
Oracle® Developer Studio 12.6: GCC
Compatibility Guide
June 2017

Part No: E77792

This document discusses the GCC (Gnu Compiler Collection) compatibility with Oracle Developer Studio
compilers and tools.

This guide is intended for people who would like to take source code that normally builds with the GNU C
and C++ compilers and build it with the Oracle Developer Studio C and C++ compilers. This strategy might
include using Oracle Developer Studio and GNU compilers for different parts of the same application.
This strategy is also useful for people who need to maintain source code in such a way that it is compatible
between both kinds of compilers.

In this document, the term GCC is used to refer to the Gnu Compiler Collection, which includes (among
others) a C and a C++ compiler. The term gcc refers to the GNU C compiler and g++ refers to the GNU
C++ compiler.

Note - Although many implementation details are discussed in this document, the definitive source for
supported features are the Oracle Developer Studio 12.6: C User’s Guide and the Oracle Developer Studio
12.6: C++ User’s Guide.

General Compatibility Concepts

This section discusses basic concepts affecting the compatibility between Oracle Developer Studio and
GCC compilers.

Platforms and ABIs

The C or the C++ language standards do not define any formal ABI (Application Binary Interface).
However, within a specific platform and pointer size, a de facto ABI enables compatibility between modules
written with C-level exported interfaces.

In this context, a platform is a combination of two items:

■ Operating system (for example, Oracle Linux or Oracle Solaris).
■ Chip family (SPARC or x86).

The pointer size refers to whether the binaries are built with the 32-bit ABI or the 64-bit ABI. Some
platforms might support only one pointer size, but currently most platforms supported by the Oracle
Developer Studio product support both 32-bit and 64-bit programs.

Oracle Developer Studio and gcc support the -m32 and -m64 options for selecting the 32-bit and 64-bit ABIs
respectively. On Solaris 10 and Oracle Solaris 11, the default mode is 32-bit. On Oracle Linux, the default
mode is 64-bit.

To implement many features of the C++ language, the compiler must generate ELF symbols and other
binary data that are specific to the compiler implementation and not covered by a multi-vendor platform-
wide ABI document.

Some features of the compiler that are selected by compile-time or link-time options can result in additional
external symbol references or other changes in the binary output of the compiler that is beyond the usual C
level interfaces defined in the ABIs. For these features, you might have to link your program with the same
compiler used to create the object files. Some features might also prevent linking with object files from
other compilers.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 2

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCG
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCP
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCP

Compatibility Summary

You can generally compile C source files with Oracle Developer Studio or gcc and freely mix their object
files to link either an executable or a shared library. This section describes some exceptions.

For C++, you can choose a g++ compatible mode of the Oracle Developer Studio C++ compiler and
mix shared libraries and executables built with different compilers, but you cannot mix object files from
different compilers. Details are described below.

The Oracle Developer Studio 12.6 release has a specific issue with g++ compatibility between the 4.x library
and the 5.x library ABIs. For more information, see “GNU ABI Compatibility” on page 19.

ABI References

The binary code generated by the Oracle Developer Studio compilers is described in a variety of documents:

■ SPARC ABI: http://sparc.org/technical-documents
■ SPARC Assembly Language Reference Manual : Chapter 6. Writing Functions http://docs.oracle.

com/cd/E53394_01/html/E54833/index.html

■ x86 ABIs: https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
■ Oracle Solaris 64-bit Developer's Guide

■ AMD64 ABI Features: https://docs.oracle.com/cd/E53394_01/html/E61689/fcowb.html
■ SPARC V9 ABI Features: https://docs.oracle.com/cd/E53394_01/html/E61689/advanced-2.

html

C++ GNU ABI Mode and Sun ABI Mode

The Oracle Developer Studio C++ compiler has two modes of operation. The older Sun mode has backward
compatibility with binaries that are built with older compilers and is not compatible with g++. The Sun
mode is enabled with -compat=5. Newer modes of operation are enabled for C++ 11 compliance using the
-std option. For more information about these options, see the Oracle Developer Studio 12.6: C++ User’s
Guide.

Standards Conformance Overview

The Oracle Developer Studio and GCC compilers can compile in specific modes that conform to different
language or operating system standards. These include C and C++ language standards and various POSIX,
UNIX, SUS, or XPG standards. These modes have the following effects:

■ The compiler enables or disables specific syntax that exhibits different behaviors for different language
standards.

■ The compiler enables or disables specific keywords and variant spellings of keywords. For example,
__restrict and restrict.

■ In response to CPP symbols controlled by the compiler, the system headers can either hide or make
visible the specific APIs that are a part of the selected language standards or the Operating System
standards.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 3

http://sparc.org/technical-documents
http://docs.oracle.com/cd/E53394_01/html/E54833/index.html
http://docs.oracle.com/cd/E53394_01/html/E54833/index.html
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
https://docs.oracle.com/cd/E53394_01/html/E61689/fcowb.html
https://docs.oracle.com/cd/E53394_01/html/E61689/advanced-2.html
https://docs.oracle.com/cd/E53394_01/html/E61689/advanced-2.html
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCP
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCP

Configure Scripts

Open source projects often use the autoconf package to create a script called configure that is used to
detect platform-specific properties and set up correct macros and Makefiles to match the platform you are
building on.

The Oracle Solaris system header files are designed to exclude Oracle Solaris extensions if the application
requests any POSIX compilation modes using macros like _POSIX_SOURCE or __XPG7. You can perform the
following task in order to request extensions to be added back to the system headers.

Add AC_USE_SYSTEM_EXTENSIONS flag to your configure.ac file, and rerun autoconf. This generates a
configure script which will add the __EXTENSIONS__ macro when the configure script is run on Oracle
Solaris. The system headers then enable extensions even in the conforming mode. Linux has a similar macro
called _GNU_SOURCE.

For more information about the flag, see autoconf documentation.

Assembler Compatibility
The SPARC and x86 assemblers act very differently in terms of machine code, and in terms of pseudo-ops.
Therefore, the compatibility issues between the GNU assembler (gas) and the Oracle Developer Studio and
Oracle Solaris assemblers will be different on different platforms.

The same source code is used to produce the assemblers that ship with Oracle Solaris (SPARC and x86) and
the assemblers that ship with Oracle Developer Studio (SPARC and x86). So, you should expect similar
compatibility issues when dealing with either the Oracle Developer Studio or Oracle Solaris assemblers.

x86 Assembler

Note the following x86 assembler issues when switching between the Oracle Developer Studio and Oracle
Solaris assemblers and the GCC assembler.

■ gcc can often infer opcode suffixes, whereas Oracle Developer Studio insists they be explicitly
provided. Being more explicit satisfies both. For example, change mov to movw and shr to shrw.

■ '#' introduces comments in gcc assembler files, but has historically been expected to introduce
preprocessing directives in Oracle Developer Studio assembler files.

For more information, see x86 Assembly Language Reference Manual

SPARC Assembler

The official SPARC assembly format is defined by The SPARC Assembly Reference Language Manual.

Assembler Directives Related to ELF Sections

The .section directive takes different arguments in the SPARC assembler. The attribute flags are defined
using explicit tokens instead of a character string as in the GNU assembler (gas). For example, with gas, a
.section directive would appear as follows:

.section .init,"aw"

Oracle® Developer Studio 12.6: GCC Compatibility Guide 4

http://www.gnu.org/software/autoconf/manual/autoconf.html#Posix-Variants
https://docs.oracle.com/cd/E53394_01/html/E54851/index.html
http://docs.oracle.com/cd/E53394_01/html/E54833/index.html

When using the Oracle Developer Studio or Oracle Solaris SPARC assembler, the directive would appear as
follows:

.section ".init",#alloc,#write

Note - The SPARC assembler supports the.pushsection and .popsection directives, but not .previous
directive.

Pseudo-Op Issues

The .symver pesudo-op is supported in the SPARC assembler for GNU compatibility.

The .uleb128 and .sleb128 pseudo-ops are supported.

SPARC Assembler Resources

For more information, see the following resources:

■ Descriptions of the current SPARC instruction sets: http://www.oracle.com/technetwork/server-
storage/sun-sparc-enterprise/documentation/sparc-processor-2516655.html

■ SPARC ABI Documentation: http://sparc.org/technical-documents/

Header File Compatibility
GCC and Oracle Developer Studio compilers predefine different symbols.

Use the following command to view the symbols that are predefined by gcc for C and C++:

$ gcc -E -dM -xc /dev/null

$ g++ -E -dM -xc++ /dev/null

Use the following command to view the symbols that are predefined by Oracle Developer Studio C and
C++ compilers:

$ cc -xdumpmacros -E /dev/null

$ CC -xdumpmacros -E /dev/null

Use of various compiler options can affect the predefined macros and their values for all compilers. The
-m32|-m64 options and the language options (std=v) in particular affect predefined macros.

This output also includes source code defining the _GNU_SOURCE macro, which is used to enable header file
declarations for various non-portable functions, defined mostly in glibc. Fore more information, see http:
//stackoverflow.com/questions/5582211/what-does-define-gnu-sourceimply.

Preprocessor Compatibility
The Oracle Developer Studio C and C++ compilers have their own built-in implementations of the C
preprocessor that are used by default. These preprocessors have the following extensions which are
compatible with gcc.

The Oracle Developer Studio preprocessors:

■ #warning

Oracle® Developer Studio 12.6: GCC Compatibility Guide 5

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-processor-2516655.html
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-processor-2516655.html
http://sparc.org/technical-documents/
http://stackoverflow.com/questions/5582211/what-does-define-gnu-sourceimply
http://stackoverflow.com/questions/5582211/what-does-define-gnu-sourceimply

■ #include_next (to implement wrapper headers)

Some code that depends on traditional mode behavior of the preprocessor will also encounter differences
between the Oracle Developer Studio and GCC compilers. The traditional mode in gcc is described at
https://gcc.gnu.org/onlinedocs/cpp/Traditional-Mode.html.

Although you can achieve traditional behavior using /usr/lib/cpp on Oracle Solaris if you require that
behavior, the best practice is to replace those dependencies with more modern usages. /usr/lib/cpp is not
intended to be a fully gcc-compatible preprocessor.

The following examples show the output that are sometimes seen in source code.

EXAMPLE 1 Token-Pasting Using Empty Comments

FOO/**/BAR

The expected result is “FOOBAR” in the output. This does not work in either gcc or Oracle Developer
Studio unless you take special steps to enable traditional mode. In Oracle Developer Studio C, this means
specifying the -Xs option. In gcc, you must specify the -traditional-cpp option. It is better to update the
code to use the standard ## token-pasting operator defined in C and C++.

EXAMPLE 2 Inter-Token Spacing

#define FOO foo

#define BAR bar

FOO-BAR

The expected output here is “FOO-BAR”, not “FOO - BAR”. The preprocessor might or might not add
extra spaces around the '-' symbol. The gcc compiler does not add spaces, and some code depends on
that behavior when using the compiler as a preprocessor with the -E or -P options. To get the traditional
behavior, you can use -Xs with the Oracle Developer Studio C compiler (not supported in Oracle Developer
Studio C++) or you can use /usr/lib/cpp directly.

Compiler Compatibility
This section discusses compiler features and other behaviors that affect compatibility between Oracle
Developer Studio and GCC.

Implementation Defined Behavior

Some parts of the C and C++ standards are left as “implementation defined behavior”. These details are
defined in the GCC and Oracle Developer Studio documentation, and they differ in some ways.

Both bit-fields and enumerated types can be either signed or unsigned by the choice of the compiler. For
enums, this choice can vary based on the list of enumerated values. The behavior of Oracle Developer Studio
C and C++ is different from the behavior of gcc.

Signed and Unsigned int Bit-fields

Bit-fields which are declared as int (not signed int or unsigned int) can be implemented by the
compiler using either signed or unsigned types. This makes a difference when extracting a value and
deciding whether to sign extend it.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 6

https://gcc.gnu.org/onlinedocs/cpp/Traditional-Mode.html

The Oracle Developer Studio compiler uses unsigned types for int bit-fields and the gcc compiler uses
signed types. Use the gcc -funsigned-bitfields flag to control this behavior.

For more information, see the sixth list item at https://gcc.gnu.org/onlinedocs/gcc-3.3.6/gcc/
Non_002dbugs.html.

Signed and Unsigned enum Types

The gcc compiler performs a kind of optimization related to the types of enums. If an enum type has no
negative values defined for it, then the internal type used by the compiler will be an unsigned type. If you
cast a negative value into that type, it will be treated as a large unsigned value.

The C language standard enables the compiler to choose either signed or unsigned int types to store enums,
as long as the type is compatible with all the defined enum values. The Oracle Developer Studio C compiler
always uses signed int types for enums.

Note - The type of an enumeration value in standard C is defined to be signed int.

In Oracle Developer Studio 12.6, the C compiler supports the option -features=gcc_enums to implement
the same behavior as gcc for enums.

Note that this behavior is quite different from the way enums are implemented when the -fshort-enums
flag is in effect. Oracle Developer Studio 12.6 has the -fshort-enums option similar to gcc. However, it
is not recommended. It also affects the layout of structs in headers for libraries that might not have been
compiled with fshort-enums. The result would be buggy code.

Characters in Identifiers

In Oracle Developer Studio 12.6, C++ compiler added the ability to use unicode character in symbols with
\u and \U prefixes.

Valid Keywords

Oracle Developer Studio and GCC differ in the way keywords have spellings. For example, the C 99
keyword restrict can be spelt as restrict, _restrict or __restrict__. The spellings that are valid at
any time will be affected by the language mode, such as C 99 vs C 11. If you have an application that uses
a keyword with a specific spelling, then you can use a command line argument to define it as a macro. For
example, -D__restrict=restrict.

GCC defines a special category of hidden keywords that have leading and trailing underscores. These
variant spellings are enabled in all compilation modes so that system headers can use them regardless of
whether the current standards mode allow the main keyword or not. For example, __restrict__ will be
enabled in all modes, even when restrict is not valid.

Compiler Standards Conformance

The following compiler options affect the standards conformance modes:

■ -pedantic (and -Wpedantic, -pedantic errors).
■ -std. For example, -std=c11 or -std=c++11 or -std=gnu11.
■ -D__EXTENSIONS__, that enables Oracle Solaris extension APIs even in conformance modes.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 7

https://gcc.gnu.org/onlinedocs/gcc-3.3.6/gcc/Non_002dbugs.html
https://gcc.gnu.org/onlinedocs/gcc-3.3.6/gcc/Non_002dbugs.html

Sometimes, the Oracle Solaris system headers react in different ways to GNU and Oracle Developer Studio
compilers based on the different CPP symbols that are predefined.

The Oracle Developer Studio 12.6 C++ compiler defines the __STDC__ macro to the value 0 on the Oracle
Solaris platform. Other C++ compilers (including g++) set this macro to 1. If your code depends on this
value, it can be overidden on the command line with -D__STDC__=1.

Strict and Feature-Enabled -std Options

The Oracle Developer Studio 12.6 C compiler release includes new language standard options that are
compatible with GCC. GCC defines different variations of language standards to differentiate between
strict conformance and extensions enabled. When compiling in strict mode, gcc defines a gcc-specific
symbol called __STRICT_ANSI__. The latest Oracle Developer Studio release defines this symbol in the
same language modes where gcc defines it.

For more information, see Options Controlling C Dialect.

TABLE 1 Types of -std Options

-std Option Family gcc Oracle Developer Studio 12.5 Oracle Developer Studio 12.6

Strict Conformance

-std=c99 (or c11, etc)

Implemented

__STRICT_ANSI__

Implemented

No __STRICT_ANSI__

(default)

Implemented

__STRICT_ANSI__

Feature-Enabled

-std=gnu99 (or gnu11, etc)

Implemented

(default)

Not Implemented Implemented

(default)

As the table shows, the default value of the -std option moves to the with extensions variant instead of the
strict variant.

On Linux, the gcc symbol __STRICT_ANSI__ was already defined by Oracle Developer Studio, but since
the default -std option is changing to non-strict, that behavior will change in the new release. In order to
retain the old behavior on Linux, you can specify -std=c11 option.

In Oracle Developer Studio 12.6, the only difference between these modes is the presence of
__STRICT_ANSI__. Extensions might be disabled as necessary in order for the compiler to implement a strict
standards conformance mode.

The following features provide compatible experience for most users.

■ Implementation of gnu language modes.
■ __STRICT_ANSI__ defined in non-gnu modes.
■ Transition of the default mode from strict to gnu.

The following features might provide incompatible experience to the users.

■ Users on Linux who depend on __STRICT_ANSI__.
■ Users who explicitly specify the -std option will now have __STRICT_ANSI__ set.

Inlining

The Oracle Developer Studio C compiler and GCC C compiler had support for declaring functions as inline
before the behavior was standardized. Both these compilers implement the new standard behavior and have
flags to enable backward compatibility to the inline behavior.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 8

https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html

GCC and Oracle Developer Studio have the options -fgnu89-inline and -xfeatures=extinl respectively.
For more information, see Inline Functions in the GCC documentation.

C Language Extensions

Many C language extensions in Oracle Developer Studio are also implemented in Oracle Developer Studio
C++. Some of the C extensions are documented in “Extensions” in Oracle Developer Studio 12.6: C User’s
Guide. For the list of gcc language extensions, see Extensions to the C Language Family in the GCC
documentation.

Some of the items listed in the gcc table are now standard features of a relevant language standard and are
listed in Table 2, “GCC Extensions implemented in Oracle Developer Studio,” on page 9 as C 11, C
99, C++ 03, C++ 11, and C++ 14.

Features of a newer language standard are often available as an extension when compiling according to
older language standards unless either they conflict with existing code or you are using an option to enable a
strict conformance mode. For more information about features that are available in different modes, see the
documentation for that compiler.

The following table lists the extensions that are implemented in Oracle Developer Studio.

TABLE 2 GCC Extensions implemented in Oracle Developer Studio

GCC Extension Oracle Developer Studio Implementation Status

Statement Expressions: Putting statements and
declarations inside expressions.

Implemented.

Local Labels: Labels local to a block. Implemented in C only.

Labels as Values: Getting pointers to labels,
and computed gotos.

Implemented in C only.

Nested Functions: As in Algol and Pascal,
lexical scoping of functions.

Not Implemented.

Constructing Calls: Dispatching a call to
another function.

Not Implemented.

Typeof: referring to the type of an expression. Implemented. New in Oracle Developer Studio 12.6 C++
C++ 11 defines decltype for this. In Sun (-compat=5)
mode, C++ omits the typeof keyword, but still supports
__typeof and __typeof__.

Conditionals: Omitting the middle operand of
a ‘?:’ expression.

Implemented in C only.

__int128: 128-bit integers—__int128. Not implemented.

Long Long: Double-word integers—long

long int.
Implemented in C and C++.

Complex: Data types for complex numbers. untyped _Complex defaults to double for compatibility with
gcc. Implemented in C only.

Floating Types: Additional Floating Types. Oracle Developer Studio C and C++ implement the
128-bit long double type, but not with the type named
__float128.

Half-Precision: Half-Precision Floating Point. Not implemented.

Decimal Float: Decimal Floating Types. Not implemented.

Hex Floats: Hexadecimal floating-point
constants.

C 99. Implemented in C only.

Fixed-Point: Fixed-Point Types. Not implemented.

Named Address Spaces: Named address
spaces.

Not implemented.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 9

https://gcc.gnu.org/onlinedocs/gcc/Inline.html
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCGgipgw
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCGgipgw
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions

GCC Extension Oracle Developer Studio Implementation Status

Zero Length: Zero-length arrays (general zero
length arrays).

int foo[0];

Implemented in C++ in GNU compatibility mode, or with
-features=zla.

Implemented in Oracle Developer Studio 12.6 C compiler
with -features=zla.

Zero Length: Zero-length arrays (flexible array
members).

int foo[]; // at the end of a struct

Implemented in C++ in GNU compatibility mode, or with
-features=zla.

Implemented in C.

Empty Structures: Structures with no
members.

Implemented in Oracle Developer Studio 12.6 for C
compiler.

Implemented. For C, requires -features=extensions.

Variable Length: Arrays whose length is
computed at run time.

C 99. Implemented in C and C++.

Variadic Macros: Macros with a variable
number of arguments

C 99. Implemented in C and C++. Oracle Developer Studio
implements the gcc extension for supplying a user-defined
name for the variable macro arguments. gcc extensions for
missing variables arguments are not implemented in C++.

Escaped Newlines: Slightly looser rules for
escaped newlines.

Implemented in Oracle Developer Studio 12.6 for C
compiler.

Not implemented.

Subscripting: Any array can be subscripted,
even if not an lvalue.

C 99. Standard C++. Implemented in C and C++.

Pointer Arith: Arithmetic on void-pointers and
function pointers.

Implemented in C only. Warning is generated.

Pointers to Arrays: Pointers to arrays with
qualifiers work as expected.

Not implemented.

Initializers: Non-constant initializers. C 99. Standard C++. Implemented.

Compound Literals: Compound literals give
structures, unions, or arrays as values.

C 99. Implemented in C.

Designated Inits: Labeling elements of
initializers.

C 99. Implemented in C.

Case Ranges: `case 1 ... 9` and such. Implemented.

Cast to Union: Casting to the union type from
any member of the union.

Not implemented.

Mixed Declarations: Mixing declarations and
code.

C 99. Standard C++. Implemented.

Attribute Extensions __has_attribute() can be used to test for
recognized attributes. For more information, see
“Attributes” on page 13.

Function Prototypes: Prototype declarations
and old-style definitions.

Implemented in C only. Not relevant to C++.

C++ Comments: are recognized. Implemented in C.

Dollar Signs: Dollar sign is allowed in
identifiers.

Implemented. Requires -features=iddollar.

Character Escapes: ‘\e’ stands for the character
<ESC>.

Not implemented.

Alignment: Inquiring about the alignment of a
type or variable.

C 11, spelled _Alignof. __alignof__ supported in C and C
++. C++ supports alignof in C++ 11 mode.

Inline: Defining inline functions (as fast as
macros).

C 99 and Standard C++. Implemented. Before GCC
implemented the standard, it created a static function body
instead of an external one. If your code depends on this,

Oracle® Developer Studio 12.6: GCC Compatibility Guide 10

GCC Extension Oracle Developer Studio Implementation Status

you can use the C option -features=no%extinl to get
similar behavior from the Oracle Developer Studio C
compiler.

Volatiles: What constitutes an access to a
volatile object.

Implemented. Compatible with GCC.

Using Assembly Language with C:
Instructions and extensions for interfacing C
with assembler.

Implemented. C and C++ implement gcc-compatible asm()
statements, including constraints, asm() labels, and explicit
register variables.

Alternate Keywords: __const__, __asm__,
among others, for header files.

Implemented. Oracle Developer Studio 12.5 C++ added
__asm and __volatile keyword spellings.

Incomplete Enums: enum foo;, with a
subsequent definition.

C++ 11. Implemented in C and C++. Must be C++ 11
mode.

Function Names: Printable strings which are
the name of the current function.

Oracle Developer Studio compilers support
__func____FUNCTION__ and __PRETTY_FUNCTION__.

Return Address: Getting the return or frame
address of a function.

Not implemented.

Vector Extensions: Using vector instructions
through built-in functions.

See “SIMD Vector Support” on page 12.

Offsetof: Special syntax for implementing
offsetof.

Implemented in Oracle Developer Studio 12.6 for C and
C++ compilers

__sync Builtins: Legacy built-in functions for
atomic memory access.

Implemented. Use -xatomic=studio. See
“Atomics” on page 21. (gcc deprecates these functions
in favor of the standard __atomic builtins.)

__atomic Builtins: Atomic built-in functions
with memory model.

Implemented. New in Oracle Developer Studio 12.6. Use
-xatomic=studio. See “Atomics” on page 21.

Integer Overflow Builtins: Built-in functions
to perform arithmetic and arithmetic overflow
checking.

Not implemented.

x86 Specific Memory Model Extensions for
Transactional Memory: x86 memory models.

Not implemented.

Object Size Checking: Built-in functions for
limited buffer overflow checking.

Not implemented.

Pointer Bounds Checker Built-ins: Built-in
functions for Pointer Bounds Checker.

Not implemented.

Cilk Plus Built-ins: Built-in functions for the
Cilk Plus language extension.

Not implemented.

Other Builtins: Other built-in functions. __builtin_constant_p() can test whether something is
a compile-time constant. Most other built-ins are not yet
implemented by Oracle Developer Studio.

__builtin_unreachable() was added as a no-op to C++.
It might be added to C.

__builtin_expect() was added in Oracle Developer
Studio 12.6 in C compiler.

Target Builtins: Built-in functions specific to
particular targets.

Not implemented.

Target Format Checks: Format checks specific
to particular targets.

Not implemented.

Pragmas: Pragmas accepted by gcc. #pragma once implemented. Others not implemented.

Unnamed Fields: Unnamed struct/union fields
within structs/unions.

C++ 11. Implemented in C and C++.

Thread-Local: Per-thread variables. C 99. C++ 11. Implemented in C and C++.

Binary Constants: Binary constants using the
‘0b’ prefix.

Implemented in C++ only.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 11

SIMD Vector Support

Oracle Developer Studio supports some architecture-specific intrinsics to encode vector operations using
CPU-specific instructions. The data types for these are created using the vector_size attribute or by
including an appropriate header file as described in “Header File Compatibility” on page 5. Some C
operators are supported on such types, but in some cases you might have to use the CPU-specific intrinsics.

For a discussion of types like _m128 and operations on them, see the SPARC64 X section in “SIMD
Intrinsics” in Oracle Developer Studio 12.6: C User’s Guide.

Oracle Developer Studio implements a set of x86 vector intrinsics with names that begin with the prefix
mm. On Linux they can be accessed using xmmintrin.h which is bundled with gcc. On Oracle Solaris,
they can be accessed by including sys/mmintrin.h which is bundled with the Oracle Developer Studio
compilers. For more information, see “Compiler Support for Intel MMX and Extended x86 Platform
Intrinsics” in Oracle Developer Studio 12.6: C User’s Guide

C++ Specific Features

The Oracle Developer Studio C++ compiler supports the -features=cplusplus_redef option that enables
a non-standard value of the __cplusplus macro for source codes that requires that setting. For more
information, see “–xrestrict[=f]” in Oracle Developer Studio 12.6: C++ User’s Guide.

Some other GNU extensions for C++ are:

■ long long constants in enumerations.
■ Allowing a typedef for void as a function parameter.

typedef void VOID;

int foo(VOID);

■ _Bool, which is equivalent to bool on Oracle Linux when <stdbool.h> is included.
■ extern template.
■ long long bit-field.
■ pragma pack push/pop.

For information about C++ Extensions, see Extensions to the C++ Language in the GCC documentation.
Information about the same functionality in the Oracle Developer Studio compiler can be found in the
following table.

TABLE 3 GNU C++ Extensions

GNU C++ Extension Oracle Developer Studio Implementation Status

C++ Volatiles: Determine what constitutes an
access to a volatile object.

Compatible Implementation.

Restricted Pointers: C 99 restricted pointers
and references.

Implemented.

Vague Linkage: Where G++ puts inlines,
vtables and the like.

Oracle Developer Studio also uses COMDAT for these,
probably in a slightly different way.

C++ Interface: You can use a single C++
header file for both declarations and
definitions.

Not implemented. Deprecated in gcc.

Template Instantiation: Methods for ensuring
that exactly one copy of each needed template
instantiation is emitted.

Oracle Developer Studio also uses COMDAT for these,
probably in a slightly different way.

Bound member functions: You can extract a
function pointer to the method denoted by a ‘-
>*’ or ‘.*’ expression.

Not Implemented.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 12

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCGgonoj
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCGgonoj
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCGglizk
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCGglizk
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCPbkbhr
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Extensions.html#C_002b_002b-Extensions

GNU C++ Extension Oracle Developer Studio Implementation Status

C++ Attributes: Variable, function, and type
attributes for C++ only.

See “Attributes” on page 13.

Function Multiversioning: Declaring multiple
function versions.

Not Implemented.

Namespace Association: Strong using
directives for namespace association.

Not implemented. Deprecated in gcc in favor of a standard
C++ 11 feature.

Type Traits: Compiler support for type traits. Not Implemented.

C++ Concepts: Improved support for generic
programming.

Not Implemented.

Java Exceptions: Tweaking exception handling
to work with Java.

Not Implemented.

Deprecated Features: Things that are scheduled
to be removed from C++.

Not Implemented.

Backwards Compatibility: Compatibilities with
earlier definitions of C++.

Not Implemented.

Attributes

The full documentation for attributes implemented in the Oracle Developer Studio 12.6 compilers is in
“Supported Attributes” in Oracle Developer Studio 12.6: C User’s Guide and “Supported Attributes” in
Oracle Developer Studio 12.6: C++ User’s Guide.

The __has_attribute() built-in can be used with both gcc and Oracle Developer Studio compilers to test
for recognized attributes.

The following attributes are new in Oracle Developer Studio 12.6 C++: aligned, deprecated, weak(alias),
weakref, packed, tls_model, vector_size, and visibility.

The Oracle Developer Studio compilers do not support all of the syntaxes for attributes.

TABLE 4 GCC Attributes

GCC Attribute Category Attributes supported in Oracle Developer Studio

Function Attributes: Declaring that functions
have no side effects, or that they can never
return.

alias, aligned, always_inline, const, constructor /
destructor, deprecated (C++ 14), malloc, noinline,
nonnull (C++), noreturn, nothrow (c++ only), pure,
regparm/ssregparm (C++ only), returns_twice,
transparent_union(C++ only), visibility,
warn_unused_result (C++), weak (and alias), weakref (C
++)

Variable Attributes: Specifying attributes of
variables.

aligned, common (C++), deprecated, mode (C++),
nocommon (C++), packed , section (C), tls_model,
vector_size, weak

Type Attributes: Specifying attributes of types. aligned, deprecated, packed, visibility

Enumerator Attributes: Specifying attributes
on enumerators.

deprecated

Command-Line Options

Both the Oracle Developer Studio and the gcc compilers implement traditional compiler options like -g, -c,
-o, and many others. The following table describes the options in the Oracle Developer Studio compilers
that have been implemented specifically to be compatible with gcc.

The following options in Oracle Developer Studio are compatible with gcc.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 13

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCGgjzke
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCPgljol
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCPgljol

TABLE 5 Compatible Options

Option Description

-std The -std option selects a language standard like C 11, C++ 11, and others.

-pedantic Issues errors or warnings for technical violations of the standard that would
otherwise be accepted. This option is new in the Oracle Developer Studio 12.6
C++ compiler.

-m32 / -m64 Selects 32-bit or 64-bit binary output.

-shared Produce a shared library. In Oracle Solaris Studio 12.4, the -shared option
acted like an alias for -G. In Oracle Developer Studio 12.6, this option acts like
the -shared option in gcc. See Table 6, “Options with Differences,” on page
14.

-gz=[=type] Produce compressed debug sections in DWARF format, if that is supported. If
type is not given, the default type depends on the capabilities of the assembler
and linker used. type might be one of none (do not compress debug sections),
zlib (use zlib compression in ELF gABI format), or zlib-gnu (use zlib
compression in traditional GNU format). If the linker does not support writing
compressed debug sections, the option is rejected. Otherwise, if the assembler
does not support them, -gz is silently ignored when producing object files.

-fsemantic-

interposition

Controls whether exported symbols need to be replaced using dynamic
interposition at runtime. For example, if the symbols need to be replaceable,
then the symbols must not be inlined by the optimizer.

-fshort-enums Use smaller types for enums. This also results in automatically packing enums
in structs.

The following options work differently between Oracle Developer Studio and GCC.

TABLE 6 Options with Differences

Oracle Developer Studio
Option

GCC Option Description

-xM -M Print make-style dependencies for a source file.
In gcc, -xM performs another function. In Oracle
Developer Studio, -M selects a linker map file.

-B(static| dynamic) -Wl,-B(static| dynamic) GNU Linker supports this behavior, but gcc does
not. Use -Wl to pass the option to GNU ld. In gcc,
-B performs another function.

-G -shared When producing a shared library, -shared in gcc
adds C++ library dependencies. The -G option in
the Oracle Developer Studio compilers does not
add them.

The following gcc-style options are automatically translated into corresponding options in Oracle Developer
Studio. This list of options can be seen by passing this option to the following option to the C or C++
compiler: -xhelp=gccflags.

TABLE 7 Automatically Translated Options

gcc option in Oracle Developer Studio Behavior in Oracle Developer Studio compilers

-MM Same as -xM1

-Ofast Same as -fast

-Wall Same as +w2 (C++ only)

-Wall Same as -v (C only)

-Werror Same as -errwarn=%all

-Wpedantic Same as -pedantic

-fno-elimininate-unused-debug-types Accept and ignore

Oracle® Developer Studio 12.6: GCC Compatibility Guide 14

gcc option in Oracle Developer Studio Behavior in Oracle Developer Studio compilers

-fopenmp Same as -xopenmp

-fPIC Same as -KPIC

-fpic Same as -Kpic

-fplan9-extensions Accept and ignore (C only).

-fplugin-arg-name=t Warn and ignore (C only)

-fplugin=t Warn and ignore (C only)

-fsigned-char Same as -xchar=signed (C only)

-fsyntax-only Same as -xe

-funsigned-char Same as -xchar=unsigned (C only)

-gdwarf-version Same as -xdebugformat=dwarf

-gz[=cmp-type] Same as -xcompress=debug with -
xcompress_format=cmp-type.

-gz with no sub-option is equivalent to -gz=zlib.

-gstabs Same as -xdebugformat=stabs

-gstabs+ Suggest using -xdebugformat=stabs; option ignored

-iplugindir=t Warn and ignore

-march=a Same as -xtarget=a

-mcpu=a Same as -xtarget=a

-mfmaf Same as -fma=fused

-mno-vis Same as -xvis=no

-mno-vis2 Same as -xvis=no

-mno-vis3 Same as -xvis=no

-mtune=a Same as -xtarget=a

-mvis Same as -xvis

-mvis2 Same as -xvis

-mvis3 Same as -xvis

-no-canonical-prefixes Accept and ignore

-no-fma Same as -fma=none

-no-fmaf Same as -fma=none

-no-trigraphs Same as -xtrigraphs=no

-nodefaultlibs Same as -xnolib (C++ only)

-pass-exit-codes Warn and ignore

-pedantic-errors Same as -pedantic

-pipe Warn and ignore

-save-temps Same as -keeptmp

-shared Same as -G

-specs=t Warn and ignore

-traditional Same as -Xs (C only)

-trigraphs Same as -xtrigraphs=yes

Architecture and CPU Options

The GCC compiler uses platform specific flags to control the instruction set selection for the generated
code. This is done through the -march option on x86 platforms, and -mcpu flag on SPARC platforms. On

Oracle® Developer Studio 12.6: GCC Compatibility Guide 15

x86 and SPARC platforms, selecting a value for the instruction set will also choose a corresponding value
for the -mtune option which controls how the code is scheduled. For more information, see x86 Options.

The Oracle Developer Studio compilers use the following options to control this behavior:

■ -xtarget – Select instruction set and code scheduling.
■ -xarch – Select the instruction set only.
■ -xchip/-xcache – Control the code scheduling.

For more information, see the Oracle Developer Studio 12.6: C User’s Guide.

The GCC compilers on x86 have many -m options to select the specific instruction usage outside the
compatible instruction set extensions.

The GCC compilers define CPP macros to identify which -m options are in effect. Oracle Developer Studio
does not yet define these macros. The macros are defined to 1, unless stated.

TABLE 8 Architecture Options

gcc Option Oracle Developer Studio Option

-mxxx, where xxx is an instruction set extension. none

-march=xxx (x86)

-mcpu=xxx (SPARC)

Select instructions and code scheduling.

-xtarget

-mtune=xxx

Generate code scheduling to optimize for this specific chip.

-xchip

-xcache

For more information, see the following documentation references:

■ x86 Options (https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html#x86-Options)
■ SPARC Options (https://gcc.gnu.org/onlinedocs/gcc/SPARC-Options.html#SPARC-Options)
■ -xarch and -xtarget options in Oracle Developer Studio 12.6: C User’s Guide

TABLE 9 x86 -xarch and -m Options

GCC Option Oracle Developer Studio Option GCC Predefines

-mpentium -xarch=pentium

-mpentiumpro -xarch=pentium_pro

-msse -xarch=sse

-msse2 -xarch=sse2

-msse3 -xarch=sse3 __SSE3__

-mssse2 -xarch=ssse3

-msse4.1 -xarch=sse4_1 __SSE4_1__ __SSSE3__

-msse4.2 -xarch=sse4_2 __SSE4_2__ __POPCNT__

-mpopcnt -xarch=ss4_2 __POPCNT__

-mlzcnt -xarch=avx2 __LZCNT__

-msse4 -xarch=sse4

-mavx -xarch=avx __AVX__

__XSAVE__

__BIGGEST_ALIGNMENT__=32

-mpclmul -xarch=aes __PCLMUL__

Oracle® Developer Studio 12.6: GCC Compatibility Guide 16

https://gcc.gnu.org/onlinedocs/gcc-6.1.0/gcc/x86-Options.html
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCG
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html#x86-Options
https://gcc.gnu.org/onlinedocs/gcc/SPARC-Options.html#SPARC-Options
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCG

GCC Option Oracle Developer Studio Option GCC Predefines

-maes -xarch=aes __AES__

-mrdrnd -xarch=avx_i __RDRND__

-msgsbase -xarch=avx_i

-mf16c -xarch=avx_i __F16C__

-mbmi -xarch=avx2 __BMI__

-mbmi2 -xarch=avx512 __BMI2__

-mavx2 -xarch=avx2 __AVX2__

-mavx512f -xarch=avx512 __AVX512F__

__FP_FAST_FMA__

__FP_FAST_FMAF__

__BIGGEST_ALIGNMENT__=64

-mprefetchwt1 -xarch=avx512 __PREFETCHWT1__

__PREFCHW__

TABLE 10 x86 -march and -xtarget Options

GCC -march / -mcpu / -mtune Oracle Developer Studio -
xtarget

GCC Predefines

generic -xtarget=generic

native -xtarget=native

(older CPUs omitted)

sandybridge -xtarget=sandybridge ___corei7_avx

__corei7_avx__

__sandybridge

__sandybridge__

ivybridge -xtarget=ivybridge

haswell -xtarget=haswell __core_avx2

__core_avx2__

__haswell

__haswell__

TABLE 11 SPARC -m and -xarch Options

GCC Option Oracle Developer Studio
Option

Predefines

-mvis -xarch=sparcvis __VIS__ = __VIS = 0x100

-mvis2 -xarch=sparcvis2 __VIS__ = __VIS = 0x200

-mvis3 -xarch=sparcvis3 __VIS__ = __VIS = 0x300

-mfmaf -xarch=sparcfmaf __FP_FAST_FMA=1

__FP_FAST_FMAF=1

TABLE 12 SPARC -march and -xtarget Options

-mcpu / -mtune Oracle Developer Studio
Option

Predefines

native -xtarget=native

Oracle® Developer Studio 12.6: GCC Compatibility Guide 17

-mcpu / -mtune Oracle Developer Studio
Option

Predefines

(older CPUs omitted)

-mcpu=niagara4 -xtarget=T4 Same as -mvis3 -mfmaf

-mcpu=niagara7 -xtarget=T7

Object File Compatibility

This section discusses features of object files that affect compatibility between Oracle Developer Studio and
GCC.

Annotations

Some of the Oracle Developer Studio tools depend on additional structural information about the generated
code emitted by the compilers. This information is called “annotations” and it is emitted into an ELF section
named “.annotations”. Some features of the Code Analyzer depend on annotations. Generation of this
data can be controlled using the -xannotate option. The commands that use this information are binopt,
code-analyzer, discover, collect, and uncover.

C++ Mangled Names

C++ compilers generate ELF symbols that have type information encoded in them. These are called
“mangled names.” The format for the mangled names is an implementation detail, so Oracle Developer
Studio code compiled in the compat=5 (Sun ABI) mode will not intermix correctly with code compiled with
g++. Using the Oracle Developer Studio C++ compiler in gnu modes results in compatible object files. For
more information, see Oracle Developer Studio 12.6: C++ User’s Guide.

Features Using Instrumentation

Compiler features that require instrumenting the object code also require extra libraries or object files to
be included at link time. When using these features, you need to link your executable or library with the
Oracle Developer Studio compiler. Note that mixing gcc-built code into your program or library will not be
instrumented, so the results would be incomplete.

Features in this category are:

■ Profile Feedback – Includes the options -xprofile and -xlinkopt.
■ Traditional Profiling – Includes the option -xpg at compile and link time.
■ Traditional Coverage – Includes the option -xprofile=tcov and the tcov utility.

Debug Information

dbx and other Oracle Developer Studio tools use debugging information generated by the compiler. The
majority of the information is recorded in the DWARF format, but some additional indexing information
is recorded in an older format called STABS. The ELF sections for dwarf start with “.debug” and the ELF
sections for stabs start with “.stab”.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 18

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCP

Runtime Support Compatibility

This section discusses issues related to runtime support.

libgcc Support

Compilers will automatically link with libgcc when necessary, but if something goes wrong, knowing what
the library is designed to do can be helpful. The gcc support library (libgcc) has a variety of helper routines
in the form of an archive library called libgcc.a and a shared library called libgcc_s.so. libgcc includes
routines to support exceptions and routines to support integer and floating-point operations that might not
have direct instructions for the current architecture. The functionality in the library is described in The GCC
Low-level Runtime Library in the gcc documentation.

Executables created using the gcc compiler are linked against libgcc.a and will not have a dynamic
dependency against libgcc_s.so. Executables created with the g++ compiler will use libgcc_s.so instead
and will have a dynamic dependency on it.

Code produced by the Oracle Developer Studio C compiler does not have any dependencies on libgcc.

Code produced by the Oracle Developer Studio C++ compiler does not depend on libgcc when building
in Sun mode (-compat=5), but will have such a dependency when building in GNU compatibility mode
(-compat=g, -std=c++03, -std=c++11, or -std=c++14).

On Oracle Linux, a similar library named libc_supp.a is included with Oracle Developer Studio.

C++ Runtime Support

A source file compiled with the Oracle Developer Studio C++ compiler needs to be linked using the
Oracle Developer Studio C++ compiler to make sure that the correct runtime libraries, CRT files, and
linker options are used. g++ object files should be linked with g++. Because of the many incompatible
implementation details used in object files, mixing object files from the Oracle Developer Studio C++ and
g++ compilers into the same executable or shared library is not supported.

GNU ABI Compatibility

Shared libraries created by Oracle Developer Studio C++ in GNU compatibility mode (with the options
-compat=g, -std=c++03, -std=c++11, or -std=c++14) can be mixed with shared libraries created by the g++
compiler and linked into a main program created by either compilers, but they must use the same version of
the g++ ABI.

When operating in GNU compatibility mode, the Oracle Developer Studio C++ compiler is binary
compatible with g++ code in the area of library interfaces, name mangling, and the binary layout of
standard library objects. But it still uses different mechanisms for many other underlying aspects of
the implementation. External inline functions, template instances, RTTI records, and exception range
information are implemented using COMDAT in a distinct way. Exception range information is formatted
in a very Studio-specific way. This limits the amount of mixing you can do between object files and archive
libraries compiled with Oracle Developer Studio C++ and those compiled with g++.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 19

https://gcc.gnu.org/onlinedocs/gccint/Libgcc.html
https://gcc.gnu.org/onlinedocs/gccint/Libgcc.html

GNU C++ ABI 4.x to 5.x Change

Due to an incompatible change in the GNU C++ ABI between versions 4.x and 5.x, executables and
libraries compiled with g++ must use one ABI consistently to work correctly. The 5.x GNU C++
library supports both ABIs, but a compiler (GCC or Oracle Developer Studio) can generate only
one ABI at a time. The g++ compiler defaults to the 5.x ABI. To select the 4.x ABI, compile with
-D_GLIBCXX_USE_CXX11_ABI=0.

The Oracle Developer Studio 12.6 C++ compiler implements only the 4.x ABI. To mix shared libraries and
executables, build the g++ parts with the above option. The g++ documentation for this issue is available at
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html.

Technically, there is nothing to stop a 4.x library or executable from being used alongside a 5.x library or
executable, but they cannot call each other using library classes that are different in the two ABIs. Some of
those classes are commonly used (like the string class), so you cannot accomplish much by mixing the two
ABIs.

main function

The main function in C++ carries some extra mechanisms. Whichever compiler is used to compile the
object file with main should also be used to link the executable. The crt object files used by the compiler
driver will match the mechanism embedded in the object file main.

libCrunG3.so Library

When compiling code in GNU mode, the Oracle Developer Studio C++ compiler uses the GNU C++
library, but it also needs to link an additional library called libCrunG3.so to supply support functions for
RTTI, exceptions, and other language features. This library corresponds to the libCrun.so library that is
used in Sun mode (-compat=5).

Different Versions of the GNU C++ Library

The Oracle Developer Studio 12.6 C++ compiler (in GNU compatibility mode) uses the 5.4.x version of the
GNU C++ library. This library supports both the 4.x and 5.x g++ ABIs. For more information, see “GNU
ABI Compatibility” on page 19. You can mix shared libraries and applications built with different
versions of the GNU C++ library, but the compiler used to build and link the main application should be a
version at least as recent as the compiler used to create any of the shared libraries. If any shared libraries are
built with Oracle Developer Studio C++, the main application should be built either with Oracle Developer
Studio C++ or with a g++ compiler that supports the 5.4.x GNU C++ library.

Runtime Library Locations

C++ runtime libraries are available at different locations.

The following Sun mode (-compat=5) C++ libraries are in /usr/lib on Oracle Solaris, but not on Oracle
Linux:

■ libCstd.so

■ libCrun.so

■ libdemangle.so

Oracle® Developer Studio 12.6: GCC Compatibility Guide 20

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html

■ libiostream.so

■ libstdcxx.so

The following GNU mode C++ libraries are in /usr/lib on Oracle Solaris, but not on Oracle Linux:

■ libCrunG3.so (but you might need a patch for Oracle Solaris package SUNWlibC)
■ libdemangle.so

All other C++ runtime libraries are in the compiler installation directory.

When the Oracle Developer Studio C++ compiler links against any shared libraries that are bundled with
Oracle Developer Studio, it normally adds the necessary RPATH setting into the executable to find the
libraries at runtime. You can prevent this behavior and configure the RPATH setting yourself by adding the
-xnorunpath option and appropriate -R options.

The Atomics runtime support library is new in Oracle Developer Studio 12.5 and is required by default with
C++. For more information, see “Atomics” on page 21 section.

OpenMP

Compiling source code with -xopenmp generates runtime dependencies on system libraries, which for the
Oracle Developer Studio compilers is the libmtsk library. On Oracle Solaris, this library is available in
/usr/lib. On Oracle Linux, this library is in the compiler installation directory. Since thread management
is a process-wide operation, use only one OpenMP implementation in a program. If a shared library uses
OpenMP, the main application cannot use a different OpenMP implementation. The Oracle Developer
Studio implementation of OpenMP is not compatible with the GCC implementation of OpenMP.

Atomics

Atomics is a new language feature in the C 2011 and C++ 2011 standards that requires runtime support
from the operating system. The Oracle Developer Studio compilers support this feature with a preliminary
bundled runtime library that is compatible with some versions of GCC runtime libraries.You can use the
-xatomic option to select which runtime library to use when linking your programs and libraries.

For more information about atomics and the runtime support, see “Bundled Atomics Library” in Oracle
Developer Studio 12.6: C User’s Guide and “Bundled Atomics Library” in Oracle Developer Studio 12.6:
C++ User’s Guide

C++ applications built in GNU mode or in C++ 11 mode will require an atomic support library, either from
Oracle Developer Studio or GCC. When running C++ applications that were built with the -xnorunpath
option, you might get the following error:

ld.so.1: a.out: fatal: libstatomic.so.1: open failed: No such file or directory

You can resolve this by explicitly linking with the gcc version of atomics support, or by copying the Oracle
Developer Studio support library and including it in your application.

Thread Local

The GCC and Oracle Developer Studio compilers implement thread local data (__thread declarations)
in a way that conforms to the OS ABI (Oracle Solaris or Oracle Linux). So, functionality is compatible

Oracle® Developer Studio 12.6: GCC Compatibility Guide 21

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCGgqida
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCGgqida
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCPgqhbq
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCPgqhbq

between code compiled by Oracle Developer Studio and GCC compilers. For more information about the
Oracle Solaris ABI for thread local data, see the Oracle Solaris 11.3 Linkers and Libraries Guide.

Shared Library Compatibility

A source file compiled with Oracle Developer Studio C++ compiler (CC) needs to be linked using the C++
compiler to make sure if the correct runtime libraries and linker options are used. G++ object files should be
linked with the g++ compiler.

Shared libraries created by Oracle Developer Studio CC with the options -compat=g, -std=c++03, -std=c+
+11, or -std=c++14 can be freely mixed with shared libraries created by the g++ compiler and linked into a
main program created by either of these compilers. A binary compiled against a newer version of the gcc
library in most instances cannot be linked to an older version of the gcc library.

The Oracle Developer Studio 12.6 C++ compiler in gcc compatible mode uses the 5.4.x version of the g++
runtime library.

You can mix libraries and applications built with different versions of the g++ library, but the compiler
used to build and link the main application should be a version at least as recent as the compiler used to
create any of the shared libraries. If any shared libraries are built with Oracle Developer Studio C++, the
main application should be built either with the Oracle Developer Studio C++ or with a g++ compiler that
supports the 5.4.x runtime libraries.

Tool Compatibility

This section discusses the compatibility of Oracle Developer Studio tools with GCC.

dbx Debugger

dbx can debug C and C++ code generated by both Oracle Developer Studio and GCC compilers. It is
compatible with the versions of GCC listed in “GCC Version Compatibility” on page 23. For more
information about dbx, see Oracle Developer Studio 12.6: Debugging a Program with dbx.

Performance Analyzer

Performance Analyzer supports mixed Oracle Developer Studio and GCC binaries. It can analyze code
compiled by Oracle Developer Studio and GCC compilers and supports versions of GCC listed in “GCC
Version Compatibility” on page 23. For more information about Performance Analyzer, see Oracle
Developer Studio 12.6: Performance Analyzer.

Code Analyzer

The discover ADI (-i adi) and discover Lite (-l) options support Oracle Developer Studio and gcc
binaries. The discover(1) utility detects errors in Oracle Developer Studio compiled code but does not
check gcc compiled code. The uncover(1) utility gathers coverage information for Oracle Developer Studio
compiled code. For more information about the code analytic tools, see Oracle Developer Studio 12.6: Code
Analyzer User’s Guide and Oracle Developer Studio 12.6: Discover and Uncover User’s Guide.

Oracle® Developer Studio 12.6: GCC Compatibility Guide 22

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLG
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDP
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPA
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPA
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSRMdiscover-1
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSRMuncover-1
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCA
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCA
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDU

IDE

An IDE project supports code written or built with only one compiler, either GCC or Oracle Developer
Studio. The workaround for this limitation is to create separate projects for GCC-written code.

GCC Version Compatibility

GCC versions 4.8.2, 4.9.2 and 5.1.0 are supported on the following operating systems:

■ Solaris 10 1/13 (Update 11)
■ Oracle Solaris 11.2
■ Oracle Solaris 11.3
■ Oracle Linux 6.6
■ Oracle Linux 7.x

GCC version 4.4 is supported on Oracle Linux 6.6.

References for More Information

■ Extensions to the C Language Family
■ Extensions to the C++ Language
■ GCC Binary Compatibility
■ GNU C++ ABI Policy and Guidelines
■ Intel® Compilers for Linux: Compatibility with GNU Compilers

Oracle® Developer Studio 12.6: GCC Compatibility Guide 23

https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Extensions.html#C_002b_002b-Extensions
https://gcc.gnu.org/onlinedocs/gcc/Compatibility.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html
https://software.intel.com/en-us/articles/intel-compilers-for-linux-compatibility-with-gnu-compilers

24

Oracle Developer Studio 12.6: GCC Compatibility Guide

Part No: E77792

Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to
license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not
responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you
and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except
as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E77792

Copyright © 2015, 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et de divulgation.
Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre, distribuer, exposer,
exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel,
de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le
cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le compte du
Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to
license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans
des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre d'applications dangereuses,
il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité.
Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de
SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée de The
Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle
Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée dans un contrat entre
vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l'accès à des
contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

	Oracle® Developer Studio 12.6: GCC Compatibility Guide
	General Compatibility Concepts
	Platforms and ABIs
	Compatibility Summary
	ABI References

	C++ GNU ABI Mode and Sun ABI Mode
	Standards Conformance Overview
	Configure Scripts
	Assembler Compatibility
	x86 Assembler
	SPARC Assembler
	Assembler Directives Related to ELF Sections
	Pseudo-Op Issues
	SPARC Assembler Resources

	Header File Compatibility
	Preprocessor Compatibility
	Compiler Compatibility
	Implementation Defined Behavior
	Signed and Unsigned int Bit-fields
	Signed and Unsigned enum Types
	Characters in Identifiers

	Valid Keywords
	Compiler Standards Conformance
	Strict and Feature-Enabled -std Options
	Inlining
	C Language Extensions
	SIMD Vector Support

	C++ Specific Features
	Attributes
	Command-Line Options
	Architecture and CPU Options

	Object File Compatibility
	Annotations
	C++ Mangled Names
	Features Using Instrumentation
	Debug Information

	Runtime Support Compatibility
	libgcc Support
	C++ Runtime Support
	GNU ABI Compatibility
	GNU C++ ABI 4.x to 5.x Change
	main function
	libCrunG3.so Library
	Different Versions of the GNU C++ Library
	Runtime Library Locations

	OpenMP
	Atomics
	Thread Local

	Shared Library Compatibility
	Tool Compatibility
	dbx Debugger
	Performance Analyzer
	Code Analyzer
	IDE

	GCC Version Compatibility
	References for More Information

