
Oracle® Developer Studio 12.6:
Performance Analyzer Tutorials

Part No: E77799
June 2017

Oracle Developer Studio 12.6: Performance Analyzer Tutorials

Part No: E77799

Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E77799

Copyright © 2015, 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  7

Introduction to the Performance Analyzer Tutorials ...  9
About the Performance Analyzer Tutorials ..  9
Getting the Sample Code for the Tutorials ...  10
Setting Up Your Environment for the Tutorials ...  11

Introduction to C Profiling ..  13
About the C Profiling Tutorial ...  13
Setting Up the lowfruit Sample Code ..  14
Using Performance Analyzer to Collect Data .. 15
Using the Performance Analyzer to Examine the lowfruit Data ............................  19

Introduction to Java Profiling ...  31
About the Java Profiling Tutorial ...  31
Setting Up the jlowfruit Sample Code ..  32
Using Performance Analyzer to Collect Data from jlowfruit ...............................  33
Using Performance Analyzer to Examine the jlowfruit Data ...............................  36

Java and Mixed Java-C++ Profiling ... 49
About the Java-C++ Profiling Tutorial ..  49
Setting Up the jsynprog Sample Code ..  50
Collecting the Data From jsynprog ..  51
Examining the jsynprog Data ...  52
Examining Mixed Java and C++ Code ..  56
Understanding the JVM Behavior ... 60
Understanding the Java Garbage Collector Behavior ..  64

5

Contents

Understanding the Java HotSpot Compiler Behavior ..  70

Hardware Counter Profiling on a Multithreaded Program .................................  75
About the Hardware Counter Profiling Tutorial ... 75
Setting Up the mttest Sample Code ...  76
Collecting Data From mttest for Hardware Counter Profiling Tutorial ....................  77
Examining the Hardware Counter Profiling Experiment for mttest ......................... 78
Exploring Clock-Profiling Data ..  80
Understanding Hardware Counter Instruction Profiling Metrics ..............................  82
Understanding Hardware Counter CPU Cycles Profiling Metrics ............................  84
Understanding Cache Contention and Cache Profiling Metrics ...............................  86
Detecting False Sharing ..  90

Synchronization Tracing on a Multithreaded Program ......................................  95
About the Synchronization Tracing Tutorial ...  95

About the mttest Program .. 96
About Synchronization Tracing ..  96

Setting Up the mttest Sample Code ...  97
Collecting Data from mttest for Synchronization Tracing Tutorial .........................  98
Examining the Synchronization Tracing Experiment for mttest .............................  98

Understanding Synchronization Tracing ...  100
Comparing Two Experiments with Synchronization Tracing ........................  105

Exploring More in Performance Analyzer ..  111
Using the Remote Performance Analyzer ...  111
More Information ..  112

6 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using This Documentation

■ Overview –Provides step-by-step instructions for using the Oracle Developer Studio 12.6
Performance Analyzer on sample programs.

■ Audience – Application developers, developer, architect, support engineer
■ Required knowledge – Programming experience, program/software development testing,

aptitude to build and compile software products

Product Documentation Library

Documentation and resources for this product and related products are available at http://
docs.oracle.com/cd/E60778_01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 7

http://docs.oracle.com/cd/E60778_01
http://docs.oracle.com/cd/E60778_01
http://www.oracle.com/goto/docfeedback

8 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Introduction to the Performance Analyzer
Tutorials

Performance Analyzer is the Oracle Developer Studio tool for examining performance of your
Java, C, C++, and Fortran applications. You can use it to understand how well your application
is performing and find problem areas. These tutorials show how to use Performance Analyzer
on sample programs using step-by-step instructions.

About the Performance Analyzer Tutorials
This document features several tutorials that show how you can use Performance Analyzer to
profile various types of programs. Each tutorial provides steps for using Performance Analyzer
with the source files including screen shots at most steps in the tutorial.

The source code for all the tutorials in included in a single distribution. See “Getting the Sample
Code for the Tutorials” on page 10 for information about obtaining the sample source code.

The tutorials include the following:

■ “Introduction to C Profiling”

This introductory tutorial uses a target code named lowfruit, written in C. The lowfruit
program is very simple and includes code for two programming tasks which are each
implemented in an efficient way and an inefficient way. The tutorial shows how to collect
a performance experiment on the C target program and how to use the various data views
in Performance Analyzer. You examine the two implementations of each task and see how
Performance Analyzer shows which task is efficient and which is not.

■ “Introduction to Java Profiling”

This introductory tutorial uses a target code named jlowfruit, written in Java. Similar to
the code used in the C profiling tutorial, the jlowfruit program is very simple and includes
code for two programming tasks which are each implemented in an efficient way and an
inefficient way. The tutorial shows how to collect a performance experiment on the Java
target and how to use the various data views in Performance Analyzer. You examine the
two implementations of each task, and see how Performance Analyzer shows which task is
efficient and which is not.

Introduction to the Performance Analyzer Tutorials 9

Getting the Sample Code for the Tutorials

■ “Java and Mixed Java-C++ Profiling”

This tutorial is based on a Java code named jsynprog that performs a number of
programming operations one after another. Some operations do arithmetic, one triggers
garbage collection, and several use a dynamically loaded C++ shared object, and call from
Java to native code and back again. In this tutorial you see how the various operations are
implemented, and how Performance Analyzer shows you the performance data about the
program.

■ “Hardware Counter Profiling on a Multithreaded Program”

This tutorial is based on a multithreaded program named mttest that runs a number of
tasks, spawning threads for each one, and uses different synchronization techniques for
each task. In this tutorial, you see the performance differences between the computations
in the tasks, and use hardware counter profiling to examine and understand an unexpected
performance difference between two functions.

■ “Synchronization Tracing on a Multithreaded Program”

This tutorial is also based on the multithreaded program named mttest that runs a number
of tasks, spawning threads for each one, and uses different synchronization techniques
for each task. In this tutorial, you examine the performance differences between the
synchronization techniques.

Getting the Sample Code for the Tutorials

The programs used in the Performance Analyzer tutorials are included in a distribution that
includes code used for all the Oracle Developer Studio tools. Use the following instructions to
obtain the sample code if you have not previously downloaded it.

1. Go to the Oracle Developer Studio 12.6 Sample Applications page at the Oracle
Developer Studio web page http://www.oracle.com/technetwork/server-storage/
developerstudio.

2. Navigate to the downloads section of the Oracle Developer Studio web page.
3. Select the Sample Applications link under the "Other Downloads for Current Release"

subsection.
4. Read the license from the link on the page and accept by selecting Accept.
5. Download the zip file by clicking its link and unzip using instructions on the download

page.

After you download and unpack the sample files, you can find the samples in the
OracleDeveloperStudio12.6-Samples/PerformanceAnalyzer directory.

10 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

http://www.oracle.com/technetwork/server-storage/developerstudio
http://www.oracle.com/technetwork/server-storage/developerstudio

Setting Up Your Environment for the Tutorials

Setting Up Your Environment for the Tutorials

Before you try the tutorials, make sure that you have the Oracle Developer Studio bin directory
on your path and have an appropriate Java version in your path as described in Step 1 of “How
to Test Your Installation” in Oracle Developer Studio 12.6: Installation Guide.

The make or gmake command must also be on your path so you can build the programs.

Note - The sample code for this tutorial was run on an Oracle Solaris system. The images in this
tutorial might differ from what you see on your own environment.

Introduction to the Performance Analyzer Tutorials 11

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSIGgozwd
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSIGgozwd

12 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Introduction to C Profiling

This chapter covers the following topics.

■ “About the C Profiling Tutorial” on page 13
■ “Setting Up the lowfruit Sample Code” on page 14
■ “Using Performance Analyzer to Collect Data” on page 15
■ “Using the Performance Analyzer to Examine the lowfruit Data” on page 19

About the C Profiling Tutorial

This tutorial shows the simplest example of profiling with Oracle Developer Studio
Performance Analyzer and demonstrates how to use Performance Analyzer to collect and
examine a performance experiment. You use the Overview, Functions view, Source view, and
Timeline in this tutorial.

The program lowfruit is a simple program that executes two different tasks, one for initializing
in a loop and one for inserting numbers into an ordered list. Each task is performed twice, in an
inefficient way and in a more efficient way.

Tip - The “Introduction to Java Profiling” tutorial uses an equivalent Java program and shows
similar activities with Performance Analyzer.

The data you see in the experiment that you record will be different from that shown here.
The experiment used for the screen-shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.3. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records
its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Introduction to C Profiling 13

Setting Up the lowfruit Sample Code

This tutorial is run locally on a system where Oracle Developer Studio is installed. You can also
run remotely as described in “Using the Remote Performance Analyzer” on page 111.

Setting Up the lowfruit Sample Code

Before You Begin:
See the following information about obtaining the code and setting up your environment.

■ “Getting the Sample Code for the Tutorials” on page 10
■ “Setting Up Your Environment for the Tutorials” on page 11

1. Copy the contents of the lowfruit directory to your own private working area with the
following command:

% cp -r OracleDeveloperStudio12.6-Samples/PerformanceAnalyzer/lowfruit directory

where directory is the working directory you are using.
2. Change to that working directory.

% cd directory/lowfruit

3. Build the target executable.

% make clobber

% make

Note - The clobber subcommand is only needed if you ran make in the directory before, but
safe to use in any case.

After you run make the directory contains the target program to be used in the tutorial, an
executable named lowfruit.

The next section shows how to use Performance Analyzer to collect data from the lowfruit
program and create an experiment.

Tip - If you prefer, you can edit the Makefile to do any of the following: use the GNU
compilers rather than the default of the Oracle Developer Studio compilers; build in 32-bits
rather than the default of 64-bits; and add different compiler flags.

14 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Collect Data

Using Performance Analyzer to Collect Data
This section describes how to use the Profile Application feature of Performance Analyzer to
collect data in an experiment.

Tip - If you prefer not to follow these steps to see how to profile applications, you can record an
experiment with a make target included in the Makefile for lowfruit:

make collect

The collect target launches a collect command and records an experiment just like the one
that you create using Performance Analyzer in this section. You could then skip to “Using the
Performance Analyzer to Examine the lowfruit Data” on page 19.

1. While still in the lowfruit directory start, Performance Analyzer:

% analyzer

Performance Analyzer starts and displays the Welcome page.

Introduction to C Profiling 15

Using Performance Analyzer to Collect Data

If this is the first time you have used Performance Analyzer, no recent experiments are
shown below the Open Experiment item. If you have used it before, you see a list of
the experiments you recently opened from the system where you are currently running
Performance Analyzer.

2. Click the Profile Application link under Create Experiments in the Welcome page.
The Profile Application dialog box opens with the General tab selected. On this page
options are organized into several areas: Specify Application to Profile, Specify
Experiment, and Advanced Experiment Settings.

3. In the Target Program field, type the program name lowfruit.

16 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Collect Data

Tip - You could start Performance Analyzer and open this dialog box directly with the
program name already entered by specifying the target name when starting Performance
Analyzer with the command analyzer lowfruit. This method only works when running
Performance Analyzer locally.

4. For the Target Input/Output option located at the bottom of the Specify Application to
Profile panel, select Use Built-in Output Window.

Target Input/Output option specifies the window to which the target program stdout and
stderr will be redirected. The default value is Use External Terminal, but in this tutorial
the Target Input/Output option was changed to Use Built-in Output Window to keep all the
activity in the Performance Analyzer window. With this option the stdout and stderr is
shown in the Output tab in the Profile Application dialog box.
If you are running remotely, the Target Input/Output option is absent because only the built-
in output window is supported.

5. For the Experiment Name option, the default experiment name is test.1.er but you can
change it to a different name as long as the name ends in .er, and is not already in use.

6. Click the Data to Collect tab.
The Data to Collect enables you to select the type of data to collect, and shows the defaults
already selected.

Introduction to C Profiling 17

Using Performance Analyzer to Collect Data

Java profiling is enabled by default as you can see in the screen shot, but it is ignored for a
non-Java target such as lowfruit.

You can optionally click the Preview Command button and see the collect command that
will be run when you start profiling.

7. Click the Run button.
The Profile Application dialog box displays the Output tab and shows the program output as
it runs in the Process Output panel.
After the program completes, a dialog box asks if you want to open the experiment just
recorded.

18 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using the Performance Analyzer to Examine the lowfruit Data

8. Click OK in the dialog box.
The experiment opens. The next section shows how to examine the data.

Using the Performance Analyzer to Examine the lowfruit
Data

This section shows how to explore the data in the experiment created from the lowfruit sample
code.

Introduction to C Profiling 19

Using the Performance Analyzer to Examine the lowfruit Data

1. If the experiment you created in the previous section is not already open, you can start
Performance Analyzer from the lowfruit directory and load the experiment as follows:

% analyzer test.1.er

When the experiment opens, Performance Analyzer shows the Overview screen.

In this experiment the Overview shows essentially 100% User CPU time. The program
is single-threaded and that one thread is CPU-bound. The experiment was recorded on an
Oracle Solaris system, and the Overview shows twelve metrics recorded but only Total
CPU Time is enabled by default.
The metrics with colored indicators are the times spent in the ten microstates defined by
Oracle Solaris. These metrics include User CPU Time, System CPU Time, and Trap CPU

20 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using the Performance Analyzer to Examine the lowfruit Data

Time which together are equal to Total CPU Time, as well as various wait times. Total
Thread Time is the sum over all of the microstates.
On a Linux machine, only Total CPU Time is recorded because Linux does not support
microstate accounting.
By default, both Inclusive and Exclusive Total CPU Time are previewed. Inclusive for any
metric refers to the metric value in that function or method, including metrics accumulated
in all the functions or methods that it calls. Exclusive refers only to the metric accumulated
within that function or method.

2. Click on the Functions view in the Views navigation bar on the left side, or select it using
Views → Functions from the menu bar.

The Functions view shows the list of functions in the application, with performance metrics
for each function. The list is initially sorted by the Exclusive Total CPU Time spent in each
function. The list includes all functions from the target application and any shared objects
the program uses. The top-most function, the most expensive one, is selected by default.

Introduction to C Profiling 21

Using the Performance Analyzer to Examine the lowfruit Data

The Selection Details window on the right shows all the recorded metrics for the selected
function.
The Called-by/Calls panel below the functions list provides more information about
the selected function and is split into two lists. The Called-by list shows the callers of
the selected function and the metric values show the attribution of the total metric for
the function to its callers. The Calls list shows the callees of the selected function and
shows how the Inclusive metric of its callees contributed to the total metric of the selected
function. If you double-click a function in either list in the Called-by/Calls panel, the
function becomes the selected function in the main Functions view.

3. Experiment with selecting the various functions to see how the windows in the Functions
view update with the changing selection.
The Selection Details window shows you that most of the functions come from the
lowfruit executable as indicated in the Load Object field.
You can also experiment with clicking on the column headers to change the sort from
Exclusive Total CPU Time to Inclusive Total CPU Time, or by Name.

4. In the Functions view compare the two versions of the initialization task, init_bad() and
init_good().
You can see that the two functions have roughly the same Exclusive Total CPU Time but
very different Inclusive times. The init_bad() function is slower due to time it spends in a
callee. Both functions call the same callee, but they spend very different amounts of time in
that routine. You can see why by examining the source of the two routines.

5. Select the function init_good() and then click the Source view or choose Views → Source
from the menu bar.

6. Adjust the window to allow more space for the code: Collapse the Called-by/Calls panel by
clicking the down arrow in the upper margin, and collapse the Selection Details panel by
clicking the right-arrow in the side margin.

Note - You might have to re-expand and re-collapse these panels as needed for the rest of
the tutorial.

You should scroll up a little to see the source for both init_bad() and init_good(). The
Source view should look similar to the following screen shot.

22 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using the Performance Analyzer to Examine the lowfruit Data

Notice that the call to init_static_routine() is outside of the loop in init_good(), while
init_bad() has the call to init_static_routine() inside the loop. The bad version takes
about ten times longer (corresponding to the loop count) than in the good version.
This example is not as silly as it might appear. It is based on a real code that produces a
table with an icon for each table row. While it is easy to see that the initialization should
not be inside the loop in this example, in the real code the initialization was embedded in a
library routine and was not obvious.
The toolkit that was used to implement that code had two library calls (APIs) available. The
first API added an icon to a table row, and second API added a vector of icons to the entire
table. While it is easier to code using the first API, each time an icon was added, the toolkit
recomputed the height of all rows in order to set the correct value for the whole table. When
the code used the alternative API to add all icons at once, the recomputation of height was
done only once.

7. Now go back to the Functions view and look at the two versions of the insert task,
insert_bad() and insert_good().

Introduction to C Profiling 23

Using the Performance Analyzer to Examine the lowfruit Data

Note that the Exclusive Total CPU time is significant for insert_bad(), but negligible for
insert_good(). The difference between Inclusive and Exclusive time for each version,
representing the time in the function insert_number() called to insert each entry into the
list, is the same. You can see why by examining the source.

8. Select insert_bad() and switch to the Source view:

Notice that the time, excluding the call to insert_number(), is spent in a loop looking with
a linear search for the right place to insert the new number.

9. Now scroll down to look at insert_good().

24 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using the Performance Analyzer to Examine the lowfruit Data

Note that the code is more complicated because it is doing a binary search to find the right
place to insert, but the total time spent, excluding the call to insert_number(), is much less
than in insert_bad(). This example illustrates that binary search can be more efficient than
linear search.
You can also see the differences in the routines graphically in the Timeline view.

10. Click on the Timeline view or choose Views → Timeline from the menu bar.

Tip - If the Selection Details panel is not visible on the right side of the screen, restore it by
clicking the small left-arrow in the right margin.

The profiling data is recorded as a series of events, one for every tick of the profiling
clock for every thread. The Timeline view shows each individual event with the callstack
recorded in that event. The callstack is shown as a list of the frames in the callstack, with
the leaf PC (the instruction next to execute at the instant of the event) at the top, and the call

Introduction to C Profiling 25

Using the Performance Analyzer to Examine the lowfruit Data

site calling it next, and so forth. For the main thread of the program, the top of the callstack
is always _start.

11.
In the Timeline tool bar, click the Call Stack Function Colors icon for coloring
functions or choose Tools → Function Colors from the menu bar and see the dialog box as
shown below.

The function colors were changed to distinguish the good and bad versions of the functions
more clearly for the screen shot. The init_bad() and insert_bad() functions are both now
red and the init_good() and insert_good() are both bright green.

12. To make your Timeline view look similar, do the following in the Function Colors dialog
box:
■ Scroll down the list of methods in the Legend to find the init_bad() method.
■ Select the init_bad() method, click on a red color square in Swatches, and click Set

Selected Functions button.
■ Select the insert_bad() method, click on a red color square in Swatches, and click Set

Selected Functions button.

26 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using the Performance Analyzer to Examine the lowfruit Data

■ Select the init_good() method, click on a green color square in Swatches, and click Set
Selected Functions button.

■ Select the insert_good() method, click on a green color square in Swatches, and click
Set Selected Functions button.

13. Look at the top bar of the Timeline.
The top bar of the Timeline is the Process-Wide Resource-Utilization Samples bar, as you
can see in the tool tip if you move your mouse cursor over the first column. Each segment
of the Process-Wide Resource-Utilization Samples bar represents a one-second interval
showing the resource usage of the target during that second of execution.
In this example, all the segments are green because all the intervals were spent
accumulating User CPU Time. The Selection Details window shows the mapping of colors
to microstate although it is not visible in the screen shot.

14. Look at the second bar of the Timeline.
The second bar is the Clock Profiling Call Stacks bar, labeled "1 T:1" which means Process
1 and Thread 1, the only thread in the example. The Clock Profiling Call Stacks bar shows
color-coded representations of the callstack. For applications profiled on Oracle Solaris, an
additional bar is placed just below the callstack which shows the thread state for each event.
In this example, the thread state was always User CPU, so the bar shows a solid green line.
If you click anywhere within that Clock Profiling Call Stacks bar you select the nearest
event and the details for that event are shown in the Selection Details window. From the
pattern of the call stacks, you can see that the time in the init_good() and insert_good()
routines shown in bright green in the screen shot is considerably shorter than the
corresponding time in the init_bad() and insert_bad() routines shown in red.

15. Select events in the regions corresponding to the good and bad routines in the timeline and
look at the call stacks in the Call Stack - Timeline window below the Selection Details
window.
You can select any frame in the Call Stack window, and then select the Source view on the
Views navigation bar, and go to the source for that source line. You can also double-click a
frame in a call stack to go to the Source view or right-click the frame in the call stack and
select from a pop-up menu.

16. Zoom in on the events by using one of the following methods:
■ Double-click on the area of interest.
■ Drag the cursor in the ruler to adjust vertical time markers, then press Enter.
■ Use the + or - icons in the toolbar.
■ Press the plus (+) and minus (-) keys to further adjust the zoom.

If you zoom in enough you can see that the data shown is not continuous but consists of
discrete events, one for each profile tick, which is about 10 ms in this example.

Introduction to C Profiling 27

Using the Performance Analyzer to Examine the lowfruit Data

Press the F1 key to see the Help for more information about the Timeline view.
17. Click on the Call Tree view or choose Views → Call Tree to see the structure of your

program.
The Call Tree view shows a dynamic call graph of the program, with the Selection Details
panel showing performance information.

Performance Analyzer has many additional views of the data, such as the Caller-Callees view
which enables you to navigate through the program structure, and the Experiments view
which shows you details of the recorded experiment. For this simple example, the Threads and
Processes views are not very interesting.

28 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using the Performance Analyzer to Examine the lowfruit Data

By clicking on the + button on the Views list you can add other views to the navigation bar. If
you are an assembly-language programmer, you might want to look at the Disassembly. Try
exploring the other views.

Performance Analyzer also has a very powerful filtering capability. You can filter by time,
thread, function, source line, instruction, call stack-fragment, and any combination of them.
The use of filtering is outside the scope of this tutorial, since the sample code is so simple that
filtering is not needed.

Introduction to C Profiling 29

30 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Introduction to Java Profiling

This chapter covers the following topics.

■ “About the Java Profiling Tutorial” on page 31
■ “Setting Up the jlowfruit Sample Code” on page 32
■ “Using Performance Analyzer to Collect Data from jlowfruit” on page 33
■ “Using Performance Analyzer to Examine the jlowfruit Data” on page 36

About the Java Profiling Tutorial

This tutorial shows the simplest example of profiling with Oracle Developer Studio
Performance Analyzer and demonstrates how to use Performance Analyzer to collect and
examine a performance experiment. You use the Overview, Functions view, Source view,
Timeline view, and Call Tree view in this tutorial.

The program jlowfruit is a simple program that executes two different tasks, one for
initializing in a loop and one for inserting numbers into an ordered list. Each task is performed
twice, in an inefficient way and in a more efficient way.

Tip - The “Introduction to C Profiling” tutorial uses an equivalent C program and shows similar
activities with Performance Analyzer.

The data you see in the experiment that you record will be different from that shown here.
The experiment used for the screen-shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.3. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records
its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Introduction to Java Profiling 31

Setting Up the jlowfruit Sample Code

This tutorial is run locally on a system where Oracle Developer Studio is installed. You can also
run remotely as described in “Using the Remote Performance Analyzer” on page 111.

Setting Up the jlowfruit Sample Code

Before You Begin:
See the following for information about obtaining the code and setting up your environment.

■ “Getting the Sample Code for the Tutorials” on page 10
■ “Setting Up Your Environment for the Tutorials” on page 11

1. Copy the contents of the jlowfruit directory to your own private working area with the
following command:

% cp -r OracleDeveloperStudio12.6-Samples/PerformanceAnalyzer/jlowfruit directory

where mydirectory is the working directory you are using.
2. Change to that working directory copy.

% cd directory/jlowfruit

3. Build the target executable.

% make clobber

% make

Note - The clobber subcommand is only needed if you ran make in the directory before, but
safe to use in any case.

After you run make the directory contains the target application to be used in the tutorial, a
Java class file named jlowfruit.class.

Tip - If you are having trouble compiling the sample, check your version of javac using the
following command:

% javac -version

If the output does not report at least javac 1.7, then you need to update your PATH to a JDK of 7
or higher.

32 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Collect Data from jlowfruit

The next section shows how to use Performance Analyzer to collect data from the jlowfruit
program and create an experiment.

Using Performance Analyzer to Collect Data from jlowfruit

This section describes how to use the Profile Application feature of Performance Analyzer to
collect data in an experiment on a Java application.

Tip - If you prefer not to follow these steps to see how to profile applications from Performance
Analyzer, you can record an experiment with a make target included in the Makefile for
jlowfruit:

% make collect

The collect target launches a collect command and records an experiment just like the one
that you create using Performance Analyzer in this section. You could then skip to “Using
Performance Analyzer to Examine the jlowfruit Data” on page 36.

1. While still in the jlowfruit directory start Performance Analyzer with the target java and
its arguments:

% analyzer java -Xmx100m -XX:ParallelGCThreads=10 jlowfruit

The Profile Application dialog box opens with the General tab selected and several options
already filled out using information you provided with the analyzer command.

Target Program is set to java and Arguments is set to

-Xmx100m -XX:ParallelGCThreads=10 jlowfruit

Introduction to Java Profiling 33

Using Performance Analyzer to Collect Data from jlowfruit

2. For the Target Input/Output option, select Use Built-in Output Window.

Target Input/Output option specifies the window to which the target program stdout and
stderr will be redirected. The default value is Use External Terminal, but in this tutorial
you should change the Target Input/Output option to Use Built-in Output Window to keep
all the activity in the Performance Analyzer window. With this option the stdout and
stderr is shown in the Output tab in the Profile Application dialog box.
If you are running remotely, the Target Input/Output option is absent because only the built-
in output window is supported.

3. For the Experiment Name option, the default experiment name is test.1.er but you can
change it to a different name as long as the name ends in .er, and is not already in use.

4. Click the Data to Collect tab.

34 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Collect Data from jlowfruit

The Data to Collect tab enables you to select the type of data to collect, and shows the
defaults already selected.

Java profiling is enabled by default as you can see in the screen shot.

You can optionally click the Preview Command button and see the collect command that
will be run when you start profiling.

5. Click the Run button.
The Profile Application dialog box displays the Output tab and shows the program output in
the Process Output panel as the program runs.
After the program completes, a dialog box asks if you want to open the experiment just
recorded.

Introduction to Java Profiling 35

Using Performance Analyzer to Examine the jlowfruit Data

6. Click OK in the dialog box.
The experiment opens. The next section shows how to examine the data.

Using Performance Analyzer to Examine the jlowfruit Data

This section shows how to explore the data in the experiment created from the jlowfruit
sample code.

1. If the experiment you created in the previous section is not already open, you can start
Performance Analyzer from the jlowfruit directory and load the experiment as follows:

36 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Examine the jlowfruit Data

% analyzer test.1.er

When the experiment opens, Performance Analyzer shows the Overview page.
2. Notice the Overview page shows a summary of the metric values and enables you to select

metrics.

In this experiment the Overview shows about 14% Total CPU Time which was all User
CPU Time, plus about 14% Sleep Time and 71% User Lock Time. The user Java code
jlowfruit is single-threaded and that one thread is CPU-bound, but all Java programs
use multiple threads including a number of system threads. The number of those threads
depends on the choice of JVM options, including the Garbage Collector parameters and the
size of the machine on which the program was run.
The experiment was recorded on an Oracle Solaris system, and the Overview shows twelve
metrics recorded but only Total CPU Time is enabled by default.

Introduction to Java Profiling 37

Using Performance Analyzer to Examine the jlowfruit Data

The metrics with colored indicators are the times spent in the ten microstates defined by
Oracle Solaris. These metrics include User CPU Time, System CPU Time, and Trap CPU
Time which together are equal to Total CPU Time, as well as various wait times. Total
Thread Time is the sum over all of the microstates.
On a Linux machine, only Total CPU Time is recorded because Linux does not support
microstate accounting.
By default, both Inclusive and Exclusive Total CPU Time are previewed. Inclusive for any
metric refers to the metric value in that function or method, including metrics accumulated
in all the functions or methods that it calls. Exclusive refers only to the metric accumulated
within that function or method.

3.
Click the Hot button to select metrics with high values to show them in the
data views.
The Metrics Preview panel at the bottom is updated to show you how the metrics will be
displayed in the data views that present table-formatted data. You will next look to see
which threads are responsible for which metrics.

4. Now switch to the Threads view by clicking its name in the Views navigation panel or
choosing Views → Threads from the menu bar.

The thread with almost all of the Total CPU Time is Thread 2, which is the only user Java
thread in this simple application.
Thread 15 is most likely a user thread even though it is actually created internally by
the JVM. It is only active during start-up and has very little time accumulated. In your
experiment, a second thread similar to thread 15 might be created.
Thread 1 spends its entire time sleeping.

38 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Examine the jlowfruit Data

The remaining threads spend their time waiting for a lock, which is how the JVM
synchronizes itself internally. Those threads include those used for HotSpot compilation and
for Garbage Collection. This tutorial does not explore the behavior of the JVM system, but
that is explored in another tutorial, “Java and Mixed Java-C++ Profiling”.

5. Click on the Functions view in the Views navigation panel, or choose Views → Functions
from the menu bar.

The Functions view shows the list of functions in the application, with performance metrics
for each function. The list is initially sorted by the Exclusive Total CPU Time spent in each
function. There are also a number of functions from the JVM in the Functions view, but
they have relatively low metrics. The list includes all functions from the target application
and any shared objects the program uses. The top-most function, the most expensive one, is
selected by default.
The Selection Details window on the right shows all the recorded metrics for the selected
function.
The Called-by/Calls panel below the functions list provides more information about
the selected function and is split into two lists. The Called-by list shows the callers of
the selected function and the metric values show the attribution of the total metric for

Introduction to Java Profiling 39

Using Performance Analyzer to Examine the jlowfruit Data

the function to its callers. The Calls list shows the callees of the selected function and
shows how the Inclusive metric of its callees contributed to the total metric of the selected
function. If you double-click a function in either list in the Called-by/Calls panel, the
function becomes the selected function in the main Functions view.

6. Experiment with selecting the various functions to see how the Called-by / Calls panel and
Selection Details window in the Functions view update with the changing selection.
The Selection Details window shows you that most of the functions come from the
jlowfruit.class as indicated in the Load Object field.
You can also experiment with clicking on the column headers to change the sort from
Exclusive Total CPU Time to Inclusive Total CPU Time, or by Name.

7. In the Functions view compare the two versions of the initialization task, jlowfruit.
init_bad() and jlowfruit.init_good().
You can see that the two functions have roughly the same Exclusive Total CPU Time but
very different Inclusive times. The jlowfruit.init_bad() function is slower due to time
it spends in a callee. Both functions call the same callee, but they spend very different
amounts of time in that routine. You can see why by examining the source of the two
routines.

8. Select the function jlowfruit.init_good() and then click the Source view or choose
Views → Source from the menu bar.

9. Adjust the window to allow more space for the code: Collapse the Called-by/Calls panel by
clicking the down arrow in the upper margin, and collapse the Selection Details panel by
clicking the right arrow in the side margin.

Note - You might have to re-expand and re-collapse these panels as needed for the rest of
the tutorial.

You should scroll up a little to see the source for both jlowfruit.init_bad() and
jlowfruit.init_good(). The Source view should look similar to the following screen
shot.

40 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Examine the jlowfruit Data

Notice that the call to jlowfruit.init_static_routine() is outside of the loop in
jlowfruit.init_good(), while jlowfruit.init_bad() has the call to jlowfruit.
init_static_routine() inside the loop. The bad version takes about ten times longer
(corresponding to the loop count) than in the good version.
This example is not as silly as it might appear. It is based on a real code that produces a
table with an icon for each table row. While it is easy to see that the initialization should
not be inside the loop in this example, in the real code the initialization was embedded in a
library routine and was not obvious.
The toolkit that was used to implement that code had two library calls (APIs) available. The
first API added an icon to a table row, and second API added a vector of icons to the entire
table. While it is easier to code using the first API, each time an icon was added, the toolkit
recomputed the height of all rows in order to set the correct value for the whole table. When
the code used the alternative API to add all icons at once, the recomputation of height was
done only once.

10. Now go back to the Functions view and look at the two versions of the insert task,
jlowfruit.insert_bad() and jlowfruit.insert_good().

Introduction to Java Profiling 41

Using Performance Analyzer to Examine the jlowfruit Data

Note that the Exclusive Total CPU time is significant for jlowfruit.insert_bad(), but
negligible for jlowfruit.insert_good(). The difference between Inclusive and Exclusive
time for each version, representing the time in the function jlowfruit.insert_number()
called to insert each entry into the list, is the same. You can see why by examining the
source.

11. Select jlowfruit.insert_bad() and switch to the Source view:

Notice that the time, excluding the call to jlowfruit.insert_number(), is spent in a loop
looking with a linear search for the right place to insert the new number.

12. Now scroll down to look at jlowfruit.insert_good().

42 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Examine the jlowfruit Data

Note that the code is more complicated because it is doing a binary search to find the right
place to insert, but the total time spent, excluding the call to jlowfruit.insert_number(),
is much less than in jlowfruit.insert_bad(). This example illustrates that binary search
can be more efficient than linear search.
You can also see the differences in the routines graphically in the Timeline view.

13. Click on the Timeline view or choose Views → Timeline from the menu bar.

Tip - If the Selection Details panel is not visible on the right side of the screen, restore it by
clicking the small left-arrow in the right margin.

Introduction to Java Profiling 43

Using Performance Analyzer to Examine the jlowfruit Data

The profiling data is recorded as a series of events, one for every tick of the profiling
clock for every thread. The Timeline view shows each individual event with the call stack
recorded in that event. The call stack is shown as a list of the frames in the callstack, with
the leaf PC (the instruction next to execute at the instant of the event) at the top, and the call
site calling it next, and so forth. For the main thread of the program, the top of the callstack
is always main.

14.
In the Timeline tool bar, click the Call Stack Function Colors icon for coloring
functions or choose Tools → Function Colors from the menu bar and see the dialog box as
shown below.

The function colors were changed to distinguish the good and bad versions of the
functions more clearly for the screen shot. The jlowfruit.init_bad() and jlowfruit.

44 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Examine the jlowfruit Data

insert_bad() functions are both now red and the jlowfruit.init_good() and
jlowfruit.insert_good() are both bright green.

15. To make your Timeline view look similar, do the following in the Function Colors dialog
box:
■ Scroll down the list of java methods in the Legend to find the jlowfruit.init_bad()

method.
■ Select the jlowfruit.init_bad() method, click on a red color square in Swatches, and

click Set Selected Functions button.
■ Select the jlowfruit.insert_bad() method, click on a red color square in Swatches,

and click Set Selected Functions button.
■ Select the jlowfruit.init_good() method, click on a green color square in Swatches,

and click Set Selected Functions button.
■ Select the jlowfruit.insert_good() method, click on a green color square in

Swatches, and click Set Selected Functions button.
16. Look at the top bar of the Timeline.

The top bar of the Timeline is the Process-Wide Resource-Utilization Samples bar as you
can see in the tool tip if you move your cursor over the first column. Each segment of the
Process-Wide Resource-Utilization Samples bar represents a one-second interval showing
the resource usage of the target during that second of execution.
In this example, the segments are mostly gray with some green, reflecting the fact that only
a small fraction of the Total Time was spent accumulating User CPU Time. The Selection
Details window shows the mapping of colors to microstate although it is not visible in the
screen shot.

17. Look at the second bar of the Timeline.
The second bar is the Clock Profiling Call Stacks bar, labeled "1 T:2" which means Process
1 and Thread 2, the main user thread in the example. The Clock Profiling Call Stacks bar
shows color-coded representations of the callstack. For applications profiled on Oracle
Solaris, an additional bar is placed just below the callstack which shows the thread state for
each event. In this example, the thread state was always User CPU, so the bar shows a solid
green line.
You should see one or two additional bars labeled with different thread numbers but they
will only have a few events at the beginning of the run.
If you click anywhere within that Clock Profiling Call Stacks bar you select the nearest
event and the details for that event are shown in the Selection Details window. From
the pattern of the call stacks, you can see that the time in the jlowfruit.init_good()
and jlowfruit.insert_good() routines shown in bright green in the screen shot is
considerably shorter than the corresponding time in the jlowfruit.init_bad() and
jlowfruit.insert_bad() routines shown in red.

Introduction to Java Profiling 45

Using Performance Analyzer to Examine the jlowfruit Data

18. Select events in the regions corresponding to the good and bad routines in the timeline and
look at the call stacks in the Call Stack - Timeline window below the Selection Details
window.
You can select any frame in the Call Stack window, and then select the Source view on the
Views navigation bar, and go to the source for that source line. You can also double-click a
frame in a call stack to go to the Source view or right-click the frame in the call stack and
select from a pop-up menu.

19. Zoom in on the events by using one of the following methods:
■ Double-click on the area of interest.
■ Drag the cursor in the ruler to adjust vertical time markers, then press Enter.
■ Use the + or - icons in the toolbar.
■ Press the plus (+) and minus (-) keys to further adjust the zoom.

If you zoom in enough you can see that the data shown is not continuous but consists of
discrete events, one for each profile tick, which is about 10 ms in this example.

Press the F1 key to see the Help for more information about the Timeline view.
20. Click on the Call Tree view or choose Views → Call Tree to see the structure of your

program.
The Call Tree view shows a dynamic call graph of the program, annotated with
performance information.

46 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Using Performance Analyzer to Examine the jlowfruit Data

Introduction to Java Profiling 47

48 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Java and Mixed Java-C++ Profiling

This chapter covers the following topics.

■ “About the Java-C++ Profiling Tutorial” on page 49
■ “Setting Up the jsynprog Sample Code” on page 50
■ “Collecting the Data From jsynprog” on page 51
■ “Examining the jsynprog Data” on page 52
■ “Examining Mixed Java and C++ Code” on page 56
■ “Understanding the JVM Behavior” on page 60
■ “Understanding the Java Garbage Collector Behavior” on page 64
■ “Understanding the Java HotSpot Compiler Behavior” on page 70

About the Java-C++ Profiling Tutorial

This tutorial demonstrates the features of the Oracle Developer Studio Performance Analyzer
for Java profiling. It shows you how to use a sample code to do the following in Performance
Analyzer:

■ Examine the performance data in various data views including the Overview page, and the
Threads, Functions, and Timeline views.

■ Look at the Source and Disassembly for both Java code and C++ code.
■ Learn the difference between User Mode, Expert Mode, and Machine Mode.
■ Drill down into the behavior of the JVM executing the program and see the generated native

code for any HotSpot-compiled methods.
■ See how the garbage collector can be invoked by user code and how the HotSpot compiler

is triggered.

jsynprog is a Java program that has a number of subtasks typical of Java programs. The
program also loads a C++ shared object and calls various routines from it to show the seamless
transition from Java code to native code from a dynamically loaded C++ library, and back
again.

Java and Mixed Java-C++ Profiling 49

Setting Up the jsynprog Sample Code

jsynprog.main is the main method that calls functions from different classes. It uses gethrtime
and gethrvtime through Java Native Interface (JNI) calls to time its own behavior, and writes
an accounting file with its own timings, as well as writing messages to stdout.

jsynprog.main has many methods:

■ Routine.memalloc does memory allocation, and triggers garbage collection
■ Routine.add_int does integer addition
■ Routine.add_double does double (floating point) additions
■ Sub_Routine.add_int is a derived calls that overrides Routine.add_int
■ Routine.has_inner_class defines an inner class and uses it
■ Routine.recurse shows direct recursion
■ Routine.recursedeep does a deep recursion, to show how the tools deal with a truncated

stack
■ Routine.bounce shows indirect recursion, where bounce calls bounce_b which in turn calls

back into bounce
■ Routine.array_op does array operations
■ Routine.vector_op does vector operations
■ Routine.sys_op uses methods from the System class
■ jsynprog.jni_JavaJavaC: Java method calls another Java method that calls a C function
■ jsynprog.JavaCJava: Java method calls a C function which in turn calls a Java method
■ jsynprog.JavaCC: Java calls a C function that calls another C function

Some of those methods are called from others, so they do not all represent the top-level tasks.

The data you see in the experiment that you record will be different from that shown here.
The experiment used for the screen-shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.3. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records
its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Setting Up the jsynprog Sample Code
Before You Begin:

50 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Collecting the Data From jsynprog

See the following for information about obtaining the code and setting up your environment.

■ “Getting the Sample Code for the Tutorials” on page 10
■ “Setting Up Your Environment for the Tutorials” on page 11

You might want to go through the introductory tutorial in “Introduction to Java Profiling” first
to become familiar with Performance Analyzer.

1. Copy the contents of the jsynprog directory to your own private working area with the
following command:

% cp -r OracleDeveloperStudio12.6-Samples/PerformanceAnalyzer/jsynprog directory

where directory is the working directory you are using.
2. Change to that working directory copy.

% cd directory/jsynprog

3. Build the target executable.

% make clobber

% make

Note - The clobber subcommand is only needed if you ran make in the directory before, but
safe to use in any case.

After you run make, the directory contains the target application to be used in the tutorial,
a Java class file named jsynprog.class and a shared object named libcloop.so which
contains C++ code that will be dynamically loaded and invoked from the Java program.

Tip - If you prefer, you can edit the Makefile to do the following: use the GNU compilers
rather than the default of the Oracle Developer Studio compilers; build in 32-bits rather than the
default of 64-bits; and add different compiler flags.

Collecting the Data From jsynprog

The easiest way to collect the data is to run the following command in the jsynprog directory:

% make collect

Java and Mixed Java-C++ Profiling 51

Examining the jsynprog Data

The collect target of the Makefile launches a collect command and records an experiment.
By default, the experiment is named test.1.er.

The collect target specifies options -J "-Xmx100m -XX:ParallelGCThreads=10" for the JVM
and collects clock-profiling data by default.

Alternatively, you can use the Performance Analyzer's Profile Application dialog to
record the data. Follow the procedure “Using Performance Analyzer to Collect Data from
jlowfruit” on page 33 in the introductory Java tutorial and specify jsynprog instead of
jlowfruit in the Arguments field.

Examining the jsynprog Data

This procedure assumes you have already created an experiment as described in the previous
section.

1. Start Performance Analyzer from the jsynprog directory and load the experiment as
follows, specifying your experiment name if it is not called test.1.er.

% analyzer test.1.er

When the experiment opens, Performance Analyzer shows the Overview page.

52 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining the jsynprog Data

Notice that the tool bar of Performance Analyzer now has a view mode selector that is
initially set to User Mode, showing the user model of the program.
The Overview shows that the experiment ran about 81 seconds but used more than 1600
seconds of total time, implying that on average there were 20 threads in the process.

2. If you ran the application on Oracle Solaris, select the check boxes for the Sleep Time and
User Lock Time metrics to add them to the data views.

Java and Mixed Java-C++ Profiling 53

Examining the jsynprog Data

Notice that the Metrics Preview updates to show you how the data views will look with
these metrics added.

3. Select the Threads view in the navigation panel and you will see the data for the threads:

Only Thread 2 accumulated significant Total CPU time. The other threads each had only a
few profile events for Total CPU time.

4. Select any thread in the Threads view and see all the information for that thread in the
Selection Details window on the right.
You should see that almost all of the threads except Thread 1 and Thread 2 spend all their
time in User Lock state. This shows how the JVM synchronizes itself internally. Thread 1
launches the user Java code and then sleeps until it finishes.

54 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining the jsynprog Data

5. If you selected Sleep Time and User Lock Time in Step 2, go back to the Overview and
deselect these checkboxes.

6. Select the Functions view in the navigation panel, then click on the column headers to sort
by Exclusive Total CPU Time, Inclusive Total CPU Time, or Name.
You can sort by descending or ascending order.
Leave the list sorted by Inclusive Total CPU Time in descending order and select the top-
most function jsynprog.main(). That routine is the initial routine that the JVM calls to
start execution.

Notice that the Called-by/Calls panel at the bottom of the Functions view show that the
jsynprog.main() function is called by <Total>, meaning it was at the top of the stack.

The Calls side of the panel shows that jsynprog.main() calls a variety of different
routines, one for each of the subtasks shown in “About the Java-C++ Profiling
Tutorial” on page 49 that are directly called from the main routine. The list also
includes a few other routines.

Java and Mixed Java-C++ Profiling 55

Examining Mixed Java and C++ Code

Examining Mixed Java and C++ Code

This section features the Call Tree view and Source view, and shows you how to see the
relationships between calls from Java and C++ and back again. It also shows how to add the
Disassembly view to the navigation panel.

1. Select each of the functions at the top of the list in the Function view in turn, and examine
the detailed information in the Selection Details window.

Note that for some functions the Source File is reported as jsynprog.java, while for some
others it is reported as cloop.cc. That is because the jsynprog program has loaded a C++
shared object named libcloop.so, which was built from the cloop.cc C++ source file.
Performance Analyzer reports calls from Java to C++ and vice-versa seamlessly.

2. Select the Call Tree in the navigation panel.
The Call Tree view shows graphically how these calls between Java and C++ are made.

3. In the Call Tree view, do the following to see the calls from Java to C++ and back to Java:
■ Expand the lines referring to the various functions with "C" in their name.

56 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining Mixed Java and C++ Code

■ Select the line for jsynprog.JavaCC(). This function comes from the Java code, but it
calls into Java_jsynprog_JavaCC() which comes from the C++ code.

■ Select the line for jsynprog.JavaCJava(). This function also comes from the Java code
but calls Java_jsynprog_JavaCJava() which is C++ code. That function calls into a
C++ method of the JNIEnv_::CallStaticIntMethod() which calls back into Java to
the method jsynprog.javafunc().

4. Select a method from either Java or C++ and switch to the Source view to see the source
shown in the appropriate language along with performance metrics.
An example of the Source view after selecting a Java method is shown below.

An example of the Source view after selecting a C++ method is shown below.

Java and Mixed Java-C++ Profiling 57

Examining Mixed Java and C++ Code

5. If you don't already see the Disassembly tab in the navigation panel, add the View by
clicking the + button next to the Views label at the top of the navigation panel and selecting
the check box for Disassembly.
The Disassembly view for the function that you last selected is displayed. For a Java
function, the Disassembly view shows Java byte code, as shown in the following screen
shot.

58 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining Mixed Java and C++ Code

For a C++ function, the Disassembly view shows native machine code, as shown in the
following screen shot.

Java and Mixed Java-C++ Profiling 59

Understanding the JVM Behavior

The next section uses the Disassembly view further.

Understanding the JVM Behavior

This section shows how to examine what is occurring in the JVM by using filters, Expert Mode,
and Machine Mode.

1. Select the Functions view and find the routine named <JVM-System>.
You can find it very quickly using the Find tool in the tool bar if you type <JVM and press
Enter.

In this experiment, <JVM-System> consumed about one second of Total CPU time. Time in
the <JVM-System> function represents the workings of the JVM rather than the user code.

2. Right-click on <JVM-System> and select "Add Filter: Include only stacks containing the
selected functions".

60 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding the JVM Behavior

Notice that the filters panel below the navigation panel previously displayed No Active
Filters and now shows 1 Active Filter with the name of the filter that you added. The
Functions view refreshes so that only <JVM-System> is remaining.

3. In the Performance Analyzer tool bar, change the view mode selector from User Mode to
Expert Mode.

The Functions view refreshes to show many functions that had been represented by <JVM-
System> time. The function <JVM-System> itself is no longer visible.

4. Remove the filter by clicking the X in the Active Filters panel.
The Functions view refreshes to show the user functions again, but the functions
represented by <JVM-System> are also still visible while the <JVM-System> function is not
visible.

Java and Mixed Java-C++ Profiling 61

Understanding the JVM Behavior

Note that you do not need to perform filtering to expand the <JVM-System>. This procedure
includes filtering to more easily show the differences between User Mode and Expert
Mode.
To summarize: User Mode shows all the user functions but aggregates all the time spent in
the JVM into <JVM-System> while Expert Mode expands that <JVM-System> aggregation.
Next you can explore Machine Mode.

5. Select Machine Mode in the view mode list.

In Machine Mode, any user methods that are interpreted are not shown by name in the
Functions view. The time spent in interpreted methods is aggregated into the Interpreter
entry, which represents that part of the JVM that interpretively executes Java byte code.

62 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding the JVM Behavior

However, in Machine Mode the Functions view displays any user methods that were
HotSpot-compiled. If you select a compiled method such as Routine.add_int(), the
Selection Details window shows the method's Java source file as the Source File, but the
Object File and Load Object are shown as JAVA_COMPILED_METHODS.

6. While still in Machine Mode, switch to the Disassembly view while a compiled method is
selected in the Functions view.
The Disassembly view shows the machine code generated by the HotSpot Compiler. You
can see the Source File, Object File and Load Object names in the column header above the
code.

Java and Mixed Java-C++ Profiling 63

Understanding the Java Garbage Collector Behavior

The Total CPU Time shown on most of the visible lines is zero, because most of the work in
that function is performed further down in the code.

Continue to the next section.

Understanding the Java Garbage Collector Behavior

This procedure shows you how to use the Timeline view and the affect of the view mode setting
on the Timeline, while examining the activities that trigger Java garbage collection.

1. Set the view mode to User Mode and select the Timeline view in the navigation panel to
reveal the execution detail of this hybrid Java/native application, jsynprog.

64 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding the Java Garbage Collector Behavior

You should see the Process-Wide Resource-Utilization Samples bar at the top and profile
data for three threads. In the screen shot you can see data for Process 1, Threads 2, 14, 15.
The numbering and the number of threads you see might depend on the OS, the system, and
the version of Java you are using.
If the application was run on Oracle Solaris, rows showing thread data will also include the
thread's state. For example, only the main user thread, labeled as T:2 in the example, shows
a green bar, indicating the thread was in User CPU. The other two threads, T:14 and T:15
show grey bars, which indicates User Lock time, part of the JVM synchronization.

2. Set the view mode to Expert Mode.
The Timeline view should now show more threads although the user thread T:2 appears
almost unchanged.

3. Zoom the time axis to better view callstacks with Routine.memalloc(), now in red. You
can do this using one of the following methods:
■ Double-click on the callstacks in red.
■ Drag the cursor in the ruler to adjust vertical time markers, then press Enter.
■ Use the + or - icons in the toolbar.
■ Press the plus (+) and minus (-) keys to further adjust the zoom.

4. Click the minus (-) button to reduce the height of the thread rows until you can see all
twenty threads.
The vertical zoom control is outlined in red in the following screen shot.

Java and Mixed Java-C++ Profiling 65

Understanding the Java Garbage Collector Behavior

5.
Click the Call Stack Function Colors icon in the Timeline tool bar to set the color of the
function Routine.memalloc() to red.

In the Function Colors dialog, select the Routine.memalloc() function in the Legend, click
a red box in Swatches and click Set Selected Functions.

66 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding the Java Garbage Collector Behavior

Note that Thread 2 now has a bar of red across the top of its stack. That area represents the
portion of time where the Routine.memalloc() routine was running.
You might need to zoom out vertically to see more frames of the callstack, and zoom in
horizontally to the region of time that is of interest.

6. Zoom in close enough to see individual events in thread T:2. You can use one of the
following methods:
■ Double-click on the area of interest.
■ Drag the cursor in the ruler to adjust vertical time markers, then press Enter.
■ Use the + or - icons in the toolbar.
■ Press the plus (+) and minus (-) keys to further adjust the zoom.

Java and Mixed Java-C++ Profiling 67

Understanding the Java Garbage Collector Behavior

For each active thread of the application, the timeline will show one or more rows of data.
The upper portion of each row shows color-coded representations of the thread's callstacks.
If you click on a callstack, the function details will be shown in the Call Stack panel. In
addition, if an application was profiled on Oracle Solaris, Timeline will show the thread
state just below the callstack. In this example, thread T:1 shows predominantly dark blue,
representing Sleep. Thread T:2 shows predominantly green, representing User CPU. Thread
T:3 shows mostly dark gray, representing Lock.
Notice however that all of those threads 3 through 12 have many events clustered together
arriving at the same time as the user thread T:2 is in Routine.memalloc, the routine shown
in red.

7. Zoom in to the Routine.memalloc region, which have the callstacks with the red bar, and
filter to include only that region by doing the following:
■ In the T:2 bar, locate and click on calls to Routine.memalloc().
■ In the timeline ruler, the area showing the timescale below the toolbar, click and drag

the cursor to set time markers that enclose the calls to Routine.memalloc().
■ Right-click and select Zoom → To Selected Time Range.
■ With the range still selected, right-click and select Add Filter: Include only events

intersecting selected time range.
8. Click on any of the events on threads 3-12 and you see in the Call Stack panel that each

thread's events include GCTaskThread::run() in the stack.
Those threads represent the threads that the JVM uses to run garbage collection. The GC
threads do not take a great amount of User CPU Time and only run while the user thread is
in Routine.memalloc.

68 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding the Java Garbage Collector Behavior

9. Go back to the Functions view and click on the Incl. Total CPU column header to sort by
inclusive Total CPU Time.

You should see that one of the top functions is the GCTaskThread::run() function. This
leads you to the conclusion that the user task Routine.memalloc is somehow triggering
garbage collection.

10. Select the Routine.memalloc function and switch to the Source view.

Java and Mixed Java-C++ Profiling 69

Understanding the Java HotSpot Compiler Behavior

From this fragment of source code it is easy to see why garbage collection is being
triggered. The code allocates an array of one million objects and stores the pointers to those
objects in the same place with each pass through the loop. This renders the old objects
unused, and thus they become garbage.

Continue to the next section.

Understanding the Java HotSpot Compiler Behavior
This procedure continues from the previous section, and shows you how to use the Timeline
and Threads views to filter and find the threads responsible for HotSpot compiling.

1. Select the Timeline view and remove the filter by clicking the X in the Active Filters panel
2. Reset the zoom levels by doing one of the following:

■ Right-click in the Timeline and select Zoom → Reset Time Zoom

70 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding the Java HotSpot Compiler Behavior

■ Click the |< button to the left of the horizontal slider in the Timeline tool bar
■ Press zero (0) on your keyboard.

3. Open the Function Colors dialog again, and pick different colors for each of the Routine.*
functions.
In the Timeline view, the color changes appear in call stacks of thread 2.

4. Look at all the threads of the Timeline in the period of time where you see the color changes
in thread 2.
You should see that there are some threads with patterns of events occurring at just about
the same time as the color changes in thread 2. In this example, they are threads 17, 18, and
19.

Java and Mixed Java-C++ Profiling 71

Understanding the Java HotSpot Compiler Behavior

5. Press Ctrl and multi-select the main thread (T:2 in this example) and the rows in your
experiment that show a pattern similar to T:17 - T:19 in this example.

6. Right-click on the timeline view and select the filter Include Only Selected Rows.

Alternatively, click the filter button in the toolbar and select the filter.
7. Adjust the horizontal zoom to make the pattern easier to see.
8. Click on events in threads 17 and 18.

Note that the Call Stack panel shows CompileBroker::compiler_thread_loop(). Those
threads are the threads used for the HotSpot compiler.

72 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding the Java HotSpot Compiler Behavior

Thread 19 shows call stacks with ServiceThread::service_thread_entry() in them.

Java and Mixed Java-C++ Profiling 73

Understanding the Java HotSpot Compiler Behavior

The reason the multiple events occur on those threads is that whenever the user code
invokes a new method and spends a fair amount of time in it, the HotSpot compiler is
triggered to generate machine code for that method. The HotSpot compiler is fast enough
that the threads that run it do not consume very much User CPU Time.
The details of exactly how the HotSpot compiler is triggered is beyond the scope of this
tutorial.

74 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Hardware Counter Profiling on a Multithreaded
Program

This chapter covers the following topics.

■ “About the Hardware Counter Profiling Tutorial” on page 75
■ “Setting Up the mttest Sample Code” on page 76
■ “Collecting Data From mttest for Hardware Counter Profiling Tutorial” on page 77
■ “Examining the Hardware Counter Profiling Experiment for mttest” on page 78
■ “Exploring Clock-Profiling Data” on page 80
■ “Understanding Hardware Counter Instruction Profiling Metrics” on page 82
■ “Understanding Hardware Counter CPU Cycles Profiling Metrics” on page 84
■ “Understanding Cache Contention and Cache Profiling Metrics” on page 86
■ “Detecting False Sharing” on page 90

About the Hardware Counter Profiling Tutorial

This tutorial shows how to use Performance Analyzer on a multithreaded program named
mttest to collect and understand clock profiling and hardware counter profiling data.

You explore the Overview page and change which metrics are shown, examine the Functions
view, Callers-Callees view, and Source and Disassembly views, and apply filters.

You first explore the clock profile data, then the HW-counter profile data with Instructions
Executed which is a counter available on all supported systems. Then you explore Instructions
Executed and CPU Cycles (available on most, but not all, supported systems) and with D-cache
Misses (available on some supported systems).

If run on a system with a precise hardware counter for D-cache Misses (dcm), you will also learn
how to use the IndexObject and MemoryObject views, and how to detect false sharing of a
cache line.

Hardware Counter Profiling on a Multithreaded Program 75

Setting Up the mttest Sample Code

The program mttest is a simple program that exercises various synchronization options on
dummy data. The program implements a number of different tasks and each task uses a basic
algorithm:

■ Queue up a number of work blocks, four by default. Each one is an instance of a structure
Workblk.

■ Spawn a number of threads to process the work, also four by default. Each thread is passed
its private work block.

■ In each task, use a particular synchronization primitive to control access to the work blocks.
■ Process the work for the block, after the synchronization.

The data you see in the experiment that you record will be different from that shown here.
The experiment used for the screen shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.3. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records
its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Setting Up the mttest Sample Code
Before You Begin:
See the following for information about obtaining the code and setting up your environment.

■ “Getting the Sample Code for the Tutorials” on page 10
■ “Setting Up Your Environment for the Tutorials” on page 11

You might want to go through the introductory tutorial in “Introduction to C Profiling” first to
become familiar with Performance Analyzer.

1. Copy the contents of the mttest directory to your own private working area with the
following command:

% cp -r OracleDeveloperStudio12.6-Samples/PerformanceAnalyzer/mttest directory

Replace directory with the working directory you are using.
2. Change to that working directory copy.

% cd directory/mttest

76 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Collecting Data From mttest for Hardware Counter Profiling Tutorial

3. Build the target executable.

% make clobber

% make

Note - The clobber subcommand is only needed if you ran make in the directory before, but
safe to use in any case.

After you run make the directory contains the target application to be used in the tutorial, a
C program called mttest.

Tip - If you prefer, you can edit the Makefile to do the following: use the GNU compilers
rather than the default of the Oracle Developer Studio compilers; build in 32-bits rather than the
default of 64-bits; and add different compiler flags.

Collecting Data From mttest for Hardware Counter Profiling
Tutorial

The easiest way to collect the data is to run the following command in the mttest directory:

% make hwcperf

The hwcperf target of the Makefile launches a collect command and records an experiment.

Note - This tutorial might take a longer time compiling and collecting data than the previous
introductory tutorials.

The experiment is named test.1.er by default and contains clock-profiling data and hardware
counter profiling data for the default counters for your system. In this chapter's example, the
counters are: inst (instructions), cycles (cycles), and dcm (data-cache-misses). If Performance
Analyzer does not define a default set of hardware counters for your system, the collect
command fails. In that case, edit the HWC_OPT definition in your Makefile to specify counters
that are supported in your system.

Tip - You can use the command collect -h to determine which counters your system does
support. For information about the hardware counters, see “Hardware Counter Lists” in Oracle
Developer Studio 12.6: Performance Analyzer.

Hardware Counter Profiling on a Multithreaded Program 77

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPAafabp
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPAafabp

Examining the Hardware Counter Profiling Experiment for mttest

Examining the Hardware Counter Profiling Experiment for
mttest

This section shows how to explore the data in the experiment you created from the mttest
sample code in the previous section.

Start Performance Analyzer from the mttest directory and load the experiment as follows:

% analyzer test.1.er

When the experiment opens, Performance Analyzer shows the Overview page.

78 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining the Hardware Counter Profiling Experiment for mttest

If the application was run on Oracle Solaris, the Clock Profiling metrics are shown first and
include colored bars. Most of the thread time is spent in User CPU Time. Some time is spent in
Sleep Time or User Lock Time.

If the application was run on Linux, the Clock Profiling section will include only Total CPU
Time.

The Derived and Other Metrics group is present if you have recorded both cycles and insts
counters. The derived metrics represent the ratios of the metrics from those two counters. A
high value of Instructions Per Cycle or a low value of Cycles Per Instruction indicates relatively

Hardware Counter Profiling on a Multithreaded Program 79

Exploring Clock-Profiling Data

efficient code. Conversely, a low value of Instructions Per Cycle or a high value of Cycles Per
Instruction indicates relatively inefficient code.

The HW Counter Profiling group shows two subgroups in this experiment, Memoryspace
Hardware Counters and General Hardware Counters. The Instructions Executed counter
(insts) is listed under General Hardware Counters. If the data you collected included the
cycles counter, CPU Cycles is also listed under General Hardware Counters. If counters
were enabled that support memoryspace profiling, they will be listed under Memoryspace
Hardware Counters. In the previous example, L1 D-cache Misses is such a counter. On Linux,
memoryspace profiling is not supported.. For more information about memoryspace profiling,
see “Dataspace Profiling and Memoryspace Profiling” in Oracle Developer Studio 12.6:
Performance Analyzer.

Your system will likely have different default counters and metrics. You can edit the Makefile
to choose other counters.

You will explore these metrics and their interpretation in the following sections of the tutorial.

Exploring Clock-Profiling Data

This section explores the clock profiling data using the Overview page and the Functions view
with the Called-by/Calls panel.

1. In the Overview page, deselect the check boxes for three HW counter metrics, leaving only
the Total CPU Time check box selected.

2. Go to the Functions view and click the column heading once for Inclusive Total CPU Time
to sort according to inclusive total CPU time.

The function do_work() should now be at the top of the list.

80 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPAafamt
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPAafamt

Exploring Clock-Profiling Data

3. Select the do_work() function and look at the Called-by/Calls panel at the bottom of the
Functions view.

Note that do_work() is called from two places, and it calls ten functions.

The ten functions that do_work() calls represent ten different tasks, each with a different
synchronization method that the program executed. In some experiments created from
mttest you might see an eleventh function which uses relatively little time to fetch the
work blocks for the other tasks. This function is not shown in the screen shot.

Most often, do_work() is called when a thread to process the data is created, and is shown
as called from _lwp_start(). In one case, do_work() calls one single-threaded task called
nothreads() after being called from locktest().
In the Calls side of the panel, note that except for the first two of the callees, all callees
show about the same amount of time (~12 seconds) of Attributed Total CPU.

Hardware Counter Profiling on a Multithreaded Program 81

Understanding Hardware Counter Instruction Profiling Metrics

Understanding Hardware Counter Instruction Profiling
Metrics

This section shows how to use general hardware counters to see how many instructions are
executed for functions.

1. Select the Overview page and enable the HW Counter Profiling metric named Instructions
Executed, which is under General Hardware Counters.

2. Return to the Functions view, and click on the Name column header to sort alphabetically.
3. Scroll down to find the functions compute(), computeA(), computeB(), etc.

Note that all of the functions except computeB() and computeF() have approximately the
same amount of Exclusive Total CPU time and of Exclusive Instructions Executed.

4. Select computeF() and switch to the Source view. You can do this in one step by double-
clicking computeF().

82 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding Hardware Counter Instruction Profiling Metrics

The computation kernel in computeF() is different because it calls a function addone() to
add one, while the other compute*() functions do the addition directly. This explains why
its performance is different from the others.

5. Scroll up and down in the Source view to look at all the compute*() functions.

Note that all of the compute*() functions, including computeB(), show approximately the
same number of instructions executed. Yet computeB() shows a very different CPU Time
cost.

Hardware Counter Profiling on a Multithreaded Program 83

Understanding Hardware Counter CPU Cycles Profiling Metrics

The next section helps show why the Total CPU time is so much higher for computeB().

Understanding Hardware Counter CPU Cycles Profiling
Metrics

This part of the tutorial requires an experiment with data from the cycles counter. If your
system does not support this counter, your experiment cannot be used in this section. Skip to the
next section “Understanding Cache Contention and Cache Profiling Metrics” on page 86.

1. Select the Overview page and enable the derived metric Cycles Per Instruction and the
General Hardware Counter metric, CPU Cycles Time.
You should keep Total CPU Time and Instructions Executed selected.

84 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding Hardware Counter CPU Cycles Profiling Metrics

2. Return to the Source view at computeB().

Cycles Per Instruction is computed from the underlying cycles and instruction counts.
The CPU Cycles metric is displayed as estimated time. The time value is computed by
dividing the cycle count by a fixed frequency. On systems where the processors run at a
fixed frequency, CPU Cycles and Total CPU time are roughly equivalent. On systems where
the processors run at variable frequencies, the two metrics will differ in value. In all cases,
CPI and IPC are computed from the underlying cycle counts. In any case, CPI and IPC are
computed from the underlying cycle counts.
In the screen shots, the Incl. CPU Cycles and the Incl. Total CPU Time are about 12
seconds for each of the compute*() functions except computeB(). You should also see in

Hardware Counter Profiling on a Multithreaded Program 85

Understanding Cache Contention and Cache Profiling Metrics

your experiment that the Incl. Cycles Per Instruction (CPI) is much higher for computeB()
than it is for the other compute*() functions. This indicates that more CPU cycles are
needed to execute the same number of instructions, and computeB() is therefore less
efficient than the others.

The data you have seen so far shows the difference between that computeB() function and the
others, but does not show why they might be different. The next part of this tutorial explores
why computeB() is different.

Understanding Cache Contention and Cache Profiling
Metrics

This section and the rest of the tutorial requires an experiment with data from the precise dcm
hardware counter. If your system does not support the precise dcm counter, the remainder of the
tutorial is not applicable to the experiment you recorded on the system.

The dcm counter is counting cache misses, which are loads and stores that reference a memory
address that is not in the cache.

An address might not be in cache for any of the following reasons:

■ Because the current instruction is the first reference to that memory location from that CPU.
More accurately, it is the first reference to any of the memory locations that share the cache
line.

■ Because the thread has referenced so many other memory addresses that the current address
has been flushed from the cache. This is a capacity miss.

■ Because the thread has referenced other memory addresses that map to the same cache line
which causes the current address to be flushed. This is a conflict miss.

■ Because another thread has written to an address within the cache line which causes the
current thread's cache line to be flushed. This is a sharing miss, and could be one of two
types of sharing misses:
■ True sharing, where the other thread has written to the same address that the current

thread is referencing. Cache misses due to true sharing are unavoidable.
■ False sharing, where the other thread has written to a different address from the one that

the current thread is referencing. Cache misses due to false sharing occur because the
cache hardware operates at a cache-line granularity, not a data-word granularity. False
sharing can be avoided by changing the relevant data structures so that the different
addresses referenced in each thread are on different cache lines.

This procedure examines a case of false sharing that has an impact on the function computeB().

86 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding Cache Contention and Cache Profiling Metrics

1. Return to the Overview, and enable the metric for L1 D-cache Misses, and disable the
metric for Cycles Per Instruction.

2. Switch back to the Functions view and look at the compute*() routines.

Hardware Counter Profiling on a Multithreaded Program 87

Understanding Cache Contention and Cache Profiling Metrics

Recall that all compute*() functions show approximately the same instruction count, but
computeB() shows higher Total CPU Time and is the only function with significant counts
for Exclusive L1 D-cache Misses.

3. Go back to the Source view and note that in computeB() the cache misses are in the single
line loop.

4. If you don't already see the Disassembly tab in the navigation panel, add the View by
clicking the + button next to the Views label at the top of the navigation panel and selecting
the check box for Disassembly.
Scroll the Disassembly view until you see the line with the load instruction with a high
number of L1 D-Cache Misses.

88 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Understanding Cache Contention and Cache Profiling Metrics

Tip - The right margin of views such as Disassembly include shortcuts you can click to
jump to the lines with high metrics, or hot lines. Try clicking the Next Hot Line down-
arrow at the top of the margin or the Non-Zero Metrics marker to jump quickly to the lines
with notable metric values.

On SPARC systems, if you compiled with -xhwcprof, loads and stores are annotated with
structure information showing that the instruction is referencing a double word, sum_ctr
in the workStruct_t data structure. You also see lines with the same address as the next
line, with <branch target> as its instruction. Such lines indicate that the next address is the
target of a branch, which means the code might have reached an instruction that is indicated
as hot without ever executing the instructions above the <branch target>.

On x86 systems, the loads and stores are not annotated and <branch target> lines are not
displayed because the -xhwcprof is not supported on x86.

5. Go back and forth between the Functions and Disassembly views, selecting various
compute*() functions.

Note that for all compute*() functions, the instructions with high counts for Instructions
Executed reference the same structure field.

Hardware Counter Profiling on a Multithreaded Program 89

Detecting False Sharing

You have now seen that computeB() takes much longer than the other functions even though
it executes the same number of instructions, and is the only function that gets cache misses.
The cache misses are responsible for the increased number of cycles to execute the instructions
because a load with a cache miss takes many more cycles to complete than a load with a cache
hit.

For all the compute*() functions except computeB(), the double word field sum_ctr in the
structure workStruct_t which is pointed to by the argument from each thread, is contained
within the Workblk for that thread. Although the Workblk structures are allocated contiguously,
they are large enough so that the double words in each structure are too far apart to share a
cache line.

For computeB(), the workStruct_t arguments from the threads are consecutive instances of
that structure, which is only one double-word long. As a result the double-words used by the
different threads will share a cache line, which causes any store from one thread to invalidate
the cache line in the other threads. That is why the cache miss count is so high, and the delay
refilling the cache line is why the Total CPU Time and CPU Cycles Metric is so high.

In this example, the data words being stored by the threads do not overlap although they share
a cache line. This performance problem is referred to as "false sharing". If the threads were
referring to the same data words, that would be true sharing. The data you have looked at so far
do not distinguish between false and true sharing.

The difference between false and true sharing is explored in the last section of this tutorial.

Detecting False Sharing

This part of the tutorial is applicable only to systems where the L1 D-Cache Miss dcm counter
is precise. Such systems include SPARC-T4, SPARC-T5, SPARC-M5 and SPARC-M6, among
others. If your experiment was recorded on a system without a precise dcm counter, this section
does not apply.

This procedure shows how to use Index Object views and Memory Object views along with
filtering.

When you create an experiment on a system with precise memory-related counters, a machine
model is recorded in the experiment. The machine model represents the mappings of addresses
to the various components in the memory subsystem of that machine. When you load the
experiment in Performance Analyzer or er_print, the machine model is automatically loaded.

The experiment used for the screen shots in this tutorial was recorded on a SPARC T5 system
and the t5 machine model for that machine is automatically loaded with the experiment. The
machine model adds data views of index objects and memory objects.

90 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Detecting False Sharing

1. Go to the Functions view and select computeB(), then right-click and select Add Filter:
Include only stacks containing the selected functions.

By filtering, you can focus on the performance of the computeB() function and the profile
events occurring in that function.

2. Click the Settings button in the tool bar or choose Tools → Settings to open the Settings
dialog, and select the Views tab in that dialog.

The panel on the right is labeled Memory Objects Views and shows a list of data views that
represent the SPARC T5 machine's memory subsystem structure.

3. Select the check boxes for Memory_address and Memory_32B_cacheline and click OK.
4. Select the Memory_address view in the Views navigation panel.

Hardware Counter Profiling on a Multithreaded Program 91

Detecting False Sharing

In this experiment you can see that there are four different addresses getting the cache
misses.

5. Select one of the addresses and then right-click and choose Add Filter: Include only events
with the selected item.

6. Select the Threads view.

92 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Detecting False Sharing

As you can see in the preceding screen shot, only one thread has cache misses for that
address.

7. Remove the address filter by right-clicking in the view and selecting Undo Filter Action
from the context menu.
You can alternatively use the Undo Filter Action button in the Active Filters panel to
remove the filter.

8. Return to the Memory_address view, and select and filter on other addresses and check the
associated thread in the Threads view.
By filtering and unfiltering and by switching between the Memory_address and Threads
views in this manner, you can confirm that there is a one-to-one relationship between the
four threads and the four addresses. That is, the four threads do not share addresses.

9. Select the Memory_32B_cacheline view in the Views navigation panel.

Hardware Counter Profiling on a Multithreaded Program 93

Detecting False Sharing

Confirm in the Active Filters panel that there is only the filter active on the function
computeB(). The filter is shown as Functions: Selected Functions. None of the filters on
addresses should be active now.
You should see that there are two 32-byte cache lines getting the cache misses of the four
threads and their four respective addresses. This confirms that although you saw earlier that
the four threads do not share addresses, you see here that they do share cache lines.

False sharing is a very difficult problem to diagnose, and the SPARC T5 chip, along with Oracle
Developer Studio Performance Analyzer enables you to do so.

94 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Synchronization Tracing on a Multithreaded
Program

This tutorial includes the following topics.

■ “About the Synchronization Tracing Tutorial” on page 95
■ “Setting Up the mttest Sample Code” on page 97
■ “Collecting Data from mttest for Synchronization Tracing Tutorial” on page 98
■ “Examining the Synchronization Tracing Experiment for mttest” on page 98

About the Synchronization Tracing Tutorial

This tutorial shows how to use Performance Analyzer on a multithreaded program to examine
clock profiling and synchronization tracing data.

You use the Overview page to quickly see which performance metrics are highlighted and
change which metrics are shown in data views. You use the Functions view, Callers-Callees
view, and the Source view to explore the data. The tutorial also shows you how to compare two
experiments.

The tutorial helps you understand synchronization tracing data, and explains how to relate it to
clock-profiling data.

The data you see in the experiment that you record will be different from that shown here.
The experiment used for the screen shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.3. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records
its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Synchronization Tracing on a Multithreaded Program 95

About the Synchronization Tracing Tutorial

About the mttest Program

The program mttest is a simple program that exercises various synchronization options on
dummy data. The program implements a number of different tasks and each task uses the same
basic algorithm:

■ Queue up a number of work blocks (4, by default).
■ Spawn a number of threads to process them (also, 4, by default).
■ In each task, use a particular synchronization primitive to control access to the work blocks.
■ Process the work for the block, after the synchronization.

Each task uses a different synchronization method. The mttest code executes each task in
sequence.

About Synchronization Tracing

Synchronization tracing is implemented by interposing on the various library functions for
synchronization, such as mutex_lock(), pthread_mutex_lock(), sem_wait(), and so on. Both
the pthread and Oracle Solaris synchronization calls are traced.

When the target program calls one of these functions, the call is intercepted by the data
collector. The current time, the address of the lock, and some other data is captured, and then
the interposition routine calls the real library routine. When the real library routine returns, the
data collector reads the time again and computes the difference between the end-time and the
start-time. If that difference exceeds a user-specified threshold, the event is recorded. If the time
does not exceed the threshold, the event is not recorded. In either case, the return value from the
real library routine is returned to the caller.

You can set the threshold used to determine whether to record the event by using the collect
command's -s option. If you use Performance Analyzer to collect the experiment, you can
specify the threshold as the Minimum Delay for Synchronization Wait Tracing in the Profile
Application dialog. You can set the threshold to a number of microseconds or to the keyword
calibrate or on. When you use calibrate or on the data collector determines the time it
takes to acquire an uncontended mutex lock and sets the threshold to five times that value. A
specified threshold of 0 or all causes all events to be recorded.

In this tutorial, you record synchronization wait tracing in two experiments, with one
experiment having a calibrated threshold and one experiment with a zero threshold. Both
experiments also include clock profiling.

96 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Setting Up the mttest Sample Code

Setting Up the mttest Sample Code

Before You Begin:
See the following for information about obtaining the code and setting up your environment.

■ “Getting the Sample Code for the Tutorials” on page 10
■ “Setting Up Your Environment for the Tutorials” on page 11

You might want to go through the introductory tutorial in “Introduction to C Profiling” first to
become familiar with Performance Analyzer.

This tutorial uses the same mttest code as the tutorial “Hardware Counter Profiling on a
Multithreaded Program”. You should make a separate copy for this tutorial.

1. Copy the contents of the mttest directory to your own private working area with the
following command:

% cp -r OracleDeveloperStudio12.6-Samples/PerformanceAnalyzer/mttest directory

Replace directory with the working directory you are using.
2. Change to that working directory copy.

% cd directory/mttest

3. Build the target executable.

% make clobber

% make

Note - The clobber subcommand is only needed if you ran make in the directory before, but
safe to use in any case.

After you run make the directory contains the target application to be used in the tutorial, a
C program called mttest.

Tip - If you prefer, you can edit the Makefile to do the following: use the GNU compilers
rather than the default of the Oracle Developer Studio compilers; build in 32-bits rather than the
default of 64-bits; and add different compiler flags.

Synchronization Tracing on a Multithreaded Program 97

Collecting Data from mttest for Synchronization Tracing Tutorial

Collecting Data from mttest for Synchronization Tracing
Tutorial

The easiest way to collect the data is to run the following command in the mttest directory:

% make syncperf

The syncperf target of the Makefile launches the collect command twice and creates two
experiments.

Note - This tutorial might take a longer time compiling and collecting data than the previous
introductory tutorials.

The two experiments are named test.1.er and test.2.er and each contains synchronization
tracing data and clock profile data. For the first experiment, collect uses a calibrated threshold
for recording events by specifying the -s on option. For the second experiment, collect sets
the threshold to zero to record all events by specifying the -s all option. In both experiments,
clock-profiling is enabled through the -p on option.

Examining the Synchronization Tracing Experiment for
mttest

This section shows how to explore the data in the experiments you created from the mttest
sample code in the previous section.

Start Performance Analyzer from the mttest directory and load the first experiment as follows:

% analyzer test.1.er

When the experiment opens, Performance Analyzer shows the Overview page.

98 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining the Synchronization Tracing Experiment for mttest

Clock Profiling metrics are shown first. On Oracle Solaris, Clock Profiling will show colored
bars. Most of the thread time is spent in User CPU Time. Some time is spent in Sleep Time or
User Lock Time. On Linux, only Total CPU time is shown.

Synchronization Tracing metrics are shown in a second group that includes two metrics, Sync
Wait Time and Sync Wait Count.

Synchronization Tracing on a Multithreaded Program 99

Examining the Synchronization Tracing Experiment for mttest

Note - If you do not see the Sync Wait Time and Sync Wait Count metrics, you might have
to scroll to the right to see the columns. You can move any column in a more convenient
location by right-clicking the metric column header, selecting Move This Metric, and choosing
a convenient location for you to see the metrics in relation to the other metrics.

The following example moves the Name column after the Sync Wait Count metric.

You can explore these metrics and their interpretation in the following sections of the tutorial.

Understanding Synchronization Tracing

This section explores the synchronization tracing data and explains how to relate it to clock-
profiling data.

1. Go to the Functions view and sort according to inclusive Total CPU Time by clicking the
column header Inclusive Total CPU.

2. Select the do_work() function at the top of the list.

100 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining the Synchronization Tracing Experiment for mttest

3. Look at the Called-by/Calls panel at the bottom of the Functions view and note that
do_work() is called from two places, and it calls ten functions.

Most often, do_work() is called when a thread to process the data is created, and is shown
as called from _lwp_start(). In one case, do_work() calls one single-threaded task called
nothreads() after being called from locktest().

The ten functions that do_work() calls represent ten different tasks, and each task uses a
different synchronization method that the program executed. In some experiments created
from mttest you might see an eleventh function which uses relatively little time to fetch the
work blocks for the other tasks. This function fetch_work() is displayed in the Calls panel
in the preceding screen shot.
Note that except for the first two of the callees in the Calls panel, all callees show
approximately the same amount of time (~10.6 seconds) of Attributed Total CPU.

4. Switch to the Callers-Callees view.

Synchronization Tracing on a Multithreaded Program 101

Examining the Synchronization Tracing Experiment for mttest

Callers-Callees view shows the same callers and callees as the Called-by/Calls panel, but it
also shows the other metrics that were selected in the Overview page, including Attributed
Sync Wait Time.

Look for the two functions lock_global() and lock_local(), and note that they show
about the same amount of Attributed Total CPU time, but very different amounts of
Attributed Sync Wait Time.

5. Select the lock_global() function and switch to Source view.

102 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining the Synchronization Tracing Experiment for mttest

Note that all the Sync Wait time is on the line with the call to pthread_mutex_lock
(&global_lock) which has 0 Total CPU Time. As you might guess from the function
names, the four threads executing this task all do their work when they acquire a global
lock, which they acquire one by one.

6.
Go back to the Functions view and select lock_global(), then click the Filter icon and
select Add Filter: Include only stacks containing the selected functions.

7. Select the Timeline view and you should see four threads.
8. Zoom into the areas of interest by highlighting the region in the timeline where the events

happen, right-clicking, and selecting Zoom → Zoom to Selected Time Range.
9. Examine the four threads and the times spent waiting versus computing.

Synchronization Tracing on a Multithreaded Program 103

Examining the Synchronization Tracing Experiment for mttest

Note - Your experiment might have different threads executing and waiting at different
times.

The first thread to get the lock (T:15 in the screen shot) works for ~2.97 seconds, then gives
up the lock. If your application was run on Oracle Solaris, you can see that the thread state
bar was spent in User CPU Time (green), with none in User Lock Time (grey). Notice also

that the second bar for Synchronization Tracing Call Stacks marked with the show no
call stacks for this thread.
The second thread (T:17 in the screen shot) has waited 2.99 seconds in User Lock Time,
and then it computes for ~2.90 seconds and gives up the lock. The Synchronization Tracing
Call Stacks coincide with the User Lock Time.
The third thread (T:14) has waited 5.98 seconds in User Lock Time and it then computes for
~2.95 seconds, and gives up the lock.

104 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining the Synchronization Tracing Experiment for mttest

The last thread (T:16) has waited 8.98 seconds in User Lock Time, and it computes for 2.84
seconds. The total computation was 2.97+2.90+2.95+2.84 or ~11.7 seconds.
The total synchronization wait was 2.99 + 5.98 + 8.98 or ~17.95 seconds, which you can
confirm in the Functions view (which reports 17.954 seconds).

10. Remove the filter by clicking the X in the Active Filters panel.
11. Go back to the Functions view, select the function lock_local(), and switch to the Source

view.

Note that the Sync Wait Time is 0 on the line with the call to pthread_mutex_lock
(&array->lock), line 1043 in the screen shot. This is because the lock is local to the
workblock, so there is no contention and all four threads compute simultaneously.

The experiment you looked at was recorded with a calibrated threshold. In the next section, you
compare to a second experiment which was recorded with zero threshold when you ran the make
command.

Comparing Two Experiments with Synchronization
Tracing

In this section you compare the two experiments. The test.1.er experiment was recorded
with a calibrated threshold for recording events, and the test.2.er experiment was recorded
with zero threshold to include all synchronization events that occurred in the mttest program
execution.

Synchronization Tracing on a Multithreaded Program 105

Examining the Synchronization Tracing Experiment for mttest

1.
Click the Compare Experiments button on the tool bar or choose File → Compare
Experiments.
The Compare Experiments dialog box opens.

The test.1.er experiment that you already have open is listed in the Baseline group. You
must add experiments to compare to the baseline experiment in the Comparison Group
panel.
For more information about comparing experiments and adding multiple experiments to
compare against the baseline, click the Help button in the dialog box.

2. Click the ... button next to Comparison Experiment 1, and open the test.2.er experiment
in the Select Experiment dialog.

3. Click OK in the Compare Experiments dialog to load the second experiment.
The Overview page reopens with the data of both experiments included.

106 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining the Synchronization Tracing Experiment for mttest

The Clock Profiling metrics display two colored bars for each metric, one bar for each
experiment. The data from the test.1.er Baseline experiment is on top.
If you move the mouse cursor over the data bars, pop-up text shows the data from the
Baseline and Comparison groups and difference between them in numbers and percentage.
Note that the Total CPU Time recorded is a little larger in the second experiment, but there
are almost three times as many Sync Wait Counts.

4. Switch to the Functions view, and click the subcolumn header labeled Baseline under the
Inclusive Sync Wait Count column to sort the functions by the number of events in the first
experiment.

Synchronization Tracing on a Multithreaded Program 107

Examining the Synchronization Tracing Experiment for mttest

The largest discrepancy between test.1.er and test.2.er is in do_work(), which
includes the discrepancies from all the functions it calls, directly or indirectly, including
lock_global() and lock_local().

Tip - You can compare the discrepancies even more easily if you change the comparison
format. Click the Settings button in the tool bar, select the Formats tab, and choose Deltas
for the Comparison Style. After you apply the change, the metrics for test.2.er display
as the + or - difference from the metrics in test.1.er. In the preceding screen shot, the
selected pthread_mutex_lock() function would show +88 in the test.2.er Incl Sync Wait
Count column.

5. Select Callers-Callees view.

108 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Examining the Synchronization Tracing Experiment for mttest

Look at two of the callers, lock_global() and lock_local().

The lock_global() function shows 3 events for Attributed Sync Wait Count in test.1.
er, but 4 events in test.2.er. The reason is that the first thread to acquire the lock in the
test.1.er was not stalled, so the event was not recorded. In the test.2.er experiment
the threshold was set to record all events, so even the first thread's lock acquisition was
recorded.

Similarly, in the first experiment there were no recorded events for lock_local() because
there was no contention for the lock. There were 4 events in the second experiment, even
though in aggregate they had negligible delays.

Synchronization Tracing on a Multithreaded Program 109

110 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

Exploring More in Performance Analyzer

This chapter explores more tutorials and tasks you can do with Performance Analyzer, as well
as where you can find more resources.

■ “Using the Remote Performance Analyzer” on page 111
■ “More Information” on page 112

Using the Remote Performance Analyzer

You can use the Remote Performance Analyzer either from a supported system, or from systems
where Oracle Developer Studio cannot be installed, such as Mac OS or Windows. See “Using
Performance Analyzer Remotely” in Oracle Developer Studio 12.6: Performance Analyzer for
information about installing and using this special version of Performance Analyzer.

When you invoke Performance Analyzer remotely, you see the same Welcome page, but the
options for creating and viewing experiments are disabled and grayed-out.

Click Connect to Remote Host and Performance Analyzer opens a connection dialog:

Exploring More in Performance Analyzer 111

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPAgotcr
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPAgotcr

More Information

Type the name of the system to which you want to connect, your user name and password for
that system, and the installation path to the Oracle Developer Studio installation on that system.
Click Connect and Performance Analyzer logs in to the remote system using your name and
password, and verifies the connection.

From that point on, the Welcome page will look just as it does with the local Performance
Analyzer, except the status area at the bottom shows the name of the remote host to which you
connected. Proceed from there in step 2 above.

More Information

The following resources give more information on Performance Analyzer and the related data-
collection tools:

■ Integrated help system in Performance Analyzer
■ Oracle Developer Studio 12.6: Performance Analyzer
■ Articles and white papers available on the Oracle Developer Studio developer portal (http:

//www.oracle.com/technetwork/server-storage/developerstudio/).

112 Oracle Developer Studio 12.6: Performance Analyzer Tutorials • June 2017

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPA
http://www.oracle.com/technetwork/server-storage/developerstudio/
http://www.oracle.com/technetwork/server-storage/developerstudio/

	Oracle® Developer Studio 12.6: Performance Analyzer Tutorials
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Introduction to the Performance Analyzer Tutorials
	About the Performance Analyzer Tutorials
	Getting the Sample Code for the Tutorials
	Setting Up Your Environment for the Tutorials

	Introduction to C Profiling
	About the C Profiling Tutorial
	Setting Up the lowfruit Sample Code
	Using Performance Analyzer to Collect Data
	Using the Performance Analyzer to Examine the lowfruit Data

	Introduction to Java Profiling
	About the Java Profiling Tutorial
	Setting Up the jlowfruit Sample Code
	Using Performance Analyzer to Collect Data from jlowfruit
	Using Performance Analyzer to Examine the jlowfruit Data

	Java and Mixed Java-C++ Profiling
	About the Java-C++ Profiling Tutorial
	Setting Up the jsynprog Sample Code
	Collecting the Data From jsynprog
	Examining the jsynprog Data
	Examining Mixed Java and C++ Code
	Understanding the JVM Behavior
	Understanding the Java Garbage Collector Behavior
	Understanding the Java HotSpot Compiler Behavior

	Hardware Counter Profiling on a Multithreaded Program
	About the Hardware Counter Profiling Tutorial
	Setting Up the mttest Sample Code
	Collecting Data From mttest for Hardware Counter Profiling Tutorial
	Examining the Hardware Counter Profiling Experiment for mttest
	Exploring Clock-Profiling Data
	Understanding Hardware Counter Instruction Profiling Metrics
	Understanding Hardware Counter CPU Cycles Profiling Metrics
	Understanding Cache Contention and Cache Profiling Metrics
	Detecting False Sharing

	Synchronization Tracing on a Multithreaded Program
	About the Synchronization Tracing Tutorial
	About the mttest Program
	About Synchronization Tracing

	Setting Up the mttest Sample Code
	Collecting Data from mttest for Synchronization Tracing Tutorial
	Examining the Synchronization Tracing Experiment for mttest
	Understanding Synchronization Tracing
	Comparing Two Experiments with Synchronization Tracing

	Exploring More in Performance Analyzer
	Using the Remote Performance Analyzer
	More Information

