store information used to manage the cache environment for a TimesTen database
and enforce predefined behaviors of particular cache group types. We refer to this user
as the cache administration user.

Designate the tablespace that was created for the timesten user as the default
tablespace for the cache administration user. This user creates tables in this tablespace
that are used to store information about the cache environment and its cache groups.
Other Oracle Database objects (such change log tables, replication metadata tables, and
triggers) are used to enforce the predefined behaviors of autorefresh cache groups and
AWT cache groups are created in the same tablespace. To create and manage these
objects, the cache administration user must have a high level of privileges.

See "Managing a caching environment with Oracle Database objects" on page 6-7 for a
list of Oracle Database tables and triggers owned by the cache administration user.

Example 3–3 Creating the cache administration user

As the sys user, create a cache administration user cacheuser. In the following
example, the default tablespace for the cacheuser user is cachetblsp.

Use SQL*Plus to create the cache administration user:

SQL> CREATE USER cacheuser IDENTIFIED BY oracle
 DEFAULT TABLESPACE cachetblsp QUOTA UNLIMITED ON cachetblsp;

Grant privileges to the Oracle database users
The cache administration user must be granted a high level of privileges depending on
the cache group types created and the operations performed on these cache groups.
You can run the SQL*Plus script timesten_
home/install/oraclescripts/grantCacheAdminPrivileges.sql as the sys user to
grant the cache administration user the minimum set of privileges required to perform

Note: Each TimesTen database can be managed by only a single
cache administration user on the Oracle database. However, a single
cache administration user can manage multiple TimesTen databases.
You can specify one or more cache administration users where each
manages one or more TimesTen databases.

For more details, see "Caching the same Oracle table on two or more
TimesTen databases" on page 7-21.

Note: If you create multiple cache administration users, each may
use the same or different tablespace as their default tablespace.

Note: An autorefresh cache group refers to a read-only cache group
or a user managed cache group that uses the AUTOREFRESH MODE
INCREMENTAL cache group attribute.

Configuring the Oracle database to cache data in TimesTen Classic

3-4 Oracle TimesTen Application-Tier Database Cache User's Guide

cache operations. For more information on this SQL script, see "Automatically create
Oracle Database objects used to manage data caching" on page 3-4.

The entire list of privileges required for this user for each cache operation are listed in
"Required privileges for the cache administration user and the cache manager user" on
page A-3.

Automatically create Oracle Database objects used to manage data caching
TimesTen Classic can automatically create Oracle Database objects owned by the cache
administration user, such as cache and replication metadata tables, change log tables,
and triggers when particular cache environment and cache group operations are
performed. Some of these objects are used to enforce the predefined behaviors of
autorefresh cache groups and AWT cache groups.

These Oracle Database objects are automatically created if the cache administration
user has been granted the required privileges by running the SQL*Plus script
timesten_home/install/oraclescripts/grantCacheAdminPrivileges.sql as the sys
user. The set of required privileges include CREATE SESSION, RESOURCE, CREATE ANY
TRIGGER, and the TT_CACHE_ADMIN_ROLE role. The cache administration user name is
passed as an argument to the grantCacheAdminPrivileges.sql script.

In addition to the privileges granted to the cache administration user by running the
grantCacheAdminPrivileges.sql script, this user may also need to be granted
privileges such as SELECT or INSERT on the cached Oracle Database tables depending
on the types of cache groups you create, and the operations that you perform on the
cache groups and their cache tables. See "Required privileges for the cache
administration user and the cache manager user" on page A-3 for a complete list of
privileges that need to be granted to the cache administration user in order to perform
particular cache group and cache table operations.

Example 3–4 Granting privileges to automatically create Oracle Database objects

As the sys user, run the grantCacheAdminPrivileges.sql script to grant privileges to
the cache administration user to automatically create Oracle Database objects used to
manage caching Oracle Database data in a TimesTen database. In the following
example, the grantCacheAdminPrivileges.sql script requires the cache
administration user name (cacheuser) as input.

Use SQL*Plus to run the grantCacheAdminPrivileges.sql script:

SQL> @grantCacheAdminPrivileges "cacheuser"
SQL> exit

For example, with autorefresh cache groups, the Oracle Database objects used to
enforce the predefined behaviors of these cache group types are automatically created
if the objects do not already exist and one of the following occurs:

■ The cache group is created with its autorefresh state set to PAUSED or ON.

Note: Alternatively, you can manually create these objects as
described in "Manually create Oracle Database objects used to manage
data caching" on page 3-5 before performing any cache group
operations if, for security purposes, you do not want to grant the
RESOURCE or CREATE ANY TRIGGER privileges to the cache
administration user required to automatically create these tables and
triggers.

Configuring the Oracle database to cache data in TimesTen Classic

Setting Up a Caching Infrastructure 3-5

■ The cache group is created with its autorefresh state set to OFF and then altered to
either PAUSED or ON.

Manually create Oracle Database objects used to manage data caching
The cache administration user requires the RESOURCE privilege to automatically create
the Oracle Database objects used to:

■ Store information about TimesTen databases that are associated with a particular
cache environment.

■ Enforce the predefined behaviors of autorefresh cache groups. In this case, the
cache administration user also requires the CREATE ANY TRIGGER privilege to
automatically create these Oracle Database objects.

■ Enforce the predefined behavior for AWT cache groups.

For security purposes, if you do not want to grant the RESOURCE and CREATE ANY
TRIGGER privileges to the cache administration user required to automatically create
the Oracle Database objects, you can manually create these objects.

To manually create the Oracle Database tables and triggers used to enforce the
predefined behaviors of particular cache group types, run the SQL*Plus script
timesten_home/install/oraclescripts/initCacheAdminSchema.sql as the sys user.
These objects must be created before you can create autorefresh cache groups and
AWT cache groups. The initCacheAdminSchema.sql script requires the cache
administration user name as input.

The initCacheAdminSchema.sql script also grants a minimal set of required privileges
including CREATE SESSION and the TT_CACHE_ADMIN_ROLE role to the cache
administration user. In addition to the privileges granted to the cache administration
user by running the initCacheAdminSchema.sql script, this user may also need to be
granted privileges such as SELECT or INSERT on the cached Oracle Database tables
depending on the types of cache groups you create and the operations that you
perform on the cache groups and their cache tables. See "Required privileges for the
cache administration user and the cache manager user" on page A-3 for a complete list
of privileges that need to be granted to the cache administration user in order to
perform particular cache group and cache table operations.

Example 3–5 Manually creating Oracle Database objects used to manage caching data

As the sys user, run the initCacheAdminSchema.sql script to manually create Oracle
Database objects used to enforce the predefined behaviors of autorefresh cache groups
and AWT cache groups, and grant a limited set of privileges to the cache
administration user. In the following example, the cache administration user name is
cacheuser.

Use SQL*Plus to run the initCacheAdminSchema.sql script:

SQL> @initCacheAdminSchema "cacheuser"
SQL> exit

Other Oracle Database objects associated with Oracle Database tables that are cached
in an autorefresh cache group are needed to enforce the predefined behaviors of these
cache group types. See "Manually creating Oracle Database objects for autorefresh
cache groups" on page 4-37 for details about how to create these additional objects
after you create the cache group.

Configuring a TimesTen database to cache Oracle Database data

3-6 Oracle TimesTen Application-Tier Database Cache User's Guide

To view a list of the Oracle Database objects created and used by TimesTen Classic to
manage the caching of Oracle Database data, execute the following query in SQL*Plus
as the sys user:

SQL> SELECT owner, object_name, object_type FROM all_objects WHERE object_name
 2 LIKE 'TT___%' ESCAPE '\';

The query returns a list of tables, indexes, and triggers owned by either the timesten
user or the cache administration user.

Configuring a TimesTen database to cache Oracle Database data
The following sections describe the operations that must be performed on the
TimesTen database by the instance administrator or the cache manager user:

■ Define a DSN for the TimesTen database

■ Create the TimesTen users

■ Grant privileges to the TimesTen users

■ Set the cache administration user name and password

Define a DSN for the TimesTen database
A TimesTen database that caches data from an Oracle database can be referenced by
either a system DSN or a user DSN. See "Managing TimesTen Databases" in Oracle
TimesTen In-Memory Database Operations Guide for more information about creating
TimesTen DSNs.

When creating a DSN for a TimesTen database that caches data from an Oracle
database, pay special attention to the settings of the following connection attributes.
All of these connection attributes can be set in a Direct DSN or a connection string,
unless otherwise stated.

■ PermSize specifies the allocated size of the database's permanent region in MB. Set
this value to at least 32 MB.

■ OracleNetServiceName must be set to the net service name of the Oracle database
instance.

For Microsoft Windows systems, the net service name of the Oracle database
instance must be specified in the Oracle Net Service Name field of the TimesTen
Cache tab within the TimesTen ODBC Setup dialog box.

■ DatabaseCharacterSet must match the Oracle database character set.

You can determine the Oracle database character set by executing the following
query in SQL*Plus as any user:

SQL> SELECT value FROM nls_database_parameters
 WHERE parameter='NLS_CHARACTERSET';

■ UID specifies the name of a cache user, such as the cache manager user, that has the
same name as a companion Oracle Database user who can access the cached
Oracle Database tables. The UID connection attribute can be specified in a Direct
DSN, a Client DSN, or a connection string.

■ PWD specifies the password of the TimesTen user specified in the UID connection
attribute. The PWD connection attribute can be specified in a Direct DSN, a Client
DSN, or a connection string.

Configuring a TimesTen database to cache Oracle Database data

Setting Up a Caching Infrastructure 3-7

■ OraclePWD specifies the password of the companion Oracle Database user that has
the same name as the TimesTen user specified in the UID connection attribute and
can access the cached Oracle Database tables.

■ PassThrough can be set to control whether statements are to be executed in the
TimesTen database or passed through to be executed in the Oracle database. See
"Setting a passthrough level" on page 5-17.

■ LockLevel must be set to its default of 0 (row-level locking) because TimesTen
Cache does not support database-level locking.

■ ReplicationApplyOrdering and CacheAWTParallelism control parallel
propagation of changes to TimesTen cache tables in an AWT cache group to the
corresponding Oracle Database tables. See "Configuring parallel propagation to
Oracle Database tables" on page 4-15.

Example 3–6 DSN for a TimesTen database that caches data from an Oracle database

The following example is the definition of the cache1 DSN:

[cache1]
DataStore=/users/OracleCache/ttcache
PermSize=64
OracleNetServiceName=orcl
DatabaseCharacterSet=WE8ISO8859P1

Create the TimesTen users
First, you must create a user who performs cache group operations. We refer to this
user as the cache manager user. The TimesTen cache manager user must have the same
name as a companion Oracle Database user that can access the cached Oracle Database
tables. For example, the companion Oracle Database user must have privileges to
select from and update the cached Oracle Database tables. The companion Oracle
Database user can be the cache administration user, a schema user, or some other
existing user. For ease of use, making the cache administration user be the companion
Oracle Database user of the cache manager user is preferable; however, if you are
concerned with the high level of privileges assigned to the cache administration user,
then choose another Oracle Database user as the companion Oracle user. The
password of the cache manager user can be different than the password of the
companion Oracle Database user with the same name.

Note: See "Create the TimesTen users" on page 3-7 for more details
on the cache manager user and its companion Oracle Database user.

Note: You can create multiple cache manager users on a TimesTen
database, such as one for each TimesTen DBA. However, you can only
define a single cache administration user on the Oracle database for
this particular TimesTen database. (You can use the same cache
administration user for all TimesTen databases that connect to the
Oracle database or define a separate cache administration user for
each TimesTen database.) If you create multiple cache manager users,
one or more of these users can use the cache administration user as its
companion Oracle user.

Configuring a TimesTen database to cache Oracle Database data

3-8 Oracle TimesTen Application-Tier Database Cache User's Guide

The cache manager user creates the cache groups. It may perform operations such as
loading or refreshing a cache group although these operations can be performed by
any TimesTen user that has sufficient privileges. The cache manager user can also
monitor various aspects of the caching environment, such as asynchronous operations
that are performed on cache groups such as autorefresh.

Then, you must create a user with the same name as an Oracle Database schema user
for each schema user who owns or will own Oracle Database tables to be cached in the
TimesTen database. We refer to these users as cache table users, because the TimesTen
cache tables are to be owned by these users. Therefore, the owner and name of a
TimesTen cache table is the same as the owner and name of the corresponding cached
Oracle Database table. The password of a cache table user can be different than the
password of the Oracle Database schema user with the same name.

Operations on a cache group or a cache table, such as loading a cache group or
updating a cache table, can be performed by any TimesTen user that has sufficient
privileges. In the examples throughout this guide, the cache manager user performs
these types of operations although these operations can be performed by another user,
such as a cache table user, that has the required privileges. If these operations are to be
performed by a TimesTen user other than the cache manager user, the other user must
have the same name as a companion Oracle Database user that can select from and
update the cached Oracle Database tables. Connect to the TimesTen database
specifying that user's name in the UID connection attribute, and supply the
corresponding TimesTen and Oracle Database passwords in the PWD and OraclePWD
connection attributes, respectively, to perform operations on a cache group or cache
table.

Example 3–7 Creating the TimesTen users

In the following ttIsql utility example, create the TimesTen database by connecting to
the cache1 DSN as the instance administrator. Then create the cache manager user
cacheuser whose name, in this example, is the same as the cache administration user,
who will also act as the cache manager’s companion Oracle user. Then, create a cache
table user oratt whose name is the same as the Oracle Database schema user who is to
own the Oracle Database tables to be cached in the TimesTen database.

% ttIsql cache1
Command> CREATE USER cacheuser IDENTIFIED BY timesten;
Command> CREATE USER oratt IDENTIFIED BY timesten;

Grant privileges to the TimesTen users
The privileges that the TimesTen users require depend on the types of cache groups
you create and the operations that you perform on the cache groups. All of the
privileges required for the TimesTen cache manager user for each cache operation are
listed in "Required privileges for the cache administration user and the cache manager
user" on page A-3.

Example 3–8 Granting privileges to the cache manager user

The cacheuser cache manager user requires privileges to perform the following
operations:

■ Set the cache manager user and password (CACHE_MANAGER).

■ Start or stop the cache agent and replication agent processes on the TimesTen
database (CACHE_MANAGER).

■ Set a cache agent start policy (CACHE_MANAGER).

Configuring a TimesTen database to cache Oracle Database data

Setting Up a Caching Infrastructure 3-9

■ Set a replication agent start policy (ADMIN)

■ Create cache groups to be owned by the cache manager user (CREATE [ANY] CACHE
GROUP, inherited by the CACHE_MANAGER privilege; CREATE [ANY] TABLE to create
the underlying cache tables which are to be owned by the oratt cache table user).

■ Alter, load, refresh, flush, unload or drop a cache group requires the appropriate
privilege:

– ALTER ANY CACHE GROUP

– LOAD {ANY CACHE GROUP | ON cache_group_name

– REFRESH {ANY CACHE GROUP | ON cache_group_name

– FLUSH {ANY CACHE GROUP | ON cache_group_name

– UNLOAD {ANY CACHE GROUP | ON cache_group_name

– DROP ANY CACHE GROUP and DROP ANY TABLE

■ Required privileges for other cache operations, such as dynamic load, full
autorefresh and asynchronous writethrough, are listed in "Required privileges for
the cache administration user and the cache manager user" on page A-3.

As the instance administrator, use the ttIsql utility to grant the cacheuser cache
manager user the required privileges:

Command> GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE TO cacheuser;
Command> exit

Set the cache administration user name and password
You must set the cache administration user name and password in the TimesTen
database before any cache group operation can be issued with the ttCacheUidPwdSet
built-in procedure. The cache agent connects to the Oracle database as this user to
create and maintain Oracle Database objects that store information used to enforce
predefined behaviors of particular cache group types. In addition, both the cache and
replication agents connect to the Oracle database with the credentials set with the
ttCacheUidPwdSet built-in procedure to manage Oracle database operations.

The cache administration user name and password need to be set only once in each
TimesTen database that caches Oracle Database data unless it needs to be changed. For
example, if you modify the password of the cache administration user, if the TimesTen
database is destroyed and re-created, or if the cache administration user name is

Note: When you connect to the TimesTen database to work with
AWT or read-only cache groups, TimesTen Classic uses the credentials
set with the ttCacheUidPwdSet built-in procedure when connecting to
the Oracle database on behalf of these cache groups.

When you connect to the TimesTen database to work with SWT or
user managed cache groups or passthrough operations, TimesTen
Classic connects to the Oracle database using the current user’s
credentials as the user name and the OraclePwd connection attribute
as the Oracle password. Thus, the correct user name and Oracle
database password that should be used for connecting to the Oracle
database must be set correctly in the connection string or with the
connection attributes.

Testing the connectivity between the TimesTen and Oracle databases

3-10 Oracle TimesTen Application-Tier Database Cache User's Guide

dropped and re-created in the Oracle database, the cache administration user name
and password must be set again.

The cache administration user name cannot be changed if there are cache groups in the
database. The cache groups must be dropped before you can drop and recreate the
cache administration user. See "Changing cache user names and passwords" on
page 6-21 for more details.

Example 3–9 Setting the cache administration user name and password

The cache administration user name and password can be set programmatically by
calling the ttCacheUidPwdSet built-in procedure after connecting as the cache manager
user:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttCacheUidPwdSet('cacheuser','oracle');

It can also be set from a command line by running a ttAdmin -cacheUidPwdSet utility
command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cacheUidPwdSet -cacheUid cacheuser -cachePwd oracle cache1

If you do not specify the -cachePwd option, the ttAdmin utility prompts for the cache
administration user's password.

For more information about the utility, see "ttAdmin" in Oracle TimesTen In-Memory
Database Reference.

Testing the connectivity between the TimesTen and Oracle databases
To test the connectivity between the TimesTen and Oracle databases, set the
passthrough level to 3 and execute the following query, to be processed on the Oracle
database, as the cache manager user:

Command> passthrough 3;
Command> SELECT * FROM V$VERSION;
Command> passthrough 0;

If connectivity has been successfully established, the query returns the version of the
Oracle database. If it does not, check the following for correctness:

■ The Oracle Net service name set in the OracleNetServiceName connection
attribute and the state of the Oracle database server

■ The settings of the shared library search path environment variable such as LD_
LIBRARY_PATH or SHLIB_PATH

■ The setting of the cache administration user name in the TimesTen database

Example 3–10 Determining the cache administration user name setting

The cache administration user name setting can be returned programmatically by
calling the ttCacheUidGet built-in procedure as the cache manager user:

Command> call ttCacheUidGet;

It can also be returned from a command line by running a ttAdmin -cacheUidGet
utility command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cacheUidGet cache1

Managing the cache agent

Setting Up a Caching Infrastructure 3-11

Managing the cache agent
The cache agent is a TimesTen Classic process that performs cache operations such as
loading a cache group and autorefresh, as well as manages Oracle Database objects
used to enforce the predefined behaviors of particular cache group types.

Example 3–11 Starting the cache agent

The cache agent can be manually started programmatically by calling the
ttCacheStart built-in procedure as the cache manager user:

Command> call ttCacheStart;

It can also be started from a command line by running a ttAdmin -cacheStart utility
command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cacheStart cache1

Example 3–12 Stopping the cache agent

The cache agent can be manually stopped programmatically by calling the
ttCacheStop built-in procedure as the cache manager user:

Command> call ttCacheStop;

It can also be stopped from a command line by running a ttAdmin -cacheStop utility
command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cacheStop cache1

The ttCacheStop built-in procedure has an optional parameter and the ttAdmin
-cacheStop utility command has an option -stopTimeout that specifies how long the
TimesTen main daemon process waits for the cache agent to stop. If the cache agent
does not stop within the specified timeout period, the TimesTen daemon stops the
cache agent. The default cache agent stop timeout is 100 seconds. A value of 0 specifies
to wait indefinitely.

Do not stop the cache agent immediately after you have dropped or altered an
autorefresh cache group. Instead, wait for at least two minutes to allow the cache agent
to clean up Oracle Database objects such as change log tables and triggers that were
created and used to manage the cache group.

Set a cache agent start policy
A cache agent start policy determines how and when the cache agent process starts on
a TimesTen database. The cache agent start policy can be set to:

■ manual

■ always

■ norestart

The default start policy is manual, which means the cache agent must be started
manually by calling the ttCacheStart built-in procedure or running a ttAdmin
-cacheStart utility command. To manually stop a running cache agent process, call
the ttCacheStop built-in procedure or run a ttAdmin -cacheStop utility command.

Note: The TimesTen X/Open XA and Java Transaction API (JTA)
implementations do not work with TimesTen Cache. The start of any
XA or JTA transaction fails if the cache agent is running.

Managing the cache agent

3-12 Oracle TimesTen Application-Tier Database Cache User's Guide

When the start policy is set to always, the cache agent starts automatically when the
TimesTen main daemon process starts. With the always start policy, the cache agent
cannot be stopped when the main daemon is running unless the start policy is first
changed to either manual or norestart. Then issue a manual stop by calling the
ttCacheStop built-in procedure or running a ttAdmin -cacheStop utility command.

With the manual and always start policies, the cache agent automatically restarts when
the database recovers after a failure such as a database invalidation.

Setting the cache agent start policy to norestart means the cache agent must be
started manually by calling the ttCacheStart built-in procedure or running a ttAdmin
-cacheStart utility command, and stopped manually by calling the ttCacheStop
built-in procedure or running a ttAdmin -cacheStop utility command.

With the norestart start policy, the cache agent does not automatically restart when
the database recovers after a failure such as a database invalidation. You must restart
the cache agent manually by calling the ttCacheStart built-in procedure or running a
ttAdmin -cacheStart utility command.

Example 3–13 Setting a cache agent start policy

The cache agent start policy can be set programmatically by calling the
ttCachePolicySet built-in procedure as the cache manager user:

Command> call ttCachePolicySet('always');

It can also be set from a command line by running a ttAdmin -cachePolicy utility
command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cachePolicy norestart cache1

Note: For more details, see "ttAdmin," "ttCachePolicySet,"
"ttCacheStart" and "ttCacheStop" in the Oracle TimesTen In-Memory
Database Reference.

4

Defining Cache Groups 4-1

4Defining Cache Groups

The following sections describe the different types of cache groups and how to define
them:

■ Cache groups and cache tables

■ Creating a cache group

■ Caching Oracle Database synonyms

■ Caching Oracle Database LOB data

■ Implementing aging in a cache group

■ Dynamic cache groups

Cache groups and cache tables
A cache group defines the Oracle Database data to cache in the TimesTen database.
When you create a cache group, cache tables are created in the TimesTen database that
correspond to the Oracle Database tables being cached.

A separate table definition must be specified in the cache group definition for each
Oracle Database table that is being cached. The owner, table name, and cached column
names of a TimesTen cache table must match the owner, table name, and column
names of the corresponding cached Oracle Database table. The cache table can contain
all or a subset of the columns and rows of the cached Oracle Database table. Each
TimesTen cache table must have a primary key.

An Oracle Database table cannot be cached in more than one cache group within the
same TimesTen database. However, the table can be cached in separate cache groups in
different TimesTen databases. If the table is cached in separate AWT cache groups and
the same cache instance is updated simultaneously on multiple TimesTen databases,
there is no guarantee as to the order in which the updates are propagated to the cached
Oracle Database table. Also, the contents of the updated cache table are inconsistent
between the TimesTen databases.

Before you define the cache group table, create the Oracle Database tables that are to
be cached. Each table should be either:

■ An Oracle Database table with a primary key on non-nullable columns. The
TimesTen cache table primary key must be defined on the full Oracle Database
table primary key. For example, if the cached Oracle Database table has a
composite primary key on columns c1, c2 and c3, the TimesTen cache table must
also have a composite primary key on columns c1, c2 and c3.

Cache groups and cache tables

4-2 Oracle TimesTen Application-Tier Database Cache User's Guide

The following example shows how to create a cache group from an Oracle
Database table with a composite primary key. Create the job_history table with a
composite key on the Oracle database:

SQL> CREATE TABLE job_history
 (employee_id NUMBER(6) NOT NULL,
 start_date DATE NOT NULL,
 end_date DATE NOT NULL,
 job_id VARCHAR2(10) NOT NULL,
 department_id NUMBER(4),
 PRIMARY KEY(employee_id, start_date));
Table created.

Create the cache group on the TimesTen database with all columns of the
composite primary key:

Command> CREATE WRITETHROUGH CACHE GROUP job_hist_cg
 FROM oratt.job_history
 (employee_id NUMBER(6) NOT NULL,
 start_date DATE NOT NULL,
 end_date DATE NOT NULL,
 job_id VARCHAR2(10) NOT NULL,
 department_id NUMBER(4),
 PRIMARY KEY(employee_id, start_date));

■ An Oracle Database table with non-nullable columns upon which a unique index
is defined on one or more of the non-nullable columns in the table. The TimesTen
cache table primary key must be defined on all of the columns in the unique index.
For example, if the unique index for the Oracle Database table is made up of
multiple columns c1, c2, and c3, the TimesTen cache table must have a composite
primary key on columns c1, c2, and c3.

The following examples create Oracle Database unique indexes defined on tables
with non-nullable columns.

SQL> CREATE TABLE regions(
 region_id NUMBER NOT NULL,
 region_name VARCHAR2(25));
Table created.
SQL> CREATE UNIQUE INDEX region_idx
 ON regions(region_id);
Index created.

SQL> CREATE TABLE sales(
 prod_id INT NOT NULL,
 cust_id INT NOT NULL,
 quantity_sold INT NOT NULL,
 time_id DATE NOT NULL);
Table created.
SQL> CREATE UNIQUE INDEX sales_index ON sales(prod_id, cust_id);
Index created.

After creation of the Oracle Database table and unique index, you can create cache
groups on a TimesTen database for these tables using the unique index columns as
the primary key definition as shown below:

Command> CREATE WRITETHROUGH CACHE GROUP region_cg
 FROM oratt.regions
 (region_id NUMBER NOT NULL PRIMARY KEY,
 region_name VARCHAR2(25));

Cache groups and cache tables

Defining Cache Groups 4-3

Command> CREATE WRITETHROUGH CACHE GROUP sales_cg
 FROM oratt.sales
 (prod_id INT NOT NULL, cust_id INT NOT NULL,
 quantity_sold INT NOT NULL, time_id DATE NOT NULL,
 PRIMARY KEY(prod_id, cust_id));

A TimesTen database can contain multiple cache groups. A cache group can contain
one or more cache tables.

Creating indexes on a cache table in TimesTen can help speed up particular queries
issued on the table in the same fashion as on a TimesTen regular table. You can create
non-unique indexes on a TimesTen cache table. Do not create unique indexes on a
cache table that do not match any unique index on the cached Oracle Database table.
Otherwise, it can cause unique constraint failures in the cache table that do not occur
in the cached Oracle Database table, and result in these tables in the two databases
being no longer synchronized with each other when autorefresh operations are
performed.

Single-table cache group
The simplest cache group is one that caches a single Oracle Database table. In a
single-table cache group, there is a root table but no child tables.

Figure 4–1 shows a single-table cache group target_customers that caches the
customer table.

Cache groups and cache tables

4-4 Oracle TimesTen Application-Tier Database Cache User's Guide

Figure 4–1 Cache group with a single table

Multiple-table cache group
A multiple-table cache group is one that defines a root table and one or more child
tables. A cache group can only contain one root table. Each child table must reference
the primary key or a unique index of the root table or of another child table in the
cache group using a foreign key constraint. Although tables in a multiple-table cache
group must be related to each other in the TimesTen database through foreign key
constraints, it is not required that the tables be related to each other in the Oracle
database. The root table does not reference any table in the cache group with a foreign
key constraint.

Figure 4–2 shows a multiple-table cache group customer_orders that caches the
customer, orders and order_item tables. Each parent table in the customer_orders
cache group has a primary key that is referenced by a child table through a foreign key
constraint. The customer table is the root table of the cache group because it does not
reference any table in the cache group with a foreign key constraint. The primary key
of the root table is considered the primary key of the cache group. The orders table is a
child table of the customer root table. The order_item table is a child table of the
orders child table.

Oracle

database

Cache group target_customers

TimesTen

customer

122 West Jim Johnston ...

342 West Jane Stone

663 MidWest Mary J. Warren ...

cust_num* region name ...

...

122 West Jim John...

342 West Jane Stone

customer

Cache groups and cache tables

Defining Cache Groups 4-5

Figure 4–2 Cache group with multiple tables

The table hierarchy in a multiple-table cache group can designate child tables to be
parents of other child tables. A child table cannot reference more than one parent table.
However, a parent table can be referenced by more than one child table.

Figure 4–3 shows an improper cache table hierarchy. Neither the customer nor the
product table references a table in the cache group with a foreign key constraint. This
results in the cache group having two root tables which is invalid.

Oracle

database

Cache group customer_orders
TimesTen

Child
Tables

customer

orders

order_item

Data for all customers

customer (Root table)

cust_num region name address

Jim Johnston 231 Main, Needles, CA 92363122 West

West

Midwest

342

663 Mary J. Warren

Jane Stone

673 State, Madison, WI 53787

43 Cope, Palo Alto, CA 94302

orders

cust_num

122

663

ord_num when_placed when_shipped

44325

65432

76543

122

10/7/16

8/24/16

4/2/16

8/27/16

4/8/16

10/7/16

TR3A

1

5

prod_num quantity

SD0744325

44325

65432

order_item

76543 SD07 2

FT094 1

ord_num

Cache groups and cache tables

4-6 Oracle TimesTen Application-Tier Database Cache User's Guide

Figure 4–3 Problem: Cache group contains two root tables

To resolve this problem and cache all the tables, create a cache group which contains
the customer, orders, and order_item tables, and a second cache group which
contains the product and the inventory tables as shown in Figure 4–4.

Cache group customer_orders
TimesTen

customer (Root table)

cust_num region name address

Jim Johnston 231 Main, Needles, CA 92363122 West

West

Midwest

342

663 Mary J. Warren

Jane Stone

673 State, Madison, WI 53787

43 Cope, Palo Alto, CA 94302

orders

cust_num

122

663

ord_num when_placed when_shipped

44325

65432

76543

122

10/7/16

8/24/16

4/2/16

8/27/16

4/8/16

10/7/16

TR3A

1

5

prod_num quantity

SD0744325

44325

65432

order_item

76543 SD07 2

FT094 1

ord_num

Oracle

database

customer

orders

order_item

inventory

product

Cannot Define
Two Root Tables

London

2000

10000

warehouse quantity

NewYork

inventory

FT133 London 5000

London 30000

prod_num

TR3A

SD07

FT094

product

nameprod_name price ship_weight description

TR3A

SD07

FT133

FT094

1” brad

.3” washer

.4” washer

$4.50

$1.94

$2.76

$1.50

2 lbs

5.4 lbs

7.5 lbs

2.5 lbs

brad

washer

washer

washer.5” washer

Creating a cache group

Defining Cache Groups 4-7

Figure 4–4 Solution: Create two cache groups

Creating a cache group
You create cache groups by using a CREATE CACHE GROUP SQL statement or by using
Oracle SQL Developer, a graphical tool. For more information about SQL Developer,
see Oracle SQL Developer Oracle TimesTen In-Memory Database Support User's Guide.

Cache groups are identified as either system managed or user-managed. System
managed cache groups enforce specific behaviors, while the behavior of a
user-managed cache group can be customized. System managed cache group types
include:

■ Read-only cache group

■ Asynchronous WriteThrough (AWT) cache group

■ Synchronous WriteThrough (SWT) cache group

See "User-managed cache group" on page 4-27 for information about user-managed
cache groups.

The following topics also apply to creating a cache group:

■ AUTOREFRESH cache group attribute

■ Using a WHERE clause

■ ON DELETE CASCADE cache table attribute

■ UNIQUE HASH ON cache table attribute

Cache group customer_orders

TimesTen

customer (Root table)

cust_num region name address

Jim Johnston 231 Main, Needles, CA 92363122 West

West

Midwest

342

663 Mary J. Warren

Jane Stone

673 State, Madison, WI 53787

43 Cope, Palo Alto, CA 94302

orders

cust_num

122

663

ord_num when_placed when_shipped

44325

65432

76543

122

10/7/16

8/24/16

4/2/16

8/27/16

4/8/16

10/7/16

TR3A

1

5

prod_num quantity

SD0744325

44325

65432

order_item

76543 SD07 2

FT094 1

ord_num

Oracle

database

customer

orders

order_item

inventory

product

product

nameprod_name price ship_weight description

TR3A

SD07

FT133

FT094

1” brad

.3” washer

.4” washer

.5” washer

$4.50

$1.94

$2.76

$1.50

2 lbs

5.4 lbs

7.5 lbs

2.5 lbs

brad

washer

washer

washer

London

2000

10000

warehouse quantity

NewYork

inventory

FT133 London 5000

London 30000

prod_num

TR3A

SD07

FT094

Cache group product_inventory

Creating a cache group

4-8 Oracle TimesTen Application-Tier Database Cache User's Guide

Cache groups must be created by and are owned by the cache manager user.

You cannot cache Oracle Database data in a temporary database.

Read-only cache group
A read-only cache group enforces a caching behavior where the TimesTen cache tables
cannot be updated directly, and committed updates on the cached Oracle Database
tables are automatically refreshed to the cache tables as shown in Figure 4–5.

Figure 4–5 Read-only cache group

If the TimesTen database is unavailable for whatever reason, you can still update the
Oracle Database tables that are cached in a read-only cache group. When the TimesTen
database returns to operation, updates that were committed on the cached Oracle
Database tables while the TimesTen database was unavailable are automatically
refreshed to the TimesTen cache tables.

The following are the definitions of the Oracle Database tables that are to be cached in
the read-only cache groups that are defined in Example 4–1, Example 4–12,

Note: When TimesTen manages operations for read only cache
groups, it connects to the Oracle database using the cache
administration user name and password set with the
ttCacheUidPwdSet built-in procedure. For more details on
ttCacheUidPwdSet, see "Set the cache administration user name and
password" on page 3-9.

TimesTen cache

Application

Autorefresh
from Oracle

Passthrough SQL*

* Depending on the PassThrough attribute setting

TimesTen

database

Readonly
cache group

Oracle

database

Creating a cache group

Defining Cache Groups 4-9

Example 4–15, Example 4–23 and Example 4–24. The Oracle Database tables are
owned by the schema user oratt. The oratt user must be granted the CREATE SESSION
and RESOURCE privileges before it can create tables.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100));

CREATE TABLE orders
(ord_num NUMBER(10) NOT NULL PRIMARY KEY,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL);

The companion Oracle Database user with the same name as the TimesTen cache
manager user must be granted the SELECT privilege on the oratt.customer and
oratt.orders tables in order for the cache manager user to create a read-only cache
group that caches these tables, and for autorefresh operations to occur from the cached
Oracle Database tables to the TimesTen cache tables.

Use the CREATE READONLY CACHE GROUP statement to create a read-only cache group.

Example 4–1 Creating a read-only cache group

The following statement creates a read-only cache group customer_orders that caches
the tables oratt.customer (root table) and oratt.orders (child table):

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));

The cache tables in a read-only cache group cannot be updated directly. However, you
can set the passthrough level to 2 to allow committed update operations issued on a
TimesTen cache table to be passed through and processed on the cached Oracle
Database table, and then have the updates be automatically refreshed into the cache
table. See "Setting a passthrough level" on page 5-17.

The effects of a passed through statement on cache tables in a read-only cache group
do not occur in the transaction in which the update operation was issued. Instead, they
are seen after the passed through update operation has been committed on the Oracle
database and the next automatic refresh of the cache group has occurred. The
companion Oracle Database user of the TimesTen cache manager user must be granted
the INSERT, UPDATE and DELETE privileges on the Oracle Database tables that are
cached in the read-only cache group in order for the passed through update operations
to be processed on the cached Oracle Database tables.

Creating a cache group

4-10 Oracle TimesTen Application-Tier Database Cache User's Guide

If you manually created the Oracle Database objects used to enforce the predefined
behaviors of an autorefresh cache group as described in "Manually create Oracle
Database objects used to manage data caching" on page 3-5, you need to set the
autorefresh state to OFF when creating the cache group.

Then you need to run the ttIsql utility's cachesqlget command to generate a
SQL*Plus script used to create a log table and a trigger in the Oracle database for each
Oracle Database table that is cached in the read-only cache group. See "Manually
creating Oracle Database objects for autorefresh cache groups" on page 4-37 for
information about how to create these objects.

Restrictions with read-only cache groups
The following restrictions apply when using a read-only cache group:

■ The cache tables on TimesTen cannot be updated directly.

■ Only the ON DELETE CASCADE and UNIQUE HASH ON cache table attributes can be
used in the cache table definitions.

See "ON DELETE CASCADE cache table attribute" on page 4-43 for more
information about the ON DELETE CASCADE cache table attribute.

See "UNIQUE HASH ON cache table attribute" on page 4-44 for more information
about the UNIQUE HASH ON cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ A TRUNCATE TABLE statement issued on a cached Oracle Database table is not
automatically refreshed to the TimesTen cache table.

■ A LOAD CACHE GROUP statement can only be issued on the cache group if the cache
tables are empty, unless the cache group is dynamic.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the LOAD CACHE GROUP statement.

See "Dynamic cache groups" on page 4-51 for more information about dynamic
cache groups.

■ The autorefresh state must be PAUSED before you can issue a LOAD CACHE GROUP
statement on the cache group, unless the cache group is dynamic, in which case
the autorefresh state must be PAUSED or ON. The LOAD CACHE GROUP statement
cannot contain a WHERE clause, unless the cache group is dynamic, in which case
the WHERE clause must be followed by a COMMIT EVERY n ROWS clause.

See "AUTOREFRESH cache group attribute" on page 4-34 for more information
about autorefresh states.

See "Using a WHERE clause" on page 4-40 for more information about WHERE
clauses in cache group definitions and operations.

■ The autorefresh state must be PAUSED before you can issue a REFRESH CACHE GROUP
statement on the cache group. The REFRESH CACHE GROUP statement cannot contain
a WHERE clause.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the REFRESH CACHE GROUP statement.

■ All tables and columns referenced in WHERE clauses when creating, loading or
unloading the cache group must be fully qualified. For example:

Creating a cache group

Defining Cache Groups 4-11

user_name.table_name and user_name.table_name.column_name

■ Least recently used (LRU) aging cannot be specified on the cache group, unless the
cache group is dynamic where LRU aging is defined by default.

See "LRU aging" on page 4-46 for more information about LRU aging.

■ Read-only cache groups cannot cache Oracle Database views or materialized
views.

Asynchronous WriteThrough (AWT) cache group
An Asynchronous WriteThrough (AWT) cache group enforces a caching behavior
where committed updates on the TimesTen cache tables are automatically and
asynchronously propagated to the cached Oracle Database tables as shown in
Figure 4–6.

Figure 4–6 AWT cache group

Since an AWT cache group propagates data from the TimesTen database to the Oracle
database, any data modified by the user in the cached tables on the Oracle database is
not automatically uploaded from the Oracle database to the TimesTen database. In this
case, you must explicitly unload and then reload the AWT cache groups on TimesTen.

Note: You should avoid executing DML statements on Oracle
Database tables cached in an AWT cache group. This can result in an
error condition. For more information, see "Restrictions with AWT
cache groups" on page 4-22.

Application

TimesTen

database

TimesTen cache

Oracle

database

AWT
cache group

Automatically
propagate

updates Load upon
request

Creating a cache group

4-12 Oracle TimesTen Application-Tier Database Cache User's Guide

The transaction commit on the TimesTen database occurs asynchronously from the
commit on the Oracle database. This enables an application to continue issuing
transactions on the TimesTen database without waiting for the Oracle Database
transaction to complete. However, your application cannot ensure when the
transactions are completed on the Oracle database.

Execution of the UNLOAD CACHE GROUP statement for an AWT cache group waits until
updates on the rows have been propagated to the Oracle database.

You can update cache tables in an AWT cache group even if the Oracle database is
unavailable. When the Oracle database returns to operation, updates that were
committed on the cache tables while the Oracle database was unavailable are
automatically propagated to the cached Oracle Database tables.

If there are updates from DML statements that you do not want propagated to the
Oracle database, then you can disable propagation of committed updates (as a result of
executing DML statements) within the current transaction to the Oracle database by
setting the flag in the ttCachePropagateFlagSet built-in procedure to zero. After the
flag is set to zero, the effects of executing any DML statements are never propagated to
the back-end Oracle database. Thus, these updates exist only on the TimesTen
database. You can then re-enable propagation by resetting the flag to one with the
ttCachePropagateFlagSet built-in procedure. After the flag is set back to one,
propagation of all committed updates to the Oracle database resumes. The
propagation flag automatically resets to one after the transaction is committed or
rolled back. See "ttCachePropagateFlagSet" in the Oracle TimesTen In-Memory Database
Reference for more details.

The following is the definition of the Oracle Database table that is to be cached in the
AWT cache groups that are defined in Example 4–2, Example 4–16 and Example 4–18.
The Oracle Database table is owned by the schema user oratt. The oratt user must be
granted the CREATE SESSION and RESOURCE privileges before it can create tables.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100));

The companion Oracle Database user of the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.customer table in order for the cache
manager user to create an AWT cache group that caches this table. The cache
administration user must be granted the INSERT, UPDATE and DELETE Oracle Database
privileges on the oratt.customer table for asynchronous writethrough operations to
be applied to the Oracle Database.

Use the CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement to create an
AWT cache group.

Note: When TimesTen manages operations for AWT cache groups, it
connects to the Oracle database using the cache administration user
name and password set with the ttCacheUidPwdSet built-in
procedure. For more details on ttCacheUidPwdSet, see "Set the cache
administration user name and password" on page 3-9.

Creating a cache group

Defining Cache Groups 4-13

Example 4–2 Creating an AWT cache group

The following statement creates an AWT cache group new_customers that caches the
oratt.customer table:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num));

The following sections describe configuration, behavior, and management for AWT
cache groups:

■ Managing the replication agent

■ Configuring parallel propagation to Oracle Database tables

■ What an AWT cache group does and does not guarantee

■ Restrictions with AWT cache groups

■ Reporting Oracle Database permanent errors for AWT cache groups

Managing the replication agent
Performing asynchronous writethrough operations requires that the replication agent
be running on the TimesTen database that contains AWT cache groups. Executing a
CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement creates a replication
scheme that enables committed updates on the TimesTen cache tables to be
asynchronously propagated to the cached Oracle Database tables.

After you have created AWT cache groups, start the replication agent on the TimesTen
database.

Example 4–3 Starting the replication agent

The replication agent can be manually started programmatically by calling the
ttRepStart built-in procedure as the cache manager user:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttRepStart;

It can also be started from a command line by running a ttAdmin -repStart utility
command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -repStart cache1

The replication agent does not start unless there is at least one AWT cache group or
replication scheme in the TimesTen database.

If the replication agent is running, it must be stopped before you can issue another
CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement or a DROP CACHE GROUP
statement on an AWT cache group.

Example 4–4 Stopping the replication agent

The replication agent can be manually stopped programmatically by calling the
ttRepStop built-in procedure as the cache manager user:

Command> call ttRepStop;

Creating a cache group

4-14 Oracle TimesTen Application-Tier Database Cache User's Guide

It can also be stopped from a command line by running a ttAdmin -repStop utility
command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -repStop cache1

You can set a replication agent start policy to determine how and when the replication
agent process starts on a TimesTen database.

The default start policy is manual which means the replication agent must be started
manually by calling the ttRepStart built-in procedure or running a ttAdmin
-repStart utility command. To manually stop a running replication agent process, call
the ttRepStop built-in procedure or run a ttAdmin -repStop utility command.

The start policy can be set to always so that the replication agent starts automatically
when the TimesTen main daemon process starts. With the always start policy, the
replication agent cannot be stopped when the main daemon is running unless the start
policy is changed to either manual or norestart and then a manual stop is issued by
calling the ttRepStop built-in procedure or running a ttAdmin -repStop utility
command.

With the manual and always start policies, the replication agent automatically restarts
after a failure such as a database invalidation.

The start policy can be set to norestart which means the replication agent must be
started manually by calling the ttRepStart built-in procedure or running a ttAdmin
-repStart utility command, and stopped manually by calling the ttRepStop built-in
procedure or running a ttAdmin -repStop utility command.

With the norestart start policy, the replication agent does not automatically restart
after a failure such as a database invalidation. You must restart the replication agent
manually by calling the ttRepStart built-in procedure or running a ttAdmin
-repStart utility command.

Example 4–5 Setting a replication agent start policy

As the instance administrator, grant the ADMIN privilege to the cache manager user:

% ttIsql cache1
Command> GRANT ADMIN TO cacheuser;
Command> exit

The replication agent start policy can be set programmatically by calling the
ttRepPolicySet built-in procedure as the cache manager user:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttRepPolicySet('manual');
Command> exit

It can also be set from a command line by running a ttAdmin -repPolicy utility
command as a TimesTen external user with the ADMIN privilege:

% ttAdmin -repPolicy always cache1

Since the AWT cache group uses the replication agent to asynchronously propagate
transactions to the Oracle database, these transactions remain in the transaction log
buffer and transaction log files until the replication agent confirms they have been
fully processed by the Oracle database. You can monitor the propagation for these
transactions with the ttLogholds built-in procedure. When you call the ttLogHolds
built-in procedure, the description field contains "_ORACLE" to identify the transaction
log hold for the AWT cache group propagation.

Command> call ttLogHolds();

Creating a cache group

Defining Cache Groups 4-15

< 0, 18958336, Checkpoint , cache1.ds0 >
< 0, 19048448, Checkpoint , cache1.ds1 >
< 0, 19050904, Replication , ADC6160529:_ORACLE >
3 rows found.

For more details on the ttLogHolds built-in procedure and how to monitor replication
through bookmarks and log sequence numbers, see the "Show replicated log records"
section in the Oracle TimesTen In-Memory Database Replication Guide.

Configuring parallel propagation to Oracle Database tables
To improve throughput for an AWT cache group, you can configure multiple threads
that act in parallel to propagate and apply transactional changes to the Oracle
database. Parallel propagation enforces transactional dependencies and applies
changes in AWT cache tables to Oracle Database tables in commit order.

Parallel propagation is supported for AWT cache groups with the following
configurations:

■ AWT cache groups involved in an active standby pair replication scheme

■ AWT cache groups in a single TimesTen database (without a replication scheme
configuration)

■ AWT cache groups configured with any aging policy

The following data store attributes enable parallel propagation and control the number
of threads that operate in parallel to propagate changes from AWT cache tables to the
corresponding Oracle Database tables:

■ ReplicationApplyOrdering enables parallel propagation by default.

■ ReplicationParallelism defines the number of transmitter threads on the source
database and the number of receiver threads on the target database for parallel
replication in a replication scheme. This value can be between 2 and 32 when used
solely for parallel replication. The default is 1. In addition, the value of
ReplicationParellelism cannot exceed half the value of LogBufParallelism.

■ CacheAWTParallelism, when set, determines the number of threads used in
parallel propagation of changes from AWT cache tables to the Oracle Database
tables. Set this attribute to a number from 2 to 31. The default is 1.

Parallel propagation for an AWT cache group is configured with one of the following
scenarios:

■ ReplicationApplyOrdering is set to 0 and ReplicationParallelism is greater
than 1.

If you do not set CacheAWTParallelism, the number of threads that apply changes
to Oracle Database is 2 times the setting for ReplicationParallelism. For
example, if ReplicationParallelism=3, the number of threads that apply changes
to Oracle Database tables is 6. In this case, ReplicationParallelism can only be
set from 2 to 16; otherwise, twice the value would exceed the maximum number of
31 threads for parallel propagation. If the value is set to 16, the maximum number
of threads defaults to 31.

■ ReplicationApplyOrdering is set to 0, ReplicationParallelism is equal to or
greater than 1, and CacheAWTParallelism is greater than 1. The value for
CacheAWTParallelism must be greater than or equal to the value set for
ReplicationParallelism and less than or equal to 31.

If CacheAWTParallelism is not specified, then ReplicationParallelism is used to
determine the number of threads that are used for parallel propagation to Oracle

Creating a cache group

4-16 Oracle TimesTen Application-Tier Database Cache User's Guide

Database. However, since this value is doubled for parallel propagation threads,
you can only set ReplicationParallelism to a number from 2 to 16. If the value is
set to 16, the maximum number of threads defaults to 31.

If both ReplicationParallelism and CacheAWTParallelism attributes are set, the
value set in CacheAWTParallelism configures the number of threads used for
parallel propagation. The setting for CacheAWTParallelism determines the number
of apply threads for parallel propagation and the setting for
ReplicationParallelism determines the number of threads for parallel
replication. Thus, if ReplicationParallelism is set to 4 and CacheAWTParallelism
is set to 6, then the number of threads that apply changes to Oracle Database tables
is 6. This enables the number of threads used to be different for parallel replication
and parallel propagation to Oracle Database tables.

These data store attributes are interrelated. Table 4–1 shows the result with the
combination of the various possible attribute values.

Note: For more information about parallel replication, see
"Configuring parallel replication" in the Oracle TimesTen In-Memory
Database Replication Guide.

For more details on these data store attributes, see
"ReplicationApplyOrdering," "ReplicationParallelism," and
"CacheAWTParallelism" in the Oracle TimesTen In-Memory Database
Reference.

Table 4–1 Results of Parallel Propagation Data Store Attribute Relationships

ReplicationApply
Ordering ReplicationParallelism CacheAWTParallelism

Number of parallel propagation
threads

Set to 0, which
enables parallel
propagation

Set to > 1 for multiple
tracks and <= 16.

Not specified. Set to twice the value of
ReplicationParallelism.

Set to 0, which
enables parallel
propagation

Set to > 16 and <= 32 for
multiple tracks.

Not specified. Error is thrown. If
CacheAWTParallelism is not set,
then 2 times the value set in
ReplicationParallelism specifies
the number of threads. Thus, in this
case, ReplicationParallelism
cannot be greater than 16.

Set to 0, which
enables parallel
propagation

Set to > 1 and <= 32 for
multiple tracks.

Set to >= to
ReplicationParallelism.

Set to number specified by
CacheAWTParallelism.

Set to 0, which
enables parallel
propagation

Set to > 1 and <= 32 for
multiple tracks.

Set to <
ReplicationParallelism.

Error is thrown at database creation.
The CacheAWTParallelism must be
set to a value greater than or equal
to ReplicationParallelism.

Set to 0, which
enables parallel
propagation

Set to 1 or not specified.
Single track.

Set to > 1 Set to number specified by
CacheAWTParallelism.

Set to 1, which
disables parallel
propagation.

N/A Set to > 1 Error is thrown at database creation,
since parallelism is turned off, but
CacheAWTParallelism is set to a
value, expecting parallel
propagation to be enabled.

Creating a cache group

Defining Cache Groups 4-17

Foreign keys in Oracle Database tables that are to be cached must have indexes created
on the foreign keys. Consider these Oracle Database tables:

CREATE TABLE parent (c1 NUMBER PRIMARY KEY NOT NULL);
CREATE TABLE child (c1 NUMBER PRIMARY KEY NOT NULL,
 c2 NUMBER REFERENCES parent(c1));
CREATE TABLE grchild (c1 NUMBER PRIMARY KEY NOT NULL,
 c2 NUMBER REFERENCES parent(c1),
 c3 NUMBER REFERENCES parent(c1));

These indexes must be created:

CREATE INDEX idx_1 ON child(c2);
CREATE INDEX idx_2 ON grchild(c2);
CREATE INDEX idx_3 ON grchild(c3);

Table constraint restrictions when using parallel propagation for AWT cache groups When you
use parallel propagation for AWT cache groups, you must manually enforce data
consistency. Any unique index, unique constraint, or foreign key constraint that exists
on columns in the Oracle Database tables that are to be cached should also be created
on the AWT cache tables within TimesTen. If you cannot create these constraints on the
AWT cache tables and you have configured for parallel propagation, then TimesTen
serializes any transactions with DML operations to any table with missing constraints.
For example, if a unique index created on a table in the Oracle database cannot be
created on the corresponding cached table in TimesTen, all transactions for this table
are serialized.

TimesTen automatically checks for missing constraints on the Oracle database that are
not cached on TimesTen when you issue any of the following SQL statements:

■ When you create an AWT cache group with the CREATE ASYNCHRONOUS CACHE
GROUP statement

■ When you create a unique index on an AWT cache table with the CREATE UNIQUE
INDEX statement

■ When you drop a unique index on an AWT cache table with the DROP INDEX
statement

If the check notes missing constraints on the cached tables, TimesTen issues warnings
about each missing constraint.

For the following scenarios, the cached table is marked so that transactions that
include DML operations are serialized when propagated to the Oracle database.

■ Transactions that apply DML operations to AWT cache tables that are missing
unique indexes or unique constraints.

■ Missing foreign key constraints for tables within a single AWT cache group.

Note: You can manually initiate a check for missing constraints with
the ttCacheCheck built-in procedure. For example, TimesTen does not
automatically check for missing constraints after a schema change on
cached Oracle Database tables. After any schema change on the Oracle
database, you should perform an manual check for missing
constraints by executing ttCacheCheck on the TimesTen database.

See "Manually initiate check for missing constraints" on page 4-19 for
other conditions where you should manually check for missing
constraints.

Creating a cache group

4-18 Oracle TimesTen Application-Tier Database Cache User's Guide

– If both the referencing table and the referenced table for the foreign key
relationship are in the same AWT cache group and the foreign key relationship
is not defined, both tables are marked for transaction serialization.

– If the referencing table is in an AWT cache group and the referenced table is
not in an AWT cache group, the table inside the cache group is not marked for
transaction serialization. Only a warning is issued to notify the user of the
missing constraint.

– If the referenced table is in an AWT cache group and the referencing table is
not in an AWT cache group, the table inside the cache group is not marked for
transaction serialization. Only a warning is issued to notify the user of the
missing constraint.

■ Missing foreign key constraints between cache groups. When you have tables
defined in separate AWT cache groups that are missing a foreign key constraint,
both tables are marked for serialized transactions.

■ If a missing foreign key constraint causes a chain of foreign key constraints to be
broken between two AWT cache groups, transactions for all tables within both
AWT cache groups are serialized.

Example 4–6 Examples of missing constraints when creating an AWT cache group

The following example creates two tables in the oratt schema in the Oracle database.
There is a foreign key relationship between active_customer and the ordertab tables.
Because the examples use these tables for parallel propagation, an index is created on
the foreign key in the ordertab table.

SQL> CREATE TABLE active_customer
 (custid NUMBER(6) NOT NULL PRIMARY KEY,
 name VARCHAR2(50),
 addr VARCHAR2(100),
 zip VARCHAR2(12),
 region VARCHAR2(12) DEFAULT 'Unknown');
Table created.

SQL> CREATE TABLE ordertab
 (orderid NUMBER(10) NOT NULL PRIMARY KEY,
 custid NUMBER(6) NOT NULL);
Table created.

SQL> ALTER TABLE ordertab
 ADD CONSTRAINT cust_fk
 FOREIGN KEY (custid) REFERENCES active_customer(custid);
Table altered.

SQL> CREATE INDEX order_idx on ordertab (custid);

TimesTen automatically checks for missing constraints when each CREATE CACHE
GROUP is issued. In the following example, a single cache group is created that includes
the active_customer table. Only a warning is issued since the active_customer is the

Note: An Oracle Database trigger may introduce an operational
dependency of which TimesTen may not be aware. In this case, you
should either disable parallel propagation for the AWT cache group or
do not cache the table in an AWT cache group on which the trigger is
created.

Creating a cache group

Defining Cache Groups 4-19

referenced table and the referencing table, ordertab, is not in any AWT cache group.
The active_customer table is not marked for serialized transactions.

CREATE WRITETHROUGH CACHE GROUP update_cust
 FROM oratt.active_customer
 (custid NUMBER(6) NOT NULL PRIMARY KEY,
 name VARCHAR2(50),
 addr VARCHAR2(100),
 zip VARCHAR2(12));
Warning 5297: The following Oracle foreign key constraints on AWT cache table
ORATT.ACTIVE_CUSTOMER contain cached columns that do not have corresponding
foreign key constraints on TimesTen: ORATT.CUST_FK [Outside of CG].

The following example creates two AWT cache groups on TimesTen, one that includes
the active_customer table and the other includes the ordertab table. There is a
missing foreign key constraint between the cache groups. Thus, a warning is issued for
both tables, but only the ordertab table is marked for serial transactions since it is the
referencing table that should contain the foreign key.

CREATE WRITETHROUGH CACHE GROUP update_cust
 FROM oratt.active_customer
 (custid NUMBER(6) NOT NULL PRIMARY KEY,
 name VARCHAR2(50),
 addr VARCHAR2(100),
 zip VARCHAR2(12);
Warning 5297: The following Oracle foreign key constraints on AWT cache table
oratt.update_customer contain cached columns that do not have corresponding
foreign key constraints on TimesTen: ordertab.cust_fk [Outside of CG].

CREATE WRITETHROUGH CACHE GROUP update_orders
 FROM oratt.ordertab
 (orderid NUMBER(10) NOT NULL PRIMARY KEY,
 custid NUMBER(6) NOT NULL);
Warning 5295: Propagation will be serialized on AWT cache table
ORATT.ORDERTAB because the following Oracle foreign key constraints on this
table contain cached columns that do not have corresponding foreign key
constraints on TimesTen: ORDERTAB.CUST_FK [Across AWT cache groups].

Manually initiate check for missing constraints The ttCacheCheck built-in procedure
performs the same check for missing constraints for cached tables on the Oracle
database as performed automatically by TimesTen. The ttCacheCheck provides
appropriate messages about missing constraints and the tables marked for serialized
propagation. With the ttCacheCheck built-in procedure, you can check for missing
constraints for a given cache group or for all cache groups in TimesTen to ensure that
all cache groups are not missing constraints.

You may need to manually call the ttCacheCheck built-in procedure to update the
known dependencies after any of the following scenarios:

■ After dropping a series of AWT cache groups on TimesTen with the DROP CACHE
GROUP statement.

Note: Since ttCacheCheck updates system tables to indicate if DML
executed against a table should or should not be serialized, you must
commit or roll back after the ttCacheCheck built-in completes.

For more details of the ttCacheCheck built-in procedure, see
"ttCacheCheck" in the Oracle TimesTen In-Memory Database Reference.

Creating a cache group

4-20 Oracle TimesTen Application-Tier Database Cache User's Guide

■ After adding or dropping a unique index, unique constraint, or foreign key on an
Oracle Database table that is cached in an AWT cache group. If you do not call the
ttCacheCheck built-in procedure after adding a constraint, you may receive a run
time error on the AWT cache group. After dropping a constraint, TimesTen may
serialize transactions even if it is not necessary. Calling the ttCacheCheck built-in
procedure verifies whether serialization is necessary.

■ You can use this built-in procedure to determine why some transactions are being
serialized.

Example 4–7 Manually executing ttCacheCheck update missing dependencies

The following example shows the user manually executing the ttCacheCheck built-in
procedure to determine if there are any missing constraints for an AWT cache group
update_orders that is owned by cacheuser. A result set is returned that includes the
error message. The ordertab table in the update_orders cache group is marked for
serially propagated transactions.

Command> call ttCacheCheck(NULL, ’cacheuser’, ’update_orders’);

< CACHEUSER, UPDATE_ORDERS, CACHEUSER, ORDERTAB, Foreign Key, CACHEUSER,
CUST_FK, 1, Transactions updating this table will be serialized to Oracle
because: The missing foreign key connects two AWT cache groups.,
table CACHEUSER.ORDERTAB constraint CACHEUSER.CUST_FK foreign key(CUSTID)
references CACHEUSER.ACTIVE_CUSTOMER(CUSTID) >
1 row found.

Whenever the cache group schema changes in either the TimesTen or Oracle databases,
you can call ttCacheCheck against all AWT cache groups to verify all constraints. The
following example shows the user manually executing the ttCacheCheck built-in
procedure to determine if there are any missing constraints for any AWT cache group
in the entire TimesTen database by providing a NULL value for all input parameters. A
result set is returned that includes any error messages.

Command> call ttCacheCheck(NULL, NULL, NULL);

< CACHEUSER, UPDATE_ORDERS, CACHEUSER, ORDERTAB, Foreign Key, CACHEUSER,
CUST_FK, 1, Transactions updating this table will be serialized to Oracle
because: The missing foreign key connects two AWT cache groups.,
table CACHEUSER.ORDERTAB constraint CACHEUSER.CUST_FK foreign key(CUSTID)
references CACHEUSER.ACTIVE_CUSTOMER(CUSTID) >
1 row found.

Configuring batch size for parallel propagation for AWT cache groups When using AWT cache
groups, TimesTen batches together one or more transactions that are to be applied in
parallel to the back-end Oracle database. The CacheParAwtBatchSize parameter
configures a threshold value for the number of rows included in a single batch. Once

Note: The ttCacheCheck built-in procedure cannot be called while
the replication agent is running.

If a DDL statement is being executed on an AWT cache group when
ttCacheCheck is called, then ttCacheCheck waits for the statement to
complete or until the timeout period is reached.

If you have not defined the CacheAwtParallelism data store attribute
to greater than one or the specified cache group is not an AWT cache
group, then the ttCacheCheck built-in procedure returns an empty
result set.

Creating a cache group

Defining Cache Groups 4-21

the maximum number of rows is reached, TimesTen includes the rest of the rows in the
transaction (TimesTen does not break up any transactions), but does not add any more
transactions to the batch.

For example, a user sets the CacheParAwtBatchSize to 200. For the next AWT
propagation, there are three transactions, each with 120 rows, that need to be
propagated and applied to the Oracle database. TimesTen includes the first two
transactions in the first batch for a total of 240 rows. The third transaction is included
in a second batch.

The default value for the CacheParAwtBatchSize parameter is 125 rows. The minimum
value is 1. For more details on the CacheParAwtBatchSize parameter in the ttDBConfig
built-in procedure, see "ttDBConfig" in the Oracle TimesTen In-Memory Database
Reference.

You can retrieve the current value of CacheParAwtBatchSize as follows:

call ttDBConfig('CacheParAwtBatchSize');
< CACHEPARAWTBATCHSIZE, 125 >
1 row found.

You can set the CacheParAwtBatchSize parameter to 200 as follows:

call ttDBConfig('CacheParAwtBatchSize','200');
< CACHEPARAWTBATCHSIZE, 200 >
1 row found

Set the CacheParAwtBatchSize parameter only when advised by Oracle Support, who
analyzes the workload and any dependencies in the workload to determine if a
different value for CacheParAwtBatchSize could improve performance. Dependencies
exist when transactions concurrently change the same data. Oracle Support may
advise you to reduce this value if there are too many dependencies in the workload.

What an AWT cache group does and does not guarantee
An AWT cache group can guarantee that:

■ No transactions are lost because of communication failures between the TimesTen
and Oracle databases.

■ If the replication agent is not running or loses its connection to the Oracle
database, automatic propagation of committed updates on the TimesTen cache
tables to the cached Oracle Database tables resumes after the agent restarts or
reconnects to the Oracle database.

■ Transactions are committed in the Oracle database in the same order they were
committed in the TimesTen database.

An AWT cache group cannot guarantee that:

■ All transactions committed successfully in the TimesTen database are successfully
propagated to and committed in the Oracle database. Execution errors on the
Oracle database cause the transaction in the Oracle database to be rolled back. For
example, an update on the Oracle database may fail because of a unique constraint
violation. Transactions that contain execution errors are not retried.

Execution errors are considered permanent errors and are reported to the
TimesTenDatabaseFileName.awterrs file that resides in the same directory as the
TimesTen database's checkpoint files. See "Reporting Oracle Database permanent
errors for AWT cache groups" on page 4-23 for more information.

Creating a cache group

4-22 Oracle TimesTen Application-Tier Database Cache User's Guide

■ The absolute order of Oracle Database updates is preserved because TimesTen
does not resolve update conflicts. The following are some examples:

– In two separate TimesTen databases (DB1 and DB2), different AWT cache
groups cache the same Oracle Database table. An update is committed on the
cache table in DB1. An update is then committed on the cache table in DB2. The
two cache tables reside in different TimesTen databases and cache the same
Oracle Database table. Because the writethrough operations are asynchronous,
the update from DB2 may get propagated to the Oracle database before the
update from DB1, resulting in the update from DB1 overwriting the update
from DB2.

– An update is committed on a cache table in an AWT cache group. The same
update is committed on the cached Oracle Database table using a passthrough
operation. The cache table update, which is automatically and asynchronously
propagated to the Oracle database, may overwrite the passed through update
that was processed directly on the cached Oracle Database table depending on
when the propagated update and the passed through update is processed on
the Oracle database. For this and other potential error conditions, TimesTen
recommends that you do not execute DML statements directly against Oracle
Database tables cached in an AWT cache group. For more information, see
"Restrictions with AWT cache groups" on page 4-22.

Restrictions with AWT cache groups
The following restrictions apply when using an AWT cache group:

■ Only the ON DELETE CASCADE and UNIQUE HASH ON cache table attributes can be
used in the cache table definitions.

See "ON DELETE CASCADE cache table attribute" on page 4-43 for more
information about the ON DELETE CASCADE cache table attribute.

See "UNIQUE HASH ON cache table attribute" on page 4-44 for more information
about the UNIQUE HASH ON cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ The cache table definitions cannot contain a WHERE clause.

See "Using a WHERE clause" on page 4-40 for more information about WHERE
clauses in cache group definitions and operations.

■ A TRUNCATE TABLE statement cannot be issued on the cache tables.

■ AWT cache groups cannot cache Oracle Database views or materialized views.

■ The replication agent must be stopped before creating or dropping an AWT cache
group.

See "Managing the replication agent" on page 4-13 for information about how to
stop and start the replication agent.

■ Committed updates on the TimesTen cache tables are not propagated to the cached
Oracle Database tables unless the replication agent is running.

■ To create an AWT cache group, the length of the absolute path name of the
TimesTen database cannot exceed 248 characters.

■ You should avoid executing DML statements on Oracle Database tables cached in
an AWT cache group. This could result in an error condition. Any insert, update,

Creating a cache group

Defining Cache Groups 4-23

or delete operation on the cached Oracle Database table can negatively affect the
operations performed on TimesTen for the affected rows. TimesTen does not detect
or resolve update conflicts that occur on the Oracle database. Committed updates
made directly on a cached Oracle Database table may be overwritten by a
committed update made on the TimesTen cache table when the cache table update
is propagated to the Oracle database. In addition, deleting rows on the cached
Oracle Database table could cause an empty update if TimesTen tries to update a
row that no longer exists.

To ensure that not all data is restricted from DML statements on Oracle Database,
you can partition the data on Oracle Database to separate the data that is to be
included in the AWT cache group from the data to be excluded from the AWT
cache group.

■ TimesTen performs deferred checking when determining whether a single SQL
statement causes a constraint violation with a unique index.

For example, suppose there is a unique index on a cached Oracle Database table's
NUMBER column, and a unique index on the same NUMBER column on the TimesTen
cache table. There are five rows in the cached Oracle Database table and the same
five rows in the cache table. The values in the NUMBER column range from 1 to 5.

An UPDATE statement is issued on the cache table to increment the value in the
NUMBER column by 1 for all rows. The operation succeeds on the cache table but
fails when it is propagated to the cached Oracle Database table.

This occurs because TimesTen performs the unique index constraint check at the
end of the statement's execution after all the rows have been updated. The Oracle
database, however, performs the constraint check each time after a row has been
updated.

Therefore, when the row in the cache table with value 1 in the NUMBER column is
changed to 2 and the update is propagated to the Oracle database, it causes a
unique constraint violation with the row that has the value 2 in the NUMBER column
of the cached Oracle Database table.

Reporting Oracle Database permanent errors for AWT cache groups
If transactions are not successfully propagated to and committed in the Oracle
database, then the permanent errors cause the transaction in the Oracle database to be
rolled back. For example, an update on the Oracle database may fail because of a
unique constraint violation. Transactions that contain permanent errors are not retried.

Permanent errors are always reported to the TimesTenDatabaseFileName.awterrs text
file that resides in the same directory as the TimesTen database checkpoint files. See
"Oracle Database errors reported by TimesTen for AWT" in the Oracle TimesTen
In-Memory Database Troubleshooting Guide for information about the contents of this file.

You can configure TimesTen to report these errors in both ASCII and XML formats
with the ttCacheConfig built-in procedure.

■ To configure TimesTen to report permanent errors to only the
TimesTenDatabaseFileName.awterrs text file, call the ttCacheConfig built-in
procedure with the ASCII parameter. This is the default.

Note: Do not pass in any values to the tblOwner and tblName
parameters for ttCacheConfig as they are not applicable to setting the
format for the errors file.

Creating a cache group

4-24 Oracle TimesTen Application-Tier Database Cache User's Guide

Command> call ttCacheConfig(’AwtErrorXmlOutput’,,,’ASCII’);

■ To configure TimesTen to report permanent errors to both the
TimesTenDatabaseFileName.awterrs text file as well as to an XML file named
TimesTenDatabaseFileName.awterrs.xml, call the ttCacheConfig built-in
procedure with the XML parameter.

Command> call ttCacheConfig(’AwtErrorXmlOutput’,,,’XML’);

When you configure error reporting to be reported in XML format, the following two
files are generated when Oracle Database permanent errors occur:

■ TimesTenDatabaseFileName.awterrs.xml contains the Oracle Database
permanent error messages in XML format.

■ TimesTenDatabaseFileName.awterrs.dtd is the file that contains the XML
Document Type Definition (DTD), which is used when parsing the
TimesTenDatabaseFileName.awterrs.xml file.

The XML DTD, which is based on the XML 1.0 specification, is a set of markup
declarations that describes the elements and structure of a valid XML file
containing a log of errors. The XML file is encoded using UTF-8. The following are
the elements for the XML format.

<!ELEMENT ttawterrorreport (awterrentry*) >
<!ELEMENT awterrentry(header, (failedop)?, failedtxn) >
<!ELEMENT header (time, datastore, oracleid, transmittingagent, errorstr,
 (ctn)?, (batchid)?, (depbatchid)?) >
<!ELEMENT failedop (sql) >
<!ELEMENT failedtxn ((sql)+) >
<!ELEMENT time (hour, min, sec, year, month, day) >
<!ELEMENT hour (#PCDATA) >
<!ELEMENT min (#PCDATA) >
<!ELEMENT sec (#PCDATA) >
<!ELEMENT year (#PCDATA) >
<!ELEMENT month (#PCDATA) >
<!ELEMENT day (#PCDATA) >
<!ELEMENT datastore (#PCDATA) >
<!ELEMENT oracleid (#PCDATA) >
<!ELEMENT transmittingagent (transmitingname, pid, threadid) >
<!ELEMENT pid (#PCDATA) >
<!ELEMENT threadid (#PCDATA) >
<!ELEMENT transmittingname (#PCDATA) >
<!ELEMENT errorstr (#PCDATA) >
<!ELEMENT ctn (timestamp, seqnum) >
<!ELEMENT timestamp(#PCDATA) >
<!ELEMENT seqnum(#PCDATA) >

Note: Before calling ttCacheConfig to direct permanent errors to the
XML file, you must first stop the replication agent. Then, restart the
replication agent after the built-in procedure completes.

For full details on this built-in procedure, see "ttCacheConfig" in the
Oracle TimesTen In-Memory Database Reference.

Note: For more information on reading and understanding XML
Document Type Definitions, see http://www.w3.org/TR/REC-xml/.

Creating a cache group

Defining Cache Groups 4-25

<!ELEMENT batchid(#PCDATA) >
<!ELEMENT depbatchid(#PCDATA) >
<!ELEMENT sql(#PCDATA) >

Synchronous WriteThrough (SWT) cache group
A synchronous writethrough (SWT) cache group enforces a caching behavior where
committed updates on the TimesTen cache tables are automatically and synchronously
propagated to the cached Oracle Database tables as shown in Figure 4–7.

Figure 4–7 Synchronous writethrough cache group

The transaction commit on the TimesTen database occurs synchronously with the
commit on the Oracle database. When an application commits a transaction in the
TimesTen database, the transaction is processed in the Oracle database before it is
processed in TimesTen. The application is blocked until the transaction has completed
in both the Oracle and TimesTen databases.

If the transaction fails to commit in the Oracle database, the application must roll back
the transaction in TimesTen. If the Oracle Database transaction commits successfully
but the TimesTen transaction fails to commit, the cache tables in the SWT cache group
are no longer synchronized with the cached Oracle Database tables.

Note: You should avoid executing DML statements on Oracle
Database tables cached in an SWT cache group. This can result in an
error condition. For more information, see "Restrictions with SWT
cache groups" on page 4-27.

TimesTen

database

Oracle

database

Automatically
propagate

updates Load upon
creation

Synchronous
writethrough
cache group

TimesTen cache

Application

Creating a cache group

4-26 Oracle TimesTen Application-Tier Database Cache User's Guide

To manually resynchronize the cache tables with the cached Oracle Database tables,
call the ttCachePropagateFlagSet built-in procedure to disable update propagation,
and then reissue the transaction in the TimesTen database after correcting the problem
that caused the transaction commit to fail in TimesTen. Then, call the
ttCachePropagateFlagSet built-in procedure to re-enable update propagation. You
can also resynchronize the cache tables with the cached Oracle Database tables by
reloading the accompanying cache groups.

The following is the definition of the Oracle Database table that is to be cached in the
SWT cache group that is defined in Example 4–8. The Oracle Database table is owned
by the schema user oratt. The oratt user must be granted the CREATE SESSION and
RESOURCE privileges before it can create tables.

CREATE TABLE product
(prod_num VARCHAR2(6) NOT NULL PRIMARY KEY,
 name VARCHAR2(30),
 price NUMBER(8,2),
 ship_weight NUMBER(4,1));

The companion Oracle Database user of the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.product table in order for the cache
manager user to create an SWT cache group that caches this table. This Oracle
Database user must also be granted the INSERT, UPDATE, and DELETE privileges on the
oratt.product table for synchronous writethrough operations to occur from the
TimesTen cache table to the cached Oracle Database table.

Use the CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP statement to create an SWT
cache group.

Example 4–8 Creating a SWT cache group

The following statement creates a synchronous writethrough cache group top_
products that caches the oratt.product table:

CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP top_products
FROM oratt.product
 (prod_num VARCHAR2(6) NOT NULL,
 name VARCHAR2(30),
 price NUMBER(8,2),
 ship_weight NUMBER(4,1),
 PRIMARY KEY(prod_num));

When TimesTen manages operations for SWT cache groups, it connects to the Oracle
database using the current user’s credentials as the user name and the OraclePwd
connection attribute as the Oracle password. TimesTen does not connect to the Oracle
database with the cache administration user name and password set with the
ttCacheUidPwdSet built-in procedure when managing SWT cache group operations.
For more details, see "Set the cache administration user name and password" on
page 3-9.

Note: The behavior and error conditions for how commit occurs on
both the TimesTen and Oracle databases when committing
propagated updates is the same commit process on a user-managed
cache group with the PROPAGATE cache attribute that is described in
"PROPAGATE cache table attribute" on page 4-29.

Creating a cache group

Defining Cache Groups 4-27

Restrictions with SWT cache groups
The following restrictions apply when using an SWT cache group:

■ Only the ON DELETE CASCADE and UNIQUE HASH ON cache table attributes can be
used in the cache table definitions.

See "ON DELETE CASCADE cache table attribute" on page 4-43 for more
information about the ON DELETE CASCADE cache table attribute.

See "UNIQUE HASH ON cache table attribute" on page 4-44 for more information
about the UNIQUE HASH ON cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement

■ The cache table definitions cannot contain a WHERE clause.

See "Using a WHERE clause" on page 4-40 for more information about WHERE
clauses in cache group definitions and operations.

■ A TRUNCATE TABLE statement cannot be issued on the cache tables.

■ SWT cache groups cannot cache Oracle Database views or materialized views.

■ You should avoid executing DML statements directly on Oracle Database tables
cached in an SWT cache group. This could result in an error condition. Any insert,
update, or delete operation on the cached Oracle Database table can negatively
affect the operations performed on TimesTen for the affected rows. TimesTen does
not detect or resolve update conflicts that occur on the Oracle database.
Committed updates made directly on a cached Oracle Database table may be
overwritten by a committed update made on the TimesTen cache table when the
cache table update is propagated to the Oracle database. In addition, deleting rows
on the cached Oracle Database table could cause an empty update if TimesTen
tries to update a row that no longer exists.

To ensure that not all data is restricted from DML statements on Oracle Database,
you can partition the data on Oracle Database to separate the data that is to be
included in the SWT cache group from the data to be excluded from the SWT
cache group.

User-managed cache group
If the system managed cache groups (read-only, AWT, SWT) do not satisfy your
application's requirements, you can create a user-managed cache group that defines
customized caching behavior with one or more of the following cache table attributes:

Note: When TimesTen manages operations for user-managed cache
groups, it connects to the Oracle database using the current user’s
credentials as the user name and the OraclePwd connection attribute
as the Oracle password. TimesTen does not connect to the Oracle
database with the cache administration user name and password set
with the ttCacheUidPwdSet built-in procedure for user-managed
cache group operations. For more details, see "Set the cache
administration user name and password" on page 3-9.

Creating a cache group

4-28 Oracle TimesTen Application-Tier Database Cache User's Guide

■ You can specify the READONLY cache table attribute on individual cache tables in
a user-managed cache group to define read-only behavior where the data is
refreshed on TimesTen from the Oracle database at the table level.

■ You can specify the PROPAGATE cache table attribute on individual cache tables in a
user-managed cache group to define synchronous writethrough behavior at the
table level. The PROPAGATE cache table attribute specifies that committed
updates on the cache table are automatically and synchronously propagated to the
cached Oracle Database table.

■ You can define a user-managed cache group to automatically refresh and
propagate committed updates between the Oracle and TimesTen databases by
using the AUTOREFRESH cache group attribute and the PROPAGATE cache table
attribute. Using both attributes enables bidirectional transmit, so that committed
updates on the TimesTen cache tables or the cached Oracle Database tables are
propagated or refreshed to each other.

See "AUTOREFRESH cache group attribute" on page 4-34 for more information
about defining an autorefresh mode, interval, and state.

■ You can use the LOAD CACHE GROUP, REFRESH CACHE GROUP, and FLUSH CACHE
GROUP statements to manually control the transmit of committed updates between
the Oracle and TimesTen databases.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the LOAD CACHE GROUP and REFRESH CACHE GROUP statements. See "Flushing
a user managed cache group" on page 5-16 for more information about the FLUSH
CACHE GROUP statement.

■ You can cache Oracle Database materialized views in a user-managed cache group
that does not use either the PROPAGATE or AUTOREFRESH cache group attributes. The
cache group must be manually loaded and flushed. You cannot cache Oracle
Database views.

The following sections provide more information about user-managed cache groups:

■ READONLY cache table attribute

■ PROPAGATE cache table attribute

■ Examples of user-managed cache groups

READONLY cache table attribute
The READONLY cache table attribute can be specified only for cache tables in a
user-managed cache group. READONLY specifies that the cache table cannot be updated
directly. By default, a cache table in a user-managed cache group is updatable.

Unlike a read-only cache group where all of its cache tables are read-only, in a
user-managed cache group individual cache tables can be specified as read-only using
the READONLY cache table attribute.

Example 4–10 demonstrates the READONLY cache table attribute in the oratt.cust_
interests cache table.

The following restrictions apply when using the READONLY cache table attribute:

■ If the cache group uses the AUTOREFRESH cache group attribute, the READONLY cache
table attribute must be specified on all or none of its cache tables.

See "AUTOREFRESH cache group attribute" on page 4-34 for more information
about using the AUTOREFRESH cache group attribute.

Creating a cache group

Defining Cache Groups 4-29

■ You cannot use both the READONLY and PROPAGATE cache table attributes on the
same cache table.

See "PROPAGATE cache table attribute" on page 4-29 for more information about
using the PROPAGATE cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group unless one
or more of its cache tables use neither the READONLY nor the PROPAGATE cache table
attribute.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ After the READONLY cache table attribute has been specified on a cache table, you
cannot change this attribute unless you drop the cache group and re-create it.

PROPAGATE cache table attribute
The PROPAGATE cache table attribute can be specified only for cache tables in a
user-managed cache group. PROPAGATE specifies that committed updates on the
TimesTen cache table as part of a TimesTen transaction are automatically and
synchronously propagated to the cached Oracle Database table. If the PROPAGATE cache
table attribute is not specified, then the default setting for a cache table in a
user-managed cache group is the NOT PROPAGATE cache table attribute (which does not
propagate committed updates on the cache table to the cached Oracle table).

All SQL statements executed by an application on cached tables are applied to the
cached tables immediately. All of these operations are buffered until the transaction
commits or reaches a memory upper limit. At this time, all operations are propagated
to the tables in the Oracle database.

Since the operations in the transaction are applied to tables in both the TimesTen and
Oracle databases, the process for committing is as follows:

1. After the operations are propagated to the Oracle database, the commit is first
attempted in the Oracle database.

■ If an error occurs when applying the operations on the tables in the Oracle
database, then all operations are rolled back on the tables on the Oracle
database. If the commit fails in the Oracle database, the commit is not
attempted in the TimesTen database and the application must roll back the
TimesTen transaction. If the user tries to execute another statement, an error
displays informing them of the need for a roll back. As a result, the Oracle
database never misses updates committed in TimesTen.

2. If the commit succeeds in the Oracle database, the commit is attempted in the
TimesTen database.

■ If the transaction successfully commits on the Oracle database, the user's
transaction is committed on TimesTen (indicated by the commit log record in
the transaction log) and notifies the application. If the application ends
abruptly before TimesTen informs it of the success of the local commit,
TimesTen is still able to finalize the transaction commit on TimesTen based on
what is saved in the transaction log.

Note: If the TimesTen database or its daemon fails unexpectedly, the
results of the transaction on either the TimesTen or Oracle databases
are not guaranteed.

Creating a cache group

4-30 Oracle TimesTen Application-Tier Database Cache User's Guide

■ If the transaction successfully commits on the Oracle database and a failure
occurs before returning the status of the commit on TimesTen, then no record
of the successful commit is written into the transaction log and the transaction
is rolled back.

■ If the commit fails in TimesTen, an error message is returned from TimesTen
indicating the cause of the failure. You then need to manually resynchronize
the cache tables with the Oracle Database tables.

You can disable propagation of committed updates on the TimesTen cached tables to
the Oracle database with the ttCachePropagateFlagSet built-in procedure. This
built-in procedure can enable or disable automatic propagation so that committed
updates on a cache table on TimesTen for the current transaction are never propagated
to the cached Oracle Database table. You can then re-enable propagation for DML
statements by resetting the flag to one with the ttCachePropagateFlagSet built-in
procedure. After the flag is set back to one, propagation of committed updates to the
Oracle database resumes. The propagation flag automatically resets to one after the
transaction is committed or rolled back. See "ttCachePropagateFlagSet" in the Oracle
TimesTen In-Memory Database Reference for more details.

Example 4–9 demonstrates the use of the PROPAGATE cache table attribute in the
oratt.active_customer cache table.

Restrictions for the PROPAGATE cache attribute The following restrictions apply when
using the PROPAGATE cache table attribute:

■ If the cache group uses the AUTOREFRESH cache group attribute, the PROPAGATE
cache table attribute must be specified on all or none of its cache tables.

See "AUTOREFRESH cache group attribute" on page 4-34 for more information
about using the AUTOREFRESH cache group attribute.

■ If the cache group uses the AUTOREFRESH cache group attribute, the NOT PROPAGATE
cache table attribute cannot be explicitly specified on any of its cache tables.

■ You cannot use both the PROPAGATE and READONLY cache table attributes on the
same cache table.

See "READONLY cache table attribute" on page 4-28 for more information about
using the READONLY cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group unless one
or more of its cache tables use neither the PROPAGATE nor the READONLY cache table
attribute.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ After the PROPAGATE cache table attribute has been specified on a cache table, you
cannot change this attribute unless you drop the cache group and re-create it.

■ The PROPAGATE cache table attribute cannot be used when caching Oracle Database
materialized views.

■ TimesTen does not perform a conflict check to prevent a propagate operation from
overwriting data that was updated directly on a cached Oracle Database table.

Note: See "Synchronous WriteThrough (SWT) cache group" on
page 4-25 for information on how to resynchronize the cache tables
with the Oracle Database tables.

Creating a cache group

Defining Cache Groups 4-31

Therefore, updates should only be performed directly on the TimesTen cache
tables or the cached Oracle Database tables, but not both.

Examples of user-managed cache groups
The following are the definitions of the Oracle Database tables that are to be cached in
the user-managed cache groups that are defined in Example 4–9 and Example 4–10.
The Oracle Database tables are owned by the schema user oratt. The oratt user must
be granted the CREATE SESSION and RESOURCE privileges before it can create tables.

CREATE TABLE active_customer
 (custid NUMBER(6) NOT NULL PRIMARY KEY,
 name VARCHAR2(50),
 addr VARCHAR2(100),
 zip VARCHAR2(12),
 region VARCHAR2(12) DEFAULT 'Unknown');

CREATE TABLE ordertab
 (orderid NUMBER(10) NOT NULL PRIMARY KEY,
 custid NUMBER(6) NOT NULL);

CREATE TABLE cust_interests
 (custid NUMBER(6) NOT NULL,
 interest VARCHAR2(10) NOT NULL,
 PRIMARY KEY (custid, interest));

CREATE TABLE orderdetails
 (orderid NUMBER(10) NOT NULL,
 itemid NUMBER(8) NOT NULL,
 quantity NUMBER(4) NOT NULL,
 PRIMARY KEY (orderid, itemid));

Use the CREATE USERMANAGED CACHE GROUP statement to create a user-managed cache
group.

Example 4–9 Creating a single-table user-managed cache group

The following statement creates a user-managed cache group update_anywhere_
customers that caches the oratt.active_customer table as shown in Figure 4–8:

CREATE USERMANAGED CACHE GROUP update_anywhere_customers
AUTOREFRESH MODE INCREMENTAL INTERVAL 30 SECONDS
FROM oratt.active_customer
 (custid NUMBER(6) NOT NULL,
 name VARCHAR2(50),
 addr VARCHAR2(100),
 zip VARCHAR2(12),
 PRIMARY KEY(custid),
 PROPAGATE);

Creating a cache group

4-32 Oracle TimesTen Application-Tier Database Cache User's Guide

Figure 4–8 Single-table user-managed cache group

In this example, all columns except region from the oratt.active_customer table are
cached in TimesTen. Since this is defined with the PROPAGATE cache table attribute,
updates committed on the oratt.active_customer cache table on TimesTen are
transmitted to the oratt.active_customer cached Oracle Database table. Since the
user-managed cache table is also defined with the AUTOREFRESH cache attribute, any
committed updates on the oratt.active_customer Oracle Database table are
transmitted to the update_anywhere_customers cached table.

The companion Oracle Database user of the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.active_customer table in order for the
cache manager user to create a user-managed cache group that caches this table, and
for autorefresh operations to occur from the cached Oracle Database table to the
TimesTen cache table. The companion Oracle Database user must also be granted the
INSERT, UPDATE and DELETE privileges on the oratt.active_customer table for
synchronous writethrough operations to occur from the TimesTen cache table to the
cached Oracle Database table.

In this example, the AUTOREFRESH cache group attribute specifies that committed
updates on the oratt.active_customer cached Oracle Database table are
automatically refreshed to the TimesTen oratt.active_customer cache table every 30
seconds.

If you manually created the Oracle Database objects used to enforce the predefined
behaviors of a user-managed cache group that uses the AUTOREFRESH MODE
INCREMENTAL cache group attribute as described in "Manually create Oracle Database

User managed cache group update_anywhere_customers

TimesTen

Updates on cached
Oracle table are autorefreshed
to TimesTen cache group

Updates on TimesTen
cache tables are propagated
to Oracle

Oracle

database

active_customer

active_customer

custid address zipname

Creating a cache group

Defining Cache Groups 4-33

objects used to manage data caching" on page 3-5, you need to set the autorefresh state
to OFF when creating the cache group.

Then you need to run the ttIsql utility's cachesqlget command to generate a
SQL*Plus script used to create a log table and a trigger in the Oracle database for each
Oracle Database table that is cached in the user-managed cache group.

See "Manually creating Oracle Database objects for autorefresh cache groups" on
page 4-37 for more information.

Example 4–10 Creating a multiple-table user-managed cache group

The following statement creates a user-managed cache group western_customers that
caches the oratt.active_customer, oratt.ordertab, oratt.cust_interests, and
oratt.orderdetails tables as shown in Figure 4–9:

CREATE USERMANAGED CACHE GROUP western_customers
FROM oratt.active_customer
 (custid NUMBER(6) NOT NULL,
 name VARCHAR2(50),
 addr VARCHAR2(100),
 zip VARCHAR2(12),
 region VARCHAR2(12),
 PRIMARY KEY(custid),
 PROPAGATE)
 WHERE (oratt.active_customer.region = 'West'),
oratt.ordertab
 (orderid NUMBER(10) NOT NULL,
 custid NUMBER(6) NOT NULL,
 PRIMARY KEY(orderid),
 FOREIGN KEY(custid) REFERENCES oratt.active_customer(custid),
 PROPAGATE),
oratt.cust_interests
 (custid NUMBER(6) NOT NULL,
 interest VARCHAR2(10) NOT NULL,
 PRIMARY KEY(custid, interest),
 FOREIGN KEY(custid) REFERENCES oratt.active_customer(custid),
 READONLY),
oratt.orderdetails
 (orderid NUMBER(10) NOT NULL,
 itemid NUMBER(8) NOT NULL,
 quantity NUMBER(4) NOT NULL,
 PRIMARY KEY(orderid, itemid),
 FOREIGN KEY(orderid) REFERENCES oratt.ordertab(orderid))
 WHERE (oratt.orderdetails.quantity >= 5);

Creating a cache group

4-34 Oracle TimesTen Application-Tier Database Cache User's Guide

Figure 4–9 Multiple-table user-managed cache group

Only customers in the West region who ordered at least 5 of the same item are cached.

The companion Oracle Database user of the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.active_customer, oratt.ordertab,
oratt.cust_interests, and oratt.orderdetails tables in order for the cache
manager user to create a user-managed cache group that caches all of these tables. The
companion Oracle Database user must also be granted the INSERT, UPDATE and DELETE
privileges on the oratt.active_customer and oratt.ordertab tables for synchronous
writethrough operations to occur from these TimesTen cache tables to the cached
Oracle Database tables.

Each cache table in the western_customers cache group contains a primary key. Each
child table references a parent table with a foreign key constraint. The oratt.active_
customer root table and the oratt.orderdetails child table each contain a WHERE
clause to restrict the rows to be cached. The oratt.active_customer root table and the
oratt.ordertab child table both use the PROPAGATE cache table attribute so that
committed updates on these cache tables are automatically propagated to the cached
Oracle Database tables. The oratt.cust_interests child table uses the READONLY
cache table attribute so that it cannot be updated directly.

AUTOREFRESH cache group attribute
The following describes how to use the AUTOREFRESH cache group attribute

User managed cache group western_customers

TimesTen

active_customer (Root table)

custid address regionname zip

Oracle

database

Data for all customers

active_customer

ordertab

cust_interests

order_details

cust_interests

custid interests

ordertab

orderid custid

orderdetails

orderid quantityitemid

Creating a cache group

Defining Cache Groups 4-35

■ AUTOREFRESH cache group attribute overview

■ Altering a cache group to change the AUTOREFRESH mode, interval or state

■ Manually creating Oracle Database objects for autorefresh cache groups

■ Disabling full autorefresh for cache groups

AUTOREFRESH cache group attribute overview
The AUTOREFRESH cache group attribute can be specified when creating a read-only
cache group or a user-managed cache group using a CREATE CACHE GROUP statement.
AUTOREFRESH specifies that committed updates on cached Oracle Database tables are
automatically refreshed to the TimesTen cache tables. Autorefresh is defined by default
on read-only cache groups.

The following are the default settings of the autorefresh attributes:

■ The autorefresh mode is incremental.

■ The autorefresh interval is 5 minutes.

■ The autorefresh state is PAUSED.

TimesTen supports two autorefresh modes:

■ INCREMENTAL: Committed updates on cached Oracle Database tables are
automatically refreshed to the TimesTen cache tables based on the cache group's
autorefresh interval. Incremental autorefresh mode uses Oracle Database objects to
track committed updates on cached Oracle Database tables. See "Managing a
caching environment with Oracle Database objects" on page 6-7 for information on
these objects.

■ FULL: All cache tables are automatically refreshed, based on the cache group's
autorefresh interval, by unloading all their rows and then reloading from the
cached Oracle Database tables.

Incremental autorefresh mode incurs some overhead to refresh the cache group for
each committed update on the cached Oracle Database tables. There is no overhead
when using full autorefresh mode.

When using incremental autorefresh mode, committed updates on cached Oracle
Database tables are tracked in change log tables in the Oracle database. Under certain
circumstances, it is possible for some change log records to be deleted from the change
log table before they are automatically refreshed to the TimesTen cache tables. If this
occurs, TimesTen initiates a full automatic refresh on the cache group.

■ See "Disabling full autorefresh for cache groups" on page 4-38 for information on
how to disable any full autorefresh request when configured to use incremental
autorefresh.

■ See "Monitoring the cache administration user's tablespace" on page 6-14 for
information on how to configure an action to take when the tablespace that the
change log tables reside in becomes full.

■ If you have a dynamic read-only cache group with incremental autorefresh, you
can reduce contention and improve performance by enabling the
DynamicLoadReduceContention database system parameter. See "Reducing
contention on TimesTen for dynamic read-only cache groups with incremental
autorefresh" on page 7-10 for more details.

The change log table on the Oracle database does not have column-level resolution
because of performance reasons. Thus the autorefresh operation updates all of the

Creating a cache group

4-36 Oracle TimesTen Application-Tier Database Cache User's Guide

columns in a row. XLA reports that all of the columns in the row have changed even if
the data did not actually change in each column.

The autorefresh interval determines how often autorefresh operations occur in
minutes, seconds or milliseconds. Cache groups with the same autorefresh interval are
refreshed within the same transaction. You can specify continuous autorefresh with an
autorefresh interval of 0 milliseconds. With continuous autorefresh, the next
autorefresh cycle is scheduled as soon as possible after the last autorefresh cycle has
ended.

You can manually initiate an immediate autorefresh operation with the
ttCacheAutorefresh built-in procedure. For more information, see
"ttCacheAutorefresh" in Oracle TimesTen In-Memory Database Reference.

The autorefresh state can be set to ON, PAUSED or OFF. Autorefresh operations are
scheduled by TimesTen when the cache group's autorefresh state is ON.

When the cache group's autorefresh state is OFF, committed updates on the cached
Oracle Database tables are not tracked.

When the cache group's autorefresh state is PAUSED, committed updates on the cached
Oracle Database tables are tracked in the Oracle database, but are not automatically
refreshed to the TimesTen cache tables until the state is changed to ON.

The following restrictions apply when using the AUTOREFRESH cache group attribute:

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ A TRUNCATE TABLE statement issued on a cached Oracle Database table is not
automatically refreshed to the TimesTen cache table. Before issuing a TRUNCATE
TABLE statement on a cached Oracle Database table, use an ALTER CACHE GROUP
statement to change the autorefresh state of the cache group that contains the
cache table to PAUSED.

See "Altering a cache group to change the AUTOREFRESH mode, interval or state"
on page 4-37 for more information about the ALTER CACHE GROUP statement.

After issuing the TRUNCATE TABLE statement on the cached Oracle Database table,
use a REFRESH CACHE GROUP statement to manually refresh the cache group.

■ A LOAD CACHE GROUP statement can only be issued if the cache tables are empty,
unless the cache group is dynamic.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the LOAD CACHE GROUP and REFRESH CACHE GROUP statements.

See "Dynamic cache groups" on page 4-51 for more information about dynamic
cache groups.

■ The autorefresh state must be PAUSED before you can issue a LOAD CACHE GROUP
statement on the cache group, unless the cache group is dynamic, in which case
the autorefresh state must be PAUSED or ON. The LOAD CACHE GROUP statement
cannot contain a WHERE clause, unless the cache group is dynamic, in which case
the WHERE clause must be followed by a COMMIT EVERY n ROWS clause.

See "Using a WHERE clause" on page 4-40 for more information about WHERE
clauses in cache group definitions and operations.

■ The autorefresh state must be PAUSED before you can issue a REFRESH CACHE GROUP
statement on the cache group. The REFRESH CACHE GROUP statement cannot contain
a WHERE clause.

Creating a cache group

Defining Cache Groups 4-37

■ All tables and columns referenced in WHERE clauses when creating, loading or
unloading the cache group must be fully qualified. For example:

user_name.table_name and user_name.table_name.column_name

■ To use the AUTOREFRESH cache group attribute in a user-managed cache group, all
of the cache tables must be specified with the PROPAGATE cache table attribute or all
of the cache tables must be specified the READONLY cache table attribute.

■ You cannot specify the AUTOREFRESH cache group attribute in a user-managed
cache group that contains cache tables that explicitly use the NOT PROPAGATE cache
table attribute.

■ The AUTOREFRESH cache table attribute cannot be used when caching Oracle
Database materialized views in a user-managed cache group.

■ LRU aging cannot be specified on the cache group, unless the cache group is
dynamic where LRU aging is defined by default.

See "LRU aging" on page 4-46 for more information about LRU aging.

If you create a unique index on a cache group with the AUTOREFRESH cache group
attribute, the index is changed to a non-unique index to avoid a constraint violation. A
constraint violation could occur with a unique index because conflicting updates could
occur in the same statement execution on the Oracle Database table, while each row
update is executed separately in TimesTen. If the unique index exists on the Oracle
Database table that is being cached, then uniqueness is enforced on the Oracle
Database table and does not need to be verified again in TimesTen.

In Example 4–9, the update_anywhere_customers cache group uses the AUTOREFRESH
cache group attribute.

Altering a cache group to change the AUTOREFRESH mode, interval or state
After creating an autorefresh cache group, you can use an ALTER CACHE GROUP
statement to change the cache group's autorefresh mode, interval or state. You cannot
use ALTER CACHE GROUP to instantiate automatic refresh for a cache group that was
originally created without autorefresh defined.

If you change a cache group's autorefresh state to OFF or drop a cache group that has
an autorefresh operation in progress:

■ The autorefresh operation stops if the setting of the LockWait connection attribute
is greater than 0. The ALTER CACHE GROUP or DROP CACHE GROUP statement
preempts the autorefresh operation.

■ The autorefresh operation continues if the LockWait connection attribute is set to 0.
The ALTER CACHE GROUP or DROP CACHE GROUP statement is blocked until the
autorefresh operation completes or the statement fails with a lock timeout error.

Example 4–11 Altering the autorefresh attributes of a cache group

The following statements change the autorefresh mode, interval and state of the
customer_orders cache group:

ALTER CACHE GROUP customer_orders SET AUTOREFRESH MODE FULL;
ALTER CACHE GROUP customer_orders SET AUTOREFRESH INTERVAL 30 SECONDS;
ALTER CACHE GROUP customer_orders SET AUTOREFRESH STATE ON;

Manually creating Oracle Database objects for autorefresh cache groups
If you manually created the Oracle Database objects used to enforce the predefined
behaviors of an autorefresh cache group as described in "Manually create Oracle

Creating a cache group

4-38 Oracle TimesTen Application-Tier Database Cache User's Guide

Database objects used to manage data caching" on page 3-5, you need to set the
autorefresh state to OFF when creating the cache group.

Then you need to run the ttIsql utility's cachesqlget command with the
INCREMENTAL_AUTOREFRESH option and the INSTALL flag as the cache manager user.
This command generates a SQL*Plus script used to create a log table and a trigger in
the Oracle database for each Oracle Database table that is cached in the autorefresh
cache group. These Oracle Database objects track updates on the cached Oracle
Database tables so that the updates can be automatically refreshed to the cache tables.

Next use SQL*Plus to run the script generated by the ttIsql utility's cachesqlget
command as the sys user. Then use an ALTER CACHE GROUP statement to change the
autorefresh state of the cache group to PAUSED.

Example 4–12 Creating a read-only cache group when Oracle Database objects were
manually created

The first statement creates a read-only cache group customer_orders with the
autorefresh state set to OFF. The SQL*Plus script generated by the ttIsql utility's
cachesqlget command is saved to the /tmp/obj.sql file. The last statement changes
the autorefresh state of the cache group to PAUSED.

CREATE READONLY CACHE GROUP customer_orders
AUTOREFRESH STATE OFF
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> cachesqlget INCREMENTAL_AUTOREFRESH customer_orders INSTALL /tmp/obj.sql;
Command> exit

% sqlplus sys as sysdba
Enter password: password
SQL> @/tmp/obj
SQL> exit

ALTER CACHE GROUP customer_orders SET AUTOREFRESH STATE PAUSED;

Disabling full autorefresh for cache groups
When using incremental autorefresh mode on your cache group, committed updates
on cached Oracle Database tables are tracked in change log tables in the Oracle
database. Under certain error scenarios, it is possible for some change log records to be
deleted (truncated) from the change log table before they are automatically refreshed
to the TimesTen cache tables. If this occurs, TimesTen initiates a full autorefresh on the
cache group.

Some applications choose incremental autorefresh instead of full autorefresh mode for
performance reasons. A full autorefresh can affect performance because:

Creating a cache group

Defining Cache Groups 4-39

■ More rows are refreshed with a full autorefresh.

■ A full autorefresh executes within a single transaction with no parallelism.

If performance is a concern, you can set the DisableFullAutorefresh cache
configuration parameter to 1 to disallow full autorefresh requests for all cache groups
defined with incremental autorefresh. In this case, the initial load for each cache group
requires a manual load.

call ttCacheConfig('DisableFullAutorefresh',,,'1');

You can query the current value of the DisableFullAutorefresh parameter.

call ttCacheConfig('DisableFullAutorefresh');

If a full autorefresh is triggered for a cache group, TimesTen changes the cache group
status to disabled. After which, all autorefresh operations cease on the cache group.
You are notified of this action with a daemon log message.

The TimesTen database status is set to recovering when at least one of its autorefresh
cache groups have an autorefresh status of disabled or recovering. You can check the
state of a database and cache group with the ttCacheDbCgStatus built-in procedure.
The following example shows that:

■ Recovering: Some or all the cache groups with the AUTOREFRESH attribute in the
database are being resynchronized with the Oracle database server. The status of
at least one cache group is recovering.

■ Disabled: The cg1 cache group is disabled.

Command> call ttCacheDbCgStatus('ttuser','cg1');
< recovering, disabled >
1 row found.

When you set the DisableFullAutorefresh cache configuration parameter to 1, then
the DeadDbRecovery cache configuration parameter automatically changes to Manual.
TimesTen restores the original setting for the DeadDbRecovery cache configuration
parameter if you change the DisableFullAutorefresh cache configuration parameter
to 0.

If the autorefresh status of a cache group is either disabled or dead, its cache tables are
no longer being automatically refreshed when updates are committed on the cached
Oracle Database tables. The cache group must be recovered in order to resynchronize
the cache tables with the cached Oracle Database tables.

■ For each cache group whose autorefresh status is disabled, a REFRESH CACHE
GROUP statement must be issued in order to resume autorefresh operations for
these cache groups.

■ For each dynamic cache group whose autorefresh status is disabled, an UNLOAD
CACHE GROUP statement must be issued in order to resume autorefresh operations
for these cache groups.

Note: The default value is 0 for the DisableFullAutorefresh cache
configuration parameter, which specifies the normal full autorefresh
behavior.

Creating a cache group

4-40 Oracle TimesTen Application-Tier Database Cache User's Guide

Example 4–13 Manual refresh of a disabled cache group

Pause autorefresh for the cache group and return the cache group status to OK with the
ALTER CACHE GROUP SET AUTOREFRESH STATE PAUSED statement. Then, manually
request a full refresh with the REFRESH CACHE GROUP statement (optionally, with
parallelism).

ALTER CACHE GROUP cg_static SET AUTOREFRESH STATE PAUSED;
REFRESH CACHE GROUP cg_static COMMIT EVERY 500 ROWS PARALLEL 3;

Example 4–14 Reload dynamic cache group

1. To return the cache group status to OK, pause autorefresh for the cache group with
the ALTER CACHE GROUP SET AUTOREFRESH STATE PAUSED statement.

2. Unload the disabled dynamic cache group with the UNLOAD CACHE GROUP
statement.

3. Optionally, you can load the cache group with the LOAD CACHE GROUP statement
(optionally, with parallelism) or initiate a dynamic load. See "Dynamically loading
a cache instance" on page 5-10 for details on dynamic load requests.

ALTER CACHE GROUP cg_dynamic SET AUTOREFRESH STATE PAUSED;
UNLOAD CACHE GROUP cg_dynamic COMMIT EVERY 500 ROWS;
LOAD CACHE GROUP cg_dynamic COMMIT EVERY 500 ROWS PARALLEL 3;

Using a WHERE clause
A cache table definition in a CREATE CACHE GROUP statement can contain a WHERE clause
to restrict the rows to cache in the TimesTen database for particular cache group types.

You can also specify a WHERE clause in a LOAD CACHE GROUP, UNLOAD CACHE GROUP,
REFRESH CACHE GROUP or FLUSH CACHE GROUP statement for particular cache group
types. Some statements, such as LOAD CACHE GROUP and REFRESH CACHE GROUP, may
result in concatenated WHERE clauses in which the WHERE clause for the cache table
definition is evaluated before the WHERE clause in the LOAD CACHE GROUP or REFRESH
CACHE GROUP statement.

The following restrictions apply to WHERE clauses used in cache table definitions and
cache group operations:

■ WHERE clauses can only be specified in the cache table definitions of a CREATE
CACHE GROUP statement for read-only and user-managed cache groups.

■ A WHERE clause can be specified in a LOAD CACHE GROUP statement except on an
explicitly loaded autorefresh cache group.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the LOAD CACHE GROUP statement.

■ A WHERE clause can be specified in a REFRESH CACHE GROUP statement except on an
autorefresh cache group.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the REFRESH CACHE GROUP statement.

■ A WHERE clause can be specified in a FLUSH CACHE GROUP statement on a
user-managed cache group that allows committed updates on the TimesTen cache
tables to be flushed to the cached Oracle Database tables.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

Creating a cache group

Defining Cache Groups 4-41

■ WHERE clauses in a CREATE CACHE GROUP statement cannot contain a subquery.
Therefore, each WHERE clause cannot reference any table other than the one in its
cache table definition. However, a WHERE clause in a LOAD CACHE GROUP, UNLOAD
CACHE GROUP, REFRESH CACHE GROUP or FLUSH CACHE GROUP statement may contain
a subquery.

■ A WHERE clause in a LOAD CACHE GROUP, REFRESH CACHE GROUP or FLUSH CACHE
GROUP statement can reference only the root table of the cache group, unless the
WHERE clause contains a subquery.

■ WHERE clauses in the cache table definitions are only enforced when the cache
group is manually loaded or refreshed, or the cache tables are dynamically loaded.
If a cache table is updatable, you can insert or update a row such that the WHERE
clause in the cache table definition for that row is not satisfied.

■ All tables and columns referenced in WHERE clauses when creating, loading,
refreshing, unloading or flushing the cache group must be fully qualified. For
example:

user_name.table_name and user_name.table_name.column_name

In Example 4–10, both the oratt.active_customer and oratt.orderdetails tables
contain a WHERE clause.

Proper placement of WHERE clause in a CREATE CACHE GROUP statement
In a multiple-table cache group, a WHERE clause in a particular table definition should
not reference any table in the cache group other than the table itself. For example, the
following CREATE CACHE GROUP statements are valid:

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num))
 WHERE (oratt.customer.cust_num < 100),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));
 WHERE (oratt.orders.cust_num < 100)

Creating a cache group

4-42 Oracle TimesTen Application-Tier Database Cache User's Guide

The following statement is not valid because the WHERE clause in the child table's
definition references its parent table:

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num))
 WHERE (oratt.customer.cust_num < 100);

Similarly, the following statement is not valid because the WHERE clause in the parent
table's definition references its child table:

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num))
 WHERE (oratt.orders.cust_num < 100),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));

Referencing Oracle Database PL/SQL functions in a WHERE clause
A user-defined PL/SQL function in the Oracle database can be invoked indirectly in a
WHERE clause within a CREATE CACHE GROUP, LOAD CACHE GROUP, or REFRESH CACHE
GROUP (for dynamic cache groups only) statement. After creating the function, create a
public synonym for the function. Then grant the EXECUTE privilege on the function to
PUBLIC.

For example, in the Oracle database:

CREATE OR REPLACE FUNCTION get_customer_name
(c_num oratt.customer.cust_num%TYPE) RETURN VARCHAR2 IS
c_name oratt.customer.name%TYPE;
BEGIN
 SELECT name INTO c_name FROM oratt.customer WHERE cust_num = c_num;
 RETURN c_name;
END get_customer_name;

CREATE PUBLIC SYNONYM retname FOR get_customer_name;
GRANT EXECUTE ON get_customer_name TO PUBLIC;

Creating a cache group

Defining Cache Groups 4-43

Then in the TimesTen database, for example, you can create a cache group with a
WHERE clause that references the Oracle Database public synonym that was created for
the function:

CREATE READONLY CACHE GROUP top_customer
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num))
WHERE name = retname(100);

For cache group types that allow a WHERE clause on a LOAD CACHE GROUP or REFRESH
CACHE GROUP statement, you can invoke the function indirectly by referencing the
public synonym that was created for the function. For example, you can use the
following LOAD CACHE GROUP statement to load the AWT cache group new_customers:

LOAD CACHE GROUP new_customers WHERE name = retname(101) COMMIT EVERY 0 ROWS;

ON DELETE CASCADE cache table attribute
The ON DELETE CASCADE cache table attribute can be specified for cache tables in any
cache group type. ON DELETE CASCADE specifies that when rows containing referenced
key values are deleted from a parent table, rows in child tables with dependent foreign
keys are also deleted.

Example 4–15 Using the ON DELETE CASCADE cache table attribute

The following statement uses the ON DELETE CASCADE cache table attribute on the child
table's foreign key definition:

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num) ON DELETE CASCADE);

All paths from a parent table to a child table must be either "delete" paths or "do not
delete" paths. There cannot be some "delete" paths and some "do not delete" paths
from a parent table to a child table. Specify the ON DELETE CASCADE cache table
attribute for child tables on a "delete" path.

The following restrictions apply when using the ON DELETE CASCADE cache table
attribute:

■ For AWT and SWT cache groups, and for TimesTen cache tables in user-managed
cache groups that use the PROPAGATE cache table attribute, foreign keys in cache
tables that use the ON DELETE CASCADE cache table attribute must be a proper
subset of the foreign keys in the cached Oracle Database tables that use the ON
DELETE CASCADE attribute. ON DELETE CASCADE actions on the cached Oracle

Caching Oracle Database synonyms

4-44 Oracle TimesTen Application-Tier Database Cache User's Guide

Database tables are applied to the TimesTen cache tables as individual deletes. ON
DELETE CASCADE actions on the cache tables are applied to the cached Oracle
Database tables as a cascaded operation.

■ Matching of foreign keys between the TimesTen cache tables and the cached
Oracle Database tables is enforced only when the cache group is being created. A
cascade delete operation may not work if the foreign keys on the cached Oracle
Database tables are altered after the cache group is created.

See the CREATE CACHE GROUP statement in Oracle TimesTen In-Memory Database SQL
Reference for more information about the ON DELETE CASCADE cache table attribute.

UNIQUE HASH ON cache table attribute
The UNIQUE HASH ON cache table attribute can be specified for cache tables in any cache
group type. UNIQUE HASH ON specifies that a hash index rather than a range index is
created on the primary key columns of the cache table. The columns specified in the
hash index must be identical to the columns in the primary key. The UNIQUE HASH ON
cache table attribute is also used to specify the size of the hash index.

Example 4–16 Using the UNIQUE HASH ON cache table attribute

The following statement uses the UNIQUE HASH ON cache table attribute on the cache
table's definition.

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num))
 UNIQUE HASH ON (cust_num) PAGES = 100;

See the CREATE CACHE GROUP statement in Oracle TimesTen In-Memory Database SQL
Reference for more information about the UNIQUE HASH ON cache table attribute.

Caching Oracle Database synonyms
You can cache a private synonym in an AWT, SWT or user-managed cache group that
does not use the AUTOREFRESH cache group attribute. The private synonym can
reference a public or private synonym, but it must eventually reference a table because
it is the table that is actually being cached.

The table that is directly or indirectly referenced by the cached synonym can be owned
by a user other than the Oracle Database user with the same name as the owner of the
cache group that caches the synonym. The table must reside in the same Oracle
database as the synonym. The cached synonym itself must be owned by the Oracle
Database user with the same name as the owner of the cache group that caches the
synonym.

Caching Oracle Database LOB data
You can cache Oracle Database large object (LOB) data in TimesTen cache groups.
TimesTen caches the data as follows:

■ Oracle Database CLOB data is cached as TimesTen VARCHAR2 data.

■ Oracle Database BLOB data is cached as TimesTen VARBINARY data.

Caching Oracle Database LOB data

Defining Cache Groups 4-45

■ Oracle Database NCLOB data is cached as TimesTen NVARCHAR2 data.

Example 4–17 Caching Oracle Database LOB data

Create a table in the Oracle database that has LOB fields.

CREATE TABLE t (
 i INT NOT NULL PRIMARY KEY
 , c CLOB
 , b BLOB
 , nc NCLOB);

Insert values into the Oracle Database table. The values are implicitly converted to
TimesTen VARCHAR2, VARBINARY, OR NVARCHAR2 data types.

INSERT INTO t VALUES (1
 , RPAD('abcdefg8', 2048, 'abcdefg8')
 , HEXTORAW(RPAD('123456789ABCDEF8', 4000, '123456789ABCDEF8'))
 , RPAD('abcdefg8', 2048, 'abcdefg8')
);

1 row inserted.

Create a dynamic AWT cache group and start the replication agent.

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP cg1
 FROM t
 (i INT NOT NULL PRIMARY KEY
 , c VARCHAR2(4194303)
 , b VARBINARY(4194303)
 , nc NVARCHAR2(2097152));

CALL ttrepstart;

Load the data dynamically into the TimesTen cache group.

SELECT * FROM t WHERE i = 1;

I: 1
C: abcdefg8abcdefg8abcdefg8...
B: 123456789ABCDEF8123456789...
NC: abcdefg8abcdefg8abcdefg8...

1 row found.

Restrictions on caching Oracle Database LOB data
These restrictions apply to caching Oracle Database LOB data in TimesTen cache
groups:

■ Column size is enforced when a cache group is created. VARBINARY, VARCHAR2 and
NVARCHAR2 data types have a size limit of 4 megabytes. Values that exceed the
user-defined column size are truncated at run time without notification.

■ Empty values in fields with CLOB and BLOB data types are initialized but not
populated with data. Empty CLOB and BLOB fields are treated as follows:

– Empty LOB fields in the Oracle database are returned as NULL values.

– Empty VARCHAR2 and VARBINARY fields in the TimesTen cache are propagated
as NULL values.

Implementing aging in a cache group

4-46 Oracle TimesTen Application-Tier Database Cache User's Guide

In addition, cache groups that are configured for autorefresh operations have these
restrictions on caching LOB data:

■ When LOB data is updated in the Oracle database by OCI functions or the DBMS_
LOB PL/SQL package, the data is not automatically refreshed in the TimesTen
cache group. This occurs because TimesTen caching depends on Oracle Database
triggers, and Oracle Database triggers are not executed when these types of
updates occur. TimesTen does not notify the user that updates have occurred
without being refreshed in TimesTen. When the LOB data is updated in the Oracle
database through a SQL statement, a trigger is fired and autorefresh brings in the
change.

■ Autorefresh operations update a complete row in the TimesTen cache. Thus, the
cached data may appear to be updated in TimesTen when no change has occurred
in the LOB data in the Oracle database.

Implementing aging in a cache group
You can define an aging policy for a cache group that specifies the aging type, the
aging attributes, and the aging state. TimesTen supports two aging types, least recently
used (LRU) aging and time-based aging.

LRU aging deletes the least recently used or referenced data based on a specified
database usage range. Time-based aging deletes data based on a specified data lifetime
and frequency of the aging process. You can use both LRU and time-based aging in the
same TimesTen database, but you can define only one aging policy for a particular
cache group.

An aging policy is specified in the cache table definition of the root table in a CREATE
CACHE GROUP statement and applies to all cache tables in the cache group because
aging is performed at the cache instance level. When rows are deleted from the cache
tables by aging out, the rows in the cached Oracle Database table are not deleted.

You can add an aging policy to a cache group by using an ALTER TABLE statement on
the root table. You can change the aging policy of a cache group by using ALTER TABLE
statements on the root table to drop the existing aging policy and then add a new
aging policy.

This section describes cache group definitions that contain an aging policy. The topics
include:

■ LRU aging

■ Time-based aging

■ Manually scheduling an aging process

■ Configuring a sliding window

LRU aging
LRU aging enables you to maintain the amount of memory used in a TimesTen
database within a specified threshold by deleting the least recently used data. LRU
aging can be defined for all cache group types except explicitly loaded autorefresh
cache groups. LRU aging is defined by default on dynamic cache groups.

Define an LRU aging policy for a cache group by using the AGING LRU clause in the
cache table definition of the CREATE CACHE GROUP statement. Aging occurs
automatically if the aging state is set to its default of ON.

Implementing aging in a cache group

Defining Cache Groups 4-47

Example 4–18 Defining an LRU aging policy on a cache group

The following statement defines an LRU aging policy on the AWT cache group new_
customers:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num))
AGING LRU ON;

Use the ttAgingLRUConfig built-in procedure to set the LRU aging attributes as a user
with the ADMIN privilege. The attribute settings apply to all tables in the TimesTen
database that have an LRU aging policy defined and an aging state of ON.

The following are the LRU aging attributes:

■ LowUsageThreshold: The TimesTen database's space usage (the ratio of the
permanent region's in-use size over the region's allocated size) at or below which
LRU aging is deactivated. The default low usage threshold is .8 (80 percent).

■ HighUsageThreshold: The TimesTen database's space usage above which LRU
aging is activated. The default high usage threshold is .9 (90 percent).

■ AgingCycle: The frequency in which aging occurs, in minutes. The default aging
cycle is 1 minute.

Example 4–19 Setting the LRU aging attributes

The following built-in procedure call specifies that the aging process checks every 5
minutes to see if the TimesTen database's permanent region space usage is above 95
percent. If it is, the least recently used data is automatically aged out or deleted until
the space usage is at or below 75 percent.

Command> CALL ttAgingLRUConfig(.75, .95, 5);

If you set a new value for AgingCycle after an LRU aging policy has been defined on a
cache group, the next time aging occurs is based on the current system time and the
new aging cycle. For example, if the original aging cycle was 15 minutes and LRU
aging occurred 10 minutes ago, aging is expected to occur again in 5 minutes.
However, if you change the aging cycle to 30 minutes, aging next occurs 30 minutes
from the time you call the ttAgingLRUConfig built-in procedure with the new aging
cycle setting.

If a row has been accessed or referenced since the last aging cycle, it is not eligible for
LRU aging in the current aging cycle. A row is considered to be accessed or referenced
if at least one of the following is true:

■ The row is used to build the result set of a SELECT or an INSERT ... SELECT
statement.

■ The row has been marked to be updated or deleted in a pending transaction.

In a multiple-table cache group, if a row in a child table has been accessed or
referenced since the last aging cycle, then neither the related row in the parent table
nor the row in the child table is eligible for LRU aging in the current aging cycle.

The ALTER TABLE statement can be used to perform the following tasks associated with
changing or defining an LRU aging policy on a cache group:

Implementing aging in a cache group

4-48 Oracle TimesTen Application-Tier Database Cache User's Guide

■ Change the aging state of a cache group by specifying the root table and using the
SET AGING clause.

■ Add an LRU aging policy to a cache group that has no aging policy defined by
specifying the root table and using the ADD AGING LRU clause.

■ Drop the LRU aging policy on a cache group by specifying the root table and using
the DROP AGING clause.

To change the aging policy of a cache group from LRU to time-based, use an ALTER
TABLE statement on the root table with the DROP AGING clause to drop the LRU aging
policy. Then use an ALTER TABLE statement on the root table with the ADD AGING USE
clause to add a time-based aging policy.

You must stop the cache agent before you add, alter or drop an aging policy on an
autorefresh cache group.

Time-based aging
Time-based aging deletes data from a cache group based on the aging policy's
specified data lifetime and frequency. Time-based aging can be defined for all cache
group types.

Define a time-based aging policy for a cache group by using the AGING USE clause in
the cache table definition of the CREATE CACHE GROUP statement. Aging occurs
automatically if the aging state is set to its default of ON.

The definitions of the Oracle Database tables that are to be cached in the AWT cache
group defined in Example 4–21 are defined in Example 4–20. The Oracle Database
tables are owned by the schema user oratt. The oratt user must be granted the
CREATE SESSION and RESOURCE privileges before it can create tables.

Example 4–20 Oracle Database table definitions

CREATE TABLE orders
(ord_num NUMBER(10) NOT NULL PRIMARY KEY,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL);

CREATE TABLE order_item
(orditem_id NUMBER(12) NOT NULL PRIMARY KEY,
 ord_num NUMBER(10),
 prod_num VARCHAR2(6),
 quantity NUMBER(3));

The companion Oracle Database user of the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.orders and oratt.order_item tables in
order for the cache manager user to create an AWT cache group that caches these
tables. The cache administration user must be granted the INSERT, UPDATE and DELETE
Oracle Database privileges for the oratt.orders and oratt.order_item tables for
asynchronous writethrough operations to be applied on the Oracle Database.

Example 4–21 Defining a time-based aging policy on a cache group

The following statement defines a time-based aging policy on the AWT cache group
ordered_items:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP ordered_items
FROM oratt.orders
 (ord_num NUMBER(10) NOT NULL,

Implementing aging in a cache group

Defining Cache Groups 4-49

 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num))
AGING USE when_placed LIFETIME 45 DAYS CYCLE 60 MINUTES ON,
oratt.order_item
 (orditem_id NUMBER(12) NOT NULL,
 ord_num NUMBER(10),
 prod_num VARCHAR2(6),
 quantity NUMBER(3),
 PRIMARY KEY(orditem_id),
 FOREIGN KEY(ord_num) REFERENCES oratt.orders(ord_num));

Cache instances that are greater than 45 days old based on the difference between the
current system timestamp and the timestamp in the when_placed column of the
oratt.orders table are candidates for aging. The aging process checks every 60
minutes to see if there are cache instances that can be automatically aged out or
deleted from the cache tables.

The AGING USE clause requires the name of a non-nullable TIMESTAMP or DATE column
used for time-based aging. We refer to this column as the timestamp column.

For each row, the value in the timestamp column stores the date and time when the
row was most recently inserted or updated. The values in the timestamp column is
maintained by your application. If the value of this column is unknown for particular
rows and you do not want those rows to be aged out of the table, define the timestamp
column with a large default value.

You can create an index on the timestamp column to optimize performance of the
aging process.

You cannot add a column to an existing table and then use that column as the
timestamp column because added columns cannot be defined as non-nullable. You
cannot drop the timestamp column from a table that has a time-based aging policy
defined.

Specify the lifetime in days, hours, minutes or seconds after the LIFETIME keyword in
the AGING USE clause.

The value in the timestamp column is subtracted from the current system timestamp.
The result is then truncated to the specified lifetime unit (day, hour, minute, second)
and compared with the specified lifetime value. If the result is greater than the lifetime
value, the row is a candidate for aging.

After the CYCLE keyword, specify the frequency in which aging occurs in days, hours,
minutes or seconds. The default aging cycle is 5 minutes. If you specify an aging cycle
of 0, aging is continuous.

The ALTER TABLE statement can be used to perform the following tasks associated with
changing or defining a time-based aging policy on a cache group:

■ Change the aging state of a cache group by specifying the root table and using the
SET AGING clause.

■ Change the lifetime by specifying the root table and using the SET AGING
LIFETIME clause.

■ Change the aging cycle by specifying the root table and using the SET AGING
CYCLE clause.

■ Add a time-based aging policy to a cache group that has no aging policy defined
by specifying the root table and using the ADD AGING USE clause.

Implementing aging in a cache group

4-50 Oracle TimesTen Application-Tier Database Cache User's Guide

■ Drop the time-based aging policy on a cache group by specifying the root table
and using the DROP AGING clause.

To change the aging policy of a cache group from time-based to LRU, use an ALTER
TABLE statement on the root table with the DROP AGING clause to drop the time-based
aging policy. Then use an ALTER TABLE statement on the root table with the ADD AGING
LRU clause to add an LRU aging policy.

You must stop the cache agent before you add, alter or drop an aging policy on an
autorefresh cache group.

Manually scheduling an aging process
Use the ttAgingScheduleNow built-in procedure to manually start a one-time aging
process on a specified table or on all tables that have an aging policy defined. The
aging process starts as soon as you call the built-in procedure unless there is already
an aging process in progress. Otherwise the manually started aging process begins
when the aging process that is in progress has completed. After the manually started
aging process has completed, the start of the table's next aging cycle is set to the time
when ttAgingScheduleNow was called if the table's aging state is ON.

Example 4–22 Starting a one-time aging process

The following built-in procedure call starts a one-time aging process on the
oratt.orders table based on the time ttAgingScheduleNow is called:

Command> CALL ttAgingScheduleNow('oratt.orders');

Rows in the oratt.orders root table that are candidates for aging are deleted as well
as related rows in the oratt.order_item child table.

When you call the ttAgingScheduleNow built-in procedure, the aging process starts
regardless of whether the table's aging state is ON or OFF. If you want to start an aging
process on a particular cache group, specify the name of the cache group's root table
when you call the built-in procedure. If the ttAgingScheduleNow built-in procedure is
called with no parameters, it starts an aging process and then resets the start of the
next aging cycle on all tables in the TimesTen database that have an aging policy
defined.

Calling the ttAgingScheduleNow built-in procedure does not change the aging state of
any table. If a table's aging state is OFF when you call the built-in procedure, the aging
process starts, but it is not scheduled to run again after the process has completed. To
continue aging a table whose aging state is OFF, you must call ttAgingScheduleNow
again or change the table's aging state to ON.

To manually control aging on a cache group, disable aging on the root table by using
an ALTER TABLE statement with the SET AGING OFF clause. Then call
ttAgingScheduleNow to start an aging process on the cache group.

Configuring a sliding window
You can use time-based aging to implement a sliding window for a cache group. In a
sliding window configuration, new rows are inserted into and old rows are deleted
from the cache tables on a regular schedule so that the tables contain only the data that
satisfies a specific time interval.

You can configure a sliding window for a cache group by using incremental
autorefresh mode and defining a time-based aging policy. The autorefresh operation
checks the timestamp of the rows in the cached Oracle Database tables to determine

Dynamic cache groups

Defining Cache Groups 4-51

whether new data should be refreshed into the TimesTen cache tables. The system time
and the time zone must be identical on the Oracle Database and TimesTen systems.

If the cache group does not use incremental autorefresh mode, you can configure a
sliding window by using a LOAD CACHE GROUP, REFRESH CACHE GROUP, or INSERT
statement, or a dynamic load operation to bring new data into the cache tables.

Example 4–23 Defining a cache group with sliding window properties

The following statement configures a sliding window on the read-only cache group
recent_shipped_orders:

CREATE READONLY CACHE GROUP recent_shipped_orders
AUTOREFRESH MODE INCREMENTAL INTERVAL 1440 MINUTES STATE ON
FROM oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num))
AGING USE when_shipped LIFETIME 30 DAYS CYCLE 24 HOURS ON;

New data in the oratt.orders cached Oracle Database table are automatically
refreshed into the oratt.orders TimesTen cache table every 1440 minutes. Cache
instances that are greater than 30 days old based on the difference between the current
system timestamp and the timestamp in the when_shipped column are candidates for
aging. The aging process checks every 24 hours to see if there are cache instances that
can be aged out of the cache tables. Therefore, this cache group stores orders that have
been shipped within the last 30 days.

The autorefresh interval and the lifetime used for aging determine the duration that
particular rows remain in the cache tables. It is possible for data to be aged out of the
cache tables before it has been in the cache tables for its lifetime. For example, for a
read-only cache group if the autorefresh interval is 3 days and the lifetime is 30 days,
data that is already 3 days old when it is refreshed into the cache tables is deleted after
27 days because aging is based on the timestamp stored in the rows of the cached
Oracle Database tables that gets loaded into the TimesTen cache tables, not when the
data is refreshed into the cache tables.

Dynamic cache groups
The data in a dynamic cache group is loaded on demand. For example, a call center
application may not want to preload all of its customers' information into TimesTen as
it may be very large. Instead it can use a dynamic cache group so that a specific
customer's information is loaded only when needed such as when the customer calls
or logs onto the system.

Any system managed cache group type (read-only, AWT, SWT) can be defined as a
dynamic cache group. A user-managed cache group can be defined as a dynamic cache
group unless it uses both the AUTOREFRESH cache group attribute and the PROPAGATE
cache table attribute.

Use the CREATE DYNAMIC CACHE GROUP statement to create a dynamic cache group.

Example 4–24 Dynamic read-only cache group

This following statement creates a dynamic read-only cache group online_customers
that caches the oratt.customer table:

CREATE DYNAMIC READONLY CACHE GROUP online_customers

Dynamic cache groups

4-52 Oracle TimesTen Application-Tier Database Cache User's Guide

FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num));

With an explicitly loaded cache group, data is initially loaded into the cache tables
from the cached Oracle Database tables using a LOAD CACHE GROUP statement. With a
dynamic cache group, data may also be loaded into the cache tables using a LOAD
CACHE GROUP statement. However, with a dynamic cache group, data is typically
loaded automatically when its cache tables are referenced by a SELECT, INSERT, or
UPDATE statement and the data is not found in the tables resulting in a cache miss. See
"Dynamically loading a cache instance" on page 5-10 for more information.

With both explicitly loaded and dynamic cache groups, a LOAD CACHE GROUP statement
loads into their cache tables qualified data that exists in the cached Oracle Database
tables but not in the TimesTen cache tables. However, if a row exists in a cache table
but a newer version exists in the cached Oracle Database table, a LOAD CACHE GROUP
statement does not load that row into the cache table even if it satisfies the predicate of
the statement.

By contrast, a REFRESH CACHE GROUP statement reloads qualifying rows that exists in
the cache tables, effectively refreshing the content of the cache. For an explicitly loaded
cache group, the rows that are refreshed are all the rows that satisfy the predicate of
the REFRESH CACHE GROUP statement. However, for a dynamic cache group, the rows
that are refreshed are the ones that satisfy the predicate and already exist in the cache
tables. In other words, rows that end up being refreshed are the ones that have been
updated or deleted in the cached Oracle Database table, but not the ones that have
been inserted. Therefore, a refresh operation processes only the rows that are already
in the cache tables. No new rows are loaded into the cache tables of a dynamic cache
group as a result of a refresh.

The data in the cache instance of a dynamic read-only cache group is consistent with
the data in the corresponding rows of the Oracle Database tables. At any instant in
time, the data in a cache instance of an explicitly loaded cache group is consistent with
the data in the corresponding rows of the Oracle Database tables, taking into
consideration the state and the interval settings for autorefresh.

The data in a dynamic cache group is subject to aging as LRU aging is defined by
default. You can use the ttAgingLRUConfig built-in procedure to override the default
or current LRU aging attribute settings for the aging cycle and TimesTen database
space usage thresholds. Alternatively, you can define time-based aging on a dynamic
cache group to override LRU aging. Rows in a dynamic AWT cache group must be
propagated to the Oracle database before they become candidates for aging.

Note: If you have a dynamic read-only cache group with incremental
autorefresh, you can reduce contention and improve performance by
enabling the DynamicLoadReduceContention database system
parameter. See "Reducing contention on TimesTen for dynamic
read-only cache groups with incremental autorefresh" on page 7-10 for
more details.

Replicating cache tables

Defining Cache Groups 4-53

Replicating cache tables
To achieve high availability, configure an active standby pair replication scheme for
cache tables in a read-only cache group or an AWT cache group.

An active standby pair that replicates cache tables from one of these cache group types
can automatically change the role of a TimesTen database as part of failover and
recovery with minimal chance of data loss. Cache groups themselves provide
resilience from Oracle database outages, further strengthening system availability. An
active standby pair replication scheme provides for high availability of a TimesTen
database.

Oracle Real Application Clusters (Oracle RAC) provides for high availability of an
Oracle database. For more information about using TimesTen Cache in an Oracle RAC
environment, see "Using TimesTen Cache in an Oracle RAC Environment" on page 9-1.

Perform the following tasks to configure an active standby pair for TimesTen
databases that cache Oracle Database tables:

■ Create and configure the active database

■ Create and configure the standby database

■ Create and configure the read-only subscriber database

Create and configure the active database
The following is the definition of the cacheactive DSN for the active database of the
active standby pair:

[cacheactive]
DataStore=/users/OracleCache/cacheact
PermSize=64
OracleNetServiceName=orcl
DatabaseCharacterSet=WE8ISO8859P1

Start the ttIsql utility and connect to the cacheactive DSN as the instance
administrator to create the database. Then create the cache manager user cacheuser
whose name is the same as a companion Oracle Database user. In this example, the
cache administration user is acting as the companion Oracle Database user.

Then create a cache table user oratt whose name is the same as the Oracle Database
schema user who owns the Oracle Database tables to be cached in the TimesTen
database.

% ttIsql cacheactive
Command> CREATE USER cacheuser IDENTIFIED BY timesten;
Command> CREATE USER oratt IDENTIFIED BY timesten;

As the instance administrator, use the ttIsql utility to grant the cache manager user
cacheuser the privileges required to perform the operations listed in Example 3–8 as

Note: This section describes one scenario in including cache groups
within an active standby pair replication scheme. See "Administering
an Active Standby Pair with Cache Groups" in Oracle TimesTen
In-Memory Database Replication Guide for more scenarios for including
AWT and read-only cache groups in an active standby pair replication
scheme.

Replicating cache tables

4-54 Oracle TimesTen Application-Tier Database Cache User's Guide

well as create an active standby pair replication scheme which requires the ADMIN
privilege:

Command> GRANT CREATE SESSION, CACHE_MANAGER,
 CREATE ANY TABLE, ADMIN TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cacheactive DSN as the cache manager
user. Set the cache administration user name and password by calling the
ttCacheUidPwdSet built-in procedure.

% ttIsql "DSN=cacheactive;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheUidPwdSet('cacheuser','oracle');

If desired, you can test the connectivity between the active database and the Oracle
database using the instructions stated in "Testing the connectivity between the
TimesTen and Oracle databases" on page 3-10.

Start the cache agent on the active database by calling the ttCacheStart built-in
procedure as the cache manager user:

Command> CALL ttCacheStart;

The following statement is the definition of the Oracle Database table that is to be
cached in a dynamic AWT cache group. The Oracle Database table is owned by the
schema user oratt. The oratt user must be granted the CREATE SESSION and RESOURCE
privileges before it can create tables.

CREATE TABLE subscriber
(subscriberid NUMBER(10) NOT NULL PRIMARY KEY,
 name VARCHAR2(100) NOT NULL,
 minutes_balance NUMBER(5) NOT NULL,
 last_call_duration NUMBER(4) NOT NULL);

The Oracle Database user with the same name as the TimesTen cache manager user
must be granted the SELECT privilege on the oratt.subscriber table so that the cache
manager user can create an AWT cache group that caches this table. The cache
administration user must be granted the INSERT, UPDATE and DELETE Oracle Database
privileges for the oratt.subscriber table for asynchronous writethrough operations
to be applied to the Oracle Database.

Then, create cache groups in the TimesTen database with the CREATE DYNAMIC
ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement as the cache manager user. For
example, the following statement creates a dynamic AWT cache group subscriber_
accounts that caches the oratt.subscriber table:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP subscriber_accounts
FROM oratt.subscriber
 (subscriberid NUMBER(10) NOT NULL PRIMARY KEY,
 name VARCHAR2(100) NOT NULL,
 minutes_balance NUMBER(5) NOT NULL,
 last_call_duration NUMBER(4) NOT NULL);

As the cache manager user, create an active standby pair replication scheme in the
active database using a CREATE ACTIVE STANDBY PAIR statement.

In the following example, cacheact, cachestand and subscr are the file name prefixes
of the checkpoint and transaction log files of the active database, standby database and
read-only subscriber database. sys3, sys4 and sys5 are the host names of the TimesTen
systems where the active database, standby database and read-only subscriber
database reside, respectively.

Replicating cache tables

Defining Cache Groups 4-55

Command> CREATE ACTIVE STANDBY PAIR cacheact ON "sys3", cachestand ON "sys4"
 SUBSCRIBER subscr ON "sys5";

As the cache manager user, start the replication agent on the active database by calling
the ttRepStart built-in procedure. Then declare the database as the active by calling
the ttRepStateSet built-in procedure.

Command> CALL ttRepStart;
Command> CALL ttRepStateSet('active');

Create and configure the standby database
The following is the definition of the cachestandby DSN for the standby database of
the active standby pair:

[cachestandby]
DataStore=/users/OracleCache/cachestand
PermSize=64
OracleNetServiceName=orcl
DatabaseCharacterSet=WE8ISO8859P1

As the instance administrator, create the standby database as a duplicate of the active
database by running a ttRepAdmin -duplicate utility command from the standby
database system. The instance administrator user name of the active database's and
standby database's instances must be identical.

Use the -keepCG option so that cache tables in the active database are duplicated as
cache tables in the standby database, because the standby database is connected with
the Oracle database.

In the following example:

■ The -from option specifies the file name prefix of the active database's checkpoint
and transaction log files.

■ The -host option specifies the host name of the TimesTen system where the active
database resides.

■ The -uid and -pwd options specify a user name and password of a TimesTen
internal user defined in the active database that has been granted the ADMIN
privilege.

■ The -cacheuid and -cachepwd options specify the cache administration user name
and password.

■ cachestandby is the DSN of the standby database.

■ The -keepCG option specifies that the standby database keeps the cache groups
defined on the active database.

% ttRepAdmin -duplicate -from cacheact -host "sys3" -uid cacheuser -pwd timesten
 -cacheuid cacheuser -cachepwd oracle -keepCG cachestandby

Start the ttIsql utility and connect to the cachestandby DSN as the cache manager
user. Set the cache administration user name and password by calling the
ttCacheUidPwdSet built-in procedure.

% ttIsql "DSN=cachestandby;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheUidPwdSet('cacheuser','oracle');

If desired, you can test the connectivity between the standby database and the Oracle
database using the instructions stated in "Testing the connectivity between the
TimesTen and Oracle databases" on page 3-10.

Replicating cache tables

4-56 Oracle TimesTen Application-Tier Database Cache User's Guide

Start the cache agent on the standby database by calling the ttCacheStart built-in
procedure as the cache manager user:

Command> CALL ttCacheStart;

As the cache manager user, start the replication agent on the standby database by
calling the ttRepStart built-in procedure.

Command> CALL ttRepStart;

Create and configure the read-only subscriber database
The following is the definition of the rosubscriber DSN for the read-only subscriber
database of the active standby pair:

[rosubscriber]
DataStore=/users/OracleCache/subscr
PermSize=64
DatabaseCharacterSet=WE8ISO8859P1

As the instance administrator, create the read-only subscriber database as a duplicate
of the standby database by running a ttRepAdmin -duplicate utility command from
the read-only subscriber database system. The instance administrator user name of the
standby database and read-only subscriber database must be identical.

Use the -noKeepCG option so that cache tables in the standby database are duplicated
as regular tables in the read-only subscriber database because the read-only subscriber
database is not connected with the Oracle database.

In the following example:

■ The -from option specifies the file name prefix of the standby database's
checkpoint and transaction log files.

■ The -host option specifies the host name of the TimesTen system where the
standby database resides.

■ The -uid and -pwd options specify a user name and password of a TimesTen
internal user defined in the standby database that has been granted the ADMIN
privilege.

■ rosubscriber is the DSN of the read-only subscriber database.

% ttRepAdmin -duplicate -from cachestand -host "sys4" -uid cacheuser -pwd timesten
 -noKeepCG rosubscriber

As the cache manager user, start the replication agent on the read-only subscriber
database by calling the ttRepStart built-in procedure.

% ttIsql "DSN=rosubscriber;UID=cacheuser;PWD=timesten"
Command> CALL ttRepStart;
Command> exit

5

Cache Group Operations 5-1

5Cache Group Operations

The following sections describe operations that can be performed on cache groups:

■ Transmitting updates between the TimesTen and Oracle databases

■ Loading and refreshing a cache group

■ Dynamically loading a cache instance

■ Flushing a user managed cache group

■ Unloading a cache group

■ Setting a passthrough level

Transmitting updates between the TimesTen and Oracle databases
You can use the following SQL statements to manually transmit committed updates
between the TimesTen cache tables and the cached Oracle Database tables:

For AWT, SWT, and user managed cache groups that use the PROPAGATE cache table
attribute, committed updates on the TimesTen cache tables are automatically
propagated to the cached Oracle Database tables.

See "Asynchronous WriteThrough (AWT) cache group" on page 4-11 for more
information about AWT cache groups.

See "Synchronous WriteThrough (SWT) cache group" on page 4-25 for more
information about SWT cache groups.

Note: You can use SQL statements or SQL Developer to perform
most of the operations in this chapter. For more information about
SQL Developer, see Oracle SQL Developer Oracle TimesTen In-Memory
Database Support User's Guide.

SQL statement Description

LOAD CACHE GROUP Load cache instances that are not in the TimesTen cache tables
from the cached Oracle Database tables.

REFRESH CACHE GROUP Replace cache instances in the TimesTen cache tables with
current data from the cached Oracle Database tables.

FLUSH CACHE GROUP Propagate committed updates on the TimesTen cache tables to
the cached Oracle Database tables. Only applicable for user
managed cache groups.

Loading and refreshing a cache group

5-2 Oracle TimesTen Application-Tier Database Cache User's Guide

See "PROPAGATE cache table attribute" on page 4-29 for more information about
using the PROPAGATE cache table attribute on cache tables in a user managed cache
group.

The AUTOREFRESH cache group attribute can be used in a read-only or a user managed
cache group to automatically refresh committed updates on cached Oracle Database
tables into the TimesTen cache tables. Automatic refresh can be defined on explicitly
loaded or dynamic cache groups.

See "AUTOREFRESH cache group attribute" on page 4-34 for more information about
automatically refreshing a cache group.

Data is manually preloaded into the cache tables of explicitly loaded cache groups. For
dynamic cache groups, data is loaded on demand into the cache tables. A cache
instance is automatically loaded from the cached Oracle Database tables when a
particular statement does not find the data in the cache tables.

See "Dynamically loading a cache instance" on page 5-10 for more information about a
dynamic load operation.

Dynamic cache groups are typically configured to automatically age out from the
cache tables data that is no longer being used.

Loading and refreshing a cache group
You can manually insert or update cache instances in the TimesTen cache tables from
the cached Oracle Database tables using either a LOAD CACHE GROUP or REFRESH CACHE
GROUP statement. The differences between loading and refreshing a cache group are:

■ LOAD CACHE GROUP only loads committed inserts on the cached Oracle Database
tables into the TimesTen cache tables. New cache instances are loaded into the
cache tables, but cache instances that already exist in the cache tables are not
updated or deleted even if the corresponding rows in the cached Oracle Database
tables have been updated or deleted. A load operation is primarily used to initially
populate a cache group.

■ REFRESH CACHE GROUP replaces cache instances in the TimesTen cache tables with
the most current data from the cached Oracle Database tables including cache
instances that are already exist in the cache tables. A refresh operation is primarily
used to update the contents of a cache group with committed updates on the
cached Oracle Database tables after the cache group has been initially populated.

For an explicitly loaded cache group, a refresh operation is equivalent to issuing
an UNLOAD CACHE GROUP statement followed by a LOAD CACHE GROUP statement on
the cache group. In effect, all committed inserts, updates and deletes on the cached
Oracle Database tables are refreshed into the cache tables. New cache instances
may be loaded into the cache tables. Cache instances that already exist in the cache
tables are updated or deleted if the corresponding rows in the cached Oracle
Database tables have been updated or deleted. See "Unloading a cache group" on
page 5-16 for more information about the UNLOAD CACHE GROUP statement.

For a dynamic cache group, a refresh operation only refreshes committed updates
and deletes on the cached Oracle Database tables into the cache tables because
only existing cache instances in the cache tables are refreshed. New cache instances
are not loaded into the cache tables so after the refresh operation completes, the
cache tables contain either the same or fewer number of cache instances. To load
new cache instances into the cache tables of a dynamic cache group, use a LOAD
CACHE GROUP statement or perform a dynamic load operation. See "Dynamically
loading a cache instance" on page 5-10 for more information about a dynamic load

Loading and refreshing a cache group

Cache Group Operations 5-3

operation.

For most cache group types, you can use a WHERE clause in a LOAD CACHE GROUP or
REFRESH CACHE GROUP statement to restrict the rows to be loaded or refreshed into the
cache tables.

If the cache table definitions use a WHERE clause, only rows that satisfy the WHERE clause
are loaded or refreshed into the cache tables even if the LOAD CACHE GROUP or REFRESH
CACHE GROUP statement does not use a WHERE clause.

If the cache group has a time-based aging policy defined, only cache instances where
the timestamp in the root table's row is within the aging policy's lifetime are loaded or
refreshed into the cache tables.

To prevent a load or refresh operation from processing a large number of cache
instances within a single transaction, which can greatly reduce concurrency and
throughput, use the COMMIT EVERY n ROWS clause to specify a commit frequency unless
you are using the WITH ID clause. If you specify COMMIT EVERY 0 ROWS, the load or
refresh operation is processed in a single transaction.

A LOAD CACHE GROUP or REFRESH CACHE GROUP statement that uses the COMMIT EVERY n
ROWS clause must be performed in its own transaction without any other operations
within the same transaction.

Example 5–1 Loading a cache group

The following statement loads new cache instances into the TimesTen cache tables in
the customer_orders cache group from the cached Oracle Database tables:

LOAD CACHE GROUP customer_orders COMMIT EVERY 256 ROWS;

Example 5–2 Loading a cache group using a WHERE clause

The following statement loads into the TimesTen cache tables in the new_customers
cache group from the cached Oracle Database tables, new cache instances for
customers whose customer number is greater than or equal to 5000:

LOAD CACHE GROUP new_customers WHERE (oratt.customer.cust_num >= 5000)
 COMMIT EVERY 256 ROWS;

Example 5–3 Refreshing a cache group

The following statement refreshes cache instances in the TimesTen cache tables within
the top_products cache group from the cached Oracle Database tables:

REFRESH CACHE GROUP top_products COMMIT EVERY 256 ROWS;

Example 5–4 Refreshing a cache group using a WHERE clause

The following statement refreshes in the TimesTen cache tables within the update_
anywhere_customers cache group from the cached Oracle Database tables, cache
instances of customers located in zip code 60610:

REFRESH CACHE GROUP update_anywhere_customers
 WHERE (oratt.customer.zip = '60610') COMMIT EVERY 256 ROWS;

For more information, see the "LOAD CACHE GROUP" and "REFRESH CACHE
GROUP" statements in Oracle TimesTen In-Memory Database SQL Reference.

The rest of this section includes these topics:

■ Loading and refreshing an explicitly loaded cache group with autorefresh

Loading and refreshing a cache group

5-4 Oracle TimesTen Application-Tier Database Cache User's Guide

■ Loading and refreshing a dynamic cache group with autorefresh

■ Loading and refreshing a cache group using a WITH ID clause

■ Initiating an immediate autorefresh

■ Loading and refreshing a multiple-table cache group

■ Improving the performance of loading or refreshing a large number of cache
instances

■ Example of manually loading and refreshing an explicitly loaded cache group

■ Example of manually loading and refreshing a dynamic cache group

Loading and refreshing an explicitly loaded cache group with autorefresh
If the autorefresh state of an explicitly loaded cache group is PAUSED, the autorefresh
state is changed to ON after a LOAD CACHE GROUP or REFRESH CACHE GROUP statement
issued on the cache group completes.

The following restrictions apply when manually loading or refreshing an explicitly
loaded cache group with autorefresh:

■ A LOAD CACHE GROUP statement can only be issued if the cache tables are empty.

■ The autorefresh state must be PAUSED before you can issue a LOAD CACHE GROUP
statement.

■ The autorefresh state must be PAUSED before you can issue a REFRESH CACHE GROUP
statement.

■ A LOAD CACHE GROUP statement cannot contain a WHERE clause.

■ A LOAD CACHE GROUP or REFRESH CACHE GROUP statement cannot contain a WITH ID
clause.

■ A REFRESH CACHE GROUP statement cannot contain a WHERE clause.

■ All tables and columns referenced in a WHERE clause when loading the cache group
must be fully qualified. For example:

user_name.table_name and user_name.table_name.column_name

When an autorefresh operation occurs on an explicitly loaded cache group, all
committed inserts, updates and deletes on the cached Oracle Database tables since the
last autorefresh cycle are refreshed into the cache tables. New cache instances may be
loaded into the cache tables. Cache instances that already exist in the cache tables are
updated or deleted if the corresponding rows in the cached Oracle Database tables
have been updated or deleted.

Loading and refreshing a dynamic cache group with autorefresh
If the autorefresh state of a dynamic cache group is PAUSED, the autorefresh state is
changed to ON after any of the following events occur:

■ Its cache tables are initially empty, and then a dynamic load, a LOAD CACHE GROUP
or an unconditional REFRESH CACHE GROUP statement issued on the cache group
completes.

■ Its cache tables are not empty, and then an unconditional REFRESH CACHE GROUP
statement issued on the cache group completes.

If the autorefresh state of a dynamic cache group is PAUSED, the autorefresh state
remains at PAUSED after any of the following events occur:

Loading and refreshing a cache group

Cache Group Operations 5-5

■ Its cache tables are initially empty, and then a REFRESH CACHE GROUP ... WITH ID
statement issued on the cache group completes.

■ Its cache tables are not empty, and then a dynamic load, a REFRESH CACHE GROUP
... WITH ID, or a LOAD CACHE GROUP statement issued on the cache group
completes.

For a dynamic cache group, an autorefresh operation only refreshes committed
updates and deletes on the cached Oracle Database tables since the last autorefresh
cycle into the cache tables because only existing cache instances in the cache tables are
refreshed. New cache instances are not loaded into the cache tables. To load new cache
instances into the cache tables of a dynamic cache group, use a LOAD CACHE GROUP
statement or perform a dynamic load operation. See "Dynamically loading a cache
instance" on page 5-10 for more information about a dynamic load operation.

The following restrictions apply when manually loading or refreshing a dynamic
cache group with automatic refresh:

■ The autorefresh state must be PAUSED or ON before you can issue a LOAD CACHE
GROUP statement.

■ The autorefresh state must be PAUSED before you can issue a REFRESH CACHE GROUP
statement.

■ A LOAD CACHE GROUP statement that contains a WHERE clause must include a COMMIT
EVERY n ROWS clause after the WHERE clause.

■ A REFRESH CACHE GROUP statement cannot contain a WHERE clause.

■ All tables and columns referenced in a WHERE clause when loading the cache group
must be fully qualified. For example:

user_name.table_name and user_name.table_name.column_name

Loading and refreshing a cache group using a WITH ID clause
The WITH ID clause of the LOAD CACHE GROUP or REFRESH CACHE GROUP statement
enables you to load or refresh a cache group based on values of the primary key
columns without having to use a WHERE clause. The WITH ID clause is more convenient
than the equivalent WHERE clause if the primary key contains more than one column.
Using the WITH ID clause allows you to load one cache instance at a time. It also
enables you to roll back the transaction containing the load or refresh operation, if
necessary, unlike the equivalent statement that uses a WHERE clause because using a
WHERE clause also requires specifying a COMMIT EVERY n ROWS clause.

Example 5–5 Loading a cache group using a WITH ID clause

A cache group recent_orders contains a single cache table oratt.orderdetails with a
primary key of (orderid, itemid). If a customer calls about an item within a particular
order, the information can be obtained by loading the cache instance for the specified
order number and item number.

Load the oratt.orderdetails cache table in the recent_orders cache group with the
row whose value in the orderid column of the oratt.orderdetails cached Oracle
Database table is 1756 and its value in the itemid column is 573:

LOAD CACHE GROUP recent_orders WITH ID (1756,573);

The following is an equivalent LOAD CACHE GROUP statement that uses a WHERE clause:

LOAD CACHE GROUP recent_orders WHERE orderid = 1756 and itemid = 573
 COMMIT EVERY 256 ROWS;

Loading and refreshing a cache group

5-6 Oracle TimesTen Application-Tier Database Cache User's Guide

A LOAD CACHE GROUP or REFRESH CACHE GROUP statement issued on an autorefresh
cache group cannot contain a WITH ID clause unless the cache group is dynamic.

You cannot use the COMMIT EVERY n ROWS clause with the WITH ID clause.

Initiating an immediate autorefresh
If the Oracle Database tables have been updated with data that needs to be applied to
cache tables without waiting for the next autorefresh operation, you can call the
ttCacheAutorefresh built-in procedure. The ttCacheAutorefresh built-in procedure
initiates an immediate refresh operation and resets the autorefresh cycle to start at the
moment you invoke ttCacheAutorefresh. The refresh operation is full or incremental
depending on how the cache group is configured. The autorefresh state must be ON
when ttCacheAutorefresh is called.

The autorefresh operation normally refreshes all cache groups sharing the same refresh
interval in one transaction in order to preserve transactional consistency across these
cache groups. Therefore, although you specify a specific cache group when you call
ttCacheAutorefresh, the autorefresh operation occurs in one transaction for all cache
groups that share the autorefresh interval with the specified cache group. If there is an
existing transaction with table locks on objects that belong to the affected cache
groups, ttCacheAutofresh returns an error without taking any action.

You can choose to run ttCacheAutorefresh asynchronously (the default) or
synchronously. In synchronous mode, ttCacheAutorefresh returns an error if the
refresh operation fails.

After calling ttCacheAutorefresh, you must commit or roll back the transaction
before subsequent work can be performed.

Example 5–6 Calling ttCacheAutorefresh

This example calls ttCacheAutorefresh for the ttuser.western_customers cache
group, using asynchronous mode.

Command> call ttCacheAutorefresh('ttuser', 'western_customers');

Loading and refreshing a multiple-table cache group
If you are loading or refreshing a multiple-table cache group while the cached Oracle
Database tables are concurrently being updated, set the isolation level in the TimesTen
database to serializable before issuing the LOAD CACHE GROUP or REFRESH CACHE GROUP
statement. This causes TimesTen to query the cached Oracle Database tables in a
serializable fashion during the load or refresh operation so that the loaded or refreshed
cache instances in the cache tables are guaranteed to be transactionally consistent with
the corresponding rows in the cached Oracle Database tables. After you have loaded
or refreshed the cache group, set the isolation level back to read committed for better
concurrency when accessing elements in the TimesTen database.

Improving the performance of loading or refreshing a large number of cache instances
You can improve the performance of loading or refreshing a large number of cache
instances into a cache group by using the PARALLEL clause of the LOAD CACHE GROUP or
REFRESH CACHE GROUP statement. Specify the number of threads to use when
processing the load or refresh operation. You can specify 1 to 10 threads. One thread
fetches rows from the cached Oracle Database tables, while the other threads insert the
rows into the TimesTen cache tables. Do not specify more threads than the number of

Loading and refreshing a cache group

Cache Group Operations 5-7

CPUs available on your system or you may encounter decreased performance than if
you had not used the PARALLEL clause.

Example 5–7 Refreshing a cache group using a PARALLEL clause

The following statement refreshes cache instances in the TimesTen cache tables within
the western_customers cache group from the cached Oracle Database tables using one
thread to fetch rows from the cached Oracle Database tables and three threads to insert
the rows into the cache tables:

REFRESH CACHE GROUP western_customers COMMIT EVERY 256 ROWS PARALLEL 4;

Example of manually loading and refreshing an explicitly loaded cache group
The following is the definition of the Oracle Database table that is to be cached in an
explicitly loaded AWT cache group. The Oracle Database table is owned by the
schema user oratt.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100));

The following is the data in the oratt.customer cached Oracle Database table.

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St. Portland OR
 2 East Angela Wilkins 356 Olive St. Boston MA
 3 Midwest Stephen Johnson 7638 Walker Dr. Chicago IL

The following statement creates an explicitly loaded AWT cache group new_customers
that caches the oratt.customer table:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num));

The oratt.customer TimesTen cache table is initially empty.

Command> SELECT * FROM oratt.customer;
0 rows found.

The following LOAD CACHE GROUP statement loads the three cache instances from the
cached Oracle Database table into the TimesTen cache table:

Command> LOAD CACHE GROUP new_customers COMMIT EVERY 256 ROWS;

Note: You cannot use the WITH ID clause with the PARALLEL clause.
You can use the COMMIT EVERY n ROWS clause with the PARALLEL
clause as long as n is greater than 0. In addition, you cannot use the
PARALLEL clause for read-only dynamic cache groups or when
database level locking is enabled. For more details, see "REFRESH
CACHE GROUP" in the Oracle TimesTen In-Memory Database SQL
Reference.

Loading and refreshing a cache group

5-8 Oracle TimesTen Application-Tier Database Cache User's Guide

3 cache instances affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Wilkins, 356 Olive St. Boston MA >
< 3, Midwest, Stephen Johnson, 7638 Walker Dr. Chicago IL >

Update the cached Oracle Database table by inserting a new row, updating an existing
row, and deleting an existing row:

SQL> INSERT INTO customer
 2 VALUES (4, 'East', 'Roberta Simon', '3667 Park Ave. New York NY');
SQL> UPDATE customer SET name = 'Angela Peterson' WHERE cust_num = 2;
SQL> DELETE FROM customer WHERE cust_num = 3;
SQL> COMMIT;
SQL> SELECT * FROM customer;
CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St. Portland OR
 2 East Angela Peterson 356 Olive St. Boston MA
 4 East Roberta Simon 3667 Park Ave. New York NY

A REFRESH CACHE GROUP statement issued on an explicitly loaded cache group is
processed by unloading and then reloading the cache group. As a result, the cache
instances in the cache table matches the rows in the cached Oracle Database table.

Command> REFRESH CACHE GROUP new_customers COMMIT EVERY 256 ROWS;
3 cache instance affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Peterson, 356 Olive St. Boston MA >
< 4, East, Roberta Simon, 3667 Park Ave. New York NY >

Example of manually loading and refreshing a dynamic cache group
The following is the definition of the Oracle Database table that is to be cached in a
dynamic AWT cache group. The Oracle Database table is owned by the schema user
oratt.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100));

The following is the data in the oratt.customer cached Oracle Database table.

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St. Portland OR
 2 East Angela Wilkins 356 Olive St. Boston MA
 3 Midwest Stephen Johnson 7638 Walker Dr. Chicago IL

The following statement creates a dynamic AWT cache group new_customers that
caches the oratt.customer table:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),

Loading and refreshing a cache group

Cache Group Operations 5-9

 PRIMARY KEY(cust_num));

The oratt.customer TimesTen cache table is initially empty:

Command> SELECT * FROM oratt.customer;
0 rows found.

The following LOAD CACHE GROUP statement loads the three cache instances from the
cached Oracle Database table into the TimesTen cache table:

Command> LOAD CACHE GROUP new_customers COMMIT EVERY 256 ROWS;
3 cache instances affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Wilkins, 356 Olive St. Boston MA >
< 3, Midwest, Stephen Johnson, 7638 Walker Dr. Chicago IL >

Update the cached Oracle Database table by inserting a new row, updating an existing
row, and deleting an existing row:

SQL> INSERT INTO customer
 2 VALUES (4, 'East', 'Roberta Simon', '3667 Park Ave. New York NY');
SQL> UPDATE customer SET name = 'Angela Peterson' WHERE cust_num = 2;
SQL> DELETE FROM customer WHERE cust_num = 3;
SQL> COMMIT;
SQL> SELECT * FROM customer;
CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St. Portland OR
 2 East Angela Peterson 356 Olive St. Boston MA
 4 East Roberta Simon 3667 Park Ave. New York NY

A REFRESH CACHE GROUP statement issued on a dynamic cache group only refreshes
committed updates and deletes on the cached Oracle Database tables into the cache
tables. New cache instances are not loaded into the cache tables. Therefore, only
existing cache instances are refreshed. As a result, the number of cache instances in the
cache tables are either fewer than or the same as the number of rows in the cached
Oracle Database tables.

Command> REFRESH CACHE GROUP new_customers COMMIT EVERY 256 ROWS;
2 cache instances affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Peterson, 356 Olive St. Boston MA >

A subsequent LOAD CACHE GROUP statement loads one cache instance from the cached
Oracle Database table into the TimesTen cache table because only committed inserts
are loaded into the cache table. Therefore, only new cache instances are loaded. Cache
instances that already exist in the cache tables are not changed because of a LOAD
CACHE GROUP statement, even if the corresponding rows in the cached Oracle Database
tables were updated or deleted.

Command> LOAD CACHE GROUP new_customers COMMIT EVERY 256 ROWS;
1 cache instance affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Peterson, 356 Olive St. Boston MA >
< 4, East, Roberta Simon, 3667 Park Ave. New York NY >

Dynamically loading a cache instance

5-10 Oracle TimesTen Application-Tier Database Cache User's Guide

Dynamically loading a cache instance
In a dynamic cache group, data is automatically loaded into the TimesTen cache tables
from the cached Oracle Database tables when a qualifying SELECT, INSERT, UPDATE, or
DELETE statement is issued on one of the cache tables and the data does not exist in the
cache table but does exist in the cached Oracle Database table.

A dynamic load retrieves a single cache instance that is automatically loaded from the
Oracle database to the TimesTen database. A cache instance consists of row from the
root table of any cache group (that is uniquely identified by either a primary key or a
unique index on the root table) and all related rows in the child tables associated by
foreign key relationships.

If a row in the cached Oracle Database table satisfies the WHERE clause, the entire
associated cache instance is loaded in order to maintain the defined relationships
between primary keys and foreign keys of the parent and child tables. A dynamic load
operation cannot load more than one row into the root table of any cache group. Only
cache instances whose rows satisfy the WHERE clause of the cache table definitions are
loaded.

The WHERE clause must specify one of the following for a dynamic load to occur:

■ An equality condition with constants and/or parameters on all columns of a
primary key or a foreign key of any table of the cache group. If more than one
table of a cache group is referenced, each must be connected by an equality
condition on the primary or foreign key relationship.

■ A mixture of equality or IS NULL conditions on all columns of a unique index,
provided that you use at least one equality condition. That is, you can perform a
dynamic load where some columns of the unique index are NULL. The unique
index must be created on the root table of the cache group.

The dynamic load is executed in a different transaction than the user transaction that
triggers the dynamic load. The dynamic load transaction is committed before the SQL
statement that triggers the dynamic load has finished execution. Thus, if the user
transaction is rolled back, the dynamically loaded data remains in the cache group.

The following sections describes dynamic load for cache groups:

■ Dynamic load configuration

■ Dynamic load guidelines

■ Examples of dynamically loading a cache instance

■ Returning dynamic load errors

Note: If the Oracle database is down, the following error is returned:

5219: Temporary Oracle connection failure error in
OCISessionBegin():
ORA-01034: ORACLE not available

Note: Dynamic loading based on a primary key search of the root
table performs faster than primary key searches on a child table or
foreign key searches on a child table.

Dynamically loading a cache instance

Cache Group Operations 5-11

Dynamic load configuration
Dynamic load can be configured with the DynamicLoadEnable connection attribute as
follows:

■ 0 - Disables dynamic load of Oracle Database data to TimesTen dynamic cache
groups for the current connection.

■ 1 (default) - Enables dynamic load of Oracle Database data to a single TimesTen
dynamic cache group per statement for the current connection. The statement
must reference tables of only one dynamic cache group and only in the main
query. The statement can also reference non-cache tables. Only one cache instance
can be loaded.

Set the appropriate value in the DynamicLoadEnable connection attribute to configure
the type of dynamic loading for all cache tables in dynamic cache groups that are
accessed within a particular connection.

You can set the DynamicLoadEnable optimizer hint to temporarily enable or disable
dynamic loading for a particular transaction. However, the DynamicLoadEnable
connection attribute is the only method for configuring what type of dynamic load is
enabled.

You can set the DynamicLoadEnable optimizer hint with one of the following methods:

■ Use the ttIsql utility set dynamicloadenable command.

■ Call the ttOptSetFlag built-in procedure with the DynamicLoadEnable flag set to
the desired value. The following example sets dynamic loading to 1.

call ttOptSetFlag('DynamicLoadEnable', 1)

Dynamic load guidelines
Dynamic load retrieves at most one cache instance for each cache group referenced in
the main query. This section details the guidelines under which dynamic load occurs.

Dynamic load is available only for the following types of statements issued on a cache
table in a dynamic cache group:

■ When an INSERT statement inserts values into any of the child tables of a cache
instance that does not currently exist in the TimesTen tables, the cache instance to
which the new row belongs dynamically loads. The insert operation for the new
child row is propagated to the cached Oracle Database table.

Note: For more details, see "DynamicLoadEnable", "ttIsql" or
"ttOptSetFlag" in the Oracle TimesTen In-Memory Database Reference.

You can also set connection attributes with the SQLSetConnectOption
ODBC function (ODBC 2.5) or the SQLSetConnectAttr function
(ODBC 3.5). See the "Option support for ODBC 2.5
SQLSetConnectOption and SQLGetConnectOption" and "Attribute
support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr"
sections in the Oracle TimesTen In-Memory Database C Developer's Guide
for more details.

Note: Examples for these guidelines are provided in "Examples of
dynamically loading a cache instance" on page 5-12.

Dynamically loading a cache instance

5-12 Oracle TimesTen Application-Tier Database Cache User's Guide

■ SELECT, UPDATE, or DELETE statements require that the WHERE clause have the
conditions as stated in "Dynamically loading a cache instance" on page 5-10.

The SELECT, UPDATE, or DELETE statements for which dynamic load is available must
satisfy the following conditions:

■ If the statement contains a subquery, only the cache group with tables referenced
in the main query are considered for a dynamic load.

■ If the statement references multiple tables of the cache group, the statement must
include an equality join condition between the primary keys and foreign keys for
all parent and child relationships.

■ The statement cannot contain the UNION, INTERSECT, or MINUS set operators.

■ The statement can reference non-cache tables.

■ By default (DynamicLoadEnable = 1), the statement can reference cache tables from
only one dynamic cache group. See "Dynamic load configuration" on page 5-11 for
more information.

Dynamic load behavior depends on the setting of DynamicLoadEnable. The following
describes the rules that are evaluated to determine if a dynamic load occurs when
DynamicLoadEnable = 1.

■ Dynamic load does not occur for a cache group if any table of the cache group is
specified more than once in any FROM clause.

■ Only the conditions explicitly specified in the query are considered for dynamic
load, which excludes any derived conditions.

■ If any cache group is referenced only in a subquery, it is not considered for a
dynamic load.

■ If the cache group has a time-based aging policy defined, the timestamp in the root
table's row must be within the aging policy's lifetime in order for the cache
instance to be loaded. See "Implementing aging in a cache group" on page 4-46 for
information about defining an aging policy on a cache group.

■ When using an active standby pair replication scheme, dynamic load cannot occur
in any subscriber.

The following considerations can affect dynamic load:

■ If tables within multiple cache groups or non-cache group tables are specified in
the main query, the join order influences if the cache instance is loaded. If during
the execution of the query, a dynamic load is possible and necessary to produce
the query results, the dynamic load occurs. However, if no rows are returned, then
some or all of the cache instances are not dynamically loaded.

■ If a statement specifies more than the dynamic load condition on tables of a cache
group, the cache instance may be dynamically loaded even though the additional
conditions are not qualified for the statement.

Examples of dynamically loading a cache instance
The following is the definition of the Oracle Database tables that are to be cached in a
dynamic AWT cache group. The Oracle Database table is owned by the schema user
oratt.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,
 region VARCHAR2(10),
 name VARCHAR2(50),

Dynamically loading a cache instance

Cache Group Operations 5-13

 address VARCHAR2(100));

CREATE TABLE orders
(ord_num NUMBER(10) NOT NULL PRIMARY KEY,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL);

CREATE TABLE orderdetails
 (orderid NUMBER(10) NOT NULL,
 itemid NUMBER(8) NOT NULL,
 quantity NUMBER(4) NOT NULL,
 PRIMARY KEY (orderid, itemid));

For example, the following data is in the oratt.customer cached Oracle Database
table.

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St., Portland OR
 2 East Angela Wilkins 356 Olive St., Boston MA
 3 Midwest Stephen Johnson 7638 Walker Dr., Chicago IL

The following statement creates a dynamic AWT cache group new_customers that
caches the oratt.customer, oratt.orders, and oratt.orderdetails tables:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num)),
oratt.orderdetails
 (orderid NUMBER(10) NOT NULL,
 itemid NUMBER(8) NOT NULL,
 quantity NUMBER(4) NOT NULL,
 PRIMARY KEY(orderid, itemid),
 FOREIGN KEY(orderid) REFERENCES oratt.orders(order_num));

The following examples can be used when DynamicLoadEnable is set to 1:

The oratt.customer TimesTen cache table is initially empty:

Command> SELECT * FROM oratt.customer;
0 rows found.

The following SELECT statement with an equality condition on the primary key for the
oratt.customer table results in a dynamic load:

Command> SELECT * FROM oratt.customer WHERE cust_num = 1;
< 1, West, Frank Edwards, 100 Pine St., Portland OR >

However, if you do not use an equality condition on the primary key, no dynamic load
occurs:

Dynamically loading a cache instance

5-14 Oracle TimesTen Application-Tier Database Cache User's Guide

Command> SELECT * FROM oratt.customer WHERE cust_num IN (1,2);

The following example contains equality expressions on all of the primary key
columns for a primary key composite. The orderdetails table has a composite
primary key of orderid and itemid.

UPDATE oratt.orderdetails SET quantity = 5 WHERE orderid=2280 AND itemid=663;

The following example shows an INSERT into the orders child table, which initiates a
dynamic load. However, if you tried to insert into the customer table, which is the
parent, no dynamic load occurs.

INSERT INTO orders VALUES(1,1, DATE '2012-01-25', DATE '2012-01-30');

The following UPDATE statement dynamically loads one cache instance from the cached
Oracle Database table into the TimesTen cache table, updates the instance in the cache
table, and then automatically propagates the update to the cached Oracle Database
table:

Command> UPDATE oratt.customer SET name = 'Angela Peterson' WHERE cust_num = 2;
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St., Portland OR >
< 2, East, Angela Peterson, 356 Olive St., Boston MA >

The following is the updated data in the oratt.customer cached Oracle Database
table:

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St., Portland OR
 2 East Angela Peterson 356 Olive St., Boston MA
 3 Midwest Stephen Johnson 7638 Walker Dr., Chicago IL

The following DELETE statement dynamically loads one cache instance from the cached
Oracle Database table into the TimesTen cache table, deletes the instance from the
cache table, and then automatically propagates the delete to the cached Oracle
Database table:

Command> DELETE FROM oratt.customer WHERE cust_num = 3;
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St., Portland OR >
< 2, East, Angela Peterson, 356 Olive St., Boston MA >

The following is the updated data in the oratt.customer cached Oracle Database
table.

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St., Portland OR
 2 East Angela Peterson 356 Olive St., Boston MA

The following is an example of a dynamic load performed using all columns of a
unique index on the root table. The departments table is defined in a dynamic AWT
cache group. A unique index is created on this cache group consisting of the manager_
id and location_id.

The following creates the departments table on the Oracle database.

Command> CREATE TABLE departments(
 department_id INT NOT NULL PRIMARY KEY,
 department_name VARCHAR(10) NOT NULL,
 technical_lead INT NOT NULL,

Dynamically loading a cache instance

Cache Group Operations 5-15

 manager_id INT,
 location_id INT NOT NULL);

The following creates the dynamic AWT cache group and a unique index on the dept_
cg root table:

Command> CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP dept_cg
 FROM departments
 (department_id INT NOT NULL PRIMARY KEY,
 department_name VARCHAR(10) NOT NULL,
 technical_lead INT NOT NULL,
 manager_id INT, location_id INT NOT NULL);

Command> CREATE UNIQUE INDEX dept_idx ON departments(manager_id, location_id);

The following inserts three records into the departments table on the Oracle database:

Command> insert into departments values (1, 'acct', 1, 1, 100);
1 row inserted.
Command> insert into departments values (2, 'legal', 2, 2, 200);
1 row inserted.
Command> insert into departments values (3, 'owner', 3, NULL, 300);
1 row inserted.
Command> commit;

On TimesTen, dynamically load a cache instance based on the unique index:

Command> SELECT * FROM departments;
0 rows found.
Command> SELECT * FROM departments WHERE manager_id IS NULL AND location_id=300;
< 3, owner, 3, <NULL>, 300 >
1 row found.
Command> SELECT * FROM departments;
< 3, owner, 3, <NULL>, 300 >
1 row found.
Command> SELECT * FROM departments WHERE manager_id=2 AND location_id=200;
< 2, legal, 2, 2, 200 >
1 row found.
Command> SELECT * FROM departments;
< 2, legal, 2, 2, 200 >
< 3, owner, 3, <NULL>, 300 >
2 rows found.

Returning dynamic load errors
You can configure TimesTen to return an error if a SELECT, UPDATE or DELETE statement
does not meet the requirements stated in "Dynamic load guidelines" on page 5-11. The
DynamicLoadErrorMode connection attribute controls what happens when an
application executes a SQL operation against a dynamic cache group and the SQL
operation cannot use dynamic load in a particular connection.

■ When DynamicLoadErrorMode is set to a value of 0, dynamic load happens to any
cache group referenced in the query that is qualified for dynamic load. Cache
groups that do not qualify are not dynamically loaded and no errors are returned.
When DynamicLoadEnable=1, no dynamic load occurs if the query references more
than one cache group.

■ When DynamicLoadErrorMode is set to a value of 1, a query fails with an error if
any dynamic cache group referenced in the query is not qualified for dynamic
load. The error indicates the reason why the dynamic load cannot occur.

Flushing a user managed cache group

5-16 Oracle TimesTen Application-Tier Database Cache User's Guide

To set the connection attribute solely for a particular transaction, use one of the
following:

■ Use the ttIsql utility set dynamicloaderrormode 1 command.

■ Call the ttOptSetFlag built-in procedure with the DynamicLoadErrorMode flag and
the optimizer value set to 1.

call ttOptSetFlag('DynamicLoadErrorMode', 1)

Call the ttOptSetFlag built-in procedure with the DynamicLoadErrorMode flag and
the optimizer value set to 0 to suppress error reporting when a statement does not
comply with dynamic load requirements.

Flushing a user managed cache group
The FLUSH CACHE GROUP statement manually propagates committed inserts and
updates on TimesTen cache tables in a user managed cache group to the cached Oracle
Database tables. Deletes are not flushed or manually propagated. Committed inserts
and updates on cache tables that use the PROPAGATE cache table attribute cannot be
flushed to the cached Oracle Database tables because these operations are already
automatically propagated to the Oracle database.

With automatic propagation, committed inserts, updates and deletes are propagated to
the Oracle database in the order they were committed in TimesTen. A flush operation
can manually propagate multiple committed transactions on cache tables to the cached
Oracle Database tables.

You cannot flush a user managed cache group that uses the AUTOREFRESH cache group
attribute.

You can flush a user managed cache group if at least one of its cache tables uses
neither the PROPAGATE nor the READONLY cache table attribute.

You can use a WHERE clause or WITH ID clause in a FLUSH CACHE GROUP statement to
restrict the rows to be flushed to the cached Oracle Database tables. See the "FLUSH
CACHE GROUP" statement in Oracle TimesTen In-Memory Database SQL Reference for
more information.

Example 5–8 Flushing a cache group

The following statement manually propagates committed insert and update
operations on the TimesTen cache tables in the western_customers cache group to the
cached Oracle Database tables:

FLUSH CACHE GROUP western_customers;

Unloading a cache group
You can delete some or all cache instances from the cache tables in a cache group with
the UNLOAD CACHE GROUP statement. Unlike the DROP CACHE GROUP statement, the cache
tables themselves are not dropped when a cache group is unloaded.

Use caution when using the UNLOAD CACHE GROUP statement with autorefresh cache
groups. An unloaded row can reappear in the cache table as the result of an
autorefresh operation if the row, or its related parent or child rows, are updated in the
cached Oracle Database table.

Execution of the UNLOAD CACHE GROUP statement for an AWT cache group waits until
updates on the rows have been propagated to the Oracle database.

Setting a passthrough level

Cache Group Operations 5-17

To prevent an unload operation from processing a large number of cache instances
within a single transaction, which could reduce concurrency and throughput, use the
COMMIT EVERY n ROWS clause to specify a commit frequency.

Example 5–9 Unloading cache groups

The following statement unloads all cache instances from all cache tables in the
customer_orders cache group. A commit frequency is specified, so the operations is
performed over several transactions by committing every 256 rows:

UNLOAD CACHE GROUP customer_orders COMMIT EVERY 256 ROWS;

The following statement unloads all cache instances from all cache tables in the
customer_orders cache group in a single transaction. A single transaction should only
be used if the data within customer_orders is small:

UNLOAD CACHE GROUP customer_orders;

The following equivalent statements delete the cache instance for customer number
227 from the cache tables in the new_customers cache group:

UNLOAD CACHE GROUP new_customers WITH ID (227);
UNLOAD CACHE GROUP new_customers WHERE (oratt.customer.cust_num = 227);

Determining the number of cache instances affected by an operation
You can use the following mechanisms to determine how many cache instances were
loaded by a LOAD CACHE GROUP statement, refreshed by a REFRESH CACHE GROUP
statement, flushed by a FLUSH CACHE GROUP statement, or unloaded by an UNLOAD
CACHE GROUP statement:

■ Call the SQLRowCount() ODBC function.

■ Invoke the Statement.getUpdateCount() JDBC method.

■ Call the OCIAttrGet() OCI function with the OCI_ATTR_ROW_COUNT option.

Setting a passthrough level
When an application issues statements on a TimesTen connection, the statement can be
executed in the TimesTen database or passed through to the Oracle database for
execution. Whether the statement is executed in the TimesTen or Oracle database
depends on the composition of the statement and the setting of the PassThrough
connection attribute. You can set the PassThrough connection attribute to define which
statements are to be executed locally in TimesTen and which are to be redirected to the
Oracle database for execution.

When appropriate within passthrough levels 1 through 3, TimesTen connects to the
Oracle database using the current user’s credentials as the user name and the
OraclePwd connection attribute as the Oracle password.

Note: For more information, see "UNLOAD CACHE GROUP" in the
Oracle TimesTen In-Memory Database SQL Reference.

Setting a passthrough level

5-18 Oracle TimesTen Application-Tier Database Cache User's Guide

PassThrough=0
PassThrough=0 is the default setting and specifies that all statements are to be
executed in the TimesTen database. Figure 5–1 shows that Table A is updated on the
TimesTen database. Table F cannot be updated because it does not exist in TimesTen.

Figure 5–1 PassThrough=0

Note: A transaction that contains operations that are replicated with
RETURN TWOSAFE cannot have a PassThrough setting greater than 0. If
PassThrough is greater than 0, an error is returned and the transaction
must be rolled back.

When PassThrough is set to 0, 1, or 2, the following behavior occurs
when a dynamic load condition exists:

■ A dynamic load can occur for a SELECT operation on cache tables
in any dynamic cache group type.

■ A dynamic load for an INSERT, UPDATE, or DELETE operation can
only occur on cached tables with dynamic AWT or SWT cache
groups.

See "Dynamically loading a cache instance" on page 5-10 for more
details on dynamic load.

Application

Update Table A Update Table F

PassThrough = 0

TimesTen
database

Fails because
table F does not
exist in the
TimesTen
database

Update Table A
Update Table F

Oracle

database

A
B

C

D

E
F

G

Updatable
cache group

A

B C

D

Setting a passthrough level

Cache Group Operations 5-19

PassThrough=1
Set PassThrough=1 to specify that a statement that references a table that does not exist
in the TimesTen database is passed through to the Oracle database for execution. No
DDL statements are passed through to the Oracle database.

If TimesTen cannot parse a SELECT statement because it includes keywords that do not
exist in TimesTen SQL or because it includes syntax errors, it passes the statement to
the Oracle database. If TimesTen cannot parse INSERT, UPDATE or DELETE statements,
TimesTen returns an error and the statement is not passed through to the Oracle
database.

Figure 5–2 shows that Table A is updated in the TimesTen database, while Table G is
updated in the Oracle database because Table G does not exist in the TimesTen
database.

Figure 5–2 PassThrough=1

PassThrough=2
PassThrough=2 specifies that INSERT, UPDATE and DELETE statements are passed
through to the Oracle database for read-only cache groups and user managed cache
groups that use the READONLY cache table attribute. Otherwise, Passthrough=1
behavior applies.

Application

Update Table A Update Table G

PassThrough = 1

TimesTen
database

Update Table A

Oracle

database

A
B

C

D

E
F

G

Updatable
cache group

A

B C

D

Update Table G

Statement passed
through to Oracle
for execution
because table G
does not exist in
TimesTen database

Setting a passthrough level

5-20 Oracle TimesTen Application-Tier Database Cache User's Guide

Figure 5–3 shows that updates to Table A and Table G in a read-only cache group are
passed through to the Oracle database.

Figure 5–3 PassThrough=2

PassThrough=3
PassThrough=3 specifies that all statements are passed through to the Oracle database
for execution.

Figure 5–4 shows that Table A is updated on the Oracle database for a read-only or
updatable cache group. A SELECT statement that references Table G is also passed
through to the Oracle database.

Note: You are responsible in preventing conflicts that may occur if
you update the same row in a TimesTen cache table as another user
updates the cached Oracle Database table concurrently.

Application

PassThrough = 2

TimesTen database

Update Table A

Oracle

database

A
B

C

D

E
F

G

Read-only
cache group

A

B C

D

Update Table G

Update Table A Update Table G

INSERT, UPDATE and DELETE statements
are passed through to the Oracle
database for read-only cache groups and
read-only cache tables. SELECT statements
are executed in TimesTen unless they
contain invalid TimesTen syntax or
reference tables that do not exist in TimesTen.

Setting a passthrough level

Cache Group Operations 5-21

Figure 5–4 PassThrough=3

Considerations for using passthrough
Passing through update operations to the Oracle database for execution is not
recommended when issued on cache tables in an AWT or SWT cache group.

■ Committed updates on cache tables in an AWT cache group are automatically
propagated to the cached Oracle Database tables in asynchronous fashion.
However, passing through an update operation to the Oracle database for
execution within the same transaction as the update on the cache table in the AWT
cache group renders the propagate of the cache table update synchronous, which
may have undesired results.

■ Committed updates on cache tables in an SWT cache group can result in
self-deadlocks if, within the same transaction, updates on the same tables are
passed through to the Oracle database for execution.

A PL/SQL block cannot be passed through to the Oracle database for execution. Also,
you cannot pass through to Oracle Database for execution a reference to a stored
procedure or function that is defined in the Oracle database but not in the TimesTen
database.

For more information about how the PassThrough connection attribute setting
determines which statements are executed in the TimesTen database and which are

Application

PassThrough = 3

TimesTen database

Update Table A

Oracle

database

A
B

C

D

E
F

G

Updatable or Read-only
cache group

A

B C

D

Select from Table G

Update Table A Select from Table G

Statements are passed
through to the Oracle database
for read-only and updatable cache
groups.

Setting a passthrough level

5-22 Oracle TimesTen Application-Tier Database Cache User's Guide

passed through to the Oracle database for execution and under what circumstances,
see "PassThrough" in Oracle TimesTen In-Memory Database Reference.

Changing the passthrough level for a connection or transaction
You can override the current passthrough level using the ttIsql utility's set
passthrough command which applies to the current transaction.

You can also override the setting for a specific transaction by calling the ttOptSetFlag
built-in procedure with the PassThrough flag. The following procedure call sets the
passthrough level to 3:

CALL ttOptSetFlag('PassThrough', 3);

The PassThrough flag setting takes effect when a statement is prepared and it is the
setting that is used when the statement is executed even if the setting has changed
from the time the statement was prepared to when the statement is executed. After the
transaction has been committed or rolled back, the original connection setting takes
effect for all subsequently prepared statements.

Note: The passthrough feature uses OCI to communicate with the
Oracle database. The OCI diagnostic framework installs signal
handlers that may impact signal handling that you use in your
application. You can disable OCI signal handling by setting DIAG_
SIGHANDLER_ENABLED=FALSE in the sqlnet.ora file. Refer to "Fault
Diagnosability in OCI" in Oracle Call Interface Programmer's Guide for
information.

6

Managing a Caching Environment 6-1

6Managing a Caching Environment

The following sections describe how to manage and monitor various aspects of a
caching system such as cache groups and the cache agent process:

■ Checking the status of the cache and replication agents

■ Monitoring cache groups

■ Managing a caching environment with Oracle Database objects

■ Impact of failed autorefresh operations on TimesTen databases

■ Dropping Oracle Database objects used by autorefresh cache groups

■ Monitoring the cache administration user's tablespace

■ Backing up and restoring a database with cache groups

■ Changing cache user names and passwords

Checking the status of the cache and replication agents
You can use either the ttAdmin or ttStatus utility to check whether the TimesTen
cache agent and replication agent processes are running as well as determine each
agent's start policy.

Example 6–1 Using ttAdmin to determine the cache and replication agents status

You can use a ttAdmin -query utility command to determine whether the cache and
replication agents are running, and the cache and replication agent start policies for a
TimesTen database:

% ttAdmin -query cache1
RAM Residence Policy : inUse
Replication Agent Policy : manual
Replication Manually Started : True
Cache Agent Policy : always
Cache Agent Manually Started : True

For more information about the ttAdmin utility, see "ttAdmin" in Oracle TimesTen
In-Memory Database Reference.

Example 6–2 Using ttStatus to determine the cache and replication agents status

You can use the ttStatus utility to determine whether the cache and replication agents
are running, and the cache and replication agent start policies for all TimesTen
instances:

% ttStatus

Checking the status of the cache and replication agents

6-2 Oracle TimesTen Application-Tier Database Cache User's Guide

TimesTen status report as of Thu May 7 13:42:01 2009

Daemon pid 9818 port 4173 instance myinst
TimesTen server pid 9826 started on port 4175
--
Data store /users/OracleCache/ttcache
There are 38 connections to the data store
Shared Memory KEY 0x02011c82 ID 895844354
PL/SQL Memory KEY 0x03011c82 ID 895877123 Address 0x10000000
Type PID Context Connection Name ConnID
Cache Agent 1019 0x0828f840 Handler 2
Cache Agent 1019 0x083a3d40 Timer 3
Cache Agent 1019 0x0842d820 Aging 4
Cache Agent 1019 0x08664fd8 Garbage Collector(-1580741728) 5
Cache Agent 1019 0x084d6ef8 Marker(-1580213344) 6
Cache Agent 1019 0xa5bb8058 DeadDsMonitor(-1579684960) 7
Replication 18051 0x08c3d900 RECEIVER 8
Replication 18051 0x08b53298 REPHOLD 9
Replication 18051 0x08af8138 REPLISTENER 10
Replication 18051 0x08a82f20 LOGFORCE 11
Replication 18051 0x08bce660 TRANSMITTER 12
Subdaemon 9822 0x080a2180 Manager 2032
Subdaemon 9822 0x080ff260 Rollback 2033
Subdaemon 9822 0x08548c38 Flusher 2034
Subdaemon 9822 0x085e3b00 Monitor 2035
Subdaemon 9822 0x0828fc10 Deadlock Detector 2036
Subdaemon 9822 0x082ead70 Checkpoint 2037
Subdaemon 9822 0x08345ed0 Aging 2038
Subdaemon 9822 0x083a1030 Log Marker 2039
Subdaemon 9822 0x083fc190 AsyncMV 2040
Subdaemon 9822 0x084572f0 HistGC 2041
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Always
TimesTen's Cache agent is running for this data store
PL/SQL enabled.
--

The information displayed by the ttStatus utility include the following that pertains
to TimesTen Cache for each TimesTen instance:

■ The names of the cache agent process threads that are connected to the TimesTen
database

■ The names of the replication agent process threads that are connected to the
TimesTen database

■ Status on whether the cache agent is running

■ Status on whether the replication agent is running

■ The cache agent start policy

■ The replication agent start policy

For more information about the ttStatus utility, see "ttStatus" in Oracle TimesTen
In-Memory Database Reference.

Monitoring cache groups

Managing a Caching Environment 6-3

Cache agent and replication connections
When a connection from the cache agent to the Oracle database fails, the cache agent
attempts to connect every 10 seconds. If the cache agent cannot connect to the Oracle
database, the cache agent restarts after 10 minutes. This behavior repeats forever.

When a connection from the replication agent to the Oracle database fails, the
replication agent attempts to reconnect to the Oracle database after 120 seconds. If it
cannot reconnect after 120 seconds, the replication agent stops and does not restart.

If Fast Application Notification (FAN) is enabled on the Oracle database, the cache
agent and the replication agent receive immediate notification of connection failures. If
FAN is not enabled, the agents may wait until a TCP timeout occurs before becoming
aware that the connection has failed.

If the Oracle Real Application Clusters (Oracle RAC) is enable on the Oracle database,
along with FAN and Transparent Application Failover (TAF), then TAF manages the
connection to a new Oracle Database instance. See Chapter 9, "Using TimesTen Cache
in an Oracle RAC Environment".

Monitoring cache groups
The following sections describe how to obtain information cache groups and how to
monitor the status of cache group operations:

■ Using the ttIsql utility's cachegroups command

■ Monitoring autorefresh operations on cache groups

■ Monitoring AWT cache groups

■ Tracking DDL statements issued on cached Oracle Database tables

Using the ttIsql utility's cachegroups command
You can obtain information about cache groups in a TimesTen database using the
ttIsql utility's cachegroups command.

Example 6–3 ttIsql utility's cachegroups command

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> cachegroups;

Cache Group CACHEUSER.RECENT_SHIPPED_ORDERS:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: On
 Autorefresh Interval: 1440 Minutes
 Autorefresh Status: ok
 Aging: Timestamp based uses column WHEN_SHIPPED lifetime 30 days cycle 24 hours
on

 Root Table: ORATT.ORDERS
 Table Type: Read Only

Cache Group CACHEUSER.SUBSCRIBER_ACCOUNTS:

 Cache Group Type: Asynchronous Writethrough (Dynamic)

Monitoring cache groups

6-4 Oracle TimesTen Application-Tier Database Cache User's Guide

 Autorefresh: No
 Aging: LRU on

 Root Table: ORATT.SUBSCRIBER
 Table Type: Propagate

Cache Group CACHEUSER.WESTERN_CUSTOMERS:

 Cache Group Type: User Managed
 Autorefresh: No
 Aging: No aging defined

 Root Table: ORATT.ACTIVE_CUSTOMER
 Where Clause: (oratt.active_customer.region = 'West')
 Table Type: Propagate

 Child Table: ORATT.ORDERTAB
 Table Type: Propagate

 Child Table: ORATT.ORDERDETAILS
 Where Clause: (oratt.orderdetails.quantity >= 5)
 Table Type: Not Propagate

 Child Table: ORATT.CUST_INTERESTS
 Table Type: Read Only

3 cache groups found.

The information displayed by the ttIsql utility's cachegroups command include:

■ Cache group type, including whether the cache group is dynamic

■ Autorefresh attributes (mode, state, interval) and status, if applicable

■ Aging policy, if applicable

■ Name of root table and, if applicable, name of child tables

■ Cache table WHERE clause, if applicable

■ Cache table attributes (read-only, propagate, not propagate)

For more information about the ttIsql utility's cachegroups command, see "ttIsql" in
Oracle TimesTen In-Memory Database Reference.

Monitoring autorefresh operations on cache groups
TimesTen Classic offers several mechanisms to obtain information and statistics about
autorefresh operations on cache groups. See "Monitoring autorefresh cache groups" in
Oracle TimesTen In-Memory Database Troubleshooting Guide.

Monitoring AWT cache groups
TimesTen Classic offers several mechanisms to obtain information and statistics about
operations in AWT cache groups. See "AWT performance monitoring" in Oracle
TimesTen In-Memory Database Troubleshooting Guide.

Configuring a transaction log file threshold for AWT cache groups
The replication agent uses the transaction log to determine which updates on cache
tables in AWT cache groups have been propagated to the cached Oracle Database

Monitoring cache groups

Managing a Caching Environment 6-5

tables and which updates have not. If updates are not being automatically propagated
to the Oracle database because of a failure, transaction log files accumulate on the file
system. Examples of a failure that prevents propagation are that the replication agent
is not running or the Oracle database server is unavailable. For more information
about accumulation of transaction log files, see "Monitoring accumulation of
transaction log files" in Oracle TimesTen In-Memory Database Operations Guide.

You can call the ttCacheAWTThresholdSet built-in procedure as the cache manager
user to set a threshold for the number of transaction log files that can accumulate
before TimesTen Classic stops tracking updates on cache tables in AWT cache groups.
The default threshold is 0. This built-in procedure can only be called if the TimesTen
database contains AWT cache groups.

After the threshold has been exceeded, you need to manually synchronize the cache
tables with the cached Oracle Database tables using an UNLOAD CACHE GROUP statement
followed by a LOAD CACHE GROUP statement. TimesTen may purge transaction log files
even if they contain updates that have not been propagated to the cached Oracle
Database tables.

Example 6–4 Setting a transaction log file threshold for AWT cache groups

In this example, if the number of transaction log files that contain updates on cache
tables in AWT cache groups exceeds 5, TimesTen stops tracking updates and can then
purge transaction log files that may contain unpropagated updates:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheAWTThresholdSet(5);

You can call the ttCacheAWTThresholdGet built-in procedure to determine the current
transaction log file threshold setting:

Command> CALL ttCacheAWTThresholdGet;
< 5 >
Command> exit

Tracking DDL statements issued on cached Oracle Database tables
When a DDL statement is issued on a cached Oracle Database table, this statement can
be tracked in the Oracle Database TT_version_DDL_L table when the Oracle Database
TT_version_schema-ID_DDL_T trigger is fired to insert a row into the table, where
version is an internal TimesTen Classic version number and schema-ID is the ID of
user that owns the cached Oracle Database table. A trigger is created for each Oracle
Database user that owns cached Oracle Database tables. One DDL tracking table is
created to store DDL statements issued on any cached Oracle Database table. The
cache administration user owns the TT_version_DDL_L table and the TT_version_
schema-ID_DDL_T trigger.

To enable tracking of DDL statements issued on cached Oracle Database tables, call the
ttCacheDDLTrackingConfig built-in procedure as the cache manager user. By default,
DDL statements are not tracked.

For more information about the ttCacheDDLTrackingConfig built-in procedure, see
"ttCacheDDLTrackingConfig" in Oracle TimesTen In-Memory Database Reference.

Example 6–5 Enabling tracking of DDL statements issued on cached Oracle Database
tables

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheDDLTrackingConfig('enable');

Monitoring cache groups

6-6 Oracle TimesTen Application-Tier Database Cache User's Guide

The TT_version_DDL_L table and TT_version_schema-ID_DDL_T trigger are
automatically created if the cache administration user has been granted the set of
required privileges including RESOURCE and CREATE ANY TRIGGER. These Oracle
Database objects are created when you create a cache group after tracking of DDL
statements has been enabled.

If you manually created the Oracle Database objects used to manage the caching of
Oracle Database data, you need to run the ttIsql utility's cachesqlget command with
the ORACLE_DDL_TRACKING option and the INSTALL flag as the cache manager user. This
command should be run for each Oracle Database user that owns cached Oracle
Database tables that you want to track DDL statements on. Running this command
generates a SQL*Plus script used to create the TT_version_DDL_L table and TT_
version_schema-ID_DDL_T trigger in the Oracle database.

After generating the script, use SQL*Plus to run the script as the sys user.

Example 6–6 Creating DDL tracking table and trigger when Oracle Database objects
were manually created

In this example, the SQL*Plus script generated by the ttIsql utility's cachesqlget
command is saved to the /tmp/trackddl.sql file. The owner of the cached Oracle
Database table oratt is passed as an argument to the command.

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> cachesqlget ORACLE_DDL_TRACKING oratt INSTALL /tmp/trackddl.sql;
Command> exit

% sqlplus sys as sysdba
Enter password: password
SQL> @/tmp/trackddl
SQL> exit

When you need to issue DDL statements such as CREATE, DROP or ALTER on cached
Oracle Database tables in order to make changes to the Oracle Database schema, drop
the affected cache groups before you modify the Oracle Database schema. Otherwise
operations such as autorefresh may fail. You do not need to drop cache groups if you
are altering the Oracle Database table to add a column. To issue other DDL statements
for Oracle Database tables, first perform the following tasks:

1. Use DROP CACHE GROUP statements to drop all cache groups that cache the affected
Oracle Database tables. If you are dropping an AWT cache group, use the
ttRepSubscriberWait built-in procedure to make sure that all committed updates
on the cache tables have been propagated to the cached Oracle Database tables
before the cache group is dropped.

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttRepSubscriberWait('_AWTREPSCHEME','TTREP','_ORACLE','sys1',-1);

2. Stop the cache agent.

3. Make the desired changes to the Oracle Database schema.

4. Use CREATE CACHE GROUP statements to re-create the cache groups, if feasible.

If you want to truncate an Oracle Database table that is cached in an autorefresh cache
group, perform the following tasks:

1. Use an ALTER CACHE GROUP statement to set the cache group's autorefresh state to
PAUSED.

2. Truncate the Oracle Database table.

Managing a caching environment with Oracle Database objects

Managing a Caching Environment 6-7

3. Manually refresh the cache group using a REFRESH CACHE GROUP statement
without a WHERE or WITH ID clause.

Autorefresh operations resume after you refresh the cache group.

You can run the timesten_home/install/oraclescripts/cacheInfo.sql SQL*Plus
script as the cache administration user to display information about the Oracle
Database objects used to track DDL statements issued on cached Oracle Database
tables:

% cd timesten_home/install/oraclescripts
% sqlplus cacheuser/oracle
SQL> @cacheInfo
*************DDL Tracking Object Information ***************
Common DDL Log Table Name: TT_05_DDL_L
DDL Trigger Name: TT_05_315_DDL_T
Schema for which DDL Trigger is tracking: ORATT
Number of cache groups using the DDL Trigger: 10

The information returned for each Oracle Database user that owns cached Oracle
Database tables includes the name of the DDL tracking table, the name of its
corresponding DDL trigger, the name of the user that the DDL trigger is associated
with, and the number of cache groups that cache a table owned by the user associated
with the DDL trigger.

If a cache group contains more than one cache table, each cache table owned by the
user associated with the DDL trigger contributes to the cache group count.

Managing a caching environment with Oracle Database objects
For an autorefresh cache group, TimesTen Classic creates a change log table and
trigger in the Oracle database for each cache table in the cache group. The trigger is
fired for each committed insert, update, or delete operation on the cached Oracle
Database table. The trigger records the primary key of the updated rows in the change
log table. The cache agent periodically scans the change log table for updated keys and
then joins this table with the cached Oracle Database table to get a snapshot of the
latest updates.

The Oracle Database objects used to process autorefresh writethrough operations can
be automatically created by TimesTen Classic as described in "Automatically create
Oracle Database objects used to manage data caching" on page 3-4 when you create a
cache group with the AUTOREFRESH MODE INCREMENTAL cache group attribute.
Alternatively, you can manually create these objects as described in "Manually create
Oracle Database objects used to manage data caching" on page 3-5 before performing
any cache group operation if, for security purposes, you do not want to grant the
RESOURCE and CREATE ANY TRIGGER privileges to the cache administration user
required to automatically create these objects.

Before the Oracle Database objects can be automatically or manually created, you
must:

Note: If you are caching the same Oracle table in more than one
TimesTen database, see "Caching the same Oracle table on two or
more TimesTen databases" on page 7-21 for performance
considerations.

Managing a caching environment with Oracle Database objects

6-8 Oracle TimesTen Application-Tier Database Cache User's Guide

■ Create a cache administration user in the Oracle database as described in "Create
the Oracle database users" on page 3-2.

■ Set the cache administration user name and password in the TimesTen database as
described in "Set the cache administration user name and password" on page 3-9.

■ Start the cache agent as described in "Managing the cache agent" on page 3-11.

For each cache administration user, TimesTen Classic creates the following Oracle
Database tables, where version is an internal TimesTen Classic version number and
object-ID is the ID of the cached Oracle Database table:

Table Name Description

TT_version_AGENT_STATUS Created when the first cache group is created.
Stores information about each Oracle Database
table cached in an autorefresh cache group.

TT_version_AR_PARAMS Created when the cache administration user
name and password is set. Stores the action to
take when the cache administration user's
tablespace is full.

TT_version_CACHE_STATS Created when the cache administration user
name and password is set.

TT_version_DATABASES Created when the cache administration user
name and password is set. Stores the
autorefresh status for all TimesTen databases
that cache data from the Oracle database.

TT_version_DB_PARAMS Created when the cache administration user
name and password is set. Stores the cache
agent timeout, recovery method for dead
cache groups, and the cache administration
user's tablespace usage threshold.

TT_version_DBSPECIFIC_PARAMS Internal use.

TT_version_DDL_L Created when the cache administration user
name and password is set. Tracks DDL
statements issued on cached Oracle Database
tables.

TT_version_DDL_TRACKING Created when the cache administration user
name and password is set. Stores a flag
indicating whether tracking of DDL
statements on cached Oracle Database tables is
enabled or disabled.

TT_version_REPACTIVESTANDBY Created when the first AWT cache group is
created. Tracks the state and roles of TimesTen
databases containing cache tables in an AWT
cache group that are replicated in an active
standby pair replication scheme.

TT_version_REPPEERS Created when the first AWT cache group is
created. Tracks the time and commit sequence
number of the last update on the cache tables
that was asynchronously propagated to the
cached Oracle Database tables.

TT_version_SYNC_OBJS Created when the first cache group is created.

TT_version_USER_COUNT Created when the first cache group is created.
Stores information about each cached Oracle
Database table.

Impact of failed autorefresh operations on TimesTen databases

Managing a Caching Environment 6-9

For each cache administration user, TimesTen Classic creates the following Oracle
Database triggers, where version is an internal TimesTen Classic version number,
object-ID is the ID of the cached Oracle Database table, and schema-ID is the ID of
user who owns the cached Oracle Database table:

Impact of failed autorefresh operations on TimesTen databases
A change log table is created in the cache administration user's tablespace for each
Oracle Database table that is cached in an autorefresh cache group. For each update
operation issued on these cached Oracle Database tables, a row is inserted into their
change log table to keep track of updates that need to be applied to the TimesTen cache
tables upon the next incremental autorefresh cycle. TimesTen periodically deletes rows
in the change log tables that have been applied to the cache tables.

An Oracle Database table cannot be cached in more than one cache group within a
TimesTen database. However, an Oracle Database table can be cached in more than
one TimesTen database. This results in an Oracle Database table corresponding to
multiple TimesTen cache tables. If updates on cached Oracle Database tables are not
being automatically refreshed into all of their corresponding cache tables because the
cache agent is not running on one or more of the TimesTen databases that the Oracle
Database tables are cached in, rows in their change log tables are not deleted by
default. The cache agent may not be running on a particular TimesTen database
because the agent was explicitly stopped or never started, the database was destroyed,
or the TimesTen instance is down. As a result, rows accumulate in the change log
tables and degrade the performance of autorefresh operations on cache tables in
TimesTen databases where the cache agent is running. This can also cause the cache
administration user's tablespace to fill up.

For example, if a single Oracle Database table is cached by two or more TimesTen
databases where one of the TimesTen databases is unable to connect to the Oracle
database, then autorefresh for the disconnected TimesTen database is not performed.

TT_version_object-ID_L One change log table is created per Oracle
Database table cached in an autorefresh cache
group when the cache group is created. Tracks
updates on the cached Oracle Database table.

Trigger Name Description

TT_version_REPACTIVESTANDBY_T Created when the first AWT cache group is
created. When fired, inserts rows into the TT_
version_REPACTIVESTANDBY table.

TT_version_object-ID_T One trigger is created per Oracle Database
table cached in an autorefresh cache group
when the cache group is created. Fired for
each insert, delete or update operation issued
on the cached Oracle Database table to track
operations in the TT_version_object-ID_L
change log table.

TT_version_schema-ID_DDL_T One trigger for each user who owns cached
Oracle Database tables. Created when a cache
group is created after tracking of DDL
statements has been enabled. Fired for each
DDL statement issued on a cached Oracle
Database table to track operations in the TT_
version_DDL_L table.

Table Name Description

Impact of failed autorefresh operations on TimesTen databases

6-10 Oracle TimesTen Application-Tier Database Cache User's Guide

Instead, the records in the change log table accumulate (so that the disconnected
TimesTen database can catch up once a connection to the Oracle database is
established). If the AgentTimeout parameter is set to 0 (the default), then all change log
records are kept indefinitely until they have been applied to all its cache tables. The
change log records of the other TimesTen databases are not purged even though the
transaction logs are already applied to the local TimesTen database. Alternatively, you
can set the AgentTimeout parameter to define a specific timeout to wait before purging
the saved change log records and stop the accumulation of these change log records.

The following criteria must be met in order for TimesTen to delete rows in the change
log tables when the cache agent is not running on a TimesTen database and a cache
agent timeout is set:

■ Oracle Database tables are cached in autorefresh cache groups within more than
one TimesTen database.

■ The cache agent is running on at least one of the TimesTen databases but is not
running on at least another database.

■ Rows in the change log tables have been applied to the cache tables on all
TimesTen databases where the cache agent is running.

■ For those databases where the cache agent is not running, the agent process has
been down for a period of time that exceeds the cache agent timeout.

To set the cache agent timeout and prevent rows from accumulating in the change log
tables, set the AgentTimeout parameter with the ttCacheConfig built-in procedure as
the cache manager user from any of the TimesTen databases that cache data from the
Oracle database. Pass the AgentTimeout string to the Param parameter and the timeout
setting as a numeric string to the Value parameter. Do not pass in any values to the
tblOwner and tblName parameters as they are not applicable to setting a cache agent
timeout.

Example 6–7 Setting a cache agent timeout

In the following example, the cache agent timeout is set to 900 seconds (15 minutes):

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheConfig('AgentTimeout',,,'900');

To determine the current cache agent timeout setting, call ttCacheConfig passing only
the AgentTimeout string to the Param parameter:

Command> CALL ttCacheConfig('AgentTimeout');
< AgentTimeout, <NULL>, <NULL>, 900 >

The default cache agent timeout setting is 0, which means that all change log records
are kept indefinitely until they have been applied to all its cache tables. If you set the
cache agent timeout to a value between 1 and 600 seconds, the timeout is set to 600
seconds. The cache agent timeout applies to all TimesTen databases that cache data
from the same Oracle database and have the same cache administration user name
setting.

When determining a proper cache agent timeout setting, consider the time it takes to
load the TimesTen database into memory, the time to start the cache agent process,
potential duration of network outages, and anticipated duration of planned
maintenance activities.

Each TimesTen database, and all of its autorefresh cache groups have an autorefresh
status to determine whether any deleted rows from the change log tables were not
applied to the cache tables in the cache groups. If rows were deleted from the change

Impact of failed autorefresh operations on TimesTen databases

Managing a Caching Environment 6-11

log tables and not applied to some cache tables because the cache agent on the
database was down for a period of time that exceeded the cache agent timeout, those
cache tables are no longer synchronized with the cached Oracle Database tables.
Subsequent updates on the cached Oracle Database tables are not automatically
refreshed into the cache tables until the accompanying cache group is recovered.

The following are the possible statuses for an autorefresh cache group:

■ ok: All of the deleted rows from the change log tables were applied to its cache
tables. Incremental autorefresh operations continue to occur on the cache group.

■ dead: Some of the deleted rows from the change log tables were not applied to its
cache tables so the cache tables are not synchronized with the cached Oracle
Database tables. Autorefresh operations have ceased on the cache group and do
not resume until the cache group has been recovered.

■ recovering: The cache group is being recovered. Once recovery completes, the
cache tables are synchronized with the cached Oracle Database tables, the cache
group's autorefresh status is set to ok, and incremental autorefresh operations
resume on the cache group.

The following are the possible autorefresh statuses for a TimesTen database:

■ alive: All of its autorefresh cache groups have an autorefresh status of OK.

■ dead: All of its autorefresh cache groups have an autorefresh status of dead.

■ recovering: At least one of its autorefresh cache groups have an autorefresh status
of recovering.

If the cache agent on a TimesTen database is down for a period of time that exceeds the
cache agent timeout, the autorefresh status of the database is set to dead. Also, the
autorefresh status of all autorefresh cache groups within that database are set to dead.

Call the ttCacheDbCgStatus built-in procedure as the cache manager user to
determine the autorefresh status of a cache group and its accompanying TimesTen
database. Pass the owner of the cache group to the cgOwner parameter and the name of
the cache group to the cgName parameter.

Example 6–8 Determining the autorefresh status of a cache group and TimesTen
database

In the following example, the autorefresh status of the database is alive and the
autorefresh status of the cacheuser.customer_orders read-only cache group is ok:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheDbCgStatus('cacheuser','customer_orders');
< alive, ok >

To view only the autorefresh status of the database and not of a particular cache group,
call ttCacheDbCgStatus without any parameters:

Command> CALL ttCacheDbCgStatus;
< dead, <NULL> >

If the autorefresh status of a cache group is ok, its cache tables are being automatically
refreshed based on its autorefresh interval. If the autorefresh status of a database is
alive, the autorefresh status of all its autorefresh cache groups are ok.

If the autorefresh status of a cache group is dead, its cache tables are no longer being
automatically refreshed when updates are committed on the cached Oracle Database
tables. The cache group must be recovered in order to resynchronize the cache tables
with the cached Oracle Database tables.

Impact of failed autorefresh operations on TimesTen databases

6-12 Oracle TimesTen Application-Tier Database Cache User's Guide

You can configure a recovery method for cache groups whose autorefresh status is
dead.

Call the ttCacheConfig built-in procedure as the cache manager user from any of the
TimesTen databases that cache data from the Oracle database. Pass the
DeadDbRecovery string to the Param parameter and the recovery method as a string to
the Value parameter. Do not pass in any values to the tblOwner and tblName
parameters as they are not applicable to setting a recovery method for dead cache
groups.

The following are the valid recovery methods:

■ Normal: When the cache agent starts, a full autorefresh operation is performed on
cache groups whose autorefresh status is dead in order to recover those cache
groups. This is the default recovery method.

■ Manual: For each explicitly loaded cache group whose autorefresh status is dead, a
REFRESH CACHE GROUP statement must be issued in order to recover these cache
groups after the cache agent starts.

For each dynamic cache group whose autorefresh status is dead, a REFRESH CACHE
GROUP or UNLOAD CACHE GROUP statement must be issued in order to recover these
cache groups after the cache agent starts.

■ None: Cache groups whose autorefresh status is dead must be dropped and then
re-created after the cache agent starts in order to recover them.

Example 6–9 Configuring the recovery method for dead cache groups

In the following example, the recovery method is set to Manual for cache groups whose
autorefresh status is dead:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheConfig('DeadDbRecovery',,,'Manual');

To determine the current recovery method for dead cache groups, call ttCacheConfig
passing only the DeadDbRecovery string to the Param parameter:

Command> CALL ttCacheConfig('DeadDbRecovery');
< DeadDbRecovery, <NULL>, <NULL>, manual >

The recovery method applies to all autorefresh cache groups in all TimesTen databases
that cache data from the same Oracle database and have the same cache
administration user name setting.

When a cache group begins the recovery process, its autorefresh status is changed
from dead to recovering, and the status of the accompanying TimesTen database is
changed to recovering, if it is currently dead.

After the cache group has been recovered, its autorefresh status is changed from
recovering to ok. Once all cache groups have been recovered and their autorefresh
statuses are ok, the status of the accompanying TimesTen database is changed from
recovering to alive.

A full autorefresh operation requires more system resources to process than an
incremental autorefresh operation when there is a small volume of updates to refresh
and a large number of rows in the cache tables. If you need to bring a TimesTen
database down for maintenance activities and the volume of updates anticipated
during the downtime on the Oracle Database tables that are cached in autorefresh
cache groups is small, you can consider temporarily setting the cache agent timeout to
0. When the database is brought back up and the cache agent restarted, incremental
autorefresh operations resumes on cache tables in autorefresh cache groups. Full

Dropping Oracle Database objects used by autorefresh cache groups

Managing a Caching Environment 6-13

autorefresh operations are avoided because the autorefresh status on the
accompanying cache groups were not changed from ok to dead so those cache groups
do not need to go through the recovery process. Make sure to set the cache agent
timeout back to its original value once the database is back up and the cache agent has
been started.

Dropping Oracle Database objects used by autorefresh cache groups
If a TimesTen database that contains autorefresh cache groups becomes unavailable,
Oracle Database objects such as change log tables and triggers used to implement
autorefresh operations continue to exist in the Oracle database. A TimesTen database is
unavailable, for example, when the TimesTen Classic system is taken offline or the
database has been destroyed without dropping its autorefresh cache groups.

Oracle Database objects used to implement autorefresh operations also continue to
exist in the Oracle database when a TimesTen database is no longer being used but still
contains autorefresh cache groups. Rows continue to accumulate in the change log
tables. This impacts autorefresh performance on other TimesTen databases. Therefore,
it is desirable to drop these Oracle Database objects associated with the unavailable or
abandoned TimesTen database.

Run the timesten_home/install/oraclescripts/cacheCleanUp.sql SQL*Plus script
as the cache administration user to drop the Oracle Database objects used to
implement autorefresh operations. The host name of the TimesTen Classic system and
the TimesTen database path name are passed as arguments to the cacheCleanUp.sql
script. You can run the cacheInfo.sql script as the cache administration user to
determine the host name of the TimesTen Classic system and the database path name.
The cacheInfo.sql script can also be used to determine whether any objects used to
implement autorefresh operations exist in the Oracle database.

Example 6–10 Dropping Oracle Database objects for autorefresh cache groups

In the following example, the TimesTen database still contained one read-only cache
group customer_orders with cache tables oratt.customer and oratt.orders when
the database was dropped. The cacheCleanUp.sql script drops the change log tables
and triggers associated with the two cache tables.

% cd timesten_home/install/oraclescripts
% sqlplus cacheuser/oracle
SQL> @cacheCleanUp "sys1" "/users/OracleCache/ttcache"

*****************************OUTPUT**************************************
Performing cleanup for object_id: 69959 which belongs to table : CUSTOMER
Executing: delete from tt_05_agent_status where host = sys1 and datastore =
/users/OracleCache/ttcache and object_id = 69959
Executing: drop table tt_05_69959_L
Executing: drop trigger tt_05_69959_T
Executing: delete from tt_05_user_count where object_id = object_id1
Performing cleanup for object_id: 69966 which belongs to table : ORDERS
Executing: delete from tt_05_agent_status where host = sys1 and datastore =
/users/OracleCache/ttcache and object_id = 69966
Executing: drop table tt_05_69966_L
Executing: drop trigger tt_05_69966_T
Executing: delete from tt_05_user_count where object_id = object_id1
**

Monitoring the cache administration user's tablespace

6-14 Oracle TimesTen Application-Tier Database Cache User's Guide

Monitoring the cache administration user's tablespace
The following sections describe how to manage the cache administration user’s
tablespace:

■ Defragmenting change log tables in the tablespace

■ Receiving notification on tablespace usage

■ Recovering from a full tablespace

Defragmenting change log tables in the tablespace
Prolonged use or a heavy workload of the change log tables for autorefresh cache
groups can result in fragmentation of the tablespace. In order to prevent degradation
of the tablespace from fragmentation of the change log tables, TimesTen Classic
calculates the percentage of fragmentation for the change log tables as a ratio of used
space to the total size of the space. If this ratio falls below a defined threshold,
TimesTen alerts you of the necessity for defragmentation of the change log tables by
logging a message. By default, this threshold is set to 40%. You can configure what the
fragmentation threshold should be with the ttCacheConfig built-in procedure.

To set the fragmentation threshold, call the ttCacheConfig built-in procedure as the
cache manager user from any of the TimesTen databases that cache data from the
Oracle database. Pass the AutoRefreshLogFragmentationWarningPCT string to the
Param parameter and the threshold setting as a numeric string to the Value parameter.

To set the time interval for how often to perform the calculation of the fragmentation
percentage, call the ttCacheConfig built-in procedure as the cache manager user from
any of the TimesTen databases that cache data from the Oracle database. Pass the
AutorefreshLogMonitorInterval string to the Param parameter and the time interval
(in seconds) as a numeric string to the Value parameter.

Example 6–11 Setting a fragmentation threshold

In the following example, the fragmentation threshold is set to 50% and the time
interval for calculating the fragmentation threshold is set to 3600 seconds:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheConfig('AutoRefreshLogFragmentationWarningPCT',,,'50');
< AutoRefreshLogFragmentationWarningPCT, <NULL>, <NULL>, 50 >
1 row found.
Command> CALL ttCacheConfig('AutorefreshLogMonitorInterval',,,'3600');
< AutorefreshLogMonitorInterval, <NULL>, <NULL>, 3600 >
1 row found.

To determine the current fragmentation threshold setting, call ttCacheConfig passing
the AutoRefreshLogFragmentationWarningPCT string to the Param parameter:

Note: Messages are logged to the user and support error logs. For
details, see "Error, warning, and informational messages" in the Oracle
TimesTen In-Memory Database Operations Guide.

Note: Do not pass in any values to the tblOwner and tblName
parameters as they are not applicable to setting the fragmentation
threshold or the time interval for the threshold calculation.

Monitoring the cache administration user's tablespace

Managing a Caching Environment 6-15

Command> CALL ttCacheConfig('AutoRefreshLogFragmentationWarningPCT');
< AutoRefreshLogFragmentationWarningPCT, <NULL>, <NULL>, 50 >

You can either configure TimesTen to perform defragmentation automatically or
manually initiate defragmentation. To configure what action is taken when the ratio
falls below the fragmentation threshold, call the ttCacheConfig built-in procedure
with the AutoRefreshLogDeFragmentAction string to the Param parameter and the
desired action as the Value parameter as follows:

■ Manual. This is the default. No action is taken to defragment the change log tables.
Any defragmentation must be performed manually by executing the
ttCacheAutoRefreshLogDeFrag built-in procedure. See "Manually defragmenting
the change log tables for autorefresh cache groups" on page 6-16 for more
information.

■ Compact: TimesTen defragments the change log tables.

■ CompactAndReclaim: TimesTen defragments the change log tables and reclaims the
space.

Example 6–12 Configuring action for fragmentation

In the following example, the action is set to CompactAndReclaim so that when the
fragmentation ratio falls below the threshold, TimesTen defragments the change log
tables and reclaims the space:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL
ttCacheConfig('AutoRefreshLogDeFragmentAction',,,'CompactAndReclaim');
< AutoRefreshLogDeFragmentAction, <NULL>, <NULL>, compactandreclaim >
1 row found.

To determine the current fragmentation threshold setting, call ttCacheConfig passing
the AutoRefreshLogDeFragmentAction string to the Param parameter:

Command> CALL ttCacheConfig('AutoRefreshLogDeFragmentAction');
< AutoRefreshLogDeFragmentAction , <NULL>, <NULL>, compactandreclaim >

You can discover the fragmentation percentage of the tablespace and when the last
defragmentation operation was performed with the following returned columns from
the ttCacheAutorefreshStatsGet built-in procedure:

■ AutoRefreshLogFragmentationPCT: The current fragmentation percentage for the
tablespace.

■ AutoRefreshLogFragmentationTS: The timestamp of when the last fragmentation
percentage was calculated.

■ autorefLogDeFragCnt: The count for how many times the tables in this particular
cache group have been defragmented.

Note: Do not pass in any values to the tblOwner and tblName
parameters as they are not applicable to setting the defragmentation
action.

Note: When reclaiming space, the change log table is briefly locked,
which temporarily suspends writing into the base table.

Monitoring the cache administration user's tablespace

6-16 Oracle TimesTen Application-Tier Database Cache User's Guide

For more details, see "ttCacheAutorefreshStatsGet" in the Oracle TimesTen In-Memory
Database Reference.

Manually defragmenting the change log tables for autorefresh cache groups
To manually initiate a defragmentation of the change log tables, call the
ttCacheAutoRefreshLogDeFrag built-in procedure as the cache manager user from any
of the TimesTen databases that cache data from the Oracle database. Pass in one of the
following strings as the parameter:

■ Compact: Defragment the change log tables.

■ CompactAndReclaim: Defragment the change log tables and reclaim the space.

Example 6–13 Manually defragmenting the change log tables

In the following example, the user calls the ttCacheAutoRefreshLogDeFrag built-in
procedure with the CompactAndReclaim option:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheAutoRefreshLogDeFrag('CompactAndReclaim');

Receiving notification on tablespace usage
In order to avoid the tablespace becoming full, you can configure TimesTen Classic to
return a warning to the application when an update operation such as an UPDATE,
INSERT or DELETE statement is issued on cached Oracle Database tables and causes the
usage of the cache administration user's tablespace to exceed a specified threshold.

Call the ttCacheConfig built-in procedure as the cache manager user from any of the
TimesTen databases that cache tables from the Oracle database. Pass the
AutoRefreshLogTblSpaceUsagePCT string to the Param parameter and the threshold as
a numeric string to the Value parameter. The threshold value represents the percentage
of space used in the cache administration user's tablespace upon which a warning is
returned to the application when an update operation is issued on a cached Oracle
Database table. Do not pass in any values to the tblOwner and tblName parameters as
they are not applicable to setting a warning threshold for the usage of the cache
administration user's tablespace.

The cache administration user must be granted the SELECT privilege on the Oracle
Database SYS.DBA_DATA_FILES table in order for the cache manager user to set a
warning threshold on the cache administration user's tablespace usage, and for the
cache administration user to monitor its tablespace to determine if the configured
threshold has been exceeded.

Example 6–14 Setting a cache administration user's tablespace usage warning
threshold

The following example configures a warning to be returned to the application that
issues an update operation on a cached Oracle Database table if it results in the usage
of the cache administration user's tablespace to exceed 80 percent:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheConfig('AutoRefreshLogTblSpaceUsagePCT',,,'80');

Note: When reclaiming space, the change log table is briefly locked,
which temporarily suspends writing into the base table.

Monitoring the cache administration user's tablespace

Managing a Caching Environment 6-17

To determine the current cache administration user's tablespace usage warning
threshold, call ttCacheConfig passing only the AutoRefreshLogTblSpaceUsagePCT
string to the Param parameter:

Command> CALL ttCacheConfig('AutoRefreshLogTblSpaceUsagePCT');
< AutoRefreshLogTblSpaceUsagePCT, <NULL>, <NULL>, 80 >

The default cache administration user's tablespace usage warning threshold is 0
percent which means that no warning is returned to the application regardless of the
tablespace usage. The cache administration user's tablespace usage warning threshold
applies to all TimesTen databases that cache tables from the same Oracle database and
have the same cache administration user name setting.

Recovering from a full tablespace
By default, when the cache administration user's tablespace is full, an error is returned
to the Oracle Database application when it attempts a DML operation, such as an
UPDATE, INSERT or DELETE statement, on a particular cached Oracle Database table.

Rather than TimesTen returning an error to the Oracle Database application when the
cache administration user's tablespace is full, you can configure TimesTen to delete
existing rows from the change log tables to make space for new rows when an update
operation is issued on a particular cached Oracle Database table. If some of the deleted
change log table rows have not been applied to the TimesTen cache tables, a full
autorefresh operation is performed on those cache tables in each TimesTen database
that contains the tables upon the next autorefresh cycle.

Call the ttCacheConfig built-in procedure as the cache manager user from any of the
TimesTen databases that cache tables from the Oracle database. Pass the
TblSpaceFullRecovery string to the Param parameter, the owner and name of the
cached Oracle Database table to the tblOwner and tblName parameters, respectively, on
which you want to configure an action to take if the cache administration user's
tablespace becomes full, and the action itself as a string to the Value parameter.

The following are the valid actions:

■ None: Return an Oracle Database error to the application when an update
operation is issued on the cached Oracle Database table. This is the default action.

■ Reload: Delete rows from the change log table and perform a full autorefresh
operation on the cache table upon the next autorefresh cycle when an update
operation is issued on the cached Oracle Database table.

Example 6–15 Configuring an action when the cache administration user's tablespace
becomes full

In the following example, rows are deleted from the change log table and a full
autorefresh operation is performed on the cache table upon the next autorefresh cycle
when an update operation is issued on the oratt.customer cached Oracle Database
table while the cache administration user's tablespace is full:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheConfig('TblSpaceFullRecovery','oratt','customer','Reload');

To determine the current action to take when an update operation is issued on a
particular cached Oracle Database table if the cache administration user's tablespace is
full, call ttCacheConfig passing only the TblSpaceFullRecovery string to the Param
parameter, and the owner and name of the cached Oracle Database table to the
tblOwner and tblName parameters, respectively:

Backing up and restoring a database with cache groups

6-18 Oracle TimesTen Application-Tier Database Cache User's Guide

Command> CALL ttCacheConfig('TblSpaceFullRecovery','oratt','customer');
< TblSpaceFullRecovery, ORATT, CUSTOMER, reload >

The action to take when update operations are issued on a cached Oracle Database
table while the cache administration user's tablespace is full applies to all TimesTen
databases that cache tables from the same Oracle database and have the same cache
administration user name setting.

Backing up and restoring a database with cache groups
Databases containing cache groups can be backed up and restored with either the
ttBackup or ttMigrate utilities.

■ If the restored database connects to the same backend Oracle database, then use
the ttBackup and ttRestore utilities, then drop and recreate all cache groups in
the restored TimesTen database. If they are static cache groups, you may be
required to reload them. For dynamic cache groups, the reload is optional as data
is pulled in from the Oracle database as it is referenced.

■ If the restored database connects to a different backend Oracle database than what
it had originally connected with, then perform one of the following:

– Backing up and restoring using the ttBackup and ttRestore utilities

– Backing up and restoring with the ttMigrate utility

Backing up and restoring using the ttBackup and ttRestore utilities
When you use the ttBackup utility, it backs up the TimesTen database with all of its
data at a particular time. Thus, if you want to use these cache groups again, restoring
this backup requires additional action as the restored data within the cache groups are
out of date and out of sync with the data in the backend Oracle database. See "Backup,
Restore, and Migrate Data in TimesTen Classic" in the Oracle TimesTen In-Memory
Database Installation, Migration, and Upgrade Guide.

If the restored database connects to a different backend Oracle database than what it
had originally connected with and you want to use the ttBackup and ttRestore
utilities to backup and restore your database, then perform the following:

1. Execute the ttBackup utility command to backup the database and its objects into
a binary file. For example, to backup the cache1 database using the /tmp/dump
directory for temporary storage:

% ttBackup -dir /tmp/dump -connstr "DSN=cache1"

Note: If another TimesTen database is used to connect to the original
backend Oracle database (and now no longer connects) and if all
cache groups in the TimesTen database were not cleanly dropped,
then execute the cacheCleanUp.sql SQL*Plus script against the
original Oracle database to remove all leftover objects. Specify the host
and path for the original TimesTen database.

Note: See "ttBackup" and "ttRestore" in the Oracle TimesTen
In-Memory Database Reference for more information on these tools.

Backing up and restoring a database with cache groups

Managing a Caching Environment 6-19

2. Drop all cache groups and destroy the database. Since the database still exists with
its cache groups, drop the cache groups and then destroy the database before
restoring in the same or another location.

% ttIsql -connstr "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttCacheStop;
Command> DROP CACHE GROUP readcache;
Command> exit;
Disconnecting...
Done.

% ttDestroy cache1

3. Restore the database with the ttRestore utility and then delete the temporary
directory.

% ttRestore -dir /tmp/dump -connstr "DSN=cache1"
Restore started ...
Restore complete

% rm -r /tmp/dump

4. In order to re-synchronize the data within the cache groups, you must drop and
recreate the cache groups:

a. Connect to the TimesTen database.

b. Drop the cache groups that were restored with the ttRestore utility. Because
the data is out of sync, you may see errors.

c. Specify the cache administrator user name and password with the
ttCacheUidPwdSet built-in procedure.

d. Start the cache agent.

e. Recreate and, if required, reload the cache groups.

% ttIsql -connstr "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"

Command> DROP CACHE GROUP readcache;
Command> call ttCacheUidPwdSet('cacheuser','oracle');
Command> call ttCacheStart;
Command> CREATE READONLY CACHE GROUP readcache
 AUTOREFRESH INTERVAL 5 SECONDS
 FROM oratt.readtab
 (keyval NUMBER NOT NULL PRIMARY KEY, str VARCHAR2(32));
Command> LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;
2 cache instances affected.

Backing up and restoring with the ttMigrate utility
The ttMigrate utility saves tables and indexes from a TimesTen database into a binary
file. When a cache group is migrated and included in the binary file, it includes the
cache group definition and schema; however, the data of the cache group is not
migrated.

Note: If the restored TimesTen database is not able to connect to any
backend Oracle database, then TimesTen cannot autorefresh the data
for the read-only cache groups.

Backing up and restoring a database with cache groups

6-20 Oracle TimesTen Application-Tier Database Cache User's Guide

If the restored database connects to a different backend Oracle database than what it
had originally connected with and you want to use the ttMigrate utility for backing
up and restoring the database, then perform the following:

1. Execute the ttMigrate -c utility command to save the database and its objects
into a binary file.

% ttMigrate -c "DSN=cache1" cache1.ttm
...
Saving user CACHEUSER
User successfully saved.

Saving user ORATT
User successfully saved.

Saving table CACHEUSER.READTAB
 Saving rows...
 2/2 rows saved.
Table successfully saved.

Saving cache group CACHEUSER.READCACHE
 Saving cached table ORATT.READTAB
Cache group successfully saved.

2. Drop all cache groups and destroy the TimesTen database:

a. Stop the cache agent.

b. Drop all cache groups. You may see errors reported, which can be ignored.
When you drop all cache groups before destroying the TimesTen database, all
metadata on the Oracle Database for these cache groups is deleted.

c. Destroy the TimesTen database.

Command> call ttCacheStop;
Command> DROP CACHE GROUP readcache;
Command> exit
Disconnecting...
Done.
% ttDestroy cache1

3. Create and restore the database:

a. Create the TimesTen database with a first connection request.

b. Create the TimesTen cache table user and the TimesTen cache manager user.
Grant appropriate privileges to these users.

Note: See "Backup, Restore, and Migrate Data in TimesTen Classic"
in the Oracle TimesTen In-Memory Database Installation, Migration, and
Upgrade Guide and "ttMigrate" in the Oracle TimesTen In-Memory
Database Reference for more information on these tools.

Note: Depending on which TimesTen Classic release you are
migrating from, the users and privileges may or may not be migrated.
See "ttMigrate" in the Oracle TimesTen In-Memory Database Reference for
more information.

Changing cache user names and passwords

Managing a Caching Environment 6-21

c. Restore the database from the saved binary file with the ttMigrate -r utility
command.

% ttIsql cache1
Command> CREATE USER cacheuser IDENTIFIED BY timesten;
 User created.

Command> GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE TO
cacheuser;
Command> CREATE USER oratt IDENTIFIED BY timesten;
User created.

Command> exit
Disconnecting...
Done.

% ttMigrate -r -relaxedUpgrade -cacheuid cacheuser -cachepwd oracle
 -connstr "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
 cache1.ttm
...
Restoring table CACHEUSER.READTAB
 Restoring rows...
 2/2 rows restored.
Table successfully restored.

Restoring cache group CACHEUSER.READCACHE
 Restoring cached table ORATT.READTAB
 1/1 cached table restored.
Cache group successfully restored.

4. Connect to the restored database and reset the cache autorefresh state:

a. Connect to the TimesTen database with ttIsql.

b. Specify the cache administrator user name and password with the
ttCacheUidPwdSet built-in procedure.

c. Start the cache agent.

d. Alter the cache groups to set autorefresh state to ON.

% ttIsql -connstr "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttCacheUidPwdSet('cacheuser','oracle');
Command> call ttCacheStart;
Command> ALTER CACHE GROUP readcache SET AUTOREFRESH STATE ON;

Changing cache user names and passwords
Perform the following to change any of the user names or passwords for the TimesTen
cache manager user, its companion Oracle user, or the cache administration user:

1. If you want to modify the cache manager user or password, perform the
following:

Note: If the restored TimesTen database is not able to connect to any
backend Oracle database, then TimesTen cannot autorefresh the data
for the read-only cache groups.

Changing cache user names and passwords

6-22 Oracle TimesTen Application-Tier Database Cache User's Guide

a. On the TimesTen database, if you want to modify the password of the cache
manager user, then use the ALTER USER statement on the active master.

Command> ALTER USER cacheuser IDENTIFIED BY newpwd;

b. On the back-end Oracle database, you can modify the cache manager
companion Oracle password with the ALTER USER statement. If you are
working on TimesTen, you can use Passthrough 3 to execute this directly on
the Oracle database.

Command> passthrough 3;
Command> ALTER USER cacheuser IDENTIFIED BY newpwd;

c. If you want to change the cache manager user, you must first drop all cache
groups that the cache manager user owns before dropping the existing user
and creating a new user.

In addition, since the cache manager user must have a companion Oracle user
with the same name, you must either:

– Drop all tables owned by the current companion Oracle user, drop the
user, and then re-create it with the same name as the new cache manager
user. If the current companion Oracle user is the cache administration
user, see Step 3.

– Choose another Oracle user that has the same name as the cache manager
user and provides the same functionality.

For full details on how to create a cache manager user and its companion
Oracle user, see "Create the TimesTen users" on page 3-7.

d. If the TimesTen cache manager user name or password are defined in the
sys.odbc.ini (or odbc.ini) file, update the new cache manager user name or
password in the sys.odbc.ini (or odbc.ini) file on both the active and
standby masters.

2. If you want to modify the cache administration user or its password, perform the
following:

Note: Passwords for both the TimesTen cache manager user and its
companion Oracle user can be changed at any time.

The name for the cache manager user on TimesTen must be the same
as its companion Oracle user; however, the passwords may be
different. For more details on the cache manager user and its
companion Oracle user, see "Create the TimesTen users" on page 3-7.

Note: If you have modified the password for the companion Oracle
user, reconnect to the TimesTen database as the cache manager user
providing passwords for the cache manager user and its companion
Oracle user.

Note: Alternatively, if you want to use a different user as the cache
manager user, ensure that it has the correct privileges and a
companion Oracle user with the correct privileges.

Changing cache user names and passwords

Managing a Caching Environment 6-23

a. On the back-end Oracle database, you can modify the cache administration
password with the ALTER USER statement. The password of the cache
administration user can be changed at any time.

If you are working on TimesTen, you can use Passthrough 3 to execute this
directly on the Oracle database.

Command> passthrough 3;
Command> ALTER USER cacheuser IDENTIFIED BY newpwd;

b. If you want to change the cache administration user, you must first drop all
cache groups on the TimesTen database that the cache administration user
manages before you can drop the cache administration user on the Oracle
database and create a new user. Dropping the cache groups on TimesTen
removes all metadata associated with those cache groups.

When you create a new cache administration user on the Oracle database, you
must follow the same instructions for creating a cache adminstration user that
are provided in the "Create the Oracle database users" on page 3-2.

c. Set the new user name or password for the cache administration user by
executing the ttCacheUidPwdSet built-in procedure on the active master
database.

Command> call ttCacheUidPwdSet('cacheuser','newpwd');

Note: See "Set the cache administration user name and password" on
page 3-9.

Changing cache user names and passwords

6-24 Oracle TimesTen Application-Tier Database Cache User's Guide

7

Cache Performance 7-1

7Cache Performance

The following sections contain information about cache performance.

■ Dynamic load performance

■ Improving AWT throughput

■ Improving performance for autorefresh operations

■ Retrieving statistics on autorefresh transactions

■ Caching the same Oracle table on two or more TimesTen databases

Dynamic load performance
Dynamic loading based on a primary key search of the root table has faster
performance than primary key searches on a child table or foreign key searches on a
child table. For more details, see "Dynamically loading a cache instance" on page 5-10.

If you combine dynamic load operations with autorefresh operations, you may
experience some contention. See "Improving performance for autorefresh operations"
on page 7-9 for details on how to improve your performance in this situation.

Also, there can be a performance cost when opening a new connection for a dynamic
load operation. See "Managing a cache connection pool to the Oracle database for
dynamic load requests" on page 7-1 for details on how to reduce the cost of opening
new connections by creating a connection pool.

Managing a cache connection pool to the Oracle database for dynamic load requests
When a qualifying SELECT statement is issued on any dynamic read-only cache table
and the data does not exist in the TimesTen cache table (but does exist in the base
Oracle database table), this results in a cache miss. After which, Timesten performs a

Note:

See Oracle TimesTen In-Memory Database Troubleshooting Guide for
extensive information about monitoring autorefresh operations and
improving autorefresh performance. See "Monitoring autorefresh
cache groups" and "Poor autorefresh performance".

See "AWT performance monitoring" and "Possible causes of poor
AWT performance" in the Oracle TimesTen In-Memory Database
Troubleshooting Guide for more information about AWT cache group
performance.

Dynamic load performance

7-2 Oracle TimesTen Application-Tier Database Cache User's Guide

dynamic load to retrieve the data from the Oracle database (either over an existing or a
new connection to the Oracle database) and inserts the rows into the cache group.
There can be a performance cost when opening a new connection for the dynamic
load.

By default, the connection to the Oracle database remains open until the application’s
connection to TimesTen is closed. When your application initiates a dynamic load,
each client connection is associated with a connection to the Oracle database (when
using TimesTen Cache). If you use several connections, TimesTen’s requests for new
connections to the Oracle database could exceed the maximum number of connections
allowed to the Oracle database.

Applications can have multiple dynamic load requests to the Oracle database, which
could result in too many open connections to the back-end Oracle database. However,
for client/server applications with multiple connections per server, you can configure
TimesTen to use the cache connection pool for all connections to the Oracle database.
The cache connection pool can only be utilized by an application using a client/server
connection as the pooled connections are shared across all client/server connections.

Dynamic load requests will use an existing connection to the Oracle database from the
cache connection pool (rather than creating a new one) to reduce the total number of
open connections. Once the dynamic load request completes, the connection is
returned to the cache connection pool.

Using an existing connection from the cache connection pool increases your
application performance by:

■ Reducing the cost of starting a dedicated Oracle server process (or thread) for each
newly requested connection.

■ Reducing the total number of Oracle server processes (threads) by sharing them
amongst connections rather than having each process (thread) dedicated to a
single connection.

■ Enabling the sharing of session level server resources, such as memory, between
connections.

Once the connection is returned to the cache connection pool, the application logically
sees the connection as disconnected. Thus, if your application contains passthrough
statements (DDL or DML statements executed on the Oracle database), any
passthrough statement must be committed or rolled back before the dynamic load is
requested or an error is thrown. You can set autocommit to ON or explicitly execute the
commit or rollback within the transaction before the dynamic load.

Note: If an application will execute a higher than normal number of
dynamic load requests and performance is critical, then you might
consider either:

■ Removing or minimizing passthrough statements with DDL or
DML statements (which can slow down your performance) from
any application using the cache connection pool.

■ Maintaining a completely separate connection directly to the
Oracle Database to execute its SQL directly against Oracle, rather
than using passthrough statements to execute SQL indirectly
through TimesTen.

Dynamic load performance

Cache Performance 7-3

To decide whether to use the cache connection pool, evaluate if your applications
request a high number of dynamic load requests of data from the Oracle database
(resulting in too many open connections to the Oracle database).

The following sections describe how to use the cache connection pool for your
dynamic read-only cache groups:

■ Enable the cache connection pool

■ Size the cache connection pool

■ Use the ChildServer connection attribute to identify a child server process

■ Apply cache connection pool sizing to currently executing database

■ Example demonstrating management of the cache connection pool

■ Limit the number of connections to the Oracle database

■ Restrictions for the cache connection pool

Enable the cache connection pool
You can specify that TimesTen creates a cache connection pool on the TimesTen server
when it starts up. All TimesTen servers share parameters that are stored on the Oracle
database.

A dynamic load request from a client/server connection acquires a connection from
the cache connection pool, performs the dynamic load, then returns the connection to
the cache connection pool after the dynamic load request completes. The cache
connection pool is destroyed when the TimesTen server shuts down.

To enable client/server connection requests to use the cache connection pool, your
application must specify the following connection attributes when connecting.

■ MaxConnsPerServer connection attribute: Value must be set to > 1 to use the cache
connection pool.

A TimesTen server can create and assign work to multiple TimesTen child server
processes (in multithreaded mode) when this connection attribute is greater than
1. This connection attribute sets the maximum number of client connections that
can be created in a connection pool for each child server process.

■ ServersPerDSN connection attribute: Value designates the number of child server
processes to spawn for the TimesTen server. Default is 1.

Each new incoming connection spawns a new child server process up to the value
specified by the ServersPerDSN connection attribute. When the maximum number
of child server processes is reached, the existing child server processes handle
multiple connections (up to the number specified in MaxConnsPerServer) in a
round-robin method. That is, if you specify ServersPerDSN = 2 and
MaxConnsPerServer = 3, then the first two connections would spawn two child
server processes. The third through the sixth connections would be handled by
these child server processes, where each child server process would service every
other connection.

Note: The cache connection pool can only be initiated from
client-server applications and is used only for dynamic loads initiated
for dynamic read-only cache groups.

Dynamic load performance

7-4 Oracle TimesTen Application-Tier Database Cache User's Guide

Once all of the child server processes have the maximum allowed number of
connections, the next incoming connection starts a new set of child server
processes.

The ServersPerDSN and MaxConnsPerServer connection attributes are used to
designate how to distribute connections across multiple child server processes.

■ UseCacheConnPool connection attribute: Set the value = 2 to enable the use of the
cache connection pool. See "UseCacheConnPool" in the Oracle TimesTen In-Memory
Database Reference for more details.

The following describes the expected behavior when a dynamic load is initiated from
different types of connections:

■ Direct connection: The cache connection pool is not used. The dynamic load
performs using the existing behavior.

■ Single threaded client/server connection (when MaxConnsPerServer=1): The cache
connection pool is not used. The dynamic load performs using the existing
behavior.

■ Multithreaded client/server connection (when MaxConnsPerServer>1): Uses the
cache connection pool for dynamic load if it is created. Otherwise, an error is
returned.

You can set connection attributes for the connection either within a DSN definition or
on a connect string.

Example 7–1 Specifying connection attributes for the cache connection pool in the DSN
definition

The cache1 DSN definition in the sys.odbc.ini file specifies UseCacheConnPool=2,
ServersPerDSN=2 and MaxConnsPerServer=3.

[cache1]
DataStore=/users/OracleCache/database1
PermSize=64
OracleNetServiceName=oracledb
DatabaseCharacterSet=AL32UTF8
UseCacheConnPool=2
ServersPerDSN=2
MaxConnsPerServer=3

Example 7–2 Specifying connection attributes for the cache connection pool on the
connect string

Alternatively, you can specify both of the connection attributes on the command line
when connecting from the application.

ttIsql "DSN=cache1; OracleNetServiceName=oracledb; UseCacheConnPool=2;
ServersPerDSN=2; MaxConnsPerServer=3"

Note: You may also want to limit the number of connections to the
Oracle database, which can be specified with the Connections
connection attribute. See "Limit the number of connections to the
Oracle database" on page 7-7 for details.

Dynamic load performance

Cache Performance 7-5

Size the cache connection pool
You can appropriately size the cache connection pool to avoid contention for
connections with the ttCacheConnPoolSet built-in procedure. The
ttCacheConnPoolSet built-in procedure saves the values of these parameters on the
Oracle database, which are then used as the default values when restarting the
TimesTen server.

Once applied to each TimesTen server, the values specified are used for the cache
connection pool across all client/server applications for a TimesTen database.

You can execute the ttCacheConnPoolSet built-in procedure from a direct connection,
a single-threaded client/server connection or a multithreaded client/server
connection.

For example, the following initiates the minimum and maximum number of pooled
connections to be between 10 and 32 connections and the increment is 1. The
maximum idle time by the client is set to 10 seconds. And all dynamic load operations
will wait for an available connection from the cache connection pool.

Command> call ttCacheConnPoolSet(10, 32, 1, 10, 0);

Set the minimum and maximum size of the cache connection pool to levels where
connections are available when needed. If no connections are available in the pool,
then TimesTen performs the following depending on the setting for ConnNoWait
parameter in the ttCacheConnPoolSet built-in procedure:

■ ConnNoWait=0: TimesTen stalls until a connection from the pool is available or until
a timeout occurs. If the Oracle database is down, applications wait until the Oracle
database comes back up, or a timeout occurs.

If a connection to the Oracle database times out, you receive an error denoting a
loss of the connection, sometimes requiring a rollback on TimesTen.

■ ConnNoWait=1: Any dynamic load operations fail with an error if there are no
available connections in the cache connection pool.

You can query what the cache connection pool parameters are with the
ttCacheConnPoolGet built-in procedure.

See "Example demonstrating management of the cache connection pool" on page 7-6
for a full example of how to use this built-in procedure.

Note: For more information, see the "MaxConnsPerServer",
"ServersPerDSN", and "UseCacheConnPool" sections in the Oracle
TimesTen In-Memory Database Reference.

Note: If you are dynamically changing the sizing, you can apply the
changes to each TimesTen server by executing the
ttCacheConnPoolApply built-in procedure. See "Apply cache
connection pool sizing to currently executing database" on page 7-6
for details on the ttCacheConnPoolApply built-in procedure.

Note: For more information, see the "ttCacheConnPoolSet" section in
the Oracle TimesTen In-Memory Database Reference.

Dynamic load performance

7-6 Oracle TimesTen Application-Tier Database Cache User's Guide

Use the ChildServer connection attribute to identify a child server process
In a client/server environment, TimesTen can have multiple TimesTen child server
processes to handle incoming requests from clients. You provide the ChildServer
connection attribute to identify a specific child server process for certain cache
connection pool built-in procedures. Each child server process is identified by a
number assigned with the ChildServer=n connection attribute, where n is a number
ranging from 1 to the number of running child server processes. Once connected to the
child server process, you can execute either the ttCacheConnPoolGet(’current’) or
ttCacheConnPoolApply built-in procedures that are meant for a specific child server
process.

See "ttCacheConnPoolApply" and "ttCacheConnPoolGet" sections in the Oracle
TimesTen In-Memory Database Reference for details on the built-in procedures that
require this connection attribute. See "Example demonstrating management of the
cache connection pool" on page 7-6 for an example of how to use this connection
attribute.

Apply cache connection pool sizing to currently executing database
Since the cache connection pool parameters are saved on the Oracle database, these
parameters are used to initialize the cache connection pool for the TimesTen database
every time that the TimesTen server restarts.

However, if you set the cache connection parameters while the database is already
running, then you can dynamically resize the cache connection pool parameters on
each child server process with the ttCacheConnPoolApply built-in procedure. After
which, the cache connection pool parameters are associated with the child server
process.

For example, the following connects to the child server process identified as 1 and
applies the saved cache connection pool configuration to this child server process. It
does the same process for child server process 2 (given that ServersPerDSN=2).

Command> connect "DSN=cache1;ChildServer=1;";
Command> call ttCacheConnPoolApply;
Command> disconnect;

Command> connect "DSN=cache1;ChildServer=2;";
Command> call ttCacheConnPoolApply;
Command> disconnect;

You can execute the ttCacheConnPoolApply built-in procedure only from a
multithreaded client/server connection.

If the cache connection pool fails, you can recreate the pool by executing the
ttCacheConnPoolApply built-in procedure from any child server process.

See "Example demonstrating management of the cache connection pool" on page 7-6
for a full example of how to use this built-in procedure.

Example demonstrating management of the cache connection pool
Using the cache1 DSN as shown in Example 7–1 that enables the cache connection
pool and assuming that you have set the cache administrator and password as
described in "Set the cache administration user name and password" on page 3-9, the
following example sets new values for the cache connection pool and applies them to
two separate child server processes.

/* Since ServerPerDSN is set to two and MaxConnsPerServer is set to 3, the first
 and second connections spawn off both child server processes. And then you can

Dynamic load performance

Cache Performance 7-7

 create four more connections to reach the MaxConnsPerServer maximum, which are
 routed by the TimesTen server to the appropriate child server process (using a
 round robin method).*/
Command> connect "DSN=cache1;" as conn1;
Command> connect "DSN=cache1;" as conn2;
Command> connect "DSN=cache1;" as conn3;
Command> connect "DSN=cache1;" as conn4;
Command> connect "DSN=cache1;" as conn5;
Command> connect "DSN=cache1;" as conn6;

Command> use conn1;

/* Query the values for the cache connection pool that are saved on the Oracle
database*/
Command> call ttCacheConnPoolGet('saved');
< 1, 10, 1, 10, 0, -1, -1, -1>

/* Change the configuration of the cache connection pool */
Command> call ttCacheConnPoolSet(1, 20, 1, 10, 0);

/* Query existing values for cache connection pool saved on the Oracle data base.
 Since these are the saved values, this returns -1 for OpenCount, BusyCount
 and LastOraErr. */
Command> call ttCacheConnPoolGet('saved');
< 1, 20, 1, 10, 0, -1, -1, -1 >

/* Query existing values for the current cache connection pool on this TimesTen
database */
Command> call ttCacheConnPoolGet('current');
< 1, 10, 1, 10, 0, 1, 0, 0 >

/* Connect to the child server process 1 using the ChildServer=1 connection
 attribute. Apply the saved values as the current values to the cache connection
 pool for child server process identified as ChildServer 1. */
Command> connect "DSN=cache1;ChildServer=1;";
Command> call ttCacheConnPoolApply;
Command> disconnect;

/* Connect to the child server process 1 using the ChildServer=1 connection
 attribute. Apply the saved values as the current values to the cache connection
 pool for child server process identified as ChildServer 2. */
Command> connect "DSN=cache1;ChildServer=2;";
Command> call ttCacheConnPoolApply;
Command> disconnect;

/* Query values for the cache connection pool in ChildServer 1 */
Command> use conn1;
Command> call ttCacheConnPoolGet('current');
< 1, 20, 1, 10, 0, 1, 0, 0 >

/* Query values for the cache connection pool in ChildServer 2 */
Command> use conn2;
Command> call ttCacheConnPoolGet('current');
< 1, 20, 1, 10, 0, 1, 0, 0 >

Limit the number of connections to the Oracle database
You can tune your performance while ensuring a limit to the number of connections to
the Oracle database. Tuning the number of total connections depends on the following:

■ N: The number of connections to the Oracle database.

Dynamic load performance

7-8 Oracle TimesTen Application-Tier Database Cache User's Guide

■ P: The limit on the number of connections for each cache connection pool, where
each TimesTen child server process has a cache connection pool, which you can set
with the MaxSize cache connection pool parameter in the ttCacheConnPoolSet
built-in procedure.

■ S: The number of child server processes that can be spawned for new connections.
Currently, there is no direct way to limit the number of child server processes.
Indirectly, you can limit the number of child server processes by setting the
MaxSize parameter, MaxConnsPerServer connection attribute, and Connections
connection attributes, as shown in the formula below.

■ M: The maximum number of connections for each child server process, which you
can set with the MaxConnsPerServer connection attribute.

■ D: The maximum number of connections to a DSN, which is set with the
Connections connection attribute.

The number of connections (N) to the Oracle database is equal to the number of
TimesTen child server processes (S) times the number of connections for each cache
connection pool (M).

N=S*P

While the maximum number of connections (D) to the DSN is equal to the maximum
number of connections for each child server process (M) times the number of
TimesTen child server processes (S).

D=M*S

With the above calculation, you can also state:

S=D/M

Since there is no hard limit that we can configure for the number of TimesTen child
server processes, we merging the two equations together to eliminate S to get the
following equation:

N=(D*P)/M

Thus, the number of connections to the Oracle database is set to the maximum number
of connections to the DSN (set by the Connections connection attribute) times the
number of connections for each cache connection pool (set by the MaxSize cache
connection pool parameter), which is then divided by the maximum number of
connections for each child server process (set by the MaxConnsPerServer connection
attribute).

Restrictions for the cache connection pool
Restrictions when using the cache connection pool:

■ You cannot use this in conjunction with the Oracle Database Resident Connection
Pooling feature.

■ This is only supported for multithreaded client/server connections, where the
MaxConnsPerServer connection attribute must be greater than 1.

■ This can only be used for dynamic load operations for dynamic read-only cache
groups.

Improving performance for autorefresh operations

Cache Performance 7-9

Improving AWT throughput
Use the following methods to improve through put for AWT cache groups:

■ Improving AWT throughput with parallel propagation

■ Improving AWT throughput with SQL array execution

Improving AWT throughput with parallel propagation
To improve throughput for an AWT cache group, you can configure multiple threads
that act in parallel to propagate and apply transactional changes to the Oracle
database. Parallel propagation enforces transactional dependencies and applies
changes in AWT cache tables to Oracle Database tables in commit order. For full
details, see "Configuring parallel propagation to Oracle Database tables" on page 4-15.

Improving AWT throughput with SQL array execution
The CacheAWTMethod connection attribute setting determines whether to use the
PL/SQL execution method or SQL array execution method for asynchronous
writethrough propagation when applying changes to the Oracle database.

■ PL/SQL execution method: AWT bundles all pending operations into a single
PL/SQL collection that is sent to the Oracle database server to be executed. This
execution method is appropriate when there are mixed transactions and network
latency between TimesTen and the Oracle database server. It is efficient for most
use cases when the workload consists of mixed INSERT, UPDATE, and DELETE
statements to the same or different tables. By default, TimesTen uses the PL/SQL
execution method (CacheAWTMethod=1).

■ SQL array execution method: Consider changing CacheAWTMethod to 0 when the
changes consist of mostly repeated sequences of the same operation (INSERT,
UPDATE, or DELETE) against the same table. For example, SQL array execution is
very efficient when a user does an update that affects several rows of a table.
Updates are grouped together and sent to the Oracle database in a single batch.

The PL/SQL execution method transparently falls back to SQL array execution mode
temporarily when it encounters one of the following:

■ A statement that is over 32761 bytes in length.

■ A statement that references a column of type BINARY FLOAT, BINARY DOUBLE and
VARCHAR/VARBINARY of length greater than 4000 bytes.

For more information, see "CacheAWTMethod" in Oracle TimesTen In-Memory Database
Reference.

Improving performance for autorefresh operations
The following sections describe how to improve performance for autorefresh
operations:

■ Minimizing delay for cached data with continuous autorefresh

Note: You can also set this value with the ttDBConfig built-in
procedure with the CacheAwtMethod parameter. For details, see
"ttDBConfig" in the Oracle TimesTen In-Memory Database Reference.

Improving performance for autorefresh operations

7-10 Oracle TimesTen Application-Tier Database Cache User's Guide

■ Reducing contention on TimesTen for dynamic read-only cache groups with
incremental autorefresh

■ Reducing lock contention for read-only cache groups that use autorefresh and
dynamic load

■ Improving performance when reclaiming memory during autorefresh operations

■ Executing large transactions with incremental autorefresh read-only cache groups

■ Configuring a select limit when using incremental autorefresh for read-only cache
groups

Minimizing delay for cached data with continuous autorefresh
You can specify continuous autorefresh with an autorefresh interval of 0 milliseconds.
With continuous autorefresh, the next autorefresh cycle is scheduled as soon as
possible after the last autorefresh cycle has ended.

Continuous autorefresh could result in a higher resource usage when there is a low
workload rate on the Oracle database, since the cache agent could be performing
unnecessary round-trips to the Oracle database.

See "CREATE CACHE GROUP" and "ALTER CACHE GROUP" in the Oracle TimesTen
In-Memory Database SQL Reference for details on how to set the autorefresh interval.

Reducing contention on TimesTen for dynamic read-only cache groups with
incremental autorefresh

For most cache group operations, autorefresh and dynamic load operations coordinate
their access to the Oracle database for correctness. The default TimesTen coordination
behavior could result in contention between autorefresh and dynamic load operations
(in extreme cases).

If you have dynamic read-only cache groups with incremental autorefresh, then:

■ Multiple dynamic load operations could be blocked by autorefresh operations.

■ Autorefresh operations are frequently delayed while waiting for dynamic load
operations to complete.

Enabling the DynamicLoadReduceContention database system parameter changes the
way that autorefresh and dynamic load operations coordinate, which results in
reduced contention between autorefresh and dynamic load operations.

■ Dynamic load operations are never blocked by autorefresh operations (due to
additional synchronization).

■ Autorefresh operations are not completely delayed by dynamic load operations.
Instead, autorefresh operations will wait a short while for concurrently executing
dynamic load operations to be notified that a new autorefresh operation is
starting. This enables dynamic load operations to synchronize in tandem with
concurrently executing autorefresh operations.

Note: You cannot change the value of the
DynamicLoadReduceContention database system parameter if there are
any dynamic read-only cache groups or if the cache or replication
agents are running. You must unload or drop (and recreate later) any
existing dynamic read only cache groups before you can change this
value.

Improving performance for autorefresh operations

Cache Performance 7-11

The following example sets DynamicLoadReduceContention=1:

call ttDbConfig('DynamicLoadReduceContention','1');

You can query the current value of the DynamicLoadReduceContention parameter.

call ttDbConfig('DynamicLoadReduceContention');

Requirements for setting DynamicLoadReduceContention
The DynamicLoadReduceContention database system parameter is supported on
TimesTen Release 11.2.2.8.39 and following. In addition, the following are
requirements when enabling the DynamicLoadReduceContention database system
parameter:

■ Required Oracle Database privileges

■ Unsupported Oracle Database feature

■ Required settings for active standby pair replication scheme

Required Oracle Database privileges You must grant two additional Oracle Database
privileges to the cache administration user:

■ EXECUTE ON SYS.DBMS_FLASHBACK

■ SELECT ANY TRANSACTION

These are granted to the cache administration user when you execute the
grantCacheAdminPrivileges.sql and initCacheAdminSchema.sql scripts.

Unsupported Oracle Database feature This feature requires the use of the Oracle Database
Flashback Transaction Queries. However, if you are using Oracle Database 12.2.0.1
with Multitenant option, Flashback Transaction Queries only supports Local Undo. It
does not support Oracle Database 12.2.0.1 Multitenant option with Shared Undo.

Required settings for active standby pair replication scheme When you are using an active
standby pair replication scheme:

■ Both active and standby masters must be installed with TimesTen Release
11.2.2.8.39 or following. If you are replicating between and active and standby
masters where each is installed with different TimesTen versions, then this
parameter cannot be enabled if one of the TimesTen versions does not support this
feature.

■ The DynamicLoadReduceContention database system parameter must be set to the
same value on both the active and standby masters.

Otherwise, an error is written to the daemon log. Replication will not progress until
the settings and TimesTen versions conform on both the active and standby masters.

Reducing lock contention for read-only cache groups that use autorefresh and dynamic
load

An autorefresh operation automatically loads committed updates on cached Oracle
Database tables into the TimesTen cache tables. A dynamic load operation requests
data from the Oracle database (originating from a SELECT statement) and inserts the

Note: For more details, see "ttDBConfig" in the Oracle TimesTen
In-Memory Database Reference.

Improving performance for autorefresh operations

7-12 Oracle TimesTen Application-Tier Database Cache User's Guide

rows into the cache group. Both the autorefresh and dynamic load operations require
access to the TimesTen Cache metadata, which could cause a lock contention.

At the end of an autorefresh operation, TimesTen updates the metadata to track the
autorefresh progress. If you have requested guaranteed durability by setting the
DurableCommits connection attribute to 1, then the autorefresh updates to the
metadata are always durably committed. If you have requested delayed durability by
setting the DurableCommits connection attribute to 0 (the default), then TimesTen must
ensure that the autorefresh updates to the metadata are durably committed before the
garbage collector can clean up the autorefresh tracking tables stored on the Oracle
database.

When a durable commit is initiated for the metadata, any previous non-durable
committed transactions in the log buffer that have not been flushed to the file system
are also a part of the durable commit. On hosts with busy or slow file systems, the
durable commit could be slow enough to lock out dynamic load requests for an
undesirable amount of time.

If you notice that your application is timing out because of a lock contention between
autorefresh and dynamic load requests, you can set the CacheCommitDurable cache
configuration parameter to 0 with the ttCacheConfig built-in procedure. This reduces
the occurrence of lock contention between autorefresh and dynamic load requests in
the same application by:

■ Executing a non-durable commit of the autorefresh changes made to the metadata.

■ Uses a separate thread in the cache agent to durably commit the autorefresh
changes before the garbage collector cleans up the autorefresh tracking tables
stored on the Oracle database.

By starting a new thread to perform the durable commit of the transaction log, the lock
is removed after the non-durable commit of the autorefresh changes to the metadata.
After which, there is no longer a lock held on the metadata and any dynamic load
requests for the recently refreshed tables can continue processing without waiting.

The following example sets CacheCommitDurable=0:

call ttCacheConfig('CacheCommitDurable',,,'0');

You can query the current value of the CacheCommitDurable parameter.

call ttCacheConfig('CacheCommitDurable');

See "ttCacheConfig" in the Oracle TimesTen In-Memory Database Reference for more
details.

Improving performance when reclaiming memory during autorefresh operations
As described "Transaction reclaim operations" in the Oracle TimesTen In-Memory
Database Operations Guide, TimesTen Classic resource cleanup occurs during the
reclaim phase of a transaction commit. To improve performance, a number of
transaction log records are cached in memory to reduce the need to access the
transaction log file in the commit buffer. However, TimesTen must access the
transaction log if the transaction is larger than the reclaim buffer.

Note: Since setting CacheCommitDurable=0 spawns a new thread to
perform the durable commit of the transaction log buffer, the initiation
of the garbage collection for the autorefresh change log records starts
later than when CacheCommitDurable=1.

Improving performance for autorefresh operations

Cache Performance 7-13

When you are using autorefresh for your cache groups, the cache agent has its own
reclaim buffer to manage the transactions that are committed within autorefresh
operations. If the cache agent reclaim buffer is too small, the commit operations during
autorefresh can take longer than expected as it must access the transaction log file. To
avoid any performance issues, you can configure a larger reclaim buffer for the cache
agent so that the cache agent can handle larger transactions in memory at reclaim time.

When using an active standby pair replication scheme to replicate autorefresh
operations, the replication agent applies the same autorefresh operations as part of the
replication. Thus, the replication agents on both the active and standby nodes have
their own reclaim buffers that should be configured to be the same size or greater than
the cache agent reclaim buffer.

The ttDbConfig built-in procedure provides the following parameters for setting the
maximum size for the reclaim buffers for both the cache agent and the replication
agent. (The memory for the reclaim buffers are allocated out of temporary memory.)

■ CacheAgentCommitBufSize sets the maximum size for the reclaim buffer for the
cache agent.

■ RepAgentCommitBufSize sets the maximum size for the reclaim buffer for the
replication agent. You should configure the maximum size for the reclaim buffer
on both the active and standby nodes. It is recommended that you set the size for
the reclaim buffers to the same value on both nodes, but not required.

To determine if you should increment the size for the cache agent reclaim buffer,
evaluate the CommitBufMaxReached and CommitBufNumOverflows statistics provided by
the ttCacheAutorefIntervalStatsGet built-in procedure. For more details, see
"Retrieving statistics on autorefresh transactions" on page 7-20.

Executing large transactions with incremental autorefresh read-only cache groups
At certain times, you may execute large transactions, such as for the end of the month,
the end of a quarter, or the end of the year transactions. You may also have situations
where you modify or add a large amount of data in the Oracle database over a short
period of time. For read-only cache groups with incremental autorefresh, TimesTen
could potentially run out of permanent space when an autorefresh operation applies
either one of these cases. Therefore, for these situations, you can configure an
autorefresh transaction limit, where the large amount of data is broken up, applied,
and committed over several smaller transactions.

The ttCacheAutorefreshXactLimit built-in procedure enables you to direct
autorefresh to commit after executing a specific number of operations. This option
applies to all incremental autorefresh read-only cache groups that are configured with
the same autorefresh interval.

Since the single transaction is broken up into several smaller transactions,
transactional consistency cannot be maintained while autorefresh is in progress. Once
the autorefresh cycle completes, the data is transactionally consistent. To protect

Note: For more details, see "ttDBConfig" in the Oracle TimesTen
In-Memory Database Reference.

Note: The autorefresh transaction limit can only be set for static
read-only cache groups.

Improving performance for autorefresh operations

7-14 Oracle TimesTen Application-Tier Database Cache User's Guide

instance consistency, we recommend that you set the autorefresh transaction limit only
on cache groups with only a single table, since instance consistency between the parent
and child tables is not guaranteed. When the autorefresh transaction limit is turned on,
TimesTen does not enforce the foreign key relationship that protects instance
consistency. Once you turn off the autorefresh transaction limit for incremental
autorefresh read-only cache groups, both instance and transactional consistency are
maintained again.

Using ttCacheAutorefreshXactLimit

For the month end processing, there can be a large number updates in a single
transaction for the Oracle tables that are cached in autorefresh cache groups. In order
to ensure that the large transaction does not fill up permanent memory, you can enable
autorefresh to commit after every 256 (or any other user specified number) operations
with the ttCacheAutorefreshXactLimit built-in procedure.

Turn on an autorefresh transaction limit for incremental autorefresh read-only cache
groups before a large transaction with the ttCacheAutorefreshXactLimit built-in
procedure where the value is set to ON or to a specific number of operations. Then,
when autorefresh finishes updating the cached tables in TimesTen, turn off the
autorefresh transaction limit for incremental autorefresh read-only cache groups with
the ttCacheAutorefreshXactLimit built-in procedure.

The following example sets up the transaction limit to commit after every 256
operations for all incremental autorefresh read-only cache groups that are defined with
an interval value of 10 seconds.

call ttCacheAutorefreshXactLimit('10000', 'ON');

After the month end process has completed and the incremental autorefresh read-only
cache groups are refreshed, disable the transaction limit for incremental autorefresh
read-only cache groups that are defined with the interval value of 10 seconds.

call ttCacheAutorefreshXactLimit('10000', 'OFF');

To enable the transaction limit for incremental autorefresh read-only cache groups to
commit after every 1024 operations, provide 1024 as the value as follows:

call ttCacheAutorefreshXactLimit('10000', '1024');

Example of potential transactional inconsistency
The following example uses the employee and departments table, where the
department id of the department table is a foreign key that points to the department id
of the employee table.

The following example creates two incremental autorefresh read-only cache groups,
where each is in its own cache group. The autorefresh transaction limit is enabled with

Note: If you are using an active standby pair, you must call the
ttCacheAutorefreshXactLimit built-in procedure for the same values
on both the active and standby masters.

Note: For more information, such as the syntax and the returned
result set, see "ttCacheAutorefreshXactLimit" in the Oracle TimesTen
In-Memory Database Replication Guide.

Improving performance for autorefresh operations

Cache Performance 7-15

ttCacheAutorefreshXactLimit before a large transaction and is disabled after it
completes.

1. Before you initiate the large transaction, invoke ttCacheAutorefreshXactLimit to
set the interval value and the number of operations after which to automatically
commit. The following sets the number of operations to three (which is
intentionally low to show a brief example) for all incremental autorefresh
read-only cache groups with a two second interval.

CALL ttCacheAutorefreshXactLimit('2000', '3');
< 2000, 3 >
1 row found.

2. Create the incremental autorefresh read-only cache groups with interval of two
seconds. This example creates two static (non-dynamic) read-only cache groups,
where each contains a single table.

CREATE READONLY CACHE GROUP cgDepts AUTOREFRESH MODE INCREMENTAL
 INTERVAL 2 SECONDS
FROM departments
 (department_id NUMBER(4) PRIMARY KEY
 , department_name VARCHAR2(30) NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
);

CREATE READONLY CACHE GROUP cgEmpls AUTOREFRESH MODE INCREMENTAL
 INTERVAL 2 SECONDS
FROM employees
 (employee_id NUMBER(6) PRIMARY KEY
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25) NOT NULL
 , email VARCHAR2(25) NOT NULL UNIQUE
 , phone_number VARCHAR2(20)
 , hire_date DATE NOT NULL
 , job_id VARCHAR2(10) NOT NULL
 , salary NUMBER(8,2)
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
);

3. Perform a manual LOAD CACHE GROUP for both autorefresh cache groups.

LOAD CACHE GROUP cgDepts COMMIT EVERY 256 ROWS;
27 cache instances affected.

LOAD CACHE GROUP cgEmpls COMMIT EVERY 256 ROWS;
107 cache instances affected.

You can have inconsistency within the table during an autorefresh as shown with the
employees table.

1. On TimesTen, select the minimum and maximum salary of all employees.

SELECT MIN(salary), MAX(salary) FROM employees;
< 2100, 24000 >
1 row found.

2. On the Oracle database, add 100,000 to everyone’s salary.

UPDATE employees SET salary = salary + 100000;

Improving performance for autorefresh operations

7-16 Oracle TimesTen Application-Tier Database Cache User's Guide

107 rows updated.

3. On TimesTen, when you perform the SELECT again (while the autorefresh
transactions are commmitted after every 3 records), it shows that while the
maximum salary has updated, the minimum salary is still the old value.

SELECT MIN(salary), MAX(salary) FROM employees;
< 2100, 124000 >
1 row found.

4. However, once the autorefresh completes, transactional consistency is maintained.
For this example, once the autorefresh process completes, all salaries have
increased by 100,000.

SELECT MIN(salary), MAX(salary) FROM employees;
< 102100, 124000 >
1 row found.

5. The large transaction is complete, so disable the transaction limit for autorefresh
cache groups with a 2 second interval.

call ttCacheAutorefreshXactLimit('2000', 'OFF');

You can have transactional inconsistency between cache groups if you perform a SQL
statement while the autorefresh process is progressing. The following SELECT
statement example executes against the employees and department table in the
cgDepts autorefresh cache group. With this example, since the foreign key is not
enforced on TimesTen and the autorefresh process applies several transactions, the
employee table updates may be inserted before the department updates.

In addition, all of the updates for both tables in the cache group are not applied until
the autorefresh cycle has completed. In the following example, the SELECT statement is
executed before the autorefresh process is complete. Thus, the results do not show all
of the expected data, such as the department name and several employees (some of the
lawyers in the legal department 1000) are missing.

SELECT e.department_id, d.DEPARTMENT_NAME, e.FIRST_NAME, e.LAST_NAME
 FROM employees e, departments d
 WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID (+)
 AND e.department_id >= 1000 ORDER BY 1,2,3,4;
< 1000, <NULL>, Alan, Dershowitz >
< 1000, <NULL>, F. Lee, Bailey >
< 1000, <NULL>, Johnnie, Cochran >
3 rows found.

However, after the autorefresh process completes, transactional consistency is
maintained. The following shows the same SELECT statement executed after the
autorefresh is complete. All expected data, the department information and all of the
new lawyers, are updated.

SELECT e.department_id, d.DEPARTMENT_NAME, e.FIRST_NAME, e.LAST_NAME
 FROM employees e, departments d
 WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID (+)
 AND e.department_id >= 1000 ORDER BY 1,2,3,4;
< 1000, Legal, Alan, Dershowitz >
< 1000, Legal, Barry, Scheck >
< 1000, Legal, F. Lee, Bailey >
< 1000, Legal, Johnnie, Cochran >
< 1000, Legal, Robert, Kardashian >
< 1000, Legal, Robert, Shapiro >
6 rows found.

Improving performance for autorefresh operations

Cache Performance 7-17

For autorefresh cache groups that have more than one table, you can also experience
transactional inconsistency if you execute SQL statements while the autorefresh
process is in progress.

1. Initiate the transaction limit for incremental autorefresh cache groups of 2 seconds
with the ttCacheAutorefreshXactLimit built-in procedure and create a single
autorefresh cache group with two tables: the employees and departments tables.

CALL ttCacheAutorefreshXactLimit('2000', '3');
< 2000, 3 >
1 row found.

CREATE READONLY CACHE GROUP cgDeptEmpls AUTOREFRESH MODE INCREMENTAL
 INTERVAL 2 SECONDS
FROM departments
 (department_id NUMBER(4) PRIMARY KEY
 , department_name VARCHAR2(30) NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
)
 , employees
 (employee_id NUMBER(6) PRIMARY KEY
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25) NOT NULL
 , email VARCHAR2(25) NOT NULL UNIQUE
 , phone_number VARCHAR2(20)
 , hire_date DATE NOT NULL
 , job_id VARCHAR2(10) NOT NULL
 , salary NUMBER(8,2)
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
 , foreign key(department_id) references departments(department_id)
);

2. Manually load the cache group.

LOAD CACHE GROUP cgDeptEmpls COMMIT EVERY 256 ROWS;
27 cache instances affected.

3. Perform a SELECT statement on TimesTen that uploads all of the legal department
data.

SELECT e.department_id, d.department_name, count(*)
 FROM employees e, departments d
 WHERE e.department_id = d.department_id (+)
 GROUP BY e.department_id, d.department_name
 ORDER BY 1 desc;
< 110, Accounting, 2 >
< 100, Finance, 6 >
< 90, Executive, 3 >
< 80, Sales, 34 >
< 70, Public Relations, 1 >
< 60, IT, 5 >
< 50, Shipping, 45 >
< 40, Human Resources, 1 >
< 30, Purchasing, 6 >
< 20, Marketing, 2 >
< 10, Administration, 1 >
11 rows found.

Improving performance for autorefresh operations

7-18 Oracle TimesTen Application-Tier Database Cache User's Guide

4. On Oracle, insert a new legal department, numbered 1000, with 6 new lawyers in
both the employee and department tables.

5. When performing a SELECT statement on TimesTen during the autorefresh process,
only data on two of the lawyers in department 1000 have been uploaded into
TimesTen.

SELECT e.department_id, d.department_name, count(*)
 FROM employees e, departments d
 WHERE e.department_id = d.department_id (+)
 GROUP BY e.department_id, d.department_name
 ORDER BY 1 desc;
< 1000, Legal, 2 >
< 110, Accounting, 2 >
< 100, Finance, 6 >
< 90, Executive, 3 >
< 80, Sales, 34 >
< 70, Public Relations, 1 >
< 60, IT, 5 >
< 50, Shipping, 45 >
< 40, Human Resources, 1 >
< 30, Purchasing, 6 >
< 20, Marketing, 2 >
< 10, Administration, 1 >
12 rows found.

6. However, after the autorefresh process completes, all 6 employees (lawyers) in the
legal department have been uploaded to TimesTen. Now, it is transactionally
consistent.

SELECT e.department_id, d.department_name, COUNT(*)
 FROM employees e, departments d
 WHERE e.department_id = d.department_id (+)
 GROUP BY e.department_id, d.department_name
 ORDER BY 1 desc;
< 1000, Legal, 6 >
< 110, Accounting, 2 >
< 100, Finance, 6 >
< 90, Executive, 3 >
< 80, Sales, 34 >
< 70, Public Relations, 1 >
< 60, IT, 5 >
< 50, Shipping, 45 >
< 40, Human Resources, 1 >
< 30, Purchasing, 6 >
< 20, Marketing, 2 >
< 10, Administration, 1 >
12 rows found.

7. The large transaction is complete, so disable the transaction limit for autorefresh
cache groups with a 2 second interval.

call ttCacheAutorefreshXactLimit('2000', 'OFF');

Retrieving statistics to evaluate performance when a transaction limit is set
To see how a autorefresh transaction limit for a particular autorefresh interval is
performing, you can retrieve statistics for the last 10 incremental autorefresh
transactions for this autorefresh interval with the ttCacheAutorefIntervalStatsGet
built-in procedure. See "Retrieving statistics on autorefresh transactions" on page 7-20

Improving performance for autorefresh operations

Cache Performance 7-19

for more information.

Configuring a select limit when using incremental autorefresh for read-only cache
groups

To facilitate incremental autorefresh for read-only cache groups, TimesTen executes a
table join query on both the Oracle database base table and its corresponding change
log table to retrieve the incremental changes. However, if both tables are very large,
the join query can be slow. In addition, if the Oracle database base table is
continuously updated while the join-query is executing, you may receive the
ORA-01555 “Snapshot too old” error from a long-running autorefresh query.

To avoid this situation, you can configure incremental autorefresh with a select limit
for static read-only cache groups, which joins the Oracle database base table with a
limited number of rows from the autorefresh change log table. You can configure a
select limit with the ttCacheAutorefreshSelectLimit built-in procedure.

Autorefresh continues to apply changes to the cached table incrementally until all the
rows in the autorefresh change log table have been applied. When there are no rows
left to apply, the autorefresh thread sleeps for the rest of the interval period.

For example, before a large transaction, you can call the
ttCacheAutorefreshSelectLimit built-in procedure to set a select limit to 1000 rows
for incremental autorefresh cache groups with an interval value of 10 seconds. The
following example sets the value to ON.

Command> call ttCacheAutorefreshSelectLimit('10000', 'ON');
< 10000, ON >
1 row found.

The following example set a select limit to 2000 rows for incremental autorefresh cache
groups with an interval value of 7 seconds.

Command> call ttCacheAutorefreshSelectLimit('7000', '2000');
< 7000, 2000 >
1 row found.

You can disable any select limit for incremental autorefresh cache groups with an
interval value of 10 seconds by setting the value to OFF.

Command> call ttCacheAutorefreshSelectLimit('10000', 'OFF');
< 10000, OFF >
1 row found.

To see how a select limit for a particular autorefresh interval is performing, you can
retrieve statistics for incremental autorefresh transactions for this autorefresh interval.
See "Retrieving statistics on autorefresh transactions" on page 7-20 for more
information.

Note: The select limit can only be set for static read-only cache
groups.

Note: For details on the syntax, parameters, result set, and
restrictions, see "ttCacheAutorefreshSelectLimit" in the Oracle TimesTen
In-Memory Database Reference.

Retrieving statistics on autorefresh transactions

7-20 Oracle TimesTen Application-Tier Database Cache User's Guide

How to determine the cache group name for a particular select limit
To determine the interval for a cache group, use ttIsql and run the cachegroups
command:

> cachegroups cgowner.cgname;

This returns all attributes for the cgowner.cgname cache group including the interval.

To determine which intervals have a select limit, you can run the following query on
the Oracle database where <cacheAdminUser> is the cache administrator, <hostName> is
the host name of the machine where the TimesTen database is located,
<databaseFileName> is the database path taken from the DataStore attribute, and
substitute the version number (such as 06) for the xx.

SELECT * FROM <cacheAdminUser>.tt_xx_arinterval_params
 WHERE param='AutorefreshSelectEveryN’
 AND host='<hostName>'
 AND database like '%<databaseFileName>%'
 ORDER BY arinterval;

For example, if the cache administrator user name is pat, the host name is myhost, the
database file name is myTtDb, and 06 is substituted for xx that is the TimesTen Classic
minor release number then:

SELECT * FROM pat.tt_06_arinterval_params
 WHERE param='AutorefreshSelectEveryN'
 AND host='myhost'
 AND database like '%myTtDb%'
 ORDER BY arinterval;

The interval is stored in milliseconds.

Retrieving statistics to evaluate performance when using a select limit
To see how a select limit for a particular autorefresh interval is performing, you can
retrieve statistics for incremental autorefresh transactions for this autorefresh interval
with the ttCacheAutorefIntervalStatsGet built-in procedure. See "Retrieving
statistics on autorefresh transactions" on page 7-20 for more information.

Retrieving statistics on autorefresh transactions
Call the ttCacheAutorefIntervalStatsGet built-in procedure for statistical
information about the last 10 autorefresh cycles for a particular autorefresh interval
defined for an incremental autorefresh read-only cache group.

Note: For more information on syntax and the returned result set for
this built-in procedure, see "ttCacheAutorefIntervalStatsGet" in the
Oracle TimesTen In-Memory Database Reference.

This built-in procedure is useful if you have set an transaction limit or
a select limit for incremental, autorefresh read-only cache groups. See
"Executing large transactions with incremental autorefresh read-only
cache groups" on page 7-13 and "Configuring a select limit when
using incremental autorefresh for read-only cache groups" on
page 7-19 for details.

Caching the same Oracle table on two or more TimesTen databases

Cache Performance 7-21

The following example shows how to call the ttCacheAutorefIntervalStatsGet
built-in procedure to retrieve statistics for incremental autorefresh read-only cache
groups that have been defined as static and have the interval of 2 seconds:

Command> call ttCacheAutorefIntervalStatsGet(2000, 1);

< 2000, 1, 21, 2013-04-30 06:05:38.000000, 100, 3761, 3761, 822, 1048576,
1280, 0, 58825, 63825, 13590, 0, 0, 0, 0, 0 >
< 2000, 1, 20, 2013-04-30 06:05:37.000000, 100, 85, 85, 18, 1048576, 1280,
0, 55064, 60064, 12768, 0, 0, 0, 0, 0 >
< 2000, 1, 19, 2013-04-30 06:05:32.000000, 100, 3043, 3043, 666, 1048576,
1280, 0, 54979, 59979, 12750, 0, 0, 0, 0, 0 >
< 2000, 1, 18, 2013-04-30 06:05:30.000000, 100, 344, 344, 74, 1048576,
1280, 0, 51936, 56936, 12084, 0, 0, 0, 0, 0 >
< 2000, 1, 17, 2013-04-30 06:05:28.000000, 100, 1826, 1826, 382, 1048576,
1280, 0, 51592, 56592, 12010, 0, 0, 0, 0, 0 >
< 2000, 1, 16, 2013-04-30 06:05:26.000000, 100, 55, 55, 12, 1048576,
1280, 0, 49766, 54766, 11628, 0, 0, 0, 0, 0 >
< 2000, 1, 15, 2013-04-30 06:05:22.000000, 100, 2901, 2901, 634, 1048576,
1280, 0, 49711, 54711, 11616, 0, 0, 0, 0, 0 >
< 2000, 1, 14, 2013-04-30 06:05:21.000000, 100, 55, 55, 12, 1048576,
1280, 0, 46810, 51810, 10982, 0, 0, 0, 0, 0 >
< 2000, 1, 13, 2013-04-30 06:05:10.000000, 100, 5844, 5844, 1263, 1048576,
1280, 0, 46755, 51755, 10970, 0, 0, 0, 0, 0 >
< 2000, 1, 12, 2013-04-30 06:05:08.000000, 100, 607, 607, 132, 1048576,
1280, 0, 40911, 45911, 9707, 0, 0, 0, 0, 0 >

10 rows found.

Caching the same Oracle table on two or more TimesTen databases
For each cache administration user, TimesTen creates a change log table and trigger (as
part of what is created to manage caching) in the Oracle database for each cache table
in the cache group. A trigger is fired for each committed insert, update, or delete
operation on the cached Oracle Database table; the action is logged in the change log
table.

If you cache the same Oracle database table in a cache group on two different
TimesTen databases, we recommend that you use the same cache administration user
name on both TimesTen databases as the owner of the cache table on each TimesTen
database. When you use the same cache administration user, only one trigger and
change log table are created to manage the changes to the base table. Thus, it is
efficient and does not slow down the application.

If you create separate cache administration users on each TimesTen database to own
the cache group that caches the same Oracle table, then separate triggers and change
log tables exist on the Oracle database for the same table: one for each cache
administration user. For example, if you have two separate TimesTen databases, each
with their own cache administration user, two triggers fire for each DML operation on
the base table, each of which are stored in a separate change log table. Firing two
triggers and managing the separate change log tables can slow down the application.

The only reason to create separate cache administration users is if one of the TimesTen
databases that caches the same table has a slow autorefresh rate or a slow connection
to the Oracle database. In this case, having a single cache administration user on both
TimesTen databases slows down the application on the faster connection, as it waits
for the updates to be propagated to the slower database.

Caching the same Oracle table on two or more TimesTen databases

7-22 Oracle TimesTen Application-Tier Database Cache User's Guide

8

Cleaning up the Caching Environment 8-1

8Cleaning up the Caching Environment

The following sections describe the various tasks that need to be performed in the
TimesTen and Oracle databases to drop cache groups. It also includes a
recommendation for shutting down all components when using AWT cache groups.

■ Stopping the replication agent

■ Dropping a cache group

■ Stopping the cache agent

■ Destroying the TimesTen databases

■ Dropping Oracle Database users and objects

■ Scheduling a shutdown of active standby pair with AWT cache groups

Stopping the replication agent
Call the ttRepStop built-in procedure to stop the replication agent. This must be done
on each TimesTen database of the active standby pair including any read-only
subscriber databases, and any standalone TimesTen databases that contain AWT cache
groups.

From the cache1, cache2, cacheactive, cachestandby and rosubscriber databases,
call the ttRepStop built-in procedure as the cache manager user to stop the replication
agent on the database:

Command> CALL ttRepStop;

Dropping a cache group
Use the DROP CACHE GROUP statement to drop a cache group and its cache tables.
Oracle Database objects used to manage the caching of Oracle Database data are
automatically dropped when you use the DROP CACHE GROUP statement to drop a cache
group, or an ALTER CACHE GROUP statement to set the autorefresh state to OFF for
autorefresh cache groups.

If you issue a DROP CACHE GROUP statement on a cache group that has an autorefresh
operation in progress:

■ The autorefresh operation stops if the LockWait connection attribute setting is
greater than 0. The DROP CACHE GROUP statement preempts the autorefresh
operation.

■ The autorefresh operation continues if the LockWait connection attribute setting is
0. The DROP CACHE GROUP statement is blocked until the autorefresh operation
completes or the statement fails with a lock timeout error.

Stopping the cache agent

8-2 Oracle TimesTen Application-Tier Database Cache User's Guide

If cache tables are being replicated in an active standby pair and the cache tables are
the only elements that are being replicated, you must drop the active standby pair
using a DROP ACTIVE STANDBY PAIR statement before dropping the cache groups.

Execute the following statement as the cache manager user on the cacheactive,
cachestandby and rosubscriber databases to drop the active standby pair replication
scheme:

Command> DROP ACTIVE STANDBY PAIR;
Command> exit

Before you can drop a cache group, you must grant the DROP ANY TABLE privilege to
the cache manager user. Execute the following statement as the instance administrator
on the cache1, cache2, cacheactive and cachestandby databases to grant the DROP
ANY TABLE privilege to the cache manager user. The following example shows the SQL
statement issued from the cache1 database:

% ttIsql cache1
Command> GRANT DROP ANY TABLE TO cacheuser;
Command> exit

If you are dropping an AWT cache group, use the ttRepSubscriberWait built-in
procedure to make sure that all committed updates on its cache tables have been
propagated to the cached Oracle Database tables before dropping the cache group.

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttRepSubscriberWait('_AWTREPSCHEME','TTREP','_ORACLE','sys1',-1);

The replication scheme that was created for the AWT cache group to enable committed
updates on its cache tables to be asynchronously propagated to the cached Oracle
tables is automatically dropped when you drop the cache group.

Use a DROP CACHE GROUP statement to drop the cache groups from the standalone
TimesTen databases and the active and standby databases.

Execute the following statement as the cache manager user on the cache1, cache2,
cacheactive and cachestandby databases to drop the subscriber_accounts cache
group. The following example shows the SQL statement issued from the cache1
database:

% ttIsql "DSN=cache1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> DROP CACHE GROUP subscriber_accounts;

Stopping the cache agent
Call the ttCacheStop built-in procedure to stop the cache agent. This must be done on
the active and standby databases of the active standby pair, and all standalone
TimesTen databases.

From the cache1, cache2, cacheactive and cachestandby databases, issue the
following built-in procedure call to stop the cache agent on the database:

Note: If the cache agent is stopped immediately after dropping a
cache group, or altering the cache group's autorefresh state to OFF, the
Oracle Database objects used to manage the caching of Oracle
Database data may not have been dropped. When the cache agent is
restarted, it drops the Oracle Database objects that were created for the
dropped or altered cache group.

Scheduling a shutdown of active standby pair with AWT cache groups

Cleaning up the Caching Environment 8-3

Command> CALL ttCacheStop;
Command> exit

Destroying the TimesTen databases
If the TimesTen databases are no longer needed, you can use the ttDestroy utility to
destroy the databases.

The following example shows the ttDestroy utility connecting to and then destroying
the cache1 database:

% ttDestroy cache1

Dropping Oracle Database users and objects
Use SQL*Plus as the sys user to drop the timesten user, the schema user oratt, and
the cache administration user cacheuser, and all objects such as tables and triggers
owned by these users. Then drop the TT_CACHE_ADMIN_ROLE role, and the default
tablespace cachetblsp used by the timesten user and the cache administration user
including the contents of the tablespace and its data file.

% sqlplus sys as sysdba
Enter password: password
SQL> DROP USER timesten CASCADE;
SQL> DROP USER oratt CASCADE;
SQL> DROP USER cacheuser CASCADE;
SQL> DROP ROLE tt_cache_admin_role;
SQL> DROP TABLESPACE cachetblsp INCLUDING CONTENTS AND DATAFILES;
SQL> exit

Scheduling a shutdown of active standby pair with AWT cache groups
When you are using active standby pairs with AWT cache groups, the environment
includes both an active and a standby master, potentially one or more subscribers, and
at least one Oracle Database. The following is the recommended method when you
initiate a scheduled shutdown of outstanding transactions in this environment. This
order of events provides the time needed to finish applying outstanding transactions
before shut down and minimizes the time needed to restart all components.

1. Shut down all applications.

2. Ensure that all transactions have propagated to the Oracle database.

3. Shut down TimesTen.

4. Shut down the Oracle Database.

Then, when you are ready to restart all components:

1. Restart the Oracle Database.

Note: If the RAM policy designates that the database stays in
memory, then this may prevent you from destroying the database. For
example, if the RAM policy is set to always, then you must change the
RAM policy to manual and run the ttAdmin -ramunload command to
unload the database before destroying the database. For details on the
RAM policy settings, see "Specifying a RAM policy" section in the
Oracle TimesTen In-Memory Database Operations Guide.

Scheduling a shutdown of active standby pair with AWT cache groups

8-4 Oracle TimesTen Application-Tier Database Cache User's Guide

2. Restart TimesTen.

3. Restart any applications.

You can shut down all of these products in any order without error. The order matters
only to maximize performance and reduce the need for preserving unapplied
transactions. For example, when you are using AWT cache groups within the active
standby pair and if you shut down the Oracle database before TimesTen, then all
unapplied transactions accumulate in the TimesTen transaction logs. Thus, when you
restart TimesTen and Oracle, you could potentially have a lower throughput while
pending transactions are applied to the Oracle database. Thus, shutting down
TimesTen before the Oracle database provides the most efficient method for your
scheduled shutdown and startup. In addition, shutting down the applications before
TimesTen stops any additional requests from being sent to an unavailable TimesTen
database.

9

Using TimesTen Cache in an Oracle RAC Environment 9-1

9Using TimesTen Cache in an Oracle RAC
Environment

The following sections describe how to use TimesTen Cache in an Oracle Real
Application Clusters (Oracle RAC) environment:

■ How TimesTen Cache works in an Oracle RAC environment

■ Restrictions on using TimesTen Cache in an Oracle RAC environment

■ Setting up TimesTen Cache in an Oracle RAC environment

How TimesTen Cache works in an Oracle RAC environment
Oracle RAC enables multiple Oracle Database instances to access one Oracle database
with shared resources, including all data files, control files, PFILEs and redo log files
that reside on cluster-aware shared file systems. Oracle RAC handles read/write
consistency and load balancing while providing high availability.

Fast Application Notification (FAN) is an Oracle RAC feature that is integrated with
Oracle Call Interface (OCI) in Oracle Database. FAN publishes information about
changes in the cluster to applications that subscribe to FAN events. FAN prevents
unnecessary operations such as the following:

■ Attempts to connect when services are down

■ Attempts to finish processing a transaction when the server is down

■ Waiting for TCP/IP timeouts

See Oracle Real Application Clusters Administration and Deployment Guide for more
information about Oracle RAC and FAN.

TimesTen Cache uses OCI integrated with FAN to receive notification of Oracle
Database events. With FAN, TimesTen Cache detects connection failures within a
minute. Without FAN, it can take several minutes for TimesTen Cache to receive
notification of an Oracle Database failure. Without FAN, TimesTen Cache detects a
connection failure the next time the connection is used or when a TCP/IP timeout
occurs. TimesTen Cache can recover quickly from Oracle Database failures without
user intervention.

TimesTen Cache also uses Transparent Application Failover (TAF), which is a feature
of Oracle Net Services that enables you to specify how you want applications to
reconnect after a failure. See Oracle Database Net Services Administrator's Guide for more
information about TAF. TAF attempts to reconnect to the Oracle database for four
minutes. If this is not successful, the cache agent restarts and attempts to reconnect
with the Oracle database every minute.

How TimesTen Cache works in an Oracle RAC environment

9-2 Oracle TimesTen Application-Tier Database Cache User's Guide

OCI applications can use one of the following types of Oracle Net failover
functionality:

■ None: No failover functionality is used. This can also be explicitly specified to
prevent failover from happening. This is the default failover functionality.

■ Session: If an application's connection is lost, a new connection is automatically
created for the application. This type of failover does not attempt to recover
selects.

■ Select: This type of failover enables applications that began fetching rows from a
cursor before failover to continue fetching rows after failover.

The behavior of TimesTen Cache depends on the actions of TAF and how TAF is
configured. By default, TAF and FAN callbacks are installed if you are using TimesTen
Cache in an Oracle RAC environment. If you do not want TAF and FAN capabilities,
set the RACCallback connection attribute to 0.

Table 9–1 shows the behaviors of TimesTen Cache operations in an Oracle RAC
environment with different TAF failover types.

Note: You can configure how long TAF retries when establishing a
connection with the AgentFailoverTimeout parameter. For details, see
"Setting up TimesTen Cache in an Oracle RAC environment" on
page 9-4.

Table 9–1 Behavior of TimesTen Cache operations in an Oracle RAC environment

Operation TAF Failover Type
Behavior After a Failed Connection on the
Oracle Database

Autorefresh None The cache agent automatically stops, restarts
and waits until a connection can be established
on the Oracle database. This behavior is the
same as in a non-Oracle RAC environment.

No user intervention is needed.

Autorefresh Session One of the following occurs:

■ All failed connections are recovered.
Autorefresh operations that were in
progress are rolled back and retried.

■ If TAF times out or cannot recover the
connection, the cache agent automatically
stops, restarts and waits until a connection
can be established on the Oracle database.

■ In all cases, no user intervention is needed.

Autorefresh Select One of the following occurs:

■ Autorefresh operations resume from the
point of connection failure.

■ Autorefresh operations that were in
progress are rolled back and retried.

■ If TAF times out or cannot recover the
connection, the cache agent automatically
stops, restarts and waits until a connection
can be established on the Oracle database.

■ In all cases, no user intervention is needed.

How TimesTen Cache works in an Oracle RAC environment

Using TimesTen Cache in an Oracle RAC Environment 9-3

AWT None The receiver thread of the replication agent for
the AWT cache group exits. A new thread is
spawned and tries to connect to the Oracle
database.

No user intervention is needed.

AWT Session, Select One of the following occurs:

■ If the connection is recovered and there are
uncommitted DML operations in the
transaction, the transaction is rolled back
and then reissued.

■ If the connection is recovered and there are
no uncommitted DML operations, new
operations can be issued without rolling
back.

In all cases, no user intervention is needed.

SWT, propagate,
flush, and
passthrough

None The application is notified of the connection
loss. The cache agent disconnects from the
Oracle database and the current transaction is
rolled back. All modified session attributes are
lost.

During the next passthrough operation, the
cache agent tries to reconnect to the Oracle
database. This behavior is the same as in a
non-Oracle RAC environment.

No user intervention is needed.

SWT, propagate,
flush and
passthrough

SWT, propagate and
flush

Session

Select

One of the following occurs:

■ The connection to the Oracle database is
recovered. If there were open cursors, DML
or lock operations on the lost connection, an
error is returned and the user must roll back
the transaction before continuing.
Otherwise, the user can continue without
rolling back.

■ If TAF times out or cannot recover the
connection, the application is notified of the
connection loss. The cache agent
disconnects from the Oracle database and
the current transaction is rolled back. All
modified session attributes are lost.

During the next passthrough operation, the
cache agent tries to reconnect to the Oracle
database.

In this case, no user intervention is needed.

Passthrough Select The connection to the Oracle database is
recovered. If there were DML or lock operations
on the lost connection, an error is returned and
the user must roll back the transaction before
continuing. Otherwise, the user can continue
without rolling back.

Load and refresh None The application receives a loss of connection
error.

Table 9–1 (Cont.) Behavior of TimesTen Cache operations in an Oracle RAC

Operation TAF Failover Type
Behavior After a Failed Connection on the
Oracle Database

Restrictions on using TimesTen Cache in an Oracle RAC environment

9-4 Oracle TimesTen Application-Tier Database Cache User's Guide

Restrictions on using TimesTen Cache in an Oracle RAC environment
TimesTen Cache support of Oracle RAC has the following restrictions:

■ TimesTen Cache behavior is limited to Oracle RAC, FAN and TAF capabilities. For
example, if all nodes for a service fail, the service is not restarted. TimesTen Cache
waits for the user to restart the service.

■ TAF does not recover ALTER SESSION operations. The user is responsible for
restoring changed session attributes after a failover.

■ TimesTen Cache uses OCI integrated with FAN. This interface automatically
spawns a thread to wait for an Oracle Database event. This is the only TimesTen
Cache feature that spawns a thread in a TimesTen Classic application with the
direct driver. Adapt your application to account for this thread creation. If you do
not want the extra thread, set the RACCallback connection attribute to 0 so that
TAF and FAN are not used.

Setting up TimesTen Cache in an Oracle RAC environment
After you install Oracle RAC and TimesTen Cache, perform the following to set up an
TimesTen Cache for an Oracle RAC environment:

1. On TimesTen Classic, set the TAF timeout, in minutes, with the ttCacheConfig
AgentFailoverTimeout parameter. The AgentFailoverTimeout parameter
configures how long TAF retries when establishing a connection. TAF attempts to
reconnect to the Oracle database for the duration of this timeout. The default is
four minutes. If this is not successful, the cache agent restarts and attempts to
reconnect with the Oracle database every minute; the replication agent restarts any
threads that cannot connect to the Oracle database. For more details, see
"ttCacheConfig" in the Oracle TimesTen In-Memory Database Reference.

2. Make sure that the TimesTen daemon, the cache agent, and the following Oracle
Database components are started:

■ Oracle Database instances

■ Oracle Database listeners

Load and refresh Session One of the following occurs:

■ The load or refresh operation succeeds.

■ An error is returned stating that a fetch
operation on Oracle Database cannot be
executed.

Load and refresh Select One of the following occurs:

■ If the Oracle Database cursor is open and
the cursor is recovered, or if the Oracle
Database cursor is not open, then the load
or refresh operation succeeds.

■ An error is returned if TAF was unable to
recover either the session or open Oracle
Database cursors.

Note: An error is less likely to be returned than
if the TAF failover type is Session.

Table 9–1 (Cont.) Behavior of TimesTen Cache operations in an Oracle RAC

Operation TAF Failover Type
Behavior After a Failed Connection on the
Oracle Database

Setting up TimesTen Cache in an Oracle RAC environment

Using TimesTen Cache in an Oracle RAC Environment 9-5

■ Oracle Database service that is used for TimesTen Cache

3. Verify that the TimesTen RACCallback connection attribute is set to 1 (default). For
more details, see "RACCallback" in the Oracle TimesTen In-Memory Database
Reference.

4. Use the DBMS_SERVICE.MODIFY_SERVICE function or Oracle Enterprise Manager to
enable publishing of FAN events. This changes the value in the AQ_HA_
NOTIFICATIONS column of the Oracle Database ALL_SERVICES view to YES.

See Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_SERVICE Oracle Database PL/SQL package.

5. Enable TAF on the Oracle Database service used for TimesTen Cache with one of
the following methods:

– Create a service for TimesTen Classic in the Oracle Database tnsnames.ora file
with the following settings:

– LOAD_BALANCE=ON (optional)

– FAILOVER_MODE=(TYPE=SELECT) or FAILOVER_MODE=(TYPE=SESSION)

– Use the DBMS_SERVICE.MODIFY_SERVICE function to set the TAF failover type.

See Oracle Database Net Services Administrator's Guide for more information
about enabling TAF.

6. If you have a TimesTen Classic application that uses the direct driver, link it with a
thread library so that it receives FAN notifications. FAN spawns a thread to
monitor for failures.

Setting up TimesTen Cache in an Oracle RAC environment

9-6 Oracle TimesTen Application-Tier Database Cache User's Guide

10

Using TimesTen Cache with Data Guard 10-1

10Using TimesTen Cache with Data Guard

This chapter describes how to configure TimesTen Cache to work with either
synchronous or asynchronous Data Guard. It includes the following topics:

■ Components of MAA for TimesTen Cache

■ TimesTen Cache works with asynchronous Active Data Guard

■ TimesTen Cache works with synchronous Data Guard

Components of MAA for TimesTen Cache
Oracle Maximum Availability Architecture (MAA) is Oracle Database's best practices
blueprint based on proven Oracle Database high availability (HA) technologies and
recommendations. The goal of MAA is to achieve the optimal high availability
architecture at the lowest cost and complexity.

To be compliant with MAA, TimesTen Cache must support Oracle Real Application
Clusters (Oracle RAC) and Oracle Data Guard, as well as have its own HA capability.
TimesTen Cache provides its own HA capability through active standby pair
replication of cache tables in read-only and AWT cache groups. See "Using TimesTen
Cache in an Oracle RAC Environment" on page 9-1 for more information on TimesTen
Cache and Oracle RAC.

Oracle Data Guard provides the management, monitoring, and automation software
infrastructure to create and maintain one or more synchronized standby Oracle
databases to protect data from failures, disasters, errors, and corruptions. If the
primary Oracle database becomes unavailable because of a planned or an unplanned
outage, Data Guard can switch any standby Oracle database to the primary role, thus
minimizing downtime and preventing any data loss. For more information about Data
Guard, see Oracle Data Guard Concepts and Administration.

The MAA framework for TimesTen Cache supports cache tables in explicitly loaded
read-only and AWT cache groups. For cache tables in dynamic cache groups of any
cache group type, SWT cache groups, and user managed cache groups that use the
AUTOREFRESH cache group attribute, TimesTen Cache cannot access the Oracle database
during a failover and switchover because cache applications wait until the failover and
switchover completes.

In general, however, all cache groups types are supported with synchronous Data
Guard or Data Guard during planned maintenance.

TimesTen Cache works with asynchronous Active Data Guard

10-2 Oracle TimesTen Application-Tier Database Cache User's Guide

TimesTen Cache works with asynchronous Active Data Guard
You can cache tables from an Oracle Active Data Guard with the asynchronous redo
transport mode into read-only cache groups. The read-only cache groups are
replicated within an active standby pair replication scheme. The Active Data Guard
configuration includes a primary Oracle database that communicates over an
asynchronous transport to a single physical standby Oracle database. As shown in
Figure 10–1, the primary Oracle database is located on the primary site, while the
standby Oracle database is located on a disaster recovery site.

Figure 10–1 Recommended configuration for asynchronous Active Data Guard

On TimesTen, the read-only cache groups on the primary site are autorefreshed from
the primary Oracle database; however, the only transactions that are autorefreshed are
those whose changes have been successfully replicated to the standby Oracle database.
Once refreshed to the active master, all changes are then propagated to the TimesTen
standby master and a read-only subscriber using normal TimesTen replication
processes.

For the best failover and recovery action, you should locate the read-only subscriber
on the same disaster recovery site as the standby Oracle database. Create this
read-only subscriber with the ttRepAdmin -duplicate -activeDataGuard utility
option, which replicates the read-only cache groups directly to the subscriber as it
would to a standby master database. That is, instead of the cache groups being
converted to tables when replicated to a subscriber, the cache groups themselves are
replicated to the read-only subscriber. This is to provide a recovery and failover option
if the primary site fails. For more details, see "Recovery after failure when using
asynchronous Active Data Guard" on page 10-8.

The following sections provide more details on the environment for asynchronous
Active Data Guard when using replicated read-only cache groups:

■ Configuring the primary and standby Oracle databases

■ Configuring the active standby pair with read-only cache groups

■ Recovery after failure when using asynchronous Active Data Guard

cache tables cache tables cache tables

read-only
subscriberreplicated

updates
replicated
updates

autorefresh
updates

Primary Site Disaster Recovery Site

primary
Oracle

Database

standby
Oracle

Database

application
updates

Active Data Guard

ADG enabled
Active
master

Standby
master

TimesTen Cache works with asynchronous Active Data Guard

Using TimesTen Cache with Data Guard 10-3

Configuring the primary and standby Oracle databases
When you create and configure Active Data Guard with primary and standby Oracle
databases, ensure that the configuration includes the following to support the
TimesTen cache environment.

1. Configure both the primary and standby Oracle databases to use Flashback
queries. For more information, see "Configuring Recovery Settings" in the Oracle
Database 2 Day DBA guide.

2. The Data Guard configuration must be managed by the Data Guard Broker so that
the TimesTen Cache daemon processes and application clients respond faster to
failover and switchover events. For more information, see the Data Guard Broker
guide.

3. Create two Oracle Database Services, where one points to the primary Oracle
Database and the other points to the physical standby Oracle Database. See
"Creating two Oracle Database services" on page 10-3 for details.

Creating two Oracle Database services
Create supporting database services on both the primary and standby Oracle
databases in the Oracle Cluster, where one points to the primary Oracle Database and
the other points to the physical standby Oracle Database. You can create these either
through role based services or through system triggers.

■ Configuring Oracle Database services through role based services

■ Configuring Oracle Database services through system triggers

Configuring Oracle Database services through role based services You can automatically
control the startup of Oracle database services on both the primary and standby Oracle
databases by assigning a database role to each service. An Oracle database service
automatically starts when the Oracle database starts if the Oracle database policy is set
to AUTOMATIC and if the service role matches the current role of the database. In this
case, the role for the Oracle database is either in the primary or standby role as part of
the Active Data Guard configuration.

Configure services with the srvctl utility identically on all Oracle databases in the
Data Guard configuration. The following example shows two services created
identically on both the primary and the standby Oracle databases. For more
information on the srvctl utility, see the "srvctl add service" section in the Oracle
Database Administrator's Guide.

The following steps add the primaryrole and standbyrole database services to both
the primary and standby Oracle databases when the primary Oracle database is
located in Austin and the standby Oracle database is located in Houston.

1. On the primary Oracle database, add the primaryrole database service. While this
Oracle database acts as the primary, this service is started.

srvctl add service -d Austin -s primaryrole -r ssa1,ssa2,ssa3,
 ssa4 -l PRIMARY -q TRUE -e SESSION -m BASIC -w 10 -z 150

2. On the primary Oracle database, add the standbyrole database service. This
service starts only if this Oracle database switches to the standby role and then
provides real-time reporting on the standby Oracle database.

srvctl add service -d Austin -s standbyrole -r ssa1,ssa2,ssa3,
 ssa4 -l PHYSICAL_STANDBY -q TRUE -e SESSION -m BASIC -w 10 -z 150

TimesTen Cache works with asynchronous Active Data Guard

10-4 Oracle TimesTen Application-Tier Database Cache User's Guide

3. On the standby Oracle database, add the primaryrole database service. This
service starts only if this Oracle database switches to the primary role.

srvctl add service -d Houston -s primaryrole -r ssb1,ssb2,ssb3,
 ssb4 -l PRIMARY -q TRUE -e SESSION -m BASIC -w 10 -z 150

4. On the standby Oracle database, add the standbyrole database service. While this
Oracle database acts as the standby, this service is started and then provides
real-time reporting on the standby Oracle database.

srvctl add service -d Houston -s standbyrole -r ssb1,ssb2,ssb3,
 ssb4 -l PHYSICAL_STANDBY -q TRUE -e SESSION -m BASIC -w 10 -z 150

5. Execute the following SQL statement on the primary Oracle database so that the
service definitions are transmitted and applied to the physical standby Oracle
database.

EXECUTE DBMS_SERVICE.CREATE_SERVICE('standbyrole', 'standbyrole', NULL,
 NULL, TRUE, 'BASIC', 'SESSION', 150, 10, NULL);

6. Add connection aliases in the appropriate tnsnames.ora files to identify the
primary and standby Oracle databases and specify the database service names for
each.

primaryinstance=
 (DESCRIPTION_LIST=
 (LOAD_BALANCE=off)
 (FAILOVER=on)
 (DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=myhost1)(PORT=1521)))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=primaryrole)))

 (DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=myhost2)(PORT=1521)))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=primaryrole))))

standbyinstance=
 (DESCRIPTION_LIST=
 (LOAD_BALANCE=off)
 (FAILOVER=on)
 (DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=myhost1)(PORT=1521)))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=standbyrole)))

 (DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=myhost2)(PORT=1521)))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=standbyrole))))

7. On the primary Oracle database, start the primaryrole database service.

srvctl start service -d Austin -s primaryrole

8. On the standby Oracle database, start the standbyrole database service.

srvctl start service -d Houston -s standbyrole

Configuring Oracle Database services through system triggers Perform the following steps to
create the primaryrole and standbyrole database services on the primary Oracle
database using triggers. After creation, these are replicated to the standby Oracle
database.

TimesTen Cache works with asynchronous Active Data Guard

Using TimesTen Cache with Data Guard 10-5

1. Create the primaryrole and standbyrole database services in the primary Oracle
database.

exec DBMS_SERVICE.CREATE_SERVICE(
 service_name => 'primaryrole',
 network_name => 'primaryrole',
 aq_ha_notifications => true, failover_method => 'BASIC',
 failover_type => 'SELECT', failover_retries => 180, failover_delay => 1);

exec DBMS_SERVICE.CREATE_SERVICE(
 service_name => 'standbyrole',
 network_name => 'standbyrole',
 aq_ha_notifications => true, failover_method => 'BASIC',
 failover_type => 'SELECT', failover_retries => 180, failover_delay => 1);

2. Create the primaryrole and standbyrole triggers in the primary Oracle database
for when the database starts.

CREATE OR REPLACE TRIGGER manage_OCIService
after startup on database
DECLARE
 role VARCHAR(30);
BEGIN
 SELECT DATABASE_ROLE INTO role FROM V$DATABASE;
 IF role = 'PRIMARY' THEN
 BEGIN
 DBMS_SERVICE.START_SERVICE('primaryrole');
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 BEGIN
 DBMS_SERVICE.STOP_SERVICE('standbyrole');
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 ELSE
 BEGIN
 DBMS_SERVICE.STOP_SERVICE('primaryrole');
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 BEGIN
 DBMS_SERVICE.START_SERVICE('standbyrole');
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 END IF;
END;

3. Create the following trigger on the primary Oracle database to execute when the
database changes roles:

CREATE OR REPLACE TRIGGER manage_OCIService2
AFTER DB_ROLE_CHANGE ON DATABASE
DECLARE
 role VARCHAR(30);
BEGIN

TimesTen Cache works with asynchronous Active Data Guard

10-6 Oracle TimesTen Application-Tier Database Cache User's Guide

 SELECT DATABASE_ROLE INTO role FROM V$DATABASE;
 IF role = 'PRIMARY' THEN
 BEGIN
 DBMS_SERVICE.START_SERVICE('primaryrole');
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 BEGIN
 DBMS_SERVICE.STOP_SERVICE('standbyrole');
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 ELSE
 BEGIN
 DBMS_SERVICE.STOP_SERVICE('primaryrole');
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 BEGIN
 DBMS_SERVICE.START_SERVICE('standbyrole');
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 END IF;
END;

4. Add connection aliases in the appropriate tnsnames.ora files to identify the
primary and standby Oracle databases and specify the database service names for
each.

primaryinstance=
 (DESCRIPTION_LIST=
 (LOAD_BALANCE=off)
 (FAILOVER=on)
 (DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=myhost1)(PORT=1521)))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=primaryrole)))

 (DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=myhost2)(PORT=1521)))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=primaryrole))))

standbyinstance=
 (DESCRIPTION_LIST=
 (LOAD_BALANCE=off)
 (FAILOVER=on)
 (DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=myhost1)(PORT=1521)))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=standbyrole)))

 (DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=myhost2)(PORT=1521)))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=standbyrole))))

5. Restart both of the Oracle databases to enable the trigger to start and stop the
correct database services. Alternatively, if you do not want to restart both Oracle

TimesTen Cache works with asynchronous Active Data Guard

Using TimesTen Cache with Data Guard 10-7

databases, you can start and stop the appropriate database services on each Oracle
database as follows:

On the primary Oracle database:

exec DBMS_SERVICE.START_SERVICE('primaryrole');
exec DBMS_SERVICE.STOP_SERVICE('standbyrole');

On the standby Oracle database:

exec DBMS_SERVICE.STOP_SERVICE('primaryrole');
exec DBMS_SERVICE.START_SERVICE('standbyrole');

Configuring the active standby pair with read-only cache groups
The Active Data Guard with asynchronous redo transport mode supports an active
standby pair replication scheme that only contains replicated read-only cache groups.
All replicated read-only cache groups must be created before you create the active
standby pair. You cannot exclude a replicated read-only cache group when you are
creating the active standby pair and you cannot add another replicated read-only
cache group to the active standby pair after creation.

When you create and configure an active standby pair to support replicated read-only
cache groups, perform the following to support asynchronous Active Data Guard:

1. When you create the active standby pair, we recommend that you keep both the
active and standby masters within the same physical site. They can be on different
hosts within the same site.

2. If you want a read-only subscriber for disaster recovery, you can add a read-only
subscriber on the same disaster recovery site as the standby Oracle database and
enable the subscriber for cache groups. The subscriber that you should create
when using Active Data Guard is created with a duplicate operation with the
ttRepAdmin -duplicate -activeDataGuard options.

The -activeDataGuard option, which is solely for the Active Data Guard
environment, enables the subscriber to keep replicated read-only cache groups
intact as it would for a standby master. Since the subscriber retains these cache
groups, you must provide the cache user name and cache user password on the
ttRepAdmin utility command line.

The following example creates a read-only subscriber on the disaster recovery site
duplicating from the standby master providing the -activeDataGuard option, the
cache user name, and the cache user password.

ttRepAdmin -duplicate -from master2 -host node1
 -uid cacheuser -pwd timesten -cacheuid cacheuser -cachepwd oracle
 -activeDataGuard adgsubscriber

3. Create the cache environment on the primary Oracle database. You do not need to
perform any of these steps on the standby Oracle database.

4. On the primary Oracle database, grant the cache admin user the EXECUTE privilege
for the SYS.DBMS_FLASHBACK package. This privilege is granted as part of the
initCacheAdminSchema.sql and grantCacheAdminPrivileges.sql scripts as of
the TimesTen Classic 18.1 release.

Note: Alternatively, you can use the ttRepDuplicateEx C function
setting the TT_REPDUP_ADG flag in ttRepDuplicateExArg.flags.

TimesTen Cache works with asynchronous Active Data Guard

10-8 Oracle TimesTen Application-Tier Database Cache User's Guide

5. Configure the same connection attributes that you would for a TimesTen database
that caches data from an Oracle database. In addition, since we are also
monitoring transactions from the standby Oracle database, configure the
StandbyNetServiceName connection attribute with the Oracle net service name of
the standby Oracle database instance.

On Microsoft Windows systems, the net service name of the Oracle database
instance is specified in the Oracle Net Service Name field of the TimesTen Cache
tab within the TimesTen ODBC Setup dialog box. The standby Oracle database
instance is specified in the Standby Oracle Net Service Name field on the same
page.

Configure the StandbyNetServiceName ODBC.INI attribute on the active master to
configure the net service name of the physical standby Oracle database:

[cachedb]
DataStore=/myDb/cachedb
PermSize=256
TempSize=256
PLSQL=0
DatabaseCharacterSet=WE8DEC
OracleNetServiceName=primaryinstance
StandbyNetServiceName=standbyinstance

Recovery after failure when using asynchronous Active Data Guard
The following sections describe what to do if the primary Oracle database fails, the
standby Oracle database fails, or the entire primary site fails taking down the primary
Oracle database as well as the active and standby masters:

■ Failure of the standby Oracle database

■ Failure of the primary Oracle database

■ Failure of the primary site

Failure of the standby Oracle database
When the standby Oracle database in an Active Data Guard configuration fails, the
cache agent retries the connection to the standby Oracle database in one of the
following ways:

■ If a timeout is set, then the cache agent waits for the amount of time specified with
the ttCacheADGStandbyTimeoutSet built-in procedure. If the standby Oracle
database has not recovered after this period, then the cache agent sets the state of
the standby Oracle database by calling the ttCacheADGStandbyStateSet built-in
procedure with the FAILED argument and then facilitates autorefresh using only
the primary Oracle database.

■ If no timeout has been set with the ttCacheADGStandbyTimeoutSet built-in
procedure (default value is 0), then the cache agent continues to wait on the
standby Oracle database, unless you inform the cache agent that the standby
Oracle database is not recovering by calling the ttCacheADGStandbyStateSet
built-in procedure with the FAILED argument.

Note: You can notify the cache agent of whether the standby Oracle
database is active or has failed by calling the
ttCacheADGStandbyStateSet built-in procedure with either the ON or
the FAILED arguments.

TimesTen Cache works with asynchronous Active Data Guard

Using TimesTen Cache with Data Guard 10-9

Once the state of the standby Oracle database is set to FAILED, the cache agent resumes
autorefresh with only the primary Oracle database until you reset the state of the
standby Oracle database by calling the ttCacheADGStandbyStateSet built-in
procedure with the ON argument. Even if the standby Oracle database eventually does
recover, the cache agent does not recognize that the standby Oracle database is active
until you reset its state to ON.

Once the state of the standby Oracle database is set to ON, the cache agent pauses to
wait for the standby Oracle database to catch up to the primary Oracle database. After
which, the cache agent resumes autorefresh from the primary Oracle database for
those transactions that have successfully replicated to the standby Oracle database.

You can restore the original Active Data Guard configuration by dropping the active
standby pair and then loading the cache groups.

For more details, see "ttCacheADGStandbyTimeoutSet" and
"ttCacheADGStandbyStateSet" in the Oracle TimesTen In-Memory Database Reference.

Failure of the primary Oracle database
If the primary Oracle database fails, then Data Guard switches over to the standby
Oracle database and the TimesTen cache agent switches autorefresh over to the new
primary Oracle database.

Figure 10–2 Failure of the primary Oracle database

Failure of the primary site
If the entire site where the primary Oracle database as well as the active and standby
master databases are located fails, then the standby Oracle database becomes the
primary Oracle database. Then, you may want the disaster recovery site to become the
primary TimesTen database. Thus, on the disaster recovery site, the standby Oracle
database is now a sole Oracle database and the read-only subscriber becomes a single
TimesTen database that caches data in the Oracle database.

Transform the subscriber into a single TimesTen database with cached tables by:

cache tables cache tables cache tables

read-only
subscriber

Active
master

Standby
masterreplicated

updates
replicated
updates

autorefresh
updates

Primary Site
Disaster

Recovery
Site

primary Oracle
database

standby Oracle
database

application
updates

ADG enabled

TimesTen Cache works with asynchronous Active Data Guard

10-10 Oracle TimesTen Application-Tier Database Cache User's Guide

1. Drop the active standby pair on the TimesTen database on the disaster recovery
site.

2. Alter the existing read-only cache groups on the disaster recovery site to set the
autorefresh state to on.

After which, the cache tables on the TimesTen database in the disaster recovery site
receive updates from the new primary Oracle database.

Figure 10–3 Recovery after failure of primary site

Recovering from a failure of the primary site The following is the process to recover the
primary site and rebuild your environment to the original state:

1. Create a new active standby pair on the disaster recovery site.

2. Alter the existing read-only cache groups on the disaster recovery site to set the
autorefresh state to off to stop any future updates from the primary Oracle
database.

3. Create the ADG enabled read-only subscriber on the recovered primary site.

4. Drop the active standby pair on the ADG enabled read-only subscriber on the
primary site, if it still exists after recovering the primary site.

5. Switch over the Oracle databases in the Active Data Guard. Currently, the
applications are updating the primary Oracle database on the disaster recovery
site. However, once you recover the Oracle database on the primary site, we want
it to take over again as the primary and to make the Oracle database on the
disaster recovery site as the secondary.

The TimesTen database starts to receive updates from the Oracle database on the
primary site.

cache tables

Active
master

Standby
master

cache tables

cached read-only tables

TimesTen
database

replicated
updatesPrimary Site

Fails!

Disaster
Recovery

Site
FAILED

primary
Oracle

Database

primary
Oracle

Database

application
updates

TimesTen Cache works with synchronous Data Guard

Using TimesTen Cache with Data Guard 10-11

6. Create a new active standby pair on the primary site.

7. Create a new ADG enabled read-only subscriber on the disaster recovery site.

TimesTen Cache works with synchronous Data Guard
TimesTen Cache works with synchronous physical standby failover and switchover
and logical standby switchover as long as the object IDs for cached Oracle Database
tables remain the same on the primary and standby Oracle databases. Object IDs can
change if the table is dropped and re-created, altered, or a truncated flashback
operation or online segment shrink is executed.

cache tablescache tables

Primary Site
Disaster

Recovery Site

primary Oracle
database

standby Oracle
database

application
updates

Active Data Guard

1. Create a new active standby
pair in the disaster recovery site.

2. Set autorefresh to off for the
existing subscriber.

3. Create a new ADG enabled
read-only subscriber on the primary site.

4. Drop the active
standby pair on the
primary site.

5. Swap the primary
and standby Oracle
databases so that
the updates come
from the disaster
recovery site to the
primary site.

read-only
subscriber

Active
master

Standby
master

ADG enabled

cache tables

cache tables cache tables

Read-only
subscriber

Active
master

Standby
master

Primary Site Disaster Recovery Site

primary Oracle
database

standby Oracle
database

application
updates

Active Data Guard

ADG enabled

6. Create a new active
standby pair on the
primary site.

7. Create a new
ADG enabled read-only
subscriber on the
disaster recovery site.

cache tables

TimesTen Cache works with synchronous Data Guard

10-12 Oracle TimesTen Application-Tier Database Cache User's Guide

During a transient upgrade, a physical standby Oracle database is transformed into a
logical standby Oracle database. For the time that the standby Oracle database is
logical, the user must ensure that the object IDs of the cached Oracle Database tables
do not change. Specifically, tables that are cached should not be dropped and
re-created, truncated, altered, flashed back or have an online segment shrunk.

Configuring the Oracle databases
In order for TimesTen Cache to fail over and switch over properly, configure the
primary and standby Oracle databases using the following steps:

1. The Data Guard configuration must be managed by the Data Guard Broker so that
the TimesTen Cache daemon processes and application clients respond faster to
failover and switchover events.

2. If you are configuring an Oracle RAC database, use the Oracle Enterprise Manager
Cluster Managed Database Services Page to create Oracle database services that
TimesTen Cache and its client applications use to connect to the Oracle primary
database. See "Workload Management with Dynamic Database Services" in Oracle
Real Application Clusters Administration and Deployment Guide for information about
creating database services.

3. If you created the Oracle database service in step 2, use the MODIFY_SERVICE
function of the DBMS_SERVICE PL/SQL package to modify the service to enable
high availability notification to be sent through Advanced Queuing (AQ) by
setting the aq_ha_notifications attribute to TRUE. To configure server side TAF
settings, set the failover attributes, as shown in the following example:

BEGIN
DBMS_SERVICE.MODIFY_SERVICE
(service_name => 'DBSERV',
 goal => DBMS_SERVICE.GOAL_NONE,
 dtp => false,
 aq_ha_notifications => true,
 failover_method => 'BASIC',
 failover_type => 'SELECT',
 failover_retries => 180,
 failover_delay => 1);
END;

4. If you did not create the database service in step 2, use the CREATE_SERVICE
function of the DBMS_SERVICE PL/SQL package to create the database service,
enable high availability notification, and configure server side TAF settings:

BEGIN
DBMS_SERVICE.CREATE_SERVICE
(service_name => 'DBSERV',
 network_name => 'DBSERV',
 goal => DBMS_SERVICE.GOAL_NONE,
 dtp => false,
 aq_ha_notifications => true,
 failover_method => 'BASIC',
 failover_type => 'SELECT',
 failover_retries => 180,
 failover_delay => 1);
END;

5. Create two triggers to relocate the database service to a Data Guard standby
database (Oracle RAC or non-Oracle RAC) after it has switched to the primary

TimesTen Cache works with synchronous Data Guard

Using TimesTen Cache with Data Guard 10-13

role. The first trigger fires on the system start event and starts up the DBSERV
service:

CREATE OR REPLACE TRIGGER manage_service
AFTER STARTUP ON DATABASE
DECLARE
 role VARCHAR(30);
BEGIN
 SELECT database_role INTO role FROM v$database;
 IF role = 'PRIMARY' THEN
 dbms_service.start_service('DBSERV');
 END IF;
END;

The second trigger fires when the standby database remains open during a
failover and switchover upon a database role change. It relocates the DBSERV
service from the old primary to the new primary database and disconnects any
connections to that service on the old primary database so that TimesTen Cache
and its client applications can reconnect to the new primary database:

CREATE OR REPLACE TRIGGER relocate_service
AFTER DB_ROLE_CHANGE ON DATABASE
DECLARE
 role VARCHAR(30);
BEGIN
 SELECT database_role INTO role FROM v$database;
 IF role = 'PRIMARY' THEN
 dbms_service.start_service('DBSERV');
 ELSE
 dbms_service.stop_service('DBSERV');
 dbms_lock.sleep(2);
 FOR x IN (SELECT s.sid, s.serial#
 FROM v$session s, v$process p
 WHERE s.service_name='DBSERV' AND s.paddr=p.addr)
 LOOP
 BEGIN
 EXECUTE IMMEDIATE
 'ALTER SYSTEM DISCONNECT SESSION
 ''' || x.sid || ','|| x.serial# || ''' IMMEDIATE';
 EXCEPTION WHEN OTHERS THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_ERROR_STACK);
 END;
 END;
 END LOOP;
 END IF;
END;

6. As an option, to reduce the performance impact to TimesTen Cache applications
and minimize the downtime during a physical or logical standby database
switchover, run the following procedure right before initiating the Data Guard
switchover to a physical or logical standby database:

DECLARE
 role varchar(30);
BEGIN
 SELECT database_role INTO role FROM v$database;
 IF role = 'PRIMARY' THEN
 dbms_service.stop_service('DBSERV');
 dbms_lock.sleep(2);
 FOR x IN (SELECT s.sid, s.serial#

TimesTen Cache works with synchronous Data Guard

10-14 Oracle TimesTen Application-Tier Database Cache User's Guide

 FROM v$session s, v$process p
 WHERE s.service_name='DBSERV' AND s.paddr=p.addr)
 LOOP
 BEGIN
 EXECUTE IMMEDIATE
 'ALTER SYSTEM DISCONNECT SESSION
 ''' || x.sid || ',' || x.serial# || ''' IMMEDIATE';
 EXCEPTION WHEN OTHERS THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_ERROR_STACK);
 END;
 END;
 END LOOP;
 ELSE
 dbms_service.start_service('DBSERV');
 END IF;
END;

This procedure should be executed first on the physical or logical standby
database, and then on the primary database, right before the switchover process.
Before executing the procedure for a physical standby database switchover, Active
Data Guard must be enabled on the physical standby database.

Before performing a switchover to a logical standby database, stop the Oracle
Database service for TimesTen on the primary database and disconnect all sessions
connected to that service. Then start the service on the standby database.

At this point, the cache applications try to reconnect to the standby database. If a
switchover occurs, there is no wait required to migrate the connections from the
primary database to the standby database. This eliminates the performance impact on
TimesTen Cache and its applications.

See the Maximum Availability Architecture, Oracle Best Practices for High Availability
white paper for more information.

Configuring the TimesTen database
Configure TimesTen to receive notification of FAN HA events and to avoid
reconnecting to a failed Oracle Database instance. Use the Oracle Client shipped with
TimesTen Cache.

1. Create an Oracle Net service name that includes all primary and standby hosts in
ADDRESS_LIST. For example:

DBSERV =
(DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = PRIMARYDB)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = STANDBYDB)(PORT = 1521))
 (LOAD_BALANCE = yes)
)
 (CONNECT_DATA= (SERVICE_NAME=DBSERV))
)

2. In the client's sqlnet.ora file, set the SQLNET.OUTBOUND_CONNECT_TIMEOUT parameter
to enable clients to quickly traverse an address list in the event of a failure. For
example, if a client attempts to connect to a host that is unavailable, the connection
attempt is bounded to the time specified by the SQLNET.OUTBOUND_CONNECT_
TIMEOUT parameter, after which the client attempts to connect to the next host in

TimesTen Cache works with synchronous Data Guard

Using TimesTen Cache with Data Guard 10-15

the address list. Connection attempts continue for each host in the address list
until a connection is made.

Setting the SQLNET.OUTBOUND_CONNECT_TIMEOUT parameter to a value of 3 seconds
suffices in most environments. For example, add the following entry to the
sqlnet.ora file:

SQLNET.OUTBOUND_CONNECT_TIMEOUT=3

TimesTen Cache works with synchronous Data Guard

10-16 Oracle TimesTen Application-Tier Database Cache User's Guide

A

Procedure and Privileges for Caching Oracle Database Data in TimesTen Classic A-1

AProcedure and Privileges for Caching Oracle
Database Data in TimesTen Classic

The following sections provide a quick reference on the steps for creating a cache
environment as well as the privileges required to do so:

■ Quick reference to cache Oracle Database data in TimesTen Classic

■ Required privileges for the cache administration user and the cache manager user

Quick reference to cache Oracle Database data in TimesTen Classic
The following section provides a quick reference on the steps necessary when setting
up an environment that caches Oracle Database data into a TimesTen database. For a
detailed explanation and examples for each step, see Chapter 2, "Getting Started",
Chapter 3, "Setting Up a Caching Infrastructure", and Chapter 4, "Defining Cache
Groups".

Perform the following on the Oracle database:

1. Create a default tablespace to be used for storing TimesTen Cache management
objects.

2. As the sys user, create one or more schema users to own the cached Oracle
Database tables (may be existing users).

3. As the sys user, create the cache administration user that creates, owns, and
maintains Oracle Database objects that store information used to enforce
predefined behaviors of particular cache group types. In the CREATE USER
statement for the cache administration user, designate the tablespace that was
created for the timesten user as the default tablespace for the cache administration
user.

See "Create the Oracle database users" on page 3-2 for more information about the
Oracle Database users.

4. As the sys user, run the timesten_
home/install/oraclescripts/grantCacheAdminPrivileges.sql script to grant
the cache administration user the privileges required to create the desired types of
cache groups and perform operations on the cache groups. Alternatively, you can
manually create each Oracle Database object.

See "Automatically create Oracle Database objects used to manage data caching"
on page 3-4 or "Manually create Oracle Database objects used to manage data
caching" on page 3-5 to determine the appropriate script to run.

Quick reference to cache Oracle Database data in TimesTen Classic

A-2 Oracle TimesTen Application-Tier Database Cache User's Guide

5. Some privileges cannot be granted until the cached Oracle Database tables have
been created. To grant these privileges, execute GRANT statements as the sys user.

See "Required privileges for the cache administration user and the cache manager
user" on page A-3 for more information about the privileges that must be granted
to the cache administration user to perform particular cache operations.

Perform the following on the TimesTen database:

1. Define a DSN that references the TimesTen database that is to be used to cache
data from an Oracle database.

a. Set the OracleNetServiceName connection attribute to the Oracle Net service
name that references the Oracle database instance.

b. Set the DatabaseCharacterSet connection attribute to the Oracle database
character set. The TimesTen database character set must match the Oracle
database character set.

c. Then, connect to the DSN to create the database if this is a standalone database
or is to be an active database of an active standby pair.

See "Define a DSN for the TimesTen database" on page 3-6 for more information
about defining a DSN for a TimesTen database that is to be used to cache data
from an Oracle database.

2. Create the following users in the TimesTen database:

■ Cache manager user

This user must have the same name as a companion Oracle Database user that
can access the cached Oracle Database tables. The companion Oracle Database
user can be the cache administration user, a schema user, or some other
existing user. The password of the cache manager user and the Oracle
Database user with the same name can be different.

■ One or more cache table users who own the TimesTen cache tables

These users must have the same name as the Oracle Database schema users
who own the cached Oracle Database tables. The password of a cache table
user and the Oracle Database user with the same name can be different.

Execute CREATE USER statements as the instance administrator.

See "Create the TimesTen users" on page 3-7 for more information about the
TimesTen users.

3. Grant the cache manager user the privileges required to create the desired types of
cache groups and perform operations on the cache groups. Execute GRANT
statements as the instance administrator.

See "Required privileges for the cache administration user and the cache manager
user" on page A-3 for more information about the privileges that must be granted
to the cache manager user to perform particular cache operations.

4. Set the cache administration user name and password in the TimesTen database
either by calling the ttCacheUidPwdSet built-in procedure as the cache manager
user or running a ttAdmin -cacheUidPwdSet utility command as a TimesTen
external user with the CACHE_MANAGER privilege.

See "Set the cache administration user name and password" on page 3-9 for more
information about setting the cache administration user name and password in a
TimesTen database.

Required privileges for the cache administration user and the cache manager user

Procedure and Privileges for Caching Oracle Database Data in TimesTen Classic A-3

5. Start the cache agent on the TimesTen database either by calling the ttCacheStart
built-in procedure as the cache manager user or running a ttAdmin -cacheStart
utility command as a TimesTen external user with the CACHE_MANAGER privilege.

See "Managing the cache agent" on page 3-11 for more information about starting a
cache agent on a TimesTen database.

6. Design the schema for the cache groups by determining which Oracle Database
tables to cache and within those tables, which columns and rows to cache. For
multiple table cache groups, determine the relationship between the tables by
defining which table is the root table, which tables are direct child tables of the
root table, and which tables are the child tables of other child tables. For each
cached column, determine the TimesTen data type to which the Oracle Database
data type should be mapped.

See "Mappings between Oracle Database and TimesTen data types" on page C-12
for a list of valid data type mappings between the Oracle and TimesTen databases.

For each cache group, determine what type to create (read-only, SWT, AWT, or
user managed) based on the application requirements and objectives. Also,
determine whether each cache group is to be explicitly loaded or dynamic.

Then, create the cache groups. See "Creating a cache group" on page 4-7 for more
information about creating a cache group.

7. If this TimesTen database is intended to be an active database of an active standby
pair, create an active standby pair replication scheme in the database. For more
information on creating an active standby pair replication scheme, see "Defining
an Active Standby Pair Replication Scheme" in the Oracle TimesTen In-Memory
Database Replication Guide.

8. If the TimesTen database contains an active standby pair replication scheme or at
least one AWT cache group, start the replication agent on the database either by
calling the ttRepStart built-in procedure as the cache manager user or running a
ttAdmin -repStart utility command as a TimesTen external user with the CACHE_
MANAGER privilege.

See "Managing the replication agent" on page 4-13 for more information about
starting a replication agent on a TimesTen database.

9. Manually load the cache tables in explicitly loaded cache groups using LOAD CACHE
GROUP statements, and load the cache tables in dynamic cache groups using proper
SELECT, UPDATE or INSERT statements.

See "Loading and refreshing a cache group" on page 5-2 for more information
about manually loading cache tables in a cache group.

See "Dynamically loading a cache instance" on page 5-10 for more information
about dynamically loading cache tables in a dynamic cache group.

Required privileges for the cache administration user and the cache
manager user

The privileges that the Oracle Database users require depends on the types of cache
groups you create and the operations that you perform on the cache groups. The
privileges required for the cache administration user are listed in the first column and
the privileges required for the TimesTen cache manager user for each cache operation
are listed in the second column in Table A–1.

Required privileges for the cache administration user and the cache manager user

A-4 Oracle TimesTen Application-Tier Database Cache User's Guide

Table A–1 Oracle Database and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
Database cache administration user1

Privileges required for
TimesTen cache manager
user2

Initialize the cache administration
user. The
grantCacheAdminPrivileges.sql
script grants these privileges to the
cache administration user.

CREATE SESSION

TT_CACHE_ADMIN_ROLE

EXECUTE ON SYS.DBMS_LOCK

RESOURCE4

CREATE PROCEDURE

CREATE ANY TRIGGER3,4

EXECUTE ON SYS.DBMS_LOB

EXECUTE ON SYS.DBMS_FLASHBACK

SELECT ANY TRANSACTION

SELECT ON SYS.ALL_OBJECTS

SELECT ON SYS.ALL_SYNONYMS

CREATE TYPE

SELECT ON SYS.GV_$LOCK

SELECT ON SYS.GV_$SESSION

SELECT ON SYS.DBA_DATA_FILES

SELECT ON SYS.USER_USERS

SELECT ON SYS.USER_FREE_SPACE

SELECT ON SYS.USER_TS_QUOTAS

SELECT ON SYS.USER_SYS_PRIVS

Permissions for the default tablespace

Set the cache administration user or
cache manager user name and
password with either:

■ Call the ttCacheUidPwdSet
built-in procedure.

■ Run the ttAdmin
-cacheUidPwdSet utility
command.

■ CREATE SESSION

■ RESOURCE4

CACHE_MANAGER

Get the cache administration user or
cache manager user name with
either:

■ Call the ttCacheUidGet built-in
procedure

■ Run the ttAdmin -cacheUidGet
utility command

None CACHE_MANAGER

Start the cache agent with either:

■ Call the ttCacheStart built-in
procedure.

■ Run the ttAdmin -cacheStart
utility command.

CREATE SESSION CACHE_MANAGER

Required privileges for the cache administration user and the cache manager user

Procedure and Privileges for Caching Oracle Database Data in TimesTen Classic A-5

Stop the cache agent

■ Call the ttCacheStop built-in
procedure

■ Run the ttAdmin -cacheStop
utility command

None CACHE_MANAGER

Set a cache agent start policy with
either:

■ Call the ttCachePolicySet
built-in procedure.

■ Run the ttAdmin -cachePolicy
utility command.

CREATE SESSION5 CACHE_MANAGER

Return the cache agent start policy
setting:

■ Call the ttCachePolicyGet
built-in procedure.

CREATE SESSION None

Start the replication agent with
either:

■ Call the ttRepStart built-in
procedure.

■ Run the ttAdmin -repStart
utility command.

None CACHE_MANAGER

Stop the replication agent with
either:

■ Call the ttRepStop built-in
procedure.

■ Run the ttAdmin -repStop
utility command.

None CACHE_MANAGER

Set a replication agent start policy

■ Call the ttRepPolicySet built-in
procedure

■ Run the ttAdmin -repPolicy
utility command

None ADMIN

CREATE ACTIVE STANDBY PAIR with
INCLUDE CACHE GROUP

when the cache group created is an
AWT cache group

CREATE TRIGGER

Duplicate the database with
ttRepAdmin -duplicate when using
an AWT cache group within an
active standby pair replication
scheme

CREATE TRIGGER

CREATE [DYNAMIC] READONLY CACHE
GROUP with AUTOREFRESH MODE
INCREMENTAL

■ CREATE SESSION

■ SELECT ON table_name6

■ RESOURCE4

■ CREATE ANY TRIGGER4

■ CREATE [ANY] CACHE GROUP7

■ CREATE [ANY] TABLE8

Table A–1 (Cont.) Oracle Database and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
Database cache administration user1

Privileges required for
TimesTen cache manager
user2

Required privileges for the cache administration user and the cache manager user

A-6 Oracle TimesTen Application-Tier Database Cache User's Guide

CREATE [DYNAMIC] READONLY CACHE
GROUP with AUTOREFRESH MODE FULL

■ CREATE SESSION

■ SELECT ON table_name6

■ CREATE [ANY] CACHE GROUP7

■ CREATE [ANY] TABLE8

CREATE [DYNAMIC] ASYNCHRONOUS
WRITETHROUGH CACHE GROUP

■ CREATE SESSION

■ SELECT ON table_name6

■ RESOURCE4

■ CREATE [ANY] CACHE GROUP7

■ CREATE [ANY] TABLE8

CREATE [DYNAMIC] SYNCHRONOUS
WRITETHROUGH CACHE GROUP

■ CREATE SESSION

■ SELECT ON table_name6

■ CREATE [ANY] CACHE GROUP7

■ CREATE [ANY] TABLE8

CREATE [DYNAMIC] USERMANAGED
CACHE GROUP

(see variants in following rows)

■ CREATE SESSION

■ SELECT ON table_name6

■ CREATE [ANY] CACHE GROUP7

■ CREATE [ANY] TABLE8

CREATE [DYNAMIC] USERMANAGED
CACHE GROUP with AUTOREFRESH MODE
INCREMENTAL

■ CREATE SESSION

■ SELECT ON table_name6

■ RESOURCE4

■ CREATE ANY TRIGGER4

■ CREATE [ANY] CACHE GROUP7

■ CREATE [ANY] TABLE8

CREATE [DYNAMIC] USERMANAGED
CACHE GROUP with AUTOREFRESH MODE
FULL

■ CREATE SESSION

■ SELECT ON table_name6

■ CREATE [ANY] CACHE GROUP7

■ CREATE [ANY] TABLE8

CREATE [DYNAMIC] USERMANAGED
CACHE GROUP with READONLY

■ CREATE SESSION

■ SELECT ON table_name6

■ CREATE [ANY] CACHE GROUP7

■ CREATE [ANY] TABLE8

CREATE [DYNAMIC] USERMANAGED
CACHE GROUP with PROPAGATE

■ CREATE SESSION

■ SELECT ON table_name6

■ CREATE [ANY] CACHE GROUP7

■ CREATE [ANY] TABLE8

ALTER CACHE GROUP SET
AUTOREFRESH STATE PAUSED

■ CREATE SESSION

■ SELECT ON table_name6,9

■ RESOURCE4, 9

■ CREATE ANY TRIGGER4 ,9

ALTER ANY CACHE GROUP10

ALTER CACHE GROUP SET
AUTOREFRESH STATE ON

■ CREATE SESSION

■ SELECT ON table_name6, 9

■ RESOURCE4, 9

■ CREATE ANY TRIGGER4, 9

ALTER ANY CACHE GROUP10

ALTER CACHE GROUP SET
AUTOREFRESH STATE OFF

CREATE SESSION ALTER ANY CACHE GROUP10

ALTER CACHE GROUP SET
AUTOREFRESH MODE FULL

CREATE SESSION ALTER ANY CACHE GROUP10

ALTER CACHE GROUP SET
AUTOREFRESH MODE INCREMENTAL

■ CREATE SESSION

■ SELECT ON table_name6

■ RESOURCE4

■ CREATE ANY TRIGGER4

ALTER ANY CACHE GROUP10

Table A–1 (Cont.) Oracle Database and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
Database cache administration user1

Privileges required for
TimesTen cache manager
user2

Required privileges for the cache administration user and the cache manager user

Procedure and Privileges for Caching Oracle Database Data in TimesTen Classic A-7

ALTER CACHE GROUP SET
AUTOREFRESH INTERVAL

■ CREATE SESSION

■ SELECT ON table_name6, 11

ALTER ANY CACHE GROUP10

LOAD CACHE GROUP ■ CREATE SESSION

■ SELECT ON table_name6

LOAD {ANY CACHE GROUP | ON
cache_group_name)10

REFRESH CACHE GROUP ■ CREATE SESSION

■ SELECT ON table_name6

REFRESH {ANY CACHE GROUP |
ON cache_group_name)10

FLUSH CACHE GROUP ■ CREATE SESSION

■ UPDATE ON table_name6

■ INSERT ON table_name6

FLUSH {ANY CACHE GROUP | ON
cache_group_name)10

UNLOAD CACHE GROUP None UNLOAD {ANY CACHE GROUP | ON
cache_group_name)10

DROP CACHE GROUP CREATE SESSION ■ DROP ANY CACHE GROUP10

■ DROP ANY TABLE12

Synchronous writethrough or
propagate

■ CREATE SESSION

■ INSERT ON table_name6, 13

■ UPDATE ON table_name6, 13

■ DELETE ON table_name6, 13

■ INSERT ON table_name14

■ UPDATE ON table_name14

■ DELETE ON table_name14

Asynchronous writethrough ■ CREATE SESSION

■ INSERT ON table_name6

■ UPDATE ON table_name6

■ DELETE ON table_name6

■ INSERT ON table_name14

■ UPDATE ON table_name14

■ DELETE ON table_name14

Asynchronous writethrough when
the CacheAWTMethod connection
attribute is set to 1

CREATE PROCEDURE

Note: This privilege is an addition to the
privileges needed for any asynchronous
writethrough cache group.

No additional privileges

Asynchronous writethrough cache
for Oracle Database CLOB, BLOB and
NCLOB fields when the
CacheAWTMethod connection attribute
is set to 1

EXECUTE privilege on the Oracle
Database DBMS_LOB PL/SQL package

Note: This privilege is an addition to the
privileges needed for any asynchronous
writethrough cache group.

No additional privileges

Incremental autorefresh SELECT ON table_name6 None

Full autorefresh SELECT ON table_name6 None

Dynamic load ■ CREATE SESSION

■ SELECT ON table_name6

■ SELECT ON table_name14

■ UPDATE ON table_name14

■ DELETE ON table_name14

■ INSERT ON table_name14

Aging None DELETE {ANY TABLE | ON table_
name)14

Table A–1 (Cont.) Oracle Database and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
Database cache administration user1

Privileges required for
TimesTen cache manager
user2

Required privileges for the cache administration user and the cache manager user

A-8 Oracle TimesTen Application-Tier Database Cache User's Guide

Set the LRU aging attributes

■ Call the ttAgingLRUConfig
built-in procedure

None ADMIN

Generate Oracle Database SQL
statements to manually install or
uninstall Oracle Database objects

■ Run the ttIsql utility's
cachesqlget command

■ Call the ttCacheSQLGet built-in
procedure

CREATE SESSION CACHE_MANAGER

Disable or enable propagation of
committed cache table updates to the
Oracle database

■ Call the
ttCachePropagateFlagSet
built-in procedure

None CACHE_MANAGER

Configure cache agent timeout and
recovery method for autorefresh
cache groups

■ Call the ttCacheConfig built-in
procedure

CREATE SESSION CACHE_MANAGER

Set the AWT transaction log file
threshold

■ Call the
ttCacheAWTThresholdSet
built-in procedure

None CACHE_MANAGER

Enable or disable monitoring of
AWT cache groups

■ Call the
ttCacheAWTMonitorConfig
built-in procedure

None CACHE_MANAGER

Enable or disable tracking of DDL
statements issued on cached Oracle
Database tables

■ Call the
ttCacheDDLTrackingConfig
built-in procedure

CREATE SESSION CACHE_MANAGER

1 At minimum, the cache administration user must have the CREATE TYPE privilege.
2 At minimum, the cache manager user must have the CREATE SESSION privilege.
3 If the cache administration user will not create autorefresh cache groups, then you can grant the CREATE TRIGGER privilege

instead of the CREATE ANY TRIGGER privilege.
4 Not required if the Oracle Database objects used to manage the caching of Oracle Database data are manually created with the

initCacheAdminSchema.sql script.
5 Required if the cache agent start policy is being set to always or norestart.
6 Required on all Oracle Database tables cached in the TimesTen cache group except for tables owned by the cache administration

user.
7 The CACHE_MANAGER privilege includes the CREATE [ANY] CACHE GROUP privilege. ANY is required if the cache manager user

creates cache groups owned by a user other than itself.
8 ANY is required if any of the cache tables are owned by a user other than the cache manager user.
9 Required if the cache group's autorefresh mode is incremental and initial autorefresh state is OFF, and the Oracle Database

objects used to manage the caching of Oracle Database data are automatically created.

Table A–1 (Cont.) Oracle Database and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
Database cache administration user1

Privileges required for
TimesTen cache manager
user2

Required privileges for the cache administration user and the cache manager user

Procedure and Privileges for Caching Oracle Database Data in TimesTen Classic A-9

10 Required if the TimesTen user accessing the cache group does not own the cache group.
11 Required if the cache group's autorefresh mode is incremental.
12 Required if the TimesTen user accessing the cache group does not own all its cache tables.
13 The privilege must be granted to the Oracle Database user with the same name as the TimesTen cache manager user if the Oracle

Database user is not the cache administration user.
14 Required if the TimesTen user accessing the cache table does not own the table.

Required privileges for the cache administration user and the cache manager user

A-10 Oracle TimesTen Application-Tier Database Cache User's Guide

B

SQL*Plus Scripts for TimesTen Cache B-1

BSQL*Plus Scripts for TimesTen Cache

This appendix lists the SQL*Plus scripts that are installed with TimesTen Cache used
to perform various configuration, administrative and monitoring tasks, and provides
links to more information including examples. All scripts are installed in the
timesten_home/install/oraclescripts directory.

Installed SQL*Plus scripts
■ cacheCleanUp.sql: Drops Oracle Database objects such as change log tables and

triggers used to implement autorefresh operations. Script is used when a TimesTen
database containing autorefresh cache groups is unavailable because the TimesTen
Classic system is offline, or the database was destroyed without dropping its
autorefresh cache groups. Run this script as the cache administration user. See
"Dropping Oracle Database objects used by autorefresh cache groups" on
page 6-13 for more information.

■ cacheInfo.sql: Returns change log table information for all Oracle Database
tables cached in an autorefresh cache group, and information about Oracle
Database objects used to track DDL statements issued on cached Oracle Database
tables. Script is used to monitor autorefresh operations on cache groups and DDL
statements issued on cached Oracle Database tables. Run this script as the cache
administration user. See "Monitoring autorefresh operations on cache groups" on
page 6-4 and "Tracking DDL statements issued on cached Oracle Database tables"
on page 6-5 for more information.

■ grantCacheAdminPrivileges.sql: Grants privileges to the cache administration
user that are required to automatically create Oracle Database objects used to
manage the caching of Oracle Database data when particular cache group
operations are performed. This includes the TT_CACHE_ADMIN_ROLE role that
defines privileges on Oracle Database tables. Run this script as the sys user. See
"Automatically create Oracle Database objects used to manage data caching" on
page 3-4 for more information.

■ initCacheAdminSchema.sql: Grants a minimal set of privileges to the cache
administration user and manually creates Oracle Database objects used to manage
the caching of Oracle Database data. This includes the TT_CACHE_ADMIN_ROLE role
that defines privileges on Oracle Database tables. Run this script as the sys user.
See "Manually create Oracle Database objects used to manage data caching" on
page 3-5 for more information.

Installed SQL*Plus scripts

B-2 Oracle TimesTen Application-Tier Database Cache User's Guide

C

Compatibility Between TimesTen and Oracle Databases C-1

CCompatibility Between TimesTen and Oracle
Databases

The following sections list compatibility issues between TimesTen and Oracle
Databases. The list is not complete, but it indicates areas that require special attention.

■ Summary of compatibility issues

■ Transaction semantics

■ API compatibility

■ SQL compatibility

■ Mappings between Oracle Database and TimesTen data types

Summary of compatibility issues
Consider the following differences between TimesTen and Oracle databases:

■ TimesTen and Oracle database metadata are stored differently. See "API
compatibility" on page C-2 for more information.

■ TimesTen and Oracle databases have different transaction isolation models. See
"Transaction semantics" on page C-1 for more information.

■ TimesTen and Oracle databases have different connection and statement
properties. For example, TimesTen does not support catalog names, scrollable
cursors or updateable cursors.

■ Sequences are not cached and synchronized between the TimesTen database and
the corresponding Oracle database. See "SQL expressions" on page C-10 for more
information.

■ Side effects of Oracle Database triggers and stored procedures are not reflected in
the TimesTen database until after an automatic or manual refresh operation.

Transaction semantics
TimesTen and Oracle Database transaction semantics differ as follows:

■ Oracle Database serializable transactions can fail at commit time because the
transaction cannot be serialized. TimesTen uses locking to enforce serializability.

■ Oracle Database can provide both statement-level and transaction-level
consistency by using a multiversion consistency model. TimesTen does not
provide statement-level consistency. TimesTen provides transaction-level
consistency by using serializable isolation.

API compatibility

C-2 Oracle TimesTen Application-Tier Database Cache User's Guide

■ Oracle Database users can lock tables explicitly through SQL. This locking feature
is not supported in TimesTen.

■ Oracle Database supports savepoints while TimesTen does not.

■ In Oracle Database, a transaction can be set to be read-only or read/write. This is
not supported in TimesTen.

For more information about TimesTen isolation levels and transaction semantics, see
"Transaction Management" in Oracle TimesTen In-Memory Database Operations Guide.

API compatibility
The following sections list methods from the JDBC and ODBC APIs that have a
compatibility issue with TimesTen Cache.

■ JDBC API compatibility

■ ODBC API compatibility

JDBC API compatibility
Compatibility issues that apply to JDBC include the following:

■ JDBC database metadata functions return TimesTen metadata. If you want Oracle
metadata, connect to the Oracle Database directly.

■ The set/get connection and statement attributes are executed on TimesTen.

■ All Oracle java.sql.ResultSet metadata (length, type, label) is returned in
TimesTen data type lengths. The column labels that are returned are TimesTen
column labels.

■ Oracle extensions (oracle.sql and oracle.jdbc packages) are not supported.

■ Java stored procedures are not supported in TimesTen.

java.sql.Connection
The following Connection methods have no compatibility issues:

close()
commit()
createStatement()
prepareCall()
prepareStatement()
rollback()
setAutoCommit()

The following methods are executed locally in TimesTen:

getCatalog()
getMetaData
get/setTransactionIsolation()
isReadOnly()
isClosed()
nativeSQL()
setCatalog()
setReadOnly()

API compatibility

Compatibility Between TimesTen and Oracle Databases C-3

java.sql.Statement
The following Statement methods have no compatibility issues:

addBatch()
clearBatch()
close()
execute()
executeBatch()
executeQuery()
executeUpdate()
getResultSet()
getUpdateCount()
getWarnings()

The following methods are executed locally in TimesTen:

cancel()
get/setMaxFieldSize()
get/setMaxRows()
get/setQueryTimeout()
getMoreResults()
setEscapeProcessing()
setCursorName()

java.sql.ResultSet
The following ResultSet methods have no compatibility issues:

close()
findColumn(int) and findColumn(string)
getXXX(number) and getXXX(name)
getXXXStream(int) and getXXXStream(string)
getMetaData()

java.sql.PreparedStatement
The following PreparedStatement methods have no compatibility issues:

addBatch()
close()
execute()
executeUpdate()
executeQuery()
getResultSet()
getUpdateCount()
setXXX()
setXXXStream()

The following methods are executed locally in TimesTen:

cancel()
get/setMaxFieldSize()
get/setMaxRows()
get/setQueryTimeout()
getMoreResults()

Note: See "Transaction semantics" on page C-1 for restrictions for the
get/setTransactionIsolation() methods.

The isClosed() method returns only the TimesTen connection status.

API compatibility

C-4 Oracle TimesTen Application-Tier Database Cache User's Guide

setEscapeProccessing()
setCursorName()

java.sql.CallableStatement
The same restrictions as shown for the java.sql.Statement and
java.sql.PreparedStatement interfaces apply to CallableStatement.

■ In a WRITETHROUGH cache group, if PassThrough=1, indirect DML operations that
are hidden in stored procedures or induced by triggers may be passed through
without being detected by Cache Connect to Oracle.

■ Stored procedures that update, insert, or delete from READONLY cache group tables
will be autorefreshed within another transaction in an asynchronous fashion.
Thus, the changes do not appear within the same transaction that the stored
procedure was executed within and there may be some time lapse before the
changes are autorefreshed into the cache table.

java.sql.ResultSetMetaData
The following ResultSetMetaData methods have no compatibility issues:

getColumnCount()
getColumnType()
getColumnLabel()
getColumnName()
getTableName()
isNullable()

The following methods are executed locally in TimesTen:

getSchemaName()
getCatalogName()
getColumnDisplaySize()
getColumnType()
getColumnTypeName()
getPrecision()
getScale()
isAutoIncrement()
isCaseSensitive()
isCurrency()
isDefinitelyWritable()
isReadOnly()
isSearchable()
isSigned()
isWritable()

Stream support
The compatibility issues related to streams are:

■ The JDBC driver fully fetches the data into an in-memory buffer during a call to
the executeQuery() or next() methods. The getXXXStream() entry points return a
stream that reads data from this buffer.

■ Oracle supports up to 2 GB of long or long raw data. When cached, TimesTen
converts LONG data into VARCHAR2 data. TimesTen converts LONG RAW data into
VARBINARY data. Both VARCHAR2 and VARBINARY data types can store up to a
maximum 4,194,304 (222) bytes).

■ Oracle always streams LONG/LONG RAW data even if the application does not call
getXXXStream().

SQL compatibility

Compatibility Between TimesTen and Oracle Databases C-5

■ TimesTen does not support the mark(), markSupported(), and reset() methods.

ODBC API compatibility
Table C–1 describes the compatibility of ODBC functions.

SQL compatibility
This section compares TimesTen's SQL implementation with Oracle Database SQL. The
purpose is to provide users with a list of Oracle Database SQL features not supported
in TimesTen or supported with different semantics.

■ Schema objects

■ Nonschema objects

■ Differences between Oracle Database and TimesTen tables

■ Data type support

■ SQL operators

■ SELECT statements

■ SQL subqueries

■ SQL functions

■ SQL expressions

■ INSERT/DELETE/UPDATE/MERGE statements

■ TimesTen-only SQL and built-in procedures

■ PL/SQL constructs

Schema objects
TimesTen does not recognize some of the schema objects that are supported in Oracle
Database. TimesTen returns a syntax error when a statement manipulates or uses these

Table C–1 ODBC function compatibility with TimesTen Cache

Function name Compatibility

SQLBindParameter Default TimesTen behavior matches Oracle Database behavior.
See "Binding parameters and executing statements" in Oracle
TimesTen In-Memory Database C Developer's Guide for
information.

SQLBrowseConnect,
SQLColumnPrivileges,
SQLExtendedFetch,
SQLMoreResults, SQLSetPos,
SQLSetScrollOptions,
SQLTablePrivileges

Not supported.

SQLCancel There are some restrictions. In particular, SQLCancel cannot
cancel TimesTen Cache administrative operations. See the
SQLCancel entry in "ODBC 2.5 function support" in the Oracle
TimesTen In-Memory Database C Developer's Guide for additional
information.

SQLGetCursorName There are some restrictions. See the SQLGetCursorName entry in
"ODBC 2.5 function support" in the Oracle TimesTen In-Memory
Database C Developer's Guide for additional information

SQL compatibility

C-6 Oracle TimesTen Application-Tier Database Cache User's Guide

objects. TimesTen passes the statement to Oracle Database. The unsupported objects
are:

Clusters
Objects created by the CREATE DATABASE statement
Objects created by the CREATE JAVA statement
Database links
Database triggers
Dimensions
Extended features
External procedure libraries
Index-organized tables
Mining models
Partitions
Object tables, types and views
Operators

TimesTen supports views and materialized views, but it cannot cache an Oracle
Database view. TimesTen can cache an Oracle Database materialized view in a
user-managed cache group without the AUTOREFRESH cache group attribute and
PROPAGATE cache table attribute. The cache group must be manually loaded and
flushed.

Caching Oracle Database partitioned tables
TimesTen can cache Oracle Database partitioned tables at the table level, but
individual partitions cannot be cached. The following describes how operations on
partitioned tables affect cache groups:

■ DDL operations on a table that has partitions do not affect the cache group unless
there is data loss. For example, if a partition with data is truncated, an
AUTOREFRESH operation does not delete the data from the corresponding cached
table.

■ WHERE clauses in any cache group operations cannot reference individual partitions
or subpartitions. Any attempt to define a single partition of a table returns an
error.

Nonschema objects
TimesTen does not recognize some of the schema objects that are supported in Oracle
Database. TimesTen returns a syntax error when a statement manipulates or uses these
objects. TimesTen passes the statement to Oracle Database. The unsupported objects
are:

Contexts
Directories
Editions
Restore points
Roles
Rollback segments
Tablespaces

Differences between Oracle Database and TimesTen tables
The Oracle Database table features that TimesTen does not support are:

■ ON DELETE SET NULL

SQL compatibility

Compatibility Between TimesTen and Oracle Databases C-7

■ Check constraints

■ Foreign keys that reference the table on which they are defined

Data type support
The following Oracle Database data types are not supported by TimesTen:

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
UROWID
BFILE
Oracle Database-supplied types
User-defined types

The following TimesTen data types are not supported by Oracle Database:

TT_CHAR
TT_VARCHAR
TT_NCHAR
TT_NVARCHAR
TT_BINARY
TT_VARBINARY
TINYINT and TT_TINYINT
TT_SMALLINT
TT_INTEGER
TT_BIGINT
TT_DECIMAL
TT_DATE
TIME and TT_TIME
TT_TIMESTAMP

SQL operators
TimesTen supports these operators and predicates that are supported by Oracle
Database:

unary -
+, -, *, /
 =, <, >, <=, >=, <>, !=
||
IS NULL, IS NOT NULL
LIKE (Oracle Database LIKE operator ignores trailing spaces, but TimesTen does not)
BETWEEN
IN
NOT IN (list)
AND

Note: TimesTen NCHAR and NVARCHAR2 data types are encoded as
UTF-16. Oracle Database NCHAR and NVARCHAR2 data types are encoded
as either UTF-16 or UTF-8.

To cache an Oracle Database NCHAR or NVARCHAR2 column, the Oracle
Database NLS_NCHAR_CHARACTERSET encoding must be AL16UTF16, not
AL32UTF8.

SQL compatibility

C-8 Oracle TimesTen Application-Tier Database Cache User's Guide

OR
+ (outer join)
ANY, SOME
ALL (list)
EXISTS
UNION
MINUS
INTERSECT

To perform a bitwise AND operation of two bit vector expressions, TimesTen uses the
ampersand character (&) between the expressions while Oracle Database uses the
BITAND function with the expressions as arguments.

SELECT statements
TimesTen supports these clauses of a SELECT statement that are supported by Oracle
Database:

■ FOR UPDATE

■ ORDER BY, including NULLS FIRST and NULLS LAST

■ GROUP BY, including ROLLUP, GROUPING_SETS and grouping expression lists

■ Table alias

■ Column alias

■ Subquery factoring clause with constructor

Oracle Database supports flashback queries, which are queries against a database that
is in some previous state (for example, a query on a table as of yesterday). TimesTen
does not support flashback queries.

TimesTen does not support the CONNECT BY clause.

SQL subqueries
TimesTen supports these subqueries that are supported by Oracle Database:

IN (subquery)
>,<,= ANY (subquery)
>,=,< SOME (subquery)
EXISTS (subquery)
>,=,< (scalar subquery)
Subqueries in WHERE clause of DELETE/UPDATE
Subqueries in FROM clause
Subquery factoring clause (WITH constructor)

SQL functions
TimesTen supports these functions that are supported by Oracle Database:

ABS

Note: A nonverifiable scalar subquery is a scalar subquery whose
'single-row-result-set' property cannot be determined until execution
time. TimesTen allows at most one nonverifiable scalar subquery in
the entire query and the subquery cannot be specified in an OR
expression.

SQL compatibility

Compatibility Between TimesTen and Oracle Databases C-9

ADD_MONTHS
ASCIISTR
AVG
CAST
CEIL
COALESCE
CONCAT
COUNT
CHR
DECODE
DENSE_RANK
EMPTY_BLOB
EMPTY_CLOB
EXTRACT
FIRST_VALUE
FLOOR
GREATEST
GROUP_ID
GROUPING
GROUPING_ID
INSTR
LAST_VALUE
LEAST
LENGTH
LOWER
LPAD
LTRIM
MAX
MIN
MOD
MONTHS_BETWEEN
NCHR
NLS_CHARSET
NLS_CHARSET_NAME
NLSSORT
NULLIF
NUMTOYMINTERVAL
NUMTODSINTERVAL
NVL
POWER
RANK
REPLACE
ROUND
ROW_NUMBER
RPAD
RTRIM
SIGN
SQRT
SUBSTR
SUM
SYS_CONTEXT
SYSDATE
TO_BLOB
TO_CLOB
TO_CHAR

SQL compatibility

C-10 Oracle TimesTen Application-Tier Database Cache User's Guide

TO_DATE
TO_LOB
TO_NCLOB
TO_NUMBER
TRIM
TRUNC
UID
UNISTR
UPPER
USER

These TimesTen functions are not supported by Oracle Database:

CURRENT_USER
GETDATE
ORA_SYSDATE
SESSION_USER
SYSTEM_USER
TIMESTAMPADD
TIMESTAMPDIFF
TT_HASH
TT_SYSDATE

TimesTen and the Oracle Database interpret the literal N'\UNNNN' differently. In
TimesTen, N'\unnnn' (where nnnn is a number) is interpreted as the national character
set character with the code nnnn. In the Oracle Database, N'\unnnn' is interpreted as 6
literal characters. The \u is not treated as an escape. This difference causes unexpected
behavior. For example, loading a cache group with a WHERE clause that contains a
literal can fail. This can also affects dynamic loading. Applications should use the
UNISTR SQL function instead of literals.

SQL expressions
TimesTen supports these expressions that are supported by Oracle Database:

Column Reference
Sequence
NULL
()
Binding parameters
CASE expression
ROWID pseudocolumn
ROWNUM pseudocolumn

TimesTen and Oracle Database treat literals differently. See the description of
HexadecimalLiteral in "Constants" in Oracle TimesTen In-Memory Database SQL
Reference.

INSERT/DELETE/UPDATE/MERGE statements
TimesTen supports these DML statements that are supported by Oracle Database:

■ INSERT INTO ... VALUES

■ INSERT INTO ... SELECT

■ UPDATE WHERE expression (expression may contain a subquery)

SQL compatibility

Compatibility Between TimesTen and Oracle Databases C-11

■ DELETE WHERE expression (expression may contain a subquery)

TimesTen does not support updating of primary key values except when the new
value is the same as the old value.

TimesTen-only SQL and built-in procedures
This section lists TimesTen SQL statements and functions and built-in procedures that
are not supported by Oracle Database. With PassThrough=3, these statements are
passed to Oracle Database for execution and an error is generated.

■ All TimesTen cache group DDL and DML statements, including CREATE CACHE
GROUP, DROP CACHE GROUP, ALTER CACHE GROUP, LOAD CACHE GROUP, UNLOAD CACHE
GROUP, REFRESH CACHE GROUP and FLUSH CACHE GROUP.

■ All TimesTen replication management DDL statements, including CREATE
REPLICATION, DROP REPLICATION, ALTER REPLICATION, CREATE ACTIVE STANDBY
PAIR, ALTER ACTIVE STANDBY PAIR and DROP ACTIVE STANDBY PAIR.

■ FIRST n clause.

■ ROWS m TO n clause.

■ All TimesTen built-in procedures. See "Built-In Procedures" in Oracle TimesTen
In-Memory Database Reference.

■ TimesTen specific syntax for character and unicode strings are not always
converted to the Oracle Database syntax when using PassThrough=3.

– Supplying \046 converts to the & symbol on TimesTen, but is not converted to
this symbol when passed through to an Oracle database. The \xyz notation is
not supported by the Oracle database. To send a character through to an
Oracle database, pass it as an argument within the CHR() function with the
decimal value of the character.

– TimesTen enables depicting a unicode value (a four-digit hexadecimal
number) within a character string with the \uxyzw syntax (for NCHAR and
NVARCHAR2 only) where you substitute the unicode value for xyzw, as in\ufe4a.

The \uxyzw notation is not supported by the Oracle database. Thus, any
unicode strings in NCHAR or NVARCHAR2 columns passed through to an Oracle
database must be passed as an argument within the UNISTR() function
without the u character.

The following example inserts the unicode values ’0063’ and ’0064’, which
are the a and b characters respectively. Since we are using PassThrough=3, this
statement is executed on the Oracle database; thus, we do not provide the u
character as we would if this was executed on TimesTen.

Command> INSERT INTO my_tab VALUES (UNISTR(n'\0063\0064'));
1 row inserted.

Note: For more details on TimesTen support for unicode strings, see
the "Character and unicode strings" section in the Oracle TimesTen
In-Memory Database Reference.

Mappings between Oracle Database and TimesTen data types

C-12 Oracle TimesTen Application-Tier Database Cache User's Guide

PL/SQL constructs
TimesTen supports a subset of stored procedure constructs, functions, data types,
packages and package bodies that are supported by Oracle Database. See Oracle
TimesTen In-Memory Database PL/SQL Developer's Guide for details.

Mappings between Oracle Database and TimesTen data types
When you choose data types for columns in the TimesTen cache tables, consider the
data types of the columns in the Oracle Database tables and choose an equivalent or
compatible data type for the columns in the cache tables.

Primary and foreign key columns are distinguished from non-key columns. The data
type mappings allowed for key columns in a cache table are shown in Table C–2.

Note: TimeTen cache, including passthrough, does not support the
Oracle Database ROWID data type. However, you can cast a ROWID data
type to a CHAR(18) when provided on the SELECT list in a SQL query.

The following example demonstrates the error that is returned when
you do not cast the ROWID data type. Then, the example shows the
correct casting of a ROWID data type to CHAR(18):

Command> SET PASSTHROUGH 3;
Passthrough command has set autocommit off.
Command> SELECT ROWID FROM dual;
 5115: Unsupported type mapping for column ROWID
The command failed.
Command> SELECT CAST (ROWID AS CHAR(18)) FROM DUAL;
< AAAAB0AABAAAAEoAAA >
1 row found.

Table C–2 Data type mappings allowed for key columns

Oracle Database data type TimesTen data type

NUMBER(p,s) NUMBER(p,s)

Note: DECIMAL(p,s) or NUMERIC(p,s) can also be used. They
are aliases for NUMBER(p,s).

NUMBER(p,0)

INTEGER

TT_TINYINT

TT_SMALLINT

TT_INTEGER

TT_BIGINT

NUMBER(p,0)

NUMBER TT_TINYINT

TT_SMALLINT

TT_INTEGER

TT_BIGINT

NUMBER

CHAR(n) CHAR(n)

VARCHAR2(n) VARCHAR2(n)

RAW(n) VARBINARY(n)

Mappings between Oracle Database and TimesTen data types

Compatibility Between TimesTen and Oracle Databases C-13

Table C–3 shows the data type mappings allowed for non-key columns in a cache
table.

DATE DATE

TIMESTAMP(n) TIMESTAMP(n)

NCHAR(n) NCHAR(n)

NVARCHAR2(n) NVARCHAR2(n)

Table C–3 Data type mappings allowed for non-key columns

Oracle Database data type TimesTen data type

NUMBER(p,s) NUMBER(p,s)

REAL

FLOAT

BINARY_FLOAT

DOUBLE

BINARY_DOUBLE

NUMBER(p,0)

INTEGER

TT_TINYINT

TT_SMALLINT

TT_INTEGER

TT_BIGINT

NUMBER(p,0)

FLOAT

BINARY_FLOAT

DOUBLE

BINARY_DOUBLE

NUMBER TT_TINYINT

TT_SMALLINT

TT_INTEGER

TT_BIGINT

NUMBER

REAL

FLOAT

BINARY_FLOAT

DOUBLE

BINARY_DOUBLE

CHAR(n) CHAR(n)

VARCHAR2(n) VARCHAR2(n)

RAW(n) VARBINARY(n)

LONG VARCHAR2(n)

Where n can be any valid value within the
range defined for the VARCHAR2 data type.

Table C–2 (Cont.) Data type mappings allowed for key columns

Oracle Database data type TimesTen data type

Mappings between Oracle Database and TimesTen data types

C-14 Oracle TimesTen Application-Tier Database Cache User's Guide

LONG RAW VARBINARY(n)

Where n can be any valid value within the
range defined for the VARBINARY data type.

DATE DATE

TIMESTAMP(0)

TIMESTAMP(n) TIMESTAMP(n)

FLOAT(n)

Note: Includes DOUBLE and FLOAT, which are
equivalent to FLOAT(126). Also includes REAL,
which is equivalent to FLOAT(63).

FLOAT(n)

BINARY_DOUBLE

Note: FLOAT(126) can be declared as DOUBLE.
FLOAT(63) can be declared as REAL.

BINARY_FLOAT BINARY_FLOAT

BINARY_DOUBLE BINARY_DOUBLE

NCHAR(n) NCHAR(n)

NVARCHAR2(n) NVARCHAR2(n)

CLOB VARCHAR2(n)

Where 1 <= n <= 4 MB.

BLOB VARBINARY(n)

Where 1 <= n <= 4 MB.

NCLOB NVARCHAR2(n)

Where 1 <= n <= 2 MB.

Table C–3 (Cont.) Data type mappings allowed for non-key columns

Oracle Database data type TimesTen data type

Index-1

Index

A
Active Data Guard

configuration to support cache, 10-3
configure active standby pair, 10-7
failure and recovery options, 10-8

active standby pair
active database, 4-53
create, 4-55
definition, 4-53
read-only subscriber database, 4-56
standby database, 4-55

AgentFailoverTimeout parameter, 9-4
aging policy

cache group, 4-46
LRU aging, 4-46
time-based aging, 4-48

asynchronous writethrough cache group, see AWT
cache group

autorefresh
cleanup

drop Oracle Database objects, 6-13
continuous, 4-36
definition, 1-4
example, 2-10
full, 4-38
incremental, 4-38

avoid transactional inconsistency, 7-14
initiate, 4-36, 5-6
interval, 4-36, 7-18
mode, 4-35
performance, 7-1, 7-9
select limit, 7-19
state, 4-36
statistics, 7-18, 7-20
status, 6-11

autorefresh cache group
change log table, 6-9

defragment, 6-14
definition, 3-3
dynamic read-only

performance, 7-10
load and refresh, 5-4
manually create Oracle Database objects, 4-37
monitoring, 6-4
read-only

performance, 7-10, 7-13, 7-19
recovery method, 6-12
status, 6-10
transaction reclaim performance, 7-12

AUTOREFRESH cache group attribute, 4-34
AWT cache group

create, 2-7, 4-13
definition, 1-3, 4-11
error reporting, 4-21, 4-23
monitoring, 6-4
parallel propagation, 4-15, 7-9

batch size, 4-20
performance, 7-9
restrictions, 4-22
SQL array execution, 7-9

awterrs file, 4-21, 4-23
DTD for XML format, 4-23
XML format, 4-23

B
BLOB data

caching in TimesTen, 4-44
built-in procedures

ttAgingLRUConfig, 4-47
ttAgingScheduleNow, 4-50
ttCacheAWTMonitorConfig, 6-4
ttCacheAWTThresholdSet, 6-5
ttCacheConfig, 6-12

AgentTimeout parameter, 6-10
AutoRefreshLogTblSpaceUsagePCT

parameter, 6-16
TblSpaceFullRecovery parameter, 6-17

ttCacheDbCgStatus, 6-11
ttCacheDDLTrackingConfig, 6-5
ttCachePolicySet, 3-12
ttCacheStart, 2-7, 3-11
ttCacheStop, 2-14, 3-11, 8-2
ttCacheUidGet, 3-10
ttCacheUidPwdSet, 2-4, 3-10
ttRepPolicySet, 4-14
ttRepStart, 2-9, 4-13
ttRepStateSet, 4-55
ttRepStop, 2-13, 4-13, 8-1
ttRepSubscriberWait, 6-6, 8-2

Index-2

C
cache

manage, 3-4, 3-5
manage through Oracle Database object, 3-5

cache administration user
caching table on more than one TimesTen

database, 7-21
create, 2-2, 3-3
default tablespace

create, 2-2, 3-2
drop, 2-15, 8-3
monitoring, 6-14
recover when full, 6-17
usage warning threshold, 6-16

definition, 2-2, 3-3
determine, 3-10
set in TimesTen database, 2-4, 3-10

cache agent
connection failure, 6-3
reconnecting with Oracle Database, 9-1
start, 2-7, 3-11
start policy

definition, 3-11
set, 3-12

status, 6-1
stop, 2-14, 3-11, 8-2
timeout, 6-10

cache connection pool, 7-1
example, 7-6
restrictions, 7-8
sizing, 7-5

cache group
autorefresh

definition, 1-4, 3-3
large transactions, 7-13
transaction reclaim performance, 7-12

create, 2-5
dead

recovery, 6-12
definition, 1-1, 4-1
dynamic load, 5-10
dynamic read-only

performance, 7-10
flush

definition, 1-4
load, 1-4
read-only

autorefresh with select limit, 7-19
improving autorefresh, 7-10, 7-13, 7-19

refresh, 1-4
table hierarchy, 4-5
table partition, C-6

cache instance
definition, 1-3, 5-10
propagate

definition, 1-4
cache manager user

create, 2-4, 3-8
defined, 3-7
definition, 2-3, 3-8

minimum privileges, 2-4, 3-8
cache performance, 7-1
cache table

multiple TimesTen databases, 7-21
ON DELETE CASCADE attribute, 4-43
PROPAGATE attribute, 4-29
READONLY attribute, 4-28
UNIQUE HASH ON attribute, 4-44
user

create, 2-4, 3-8
defined, 3-8
definition, 2-4, 3-8

CacheAWTMethod connection attribute, 7-9
CacheAWTParallelism data store attribute, 3-7, 4-15
cacheCleanUp.sql SQL*Plus script, 6-13, B-1
CacheCommitDurable cache configuration

parameter, 7-11
cachegroups ttIsql command, 2-8, 6-3
cacheInfo.sql SQL*Plus script, B-1
CacheParAwtBatchSize parameter, 4-20
cachesqlget ttIsql command, 4-38, 6-6
change log tables

defragment, 6-14
character set

on Oracle Database, 2-3
child server process

identification, 7-6
child server processes

configuration, 7-3
child table

definition, 1-2, 4-4
ChildServer connection attribute, 7-6
client connections

maximum, 7-3
client/server connection

configuration, 7-4
CLOB data

caching in TimesTen, 4-44
CONNECT BY clause, C-8
connection

between TimesTen and Oracle database, 3-10
failure

cache agent, 6-3
Oracle Database, 9-1
replication agent, 6-3

limit number to Oracle database, 7-7
connection attribute

CacheAWTMethod, 7-9
ChildServer, 7-6
MaxConnsPerServer, 7-3
ServersPerDSN, 7-3
UseCacheConnPool, 7-4

connection attributes
DatabaseCharacterSet, 3-6
DynamicLoadEnable, 5-11
DynamicLoadErrorMode, 5-15
LockLevel, 3-7
OracleNetServiceName, 3-6, 10-8
OraclePWD, 3-7
PassThrough, 3-7, 5-17

Index-3

PermSize, 3-6
PWD, 3-6
RACCallback, 9-5
UID, 3-6

connection pool, 7-1
connections

maximum, 7-3
contention

reducing, 7-11
continuous autorefresh, 4-36
CREATE ACTIVE STANDBY PAIR statement, 4-55

D
Data Guard, 10-1

Active
failure and recovery options, 10-8

configure active standby pair, 10-7
data store attributes

CacheAWTParallelism, 3-7
ReplicationApplyOrdering, 3-7

data type
differences between Oracle Database and

TimesTen, C-7
mapping between Oracle Database and

TimesTen, C-12
mapping for key columns, C-12
mapping for non-key columns, C-13

database
character set, 2-3
duplicate, 4-55
temporary, 4-8

DatabaseCharacterSet connection attribute, 3-6
DDL statements

tracking, 6-5
DeadDbRecovery parameter, 6-12
DROP ACTIVE STANDBY PAIR statement

example, 8-2
DROP CACHE GROUP statement

example, 2-14, 8-2
DSN

TimesTen database
example, 2-3, 7-4

DSN for TimesTen database
example, 3-7

duplicating a database, 4-55
durability

performance, 7-11
dynamic cache group

create, 4-51
definition, 1-5, 4-51

dynamic load
configuration, 5-11
definition, 5-10
disable, 5-11
display errors, 5-15
examples, 2-11, 5-12
guidelines, 5-11
performance, 7-1, 7-9
rules, 5-11

DynamicLoadEnable connection attribute, 5-11
DynamicLoadErrorMode connection attribute, 5-15
DynamicLoadReduceContention database system

parameter, 4-35, 4-52, 7-10

E
environment variables

Microsoft Windows, 3-2
UNIX or Linux, 3-1

explicitly loaded cache group
definition, 1-5

F
Fast Application Notification (FAN), 9-1
FLUSH CACHE GROUP statement

definition, 5-16
example, 5-16

foreign key
index, 4-17
restriction, 4-17

G
grantCacheAdminPrivileges.sql SQL*Plus

script, 2-2, 3-4, B-1

H
high availability, 1-6

active standby pair, 1-6
Data Guard, 1-6
Oracle Real Application Clusters (Oracle

RAC), 1-6

I
index

foreign key, 4-17
initCacheAdminSchema.sql SQL*Plus script, 3-5, B-1
instance administrator, 2-4

L
LOAD CACHE GROUP statement

definition, 5-2
example, 2-9, 5-3, 5-8
PARALLEL clause, 5-7
WITH ID clause, 5-5

LOB data
cache administration user privileges, A-7
caching in TimesTen, 4-44
restrictions on caching, 4-45

lock contention
reducing, 7-11

LockLevel connection attribute, 3-7
LRU aging policy, 4-46

Index-4

M
materialized views

Oracle Database, C-6
MaxConnsPerServer connection attribute, 7-3
Maximum Availability Architecture (MAA), 10-1
multiple-table cache group, 4-4

N
NCLOB data

caching in TimesTen, 4-44

O
OCIAttrGet() OCI function

OCI_ATTR_ROW_COUNT option, 5-17
ON DELETE CASCADE cache table attribute, 4-43
Oracle Database

autorefresh
cleanup, 6-13

AWT errors, 4-23
character set

determine, 2-3, 3-6
connection failures, 9-1
create objects to manage cache, 3-4
differences from TimesTen IMDB, C-1
execution errors, 4-23
manually manage cache, 3-5
objects to manage cache

determine, 3-6
tables and triggers, 6-7

partitioned tables, C-6
schema users

create, 2-2, 3-3
definition, 3-2

Server releases
supported, 3-1

synonyms
cache, 4-44

user
cache administration user, 2-2
definition, 2-2
drop, 2-14, 8-3
privileges, 3-3, A-3
schema users, 2-2

users
timesten user, 3-2

Oracle RAC
using TimesTen Cache, 9-4
using TimesTen Cache in, 9-1

Oracle Real Application Clusters (Oracle RAC)
Oracle SQL*Plus scripts

cacheCleanUp.sql, 6-13, B-1
cacheInfo.sql, B-1
grantCacheAdminPrivileges.sql, 2-2, 3-4, B-1
initCacheAdminSchema.sql, 3-5, B-1

OracleNetServiceName connection attribute, 2-3,
3-6, 10-8

OraclePWD connection attribute, 3-7

P
parallel propagation

AWT cache group, 4-15, 7-9
foreign key

restriction, 4-17
restriction, 4-17

partition, C-6
PassThrough connection attribute, 3-7, 5-17

and RETURN TWOSAFE, 5-18
passthrough level

changing, 5-22
setting, 5-17

performance
autorefresh, 7-1
cache, 7-1
connection pool, 7-1
dynamic load, 7-1
read-only cache group

incremental autorefresh, 7-19
large transactions, 7-13

transaction reclaim, 7-12
PermSize connection attribute, 3-6
privileges

Oracle Database users, 3-3, A-3
propagate

cache instances
definition, 1-4

error reporting, 4-23
example, 2-12
parallel, 4-15, 7-9

PROPAGATE cache table attribute, 4-29
PWD connection attribute, 3-6

R
RACCallback connection attribute, 9-5
read-only cache group

autorefresh
performance, 7-13, 7-19

create, 2-7, 4-9
definition, 1-3, 4-8
incremental autorefresh

statistics, 7-20
large transactions, 7-13
restrictions, 4-10

READONLY cache table attribute, 4-28
refresh

autorefresh, 4-36
cache group, 1-4
initiate, 5-6

REFRESH CACHE GROUP statement
definition, 5-2
example, 5-3, 5-8
PARALLEL clause, 5-7
WITH ID clause, 5-5

replication agent
connection failure, 6-3
start, 2-9, 4-13
start policy

definition, 4-14

Index-5

set, 4-14
status, 6-1
stop, 2-13, 4-13, 8-1

ReplicationApplyOrdering data store attribute, 3-7,
4-15

ReplicationParallelism data store attribute, 4-15
root table

definition, 1-2, 4-4

S
schema users

create, 2-2
definition, 2-2

scripts
SQL*Plus, B-1
TimesTen Cache, B-1

semantics
differences between Oracle Database and

TimesTen IMDB, C-1
server

multithreaded mode, 7-3
ServersPerDSN connection attribute, 7-3
single-table cache group, 4-3
sliding window

cache group, 4-50
SQL

differences between TimesTen and Oracle, C-5
SQL array execution, 7-9
SQLRowCount() ODBC function, 5-17
Statement.getUpdateCount() JDBC method, 5-17
synchronous writethrough (SWT) cache group

create, 4-26
definition, 1-4, 4-25
restrictions, 4-27

system managed cache groups, 4-7

T
tables

caching on more than one TimesTen
database, 7-21

Oracle Database, 6-7
partition, C-6

tablespace
create default, 2-2, 3-2
defragmentation, 6-14
drop default, 2-15, 8-3
full, 6-17
monitoring default, 6-14
recover when full, 6-17
threshold, 6-16
usage notification, 6-16
utilization, 6-14

TAF
overview, 9-1
timeout, 9-4

TblSpaceFullRecovery parameter, 6-17
time-based aging policy, 4-48
TimesTen users

cache manager user, 2-3, 3-8
cache table users, 2-4, 3-8

transaction
incremental autorefresh

performance, 7-13
large

incremental commit, 7-13
performance, 7-13

reclaim operations
performance, 7-12

semantics
differences between Oracle Database and

TimesTen IMDB, C-1
transaction log file threshold for AWT cache groups

set, 6-5
Transparent Application Failover (TAF), see TAF
triggers

Oracle Database, 6-7
TT_CACHE_ADMIN_ROLE role

drop, 2-14
tt_cache_admin_role role

drop, 8-3
ttAdmin utility

-cachePolicy command, 3-12
-cacheStart command, 3-11
-cacheStop command, 3-11
-cacheUidGet command, 3-10
-cacheUidPwdSet command, 3-10
-query command, 6-1
-repPolicy command, 4-14
-repStart command, 4-13
-repStop command, 4-14

ttAgingLRUConfig built-in procedure, 4-47
ttAgingScheduleNow built-in procedure, 4-50
ttCacheADGStandbyStateSet built-in

procedure, 10-8, 10-9
ttCacheADGStandbyTimeoutSet built-in

procedure, 10-8
ttCacheAutorefIntervalStatsGet built-in

procedure, 7-18, 7-20
ttCacheAutorefresh built-in procedure, 4-36, 5-6
ttCacheAutoRefreshLogDefrag built-in procedure

defragment tablespace, 6-16
ttCacheAutorefreshSelectLimit built-in

procedure, 7-19
ttCacheAutorefreshStatsGet built-in procedure

tablespace
utilization, 6-15

ttCacheAutorefreshXactLimit built-in
procedure, 7-13

ttCacheAWTMonitorConfig built-in procedure, 6-4
ttCacheAWTThresholdSet built-in procedure, 6-5
ttCacheConfig

usage notification, 6-16
ttCacheConfig built-in procedure

AgentFailoverTimeout parameter, 9-4
AgentTimeout parameter, 6-10
AutoRefreshLogTblSpaceUsagePCT

parameter, 6-16
AwtErrrorXmlOutput, 4-23

Index-6

DeadDbRecovery parameter, 6-12
defragment tablespace, 6-14
full tablespace, 6-17
TblSpaceFullRecovery parameter, 6-17

ttCacheConnPoolApply built-in procedure, 7-5, 7-6
ttCacheConnPoolGet built-in procedure, 7-6
ttCacheConnPoolSet built-in procedure, 7-5
ttCacheDbCgStatus built-in procedure, 6-11
ttCacheDDLTrackingConfig built-in procedure, 6-5
ttCachePolicySet built-in procedure, 3-12
ttCacheStart built-in procedure, 2-7, 3-11
ttCacheStop built-in procedure, 2-14, 3-11, 8-2
ttCacheUidGet built-in procedure, 3-10
ttCacheUidPwdSet built-in procedure, 2-4, 3-10
ttDBConfig, 4-20
ttDBConfig built-in procedure, 7-9

DynamicLoadReduceContention, 7-11
ttDbConfig built-in procedure, 7-12
ttDestroy utility, 8-3
ttIsql set dynamicloadenable command, 5-11
ttIsql set dynamicloaderrormode command, 5-16
ttIsql utility, 2-4

cachegroups command, 2-8, 6-3
cachesqlget command

INCREMENTAL AUTOREFRESH
option, 4-38

ORACLE_DDL_TRACKING option, 6-6
set passthrough command, 5-22

ttOptSetFlag built-in procedure
DynamicLoadEnable flag, 5-11
DynamicLoadErrorMode flag, 5-16
PassThrough flag, 5-22

ttRepAdmin -duplicate utility, 4-55
-keepCG option, 4-55
-noKeepCG option, 4-56

ttRepPolicySet built-in procedure, 4-14
ttRepStart built-in procedure, 2-9, 4-13
ttRepStateSet built-in procedure, 4-55
ttRepStop built-in procedure, 2-13, 4-13, 8-1
ttRepSubscriberWait built-in procedure, 6-6, 8-2
ttStatus utility, 6-1

U
UID connection attribute, 3-6
UNIQUE HASH ON cache table attribute, 4-44
UNLOAD CACHE GROUP statement

definition, 5-16
example, 5-17

UseCacheConnPool connection attribute, 7-4
user

create, 2-2
definition, 2-2
Oracle Database

drop, 8-3
user managed cache group

bidirectional transmit, 4-28
create, 4-31, 4-33
definition, 1-4, 4-27

V
views

Oracle Database, C-6

W
WHERE clause, 4-40

referencing Oracle Database PL/SQL
functions, 4-42

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility

	What's New
	New features in Release 18.1.4.1.0
	New features in Release 18.1.3.1.0
	New features in Release 18.1.2.2.0
	New features in Release 18.1.2.1.0
	New features in Release 18.1.1.1.0

	1 TimesTen Application-Tier Database Cache Concepts
	Overview of cache groups
	Cache instance
	Cache group types
	Transmitting updates between the TimesTen and Oracle databases
	Loading data into a cache group: Explicitly loaded and dynamic cache groups

	High availability caching solution

	2 Getting Started
	Setting up the Oracle Database and TimesTen Classic systems
	Create users in the Oracle database
	Create a DSN for the TimesTen database
	Create users in the TimesTen database
	Set the cache administration user name and password in the TimesTen database

	Creating cache groups
	Create the Oracle Database tables to be cached
	Start the cache agent
	Create the cache groups
	Start the replication agent for the AWT cache group

	Performing operations on the read-only cache group
	Manually load the cache group
	Update the cached Oracle Database table

	Performing operations on a dynamically updatable cache group
	Dynamically load the cache group
	Update the TimesTen cache table

	Cleaning up the TimesTen Classic and Oracle Database systems
	Stop the replication agent
	Drop the cache groups
	Stop the cache agent and destroy the TimesTen database
	Drop the Oracle Database users and their objects

	3 Setting Up a Caching Infrastructure
	Configuring your system to cache Oracle Database data in TimesTen Classic
	TimesTen Cache environment variables for UNIX or Linux
	TimesTen Cache environment variables for Microsoft Windows

	Configuring the Oracle database to cache data in TimesTen Classic
	Create the Oracle database users
	Grant privileges to the Oracle database users
	Automatically create Oracle Database objects used to manage data caching
	Manually create Oracle Database objects used to manage data caching

	Configuring a TimesTen database to cache Oracle Database data
	Define a DSN for the TimesTen database
	Create the TimesTen users
	Grant privileges to the TimesTen users
	Set the cache administration user name and password

	Testing the connectivity between the TimesTen and Oracle databases
	Managing the cache agent
	Set a cache agent start policy

	4 Defining Cache Groups
	Cache groups and cache tables
	Single-table cache group
	Multiple-table cache group

	Creating a cache group
	Read-only cache group
	Restrictions with read-only cache groups

	Asynchronous WriteThrough (AWT) cache group
	Managing the replication agent
	Configuring parallel propagation to Oracle Database tables
	What an AWT cache group does and does not guarantee
	Restrictions with AWT cache groups
	Reporting Oracle Database permanent errors for AWT cache groups

	Synchronous WriteThrough (SWT) cache group
	Restrictions with SWT cache groups

	User-managed cache group
	READONLY cache table attribute
	PROPAGATE cache table attribute
	Examples of user-managed cache groups

	AUTOREFRESH cache group attribute
	AUTOREFRESH cache group attribute overview
	Altering a cache group to change the AUTOREFRESH mode, interval or state
	Manually creating Oracle Database objects for autorefresh cache groups
	Disabling full autorefresh for cache groups

	Using a WHERE clause
	Proper placement of WHERE clause in a CREATE CACHE GROUP statement
	Referencing Oracle Database PL/SQL functions in a WHERE clause

	ON DELETE CASCADE cache table attribute
	UNIQUE HASH ON cache table attribute

	Caching Oracle Database synonyms
	Caching Oracle Database LOB data
	Implementing aging in a cache group
	LRU aging
	Time-based aging
	Manually scheduling an aging process
	Configuring a sliding window

	Dynamic cache groups
	Replicating cache tables
	Create and configure the active database
	Create and configure the standby database
	Create and configure the read-only subscriber database

	5 Cache Group Operations
	Transmitting updates between the TimesTen and Oracle databases
	Loading and refreshing a cache group
	Loading and refreshing an explicitly loaded cache group with autorefresh
	Loading and refreshing a dynamic cache group with autorefresh
	Loading and refreshing a cache group using a WITH ID clause
	Initiating an immediate autorefresh
	Loading and refreshing a multiple-table cache group
	Improving the performance of loading or refreshing a large number of cache instances
	Example of manually loading and refreshing an explicitly loaded cache group
	Example of manually loading and refreshing a dynamic cache group

	Dynamically loading a cache instance
	Dynamic load configuration
	Dynamic load guidelines
	Examples of dynamically loading a cache instance
	Returning dynamic load errors

	Flushing a user managed cache group
	Unloading a cache group
	Determining the number of cache instances affected by an operation
	Setting a passthrough level
	PassThrough=0
	PassThrough=1
	PassThrough=2
	PassThrough=3
	Considerations for using passthrough
	Changing the passthrough level for a connection or transaction

	6 Managing a Caching Environment
	Checking the status of the cache and replication agents
	Cache agent and replication connections

	Monitoring cache groups
	Using the ttIsql utility's cachegroups command
	Monitoring autorefresh operations on cache groups
	Monitoring AWT cache groups
	Configuring a transaction log file threshold for AWT cache groups
	Tracking DDL statements issued on cached Oracle Database tables

	Managing a caching environment with Oracle Database objects
	Impact of failed autorefresh operations on TimesTen databases
	Dropping Oracle Database objects used by autorefresh cache groups
	Monitoring the cache administration user's tablespace
	Defragmenting change log tables in the tablespace
	Manually defragmenting the change log tables for autorefresh cache groups

	Receiving notification on tablespace usage
	Recovering from a full tablespace

	Backing up and restoring a database with cache groups
	Backing up and restoring using the ttBackup and ttRestore utilities
	Backing up and restoring with the ttMigrate utility

	Changing cache user names and passwords

	7 Cache Performance
	Dynamic load performance
	Managing a cache connection pool to the Oracle database for dynamic load requests
	Enable the cache connection pool
	Size the cache connection pool
	Use the ChildServer connection attribute to identify a child server process
	Apply cache connection pool sizing to currently executing database
	Example demonstrating management of the cache connection pool
	Limit the number of connections to the Oracle database
	Restrictions for the cache connection pool

	Improving AWT throughput
	Improving AWT throughput with parallel propagation
	Improving AWT throughput with SQL array execution

	Improving performance for autorefresh operations
	Minimizing delay for cached data with continuous autorefresh
	Reducing contention on TimesTen for dynamic read-only cache groups with incremental autorefresh
	Requirements for setting DynamicLoadReduceContention

	Reducing lock contention for read-only cache groups that use autorefresh and dynamic load
	Improving performance when reclaiming memory during autorefresh operations
	Executing large transactions with incremental autorefresh read-only cache groups
	Using ttCacheAutorefreshXactLimit
	Example of potential transactional inconsistency
	Retrieving statistics to evaluate performance when a transaction limit is set

	Configuring a select limit when using incremental autorefresh for read-only cache groups
	How to determine the cache group name for a particular select limit
	Retrieving statistics to evaluate performance when using a select limit

	Retrieving statistics on autorefresh transactions
	Caching the same Oracle table on two or more TimesTen databases

	8 Cleaning up the Caching Environment
	Stopping the replication agent
	Dropping a cache group
	Stopping the cache agent
	Destroying the TimesTen databases
	Dropping Oracle Database users and objects
	Scheduling a shutdown of active standby pair with AWT cache groups

	9 Using TimesTen Cache in an Oracle RAC Environment
	How TimesTen Cache works in an Oracle RAC environment
	Restrictions on using TimesTen Cache in an Oracle RAC environment
	Setting up TimesTen Cache in an Oracle RAC environment

	10 Using TimesTen Cache with Data Guard
	Components of MAA for TimesTen Cache
	TimesTen Cache works with asynchronous Active Data Guard
	Configuring the primary and standby Oracle databases
	Creating two Oracle Database services

	Configuring the active standby pair with read-only cache groups
	Recovery after failure when using asynchronous Active Data Guard
	Failure of the standby Oracle database
	Failure of the primary Oracle database
	Failure of the primary site

	TimesTen Cache works with synchronous Data Guard
	Configuring the Oracle databases
	Configuring the TimesTen database

	A Procedure and Privileges for Caching Oracle Database Data in TimesTen Classic
	Quick reference to cache Oracle Database data in TimesTen Classic
	Required privileges for the cache administration user and the cache manager user

	B SQL*Plus Scripts for TimesTen Cache
	Installed SQL*Plus scripts

	C Compatibility Between TimesTen and Oracle Databases
	Summary of compatibility issues
	Transaction semantics
	API compatibility
	JDBC API compatibility
	java.sql.Connection
	java.sql.Statement
	java.sql.ResultSet
	java.sql.PreparedStatement
	java.sql.CallableStatement
	java.sql.ResultSetMetaData
	Stream support

	ODBC API compatibility

	SQL compatibility
	Schema objects
	Caching Oracle Database partitioned tables

	Nonschema objects
	Differences between Oracle Database and TimesTen tables
	Data type support
	SQL operators
	SELECT statements
	SQL subqueries
	SQL functions
	SQL expressions
	INSERT/DELETE/UPDATE/MERGE statements
	TimesTen-only SQL and built-in procedures
	PL/SQL constructs

	Mappings between Oracle Database and TimesTen data types

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

