

[1] Oracle® Communications Service Controller
Orchestration User’s Guide

Release 6.2

F18711-02

April 2020

Oracle Communications Service Controller Orchestration User's Guide, Release 6.2

F18711-02

Copyright © 2010, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such
programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S.
Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract
for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v

1 Application Orchestration Overview

About Application Orchestration ... 1-1
About Orchestration Logic ... 1-2
About Subscriber Profile Receivers and Orchestration Logic Processors 1-3

2 Configuring the Orchestration Engine

Setting Up the Orchestration Engine ... 2-1
Configuring General Parameters ... 2-1
Configuring Static Route OLP Parameters... 2-3
Configuring HSS OLP Parameters .. 2-3
Configuring Monitoring Parameters... 2-4

Routing a Session through Non-Configured Applications ... 2-4

3 Invoking Applications Based on the Previous Session Route

About Invoking Applications Based on the Previous Session Route ... 3-1
Tagging a Session... 3-1
Checking Tags in a Session .. 3-2

4 Defining the Orchestration Order of Messages Sent by a Called Party

About the Orchestration Order.. 4-1

5 Defining the Orchestration Engine Behavior on Receiving a Response from
the Application

About the Orchestration Engine Behavior on Receiving Responses from the Application 5-1
Defining the Orchestration Engine Behavior on Receiving an Error from the Application 5-1
Defining the Orchestration Engine Behavior on Receiving a Response from the Application
5-2

iv

A Use Cases

About the Use Cases ... A-1
Service Orchestration ... A-1

IN Service Interaction ... A-1
IMS Service Interaction... A-2
Forcing Back to Back... A-4
Choosing between Two Execution Paths .. A-5

B Initial Filter Criteria

About the Initial Filter Criteria .. B-1
Setting Up the Initial Filter Criteria .. B-1

Setting Up a Trigger Point ... B-2
Grouping SPTs and Specifying Relationship Between Groups and Group Members B-2
Specifying Conditions ... B-2

Specifying an Application.. B-4
Specifying a Priority ... B-4

Specifying the Order of Message Routing ... B-4
Providing Additional Information to an Application.. B-7
Continuing or Releasing a Session .. B-8
Triggering Applications Based on the Status of the Previous Application................................. B-9

Mapping Request Names to Status .. B-10
Triggering an Application ... B-11

Merging Conditional Routes .. B-12
Triggering Applications Based on the Previous Session Route... B-13

Tagging a Session .. B-14
Triggering an Application ... B-15

Java MBeans Reference .. B-17
OeHistoryMBean... B-18
RequestStatusCodesMBean ... B-19
RequestStatusCodeMBean... B-20

v

Preface

This document provides a description of Oracle Communications Service Controller
orchestration capabilities.

Audience
This document is intended for system administrators.

This document assumes that you are familiar with the following:

■ Initial Filter Criteria (iFC)

■ Session Initiation Protocol (SIP)

■ IP Multimedia Subsystem (IMS) architecture and interfaces

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

vi

1

Application Orchestration Overview 1-1

1Application Orchestration Overview

This chapter provides an overview of application orchestration and describes how
Oracle Communications Service Controller performs application orchestration.

About Application Orchestration
Orchestration is the ability of Service Controller to route a session through various
applications. Service Controller routes a session sequentially, from one application to
another. Each application executes a certain business logic. Every application applies a
service on the session before Service Controller routes the session to a next application.

Application orchestration is performed by the Orchestration Engine as follows:

1. A session arrives to the Orchestration Engine through a network-facing module.

2. The Orchestration Engine routes the session sequentially through various
applications by using application-facing modules. You define the applications that
the Orchestration Engine invokes, the order in which the Orchestration Engine
invokes the applications, and conditions for invoking applications using a special
notation known as the orchestration logic.

3. After the session passed all applications in the chain, the Orchestration Engine
returns the session back to the session control entity in the network.

Figure 1–1 shows an example of how the Orchestration Engine routes a session
that arrives from the network through an SCP, then through a SIP application, and
then back to the network.

About Orchestration Logic

1-2 Orchestration User's Guide

Figure 1–1 Routing a Session Sequentially through Multiple Applications

About Orchestration Logic
Orchestration logic is a notation that you use to specify the applications that the OE
invokes, the order in which the OE invokes these applications, and conditions for
invoking the applications. You specify an orchestration logic for each subscriber.

The subscriber’s orchestration logic is stored as a part of the subscriber’s profile.
Depending on your deployment of Service Controller, subscribers’ profiles and
orchestration logic can be defined in:

■ Home Subscriber Server (HSS), which is the primary user database in the IMS
domain. It contains subscription-related information including subscriber
applications and subscriber profiles. The HSS OPR uses the Diameter protocol
over the standard Sh interface to connect the HSS and select the subscriber profile.

■ Local Subscriber Server (LSS), which is an on-board implementation of a profile
server. The LSS is capable of storing subscriber profiles, including orchestration
logic given in the Initial Filter Criteria (iFC) format. The LSS OPR connects the LSS
to look up subscriber profiles with the orchestration logic.

■ Pre-defined list of applications that Service Controller should invoke.

Table 1–1 describes components that the OE uses to retrieve a subscriber profile from a
profile server and execute the orchestration logic.

Table 1–1 Service Controller Components Responsible for Retrieving and Executing
Orchestration Logic

Component Description

Subscriber Profile Receiver
(SPR)

Connects to the profile server and retrieves the subscriber’s
profile with the orchestration logic. There are different types of
SPRs to connect to different types of profile servers.

Orchestration Logic
Processor (OLP)

Retrieves the orchestration logic from a subscriber’s profile and
executes the orchestration logic.

About Subscriber Profile Receivers and Orchestration Logic Processors

Application Orchestration Overview 1-3

Figure 1–2 shows how the OE retrieves subscriber profiles and executes the
orchestration logic.

Figure 1–2 Retrieving Subscriber Profiles and Executing Orchestration Logic

When a new session arrives to the OE, the OE operates as follows:

1. The SPR connects to the profile server and retrieves the subscriber profile.

2. The OLP obtains the orchestration logic from the subscriber profile and triggers
the applications as specified in the orchestration logic.

3. Then the OE releases the session.

About Subscriber Profile Receivers and Orchestration Logic Processors
The OE uses different SPRs to connect to different profile servers. When configuring
the OE, you specify the appropriate SPR for the profile used in your system.
Depending on the SPR you selected, you need to configure a corresponding
Orchestration Logic Processor (OLP).

Table 1–2 explains which SPR you should select and which corresponding OLP you
should configure depending on where the orchestration logic is defined.

About Subscriber Profile Receivers and Orchestration Logic Processors

1-4 Orchestration User's Guide

See the discussion on configuring the Orchestration Engine in Service Controller
Modules Configuration Guide for more information about specifying an OPR.

Table 1–2 SPRs and Corresponding OLPs

To Execute the Orchestration Logic... Select... Then Configure...

Stored in a Home Subscriber Server (HSS) HSS SPR HSS OLP

Stored in a Local Subscriber Server (LSS) LSS SPR SM-LSS

Defined as a a pre configured list of
applications

Default SPR Static Route OLP

Note: You can add a new OPR to Service Controller, to connect to
other profile sources that exist in the operator’s network. Service
Controller can apply orchestration logic defined in HSS or any other
profile source to the legacy domain.

2

Configuring the Orchestration Engine 2-1

2Configuring the Orchestration Engine

This chapter describes how to configure the Oracle Communications Service
Controller Orchestration Engine.

Setting Up the Orchestration Engine
You set up the Orchestration Engine (OE) using the OE configuration screen.

To access the OE configuration screen:

1. In the domain navigation pane, expand OCSB.

2. Expand Processing Tier.

3. Select Orchestration Engine.

 Table 2–1 describes the tabs available on the OE configuration screen.

Configuring General Parameters
The General subtab enables you to specify a subscriber profile receiver (SPR) and
enable SDR generation.

Table 2–2 describes configuration parameters on the General subtab.

Table 2–1 OE Configuration Subtabs

Task Description

General Enables you to specify a subscriber profile receiver and enable
Service Data Records (SDRs) generation.

See "Configuring General Parameters" for more information.

Static Route OLP Enables you to specify applications that the OE should invoke
and the order in which they are invoked.

This tab is ignored if the OE is not configured to work with the
Static Route orchestration logic processor (OLP).

See "Configuring Static Route OLP Parameters" for more
information.

HSS OLP Enables you to set up the OE connection to an Home Subscriber
Server (HSS).

This tab is ignored if the OE is not configured to work with the
HSS OLP.

See "Configuring HSS OLP Parameters" for more information.

Monitoring Enables you to define how logging and notifications operate.

See "Configuring Monitoring Parameters" for more information.

Setting Up the Orchestration Engine

2-2 Orchestration User's Guide

Table 2–2 General Parameters

Name Type Description

Subscriber Profile
Receiver

STRING Specifies which SPR the OE uses to retrieve an
orchestration profile.

Possible values:

■ OlpDefaultInfoReceiver

Select this option when you want the OE to use the
static route OLP. To define the static route, use the
Static Route OLP tab. See "Configuring Static
Route OLP Parameters" for more information.

■ OlpLSSInfoReceiver

Select this option when you want the OE to
retrieve subscriber profiles from an SM-LSS. See
the discussion on configuring an SM-LSS in Service
Controller Modules Configuration Guide.

■ OlpHSSInfoReceiver

Select this option when you want the OE to
retrieve subscriber profiles from an HSS. To define
the address of the HSS, use the HSS OLP tab. See
"Configuring HSS OLP Parameters" for more
information.

Enable SDR BOOL Specifies whether or not the OE generates SDRs.

Possible values:

■ True

■ False

Default value: True

Enable Session Persistency STRING Specifies the point in a call when session persistency
begins. Persistency continues throughout the session
with each new state overwriting the previous state in
the repository.

■ When Session Starts

Persistency begins when the first session setup
message is received. The current state of the
session is then stored in the persistent repository.
Each state is overwritten by the state that follows it
until the end of the session.

■ On Ringback

Persistency begins when a ringing indication is
received. The current state of the session is then
stored in the persistent repository. Each state is
overwritten by the state that follows it until the
end of the session.

■ On Answer

Persistency begins when an answer indication is
received. The current state of the session is then
stored in the persistent repository. Each state is
overwritten by the state that follows it until the
end of the session.

■ Never

No state of the active session is stored.

Setting Up the Orchestration Engine

Configuring the Orchestration Engine 2-3

Configuring Static Route OLP Parameters
The Static Route OLP subtab enables you to specify applications that the OE invokes
and the order in which they are invoked.

Table 2–3 describes the configuration parameter on the Static Route OLP subtab.

Configuring HSS OLP Parameters
In the HSS OLP tab you can define the address of the HSS that the OE connects, and
you can optionally specify mobile subscribers for whom the OE obtains orchestration
logic (iFCs) from the HSS.

Table 2–4 describes the configuration parameters on the HSS OLP tab.

Note: This tab is regarded only when the OE is configured to work
with the Static Route OLP. In this case the Subscriber Profile Receiver
parameter in the General tab is set to OlpDefaultInfoReceiver.

Table 2–3 Static Route OLP Parameter

Name Type Description

Default Routing
Targets

STRING
_LIST

Specifies a list of application SIP URIs that the OE must
invoke.

The format of a SIP URI is:

module-instance-name.module-type@convergin.com

You can specify several SIP URIs separated by a space.

For example:

sip:IMSCFCAP4_instance.IMSCFCAP4@convergin.com

sip:IMASF_instance.IMASF@convergin.com

Note: This tab is regarded only when the OE is configured to work
with the HSS OLP. In this case the Subscriber Profile Receiver
parameter in the General tab is set to OlpHSSInfoReceiver.

Routing a Session through Non-Configured Applications

2-4 Orchestration User's Guide

Configuring Monitoring Parameters
The Monitoring tab enables you to define how Runtime MBeans and notifications
operate for the OE. For more information about configuring monitoring, see the
discussion on configuring Service Controller monitoring in Service Controller System
Administrator’s Guide.

Routing a Session through Non-Configured Applications
Typically, all applications in a production system are known. In this case, you define
an individual IM-ASF module instance to communicate with each application. In this
case, orchestration logic (for example, iFC) turns a session through various
applications through different IM-ASF module instances.

There are cases in which the Orchestration Engine is required to orchestrate each
session differently, each through a different application. In this case, it is impossible to
pre-configure the different application addresses, either because there are many of

Table 2–4 HSS OLP Parameters

Name Type Description

Wildcarded PSI STRING Specifies a regular expression that the HSS uses to search for
a subscriber’s orchestration logic (iFCs).

The HSS compares the regular expression against Public
Subscriber Identities (PSIs) in its database. The HSS finds all
matches and respond to the OE with one or more iFCs that
comprise the subscribers orchestration logic.

You need to specify a regular expression in a SIP URI
format. You can use the following wildcards:

■ asterisk (*), which matches zero or more occurrences of
any character. For example, sip:78880*@example.com
matches sip:78880@example.com and
sip:788801@example.com.

■ period (.), which matches one occurrence of any
character. For example, sip:78880.0@example.com
matches sip:7888010@example.com and
sip:7888020@example.com.

■ exclamation mark (!), which represents any number of
characters in the middle of the PSI or at the end of the
PSI. For example, sip:78880!@example.com matches
sip:subscriber10@example.com and
sip:subscriber11@example.com

If you specify this parameter, it prevails the session headers,
and session headers are ignored. Leave the parameter empty
to have the HSS search an orchestration logic for a
subscriber, based on the To and From headers of a session.

It is recommended to use this parameter when a group of
subscribers share the same orchestration logic.

Destination-Host
AVP

STRING Specifies the host name of the destination HSS. The OE sets
this value in the Destination-Host AVP, inside the UDR that
it sends to the HSS.

Note that this value must correlate to either a PeerMBean or
a RouteMBean that you already configured in the Diameter
SSU.

Destination-Realm
AVP

STRING Specifies the value that the OE sets in the Destination-Realm
AVP, inside the UDR that it sends to the HSS.

Routing a Session through Non-Configured Applications

Configuring the Orchestration Engine 2-5

them or their address is subject to change. The application addresses are not known to
Service Controller.

To support orchestration with non-configured applications, you need to define a
special instance of an IM-ASF module known as default IM-ASF. This instance will not
be limited to interaction with only a single pre-configured application, but will rather
allow interaction with any application. This instance must be named "IMASF_default".

Whenever the Orchestration Engine is required to route a session to a non-configured
application, it will route it through "IMASF_default" module. When triggered,
"IMASF_default" forwards a session to any application, as specified inside the session
request, in the application address field.

For example, if the Orchestration Engine has to route a session to a non-configured
application address, such as "sip:209.95.109.191:5060", the Orchestration Engine
forwards this session to the default IM-ASF. The default IM-ASF forwards the session
to the application server which IP address is 209.95.109.191.

For information on creating and configuring IM-ASF, see the discussion on setting up
IM-ASF SIP in Service Controller Modules Configuration Guide.

Routing a Session through Non-Configured Applications

2-6 Orchestration User's Guide

3

Invoking Applications Based on the Previous Session Route 3-1

3Invoking Applications Based on the Previous
Session Route

This chapter describes how to set up an application to run based on the previous route
of the session in Oracle Communications Service Controller.

About Invoking Applications Based on the Previous Session Route
You can set up an application to run based on the previous route of the session. For
example, you can set up a pre-paid application to run only if the session contains tags
indicating that a home zone application precedes the pre-paid application in the
orchestration chain.

To enable applications in the orchestration chain to get the information about
applications through which the session is routed, you need to tag the session when it
passes through an application. For example, if the OE routes the session to a home
zone application, you can tag the session with the tag HomeZoneAppInvoked. This
allows next applications in the orchestration chain to be aware of the hoe zone
application was triggered.

Then you can set up one of the next applications in the chain (such as a bill shock
prevention application) to run only if the session contains the HomeZoneAppInvoked
tag.

As the session passes through applications in the orchestration chain, all tags are
accumulated. Therefore, any subsequent application in the orchestration chain can be
aware of those tagged applications which were previously triggered.

The OE adds tags to the session when routing it to the IM defined in the orchestration
logic. You define a tag to be added as a part of the configuration of the appropriate IM.

Tagging a Session
To tag a session, edit the session XML source code. Add tags to the application header
fields.

Note: Service Controller does not support tags when the
Diameter-based orchestration mode is enabled. For more information
on the Diameter-based orchestration mode, see the discussion on
improving performance in Diameter-only environments in Service
Broker Online Mediation Controller Implementation Guide Release 6.1.

Checking Tags in a Session

3-2 Orchestration User's Guide

Checking Tags in a Session
You can set up an application to run depending on the application through which the
session has already passed. For example, you can set up a condition that invokes the
following applications in the chain:

■ Home zone

■ Online charging

If, for example, the session does not contain a tag specifying it should access the VPN
application, it skips the VPN application and continues to the pre-paid application.

You can use regular expressions. For example, if your tag is .*1234.* the message is
routed to all numbers that contain 1234, regardless of the numbers that precede or
succeed it.

4

Defining the Orchestration Order of Messages Sent by a Called Party 4-1

4Defining the Orchestration Order of Messages
Sent by a Called Party

This chapter describes how to define the order of messages sent by a called party for
Oracle Communications Service Controller.

About the Orchestration Order
Orchestration logic defines how the OE routes messages generated by the calling
party. For example, you can set an initial INVITE to be routed from Application 1 to
Application 2 to Application 3. Figure 4–1 shows the order in which the OE routes an
INVITE message from a calling party to a called party.

Figure 4–1 Routing an INVITE Message from a Calling Party

Orchestration logic does not specify how the OE routes messages received from a
called party. By default, when a called party generates a message (for example, an OK
response to an INVITE message), the OE routes this message in the reverse order, from
Application 3 to Application 2 to Application 1. Figure 4–2 shows the order in which
the OE routes an OK response from a called party to a calling party.

About the Orchestration Order

4-2 Orchestration User's Guide

Figure 4–2 Routing an OK Message from a Called Party

When an application in the orchestration chain depends on the information generated
by a previous application, you might need to route all messages, including those
generated by a calling party and those generated by a called party, in the same order.
For example, you might need a message to be first routed to an online charging
application and then to a bill shock application. In this case, a bill shock application
can perform certain actions based on the information generated by the online charging
application.

To allow the OE to route all messages across applications in the same order, you need
to group these applications in a unidirectional group. Figure 4–3 shows how the OE
routes a message generated by a called party through applications in a unidirectional
group.

Figure 4–3 Routing an OK Message from a Called Party in a Unidirectional Group

About the Orchestration Order

Defining the Orchestration Order of Messages Sent by a Called Party 4-3

When grouping applications into unidirectional groups, you must observe the
following limitations:

■ You can group only those applications that run consecutively. For example, on
Figure 4–3, you can group Application 1 and Application 2. However, you cannot
group Application 1 and Application 3 because they do not run consecutively.

■ Each application in a unidirectional group must be implemented as a Back-to-Back
(B2B) application.

Note: Service Controller does not support unidirectional groups
when the Diameter-based orchestration mode is enabled. For more
information on the Diameter-based orchestration mode, see the
discussion on improving performance in Diameter-only environments
in Service Broker Online Mediation Controller Implementation Guide
Release 6.1.

About the Orchestration Order

4-4 Orchestration User's Guide

5

Defining the Orchestration Engine Behavior on Receiving a Response from the Application 5-1

5Defining the Orchestration Engine Behavior on
Receiving a Response from the Application

This chapter describes how to define the Orchestration Engine (OE) behavior
depending on the response that the OE received from the application in Oracle
Communications Service Controller.

About the Orchestration Engine Behavior on Receiving Responses from
the Application

You can define whether the Orchestration Engine (OE) continues or terminates the
session depending on the response that the OE received from the application. You can
specify the following:

■ Whether or not the OE continues the session when receiving an error from the
application. See "Defining the Orchestration Engine Behavior on Receiving an
Error from the Application" for more information.

■ Whether or not the OE continues the session when receiving a response with the
specified code from the application. See "Defining the Orchestration Engine
Behavior on Receiving a Response from the Application" for more information.

Defining the Orchestration Engine Behavior on Receiving an Error from
the Application

If an application returns an error, such as a 400 Bad Response to an INVITE message,
you can specify whether the OE forwards the message to the next application in the
chain or terminates the session.

Edit the XML source code for the OE session. To continue the session, enter a handling
value of 0. To end the session, enter a handling value of 1.

Note: Service Controller does not support this feature when the
Diameter-based orchestration mode is enabled. For more information
on the Diameter-based orchestration mode, see the discussion on
improving performance in Diameter-only environments in Service
Broker Online Mediation Controller Implementation Guide Release 6.1.

Defining the Orchestration Engine Behavior on Receiving a Response from the Application

5-2 Orchestration User's Guide

Defining the Orchestration Engine Behavior on Receiving a Response
from the Application

You can configure the OE to forward the session to the next application whose
conditions are met, when the OE receives a specific response from an application. The
ability of the OE to forward the session to the next application is known as Forced
Back to Back (FB2B).

See "Forcing Back to Back" for an example of a use case using FB2B.

Note: Service Controller does not support this feature when the
Diameter-based orchestration mode is enabled. For more information
on the Diameter-based orchestration mode, see the discussion on
improving performance in Diameter-only environments in Service
Broker Online Mediation Controller Implementation Guide Release 6.1.

A

Use Cases A-1

AUse Cases

This appendix presents some typical use cases that can be used as examples when
creating orchestration logic flows for Oracle Communications Service Controller.

About the Use Cases
Some of the use cases in this appendix are based on the use cases described in Service
Controller Concepts Guide.

The uses cases in this appendix are demonstrated in their XML format. Use the XML
as a starting point for your own orchestration flows.

Service Orchestration
The following flows illustrate Service Controller orchestration capabilities.

IN Service Interaction
Figure A–1 shows a use case for how the Orchestration Engine forwards a session to
an online charging application server and then to a VPN service.

Use the code sample below as a starting point to create your own logic flow for an IN
Service Interaction.

Service Orchestration

A-2 Orchestration User's Guide

Figure A–1 IN Service Interaction Source Code

IMS Service Interaction
Figure A–2 shows a use case for how Service Controller communicates with the IMS
network and provides service interaction based on the logic retrieved from the
database.

Use the code sample below as a starting point to create your own logic flow for an IMS
Service Interaction.

Service Orchestration

Use Cases A-3

Figure A–2 IMS Service Interaction Source Code

Service Orchestration

A-4 Orchestration User's Guide

Forcing Back to Back
By default, when the OE receives a 302 Moved Temporarily response from an
application, the OE releases the session. When you want the OE to continue the
session after receiving a 302 Moved Temporarily response, you need to enforce the
application that returned the 302 Moved Temporarily response to work as a
Back-to-Back (B2B) application.

Figure A–3 shows a use case for how a VPN service with which the OE communicates
through the IM-ASF a 302 Moved Temporarily response. The IM-ASF is set to force
the session to continue to the online charging application.

Use the code sample below as a starting point to create your own B2B logic flow.

Service Orchestration

Use Cases A-5

Figure A–3 Forced Back to Back Source Code

Choosing between Two Execution Paths
Figure A–4 and Figure A–5 show a use case for how, if the session is originating, the
OE routes the session to the VPN application server and then to the online charging
application server. If the session is terminating, the OE routes the session directly to
the online charging application server.

Use the code sample below as a starting point to create your own logic flow for
continuing a session when conditions are not met.

Service Orchestration

A-6 Orchestration User's Guide

Figure A–4 Flow Choosing between Two Execution Paths

Service Orchestration

Use Cases A-7

Figure A–5 Flow Choosing between Two Execution Paths (continued)

Service Orchestration

A-8 Orchestration User's Guide

B

Initial Filter Criteria B-1

BInitial Filter Criteria

This appendix describes how you can set up the Initial Filter Criteria (iFC) using
standard iFC elements and proprietary extensions supported by the Oracle
Communications Service Controller Orchestration Engine (OE).

About the Initial Filter Criteria
The iFC is an XML-based IP Multimedia Subsystem (IMS) standard that you use to
define the order in which the OE routes a session across applications. The following
documents describe the standard iFC elements:

■ ETSI TS 129 228 V7.11.0, IP Multimedia (IM) Subsystem Cx and Dx Interfaces

■ 3GPP TS 29.328 V7.11.0, IP Multimedia Subsystem (IMS) Sh interface; Signalling
flows and message contents, Release 7.

Setting Up the Initial Filter Criteria
The iFC defines the order in which the OE routes a session across applications. The
routing is conditional. This means the OE routes the session to a specific application
only when the session meets the criteria specified for that application. For example,
you can specify that the OE routes the session to a Virtual Private Network application
only when the session's Called Party Number begins with the asterisk (*).

A set of conditions that a session must meet and the application to which the OE
routes the session is known as initial filter criteria. You enclose initial filter criteria in
the <InitialFilterCriteria> element. You can create as many
<InitialFilterCriteria> elements as you need.

In each <InitialFilterCriteria> element, you specify the following elements:

■ <TriggerPoint>, which contains one or more conditions that must be met in order
to route the session to a specific application. See "Setting Up a Trigger Point" for
more information.

■ <Application>, which defines the application to which the OE routes the session if
all conditions are met. This element includes the definition of the application name
and instructions for handling the session when the OE receives error responses
from applications. See "Specifying an Application" for more information.

■ <Priority>, which defines the priority of the iFC when conditions of multiple
<InitialFilterCriteria> elements are met. See "Specifying a Priority" for more
information.

Setting Up the Initial Filter Criteria

B-2 Orchestration User's Guide

Setting Up a Trigger Point
A trigger point consists of one or more conditions that the session must meet in order
to be routed to a specific application. In the iFC, each condition is called Service Point
Trigger (SPT). To set up an SPT, you use the <SPT> element.

You can specify conditional statements using AND and OR conditions between SPTs.
For example, you might specify that the OE routes the session to an application if the
following condition is met: (SPT1 OR SPT2) AND (SPT3 OR SPT4).

To set up conditional statements, you need to group SPTs. Then you specify the
relationship between groups of SPTs and members of each group.

For example, in the statement (SPT1 OR SPT2) AND (SPT3 OR SPT4), SPT1 and SPT2
belong to one group. SPT3 and SPT4 belong to another group. The relationship
between group members is OR. The relationship between the groups is AND.

Grouping SPTs and Specifying Relationship Between Groups and Group Members
To group SPTs, you specify an integer which represents the group to which the SPT
belongs, in the <Group> element. You place this element under the <SPT> element. The
SPTs whose <Group> element is set to the same number belong to the same group.

To specify the relationship between groups of SPTs and members of each group, you
use the <ConditionTypeCNF> element placed under the <TriggerPoint> element. You
can set the <ConditionTypeCNF> element to one of the following values:

■ 0: the relationship between group members is AND while the relationship
between groups is OR. For example, (SPT1 AND SPT2) OR (SPT3 AND SPT4).

■ 1: the relationship between group members is OR while the relationship between
groups is AND. For example: (SPT1 OR SPT2) AND (SPT3 OR SPT4).

Specifying Conditions
You can use the following criteria as conditions that the session must meet:

■ <Method>, which defines a SIP method used to initiate a call. For example, you can
specify that the OE triggers an application only if the method is INVITE.

■ <SIPHeader>, which consists of the following elements:

– <Header>, which defines the name of the header that you want to check. You
can specify any standard SIP header as well as any custom header.

– <Content>, which defines the contents of the header

■ <RequestURI>, which contains the URI of the destination application server
defined in the session request.

■ <Line> and <Content>, which contain the session type to be communicated
between the two end parties. The OE uses these criteria when the content type of
the message body is "application/sdp". The OE checks whether the text in each
line of the incoming message body matches the text that you specified in <Line>
tag. After the OE found the line, the OE checks whether this line contains the text
specified in the <Content> tag.

You can negate the condition using the <ConditionNegated> element. Use a negated
condition to sepcify that a condition is met for values other than the ones specified in
the condition. For example, you can route a session to a module only if the SIP Method
is other than INVITE. To negate a condition, set <ConditionNegated> to 1. Otherwise,
set <ConditionNegated> to 0.

The following code shows a scenario in which the iFC defines SPTs as follows:

Setting Up the Initial Filter Criteria

Initial Filter Criteria B-3

The OE routes the session to the application if the following condition is met: (INVITE
OR SESSIONCASE=0) AND (INVITE OR FROM != "Joe") AND
(requestURI="sip:destination_server1@example.com" OR SessionCase=2)

<iFCs>
 <InitialFilterCriteria>
 <Priority>0</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>

 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>1</Group>
 <Method>INVITE</Method>
 </SPT>

 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>1</Group>
 <SessionCase>0</SessionCase>
 </SPT>

 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>2</Group>
 <Method>INVITE</Method>
 </SPT>

 <SPT>
 <ConditionNegated>1</ConditionNegated>
 <Group>2</Group>
 <SIPHeader>
 <Header>From</Header>
 <Content>"joe"</Content>
 </SIPHeader>
 </SPT>

 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>3</Group>
 <RequestURI>sip:destination_server1@example.com</RequestURI>
 </SPT>

 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>3</Group>

Table B–1 SPTs Definitions in the Sample iFC

SPT Condition to Be Checked Group

SPT 1 Method of the session is INVITE. 1

SPT 2 SessionCase of the session is 0. 1

SPT 3 Method of the session is INVITE. 2

SPT 4 From header of the session does not contain "joe". 2

SPT 5 RequestURI header of the session contains
"sip:destination_server1@example.com".

3

SPT 6 SessionCase of the session is 2. 3

Specifying the Order of Message Routing

B-4 Orchestration User's Guide

 <SessionCase>0</SessionCase>
 </SPT>

 </TriggerPoint>

 <ApplicationServer>
 <ServerName>sip:app1@example.com</ServerName>
 <DefaultHandling>0</DefaultHandling>
 </ApplicationServer>
</InitialFilterCriteria>

Specifying an Application
When the conditions set in the <TriggerPoint> element are met, the OE routes the
session to the application that you specify in the <ApplicationServer> element.

In this element, you define the following mandatory elements:

■ <ServerName>, which defines the SIP URL of an IM to which the OE routes the
session

■ <Default Handling>, which defines whether or not the OE releases a session if an
application cannot be reached. You can set <Default Handling> to one of the
following values:

– 0: to continue the session

– 1: to terminate the session

The following code shows a scenario in which the OE routes the session to the IM
whose SIP URI is sip:as2@192.168.1.140:5060. In this example, the OE continues the
session if the application cannot be reached.

 <ApplicationServer>
 <ServerName>sip:app1@example.com</ServerName>
 <DefaultHandling>0</DefaultHandling>
 </ApplicationServer>

See "Continuing or Releasing a Session" for more information about configuring of the
default handling.

Specifying a Priority
In some cases, conditions defined in several different filter criteria can be met. To
enable the OE to choose a specific filter criteria, you can define a filter criteria’s
priority.

The higher the rule’s priority number, the lower priority the filter criterion has. This
means that a filter criterion with a higher value of priority number is assessed after the
filter criteria with a smaller priority number has been assessed. 0 (zero) means the
highest priority. 100 means the lowest priority.

The same priority cannot be assigned to more than one initial filter criterion.

Specifying the Order of Message Routing
The iFC defines how the OE routes messages generated by the calling party. For
example, you can set an initial INVITE to be routed from Application 1 to Application
2 to Application 3. Figure B–1 shows the order in which the OE routes an INVITE
message from a calling party to a called party.

Specifying the Order of Message Routing

Initial Filter Criteria B-5

Figure B–1 Routing an INVITE Message from a Calling Party

The iFC does not specify how the OE routes messages received from a called party. By
default, when a called party generates a message (for example, an OK response to an
INVITE message), the OE routes this message in the reverse order, from Application 3
to Application 2 to Application 1. Figure B–2 shows the order in which the OE routes
an OK response from a called party to a calling party.

Figure B–2 Routing an OK Message from a Called Party

When an application in the orchestration chain depends on the information generated
by a previous application, you might need to route all messages, including those
generated by a calling party and those generated by a called party, in the same order.
For example, you might need a message to be first routed to an online charging
application and then to a bill shock application. In this case, a bill shock application
can perform certain actions based on the information generated by the online charging
application.

Specifying the Order of Message Routing

B-6 Orchestration User's Guide

To allow the OE to route all messages across applications in the same order, you need
to group these applications in a unidirectional group. Figure B–3 shows how the OE
routes a message generated by a called party through applications in a unidirectional
group.

Figure B–3 Routing an OK Message from a Called Party in a Unidirectional Group

When grouping applications into unidirectional groups, you must observe the
following limitations:

■ You can group only those applications that run consecutively. For example, on
Figure B–3, you can group Application 1 and Application 2. However, you cannot
group Application 1 and Application 3 because they do not run consecutively.

■ Each application in a unidirectional group must be configured as a Back-to-Back
(B2B) application (see "Continuing or Releasing a Session" for more information
about B2B applications).

You use the <UnidirectionalGroup> element to assign an application to a
unidirectional group. Because this element is an extension to the standard iFC, you
need to put it under the <Extension> element.

You set <UnidirectionalGroup> to the identifier of a group. This identifier must be an
integer. You can have as many unidirectional groups as you need.

The following code shows an example of how you can assign two applications to the
same unidirectional group (the <UnidirectionalGroup> is bolded).

<iFCs>
 <InitialFilterCriteria>
 <Priority>2</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <Method>INVITE</Method>
 </SPT>

Providing Additional Information to an Application

Initial Filter Criteria B-7

 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:as2@192.168.1.140:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
 <ServiceInfo></ServiceInfo>
 <Extension>
 <UnidirectionalGroup>1</UnidirectionalGroup>
 <ForceB2B/>
 </Extension>
 </ApplicationServer>
</InitialFilterCriteria>

<InitialFilterCriteria>
 <Priority>3</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <Method>INVITE</Method>
 </SPT>
 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:as3@192.168.1.141:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
 <ServiceInfo></ServiceInfo>
 <Extension>
 <UnidirectionalGroup>1</UnidirectionalGroup>
 <ForceB2B/>
 </Extension>
 </ApplicationServer>
 </InitialFilterCriteria>
</IFCs>

Providing Additional Information to an Application
You can configure the OE to send additional information to an application by using the
<ServiceInfo> element. You need to place this element under the
<ApplicationServer>.

The OE adds the text specified in <ServiceInfo> to the body of the message that the
OE forwards to the application.

The following code shows an example of how you can specify additional information
to be sent to the application (the <ServiceInfo> element is bolded).

<ApplicationServer>
 <ServerName>sip:as@192.168.0.1:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
 <ServiceInfo>application-specific information</ServiceInfo>
</ApplicationServer>

Note: Service Controller does not support unidirectional groups
when the Diameter-based orchestration mode is enabled. For more
information on the Diameter-based orchestration mode, see the
discussion on improving performance in Diameter-only environments
in Service Broker Online Mediation Controller Implementation Guide
Release 6.1.

Continuing or Releasing a Session

B-8 Orchestration User's Guide

Continuing or Releasing a Session
When the OE receives a final response from an application (that is a 3xx, 4xx, or 5xx
response), the OE can either release or continue the session. You specify the action that
the OE performs using the following elements:

■ <DefaultHandling>

See "Specifying an Application" for more information on this element.

■ <ForceB2B>

This element is an extension to the standard iFC and must be placed under the
<Extension> element.

Using the <ForceB2B> element, you can specify conditions that force the OE to
continue the session when the OE receives a response (such as 302 Moved
Temporarily or 400 Bad Request) from an application. These conditions are based
on response codes received by the OE from an application. You can force session
continuity on specific response codes using the <response> element. You need to
add this element under the <ForceB2B> element.

The following code shows a scenario in which the OE continues the session only
when the application returns either the response code 302 Moved Temporarily or
400 Bad Request.

<Extension>
 <ForceB2B>
 <response>302</response>
 <response>400</response>
 <ForceB2B>
</Extension>

If you add an empty <ForceB2B> element (that is you do not explicitly specify any
response codes), the OE continues the session only when the OE receives a 302
Moved Temporarily code. The following code shows such a scenario.

<Extension>
 <ForceB2B/>
</Extension>

For a more fine-grained configuration, you can use <ForceB2B> in conjunction with
<DefaultHandling>. The following example shows a scenario in which the OE releases
a session if an application sends an error message (<DefaultHandling> is set to 1).
However, if the error is 408 Request Timed Out, the OE continues the session (the
<response> element is bolded):

<DefaultHandling>1</DefaultHandling>
<Extension>
 <ForceB2B>
 <response>408</response>
 <ForceB2B>
</Extension>

By default, the OE continues the session if the 302 Moved Temporarily response is
received. Otherwise, the OE releases the session.

Triggering Applications Based on the Status of the Previous Application

Initial Filter Criteria B-9

Triggering Applications Based on the Status of the Previous Application
The status of an application is determined by a request or response that the application
returns to the OE. You can set up any application in the orchestration chain to run only
if the previous application in the orchestration chain has a specific status that the
application returns a specific request or response.

For example, you can specify that the OE triggers an application only if the previous
application returns INVITE to the OE. Alternatively, you can define that the OE
triggers an application only if the previous application returns the response code 302
Moved Temporarily.

The information about a response or request which the previous application returns is
stored in the x-wcs-history header of the message. This header has the following
format:

x-wcs-history: id=application_identifier; status=status_code

The parameters are defined as follows:

■ id

This is an identifier of the previous application in the orchestration chain. The
application sets this parameter to the value of the <Priority> element of the iFC
that triggered that application.

■ status

This is the status of the previous application in the orchestration chain.

The application status is an integer. It represents the message that the application
returns to the OE. This message can contain one of the following:

■ Response code, such as 200 or 302. In this case, the application sets the status
parameter to the response number.

■ Request name, such as INVITE or SUBSCRIBE. In this case, the OE maps the
name of a request to an integer as you configured using the OeHistoryMBean
(see "Mapping Request Names to Status" for more information).

Figure B–4 shows a scenario in which the OE routes the session as follows:

1. The OE routes the session to Application 1. The <Priority> element of the iFC
that triggers this application is 1. Application 1 returns to the OE the response
code 200 OK. Application 1 sets the x-wcs-history header as follows:

■ id=1

■ status=200

2. Then the OE routes the session to Application 2. The <Priority> element of the
iFC that triggers this application is 2. Application 2 returns to the OE the INVITE
request. This request is mapped to 10 using OeHistoryMBean. Application 2
updates the x-wcs-history header as follows:

Note: Service Controller does not support the default handling and
force B2B features when the Diameter-based orchestration mode is
enabled. For more information on the Diameter-based orchestration
mode, see the discussion on improving performance in Diameter-only
environments in Service Broker Online Mediation Controller
Implementation Guide Release 6.1.

Triggering Applications Based on the Status of the Previous Application

B-10 Orchestration User's Guide

■ id=2

■ status=10

3. Finally, the OE routes the session to Application 3. The <Priority> element of the
iFC that triggers this application is 3. Application 3 returns to the OE the response
code 302 Moved Temporarily. Application 3 updates the x-wcs-history header as
follows:

■ id=3

■ status=302

Figure B–4 Returning Information about Response from the Previous Application

Mapping Request Names to Status
The status parameter of the x-wcs-history header is the integer that describes the
message that an application returns to the OE. If an application returns a request (for
example, an INVITE), you need to map this response to an integer using the
OeHistoryMBean. For example, you can map an INVITE message to 10.

To map a response:

1. Create an instance of RequestStatusCodesMBean by invoking the following
operation of OeHistoryMBean:

ObjectName createRequestStatusCodes()

2. Create an instance of RequestStatusCodeMBean by invoking the following
operation of RequestStatusCodesMBean:

ObjectName createRequestStatusCode()

3. Set the attributes of RequestStatusCodeMBean as follows:

■ Set the Request attribute of RequestStatusCodeMBean to the message that
you want to map.

■ Set the StatusCode attribute of RequestStatusCodeMBean to the integer to
which you want to map the message that the session contains.

Triggering Applications Based on the Status of the Previous Application

Initial Filter Criteria B-11

See "Java MBeans Reference" for more information about these MBeans.

Triggering an Application
You can set up an application to run depending on the contents of the x-wcs-history
header.

To evaluate the x-wcs-history header, you use the <Header> and <Content> elements.
For example, the following code shows a scenario in which application
sip:as1@192.168.1.140:5060 is triggered by the iFC whose <Priority> element is set to
1. The application returns an INVITE to the OE. (The example assumes that INVITE
messages are mapped to 10 using OeHistoryMBean.)

Application sip:as2@192.168.1.141:5060 runs only if the x-wcs-history header of the
message returned from the previous application is set as follows:

■ id=1

■ status=10

<iFCs>
 <InitialFilterCriteria>
 <Priority>1</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <Method>INVITE</Method>
 </SPT>
 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:as1@192.168.1.140:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
 </ApplicationServer>
</InitialFilterCriteria>

<InitialFilterCriteria>
 <Priority>2</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <SIPHeader>
 <Header>x-wcs-history</Header>
 <Content>id=1;status=10</Content>
 </SIPHeader>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 </SPT>
 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:as2@192.168.1.141:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
 </ApplicationServer>
 </InitialFilterCriteria>
</IFCs>

Merging Conditional Routes

B-12 Orchestration User's Guide

Merging Conditional Routes
If you build an orchestration logic in which the OE routes the session to different
applications based on certain conditions, you can merge different conditional routes
after they passed the respective applications.

For example, you can build an orchestration logic that routes the session to an IM-ASF
if the condition is met or to an IM-OCF if the condition is not met. After the session
passed the IM-ASF or IM-ASF, the OE routes the session to IM-WS.

You specify the applications from which you want to merge conditional routes by
defining the value of the <Priority> element of the iFC that triggered the application.
The OE stores the value of <Priority> in the id parameter of the x-wcs-history header.
Therefore, for each application from which you want to merge the route, you need to
create an SPT that checks whether the x-wcs-history contains a specific id.

The following example contains the definitions for the following applications:

■ IM-ASF, which receives the session if it contains a SIP INVITE message (see the
<ConditionNegated> element set to 0). This application has the <Priority> set to
1.

■ IM-OCF, which receives the session if it does not contain a SIP INVITE message
(see the <ConditionNegated> element set to 1). This application has the
<Priority> set to 2.

■ IM-WS, which receives the session after it passed IM-ASF or IM-OCF. This
application checks whether the id parameter of the x-wcs-history header is set to 1
or 2 that is whether the session passed through either IM-ASF or IM-OCF. .* in the
<Content> element means that IM-ASF and IM-OCF might have any status.

<InitialFilterCriteria>
 <Priority>1</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <Method>INVITE</Method>
 </SPT>
 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:IM-ASF.IMASF@ocsb.com</ServerName>
 <DefaultHandling>0</DefaultHandling>
 </ApplicationServer>
</InitialFilterCriteria>

<InitialFilterCriteria>
 <Priority>2</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>1</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>1</ConditionNegated>
 <Group>0</Group>
 <Method>INVITE</Method>
 </SPT>
 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:IM-OCF.IMOCF@ocsb.com</ServerName>
 <DefaultHandling>0</DefaultHandling>
 </ApplicationServer>
</InitialFilterCriteria>

Triggering Applications Based on the Previous Session Route

Initial Filter Criteria B-13

<InitialFilterCriteria>
 <Priority>3</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>1</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <SIPHeader>
 <Header>x-wcs-history</Header>
 <Content>id=1;.*</Content>
 </SIPHeader>
 </SPT>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <SIPHeader>
 <Header>x-wcs-history</Header>
 <Content>id=2;.*</Content>
 </SIPHeader>
 </SPT>
 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:IMWS.IMWS@ocsb.com</ServerName>
 <DefaultHandling>0</DefaultHandling>
 </ApplicationServer>
</InitialFilterCriteria>

Triggering Applications Based on the Previous Session Route
You can set up an application to run based on the previous route of the session. For
example, you can set up a bill shock prevention application to run only if the session
was previously routed to an online charging application based on the From header.

To enable applications in the orchestration chain to get the information about
applications through which the session is routed, you need to tag the session when it
passes through an application. For example, if the OE routes the session to an online
billing application, you can tag the session with the tag OnlineBillingTriggered. This
allows next applications in the orchestration chain to be aware of the online billing
application was triggered.

Then you can set up one of the next applications in the chain (such as a bill shock
prevention application) to run only if the session contains the OnlineBillingTriggered
tag.

As the session passes through applications in the orchestration chain, all tags are
accumulated. Therefore, any subsequent application in the orchestration chain can be
aware of those tagged applications which were previously triggered.

The following sections explain how to tag a session and trigger an application only if
the session contains the specified tags.

Note: Service Controller does not support this feature when the
Diameter-based orchestration mode is enabled. For more information
on the Diameter-based orchestration mode, see the discussion on
improving performance in Diameter-only environments in Service
Broker Online Mediation Controller Implementation Guide Release 6.1.

Triggering Applications Based on the Previous Session Route

B-14 Orchestration User's Guide

Tagging a Session
To tag a session, you use the <Tags> element. This element is an extension to the
standard iFC. You need to place the <Tags> element under the <Extension> element.

You can add into <Tags> as many tags as you need. The tags must be separated by
comma.

The following code shows a scenario in which the OE routes the session to an online
billing application and tags the session with the OnlineBillingTriggered tag (the
<Tags> element is bolded).

<iFCs>
 <InitialFilterCriteria>
 <Priority>1</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <SIPHeader>
 <Header>From</Header>
 <Content>"joe"</Content>
 </SIPHeader>
 </SPT>
 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:as2@192.168.1.140:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
 <Extension>
 <Tags>OnlineBillingTriggered</Tags>
 </Extension>
 </ApplicationServer>
</InitialFilterCriteria>

The OE adds the contents of the <Tags> element to the x-wcs-tags header of the
message that the OE routes to the next application in the orchestration chain. This
header has the following format:

x-wcs-tags: comma_separated_tags_accumulated_from_all_previous_applications

The application returns the message to the OE with the x-wcs-tags header intact. As
the message passes through applications in the orchestration chain, the x-wcs-tags
header accumulates the contents of all <Tags> elements defined for applications in the
chain.

Figure B–5 shows a scenario in which the OE routes a session from Application 1 to
Application 2 to Application 3. The session is tagged as follows:

■ When the OE routes the to Application 1, the tag OnlineBillingTriggered is added.

■ When the OE routes the session to Application 2, the tag BillShockTriggered is
added.

■ When the OE routes the session to Application 3, the tag RequiresAnchoring is
added.

Because the x-wcs-tags header accumulates added tags, after triggering Application 3,
the header contains "OnlineBillingTriggered, BillShockTriggered, RequiresAnchoring".

Triggering Applications Based on the Previous Session Route

Initial Filter Criteria B-15

Figure B–5 Accumulating Session Tags

Triggering an Application
You can set up an application to run depending on whether the x-wcs-tags header of
the session contains specific tags.

To evaluate the x-wcs-tags header, you use the <Header> and <Content> elements. For
example, the following code shows a scenario in which the session is tagged as
follows:

■ When the OE routes the session to sip:as1@192.168.1.140:5060, the tag
OnlineBillingTriggered is added.

■ When the OE routes the session to sip:as2@192.168.1.141:5060, the tag
BillShockTriggered is added.

■ When the OE routes the session to sip:as2@192.168.1.141:5060, no tag is added.

The OE triggers sip:as3@192.168.1.143:5060 only if the x-wcs-tags header of the session
contains both OnlineBillingTriggered and BillShockTriggered.

<iFCs>
 <InitialFilterCriteria>
 <Priority>1</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <Method>INVITE</Method>
 </SPT>
 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:as1@192.168.1.140:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
 <Extension>
 <Tags>OnlineBillingTriggered</Tags>
 </Extension>

Triggering Applications Based on the Previous Session Route

B-16 Orchestration User's Guide

 </ApplicationServer>
</InitialFilterCriteria>

<InitialFilterCriteria>
 <Priority>2</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <SIPHeader>
 <Header>From</Header>
 <Content>"joe"</Content>
 </SPT>
 </TriggerPoint>
<ApplicationServer>
 <ServerName>sip:as2@192.168.1.141:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
 <Extension>
 <Tags>BillShockTriggered</Tags>
 </Extension>
</ApplicationServer>
</InitialFilterCriteria>

<InitialFilterCriteria>
 <Priority>3</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 <Method>INVITE</Method>
 </SPT>
 </TriggerPoint>
<ApplicationServer>
 <ServerName>sip:as2@192.168.1.141:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
</ApplicationServer>
</InitialFilterCriteria>

<InitialFilterCriteria>
 <Priority>4</Priority>
 <TriggerPoint>
 <ConditionTypeCNF>0</ConditionTypeCNF>
 <SPT>
 <SIPHeader>
 <Header>x-wcs-tags</Header>
 <Content>OnlineBillingTriggered, BillShockTriggered</Content>
 </SIPHeader>
 <ConditionNegated>0</ConditionNegated>
 <Group>0</Group>
 </SPT>
 </TriggerPoint>
 <ApplicationServer>
 <ServerName>sip:as3@192.168.1.143:5060</ServerName>
 <DefaultHandling>0</DefaultHandling>
 </ApplicationServer>
 </InitialFilterCriteria>
</IFCs>

Java MBeans Reference

Initial Filter Criteria B-17

Java MBeans Reference

You can use OeHistoryMBean and its child MBeans to map a response message to an
integer. For example, you can map an INVITE message to 10.

Figure B–6 shows the hierarchy of the OeHistoryMBean.

Figure B–6 OeHistoryMBean Hierarchy

OeHistoryMBean

B-18 Orchestration User's Guide

OeHistoryMBean

OeHistoryMBean enables you to map a response message to an integer. For example,
you can map an INVITE message to 10. This value is stored in the x-wcs-history
header and enables you to check the status of a previous application in the
orchestration chain. See "Triggering Applications Based on the Status of the Previous
Application" for more information.

BObject Name
com.convergin:Type=OEHistory,Version=MBean_Version,Location=AdminServer,Nam
e=oe_instance.OE_oe_instance_MBean_Version

BFactory Method
Created automatically.

BAttributes

int DefaultRequestStatusCode
Specifies the default value of the status_code parameter that the OE receives in the
x-wcs-history header.

BOperations

ObjectName createRequestStatusCodes()
Creates an instance of RequestStatusCodesMBean.

void destroyRequestStatusCodes()
Destroys an instance of RequestStatusCodesMBean.

ObjectName[] lookupRequestStatusCodes()
Gets an array of references to the instances of RequestStatusCodesMBean.

Java MBeans Reference

Initial Filter Criteria B-19

RequestStatusCodesMBean

RequestStatusCodesMBean is the root MBean for instances of
RequestStatusCodeMBean. Each instance of RequestStatusCodeMBean enables you to
map a single response to an integer.

BObject Name
com.convergin:Type=RequestStatusCodes,Version=MBean_Version,Location=AdminSe
rver,Name=oe_instance.OE_oe_instance_MBean_Version

BFactory Method
OeHistory.createRequestStatusCodes()

BAttributes
None

BOperations

ObjectName createRequestStatusCode()
Creates an instance of RequestStatusCodeMBean.

void destroyRequestStatusCode()
Destroys an instance of RequestStatusCodeMBean.

ObjectName[] lookupRequestStatusCode()
Gets an array of references to the instances of RequestStatusCodeMBean.

RequestStatusCodeMBean

B-20 Orchestration User's Guide

RequestStatusCodeMBean

RequestStatusCodeMBean enables you to map a single response to an integer. You
need to create a separate instance of RequestStatusCodeMBean for each response.

BObject Name
com.convergin:Type=RequestStatusCode,Version=MBean_Version,Location=AdminSer
ver,Name=oe_instance.String

BFactory Method
RequestStatusCodes.createRequestStatusCode()

BAttributes

string Request
Specifies the message that the session contains.

int StatusCode
Specifies the integer to which you want to map the message that the session contains.

BOperations
None

	Contents
	Preface
	Audience
	Documentation Accessibility

	1 Application Orchestration Overview
	About Application Orchestration
	About Orchestration Logic
	About Subscriber Profile Receivers and Orchestration Logic Processors

	2 Configuring the Orchestration Engine
	Setting Up the Orchestration Engine
	Configuring General Parameters
	Configuring Static Route OLP Parameters
	Configuring HSS OLP Parameters
	Configuring Monitoring Parameters

	Routing a Session through Non-Configured Applications

	3 Invoking Applications Based on the Previous Session Route
	About Invoking Applications Based on the Previous Session Route
	Tagging a Session
	Checking Tags in a Session

	4 Defining the Orchestration Order of Messages Sent by a Called Party
	About the Orchestration Order

	5 Defining the Orchestration Engine Behavior on Receiving a Response from the Application
	About the Orchestration Engine Behavior on Receiving Responses from the Application
	Defining the Orchestration Engine Behavior on Receiving an Error from the Application
	Defining the Orchestration Engine Behavior on Receiving a Response from the Application
	About the Use Cases
	Service Orchestration
	IN Service Interaction
	IMS Service Interaction
	Forcing Back to Back
	Choosing between Two Execution Paths

	About the Initial Filter Criteria
	Setting Up the Initial Filter Criteria
	Setting Up a Trigger Point
	Grouping SPTs and Specifying Relationship Between Groups and Group Members
	Specifying Conditions

	Specifying an Application
	Specifying a Priority

	Specifying the Order of Message Routing
	Providing Additional Information to an Application
	Continuing or Releasing a Session
	Triggering Applications Based on the Status of the Previous Application
	Mapping Request Names to Status
	Triggering an Application

	Merging Conditional Routes
	Triggering Applications Based on the Previous Session Route
	Tagging a Session
	Triggering an Application

	Java MBeans Reference
	OeHistoryMBean
	RequestStatusCodesMBean
	RequestStatusCodeMBean

