
Oracle® Communications Session
Border Controller
Header Manipulation Rules Resource
Guide

Release S-CZ8.1.0
May 2019

Oracle Communications Session Border Controller Header Manipulation Rules Resource Guide, Release S-CZ8.1.0

Copyright © 2004, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial
computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating
system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and
the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in
an applicable agreement between you and Oracle.

Contents

 About This Guide

1 Header Manipulation Rules

HMR Fundamentals 1-1
Audience 1-2
When to Use HMR 1-2
Managing HMR Impact on Performance 1-2
Applying HMRs to Traffic 1-2

Outbound HMR 1-2
Inbound HMR 1-3
Order of Header Rule Application 1-4
HMR Store Actions and Boolean Results 1-4
Routing Decisions 1-4

Static and Dynamic HMR 1-4
Static HMR 1-4
Dynamic HMR 1-5

Sample HMR 1-5
HMR Components 1-6

Relationship Between Rulesets and Its Rules 1-6
Ruleset Guidelines 1-6
Ruleset Components 1-6
Guidelines for Header and Element Rules 1-7
Guidelines for Header Rules 1-8
Guidelines for Element Rules 1-8
Duplicate Header Names 1-8
SIP Header Pre-Processing HMR 1-8
Back Reference Syntax 1-9
Dialog Matching 1-10

About Dialog-Matching Header Manipulations 1-10
Built-In HMRs 1-12

Built-In Variables 1-12
Built-In SIP Manipulation Configuration 1-15

iii

Unique Regex Patterns Per Peer/Trunk 1-15
Rejecting SIP Requests 1-16
HMR Information in Logs 1-17

Using Regular Expressions 1-18
Example of HMR with Regex 1-18
Regex Characters 1-18

Literal (Ordinary) 1-19
Special (Metacharacters) 1-19
Regex Tips 1-20
Matching New Lines 1-20
Escaped Characters 1-21
Building Expressions with Parentheses 1-21
Boolean Operators 1-21
Equality Operators 1-21
Normalizing EBNF ExpressionString Grammar 1-22

Storing Regex Patterns 1-23
Performance Considerations 1-23
Additional References 1-23

HMR Configuration 1-23
Testing Pattern Rules 1-24
Creating Header Manipulation Rulesets 1-24
Configuring SIP Header Manipulation Rules 1-27
Configuring SIP Header Manipulation Element Rules 1-28
Status-Line Manipulation and Value Matching 1-30

Set the Header Name 1-30
Set the Element Type 1-31
Set the Match Value 1-31

Configuring SIP HMR Sets 1-33
Configuring a Session Agent 1-33
Configuring a SIP Interface 1-33
Example 1 Stripping All Route Headers 1-34
Example 2 Stripping an Existing Parameter and Adding a New One 1-34

Unique HMR Regex Patterns and Other Changes 1-36
The Default Expression 1-36
Manipulation Pattern Per Remote Entity 1-37
Reject Action 1-37

Reject Action Configuration 1-38
About Counters 1-38
SNMP Support 1-39

Log Action 1-40
Changes to Storing Pattern Rule Values 1-40

iv

Removal of Restrictions 1-40
Name Restrictions for Manipulation Rules 1-41
New Value Restrictions 1-41

MIME Support 1-41
Manipulating MIME Attachments 1-42

About the MIME Value Type 1-43
SIP Message-Body Separator Normalization 1-43
Configuring MIME Support 1-44

HMR for SIP-ISUP 1-44
MIME Rules Overview 1-45
Identifying a MIME Rule 1-45
About MIME Rules 1-45
MIME Rules Configuration 1-46
Working with MIME Rules 1-48
MIME ISUP Manipulation 1-48
Adding an ISUP Body to a SIP Message 1-49
MIME ISUP Manipulation Configuration 1-49
Configuration Example 1-51

Header Manipulation Rules for SDP 1-53
SDP Manipulation 1-53
Regular Expression Interpolation 1-58
Regular Expressions as Boolean Expressions 1-59
Moving Manipulation Rules 1-60
Rule Nesting and Management 1-61
ACLI Configuration Examples 1-61

HMR Import-Export 1-66
Exporting 1-66
Importing 1-67
Using SFTP to Move Files 1-67
Removing Files 1-67

HMR Development 1-67
Development Overview 1-68

Development Tips 1-68
Planning Considerations 1-68

Traffic Direction 1-68
Order of Application Precedence 1-69
Order of HMR Execution 1-69
Applying HMR to a Specific Header 1-69
HMR Sets 1-69

Create Pseudocode 1-70
Test HMRs 1-70

v

test-sip-manipulation 1-70
Development Example 1-70

Writing the Psuedo Code 1-71
Testing the Pattern Rule 1-71
Constructing the HMR 1-71
Loading Test SIP Message 1-72
Configuring Testing 1-73
Executing Testing 1-73
Log File Analysis 1-73

Configuration Examples 1-73
Example 1 Removing Headers 1-73
Example 2 Manipulating the Request URI 1-74
Example 3 Manipulating a Header 1-76
Example 4 Storing and Using URI Parameters 1-77
Example 5 Manipulating Display Names 1-78
Example 6 Manipulating Element Parameters 1-79
Example 7 Accessing Data from Multiple Headers of the Same Type 1-81
Example 8 Using Header Rule Special Characters 1-83
Example 9 Status-Line Manipulation 1-85
Example 10 Use of SIP HMR Sets 1-86
Example 11 Use of Remote and Local Port Information 1-87
Example 12 Response Status Processing 1-88
Example 13 Remove a Line from SDP 1-90
Example 14 Back Reference Syntax 1-91
Example 15 Change and Remove Lines from SDP 1-91
Example 16 Change and Add New Lines to the SDP 1-92

vi

About This Guide

The HMR Resource Guide describes the SIP manipulation language called Header
Manipulation Rules (HMR).

Related Documentation

The following table describes the documentation set for this release.

Document Name Document Description

Acme Packet 3900 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 3900.

Acme Packet 4600 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 4600.

Acme Packet 6100 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 6100.

Acme Packet 6300 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 6300.

Acme Packet 6350 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 6350.

Release Notes Contains information about the current documentation set
release, including new features and management changes.

ACLI Configuration Guide Contains information about the administration and
software configuration of the Service Provider Oracle
Communications Session Border Controller.

ACLI Reference Guide Contains explanations of how to use the ACLI, as an
alphabetical listings and descriptions of all ACLI
commands and configuration parameters.

Maintenance and Troubleshooting Guide Contains information about Oracle Communications
Session Border Controller logs, performance
announcements, system management, inventory
management, upgrades, working with configurations, and
managing backups and archives.

MIB Reference Guide Contains information about Management Information Base
(MIBs), Oracle Communication's enterprise MIBs, general
trap information, including specific details about standard
traps and enterprise traps, Simple Network Management
Protocol (SNMP) GET query information (including
standard and enterprise SNMP GET query names, object
identifier names and numbers, and descriptions), examples
of scalar and table objects.

Accounting Guide Contains information about the Oracle Communications
Session Border Controller’s accounting support, including
details about RADIUS and Diameter accounting.

HDR Resource Guide Contains information about the Oracle Communications
Session Border Controller’s Historical Data Recording
(HDR) feature. This guide includes HDR configuration
and system-wide statistical information.

vii

Document Name Document Description

Administrative Security Essentials Contains information about the Oracle Communications
Session Border Controller’s support for its Administrative
Security license.

Security Guide Contains information about security considerations and
best practices from a network and application security
perspective for the Oracle Communications Session
Border Controller family of products.

Installation and Platform Preparation Guide Contains information about upgrading system images and
any pre-boot system provisioning.

Call Traffic Monitoring Guide Contains information about traffic monitoring and packet
traces as collected on the system. This guide also includes
WebGUI configuration used for the SIP Monitor and Trace
application.

Header Manipulation Rule Guide Contains information about configuring and using Header
Manipulation Rules to manage service traffic.

Revision History

Date Description

April 2018 • Initial release
May 2019 • Adds explanation of the default expression.

About This Guide

viii

1
Header Manipulation Rules

Variances among SIP networks, like incompatible vendor deployments or disparate SIP
services, can degrade SIP services or disrupt SIP operations. To resolve these variances, Oracle
deploys Header Manipulation Rules (HMR), giving network administrators the ability to
control SIP traffic by manipulating SIP messages.

HMRs permit the network administrator to:

• Insert, delete, or modify SIP headers or parameters

• Copy or move header or parameter values

• Rename parameter names

• Modify MIME bodies including SDP, XML and ISUP

• Change SIP-I/SIP-T ISUP messages, parameters, and fields

• Change message information when, for example, normalization is required

• Categorize and label specific message flows for special processing

• Capture information from a message and insert it into another message

The SBC can perform these actions based on the following:

• The type of SIP message (Request or Response)

• The type of Request (INVITE, REGISTER, etc.)

• The success or failure of a regular expression to match a header or parameter

HMR Fundamentals
HMR is a tool language based on rulesets, header rules, and element rules.

• Rulesets contain one or more header rules, as well as optional element rules that operate on
specified header elements. They are applied to inbound or outbound traffic for a session
agent, realm, or SIP interface.

• Header rules operate on specific headers. They can contain element rules, each of which
specify the actions to perform for a given element of this header.

• Element rules perform operations on the elements of a header. Header elements include all
subparts of a header, excluding the header name; for example, header value, header
parameter, and URI parameter.

The OCSBC cannot dynamically perform validation as you enter rules. Use the ACLI verify-
config command to confirm that the HMR configuration does not contain invalid or circular
references.

• An invalid reference is a reference that points to a non-existing rule.

• A circular reference is a reference that creates an endless loop of manipulation actions.

1-1

Audience
This document is intended for those users who already understand the Oracle Communications
Session Border Controller and the SIP protocol. In addition, Oracle recommends you become
as HMR-savvy as possible by attending Oracle training courses prior to launching any HMR in
production. You should be aware of all issues that might result from misinformed or misapplied
HMRs.

When to Use HMR
HMR is a flexible, powerful tool. As such, Oracle recommend using it with utmost care. HMR
should only be implemented in production networks once the HMRs and their applications
have been rigorously tested in a lab environment. You want to ensure your HMRs work as you
intend them before using them for your production network.

Oracle's Customer Support Team can assist you in developing HMRs for your network. Our
customer support team can ensure that your HMR are constructed, configured, and applied
properly, thereby guaranteeing your HMR achieves the result you want.

Managing HMR Impact on Performance
The following suggestions help manage HMR effect on performance.

• Use the pre-constructed manipulations and variable tags. They consume less processing
and decrease the effect on performance.

• Include constructs and constrain the HMR to specific methods and messages. For example,
you can limit effected methods or the length of a string match.

• Construct the HMR to only work on the traffic that matches your criteria, letting the
remaining traffic pass untouched. (Unless you want to manipulate all traffic.)

• Take advantage of the test tools available on OCSBC to evaluate your HMRs.

• Administer the HMRs by using HMR export and import and reorder tools also available.

• Use logfiles to resolve issues.

Applying HMRs to Traffic
You can apply HMR rules to inbound or outbound traffic for session agents, realms, and SIP
interfaces. The order of precedence is:

1. session agent

2. realm

3. SIP interface

A SIP manipulation applied to a session agent overrides the other two, and a SIP manipulation
for a realm overrides one for a SIP interface.

Outbound HMR
Outbound HMR rules are applied just before the SIP message is sent out by the OCSBC, after
SIP-NAT processing. Any changes made by the HMR affects the message. Those changes are

Chapter 1
HMR Fundamentals

1-2

not overridden by the OCSBC, which means the OCSBC does not prevent the rules from
breaking the protocol.

The rules are performed in a stateless manner. They do not store values across messages and
they do not remember what they did in previous messages.

Note:

You can work around the stateless behavior by having an inbound HMR copy the
information needed to a private header, which then goes through the OCSBC. The
outbound rule can then look for the header and act upon the information.

Inbound HMR
Inbound HMR rules are applied before most processing done by the OCSBC, but after some
SIP parser processing is performed. The message's source is determined to decide which
session agent, realm, or SIP interface it belongs to.

By default, the header rules are applied after the message is parsed; this verifies the message is
well-formed and follows the specifications. This is necessary to securely perform any
subsequent message processing, including HMR. An exception to this rule can be created by
setting the inmanip-before-validate option. See "SIP Header Pre-Processing HMR" for more
details.

Because inbound rules are applied before the message is completely processed by the OCSBC,
you can use them to make the OCSBC perform specific actions outside of ordinary processing.
For example, you can change the request-URI, add a Route header, or add a trunk group URI to
make the OCSBC route the request on a different path.

Inbound rules are stateless. However, if the OCSBC is in B2BUA mode (its most common
mode) it stores and remembers certain header values for later use in the dialog. If HMR
changes them on inbound, the OCSBC later believes them to be the actual received values.
There are a few exceptions to this with the following headers:

• To and From can be changed by HMR and are used when the message gets forwarded out
another interface.
But if they were for a new request message, the OCSBC remembers the original ones when
it sends back 1xx-6xx responses. The previous hop that sent the new request inspects the
responses and needs them to be identical based on SIP protocol rules. However, requests
sent by the OCSBC back to the originator for the call, from the called to the caller, will not
be automatically undone by the OCSBC as the responses were.

• Call-ID values are stored before HMR is applied and cannot be changed by HMR on
inbound.

If a SIP INVITE is received for a new call, inbound HMR can change the To or From headers
so that the next hop device gets the changed headers and the OCSBC stores them. But the 100
Trying, 180 Ringing, and 200 OK responses, for example, will use the original To and From
values and not the HMR modified ones. If the called party later sends a Bye or re-Invite, back
to the caller, the OCSBC will then use the HMR modified values it stored, which may or may
not be correct.

Chapter 1
HMR Fundamentals

1-3

Order of Header Rule Application
The OCSBC applies SIP header rules in the order you have entered them. This guards against
the OCSBC removing data that might be used in the other header rules.

This ordering also provides you with ways to strategically use manipulations. For example, you
might want to use two rules if you want to store the values of a regular expression. The first
rule would store the value of a matched regular expression, and the second could delete the
matched value.

In addition to taking note of the order in which header rules are configured, you must also
configure a given header rule prior to referencing it. For example, you must create Rule1 with
the action store for the Contact header before you can create Rule2 which uses the stored value
from the Contact header.

HMR Store Actions and Boolean Results
Although HMR rulesets are stateless (they do not store values across messages nor remember
what they did in previous messages), they can store strings for use within the same ruleset.
Some header rules and element rules can store values that later header rules or element rules
can use. Once the set of header rules and element rules in a SIP manipulation are performed,
and the SIP manipulation is complete for the message, the stored values are forgotten.

Routing Decisions
Before routing the message, the OCSBC parses the ingress SIP message, ensuring the validity
of the message's structure. After this parsing, the OCSBC applies the inbound header
manipulation. You can use the inbound HMRs to modify the OCSBC's routing behavior if you
want to increase the flexibility of the routing options.

An outbound HMR is the last processing the OCSBC performs on traffic before passing it back
to the interface hardware. Knowing where this processing fits in helps you to know what state
the traffic will be in before being processed by the outbound HMR. Outbound traffic is not
subject to the screening functions performed by the hardware on inbound traffic.

Static and Dynamic HMR
You can manipulate the headers in SIP messages both statically and dynamically. You can edit
response headers or the Request-URI in a request, and change the status code or reason phrase
in SIP responses.

Static HMR
Static HMR lets you set up rules that remove and/or replace designated portions of specified
SIP headers. The OCSBC can:

• Search headers for dynamic content or patterns with the header value. It can search, for
example, for all User parts of a URI that begin with 617 and end with 5555 (e.g.,
617...5555).

• Manipulate any part of a patterns match with any part of a SIP header. For example, 617
123 5555 can become 617 231 5555 or 508 123 0000, or any combination of those.

Chapter 1
HMR Fundamentals

1-4

Dynamic HMR
SIP HMR lets you set up dynamic header manipulation rules that give the OCSBC complete
control over alterations to the header value. Using regular expressions provides a high degree
of flexibility for header manipulation. For example, you can search a specific URI when you do
not know the value of the parameter, but want to use the matched parameter value as the header
value. It also lets you preserve matched sections of a pattern, and change what you want to
change.

Sample HMR
The following shows a complete HMR that manipulates To and From headers, changes the
URI-host element, and hides IP topology. It is applied as outgoing for a realm. The HMR
includes a built-in HMR variable $REMOTE_IP.

sip-manipulation
 name NAT_IP
 description
 split-headers
 join-headers
 header-rule
 name To
 header-name To
 action manipulate
 comparison-type case-sensitive
 msg-type request
 methods
 match-value
 new-value
 element-rule
 name To
 parameter-name
 type uri-host
 action none
 match-val-type ip
 comparison-type case-sensitive
 match-value
 new-value $REMOTE_IP
 header-rule
 name From
 header-name From
 action manipulate
 comparison-type case-sensitive
 msg-type request
 methods
 match-value
 new-value
 element-rule
 name From
 parameter-name
 type uri-host
 action none
 match-val-type ip
 comparison-type case-sensitive
 match-value
 new-value $LOCAL_IP

Chapter 1
HMR Fundamentals

1-5

HMR Components
Each SIP manipulation ruleset contains one or more header rules and element rules for use as
an inbound or outbound HMR ruleset. Generally, you set a header rule that will store what you
want to match, and then you create subsequent rules that operate on this stored value.

Because header rules and element rules are applied sequentially, a given rule performs its
operations on the results of all the rules previously entered. For example, if you want to delete a
portion of a SIP header, you would create Rule 1 that stores the value for the purpose of
matching, and then create Rule 2 that would delete the portion of the header you want removed.
This prevents removing data that might be used in the other header rules.

Relationship Between Rulesets and Its Rules
The relationship between manipulation rules and manipulation rulesets is created once you load
your configuration. The order in which you enter rulesets does not matter. It also means that the
OCSBC cannot dynamically perform validation as you enter rules, so you should use the
verify-config command to confirm your manipulation rules contain neither invalid nor circular
references. Invalid references are those that point to SIP manipulation rules that do not exist,
and circular references are those that create endless loops of manipulation rules being carried
out over and over.

Ruleset Guidelines
Keep the following guidelines in mind when creating rulesets:

• One ruleset per inbound message

• One ruleset per outbound message

• Header or element rules can call another HMR

• An HMR can have multiple header rules

• A header rule can have multiple header rules

Ruleset Components
The following table lists ruleset components.

Component Description

header-rule Header rules form the basis of rulesets. Used to operate on one or
more SIP headers within the SIP message; operations performed at
this level work on the entire header value, excluding the label.
Within a ruleset, each HR is performed in order. Typically one
performs regular expression "store" action HRs before manipulation
ones, although there are exceptions depending on the needs. There is
no hard limit to the number of HR elements included in a ruleset,
although in practical terms one would probably not configure
thousands of them.

Chapter 1
HMR Components

1-6

Component Description

match-value Used to perform a matching comparison to decide whether to store
values, add a header, or delete a header. The type of matching
comparison performed is based on the comparison-type field.
If the match-value is left blank, the action is performed regardless.
Therefore, if the header rule action is "delete", "add", or
"manipulate", and the match value is left blank, the action will be
performed on the header.
If the header rule action is "store" and the match value is left blank,
the OCSBC automatically stores everything, as if the match value
were .+ which means match at least one character, as many times as
possible. Note that any whitespace after the first non-whitespace
character is kept as well.

element-rule Used to operate on specific portions of a SIP header, such as
components of a URI value within the header or the parameters of
the header; if the header value contains a URI, then this class
operates only on the specified portion (i.e., URI user or header
parameter); this class does not operate on headers with multiple
header values.

mime-rule Used to operate on any MIME part within a SIP message (SDP, test,
or some other proprietary body type); used as a general facility to
operate on the entire body as a single continuous string.

mime-header-rule Used to operate on the SIP headers within a body part; the body part
contains headers only when the MIME content is contained in a
multi-part message; when used to operate on a MIME body that is
not multi-part, then this class operates as through it were a header-
rule.

mime-isup rule Special type of mime-rule because it expects the MIME content of
the specified body to be part of a valid binary ISDN User Part
(ISUP) format.

isup-param-rule Used to perform operations on the parameters contained in an ISUP
body.

mime-sdp-rule Special kind of mime-rule that is used to operate on the SDP MIME
content of a SIP message; at this level, the rule operates on the entire
SDP as a single contiguous string.

sdp-session-rule Used to operate on only the session portion of the SDP content
consists of all the characters starting from the beginning until the
first media line.

sdp-media-rule Used to operate on only a specific media portion of the SDP content;
consists of all the characters starting from the beginning of the
specified m-line until the next m-line or the end of the SDP.

sdp-line-rule Used to operate on a single descriptor line within either the session
or media portion of the SDP.

Guidelines for Header and Element Rules
Header rules and element rules share these guidelines:

• References to groupings that do not exist result in an empty string.

• References to element rule names alone result in a Boolean condition of whether the
expression matched or not.

Chapter 1
HMR Components

1-7

• A maximum of ten matches are allowed for a regular expression. Match 0 (grouping 0) is
always the match of the entire matching string; subsequent numbers are the results for
other groups that match.

• Rule names must start with a letter, and then can contain any number of letters, numbers,
or underscores.

• All uppercase rule names are not allowed because this syntax is reserved for variables.

• To avoid being interpreted as a minus operator, dashes are not permitted in rule names.

Guidelines for Header Rules
Header rules guidelines include:

• Header names must be unique in a given HMR.

• Each header rule operates on one header.

• Multiple header rules can operate on the same header.

• Header rules can contain multiple element rules.

Guidelines for Element Rules
Element rule guidelines include:

• Element rule names must be unique within a header rule

• Each element rule operates on one component of the header

• Multiple element rules can operate on the same component

Duplicate Header Names
If more than one header exists for a configured header-name, the OCSBC stores each value in
an array whose index starts at 0. To reference those values, use the syntax $<header-
name>[<index>].

Add a trailing [<index>] value after the header-name parameter to represent the specific
instance of the header on which to operate. Additional stored header values are indexed in the
order in which they appear within the SIP message, and there is no limit to the index. The
OCSBC takes no action if the header does not exist.

In addition to numerical values, possible index values are:

• ~ The OCSBC references the first matching header.

• * The OCSBC references all headers.

• ^ The OCSBC references the last stored header in the header rule.

Note that the header instance functionality has no impact on HMR’s add action, and you cannot
use this feature to insert headers into a specific location. Headers are added to the end of the
list, except that Via headers are added to the top.

SIP Header Pre-Processing HMR
By default, the OCSBC performs in-bound SIP manipulations after it carries out header
validation. Adding the inmanip-before-validate option in the global SIP configuration allows

Chapter 1
HMR Components

1-8

the OCSBC to perform HMR on received requests prior to header validation. Because there are
occasional issues with other SIP implementations—causing invalid headers to be used in
messages they send to the OCSBC—it can be beneficial to use HMR to remove or repair these
faulty headers before the request bearing them is rejected.

When configured to do so, the OCSBC performs pre-validation header manipulation
immediately after it executes the top via check. Inbound SIP manipulations are performed in
order of increasing precedence: SIP interface, realm, and session agent.

The fact that the top via check happens right before the OCSBC carries out pre-validation
header manipulations means that you cannot use this capability to repairs the first via header if
it is indeed invalid. If pre-validation header manipulation were to take place at another time
during processing, it would not be possible to use it for SIP session agents. The system learns
of matching session agents after top via checking completes.

For logistical reasons, this capability does not extend to SIP responses. Inbound manipulation
for responses cannot be performed any sooner that it does by default, a time already preceding
any header validation.

To enable SIP header pre-processing:

1. Access the sip-config configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-config
ORACLE(sip-config)#

2. options—Set the inmanip-before-validate parameter.

ORACLE(sip-config)# options +inmanip-before-validate

This value allows the OCSBC to perform pre-validation header manipulation in order of
increasing precedence: SIP interface, realm, and session agent.

3. Save and activate the configuration.

Back Reference Syntax
You can use back reference syntax in the new-value parameter for header and element rules.
Denoted by the use of $1, $2, $3, etc. (where the number refers to the regular expression's
stored value), you can reference the header and header rule's stored value without having to use
the header rule's name. It instead refers to the stored value of this rule.

For example, when these settings are in place:

• header-rule=changeHeader

• action=manipulate

• match-value=(.+)([^;])

you can set the new-value as sip:$2 instead of sip:$changeHeader.$2.

You can use the back reference syntax when:

• The header-rule action parameter is set to manipulate or find-replace-all

• The element-rule action parameter is set to replace or find-replace-all

Chapter 1
HMR Components

1-9

Using back reference syntax simplifies your development work because you do not need to
create a store rule and then manipulate rule; the manipulate rule itself performs the store action
if the comparison-type parameter is set to pattern-rule.

Dialog Matching
The out-of-dialog setting is useful for To/From NATing rules.

Service providers can use HMR to support legacy RFC 2543 devices and some non-compliant
RFC 3261 devices. The header-rule msg-type setting called out-of-dialog has been added,
which applies the rule (and any of its sub-rules) only to out-of-dialog requests. If the rule was
applied as an outbound sip-manipulation to the first request, then it will apply the rule against
all subsequent requests going in the same direction. The primary purpose of this new
configuration setting is to support changing the To/From URI's in mid-dialog requests without
breaking dialog matching for some over-strict SIP devices.

About Dialog-Matching Header Manipulations
The goal of this feature is to maintain proper dialog-matching through manipulation of dialog-
specific information using HMR. Two fundamental challenges arise when looking at the issue
of correctly parameters manipulating dialog-matching:

• Inbound HMR

• Outbound HMR

The new setting out-of-dialog (for the msg-type parameter) addresses these challenges by
offering an intelligent more of dialog matching of messages for inbound and outbound HMR
requests. This is a msg-type parameter, meaning that it becomes matching criteria for
operations performed against a message. If you also specify methods (such as REGISTER) as
matching criteria, then the rule is further limited to the designated method.

For both inbound and outbound manipulations, using the out-of-dialog setting means the
message must be a request without a to-tag in order to perform the manipulation.

Inbound HMR Challenge
Because inbound manipulations take place before the message reaches the core of Oracle
Communications Session Border Controller (OCSBC) SIP processing, the SIP proxy takes the
manipulated header as directly received from the client. This can cause problems for requests
leaving the OCSBC for the UAC because the dialog does not match the initial request sent.

The unmodified header must be cached because for any subsequent request (For example, a
BYE originating from the terminator. See the following diagram.) the OCSBC might need to
restore the original value, enabling the UAC to identify the message correctly as being part of
the same dialog. For out-of-dialog requests (when the To, From, or Call-ID headers are
modified) the original header is stored in the dialog when the msg-type out-of-dialog is used.

The OCSBC performs the restoration of original headers outside of SIP manipulations. There
are no manipulation rules to configure for restore the header to their original context. The
OCSBC recognizes that the headers are modified, and restores them to their original state prior
to sending the message out. Restoration takes place prior to outbound manipulations so that any
outbound manipulation can those headers after they are restored.

Chapter 1
HMR Components

1-10

Outbound HMR Challenge
When you use the out-of-dialog setting for an outbound manipulation, the Oracle
Communications Session Border Controller executes this specific SIP header rule only if the
same SIP header rule was executed against the initial dialog-creating request.

For example, if the INVITE’s To header was not manipulated, it would not be correct to
manipulate the To header in the BYE request. To do so would render the UAC unable to
properly match the dialog. And this also means that the outbound manipulation should be
carried out against a To, From, or Call-ID header in the BYE request if it was manipulated in
the INVITE.

Chapter 1
HMR Components

1-11

Dialog-matching Header Manipulation Configuration
You using the out-of-dialog setting in the msg-type parameter, part of the SIP header rules
configuration.

To enable dialog-matching header manipulation:

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. msg-type—Set this parameter to out-of-dialog to enable dialog-matching header
manipulation.

3. Type done to save your work.

Built-In HMRs
In the course of HMR use, certain SIP manipulations have become commonly used. Oracle is
creating a library of built-in SIP manipulations that you use exactly like the HMRs you create
yourself. You apply the built-in HMRs as arguments to the in-manipulationid and out-
manipulationid parameters for session agents, realms, and SIP interfaces. You can also apply
them in HMR sets as a nested manipulation.

The following built-in replaces the host part of the From and To headers:

ACME_NAT_TO_FROM_IP

When performed outbound, this rule changes:

• The To-URI hostname to the logical $TARGET_IP and port to $TARGET_PORT

• The From-URI to the logical $REPLY_IP and port to be $REPLY_PORT

Built-in rules start with the prefix ACME_, so Oracle recommends you name your own rules in
a different manner to avoid conflict.

You can view a list of built-in manipulations using the following ACLI command:

show built-in-sip-manipulation

Built-In Variables
There are built-in variables for common components of the SIP message available for use in
your HMRs to improve performance and reduce development complexity. These are reserved
variables that operate exactly like the variables you define. The recommended syntax is:

$<variable>.$0

For example:

$PAI_USER.$0

If you omit the $0, the resulting value is TRUE or FALSE, which can be useful to determine if
there was no username in the PAI header or that no PAI header exists.

Chapter 1
HMR Components

1-12

The values for the variables are obtained when they are resolved. For example if the To-URI
has been changed by a previous rule, the current rule gets the changed value (as would apply to
$ORIGINAL). If the header or value does not exist in the SIP message, either an empty string
is returned or, for Boolean uses, the value FALSE is returned.

The following table lists and describes those built-in variables.

Variable Description

$LOCAL_IP IP address of the SIP interface on which the message was received
for inbound manipulation or sent on for outbound manipulation.

$LOCAL_PORT Port number of the SIP interface on which the message was
received for inbound manipulation or sent on for outbound
manipulation.

$REMOTE_IP IP address the message was received from for inbound
manipulation or sent to for outbound manipulation.

$REMOTE_PORT Port number the message was received from for inbound
manipulation or sent to for outbound manipulation.

$REMOTE_VIA_HOST Host from the top Via header of the message.
$TRUNK_GROUP Legacy reserved variable that can resolve to <TRUE/FALSE>.
$TRUNK_GROUP_CONTEXT Legacy reserved variable that can resolve to <TRUE/FALSE>.
$MANIP_STRING Legacy reserved variable that can resolve to <TRUE/FALSE>.
$MANIP_PATTERN Use a regex pattern from the most specific matching session agent,

realm, or SIP interface. Only this variable can be used in the
match-value field. You cannot combine it with additional
characters. This variable can be used in any rule you use a pattern-
rule match value, including store action rules.
You can also reference the stored values from those referenced in
later rules. For example, you can create a whitelist based on trunk
From header uri-user parameter. The each session agent passes a
different string to perform the whitelist operation on.
Because the MANIP_PATTERN is dynamically decided at run-
time every time the HMR executes for each message, it is possible
no manipulation pattern will be found. In this case, it will use the
default \,+. This default works most like .+.
It's also possible a sub-group could be referenced that was not in
the pattern chosen, in this case the variable resolves to empty/
FALSE.

$CRLF Search for carriage returns in new lines. Because you can search
for these value and replace them, you also must be able to add
them back in when necessary. Resolves to \r\n and is commonly
used in MIME manipulation. If you are creating a new body, there
might be a need for many CRLFs in the new-value parameter.

$ORIGINAL Original value of element
$REPLY_IP IP address of
$REPLY_PORT Port number of
$TARGET_IP IP address of
$TARGET_PORT Port number of
$M_STRING Manipulation string
$M_PATTERN Manipulation pattern
$TO_USER URI username from To header without any user parameters.
$TO_PHONE URI user of the To header as a phone number without any visual

separators and with the leading + if it is present.
$TO_HOST URI host portion from the To header.

Chapter 1
HMR Components

1-13

Variable Description

$TO_PORT URI port number from the To header. This is set to 5060 if it is not
actually in the message.

$FROM_USER URI username from the From header without any user parameters
$FROM_PHONE URI user of the From header as a phone number without any visual

separators and with the leading + if it is present
$FROM_HOST URI host portion from the From header.
$FROM_PORT URI port number from the From header. This is set to 5060 if it is

not actually in the message.
$CONTACT_USER URI username from the first instance of the Contact header

without any user parameters.
$CONTACT_PHONE URI user of the first instance of the Contact header as a phone

number without any visual separators and with the leading + if it is
present.

$CONTACT_HOST URI host portion from the first instance of the Contact header
$CONTACT_PORT URI port number from the first instance of the Contact header.

This is set to 5060 if it is not actually in the message.
$RURI_USER URI username from the Request-URI header without any user

parameters.
$RURI_PHONE URI user of the Request-URI header as a phone number without

any visual separators and with the leading + if it is present.
$RURI_HOST URI host portion from the Request-URI header.
$RURI_PORT URI port number from the Request-URI header. This is set to 5060

if it is not actually in the message.
$PAI_USER URI username from the first instance of the P-Asserted-Identity

header without any user parameters.
$PAI_PHONE URI user of the first instance of the P-Asserted-Identity header as a

phone number without any visual separators and with the leading +
if it is present.

$PAI_HOST URI host portion from the first instance of the P-Asserted-Identity
header.

$PAI_PORT URI port number from the first instance of the P-Asserted-Identity
header. This is set to 5060 if it is not actually in the message.

$PPI_USER URI username from the first instance of the P-Preferred-Identity
header without any user parameters.

$PPI_PHONE URI user of the first instance of the P-Preferred-Identity header as
a phone number without any visual separators and with the leading
+ if it is present.

$PPI_HOST URI host portion from the first instance of the P-Preferred-Identity
header.

$PPI_PORT URI port number from the first instance of the P-Preferred-Identity
header. This is set to 5060 if it is not actually in the message.

$PCPID_USER URI username from the P-Called-Party-ID header without any user
parameters.

$PCPID_PHONE URI user of theP-Called-Party-ID header as a phone number
without any visual separators and with the leading + if it is present.

$PCPID_HOST URI host portion from theP-Called-Party-ID header.
$PCPID_PORT URI port number from the P-Called-Party-ID header. This is set to

5060 if it is not actually in the message.
$CALL_ID Resolves to the Call-ID of the current SIP message; is a commonly

stored rule.

Chapter 1
HMR Components

1-14

Variable Description

$TIMESTAMP_UTC Gets the current time from the OCSBC's system clock in RFC
3339 format:
YYYY-MM-DDTHH:MM:SS.PPPZ
The PPP is partial seconds and the time is based on UTC.
For example:
2012-01-01 T22:00:09.123Z

$T_GROUP Trunk group
$T_CONTEXT Trunk group context

Built-In SIP Manipulation Configuration
When you want to enable this feature for a realm, session agent, or SIP interface, you configure
the in-manipulationid or out-manipulationid parameters with the rule.

The sample here shows this feature being applied to a session agent, but the realm and SIP
interface configurations also have the same parameter you use to set up the feature.

To use built-in SIP manipulations:

1. Access the session-agent configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# session-agent
ORACLE(session-agent)

2. out-manipulationid—Enter name of the built-in rule you want to use.

Note:

All built-in rules start with ACME_.

3. Save your work.

Unique Regex Patterns Per Peer/Trunk
The build-in variable $MANIP_PATTERN reduces the complexity of writing HMRs for
multiple peers and trunks.

Similar to the reserved variable $MANIP_STRING, the variable $MANIP_PATTERN uses a
regex pattern from the most-specific matching session-agent, realm or sip-interface. Within
these configuration objects, the "manipulation-pattern" attribute allows setting a unique regex
pattern. Only one regex pattern can be specified in the configuration attribute, and only the
variable $MANIP_PATTERN can appear in the match-value field (i.e. the
"$MANIP_PATTERN" cannot be combined with additional characters in the match-value).

This feature enables service providers to configure one or a few common global HMRs while
having a unique regex pattern for each SIP trunk/peer. It reduces the number of sip-
manipulation sets that need to be provisioned, reducing provisioning work and system memory
usage.

The $MANIP_PATTERN can be used in any rule you can use a pattern-rule match-value in,
including store action rules. You can also reference the stored values from those referenced in

Chapter 1
HMR Components

1-15

later rules (i.e., using the $RuleName for the Boolean TRUE/FALSE, or $RuleName.$0 for the
whole matching string). For example, a whitelist can be created based on trunk From header
uri-user parameter. Then each session-agent passes a different string to perform the whitelist
operation on. A configuration example is shown below:

sip-manipulation
 name sipTrunkWhiteList
 ...
 header-rule
 name whiteListOnFrom
 header-name From
 action manipulate
 comparison-type case-sensitive
 msg-type out-of-dialog
 methods INVITE
 match-value
 new-value
 element-rule
 name checkFromUriUser
 parameter-name
 type uri-user
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value $MANIP_PATTERN
 new-value
 element-rule
 name rejectIfNoMatch
 parameter-name
 type uri-user
 action reject
 match-val-type any
 comparison-type boolean
 match-value !$whiteListOnFrom.$checkFromUriUser
 new-value 403:Forbidden

session-agent
 hostname 172.16.50.101
 ip-address 172.16.50.101
 port 5060
 realm-id peer1-core
 ...
 manipulation-string
 manipulation-pattern ^78132841([0-4][0-9])$

session-agent
 hostname 172.16.50.102
 ip-address 172.16.50.102
 port 5060
 realm-id peer2-core
 ...
 manipulation-string
 manipulation-pattern ^78132841([5-9][0-9])$

Rejecting SIP Requests
SIP requests can be rejected using HMRs.

To simplify rejecting SIP requests with HMRs, the OCSBC supports the reject action in any
rule type. This rejects SIP requests if the conditions within the rule (match-value, msg-type,

Chapter 1
HMR Components

1-16

etc.) are true. When a SIP message is rejected, the OCSBC increments the counter called
"Rejected Messages," which can be displayed in the ACLI with the show sip transport
command. SIP responses cannot be rejected but the counter is still incremented.

A new MIB object in the ap-smgmt.mib for SNMP GET is available to obtain the counter
value. The OCSBC can send an SNMP trap when the counter exceeds a configured threshold in
a configured time window. The threshold is set by new “reject-message-threshold” and “reject-
message-window” config attributes in session-router config.

When rejecting a matching SIP Request, a response-code and reason-phrase can be specified.
In the rule configured with the "reject" action, enter the syntax status-code[:reason-phrase]
in the new-value field. For example 401:Denied in the new-value of a reject action rule will
cause the SD to reject the SIP Request with a 401 response and "Denied" as the reason-phrase.

sip-manipulation
 name rejectINV
 description
 header-rule
 name from508
 header-name from
 action manipulate
 comparison-type case-sensitive
 msg-type any
 methods INVITE
 match-value
 new-value
 element-rule
 name fromUser
 parameter-name
 type uri-phone-number-only
 action reject
 match-val-type any
 comparison-type case-sensitive
 match-value 5085551212
 new-value 401:Denied

Note:

When a SIP request matches a rule with a reject action, the rejection is immediate and
later rules aren't executed.

Note:

The reject action cannot respond with a 200 OK. The response code must be 4xx, 5xx,
or 6xx.

HMR Information in Logs
You can apply an action type called log to all manipulation rules. When you use this action type
and a condition matching the manipulation rule arises, the OCSBC logs information about the
current message to a separate log file. This log files will be located on the same core in which
the SIP manipulation occurred. On the core where sipt runs, a logfile called matched.log will
appear when this action type is executed.

Chapter 1
HMR Components

1-17

The matched.log file contains a timestamp, received and sent OCSBC network interface, sent
or received IP address:port information, and the peer IP address:port information. It also
specifies the rule that triggered the log action in this syntax: rule-type[rule name]. The
request URI, Contact header, To Header, and From header are also present.

--
Apr 17 14:17:54.526 On [0:0]192.168.1.84:5060 sent to 192.168.1.60:5060
element-rule[checkRURIPort]
INVITE sip:service@192.168.1.84:5060 SIP/2.0
From: sipp <sip:+2125551212@192.168.1.60:5060>;tag=3035SIPpTag001
To: sut <sip:service@192.168.1.84>
Contact: sip:sipp@192.168.1.60:5060

Using Regular Expressions
Regular expressions (regex) are patterns that describe character combinations in text. Regex
provides a concise and flexible means to match strings of text, such as particular characters,
words, or patterns of characters. SIP messages are treated as sets of substrings on which regex
patterns rules are executed. With regex you can create strings to match other string values and
use groupings in order to create stored values on which to operate.

Note:

An understanding of regex is required for successful HMRs. Refer to Mastering
Regular Expressions from O'Reily Media for more information.

Oracle's OCSBC supports the standardized regular expression format called Portable Operating
System Interface (POSIX) Extended Regular Expressions. The OCSBC regex engine is a
traditional regex-directed (NFA) type.

Example of HMR with Regex
The following HMR removes a P-Associated-URI from an response to a REGISTER request.
The regex expression ^<tel: lets you specify the removal only if it is a tel-URI.

sip-manipulation
 name rem_telPAU
 description
 header-rule
 name modPAU
 header-name P-Associated-URI
 action delete
 comparison-type pattern-rule
 match-value ^<tel:
 msg-type reply
 new-value
 methods REGISTER

Regex Characters
Regular expressions are used to search for patterns of text using one or more of the following
devices:

Chapter 1
Using Regular Expressions

1-18

Character Type Example Description

Literal text foobar With the exception of a small number of characters that
have a special meaning in a regex, text matches itself.

Special wildcard
characters

\d Known as metacharacters or metasequences, these match
or exclude specific types of text, such as any number.

Character classes [1-5] When a suitable metacharacter or metasequence doesn't
exist, you can create your own definition to match or
exclude specified characters.

Quantifiers + or ? These specify how many times you want the preceding
expression to match or whether it's optional.

Capturing groups and
backreferences

(foobar) or \1 These specify parts of the regex that you want
remembered, either to find a similar match later on, or to
preserve the value in a find and replace operation.

Boundaries and anchors ^ or $ These specify where the match should be made, for
example at the beginning of a line or word.

Alternation | This specifies alternatives.

By default, regular expressions are case-sensitive, so A and a are treated as different characters.
As long as what you're looking for fits a regular pattern, a regex can be created to find it.

Literal (Ordinary)
Many of the characters you can type on your keyboard are literal, ordinary characters; they
present their actual value in the pattern. For example, the regex pattern sip, is a pattern of all
literal characters, that will be matched from left to right, at each position in the input string,
until a match is found. Given an input string of <sip:me@here.com>, the regex pattern sip will
successfully match the sip, starting at the position of the s and ending at the position of the p.
But the same regex will also match sip in <sips:me@here.com> and tel:
12345;isip=192.168.0.3 because an s followed by an i followed by a p exists in both of those
as well.

Special (Metacharacters)
Some characters have special meaning. They instruct the regex function (or engine which
interprets the expressions) to treat the characters in designated ways. The following table
outlines these special characters or metacharacters.

Character Name Description

. dot Matches any one character, including a space; it will match one
character, but there must be one character to match.
Matches a literal dot when bracketed or placed next to a
backslash: [.] or \..

* star/asterisk Matches one or more preceding character (0, 1, or any number),
bracketed carrier class, or group in parentheses. Used for
quantification.
Typically used with a dot in the format .* to indicate that a
match for any character, 0 or more times.
Matches a iteral asterisk when bracketed: [*].

+ plus Matches one or more of the preceding character, bracketed
carrier class, or group in parentheses. Used for quantification.
Matches a literal plus sign when bracketed: [+].

Chapter 1
Using Regular Expressions

1-19

Character Name Description

| bar/vertical bar/pipe Matches anything to the left or to the right; the bar separates the
alternatives. Both sides are not always tried; if the left does not
match, only then is the right attempted. Used for alternation.

{ left brace Begins an interval range, ended with } (right brace) to match;
identifies how many times the previous single character or group
in parentheses must repeat.
Interval ranges are entered as minimum and maximums
{minimum,maximum} where the character or group must appear
a minimum number of times up to the maximum. You can also
use interval ranges to set magnitude, or exactly the number of
times a character must appear; you can set this, for example, as
the minimum value without the maximum {minimum,}.

? question mark Signifies that the preceding character or group in parentheses is
optional; the character or group can appear not at all or one time.

^ caret Acts as an anchor to represent the beginning of a string.
$ dollar sign Acts as an anchor to represent the end of a string.
[left bracket Acts as the start of a bracketed character class, ended with the]

(right bracket). A character class is a list of character options;
one and only one of the characters in the bracketed class must
appear for a match. A - (hyphen) in between two characters
enclosed by brackets designates a range; for example [a-z] is
the character range of the lower case twenty-six letters of the
alphabet.
Note that the] (right bracket) ends a bracketed character class
unless it sits directly next to the [(left bracket) or the ^ (caret);
in those two cases, it is the literal character.

(left parenthesis Creates a grouping when used with the) (right parenthesis).
Groupings have two functions:
Separate pattern strings so that a whole string can have special
characters within it as if it were a single character.
They allow the designated pattern to be stored and referenced
later (so that other operations can be performed on it).

Regex Tips
• Limit use of wildcards asterisk * and plus sign +.

• A character class enclosed by brackets [] is not a choice of one or more characters but
rather a choice of one and only one character in the set.

• The range 0-1000 is not the same as the range 0000-1000.

• Spaces are legal characters and will be interpreted like any other character.

Matching New Lines
In the regular expression library, the dot . character does not match new lines or carriage
returns. Conversely, the not-dot does match new lines and carriage returns. This provides a
safety mechanism preventing egregious backtracking of the entire SIP message body when
there are no matches. The OCSBC reduces backtracking to a single line within the body.

Chapter 1
Using Regular Expressions

1-20

Escaped Characters
SIP HMR's support for escaped characters allows for searches for values you would be unable
to enter yourself. Because they are necessary to MIME manipulation, support for escaped
characters includes:

Syntax Description

\s Whitespace
\S Non-whitespace
\d Digits
\D Non-digits
\R Any \r, \n, or \r\n
\w Word
\W Non-word
\A Beginning of buffer
\Z End of buffer
\f Form feed
\n New line
\r Carriage return
\t Tab
\v Vertical tab

Building Expressions with Parentheses
You can use parentheses () when you use HMR to support order of operations and to simplify
header manipulation rules that might otherwise prove complex. This means that expressions
such as (sip + urp) - (u + rp) can now be evaluated to sip. Previously, the same expression
would have evaluated to sipurprp. In addition, you previously would have been required to
create several different manipulation rules to perform the same expression.

Boolean Operators
The following Boolean operators are supported:

• &, meaning AND.

• |, meaning OR.

• !, meaning NOT.

You can only use Boolean operators when the comparison type is pattern-rule and you are
evaluating stored matches. The OCSBC evaluates these Boolean expressions from left to right,
and does not support any grouping mechanisms that might change the order of evaluation. For
example, the OCSBC evaluates the expression A & B | C (where A=true, B=false, and C=true)
as follows: A & B = false; false | true = true.

Equality Operators
You can use equality operators in conjunction with string operators. You can also use equality
operators with:

• Boolean operators, as in this example: ($rule1.$0 == $rule2.$1) & $rule3.

Chapter 1
Using Regular Expressions

1-21

• The !, &, and | operators.

• Variables and constant strings.

You can group them in parentheses for precedence.

Equality operators always evaluate to either true or false.

Equality Operator
Symbol

Short Description Detailed Information

== String case sensitive
equality operator

Performs a character-by-character, case-sensitive string
comparison on both the left side and the right side of the
operator.

~= String case insensitive
equality operator

Performs a character-by-character, case-insensitive string
comparison on both the left side and the right side of the
operator.

!= String case sensitive
inequality operator

Performs a character-by-character, case-sensitive string
comparison on both the left side and the right side of the
operator, returning true if the left side is not equal to the
right side.

<= Less than or equal to
operator

Performs a string-to-integer conversion. If the string-to-
integer comparison fails, the value is treated as 0. After
the conversion, the operator will compare the two values
and return true only if the left side is less than or equal to
the right side of the operator.

>= Greater than or equal
to operator

Performs a string-to-integer conversion. If the string-to-
integer comparison fails, the value is treated as 0. After
the conversion, the operator will compare the two values
and return true only if the left side is greater than or
equal to the right side of the operator.

< Less than operator Performs a string-to-integer conversion. If the string-to-
integer conversion fails, the value is treated as 0. After
the conversion, the operator will compare the two values
and return true only if the left side is less than the right
side of the operator.

> Greater than operator Performs a string-to-integer conversion. If the string-to-
integer conversion fails, the value is treated as 0. After
the conversion, the operator will compare the two values
and return true only if the left side is greater than the
right side of the operator.

Normalizing EBNF ExpressionString Grammar
The expression parser grammar implies that any expression string can have boolean and string
manipulation operators in the same expression. While technically this is possible, the
expression parser prevents it.

Because all boolean expressions evaluate to the string value TRUE or FALSE and since all
manipulation are string manipulations, the result of a boolean expression returns the value
TRUE or FALSE. The ExpressionString class interprets this as an actual TRUE or FALSE
value. For this reason, boolean operators are not mixed with string manipulation operators
(which is true with most programming languages).

The expression string grammar also indicates that it is possible to nest self-references and rule
names indefinitely. For HMR, this is not allowed. A self-reference can only exist by itself, and
a terminal index can only come at the end of a rule reference.

Chapter 1
Using Regular Expressions

1-22

Storing Regex Patterns
Any HMR with a pattern-rule comparison type can store a regex pattern's matches for later use.
In many cases you don't have to create store rules before manipulation rules. Data is only stored
for items that later rules actually reference.

For example, if a later rule never references a header rule's stored value, but only its element
rules, then the header rule itself doesn't store anything. Alternatively, you could delete a header
or field, but still use its stored value later without having to create a separate store rule for it. In
general, fewer rules improve OCSBC performance.

Performance Considerations
The regex engine consumes as much of the input string as it can before it backtracks or gives
up trying, which is called greediness. Greediness can introduce errors in regex patterns and has
an effect on performance. There is usually a trade-off of efficiency versus exactness - you
should choose how exacting you need to be. Keep the following in mind in order to lessen the
effect:

• Poorly constructed regex patterns can effect the performance of regex matching for long
strings

• Search on the smallest input string possible, perform a regex search in element rules for the
specific header component type you want to match for

• Test the regex pattern against long strings which do not match to evaluate the effect on
performance.

• Test a regex with a wildcard in between characters against an input string with those
characters repeated in different spots to evaluate performance

• If the input string format is fairly fixed and well-known, be explicit in the regex rather than
using wildcards

• If the regex pattern is trying to capture everything before a specific character, use the
negation of the character for the wildcard character. Note that this is true most times,
except when there is an anchor at the end.

• Use beginning-line and ending-line anchors whenever possible if you want to only match if
the pattern begins or ends as such.

• A dot . means any character, including whitespace. A wild-carded dot, such as .* or .+, will
capture/match everything until the end of line, and then it will backtrack if there are more
characters after the wildcard that need to be matched. If you don't need to capture the
things before the characters after the wildcard, don't use the wildcard.

Additional References
To learn more about regex, you can visit the following Web site, which has information and
tutorials that can help to get you started:http://www.regular-expressions.info/.

HMR Configuration
To configure SIP header and parameter manipulation, first create a SIP header manipulation
ruleset. Then create the header manipulation rules and optional header element rules for that

Chapter 1
HMR Configuration

1-23

http://www.regular-expressions.info/

ruleset to contain. Then configure a session agent or a SIP interface to use the SIP header and
parameter manipulation ruleset in the inbound and outbound directions.

Testing Pattern Rules
Use test-pattern-rule to test the effect of your regex patterns.

1. Access the test-pattern-rule configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# test-pattern-rule
ORACLE(test-pattern-rule)#

2. expression—Enter the regular expression to test.

3. string—Enter the string against which you want to compare the regular expression.

4. show—View the test pattern, the string, and the matches.

ORACLE(test-pattern-rule)# expression ".*(;tgid=(.+)).*"
expression made 0 matches against string
ORACLE(test-pattern-rule)# string "sip:+17024260002@KCMGGWC;user=phone SIP/
2.0;tgid=Trunk1"
expression made 3 matches against string
ORACLE(test-pattern-rule)# show
Pattern Rule:
 Expression : .*(;tgid=(.+)).*
 String : sip:+17024260002@KCMGGWC;user=phone SIP/2.0;tgid=Trunk1
 Matched : TRUE
 Matches:
$0 sip:+17024260002@KCMGGWC;user=phone SIP/2.0;tgid=Trunk1
$1 ;tgid=Trunk1
$2 Trunk1

ORACLE(test-pattern-rule)#

Creating Header Manipulation Rulesets
First create a header rule and then create element rules within that header rule.

1. Access the sip-manipulation configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)#

2. name—Enter the name you want to use for this ruleset.

3. Access the header-rules configuration element.

ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

4. name—Enter a unique name for this rule.

5. header-name—Enter the name of the header to which this rule applies.

The name entered here is a case-insensitive string that must match a header name. Create a
rule using the long form of the header name and a rule using the compact form of the
header name.

Chapter 1
HMR Configuration

1-24

Note:

The Request-URI header is identified as request-uri.

6. action—Enter the action you want applied to the header specified in the name parameter.

The default value is none. Valid options are:

• add—Add a new header, if that header does not already exist.

• delete—Delete the header, if it exists.

• manipulate—Elements of this header will be manipulated according to the element
rules configured.

• store—Store the header.

• none—No action to be taken.

7. match-value—Enter the value to be matched (only an exact match is supported) with a
header value.

The action specified is only performed if the header value matches.

8. msg-type—Enter the message type to which this header rule applies.

The default value is any. Valid options are:

• any—Both Requests and Reply messages

• request—Request messages only

• reply—Reply messages only

9. methods—Enter the SIP method names to which you want to apply this header rule. If
entering multiple method names, separate them with commas. For example:

INVITE,ACK,BYE

Leaving the method field empty applies the header-rule to all methods.

10. Access the element-rules configuration element.

The element-rules configuration element defines the element rules, which are executed on
those elements of the header specified by the header rule.

ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

a. name—Enter the name of the element to which this rule applies.

Note:

The name parameter usage depends on the element type you enter in step 6.
For uri-param, uri-user-param, and header-param it is the parameter name to
be added, replaced, or deleted. For all other types, it serves to identify the
element rule and any name can be used.

b. type—Enter the type of element on which to perform the action.

The default value is none. Valid options are:

• header-value—Enter value of the header.

Chapter 1
HMR Configuration

1-25

• header-param-name—Header parameter name.

• header-param—Parameter portion of the header.

• uri-display—Display of the SIP URI.

• uri-user—User portion of the SIP URI.

• uri-host—Host portion of the SIP URI.

• uri-port—Port number portion of the SIP URI.

• uri-param-name—Name of the SIP URI param.

• uri-param—Parameter included in the SIP URI.

• uri-header-name—SIP URI header name

• uri-header—Header included in a request constructed from the URI.

• uri-user-param—User parameter of the SIP URI.

c. action—Enter the action you want applied to the element specified in the name
parameter, if there is a match value.

The default value is none. Valid options are:

• none—No action is taken.

• add—Add a new element, if it does not already exist.

• store—Store the elements.

• replace—Replace the elements

• delete-element—Delete the specified element if it exists.

• delete-header—Delete the specified header, if it exists.

d. match-val-type—Enter the type of value that needs to be matched to the match-field
entry for the action to be performed.

The default value is ANY. Valid options are:

• IP—Element value in the SIP message must be a valid IP address to be compared
to the match-value field entry. If the match-value field is empty, any valid IP
address is considered a match. If the element value is not a valid IP address, it is
not considered a match.

• FQDN—Element value in the SIP message must be a valid FQDN to be
compared to the match-value field entry. If the match-value field is empty, any
valid FQDN is considered a match. If the element value is not a valid FQDN, it is
not considered a match.

• ANY—Element value in the SIP message is compared with the match-value field
entry. If the match-value field is empty, all values are considered a match.

e. match-value-—Enter the value you want to match against the element value for an
action to be performed.

f. new-value-—Enter the value for a new element or to replace a value for an existing
element. You can enter an expression that includes a combination of absolute values,
pre-defined parameters, and operators

Chapter 1
HMR Configuration

1-26

Note:

Absolute values, with which you can use double quotes for clarity. You must
escape all double quotes and back slashes that are part of an absolute value,
and enclose the absolute value in double quotes.

Examples of entries for the new-value field.

sip:"+$TRUNK_GROUP+".$TRUNK_GROUP_CONTEXT
$ORIGINAL+acme
$ORIGINAL+”my name is john”
$ORIGINAL+”my name is \”john\””
$ORIGINAL-^781+^617

g. Type done and exit to save the rule and return to the header-rules configuration
element.

11. Type done and exit to save the rule and return to the sip-manipulation configuration
element.

Configuring SIP Header Manipulation Rules
To configure dynamic SIP header manipulation rules:

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. name—Enter the unique identifier for this SIP HMR.

This configuration element has no default value.

3. header-name—Enter the name of the header on which to operate.

This configuration element has no default value.
Set this parameter to @status-line to prevent undesired matches with header having the
name status-code.

4. msg-type—Specify the type of message to which this SIP HMR will be applied.

The default value is any. Valid values are:

• any

• request

• reply

5. methods—Enter the method type on which to operate.

When you do not set the method, the OCSBC applies the rule across all SIP methods. Valid
values are:

• INVITE

• ACK

• CANCEL

Chapter 1
HMR Configuration

1-27

6. comparison-type—Enter the way in which the OCSBC will process match rules against
SIP headers.

The default is refer-case-sensitive. The valid values are:

• boolean

• refer-case-sensitive

• pattern-rule

• case-sensitive

• case-insensitive

7. action—Enter the action to perform on the SIP header.

The default value is none. The valid values are:

• add

• delete

• manipulate

• store

• none

Note:

Remember that you should enter rules with the action type store before you enter
rules with other types of actions.

If the action type is set to store, the OCSBC treats the match value as a regular expression.
As a default, the regular expression used for the match value is .+ (which indicates a match
value of at least one character), unless you set a more specific regular expression match
value.

8. match-value—Enter the value to match against the header value.

The OCSBC matches these against the entire SIP header value. This is where you can enter
values to match using regular expressions. Your entries can contain Boolean operators.
When you configure HMR (using SIP manipulation rules, elements rules, etc.), you can
use escape characters to support escaping Boolean and string manipulation operators.

9. new-value—When the action parameter is set to add or to manipulate, enter the new value
that you want to substitute for the entire header value.

This is where you can set stored regular expression values for the OCSBC to use when it
adds or manipulates SIP headers.

Configuring SIP Header Manipulation Element Rules
Element rules are a subset of the SIP header manipulation rules and are applied at the element
type level rather than at the entire header value.

To configure dynamic SIP header manipulation rules:

1. Access the element-rules configuration element.

Chapter 1
HMR Configuration

1-28

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

2. name—Enter the unique identifier for this element rule.

There is no default value.

3. parameter-name—Enter the SIP header parameter or element on which to operate.

There is no default value.

4. type—Specify the type of parameter to which this element rule will be applied.

The default value is none. The valid values are:

• header-value

• header-param-name

• header-param

• uri-display

• uri-user

• uri-user-param

• uri-host

• uri-port

• uri-param-name

• uri-param

• uri-header-name

• uri-header

To configure HMR so that only the status-line is affected, set comparison-type to one of
the following:

• status-code—Designates the status code of the response line; accepts any string, but
during the manipulation process only recognizes the range from 1 to 699.

• reason-phrase—Designates the reason of the response line; accepts any string.

5. match-val-type—Enter the value type that you want to match when this rule is applied.

The default value is ANY. Valid values are:

• IP

• FQDN

• ANY

6. comparison-type—Enter the way that you want SIP headers to be compared from one of
the available.

This choice dictates how the OCSBC processes the match rules against the SIP header
parameter/element. The default is refer-case-sensitive.

• boolean

• refer-case-sensitive

Chapter 1
HMR Configuration

1-29

• refer-case-insensitive

• pattern-rule

7. action—Enter the action that you want this rule to perform on the SIP header parameter/
element.

The default is none. The valid rules are:

• add

• replace

• delete-element

• delete-header

• store

• none

Remember that you should enter rules with the action type store before you enter rules
with other types of actions.

When you set the action type to store, the OCSBC always treats the match value you enter
as a regular expression. As a default, the regular expression is uses for the match value is .
+ (which indicates a match value of at least one character), unless you set a more specific
regular expression match value.

8. match-value—Enter the value to match against the header value in SIP packets.

The OCSBC matches these against the value of the parameter/element. This is where you
can enter values to match using regular expression values, or stored pattern matches. Your
entries can contain Boolean operators.

9. new-value—When the action parameter is set to add or to manipulate, enter the new value
that you want to substitute for the entire header value.

This is where you can set stored regular expression values for the OCSBC to use when it
adds or manipulates parameters/elements.

Status-Line Manipulation and Value Matching
The Oracle Communications Session Border Controller’s HMR feature has been enhanced to
support the ability to change the status code or reason phrase in SIP responses. This addition—
the ability to edit status-lines in responses—builds on HMR’s existing ability to edit response
headers or the Request-URI in a request.

This section shows you how to configure SIP HMR when you want the Oracle
Communications Session Border Controller to drop a 183 Session Progress response when it
does not have SDP, though flexibility is built into this feature so that you can use it to achieve
other ends. In addition, you can now set the SIP manipulation’s match-value parameter with
Boolean parameters (AND or OR).

Set the Header Name
Set the header-name to @status-line to modify the status code or reason phrase in SIP
responses.

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router

Chapter 1
HMR Configuration

1-30

ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. header-name—Enter @status-line.

ORACLE(sip-header-rules)# header-name @status-line
ORACLE(sip-header-rules)#

Set the Element Type
In the element-rules configuration element, set the type parameter to either status-code or
reason-phrase.

• status-code—Designates the status code of the response line. Accepts any string, but
during the manipulation process only recognizes the range from 1 to 699.

• reason-phrase—Designates the reason of the response line. Accepts any string.

Note:

Like other rule types, the Oracle Communications Session Border Controller matches
against the value for these using case-sensitive, case-insensitive, or pattern-rule
matching (set in the comparison-type parameter for the element rule).

1. Access the element-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

2. type—Enter either status-code or reason-phrase.

ORACLE(sip-element-rules)# type status-code

The OCSBC uses the value of comparison-type to determine matching.

Set the Match Value
Set the match value in either the header-rules configuration element or the element-rules
configuration element

Set the Header Rules Match Value
Set a match value in the header-rules configuration element.

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. match-value—Enter the value to match against the header value.

Chapter 1
HMR Configuration

1-31

The Oracle Communications Session Border Controller matches these against the entire
SIP header value. This is where you can enter values to match using regular expression
values; your entries can contain Boolean operators.

Set the Element Rules Match Value
Set a match value in the element-rules configuration element.

1. Access the element-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

2. match-value—Enter the value to match against the header value.

The Oracle Communications Session Border Controller matches these against the entire
SIP header value. This is where you can enter values to match using regular expression
values; your entries can contain Boolean operators.

Set the Response Code Block
Enable SIP response blocking to keep the Oracle Communications Session Border Controller
from sending the designated response.

Note:

This example sets the dropResponse option to 699, where 699 is an arbitrary code used
to later match the HMR.

1. Access the sip-interface configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-interface
ORACLE(sip-interface)#

2. Select the sip-interface object to edit.

ORACLE(sip-interface)# select
<RealmID>:
1: realm01 172.172.30.31:5060

selection: 1
ORACLE(sip-interface)#

3. options—Enter options +dropResponse=<response code> where <response code> is the
code(s) or range(s) to block. Separate multiple entries with a colon.

ORACLE(sip-interface)# options +dropResponse=699

Chapter 1
HMR Configuration

1-32

WARNING:

Typing the option without the plus sign will overwrite previously configured
options. To append the options to this configuration’s options list, prepend the
option with a plus sign.

4. Save and activate your configuration.

Configuring SIP HMR Sets
To enable HMR sets, set the action configuration element to sip-manip.

1. Access the element-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

2. action—Enter sip-manip value to enable use this rule for a SIP HMR set. This value then
invoke the rule identified in the new-value parameter.

3. new-value—Enter the name of the manipulation rule you want invoked for the set.

4. Type done to save your configuration.

5. Run verify-config to detect invalid or circular references.

6. Save and activate your configuration.

Configuring a Session Agent
Configure a session agent to use a SIP header manipulation ruleset.

1. Access the session-agent configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# session-agent
ORACLE(session-agent)

2. in-manipulationid—Enter the name of the SIP header manipulation ruleset you want to
apply to inbound SIP packets.

ORACLE(session-agent)# in-manipulationid route-stripper

3. out-manipulationid—Enter the name of the SIP header manipulation ruleset you want to
apply to outbound SIP packets.

ORACLE(session-agent)# out-manipulationid route-stripper

4. Type done to save your configuration.

Configuring a SIP Interface
Configure a interface to use a SIP header manipulation ruleset.

1. Access the sip-interface configuration element.

Chapter 1
HMR Configuration

1-33

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-interface
ORACLE(sip-interface)#

2. in-manipulationid—Enter the name of the SIP header manipulation ruleset to apply to
SIP packets in the ingress direction.

ORACLE(sip-interface)# in-manipulationid topology-hiding

3. out-manipulationid—Enter the name of the SIP header manipulation ruleset to apply to
SIP packets in the egress direction.

ORACLE(sip-interface)# out-manipulationid topology-hiding

4. Type done to save your configuration.

Example 1 Stripping All Route Headers
This example explains how to strip all route headers from a SIP packet. First, you create a
header manipulation ruleset, in the example it is called route-stripper. Then you configure the
list of header manipulation rules you need to strip route headers. In this case, you only need one
rule named Route (to match the Route header name) with the action set to Delete.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# name route-stripper
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# name Route
ORACLE(sip-header-rules)# action Delete
ORACLE(sip-header-rules)# done
header-rule
 name Route
 action delete
 match-value
 msg-type any
ORACLE(sip-header-rules)# ex
ORACLE(sip-manipulation)# done
sip-manipulation
 name route-stripper
 header-rule
 name Route
 action delete
 match-value
 msg-type any

Example 2 Stripping an Existing Parameter and Adding a New
One

This example explains how to strip the user parameter from the Contact header URI and add
the acme parameter with value as LOCAL IP, only for requests. First you create a header
manipulation ruleset, in the example it is called param-stripper1. You then configure a list of
header rules you need. In this case, you only need one rule named Contact (to match the
Contact header name), with action set to manipulate (indicating the elements of this header
would be manipulated). Next, you configure a list of element rules for the Contact header rule.

Chapter 1
HMR Configuration

1-34

In this case you configure two element rules; one to strip the uri parameter user (the rule name
user matches the param name user) and the other to add the uri parameter acme (the rule name
acme matches the param name acme).

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# name param-stripper1
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# name Contact
ORACLE(sip-header-rules)# action manipulate
ORACLE(sip-header-rules)# msg-type request
ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)# name user
ORACLE(sip-element-rules)# type uri-param
ORACLE(sip-element-rules)# action delete-element
ORACLE(sip-element-rules)# done
element-rule
 name user
 type uri-param
 action delete-element
 match-val-type any
 match-value
 new-value
ORACLE(sip-element-rules)# name acme
ORACLE(sip-element-rules)# action add
ORACLE(sip-element-rules)# type uri-param
ORACLE(sip-element-rules)# new-value "$LOCAL_IP"
ORACLE(sip-element-rules)# done
element-rule
 name acme
 type uri-param
 action add
 match-val-type any
 match-value
 new-value "$LOCAL_IP"
ORACLE(sip-element-rules)# ex
ORACLE(sip-header-rules)# done
header-rule
 name Contact
 action manipulate
 match-value
 msg-type request
 element-rule
 name user
 type uri-param
 action delete-element
 match-val-type any
 match-value
 new-value
 element-rule
 name acme
 type uri-param
 action add
 match-val-type any
 match-value
 new-value "$LOCAL_IP"
ORACLE(sip-header-rules)# ex
ORACLE(sip-manipulation)# done
sip-manipulation
 name param-stripper1

Chapter 1
HMR Configuration

1-35

 header-rule
 name Contact
 action manipulate
 match-value
 msg-type request
 element-rule
 name user
 type uri-param
 action delete-element
 match-val-type any
 match-value
 new-value
element-rule
 name acme
 type uri-param
 action add
 match-val-type any
 match-value
 new-value "$LOCAL_IP"

For example, if the IP address of the SIP interface ($LOCAL_IP) is 10.1.2.3 and the Oracle
Communications Session Border Controller receives the following Contact header:

Contact: <sip:1234@10.4.5.6;user=phone>

The header rule is applied to strip the user parameter from the Contact header URI and add the
acme parameter with the value 10.1.2.3:

Contact: <sip:1234@10.4.5.6;acme=10.1.2.3>

Unique HMR Regex Patterns and Other Changes
In addition to the HMR support it offers, the Oracle Communications Session Border
Controller can now be provisioned with unique regex patterns for each logical remote entity.
This supplement to pre-existing HMR functionality saves you provisioning time and saves
Oracle Communications Session Border Controller resources in instances when it was
previously necessary to define a unique SIP manipulation per PBX for a small number of
customer-specific rules.

The Default Expression
The SBC supports the non-standard regex \,+ called the default expression. The default
expression matches one or more characters, including NUL characters. The default expression
cannot be used with other modifiers, like the star.

Note:

In previous releases, the PCRE (Perl Compatible Regular Expression) engine used \, to
match any character, including a NUL character. The PCRE engine was updated in 8.1
and no longer supports \,.

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-36

Manipulation Pattern Per Remote Entity
On the Oracle Communications Session Border Controller, you can configure logical remote
entities (session agents, realms, and SIP interfaces) with a manipulation pattern string that the
system uses as a regular expression. Then the SIP manipulation references this regular
expression using the reserved word $MANIP_PATTERN. At runtime, the Oracle
Communications Session Border Controller looks for the logical entity configured with a
manipulation pattern string in this order of preference: session agent, realm, and finally SIP
interface.

On finding the logical entity configured with the manipulation string, the Oracle
Communications Session Border Controller dynamically determines the expression. When
there is an invalid reference to a manipulation pattern, the pattern-rule expression that results
will turn out to be the default expression (which is \,+).

When the $MANIP_PATTERN is used in a manipulation rule’s new-value parameter, it
resolves to an empty string, equivalent of no value. Even though this process ends with no
value, it still consumes system resources. And so Oraclerecommends you do not use
$MANIP_PATTERN as a new-value value.

In the following example, the SIP manipulation references the regular expression from a realm
configuration:

realm-config
 identifier net200
 description
 addr-prefix 0.0.0.0
 network-interfaces public:0
 ...
 manipulation-pattern Lorem(.+)
sip-manipulation
 name manip
 description
 header-rules
 name headerRule
 header-name Subject
 action manipulate
 match-value $MANIP_PATTERN
 msg-type request
 comparison-type pattern-rule
 new-value Math
 methods INVITE

Reject Action
When you use this action type and a condition matching the manipulation rule arises, the
Oracle Communications Session Border Controller rejects the request (though does not drop
responses) and increments a counter.

• If the msg-type parameter is set to any and the message is a response, the Oracle
Communications Session Border Controller increments a counter to show the intention to
reject the message—but the message will continue to be processed.

• If the msg-type parameter is set to any and the message is a request, the Oracle
Communications Session Border Controller performs the rejection and increments the
counter.

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-37

The new-value parameter is designed to supply the status code and reason phrase
corresponding to the reject. You can use the following syntax to supply this information: status-
code[:reason-phrase]. You do not have to supply the status code and reason phrase information;
by default, the system uses 400:Bad Request.

If you do supply this information, then the status code must be a positive integer between 300
and 699. The Oracle Communications Session Border Controller then provides the reason
phrase corresponding to the status code. And if there is no reason phrase, the system uses the
one for the applicable reason class.

You can also customize a reason phrase. To do so, you enter the status code followed by a colon
(:), being sure to enclose the entire entry in quotation marks () if your reason code includes
spaces.

When the Oracle Communications Session Border Controller performs the reject action, the
current SIP manipulation stops processing and does not act on any of the rules following the
reject rule. This course of action is true for nested SIP manipulations that might have been
constructed using the sip-manip action type.

Reject Action Configuration
To support the reject action, set two parameters in the session-router-config configuration
element.

1. Access the session-router-config configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# session-router
ORACLE(session-router-config)#

2. reject-message-threshold—Enter the minimum number of message rejections allowed in
the reject-message-window time on the OCSBC before generating an SNMP trap.

The default is 0, meaning this feature is disabled and no trap will be sent.

3. reject-message-window—Enter the time in seconds that defines the window for maximum
message rejections allowed before generating an SNMP trap.

4. Type done to save your configuration.

About Counters
The Oracle Communications Session Border Controller tracks messages that have been flagged
for rejection using the reject action type. In the show sipd display, refer to the Rejected
Messages category; there is no distinction between requests and responses.

ORACLE# show sipd
13:59:07-102
SIP Status -- Period -- -------- Lifetime --------
 Active High Total Total PerMax High
Sessions 0 0 0 0 0 0
Subscriptions 0 0 0 0 0 0
Dialogs 0 0 0 0 0 0
CallID Map 0 0 0 0 0 0
Rejections - - 0 0 0
ReINVITEs - - 0 0 0
Media Sessions 0 0 0 0 0 0
Media Pending 0 0 0 0 0 0
Client Trans 0 0 0 0 0 0

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-38

Server Trans 0 0 0 0 0 0
Resp Contexts 0 0 0 0 0 0
Saved Contexts 0 0 0 0 0 0
Sockets 0 0 0 0 0 0
Req Dropped - - 0 0 0
DNS Trans 0 0 0 0 0 0
DNS Sockets 0 0 0 0 0 0
DNS Results 0 0 0 0 0 0
Rejected Msgs 0 0 0 0 0 0
Session Rate = 0.0
Load Rate = 0.0
Remaining Connections = 20000 (max 20000)

SNMP Support
The Oracle Communications Session Border Controller provides SNMP support for the
Rejected Messages data, so you can access this information externally. The new MIB objects
are:

apSysRejectedMessages OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Number of messages rejected by the SD due to matching criteria."
 ::= { apSysMgmtMIBGeneralObjects 18 }
apSysMgmtRejectedMesagesThresholdExeededTrap NOTIFICATION-TYPE
 OBJECTS { apSysRejectedMessages }
 STATUS current
 DESCRIPTION
 " The trap will be generated when the number of rejected messages exceed
the configured threshold within the configured window."
 ::= { apSystemManagementMonitors 57 }
apSysMgmtRejectedMessagesGroup OBJECT-GROUP
 OBJECTS {
 apSysRejectedMessages
 }
 STATUS current
 DESCRIPTION
 "Objects to track the number of messages rejected by the SD."
 ::= { apSystemManagementGroups 18 }
apSysMgmtRejectedMessagesNotificationsGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
 apSysMgmtRejectedMesagesThresholdExeededTrap
 }
 STATUS current
 DESCRIPTION
 "Traps used for notification of rejected messages"
 ::= { apSystemManagementNotificationsGroups 26 }
apSmgmtRejectedMessagesCap
 AGENT-CAPABILITIES
 PRODUCT-RELEASE "Acme Packet SD"
 STATUS current
 DESCRIPTION "Acme Packet Agent Capability for enterprise
 system management MIB."
 SUPPORTS APSYSMGMT-MIB
 INCLUDES {
 apSysMgmtRejectedMessagesGroup,
 apSysMgmtRejectedMessagesNotificationsGroup

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-39

 }
 ::= { apSmgmtMibCapabilities 37 }

Log Action
When you use this action type and a condition matching the manipulation rule arises, the
Oracle Communications Session Border Controller logs information about the current message
to a separate log file. This log files will be located on the same core in which the SIP
manipulation occurred. On the core where sipt runs, a logfile called matched.log will appear
when this action type is executed.

The matched.log file contains a timestamp, received and sent Oracle Communications Session
Border Controller network interface, sent or received IP address:port information, and the peer
IP address:port information. It also specifies the rule that triggered the log action in this syntax:
rule-type[rule:name]. The request URI, Contact header, To Header, and From header are also
present.

--
Apr 17 14:17:54.526 On [0:0]192.168.1.84:5060 sent to 192.168.1.60:5060
element-rule[checkRURIPort]
INVITE sip:service@192.168.1.84:5060 SIP/2.0
From: sipp <sip:+2125551212@192.168.1.60:5060>;tag=3035SIPpTag001
To: sut <sip:service@192.168.1.84>
Contact: sip:sipp@192.168.1.60:5060

Changes to Storing Pattern Rule Values
Release S-C6.2.0 introduces changes to the framework for storing regular expression results
within manipulation rules, altering the way the store action works. These changes are
beneficial to performance.

In previous releases, when the store action is used, the Oracle Communications Session Border
Controller stores all values matching the regular expression defined in the match-value
parameter for all headers. At runtime, the system evaluates all stored values to find the correct
index.

Now, you no longer need to specify the store action. The simple fact of referencing another
rule tells the system it must store a value. When SIP manipulation is used, the system first
checks to see if any values require storing. The add action is an exception to this process;
storing happens after a header is added.

When referring to a rule, that rule still needs to have a regular expression defined in the match-
vale and the comparison type set to pattern-rule; else the default expression will be used.

Removal of Restrictions
The following restrictions related to HMR have been removed in Release S-C6.2.0:

• The action find-replace-all now executes all element rules. Previously, no child rules were
executed.

• The action sip-manip now executes existing all element rules. Previously, no child rules
were executed.

• The action store now executes existing all element rules. Previously, only child rules with
the store action were executed.

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-40

• The action add now executes existing all element rules. Previously, only child rules with
the add action were executed.

Name Restrictions for Manipulation Rules
Historically, you have been allowed to configure any value for the name parameter within a
manipulation rule. This method of naming caused confusion when referencing rules, so now
manipulation rules name must follow a specific syntax. They must match the expression
^[[alpha:]][[:alnum:]_]+$ and contain at least one lower case letter.

In other words, the name must:

• Start with a letter, and then it can contain any number of letters, numbers, or underscores

• Contain at least one lower case letter

All pre-existing configurations will continue to function normally. If you want to change a
manipulation rule, however, you are required to change its name if it does not follow the new
format.

The ACLI verify-config command warns you if the system has loaded a configuration
containing illegal naming syntax.

Please note that the software allows you to make changes to HMRs, including configuring new
functionality to existing rules, as long as you do not change the rule name. This results in an
important consideration surrounding HMRs with hyphens in previously configured rule names.

• You can reference stored values in new value names. (Recall that stored values may be rule
names.)

• You can perform subtraction in new value names.

If you use a rule names with hyphens within the REGEX of new value names, the system
cannot determine whether the hyphen is part of the rule name or is intended to invoke
subtraction within the REGEX. For this reason, you need to use great care with legacy HMR
naming that includes hyphens.

As a general rule, create new rule names that follow the new rule naming guidelines if you
intend to use new functionality in those rules.

New Value Restrictions
To simplify configuration and remove possible ambiguity, the use of boolean and equality
operators (==, <=, <, etc.) for new-value parameter values has been banned. Since there was no
specific functionality tied to their use, their ceasing to be use will have no impact to normal SIP
manipulation operations.

MIME Support
You can manipulate MIME types in SIP message bodies. You can manipulate the body of SIP
messages or a specific content type and you can change the MIME attachment of a specific
type within the body by using regular expressions. You search for a particular string and the
replacement of all matches for that type using a find-replace-all action.

Chapter 1
MIME Support

1-41

Note:

The find-replace-all action can consume more system resources than other HMR types
of action. Use this powerful action type only when another action cannot perform the
type of manipulation you require.

Manipulating MIME Attachments
Set the action type to find-replace-all to modify MIME attachments.

To manipulate a particular portion of the MIME attachment, for example when removing a
certain attribute within the Content-Type of application/sdp, the OCSBC needs to search the
content multiple times because:

• SDP can have more than one media line

• The SIP message body can contain more than one application/sdp.

When the action type is find-replace-all, the OCSBC treats the match-value as a regular
expression and binds the comparison-type to pattern-rule, even if comparison-type is set to
some other value. This type of action is both a comparison and action: for each regular
expression match within the supplied string, the OCSBC substitutes the new value for that
match.

Use subgroups to replace portions of the regular expression rather than the entire matched
expression. The subgroup replacement syntax is formed by adding the string [[:n:]] to the end
of the regular expression—where n is a number between 0 and 9. For example, setting the
following parameters

 action find-replace-all
 match-value sip:(user)@host[[:1:]]
 new-value bob

creates a new rule to replace only the user portion of the URI that searches for the regular
expression and replaces all instances of the user subgroup with the value bob.

Setting the following parameters

 action find-replace-all
 match-value 0
 new-value 1

creates a new rule to recursively replace all the 0 digits in a telephone number with 1. With this
rule the user portion of a URI—or for any other string—with a value 1-781-308-4400 would be
replaced as 1-781-318-4411.

If you leave the new-value parameter blank for find-replace-all, the OCSBC replaces the
matched sub-group with an empty string—an equivalent of deleting the sub-group match. You
can also replace empty sub-groups, which is like inserting a value within the second sub-group
match. For example, user()@host.com[[:1:]] with a configured new-value _bob yields
user_bob@host.com.

Setting find-replace-all disables the following parameter-type values: uri-param-name, uri-
header-name, and header-param-name. These values are unusable because the OCSBC only
uses case-sensitive matches for the match-value to find the parameter name within the URI.
Since it can only be found by exact match, the OCSBC does not support finding and replacing
that parameter.

Chapter 1
MIME Support

1-42

About the MIME Value Type
To modify the MIME attachment, the OCSBC supports a mime value for the type parameter in
the element rules. You can only use the mime type value against a specific header, which in this
case is Content (abbreviated as c).

When you set the element rule type to mime, you must also set a value for the parameter-name.
This step is a requirement because it sets the content-type the OCSBC manipulates in a specific
part of the MIME attachment. You cannot leave this parameter blank; the OCSBC does not let
you save the configuration if you do. When you use the store action on a multi-part MIME
attachment that has different attachment types, the OCSBC stores the final instance of the
content-type because it does not support storing multiple instances of element rule stored
values.

If you do not know the specific content type, which means the OCSBC will find the match
value, you can use the asterisk * as a wildcard with the parameter-name. (You cannot, however,
set partial content types, for example, application/*.) The OCSBC then loops through the
MIME attachment's content types.

MIME manipulation does not support manipulating headers in the individual MIME
attachments. For example, the OCSBC cannot modify the Content-Type given a portion of a
message body like this one:

--boundary-1
Content-Type: application/sdp
v=0
o=use1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=audio 10000 RTP/AVP 8
a=rtpmap:8 PCMA/8000/1
a=sendrecv
a=ptime:20
a=maxptime:200

SIP Message-Body Separator Normalization
The stripPreambleCrlf option normalizes CLRF message-body separators.

The OCSBC supports MIME attachments — up to a maximum payload size of 64KB — and
has the ability to allow more than the required two CRLFs between the SIP message headers
and the multipart body’s first boundary. The first two CRLFs that appear in all SIP messages
signify the end of the SIP header and the separation of the header and body of the message,
respectively. Sometimes additional extraneous CRLFs can appear within the preamble before
any text.

The OCSBC works by forwarding received SIP messages regardless of whether they contain
two or more CRLFs. Although three or more CRLFs are legal, some SIP devices do not accept
more than two.

To ensure all SIP devices accept messages from the OCSBC, strip all CRLFs located at the
beginning of the preamble before the appearance of any text, ensuring that there are no more
than two CRLFs between the end of the last header and the beginning of the body within a SIP
message. Enable this feature by adding the new stripPreambleCrlf option to the global SIP
configuration.

Chapter 1
MIME Support

1-43

To enable the stripping of CRLFs in the preamble:

1. Access the sip-config configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-config
ORACLE(sip-config)#

2. options—Set the options parameter by typing options, a Space, the option name
stripPreambleCrlf with a plus sign.

ORACLE(sip-config)# options +stripPreambleCrlf

In order to append the new options to the global SIP configuration’s options list, you must
prepend the new option with a plus sign. If you type the option without the plus sign, you
will overwrite any previously configured options.

3. Save and activate your configuration.

Configuring MIME Support
To enable MIME support, set the action configuration element to find-replace-all at both the
header-rules level and element-rules level. Set the type configuration element to mime at the
element-rules level.

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. action—Enter find-replace-all.

ORACLE(sip-header-rules)# action find-replace-all

3. Navigate to the element-rules configuration element.

ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

4. action—Enter find-replace-all.

ORACLE(sip-element-rules)# action find-replace-all

5. type—Enter mime.

ORACLE(sip-element-rules)# type mime

6. Save and activate your configuration.

HMR for SIP-ISUP
You can apply HMRs on ISDN user party (ISUP) binary bodies. Using the same logic and
mechanisms applied to SIP header elements, HMR for SIP-ISUP manipulates ISUP parameter
fields and ISUP message parts. You create MIME rules that manipulate targeted body parts of a
SIP message.

Chapter 1
MIME Support

1-44

MIME Rules Overview
MIME rules operate much the same way that SIP header rules do. You can set parameters in the
MIME rules that the OCSBC uses to match against specific SIP methods and message types.
The system compares the search criteria against the body or body parts using the type of
comparison you choose. You can pick the kind of manipulation that suits your needs; the
OCSBC then takes action with matching and new values to change the SIP message.

Note:

Using the delete action on a multi-part MIME string reduces a number of bodies down
to one and the SIP message remains a multi-part MIME message with only one body
part (and thereby avoids the header conflicting with the message itself).

Identifying a MIME Rule
You identify the MIME rule by using a content type that refers to the specific body part on
which to operate. For example, given a SIP Content-Type header with the value multipart/
mixed;boundary=unique-boundary-1, you would enter a content type value of
application/sdp to specifically manipulate the SDP portion of the SIP message. The OCSBC
knows automatically if it is operating on SIP messages with single or multiple body parts, and
the content type applies to both kinds. When making its comparison, the OCSBC matches the
content type of the body without regard to case (case insensitive), ignoring any header
parameters.

Both for making comparisons against the body part and for new/replacement values, the
OCSBC treats the match and new values you set for a MIME rule as ASCII strings. A MIME
rule operating on a binary body part yields an improper conversion of a new value with respect
to the binary body part.

About MIME Rules
MIME rules (set up in the ACLI mime-rules configuration) operate much the same way that
SIP header rules do. You can set parameters in the MIME rules that the Oracle
Communications Session Border Controller uses to match against specific SIP methods and
message types. The system compares the search criteria against the body or body parts using
the type of comparison you choose. Offering a variety of selection, you can pick kind of
manipulation that suits your needs; the Oracle Communications Session Border Controller then
takes action with matching and new values to change the SIP message.

Note:

when you use the delete action on a multi-part MIME string that reduces a number of
bodies down to one, the SIP message remains a multi-part MIME message with only
one body part (and thereby avoids the header conflicting with the message itself).

You identify the MIMe rule by configuring a content type that refers to the specific body part
on which to operate. For example, given a SIP Content-Type header with the value multipart/
mixed;boundary=unique-boundary-1, you would enter a content-type value of application/sdp
to manipulate specifically on the SDP portion of the SIP message. The Oracle Communications

Chapter 1
MIME Support

1-45

Session Border Controller knows automatically if it is operating on SIP messages with single or
multiple body parts, and the content-type setting applies to both kinds. And when making its
comparison, the Oracle Communications Session Border Controller matches the content-type
of the body with regard to case (case insensitive), ignoring any header parameters.

Both for making comparisons against the body part and for new/replacement values, the Oracle
Communications Session Border Controller treats the match and new values you set for a
MIME rule as ASCII strings. Therefor, a mime rule operating on a binary body part will yield
an improper conversion of a new value with respect to the binary body part.

Within MIME rules, you configure MIME headers, which operate on the specific headers in the
match body part of the SIP message. The Oracle Communications Session Border Controller
uses the MIME header name to run a string comparison to match the specific header in the
message’s body part.

Using these rules, you can also manipulate the preamble—or the SIP message text that follows
the headers but precedes the body separator. To do so, enter the keyword @preamble for the
content type parameter in the MIME rule. Likewise you can manipulate the epilogue—or the
text that follows the last body part after the last separator—using the keyword @epilogue.

Note that the ACLI limits character entries to 255 characters before the return character must be
entered, but MIME parts can easily exceed this 255-character size. So you might need to enter a
value larger that 255 characters. To do so, you start your entry (in the match-value or new-value
parameters) with a plus sign (+). The plus sign instructs the system to add the string after it to
the pre-existing match or new value. For the new-value parameter, the Oracle Communications
Session Border Controller checks the value immediately for validity. Be sure that when you are
appending values to a new-value that the entire expression is valid at each point where strings
are appended.

MIME Rules Configuration
This section shows you how to configure MIME rules and MIME headers.

To configure MIME rules:

1. In Superuser mode, type configure terminal and press Enter.

ORACLE# configure terminal
ORACLE(configure)#

2. Type session-router and press Enter.

ORACLE(configure)# session-router
ORACLE(session-router)#

3. Type sip-manipulation and press Enter. If you are adding this feature to an existing
configuration, then remember you must select the configuration you want to edit.

ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)#

4. Type mime-rules and press Enter.

ORACLE(sip-manipulation)# mime-rules
ORACLE(sip-mime-rules)#

5. name—Enter a name for this MIME rule. This parameter is required and has no default.

6. content-type—Enter the content type for this MIME rule. This value refers to the specific
body part in the SIP message body that is to be manipulated. For example, given a SIP
Content-Type header with the value multipart/mixed;boundary=unique-boundary-1, you

Chapter 1
MIME Support

1-46

would enter a content-type value of application/sdp to manipulate specifically on the SDP
portion of the SIP message.

To manipulate the SIP preamble or epilogue, enter the keyword @preamble or keyword
@epilogue.

7. action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, and find-replace-all. These are the same actions you can
select when configuring SIP header manipulation. The default is none.

8. comparison-type—Enter the way that you want body part of the SIP message to be
compared. This choice dictates how the Oracle Communications Session Border Controller
processes the match rules against the SIP header. the default is case-sensitive. The valid
values are: case-sensitive, case-insensitive, boolean, refer-case-sensitive, refer-case-
insensitive, and pattern-rule.

9. msg-type—Enter the SIP message type on which you want the MIME rules to be
performed. Valid values are any, request, and reply. The default value is any.

10. methods—Enter the list of SIP methods to which the MIME rules applies. There is no
default for this parameter.

11. match-value—Enter the value to match against the body part in the SIP message. This is
where you can enter values to match using regular expression values. Your entries can
contain Boolean operators.

12. new-value—When the action parameter is set to add or to manipulate, enter the new
value that you want to substitute.

To configure MIME headers for performing HMR operations on specific headers in the
matched body part of the SIP message:

13. Follows Steps 1 through 4 above.

14. Type mime-header-rules and press Enter.

ORACLE(sip-mime-rules)# mime-header-rules
ORACLE(sip-mime-header-rules)#

15. name—Enter a name for this MIME header rule. This parameter is required and has no
default.

16. mime-header—Enter the value to be used for comparison with the specific header in the
body part of the SIP message. There is no default for this parameter.

17. action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, and find-replace-all. The default is none.

18. comparison-type—Enter the way that you want the header in the body part of the SIP
message to be compared. This choice dictates how the Oracle Communications Session
Border Controller processes the match rules against the SIP header. the default is case-
sensitive. The valid values are: case-sensitive, case-insensitive, boolean, refer-case-
sensitive, refer-case-insensitive, and pattern-rule.

19. match-value—Enter the value to match against the header in the body part of the SIP
message. This is where you can enter values to match using regular expression values.
Your entries can contain Boolean operators.

20. new-value—When the action parameter is set to add or to manipulate, enter the new
value that you want to substitute.

21. Save your work.

Chapter 1
MIME Support

1-47

Working with MIME Rules
Within MIME rules, you configure MIME headers that operate on the specific headers in the
match body part of the SIP message. The OCSBC uses the MIME header name to run a string
comparison to match the specific header in the message's body part.

Using these rules, you can also manipulate the preamble or the SIP message text that follows
the headers but precedes the body separator. To do so, enter the keyword @preamble for the
content type parameter in the MIME rule. Likewise you can manipulate the epilogue or the text
that follows the last body part after the last separator using the keyword @epilogue.

The ACLI limits character entries to 255 characters before the return character must be entered.
MIME parts can easily exceed this 255-character size, so you might need to enter a value larger
that 255 characters. To do so, you start your entry with a plus sign +. The plus sign instructs the
system to add the string after it to the pre-existing match or new value. For the new-value
parameter, the OCSBC checks the value immediately for validity. Be sure that when you are
appending values to a new-value that the entire expression is valid at each point where strings
are appended.

MIME ISUP Manipulation
ISUP message can be carried in SIP messages through either a standard body or through a
multipart MIME encoded body. While ANSI and ITU are the two major groups, each contains
many specific variants. To facilitate instances where two sides of a call use different versions,
the OCSBC supports interworking between the following SIP ISUP formats: ANSI, ITU,
ETSI-356 (an ITU variant), and GR-317 (an ANSI variant). To do so, the OCSBC can move,
delete, and add parameters to various sections of the message.

The ISUP message version is determined by either the content type of the SIP message or the
MIME content-type. Messages that contain an unknown ISUP format pass through the OCSBC
untouched. You can perform HMR operations on SIP ISUP binary bodies (MIME ISUP).

Note:

Custom formats are not supported.

Within mime-isup-rule, isup-param-rule, the format field instructs the OCSBC how to
encode and decode the current string. The field options are hexascii, binary-ascii, ascii-string,
bcd, and number-param.

• hex-ascii—the OCSBC will decode the ISUP param string from its binary value in the
SIP message into a string of hexadecimal ASCII (as seen in Wireshark) before applying the
match-value. It will convert the resolved new-value from hex-ascii into binary into the
message. For example, if the received ISUP param was the binary of 0x010a, it will
convert it into the string 010a, and then apply the match-value. If the regex pattern is ^01
then it would match, as would 0a$ and ^010a$. If the new-value is 010b, then it will encode
it into the binary 0x010b. Since this is done after resolving the new-value. The new-value
can reference a previously stored value as long as it is hex-ascii format.

• binary-ascii— the OCSBC will decode the ISUP param string from its binary value in
the SIP message into a string of ones and zeros representing the individual bits. It will
convert the new-value as long as it's ones and zeros within the param. For example, if the
received ISUP param was the binary 0x010a, it will convert it into the string

Chapter 1
MIME Support

1-48

0000000100001010, and then apply the match-value. If the regex pattern is ^.......(.) or
^.{7}(.) then in both cases it will store the 8th bit value in $1. In this manner, the user can
check, get, or set individual bits in parameters. The new-value can be a string, reference a
stored value, or be a concatenation of them as long as it is ones and zeros after being
resolved.

• ascii-string—the OCSBC will decode the ISUP param string from its binary value in the
SIP message into an ASCII string based on the ASCII specification and convert the new-
value back. For example, if the received ISUP param was the binary 0x4849, it will convert
it into the string HI, and then apply the match-value.

• bcd—the OCSBC will decode the ISUP param string from its binary value in the SIP
message into digits using the BCD variant of ISUP. For example, if the received ISUP
param was the binary 0x0123, it will convert it to the string 0123 and then apply the match-
value.

• number-param—the OCSBC will decode the ISUP param string from its binary value in the
SIP message into a string representation of an E.164 phone number. The ISUP param must
be in a number formatted parameter like Calling Party Number or Called Party Number.
The OCSBC treats the ISUP parameter as one of the common number parameter formats:
the OCSBC will automatically decode the correct number of digits based on the odd/even
bit in the parameter, and add a leading + based on the Nature of Address (NoA) field being
E.164 international. Similarly, when the OCSBC converts the new-value back into the
ISUP parameter, it will set the odd/even bit correctly, and set the NoA field based on the
existence of the leading + character. The string applied to match-value thus looks the same
as an element-rule of type phone-number (i.e. +12125551212). Since this format is specific
to ISUP parameters, it can only be used in isup-param-rule.

Adding an ISUP Body to a SIP Message
Unlike the MIME manipulation you can use by setting the SIP header rules accordingly, you
can add MIME parts to SIP messages using the MIME rules configuration.

You can configure a SIP header manipulation to add an ISUP body to a SIP message. and the
Oracle Communications Session Border Controller adds them after any SDP parts if they are
present. You can add an ISUP body to a SIP message in two ways:

• You can create a mime-isup-rule with the action type set to add, and enter the entire body
in string hexadecimal form in the new-value parameter.

• You can leave the new-value parameter empty at the mime-isup-rule level and create an
add rule for an isup-param-rule.
In this case, the Oracle Communications Session Border Controller creates the
corresponding ISUP message based on the isup-msg-type value and supply all of the
parameters with their default values. Since the isup-msg-type takes a list of values as a
valid entry, for this case it only uses the first one. However, the Oracle Communications
Session Border Controller ignores the isup-msg-type value if you set the new-value
parameter. And the isup-param-rule, if configured, overwrite the default value or add a
new parameter based on the defined parameter type.

It is also possible that you might supply a new-value both at the mime-isup-rule level and
at the isup-param-rule level. If you do, the new-value entry from the mime-isup-rule is
parsed into an ISUP object and the isup-param-rule operates on that object.

MIME ISUP Manipulation Configuration
This section shows you how to configure MIME ISUP manipulation.

Chapter 1
MIME Support

1-49

1. In Superuser mode, type configure terminal and press Enter.

ORACLE# configure terminal
ORACLE(configure)#

2. Type session-router and press Enter.

ORACLE(configure)# session-router
ORACLE(session-router)#

3. Type sip-manipulation and press Enter. If you are adding this feature to an existing
configuration, then remember you must select the configuration you want to edit.

ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)#

4. Type mime-isup-rules and press Enter.

ORACLE(sip-manipulation)# mime-isup-rules
ORACLE(sip-mime-isup-rules)#

5. name—Enter a name for this MIME ISUP rule. This parameter is required and has no
default.

6. content-type—Enter the content type for this MIME rule. This value refers to the specific
body part in the SIP message body that is to be manipulated. For example, given a SIP
Content-Type header with the value multipart/mixed;boundary=unique-boundary-1, you
would enter a content-type value of application/sdp to manipulate specifically on the SDP
portion of the SIP message.

To manipulate the SIP preamble or epilogue, enter the keyword @preamble or keyword
@epilogue.

7. action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, and find-replace-all. These are the same actions you can
select when configuring SIP header manipulation. The default is none.

8. comparison-type—Enter the way that you want body part of the SIP message to be
compared. This choice dictates how the Oracle Communications Session Border Controller
processes the match rules against the SIP header. the default is case-sensitive. The valid
values are: case-sensitive, case-insensitive, boolean, refer-case-sensitive, refer-case-
insensitive, and pattern-rule.

9. msg-type—Enter the SIP message type on which you want the MIME rules to be
performed. Valid values are any, request, and reply. The default value is any.

10. methods—Enter the list of SIP methods to which the MIME rules applies. There is no
default for this parameter.

11. match-value—Enter the value to match against the body part in the SIP message. This is
where you can enter values to match using regular expression values. Your entries can
contain Boolean operators.

12. new-value—When the action parameter is set to add or to manipulate, enter the new
value that you want to substitute.

13. isup-spec—Specify how the Oracle Communications Session Border Controller is to parse
the binary body; valid values are the enumerated type. The values for this parameter are
these SIP ISUP formats:

• ANSI-2000 (default)—Corresponding to ANSI T1.113-2000

• ITU-99—Corresponding to ITU Q.763

Chapter 1
MIME Support

1-50

14. isup-msg-type—Identify the specific ISUP message types (such as IAM and ACM) on
which to operate. The Oracle Communications Session Border Controller uses with the
msg-type parameter (which identifies the SIP message) in the matching process. You enter
values in this parameters as a list of numbers rather than as an enumerated value because of
the large number of ISUP message type, and the range is between 0 and 255. There is no
default for this parameter.

15. mime-header—Enter the value to be used for comparison with the specific header in the
body part of the SIP message. There is no default for this parameter.

To configure ISUP parameters rules:

16. Follows Steps 1 through 4 above.

17. Type isup-parameter-rules and press Enter.

ORACLE(sip-mime-isup-rules)# isup-param-rules
ORACLE(sip-isup-param-rules)#

18. name—Enter a name for this ISUP parameter rule. This parameter is required and has no
default.

19. mime-header—Enter the value to be used for comparison with the specific header in the
body part of the SIP message. There is no default for this parameter.

20. action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, and find-replace-all. The default is none.

21. comparison-type—Enter the way that you want the header in the body part of the SIP
message to be compared. This choice dictates how the Oracle Communications Session
Border Controller processes the match rules against the SIP header. the default is case-
sensitive. The valid values are: case-sensitive, case-insensitive, boolean, refer-case-
sensitive, refer-case-insensitive, and pattern-rule.

22. match-value—Enter the value to match against the header in the body part of the SIP
message. This is where you can enter values to match using regular expression values.
Your entries can contain Boolean operators.

23. new-value—When the action parameter is set to add or to manipulate, enter the new
value that you want to substitute.

24. parameter-type—Using ISUP parameter mapping, enter which of the ISUP parameters on
which your want to perform manipulation. This parameter takes values between 0 and 255,
and you must know the correct ISUP mapping value for your entry. The Oracle
Communications Session Border Controller calculates the offset and location of this
parameter in the body. Note that the value returned from the body does not the type or
length, only the parameter value. For example, a parameter-type value of 4 acts on the
Called Party Number parameter value.

25. parameter-format—Enter how you want to convert specific parameter to a string
representation of that value. Valid values for parameter-format are: number-param, hex-
ascii (default), binary-ascii, ascii-string, and bcd. Both match and new values are
encoded and decoded by the designated parameter-format type. In this regard, the match-
value decodes the parameters and the new-value encodes the ASCII string into the
respective binary format.

26. Save your work.

Configuration Example
This section provides an example of a SIP manipulation configuration that shows MIME rules
and MIME ISUP rules.

Chapter 1
MIME Support

1-51

sip-manipulation
 name manip
 description
 header-rule
 name headerRule1
 header-name Date
 action add
 comparison-type case-sensitive
 msg-type reply
 methods
 match-value
 new-value
 element-rule
 name elemRule1
 parameter-name
 type header-value
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value "August 19, 1967"
mime-rule
 name mimeRule1
 Content-Type application/SDP
 action manipulate
 comparison-type case-sensitive
 msg-type request
 methods
 match-value
 new-value
 mime-header
 name mimeHeaderRule1
 mime-header-name Content-Disposition
 action add
comparison-type case-sensitive
 match-value
 new-value "signal;
handling=required"
 mime-isup-rule
 name mimeRule1
 content-type application/ISUP
 action manipulate
 comparison-type case-sensitive
 msg-type request
 methods INVITE
 match-value
 new-value
 isup-spec {ansi00, itu-92}
 isup-msg-type 0 (0-256 IAM, ACM, etc.)
 mime-header
 name mimeHeaderRule1
 mime-header-name Content-Disposition
 action add
 comparison-type case-sensitive
 match-value
 new-value "signal;
handling=optional"
 isup-param-rule
 name isupRule1
 parameter-type # {0-256 specific type)
 parameter-format {number-parameter, hex,

Chapter 1
MIME Support

1-52

binary, ascii, bcd}
 action add
 comparison-type case-sensitive
 match-value
 new-value "signal;
handling=optional"

Header Manipulation Rules for SDP
The Oracle Communications Session Border Controller supports SIP header and parameter
manipulation rules for four types of SIP message contents:

• headers

• elements within headers

• ASCII-encoded Multipurpose Internet Mail Extensions (MIME) bodies

• binary-encoded MIME ISDN User Part (ISUP) bodies

While Session Description Protocol (SDP) offers and answers can be manipulated in a fashion
similar to ASCII-encoded MIME, such manipulation is primitive in that it lacks the ability to
operate at the SDP session- and media-levels.

In addition, the system supports a variant of Header Manipulation Rules (HMR) operating on
ASCII-encoded SDP bodies, with specific element types for descriptors at both the session-
level and media-level, and the ability to apply similar logic to SDP message parts as is done for
SIP header elements.

The configuration object, mime-sdp-rules, under sip-manipulation specifically addresses the
manipulation of SDP parts in SIP messages. Just as existing header-rules are used to manipulate
specific headers of a SIP message, mime-sdp-rules will be used to manipulate the SDP specific
mime-attachment of a SIP message.

SDP Manipulation
mime-sdp-rules function in a similar fashion as header-rules. They provide

• parameters used to match against specific SIP methods and/or message types

• parameters used to match and manipulate all or specified parts of an SDP offer or answer

• a means of comparing search strings or expressions against the entire SDP

• different action types to allow varying forms of manipulation

Since only a single SDP can exist within a SIP message, users need not specify a content-type
parameter as is necessary for a mime-rule. A mime-sdp-rule operates on the single SDP within
the SIP message. If no SDP exists with the message, one can be added. If the message already
contains a mime attachment, adding SDP results in a multipart message.

All manipulations performed against all or parts of the SDP are treated as UTF-8 ASCII
encoded text. At the parent-level (mime-sdp-rule) the match-value and new-value parameters
execute against the entire SDP as a single string.

An add action only succeeds in the absence of SDP because a message is allowed only a single
SDP offer or answer. A delete operation at the mime-sdp-rule level will remove the SDP
entirely.

Note that on an inbound sip-manipulation, SDP manipulations interact with the Oracle
Communications Session Border Controller codec-policy. SDP manipulations also interact with

Chapter 1
MIME Support

1-53

codec reordering and media setup. It is very possible to make changes to the SDP such that the
call can not be setup due to invalid media parameters, or settings that will affect the ability to
transcode the call. Consequently, user manipulation of the SDP can prove risky, and should be
approached with appropriate caution.

Three configuration-objects, sdp-session-rule, sdp-media-rule, and mime-header-rule, exist
under the mime-sdp-rule. These objects provide finer grained control of manipulating parts of
the SDP.

sdp-session-rule
An sdp-session-rule groups all SDP descriptors, up until the first media line, into a single entity,
thus allowing the user to perform manipulation operations on a session-specific portion of the
SDP.

Like the mime-sdp-rule, all match-value and new-value operations performed at this level are
executed against the entire session group as a complete string. Given the sample SDP below, if
an sdp-session-rule is configured, the match-value and new-values operate only on the
designated portion.

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
 e=mjh@isi.edu (Mark Handley)
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 a=recvonly
 m=audio 49170 RTP/AVP 0
 m=video 51372 RTP/AVP 31
 m=application 32416 udp wb
 a=orient:portrait

Nested under the sdp-session-rule configuration object is an sdp-line-rule object, the object that
identifies individual descriptors within the SDP. The types of descriptors used at the sdp-
session-rule level are v, o, s, i, u, e, p, c, b, t, r, z, k, and a, the descriptors specific to the entire
session description.

This level of granularity affords the user a very simple way to making subtle changes to the
session portion of the SDP. For instance, it is very common to have to change the connection
line at the session level.

The add and delete actions perform no operation at the sdp-session-rule level.

sdp-media-rule
An sdp-media-rule groups all of the descriptors that are associated with a specific media-type
into single entity, thus allowing the user to perform manipulation operations on a media-
specific portion of the SDP. For example, a user can construct an sdp-media-rule to change an
attribute of the audio media type.

Like a mime-sdp-rule, all match-value and new-value operations performed at this level are
executed against the entire media-group as a complete string. Given the sample SDP below, if a
media-level-descriptor is configured to operate against the application group, the match-value
and new-values would operate only on designated portion.

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4

Chapter 1
MIME Support

1-54

 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
 e=mjh@isi.edu (Mark Handley)
 c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
 a=recvonly
 m=audio 49170 RTP/AVP 0
 m=video 51372 RTP/AVP 31
 m=application 32416 udp wb
 a=orient:portrait

A configuration parameter media-type is used to specify the media group on which to operate.
It contains all of the descriptors including the m-line up to the next m-line. This parameter is a
string field and must match the media-type exactly as it appears within the SDP. The special
media-type media can be used to refer to all media types. This is particularly useful when
performing an add operation, when the user wants to add a media section between the first and
second medias, but does not know what media type they are. Otherwise, during an add
operation, the media section would be added before the specified media-type (if no index
parameter was provided).

The types of descriptors used at the sdp-media-rule level are m, i, c, b, k, and a, the descriptors
specific to the media description.

This level of granularity affords the user a very simple way to making subtle changes to the
media portion of the SDP. For instance, it is very common to have to change the name of an
audio format (for example G729 converted to g729b), or to add attributes specific to a certain
media-type.

The index operator is supported for the media-type parameter (for example, media-type
audio[1]). Like header rules, if no index is supplied, this means operate on all media-types that
match the given name. For specifying specific media-types, the non-discrete indices are also
supported (for example, ^ - last). Adding a media-type, without any index supplied indicates
that the media should be added at the beginning. The special media-type media uses the index
as an absolute index to all media sections, while a specific media-type will index relative to that
given media type.

For sdp-media-rules set to an action of add where the media-type is set to media, the actual
media type is obtained from the new-value, or more specifically, the string after m= and before
the first space.

Given the following SDP:

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 m=audio 49170 RTP/AVP 0
 m=audio 48324 RTP/AVP 8
 m=video 51372 RTP/AVP 31

With the sdp-media-rule:

sdp-media-rule
 name smr
 media-type audio[1]
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value "m=audio 1234 RTP/AVP 8 16"

Chapter 1
MIME Support

1-55

This rule operates on the 2nd audio line, changing the port and adding another codec, resulting
in the SDP:

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 m=audio 49170 RTP/AVP 0
 m=audio 1234 RTP/AVP 8 16
 m=video 51372 RTP/AVP 31

The following rule, however:

sdp-media-rule
 name smr
 media-type media[1]
 action add
 comparison-type case-sensitive
 match-value
 new-value "m=video 1234 RTP/AVP 45"

adds a new video media-type at the 2nd position of all media-lines, resulting in the SDP:

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 m=audio 49170 RTP/AVP 0
 m=video 1234 RTP/AVP 45
 m=audio 48324 RTP/AVP 8
 m=video 51372 RTP/AVP 31

sdp-line-rule
Unlike header-rules, sdp descriptors are not added in the order in which they are configured.
Instead they are added to the SDP adhering to the grammar defined by RFC 4566 (as is shown
below).

 Session description
 v= (protocol version)
 o= (originator and session identifier)
 s= (session name)
 i=* (session information)
 u=* (URI of description)
 e=* (email address)
 p=* (phone number)
 c=* (connection information -- not required if included in
 all media)
 b=* (zero or more bandwidth information lines)
 One or more time descriptions ("t=" and "r=" lines; see
 below)
 z=* (time zone adjustments)
 k=* (encryption key)
 a=* (zero or more session attribute lines)
 Zero or more media descriptions (see below)

 Time description
 t= (time the session is active)
 r=* (zero or more repeat times)

 Media description, if present

Chapter 1
MIME Support

1-56

 m= (media name and transport address)
 i=* (media title)
 c=* (connection information -- optional if included at
 session level)
 b=* (zero or more bandwidth information lines)
 k=* (encryption key)
 a=* (zero or more media attribute lines)

* after the equal sign denotes an optional descriptor.

This hierarchy is enforced meaning that if you configure a rule which adds a session name
descriptor followed by a rule which adds a version descriptor, the SDP will be created with the
version descriptor first, followed by the session name.

The only validation that will occur is the prevention of adding duplicate values. In much the
same way that header-rules prevents the user from adding multiple To headers, the descriptor
rule will not allow the user to add multiple descriptors; unless multiple descriptors are allowed,
as is in the case of b, t, r and a.

There exists a parameter type under the sdp-line-rule object that allows the user to specify the
specific line on which to perform the operation. For example: v, o, s, i, u, e, p, c, b, t, r, z, k, a,
and m. Details on these types can be found in RFC 4566.

For those descriptors, of which there may exist zero or more (b, t, r, and a) entries, indexing
grammar may be used to reference the specific instance of that attribute. This indexing
grammar is consistent with that of header-rules for referring to multiple headers of the same
type.

Given the example SDP below:

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
 e=mjh@isi.edu (Mark Handley)
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 r=604800 3600 0 90000
 r=7d 1h 0 25h
 a=recvonly
 m=audio 49170 RTP/AVP 0
 m=video 51372 RTP/AVP 31
 m=application 32416 udp wb
 a=orient:portrait

and the following sdp-line-rule:

 sdp-line-rule
 name removeRepeatInterval
 type r[1]
 action delete

The rule removeRepeatInterval removes the second repeat interval descriptor within the SDP.

The behavior of all SDP rules follow the same behavior of all manipulation rules in that they
are executed in the order in which they are configured and that each rule executes on the
resultant of the previous rule.

Each descriptor follows its own grammar and rules depending on the type specified. The values
of the descriptor are evaluated at runtime since the new-values themselves are evaluated at

Chapter 1
MIME Support

1-57

runtime. At this time no validation of the grammar for each of the types is performed. The user
is responsible for properly formatting each of the descriptors according to their specifications.

For instance, the version (v) descriptor can be removed from the SDP but leaving all
descriptors for that SDP, causing the SDP to become invalid. This is consistent with the way
header-rules operate, in that there is no validation for the specific headers once they have been
manipulated through HMR.

Regular Expression Interpolation
An interpolated regular expression is a regular expression that is compiled and evaluated at
runtime. Today all regular expressions are compiled at configuration time in order to improve
performance. There are cases where a regular expression is determined dynamically from data
within a SIP message. In these circumstances the regular expression is unknown until the time
of execution.

In order to have a regular expression be interpolated at runtime, it must be contained within a
set of {}. An interpolated expression can have any number of regular expressions and strings
appended together. Any characters to the left or right of the curly braces will be appended to the
value within the curly braces. The curly braces are effectively two operators treated as one
(interpolate the value contained within and then concatenate the values to the left and right of
the curly braces). If the comparison-type is set to pattern-rule and the match-value contains a
value that matches the grammar below, then it will be treated as an interpolated expression.

([^\\]|^)\{\$[^0-9]+[^}]*\}

The example below demonstrates using a user defined variable within a regular expression of
another rule at runtime.

element-rule

 name someRule
 type header-value
 action replace
 comparison-type pattern-rule
 match-value ^sip:{$rule1.$0}@(.+)$
 new-value sip:bob@company.com

If the value of $rule1.$0 evaluates to alice then it will successfully match against the string
sip:alice@comcast.net. An interpolated expression can be as simple as “{$rule1.$0}” or as
complex as ^sip:{rule1.$0}@{$rule2[1].$2}$. It is not possible to interpolate a normal regular
expression since the grammar will not allow the user to enter such an expression. Only
variables can be contained with the curly braces.

The resultant of interpolated expressions can be stored in user defined variables. Given the
same example from above, if the rule someRule was referenced by another rule, the value of
sip:alice@comcast.net would be stored within that rule.

Interpolation only makes a single pass at interpolation, but does so every time the Rule
executes. In other words, if the Rule is applied to the Route header, it will interpolate again for
each Route header instance. What this means is that the value within the curly braces will only
be evaluated once. For instance, if the value {$someRule.$1} evaluates to {$foobar.$2} the
Oracle Communications Session Border Controller (OCSBC) will treat $foobar.$2 as a literal
string which it will compile as a regular expression. The OCSBC will not recursively attempt to
evaluate $foobar.$2, even if it was a valid user defined variable.

Interpolated regular expressions will evaluate to TRUE if an only if both the regular expression
itself can be compiled and it successfully matches against the compared string.

Chapter 1
MIME Support

1-58

Regular Expressions as Boolean Expressions
Regular expressions can be used as boolean expressions today if they are the only value being
compared against a string, as is shown in the case below.

mime-rule
 name someMimeRule
 content-type application/text
 action replace
 comparison-type pattern-rule
 match-value ^every good boy .*
 new-value every good girl does fine
However, regular expressions can not be used in conjunction with other boolean
expressions to form more complex boolean expressions, as is shown below.

mime-rule
 name someMimeRule
 content-type application/text
 action replace
 comparison-type boolean
 match-value $someRule & ^every good boy .*
 new-value every good girl does fine

There are many cases where the user has the need to compare some value as a regular
expression in conjunction with another stored value. It is possible to perform this behavior
today, however it requires an extra step in first storing the value with the regular expression,
followed by another Manipulation Rule which compares the two boolean expressions together
(e.g. $someRule & $someMimeRule).

In order to simplify the configuration of some sip-manipulations and to make them more
efficient this functionality is being added.

Unfortunately, it is not possible to just use the example as is shown above. The problem is there
are many characters that are commonly used in regular expressions that would confuse the
HMR expression parser (such as $, and +). Therefore delimiting characters need to be used to
separate the regular expression from the other parts of the expression.

To treat a regular expression as a boolean expression, it needs to be enclosed within the value
$REGEX(<expression>,<compare_string>=$ORIGINAL); where <expression> is the regular
expression to be evaluated. <compare_string> is the string to compare against the regular
expression. This second argument to the function is defaulted to $ORIGINAL which is the
value of the of the specific Manipulation Rule object. It can be overridden to be any other value
the user desires.

The proper configuration for the example above to use regular expressions as boolean
expressions is

mime-rule
 name someMimeRule
 content-type application/text
 action replace
 comparison-type boolean
 match-value $someRule & $REGEX(“^every good boy .*”)
 new-value every good girl does fine

It is also possible to use expressions as arguments to the $REGEX function. These expressions
will in turn be evaluated prior to executing the $REGEX function. A more complex example is
illustrated below.

Chapter 1
MIME Support

1-59

header-rule
 name checkPAU
 header-name request-uri
 action reject
 comparison-type boolean
 match-value (!$REGEX($rule1[0],$FROM_USER))&
 (!$REGEX($rule2[0],$PAI_USER))
 msg-type request
 new-value 403:Forbidden
 methods INVITE,SUBSCRIBE,MESSAGE,PUBLISH,
 OPTIONS, REFER

It should be noted that when using $REGEX() in a boolean expression, the result of that
expression is not stored in the user variable. The comparison-type must be set to pattern-rule in
order to store the result of a regular expression.

The arguments to the $REGEX() function are interpolated by default. This is the case since the
arguments themselves must be evaluated at runtime. The following example is also valid.

mime-rule
 name someMimeRule
 content-type application/text
 action replace
 comparison-type boolean
 match-value $someRule & $REGEX(“^every good
 {$rule1[0].$0} .*”)

Moving Manipulation Rules
Users can move rules within any manipulation-rule container. Any manipulation rule which
contains sub-rules will now offer the ACLI command move <from index> <to index>. For
example, given the order and list of rules below:

1. rule1

2. rule2

3. rule3

4. rule4

Moving rule3 to position 1 can be achieved by executing move 3 1. The resulting order will
then be: rule3, rule1, rule2, rule4. A move operation causes a shift (or insert before) for all
other rules. If a rule from the top or middle moves to the bottom, all rules above the bottom are
shifted up to the position of the rule that was moved. If a rule from the bottom or middle moves
to the top, all rules below are shifted down up to the position of the rule that was moved.
Positions start from 1.

A valid from-index and to-index are required to be supplied as arguments to the move action. If
a user enters a range that is out of bounds for either the from-index or to-index, the ACLI will
inform the user that the command failed to execute and for what reason.

With respect to the issue of creating an invalid sip-manipulation by incorrectly ordering the
manipulation rules, this issue is handled by the Oracle Communications Session Border
Controller validating the rules at configuration time and treating them as invalid prior to
runtime. This may or may not affect the outcome of the sip-manipulation as a configured rule
may not perform any operation if it refers to a rule that has yet to be executed. It is now the
user’s responsibility to reorder the remaining rules in order to make the sip-manipulation valid
once again.

Chapter 1
MIME Support

1-60

It is important to note that rules of a different type at the same level are all part of the same list.
To clarify; header-rules, mime-rules, mime-isup-rules and mime-sdp-rules all share the same
configuration level under sip-manipulation. When selecting a move from-index and to-index
for a header-rule, one must take into consideration the location of all other rules at the same
level, since the move is relative to all rules at that level, and not relative to the particular rule
you have selected (for example, the header-rule).

Since the list of rules at any one level can be lengthy, the move command can be issued one
argument at a time, providing the user with the ability to select indices. For instance, typing
move without any arguments will present the user with the list of all the rules at that level.
After selecting an appropriate index, the user is then prompted with a to-index location based
on the same list provided.

For Example:

ORACLE(sip-mime-sdp-rules)# move
select a rule to move

1: msr sdp-type=any; action=none; match-value=; msg-type=any

2: addFoo header-name=Foo; action=none; match-value=; msg-type=any

3: addBar header-name=Bar; action=none; match-value=; msg-type=any

selection: 2
destination: 1
Rule moved from position 2 to position 1
ACMEPACKET(sip-mime-sdp-rules)#

Rule Nesting and Management
There will be cases where the user wants to take a stored value from the SDP and place it in a
SIP header, and vice-versa. All header-rules, element-rules, mime-rules, mime-isup-rules, isup-
param-rules, mime-header-rules and mime-sdp-rules are inherited from a Manipulation Rule. A
Sip Manipulation is of type Manipulation which contains a list of Manipulation Rules. Each
Manipulation Rule can itself contain a list of Manipulation Rules. Therefore when configuring
manipulation rules, they will be saved in the order which they have been configured. This is
different from the way other configuration objects are configured. Essentially, the user has the
option of configuring which type of object they want and when they are done, it gets added to
the end of the sip-manipulation, such that order is preserved. This will mean that any
Manipulation Rule at the same level can not share the same name. For example, names of
header-rules can’t be the same as any of the mime-sdp-rule ones or mime-isup-rule. This allows
the user to reference stored values from one rule type in another at the same level.

ACLI Configuration Examples
The following eight sections provide sample SDP manipulations.

Remove SDP
sip-manipulation
 name stripSdp
 description remove SDP from SIP message
 mime-sdp-rule
 name sdpStrip
 msg-type request
 methods INVITE
 action delete

Chapter 1
MIME Support

1-61

 comparison-type case-sensitive
 match-value
 new-value

Remove Video from SDP
sip-manipulation
 name stripVideo
 description strip video codecs from SIP
 message
 mime-sdp-rule
 name stripVideo
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
 name removeVideo
 media-type video
 action delete
 comparison-type case-sensitive
match-value
 new-value

Add SDP
sip-manipulation
 name addSdp
 description add an entire SDP if one does
 not exist
 mime-sdp-rule
 name addSdp
 msg-type request
 methods INVITE
 action add
 comparison-type case-sensitive
 match-value
 new-value “v=0\r\no=mhandley
2890844526 2890842807 IN IP4 “+$LOCAL_IP+”\r\ns=SDP Seminar\r\ni=A
Seminar on the session description protocol\r\nu=http:
//www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps\r\ne=mjh@isi.edu
(Mark Handley)\r\nc=IN IP4 “+$LOCAL_IP+”\r\nt=2873397496
2873404696\r\na=recvonly\r\nm=audio 49170 RTP/AVP 0\r\n”

Manipulate Contacts
This rule changes the contact in the SDP to the value contained in the Contact header.

sip-manipulation
 name changeSdpContact
 description changes the contact in the SDP to the
value of the contact header
 header-rule
 name storeContact
 header-name Contact
 action store
 comparison-type pattern-rule
 msg-type request

Chapter 1
MIME Support

1-62

 methods INVITE
 match-value
 new-value
 element-rule
 name storeHost
 parameter-name
 type uri-host
 action store
 match-val-type ip
 comparison-type pattern-rule
 match-value
 new-value
 mime-sdp-rule
 name changeConnection
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-session-rule
 name changeCLine
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-line-rule
 name updateConnection
 type c
 action replace
 comparison-type case-sensitive
 match-value $storeContact.$storeHost
 new-value $storeContact.$storeHost.$0

Remove a Codec
This rule changes the contact in the SDP to the value contained in the Contact header.

sip-manipulation
 name removeCodec
 description remove G711 codec if it exists
 mime-sdp-rule
 name removeCodec
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
 name removeG711
 media-type audio
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-line-rule
 name remove711
 type m
 action replace
 comparison-type pattern-rule

Chapter 1
MIME Support

1-63

 match-value ^(audio [0-9]
 {1,5} RTP.*)([07]
 \b)(.*)$
 new-value $1+$3
 sdp-line-rule
 name stripAttr
 type a
 action delete
 comparison-type pattern-rule
 match-value ^(rtpmap|fmtp):
 [07]\b$
 new-value

Change Codec
sip-manipulation
 name convertCodec
 description changeG711toG729
 mime-sdp-rule
 name changeCodec
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
 name change711to729
 media-type audio
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-line-rule
 name change711
 type m
 action replace
 comparison-type pattern-rule
 match-value ^(audio [0-9]{4,5}
 RTP/AVP.*)(0)(.*)$
new-value $1+” 18”+$3
 sdp-line-rule
 name stripAttr
 type a
 action delete
 comparison-type pattern-rule
 match-value ^rtpmap:0 PCMU/
 .+$
 new-value
 sdp-line-rule
 name addAttr
 type a
 action add
 comparison-type boolean
 match-value $change711to729.
 $stripAttr
 new-value rtpmap:18 G729/8000

Chapter 1
MIME Support

1-64

Remove Last Codec and Change Port
sip-manipulation
 name removeLastCodec
 description remove the last codec
 mime-sdp-rule
 name removeLastCodec
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
 name removeLast
 media-type audio
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-line-rule
 name isLastCodec
 type m
 action store
 comparison-type pattern-rule
 match-value ^(audio)([0-9]{4,
 5})(RTP/AVP
 [0-9]{1-3})$
new-value
 sdp-line-rule
 name changePort
 type m
 action replace
 comparison-type boolean
 match-value $removeLastCodec.
$removeLast.$isLastCodec
 new-value $removeLastCodec.
$removeLast.$isLastCodec.$1+0+$removeLastCodec.$removeLast.
$isLastCodec.$3

Remove Codec with Dynamic Payload
sip-manipulation
 name removeAMR
 description remove the AMR and AMR-WB dynamic codecs
 mime-sdp-rule
 name sdpAMR
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
name mediaAMR
 media-type audio
 action manipulate
 comparison-type case-sensitive
 match-value

Chapter 1
MIME Support

1-65

 new-value
 sdp-line-rule
 name isAMR
 type a
 action delete
 comparison-type pattern-rule
 match-value ^rtpmap:([0-9]
 {2,3}) AMR
 new-value
 sdp-media-rule
 name mediaIsAMR
 media-type audio
 action manipulate
 comparison-type boolean
 match-value $sdpAMR.$media
 AMR.$isAMR
 new-value
 sdp-line-rule
 name delFmtpAMR
 type a
 action delete
 comparison-type pattern-rule
 match-value ^fmtp:{$sdpAMR.
 $mediaAMR.
 $isAMR.$1}\b
 new-value
 sdp-line-rule
 name delAMRcodec
 type m
 action find-replace-all
 comparison-type pattern-rule
 match-value ^audio [0-9]+
 RTP.*({$sdpAMR.
 $mediaAMR.$isAMR.

HMR Import-Export
Due to the complexity of SIP manipulations rules and the deep understanding of system syntax
they require, it is often difficult to configure reliable rules. This feature provides support for
importing and exporting pieces of SIP manipulation configuration in a reliable way so that they
can be reused.

Exporting
The SIP manipulation configuration contains an export command which sends the previously
selected configuration to the designated file. The syntax is export [FILENAME]. The system
compresses the file with gzip and writes it to the /code/imports directory.

Note:

SIP manipulation configurations can only be exported one at a time.

Exported data will look like this:

<?xml version='1.0' standalone='yes'?>
<sipManipulation

Chapter 1
HMR Import-Export

1-66

 name='manip'
 description=''
 lastModifiedBy='admin@console'
 lastModifiedDate='2009-10-16 14:16:29'>
 <headerRule
 headerName='Foo'
 msgType='any'
 name='headerRule'
 action='manipulate'
 cmpType='boolean'
 matchValue='$REGEX("[bB][A-Za-z]{2}")'
 newValue='foo'
 methods='INVITE'>
 </headerRule>
</sipManipulation>

To avoid conflicts when importing, the key and object ID are not included as part of the
exported XML.

Importing
The import command imports data from a previously exported file into the currently-selected
configuration. If no configuration was selected, a new one is created. The syntax is import
[FILENAME]. Include the .gz extension in the filename. After importing, type done to save
the configuration.

Importing a configuration with the same key as one that already exists returns an error. In this
case:

• Delete the object with the same key and re-import.

• Select the object with the same key and perform an import that will overwrite it with new
data.

Using SFTP to Move Files
After exporting a configuration, use SFTP to copy the file to other Oracle Communications
Session Border Controllers. Place the file in the /code/imports directory before using the
import command on the second OCSBC.

Removing Files
Using the delete-import command with the name of the file you want to delete removes it from
the system. Using this command, you can delete files that are no longer useful to you. Carrying
out this command is final and there is no warning before you go ahead with the deletion. A
failed deletion (for instance, because there is no such file) will produce an error message; a
successful deletion simply returns you to the system prompt.

HMR Development
Before you start developing an HMR, ask yourself whether you need an HMR. Check whether
an alternative is available. For example, you can configure the OCSBC to perform some of the
more common needed message manipulations like stripping telephone events from SDP or
resolving delayed offer issues. If you need more flexibility to address your problem, then HMR
is probably the answer.

Chapter 1
HMR Development

1-67

Development Overview
Once you have decided you want to use HMR to resolve an issue, Oracle recommends you
follow this development procedure:

1. Understand regex. Your knowledge of regex is fundamental to building an HMR that
yields the desired result.

2. Identify the direction of the traffic in relation to the OCSBC to which you want to apply an
HMR (inbound or outbound).

3. Identify the SIP message portion on which you want the HMR to operate: header,
parameter, or body.

4. Identify the remote entities involved and know their represented in your OCSBC
configuration. Are they session agents, realms or SIP interfaces? Take into consideration
the order of precedence among these entities for applying HMRs.

5. Build the HMR and test it using the OCSBC's Testing SIP Manipulations.

6. Apply the HMR appropriately to your configuration. Oracle recommends that you develop,
test, and apply HMRs in test or laboratory environments only.

7. Analyze the data resulting from your HMR to confirm it is working as you intend.

Development Tips
• Define all storage rules first. Each subsequent header rule processes against the same SIP

message, so each additional header rules works off of the results from the application of
the rule that precedes it.
In general, you want to store values from the original SIP header rather than from the
iteratively changed versions.

• Implement rules at the element rule rather than the header rule level. Header rules should
only be a container for element rules.

• Add additional element rules to modify a single header. Do not create multiple header
rules, each with one element rule. Instead, create multiple element rules within a header
rule.

• Think of performance. Reuse as many built in variables as possible

• Avoid lengthy string matches unless absolutely necessary

• Wherever possible, constrain your HMR appropriately by specifying a SIP method and
message type

• Build an HMR library

Planning Considerations
You want to plan your functionality carefully when developing HMRs and you want to test it
thoroughly before deploying it on your production system.

Traffic Direction
You need to determine if you want changes to occur on traffic that is relative to the OCSBC
inbound or outbound.

Chapter 1
HMR Development

1-68

Order of Application Precedence
As you decide direction, you must also consider the order in which the OCSBC applies HMR
for session agents, realms, and SIP interfaces. The order of precedence is:

• session agent

• realm

• SIP interface

A SIP manipulation applied to a session agent overrides the other two, and a SIP manipulation
for a realm overrides one for a SIP interface.

Order of HMR Execution
The OCSBC applies SIP header rules in the order you have entered them, which guards against
the removal of data that might be used by other header rules. The order starts with the top-most
rule and continues with the execution of the sub-rules one by one. Each new rule is carried out
on the result of the preceding rule.

This ordering also lets you strategically use manipulations. For example, you can use two rules
if you want to store the values of a regular expression. The first rule stores the value of a
matched regular expression and the second deletes the matched value.

Applying HMR to a Specific Header
You can operate on a specific instance of a given header by adding a trailing [<index>] value
after the header name. This [<index>] is a numerical value representing the specific instance of
the header on which to operate. However, the OCSBC takes no action if the header does not
exist. You can also use the caret ^ to reference the last header of that type if there are multiple
instances.

The count for referencing is zero-based, meaning that the first instance of the header counts as
0.

Note:

You cannot use a trailing [<index>] value after the header name to insert headers into a
specific location. Headers are added to the end of the list, except that Via headers are
added to the top.

HMR Sets
Although the OCSBC has a set method for how certain manipulation rules take precedence
over others; you can use multiple SIP HMR sets to

• Apply multiple inbound and outbound manipulations rules to a SIP message

• Provision the order in which the OCSBC applies HMRs

You cause the header rule in one HMR to invoke another HMR. Values from that invoked
HMR for the match value, comparison type, and methods are then supported. The invoked
HMR is performed when those values are true.

Chapter 1
HMR Development

1-69

Create Pseudocode
You start with a high-level design, refine the design to pseudocode, and then refine the
pseudocode to source code. This successive refinement in small steps allows you to check your
design as you drive it to lower levels of detail. The result is that you catch high level errors at
the highest level, mid-level errors at the middle level, and low-level errors at the lowest level --
before any of them becomes a problem or contaminates work at more detailed levels.

Test HMRs
Test methodologies include:

• Wireshark traces to create SIPp scripts

• test-pattern-rule to test pattern matches from the ACLI

• test-sip-manipulation available through the ACLI

• log.sipd messages

test-sip-manipulation
You can use a tool that allows you to test the outcome of your SIP manipulation and header
rules without sending real traffic through the OCSBC to see if they work.

To use the tool, you enter the ACLI's test-sip-manipulation utility and reference the rule you
want to test using its name. Then you enter a mode where you put in a SIP message entered in
ASCII. You can cut and paste this message from sipmsg.log or from some other location. Using
<Ctrl-D> stops the SIP message collection and parses it.

The test informs you of any parsing errors found in the SIP message. Once the message is
entered, you can execute the SIP manipulation against the message. The output after this step is
the modified SIP message after manipulations have been applied. You will also find a
debugging option, which displays SIP manipulation logging to the screen as the manipulation
takes place.

As a starting point for testing, this tool comes loaded with a default SIP message. It cannot be
associated with realms, session agents, or SIP interfaces, and so it also comes with certain
resolves reserved words, such as: $LOCAL_IP, $TRUNK_GROUP_CONTEXT, and $REMOTE_PORT. In
addition, you can use your settings for testing across terminal sessions; if you choose to save
your settings, everything (including the SIP message) will be saved, with the exception of the
debugging option.

It is not recommended that you use this tool to add an ISUP message body.

Development Example
You want to perform specialized call routing for x11 numbers, such as 211, 311, 411 and so on,
based on from where the call originated. You want to concatenate the user part of the To URI
with the seven digits following the +1 in the user part of the From URI and to swap that value
in the user part of the Request URI:

INVITE sip:211;csel=nonind@192.168.65.16:5060;user=phone SIP/2.0
Via:SIP/2.0/UDP 10.1.110.34;branch=z9hG4bK-
BroadWorks.as3.otwaon10-192.168.65.16V5060-0-31288454-509069652-1273520380170-

Chapter 1
HMR Development

1-70

From:"JOHN SMITH"<sip:+14167601262@sipt.itech.ca;user=phone>
To:<sip:211;csel=noind@92.168.65.16:5060;user=phone>

Note:

• To user-uri: 211

• From user-uri: +14167601262

• Desired Request-URI: 2114167601

Writing the Psuedo Code
• Header rule getToURI for To header is not needed. The built-in variable $RURI_USER

can be used.

• Header rule getFromURIDigits for From header. Stores specific digits for the uri-user-only
part of the From header.

• Header rule constructRURIUsingToAndFrom to build the Request-URI. Replaces the uri-
user of the Request-URI with a concatenation of the stored digits.

Testing the Pattern Rule
(configure)# session-router test-pattern-rule
(test-pattern-rule)# string +14167601262
expression made 0 matches against string
(test-pattern-rule)# expression ^\+1([0-9]{7}).*$
expression made 2 matches again string
(test-pattern-rule)# show
Pattern Rule:
Expression : ^\+1([0-9]{7}).*$
String : +14167601262
Matched : TRUE
Matches:
$0 +14167601262
$1 4167601

Note:

• A $ was used to denote the end of the string. Using a carriage return line feed \r\n
will not result in matches.

• $0 is the entire string being matched against.

• $1 is the string represented in the first set of parentheses. Here, $1 matches the
desired output so the regular expression is correct.

Constructing the HMR
sip-manipulation
name ContructURI
description

Chapter 1
HMR Development

1-71

header-rule
 name getFromURIDigits
 header-name From
 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name getDigit
 parameter-name
 type uri-user
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value ^\+1([0-9]{7}).*$
 new-value
header-rule
 name constructRURIUsingToAndFrom
 header-name request-uri
 action manipulate
 comparison-type case-insensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name constructRURI
 parameter-name
 type uri-user
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value $RURI_USER.$0+$getFromURIDigits.$getDigits.$1

Note:

$RURI_USER.$0+$getFromURIDigits.$getDigits.$1

Concatenate the two and replace the uri-user of the R-URI. The plus sign (+) serves as
the concatenation operator when the comparison-type is pattern-rule. Only the $1 from
the second ruleset is used because it represents just the subset of the From digits
needed.

Loading Test SIP Message
(test-sip-manipulation)# load-sip-message

You might want to edit the Content-Length value default value of 276 or to remove the header.
Retaining that value causes test-sip-manipulation to transmit only the first 276 characters of the
loaded SIP message.

Chapter 1
HMR Development

1-72

Configuring Testing
Test Sip Manipulation:
 sip-manipulation : ConstructRURI
 debugging : enabled
 direction : out
 manipulation-string :
 manipulation-pattern : \,+
 tgrp-context :
 local-ip : 192.168.1.60:5060
 remote-ip : 192.168.1.61:5060
 sip-message : parsed OK

Executing Testing
(test-sip-manipulation)# execute
Header Rule ConstructRURI (headerName=request-uri action=manipulate
cmpType=pattern-rule) does not apply to method INVITE
After Manipulation[ConstructRURI]

The following output snippet shows that the HMR worked:

INVITE sip:2114167601@192.168.65.16:5060;user=phone SIP/2.0
Via: SIP/2.0/UDP 10.1.119.152:5060;branch=x9hG4bKj3svpd1030b08nc9t3f1.1
From: JOHN SMITH<sip:
+14167601262@sipt.tech.ca;user=phone;tag=SDekcfd01-966714349-1273696750280-
To: <sip:211;csel=noind@10.1.119.151:5060;user=phone

Log File Analysis
Run log.sipd at debug level on the OCSBC where you plan to test the HMR to gain the most
information. Then examine log.sipd to review information about the HMR execution.

Configuration Examples
This section shows you several configuration examples for HMR. This section shows the
configuration for the various rules that the Oracle Communications Session Border
Controllerapplied, and sample results of the manipulation. These examples present
configurations as an entire list of fields and settings for each ruleset, nested header rules and
nested element rules. If a field does not have any operation within the set, the field is shown
with the setting at the default or blank.

Example 1 Removing Headers
For this manipulation rule, the Oracle Communications Session Border Controller removes the
Custom header if it matches the pattern rule. It stores the defined pattern rule for the goodBye
header. Finally, it removes the goodBye header if the pattern rule from above is a match.

This is a sample of the configuration:

sip-manipulation
 name removeHeader
 header-rule
 name removeCustom
 header-name Custom
 action delete

Chapter 1
Configuration Examples

1-73

 comparison-type boolean
 match-value ^This is my.*
 msg-type request
 new-value
 methods INVITE
 header-rule
 name goodByeHeader
 header-name Goodbye
 action store
comparison-type boolean
 match-value ^Remove (.+)
 msg-type request
 new-value
 methods INVITE
header-rule
 name goodBye
action delete
 comparison-type pattern-rule
 match-value $goodByeHeader
 msg-type request
 new-value
 methods INVITE

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 192.168.200.61:5060;branch=z9hG4bK0g639r10fgc0aakk26s1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDc1rm601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SDc1rm601-d01673bcacfcc112c053d95971330335-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 2 Manipulating the Request URI
For this manipulation rules, the Oracle Communications Session Border Controller stores the
URI parameter tgid in the Request URI. Then if the pattern rule matches, it adds a new header
(x-customer-profile) with the a new header value tgid to the URI parameter in the request URI.

This is a sample of the configuration:

sip-manipulation
 name CustomerTgid
 header-rule
 name ruriRegex
 header-name request-uri
 action store
 comparison-type pattern-rule
 match-value
 msg-type request
new-value
 methods INVITE

Chapter 1
Configuration Examples

1-74

 element-rule
 name tgidParam
 parameter-name tgid
 type uri-param
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
header-rule
 name addCustomer
 header-name X-Customer-Profile
 action add
 comparison-type pattern-rule
 match-value $ruriRegex.$tgidParam
 msg-type request
 new-value $ruriRegex.$tgidParam.$0
 methods INVITE
header-rule
 name delTgid
 header-name request-uri
 action manipulate
 comparison-type pattern-rule
 match-value $ruriRegex.$tgidParam
 msg-type request
 new-value
 methods INVITE
 element-rule
 name tgidParam
 parameter-name tgid
 type uri-param
 action delete-element
 match-val-type any
 comparison-type case-sensitive
 match-value $ruriRegex.$tgidParam.$0
 new-value

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060 SIP/2.0
 Message Header
Via: SIP/2.0/UDP 192.168.200.61:5060;branch=z9hG4bK0g6plv3088h03acgh6c1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDc1rg601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SDc1rg601-f125d8b0ec7985c378b04cab9f91cc09-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140
 X-Customer-Profile: 123

Chapter 1
Configuration Examples

1-75

Example 3 Manipulating a Header
For this manipulation rule, the Oracle Communications Session Border Controllerstores the
pattern matches for the Custom header, and replaces the value of the Custom header with a
combination of the stored matches and new content.

This is a sample of the configuration:

sip-manipulation
 name modCustomHdr
 header-rule
 name customSearch
 header-name Custom
 action store
 comparison-type pattern-rule
 match-value (This is my)(.+)(header)
 msg-type request
 new-value
 methods INVITE
header-rule
 name customMod
 header-name Custom
 action manipulate
 comparison-type pattern-rule
 match-value $customSearch
 msg-type request
 new-value
methods INVITE
 element-rule
 name hdrVal
 parameter-name hdrVal
 type header-value
 action replace
 match-val-type any
 comparison-type case-sensitive
 match-value
new-value $customSearch.$1+edited+$customSearch.$3

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 192.168.200.61:5060;branch=z9hG4bK20q2s820boghbacgs6o0.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDe1ra601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SDe1ra601-4bb668e7ec9eeb92c783c78fd5b26586-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my edited header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Chapter 1
Configuration Examples

1-76

Example 4 Storing and Using URI Parameters
For this manipulation rule, the Oracle Communications Session Border Controller stores the
value of the URI parameter tag from the From header. It also creates a new header FromTag
with the header value from the stored information resulting from the first rule.

This is a sample of the configuration:

sip-manipulation
 name storeElemParam
 header-rule
 name Frohmr
 header-name From
 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name elementRule
 parameter-name tag
 type uri-param
 action store
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value
header-rule
 name newHeader
 header-name FromTag
 action add
 comparison-type pattern-rule
 match-value $FromHR.$elementRule
 msg-type any
 new-value $FromHR.$elementRule.$0
 methods

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 192.168.200.61:5060;branch=z9hG4bK4oda2e2050ih7acgh6c1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDf1re601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SDf1re601-f85059e74e1b443499587dd2dee504c2-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
Content-Length: 140
 FromTag: 1

Chapter 1
Configuration Examples

1-77

Example 5 Manipulating Display Names
For this manipulation rule, the Oracle Communications Session Border Controller sores the
display name from the Display header. It replaces the two middle characters of the original
display name with a new string. Then is also replaces the From header’s display name with
“abc 123” if it matches sipp.

This is a sample of the configuration:

sip-manipulation
 name modDisplayParam
 header-rule
 name storeDisplay
 header-name Display
 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name displayName
 parameter-name display
 type uri-display
 action store
 match-val-type any
comparison-type pattern-rule
 match-value (s)(ip)(p)
 new-value
header-rule
 name modDisplay
 header-name Display
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name modRule
 parameter-name display
 type uri-display
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value $storeDisplay.$displayName
 new-value $storeDisplay.
$displayName.$1+lur+$storeDisplay.$displayName.$3
header-rule
 name modFrom
 header-name From
 action manipulate
 comparison-type pattern-rule
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name fromDisplay

Chapter 1
Configuration Examples

1-78

 parameter-name
 type uri-display
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value sipp
 new-value "\"abc 123\" "

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 192.168.200.61:5060;branch=z9hG4bK681kot109gp04acgs6o0.1
 From: "abc 123" <sip:sipp@192.168.1.60:5060>;tag=SD79ra601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SD79ra601-a487f1259e2370d3dbb558c742d3f8c4-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: slurp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 6 Manipulating Element Parameters
For this more complex manipulation rule, the Oracle Communications Session Border
Controller:

• From the Display header, stores the display name, user name, URI parameter up, and
header parameter hp

• Adds the header parameter display to the Params header, with the stored value of the
display name from the first step

• Add the URI parameter user to the Params header, with the stored value of the display
name from the first step

• If the URI parameter match succeeds in the first step, replaces the URI parameter up with
the Display header with the value def

• If the header parameter match succeeds in the first step, deletes the header parameter hp
from the Display header

This is a sample of the configuration:

sip-manipulation
 name elemParams
 header-rule
 name StoreDisplay
 header-name Display
 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE

Chapter 1
Configuration Examples

1-79

 element-rule
 name displayName
 parameter-name
 type uri-display
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
element-rule
 name userName
 parameter-name user
 type uri-user
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
element-rule
 name uriParam
 parameter-name up
 type uri-param
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
element-rule
 name headerParam
 parameter-name hp
 type header-param
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
 header-rule
 name EditParams
 header-name Params
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name addHeaderParam
 parameter-name display
 type header-param
 action add
match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $StoreDisplay.
$displayName.$0
 element-rule
 name addUriParam
 parameter-name user
 type uri-param
 action add
 match-val-type any

Chapter 1
Configuration Examples

1-80

 comparison-type case-sensitive
 match-value
 new-value
$StoreDisplay.$userName.$0
 header-rule
 name EditDisplay
 header-name Display
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name replaceUriParam
 parameter-name up
 type uri-param
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value $StoreDisplay.$uriParam
 new-value def
 element-rule
 name delHeaderParam
 parameter-name hp
 type header-param
 action delete-element
 match-val-type any
 comparison-type pattern-rule
 match-value $StoreDisplay.$headerParam
 new-value

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 192.168.200.61:5060;branch=z9hG4bK7okvei0028jgdacgh6c1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SD89rm601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SD89rm601-b5b746cef19d0154cb1f342cb04ec3cb-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=def>
 Params: sipp <sip:sipp1@192.168.1.60:5060;user=user>;display=sipp
 Params: sipp <sip:sipp2@192.168.1.60:5060;user=user>;display=sipp
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 7 Accessing Data from Multiple Headers of the Same
Type

For this manipulation rule, the Oracle Communications Session Border Controller stores the
user name from the Params header. It then adds the URI parameter c1 with the value stored

Chapter 1
Configuration Examples

1-81

from the first Params header. Finally, it adds the URI parameter c2 with the value stored from
the second Params header.

This is a sample of the configuration:

sip-manipulation
 name Params
 header-rule
 name storeParams
 header-name Params
 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name storeUserName
 parameter-name user
 type uri-user
 action store
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value
header-rule
 name modEdit
 header-name Edit
 action manipulate
 comparison-type pattern-rule
 match-value
 msg-type request
 new-value
methods INVITE
 element-rule
 name addParam1
 parameter-name c1
 type uri-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $storeParams[0].
$storeUserName.$0
 element-rule
 name addParam2
 parameter-name c2
 type uri-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $storeParams[1].
$storeUserName.$0

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 192.168.200.61:5060;branch=z9hG4bK9g855p30cos08acgs6o0.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SD99ri601-1
 To: sut <sip:service@192.168.1.61:5060>

Chapter 1
Configuration Examples

1-82

 Call-ID: SD99ri601-6f5691f6461356f607b0737e4039caec-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060;c1=sipp1;c2=sipp2>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 8 Using Header Rule Special Characters
For this manipulation rule, the Oracle Communications Session Border Controller:

• Stores the header value of the Params header with the given pattern rule, and stores both
the user name of the Params header and the URI parameter abc

• Adds the URI parameter lpu with the value stored from the previous Params header

• If any of the Params headers match the pattern rule defined in the first step, adds the URI
parameter apu with the value aup

• If all of the Params headers match the pattern rule defined in the first step, adds the URI
parameter apu with the value apu

• If the first Params headers does not match the pattern rule for storing the URI parameter
defined in the first step, adds the URI parameter not with the value 123

• If the first Params headers matches the pattern rule for storing the URI parameter defined
in the first step, adds the URI parameter yes with the value 456

This is a sample of the configuration:

sip-manipulation
 name specialChar
 header-rule
 name searchParams
 header-name Params
 action store
 comparison-type pattern-rule
 match-value .*sip:(.+)@.*
 msg-type request
 new-value
 methods INVITE
 element-rule
 name userName
 parameter-name
 type uri-user
 action store
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value
element-rule
 name emptyUriParam
 parameter-name abc
 type uri-param
 action store

Chapter 1
Configuration Examples

1-83

 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
header-rule
 name addUserLast
 header-name Edit
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name lastParamUser
 parameter-name lpu
 type uri-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $searchParams[^].$userName.$0
 element-rule
 name anyParamUser
 parameter-name apu
 type uri-param
 action add
 match-val-type any
 comparison-type pattern-rule
 match-value $searchParams[~]
 new-value aup
 element-rule
 name allParamUser
 parameter-name apu
 type header-param
 action add
 match-val-type any
 comparison-type pattern-rule
 match-value $searchParams[*]
 new-value apu
 element-rule
 name notParamYes
 parameter-name not
 type uri-param
 action add
 match-val-type any
 comparison-type pattern-rule
 match-value !$searchParams.
$emptyUriParam
 new-value 123
 element-rule
 name notParamNo
 parameter-name yes
 type uri-param
 action add
 match-val-type any
 comparison-type pattern-rule
 match-value $searchParams.
$emptyUriParam
 new-value 456

Chapter 1
Configuration Examples

1-84

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 192.168.200.61:5060;branch=z9hG4bK681m9t30e0qh6akgj2s1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDchrc601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SDchrc601-fcf5660a56e2131fd27f12fcbd169fe8-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060;lpu=sipp2;apu=aup;not=123>;apu=apu
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 9 Status-Line Manipulation
This section shows an HMR configuration set up for status-line manipulation.

Given that the object of this example is to drop the 183 Session Progress response when it does
not have SDP, your SIP manipulation configuration needs to:

1. Search for the 183 Session Progress response

2. Determine if the identified 183 Session Progress responses contain SDP; the Oracle
Communications Session Border Controller searches the 183 Session Progress responses
where the content length is zero

3. If the 183 Session Progress response does not contain SDP, change its status code to 699

4. Drop all 699 responses

sip-manipulation
 name manip
 description
 header-rule
 name IsContentLength0
 header-name Content-Length
 action store
 comparison-type pattern-rule
 match-value 0
 msg-type reply
 new-value
 methods
 header-rule
 name is183
 header-name @status-line
 action store
 comparison-type pattern-rule
 match-value
 msg-type reply
 new-value
 methods
 element-rule
name is183Code
 parameter-name

Chapter 1
Configuration Examples

1-85

 type status-code
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value 183
 new-value
 header-rule
 name change183
 header-name @status-line
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type reply
 new-value
 methods
 element-rule
 name make199
 parameter-name
 type status-code
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value $IsContentLength0 &
$is183.$is183Code
 new-value 199

sip-interface options dropResponse=699

Example 10 Use of SIP HMR Sets
The following example shows the configuration for SIP HMR with one SIP manipulation
configuration loading another SIP manipulation configuration. The goals of this configuration
are to:

• Add a new header to an INVITE

• Store the user portion of the Request URI

• Remove all Route headers from the message only if the Request URI is from a specific
user

sip-manipulation
 name deleteRoute
 description delete all Route Headers
 header-rule
 name deleteRoute
 header-name Route
 action delete
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
sip-manipulation
 name addAndDelete
 description Add a New header and delete Route
headers
 header-rule
 name addHeader
 header-name New
 action add

Chapter 1
Configuration Examples

1-86

 comparison-type case-sensitive
 match-value
 msg-type request
 new-value "Some Value"
 methods INVITE
 header-rule
 name storeRURI
 header-name request-uri
 action store
 comparison-type pattern-rule
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name storeUser
 parameter-name
 type uri-user
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value 305.*
 new-value
 header-rule
 name deleteHeader
 header-name request-uri
 action sip-manip
 comparison-type Boolean
 match-value $storeRURI.$storeUser
 msg-type request
 new-value deleteRoute
 methods INVITE

Example 11 Use of Remote and Local Port Information
The following example shows the configuration for remote and local port information. The
goals of this configuration are to:

• Add LOCAL_PORT as a header parameter to the From header

• Add REMOTE_PORT as a header parameter to the From header

sip-manipulation
 name addOrigIp
 description
 header-rule
 name addIpParam
 header-name From
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name addIpParam
 parameter-name newParam
 type header-param
 action add
 match-val-type any
 comparison-type case-sensitive

Chapter 1
Configuration Examples

1-87

 match-value
 new-value $LOCAL_IP
 element-rule
 name addLocalPort
 parameter-name lport
 type header-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $LOCAL_PORT
 element-rule
 name addRemotePort
 parameter-name rport
 type header-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $REMOTE_PORT

Example 12 Response Status Processing
Given that the object of this example is to drop the 183 Session Progress response when it does
not have SDP, your SIP manipulation configuration needs to:

1. Search for the 183 Session Progress response

2. Determine if the identified 183 Session Progress responses contain SDP; the Oracle
Communications Session Border Controller searches the 183 Session Progress responses
where the content length is zero

3. If the 183 Session Progress response does not contain SDP, change its status code to 699

4. Drop all 699 responses

sip-manipulation
 name manip
 description
 header-rule
 name IsContentLength0
 header-name Content-Length
 action store
 comparison-type pattern-rule
 match-value 0
 msg-type reply
 new-value
 methods
 header-rule
 name is183
 header-name @status-line
 action store
 comparison-type pattern-rule
 match-value
 msg-type reply
 new-value
 methods
 element-rule
 name is183Code
 parameter-name
 type status-code

Chapter 1
Configuration Examples

1-88

 action store
 match-val-type any
 comparison-type pattern-rule
 match-value 183
 new-value
 header-rule
 name change183
 header-name @status-line
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type reply
 new-value
 methods
 element-rule
 name make699
 parameter-name
 type status-code
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value $IsContentLength0 &
$is183.$is183Code
 new-value 699
sip-interface
 options dropResponse=699

The following four configuration examples are based on the this sample SIP INVITE:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:service@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60
CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=audio 12345 RTP/AVP 18
a=rtpmap:8 G729/8000/1
a=fmtp:18 annexb=no
a=sendrecv
a=ptime:20
a=maxptime:200
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=video 12345 RTP/AVP 34
a=rtpmap:34 H263a/90000

Chapter 1
Configuration Examples

1-89

a=ptime:30
--boundary--

Example 13 Remove a Line from SDP
In this example, the SIP manipulation is configured to remove all p-time attributes from the
SDP.

sip-manipulation
 name removePtimeFromBody
 description removes ptime attribute from all bodies
 header-rule
 name CTypeManp
 header-name Content-Type
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name remPtime
 parameter-name application/sdp
 type mime
 action find-replace-all
 match-val-type any
 comparison-type case-sensitive
 match-value a=ptime:[0-9]{1,2}(\n|\r
\n)
 new-value

The result of manipulating the original SIP INVITE (shown above) with the configured SIP
manipulation is:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:service@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60
CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=audio 12345 RTP/AVP 18
a=rtpmap:18 G729/8000/1
a=fmtp:18 annexb=no
a=sendrecv
a=maxptime:200
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60

Chapter 1
Configuration Examples

1-90

s=-
c=IN IP4 192.168.1.60
t=0 0
m=video 12345 RTP/AVP 34
a=rtpmap:34 H263a/90000
--boundary-

Example 14 Back Reference Syntax
In this sample of back-reference syntax use, the goal is to change the To user. The SIP
manipulation would be configured like the following:

sip-manipulation
 name changeToUser
 description change user in the To header
 header-rule
 name ChangeHeader
 header-name To
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name replaceValue
 parameter-name
 type header-value
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value (.+)(service)(.+)
 new-value $1+Bob+$3

The result of manipulating the original SIP INVITE (shown above) with the configured SIP
manipulation is:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:Bob@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60
CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
…
…
…

Example 15 Change and Remove Lines from SDP
In this sample of changing and removing lines from the SDP, the goal is to convert the G.729
codec to G.729a. The SIP manipulation would be configured like the following:

sip-manipulation
 name std2prop-codec-name
 description rule to translate standard to proprietary
codec name

Chapter 1
Configuration Examples

1-91

 header-rule
 name CTypeManp
 header-name Content-Type
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type any
 new-value
 methods
 element-rule
 name g729-annexb-no-std2prop
 parameter-name application/sdp
 type mime
 action find-replace-all
 match-val-type any
 comparison-type case-sensitive
 match-value a=rtpmap:[0-9]{1,3}
(G729/8000/1\r\na=fmtp:[0-9]{1,3} annexb=no)[[:1:]]
 new-value G729a/8000/1

The result of manipulating the original SIP INVITE (shown above) with the configured SIP
manipulation is:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:service@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60
CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=audio 12345 RTP/AVP 8
a=rtpmap:18 G729a/8000/1
a=sendrecv
a=maxptime:200
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=video 12345 RTP/AVP 34
a=rtpmap:34 H263a/90000
--boundary-

Example 16 Change and Add New Lines to the SDP
In this sample of changing and adding lines from the SDP, the goal is to convert non-standard
codec H.263a to H.263. The SIP manipulation would be configured like the following:

Chapter 1
Configuration Examples

1-92

sip-manipulation
 name prop2std-codec-name
 description rule to translate proprietary to standard
codec name
 header-rule
 name CodecManp
 header-name Content-Type
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type any
 new-value
 methods
 element-rule
 name H263a-prop2std
 parameter-name application/sdp
 type mime
 action find-replace-all
 match-val-type any
 comparison-type case-sensitive
 match-value a=rtpmap:([0-9]{1,3})
H263a/.*\r\n
 new-value a=rtpmap:+$1+"
H263/90000"+$CRLF+a=fmtp:+$1+" QCIF=4"+$CRLF

The result of manipulating the original SIP INVITE (shown above) with the configured SIP
manipulation is:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:service@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60
CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=audio 12345 RTP/AVP 8
a=rtpmap:18 G729/8000/1
a=fmtp:18 annexb=no
a=sendrecv
a=maxptime:200
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=video 12345 RTP/AVP 34
a=rtpmap:34 H263/90000
a=fmtp:34 QCIF=4
--boundary-

Chapter 1
Configuration Examples

1-93

	Contents
	About This Guide
	1 Header Manipulation Rules
	HMR Fundamentals
	Audience
	When to Use HMR
	Managing HMR Impact on Performance
	Applying HMRs to Traffic
	Outbound HMR
	Inbound HMR
	Order of Header Rule Application
	HMR Store Actions and Boolean Results
	Routing Decisions

	Static and Dynamic HMR
	Static HMR
	Dynamic HMR

	Sample HMR

	HMR Components
	Relationship Between Rulesets and Its Rules
	Ruleset Guidelines
	Ruleset Components
	Guidelines for Header and Element Rules
	Guidelines for Header Rules
	Guidelines for Element Rules
	Duplicate Header Names
	SIP Header Pre-Processing HMR
	Back Reference Syntax
	Dialog Matching
	About Dialog-Matching Header Manipulations
	Inbound HMR Challenge
	Outbound HMR Challenge
	Dialog-matching Header Manipulation Configuration

	Built-In HMRs
	Built-In Variables
	Built-In SIP Manipulation Configuration

	Unique Regex Patterns Per Peer/Trunk
	Rejecting SIP Requests
	HMR Information in Logs

	Using Regular Expressions
	Example of HMR with Regex
	Regex Characters
	Literal (Ordinary)
	Special (Metacharacters)
	Regex Tips
	Matching New Lines
	Escaped Characters
	Building Expressions with Parentheses
	Boolean Operators
	Equality Operators
	Normalizing EBNF ExpressionString Grammar

	Storing Regex Patterns
	Performance Considerations
	Additional References

	HMR Configuration
	Testing Pattern Rules
	Creating Header Manipulation Rulesets
	Configuring SIP Header Manipulation Rules
	Configuring SIP Header Manipulation Element Rules
	Status-Line Manipulation and Value Matching
	Set the Header Name
	Set the Element Type
	Set the Match Value
	Set the Header Rules Match Value
	Set the Element Rules Match Value
	Set the Response Code Block

	Configuring SIP HMR Sets
	Configuring a Session Agent
	Configuring a SIP Interface
	Example 1 Stripping All Route Headers
	Example 2 Stripping an Existing Parameter and Adding a New One

	Unique HMR Regex Patterns and Other Changes
	The Default Expression
	Manipulation Pattern Per Remote Entity
	Reject Action
	Reject Action Configuration
	About Counters
	SNMP Support

	Log Action
	Changes to Storing Pattern Rule Values
	Removal of Restrictions
	Name Restrictions for Manipulation Rules
	New Value Restrictions

	MIME Support
	Manipulating MIME Attachments
	About the MIME Value Type
	SIP Message-Body Separator Normalization
	Configuring MIME Support

	HMR for SIP-ISUP
	MIME Rules Overview
	Identifying a MIME Rule
	About MIME Rules
	MIME Rules Configuration
	Working with MIME Rules
	MIME ISUP Manipulation
	Adding an ISUP Body to a SIP Message
	MIME ISUP Manipulation Configuration
	Configuration Example

	Header Manipulation Rules for SDP
	SDP Manipulation
	sdp-session-rule
	sdp-media-rule
	sdp-line-rule

	Regular Expression Interpolation
	Regular Expressions as Boolean Expressions
	Moving Manipulation Rules
	Rule Nesting and Management
	ACLI Configuration Examples
	Remove SDP
	Remove Video from SDP
	Add SDP
	Manipulate Contacts
	Remove a Codec
	Change Codec
	Remove Last Codec and Change Port
	Remove Codec with Dynamic Payload

	HMR Import-Export
	Exporting
	Importing
	Using SFTP to Move Files
	Removing Files

	HMR Development
	Development Overview
	Development Tips

	Planning Considerations
	Traffic Direction
	Order of Application Precedence
	Order of HMR Execution
	Applying HMR to a Specific Header
	HMR Sets

	Create Pseudocode
	Test HMRs
	test-sip-manipulation

	Development Example
	Writing the Psuedo Code
	Testing the Pattern Rule
	Constructing the HMR
	Loading Test SIP Message
	Configuring Testing
	Executing Testing
	Log File Analysis

	Configuration Examples
	Example 1 Removing Headers
	Example 2 Manipulating the Request URI
	Example 3 Manipulating a Header
	Example 4 Storing and Using URI Parameters
	Example 5 Manipulating Display Names
	Example 6 Manipulating Element Parameters
	Example 7 Accessing Data from Multiple Headers of the Same Type
	Example 8 Using Header Rule Special Characters
	Example 9 Status-Line Manipulation
	Example 10 Use of SIP HMR Sets
	Example 11 Use of Remote and Local Port Information
	Example 12 Response Status Processing
	Example 13 Remove a Line from SDP
	Example 14 Back Reference Syntax
	Example 15 Change and Remove Lines from SDP
	Example 16 Change and Add New Lines to the SDP

