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1. Introduction 

This document introduces the reader to the procedure to be followed for Scheduler JAVA JOB 

Creation for FLEXCUBE Universal Banking Solutions. 
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2. Background 

This document is based on the requirement of creating JAVA Jobs to be executed by Quartz 

Scheduler. 

This document describes the procedure to be followed to accomplish the above. 
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3. Procedure 
 

This section describes job creation: 

1. Launch the job maintenance screen STDJOBMT for creation of a Job. 

2. Specify the field values. For information regarding individual fields please refer to Installation 

Docs. 

 

A Java job can be stateful or stateless. 

Stateful Job 

 

If the job is configured to be STATEFUL then missed instances will be queued up so that 
scheduler would start executing once the long running job ends. It means there will be no parallel 
execution of the java class. 

 

To make a class as Stateful, add two annotations to the job class. 

 @PersistJobDataAfterExecution 

 @DisallowConcurrentExecution 
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Stateless Job 

 

If the job is configured as STATELESS, threads can be run in parallel and can execute the same 
java class. 

 
If the job is configured as stateless, the value of field Max Number Instances will denote the 

number of threads that can be executed in parallel .If the job is configured as stateful, then the 
above value will denote the number of missed instances that will be queued up so that quartz 
scheduler would start executing them once a long running job ends. This field specifies the 
number of such job instances that needs to be queued up. 

 
The class defined in the class field has to be provided a fully qualified name. 

 

 Job params can be added to a particular java job in this screen as shown above. 
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4. Example 
 

Suppose you have created a new FTP_COPY job, to copy ftp files from one location to another. It 
is a java job, where the class to be executed is FtpCopy.java. 

 
You have provided the fully qualified class name as com.ofss.scheduler.quartz.ftp. FtpCopy. 

 
The physical location of the java file is 
INFRA\FCJNeoWeb\Javasource\com\ofss\scheduler\quartz\ftp\FtpCopy.java. 

 
In this class, you have to override the execute method of Job class to provide the implementation 
logic, which is executed when the quartz scheduler executes the class. The execute method 
format is as below. 

 

public void execute (JobExecutionContext context) throws JobExecutionException {} 

The sample java file is attached: 
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