Oracle® Tuxedo
Tutorials for Developing Oracle Tuxedo ATMI Applications

12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo Tutorials for Developing Oracle Tuxedo ATMI Applications, 12¢c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Developing an Oracle Tuxedo Application

Before Developing Y our Oracle Tuxedo Application
Creating an Oracle Tuxedo ATMIClient.,

Nt TasKS . . oot
Creating an Oracle Tuxedo ATMI Server.

SIVEN TaSKS . o vttt et e e
Using Typed Buffersin Your Applicationco i,
Using Oracle Tuxedo Messaging Paradigmsin Your Application.
Using the Request/Response Model (SynchronousCalls)
Using the Request/Response Model (AsynchronousCalls)
UsngNested Callso e e
UsingForwarded Callso
Using Conversational Communication.coviiiiii e,
Using Unsolicited Notification. i,
Using Event-based Communicationot
Using Queue-based Communication.

USINGg TransaCtioNSottt e e et et e

2. Tutorial for simpapp, a Simple C Application

What 1S SIMPaPP? . oot e
Preparing simpapp Filesand Resources

Before YOU BEgIN.o

Tutorials for Developing Oracle Tuxedo ATMI Applications

21

About ThisTutorial. e e e 2-2

What YoOuUW Il Learn 2-3
Step 1: How to Copy thesimpapp Files. 2-3
Step 2: Examining and CompilingtheClient. ot 2-4

How to Examinethe Client. i e 2-4

How to CompiletheClient........... .. e 2-7
Step 3: Examining and CompilingtheServer o i 2-7

How to Examinethe Server e 2-7

How to Compilethe Server. e 29
Step 4. Editing and Loading the ConfigurationFile 2-10

How to Edit the ConfigurationFile. i, 2-10

How to Load the ConfigurationFile. 2-11
Step 5: How to Boot the Application. 2-12
Step 6: How to Execute the Run-time Application 2-13
Step 7: How to Monitor the Run-time Application 2-13
Step 8: How to Shut Down the Application. oo, 2-14

3. Tutorial for bankapp, a Full C Application

What ISbankapp?.o 31
About ThisTutorial. 31
Familiarizing Yourself withbankapp. 32
Learning About thebankapp Files. i 3-3
Exploring the Banking ApplicationFiles. o it 33
Examining thebankapp Clients. i 3-7
What Isthebankclt.cFile? 3-7
How ud(1) IsUsedinbankappo 3-10
A Request/Response Client: audit.C 311
A Conversational Client: auditcon.C., 312

Tutorials for Developing Oracle Tuxedo ATMI Applications

A Client that Monitors Events: bankmgr.c i, 3-13

Examining the bankapp Serversand Services 3-14
bankapp Request/RespoNSe SErVErSot 3-15
bankapp Conversational Server. 3-15
bankapp Services. 3-16

Algorithms of bankapp Serviceso 3-17
Utilities Incorporated into SErVers.ot 3-23
Alternative Way t0 Code SErViCeS.ot 3-23

Preparing bankapp Filesand ResoUrces.t 3-24

Step 1: How to Set the Environment Variables 3-25

Step 2: Building Serversinbankapp. 3-30
HOW toO BUIld ACCT SaIVEr ..ottt 3-30
How to Build the BAL Server.ot 3-32
How to Build the BTADD SErverot 3-33
How toBuildthe TLR Server e 3-33
How toBuildthe XFER Server. e 3-34
ServersBuiltinthebankapp.mk File i i 3-35

Step 3: Editing the bankapp Makefile. 3-35
How to Edit the TUXDIR Parametert 3-35
How to Editthe APPDIR Parameter.t 3-35
How to Set the Resource Manager Parameters. 3-36
How to Runthebankapp.mk File i i 3-36

Step 4: Creatingthebankapp Database 3-36
How to Createthe DatabaseinSHM Mode, 3-37
How to Create the Databasein MPMode., 3-37

Step 5: Preparing for an XA-Compliant Resource Manager 3-37
How to Changethebankvar File. i, 3-38
How to Changethe bankapp Services. 3-38

Tutorials for Developing Oracle Tuxedo ATMI Applications

How to Changethe bankapp.mk File i, 3-38

How to Changecrbank and crbankdb. o it 3-39
How to Changethe Configuration File. 3-40
How to Integrate bankapp with Oracle (XA RM) for a Windows 2003 Platform. . .. 3-40
Step 6: How to Edit the ConfigurationFile. i it 3-46
Steps 7 and 8: Creating a Binary Configuration File and Transaction Log File 3-50
Before Creating the Binary ConfigurationFile. 3-50
How to Load the Configuration File. o i 351
How to Create the Transaction Log (TLOG) File. 3-51
Step 9: How to Create a Remote Service Connection on Each Machine........... 3-52
How to Stop the Listener Process (tlisten) 3-53
Sampletlisten Error MESSageSo v vttt 3-53
RUNNINg bankappo 3-54
Step 1: How to Prepareto BOOto 3-55
Step 2: How to Boot bankapp.o o v 3-56
Step 3: How to Populatethe Database. 3-56
Step 4: How to Test bankapp Services.o 3-57
Step 5: How to Shut Down bankapp 3-58
4. Tutorial for CSIMPAPP, a Simple COBOL Application
What IS CSIMPA PP . . 4-1
Preparing CSIMPAPP Filesand ReSOUICES.o vt 4-2
Before YOUBEgINo 4-3
What YoOUWIll Learn 4-4
Step 1: How to Copy the CSIMPAPP Files.t 4-4
Step 2: Examining and CompilingtheClient. 4-5
How to Examinethe Client. e 4-5
How to Compilethe Client. e 4-9

vi Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 3: Examining and CompilingtheServer i i 4-9

How to Examinethe Server. e 4-9
How to Compilethe Server. e 4-13
Step 4: Editing and Loading the Configuration File. 4-14
How to Edit the ConfigurationFile. o i i, 4-14
How to Load the ConfigurationFile. 4-16
Step 5: How to Boot the Application 4-16
Step 6: How to Test the Run-time Application. 4-17
Step 7: How to Monitor the Run-time Application 4-17
Step 8: How to Shut Down the Application., 4-18
5. Tutorial for STOCKAPP, a Full COBOL Application

What ISSTOCKAPP?. 5-1
Familiarizing Yourself with STOCKAPP e 5-2
Learning About the STOCKAPPFIleS.o 5-2
Exploring the Stock Application Files. o .. 5-3
Examining the STOCKAPP Clients.t e 5-4
System Client Programst 5-5
Typed BUffers 5-5

A Request/Response Client: BUY.cbl 5-6
BUY.chl SourceCode.ot 5-6
Building Clients.o 5-6
Examining the STOCKAPP SEIVErS. . . . oot 5-7
STOCKAPP SEIVICES . . ottt e ettt et e e e e e e e e e 5-7
Preparing STOCKAPP Filesand ResSOUrCesoieiii e e e 5-8
Step 1: How to Set Environment Variables i 5-8
Additional Requirements. 5-11
Step 2: Building Serversin STOCKAPP 5-12

Tutorials for Developing Oracle Tuxedo ATMI Applications vii

How to Buildthe BUYSELL Server.t 5-12

Servers Built in STOCKAPPMK.o o 5-13
Step 3: Editing the STOCKAPP.mK File........ i, 5-14
How to Editthe TUXDIR Parametercciiiiiiiiiinenn.. 5-14
How to Edit the APPDIR Parameter. 5-14
How to Runthe STOCKAPPmMK File.o it 5-15
Step 4: How to Edit the ConfigurationFile. o i it 5-15
Step 5: Creating aBinary ConfigurationFile. 5-18
Before Creating the Binary ConfigurationFile. 5-18
How to Load the Configuration File. i 5-18
Running STOCK APP 5-19
Step 1: How to Prepareto BOOto o 5-19
Step 2: How to Boot STOCKAPPo e 5-20
Step 3: How to Test STOCKAPP SENVICES . ..ot 5-21
Step 4: How to Shut Down STOCKAPP 5-22
6. Tutorial for XMLSTOCKAPP: a C and C++ XML Parser
Application
What IS XMLSTOCK AP . . . 6-1
Familiarizing Yourself with XMLSTOCKAPP.o 6-2
Learning About the XMLSTOCKAPPFiles, 6-2
Examining the XMLSTOCKAPPClients. 6-3
A Request/Response Client: stock_quote beasxml 6-3
SEE AlSD . . 6-4
Examining the XMLSTOCKAPP Serverscovvi i 6-4
Preparing XMLSTOCKAPP Filesand RESOUICES.o oo v i 6-4
Stepl: Copy the XMLSTOCKAPP Filesto aNew Directory 6-4
Step 2: Set Environment Variables. ... o 6-5

viii Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 3: Building Clients.o 6-5
Step 4: Building Serversin XMLSTOCKAPP 6-6
How to Build the stockxml and stockxml_c Servers.................... 6-6

S AlSD . 6-7

Step 5: How to Edit the Configuration File. i, 6-8
SEE AlSD . . 6-9

Step 6: Creating aBinary ConfigurationFile 6-9
How to Load the ConfigurationFile oo, 6-9

SEE AlSD . .t 6-10
Running XMLSTOCKAPP e 6-10
Step 1: How to Prepareto Boot 6-10
Step 2: How to Boot XMLSTOCKAPP e 6-10

SEE AlSD . .t 6-11

Step 3: How to Test XMLSTOCKAPP Services.o i 6-11
Step 4: How to Shut Down XMLSTOCKAPPo 6-11

SEE AlSD . .ot e 6-12

. Tutorial for xmlfmlapp: A Full C XML/FML32 Conversion
Application

What IS XmIfmIapp 2. . . o 7-2
Familiarizing Yourself withxmlfmlapp. i 7-2
Learning About thexmlfmlapp Files. i, 7-3
TExaminingthexmlfmlapp Client i, 7-3
Request/Response Clientt e e 7-4

S AlSD . 7-4
Examining thexmlfmlapp Server i 7-4
Preparing xmlfmlapp Filesand RESOUrces. 7-5

Tutorials for Developing Oracle Tuxedo ATMI Applications ix

Step 2: Set Environment Variables 7-5
Additional Requirements.t e 7-6
Step 3: Create FML32 Field Tableo 7-6
Step 4: Build thexmIfmlapp Binaries., 7-6
Step 5: Edit the Configuration File. i 7-7
SEE AlISD . . 7-8
Step 6: Create the Binary ConfigurationFile oo, 7-8
Loading the ConfigurationFile i, 7-8

SEE AlISD . L 7-9
Running xmlfmlapp.o 7-9
Step 1: xmifmlapp Boot Preparation. 7-9
Step 2: Boot xmifmlappo 7-10
SEE AlSD. . i e 7-10
Step 3: Test xmIfmlapp Services.o 7-10
Step 4: Shut Downxmlfmlapp 7-10
SEE AISD. . i 7-11

Tutorials for Developing Oracle Tuxedo ATMI Applications

CHAPTERo

Developing an Oracle Tuxedo
Application

Thistopic includes the following sections:
e Before Developing Your Oracle Tuxedo Application
e Creating an Oracle Tuxedo ATMI Client
e Creating an Oracle Tuxedo ATMI Server

Using Typed Buffersin Your Application
e Using Oracle Tuxedo Messaging Paradigmsin Y our Application

Before Developing Your Oracle Tuxedo Application

Before you begin devel oping your Oracle Tuxedo Application-to-Transaction Monitor Interface
(ATMI) application, it may be helpful to review the various conceptsrelated to its design and the
tools that are available to you. These concepts include identifying clients or the various ways
input from the outside world is gathered and presented to your business for processing, and
identifying serversor the programs containing the business|ogic that processtheinput data. Also
important is reviewing the concept of typed buffers or how aclient program allocates a memory
area before sending data to another program. Another concept worth reviewing is that of the
Oracle Tuxedo messaging paradigms. ATMI client programs access the Oracle Tuxedo system
by calling the ATMI library. Most callsin the ATMI library support these different
communication styles available to programmers, such as request/response and conversational.
These are the building blocks of every Oracle Tuxedo application.

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-1

For more information about concepts, such as application queues, event-based communication,
and using ATMI, and on the tools available to you, refer to “Basic Architecture of the Oracle
Tuxedo ATMI Environment” in Introducing Oracle Tuxedo ATMI. For information about
programming an application, refer to Programming Oracle Tuxedo ATMI Applications Using C
and Programming Oracle Tuxedo ATMI Applications Using COBOL.

Creating an Oracle Tuxedo ATMI Client

Creating an Oracle Tuxedo client is just like creating any other program in the C or C++
programming language. The Oracle Tuxedo system provides you with a C-based programming
interface known as the Oracle Tuxedo Application-to-Transaction Monitor Interface or ATMI.
The ATMI is an easy-to-use interface that enables the rapid development of Oracle Tuxedo
clients and servers.

Note: Oracle Tuxedo ATMI also supports a COBOL interface. (The examples shown here
illustrate the C/C++ API.)

Client Tasks

Clients perform the following basic tasks:

e Clientsmay need to call tpchkauth () to determine the level of security required to join
an application. Possible responses are: no security enabled, application password enabled,
application authentication enabled, access control lists enabled, link-level encryption,
public key encryption, auditing. (Thisis optional depending on whether you are using
security levels.)

e Clientscall tpinit () to connect to an Oracle Tuxedo application. Any required security
information is passed to the application as arguments for tpinit ().

e Clients perform service requests.

e Clientscall tpterm() to disconnect from an Oracle Tuxedo application.

Tutorials for Developing Oracle Tuxedo ATMI Applications

../int/intatm.html

Creating an Oracle Tuxedo ATMI Server

Figure 1-1 Tasks Performed by a Client

ATMI
main ()
{
tpchkauth(); Checks security level
tpinit(); ————— Connects to the BEA
do service call; TUXEDO application
tptermi); .

Disconnects from the BEA

1 TUXEDO application

See Also
e “Writing Clients” in Programming Oracle Tuxedo ATMI Applications Using C
e “Administering Security” in Using Security in CORBA Applications
e “Using Oracle Tuxedo Messaging Paradigmsin Your Application” on page 1-6
e “What Are Typed Buffers?’ in Introducing Oracle Tuxedo ATMI
e “What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

Creating an Oracle Tuxedo ATMI Server

Developers use the ATMI programming interface to create an Oracle Tuxedo client and server.
However, Oracle Tuxedo serversare not written by application devel opers as compl ete programs
(that is, with a standard main). Instead, application developers write a set of specific business
functions (known as services) that are compiled along with the Oracle Tuxedo binariesto produce
a server executable.

When an Oracle Tuxedo server isbooted, it continues running until it receives a shutdown
message. A typical Oracle Tuxedo server may perform thousands of service calls before being
shut down and rebooted.

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-3

../int/intatm.html
../int/intatm.html
../pgc/pgclt.html
../sec/secadm.html

Server Tasks

e Application developers write the code and the Oracle Tuxedo ATMI serversinvoke the
tpsvrinit () function only when the Oracle Tuxedo server is booted. Programmers use
this function to open an application resource (such as a database) for later use.

e Application developers write the code and the Oracle Tuxedo ATMI serversinvoke the
tpsvrdone () function only when the Oracle Tuxedo server is shut down. Programmers
use this function to close any application resources opened by tpsvrinit ().

e Application developers write the code and the Oracle Tuxedo ATMI servers request named
application services that process client requests. Oracle Tuxedo ATMI clients do not call
servers by name; they call services. An Oracle Tuxedo ATMI client does not “know” the
location of the server processing its request.

e ATMI serverscall the tpreturn () function to end a service request and return a buffer, if
required, to the calling client.

Figure 1-2 Tasks Performed by a Server

ATMI

Performed when
server is hooted

tpsvrinit{) { . .

Senm::e1 (

du work;

tpreturn
p (): Senuri[:e routines

Service 2 [

{

do work;
tpreturni):

}
tpsvrdone() {...}

Performed when server
shuts down

1-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

Using Typed Buffers in Your Application

See Also

e “Writing Servers’ on page 5-1 in Programming Oracle Tuxedo ATMI Applications Using C
e “Using Oracle Tuxedo Messaging Paradigmsin Your Application” on page 1-6

e “What Are Typed Buffers?’ in Introducing Oracle Tuxedo ATMI

e “What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

Using Typed Buffers in Your Application

All communication in the Oracle Tuxedo system istransmitted through typed buffers. The Oracle
Tuxedo system offers application developers the choice of many different buffer typesto
facilitate thiscommunication. All buffers passed through the Oracle Tuxedo system have special
headers, and must be alocated and freed through the Oracle Tuxedo ATMI (tpalloc (),
tprealloc (), and tpfree()).

Figure 1-3 Different Types of Buffers

Client | Buffer o Server
— ™
WIEWY FhiL CARRAY
STRING (C structure) [figlded) [hinary) KL

CUSTOM- DEFIMED

The typed buffers facility allows for generic well-defined processing to be implemented once a
buffer type is shared across any type of network and protocol and any type of CPU architecture
and operating system supported by the Oracle Tuxedo system. The advantage of typed buffersin
adistributed environment isthat they relieveyour clientsand serversfrom the detailsof preparing
data to be transferred between heterogeneous computers linked by various communications
networks. This affords an application programmer time to concentrate on their business logic,
instead of focusing attention on writing this facility into their own programs.

See Also

e “What Are Typed Buffers?’ in Introducing Oracle Tuxedo ATMI

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-5

../int/intatm.html
../int/intatm.html
../int/intatm.html
../pgc/pgserv.html

Using Oracle Tuxedo Messaging Paradigms in Your
Application

The Oracle Tuxedo ATMI offers several communication models that you can use in your
application:

Using the Request/Response Model (Synchronous Calls)
Using the Request/Response Model (Asynchronous Calls)
Using Nested Calls

Using Forwarded Calls

Using Conversational Communication

Using Unsolicited Notification

Using Event-based Communication

Using Queue-based Communication

Using Transactions

Using the Request/Response Model (Synchronous Calls)

To make a synchronous call, an Oracle Tuxedo ATMI client usesthe ATMI function tpcall ()
to send arequest to an Oracle Tuxedo ATMI server. The function does not invoke an Oracle
Tuxedo server by name; instead, it invokes a specified service, which is provided by any server
that offersthe service and is available. The client then waits for the requested service to be
performed. Until it receives areply to its request, the client is not available for any other work.
In other words, the client blocks until it receives areply.

1-6

Figure 1-4 Using the Synchronous Request/Response Model

Tutorials for Developing Oracle Tuxedo ATMI Applications

Using the Request/Response Model (Asynchronous Calls)

ATMI

CLIENT SERVER
main() o bl
{ {
tpinit . ..); do work;
tpcall("X"...); «— | tpreturn(...);
tpterm();
} }

See Also

e “Request/Response Communication” in Introducing Oracle Tuxedo ATMI

Using the Request/Response Model (Asynchronous Calls)

To make an asynchronous call, aclient callstwo ATMI functions: the tpacall (3c) function, to
request aservice, and the tpgetrply (3c) function, to retrieve the reply. This method is
commonly used when aclient can perform additional tasks after issuing a request and before
receiving areply.

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-1

../rf3c/rf3c.html
../rf3c/rf3c.html
../int/intatm.html

Figure 1-5 Using Asynchronous Calls

ATMI

CLIENT SERVER
main() X(i...)
{ {
tpinit{ . . .);
tpacall("X" . .); do work;
::Ipug;l:;l;l;”; ﬁtpreturn[. .
tptermf };
i H

See Also

e “Request/Response Communication” in Introducing Oracle Tuxedo ATMI

Using Nested Calls

Services can act as Oracle Tuxedo ATMI clients and call other Oracle Tuxedo services. In other
words, you can request a service that, in turn, requests other services. For example, suppose an
Oracle Tuxedo client calls service X and waitsfor areply. Service X then callsservice Y and also
waits for areply. When service X receives areply, it returnsthe reply to the calling client. This
method is efficient because service X can take the reply from service Y, do more work on it, and
modify the return buffer before sending afinal reply back to the client.

1-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

../int/intatm.html

Using Forwarded Calls

Figure 1-6 Using Nested Calls

ATHMI

CLIENT SERVER 1 SERVER 2
main() X() Y()
{ { {
tpinit(); do work: do work:
tpcall("X™. . .); tpeall(™™" ...); ; .
tpterm();{_l—tpreturn[I tpreturn(. . .);
} } }

See Also

e “Nested Requests’ in Introducing Oracle Tuxedo ATMI

Using Forwarded Calls

With call forwarding, anested service can return areply directly to an ATMI client without going
through the first service that was called, thereby freeing the first service to handle other requests.
Thiscapability isuseful whenthefirst serviceisacting strictly asadelivery agent, without adding
data to the reply returned by the nested service.

Tofacilitatecall forwarding, aservicecalled by aclient usesthe tpforward (3¢) functionto pass
the request to another service Y. Thisisthe only situation in which an Oracle Tuxedo service can
end a service call without calling tpreturn (3c).

Cadll forwarding is transparent to the client. In other words, the same client code is valid for
service reguests handled by one service and reguests handled by more than one service.

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-9

../rf3c/rf3c.html
../rf3c/rf3c.html
../int/intatm.html

Figure 1-7 Using Forwarded Calls

ATHMI
CLIENT SERVER 1 SERVER 2
main() X() Yi)
{ { i
tpinit(); do work; do work;
tpeall{"X" 7. .); tpforward ("™f"); tpreturn();
tpterm();
1 1 }
See Also

e “Forwarded Requests’ in Introducing Oracle Tuxedo ATMI

Using Conversational Communication

If multiple buffers need to be sent between an Oracle Tuxedo ATMI client and an Oracle Tuxedo
service in a stateful manner, then the Oracle Tuxedo conversation may be a suitable option.

Use Oracle Tuxedo conversations judiciously because a server engaged in a conversation is
unavailable until the conversation has ended. To implement a conversation, incorporate the
following steps into your code:

1. The Oracle Tuxedo client starts the conversation with the tpconnect () function.

2. TheOracle Tuxedo client and the conversational server exchange buffersusing the tpsend ()
and tprecv () functions. A special flag isset in the service callsto indicate which participant
has control of the conversation.

3. Theconversation endsin normal conditions, when the server calls tpreturn () or the
tpdiscon () function.

1-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

../int/intatm.html

Using Unsolicited Notification

Figure 1-8 Using Conversations

ATMI
CLIENT SERVER
mainf } X{...)
{ {
tpinit();
tpconnect("X" .. .); loop {
loop { tprecvireply . . . };

tpsend(data .”. .) tpsendidata . . .);
tprecvireply . ﬁ

-

tprecvireply . . .)

tpreturn (...);

tpterm();
} }

See Also

e “Conversational Communication” in Introducing Oracle Tuxedo ATMI

Using Unsolicited Notification

To enable unsolicited notification, an Oracle Tuxedo ATMI client creates an unsolicited message
handle using the tpsetunsol () function. To send an unsolicited message, an Oracle Tuxedo
client or server can use either the tpnotify () function, to send a message to asingle client, or
the tpbroadcast () function, to send amessage to multiple clients at the same time. When a
client receives a message, the Oracle Tuxedo system calls the client’ s unsolicited handler
function.

In asignal-based system, a client does not have to poll for unsolicited messages. However, in a
non-signal based system, a client must check for unsolicited messages using the tpchkunsol ()
function. Whenever a client makes a service request, tpchkunsol () iscaled implicitly.

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-1

../int/intatm.html

Figure 1-9 Handling Unsolicited Notification

ATMI
CLIENT SERVER
maini)
{ X(...)
tpinit(); {
tpsetunsol{"func"); tpnotify(msg);
tpterm(); tpreturn(. . .J;
}
}
func(..) {
process msq,
}
Note: If youcal tpnotify () withthetpack flagbit set, youwill receive an acknowledgement
of your request.
See Also

e “Unsolicited Communication” in Introducing Oracle Tuxedo ATMI

Using Event-based Communication

1-12

In event-based communication, events can also be posted to application queues, log files, and
system commands. Any Oracle Tuxedo ATMI client can subscribe to a user-defined event using
the tpsubscribe () function and receive an unsolicited message whenever an Oracle Tuxedo
serviceor client issuesa tppost () function. ATMI clients can also subscribe to system-defined
events that are triggered whenever the Oracle Tuxedo system detects the event. When a server
dies, for example, the .sysserverpdied event is posted. No application server is needed to post
this event, because it is performed by the Oracle Tuxedo system.

Tutorials for Developing Oracle Tuxedo ATMI Applications

../int/intatm.html

Using Queue-based Communication

Figure 1-10 Using Event-based Communication

ATMI

CLIENT SERVER
main

" W)
{
tpinit{); {
tpsetunsol(“func’); EventBroker | 90 Work;
tpsubscribe("a");
psubscribe("a"); —— osian
tpt i
prerml): tpreturn(. ..}J;
H
func(...) }
{
process msy;
1

See Also

e “How Events Are Reported” in Introducing Oracle Tuxedo ATMI

Using Queue-based Communication

To interface with the /Q system, an Oracle Tuxedo client uses two ATMI functions:
tpenqueue (), t0 put messagesinto the queue space, and tpdequeue (), to take messages out of
the queue space.

Thefollowing model represents peer-to-peer asynchronous messaging. Here, aclient enqueuesa
message to a service using tpenqueue () . Optionally, the names of areply queue and afailure
gueue can be included in the call to tpenqueue (). The client can also specify a correlation
identifier value to accompany the message. This valueis persistent across queues so that any
reply or failure message associated with the queued message can be identified when it is read
from the reply or the failure queue.

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-13

../int/intatm.html

1-14

Theclient can use the default queue ordering (for example, atime after which the message should
be degueued), or can specify an override of the default queue ordering (asking, for example, that
this message be put at the top of the queue or ahead of another message on the queue). The call
to tpenqueue () Sends the message to the TMQUEUE server, the message is queued to stable
storage, and an acknowledgment is sent to the client. The acknowledgment is not seen directly by
the client, but can be assumed when the client gets a successful return. (A failure return includes
information about the nature of thefailure.) A message identifier assigned by the queue manager
isreturned to the application. Theidentifier can be used to dequeue a specific message. It can also
be used in another tpenqueue () to identify a message on the queue ahead of the next message
to be enqueued.

Before an enqueued message is made available for dequeuing, the transaction in which the
message is enqueued must be committed successfully. A client uses tpdequeue () to dequeue
messages from the queue.

Figure 1-11 Peer-to-Peer Asynchronous Messaging Model

ATMI
CLIENT CLIENT
do work do work
do work tpengueve()———» —— tpdequeue() do work
tpdequeve()« +—— tpengueue()
do work do work

In the following graphic, forwarding a message to another server isillustrated.

The client enqueues a message intended for service X on the server. The service receives this
message when it is active and when the handling instructions for the message are met (for
example, the message can be encoded to be activated on Friday at 6 PM). Once the serviceis
completed, it returns the reply to the queue space, from which it can be retrieved by the client.

Tutorials for Developing Oracle Tuxedo ATMI Applications

Using Transactions

This system of queuing is transparent to services. In other words, the same application codeis
used for a service, regardless of whether the service isinvoked through queuing or direct service
invocation using tp (a)call.

Figure 1-12 Using Queue Forwarding for Queue-based Service Invocation

ATMI

CLIENT SERVER

main() Xi...)

{ TMOFORVWARD {
tpinit(J;

tpenquene("X"); . —» tpdequeue(JT> do work;
tpdequeue(reply); «——— 4—tpenqueue[1}ﬂca"(r“::tpreturn();

tpterm{);

See Also

e “Message Queuing Communication” Introducing Oracle Tuxedo ATMI

Using Transactions

To implement transactions, an application programmer uses three ATMI functions:
e tpbegin () to start the transaction.
e tpcommit () tO start the two-phase commit process.

e tpabort () toimmediately cancel the transaction.
Any code placed outside the begin and commit/abort sequence is not included in the transaction.

In the following example, a client begins a transaction, requests two services, and then commits
the transaction. Because the service requests are made between the beginning and the
commitment of the transaction, both services join the transaction.

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-15

../int/intatm.html

Figure 1-13 Using Transactions

ATHMI
CLIENT SERVERS DATABASES
maini) Xi...)
{
{ doDBwork, __ , DB1

tpreturn(); «——— (Oracle)

tpinit(); !
tphegin();
tpeall("X" 7.);
tpeall(™™...);
tpcommit();

\Y{. .
tpterm(); {

do DB work; __ | DB2

1 tpreturn(); +——— (Informix)

See Also
e “Tutorial for bankapp, a Full C Application” on page 3-1
e “Tutorial for CSIMPAPP, a Simple COBOL Application” on page 4-1
e “Tutorial for simpapp, a Simple C Application” on page 2-1
e “Tutorial for STOCKAPP, aFull COBOL Application” on page 5-1

1-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

CHAPTERa

Tutorial for simpapp, a Simple C
Application

Thistopic includes the following sections:
e What Is simpapp?

e Preparing simpapp Files and Resources
— Step 1: How to Copy the simpapp Files
— Step 2: Examining and Compiling the Client
— Step 3: Examining and Compiling the Server
— Step 4: Editing and Loading the Configuration File
— Step 5: How to Boot the Application
— Step 6: How to Execute the Run-time Application
— Step 7: How to Monitor the Run-time Application
— Step 8: How to Shut Down the Application

What Is simpapp?

simpapp isasample ATMI application that includes one client and one server. This application
is distributed with the Oracle Tuxedo software. The server performs only one service: it accepts
alowercase alphabetic string from the client and returns the same string in uppercase.

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-1

Preparing simpapp Files and Resources

Thistopicisatutorial that |eadsyou, step-by-step, through the process of devel oping and running
asample Oracle Tuxedo ATMI application. Figure 2-1 summarizes the process. Click on each
task for instructions on completing that task.

Figure 2-1 simpapp Development Process

Step 1. Copy simpapp
files

|
Step 2. Examine and
campile the client

I
Step 3. Examine and
compile the server

|
Step 4. Edit and load the
canfiguratian file

|
Step 5. Bootthe
application

|
Step 6. Execute the run-
time application

I
Step 7. Manitor the run-
time application

|
Step 8. Shut down the
application

Before You Begin

Before you can run this tutorial, the Oracle Tuxedo ATMI client and server software must be
installed so that the files and commands referred to are available. If the installation has already
been done by someone else, you need to know the pathname of the directory in which the
software isinstalled (TuxDIR). Y ou also need to have read and write permissions on the
directories and filesin the Oracle Tuxedo directory structure so you can copy simpapp filesand
execute Oracle Tuxedo commands.

About This Tutorial

The instructions for the simpapp tutorial are based on a UNIX system platform. While specific
platform instructions for the UNIX operating system environment remain largely the same,
instructions for performing tasks (such as copying simpapp files or setting environment

2-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 1: How to Copy the simpapp Files

variables) on non-UNIX platforms (such as Windows 2003) may be different. For thisreason, the
examples used in the tutorial may or may not provide reliable procedures for your platform.

What You Will Learn

After you completethistutorial, you will be ableto understand thetasks ATMI clientsand servers
can perform, edit a configuration file for your own environment, and invoke tmadmin to check
on the activity of your application. Y ou will understand the basic elements of all Oracle Tuxedo
applications—client processes, server processes, and a configuration file—and you will know
how to use Oracle Tuxedo system commands to manage your application.

Step 1: How to Copy the simpapp Files

Note: The following instructions are based on a UNIX system platform. Instruction for
non-UNIX platforms, such as Windows 2003, may be different. Examplesused inthe
sample applications may vary significantly, depending on the specific platform.

1. Make adirectory for simpapp and cd toit:

mkdir simpdir

cd simpdir

Note: Thisstep is suggested so you can see the simpapp files you have at the start and the
additional files you create along the way. Use the standard shell (/bin/sh) or the
Korn shell; do not use csh.

2. Set and export environment variables:

TUXDIR=pathname of the Oracle Tuxedo system root directory
TUXCONFIG=pathname of your present working directory/tuxconfig
PATH=$PATH: $STUXDIR/bin
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TUXDIR/1lib

export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH

You need TuxDIR and paTH to be able to access files in the Oracle Tuxedo system
directory structure and to execute Oracle Tuxedo system commands. On Sun Solaris,
/usr/5bin must be the first directory in your paTH. With AIX on the RS/6000, use
LIBPATH instead of LD_LIBRARY PATH. On HP-UX on the HP 9000, use SHL.IB_PATH
instead of L.D_LIBRARY_PATH.

You need to set TuxcoNFIG to be able to load the configuration file, described in “ Step 4:
Editing and L oading the Configuration File” on page 2-10.

3. Copy the simpapp files:

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-3

cp STUXDIR/samples/atmi/simpapp/* .

Note: Itisbest to begin with acopy of the files rather than the originals delivered with the
software because you will edit some of the files to make them executable.

. List thefiles:
S 1s
README env simpapp.nt ubbmp wsimpcl
README.as400 setenv.cmd simpcl.c ubbsimple
README.nt simpapp.mk simpserv.c ubbws
$

Note: Except for the ReaDME files, the other files are variations of simp* . * and ubb~* files
for non-UNIX system platforms. The rReapuE files provide explanations of the other
files.

Thethreefilesthat are central to the application are:
— simpcl.c—the source code for the client program.
— simpserv.c—the source code for the server program.

— ubbsimple—the text form of the configuration file for the application.

See Also

e “What Issimpapp?’ on page 2-1

Step 2: Examining and Compiling the Client

How to Examine the Client

Review the ATMI client program source code:
$ more simpcl.c

The output is shown in Listing 2-1.

Listing 2-1 Source Code of simpcl.c

W N

2-4

#include <stdio.h>
#include "atmi.h" /* TUXEDO */

Tutorials for Developing Oracle Tuxedo ATMI Applications

00 J o Ul

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Step 2: Examining and Compiling the Client

#ifdef _ STDC_
main (int argc, char *argv[])

#else

main(argc, argv)
int argc;

char *argvl[];
#endif

char *sendbuf, *rcvbuf;
int sendlen, rcvlen;

int ret;

if(arge !'= 2) {
fprintf (stderr, "Usage: simpcl string\n");
exit (1) ;

}
/* Attach to BEA TUXEDO as a Client Process */

if (tpinit((TPINIT *) NULL) == -1) {
fprintf (stderr, "Tpinit failed\n");
exit (1) ;

}
sendlen = strlen(argv[l]):;

if ((sendbuf = (char *)tpalloc("STRING", NULL, sendlen+l))== NULL) {
fprintf (stderr, "Exrror allocating send buffer\n");
tpterm() ;
exit (1) ;
}
if ((rcvbuf = (char *)tpalloc("STRING", NULL, sendlen+1))== NULL) {

fprintf (stderr, "Error allocating receive buffer\n");

tpfree (sendbuf) ;
tpterm() ;
exit(1);
}
strcpy (sendbuf, argvl[l]):;
ret = tpcall ("TOUPPER", sendbuf, NULL, &rcvbuf, &rcvlen,
if(ret == -1) {

fprintf (stderr, "Can't send request to service TOUPPER\n") ;
fprintf (stderr, "Tperrno = %d, %s\n", tperrno, tpstrerror (tperrno)) ;

tpfree (sendbuf) ;
tpfree (rcvbuf) ;
tpterm() ;
exit (1) ;

Tutorials for Developing Oracle Tuxedo ATMI Applications

54

printf ("Returned string is: %s\n", rcvbuf);

55
56 /* Free Buffers & Detach from Oracle TUXEDO */
57 tpfree (sendbuf) ;
58 tpfree (rcvbuf) ;
59 tpterm() ;
60 }
Table 2-1 Significant Lines in the simpcl.c Source Code

Line(s) File/Function Purpose

2 atmi.h Header file required whenever Oracle Tuxedo ATMI
functions are used.

28 tpinit () The ATMI function used by aclient programtojoin an
application.

33 tpalloc () The ATMI function used to alocate atyped buffer.
STRING isone of thefive basic Oracle Tuxedo buffer
types; NULL indicates there is no subtype argument.
Theremaining argument, sendlen + 1, specifiesthe
length of the buffer plus 1 for the null character that
ends the string.

38 tpalloc () Allocates another buffer for the return message.

45 tpcall () Sends the message buffer to the TOUPPER service
specified in the first argument. Also includes the
address of the return buffer. tpcall () waitsfor a
return message.

35,41,52,60 tpterm() The ATMI function used to exit an application. A call
to tpterm () isused to exit the application before
exiting in response to an error condition (lines 36, 42,
and 53). Thefinal call to tpterm () (line60) isissued
after the message has been printed.

2-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 3: Examining and Compiling the Server

Tahle 2-1 Significant Lines in the simpcl.c Source Code (Continued)

Line(s) File/Function Purpose

40,50, 51,58, tpfree() Frees dllocated buffers. tpfree () isthe functional
59 opposite of tpalloc ().

55 printf () The successful conclusion of the program. It prints out

the message returned from the server.

How to Compile the Client

1. Runbuildclient to compilethe ATMI client program:
buildclient -o simpcl -f simpcl.c
The output fileis simpc1 and the input sourcefileis simpcl.c.
2. Check theresults:

$ 1s -1

total 97

-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
—rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
—rw-r----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-ITwW-Y--———-— 1 usrid grpid 392 May 28 07:51 ubbsimple

As can be seen, we now have an executable module called simpcl. The size of simpcl
may vary.

See Also

e “What |ssimpapp?’ on page 2-1
e buildclient (1) in Oracle Tuxedo Command Reference

e Oracle Tuxedo ATMI C Function Reference

Step 3: Examining and Compiling the Server

How to Examine the Server
Review the ATMI server program source code.

S more simpserv.c

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-1

../rfcm/rfcmd.html

Listing 2-2 Source Code of simpserv.c

U W N

9
10

12
13
14

*/

#ident"@ (#) apps/simpapp/simpserv.c$Revision: 1.1 $" */

#include <stdio.h>

#include <ctype.h>

#include <atmi.h>/* TUXEDO Header File */

#include <userlog.h>/* TUXEDO Header File */

/* tpsvrinit is executed when a server is booted, before it begins
processing requests. It is not necessary to have this function.
Also available is tpsvrdone (not used in this example), which is
called at server shutdown time.

*/
#if defined(__STDC_) || defined(__cplusplus)

tpsvrinit (int argc, char *argvl[])
#else
tpsvrinit (argc, argv)

15 int argc;

16
17
18
19
20
21
22
23
24
25
26
27

char **argv;

#endif
{
/* Some compilers warn if argc and argv aren't used.
*/
argc = argc;
argv = argv;
/* userlog writes to the central TUXEDO message log */
userlog ("Welcome to the simple server");
return(0) ;
}
/* This function performs the actual service requested by the client.

Its argument is a structure containing, among other things, a pointer

to the data buffer, and the length of the data buffer.

30 */

31 #ifdef _ cplusplus

32 extern "C"

33 #endif

34 void

35 #if defined(__STDC__) || defined(__cplusplus)
36 TOUPPER (TPSVCINFO *rgst)

37 #else

38 TOUPPER (rgst)

39 TPSVCINFO *rgst;

40 #endif

41 |

42 int 1i;

2-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 3: Examining and Compiling the Server

43

44 for(i = 0; 1 < rgst->len-1; i++)

45 rgst->data[i] = toupper (rgst->datali]);

46 /* Return the transformed buffer to the requestor. */
47 tpreturn (TPSUCCESS, 0, rgst->data, 0L, 0);

48 }

Table 2-2 Significant Parts of the simpserv.c Source Code

Line(s) File/Function Purpose

Wholefile An Oracle Tuxedo server does not contain amain ().
Themain () isprovided by the Oracle Tuxedo system
when the server is built.

12 tpsvrinit () This subroutineis called during server initialization,
that is, before the server begins processing service
requests. A default subroutine (provided by the Oracle
Tuxedo system) writes a message to USERLOG
indicating that the server has been booted.
userlog (3c) isalog used by the Oracle Tuxedo
system and can be used by applications.

38 TOUPPER () The declaration of a service (the only one offered by
simpserv). The sole argument expected by the
serviceis apointer to a TPSVCINFO structure, which
contains the data string to be converted to uppercase.

45 for loop Converts the input to uppercase by repeated callsto
TOUPPER.
49 tpreturn () Returns the converted string to the client with the

TPSUCCESS flag set.

How to Compile the Server

1. Runbuildserver to compilethe ATMI server program:

buildserver -o simpserv -f simpserv.c -s TOUPPER

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-9

The executable file to be created is named simpserv and simpserv. c isthe input source
file. The-s TouprPER Option specifies the service to be advertised when the server is
booted.

2. Check the results:

$ 1s -1

total 97

-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-YwW-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv
—rw-r----- 1 wusrid grpid 275 May 28 08:57 simpserv.c
-ITwW-Y--———-— 1 wusrid grpid 392 May 28 07:51 ubbsimple

Y ou now have an executable module caled simpserv.

See Also
e “What Issimpapp?’ on page 2-1

e buildserver (1) in Oracle Tuxedo Command Reference

e Oracle Tuxedo ATMI C Function Reference

Step 4: Editing and Loading the Configuration File
How to Edit the Configuration File

1. Inatext editor, familiarize yourself with ubbsimple, which isthe configuration file for
simpapp.

Listing 2-3 The simpapp Configuration File

1$

2

3 #Skeleton UBBCONFIG file for the BEA Tuxedo Simple Application.

4 #Replace the <bracketed> items with the appropriate values.

5 RESOURCES

6 IPCKEY <Replace with valid IPC Key greater than 32,768>
7

8 #Example:

9
1

0 #IPCKEY 62345

2-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Step 4: Editing and Loading the Configuration File

MASTER simple
MAXACCESSERS 5
MAXSERVERS 5
MAXSERVICES 10
MODEL SHM
LDBAL N
*MACHINES
DEFAULT:
APPDIR="<Replace with the current pathname>"
TUXCONFIG="<Replace with TUXCONFIG Pathname>"
UXDIR="<Root directory of Tuxedo (not /)>"
#Example:
APPDIR="/usr/me/simpdir"
TUXCONFIG="/usr/me/simpdir/tuxconfig"
TUXDIR="/usr/tuxedo"
<Machine-name> LMID=simple
#Example:
#tuxmach LMID=simple
*GROUPS
GROUP1
LMID=simple GRPNO=1 OPENINFO=NONE
*SERVERS
DEFAULT:
CLOPT="-A"
simpserv SRVGRP=GROUP1 SRVID=1
*SERVICES
TOUPPER

2. For each <string> (that is, for each string shown between angle brackets), substitute an
appropriate value.

How to Load the Configuration File

1. Run tmloadcf to load the configuration file:

$ tmloadcf ubbsimple
Initialize TUXCONFIG file: /usr/me/simpdir/tuxconfig [y, gl ? vy
$

2. Check theresults:

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-11

$ 1s -1

total 216

-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl

-rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c

-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv

-rw-r----- 1 usrid grpid 275 May 28 08:57 simpserv.c

—rw-r----- 1 usrid grpid 106496 May 29 09:27 tuxconfig

—rw-r----- 1 usrid grpid 382 May 29 09:26 ubbsimple
Y ou now have afile called TuxconrIc. The Tuxconr1c fileisanew file under the control of the
Oracle Tuxedo system.

“What |s simpapp?’ on page 2-1

e tmloadcf (1) inthe Oracle Tuxedo Command Reference

e UBBCONFIG(5) intheFile Formats, Data Descriptions, MIBs, and System Processes

Reference

Step 3: How to Boot the Application

2-12

1

Execute tmboot to bring up the application:

$ tmboot
Boot all admin and server processes? (y/n): y
Booting all admin and server processes in /usr/me/simpdir/tuxconfig
Booting all admin processes
exec BBL -A:
process 1d=24223 ... Started.

Booting server processes

exec simpserv -A
process 1d=24257 ... Started.
2 processes started.

$

The BBL isthe administrative process that monitors the shared memory structuresin the
application. simpserv isthe simpapp Server that runs continuously, awaiting requests.

See Also

“What |s simpapp?’ on page 2-1

Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html
../rf5/rf5.html

Step 6: How to Execute the Run-time Application

e tmboot (1) inthe Oracle Tuxedo Command Reference

e “How to Boot the Application” in Administering an Oracle Tuxedo Application at Run
Time

Step 6: How to Execute the Run-time Application
To execute your simpapp, have the client submit a request.

$ simpcl “hello, world”
Returned string is: HELLO, WORLD

See Also
e “What |ssimpapp?’ on page 2-1

Step 7: How to Monitor the Run-time Application

Asthe administrator, you can use the tmadmin command interpreter to check an application and
make dynamic changes. To run tmadmin, you must have the TuxconFIG environment variable
Set.

tmadmin can interpret and run over 50 commands. For acomplete list, see tmadmin (1). The
following uses two of the tmadmin commands.
1. Enter the following command:

$ tmadmin

The following lines are displayed:

tmadmin - Copyright (c) 1999 BEA Systems, Inc. All rights reserved.
>

Note: The greater-than sign (>) isthe tmadmin prompt.

2. Entertheprintserver (psr) command to display information about servers:

> psr
a.out Name Queue Name Grp Name ID RgDone Load Done Current Service

BBL 531993 simple 0 0
simpserv 00001.00001 GROUP1 1 0
>

3. Entertheprintservice (psc) command to display information about the services:

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-13

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../ada/adboot.html

> psc
Service Name Routine Name a.out Name Grp Name ID Machine # Done Status

TOUPPER TOUPPER simpserv GROUP1 1 simple - AVAIL
>

See Also

e “What Is simpapp?’ on page 2-1

e tmadmin (1) inthe Oracle Tuxedo Command Reference

Step 8: How to Shut Down the Application

1. Run tmshutdown to bring down the application:

$ tmshutdown
Shutdown all admin and server processes? (y/n): y

Shutting down all admin and server processes in /usr/me/simpdir/tuxconfig

Shutting down server processes

Server Id = 1 Group Id = GROUP1l Machine = simple: shutdown succeeded.

Shutting down admin processes

Server Id = 0 Group Id = simple Machine = simple: shutdown succeeded.

2 processes stopped.

$
2. Check theuroa:

$ cat ULOG*
$

113837.tuxmach!tmloadcf.10261: CMDTUX_CAT:879: A new file system has been

created. (size = 32 4096-byte blocks)
113842.tuxmach!tmloadcf.10261: CMDTUX_CAT:871: TUXCONFIG file
/usr/me/simpdir/tuxconfig has been created
113908.tuxmach!BBL.10768: LIBTUX_CAT:262: std main starting
113913 .tuxmach!simpserv.10925: LIBTUX_ CAT:262: std main starting
113913 .tuxmach!simpserv.10925: Welcome to the simple server

114009. tuxmach!simpserv.10925: LIBTUX_CAT:522: Default tpsvrdone /()

function used.
114012.tuxmach!BBL.10768: CMDTUX_CAT:26: Exiting system

See Also

e “What Issimpapp?’ on page 2-1

2-14 Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html

Step 8: How to Shut Down the Application

e tmshutdown (1) in the Oracle Tuxedo Command Reference
e userlog(3c) inthe Oracle Tuxedo ATMI C Function Reference

e “How to Shut Down Your Application” in Administering an Oracle Tuxedo Application at
Run Time

e “What Isthe User Log (ULOG)?" in Administering an Oracle Tuxedo Application at Run
Time

Tutorials for Developing Oracle Tuxedo ATMI Applications 2-15

../rfcm/rfcmd.html
../rf3c/rf3c.html
../ada/adboot.html
../ada/admon.html

2-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

CHAPTERa

Tutorial for bankapp, a Full C
Application

Thistopic includes the following sections:
e What Is bankapp?

e Familiarizing Yourself with bankapp

Preparing bankapp Files and Resources

Running bankapp

What Is bankapp?

bankapp isasample ATMI banking application that is provided with the Oracle Tuxedo
software. The application performs the following banking functions: opens and closes accounts,
retrieves account balances, deposits or withdraws money from an account, and transfers monies
from one account to another.

About This Tutorial

Thistutorial leads you, step-by-step, through the procedure you must perform to develop the
bankapp application. Once you have “ developed” bankapp through this tutorial, you will be
ready to start developing applications of your own.

The bankapp tutorial is presented in three sections:

e Familiarizing Yourself with bankapp

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-1

e Preparing bankapp Files and Resources

e Running bankapp
Note: Thisinformation has been written for UNIX and Windows 2003 system users with some

experience in application development, administration, or system programming. We
assume some familiarity with the Oracle Tuxedo software.

Familiarizing Yourself with bankapp

Instructionsin this sample application are automated for your convenience through shell scripts
that work inaUNIX or Windows 2003 environment: RUNME . sh and RUNME . cmd. The associated
readme files discuss how to run these files. Go through these files to understand the procedure
more thoroughly and then follow these step-by-step instructionsto help you set up and manage a
distributed application.

bankapp Uses a demo relational database delivered with the software that enables you to use the
sample application. Various commands and SQL code within the sample application (included
for demo purposes only) provide access to the database.

This documentation provides atour of thefiles, client, and services that make up the bankapp
application. Click on any of the following activities for more information about that part of the
tour.

Learning ahoutthe
hankapp files

Examining the bankapp
clients

Examining the bankapp
SEMErS

3-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

Learning About the bankapp Files

Learning About the bankapp Files

Thefiles that make up the bankapp application are delivered in adirectory called bankapp,
which is positioned as follows:

samples/
atmi

haLkappf simllappf

Exploring the Banking Application Files

The bankapp directory contains the following files:

e Five source files for service subroutines using embedded SQL statements

Eight C sourcefiles

e One request/response client program (audit)

e One conversational server (AupiT)

e One conversationa client (auditcon)

e Three servers (or files associated with servers)

e Two filesthat generate data or transactions for the application
o Miscellaneousfiles

e Generic Oracle Tuxedo application files (that is, files needed in any Oracle Tuxedo
application)

o Makefile for various add-ons

e Files provided to facilitate the use of bankapp as an example

The following table lists the files of the banking application. The table lists the source files
delivered with the Oracle Tuxedo software, filesthat are generated when the bankapp . mk isrun,
and asummary of the contents of each file.

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-3

Table 3-1 Description of the Banking Application Files

Source File Generated File Contents

ACCT.ec ACCT.c, ACCT.o, ACCT Containstwo services. OPEN_ACCT and CLOSE_ACCT to
open and close accounts.

ACCTMGR. c ACCTMGR A server that subscribes to events and logs notifications.
Contains WATCHDOG and Q_OPENACCT_LOG Services.

AUDITC.c AUDITC Contains a conversational server that handles service requests
from the client auditcon.

BAL.ec BAL.c, BAL.o, BAL Contains a set of services: ABAL, TBAL, ABAL_BID, and
TBAL_BID that allow the audit client to obtain bank-wide or
branch-wide account or teller balances.

BALC.ec BALC.c, BALC.o, BALC Containstwo services: ABALC_BID, and TBALC_BID. These
services are the same as TBAL_BID and ABAL_BID, except
that TPSUCCESS is returned when a branch ID is not found,
which alows audi tcon to continue running.

bankmgr. c bankmgr A client program that subscribes to events of special interest.

BTADD.ec BTADD.c, BTADD.o, Contains two services: BR_ADD and TLR_ADD for adding

BTADD branches and tellers to the database.

cracl.sh

A shell script that creates access control lists (ACL) to
demonstrate the access control security level.

crqueue. sh

A shell script that creates application queues for use in event
notification.

crusers.sh

A shell script that creates groups and users to demonstrate the
authentication security level.

event.flds

A field table file used in the event feature.

FILES - A descriptive list of all thefilesin bankapp.

README - Installation and boot procedures for all platforms except
Windows 2003.

README.nt - Installation and boot procedures for the Windows 2003

platform.

34 Tutorials for Developing Oracle Tuxedo ATMI Applications

Learning About the bankapp Files

Tahle 3-1 Description of the Banking Application Files

Source File

Generated File

Contents

README2

Documentation of additions to bankapp that demonstrate
new features. Thefileislocated in the
samples/atmi/bankapp directory.

READMEZ .nt

Documentation of additions to bankapp that demonstrate
new features for the Windows 2003 platform. The fileis
located inthe samples\atmi\bankapp directory.

RUNME . cmd An interactive script to build, configure, boot, and shut down
the application for Windows 2003.

RUNME . sh - An interactive script to build, configure, boot, and shut down
the application for UNIX.

showq.sh! - A shell script that displaysthe status and contents of amessage
queue.

TLR.ecC TLR.c, TLR.o, TLR Contains three services. WITHDRAWAL, DEPOSIT, and

INQUIRY.

usrevtf.sh

A shell script that crestes an ENVFILE for the Oracle Tuxedo
server TMUSREVT .

XFER.cC

XFER.o0, XFER

Contains TRANSFER Service.

aud.v

aud.V, aud.h

An FML view used to define the structure passed between the
audit client and the BAL server.

appinit.c

appinit.o

Contains customized versions of tpsvrinit () and
tpsvrdone () for al serversother than TLR.

audit.c

audit.o, audit

A client that obtains bank-wide or branch-wide account and
teller balances viathe ABAL, TBAL, ABAL_BID, and
TBAL_BID SEfvices.

auditcon.c

auditcon

Aninteractive version of audit that uses conversationsand four
Services. ABAL, TBAL, ABALC_BID, and TBALC_BID.

bankapp.mk

An application makefile for UNIX.

bankapp.nt

An application makefile for Windows 2003.

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-5

Tahle 3-1 Description of the Banking Application Files

Source File Generated File Contents

bank. flds bank.flds.h A field tablefile containing bank database fields and auxiliary
FML fields used by servers.

bank.h - Contains data definitions pertinent to multiple C programsin
the application.

bankvar - Contains some environment variables for bankapp. Other

environment variables are defined in ENVFILE, but because
ENVFILE isset from within bankvar, you can control the
entire environment for your application through bankvar.

crbank.sh crbank A shell script that creates databases for all banks when
bankapp isrunin SHM mode.
crbankdb.sh crbankdb A shell script that creates a database for one server group.

crtlog.sh

crtlog, TLOG

A shell script that createsa UuDL and a TLOG on the master site
and aUuDL on the non-master sites.

driver.sh

driver

A shell script that drivesthe application by piping FML buffers
with transaction requests through ud (1) .

envfile.sh

envfile, ENVFILE

A shell script that creates ENVFILE for use by tmloadct.

gendata.c gendata A program that generates ud-readable requests to add ten
branches, thirty tellers, and two hundred accounts.

gentran.c gentran A program that generates ud-readable transaction requests
fromfour services: DEPOSIT, WITHDRAWAL, TRANSFER, and
INQUIRY.

populate.sh populate A shell script that popul ates the database by piping FML
buffers with requests to add branches, tellers, and accounts
throughud (1) .

ubbmp TUXCONFIG A sample UBBCONFIG file for usein an MP mode
configuration.

ubbshm TUXCONFIG A sample UBBCONFIG file for use in a SHM-mode

configuration.

3-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the bankapp Clients

Tahle 3-1 Description of the Banking Application Files

Source File Generated File Contents

util.c util.o A set of functions, such asgetstrl (), that are commonly
used by services.

bankclt.c bankclt Client for bankapp.

See Also
e “Familiarizing Yourself with bankapp” on page 3-2

Examining the bankapp Clients
What Is the bankclt.c File?

The bankcit file containsthe client program that requests Oracle Tuxedo services from the
bankapp application. This client program is text-based and provides the following options:

e Balance Inquiry

Withdrawal

e Deposit
o Transfer
e Open Account
e Close Account

e Exit Application

Each of these options, except Exit Application, calls a subroutine that performs the following
tasks:

1. Obtains the user input from the keyboard using the get_account (), get_amount (),
get_socsec (), get_phone (), andtheget_val () functions.

2. Putsthevauesinto aglobal FML buffer (* fbfr). (Some functions add more fields than
others. Thisis dependent on the information needed by the servers.)

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-7

3-8

3. Enablesroutinesthat make arequest to the Oracle Tuxedo system through the do_tpcall ()
function toinvoketherequired service. Thefollowing tableliststhe functionsand the services

they invoke.

Table 3-2 Services Called by Function

Function Name Input FML Fields Output FML Fields Service Name
BALANCE () ACCOUNT_ID SBALANCE INQUIRY
WITHDRAWAL () ACCOUNT_ID SBALANCE WITHDRAWAL
SAMOUNT
DEPOSIT() ACCOUNT_ID SBALANCE DEPOSIT
SAMOUNT
TRANSFER () ACCOUNT_ID (0)! SBALANCE (0) TRANSFER
ACCOUNT_ID (1) SBALANCE (1)
SAMOUNT
OPEN_ACCT () LAST_NAME ACCOUNT_ID OPEN_ACCT
FIRST NAME SBALANCE
MID_INIT
SSN
ADDRESS
PHONE
ACCT_TYPE
BRANCH_ID
SAMOUNT
CLOSE_ACCT() ACCOUNT_ID SBALANCE CLOSE_ACCT

The number in parentheses is the FML occurrence number for that field.

4. After the call completes successfully, each function gets the fields it needs from the returned

FML buffer and prints the results.

The do_tpcall () function (that begins on line 447 in bankc1t .c) follows:

Listing 3-1 do_tpcall() in bankclt.c

/*
* This function does the tpcall to Tuxedo.

Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the bankapp Clients

*/
static int

do_tpcall (char *service)

{

long len;
char *server_status;
/* Begin a Global transaction */
if (tpbegin (30, 0) == -1) {
(void) fprintf (stderr, "ERROR: tpbegin failed (%s)\n",
tpstrerror (tperrno)) ;
return(-1) ;
}
/* Request the service with the user data */
if (tpcall(service, (char *)fbfr, 0, (char **)&fbfr, &len,

0) == -1) {
if (tperrno== TPESVCFAIL && fbfr != NULL &&
(server_status=Ffind (fbfr, STATLIN,O0,0)) != 0) {
/* Server returned failure */
(void) fprintf (stderr, "%$s returns failure
(%s)\n",

service, server_status) ;

}
else {
(void) fprintf (stderr,
"ERROR: %s failed (%s)\n", service,
tpstrerror (tperrno)) ;
}

/* Abort the transaction */
(void) tpabort(0);
return(-1);
}
/* Commit the transaction */
if (tpcommit (0) < 0) {
(void) fprintf (stderr, "ERROR: tpcommit failed
(%s)\n",

tpstrerror (tperrno)) ;

Tutorials for Developing Oracle Tuxedo ATMI Applications

3-9

3-10

return(-1) ;

}

return(0) ;

Thedo_tpcall() function performsthe following tasks:

e Beginsaglobal transaction by calling tpbegin (), which ensures that all work is done as a
single unit.

e Callstpcall () with the requested service name (char *service) and the supplied FML
buffer (the global * £bfr pointer).

e If tpcall () failswith a server-indicated failure (TpsvcERR), it prints the message from
the server in the staTtL.IN FML field. The transaction isrolled back with tpabort () and it
returns-1.

e If tpcall () failswith any other error, it prints the error message and rolls back the
transaction with tpabort () and returns-1.

e If tpcall () succeeds, it commits the transaction using tpcommit () and returns .

Note: Theunsolfcn () functionisinvoked if thereis an unsolicited message to the client. It
only supports sTRING buffer types and prints the message.

How ud(1) Is Used in bankapp

bankapp uses the Oracle Tuxedo program ud (1), which allows fielded buffers to be read from
standard input and sent to a service. In the sample application, ud is used by both the popul ate
and driver programs:

e In populate, a program called gendata passes service requests to ud with customer
account information to be entered in the bankapp database.

e Indriver, the dataflow is similar, but the program is gentran and the purposeis to pass
transactions to the application to simulate an active system.

Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the bankapp Clients

A Request/Response Client: audit.c

audit isarequest/response client program that makes branch-wide or bank-wide balance
inquiries, using the services. ABAL, TBAL, ABAL_BID, and TBAL_BID. YOU can invoke it in two

ways:

® audit [-a | -t]—printsthe bank-wide total value of al accounts, or bank-wide cash
supply of all tellers. Option -a or -t must be specified to indicate whether account
balances or teller balances are to be tallied.

e audit [-a | -t] branch_1p—printsthe branch-widetotal value of all accounts, or
branch-wide cash supply of al tellers, for branch denoted by branch_1p. Option -a or -t
must be specified to indicate whether account balances or teller balances are to be tallied.

The source code for audit contains two major parts: main () and asubroutine called sum_bal ().
Oracle Tuxedo ATMI functionsare used in both parts. The program usesaview typed buffer and
astructurethat isdefined inthe aud . n header file. The source code for the structure can be found
inthe view description file, aud.v.

The following pseudo-code shows the algorithm for the program.

Listing 3-2 audit Pseudo-code

main ()
{
Parse command-line options with getopt();
Join application with tpinit();
Begin global transaction with tpbegin();
If (branch_ID specified) {
Allocate buffer for service requests with tpalloc();
Place branch_ID into the aud structure;
Do tpcall() to "ABAL_BID" or "TBAL_BID";
Print balance for branch_ID;
Free buffer with tpfree();
}
else /* branch_ID not specified */
all subroutine sum_bal () ;
Commit global transaction with tpcommit () ;
Leave application with tpterm();
}
sum_bal ()
}
Allocate buffer for service requests with tpalloc();
For (each of several representative branch_ID's,

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-11

one for each site)
Do tpacall() to "ABAL" or "TBAL";
For (each representative branch_ID) {
Do tpgetrply() wtith TPGETANY flag set
to retrieve replies;
Add balance to total;
Print total balance;
}
Free buffer with tpfree();

Following isasummary of the two main parts of the audit source code.
In the programsmain () :

[* Join application */

[* Start global transaction */

[* Create buffer and set data pointer */

1
2
3
4. [* Dotpcall */
5 /* Commit global transaction */
6

[* Leave application /*
In the subroutine sum_bal:
1. /* Create buffer and set data pointer */
2. /* DO tpacall */

3. /* Do tpgetrply to retrieve answers to questions */

A Conversational Client: auditcon.c

auditcon isaconversational version of theaudit program. The source codefor auditcon Uses
the ATMI functions for conversational communication: tpconnect () to establish the
connection between the client and service, tpsend () to send amessage, and tprecv () to
receive a message.

The following pseudo-code shows the algorithm for the program.

3-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the bankapp Clients

Listing 3-3 auditcon Pseudo-code

main ()

Join the application
Begin a transaction
Open a connection to conversational service AUDITC
Do until user says to quit: {
Query user for input
Send service request
Receive response
Print response on user's terminal
Prompt for further input

}

Commit transaction
Leave the application

A Client that Monitors Events: hankmgr.c

bankmgr isincluded with bankapp as an example of aclient that is designed to run constantly.
It subscribes to application-defined events of special interest, such as the opening of a new
account or awithdrawal above $10,000. (The bankmgr . ¢ client is more fully described in the
README? file Of bankapp and in the bankmgr . ¢ codeitself.)

See Also

e “Familiarizing Yourself with bankapp” on page 3-2
e “What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

e “What Are the Oracle Tuxedo ATMI Messaging Paradigms?’ in Introducing Oracle
Tuxedo ATMI

e “What |s bankapp?’ on page 3-1
e “What Are Typed Buffers?’ in Introducing Oracle Tuxedo ATMI
e “Using Event-based Communication” on page 1-12

e Oracle Tuxedo Command Reference

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-13

../int/intatm.html
../int/intatm.html
../int/intatm.html

e Oracle Tuxedo ATMI C Function Reference

Examining the bankapp Servers and Services

3-14

Thistopic provides the following information:
e A description of the servers and services delivered with bankapp.
e A description of how the services are link-edited into servers.

e Pseudo-code for each service that is either accessed by the Oracle Tuxedo bankclt.c,
or the application client, audit.c.

e Descriptions of the relationships between the bankapp services and servers.

e Descriptions of the buildserver (1) command options used to compile and build each
server withthemain () defined by the Oracle Tuxedo system.

e An dternative method for structuring servers.

Servers are executable processes that offer one or more services. In the Oracle Tuxedo system,
they continually accept requests (from processes acting as clients) and dispatch them to the
appropriate services. Services are subroutines of C language code written specifically for an
application. Oracle Tuxedo's applications are written to make services avail able and capable of
accessing resource managers. Service routines must be written by Oracle Tuxedo application
programmers.

All bankapp services are coded in C with embedded SQL except for the TRANSFER Service,
which does not interact directly with the database. The TransFER service is offered by the xFer
server and isa C program (that is, its sourcefileisa . c filerather than a . ec file).

All bankapp services of bankapp use functions provided in the Application-to-Transaction
Management Interface (ATMI) for performing the following tasks:

e Managing typed buffers

e Communicating synchronously or asynchronously with other services
e Defining global transactions

e Generically accessing a resource manager

e Sending replies back to clients

Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the bankapp Servers and Services

bankapp Request/Response Servers

Five bankapp servers operate in request/response mode. Four of the five use embedded SQL
statements to access a resource manager; the names of the source files for these servers (located
in the bankapp sample application subdirectory), include a . ec filename extension.

Thefifth server, xFER, for transfer, makes no calls to the resource manager itself; it callsthe
WITHDRAWAL and DEPOSIT Services (offered by the TLR server) to transfer funds between
accounts. The sourcefilefor xFER isa . c file, because xFER makes no resource manager calls
and contains no embedded SQL statements.

This Server Provides this Functionality

BTADD. ec Allows branch and teller records to be added to the appropriate
database from any site.

ACCT.ec Provides customer representative services, namely the opening
and closing of accounts (OPEN_ACCT and CLOSE_ACCT).

TLR.ec Providesteller services, namely WITHDRAWAL, DEPOSIT, and
INQUIRY. Each TLR processidentifiesitself as an actual teller
inthe TELLER file, viathe user-defined -T option on the
server's command line.

XFER.cC Provides fund transfers for accounts anywhere in the database.
BAL.ec Calculates the account for all branches of the database or for a
specified branch.

bankapp Conversational Server

AUDITC isan example of aconversational server. It offers one service, which isalso called
aupITC. The conversational client, auditcon, establishes a connection to aupiTc and sends it
requests for auditing information.

AUDITC evaluates requests and calls an appropriate service (ABAL, TBAL, ABAL_BID, Of
TBAL_BID) to get the appropriate information. When areply is received from the service called,
AUDITC sendsit back to auditcon. A service in aconversationa server can make callsto
request/response services. It can also initiate connectionsto other conversational servers, but this
functionality is not provided by aupzTc.

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-15

bankapp Services

bankapp Offers 12 request/response services. The name of each bankapp service matches the
name of a C function in the source code of a server.

This Service Offered by this With this Input Performs this Function
Server

BR_ADD BTADD FML buffer ¢ Adds anew branch record

TLR_ADD BTADD FML buffer * Addsanew teller record

OPEN_ACCT ACCT FML buffer * Insertsarecord into the

ACCOUNT fileand calls
DEPOSIT to add theinitial
balance

¢ Choosesan ACCOUNT_ID
for anew account based on
the BRANCH_ 1D of theteller
involved

CLOSE_ACCT ACCT FML buffer ¢ Deletesan ACCOUNT record
e Validates ACCOUNT_ID

¢ CadlsWITHDRAWAL to
remove the final balance

WITHDRAWAL TLR FML buffer ¢ Subtractsanamount fromthe
specified branch, teller, and
account balance

¢ Validatesthe ACCOUNT_ID
and sSAMOUNT fields

¢ Checksthat funds are
available from account and
tell

DEPOSIT TLR FML buffer e Addsan amount to specified
branch, teller, and account
balances

e Validatesthe ACCOUNT_ID
and SAMOUNT fields

3-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the bankapp Servers and Services

This Service Offered by this ~ With this Input Performs this Function
Server
INQUIRY TLR FML buffer * Retrieves an account balance
e Validates ACCOUNT_1ID
TRANSFER XFER FML buffer e Issuesatpcall ()
requesting WITHDRAWAL
followed by one requesting
DEPOSIT
ABAL BAL VIEW buffer of e Calculates account balances
aud.v for al branches on agiven
site
TBAL BAL VIEW buffer of e Caculatestheteller balances
aud.v asinput for al branches on agiven
site
ABAL_BID BAL VIEW buffer of ¢ Cdculates the account
aud.v asinput balances for a specific
BRANCH_ID
TBAL_BID BAL VIEW buffer of e Cadculatestheteller balances

aud.v asinput

for a specific BRANCH_ID

Algorithms of bankapp Services

The following listings show pseudo-code for the agorithms used for the bankapp Services:
BR_ADD, TLR_ADD, OPEN_ACCT, CLOSE_ACCT, WITHDRAWAL, DEPOSIT, INQUIRY, TRANSFER,
ABAL, TBAL, ABAL_BID, and TBAL_BID. Y 0U can use them as road maps through the source code
of the bankapp servers.

Listing 3-4 BR_ADD Pseudo-code

void BR_ADD (TPSVCINFO *transb)
{
-set pointer to TPSVCINFO data buffer;
-get all values for service request from field buffer;
-insert record into BRANCH;
-tpreturn() with success;

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-17

Listing 3-5 TLR_ADD Pseudo-code

void TLR_ADD (TPSVCINFO *transb)
{
-set pointer to TPSVCINFO data buffer;
-get all values for service request from fielded buffer;
-get TELLER_ID by reading branch's LAST_ACCT;
-insert teller record;
-update BRANCH with new LAST_TELLER;
-tpreturn() with success;

Listing 3-6 OPEN_ACCT Pseudo-code

void OPEN_ACCT (TPSVCINFO *transb)
{

-Extract all values for service request from fielded buffer using Fget ()
and Fvall();

-Check that initial deposit is positive amount and tpreturn() with
failure if not;

-Check that branch ID is a legal value and tpreturn() with failure if it
is not;

-Set transaction consistency level to read/write;

-Retrieve BRANCH record to choose new account based on branch's LAST ACCT
field;

-Insert new account record into ACCOUNT file;

-Update BRANCH record with new value for LAST_ACCT;

-Create deposit request buffer with tpalloc(); initialize it for FML with
Finit();

-Fill deposit buffer with values for DEPOSIT service request;
-Increase priority of coming DEPOSIT request since call is from a

service;

-Do tpcall() to DEPOSIT service to add amount of initial balance;

-Prepare return buffer with necessary information;

-Free deposit request buffer with tpfree();

tpreturn() with success;

3-18 Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the bankapp Servers and Services

Listing 3-7 CLOSE_ACCT Pseudo-code

void CLOSE_ACCT (TPSVCINFO *transb)

{
-Extract account ID from fielded buffer using Fvall();
-Check that account ID is a legal value and tpreturn() with failure if it
is not;
-Set transaction consistency level to read/write;
-Retrieve ACCOUNT record to determine amount of final withdrawal;
-Create withdrawal request buffer with tpalloc(); initialize it for FML
with Finit () ;
-Fill withdrawal buffer with values for WITHDRAWAL service request;
-Increase priority of coming WITHDRAWAL request since call is from
a service;
-Do tpcall() to WITHDRAWAL service to withdraw balance of account;
-Delete ACCOUNT record;
-Prepare return buffer with necessary information;
-Free withdrawal request buffer with tpfree();
tpreturn with success;

Listing 3-8 WITHDRAWAL Pseudo-code

void WITHDRAWAL (TPSVCINFO *transb)
{
-Extract account id and amount from fielded buffer using Fvall() and
Fget();
-Check that account id is a legal value and tpreturn() with failure if not;
-Check that withdraw amount (amt) is positive and tpreturn() with
failure
if not;
-Set transaction consistency level to read/write;
-Retrieve ACCOUNT record to get account balance;
-Check that amount of withdrawal does not exceed ACCOUNT balance;
-Retrieve TELLER record to get teller's balance and branch id;
-Check that amount of withdrawal does not exceed TELLER balance;
-Retrieve BRANCH record to get branch balance;
-Check that amount of withdrawal does not exceed BRANCH balance;
-Subtract amt to obtain new account balance;
-Update ACCOUNT record with new account balance;
-Subtract amt to obtain new teller balance;
-Update TELLER record with new teller balance;
-Subtract amt to obtain new branch balance;
-Update BRANCH record with new branch balance;
-Insert new HISTORY record with transaction information;

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-19

-Prepare return buffer with necessary information;
tpreturn with success;

Listing 3-9 DEPOSIT Pseudo-code

void DEPOSIT (TPSVCINFO *transb)
{
-Extract account id and amount from fielded buffer using Fvall() and
Fget () ;
-Check that account ID is a legal value and tpreturn() with failure if not;
-Check that deposit amount (amt) is positive and tpreturn() with failure if
not;
-Set transaction consistency level to read/write;
-Retrieve ACCOUNT record to get account balance;
-Retrieve TELLER record to get teller's balance and branch ID;
-Retrieve BRANCH record to get branch balance;
-Add amt to obtain new account balance;
-Update ACCOUNT record with new account balance;
-Add amt to obtain new teller balance;
-Update TELLER record with new teller balance;
-Add amt to obtain new branch balance;
-Update BRANCH record with new branch balance;
-Insert new HISTORY record with transaction information;
-Prepare return buffer with necessary information;
tpreturn() with success;

Listing 3-10 INQUIRY Pseudo-code

void INQUIRY (TPSVCINFO *transb)
{
-Extract account ID from fielded buffer using Fvall();
-Check that account ID is a legal value and tpreturn() with failure if not;
-Set transaction consistency level to read only;
-Retrieve ACCOUNT record to get account balance;
-Prepare return buffer with necessary information;
tpreturn() with success;

3-20 Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the bankapp Servers and Services

Listing 3-11 TRANSFER Pseudo-code

void TRANSFER (TPSVCINFO *transb)
{
-Extract account ID's and amount from fielded buffer using Fvall()
and Fget ()
-Check that both account IDs are legal values and tpreturn() with
failure if not;
-Check that transfer amount is positive and tpreturn() with failure if
it is not;
-Create withdrawal request buffer with tpalloc(); initialize it for
FML with
Finit () ;
-Fill withdrawal request buffer with values for WITHDRAWAL service
request;
-Increase priority of coming WITHDRAWAL request since call is from
a service;
-Do tpcall() to WITHDRAWAL service;
-Get information from returned request buffer;
-Reinitialize withdrawal request buffer for use as deposit request buffer
with Finit();
-Fill deposit request buffer with values for DEPOSIT service request;
-Increase priority of coming DEPOSIT request;
-Do tpcall() to DEPOSIT service;
-Prepare return buffer with necessary information;
-Free withdrawal/deposit request buffer with tpfree();
tpreturn() with success;

Listing 3-12 ABAL Pseudo-code

void ABAL (TPSVCINFO *transb)
{
-Set transaction consistency level to read only;
-Retrieve sum of all ACCOUNT file BALANCE values for the
database of this server group (A single ESQL
statement is sufficient);
-Place sum into return buffer data structure;
tpreturn() with success;

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-21

Listing 3-13 TBAL Pseudo-code

void TBAL (TPSVCINFO *transb)
{
-Set transaction consistency level to read only;
-Retrieve sum of all TELLER file BALANCE values for the
database of this server group (A single ESQL
statement is sufficient);
-Place sum into return buffer data structure;
tpreturn() with success;

Listing 3-14 ABAL_BID Pseudo-code

void ABAL_BID(TPSVCINFO *transb)
{
-Set transaction consistency level to read only;
-Set branch_ID based on transb buffer;
-Retrieve sum of all ACCOUNT file BALANCE values for records
having BRANCH_ID = branch_ID (A single ESQL
statement is sufficient);
-Place sum into return buffer data structure;
tpreturn() with success;

Listing 3-15 TBAL_BID Pseudo-code

void TBAL_BID(TPSVCINFO *transb)
{
-Set transaction consistency level to read only;
-Set branch_ID based on transb buffer;
-Retrieve sum of all TELLER file BALANCE values for records
having BRANCH_ID = branch_ID (A single ESQL
statement is sufficient);
-Place sum into return buffer data structure;
tpreturn() with success;

3-22 Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the bankapp Servers and Services

Utilities Incorporated into Servers

Two C subroutines are included among the source files for bankapp: appinit.c andutil.c:

e appinit.c contains application-specific versions of the tpsvrinit () and tpsvrdone ()

subroutines. tpsvrinit () and tpsvrdone () are subroutinesincluded in the standard
Oracle Tuxedo ATMI main (). The default version of tpsvrinit () callstwo functions:
tpopen (), to open the resource manager, and userlog (), t0 post a message that the
server has started. The default version of tpsvrdone () also callstwo functions:

tpclose (), to close the resource manager, and userlog (), to post a message that the
server isabout to shut down. Any application subroutines named tpsvrinit () and
tpsvrdone () can be used in place of the default subroutines, thus enabling an application
to provide initialization and pre-shutdown procedures of its own.

util.c containsasubroutine called getstr (), which is used in bankapp to process SQL
€rror messages.

Alternative Way to Code Services

In the bankapp sourcefilesall the serviceswereincorporated into filesthat are referred to asthe
source code for servers. These files have the same names as the bankapp servers, but are not
really servers because they do not contain amain () section. A standardmain () isprovided by
Oracle Tuxedo ATMI at buildserver time.

An dternative organization for an Oracle Tuxedo system application is to keep each service
subroutinein a separatefile. Suppose, for example, that you want to use this alternative structure
for the TLr server. The TiR. ec file contains three services that you maintain in three separate
.ec files: INQUIRY. ec, WITHDRAW. ec, and DEPOSIT. ec. Follow these steps.

1
2.

Compile each .ec fileinto a.o file.

Run the bui1dserver command specifying each .o file with a separate invocation of the - £
option.
buildserver -r TUXEDO/SQL \
-s DEPOSIT -s WITHDRAWAL -s INQUIRY \
-o TLR \
-f DEPOSIT.o -f WITHDRAW.o -f INQUIRY.o \
-f util.o -f -1Im
Note: The backslash in the preceding command-line entry is a documentation convention
that indicates aline break for presentation purposes only. Y ou should enter the
command and options on one line

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-23

Asthis exampleillustrates, you do not need to code all the service functionsin a single source
file. In other words, aserver does not need to exist asasource programfileat all. It can be derived
from various source files and exist as a server executable through the files specified on the
buildserver command line. This can give you greater flexibility in building servers.

See Also

e “Familiarizing Yourself with bankapp” on page 3-2
e “What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI
e buildserver (1) inthe Oracle Tuxedo Command Reference

e Oracle Tuxedo Command Reference

Preparing bankapp Files and Resources

This documentation leads you through the procedures you must complete to create the files and
other resources you need to run bankapp.

Click on each task for instructions on completing that task.

3-24 Tutorials for Developing Oracle Tuxedo ATMI Applications

../int/intatm.html

Step 1: How to Set the Environment Variables

Step 1. Set enviranment variables
in bankvar
|

Step 2. Build the servers
I

Step 3. Edit the makefile
|

Step 4. Create the bankapp database
I

Step 5. Prepare for an xA-compliant
reESOUrCE manager
|

Step 6. Edit the configuration file
|

Step 7. Create a binary configuration

file and a transaction log file
|

Step 8. Create a transaction log
|

Step 9. Create a remote service
connection on each machine

Step 1: How to Set the Environment Variables

The environment variables are defined in the bankvar file. Thefileislarge (approximately 185
lines) because it includes extensive comments.

1. Inatext editor, familiarize yourself with the bankvar file.

— Thefirst key line checks whether Tuxp1R isset. If it is not set, execution of thefile
fails with the following message:

TUXDIR: parameter null or not set

2. SetTuxpir totheroot directory of your Oracle Tuxedo system directory structure, and export
it.

3. Another lineinbankvar setsapppir tothedirectory $ {TUXDIR} /samples/atmi/bankapp,
which isthe directory where bankapp source files are located. appp1R isadirectory where
the Oracle Tuxedo system looks for your application-specific files. You may prefer to copy

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-25

thebankapp filesto adifferent directory to safeguard the original sourcefiles. If you do, enter
the directory there. It does not have to be under TuxDIR.

4. Setavauefor prpckey. Thisisan zrckey for an Oracle Tuxedo system database. The value
of prpckEY must be different from the value of the Oracle Tuxedo system rpckEeyY specified

in the uBBconrIG file

Note: Other variables specified in bankvar play various rolesin the sample application;
you need to be aware of them when you are developing your own application. By
including them all in bankvar, we provide you with a“template” that you may want
to adapt at alater time for use with areal application.

5. When you have made all the required changes to bankvar, execute bankvar as follows:

. /bankvar

Listing 3-16 bankvar: Environment Variahles for bankapp

Copyright (c) 1997, 1996 BEA Systems, Inc.

Copyright (c) 1995, 1994 Novell, Inc.

Copyright (c) 1993, 1992, 1991, 1990 Unix System Laboratories, Inc.
All rights reserved

#

This file sets all the environment variables needed by the TUXEDO software
to run the bankapp

#

This directory contains all the TUXEDO software

System administrator must set this variable

#

if [-z "${TUXDIR}"] ; then

if [! -z "${ROOTDIR}"] ; then
TUXDIR=$ROOTDIR
export TUXDIR

fi
fi
TUXDIR=$ {TUXDIR:?}
#
Reset LANG if necessary
#
if [! -d ${TUXDIR}/locale/C -a -d ${TUXDIR}/locale/english_us] ; then

export LANG

LANG=english_us.ascii

fi

#

This directory contains all the user written code
#

3-26 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 1: How to Set the Environment Variables

Contains the full path name of the directory that the application
generator should place the files it creates

#

APPDIR=$ {TUXDIR} /apps/bankapp

i This path contains the shared objects that are dynamically linked at
runtime in certain environments, e.g., SVR4.

iD_LIBRARY_PATH=$ {TUXDIR}/1lib:${LD_LIBRARY_ PATH}

i Set the path to shared objects in HP-UX

zHLIB_PATH:$ {TUXDIR}/1lib:${SHLIB_PATH}

i Set the path to shared objects in AIX
iIBPATst{TUXDIR}/lib:/usr/lib:${LIBPATH}

#

Logical block size; Database Administrator must set this variable
#

BLKSIZE=512

#

Set default name of the database to be used by database utilities
and database creation scripts

#

DBNAME=bankdb

#

Indicate whether database is to be opened in share or private mode
#

DBPRIVATE=no

#

Set Ipc Key for the database; this MUST differ from the UBBCONFIG
*RESOURCES IPCKEY parameter

#

DIPCKEY=80953

#

Environment file to be used by tmloadcf

#

ENVFILE=${APPDIR}/ENVFILE

#

List of field table files to be used by mc, viewc, tmloadcf, etc.
#

FIELDTBLS=Usysflds,bankflds,creditflds, eventflds

#

FIELDTBLS32=Usysfl32,evt_mib, tpadm

#

List of directories to search to find field table files
#

FLDTBLDIR=S$ {TUXDIR} /udataobj:${APPDIR}

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-21

#

FLDTBLDIR32=${TUXDIR}/udataobj:${APPDIR}

#

Universal Device List for database

#

FSCONFIG=${APPDIR}/bankdll

#

Network address, used in MENU script

#

NADDR=

#

Network device name

#

NDEVICE=

#

Network listener address, used in MENU script
#

NLSADDR=

#

Make sure TERM is set

#

TERM=$ { TERM: ? }

#

Set device for the transaction log; this should match the TLOGDEVICE
parameter under this site's LMID in the *MACHINES section of the
UBBCONFIG file

#

TLOGDEVICE=S$ {APPDIR}/TLOG

#

Device for binary file that gives the BEA Tuxedo system all its information
#

TUXCONFIG=${APPDIR}/tuxconfig

#

Set the prefix of the file which is to contain the central user log;
this should match the ULOGPFX parameter under this site's LMID in the
*MACHINES section of the UBBCONFIG file

#

ULOGPFX=$ {APPDIR} /ULOG

#

System name, used by RUNME.sh

#

UNAME=

#

List of view files to be used by viewc, tmloadcf, etc.

#

VIEWFILES=aud.V

#

VIEWFILES32=mib_views, tmib_views

#

3-28 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 1: How to Set the Environment Variables

List of directories to search to find view files

3IEWDIR=${TUXDIR}/udataobj:${APPDIR}
3IEWDIR32:${TUXDIR}/udataobj:${APPDIR}

z Specify the Q device (if events included in demo)
ZMCONFIG=${APPDIR}/qdevice

i Export all variables just set

#

export TUXDIR APPDIR BLKSIZE DBNAME DBPRIVATE DIPCKEY ENVFILE
export LD_LIBRARY_PATH SHLIB_PATH LIBPATH

export FIELDTBLS FLDTBLDIR FSCONFIG MASKPATH OKXACTS TERM
export FIELDTBLS32 FLDTBLDIR32

export TLOGDEVICE TUXCONFIG ULOGPFX

export VIEWDIR VIEWFILES

export VIEWDIR32 VIEWFILES32

export QMCONFIG

#

Add TUXDIR/bin to PATH if not already there
#

a=""echo $PATH | grep ${TUXDIR}/bin "

if [x"$a" = x]

then

PATH=$ {TUXDIR} /bin:${PATH}
export PATH

fi

#

Add APPDIR to PATH if not already there
#

a="‘echo $PATH | grep ${APPDIR} "
if [x"$a" = x]

then

PATH=${PATH} : ${APPDIR}

export PATH

fi
#
Check for other machine types bin directories
#
for DIR in /usr/5bin /usr/ccs/bin /opt/SUNWspro/bin
do
if [-d ${DIR}] ; then
PATH="${DIR}:${PATH}"
fi
done

Tutorials for Developing Oracle Tuxedo ATMI Applications

3-29

Note: If your operating system is Sun Solaris, you must do two things: use /bin/sh rather than
csh for your shell place; and specify /usr/5Sbin at the beginning of your paTH, as
follows.

PATH=/usr/5bin:$PATH; export PATH

See Also

e “Preparing bankapp Files and Resources’ on page 3-24

Step 2: Building Servers in bankapp

3-30

buildserver(l) putstogether an executable ATMI server built on the Oracle Tuxedo ATMI
main (). Optionsidentify the names of the output file, the input files provided by the application,
and various libraries that permit you to run an Oracle Tuxedo system application in avariety of
ways.

buildserver invokesthe cc command. The environment variables cc and crLacs can beset to
name an alternative compile command and to set flags for the compile and link edit phases. The
buildserver command isused in bankapp .mk to compile and build each server in the banking
application. The following sections describe the Six bankapp servers:

e How to Build ACCT Server
o How to Build the BAL Server

How to Build the BTADD Server

How to Build the TLR Server

e How to Build the XFER Server

e Step 3: Editing the bankapp Makefile

How to Build ACCT Server

TheaccT server isderived from afile called accT. ec that contains the code for the opEN_accT
and cL.ose_acct functions. It is created in two steps. accT. ec isfirst compiled to an accr. o
file, which is then specified to the buildserver command so that any compile-time errors can
be identified and resolved.

Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 2: Building Servers in bankapp

1. Createtheaccrt. o file (performed for you in bankapp . mk):
— The .c fileisgenerated asfollows. esql AcCCT.ec.
— The .o fileisgenerated asfollows. cc -1 $TUXDIR/include -c ACCT.c.
— Theacct server is created by running the following buildserver command line.

buildserver -r TUXEDO/SQL \
-s OPEN_ACCT -s CLOSE_ACCT \
-0 ACCT \
-f ACCT.o -f appinit.o -f util.o

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates aline break for presentation purposes only. Y ou should enter the
command and options on one line.

Following is an explanation of the buildserver command-line options:

e The -r option is used to specify which resource manager access libraries should be link
edited with the executable server. The choice is specified with the string TUxEDO/ SQL.

e The -s option is used to specify the names of the servicesin the server that are available to
be advertised when the server is booted. If the name of afunction that performs a serviceis
different from the corresponding service name, the function name becomes part of the
argument to the -s option.

INn bankapp, the function name is always the same as the name of the corresponding
service so only the service names themselves need to be specified. It is our convention to
spell all service namesin all uppercase. For example, the oPEN_accT service is processed
by the function opEN_accT () . However, the -s option to buildserver does allow you to
specify an arbitrary name for the processing function for a service within a server. Refer to
the buildserver(1) reference page for details. It is aso possible for an administrator to
specify that only a subset of the services used to create the server with the buildserver
command is to be available when the server is booted.

e The -0 option is used to assign a name to the executable output file. If no nameis
provided, the fileis named sERVER.

e The -£ option specifies the filesthat are used in the link-edit phase. (For related
information, see the description of the -1 option on the buiildserver(l) reference page.)
The order in which the files are listed depends on function references and the librariesin
which those references are resolved. Source modules should be listed before libraries that
might be used to resolve their references. If these are . ¢ files, they are first compiled. (In
the example above, appinit.o andutil.o have been already compiled.) Object files can
be either separate . o files or groups of filesin archive (. a) files. If more than one filename
is given as an argument to the - £ option, the list must be enclosed in double quotation

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-31

3-32

marks. Although the -£ option takes only onefile or onelist of files (enclosed in double
guotation marks) as an argument, you can include the - £ option as many times as
necessary on a single command line.

To summarize, the options specified onthebuildserver command lineused to createthe ACCT
server performed the following functions:

e The -r option specifies the Oracle Tuxedo system SQL resource manager.

e The -s option names the oPEN_accT and cLosE_accT services (which are defined by
functions of the same name in the accr. ec fil€) to be the services that make up the accr
server.

e The -o option assigns the name accrt to the executable output file.

e The -f option specifiesthat theaccT. o, appinit.o, andutil.o filesareto beusedin
the link-edit phase of the build.

Note: Theappinit.c filecontainsthe system-supplied tpsvrinit () and tpsvrdone ().
(Refer to tpservice(3c) reference pagesfor an explanation of how theseroutinesare
used.)

How to Build the BAL Server

The BaL server is derived from afile called BaL . ec that contains the code for the aBaL, TBAL,
ABAL_BID, and TBAL_BID functions. Aswith accT. ec, the BAL. ec isfirst compiled to aBarn. o
file before being supplied to the buildserver command so that any compile-time errors can be
identified and resolved.

1. Modify thebuildserver command used to create the BaL server asfollows:

buildserver -r TUXEDO/SQL \
-s ABAL -s TBAL -s ABAL_BID -s TBAL_BID\
-0 BAL \
-f BAL.o -f appinit.o

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates aline break for presentation purposes only. Y ou should enter the
command and options on oneline.

— Usethe -r option to specify the Oracle Tuxedo system SQL resource manager.

— Usethe -s option to name the ABAL, TBAL, ABAL_BID, TBAL_BID Servicesthat make up
the BAL server. The functionsin the BaL. ec file that define these services have
identical names.

Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 2: Building Servers in bankapp

— Usethe -o option to assign the name BaL to the executabl e server.

— Usethe - £ option to specify that the BaL. o and the appinit.o filesareto be used in

the link-edit phase.

How to Build the BTADD Server

The BTaDD server isderived from afile called BTapp. ec that contains the code for the BR_abD
and TLR_ADD functions. The BTADD. ec iScompiled to aBTADD. o file before being supplied to
the buildserver command.

1. Modify the buildserver command used to create the BTapD server as follows:

buildserver -r
-s
-0
-f

TUXEDO/SQL \

BR_ADD -s TLR_ADD \
BTADD \

BTADD.o -f appinit.o

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates aline break for presentation purposes only. Y ou should enter the
command and options on one line.

— Usethe -r option to specify the Oracle Tuxedo system SQL resource manager.

— Usethe -s option to name the BR_app and TLR_ADD Services that make up the BTADD
server. The functionsin the BTapD. ec file that define these services have identical

names.

— Usethe -o option to assign the name BTADD to the executable server.

— Usethe - £ option to specify that the BTapD. 0 and appinit.o filesareto beused in

the link-edit phase.

How to Build the TLR Server

The T1.r server isderived from afile called TLRr. ec that contains the code for the pEposTT,
WITHDRAWAL, and INQUIRY functions. The TLR. ec isalso compiled to aTLR. o file before being
supplied to the buildserver command.

1. Modify thebuildserver command used to create the TR server asfollows:

buildserver -r TUXEDO/SQL \

-s
-o
-£f

DEPOSIT -s WITHDRAWAL -s INQUIRY \
TLR \
TLR.o -f util.o -f -1m

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-33

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates aline break for presentation purposes only. Y ou should enter the
command and options on oneline.

— Usethe -r option to specify the Oracle Tuxedo system SQL resource manager.

— Usethe -s option to name the DEPOSIT, WITHDRAWAL, and INQUIRY Servicesthat make
up the TR server. The functionsin the TLR. ec file that define these services have
identical names.

— Usethe -o option to assign the name TL.r to the executable server.

— Usethe - option to specify that the TL.R. o and theutil.o filesareto be used in the
link-edit phase.

Note: Inthisexample, the -£ option is used to pass an option (-1m) to the cc command,
whichisinvoked by buildserver. The -1m argument to - £ causesthe math libraries
to belinked in at compiletime.

(Refer to cc(1) in the UNIX System V User's Reference Manual for a complete list of
compile-time options.)

How to Build the XFER Server

The xrFER server is derived from afile called xFER. ¢ that contains the code for the TRANSFER
function. The xFER. c is also compiled to an xFER. o file before being supplied to the
buildserver cOmmand.

1. Modify the buildserver command used to create the xFER server as follows:

buildserver -r TUXEDO/SQL \
-s TRANSFER \
-0 XFER \
-f XFER.o -f appinit.o

Note: The backslash in the preceding command-line entry is a documentation convention
that indicates aline break for presentation purposes only. Y ou should enter the
command and options on one line.

— Usethe -r option to specify the Oracle Tuxedo system SQL resource manager.

— Usethe -s option to name the TRANSFER service that makes up the xFER server. The
functionin the xFER. c file that defines the TRANSFER service has the identical name.

— Usethe -o option to assign the name xrER to the executable server.

3-34 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 3: Editing the bankapp Makefile

— Usethe - £ option to specify that the XFER. o and the appinit.o filesareto beusedin
the link-edit phase.

Servers Built in the bankapp.mk File

The topics on creating the bankapp servers are important to your understanding of how the
buildserver command is specified. However, in actua practice you are apt to incorporate the
build into amakefile; that isthe way it is done in bankapp.

Step 3: Editing the bankapp Makefile

bankapp includes amakefile that makes all scripts executable, convertsthe view description file
to binary format, and does all the precompiles, compiles, and builds necessary to create
application servers. It can also be used to clean up when you want to make a fresh start.

Asbankapp.mk is delivered, there are afew fields you may want to edit, and some others that
may benefit from some explanation.

How to Edit the TUXDIR Parameter

1. Review bankapp .mk, about 40 linesinto the file, where you come to the following comment
and the TuxpIR parameter:

#

Root directory of TUXEDO System. This file must either be edited to set
this value correctly, or the correct value must be passed via "make -f

bankapp.mk TUXDIR=/correct/tuxdir", or the build of bankapp will fail.

#

TUXDIR=../..

2. Set the TuxpIR parameter to the absolute pathname of the root directory of your Oracle
Tuxedo system installation.

How to Edit the APPDIR Parameter

1. Review the setting of the apppIR parameter. AS bankapp is delivered, AppDIR is set to the
directory in which the bankapp files are located, relative to Tuxp1r. The following section
of bankapp . mk defines and describes the setting of appDIR.

#

Directory where the bankapp application source and executables reside.
This file must either be edited to set this value correctly, or the

correct value must be passed via "make -f bankapp.mk

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-35

APPDIR=/correct/appdir", or the build of bankapp will fail.
#

APPDIR=$ (TUXDIR) /samples/atmi/bankapp

#

2. If you copied the filesto another directory, as suggested in the rReapMmE file, you should set
appDIR tothename of thedirectory to which you copied thefiles. When you run the makefile,
the application is built in this directory.

How to Set the Resource Manager Parameters

By default, bankapp is set up to use the Oracle Tuxedo/SQL as the database resource manager.
This arrangement is based on the assumption that you have the Oracle Tuxedo system database
on your system. If thisis not the case, you should set the RM parameter to the name of your
resource manager as listed in TUXDIR/udataobj /RM.

#

Resource Manager
#

RM=TUXEDO/SQL

#

Note: The Oracle Tuxedo SQL resource manager isincluded for demonstration purposes only.

How to Run the bankapp.mk File

1. When you have completed the changes you wish to make to bankapp . mk, run it with the
following command line:

nohup make -f bankapp.mk &
2. Check the nohup . out file to make sure the process completed successfully.

Note: bankvar setsanumber of parameters that are referenced when bankapp . mk iSrun.

See Also
e “Preparing bankapp Files and Resources’ on page 3-24

Step 4: Creating the bankapp Database

This documentation describes the interface between bankapp and aresource manager, typically
a database management system, and how to create the database for bankapp. bankapp iS

3-36 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 5: Preparing for an XA-Compliant Resource Manager

designed to use the Oracle Tuxedo/SQL facilities of the Oracle Tuxedo system database, which
isan XA-compliant resource manager.

Note: The Oracle Tuxedo SQL resource manager isincluded for demonstration purposes only.

How you create the bankapp database depends on whether you bring up the application on a
single processor (SHM mode) or on a network of more than one processor (MP mode).

How to Create the Database in SHM Mode

1. Set the environment by typing the following:

. /bankvar

2. Execute crbank. crbank Calls crbankdb three times, changing some environment variables
each time, so that you end up with three database files on a single machine. As aresult, you
can simulate the multi-machine environment of the Oracle Tuxedo system without a network
of machines.

How to Create the Databhase in MP Mode

1. Set the environment by typing the following:
. /bankvar

Note: You may have already set your environment variables. For detailed instructions, see
“How to Set Environment Variables.”

2. Run crbankdb to create the database for this site.

3. On each additional machine in your Oracle Tuxedo system network, edit bankvar to
provide the pathname for the Fsconr e variable that is used for that site in the configuration
file, ubbmp. Then repeat steps 1 and 2.

See Also

e “Preparing bankapp Files and Resources’ on page 3-24

Step 5: Preparing for an XA-Compliant Resource
Manager

To run bankapp With an alternative X A-compliant resource manager, you must modify various
files. This section describes the following:

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-37

3-38

How to Change the bankvar File

How to Change the bankapp Services
e How to Change the bankapp.mk File
e How to Change crbank and crbankdb

e How to Change the Configuration File

How to Change the hankvar File

1. Review the following environment variables that are assigned the values shown here, by
default, to create the Oracle Tuxedo system database:

BLKSIZE=512

DBNAME=bankdb
DBPRIVATE=no

DIPCKEY=80953
FSCONFIG=S${APPDIR} /bankdll

Note: These environment variables pertain to the Oracle Tuxedo system only; you may
need to set different environment variables or other mechanisms depending on your
specific database management system requirements.

2. Changethe value of these variables as needed to create the database for your resource
manager.

How to Change the hankapp Services

Because all database access in bankapp is performed with embedded SQL statements, if your
new resource manager supports SQL, you should have no problem. The utility appinit.c
includes callsto tpopen () and tpclose ().

How to Change the hankapp.mk File

1. Edit the RM parameter in bankapp . mk t0 name the new resource manager.

2. Ensurethat the following entry isin the RM file.

STUXDIR/udataobj/RM

Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 5: Preparing for an XA-Compliant Resource Manager

3. If necessary, change the name of the SQL compiler and its options. The name of the source
file may or may not include .ec. You may have to specify a non-default for compiling the
resulting . c file.

How to Change crbank and crbankdb

1. crbank may beignored by your alternate resource manager. Its only functions are to reset
variables and to run crbankdb three times.

2. crbankdb, on the other hand, requires close attention. The following code listing is the
beginning of the crbankdb script. It isfollowed by an explanation of parts of the code that do
not work with aresource manager that is not supplied with the Oracle Tuxedo system.

Listing 3-17 Excerpt from the crbankdb Script

#Copyright (c) BEA Systems, Inc.

#Al1ll rights reserved

#

Create device list

#

dbadmin<<!

echo

crdl

Replace the following line with your device zero entry

${FSCONFIG} 0 2560

1

#

Create database files, fields, and secondary indices

#

sgl<<!

echo

create database ${DBNAME} with (DEVNAME='${FSCONFIG}'"',
IPCKEY=${DIPCKEY}, LOGBLOCKING=0, MAXDEV=1,

NBLKTBL=200, NBLOCKS=2048, NBUF=70, NFIELDS=80,
NFILES=20, NFLDNAMES=60, NFREEPART=40, NLCKTBL=200,
NLINKS=80, NPREDS=10, NPROCTBL=20, NSKEYS=20,
NSWAP=50, NTABLES=20, NTRANTBL=20, PERM="'0666",

STATISTICS='n'
)

create table BRANCH (

BRANCH_ID integer not null,
BALANCE real,

LAST ACCT integer,

LAST TELLER integer,

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-39

PHONE char (14),

ADDRESS char (60),
primary key (BRANCH_ID)
) with (
FILETYPE='hash', ICF='PI", FIELDED='FML',
BLOCKLEN=${BLKSIZE}, DBLKS=38, OVBLKS=2

Thefirst 40 lines give you an idea of what needsto be changed and what may be kept unchanged.
Asyou can see, crbankdb is made up of two documents that provide input to the dbadmin and
sql shell commands. Thefirst here fileis passed to the Oracle Tuxedo system command
dbadmin to create adevice list for the database.

Thiscommand does not work with non-Oracle Tuxedo resource managers. Other commands may
be needed to create table spaces and/or grant the correct privileges.

How to Change the Configuration File

In the crouPs section, specify appropriate values (that is, values that are recognized by your
resource manager) for the TMSNAME and OPENINFO parameters.

How to Integrate hankapp with Oracle (XA RM) for a
Windows 2003 Platform

3-40

1. Editthent\bankvar.cmd and supply suitable values for the following environment
variables:

TUXDIR : Root directory for the BEA TUXEDO system installation
APPDIR : Application directory in which bankapp files are located
ORACLE_HOME : Root directory of the Oracle8 installation
ORACLE_SID : Oracle System ID

BLK_SIZE: Logical block size

DBNAME: default name of the database to be used by database utilities
and database creation scripts

DBPRIVATE: indicates whether database is to be opened in share or
private mode (yes or no)

FSCONFIG:Universal Device List for database

Tutorials for Developing Oracle Tuxedo ATMI Applications

How to Integrate bankapp with Oracle (XA RM) for a Windows 2003 Platform

PATH=%TUXDIR%\bin; $TUXDIR%\include; $TUXDIR%\1lib; $ORACLE_HOME%\bin; %P
ATH%

INCLUDE=%0ORACLE_HOME%\rdbms80\xa;
%ORACLE_HOME%\pro80\c\include; $include%

NLSPATH=%TUXDIR%\locale\C
PLATFORM=inwnt40

LIB=%TUXDIR%\1lib; %ORACLE_HOME%\pro80\lib\msvc;
%ORACLE_HOME%\rdbms80\xa; %$1ib%;

Run the script to set up the environment:
>bankvar
Edit the TuxDIR\udataobi\Ru file as follows:
— Append the following line to the $TuxDIR\udataobj\Rru file:

Oracle_XA;xaosw; $ORACLE_HOME%\pro80\lib\msvc\sgllib80.1lib
$ORACLE_HOMES%\RDBMS80\XA\xa80.1lib

or if Oracle exists over the network:
— Map the machineto adrive, for example, F.
— Append the following line to the $TuxDIR\udataobj\RM file:

Oracle_XA;xaosw; f:\orant\pro80\lib\msvc\sgllib80.1lib
f:\orant\RDBMS80\XA\xa80.1lib

— Remove any previous entry of Oracle XA intheru file>
Build the Transaction Manager Server for Oracle8:

cd $APPDIR
buildtms -r Oracle_XA -o TMS_ORA

Edit the nt \bankapp .mak file asindicated in the following table.

Task

Value

Specify values for the following TUXDIR=Roo0t directory for the Oracle Tuxedo system installation
environment variables.

APPDIR=Application directory in which bankapp files are located

RM=Oracle_XA

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-41

Task Value

ORACLE_LIBS=$ (ORACLE_HOME) \PRO80\LIB

RMNAME=Oracle_XA

SQLPUBLIC=$ (ORACLE_HOME) \PRO80\C\ INCLUDE

CFLAGS=$ (HOST) -DNOWHAT=1 $(CGFLAGS) $ (DFML32)

CGFLAGS=-DWIN32 -W3 -MD -nologo

ORACLE_DIR=$ (ORACLE_HOME) \bin

INCDIR=S (TUXDIR) \include

CC=cl
Inthe . ec. c section, Edit rulesfor set TUXDIR=$ (TUXDIR) & $(ORACLE_DIR) \proc80
creating C programs from embedded mode=ansi release_cursor=yes
QL programs, (use the proc compiler), include=s (SQLPUBLIC) include=$ (INCDIR)
set the following values. $ (SQL_PLATFORM_INC) -c iname=$*.ec
Inthe . c.obj section, Edit rule for $(CC) -c $(CFLAGS) $(SQLPUBLIC) $(INCLUDE) $*.c

creating object files from C programs,
set the following values.

6. Updatethe *.ec files. Use Oracle SQL commands.
7. Run the makefile:

copy nt\bankapp.mak to $APPDIR%
nmake -f bankapp.mak

8. Edit nt\ubbshm asfollows:

USER_ID=0

GROUP_ID=0

UNAME_SITEl=nodename returned by hostname
TUXDIR=same as specified in bankvar
APPDIR=same as specified in bankvar

9. Inthecroups section of the configuration file, enter the following changes:

TMSNAME=TMS_ORA
BANKB1 GRPNO=1
OPENINFO="Oracle_XA:0Oracle_XA+Acc=P/userl/PaSsWdl+SesTm=0+LogDir=."

3-42 Tutorials for Developing Oracle Tuxedo ATMI Applications

How to Integrate bankapp with Oracle (XA RM) for a Windows 2003 Platform

[
Oracle_XA +

required fields:

Acc=P/oracle_user_id/oracle_password +

SesTm=Session_time limit (maximum time a transaction can be inactive) +
optional fields:

LogDir=logdir (where XA library trace file is located) +
MaxCur=maximum_#_of_open cursors +

SglNet=connect_string (if Oracle exists over the network)

(eg. SglNet=hgfin@NEWDB indicates the database with sid=NEWDB accessed
at host hgfin by TCP/IP)

1
BANKB2 GRPNO=2
OPENINFO="Oracle_XA:0Oracle_XA+Acc=P/user2/PaSsWd2+SesTm=0+LogDir=."
BANKB3 GRPNO=3
OPENINFO="Oracle_XA:Oracle_XA+Acc=P/user3/PaSsWd3+SesTm=0+LogDir=."

10. Create the Oracle Tuxedo configuration binary file:
tmloadcf -y nt/ubbshm

11. Create the device list and the TLoc device on the master machine:
crtlog -m

12. Start up the Oracle database instance if not already started.

13. Boot the Oracle Tuxedo system servers:
tmboot -y

14. Ensurethat the view v$XATRANSS existsonthe database. (Theview v$xaTranss should have
been created during the XA library installation.)

15. If the v$xATRANSS View has not been created, create it asfollows:
— Ensure that the environment variables oracLE_HOME and ORACLE_SID are Set.
— Login to the database as user sys:
Execute the sgl script ${ORACLE_HOME}/RDBMS80/ADMIN/XAVIEW. sql

— Grant select privileges to this view for all Oracle account applicationsthat will use the
XA library.

16. Create the bankapp database and database objects for Oracle RM:
— Loginto any of the Oracle utilities SQL* plus or SQL*DBA as any Oracle user.

- notepad crbank-ora8.sqgl

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-43

— When Oracle8 isinstalled, a sample database is created. You can use this database for
the bankapp application. The sq1 script provided, creates a new tablespace in the
database to hold all the database objects of bankapp.The script prompts for the Oracle
system user password aswell as afull path name of afile to use as the new tablespace.

— Edit crbank-ora8.sql asfollows:

WHENEVER OSERROR EXIT ;
/*Obtain the password for user "system" */

PROMPT

PROMPT

PROMPT -- Some of the operations require "system" user privileges
PROMPT -- Please specify the Oracle "system" user password
PROMPT

ACCEPT syspw CHAR PROMPT 'system passwd:' HIDE ;
CONNECT system/&syspw ;
SHOW user ;
PROMPT
/* Create a new tablespace in the default DB for use with "bankapp" */
DROP TABLESPACE bankl
INCLUDING CONTENTS
CASCADE CONSTRAINTS;

PROMPT

PROMPT

PROMPT -- Will create a 3MB tablespace for bankapp ;

PROMPT -------- Please specify full pathname below for Datafile ;
PROMPT ----—---- Ex: %ORACLE_HOME%/dbs/bankapp.dbf

PROMPT

ACCEPT datafile CHAR PROMPT 'Datafile:' ;

CREATE TABLESPACE bankl
DATAFILE '&datafile' SIZE 3M REUSE
DEFAULT STORAGE (INITIAL 10K NEXT 50K
MINEXTENTS 1 MAXEXTENTS 120
PCTINCREASE 5)
ONLINE;

/***************** create a user called "U.Serl“ ***************/

DROP USER userl CASCADE;

PROMPT Creating user "userl"

CREATE USER userl IDENTIFIED by PaSsWdl
DEFAULT TABLESPACE bankl
QUOTA UNLIMITED ON bankl ;

GRANT CREATE SESSION TO userl ;
GRANT CREATE TABLE TO userl ;

3-44 Tutorials for Developing Oracle Tuxedo ATMI Applications

How to Integrate bankapp with Oracle (XA RM) for a Windows 2003 Platform

CONNECT userl/PaSswdl ;
SHOW user ;

PROMPT Creating database objects for user "userl"
PROMPT Creating table "branch"

CREATE TABLE branch (

branch_id NUMBER NOT NULL PRIMARY KEY,
balance NUMBER,
last_acct NUMBER,
last_teller NUMBER,
phoneCHAR (14) ,
address CHAR (60)
)
STORAGE (INITIAL 5K NEXT 2K

MINEXTENTS 1 MAXEXTENTS 5 PCTINCREASE 5)
PROMPT Creating table "account"

7

CREATE TABLE account (

account_id NUMBER NOT NULL PRIMARY KEY,
branch_id NUMBER NOT NULL,
ssn CHAR(12) NOT NULL,
balance NUMBER,
acct_type CHAR,
last_name CHAR (20),
first_name CHAR (20),
mid_init CHAR,
phoneCHAR (14) ,
address CHAR (60)
)
STORAGE (INITIAL 50K NEXT 25K

MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 5)

i

PROMPT Creating table "teller"
CREATE TABLE teller (

teller_id NUMBER NOT NULL PRIMARY KEY,
branch_id NUMBER NOT NULL,
balance NUMBER,
last_name CHAR (20),
first_name CHAR (20),
mid_init CHAR
)
STORAGE (INITIAL 5K NEXT 2K
MINEXTENTS 1 MAXEXTENTS 5 PCTINCREASE 5) ;

PROMPT Creating table "history"
CREATE TABLE history (
account_id NUMBER NOT NULL,

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-45

teller_id NUMBER NOT NULL,

branch_id NUMBER NOT NULL,
amount NUMBER
STORAGE (INITIAL 400K NEXT 200K
MINEXTENTS 1 MAXEXTENTS 5 PCTINCREASE 5) ;

17. Write the code to create user2 and user3 with passwords PaSsWd2 and PaSsWd3,
respectively, following the method described in the above steps:

SQL*plus> start $APPDIR/ crbank-ora8.sqgl

18. Popul ate the database:

nt\populate

19. Generate transactions against the database:

driver

20. Run the bankapp client:

run

21. Shut down the application:

tmshutdown -y

See Also

e “Preparing bankapp Files and Resources’ on page 3-24

Step 6: How to Edit the Configuration File

3-46

A configuration file defines how an application runs. bankapp is delivered with two
configuration filesin the text format described in UBBCONFIG (5): ubbshm, which defines an
application on a single computer, and ubbmp, which defines a networked application.

Initialization scripts are provided in the sample applications. In addition, you can generate
completed configuration filesby . sh for any number up to 10 for your configuration and
machines.

1. Inatext editor, familiarize yourself with the ubbshm and ubbmp configuration files for
bankapp.

Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 6: How to Edit the Configuration File

Listing 3-18 ubbmp Configuration File

001
002

003
004
005

006

007

#Copyright (c)

1999 BEA Systems, Inc.

#Al1ll rights reserved

*RESOURCES
IPCKEY

UID

GID

PERM
MAXACCESSERS
MAXSERVERS
MAXSERVICES
MAXCONV
MAXGTT
MASTER
SCANUNIT
SANITYSCAN
BBLQUERY
BLOCKTIME
DBBLWAIT
OPTIONS
MODEL
LDBAL
##SECURITY
#

*MACHINES
<SITEl's uname>

<SITE2's uname>

#
*GROUPS
#

80952
<user id from id(1)>
<group id from id(1)>

0660
40
35
75
10
20
SITEl, SITE2
10
12
180
30
6
LAN, MIGRATE
MP
Y
ACL
LMID=SITEl

TUXDIR="<TUXDIR>"
APPDIR="<APPDIR>"
ENVFILE="<APPDIR>/ENVFILE"
TLOGDEVICE="<APPDIR>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR>/tuxconfig"
TYPE="<machine type>"
ULOGPFX="<APPDIR>/ULOG"
LMID=SITE2

TUXDIR="<TUXDIR>"
APPDIR="<APPDIR>"
ENVFILE="<APPDIR>/ENVFILE"
TLOGDEVICE="<APPDIR>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR>/tuxconfig"
TYPE="<machine type>"
ULOGPFX="<APPDIR>/ULOG"

Tutorials for Developing Oracle Tuxedo ATMI Applications

3-41

Group for Authentication Servers

#

Group for Application Queue (/Q) Servers

#

##QGRP1 LMID=SITE1l GRP=102

TMSNAME=TMS_ QM TMSCOUNT=2

OPENINFO="TUXEDO/QM:<APPDIR>/gdevice:QSP_BANKAPP”
#

Group for Event Broker Servers

#

##EVBGRP1 LMID=SITE1 GRPNO=104

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1l GRPNO=1

008 OPENINFO="TUXEDO/SQL:<APPDIR>/bankdll :bankdb:readwrite"

BANKB2 LMID=SITE2 GRPNO=2
OPENINFO="TUXEDO/SQL:<APPDIR>/bankdl2 :bankdb:readwrite"
*NETWORK

009 SITEl NADDR="<network address of SITEl>"

010 NLSADDR="<network listener address of SITEl>"

011 SITE2 NADDR="<network address of SITE2>"

012 NLSADDR="<network listener address of SITE2>"

2. To enablethe application password feature, add the following line to the RESOURCES section
of ubbshm Of ubbmp:

SECURITY APP_PW

3. Inboth configuration files, you may notice that the values of some parameters are enclosed
in angle brackets (< >). Vaues shown in angle brackets are generic; you need to replace them
with values that pertain to your installation. All of these fields occur within the RESOURCES,
MACHINES, and GrRouUPs sectionsin both files. In ubbmp, the NETWORK Section also has values
you must replace. Table 3-3 shows the ubbmp through the NETWORK section and illustrates all
the changes you need to make in the RESOURCES, MACHINES, and GROUPS sectionsif you are
bringing up a single-machine application.

3-48 Tutorials for Developing Oracle Tuxedo ATMI Applications

Table 3-3 Explanation of Values

Step 6: How to Edit the Configuration File

Line

String to Be
Replaced

Description

001

UID

The effective user ID (UID) for the owner of the bulletin
board IPC structures. In a multiprocessor configuration, the
value must be the same on all machines. To avoid problems,
use the same UID asthat of the owner of the Oracle Tuxedo
system software.

002

GID

The effective group ID (GID) for the owner of the bulletin
board IPC structures. In a multiprocessor configuration, the
value must be the same on all machines. Users of the
application should share this group ID.

003

SITEL name

The name of the machine. (For UNIX platforms, use the
value produced by the UNIX command: uname -n)

004

TUXDIR

The absol ute path name of the root directory for the Oracle
Tuxedo software. Replace all occurrences of <TUXDIR>in
the file with the specified path name.

005

APPDIR

The absol ute path name of the directory in which the
application runs. Make this aglobal change so that all
occurrences of <appDIR> in thefile are replaced by the
specified path name.

006

machine type

An identifying string used in networked applications that
include machines of different types. The Oracle Tuxedo
system checks the value of machine type for each machine
communicating with another. If the system identifies two
machines with different machine types trying to
communicate, it invokes the message encode and decode
routines to convert the data being transmitted to aform
recognizable by both machines.

007

SITE2 name

The name of the second machine. (For UNIX platforms, use
the value produced by the UNIX command: uname -n)

008

OPENINFO

The statement here and in thefollowing entry arein aformat
understood by Oracle Tuxedo system resource managers.
They need to be changed (or removed) to meet the
reguirements of other resource managers.

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-49

Steps 7 and 8: Creating a Binary Configuration File and
Transaction Log File

3-50

Table 3-3 Explanation of Values (Continued)

Line String to Be Description
Replaced

009 Network addressof ~ The full address of the network listener for the BRIDGE
SITEl process on this machine.

010 Network listener Theaddress of the network listener forthe t 11 sten process
address of SITEL on this machine.

011 Network addressof ~ The full address of the network listener for the BRIDGE
SITE2 process on this machine. This value must be different on

each machine.

012 Network listener The address of the network listener forthe t 11 sten process

address of STITE2 on this machine.
See Also

e “Preparing bankapp Files and Resources’ on page 3-24

e UBBCONFIG (5) intheFile Formats, Data Descriptions, MIBs, and System Processes

Reference

e “What Isthe Configuration File?’ in Setting Up an Oracle Tuxedo Application

Before Creating the Binary Configuration File

Before creating the binary configuration file, you need to be in the directory in which your
bankapp files are located and you must set the environment variables. Complete the following
tasks.

1. Gotothedirectory in which your bankapp files are located.

2. Set the environment variables by entering

. /bankvar

Tutorials for Developing Oracle Tuxedo ATMI Applications

../rf5/rf5.html
../ads/adconf.html

Steps 7 and 8: Creating a Binary Configuration File and Transaction Log File

Note: If you bring up bankapp in SHM mode, you do not have to create the t1isten process
or create a transaction log on another machine.

How to Load the Configuration File

Once you have finished editing the configuration file, you must load it into a binary file on your
MASTER machine. The name of the binary configuration file is Tuxconr1g; its path nameis
defined in the TuxconFIc environment variable. The file should be created by a person with the
effective user ID and group ID of the Oracle Tuxedo system administrator, which should be the
sameastheu1p and c1p valuesin your configurationfile. If thisrequirement isnot met, you may
have permission problems in running bankapp.

1. To create TUXCONFIG, enter the following command:
tmloadcf ubbmp

While the configuration file is being loaded, you are prompted several timesto confirm
that you want to install this configuration, even if doing so means an existing configuration
file must be overwritten. If you want to suppress such prompts, include the -y option on
the command line.

2. If you want the amount of 1PC resources needed by your application to be calculated by the
Oracle Tuxedo system, include the -c option on the command line.

TUXCONFIG can beinstalled only on the MasTER machineg; it is propagated to other machines by
tmboot When the application is booted.

If you have specified securITY asan option for the configuration, tmloadcf prompts you to
enter an application password. The password you select can be up to 30 characters long. Client
processes joining the application are required to supply the password.

tmloadcf parsesthetext configuration file (uBBconFIG) for syntax errorsbeforeit loadsit, soif
there are errorsin thefile, the job fails.

How to Create the Transaction Log (TLOG) File

The Tr.0G is the transaction log used by the Oracle Tuxedo system in the management of global
transactions. Before an application can be booted, an entry for the Tr.oc must be created in every
fileon every machinein the application, and afilefor thelogitself must be created on themMasTEr
machine.

bankapp providesascript called crt1og that createsadevicelist and aTr.oc for you. Thedevice
list is created using the TLoGDEVICE variable from bankvar.

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-51

1. To create your Tr.oG and device list, enter the command on the MasTER machine as follows:
crtlog -m

Note: Inaproduction environment, the device list may be the same as that used for the
database.

2. Onall other machines, do not specify -m; when the system is booted, the BBL on each
non-MASTER machine creates the log.

If you are using anon-XA resource manager, you do not need a transaction log.

See Also

e “Preparing bankapp Files and Resources’ on page 3-24

Step 9: How to Create a Remote Service Connection on
Each Machine

3-52

tlisten iSthelistener process that provides a remote service connection for processes such as
tmboot between machinesin an Oracle Tuxedo application. It must beinstalled on all the
machinesin your network as defined in the NETwWORK section of the configuration file.

Instructions for starting t1isten are provided in the “ Starting the tlisten Process’ in Installing
the Oracle Tuxedo System.

1. Werecommend starting a separate t1isten process for bankapp. To do so, enter the
following command:

tlisten -1 nlsaddr

The nlsaadr value must be the same as that specified for the n1.saDDR parameter for this
machine in your configuration file. Because this value changes from one machine to
another, it isimportant that your t1isten argument agrees with your configuration file
specification.

Note: Detection of an error in this specification is not easy. tmloadcf does not check for
agreement between your configuration file and your t1isten command. If the two
addresses do not match, then the application will probably fail to boot on the machine
with the mismatched value of n1saddr or onwhichthet1isten processhasnot been
started.

Tutorials for Developing Oracle Tuxedo ATMI Applications

../install/inspin.html

Step 9: How to Create a Remote Service Connection on Each Machine

Thelogfileused by t1isten isseparate from all other Oracle Tuxedo system log files, but one
log can be used by more than one t1isten process. The default filenameis
TUXDIR/udataobj/tlog.

How to Stop the Listener Process (tlisten)

tlisten isdesignedtorunasadaemon process. For suggestions about incorporating it in startup
scriptsor running it asacron job, see tlisten (1) inthe Oracle Tuxedo Reference Manual.

For bankapp, you may prefer simply to start it and bring it down asyou need it. To bring it down,
send it asteTERM signal such as the following:

kill -15 pid

Note: InaWindows 2003 environment, you can start and stop the listener processin two
ways: using the t1isten on the command line or using the Control Panel.

Sample tlisten Error Messages

If no remote t1isten isrunning, the boot sequence is displayed on your screen asfollows:

Booting admin processes
exec DBBL -A
on MASTER -> process id=17160Started.
exec BBL -A :
on MASTER -> process id=17161Started.
exec BBL -A :
on NONMAST2 -> CMDTUX_CAT:814: cannot propagate TUXCONFIG file
tmboot: WARNING: No BBL available on site NONMAST2.
Will not attempt to boot server processes on that site.
exec BBL -A
on NONMAST1 -> CMDTUX_CAT:814: cannot propagate TUXCONFIG file
tmboot: WARNING: No BBL available on site NONMASTI1.
Will not attempt to boot server processes on that site.
2 processes started.
and messages such as these will be in the ULOG:
133757 .machl!DBBL.17160: LIBTUX_CAT:262: std main starting
133800.machl!BBL.17161: LIBTUX_CAT:262: std main starting
133804 .machl!BRIDGE.17162: LIBTUX_CAT:262: std main starting
133805 .machl! tmboot.17159: LIBTUX_CAT:278: Could not contact NLS on NONMAST2
133805.machl!tmboot.17159: LIBTUX_CAT:276: No NLS available for remote
machine NONMAST2
133806.machl!tmboot.17159: LIBTUX _CAT:276: No NLS available for remote
machine NONMAST2
133806.machl!tmboot.17159: CMDTUX_CAT:850: Error sending TUXCONFIG
propagation request to TAGENT on NONMAST2

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-53

133806 .machl!tmboot.17159: WARNING: No BBL available on site NONMAST2.
Will not attempt to boot server processes on that site.
133806 .machl! tmboot.17159: LIBTUX_CAT:278: Could not contact NLS on NONMASTI1
133806.machl!tmboot.17159: LIBTUX_CAT:276: No NLS available for
remote machine NONMAST1
133806.machl!tmboot.17159: LIBTUX CAT:276: No NLS available for
remote machine NONMAST1
133806.machl!tmboot.17159: CMDTUX_CAT:850: Error sending TUXCONFIG
propagation request to TAGENT on NONMAST1
133806 .machl!tmboot.17159: WARNING: No BBL available on site NONMASTI1.
Will not attempt to boot server processes on that site.
If tlisten is started with the wrong machine address, the following messages
appear in the tlisten log.

Mon Aug 26 10:51:56 1991; 14240; Oracle TUXEDO System Listener Process Started
Mon Aug 26 10:51:56 1991; 14240; Could not establish listening endpoint
Mon Aug 26 10:51:56 1991; 14240; Terminating listener process, SIGTERM

See Also
e “Preparing bankapp Files and Resources’ on page 3-24

® tlisten(1l)
® tmadmin (1)

® tmloadcf (1)

Running bankapp

This documentation leads you through the procedures for booting bankapp, testing it by running
various client programs and transactions, and shutting it down when you have finished. Click on
any of the following tasks for instructions on completing that task.

Step 1. Prepare to boot
|

Step 2. Boot bankapp
|

Step 3. Populate the datahase
I

Step 4. Test hankapp semvices
|

Step 4. Shut down bhankapp

3-54 Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Step 1: How to Prepare to Boot

Step 1: How to Prepare to Boot

1. Beforebooting bankapp, verify that your machine has enough | PC resources to support your
application. To generate areport on IPC resources, run the tmboot command with the -c
option.

Note: Becauseinsufficient |PC resources may lead to aboot failure, it isimperative that you
ensure you have appropriate values specified for your configuration.

Listing 3-19 IPC Report

Ipc sizing (minimum /T values only)
Fixed Minimums Per Processor
SHMMIN: 1
SHMALL: 1
SEMMAP: SEMMNI
Variable Minimums Per Processor

SEMUME, A SHMMAX

SEMMNU, * *
Node SEMMNS SEMMSL SEMMSL SEMMNI MSGMNI MSGMAP SHMSEG
sfpup 60 1 60 A+ 1 10 20 76K
sfsup 63 5 63 A+ 1 11 22 76K

where 1 <= A <= 8.

2. Add the number of application clients used per processor to each MseMNT value. MSGMAP
should be twice MSGMNT.

3. Comparethe minimum | PC requirementsto the parameters set for your machine. Thelocation
of these parameter settings is platform-dependent:

— Onmany UNIX system platforms, machine parameters are defined in
/etc/conf/cf.d/mtune.

— On Windows 2003 platforms, machine parameters are set and displayed through a
control panel.

See Also
e “Running bankapp” on page 3-54

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-55

Step 2: How to Boot bankapp

1. Set the environment:

. /bankvar

2. Boot the application by entering the following:
tmboot
The following prompt is displayed:
Boot all admin and server processes? (y/n): vy
A running report such asthe following is displayed:

Booting all admin and server processes in /usr/me/appdir/tuxconfig
Booting all admin processes
exec BBL -A:
process 1d=24223 Started.
The report continues until all serversin the configuration have been started. It ends with a count
of the number of servers started.

If you prefer, you can boot only a portion of the configuration. For example, to boot only
administrative servers, include the -a option. If no options are specified, the entire applicationis
booted.

In addition to reporting on the number of servers booted, tmboot aso sends messages to the
ULOG.

See Also

e “Running bankapp” on page 3-54

Step 3: How to Populate the Database

3-56

Thepopulate.sh scriptisprovided to put recordsinto the database so you can run bankapp and
test its functionality. populate isaone line script that pipes records from a program called
gendata to the system server, ud. The gendata program creates records for 10 branches, 30
tellers, and 200 accounts. A record of thefiles created iskept in pop . out, SO you can use values
in the database when forming your sample service reguests.

To run the script, enter populate.

Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 4: How to Test bankapp Services

Note: The output file that was created by the populate script, pop . out, can be used to provide

account numbers, branch IDs, and other fields you can specify, so your service requests
produce some output.

See Also

“Running bankapp” on page 3-54

tmboot (1) inthe Oracle Tuxedo Command Reference

ud, wud (1) inthe Oracle Tuxedo Command Reference
userlog (3c) inthe Oracle Tuxedo ATMI C Function Reference

“What Isthe User Log (ULOG)?" in Administering an Oracle Tuxedo Application at Run
Time

“How to Boot the Application” in Administering an Oracle Tuxedo Application at Run
Time

“How to Shut Down Your Application” in Administering an Oracle Tuxedo Application at
Run Time

Step 4: How to Test bankapp Services

1

If you arelogging in cold to arunning system, you must set your environment for bankapp.
To do so, enter the following command:

. /bankvar

Run the audit client program. To execute the audit client program, enter the following
command:

audit {-a | -t} [branch_id]

specifying either -a for account balances or -t for teller balances. If you specify a
branch_id, the report islimited to the branch specified; if you do not, the report includes
datafor al branches. For sample account numbers, branch 1Ds, and other values that you
can provide asinput to audit, use valueslisted in pop . out, the output of the populate
program.

Run auditcon. To start the conversational version of the audit program, enter the following
command:

auditcon

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-57

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rf3c/rf3c.html
../ada/adboot.html
../ada/admon.html

The program displays the following message on your terminal:

to request a TELLER or ACCOUNT balance for a branch,
type the letter t or a, followed by the branch id,
followed by <return>

for ALL TELLER or ACCOUNT balances, type t or a <return>
g <return> quits the program

When you have typed your request and pressed return, the requested information is
displayed on your terminal followed by the following message:

another balance request ??
4. The program continues to offer you this service until you enter a q.

5. Usethedriver program. By default, the driver program generates 300 transactions. You can
change that number with the -n option, asin the following example. The command

driver -nl000
specifies that the program should run for 1,000 loops.

driver iSascript that generates a series of transactions to simulate activity on the system.
Itisincluded as part of bankapp SO yYou can get realistic-looking statistics by running
tmadmin commands.

See Also

e “Running bankapp” on page 3-54

Step 3: How to Shut Down bankapp

To bring down bankapp, enter the tmshutdown (1) command with no arguments, from the
MASTER machine, asfollows:

$ tmshutdown

Shutdown all server processes? (y/n): y

Shutting down all server processes in /usr/me/BANKAPP/TUXCONFIG

Shutting down server processes

Server Id = 1 Group Id = BANKBl Machine = Sitel: shutdown succeeded.

Running this command (or the shutdown command of tmadmin) causes the following results:
o All application servers, gateway servers, TMS's, and administrative servers, are shut down.

o All associated |PC resources are removed.

3-58 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 5: How to Shut Down bankapp

See Also
e “Running bankapp” on page 3-54

e tmadmin (1) inthe Oracle Tuxedo Command Reference

e tmshutdown (1) inthe Oracle Tuxedo Command Reference

Tutorials for Developing Oracle Tuxedo ATMI Applications 3-59

../rfcm/rfcmd.html
../rfcm/rfcmd.html

3-60 Tutorials for Developing Oracle Tuxedo ATMI Applications

CHAPTERa

Tutorial for CSIMPAPP, a Simple COBOL
Application

Thistopic includes the following sections:
e What Is CSIMPAPP?

e Preparing CSIMPAPP Files and Resources
— Step 1: How to Copy the CSIMPAPP Files
— Step 2: Examining and Compiling the Client
— Step 3: Examining and Compiling the Server
— Step 4: Editing and Loading the Configuration File
— Step 5: How to Boot the Application
— Step 6: How to Test the Run-time Application
— Step 7: How to Monitor the Run-time Application
— Step 8: How to Shut Down the Application

What Is CSIMPAPP?

cs1MpaPP iSabasic sample ATMI application delivered with the Oracle Tuxedo system. While
instructions are written for the Microfocus COBOL compiler, these may vary depending on your
specific compiler. To find out which COBOL platforms are supported by the Oracle Tuxedo
system, consult Appendix A, “Oracle Tuxedo 10.0 Platform Data Sheets,” in Installing the
Oracle Tuxedo System.

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-1

../install/inspds.html

cs1MpAPP includes one client and one server. The server performs only one service: it accepts a
string from the client and returns the same string in uppercase.

Preparing CSIMPAPP Files and Resources

4-2

Thistopic leads you through the procedures you must complete to develop cstmparpp. Figure 4-1
summarizes this procedure.

Click on each task for instructions on completing that task.

Figure 4-1 CSIMPAPP Development Process

Tutorials for Developing Oracle Tuxedo ATMI Applications

Preparing CSIMPAPP Files and Resources

Step 1. Copy CSIMPAFP
file=

Step 2. Examine and
compile the client

Step 3. Examine and
carmpile the server

Step 4. BEdit and laad the
configuration file

Step 5. Boot the
application

Step 6. Testthe run-time
applicatian

Step 7. Monitor the run-
tirme application

Step 2. Shut down the
application

Before You Begin

Before you can run this tutorial, the Oracle Tuxedo ATMI client and server software must be
installed so that the files and commands referred to are available. If you are responsible for
installing the Oracle Tuxedo system software, refer to Installing the Oracle Tuxedo System for
installation instructions. If the installation has already been done by someone else, you need to
find out the pathname of the directory in which the softwareisinstalled (TuxpIr). Y ou a so need
to have read and execute permissions on the directories and files in the Oracle Tuxedo system

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-3

directory structure so you can copy cstmpaPP files and execute Oracle Tuxedo system
commands.

What You Will Learn

After you complete this procedure, you will be able to understand the tasks clients and servers
can perform, edit a configuration file for your own environment, and invoke tmadmin to check
on the activity of your application. In short, you will understand the basic elements of al Oracle
Tuxedo applications—client processes, server processes, and a configuration file—and you will
know how to use Oracle Tuxedo system commands to manage your application.

Step 1: How to Copy the CSIMPAPP Files

1. Make adirectory for cstmparp and change the directory toit:

mkdir CSIMPDIR
cd CSIMPDIR
Note: Thisstep issuggested so you can see the cstmpapp files you have at the start and the
additional filesyou create along the way. Use the standard shell (/bin/sh) or the Korn
shell; do not use csh.

2. Set and export environment variables:

TUXDIR=<pathname of the BEA Tuxedo System root directory>
APPDIR=<pathname of your present working directory>
TUXCONFIG=$APPDIR/TUXCONFIG

COBDIR=<pathname of the COBOL compiler directory>
COBCPY=$TUXDIR/cobinclude

COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
CFLAGS="-IS$STUXDIR/include"

PATH=$TUXDIR/bin:$SAPPDIR: S$PATH
LD_LIBRARY_PATH=$COBDIR/coblib:${LD_LIBRARY_PATH}

export TUXDIR APPDIR TUXCONFIG UBBCONFIG COBDIR COBCPY
export COBOPT CFLAGS PATH LD_LIBRARY_PATH

You need TuxDIR and PATH to be able to access files in the Oracle Tuxedo directory
structure and to execute Oracle Tuxedo commands:

— On Sun Solaris, /usr/5bin must bethe first directory in your pATH.

— Onan AlX platform on the RS/6000, use 1.1BPATH instead of 1.D_LIBRARY_PATH.

4-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 2: Examining and Compiling the Client

— On an HP-UX platform on the HP 9000, use suL.IB_PATH instead of
LD_LIBRARY_PATH. YOU need to set TuxCONFIG to be able to load the configuration file
as shown in step 4.

3. Copy the cstmparpp files:
cp TUXDIR/samples/atmi/CSIMPAPP/* .

Note: Later, you will edit some files and make them executable, so we recommend using
copies of the files rather than the originals delivered with the software.

4, Listthefiles:

S 1s
CSIMPCL.cbl
CSIMPSRV.cbl
README
TPSVRINIT.cbl
UBBCSIMPLE
WUBBCSIMPLE
envfile

ws

$
The files that make up the application are:

csSIMPCL. cbl—the source code for the client program.

CcSIMPSRV . cbl—the source code for the server program.

TPSVRINIT.cbl—the source code for the server initialization program.

uBBCcsIMPLE—the text form of the configuration file for the application.

wuBBcsIMPLE—the configuration file for the Workstation example.

— ws—adirectory with .Maxk filesfor client programs for three workstation platforms.

Step 2: Examining and Compiling the Client
How to Examine the Client

Review the client program source code:

$ more CSIMPCL.cbl

The output is shown in the following list.

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-5

Listing 4-1 Source Code for CSIMPCL.chl

00 ~Jo Ui WwWN

I e = Wt
WO JoOU s WN R O

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

46

IDENTIFICATION DIVISION.
PROGRAM-ID. CSIMPCL.
AUTHOR. Tuxedo DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
WORKING-STORAGE SECTION.
ek ke ke ke ko ok ko ok

* Tuxedo definitions
khkhkhkkhkhhkhkkhhhkhkhhhkhhhhhhhhkdhhhhdhhhdhkhhhkdhhkhkdhhkhkhrhhhkhrhhddkkkx*x
01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 TPINFDEF-REC VALUE LOW-VALUES.
COPY TPINFDEF.

EE R IR S S S S I I S S I I I I S O I S S kO S

* Log messages definitions
R S I I I I I R I I I S e
01 LOGMSG.
05 FILLER PIC X(8) VALUE "CSIMPCL:".
05 LOGMSG-TEXT PIC X (50).
01 LOGMSG-LEN PIC S9(9) COMP-5.

01 USER-DATA-REC PIC X(75).
01 SEND-STRING PIC X(100) VALUE SPACES.
01 RECV-STRING PIC X(100) VALUE SPACES.

BRI R S e R I I I S I R S I R R R I I R R I S I I I R I I I I I S O

* Command line arguments
LSRR S SRR R R SRR EEEEEEEEEEEEEEEEEEEEEEEEEE DS R R DT LTSS

* Start program with command line args

ER R S I S S I I I S S S I I I S I S I S I I S O

PROCEDURE

START-CSIMPCL.
MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
ACCEPT SEND-STRING FROM COMMAND-LINE.
DISPLAY “SEND-STRING:” SEND-STRING.

MOVE “Started” TO LOGMSG-TEXT.

PERFORM DO-TPINIT.
PERFORM DO-TPCALL.

Tutorials for Developing Oracle Tuxedo ATMI Applications

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Step 2: Examining and Compiling the Client

DISPLAY “RECV-STRING:” RECV-STRING.
PERFORM DO-TPTERM.
PERFORM EXIT-PROGRAM.

ER S S S R R R R R R R R I R kR R R R R

* Now register the client with the system.
R RS SRR RS R RS S S E SRS SRS SRR RS EEEREEEEEEEEEEEEEEEEEEEEE]

DO-TPINIT.

MOVE SPACES TO USRNAME.
MOVE SPACES TO CLTNAME.
MOVE SPACES TO PASSWD.
MOVE SPACES TO GRPNAME.
MOVE ZERO TO DATALEN.
SET TPU-DIP TO TRUE.

CALL "TPINITIALIZE" USING TPINFDEF-REC

USER-DATA-REC
TPSTATUS-REC.

IF NOT TPOK
MOVE "TPINITIALIZE Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM

END-TIF.

ER R S S R R R R R R R I Rk kR I R R R

* Issue a TPCALL
EEEE SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEESEE]

DO-TPCALL.

MOVE 100 to LEN.

MOVE "STRING" TO REC-TYPE.

MOVE "CSIMPSRV" TO SERVICE-NAME.
SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPCHANGE TO TRUE.

CALL "TPCALL" USING TPSVCDEF-REC
TPTYPE-REC
SEND-STRING
TPTYPE-REC
RECV-STRING
TPSTATUS-REC.

IF NOT TPOK
MOVE "TPCALL Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG

END-TIF.

Tutorials for Developing Oracle Tuxedo ATMI Applications

41

96

Rk R Sk Sk Sk S S S R R R R R R R R R I Ik R R R O

97 * Leave Tuxedo
98 EE R R R EE S EEEEEEESEEEEEEEEEEEEESEEEEEEESEEEEEEEEEEESESE]
99 DO-TPTERM.
100 CALL "TPTERM" USING TPSTATUS-REC.
101 IF NOT TPOK
102 MOVE "TPTERM Failed" TO LOGMSG-TEXT
103 PERFORM DO-USERLOG
104 END-IF.
105
106 ER R R S S R R I I I I I I I R S I I I R S I R S R I R S
107 * Log messages to the userlog
108 R R I I R S R R R I R i I I
109 DO-USERLOG.
110 CALL "USERLOG" USING LOGMSG
111 LOGMSG-LEN
112 TPSTATUS-REC.
113
114 R R I R R R R R R R R I
115 *Leave Application
116 EE R R R SRS EEEEEEESEEEEEEEEEEEEESEEEEEEESEEEEEEEEEEESESE]
117 EXIT-PROGRAM.
118 MOVE "Ended" TO LOGMSG-TEXT.
119 PERFORM DO-USERLOG.
120 STOP RUN.
Table 4-1 Significant Lines in the CSIMPCL.chl Source Code

Line(s) File/Function Purpose

11,14,17,20 coOPY Command used to replicate files needed whenever
Oracle Tuxedo ATMI functions are used.

61 TPINITIALIZE The ATMI function used by aclient program to join
an application.

84 TPCALL The ATMI function used to send the message record
to the service specified in SERVICE-NAME. TPCALL
waitsfor areturn message. STRING isoneof thethree
basic Oracle Tuxedo record types. An argument, LEN
IN TPTYPE-REC, specifiesthe length of the record
in USER-DATA-REC.

4-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 3: Examining and Compiling the Server

Table 4-1 Significant Lines in the CSIMPCL.chl Source Code (Continued)

Line(s) File/Function Purpose

100 TPTERM The ATMI function used to leave an application. A

call to TPTERM is used to exit an application before
performing a STOP RUN.

110 USERLOG The function that displays the message returned from

the server, the successful conclusion of tpcall.

How to Compile the Client

1

Run buildclient to compilethe ATMI client program:
buildclient -C -o CSIMPCL -f CSIMPCL.cbl

The output file is cstmpcr and the input source fileis csIMpcL. cbl.

Check theresults:

$ 1s CSIMPCL*
CSIMPCL CSIMPCL.cbl CSIMPCL.idy CSIMPCL.int CSIMPCL.o

You now have an executable module called csIMpCL.

See Also

buildclient (1) inthe Oracle Tuxedo Command Reference

TPINITIALIZE (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference
TPTERM (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference
TPCALL (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

USERLOG (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

Step 3: Examining and Compiling the Server

How to Examine the Server

1.

Review the source code from the cstMpsrv ATMI server program:

$ more CSIMPSRV.cbl

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-9

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Listing 4-2 Source Code for CSIMPSRV.chl

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. CSIMPSRV.

3 AUTHOR. BEA Tuxedo DEVELOPMENT.

4 ENVIRONMENT DIVISION.

5 CONFIGURATION SECTION.

6 WORKING-STORAGE SECTION.

7 ERE SRR R SRR R SRR EEEEEEEEEEEEEEEEEEEEEEEEEE TSR DD EEEEE
8 * Tuxedo definitions

9 Ahkhkhkkhkhhkhkkhhhkhkdhhhkhkkhhhkhdhhhkhhhhdhhhdhhhkhkhdhhkhdhkhrhkdhkhkhhhkhhdxdhx*x
10 01 TPSVCRET-REC.

11 COPY TPSVCRET.

12 *

13 01 TPTYPE-REC.

14 COPY TPTYPE.

15 *

16 01 TPSTATUS-REC.

17 COPY TPSTATUS.

18 *

19 01 TPSVCDEF-REC.

20 COPY TPSVCDEF.

21 ER R S S S I I I I S S S I I I I S I I S I I I

22 * Log message definitions

D3 KAk Rk ok ok k ok ko ko Kk kK ok kK ok Kk ok Kk ok K ok kK ok kK ok Kk ko k ko kR K kR Kk Kk
24 01 LOGMSG.

25 05 FILLER PIC X(10) VALUE

26 "CSIMPSRV :".

27 05 LOGMSG-TEXT PIC X(50).

28 01 LOGMSG-LEN PIC S9(9) COMP-5.

29 BRI S R S I R R I R I R R I I R R I R R R I R I R I I I R I R I

31 * User defined data records
32 LR E R R R SRR R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR DD EEEEEES

33 01 RECV-STRING PIC X(100).
34 01 SEND-STRING PIC X(100).
35 «*

36 LINKAGE SECTION.

37 *

38 PROCEDURE DIVISION.

39 %

40 START-FUNDUPSR.

41 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
42 MOVE "Started" TO LOGMSG-TEXT.

43 PERFORM DO-USERLOG.

44

45 BRI S R R R S I R R I I I S S e I R R R I R R R S R R I R S I I R R I I S

46 * Get the data that was sent by the client
47 LR E R R R SRR RS SRR SR EEEEEEEEEEEEEEEEEEEEEEEEEEEE DD LR EEEES

4-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

Step 3: Examining and Compiling the Server

MOVE LENGTH OF RECV-STRING TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
RECV-STRING
TPSTATUS-REC.

IF NOT TPOK
MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM

END-TIF.

IF TPTRUNCATE
MOVE "Data was truncated" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM

END-TF.

INSPECT RECV-STRING CONVERTING

"abcdefghijklmnopgrstuvwxyz" TO

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" .

MOVE "Success" TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACING
DATA-REC BY RECV-STRING.

R S R Rk R Ik R Ik I R I Rk R I R R R R R R Ik

* Write out a log err messages
EE RS

DO-USERLOG.
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN

TPSTATUS-REC.

BRI R S e R S I I R I R I S S I I R R R I R R S R I R R I R R I I I R I S

* EXIT PROGRAM
R S R R R Ik R Ik I I kI R R R R R R R Ik
EXIT-PROGRAM.

MOVE "Failed" TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

SET TPFAIL TO TRUE.

COPY TPRETURN REPLACING

DATA-REC BY RECV-STRING.

Tutorials for Developing Oracle Tuxedo ATMI Applications

41

Table 4-2 Significant Lines in the CSIMPSRV.chl Source Code

Line(s) Routine Purpose

49 TPSVCSTART Routine used to start this service and to receive the
service' sparametersand data. After asuccessful call, the
RECV-STRING containsthe data sent by the client.

66-68 INSPECT statement Statement that converts the input to uppercase
(Microfocus-specific).

72 COPY TPRETURN Command line that returns the converted string to the
client with TPSUCCESS set.

79 USERLOG Routine that logs messages used by the Oracle Tuxedo
system and applications.

2. During server initialization (that is, before the server starts processing service requests), the
Oracle Tuxedo system calls the TpsvrRINIT subroutine. To familiarize yourself with
TPSVRINIT, page through the source code for it.

$ more TPSVRINIT.cbl

Listing 4-3 Source Code for TPSVRINIT.cbl

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. TPSVRINIT.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 *

6 DATA DIVISION.

7 WORKING-STORAGE SECTION.

8 *

9 01 LOGMSG.

10 05 FILLER PIC X(11) VALUE "TPSVRINIT :".
11 05 LOGMSG-TEXT PIC X(50).

12 01 LOGMSG-LEN PIC S9(9) COMP-5.
13 =

14 01 TPSTATUS-REC.

15 COPY TPSTATUS.

TG KKk K kR ok kK ko k ok Kk Kk kK kR kR R ok ok ok Kk Kk Rk Rk kR ok kR kK R kK R kR K
17 LINKAGE SECTION.

18 01 CMD-LINE.

19 05 ARGC PIC 9(4) COMP-5.

4-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Step 3: Examining and Compiling the Server

05 ARG.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.

*

01 SERVER-INIT-STATUS.
COPY TPSTATUS.

Kk kok ok kK kk ok kR Kk ok ok h ok k ok ok ko kkok ok ok &k k ok ok ok ok kok ok ok ke k ok ok ok &k k ok ok ok &k ok ok ok &k kK
PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.
A-000.

MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

R S S R R R R R Rk ki kR S R R Rk R R R

* There are no command line parameters in this TPSVRINIT
IR SRR S SRS RS SRS EE SRS E SRR R RS SRR EEE RS EEEEEEEEEEEEE SRR
IF ARG NOT EQUAL TO SPACES
MOVE "TPSVRINIT failed" TO LOGMSG-TEXT
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC

ELSE
MOVE "Welcome to the simple service" TO LOGMSG-TEXT
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC
END-TIF.

*

SET TPOK IN SERVER-INIT-STATUS TO TRUE.

*

EXIT PROGRAM.

A default is provided by the Oracle Tuxedo system that writes a message to userL.oG indicating
that the server has been booted.

How to Compile the Server

1. Runbuildserver asfollowsto compilethe ATMI server program.

buildserver -C -o CSIMPSRV -f CSIMPSRV.cbl -f TPSVRINIT.cbl -s CSIMPSRV

S 1s

The executablefile to be created is named cstvpsrv and csSIMPSRV. cbl and
TPSVRINIT.cbl aretheinput sourcefiles. The service being offered by the server
csIMPsSRv isindicated by -s cSIMPSRV.

2. Check theresults by displaying alist of the filesin your current directory.

CSIMPCL CSIMPCL.int CSIMPSRV.cbl CSIMPSRV.0O TPSVRINIT.int

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-13

CSIMPCL.cbl
CSIMPCL.idy

CSIMPCL.o CSIMPSRV.idy TPSVRINIT.cbl TPSVRINIT.o
CSIMPSRV CSIMPSRV.int TPSVRINIT.idy UBBCSIMPLE

You now have an executable module called csIMPSRV.

See Also

e buildserver (1) in Oracle Tuxedo Command Reference

e TPSVCSTART (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

TPSVRINIT (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

TPRETURN (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

e USERLOG (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

Step 4: Editing and Loading the Configuration File

How to Edit the Configuration File

1. Inatext editor, familiarize yourself with the configuration file for cstmpare.

Listing 4-4 CSIMPAPP Configuration File

#Skeleton UBBCONFIG file for the BEA Tuxedo COBOL Simple Application.

#Replace the

*RESOURCES
IPCKEY

#Example:
#IPCKEY

DOMAINID
MASTER
MAXACCESSERS
MAXSERVERS
MAXSERVICES
MODEL

LDBAL

*MACHINES
DEFAULT:

<bracketed> items with the appropriate values.

<Replace with a valid IPC Key>

123456

UBBCSIMPLE
simple
5
5
10
SHM
N

4-14 Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

#Example:

#

#

#

#
<Machine-name>

#Example:
#usltux

*GROUPS
GROUP1

*SERVERS
DEFAULT:

CSIMPSRV

*SERVICES
CSIMPSRV

Step 4: Editing and Loading the Configuration File

APPDIR="<Replace with the current pathname>"
TUXCONFIG="<Replace with TUXCONFIG Pathname>"
TUXDIR="<Root directory of BEA Tuxedo (not /)>"
ENVFILE="<pathname of file of environment vars>"

APPDIR="/home/me/simpapp"
TUXCONFIG="/home/me/simpapp/TUXCONFIG"
TUXDIR="/usr/tuxedo"
ENVFILE="/home/me/simpapp/enviile”
LMID=simple

LMID=simple

LMID=simple GRPNO=1 OPENINFO=NONE
CLOPT="-A"
SRVGRP=GROUP1 SRVID=1

2. For each string (that is, for each string shown in italic between angle brackets), substitute
an appropriate value:

— IPcKEY—USe avaluethat will not conflict with any other users.

— TuxcoNrFIc—provide the full pathname of the binary Tuxconric file.

— tuxpir—the full pathname of your Oracle Tuxedo system root directory.

— apppIr—the full pathname of the directory in which you intend to boot the
application; in this case, the current directory.

— ENvrILE—the full pathname for the environment file to be used by mc, viewc,
tmloadcf, and so on.

— machine-name—the machine name as returned by the uname -n command on a UNIX

platform.

Note: The pathnames for Tuxconric and TuxpIrR must be identical to those you set and
exported earlier. Y ou must specify actual pathnames; references to pathnames through

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-15

environment variables (such as Tuxconr1c) are not acceptable. Do not forget to remove

the angle brackets.

How to Load the Configuration File

1. Run tmloadcf toload the configuration file:

$ tmloadcf UBBCSIMPLE
Initialize TUXCONFIG file: /usr/me/CSIMPDIR/TUXCONFIG [y, ql]l ? vy
$

2. Check the results by displaying alist of thefilesin your current directory:

S 1s
CSIMPCL CSIMPCL.o CSIMPSRV.int TPSVRINIT.int
CSIMPCL.cbl CSIMPSRV CSIMPSRV.O TPSVRINIT. o

CSIMPCL. idy CSIMPSRV.cbl TPSVRINIT.cbl TUXCONFIG
CSIMPCL.int CSIMPSRV.idy TPSVRINIT.idy UBBCSIMPLE

We now have afile called Tuxconr1c (anew file system under the control of the Oracle
Tuxedo system).

See Also

e tmloadcf (1) inthe Oracle Tuxedo Command Reference

e UBBCONFIG(5) intheFile Formats, Data Descriptions, MIBs, and System Processes
Reference

Step 3: How to Boot the Application

Execute tmboot to bring up the application:

$ tmboot
Boot all admin and server processes? (y/n): y
Booting all admin and server processes in /usr/me/CSIMPDIR/TUXCONFIG

Booting all admin processes

exec BBL -A:
process id=24223 ... Started.

Booting server processes

4-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html
../rf5/rf5.html

Step 6: How to Test the Run-time Application

exec CSIMPSRV -A :
process 1d=24257 ... Started.
2 processes started.

$

TheBulletin Board Liaison (BBL) isthe administrative processthat monitors the shared memory
structures in the application. cstmpsrv isthe cstmpapp server that runs continuously, awaiting
requests.

See Also

e tmboot (1) inthe Oracle Tuxedo Command Reference

Step 6: How to Test the Run-time Application

To test cstmpapp, have the client submit a request:

$ CSIMPCL “hello world”
HELLO WORLD

Step 7: How to Monitor the Run-time Application

Asthe administrator, you can use the tmadmin command interpreter to check an application and
make dynamic changes. To run tmadmin, you must set the Tuxconrzc variable

tmadmin can interpret and run over 50 commands. For acomplete list, see tmadmin (1) inthe
Oracle Tuxedo Command Reference. The following demonstrates two of the many tmadmin
commands:

1. Enter the following command:
tmadmin
The following lines are displayed:

tmadmin - Copyright (c) 1999 BEA Systems Inc.; 1991 USL. All rights
reserved.

>

Note: The greater-than sign (>) isthe tmadmin prompt.

2. Enter theprintserver (psr) command to display information about servers:

> psr
a.out Name Queue Name Grp Name ID RgDone Load Done Current Service

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-11

../rfcm/rfcmd.html
../rfcm/rfcmd.html

BBL 531993 simple 0 0 0 (IDLE)
CSIMPSRV 00001.00001 GROUP1 1 0 0 (IDLE)
>

3. Enter theprintservice (psc) command to display information about services:

> psc
Service Name Routine Name a.out Name Grp Name ID Machine # Done Status

CSIMPSRV CSIMPSRV CSIMPSRV GROUP1 1 simple - AVAIL
>

4. Leave tmadmin by entering a g at the prompt. (You can boot and shut down the application
from within tmadmin.)

See Also

e tmadmin (1) inthe Oracle Tuxedo Command Reference

Step 8: How to Shut Down the Application

1. Run tmshutdown to bring down the application:

S tmshutdown
Shutdown all admin and server processes? (y/n): y
Shutting down all admin and server processes in /usr/me/CSIMPDIR/TUXCONFIG

Shutting down server processes
Server Id = 1 Group Id = GROUP1 Machine = simple: shutdown succeeded.
Shutting down admin processes

Server Id = 0 Group Id = simple Machine = simple: shutdown succeeded.
2 processes stopped.

$
2. Check theuLoa:

$ cat ULOG*

$

140533 .usltux!BBL.22964: LIBTUX_CAT:262: std main starting
140540.usltux!CSIMPSRV.22965: COBAPI_CAT:1067: INFO: std main starting
140542 .usltux!CSIMPSRV.22965: TPSVRINIT :Welcome to the simple service
140610.usltux!?proc.22966: CSIMPCL:Started

140614 .usltux!CSIMPSRV.22965: CSIMPSRV :Started

140614 .usltux!CSIMPSRV.22965: CSIMPSRV :Success

4-18 Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html

Step 8: How to Shut Down the Application

140614 .usltux!?proc.22966: switch to new log file
/home/usr_nm/CSIMPDIR/ULOG.112592
140614 .usltux!?proc.22966: CSIMPCL:Ended

Each line of the ur.oc for this session is significant. First look at the format of auroc line:

time (hhmmss).machine_uname!process_name.process_id: log message
Now look at an actual line.

140542. Message from TPSVRINIT in CSIMPSRV

See Also

e tmshutdown (1) inthe Oracle Tuxedo Command Reference

e USERLOG (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

Tutorials for Developing Oracle Tuxedo ATMI Applications 4-19

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html

4-20 Tutorials for Developing Oracle Tuxedo ATMI Applications

CHAPTERa

Tutorial for STOCKAPP, a Full COBOL
Application

This topic includes the following sections:

e What |s STOCKAPP?

e Familiarizing Yourself with STOCKAPP

e Preparing STOCKAPP Files and Resources
— Step 1: How to Set Environment Variables
— Step 2: Building Serversin STOCKAPP
— Step 3: Editing the STOCKAPPmk File
— Step 4: How to Edit the Configuration File
— Step 5: Creating a Binary Configuration File

e Running STOCKAPP

What Is STOCKAPP?

STOCKAPP isasample ATMI stocks application that is provided with the Oracle Tuxedo system
software. The application performs the following stock brokering functions: validates and
updates a customer’ s account information, and executes buy and sell orders for stocks and/or
funds.

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-1

This documentation leads you, step-by-step, through the procedure you must perform to devel op
the sTockapp application. Once you have “developed” stockarp through thistutorial, you will
be ready to start developing applications of your own.

The sTockapp tutorial is presented in three sections:
e “Familiarizing Yourself with STOCKAPP’ on page 5-2
e “Preparing STOCKAPP Files and Resources’ on page 5-8
e “Running STOCKAPP’ on page 5-19

Note: Thisinformation isfocused on system users with some experience in application
development, administration, or programming. We assume some familiarity with the
Oracle Tuxedo system software. A development license is required to build Oracle
Tuxedo applications.

Familiarizing Yourself with STOCKAPP

This documentation provides atour of thefiles, client, and services that make up the sTockapp
application. Click on any of the following activities for more information about that part of the
tour.

Learning aboutthe
STOCKARF files

Examining the
STOCKAPP clients

Examining the
STOCKAPP servers

Learning About the STOCKAPP Files

Thefiles that make up the stockarp application are delivered in a directory called stockarp,
which is positioned as follows:

5-2 Tutorials for Developing Oracle Tuxedo ATMI Applications

Learning About the STOCKAPP Files

samples/atmi

csimpapp/ StDCJEI[][].'"

Exploring the Stock Application Files
The sTockarp directory contains the following files:
e Eight .cb1 files
e Four clients: BUY. cbl, SELL.cbl, FUNDPR. cbl and FUNDUP. cbl
e One conversational server: FUNDUPSR. cbl
o Threefilesthat are servers or are associated with servers
e Two serversto generate data or transactions for the application

o Files provided to facilitate the use of sTockarp as an example

Table 5-1 liststhefilesthat make up stockapp. Thetableliststhe source files delivered with the
Oracle Tuxedo system software, files that are generated when the stock application is built, and
asummary of the contents of each file.

Table 5-1 Purpose of the Stock Application Files

Source File Generated File Contents
BUY.cbl BUY.o Client
BUY
BUYSR.cbl BUYSR.o Contains BUY service
BUYSR
ENVFILE ENVFILE used by tmloadcf
FILES Descriptive list of all thefilesin sSToCKAPP
FUNDPR.cbl FUNDPR. o Client
FUNDPR
FUNDPRSR.cbl FUNDPRSR.o Contains PRICE QUOTE Service
FUNDPRSR

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-3

Table 5-1 Purpose of the Stock Application Files (Continued)

Source File Generated File Contents

FUNDUP.cbl FUNDUP. o Client
FUNDUP

FUNDUPSR.cbl FUNDUPSR. o Contains FUND UPDATE Service
FUNDUPSR

README Online version of the installation and boot

procedures

SELL.cbl SELL.o SELL Client

SELLSR.cbl SELLSR.O Contains SELL Service
SELLSR

STKVAR Contains variable settings, except for those

within ENVFILE

STOCKAPP .mk Application makefile

UBBCBSHM TUXCONFIG SampleuBBCONFIG filefor useinaSHM mode
configuration

cust CUST.cbl View used to definethe structure passed between
cust.V cust.h theBUY and SELL clients and the BUYSR and
SELLSR Servers

quote QUOTE.cbl View used to definethe structure passed between
quote.V the FUNDPR and FUNDUP clientsand al the
quote.h Servers

e “Familiarizing Yourself with STOCKAPP’ on page 5-2

Examining the STOCKAPP Clients

In the ATMI client-server architecture of the Oracle Tuxedo system, there are two modes of
communication:

e Request/response mode, which is characterized by the sending of a single request for a
service to be performed by the server and getting back a single response.

5-4 Tutorials for Developing Oracle Tuxedo ATMI Applications

Examining the STOCKAPP Clients

e Conversational mode; in this mode a dedicated connection is established between a client
(or aserver acting like a client) and a server. The connection remains active until
terminated. While the connection is active, messages containing service requests and
responses can be sent and received between the two participating processes.

System Client Programs

Figure 5-1 shows the hierarchy for sTockape. The user selects one of the four service requests.

The oval shapesin the illustration represent application services.

Figure 5-1 STOCKAPP Requests

Request from service screen
to senver process in WIEW

record.

EUY SELL FUMDOFR
Account Account Account
FundsStock FundsStock FundiStock
Amaunt Amount Amaunt
Frice Frice Frice

EUYSELL FUHDFR
EUYSR SELLSR FUNDOFRSR
confirm get price of

account info stockffund

If service is succassful,
confirmation is sent badk; if
not, request zent back to
original senvice screen.

Typed Buffers

FUMDOUP
Account

FundsStock
Amount

Frice

FUNDUF

'

FUNDUFSR

update price of
stodefund

Typed buffers are an essential part of the Oracle Tuxedo system. In the Oracle Tuxedo system, a
typed buffer is designed to hold a specific data type. Six types are defined: vIiew, STRING,
CARRAY, X_OCTET, X_comMMoN, and xur. Applications have the ability to define additional types.

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-5

5-6

A Request/Response Client: BUY.chl

BUY isan example of aclient program. It makes account inquiriesthat call on the service Buysr.
Asan executable, it isinvoked as follows:

BUY

BUY.chl Source Code
Review the following sections of the Buy . cbl program.

* Now register the client with the system
* Issue a TPCALL

* Clean up

Theindicated sections contain all of the placesin Buy. cb1l where the Oracle Tuxedo ATMI
functions are used. Similar to csimpl.cbl, BUY.cbl needsto call TPINITIALIZE tojoin the
application; call Tpcart to make an RPC request to a service; and call TpTERM to leave an
application. Notealso that Buy . cb1 isan example of aprogram that usesavzew typed record and
astructure that is defined in the cust file. The source code for the structure can be found in the
view description file, cust . v.

Building Clients

View description files, of which cust isan example, are processed by the view compiler,
viewc (1) . Runview(C) to compile the view:

viewc-C-n
cust.v

where viewc has three output files: a COBOL file (cusT. cbl), abinary view description file
(cust.v), and aheader file (cust .h).

The client programs, BUY . cbl, FUNDPR. cbl, FUNDUP.cbl, and SELL. cbl, are processed by
buildclient (1) to compilethem and/or link edit them with the necessary Oracle Tuxedo
libraries.

Y ou can use any of these commandsindividually, if you choose, but rules for all these steps are
included in STOCKAPP . mk.

See Also

e “What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

Tutorials for Developing Oracle Tuxedo ATMI Applications

../int/intatm.html

Examining the STOCKAPP Servers

e “What Are Typed Buffers?’ in Introducing Oracle Tuxedo ATMI

e ATMI commands and functions in Oracle Tuxedo Command Reference and Oracle Tuxedo
ATMI C Function Reference

e “Familiarizing Yourself with STOCKAPP’ on page 5-2

Examining the STOCKAPP Servers

This topic provides the following information:
e A description of aservicethat is part of the stock application
e A description of the relationships between the sTockapp services and servers

e Information on the buildserver command options used to compile and build each server

ATMI servers are executable processes that offer one or more services. In the Oracle Tuxedo
system, they continually accept requests (from processes acting as clients) and dispatch them to
the appropriate services. Services are subroutines of COBOL language code written specifically
for an application. It isthe services accessing aresource manager that provide the functionality
for which your Oracle Tuxedo system transaction processing application is being devel oped.
Serviceroutines are one part of the application that must be written by the Oracle Tuxedo system
programmer (user-defined clients being another part).

All stockapp services use functions provided in the Application-to-Transaction Monitor
Interface (ATMI) for performing the following tasks:

e Communicating synchronously or asynchronously with other services
e Defining global transactions

e Sending replies back to clients

STOCKAPP Services

There are four servicesin stockapp. Each sTockapp service matches a COBOL function name
in the source code of a server as shown in the following list:

BUYSR
Buys afund/stock record; offered by the BuvSELL Server; accepts aview record asinput,
insertsa cusTFILE record

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-7

../int/intatm.html

SELLSR
Sellsafund/stock record; offered by the BUYSELL server; accepts aview record asinput,

inserts acusTFILE record

FUNDPRSR
Price quote; offered by the prIcEQUOTE Server; accepts a view record asinput

FUNDUPSR
Fund update; conversational service; offered by FUNDUPDATE server; accepts aviEw

record as input

Preparing STOCKAPP Files and Resources

This documentation leads you through the procedures you must complete to create the files and
other resources you need to run STOCKAPP.

Click on each task for instructions on completing that task.

Step 1. Set environment
watiables in STEKMWAR

I

Step 2. Build the semers
I

Step 3. Editthe makefile

Step 4. Editthe
configuratian file

|
Step 4. Create 3 hinary
caonfiguration file and a
transaction log file

Step 1: How to Set Environment Variables

Environment variables required for stockaprp are defined in the stxvar file. Thefileislarge
(approximately 100 lines) because it includes extensive comments.

5-8 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 1: How to Set Environment Variables

1. Inatext editor, familiarize yourself with the sTxvar file. Line 9 ensures that TuxDIR is Set.
If it is not set, execution of the file fails with the following message:

TUXDIR: parameter null or not set

2. Set TuxpIr totheroot directory of your Oracle Tuxedo system directory structure, and export
it.

3. Another linein sTkvaR sets APPDIR to the directory {TUXDIR}/samples/atmi/STOCKAPP
which isthe directory where stockapp source files are located: AppDIR isadirectory where
the Oracle Tuxedo system looks for your application-specific files. You might prefer to copy
the stockarpp filesto a different directory to safeguard the original sourcefiles. If you do,
then enter the directory there. It does not have to be under TuxDIR.

Note: Other variables specified in sTkvar play variousrolesin the sample application; you
need to be aware of them when you are developing your own application. By
including themin sTkvar, we provide you with atempl ate that you may want to adapt
at alater time for use with areal application.

4. When you have made all necessary changesto sTkvar, execute sTkvar as follows:

. /STKVAR

Listing 5-1 STKVAR: Environment Variables for STOCKAPP

#ident "@(#)samples/atmi: STOCKAPP/STKVAR

This file sets all the environment variables needed by the TUXEDO software
to run the STOCKAPP

This directory contains all the TUXEDO software
System administrator must set this variable

HH FF H H H FH

TUXDIR=$ {TUXDIR:?}

#

This directory contains all the user written code
#

Contains the full path name of the directory that the application
generator should place the files it creates

#

APPDIR=S$ {HOME} /STOCKAPP

#

Environment file to be used by tmloadcf

#

COBDIR=${COBDIR:?}

#

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-9

This directory contains the cobol files needed

for compiling and linking.

#

LD_LIBRARY_ PATH=$COBDIR/coblib:${LD_LIBRARY PATH}

#

Add coblib to LD_LIBRARY_ PATH

#

ENVFILE=${APPDIR}/ENVFILE

#

List of field table files to be used by CBLVIEWC, tmloadcf, etc.
#

FIELDTBLS=fields,Usysflds

#

List of directories to search to find field table files

#

FLDTBLDIR=S${TUXDIR} /udataobj:${APPDIR}

#

Set device for the transaction log; this should match the TLOGDEVICE
parameter under this site's LMID in the *MACHINES section of the
UBBCBSHM file

#

TLOGDEVICE=S$ {APPDIR}/TLOG

#

Device for the configuration file

#

UBBCBSHM=$SAPPDIR/UBBCBSHM

#

Device for binary file that gives /T all its information

#

TUXCONFIG=${APPDIR}/TUXCONFIG

#

Set the prefix of the file which is to contain the central user log;
this should match the ULOGPFX parameter under this site's LMID in the
*MACHINES section of the UBBCONFIG file

#

ULOGPFX=$ {APPDIR} /ULOG

#

List of directories to search to find view files

#

VIEWDIR=S${APPDIR}

#

List of view files to be used by CBLVIEWC, tmloadcf, etc.
#
VIEWFILES=quote.V,cust.V

#

Set the COBCPY

#
COBCPY=$TUXDIR/cobinclude
#

5-10 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 1: How to Set Environment Variables

Set the COBOPT

#

COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
#

Set the CFLAGS

#

CFLAGS="-I$TUXDIR/include -ISTUXDIR/sysinclude"

#

Export all variables just set

#

export TUXDIR APPDIR ENVFILE

export FIELDTBLS FLDTBLDIR TLOGDEVICE

export UBBCBSHM TUXCONFIG ULOGPFX LD_LIBRARY_PATH
export VIEWDIR VIEWFILES COBDIR COBCPY COBOPT CFLAGS

#

Add TUXDIR/bin to PATH if not already there
#

a=""echo $PATH | grep ${TUXDIR}/bin "

if [x"$a" = x]

then

PATH=$ {TUXDIR}/bin:${PATH}

export PATH

fi

#

Add APPDIR to PATH if not already there
#

a=""echo $PATH | grep ${APPDIR} "
if [x"$a" = x]

then

PATH=${PATH} :${APPDIR}

export PATH

fi

#

Add COBDIR to PATH if not already there
#

a="‘echo $PATH | grep ${COBDIR} "
if [x"$a" = x]

then

PATH=${PATH} :${COBDIR}

export PATH

fi

Additional Requirements

e On AlX, set L1BPATH instead of LD_LIBRARY PATH.

Tutorials for Developing Oracle Tuxedo ATMI Applications

5-11

e On HP-UX, set sHuL.IB_PATH instead of LD_LIBRARY PATH.

o If your operating system is Sun Solaris, you need to: put /usr/5bin at the beginning of
your paTH. The following command can be used:

PATH=/usr/5bin:$PATH; export PATH

Use /bin/sh rather than csh for your shell.

See Also
e “Preparing STOCKAPP Files and Resources’ on page 5-8

Step 2: Building Servers in STOCKAPP

buildserver isused to put together an executable ATMI server. Optionsidentify the names of
the output file, theinput files provided by the application, and variouslibraries that permit you to
run an Oracle Tuxedo system application in avariety of ways.

buildserver With the -c option invokes the cobcec command. The environment variables
aLTcc and ALTCFLAGS can be set to name an alternative compile command and to set flags for
the compile and link edit phases. The key buildserver command-line optionsareillustrated in
the exampl es that follow.

Thebuildserver command isused in sTockAPP.mk to compile and build each server in the
stock application. (Refer to buildserver (1) inthe Oracle Tuxedo Command Reference for
complete details.)

How to Build the BUYSELL Server

The BuvserLL ATMI server isderived from filesthat contain the code for the Buvsr and sELLSR
functions. The BuysteLL server isfirst compiled to aBuUYSELL. o file before supplying it to the
buildserver command so that any compile-time errors can be clearly identified and dealt with
before this step.

1. Createthe BuystLL. o file (performed for you in sTockapp.mk). The buildserver
command that was used to build the BuvseLL server follows:

buildserver -C -v -o BUYSELL -s SELLSR -f SELLSR.cbl -s BUYSR -f BUYSR.cbl

5-12

The explanation of the command-line options follows:

— The -c option is used to build servers with COBOL modules.

Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html

Step 2: Building Servers in STOCKAPP

— The -v option is used to specify the verbose mode. It writes the cc command to its
standard output.

— The -o option is used to assign a name to the executable output file. If no nameis
provided, the file is named SERVER.

— The -s option is used to specify the service namesin the server that are available to be
advertised when the server is booted. If the name of the function that performs a
service is different from the service name, the function name becomes part of the
argument of the -s option. In the stockapp, the function name is the same as the name
of the service so only the service names themselves need to be specified. It isour
convention to specify all uppercase for the service name. However, the -s option of
buildserver doesalow you to specify an arbitrary name for the processing function
for aservice within aserver. Refer to the buildserver (1) inthe Oracle Tuxedo
Command Reference for details. It is aso possible for the administrator to specify that
only a subset of the services that were used to create the server with the buildserver
command is to be available when the server is booted. For more information, refer to
Administering an Oracle Tuxedo Application at Run Time and Setting Up an Oracle
Tuxedo Application.

— The -£ option specifies the files that are used in the link-edit phase. Also refer to the
-1 option on the buildserver reference page. For more detail information on both of
these options, refer to the “Building Servers’ in Programming Oracle Tuxedo ATMI
Applications Using COBOL. There is asignificance to the order in which the files are
listed. The order is dependent on function references and in what libraries the
references are resolved. Source modules should be listed ahead of libraries that might
be used to resolve their references. If these are . cb1 files, they are first compiled.
Object files can be either separate . o files or groups of filesin archive (. a) files. If
more than asingle filename is given as an argument to a - £, the syntax callsfor alist
enclosed in double quotes. You can use as many - £ options as you heed.

— The -s option names the sELLSR and BUYSR Services to be the services that comprise
the BUYSELL server. The -o option assigns the name BuysELL to the executabl e output
file and the - £ option specifies that the sELLSR. cbl and the BUYSR. cbl filesareto be
used in the link edit phase of the build.

Servers Built in STOCKAPP.mk

The topics on creating the sTockapp servers are important to your understanding of how the
buildserver command is specified. However, in actua practice you are apt to incorporate the
build into amakefile; that isthe way it isdonein sTockapp.

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-13

../rfcm/rfcmd.html
../pgc/pgserv.html

See Also
e “Familiarizing Yourself with STOCKAPP’ on page 5-2

® buildserver (1)

Step 3: Editing the STOCKAPP.mk File

STOCKAPP includes amakefile that makesall scripts executable, converts the view description
file to binary format, and does al the precompiles, compiles, and builds necessary to create the
application servers. It can aso be used to clean up when you want to make a fresh start.

As sTockapPP.mk isdelivered, there are afew fields you may want to edit, and some others that
may benefit from some explanation.

How to Edit the TUXDIR Parameter

Go to the following comment in sTockapp.mk and to the TuxpIr parameter:

Root directory of TUXEDO System. This file must either be edited to set
this value correctly, or the correct value must be passed via "make -f
STOCKAPP.mk TUXDIR=/correct/rootdir", or the build of STOCKAPP will fail.

H* FHF I H H

TUXDIR=../..

Y ou should set the TuxDIR parameter to the absolute pathname of the root directory of your
Oracle Tuxedo system installation.

How to Edit the APPDIR Parameter

Y ou may want to give some thought to the setting of the apppIR parameter. AS STOCKAPP iS
delivered, AppDIR is set to the directory in which the stockapp files are located, relative to
TUXDIR. Thefollowing section of sTockarp.mk defines and describes the setting of ApPDIR.

Directory where the STOCKAPP application source and executables live.
This file must either be edited to set this value correctly, or the
correct value must be passed via "make -f STOCKAPP.mk
APPDIR=/correct/appdir", or the build of STOCKAPP will fail.

PPDIR=S (TUXDIR) /samples/atmi/STOCKAPP

HH= D o o I I

5-14 Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html

Step 4: How to Edit the Configuration File

If you have copied the files to another directory, as suggested in the ReapuMe file, you should set

A

PPDIR to the name of the directory to which you copied thefiles. When you run themakefile,

the application will be built in this directory.

How to Run the STOCKAPP.mk File

1

2.

When you have completed the changes you wish to make to stockapp . mk, run it with the
following command line:

nohup make -f STOCKAPP.mk install &

Check the nohup . out file to make sure the process completed successfully.

See Also

e “Preparing STOCKAPP Files and Resources’ on page 5-8

Step 4: How to Edit the Configuration File

The sTockarp configuration file defines how an application runson aset of machines. stockapp
is delivered with aconfiguration filein text format described in UBBCONFIG (5). UBBCBSHM,

d

1

efines an application on a single computer.

In atext editor, familiarize yourself with the configuration file for sTtockarpe.

Listing 5-2 UBBCBSHM Configuration File Fields to Be Replaced

001
002

#Copyright (c) 1992 Unix System Laboratories, Inc.

#A11l rights reserved

#Skeleton UBBCONFIG file for the TUXEDO COBOL Sample Application.
*RESOURCES

IPCKEY 5226164
DOMAINID STOCKAPP

UID <user 1d from 1id(1)>
GID <group id from 1id(1)>
MASTER SITEL

PERM 0660

MAXACCESSERS 20

MAXSERVERS 15

MAXSERVICES 30

MODEL SHM

LDBAL Y

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-15

MAXGTT 100
MAXBUFTYPE 16
MAXBUFSTYPE 32
SCANUNIT 10
SANITYSCAN 12
DBBLWAIT 6
BBLQUERY 180
BLOCKTIME 10
TAGENT “TAGENT"
#
*MACHINES
003 <SITE1l's uname> LMID=SITEl
004 TUXDIR="<TUXDIRI1>"
005 APPDIR="<APPDIRI>"
ENVFILE="<APPDIR1>/ENVFILE"
TUXCONFIG="<APPDIRI>/TUXCONFIG"
TUXOFFSET=0
006 TYPE="<machine type>"
ULOGPFX="<APPDIR>/ULOG"
MAXWSCLIENTS=5
#
*GROUPS
COBAPI LMID=SITE1l GRPNO=1
#
#
* SERVERS
FUNDUPSR SRVGRP=COBAPI SRVID=1 CONV=Y ENVFILE="<APPDIR1>/ENVFILE"
FUNDPRSR SRVGRP=COBAPI SRVID=2 ENVFILE="<APPDIR1>/ENVFILE"
BUYSELL SRVGRP=COBAPI SRVID=3 ENVFILE="<APPDIR1>/ENVFILE"
#
#
*SERVICES
2. To enablethe application password feature, add the following line to the RESOURCES section
of uBBCBSHM:
SECURITY APP_PW
3. You may noticethat the values of some parametersare enclosed in angle brackets (<>). Values
shown in angle brackets are generic; you need to replace them with valuesthat pertain to your
installation. All of these fields occur within the RESOURCES, MACHINES, and GROUPS Sections
in the file. Table 5-2 describes the values with which you must replace the angle-bracketed
strings. For each string, substitute an appropriate value.
5-16 Tutorials for Developing Oracle Tuxedo ATMI Applications

Table 5-2 Explanation of Values

Step 4: How to Edit the Configuration File

Line

String to Be
Replaced

Purpose

001

UID

The effective user ID for the owner of the bulletin board IPC
structures. In a multiprocessor configuration, the value must
be the same on all machines. Y ou avoid problemsif thisisthe
same as the owner of the Oracle Tuxedo software.

002

GID

Theeffective group 1D for the owner of the bulletin board |PC
structures. In a multiprocessor configuration, the value must

be the same on all machines. Users of the application should

share thisgroup ID.

003

SITE]l name

The node name of the machine. Use the value produced by the
UNIX command:
uname -n

004

TUXDIR

The absolute pathname of the root directory for the Oracle
Tuxedo system software. Make thisaglobal changeto put the
valuein all occurrences of <TUXDIR1> inthefile.

005

APPDIR

The absol ute pathname of the directory where the application
runs. Make this aglobal change to put the valuein al
occurrences of <APPDIR1> in thefile.

006

machine
type

This parameter isimportant in a networked application where
machines of different types are present. The Oracle Tuxedo
system checks for the value on all communication between
machines. Only if the values are different are the message
encode/decode routines called to convert the data.

See Also

e “Preparing STOCKAPP Files and Resources’ on page 5-8

e UBBCONFIG (5) in File Formats, Data Descriptions, MIBs, and System Processes

Reference

Tutorials for Developing Oracle Tuxedo ATMI Applications

5-17

../rf5/rf5.html

Step 5: Creating a Binary Configuration File

5-18

Before Creating the Binary Configuration File

Before creating the binary configuration file, you need to be in the directory in which your
stockapp filesare located and you must set the environment variables. Complete the following
tasks.

1. Gotothedirectory in which your stockarp files are located.

2. Set the environment variables by entering:

. /STKVAR

How to Load the Configuration File

Once you have finished editing the configuration file, you must load it into abinary file on your
MASTER machine. The name of the binary configuration file is Tuxconr1g; its path nameis
defined in the TuxconFIc environment variable. The file should be created by a person with the
effective user ID and group ID of the Oracle Tuxedo system administrator, which should be the
sameastheu1p and c1p valuesin your configurationfile. If thisrequirement isnot met, you may
have permission problems in running sTockape.

1. To create TUXCONFIG, enter the following command:

tmloadcf UBBCBSHM

While the configuration file is being loaded, you are prompted several timesto confirm
that you want to install this configuration, even if doing so means an existing configuration
file must be overwritten. If you want to suppress such prompts, include the -y option on
the command line.

2. If you want the amount of I1PC resources needed by your application to be calculated by the
Oracle Tuxedo system, include the -c option on the command line.

TUXCONFIG can beinstalled only on the MasTER maching; it is propagated to other
machines by tmboot when the application is booted.

If you have specified securITY asan option for the configuration, tmloadct promptsyou
to enter an application password. The password you select can be up to 30 characters long.
Client processes joining the application are required to supply the password.

tmloadcf parsesthe text configuration file (uBBconrzc) for syntax errors before it loads
it, so if there are errorsin the file, the job fails.

Tutorials for Developing Oracle Tuxedo ATMI Applications

Running STOCKAPP

See Also
e “Preparing STOCKAPP Files and Resources’ on page 5-8

e tmloadcf (1) in Oracle Tuxedo Command Reference

Running STOCKAPP

Thisdocumentation leads you through the proceduresfor booting sTockarpp, testing it by running
various client programs and transactions, and shutting it down when you have finished.

Click on each task for instructions on completing that task.

Step 1. Prepare to hoot

Step 2. Boot STOCKAFF

Step 3. Test STOCKAPP
sehices

Step 4. Shut down
STOCKAPP

Step 1: How to Prepare to Boot

1. Beforebooting sTockarp, verify that your machine has enough | PC resourcesto support your
application. To generate areport on | PC resources, run the tmboot command with the -c
option.

Listing 5-3 IPC Report

Ipc sizing (minimum /T values only)
Fixed Minimums Per Processor
SHMMIN: 1

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-19

../rfcm/rfcmd.html

SHMALL: 1
SEMMAP: SEMMNI
Variable Minimums Per Processor

SEMUME, A SHMMAX
SEMMNU, * *
Node SEMMNS SEMMSL SEMMSL SEMMNI MSGMNI MSGMAP SHMSEG
machine 1 60 1 60 A+ 1 10 20 76K
machine 2 63 5 63 A+ 1 11 22 76K

where 1 <= A <= 8.

2. You should add the number of application client used per processor to each MseuNT value.
MsGMaP should be twice MsGMNT.

3. Comparethe minimum | PC requirementsto the parameters set for your machine. Thelocation
of these parameter settings is platform-dependent:

— Onmany UNIX system platforms, machine parameters are defined in
/etc/conf/cf.d/mtune.

— On Windows 2003 platforms, machine parameters are set and displayed through a
control panel.

See Also
e “Running STOCKAPP’ on page 5-19

Step 2: How to Boot STOCKAPP

1. Set the environment:
.. /STKVAR
2. Boot the application by entering the following:
tmboot
The following prompt is displayed:
Boot all admin and server processes? (y/n): y

When you enter v after the prompt, a running report, such as the following, is displayed on
the screen:

5-20 Tutorials for Developing Oracle Tuxedo ATMI Applications

Step 3: How to Test STOCKAPP Services

Booting all admin and server processes in /usr/me/appdir/tuxconfig
Booting all admin processes
exec BBL -A:

process 1d=24223 Started.

The report continues until all serversin the configuration have been started. It ends by reporting
the total number of servers started.

If you prefer, you can boot only a portion of the configuration. For example, to boot only
administrative servers, include the -a option. If no options are specified, the entire applicationis
booted.

In addition to reporting on the number of servers booted, tmboot aso sends messages to the
ULOG.

See Also
e “Running STOCKAPP’ on page 5-19
e tmboot (1) inthe Oracle Tuxedo Command Reference

e USERLOG (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

Step 3: How to Test STOCKAPP Services

1. If youareloggingin cold to arunning system, you must set your environment for STOCKAPP.
To do so, enter the following command:

.. /STKVAR

2. Run the Buy client program. To execute the Buy client program, enter the following
command:

BUY

3. Monitor stockapp. While sTockapp is running, run the tmadmin subcommands and try
various commands with it to see the kind of status information you can produce.

See Also
e “Running STOCKAPP’ on page 5-19

Tutorials for Developing Oracle Tuxedo ATMI Applications 5-21

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html

Step 4: How to Shut Down STOCKAPP

To bring down sTockapp, enter the tmshutdown (1) command with no arguments, from the
MASTER machine, as follows.

tmshutdown

Running this command (or the shutdown command of tmadmin) causes the following results:

o All application servers, gateway servers, TMS servers, and administrative servers are shut
down.

o All associated |PC resources are removed.

See Also
e “Running STOCKAPP’ on page 5-19
e tmadmin (1) inthe Oracle Tuxedo Command Reference

e tmshutdown (1) in the Oracle Tuxedo Command Reference

5-22 Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html
../rfcm/rfcmd.html

CHAPTERa

Tutorial for XMLSTOCKAPP: a C and
C++ XML Parser Application

This topic includes the following sections:

e What Is XMLSTOCKAPP?

e Familiarizing Yourself with XMLSTOCKAPP

e Preparing XMLSTOCKAPP Files and Resources
— Stepl: Copy the XMLSTOCKAPP Filesto a New Directory
— Step 2: Set Environment Variables
— Step 3: Building Clients
— Step 4: Building Serversin XMLSTOCKAPP
— Step 5: How to Edit the Configuration File
— Step 6: Creating a Binary Configuration File

e Running XMLSTOCKAPP

What Is XMLSTOCKAPP?

XMLSTOCKAPP isasample ATMI stock application that is provided with the Oracle Tuxedo
system software. The application runs two servers on a single machine and illustrates invoking
the parser from aC and a C++ Tuxedo server and routing of XML buffers. One server isaTuxedo
server written in C++ (stockxml) and the other server iswritten in C (stockxml_c). Thetwo

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-1

servers offer the same STOCKQUOTE service. The client callsthe service and returns the stock
price and the client then prints the XML buffer.

This documentation leads you, step-by-step, through the procedure you must perform to develop
the xmr.sTockaprp application. Once you have “devel oped” xmLsTockapp through this tutorial,
you will be ready to start devel oping applications of your own.

The xmr.sTockaPP tutorial is presented in three sections:
e “Familiarizing Yourself with XMLSTOCKAPP’ on page 6-2
e “Preparing XMLSTOCKAPP Files and Resources’ on page 6-4
e “Running XMLSTOCKAPP” on page 6-10

Note: Thisinformation isfocused on system users with some experience in application
development, administration, or programming. We assume some familiarity with the
Oracle Tuxedo system software. A development license is required to build Oracle
Tuxedo applications.

Familiarizing Yourself with XMLSTOCKAPP

6-2

This documentation provides atour of thefiles, client, and services that make up the
xMLSTOCKAPP application. The following activities for more information about that part of the
tour.

e Learning About the XMLSTOCKAPP Files
e Examining the XMLSTOCKAPP Clients
e Examining the XMLSTOCKAPP Servers

Learning About the XMLSTOCKAPP Files

Thefiles that make up the xvr.sTockarp application are delivered in the
samples/atmi/xmlstockapp directory. Thefilesthat are delivered with this sample are:

The xmLsTockarp directory contains the following files:
e Two .xml input filesto the client: stock_quote_beas.xml and stock_quote_msft.xml
e Oneclient; client.cpp

e Two filesthat are servers. stockxml and stockxml_c

Tutorials for Developing Oracle Tuxedo ATMI Applications

Familiarizing Yourself with XMLSTOCKAPP

o Files provided to facilitate the use of sTockapp asan example:
- SAXPrint.cpp
- SAXPrintHandler.cpp
- DOMTreeErrorReporter.cpp

- xmlWrapper.cpp

Examining the XMLSTOCKAPP Clients

Inthe ATMI client-server architecture of the Oracle Tuxedo system, there are two modes of
communication:

e Request/response mode, which is characterized by the sending of a single request for a
service to be performed by the server and getting back a single response.

e Conversational mode; in this mode a dedicated connection is established between a client
(or aserver acting like a client) and a server. The connection remains active until
terminated. While the connection is active, messages containing service requests and
responses can be sent and received between the two participating processes.

The xmr.sTockaPP implements the request/response mode and uses the SToCKQUOTE service to
request a stock price.

1. A request for astock price for BEAS or MSFT.

2. Theclient, which isrun with asingle argument in an XML file, callsthe STOCKQUOTE
service.

3. The service updates the XML buffer with the stock price.
4. Theclient printsthe XML buffer.

A Request/Response Client: stock_quote_heas.xml

Client.cpp isaclient program that usesinput from one of the XML files,
stock_quote_beas.xml Of stock_quote_msft.xml. It makesan inquiry that calls on the
service sTockQUOTE and returns the stock price for BEAS or MSFT. As an executable, itis
invoked as follows:

Client stock_quote_beas.xml

or

Client stock_quote_msft.xml

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-3

See Also
e “What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI
e “What Are Typed Buffers?’ in Introducing Oracle Tuxedo ATMI

e ATMI commands and functions in Oracle Tuxedo Command Reference and Oracle Tuxedo
ATMI C Function Reference

Examining the XMLSTOCKAPP Servers

ATMI servers are executable processes that offer one or more services. In the Oracle Tuxedo
system, they continually accept requests (from processes acting as clients) and dispatch them to
the appropriate services. It is the services accessing a resource manager that provide the
functionality for which your Oracle Tuxedo system transaction processing application isbeing
developed. Service routines are one part of the application that must be written by the Oracle
Tuxedo system programmer (user-defined clients being another part).

The sToCckQUOTE Service in the xmMLsTockaPP program uses functions provided in the
Application-to-Transaction Monitor Interface (ATMI) to return a stock price to the client asan
XML buffer.

Preparing XMLSTOCKAPP Files and Resources

6-4

This documentation leads you through the procedures you must complete to create the files and
other resources you need to run XML.STOCKAPP.

e Stepl: Copy the XMLSTOCKAPP Filesto a New Directory

e Step 2: Set Environment Variables

Step 3: Building Clients

Step 4: Building Serversin XMLSTOCKAPP
e Step 5: How to Edit the Configuration File

e Step 6: Creating aBinary Configuration File

Step1: Copy the XMLSTOCKAPP Files to a New Directory

It is recommended that you copy the XMLSTOCKAPP files to your own directory prior to
editing any of the files or running the sample.

Tutorials for Developing Oracle Tuxedo ATMI Applications

../int/intatm.html
../int/intatm.html

Preparing XMLSTOCKAPP Files and Resources

Step 2: Set Environment Variables

Y ou will need to edit the environment variablesfile.

1. Ensurethat TuxpIrisset. If itisnot set, execution of thefilefailswith thefollowing message:

TUXDIR: parameter null or not set
2. SetTuxpirtotheroot directory of your Oracle Tuxedo system directory structure, and export
it.

3. Setapppirtothedirectory {TUXDIR} /samples/atmi/xMLSTOCKAPP Whichisthedirectory
where xMr.sToCckAPP source filesarelocated: apppIR isadirectory where the Oracle Tuxedo
system looks for your application-specific files. If you copied the xmr.sTockarp filesto a
different directory to safeguard the original sourcefiles, then enter the directory there. It does
not have to be under TUXDIR.

4. When you have made all necessary changes to the environment variablesfile, executeit as
follows:

. /<VARFILE>

where <vARFILE> iSthe name of your environment variablefile.

Additional Requirements

LD_LIBRARY_PATH must include $TUXDIR/1ib on systems that use shared libraries, with the
exception of HP-UX and AlX.

e OnAlX, set LIBPATH instead of LD_LIBRARY PATH.
e OnHP-UX, set suL.IB_PATH instead of LD_LIBRARY PATH.

o If your operating system is Sun Solaris, you need to: put /usr/5bin at the beginning of
your paTH. The following command can be used:

PATH=/usr/5bin:$PATH; export PATH

Use /bin/sh rather than csh for your shell.

Step 3: Building Clients
To build the client:

export CFLAGS=-1I

Use the following commands for the specified opearting system:

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-5

e For Solaris:
export CC=CC
e For HP-UX:
export CC=aCC
e For Digital Unix:
export CC=cxx
e For AIX:
export CC=x1C_r
e For Linux:
export CC=g++
The following command builds the client:

buildclient -o Client -f Client.cpp -f SAXPrint.cpp -f SAXPrintHandlers.cpp
-f -ltxml

Step 4: Building Servers in XMLSTOCKAPP

Inthe XML STOCKAPP sample, two serversare provided for you. However, if you want to build
the servers for this example, you will need to follow the directions inn the README file.

buildserver isused to put together an executable ATMI server. Optionsidentify the names of
the output file, the input files provided by the application, and various libraries that permit you to
run an Oracle Tuxedo system application in avariety of ways.

The key buildserver command-line options are illustrated in the examples that follow.

Thebuildserver commandisused in a .mk file to compile and build each server in the stock
application. (Refertobuildserver (1) inthe Oracle Tuxedo Command Reference for complete
details.)

How to Build the stockxml and stockxml_c Servers

Thebuildserver command that was used to build the stockxml server and the stockxml_c
server follows:

buildserver -s STOCKQUOTE -o stockxml -f stockxml.cpp -f
DOMTreeErrorReporter.cpp -f -1ltxml

buildserver -s STOCKQUOTE -f stockxml_c.c -o stockxml_c -f xmlWrapper.cpp -f
DOMTreeErrorReporter.cpp -f -ltxml

Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html

Preparing XMLSTOCKAPP Files and Resources

The explanation of the command-line options follows:

— The -o option is used to assign a name to the executable output file. If no nameis
provided, the file is named SERVER.

— The -s option is used to specify the service namesin the server that are available to be
advertised when the server is booted. If the name of the function that performs a
service is different from the service name, the function name becomes part of the
argument of the -s option. In the xmMr.sTockapp, the function name is the same as the
name of the service so only the service names themselves need to be specified. It isour
convention to specify all uppercase for the service name. However, the -s option of
buildserver doesalow you to specify an arbitrary name for the processing function
for aservice within aserver. Refer to the buildserver (1) inthe Oracle Tuxedo
Command Reference for details. It is aso possible for the administrator to specify that
only a subset of the services that were used to create the server with the buildserver
command is to be available when the server is booted. For more information, refer to
Administering an Oracle Tuxedo Application at Run Time and Setting Up an Oracle
Tuxedo Application.

— The -£ option specifies the files that are used in the link-edit phase. Also refer to the
-1 option on the buildserver reference page. Thereisasignificance to the order in
which the files are listed. The order is dependent on function references and in what
libraries the references are resolved. Source modules should be listed ahead of libraries
that might be used to resolve their references. Object files can be either separate . o
filesor groups of filesin archive (. a) files. If more than asingle filenameis given as
an argument to a - £, the syntax calls for alist enclosed in double quotes. You can use
asmany - £ options as you need.

— The -s option names the sToCckQUOTE Service to be the services that comprise the
stockxml and stockxml_c Servers. The -o option assigns the name stockxm1 and
stockxml_c to the executable output file and the - £ option specifies that the

stockxml . cpp, DOMTreeErrorReporter . cpp, and the xmlwrapper . cpp files are to
be used in the link edit phase of the build.

See Also
e “Familiarizing Yourself with XMLSTOCKAPP” on page 6-2

® buildserver (1)

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-7

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Step 9: How to Edit the Configuration File

The sample configuration file, ubbsimple, must be edited to replace the bracketed items with
values appropriate to your installation. Y our TUXDIR and TUXCONFIG environment variables
must match the values in the configuration file.

Listing 6-1 The ubbsimple Configuration File

Ur

0 ~Jo Ui WwWN

WWWWWWWWWRONNNOMNNOMNNOMNNON R R R R RR PR RO
0O IO WNROWVWOJIAUREWNROWLOWJOUB®WNRO

ﬂlﬂ
(=-]

#Skeleton UBBCONFIG file for the BEA Tuxedo Simple Application.
#Replace the <bracketed> items with the appropriate values.
RESOURCES

IPCKEY <Replace with valid IPC Key greater than 32,768>
#Example:
#IPCKEY 62345
MASTER simple
MAXACCESSERS 5
MAXSERVERS 5
MAXSERVICES 10
MODEL SHM
LDBAL N
*MACHINES
DEFAULT:
APPDIR="<Replace with the current pathname>"

TUXCONFIG="<Replace with TUXCONFIG Pathname>"
TUXDIR="<Root directory of Tuxedo (not /)>"
#Example:
APPDIR="/usr/me/simpdir"
TUXCONFIG="/usr/me/simpdir/tuxconfig"
TUXDIR="/usr/tuxedo"
<Machine-name> LMID=simple
#Example:
#tuxmach LMID=simple
*GROUPS
GROUP1
LMID=simple GRPNO=1 OPENINFO=NONE
*SERVERS

Tutorials for Developing Oracle Tuxedo ATMI Applications

39
40
41
42
43
44

Preparing XMLSTOCKAPP Files and Resources

DEFAULT:

CLOPT="-A"
stockxml SRVGRP=GROUP1 SRVID=1
stockxml_c SRVGRP=GROUP1 SRVID=1
*SERVICES
STOCKQUOTE

5. For each <string> (that is, for each string shown between angle brackets), substitute an
appropriate value.

See Also

e “Preparing XMLSTOCKAPP Files and Resources’ on page 6-4

e UBBCONFIG(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference

Step 6: Creating a Binary Configuration File

Before creating the binary configuration file, you need to be in the directory in which your
xMLsTOCKAPP files are located and you must set the environment variables. Complete the
following tasks.

1. Go to thedirectory in which your xMr.sTockapp files are located.
2. Set the environment variables by entering:

./<variable_file>

where <variable_file> isthe name of your variablesfile.

How to Load the Configuration File

Once you have finished editing the configuration file, you must load it into a binary file on your
MASTER machine. The name of the binary configuration file is Tuxconr1g; its path nameis
defined in the TuxconFIG environment variable. Thefile should be created by a person with the
effective user ID and group I1D of the Oracle Tuxedo system administrator, which should be the
sameastheurp and cIp valuesin your configuration file. If thisrequirement isnot met, you may
have permission problemsin running XMLSTOCKAPP.

1. To create TUXCONFIG, enter the following command:

tmloadcf ubbsimple

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-9

../rf5/rf5.html

While the configuration file is being loaded, you are prompted several timesto confirm
that you want to install this configuration, even if doing so means an existing configuration
file must be overwritten. If you want to suppress such prompts, include the -y option on
the command line.

2. If you want the amount of 1PC resources needed by your application to be calculated by the
Oracle Tuxedo system, include the -c option on the command line.

TUXCONFIG can beinstalled only on the MasTER machine; it is propagated to other
machines by tmboot when the application is booted.

tmloadcf parsesthe text configuration file (uBBconFzc) for syntax errors before it loads
it, so if there are errorsin the file, the job fails.

See Also
e “Preparing XMLSTOCKAPP Files and Resources’ on page 6-4

e tmloadcf (1) in Oracle Tuxedo Command Reference

Running XMLSTOCKAPP

6-10

This documentation leads you through the procedures for booting xmr.sTockarp, testing it by
running various client programs and transactions, and shutting it down when you have finished.

Step 1: How to Prepare to Boot

Before booting xmr.sTockapp, verify that your machine has enough IPC resources to support
your application. To generate areport on |PC resources, run the tmboot command with the -c
option.

Step 2: How to Boot XMLSTOCKAPP

1. Set the environment:
../<variable_file>
2. Boot the application by entering the following:
tmboot -y
When you enter -y, arunning report, such as the following, is displayed on the screen:

Booting all admin and server processes in /usr/me/appdir/tuxconfig
Booting all admin processes

Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html

Running XMLSTOCKAPP

exec BBL -A:
process 1d=24223 Started.

The report continues until all serversin the configuration have been started. It ends by reporting
the total number of servers started.

If you prefer, you can boot only a portion of the configuration. For example, to boot only
administrative servers, include the -a option. If no options are specified, the entire applicationis
booted.

In addition to reporting on the number of servers booted, tmboot also sends messages to the
ULOG.
See Also

e tmboot (1) inthe Oracle Tuxedo Command Reference

e USERLOG (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

Step 3: How to Test XMLSTOCKAPP Services

1. If you arelogging in cold to arunning system, you must set your environment for
XMLSTOCKAPP. TO do so, enter the following command:

../<variable_file>

2. Runthe client program. To execute the client program, enter the following command:

Client stock_quote_beas.xml

Step 4: How to Shut Down XMLSTOCKAPP

To bring down xML.sTOCKAPP, enter the tmshutdown (1) command with no arguments, from the
MASTER machine, asfollows.

tmshutdown -y
Running this command (or the shutdown command of tmadmin) causes the following results:

o All application servers, gateway servers, TMS servers, and administrative servers are shut
down.

o All associated |PC resources are removed.

Tutorials for Developing Oracle Tuxedo ATMI Applications 6-11

../rfcm/rfcmd.html
../rf3cbl/rf3cbl.html

See Also
e tmadmin (1) inthe Oracle Tuxedo Command Reference

e tmshutdown (1) inthe Oracle Tuxedo Command Reference

6-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html
../rfcm/rfcmd.html

CHAPTERa

Tutorial for xmlfmlapp: A Full C
XML/FML32 Conversion Application

Thistopic includes the following sections:
e What Isxmlfmlapp?
e Familiarizing Yourself with xmIfmlapp

e Preparing xmlfmlapp Files and Resources
— Step 1: Copy the xmlfmlapp Filesto a New Directory
— Step 2: Set Environment Variables
— Step 3: Create FML32 Field Table
— Step 4: Build the xmIfmlapp Binaries
— Step 5: Edit the Configuration File
— Step 6: Create the Binary Configuration File

e Running xmlfmlapp
— Step 1: xmifmlapp Boot Preparation
— Step 2: Boot xmlfmlapp
— Step 3: Test xmIfmlapp Services
— Step 4: Shut Down xmlfmlapp

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-1

What Is xmlfmlapp?

xmlfmlapp isasample ATMI stock application that demonstrates how to query, buy and sell
stocks via client request. The application runs three services, "Query", "Buy" and "sSeLL" on a
single server. These three services are written using C language and accept FML 32 buffers for
input and output.

Thisdocumentation leads you, step-by-step, through the procedures you must perform to develop
the xm1 fmlapp application. Once you have “developed” xm1 fmlapp with thistutorial, you will
be ready to start developing applications of your own.

The xm1 fmlapp tutorial is presented in three sections:
e “Familiarizing Yourself with xmlfmlapp” on page 7-2
e “Preparing xmlfmlapp Files and Resources’ on page 7-5

e “Running xmlfmlapp” on page 7-9

Note: Thisinformation is geared towards system users with some experience in application
development, administration, or programming. We assume some familiarity with the
Oracle Tuxedo system software. A development license is required to build Oracle
Tuxedo applications.

Familiarizing Yourself with xmifmlapp

1-2

This sample demonstrates how to use XML to FML32 automatic and on-demand conversion
functions to operate XML datainstead of using Xerces parser APIs. To use Xerces parser APIs
in a Tuxedo client/server application written in C, adynamic library needs to be written using
CPP and wrapped for use with a C program (for more information, see What Is
XMLSTOCKAPP?). Using XML to FML 32 on-demand and automatic conversion functionality,
provides the devel oper with the freedom to manipulate FML 32 buffer data as desired. For more
information onthe XML to FML/FML 32 on-demand and automatic conversion functionality, see
Converting XML Data To and From FML/FML 32 Buffersin Programming Oracle Tuxedo
ATMI Applications Using C.

In this sample, the client will send requests (query, buy or sell) to corresponding services. The
client sends and receives XML buffers. To communicate with server, all three services use the
"BUFTYPECONV=XML2FML 32" parameter, which convertstheinput XML buffersto FML 32
before sending the request to the corresponding service. Before returning information back to the
client, this parameter then converts FML 32 buffersto XML buffers. The server handles FML 32
data directly.

Tutorials for Developing Oracle Tuxedo ATMI Applications

../pgc/pgbuf.html

Familiarizing Yourself with xmlfmlapp

Therequesting XML buffer uses aschemato validate the XML document, thus ensuring that the
request sends valid data.

The server in this sample reads stock information from an XML document and convertsit to an
FML32 buffer directly using the tpxm1tofm132 (3c) function. After that, it can get information
from this buffer based on requested FML 32 data, and returns the required FML32 data.

This documentation provides atour of thefiles, client, and services that make up the xm1 fmlapp
application. The following activities for more information about that part of the tour.

e L earning About the xmlfmlapp Files
e TExamining the xmifmlapp Client

e Examining the xmlfmlapp Server

Learning About the xmlfmlapp Files

Thefiles that make up the xm1 fmlapp application are delivered in the
samples/atmi/xmlfmlapp directory. The xmlfmlapp directory contains the following files:

e Oneclient: stockclient.c

e Oneserver: stockserver.c

One. xml file to store stock information used by the service: stock.xml

One FML32 field definition file: stockflds

Four .xml client input files:

- stock_query bea.xml
- stock_query msft.xml
- stock_buy_bea.xml

— stock_sell msft.xml

e One.xml schemafileto validate the XML input files: stock operate.xsd

TExamining the xmlfmlapp Client

Inthe ATMI client-server architecture of the Oracle Tuxedo system, there are two modes of
communication:

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-3

../rf3c/rf3c.html

7-4

e Reqguest/response mode, which is characterized by the sending of asingle request for a
serviceto be performed by the server and getting back a single response.

e Conversational mode; in this mode a dedicated connection is established between a client
(or aserver acting like a client) and a server. The connection remains active until
terminated. While the connection is active, messages containing service requests and
responses can be sent and received between the two participating processes.

The xm1 fmlapp implements the request/response mode using the following three services:
e QUERY - to query a stock price
e BUY - to buy stock

e SELL - to sell stock.

Request/Response Client

stockclient.c isaclient program that usesinput from the specified XML files. It callsthe
QUERY, BUY, and SELL services and returns the executed results. As an executable, it isinvoked
asfollows:

® stockclient stock_query_bea.xml
® stockclient stock_buy_ bea.xml
® stockclient stock_gquery _msft.xml

® stockclient stock_sell msft.xml

See Also
e “What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI
e “What Are Typed Buffers?’ in Introducing Oracle Tuxedo ATMI

e ATMI commands and functions in Oracle Tuxedo Command Reference and Oracle Tuxedo
ATMI C Function Reference

Examining the xmlfmlapp Server

ATMI servers are executabl e processes that offer one or more services. In the Oracle Tuxedo
system, they continually accept requests (from processes acting as clients) and dispatch them to
the appropriate services. It is the services accessing a resource manager that provide the
functionality for which your Oracle Tuxedo system transaction processing application is being

Tutorials for Developing Oracle Tuxedo ATMI Applications

../int/intatm.html
../int/intatm.html

Preparing xmlfmlapp Files and Resources

developed. Service routines are one part of the application that must be written by the Oracle
Tuxedo system programmer (user-defined clients being another part).

The QUERY serviceinthexml fmlapp program accepts FML 32 buffers. It usesfunctions provided
inthe Application-to-Transaction Monitor Interface (ATMI) to query stock information and then
returns the results to the client using FML 32 buffers.

The Buy servicein the xm1 fmlapp program accepts FML32 buffers. It uses functions provided
in the Application-to-Transaction Monitor Interface (ATMI) to buy stock.

The seLL servicein the xm1 fmlapp program accepts FML 32 buffers. It uses functions provided
in the Application-to-Transaction Monitor Interface (ATMI) to sell stock.

Preparing xmlfmlapp Files and Resources

This section leads you through the procedures you must complete to create the files and other
resources you need to run xml fmlapp.

e Step 1: Copy the xmlfmlapp Filesto a New Directory
e Step 2: Set Environment Variables

e Step 3: Create FML32 Field Table

e Step 4: Build the xmIfmlapp Binaries

e Step 5: Edit the Configuration File

e Step 6: Create the Binary Configuration File

Step 1: Copy the xmlfmlapp Files to a New Directory

It is recommended that you copy the xm1 fmlapp filesto your own directory prior to editing any
of the files or running the sample.

Step 2: Set Environment Variables

Y ou will need to edit the environment variablesfile.

1. Ensurethat TuxpIrisset. If itisnot set, execution of thefilefailswith thefollowing message:
TUXDIR: parameter null or not set

2. SetTuxpirtotheroot directory of your Oracle Tuxedo system directory structure, and export
it.

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-5

3. Set appDIR to the directory {TUXDIR}/samples/atmi/xmlfmlapp Which isthe directory
where xm1 fmlapp source files are located. AppDIR isadirectory where the Oracle Tuxedo
system looks for your application-specific files. If you copied the xm1 fml1app filesto a
different directory to safeguard the original sourcefiles, then enter the directory there. It does
not have to be under TuxDpIR.

4. When you have made all necessary changes to the environment variablesfile, executeit as
follows:

. /setenv.cmd

where setenv. cmd isthe executable for Windows. Use setenv. sh on Unix systems.

Additional Requirements

LD_LIBRARY_ PATH mustinclude $TuxDIR/1ib on systems that use shared libraries, with the
exception of HP-UX and AlX.

e On AlX, set L1BPATH instead of LD_LIBRARY PATH.
e On HP-UX, set suLIB_PATH instead of LD_LIBRARY PATH.

o If your operating system is Sun Solaris, you need to: put /usr/5bin at the beginning of
your pATH. The following command can be used:

PATH=/usr/5bin:$PATH; export PATH

Use /bin/sh rather than csh for your shell.

Step 3: Create FML32 Field Table

To create the FML 32 field table, use the following:
mkfldhdr32 stockflds

Step 4: Build the xmlfmlapp Binaries
The following command builds the xmlfmlapp binary files:
On windows:

nmake -f make.nt

On UNIX:

make -f make.mk

1-6 Tutorials for Developing Oracle Tuxedo ATMI Applications

Preparing xmlfmlapp Files and Resources

Step 9: Edit the Configuration File

The sample configuration file, ubbsimple, must be edited to replace the bracketed items with

values appropriate to your installation. Y our TUXDIR and TUXCONFIG environment variables

must match the values in the configuration file.

Listing 7-1 The ubbsimple Configuration File

#(c) 2005 BEA Systems, Inc. All Rights Reserved.
#ident"@(#) samples/atmi/xmlfmlapp/ubbsimpleS$Revision: 1.3 $"

#Skeleton UBBCONFIG file for the TUXEDO Simple Application.
#Replace the <bracketed> items with the appropriate values.

*RESOURCES
IPCKEY<Replace with a valid IPC Key>

#Example:
#IPCKEY123456

DOMAINIDSsimpapp
MASTERsimple
MAXACCESSERS10
MAXSERVERSS
MAXSERVICES10
MODELSHM
LDBALN

*MACHINES
DEFAULT:

APPDIR="<Replace with the current directory pathname>"
TUXCONFIG="<Replace with your TUXCONFIG Pathname>"
TUXDIR="<Directory where TUXEDO is installed>"
#Example:

#APPDIR="/home/me/simpapp"
#TUXCONFIG="/home/me/simpapp/tuxconfig"
#TUXDIR="/usr/tuxedo"

<Machine-name>LMID=simple
#Example:
#beatuxLMID=simple

*GROUPS

Tutorials for Developing Oracle Tuxedo ATMI Applications

1-1

1-8

GROUP1
LMID=simpleGRPNO=10PENINFO=NONE

*SERVERS
DEFAULT:
CLOPT="-A"

stockserver SRVGRP=GROUP1 SRVID=1

*SERVICES
QUERYBUFTYPECONV=XML2FML32
BUYBUFTYPECONV=XML2FML32
SELLBUFTYPECONV=XML2FML32

Note: For each <string> (that is, for each string shown between angle brackets), substitute an
appropriate value.
See Also
e “Preparing xmlfmlapp Files and Resources’ on page 7-5

e UBBCONFIG(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference

Step 6: Create the Binary Configuration File

Before creating the binary configuration file, you need to be in the directory in which your
xm1 fmlapp filesarelocated and you must set the environment variables. Complete the following
tasks.

1. Gotothedirectory in which your xm1 fm1app files are located.

2. Set the environment variables by entering:
./setenv.cmd

where setenv. cmd iSthe executable for Windows. Use setenv. sh on Unix systems.

Loading the Configuration File

Once you have finished editing the configuration file, you must load it into abinary file on your
MASTER machine. The name of the binary configuration file is Tuxconr1g; its path nameis
defined in the TuxconFIc environment variable. Thefile should be created by a person with the

Tutorials for Developing Oracle Tuxedo ATMI Applications

../rf5/rf5.html

Running xmlfmlapp

effective user ID and group 1D of the Oracle Tuxedo system administrator, which should be the
sameastheu1p and c1p valuesin your configurationfile. If thisrequirement isnot met, you may
have permission problemsin running xml fmlapp.

1. To create TUXCONFIG, enter the following command:
tmloadcf ubbsimple

While the configuration file is being loaded, you are prompted several timesto confirm
that you want to install this configuration, even if doing so means an existing configuration
file must be overwritten. If you want to suppress such prompts, include the -y option on
the command line.

2. If you want the amount of I1PC resources needed by your application to be calculated by the
Oracle Tuxedo system, include the -c option on the command line.

TUXCONFIG can beinstalled only on the MasTER maching; it is propagated to other
machines by tmboot when the application is booted.

tmloadcf parsesthetext configuration file (uBBconrF1c) for syntax errors before it loads
it, so if there are errorsin thefile, the job fails.

See Also
e “Preparing xmlfmlapp Files and Resources’ on page 7-5

e tmloadcf (1) in Oracle Tuxedo Command Reference

Running xmifmlapp

This section leads you through the procedures for booting xm1 fmlapp, testing it by running the
client program with several arguments, and shutting it down when you have finished.

e Step 1. xmifmlapp Boot Preparation
e Step 2: Boot xmlfmlapp

e Step 3: Test xmlfmlapp Services

e Step 4: Shut Down xmifmlapp

Step 1: xmlfmlapp Boot Preparation

Before booting xm1 fmlapp, Verify that your machine has enough IPC resources to support your
application. To generate areport on | PC resources, run the tmboot command with the -c option.

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-9

../rfcm/rfcmd.html

1-10

Step 2: Boot xmifmlapp

1. Set the environment:
../setenv.cmd
2. Boot the application by entering the following:

tmboot -y

If you prefer, you can boot only a portion of the configuration. For example, to boot only
administrative servers, include the -a option. If no options are specified, the entire applicationis
booted.

See Also

e tmboot (1) inthe Oracle Tuxedo Command Reference

Step 3: Test xmlfmlapp Services

1. Eachtimeyoulog-into the system, you must set your environment for xm1 fmlapp. TO do SO,
enter the following command:

../setenv.cmd
2. Runthe client program. To execute the client program, enter the following command:
stockclient stock_guery bea.xml
stockclient stock_query_msft.xml
stockclient stock_buy_ bea.xml

stockclient stock _sell msft.xml

Step 4: Shut Down xmlfmlapp

To bring down xm1 fmlapp, enter the tmshutdown (1) command with no arguments, from the
MASTER machine, asfollows.

tmshutdown -y
Running this command (or the shutdown command of tmadmin) causes the following results:

o All application servers, gateway servers, TMS servers, and administrative servers are shut
down.

o All associated |PC resources are removed.

Tutorials for Developing Oracle Tuxedo ATMI Applications

../rfcm/rfcmd.html

Running xmlfmlapp

See Also
e tmadmin (1) inthe Oracle Tuxedo Command Reference

e tmshutdown (1) inthe Oracle Tuxedo Command Reference

Tutorials for Developing Oracle Tuxedo ATMI Applications 1-11

../rfcm/rfcmd.html
../rfcm/rfcmd.html

1-12 Tutorials for Developing Oracle Tuxedo ATMI Applications

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Tutorials for Developing Oracle Tuxedo ATMI Applications, 12c Release 2 (12.2.2)
	Contents
	Developing an Oracle Tuxedo Application
	Before Developing Your Oracle Tuxedo Application
	Creating an Oracle Tuxedo ATMI Client
	Client Tasks

	Creating an Oracle Tuxedo ATMI Server
	Server Tasks

	Using Typed Buffers in Your Application
	Using Oracle Tuxedo Messaging Paradigms in Your Application
	Using the Request/Response Model (Synchronous Calls)
	Using the Request/Response Model (Asynchronous Calls)
	Using Nested Calls
	Using Forwarded Calls
	Using Conversational Communication
	Using Unsolicited Notification
	Using Event-based Communication
	Using Queue-based Communication
	Using Transactions

	Tutorial for simpapp, a Simple C Application
	What Is simpapp?
	Preparing simpapp Files and Resources
	Before You Begin
	About This Tutorial
	What You Will Learn

	Step 1: How to Copy the simpapp Files
	Step 2: Examining and Compiling the Client
	How to Examine the Client
	How to Compile the Client

	Step 3: Examining and Compiling the Server
	How to Examine the Server
	How to Compile the Server

	Step 4: Editing and Loading the Configuration File
	How to Edit the Configuration File
	How to Load the Configuration File

	Step 5: How to Boot the Application
	Step 6: How to Execute the Run-time Application
	Step 7: How to Monitor the Run-time Application
	Step 8: How to Shut Down the Application

	Tutorial for bankapp, a Full C Application
	What Is bankapp?
	About This Tutorial

	Familiarizing Yourself with bankapp
	Learning About the bankapp Files
	Exploring the Banking Application Files

	Examining the bankapp Clients
	What Is the bankclt.c File?
	How ud(1) Is Used in bankapp
	A Request/Response Client: audit.c
	A Conversational Client: auditcon.c
	A Client that Monitors Events: bankmgr.c

	Examining the bankapp Servers and Services
	bankapp Request/Response Servers
	bankapp Conversational Server
	bankapp Services
	Algorithms of bankapp Services

	Utilities Incorporated into Servers
	Alternative Way to Code Services

	Preparing bankapp Files and Resources
	Step 1: How to Set the Environment Variables
	Step 2: Building Servers in bankapp
	How to Build ACCT Server
	How to Build the BAL Server
	How to Build the BTADD Server
	How to Build the TLR Server
	How to Build the XFER Server
	Servers Built in the bankapp.mk File

	Step 3: Editing the bankapp Makefile
	How to Edit the TUXDIR Parameter
	How to Edit the APPDIR Parameter
	How to Set the Resource Manager Parameters
	How to Run the bankapp.mk File

	Step 4: Creating the bankapp Database
	How to Create the Database in SHM Mode
	How to Create the Database in MP Mode

	Step 5: Preparing for an XA-Compliant Resource Manager
	How to Change the bankvar File
	How to Change the bankapp Services
	How to Change the bankapp.mk File
	How to Change crbank and crbankdb
	How to Change the Configuration File

	How to Integrate bankapp with Oracle (XA RM) for a Windows 2003 Platform
	Step 6: How to Edit the Configuration File
	Steps 7 and 8: Creating a Binary Configuration File and Transaction Log File
	Before Creating the Binary Configuration File
	How to Load the Configuration File
	How to Create the Transaction Log (TLOG) File

	Step 9: How to Create a Remote Service Connection on Each Machine
	How to Stop the Listener Process (tlisten)
	Sample tlisten Error Messages

	Running bankapp
	Step 1: How to Prepare to Boot
	Step 2: How to Boot bankapp
	Step 3: How to Populate the Database
	Step 4: How to Test bankapp Services
	Step 5: How to Shut Down bankapp

	Tutorial for CSIMPAPP, a Simple COBOL Application
	What Is CSIMPAPP?
	Preparing CSIMPAPP Files and Resources
	Before You Begin
	What You Will Learn

	Step 1: How to Copy the CSIMPAPP Files
	Step 2: Examining and Compiling the Client
	How to Examine the Client
	How to Compile the Client

	Step 3: Examining and Compiling the Server
	How to Examine the Server
	How to Compile the Server

	Step 4: Editing and Loading the Configuration File
	How to Edit the Configuration File
	How to Load the Configuration File

	Step 5: How to Boot the Application
	Step 6: How to Test the Run-time Application
	Step 7: How to Monitor the Run-time Application
	Step 8: How to Shut Down the Application

	Tutorial for STOCKAPP, a Full COBOL Application
	What Is STOCKAPP?
	Familiarizing Yourself with STOCKAPP
	Learning About the STOCKAPP Files
	Exploring the Stock Application Files

	Examining the STOCKAPP Clients
	System Client Programs
	Typed Buffers
	A Request/Response Client: BUY.cbl
	BUY.cbl Source Code

	Building Clients

	Examining the STOCKAPP Servers
	STOCKAPP Services

	Preparing STOCKAPP Files and Resources
	Step 1: How to Set Environment Variables
	Additional Requirements

	Step 2: Building Servers in STOCKAPP
	How to Build the BUYSELL Server
	Servers Built in STOCKAPP.mk

	Step 3: Editing the STOCKAPP.mk File
	How to Edit the TUXDIR Parameter
	How to Edit the APPDIR Parameter
	How to Run the STOCKAPP.mk File

	Step 4: How to Edit the Configuration File
	Step 5: Creating a Binary Configuration File
	Before Creating the Binary Configuration File
	How to Load the Configuration File

	Running STOCKAPP
	Step 1: How to Prepare to Boot
	Step 2: How to Boot STOCKAPP
	Step 3: How to Test STOCKAPP Services
	Step 4: How to Shut Down STOCKAPP

	Tutorial for XMLSTOCKAPP: a C and C++ XML Parser Application
	What Is XMLSTOCKAPP?
	Familiarizing Yourself with XMLSTOCKAPP
	Learning About the XMLSTOCKAPP Files
	Examining the XMLSTOCKAPP Clients
	A Request/Response Client: stock_quote_beas.xml
	See Also

	Examining the XMLSTOCKAPP Servers

	Preparing XMLSTOCKAPP Files and Resources
	Step1: Copy the XMLSTOCKAPP Files to a New Directory
	Step 2: Set Environment Variables
	Additional Requirements

	Step 3: Building Clients
	Step 4: Building Servers in XMLSTOCKAPP
	How to Build the stockxml and stockxml_c Servers
	See Also

	Step 5: How to Edit the Configuration File
	See Also

	Step 6: Creating a Binary Configuration File
	How to Load the Configuration File
	See Also

	Running XMLSTOCKAPP
	Step 1: How to Prepare to Boot
	Step 2: How to Boot XMLSTOCKAPP
	See Also

	Step 3: How to Test XMLSTOCKAPP Services
	Step 4: How to Shut Down XMLSTOCKAPP
	See Also

	Tutorial for xmlfmlapp: A Full C XML/FML32 Conversion Application
	What Is xmlfmlapp?
	Familiarizing Yourself with xmlfmlapp
	Learning About the xmlfmlapp Files
	TExamining the xmlfmlapp Client
	Request/Response Client
	See Also

	Examining the xmlfmlapp Server

	Preparing xmlfmlapp Files and Resources
	Step 1: Copy the xmlfmlapp Files to a New Directory
	Step 2: Set Environment Variables
	Additional Requirements

	Step 3: Create FML32 Field Table
	Step 4: Build the xmlfmlapp Binaries
	Step 5: Edit the Configuration File
	See Also

	Step 6: Create the Binary Configuration File
	Loading the Configuration File
	See Also

	Running xmlfmlapp
	Step 1: xmlfmlapp Boot Preparation
	Step 2: Boot xmlfmlapp
	See Also

	Step 3: Test xmlfmlapp Services
	Step 4: Shut Down xmlfmlapp
	See Also

