Oracle® Tuxedo
Using CORBA Transactions

12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo Using CORBA Transactions, 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Introducing Transactions

Overview of Transactions in Oracle Tuxedo CORBA Applications 1-2
ACID Propertiesof TransaCtionsc.couiiiirineiiiiiinenann, 1-2
RESOUICE MaNagEr . . . oottt e 1-2
Supported ProgrammingModel. 1-3
Supported API Model 1-3
Support for Business Transactions. vv it 1-3
Distributed Transactions and the Two-Phase Commit Protocol 1-4

Whento USe TransaCtionsot e 1-4

How to Use Transactions in Oracle Tuxedo CORBA Applications. 1-5
How to Use Transactions When Using the Oracle Bootstrapping Mechanism. . . . 1-6
How to Use Transactions When Using the INS Bootstrapping Mechanism. 1-7

Writing a Transactions Sample Application. 1-8
Workflow for the Transactions Sample Application 1-8
Development StepSot 1-10

2. Transaction Service

About the TransaCtion SErVICEot 2-2
Capabilitiesand Limitations.t 2-2
Lightweight Clientswith Delegated Commit i, 2-2
Support for Third-Party ClientsUsingINS. 2-3
Multithreaded Transaction Client Support 2-3

Using CORBA Transactions iii

Transaction Propagation (CORBA ONly)t 2-3

Transaction INtegrity oo v 2-4
Transaction TErMINAtIONottt e et e e e e 2-4
Flat TransaCtionSottt e e e e e e 2-4

Interoperability Between CORBA Remote Clients and the Oracle Tuxedo Domain2-4

Intradomain and Interdomain Interoperability 2-5
Network Interoperabilityci 2-5
Relationship of the Transaction Service to Transaction Processing 2-5
ProcessFailure 2-6
General CoNSLIaiNtS.ottt et e e e 2-6
Transaction Servicein CORBA Applications 2-7
Getting Initial References to the TransactionCurrent Object Using the Bootstrap
L@ o] = ox 2-7
Getting Initial References to the TransactionFactory Object Using INS 2-8
CORBA Transaction SErVIiCE APo 29
CORBA Transaction Service API EXtENSIONS oo 2-21
Notes on Using Transactions in Oracle Tuxedo CORBA Applications 2-23
UsarTransaction APl o 2-25
UsarTransaction Methods. e 2-25
Exceptions Thrown by UserTransactionMethods 2-27

3. Transactions in CORBA Server Applications

Integrating Transactions in an Oracle Tuxedo Client and Server Application 3-2
Transaction Support in CORBA Applicationscoiivan... 3-2
Making an Object Automatically Transactional 33
Enabling an Object to ParticipateinaTransaction. 34
Preventing an Object from Being Invoked While a Transaction Is Scoped 35
Excluding an Object from an Ongoing Transaction. 3-6

Using CORBA Transactions

ASSIgNING POlICIES ... 3-6

Using an XA ResoUrCeEManagero vttt e 3-6
Opening an XA ReSOUrCEManager.o v vttt et 37
Closing an XA ResoUrce Manager v et 3-8
Transactions and Object State Management, 3-8
Delegating Object State Management to an XA Resource Manager 3-8
Waiting Until Transaction Work |s Complete Before Writing to the Database. . . . 3-8
User-defined EXCEPLIONS oot 3-10
About User-defined EXCEPLIONS. oot 3-10
Definingthe Exception 311
Throwing the EXception e 311
How the Transactions University Sample Application Works. 312
About the Transactions University Sample Application. 3-12
Transactional Model Used by the Transactions University Sample Application . 3-13
Object State Considerations for the University Server Application 3-14
Configuration Requirements for the Transactions Sample Application 3-15

4. Transactions in CORBA Client Applications

Overview of Oracle Tuxedo CORBA Transactions.ouuneennnenn.. 4-2
Summary of the Development Processfor Transactions 4-2
Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object. 4-2
CHExample. 4-3
JStep 2: Using the TransactionCurrent Methodsot 4-3
CHEBxample. 4-5

5. Administering Transactions
Modifying the UBBCONFIG File to Accommodate Transactions 5-2
SUMMaArY Of SEEPS . ..o e 5-2

Using CORBA Transactions

vi

Step 1: Specify Application-wide Transactions in the RESOURCES Section ... 5-2

Step 2: Createa Transaction LOg (TLOG)o oo 5-3
Step 3: Define Each Resource Manager (RM) and the Transaction Manager Server in
the GROUPS SECHiON ... oo e 55
Step 4: Enable an Interfaceto BeginaTransaction 5-7
Modifying the Domain Configuration File to Support Transactions (Oracle Tuxedo
CORBA SEIVEIS) ittt ittt ettt et et 5-10
Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameterso..... 5-10
Characteristics of the AUTOTRAN and TRANTIME Parameters (Oracle Tuxedo
CORBA and ATMI SErvVers) vi i et 5-11
Sample Distributed Application Using Transactions 5-13
RESOURCES SECtiON.ottt 5-13
MACHINES SeCtion.o 5-14
GROUPS and NETWORK SeCHioNS.o v ittt e 5-15
SERVERS, SERVICES, and ROUTING Sections.c.cooviiiiann... 5-16

Using CORBA Transactions

Introducing Transactions

Thistopic includes the following sections:

e Overview of Transactionsin Oracle Tuxedo CORBA Applications
e When to Use Transactions
e How to Use Transactions in Oracle Tuxedo CORBA Applications

e Writing a Transactions Sample Application

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using CORBA Transactions 1-1

Overview of Transactions in Oracle Tuxedo CORBA
Applications

1-2

This topic includes the following sections:
e ACID Properties of Transactions

e Resource Manager

Supported Programming Model

Supported APl Model

Support for Business Transactions

e Distributed Transactions and the Two-Phase Commit Protocol

ACID Properties of Transactions

One of the most fundamental features of the Oracle Tuxedo system is transaction management.
Transactions are a means to guarantee that database transactions are completed accurately and
that they take on all the ACID properties (atomicity, consistency, isolation, and durability) of a
high-performance transaction. Oracle Tuxedo protects the integrity of your transactions by
providing a complete infrastructure for ensuring that database updates are done accurately, even
across a variety of resource managers (RMs). If any one of the operationsfails, the entire set of
operationsisrolled back.

Resource Manager

A Resource Manager (RM) is adatarepository, such as a database management system or the
Oracle Tuxedo system’s Application Queuing Manager, with tools for accessing the data. The
Oracle Tuxedo system uses one or more RM sto maintain the state of an application. For example,
bank records in which account balances are maintained are kept in an RM. When the state of the
application changes through a service that allows a customer to withdraw money from an
account, the new balance in the account is recorded in the appropriate RM.

The Oracle Tuxedo system helps you manage transactions involving resource managers that
support the XA interface. To coordinate all the operations performed and all the modules affected
by atransaction, the Oracle Tuxedo system plays the role of the Transaction Manager (TM).

The TM coordinates global transactions involving system-wide resources. Local resource
managers (RMs) are responsible for individual resources. The Transaction Manager Server

Using CORBA Transactions

Overview of Transactions in Oracle Tuxedo CORBA Applications

(TMS) begins, commits, and aborts transactions involving multiple resources. The application
code usesthe normal embedded SQL interfaceto the RM to perform readsand updates. The TM'S
uses the XA interface to the RM to perform the work of a global transaction.

Supported Programming Model

Oracle Tuxedo supports the Object Management Group Common Object Request Broker
(CORBA) in C++, in compliance with the The Common Object Request Broker: Architectureand
Soecification, Revision 2.4.2, January 2001.

Supported API Model

Oracle Tuxedo supportsthe CORBA services Object Transaction Service (OTS). Oracle Tuxedo
provides a C++ interface to the OTS and is based on the OTS. The OTS is accessed through the
org.omg.CosTransactions.Current environmental object. For information about using the
TransactionCurrent environmental object, see the*CORBA Bootstrapping Programming
Reference” in the CORBA Programming Reference.

Note: Oracle Tuxedo also supports use of the CORBA Interoperable Naming Service (INS)
bootstrapping mechanism. For information on INS, see the “CORBA Bootstrapping
Programming Reference” in the CORBA Programming Reference.

Support for Business Transactions
OT S provides the following support for your business transactions:
e Creates aglobal transaction identifier when a client application initiates a transaction.

e Works with the Oracle Tuxedo infrastructure to track objectsthat are involved in a
transaction and, therefore, need to be coordinated when the transaction is ready to commit.

o Notifies the resource managers—which are, most often, databases—when they are
accessed on behalf of atransaction. Resource managers then lock the accessed records
until the end of the transaction.

e Orchestrates the two-phase commit when the transaction compl etes, which ensures that all
the participants in the transaction commit their updates simultaneously. It coordinates the
commit with any databases that are being updated using Open Group’s XA protocol.
Almost all relational databases support this standard.

e Executes the rollback procedure when the transaction must be stopped.

Using CORBA Transactions 1-3

e Executes arecovery procedure when failures occur. It determines which transactions were
active in the machine at the time of the crash, and then determines whether the transaction
should be rolled back or committed.

Distributed Transactions and the Two-Phase Commit
Protocol

Oracle Tuxedo CORBA supports distributed transactions and the two-phase commit protocol for
enterprise applications. A distributed transaction is a transaction that updates multiple resource
managers (such as databases) in a coordinated manner. The two-phase commit protocol (2PC) is
amethod of coordinating asingletransaction across one or more resource managers. It guarantees
dataintegrity by ensuring that transactional updates are committed in all of the participating
databases, or are fully rolled back out of all the databases, reverting to the state prior to the start
of the transaction.

When to Use Transactions

1-4

Transactions are appropriate in the situations described in the following list. Each situation
describes a transaction model supported by Oracle Tuxedo CORBA.

e The client application needs to make invocations on several objects, which may involve
write operations to one or more databases. If any one invocation is unsuccessful, any state
that iswritten (either in memory or, more typically, to a database) must be rolled back.

For example, consider atravel agent application. The client application needs to arrange
for ajourney to adistant location; for example, from Strasbourg, France, to Alice Springs,
Australia. Such ajourney would inevitably require multiple individual flight reservations.
The client application works by reserving each individual segment of the journey in
sequential order; for example, Strasbourg to Paris, Paristo New York, New York to Los
Angeles. However, if any individual flight reservation cannot be made, the client
application needs away to cancel al the flight reservations made up to that point.

e The client application needs a conversation with an object managed by the server
application, and the client application needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the following:

— Datais cached in memory or written to a database during or after each successive
invocation.

— Dataiswritten to a database at the end of the conversation.

Using CORBA Transactions

How to Use Transactions in Oracle Tuxedo CORBA Applications

— The client application needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the data that is being maintained in
memory across the conversation.

— At the end of the conversation, the client application needs the ability to cancel al
database write operations that may have occurred during or at the end of the
conversation.

For example, consider an Internet-based online shopping cart application. Users of the
client application browse through an online catalog and make multiple purchase selections.
When the users are done choosing all the items they want to buy, they proceed to check out
and enter their credit card information to make the purchase. If the credit card check fails,
the shopping application needs away to cancel all the pending purchase selectionsin the
shopping cart, or roll back any purchase transactions made during the conversation.

e Within the scope of a single client invocation on an object, the object performs multiple
editsto datain a database. If one of the edits fails, the object needs a mechanism to roll
back all the edits. (In this situation, the individual database edits are not necessarily
CORBA.)

For example, consider a banking application. The client invokes the transfer operation on a
teller object. The transfer operation requires the teller object to make the following
invocations on the bank database:

— Invoking the debit method on one account.
— Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs away to
roll back the previous debit invocation.

How to Use Transactions in Oracle Tuxedo CORBA
Applications

Figure 1-1 illustrates transactions in an Oracle CORBA application.

Using CORBA Transactions 1-5

1-6

Figure 1-1 Transactions in an Oracle Tuxedo CORBA Application

CORBA C++ Client
Application

CORBA Java Client

Browse Courses

Register for Courses

University Server

Application

ActiveX Client
Application

A Part of a Transaction

Application

A i
Y

University

Database

The way you use transactions differs depending on whether you use the Oracle bootstrapping
mechanism or the Interoperable Naming Service (INS) bootstrapping mechanism.

Note: Y ou should use the Oracle bootstrapping mechanism if you are using Oracle Tuxedo
CORBA client software. Y ou should use the INS bootstrapping mechanism if you are

using athird-party client.

How to Use Transactions When Using the Oracle
Bootstrapping Mechanism

When the Oracle proprietary Bootstrapping mechanism isused, you use abasic transaction in the

following way:

1. The client application uses the Bootstrap object to return an object reference to the
TransactionCurrent object for the Oracle Tuxedo domain.

2. A client application beginsatransaction using the Tob3 : : TransactionCurrent: :begin ()

operation, and issues a request to the CORBA interface through the TP Framework. All
operations on the CORBA interface execute within the scope of atransaction.

Using CORBA Transactions

How to Use Transactions in Oracle Tuxedo CORBA Applications

— If acall to any of these operations raises an exception (either explicitly or as a result of
acommunication failure), the exception can be caught.

— If al the changes that need to occur have taken place successfully, and the state of the
database (or objects) is consistent, then the transaction should be committed; otherwise,
the transaction should be rolled back.

— The client application commits the current transaction using the
Tobj: : TransactionCurrent: :commit () operation. This operation endsthe
transaction and starts the processing of the operation. The transaction is committed only
if al of the participantsin the transaction agree to commit.

The Tobj : : TransactionCurrent:commit () operation causesthe TP Framework to call
the transaction manager to complete the transaction.

Thetransaction manager isresponsible for coordinating with the resource managersto update
the database.

How to Use Transactions When Using the INS Bootstrapping
Mechanism

When you use CORBA services Interoperable Naming Service (INS) bootstrapping mechanism
is used, you use a basic transaction in the following way:

1.

The client application usesthe orB: : resolve_initial_references () operationto get a
FactoryFinder object for the Oracle Tuxedo domain.

The client application uses the FactoryFinder to get a TransactionFactory.

Note: The TransactionFactory returns objectsthat adhere to the standard CORBA Services
Transaction Service interfacesinstead of the Oracle del egated interfaces. Thismeans
that athird-party client can usetheir ORB’Sresolve initial_references()
function to get the TransactionFactory from an Oracle Tuxedo CORBA server and
use stubs generated from standard OMG IDL to act on the instances returned.

The client application then usesthe create () operation on the TransactionFactory to begin
atransaction and issues a request to the CORBA interface through the TP Framework.

Fromthe Control object returned fromthe create () operation, the client application usesthe
get_terminator () operation to get the transaction Terminator interface.

The client application then usesthe commit () Or rollback () operation on the Terminator
interface to end or abort the transaction. The commit () operation causes the TP Framework
to call the transaction manager to complete the transaction.

Using CORBA Transactions 1-7

6. Thetransaction manager isresponsible for coordinating with the resource managersto update
the database.

Note: All operations on the CORBA interface execute within the scope of atransaction.

e |f acall to any of these operations raises an exception (either explicitly or asa
result of a communication failure), the exception can be caught.

o |f al the changes that need to occur have taken place successfully, and the state of
the database (or objects) is consistent, then the transaction should be committed,;
otherwise, the transaction should be rolled back.

e The client application commits the current transaction using the
Terminator::commit () operation. This operation ends the transaction and starts
the processing of the operation. The transaction is committed only if al of the
participants in the transaction agree to commit.

Note: For moreinformation on INS, seethe“ CORBA Bootstrapping Programming Reference”
in the CORBA Programming Reference.

Writing a Transactions Sample Application

This topic includes the following sections:
o Workflow for the Transactions Sample Application

e Development Steps

Workflow for the Transactions Sample Application

In the Transactions sample CORBA application, the operation of registering for coursesis
executed within the scope of atransaction. Thetransaction model used in the Transactions sample
application is a combination of the conversational model and the model in which asingle client
invocation makes multiple individual operations on a database.

The Transactions sample application works in the following way:
1. Students submit alist of courses for which they want to be registered.
2. For each coursein thelist, the server application checks whether:

— The courseisin the database.

— The student is already registered for a course.

— The student exceeds the maximum number of credits the student can take.

1-8 Using CORBA Transactions

Writing a Transactions Sample Application

3. One of the following occurs:;

— If the course meets al the criteria, the server application registers the student for the
course.

— If the courseis not in the database or if the student is already registered for the course,
the server application adds the course to alist of courses for which the student could
not be registered. After processing al the registration requests, the server application
returnsthe list of courses for which registration failed. The client application can then
choose to either commit the transaction (thereby registering the student for the courses
for which registration request succeeded) or to roll back the transaction (thus, not
registering the student for any of the courses).

— If the student exceeds the maximum number of credits the student can take, the server
application returns a TooManyCredits User exception to the client application. The
client application provides a brief message explaining that the request was rejected. The
client application then rolls back the transaction.

Figure 1-2 illustrates how the Transactions sample application works.

Figure 1-2 Transactions Sample Application

CORBA C++ Client get_student_details()

Application
get_course_details ()
browse_courses ()
., register_for_courses|()
CORBA ‘_]ava,‘ Client : ! | University Server
Application

i . ' Application
. CORBA .

Server

ActiveX Client ! .
Application

University
Database

A Part of a Transaction

The Transactions sample application shows two ways in which a transaction can be rolled back:

Using CORBA Transactions 1-9

e Nonfatal. If the registration for a course fails because the course is not in the database, or
because the student is already registered for the course, the server application returns the
numbers of those courses to the client application. The decision to roll back the transaction
lies with the user of the client application (and the Transaction client application code rolls
back the transaction automatically in this case).

e Fatal. If theregistration for a course fails because the student exceeds the maximum
number of credits he or she can take, the server application generates a CORBA exception
and returnsit to the client. The decision to roll back the transaction also lies with the client
application.

Thus, the Transactions sample application also shows how to implement user-defined
CORBA exceptions. For example, if the student tries to register for a course that would
exceed the maximum number of courses for which the student can register, the server
application returns the TooManyCredits exception. When the client application receives
this exception, the client application rolls back the transaction automatically.

Note: For information about how transactions are implemented in Oracle Tuxedo CORBA
applications, see the Transactions Sample in the Oracle Tuxedo online documentation.

Development Steps

This topic describes the following development steps for writing an Oracle Tuxedo application
that contains transaction processing code:

e Step 1: Writing the OMG IDL

e Step 2: Defining Transaction Policies for the Interfaces
e Step 3: Writing the Server Application

e Step 4: Writing the Client Application

e Step 5: Creating a Configuration File

The Transactions sample application is used to demonstrate these devel opment steps. The source
filesfor the Transactions sample application are located in the \samples\corba\university
directory of the Oracle Tuxedo software. For information about building and running the
Transactions sample application, see the Transactions Sample in the Oracle Tuxedo online
documentation.

1-10 Using CORBA Transactions

Writing a Transactions Sample Application

Step 1: Writing the OMG IDL

Y ou need to specify interfaces involved in transactions in Object Management Group (OMG)
Interface Definition Language (IDL) just as you would any other CORBA interface. Y ou must
also specify any user exceptions that might occur from using the interface.

For the Transactions sample application, you would definein OMG IDL theregistrar interface
andthEregister_for_courses()Opaaﬂon.Theregister_for_courses()Opaaﬁonhasa
parameter, NotRegisteredList, Which returns to the client application the list of courses for
which registration failed. If the value of NotRegisteredList iSempty, then the client
application commits the transaction. Y ou also need to define the TooManyCredits user
exception.

Listing 1-1 includes the OMG IDL for the Transactions sample application.

Listing 1-1 OMG IDL for the Transactions Sample Application

#pragma prefix "beasys.com"

module UniversityT

{
typedef unsigned long CourseNumber;

typedef sequence<CourseNumber> CourseNumberList;

struct CourseSynopsis
{
CourseNumber course_number;
string title;
Y
typedef sequence<CourseSynopsis> CourseSynopsisList;

interface CourseSynopsisEnumerator
{
//Returns a list of length 0 if there are no more entries
CourseSynopsisList get_next_n/(
in wunsigned long number_to_get, // 0 = return all

out unsigned long number_remaining

Using CORBA Transactions 1-1

1-12

void destroy () ;
I

typedef unsigned short Days;

const Days MONDAY
const Days TUESDAY
const Days WEDNESDAY
const Days THURSDAY
const Days FRIDAY

}

1;
2;
4;
8;
16;

//Classes restricted to same time

//starting on the hour

struct ClassSchedule

{

Days class_days;

unsigned short start_hour;

unsigned short duration;

}i

struct CourseDetails

block on all scheduled days,

// bitmask of days
// whole hours in military time

// minutes

CourseNumber course_number;

double cost;

unsigned short number_of_credits;

ClassSchedule class_schedule;

unsigned short number_of_seats;

string title;
string professor;
string description;

typedef sequence<CourseDetails> CourseDetailsList;

typedef unsigned long StudentId;

struct StudentDetails
{

StudentId student_id;

string name;

CourseDetailsList registered_courses;

}i

enum NotRegisteredReason

Using CORBA Transactions

Writing a Transactions Sample Application

AlreadyRegistered,
NoSuchCourse
Y
struct NotRegistered
{
CourseNumber course_number;
NotRegisteredReason not_registered_reason;
Y
typedef sequence<NotRegistered> NotRegisteredList;

exception TooManyCredits
{
unsigned short maximum_credits;
Y
//The Registrar interface is the main interface that allows
//students to access the database.
interface Registrar
{
CourseSynopsisList

get_courses_synopsis (

in string search_criteria,
in unsigned long number_to_get,
out unsigned long number_remaining,

out CourseSynopsisEnumerator rest

CourseDetailsList get_courses_details(in CourseNumberList
courses) ;
StudentDetails get_student_details(in StudentId student) ;
NotRegisteredList register_for_courses(
in StudentId student,
in CourseNumberList courses
raises (
TooManyCredits
) ;
Y
// The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory

Using CORBA Transactions 1-13

1-14

Registrar find_registrar(

)

Step 2: Defining Transaction Policies for the Interfaces

Transaction policies are used on a per-interface basis. During design, it is decided which
interfaces within an Oracle Tuxedo application will handle transactions. Table 1-1 describesthe

CORBA transaction policies.

Table 1-1 CORBA Transaction Policies

Transaction Policy

Description

always

Theinterface must always be part of atransaction. If the
interface is not part of a transaction, a transaction will be
automatically started by the TP Framework.

ignore

Theinterfaceis not transactional. However, requests made to
this interface within a scope of atransaction are alowed. The
AUTOTRAN parameter, specified in the UBBCONF IG filefor this
interface, isignored.

never

Theinterfaceis not transactional. Objects created for this
interface can never beinvolved in atransaction. The Oracle
Tuxedo system generates an exception
(INVALID_TRANSACTION) if aninterface with this policy is
involved in atransaction.

optional

Theinterface may be transactional. Objectscan beinvolvedina
transaction if the request istransactional . Thistransaction policy
isthe default.

During devel opment, you decide which interfaces will execute in atransaction by assigning
transaction policies. Y ou specify transaction policiesin the Implementation Configuration File
(ICF). A template ICF fileis created by the genicf command. For more information about the
ICFs, see“Implementation Configuration File (ICF)” in the CORBA Programming Reference.

In the Transactions sample application, the transaction policy of theregistrar interfaceis set

10 always.

Using CORBA Transactions

Writing a Transactions Sample Application

Step 3: Writing the Server Application

When using transactionsin server applications, you need to write methods that implement the
interface’ s operations. In the Transactions sample application, you would write a method
implementation for the register_for_courses () operation.

If your Oracle Tuxedo application uses a database, you need to include in the server application
code that opens and closes an XA resource manager. These operations are included in the
Server::initialize() andsServer::release () operationsof the Server object. Listing 1-2
shows the portion of the code for the Server object in the Transactions sample application that
opens and closes the XA resource manager.

Note: For acomplete example of a CORBA server application that implements transactions,
see the Transactions Sample in the Oracle Tuxedo online documentation.

Listing 1-2 C++ Server Object in Transactions Sample Application

CORBA: :Boolean Server::initialize(int argc, char* argvl[])
{
TRACE_METHOD ("Server::initialize") ;
try {
open_database() ;
begin_transactional () ;
register_fact();
return CORBA_TRUE;

catch (CORBA::Exception& e) {

LOG (“CORBA exception : “ <<e);
}
catch (SamplesDBException& e) {

LOG(“Can’t connect to database”) ;

catch (...) {

LOG (“Unexpected database error : “ <<e);
}
catch (...) {

LOG (“Unexpected exception”);
}

cleanup () ;

Using CORBA Transactions 1-15

return CORBA_FALSE;

void Server::release()

{
TRACE_METHOD (“Server: :release”) ;
cleanup() ;

}

static void cleanup ()

{
unregister_factory () ;
end_transactional () ;
close_database() ;

}

//Utilities to manage transaction resource manager

CORBA: :Boolean s_became_transactional = CORBA_FALSE;
static void begin_transactional ()
{
TP::open_xa_rm() ;
s_became_transactional = CORBA_TRUE;
}
static void end_transactional ()
{
if (!s_became_transactional) {

return//cleanup not necessary

try {

TP::close_xa_rm ();

catch (CORBA: :Exception& e) {
LOG (“CORBA Exception : “ << e);
}
catch (...) {
LOG (“unexpected exception”);
}
s_became_transactional = CORBA_FALSE;

1-16 Using CORBA Transactions

Writing a Transactions Sample Application

Step 4: Writing the Client Application

The client application needs code that performs the following tasks:
1. Obtains areference to the TransactionCurrent object from the Bootstrap object.

2. Beginsatransaction by invokingtheTobj : : TransactionCurrent: :begin () Operationon
the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the client
application invokesthe register_for_courses () operation on the Registrar object,
passing alist of courses.

Listing 1-3 shows the portion of the CORBA C++ client applicationsin the Transactions sample
application that illustrates the devel opment steps for transactions.

Note: The sample code shown in Listing 1-3 illustrates how to use the Oracle bootstrapping
mechanism. For information on how to use the INS bootstrapping mechanism, see the
“CORBA Bootstrapping Programming Reference” in the CORBA Programming
Reference.

Listing 1-3 Transactions Code for CORBA C++ Client Applications

CORBA: :Object_var var_transaction_current_oref =
Bootstrap.resolve_initial_references (“TransactionCurrent”) ;
CosTransactions: :Current_var transaction_current_ oref=
CosTransactions: :Current: :_narrow(var_transaction_current_oref.in());
//Begin the transaction
var_transaction_current_oref->begin() ;
try {
//Perform the operation inside the transaction
pointer_Registar_ref->register_for_courses (student_id,
course_number_1list);

//If operation executes with no errors, commit the transaction:
CORBA: :Boolean report_heuristics = CORBA_TRUE;
var_transaction_current_ref->commit (report_heuristics) ;

}

catch (...) {

//If the operation has problems executing, rollback the

//transaction. Then throw the original exception again.

//1f the rollback fails, ignore the exception and throw the

Using CORBA Transactions 1-17

//original exception again.
try {
var_transaction_current_ref->rollback() ;
}
catch (...) {
TP::userlog("rollback failed");
}
throw;

}

Step 5: Creating a Configuration File

Y ou need to add the following information to the configuration file for atransactional Oracle
Tuxedo application:

e Inthecroups section:

— Inthe orENINFO parameter, include the information needed to open the resource
manager for the database. You obtain this information from the product documentation
for your database. Note that the default version of the
com.beasys.Tobj.Server.initialize method automatically opens the resource
manager.

— Inthe croseINro parameter, include the information needed to close the resource
manager for the database. By default, the cL.oseINFO parameter is empty.

— Specify the Tusname and TMscounT parameters to associate the XA resource manager
with a specified server group.

e Inthe sErRVERS section, define a server group that includes both the server application that
includes the interface and the server application that manages the database. This server
group needs to be specified as transactional .

e Include the pathname to the transaction log (T1.0G) in the TLOGDEVICE parameter. For more
information about the transaction log, see Chapter 5, “Administering Transactions.”

Listing 1-4 includes the portions of the configuration file that define this information for the
Transactions sample application.

Listing 1-4 Configuration File for Transactions Sample Application

*RESOURCES
IPCKEY 55432

1-18 Using CORBA Transactions

Writing a Transactions Sample Application

DOMAINID university

MASTER SITEl
MODEL SHM
LDBAL N

SECURITY APP_PW

*MACHINES
BLOTTO
LMID = SITEl
APPDIR = C:\TRANSACTION_SAMPLE
TUXCONFIG=C:\TRANSACTION_SAMPLE\tuxconfig
TLOGDEVICE=C:\APP_DIR\TLOG
TLOGNAME=TLOG
TUXDIR="C:\tuxdir"
MAXWSCLIENTS=10

*GROUPS
SYS_GRP
LMID = SITEl
GRPNO =1
ORA_GRP
LMID = SITEl
GRPNO = 2
OPENINFO = "ORACLE_XA:Oracle_XA+SglNet=0ORCL+Acc=P
/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
CLOSEINFO = ""
TMSNAME = "TMS_ORA"
TMSCOUNT = 2
*SERVERS
DEFAULT:
RESTART =Y
MAXGEN = 5
TMSYSEVT
SRVGRP = SYS_GRP
SRVID =1
TMFFNAME
SRVGRP = SYS_GRP

Using CORBA Transactions 1-19

1-20

SRVID = 2

CLOPT = "-A -- -N -M"
TMFFNAME

SRVGRP = SYS_GRP

SRVID = 3

CLOPT = "-A -- -N"
TMFFNAME

SRVGRP = SYS_GRP

SRVID = 4

CLOPT = "-A -- -F"
TMIFRSVR

SRVGRP = SYS_GRP

SRVID =5

UNIVT_SERVER
SRVGRP = ORA_GRP
SRVID =1
RESTART = N

ISL
SRVGRP = SYS_GRP
SRVID =6
CLOPT = -A -- -n //MACHINENAME:2500
*SERVICES

For information about the transaction log and defining parameters in the Configuration file, see
Chapter 5, “Administering Transactions.”

Using CORBA Transactions

Transaction Service

Thistopic includes the following sections:
e About the Transaction Service
e Capabilities and Limitations
e Transaction Service in CORBA Applications

e UserTransaction API

Thistopic provides the information that programmers need to write transactional CORBA
applications for the Oracle Tuxedo system. Before you begin, you should read Chapter 1,
“Introducing Transactions.”

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

Using CORBA Transactions 2-1

About the Transaction Service

Oracle Tuxedo providesaTransaction Servicethat supportstransactionsin CORBA applications.
The Transaction Service provides an implementation of the CORBA Services Transaction
Service that is described in the OMG CORBA Services Transaction Service Specification. This
specification defines the interfaces for an object service that provides transactional functions.

Capabilities and Limitations

2-2

This topic includes the following sections:
e Lightweight Clients with Delegated Commit
e Support for Third-Party Clients Using INS
e Multithreaded Transaction Client Support
e Transaction Integrity
e Transaction Termination
e Flat Transactions
e Interoperability Between CORBA Remote Clients and the Oracle Tuxedo Domain
e Intradomain and Interdomain Interoperability
e Network Interoperability
e Relationship of the Transaction Service to Transaction Processing
e Process Failure

e Genera Constraints

These sections describe the capabilities and limitations of the Transaction Service that supports
CORBA applications.

Lightweight Clients with Delegated Commit

A lightweight client runs on a single-user, unmanaged desktop system that has irregular
availability. Owners may turn their desktop systems off when they are not in use. These
single-user, unmanaged desktop systems should not be required to perform network functions
such astransaction coordination. In particular, unmanaged systems should not be responsible for

Using CORBA Transactions

Capabilities and Limitations

ensuring atomicity, consistency, isolation, and durability (ACID) properties across failures for
transactions involving server resources. Oracle Tuxedo CORBA remote clients are lightweight
clients.

The Transaction Service alows lightweight clientsto do a delegated commit, which means that
the Transaction Service alows lightweight clients to begin and terminate transactions while the
responsibility for transaction coordination is delegated to a transaction manager running on a
server machine. Client applications do not require alocal transaction server. The remote
TransactionCurrent implementation that CORBA clients use delegates the actual responsibility
of transaction coordination to transaction manager on the server.

Support for Third-Party Clients Using INS

In Oracle Tuxedo release 8.0 and later, the CORBA Interoperable Naming Service (INS) is
supported. Therefore, clients that implement the CORBA services Object Transaction Service
(OTS) can communicate with Oracle Tuxedo CORBA servers and initiate and terminate
transactions. Using INS, any third-party client ORB that can compilethe standard OTSIDL files
and produce usable stub files can interact with the Oracle Tuxedo CORBA transaction manager.
However, such interaction is limited because the transaction coordination interfaces that would
allow athird-party ORB to become aresource manager are not supported. Only Oracle provided
resource managers and/or XA compliant resource managers can participate in the coordination of
atransaction. Further, the Oracle provided and XA compliant resource managers can participate
in transaction coordination only if they use the XA protocols—not the CORBA services OTS
protocols—for transaction coordination.

In summary, athird-party client ORB can be used to initiate a transaction, and the client can
request the rollback or commit of the transaction, however, the client ORB cannot participatein
the coordination of the two-phase commit protocol using the CORBA services OTS.

Multithreaded Transaction Client Support

Inrelease 8.0, Oracle Tuxedo CORBA supports multithreaded clientsfor nontransactional clients
and transactional clients.

Transaction Propagation (CORBA Only)

For CORBA applications, the OMG CORBA Services Transaction Service specification states
that a client can choose to propagate a transaction context either implicitly or explicitly. Oracle
Tuxedo provides implicit propagation. Explicit propagation is strongly discouraged.

Using CORBA Transactions 2-3

2-4

Objects that are related to transaction contexts that are passed around using explicit transaction

propagation should not be mixed with implicit transaction propagation APIs. It should be noted,
however, that explicit propagation does not place any constraints on when transactional methods
can be processed. There is ho guarantee that all transactional methods will be completed before
the transaction is committed.

Transaction Integrity

Checked transaction behavior provides transaction integrity by guaranteeing that a commi t will
not succeed unless all transactional objects involved in the transaction have completed the
processing of their transactional requests. If implicit transaction propagation is used, the
Transaction Service provides checked transaction behavior that is equivalent to that provided by
the reguest/response interprocess communication models defined by The Open Group. For
CORBA applications, for example, the Transaction Service performs reply checks, commit
checks, and resume checks, as described in the OMG CORBA Services Transaction Service
Soecification.

Unchecked transaction behavior relies completely on the application to provide transaction
integrity. If explicit propagation is used, the Transaction Service does not provide checked
transaction behavior and transaction integrity is not guaranteed.

Transaction Termination

Oracle Tuxedo CORBA allows transactions to be terminated only by the client that created the
transaction.

Note: The client may be a server object that requests the services of another object.

Flat Transactions

Oracle Tuxedo CORBA implements the flat transaction model. Nested transactions are not
supported.

Interoperability Between CORBA Remote Clients and the
Oracle Tuxedo Domain

Oracle Tuxedo CORBA supports remote clientsinvoking methods on server objectsin different
Oracle Tuxedo domainsin the same transaction.

Using CORBA Transactions

Capabilities and Limitations

Remote CORBA clientswith multiple connectionsto the same Oracle Tuxedo domain may make
invocations to server objects on these separate connections within the same transaction.

Intradomain and Interdomain Interoperability

Oracle Tuxedo CORBA supports native clientsinvoking methods on server objectsin the Oracle
Tuxedo domain. In addition, Oracle Tuxedo supports server objects invoking methods on other
objects in the same or in different processes within the same Oracle Tuxedo domain.

In Oracle Tuxedo applications, transactions can span multiple domains as long as factory-based
routing is properly configured across multiple domains. To support transactions across multiple
domains, you must configurethe factory_finder.ini fileto identify factory objectsthat are
used in the current (local) domain but that are resident in a different (remote) domain. For more
information, see Using the Oracle Tuxedo Domains Component.

Network Interoperability

A client application can have only one active Bootstrap object and TransactionCurrent object
within asingle domain. Oracle Tuxedo CORBA does not support exporting or importing
transactions to or from remote Oracle Tuxedo domains.

However, transactions can encompass multiple domainsin aserial fashion. For example, aserver
with atransaction active in Domain A can communicate with a server in Domain B within the
context of that same transaction.

Relationship of the Transaction Service to Transaction
Processing

The Transaction Service relates to various transaction processing servers, interfaces, protocols,
and standards in the following ways:

e Support for Oracle Tuxedo ATMI servers. Servers using the Oracle Tuxedo CORBA
Transaction Service can make invocations on other Oracle Tuxedo
Application-to-Transaction Monitor Interface (ATMI) server processes in the same domain.
In addition, ATMI services can invoke CORBA objects in both transactional and
nontransactional contexts, both within the same domain and across domains via an Oracle
Tuxedo Domains gateway. However, Oracle Tuxedo CORBA does not support remote
clients or native clientsinvoking ATMI servicesin the Oracle Tuxedo domain.

e Support for The Open Group XA interface. The Open Group resource managers are
resource managers that can be involved in adistributed transaction by allowing their

Using CORBA Transactions 2-5

2-6

two-phase commit protocol to be controlled via The Open Group XA interface. Oracle
Tuxedo supports interaction with The Open Group resource managers.

e Support for the OSI TP protocol. Open Systems Interconnect Transaction Processing (OSI
TP) isthe transactional protocol defined by the International Organization for
Standardization (1SO). Oracle Tuxedo CORBA does not support interactions with OS| TP
transactions.

e Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2isa
transactional protocol defined by IBM. Oracle Tuxedo CORBA does not support
interactions with LU 6.2 transactions.

e Support for the ODMG standard. ODMG-93 is a standard defined by the Object Database
Management Group (ODMG) that describes a portabl e interface to access Object Database
Management Systems. Oracle Tuxedo CORBA does not support interactions with ODMG
transactions.

Process Failure

The Transaction Service monitorsthe participantsin atransaction for failures and inactivity. The
Oracle Tuxedo system provides management tools for keeping the application running when
failures occur. Because Oracle Tuxedo CORBA is built upon the Oracle Tuxedo transaction
management system, it inherits the Oracle Tuxedo capabilities for keeping applications running.

General Constraints

The following constraints apply to the Transaction Service:

e |n Oracle Tuxedo CORBA, aclient or a server object cannot invoke methods on an object
that isinfected with (or participating in) another transaction. The method invocation issued
by the client or the server will return an exception.

e For CORBA applications, a server application object using transactions from the Oracle
Tuxedo CORBA Transaction Service library requires the TP Framework functionality. For
more information about the TP Framework, see “ TP Framework” in the CORBA
Programming Reference.

e For CORBA applications, areturn from the ro11back method on the current object is
asynchronous.

As aresult, the objects that were infected by (or participating in) the rolled back
transaction get their states cleared by Oracle Tuxedo a little later. Therefore, no other
client can infect these objects with a different transaction until Oracle Tuxedo clears the

Using CORBA Transactions

Transaction Service in CORBA Applications

states of these objects. This condition exists for avery short amount of time and is
typically not noticeable in a production application. A simple workaround for this race
condition isto try the appropriate operation after a short (typically a 1-second) delay.

e In Oracle Tuxedo CORBA applications, clients may not make one-way method invocations
within the context of atransaction to server objects having the NEVER, OPTIONAL, OF
ALWAYS transaction policies.

No error or exception will be returned to the client because it is a one-way method
invocation. However, the method on the server object will not be executed, and an
appropriate error message will be written to the log. Clients may make one-way method
invocations within the context of a transaction to server objects with the TeNORE
transaction policy. In this case, the method on the server object will be executed, but not in
the context of atransaction. For more information about the transaction policies, see
“Implementation Configuration File (ICF)” in the CORBA Programming Reference.

Transaction Service in CORBA Applications

This topic includes the following sections:

e Getting Initial References to the TransactionCurrent Object Using the Bootstrap Object
e Getting Initial Referencesto the TransactionFactory Object Using INS

e CORBA Transaction Service API

e CORBA Transaction Service APl Extensions

e Notes on Using Transactionsin Oracle Tuxedo CORBA Applications

These sections describe how Oracle Tuxedo implements the OTS, with particular emphasis on
the portion of the CORBA services Object Transaction Service that is described as
implementation-specific. They describe the OTS application programming interface (API) that

you use to begin or terminate transactions, suspend or resume transactions, and get information
about transactions.

Getting Initial References to the TransactionCurrent Object
Using the Bootstrap Object

To use the TransactionCurrent object to access the Transaction Service APl and the extension to
the Transaction Service API as described later in this chapter, an application needs to complete
the following operations:

Using CORBA Transactions 2-1

2-8

1. Create aBootstrap object. For more information about creating a Bootstrap object, see the
“CORBA Bootstrapping Programming Reference” in the CORBA Programming Reference.

2. Invokethe resolve initial reference("TransactionCurrent") method onthe
Bootstrap object. The invocation returns a standard CORBA object pointer. For a description
of this Bootstrap object method, see the CORBA Programming Reference.

3. If an application requires only the Transaction Service APIs, it should issue a
CosTransactionsCurrent::_narrow() (in C++) on the object pointer returned from step
2 above.

If an application requires the Transaction Service APIs with the extensions, it should issue
aTobj: :TransactionCurrent: :_narrow() (in C++) onthe object pointer returned
from step 2 above.

Getting Initial References to the TransactionFactory Object
Using INS

Oracle Tuxedo a so supports the use of the CORBA Interoperable Naming Service (INS) by
third-party clientsto obtain initial transaction object references. INS uses the
ORB: :resolve_initial_references|() operation.

Listing 2-1 shows an example of how aclient application, using INS, gets an object reference to
the TransactionFactory object. For a complete code example, see the client application in the
University Sample.

Listing 2-1 Code Example for a Client Application that Uses INS

// Get the factory finder from the ORB:
CORBA: :Object_var v_fact_finder_oref =

orb->resolve_initial_ references("FactoryFinder") ;

// Narrow the factory finder :
Tobj: :FactoryFinder_var v_fact_finder_ref =

Tobj: :FactoryFinder: :_narrow(v_fact_finder_oref.in());

// Get the TransactionFactory from the FactoryFinder
CORBA: :Object_var v_txn_fac_oref =
v_fact_finder_ref->find_one_factory_ by _id(

"IDL:omg.org/CosTransactions/TransactionFactory:1.0");

Using CORBA Transactions

Transaction Service in CORBA Applications

// Narrow the TransactionFactory object reference
CosTransactions: :TransactionFactory_var v_txn_fac_ref =
CosTransactions: :TransactionFactory: :_narrow (

v_txn_fac_oref.in());

For more information about using the ORB: : resolve_initial_ references () Operation, see
“CORBA Bootstrapping Programming Reference” in the CORBA Programming Reference.

CORBA Transaction Service API

This topic includes the following sections:
e DataTypes

e Exceptions

e Current Interface

e Control Interface

e Transactional Object Interface

These sections describe the CORBA-based components of the cosTransactions modulesthat
Oracle Tuxedo implementsto support the Transaction Service. For moreinformation about these
components, see the OMG CORBA Services Transaction Service Specification, Version 1.1,
May 2000.

Data Types
Listing 2-2 shows the supported data types.

Listing 2-2 Data Types Supported by the Transaction Service

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,

Using CORBA Transactions 2-9

StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack
Y
// This information comes from the OMG Transaction Service
// Specification, Version 1.1, May 2000. Used with permission
// of the OMG.

Exceptions
Listing 2-3 shows the supported exceptionsin IDL code.

Listing 2-3 Exceptions Supported by the Transaction Service

// Heuristic exceptions

exception HeuristicMixed {};

exception HeuristicHazard {};

// Other transaction-specific exceptions
exception SubtransactionsUnavailable {};
exception NoTransaction {};

exception InvalidControl {};

exception Unavailable {};

Table 2-1 describes the exceptions.

Note: Thisinformation comes from the OMG CORBA Services Transaction Service
Soecification, Version 1.1, May 2000. Used with permission of the OMG.

2-10 Using CORBA Transactions

Transaction Service in CORBA Applications

Table 2-1 Exceptions Supported by the Transaction Service

Exception Description

HeuristicMixed A request raises this exception to report that a heuristic
decision was made and that some relevant updates have been
committed and others have been rolled back.

HeuristicHazard A request raises this exception to report that a heuristic
decision was made, that the disposition of al relevant
updatesis not known, and that for those updates whose
disposition is known, either all have been committed or all
have been rolled back. Therefore, the HeuristicMixed
exception takes priority over theHeuristicHazard
exception.

SubtransactionsUnava Thisexceptionisraised for the Current interfacebegin
ilable method if the client already has an associated transaction.

NoTransaction This exception israised for the Current interface
rollback and rollback_only methodsif thereisno
transaction associated with the client application.

InvalidControl Thisexceptionisraised for the Current interface resume
method if the parameter isnot valid in the current execution
environment.

Unavailable This exception israised for the control interface

get_terminator and get_coordinator methodsif
the Control interface cannot provide the requested object.

Current Interface

Thecurrent interface defines methodsthat allow aclient of the Transaction Serviceto explicitly
manage the association between threads and transactions. The current interface aso defines
methods that simplify the use of the Transaction Service for most applications. These methods
can be used to begin and end transactions, to suspend and resume transactions, and to obtain
information about the current transaction.

The cosTransactions module defines the current interface (shown in Listing 2-4).

Using CORBA Transactions 2-11

Listing 2-4 Current Interface IDL

// Current transaction
interface Current : CORBA::Current {
void begin/()
raises (SubtransactionsUnavailable) ;
void commit (in boolean report_heuristics)
raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard
)
void rollback()
raises (NoTransaction) ;
void rollback_only ()
raises (NoTransaction) ;
Status get_status();
string get_transaction_name () ;
void set_timeout (in unsigned long seconds) ;
Control get_control();
Control suspend() ;
vold resume(in Control which)
raises (InvalidControl) ;
Y
// This information comes from the OMG Transaction Service

// Specification, Version 1.1, May 2000. Used with permission
// of the OMG.

Table 2-2 provides a description of the current transaction methods.

Note: Thisinformation was taken from the OMG CORBA Services Transaction Service
Foecification, Version 1.1, May 2000. Used with permission of the OMG.

2-12 Using CORBA Transactions

Transaction Service in CORBA Applications

Table 2-2 Transaction Methods in the Current Object

Method

Description

begin

Creates a new transaction. The transaction context of the
client application ismodified so that the thread is associated
with the new transaction. If the client applicationiscurrently
associated with atransaction, the
SubtransactionsUnavailable exceptionisraised. If
the client application cannot be placed in transaction mode
due to an error while starting the transaction, the standard
system exception INVALID_TRANSACTION israised. If the
call was made in an improper context, the standard system
exception BAD_INV_ORDER israised.

commit

If there is no transaction associated with the client
application, the NoTransaction exception israised.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER israised.

If the system decides to roll back the transaction, the
standard exception TRANSACTION_ROLLEDBACK israised
and the thread’ s transaction context is set to NULL.

A HeuristicMixed exception israised to report that a
heuristic decision was made and that some relevant updates
have been committed and others have been rolled back. A
HeuristicHazard exceptionisraised to report that a
heuristic decision was made, and that the disposition of all
relevant updates is not known; for those updates whose
disposition is known, either all have been committed or al
have been rolled back. The HeuristicMixed exception
takes priority over theHeuristicHazard exception. If a
heuristic exception is raised or the operation completes
normally, the thread’ s transaction exception context is set to
NULL.

If the operation completes normally, the thread's transaction
context isset to NULL.

Using CORBA Transactions

2-13

2-14

Tahle 2-2 Transaction Methods in the Current Object (Continued)

Method

Description

rollback

If there is no transaction associated with the client
application, the NoTransaction exception israised.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER israised.

If the operation completes normally, the thread's transaction
context is set to NULL.

rollback_only

If there is no transaction associated with the client
application, the NoTransaction exception israised.
Otherwise, the transaction associated with the client
application is modified so that the only possible outcomeis
to roll back the transaction.

get_status

If there is no transaction associated with the client
application, the StatusNoTransaction valueis
returned. Otherwise, this method returns the status of the
transaction associated with the client application.

get_transaction_name

If there is no transaction associated with the client
application, an empty string is returned. Otherwise, this
method returns a printabl e string describing the transaction
(specifically, the x1D as specified by The Open Group). The
returned string is intended to support debugging.

Using CORBA Transactions

Transaction Service in CORBA Applications

Tahle 2-2 Transaction Methods in the Current Object (Continued)

Method

Description

set_timeout

This method modifies a state variable associated with the
target object that affects the timeout period associated with
transactionscreated by subsequent invocationsof thebegin
method.

Theinitial transaction timeout valueis 300 seconds. Calling
set_timeout () with an argument value larger than zero
specifies anew timeout value. Calling set_timeout ()
with a zero argument sets the timeout value back to the
default of 300 seconds.

After calling set_timeout (), transactions created by
subsequent invocations of begin are subject to being rolled
back if they do not complete before the specified number of
seconds after their creation.

Note: Theinitial transaction timeout value is 300 seconds.
If atransaction is started via AUTOTRAN instead of
the begin method, then the timeout valueis
determined by the TRANTIME vauein the Oracle
Tuxedo configuration file. For more information,
see Chapter 5, “Administering Transactions.”

get_control

If the client is not associated with atransaction, a NULL
object referenceisreturned. Otherwise, aCcontrol objectis
returned that represents the transaction context currently
associated with the client application. This object may be
given to the resume method to reestablish this context.

Using CORBA Transactions

2-15

2-16

Tahle 2-2 Transaction Methods in the Current Object (Continued)

Method

Description

suspend

If the client application is not associated with a transaction,
aNULL object referenceis returned.

If the associated transaction isin a state such that the only
possible outcome of the transaction is to be rolled back, the
standard system exception TRANSACTION_ROLLEDBACK
israised and the client application becomes associated with
no transaction.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER israised. Thecdler's
state with respect to the transaction is not changed.

Otherwise, an object is returned that represents the
transaction context currently associated with the client
application. The same client can subsequently give this
object to the resume method to reestablish this context. In
addition, the client application becomes associated with no
transaction.

Note: Asdefined in The Common Object Request Broker:
Architecture and Specification, Revision 2.4, the
standard system exception
TRANSACTION_ROLLEDBACK indicates that the
transaction associated with the request has already
been rolled back or has been marked to roll back.
Thus, the requested method either could not be
performed or was not performed because further
computation on behalf of the transaction would be
fruitless.

Using CORBA Transactions

Transaction Service in CORBA Applications

Tahle 2-2 Transaction Methods in the Current Object (Continued)

Method

Description

resume

If the client application is already associated with a
transaction which isin a state such that the only possible
outcome of the transaction is to be rolled back, the standard
system exception TRANSACTION_ROLLEDBACK israised
and the client application becomes associated with no
transaction.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER israised.

If the system is unable to resume the global transaction
because the caller is currently participating in work outside
any global transaction with one or more resource managers,
the standard system exception INVALID_TRANSACTIONIS
raised.

If the parameter isa NULL object reference, the client
application becomes associated with no transaction. If the
parameter isvalid in the current execution environment, the
client application becomes associated with that transaction
(in place of any previous transaction). Otherwise, the
InvalidControl exceptionisraised.

Note: See suspend for adefinition of the standard
system exception TRANSACTION_ROLLEDBACK.

Control Interface

Thecontrol interface allows aprogram to explicitly manage or propagate atransaction context.

An object that supportsthe control interface isimplicitly associated with one specific
transaction.

Listing 2-5 showsthe control interface, which is defined in the cosTransactions module.

Listing 2-5 Control Interface

interface Control {

Terminator get_terminator ()

raises (Unavailable) ;

Coordinator get_coordinator ()

Using CORBA Transactions

2-17

2-18

raises (Unavailable) ;
Y
// This information comes from the OMG Transaction Service
// Specification, Version 1.1, May 2000. Used with permission
// of the OMG.

The control interfaceis used only in conjunction with the suspend and resume methods.

Terminator Interface

The Terminator interface supports operations to commit or roll back atransaction. Typicaly,
these operations are used by the transaction originator. An implementation of the Transaction
Service may restrict the scope in which a Terminator can be used; at a minimum, it can be used
within asingle thread.

Listing 2-6 shows the Terminator interface.

Listing 2-6 Terminator Interface

interface Terminator ({
void commit (in boolean report_heuristics)
raises(
HeuristicMixed,
HeuristicHazard
)
void rollback() ;
Y
// This information was taken from the OMG Transaction Service
// Specification, Version 1.1, May 2000. Used with permission
// of the OMG.

Table 2-3 describes the Terminator interface methods.

Using CORBA Transactions

Transaction Service in CORBA Applications

Table 2-3 Termination Interface Methods

Method

Description

commit

If the transaction has not been marked rollback only, and all of the
participants in the transaction agree to commit, the transaction is
committed and the operation terminates normally. Otherwise, the
transactionisrolled back (asdescribed below for the ro1 1back method)
and the TRANSACTION_ROLLEDBACK standard exception is raised.

If thereport_heuristics parameter istrue, the Transaction Service
will report inconsistent or possibly inconsistent outcomes using the
HeuristicMixed and HeuristicHazard exceptions. A
Transaction Service implementation may optionally use the CORBA
Notification Service to report heuristic decisions.

The commi t operation may roll back the transaction if there are
subtransactions of the transaction that have not themselves been
committed or rolled back or if there are existing or potential activities
associated with the transaction that have not completed. The nature and
extent of such error checking isimplementation-dependent. When a
top-level transaction is committed, all changes to recoverable objects
made in the scope of this transaction are made permanent and visible to
other transactions or clients. When a subtransaction is committed, the
changes are made visible to other related transactions as appropriate to
the degree of isolation enforced by the resources.

rollback

Thetransaction isrolled back.

When atransaction isrolled back, all changes to recoverable objects
made in the scope of this transaction (including changes made by
descendant transactions) are rolled back. All resources locked by the
transaction are made availabl e to other transactions as appropriate to the
degree of isolation enforced by the resources.

TransactionalObject Interface

In Oracle Tuxedo release 8.0 and later, the cosTransactions: : TransactionalObject iSNO
longer used by an object to indicate that it is transactional. If an interface inherits from a
Transactional Object and the |CF indi cates adifferent transaction policy, awarning isissued. The
Transactional Object is not used for any other purpose. For details on transaction policies that
need to be set to infect objects with transactions, see “Implementation Configuration File (ICF)”
in the CORBA Programming Reference.

Using CORBA Transactions 2-19

2-20

The cosTransactions module definesthe Transactionalobject interface (shownin
Listing 2-7). This interface defines no methods; it is simply a marker.

Listing 2-7 TransactionalObject Interface

interface TransactionalObject {

}:

// This information was taken from the OMG Transaction Service
// Specification, Version 1.1, May 2000. Used with permission
// of the OMG.

TransactionFactory Interface

The TransactionFactory interface is provided to allow the transaction originator to begin a
transaction. Thisinterface defines two operations, create and recreate, which create anew
representation of atop-level transaction. A TransactionFactory is located using the
FactoryFinder interface of thelife cycle service and not by the
resolve_initial_reference () operation onthe ORB interface.

Listing 2-8 shows the TransactionFactory interface.

Note: Thecontrol recreate method of the TransactionFactory interfaceisnot
supported.

Listing 2-8 TransactionFactory Interface

interface TransactionFactory {

Control create(in unsigned long time_out) ;

Control recreate(in PropagationContext ctx);
Y
// This information was taken from the OMG Transaction Service
// Specification, Version 1.1, May 2000. Used with permission
// of the OMG.

Table 2-4 describes the TransactionFactory interface methods.

Using CORBA Transactions

Transaction Service in CORBA Applications

Table 2-4 TransactionFactory Interface Methods

Method Description

create A new top-level transactioniscreated and aCcontrol object isreturned.
Thecontrol object can be used to manage or to control participationin
the new transaction. An implementation of the Transaction Service may
restrict the ability for the Control object to be transmitted to or used in
other execution environments; at aminimum, it can be used by the client
application.

If the parameter has a nonzero value n, then the new transaction will be
subject to being rolled back if it does not complete beforen seconds have
elapsed. If the parameter is zero, then no application specified timeout is
established.

recreate Not supported.

Other CORBAservices Object Transaction Service Interfaces

All other CORBA services Object Transaction Service interfaces are not supported. Notethat the
current interface described earlier is supported only if it has been obtained from the Bootstrap
object. Thecontrol interface described earlier issupported only if it has been obtained using the
get_control and the suspend methods on the Current object.

CORBA Transaction Service APl Extensions

This topic describes specific extensions to the CORBA services Transaction Service API
described earlier. The APIs in this topic enable an application to open or close an Open Group
resource manager.

The following APIshelp facilitate participation of resource managersin adistributed transaction
by allowing their two-phase commit protocol to be controlled via The Open Group XA interface.

The following definitions and interfaces are defined in the Tob3 module.

Exception
The following exception is supported:

exception RMfailed {};

Using CORBA Transactions 2-21

2-22

A request raises this exception to report that an attempt to open or close a resource manager
failed.

TransactionCurrent Interface

Thisinterface supports al the methods of the current interfacein the cosTransactions
module and is described in “ C++ Bootstrap Object Programming Reference” in the CORBA
Programming Reference. Additionally, this interface supports APIs to open and close the
resource manager.

Listing 2-9 showsthe Transactioncurrent interface, which is defined in the Tob3 module.

Listing 2-9 TransactionCurrent Interface

Interface TransactionCurrent: CosTransactions::Current {
void open_xa_rm/()
raises (RMfailed) ;
void close_xa_rm()
raises (Rmfailed) ;

Table 2-5 describes APIs that are specific to the resource manager. For more information about
these APIs, see the CORBA Programming Reference.

Using CORBA Transactions

Transaction Service in CORBA Applications

Table 2-5 Resource Manager APIs for the Current Interface

Method Description

open_xa_rm This method opens The Open Group resource manager to which this
processislinked. A RMfailed exceptionisraised if thereisafailure
while opening the resource manager.

Any attemptsto invoke thismethod by remote clients or the native clients
raises the standard system exception NO_ IMPL.EMENT.

close_xa_rm Thismethod closes The Open Group resource manager to which this
processislinked. An RMfailed exceptionisraised if thereisafailure
while closing the resource manager. A BAD_INV_ORDER Standard
system exception israised if the function was called in an improper
context (for example, the caller isin transaction mode).

Any attempts by the remote clients or the native clients to invoke this
method raises the standard system exception NO_IMPLEMENT.

Notes on Using Transactions in Oracle Tuxedo CORBA
Applications

Consider the following guidelines when integrating transactions into your Oracle Tuxedo
CORBA client/server applications:

e Nested transactions are not permitted in the Oracle Tuxedo system. You cannot start a new
transaction if an existing transaction is already active. (You may start a new transaction if
you first suspend the existing one; however, the object that suspends the transaction is the
only object that can subsequently resume the transaction.)

e The object that starts atransaction is the only entity that can end the transaction. (In a strict
sense, the object can be the client application, the TP Framework, or an object managed by
the server application.) An object that is invoked within the scope of atransaction may
suspend and resume the transaction (and while the transaction is suspended, the object can
start and end other transactions). However, you cannot end a transaction in an object unless
you began the transaction there.

e Oracle Tuxedo does not support concurrent transactions. Objects can be involved with only
one transaction at onetime. An object isinvolved in atransaction for the duration of the
entire transaction, and is available to be involved in a different transaction only after the
current transaction is completed.

Using CORBA Transactions 2-23

e Oracle Tuxedo does not queue requests to objects that are currently involved in a
transaction. If anontransactional client application attempts to invoke an operation on an
object that is currently in atransaction, the client application receives the following error
message;

C++
CORBA: : OBJ_ADAPTER

If aclient that isin atransaction attempts to invoke an operation on an object that is
currently in a different transaction, the client application receives the following error
message:

C++

CORBA: : INVALID_TRANSACTION

e For transaction-bound objects, consider doing all state handling in the
Tobj_ServantBase: :deactivate_object () operation. This makesit easier for the
object to handle its state properly, because the outcome of the transaction is known at the
timethat deactivate_object () isinvoked

e For method-bound objects that have several operations, but only afew that affect the
object’s durabl e state, consider doing the following:

— Assign the optional transaction policy.

— Scope any write operations within a transaction, by making invocations on the
TransactionCurrent object.

If the object isinvoked outside a transaction, the object does not incur the overhead of
scoping atransaction for reading data. This way, regardless of whether the object is
invoked within atransaction, all the object’s write operations are handled transactionally.

e Transaction rollbacks are asynchronous. Therefore, it is possible for an object to be
invoked while its transactional context is still active. If you try to invoke such an object,
you receive an exception.

o |If an object with the a1ways transaction policy isinvolved in atransaction that is started
by the Oracle Tuxedo system, and not the client application, note the following:

— If the server application marks the transaction for rollback only and the server throws a
CORBA exception, the client application receives the CORBA exception.

— If the server application marks the transaction for rollback only and the server does not
throw a CORBA exception, the client application receives the oBJ_ADAPTER exception.
In this case, the Oracle Tuxedo system automatically rolls back the transaction.

2-24 Using CORBA Transactions

UserTransaction API

However, the client application is completely unaware that a transaction has been
scoped in the Oracle Tuxedo domain.

o If the client application initiates a transaction, and the server application marks the
transaction for arollback, one of the following occurs:

— If the server throws a CORBA exception, the client application receives a CORBA
exception.

— If the server does not throw a CORBA exception, the client application receives the
TRANSACTION_ROLLEDBACK €xception.

UserTransaction API

This topic includes the following sections:

e UserTransaction Methods

e Exceptions Thrown by UserTransaction Methods

UserTransaction Methods

Table 2-6 describes the methods in the UserTransaction object.

Table 2-6 Methods in the UserTransaction Object

Method Name Description

begin Starts atransaction on the current thread.

commit Commits the transaction associated with the current
thread.

Using CORBA Transactions

2-25

Tahle 2-6 Methods in the UserTransaction Object (Continued)

Method Name Description

getStatus Returns the transaction status, or
STATUS_NO_TRANSACTION if no transaction is
associated with the current thread.
One of the following values:
e STATUS_ACTIVE
e STATUS_COMMITTED
e STATUS_COMMITTING
e STATUS_MARKED_ROLLBACK
e STATUS_NO_TRANSACTION
e STATUS_PREPARED
e STATUS_PREPARING
e STATUS_ROLLEDBACK
e STATUS_ROLLING_BACK
e STATUS_UNKNOWN

rollback Rolls back the transaction associated with the current
thread.

setRollbackOnly Marks the transaction associated with the current thread
so that the only possible outcome of the transaction isto
roll it back.

setTransactionTimeout Specifiesthetimeout value for the transactions started by
the current thread with the begin method. If an
application has not called the begin method, then the
Transaction Service uses adefault value for the
transaction timeout.

2-26 Using CORBA Transactions

UserTransaction API

Exceptions Thrown by UserTransaction Methods

Table 2-7 describes exceptions thrown by methods of the UserTransaction object.

Table 2-7 Exceptions Thrown by UserTransaction Methods

Exception

Description

HeuristicMixedException

Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
committed while others have been rolled back.

HeuristicRollbackException

Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
rolled back.

NotSupportedException

Thrown when the requested operation is not
supported (such as a nested transaction).

RollbackException

Thrown when the transaction has been marked for
rollback only or the transaction has been rolled
back instead of committed.

IllegalStateException

Thrownif the current thread isnot associated with
atransaction.

SecurityException

Thrown to indicate that the thread is not allowed
to commit the transaction.

SystemException

Thrown by the transaction manager to indicate
that it has encountered an unexpected error
condition that preventsfuture transaction services
from proceeding.

Using CORBA Transactions

2-21

2-28 Using CORBA Transactions

CHAPTERa

Transactions in CORBA Server
Applications

Thistopic includes the following sections:
e Integrating Transactionsin an Oracle Tuxedo Client and Server Application
e Transactions and Object State Management

e User-defined Exceptions

These sections describe how to integrate transactions into an Oracle Tuxedo server application.
Before you begin, you should read Chapter 1, “Introducing Transactions.”

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using CORBA Transactions 3-1

Integrating Transactions in an Oracle Tuxedo Client and
Server Application

This topic includes the following sections:

3-2

Transaction Support in CORBA Applications

Making an Object Automatically Transactional

Enabling an Object to Participate in a Transaction

Preventing an Object from Being Invoked While a Transaction |'s Scoped
Excluding an Object from an Ongoing Transaction

Assigning Policies

Using an XA Resource Manager

Opening an XA Resource Manager

Closing an XA Resource Manager

Transaction Support in CORBA Applications

Oracle Tuxedo supports transactions in the following ways:

The client or the server application can begin and end transactions explicitly by using calls
on the TransactionCurrent object. For details about the TransactionCurrent object, see
Chapter 4, “Transactionsin CORBA Client Applications.”

You can assign transactional policiesto an object’s interface so that when the object is
invoked, the Oracle Tuxedo system can start a transaction automatically for that object, if a
transaction has not aready been started, and commit or roll back the transaction when the
method invocation is complete. You use transactional policies on objectsin conjunction
with an XA resource manager and database when you want to delegate al the transaction
commit and rollback responsibilities to that resource manager.

Objectsinvolved in atransaction can force a transaction to be rolled back. That is, after an
object has been invoked within the scope of atransaction, the object can invoke
rollback_only () on the TransactionCurrent object to mark the transaction for rollback
only. This prevents the current transaction from being committed. An object may need to
mark atransaction for rollback if an entity, typically a database, is otherwise at risk of
being updated with corrupt or inaccurate data.

Using CORBA Transactions

Integrating Transactions in an Oracle Tuxedo Client and Server Application

e Objectsinvolved in atransaction can be kept in memory from the time they are first
invoked until the moment when the transaction is ready to be committed or rolled back. In
the case of atransaction that is about to be committed, these objects are polled by the
Oracle Tuxedo system immediately before the resource managers prepare to commit the
transaction. In this sense, polling meansinvoking the object’s
Tobj_ServantBase: :deactivate_object () operation and passing areason value.

When an object is polled, the object may veto the current transaction by invoking
rollback_only () onthe TransactionCurrent object. In addition, if the current transaction
isto be rolled back, objects have an opportunity to skip any writes to a database. If no
object vetoes the current transaction, the transaction is committed.

The following sections explain how you can use object activation policies and transaction
policiesto determine the transactional behavior you want in your objects. Note that these policies
apply to an interface and, therefore, to all operations on all objects implementing that interface.

Note: If aserver application manages an object that you want to be able to participate in a
transaction, the Server object for that application must invoke the Tp: : open_xa_rm ()
andTP: :close_xa_rm() Operations. For moreinformation about database connections,
see “Opening an XA Resource Manager” on page 3-7.

Making an Object Automatically Transactional

The Oracle Tuxedo system providesthe a1ways transactional policy, which you can defineon an
object’ sinterface to have the Oracle Tuxedo system start a transaction automatically when that
object isinvoked and atransaction has not already been scoped. When an invocation on that
object is completed, the Oracle Tuxedo system commits or rolls back the transaction
automatically. Neither the server application, nor the object implementation, needs to invoke the
TransactionCurrent object in this situation; the Oracle Tuxedo system automatically invokes the
TransactionCurrent object on behalf of the server application.

Assign the a1ways transactional policy to an object’ sinterface when:

e The object writes to a database and you want all the database commit or rollback
responsibilities delegated to an XA resource manager whenever this object is invoked.

e You want to give the client application the opportunity to include the object in alarger
transaction that encompasses invocations on multiple objects, and the invocations must all
succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies to that
object’ sinterface in the Implementation Configuration File:

Using CORBA Transactions 3-3

3-4

Activation Policies Transaction Policy

e Dprocess always
+ method

e transaction

Note: Database cursors cannot span transactions. However, in C++, the
CourseSynopsisEnumerator object in the Oracle Tuxedo University sample applications
uses a database cursor to find matching course synopses from the University database.
Because database cursors cannot span transactions, the activate_object () operation
on the CourseSynopsisEnumerator object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and isthus not visibleto the
CourseSynopsisEnumerator object.

Enabling an Object to Participate in a Transaction

If you want an object to be able to be invoked within the scope of atransaction, you can assign
the optional transaction policiesto that object’ sinterface. The optional transaction policy
may be appropriate for an object that does not perform any database write operations, but that you
want to have the ahility to be invoked during a transaction.

Y ou can use thefollowing policies, when they are specified in the Implementation Configuration
File for that object’ sinterface, to make an object optionally transactional:

Activation Policies Transaction Policy
e Dprocess optional
« method

e transaction

When the transaction policy is optional, if the AuTOTRAN parameter is enabled in the
application’ s usBcoNFIG file, the implementation is transactional . Servers containing
transactional objects must be configured within a group associated with an X A-compliant
resource manager.

If the object does perform database write operations, and you want the object to be able to
participatein atransaction, assigning the always transactional policy isgenerally abetter choice.
However, if you prefer, you can use the optional policy and encapsulate any write operations

Using CORBA Transactions

Integrating Transactions in an Oracle Tuxedo Client and Server Application

within invocations on the TransactionCurrent object. That is, within your operations that write
data, scope atransaction around the write statements by invoking the TransactionCurrent object
to, respectively, begin and commit or roll back the transaction, if the object is not already scoped
within atransaction. Thisensuresthat any database write operations are handled transactionally.
This also introduces a performance efficiency: if the object is not invoked within the scope of a
transaction, all the database read operations are nontransactional, and, therefore, more
streamlined.

Note: When choosing the transaction policies to assign to your objects, make sure you are
familiar with the requirements of the X A resource manager you are using. For example,
some XA resource managers (such as the Oracle 7 Transaction Manager Server) require
that any object participating in a transaction scope their database read operations, in
addition to write operations, within a transaction (you can still scope your own
transactions, however). Other resource managers, such as Oracle8i, do not require a
transaction context for read and write operations. If an application attempts awrite
operation without atransaction context, Oracle8i will start alocal transaction implicitly,
in which case the application needs to commit the local transaction explicitly.

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from atransaction. If such an object is
invoked during atransaction, the object returns an exception, which may cause the transaction to
be rolled back. Oracle Tuxedo CORBA provides the never transaction policy, which you can
assign to an object’ sinterface to specifically prevent that object from being invoked within the
course of atransaction, even if the current transaction is suspended.

Thistransaction policy is appropriate for objects that write durable state to disk that cannot be
rolled back, such asfor an object that writes datato adisk that is not managed by an XA resource
manager. Having this capability in your client/server applicationiscrucia if theclient application
does not or cannot know if some of itsinvocations are causing a transaction to be scoped.
Therefore, if atransaction is scoped, and an object with thispolicy isinvoked, the transaction can
be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the following
policies to that object’sinterface in the Implementation Configuration File:

Using CORBA Transactions 3-5

3-6

Activation Policies Transaction Policy

e Dprocess never
+ method

Excluding an Object from an Ongoing Transaction

In some cases, it may be appropriate to permit an object to be invoked during the course of a
transaction but also keep that object from being a part of the transaction. If such an object is
invoked during atransaction, the transaction is automatically suspended. After the invocation on
the object is completed, the transaction is automatically resumed. Oracle Tuxedo CORBA
provides the ignore transaction policy for this purpose.

The ignore transaction policy may be appropriate for an object such as afactory that typically
does not write data to disk. By excluding the factory from the transaction, the factory can be
available to other client invocations during the course of atransaction. In addition, using this
policy canintroduce an efficiency into your server application because it minimizesthe overhead
of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following policiesto
that object’ sinterface in the Implementation Configuration File:

Activation Policies Transaction Policy
e Dprocess ignore
« method

Assigning Policies

For information about how to create an Implementation Configuration File and specify policies
on objects, see “ Step 4: Define the in-memory behavior of objects’ in“ Steps for Creating an
Oracle Tuxedo CORBA Server Application” in the CORBA Programming Reference.

Using an XA Resource Manager

The Transaction Manager Server (TMS) handles object state data automatically. For an example,
the University sample C++ application in the

Using CORBA Transactions

Integrating Transactions in an Oracle Tuxedo Client and Server Application

drive:\TUX8\samples\corba\university\transactions di rectory uses the Oracle TMS
as an example of arelational database management service (RDBMS).

Using any XA resource manager imposes specific requirements on how different objects
managed by the server application may read and write data to that database, including the
following:

e Some XA resource managers, such as Oracle?, require that all database operations be
scoped within atransaction. This meansthat all method invocations on the DBaccess
object need to be scoped within atransaction because this object reads from a database.
The transaction can be started either by the client or by the Oracle Tuxedo system.

Other XA resource managers, such as Oracle8i, do not require atransaction context for
read and write operations. If an application attempts a write operation without a transaction
context, Oracle8i will start alocal transaction implicitly, in which case the application
needs to commit the local transaction explicitly.

e When atransaction is committed or rolled back, the XA resource manager automatically
handles the durable state implied by the commit or rollback. That is, if the transaction is
committed, the X A resource manager ensures that all database updates are made
permanent. Likewise, if thereisarollback, the XA resource manager automatically
restores the database to its state prior to the beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of arollback much simpler.
Transactional objects can aways delegate the commit and rollback responsibilities to the
XA resource manager, which greatly simplifies the task of implementing a server
application.

Opening an XA Resource Manager

If an object’ sinterface hasthe always 0Or optional transaction policy, you must invoke the
TP: :open_xa_rm() operationinthe server::initialize() operation inthe Server object.
The resource manager is opened using the information provided in the opENTNFO parameter,
whichisin the crours section of the uBeconF1G file. Note that the default version of the
Server::initialize () operation automatically opens the resource manager.

If you have an object that does not write data to disk and that participates in a transaction—the
object typically has the optional transaction policy—you still need to include an invocation to
theTp: :open_xa_rm() operation. In that invocation, specify the NULL resource manager.

Using CORBA Transactions 3-7

Closing an XA Resource Manager

If your Server object’sserver: :initialize () Operation opensan XA resource manager, you
must include the following invocation in the server: : release () operation:;

TP::close_xa_rm() ;

Transactions and Object State Management

3-8

This topic includes the following sections:
e Delegating Object State Management to an XA Resource Manager
e Waiting Until Transaction Work |s Complete Before Writing to the Database

If you need transactions in your Oracle Tuxedo CORBA client and server application, you can
integrate transactions with object state management in afew different ways. In general, Oracle
Tuxedo CORBA can automatically scope the transaction for the duration of an operation
invocation without requiring you to make any changes to your application’slogic or the way in
which the object writes durable state to disk.

Delegating Object State Management to an XA Resource
Manager

Using an XA resource manager, such as Oracle, generally simplifies the design problems
associated with handling object state datain the event of arollback. (The Oracle resource
manager is used in the Oracle Tuxedo CORBA University sample C++ applications).
Transactional objects can always delegate the commit and rollback responsibilities to the XA
resource manager, which greatly simplifies the task of implementing a server application. This
means that process- or method-bound objects involved in a transaction can write to a database
during transactions, and can depend on the resource manager to undo any data written to the
database in the event of atransaction rollback.

Waiting Until Transaction Work Is Complete Before Writing
to the Database

The transaction activation policy isagood choice for objects that maintain state in memory
that you do not want written, or that cannot be written, to disk until the transaction work is
complete. When you assign the transaction activation policy to an object, the object:

Using CORBA Transactions

Transactions and Object State Management

e |sbrought into memory when it is first invoked within the scope of atransaction.

e Remainsin memory until the transaction is either committed or rolled back.

When the transaction work is complete, Oracle Tuxedo CORBA invokes each transaction-bound
object’'STobj_ServantBase: :deactivate_object () Operation passing a reason code that
can be either DR_TRANS_COMMITTING Of DR_TRANS_ABORTED. If thevariableis
DR_TRANS_COMMITTING, the object can invoke its database write operations. If the variableis
DR_TRANS_ABORTED, the object skipsits write operations.

When to Assign the Transaction Activation Policy

Assigning the transaction activation policy to an object may be appropriate in the following
situations:

e You want the object to write its persistent state to disk at the time that the transaction work
iscomplete.

This introduces a performance efficiency because it reduces the number of database write
operations that may need to be rolled back.

e You want to provide the object with the ability to veto a transaction that is about to be
committed.

If Oracle Tuxedo CORBA passes the reason bR_TRANS_COMMITTING, the object can, if
necessary, invoke rollback_only () on the TransactionCurrent object. Note that if you do
make an invocation to rollback_only () from within the

Tobj_ServantBase: :deactivate_object () operation, then deactivate_object () iS
not invoked again.

e You want to provide the object with the ability to perform batch updates.

e You have an object that islikely to be invoked multiple times during the course of asingle
transaction, and you want to avoid the overhead of continually activating and deactivating
the object during that transaction.

Transaction Policies to Use with the Transaction Activation Policy

To give an object the ability to wait until the transaction is committing before writing to a
database, assign the following policies to that object’sinterface in the Implementation
Configuration File:

Using CORBA Transactions 3-9

Activation Policy Transaction Policy

transaction always Or optional

Note: Transaction-bound objects cannot start atransaction or invoke other objects from inside
the Tobj_servantBase: :deactivate_object () operation. The only valid
invocations transaction-bound objects can make inside deactivate_object () are
write operations to the database.

Also, if you have an object that is involved in atransaction, the Server object that
manages that object must include invocations to open and close the XA resource
manager, even if the object does not write any data to disk. (If you have atransactional
object that does not write data to disk, you specify the NULL resource manager.) For
more information about opening and closing an XA resource manager, see “ Opening an
XA Resource Manager” on page 3-7 and “ Closing an XA Resource Manager” on

page 3-8.

User-defined Exceptions

3-10

This topic includes the following sections:
e About User-defined Exceptions
e Defining the Exception
e Throwing the Exception

About User-defined Exceptions

Including a user-defined exception in an Oracle Tuxedo CORBA client/server application
involves the following steps:

1. Inyour OMG IDL file, define the exception and specify the operations that can useiit.
2. Intheimplementation file, include code that throws the exception.

3. Intheclient application source file, include code that catches and handles the exception.

For example, the Transactions sample C++ application includes an instance of a user-defined
exception, TooManyCredits. Thisexception isthrown by the server application when the client
application tries to register a student for a course, and the student has exceeded the maximum

Using CORBA Transactions

User-defined Exceptions

number of courses for which he or she can register. When the client application catches this
exception, the client application rolls back the transaction that registers a student for a course.
This section explains how you can define and implement user-defined exceptionsin your Oracle
Tuxedo CORBA client/server application, using the TooManyCredits exception asan example.

Defining the Exception

Inthe OMG IDL filefor your client/server application:

1. Define the exception and define the data sent with the exception. For example, the
TooManyCredits exception is defined to pass a short integer representing the maximum
number of credits for which a student can register. Therefore, the definition for the
TooManyCredits exception contains the following OMG IDL statements:

exception TooManyCredits

{

unsigned short maximum_credits;

i

2. Inthe definition of the operations that throw the exception, include the exception. The
following example shows the OMG IDL statementsfor the register_for_courses ()
operation on the Registrar interface:

NotRegisteredList register_ for_courses (

in StudentId student,

in CourseNumberList courses
) raises (

TooManyCredits

)

Throwing the Exception

In the implementation of the operation that uses the exception, write the code that throws the
exception, asin the following C++ example.

if (...) |
UniversityZ: :TooManyCredits e;
e.maximum_credits = 18;
throw e;

Using CORBA Transactions 3-11

How the Transactions University Sample Application
Works

This topic includes the following sections:
e About the Transactions University Sample Application
e Transactional Model Used by the Transactions University Sample Application
e Object State Considerations for the University Server Application

e Configuration Requirements for the Transactions Sample Application

About the Transactions University Sample Application

To implement the student registration process, the Transactions sample application does the
following:

e The client application obtains a reference to the TransactionCurrent object from the
Bootstrap object.

e When the student submits the list of courses for which he or she wants to register, the
client application:;

a Beginsatransaction by invoking the current: :begin () operation on the
TransactionCurrent object.

b. Invokesthe register_for_courses () operation on the Registrar object, passing alist
of courses.

e Theregister_for_courses () operation on the Registrar object processes the
registration request by executing aloop that does the following iteratively for each course
inthelist:

a. Checksto see how many credits the student is already registered for.

b. Addsthe courseto thelist of coursesfor which the student is registered.

The Registrar object checks for the following potentia problems, which prevent the
transaction from being committed:

— The student is aready registered for the course.

— A coursein thelist does not exist.

3-12 Using CORBA Transactions

How the Transactions University Sample Application Works

— The student exceeds the maximum credits all owed.

o Asdefined in the application'sOMG IDL, the register_for_ courses () operation
returns a parameter to the client application, NotRegisteredrist, which contains alist of
the courses for which the registration failed.

If the NotRegisteredList valueisempty, the client application commits the transaction.

If the NotRegisteredList value contains any courses, the client application queriesthe
student to indicate whether he or she wants to complete the registration process for the
courses for which the registration succeeded. If the user chooses to complete the
registration, the client application commits the transaction. If the user chooses to cancel the
registration, the client application rolls back the transaction.

o If theregistration for a course has failed because the student exceeds the maximum number
of credits he or she can take, the Registrar object returns a TooManyCredits exception to
the client application, and the client application rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application

The basic design rationale for the Transactions sample application is to handle course
registrations in groups, as opposed to one at atime. This design helpsto minimize the number of
remote invocations on the Registrar object.

In implementing this design, the Transactions sampl e application shows one model of the use of
transactions, which were described in “ Integrating Transactions in an Oracle Tuxedo Client and
Server Application” on page 3-2. The model is as follows:

e The client begins atransaction by invoking the begin () operation on the
TransactionCurrent object, followed by making an invocation to the
register_for_courses () operation on the Registrar object.

The Registrar object registers the student for the courses for which it can, and then returns
alist of courses for which the registration process was unsuccessful. The client application
can choose to commit the transaction or roll it back. The transaction encapsulates this
conversation between the client and the server application.

e Theregister_for_courses () operation performs multiple checks of the University
database. If any one of those checksfail, the transaction can be rolled back.

Using CORBA Transactions 3-13

3-14

Object State Considerations for the University Server
Application

Because the Transactions University sample application is transactional, the University server
application generally needs to consider the implications on object state, particularly in the event
of arollback. In caseswherethereisarollback, the server application must ensurethat all affected
objects have their durable state restored to the proper state.

Because the Registrar object isbeing used for database transactions, agood design choicefor this
object isto makeit transactional (assign the always transaction policy to this object’ sinterface).
If atransaction has not already been scoped when this object isinvoked, the Oracle Tuxedo
system will start atransaction automatically.

By making the Registrar object automatically transactional, all database write operations
performed by this object will always be done within the scope of a transaction, regardless of
whether the client application starts one. Since the server application uses an XA resource
manager, and since the object is guaranteed to be in a transaction when the object writesto a
database, the object does not have any rollback or commit responsibilities because the XA
resource manager takes responsibility for these database operations on behalf of the object.

The RegistrarFactory object, however, can be excluded from transactions because this object
does not manage datathat is used during the course of atransaction. By excluding thisobject from
transactions, you minimize the processing overhead implied by transactions.

Object Policies Defined for the Registrar Object

To make the Registrar abject transactional, the I CF file specifies the a1ways transaction policy
for the registrar interface. Therefore, in the Transaction sample application, the ICF file
specifies the following object policies for the Registrar interface:

Activation Policy Transaction Policy

process always

Object Policies Defined for the RegistrarFactory Object

To exclude the RegistrarFactory object from transactions, the | CF file specifies the ignore
transaction policy for theregistrar interface. Therefore, in the Transaction sample application,
the I CF file specifies the following object policies for the RegistrarFactory interface:

Using CORBA Transactions

How the Transactions University Sample Application Works

Activation Policy Transaction Policy

process ignore

Using an XA Resource Manager in the Transactions Sample Application

The Transactions sampl e application uses the Oracle Transaction Manager Server (TMS), which
handles object state data automatically. Using any XA resource manager imposes specific
requirements on how different objects managed by the server application may read and write data
to that database, including the following:

e Some XA resource managers, such as Oracle7, require that al database operations be
scoped within atransaction. This means that the CourseSynopsisEnumerator object needs
to be scoped within a transaction because this object reads from a database.

e When atransaction is committed or rolled back, the XA resource manager automatically
handles the durable state implied by the commit or rollback. That is, if the transaction is
committed, the X A resource manager ensures that all database updates are made
permanent. Likewise, if thereisarollback, the XA resource manager automatically
restores the database to its state prior to the beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of arollback much simpler.
Transactional objects can always del egate the commit and rollback responsibilities to the
XA resource manager, which greatly simplifies the task of implementing a server
application.

Configuration Requirements for the Transactions Sample
Application

The University sample applications use an Oracle Transaction Manager Server (TMS). To use
the Oracle database, you must include specific Oracle-provided filesin the server application
build process. For more information about building, configuring, and running the Transactions
sample application, see The Transaction Sample Application in the Oracle Tuxedo online
documentation. For more information about the configurabl e settings in the uBsconF1G file, see
“Modifying the UBBCONFIG Fileto Accommodate Transactions’ on page 5-2.

Using CORBA Transactions 3-15

3-16 Using CORBA Transactions

CHAPTERa

Transactions in CORBA Client
Applications

Thistopic includes the following sections:
e Overview of Oracle Tuxedo CORBA Transactions
e Summary of the Development Process for Transactions
e Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object

e JStep 2: Using the TransactionCurrent Methods

This topic describes how to use transactions in CORBA C++ client applications for the Oracle
Tuxedo CORBA software. Before you begin, you should read Chapter 1, “Introducing
Transactions.”

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

For an example of how transactions are implemented in working client applications, see the The
Transaction Sample Application in the Oracle Tuxedo online documentation. For an overview of
the TransactionCurrent object, see “Client Application Development Concepts” in Creating
CORBA Client Applications.

Using CORBA Transactions 4-1

Overview of Oracle Tuxedo CORBA Transactions

Client applications use transaction processing to ensure that dataremains correct, consistent, and
persistent. The transactionsin the Oracle Tuxedo software allow client applications to begin and
terminate transactions and to get the status of transactions. The Oracle Tuxedo software uses
transactions as defined in the CORBA services Object Transaction Service, with extensions for
ease of use.

Transactions are defined on interfaces. The application designer decides which interfaces within
an Oracle Tuxedo client/server application will handle transactions. Transaction policies are
defined in the Implementation Configuration File (ICF) for server applications. Generally, the
ICF filefor the available interfaces is provided to the client programmer by the application
designer.

Summary of the Development Process for Transactions

To add transactions to a client application, complete the following steps:
e Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object

e JStep 2: Using the TransactionCurrent Methods

Therest of this topic describes these steps using portions of the client applicationsin the
Transactions University sample application. For information about the Transactions University
sample application, see The Transactions Sample Application in the Oracle Tuxedo online
documentation.

The Transactions University sample application is located in the following directory on the
Oracle Tuxedo software kit:

e For Microsoft Windows systems:
drive:\tuxdir\samples\corba\university\transactions

e For UNIX systems:

drive:/tuxdir/samples/corba/university/transactions

Step 1: Using the Bootstrap Object to Obtain the
TransactionCurrent Object

If you are using the Oracle Tuxedo CORBA client software, you should use the Bootstrap object
to obtain an object reference to the TransactionCurrent object for the specified Oracle Tuxedo

4-2 Using CORBA Transactions

JStep 2: Using the TransactionCurrent Methods

domain. For more information about the TransactionCurrent object, see “ Client Application
Development Concepts’ in Creating CORBA Client Applications.

Note: If you areusing athird-party client ORB, you should the CORBA Interoperable Naming
Service (INS) CORBA: :ORB: :resolve_initial references Operation to obtain an
object referenceto the FactoryFinder object for the specified Oracle Tuxedo domain. For
information on how to use INS to get initial object references for transaction clients, see
“CORBA Bootstrapping Programming Reference” in the CORBA Programming
Reference.

The following C++ examplesillustrate how the Bootstrap object is used to return the
TransactionCurrent object.

C++ Example

CORBA: :Object_var var_transaction_current_oref =
Bootstrap.resolve_initial_references (“TransactionCurrent”) ;

CosTransactions: :Current_var transaction_current_oref=
CosTransactions: :Current: : _narrow (

var_transaction_current_ _oref.in());

JStep 2: Using the TransactionCurrent Methods

The TransactionCurrent object has methods that allow a client application to manage
transactions. These methods can be used to begin and end transactions and to obtain information
about the current transaction.

Table 4-1 describes the methods in the TransactionCurrent object.

Table 4-1 Methods in the TransactionCurrent Object

Method Description

begin Creates a new transaction. Future operations take place
within the scope of this transaction. When a client
application begins a transaction, the default transaction
timeout is300 seconds. Y ou can changethisdefault, using
the set_timeout method.

commit Ends the transaction successfully. Indicates that all
operations on this client application have completed
successfully.

Using CORBA Transactions 4-3

44

Table 4-1 Methods in the TransactionCurrent Object (Continued)

Method

Description

rollback

Forces the transaction to roll back.

rollback_only

Marksthe transaction so that the only possible actionisto
roll back. Generally, this method is used only in server
applications.

suspend Suspends participation in the current transaction. This
method returns an object that i dentifiesthe transaction and
alows the client application to resume the transaction
later.

resume Resumes participation in the specified transaction.

get_status

Returns the status of a transaction with aclient
application.

get_transaction_name

Returns a printable string describing the transaction.

set_timeout

Modifies the timeout period associated with transactions.
The default transaction timeout value is 300 seconds. If a
transaction is automatically started instead of explicitly
started with the begin method, the timeout valueis
determined by the value of the TRANTIME parameter in
the uBBCONF IG file. For more information about setting
the TRANTIME parameter, see Chapter , “ Administering
Transactions.”

get_control

Returns a control object that represents the transaction.

A basic transaction works in the following way:

1. A client application begins atransaction using the Tob3j : : TransactionCurrent: :begin

method. This method does not return avalue.

2. Theoperations on the CORBA interface execute within the scope of atransaction. If acall to

any of these operations raises an exception (either explicitly or asaresult of a

communications failure), the exception can be caught and the transaction can be rolled back.

3. UsetheTobj: :TransactionCurrent: : commit Method to commit the current transaction.
This method ends the transaction and starts the processing of the operation. The transaction

is committed only if all of the participants in the transaction agree to commit.

Using CORBA Transactions

JStep 2: Using the TransactionCurrent Methods

The association between the transaction and the client application ends when the client
application callsthe Tob3 : : TransactionCurrent : commit method or the

Tobj: : TransactionCurrent : rollback method.The following C++ examplesillustrate
using a transaction to encapsulate the operation of a student registering for aclass.

C++ Example

//Begin the transaction

transaction_current_oref->begin() ;

try {

//Perform the operation inside the transaction
pointer_Registar_ref->register_for_courses(student_id, course_number_list);

//1f operation executes with no errors, commit the transaction:
CORBA: :Boolean report_heuristics = CORBA_TRUE;
transaction_current_ref->commit (report_heuristics);

}

catch (CORBA::Exception &) {

//1f the operation has problems executing, rollback the

//transaction. Then throw the original exception again.

//If the rollback fails, ignore the exception and throw the

//original exception again.

try {
transaction_current_ref->rollback() ;

}

catch (CORBA::Exception &) {

TP::userlog("rollback failed");

throw;
}

Using CORBA Transactions 4-5

4-6 Using CORBA Transactions

Administering Transactions

Thistopic includes the following sections:
e Modifying the UBBCONFIG File to Accommodate Transactions

e Modifying the Domain Configuration File to Support Transactions (Oracle Tuxedo
CORBA Servers)

e Sample Distributed Application Using Transactions
Before you begin, you should read Chapter 1, “Introducing Transactions.”

Notes: Theadministrative information applies whether you are using the Bootstrap object or the
CORBA interoperable Naming Service (INS) to obtain initial object referencesto the
Oracle Tuxedo ORB.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using CORBA Transactions 5-1

Modifying the UBBCONFIG File to Accommodate
Transactions

5-2

This topic includes the following sections:
e Summary of Steps
e Step 1: Specify Application-wide Transactions in the RESOURCES Section
e Step 2: Create a Transaction Log (TLOG)

e Step 3: Define Each Resource Manager (RM) and the Transaction Manager Server in the
GROUPS Section

e Step 4: Enable an Interface to Begin a Transaction

Summary of Steps

To accommodate transactions, you must modify the RESOURCES, MACHINES, GROUPS, and the
INTERFACES Of SERVICES sections of the application’ s ussconrF1c file in the following ways:

e Inthe rRESOURCES section, specify the application-wide number of allowed transactions and
the value of the commit control flag.

e Inthe MACHINES Section, create the TLoG information for each machine.

e Inthe groups section, indicate information about each resource manager and about the
Transaction Manager Server.

e Inthe INTERFACES section (for Oracle Tuxedo CORBA applications only) or the
serVICES section (for Oracle Tuxedo ATMI applications only), enable the automatic
transaction option.

For instructions about modifying these sections in the uBeconF1G file, see “Creating a
Configuration File” in the Setting Up an Oracle Tuxedo Application.

Step 1: Specify Application-wide Transactions in the
RESOURCES Section

Table 5-1 provides a description of transaction-related parameters in the REsourcEs section of
the configuration file.

Using CORBA Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Table 5-1 Transaction-related Parameters in the RESOURCES Section

Parameter Meaning

MAXGTT Limitsthetotal number of global transactionidentifiers (6TRIDs) alowed on
onemachineat onetime. Themaximum valueallowedis2048, theminimum
is 0, and thedefaultis 100. Y ou can override this value on a per-machine
basisin the MACHINES section.

Entries remain in the table only while the global transaction is active, so this
parameter has the effect of setting alimit on the number of simultaneous
transactions.

CMTRET Specifiestheinitial setting of the TP_COMMIT_CONTROL characteristic. The
default is coMPLETE. Following are its two settings:

* LOGGED—the TP_COMMIT CONTROL characteristicis set to
TP_CMT_LOGGED, which meansthat tpcommit () returnswhenall the
participants have successfully precommitted.

* COMPLETE—the TP_COMMIT_CONTROL characteristicis set to
TP_CMT_COMPLETE, Which means that tpcommit () will not return
until al the participants have successfully committed.

Note: You should consult with the RM vendors to determine the
appropriate setting. If any RM in the application usesthe late commit
implementation of the XA standard, the setting should be
COMPLETE. If al the resource managers use the early commit
implementation, the setting should be LOGGED for performance
reasons. (Y ou can override this setting with tpscmt () .)

Step 2: Create a Transaction Log (TLOG)

This section discusses creating atransaction log (Tr.oc), which refersto alog in which
information on transactions is kept until the transaction is completed.

Creating the UDL

The Universal DeviceList (UDL) islike amap of the Oracle Tuxedo file system. The UDL gets
loaded into shared memory when an application is booted. To create an entry inthe UDL for the
TLOG device, create the UDL on each machine using global transactions. If the TLOGDEVICE is
mirrored between two machines, it is unnecessary to do this on the paired machine. The Bulletin
Board Liaison (BBL) then initializes and opens the Toc during the boot process.

Using CORBA Transactions 5-3

5-4

To createthe UDL, enter acommand using the following format, before the application has been
booted:

tmadmin -c crdl -z config -b blocks

where:
-z config Specifies the full pathname for the device where you should create the
UDL.
-b blocks Specifies the number of blocks to be allocated on the device.
config Should match the value of the TLOGDEVICE parameter in the

MACHINES section of the UBBCONFIG file.

Note: Ingeneral, the value that you supply for blocks should not be less than the value for
TLOGSIZE. For example, if TLogs1zE is specified as 200 blocks, specifying -b 500
would not cause a degradation.

For more information about storing the TL.og, see Installing the Oracle Tuxedo System.

Defining Transaction-related Parameters in the MACHINES Section

Y ou can define aglobal transaction log (T1.0G) using several parametersin the MACHINES section
of the uBeconr1a file. You must manually create the devicelist entry for the TL.oGDEVICE On
each machinewhereaTLog isneeded. Y ou can do thiseither before or after TuxconrF1c hasbeen
loaded, but it must be done before the system is booted.

Note: If you are not using transactions, the TLoc parameters are not required.

Table 5-2 providesadescription of transaction-related parametersin theMacuINES section of the
configuration file.

Table 5-2 Transaction-related Parameters in the MACHINES Section

Parameter Meaning
TLOGNAME The name of the DTP transaction log for this machine.
TLOGDEVICE Specifies the Oracle Tuxedo or Oracle Tuxedo file system that

contains the DTP transaction log (TLOG) for this machine. If this
parameter isnot specified, the machineisassumed not to haveaTLOG.
The maximum string value length is 64 characters.

Using CORBA Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Tahle 5-2 Transaction-related Parameters in the MACHINES Section (Continued)

Parameter Meaning

TLOGSIZE Thesize of the TLOG filein physical pages. Its value must be between
1 and 2048, and its default is 100. The value should be large enough
to hold the number of outstanding transactions on the machine at a
given time. One transaction islogged per page. The default should
suffice for most applications.

TLOGOFFSET Specifies the offset in pages from the beginning of TLOGDEVICE to
the start of the vToc that contains the transaction log for this
machine. The number must be greater than or equal to 0 and less than
the number of pages on the device. The default isO.

TLOGOFFSET israrely necessary. However, if two vTOCs sharethe
same deviceor if avToc is stored on adevice (such as afile system)
that is shared with another application, you can use TLOGOFFSET to
indicate a starting address rel ative to the address of the device.

Creating the Domains Transaction Log (Oracle Tuxedo ATMI Servers Only)
This section appliesto the ATMI serversonly.

Y ou can create the Domains transaction |og before starting the Domains gateway group by using
the following command:

dmadmin(l) crdmlog (crdlog) -d local_domain_name

Create the Domains transaction log for the named local domain on the current machine (the
machine on which dmadmin isrunning). The command uses the parameters specified in the
pMconFIG file Thiscommand failsif the named local domain isactive on the current machine or
if thelog aready exists. If the transaction log has not been created, the Domains gateway group
creates the log when it starts up.

Step 3: Define Each Resource Manager (RM) and the
Transaction Manager Server in the GROUPS Section

Additions to the croups section fall into two categories:

e Defining the Transaction Manager Servers that perform most of the work that controls
global transactions:

— The TMsNaME parameter specifies the name of the server executable.

Using CORBA Transactions 5-5

5-6

— The TMscounT parameter specifies the number of such serversto boot
(the minimum is 2, the maximum is 10, and the default is 3).

A NULL Transactional Manager Server does not communicate with any resource manager.
It is used to exercise an application’s use of the transactional primitives before actually
testing the application in arecoverable, real environment. This server is named tus and it
simply begins, commits, or terminates without talking to any resource manager.

e Defining opening and closing information for each resource manager:
— OPENINFO isastring with information used to open a resource manager.

— CLOSEINFO is used to close aresource manager.

Sample GROUPS Section
The following sample Groups section derives from the bankapp banking application:

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENINFO="TUXEDO/SQL:<APPDIR>/bankdll:bankdb:readwrite”

Table 5-3 describes the transaction values specified in this sample croups section.

Table 5-3 Transaction Values in the GROUPS Section of a Sample UBBCONFIG File

Transaction Value Meaning

BANKB1 GRPNO=1 Contains the name of the Transaction Manager
TMSNAME=TMS_SQL\ TMSCOUNT=2 Server (TMS_SQL) and the number (2) of these
servers to be booted in the group BANKB1

TUXEDO/ SQL Published name of the resource manager
<APPDIR>/bankdll Includes a device name

bankdb Database name

readwrite Access mode

Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
Parameters

Table 5-4 lists the characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
parameters.

Using CORBA Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Table 5-4 Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

Parameter Characteristics

TMSNAME Name of the Transaction Manager Server executable.
Required parameter for transactional configurations.
T™S isaNULL Transactional Manager Server.

TMSCOUNT Number of Transaction Manager Servers (must be between 2 and 10).
Default is 3.

OPENINFO Represents information to open or close a resource manager.

CLOSEINFO Content depends on the specific resource manager.

Starts with the name of the resource manager.
Omission means the resource manager needs no information to open.

Step 4: Enable an Interface to Begin a Transaction

Toenableaninterfaceto begin atransaction, you change different sectionsin theuseconr1c file,
depending on whether you are configuring an Oracle Tuxedo CORBA server or Oracle Tuxedo
ATMI server.

e Changing the INTERFACES Section (Oracle Tuxedo CORBA Servers)
e Changing the SERVICES Section (Oracle Tuxedo ATMI Servers)

Changing the INTERFACES Section (Oracle Tuxedo CORBA Servers)

The INTERFACES Section in the uBeconr1a file supports Oracle Tuxedo CORBA interfaces:

e For each CORBA interface, set auToTrAN t0 v if you want atransaction to start
automatically when an operation invocation isreceived. autToTran=y has no effect if the
interface is already in transaction mode. The default is~. The effect of specifying avalue
for auToTRAN depends on the transactional policy specified by the developer in the
Implementation Configuration File (ICF) for the interface. This transactional policy will
become the transactional policy attribute of the associated T_1FQUEUE M1B Object at run
time. The only time this value affects the behavior of the application isif the developer
specified atransaction policy of optional.

Using CORBA Transactions 5-1

Note: Towork properly, thisfeature depends on collaboration between the system designer
and theadministrator. If theadministrator setsthisvalueto y without prior knowledge
of the transaction policy defined by the developer in the interface’ s | CF, the actual
run time effect of the parameter might be unknown.

e If AUTOTRAN iS Set to v, you must set the TRANTIME parameter, which specifiesthe
transaction timeout, in seconds, for the transactions to be created. The value must be
greater than or equal to zero and must not exceed 2,147,483,647

(231 - 1, or about 70 years). A value of zero implies there is no timeout for the transaction.
(The default is 30 seconds.)

Table 5-5 describes the characteristics of the AUTOTRAN, TRANTIME, and FACTORYROUTING
parameters.

Table 5-5 Characteristics of the AUTOTRAN, TRANTIME, and FACTORYROUTING Parameters

Parameter Characteristics

AUTOTRAN ¢ Makes an interface the initiator of atransaction.

« Towork properly, it is dependent on collaboration between
the system designer and the system administrator. If the
administrator sets this value to Y without prior knowledge of
the ICF transaction policy set by the devel oper, the actual
run-time effort of the parameter might be unknown.

e Theonly timethisvalue affectsthe behavior of the application
isif the developer specified atransaction policy of
optional.

« If atransaction already exists, anew oneis not started.
¢ Defaultisn.

TRANTIME * Represents the timeout for the AUTOTRAN transactions.
« Valid values are between 0 and 231 - 1, inclusive.
e Zero (0) represents no timeout.
o Default is 30 seconds.

FACTORYROUTING » Specifies the name of the routing criteriato be used for
factory-based routing for this CORBA interface.

e You must specify a FACTORYROUTING parameter for
interfaces requesting factory-based routing.

5-8 Using CORBA Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Changing the SERVICES Section (Oracle Tuxedo ATMI Servers)

The following are three transaction-related features in the servICEs section:

o |If you want aservice (instead of aclient) to begin atransaction, you must set the
auToTRAN flag to v. Thisis useful if the serviceis not needed as part of any larger
transaction, and if the application wants to relieve the client of making transaction
decisions. If the service is called when there is aready an existing transaction, this call
becomes part of it. (The default isn.)

Note: Generaly, clients are the best initiators of transactions because a service has the
potential of participating in alarger transaction.

e |f AUTOTRAN iS Set to v, you must set the TRANTIME parameter, which is the transaction
timeout, in seconds, for the transactions to be created. The value must be greater than or

equal to 0 and must not exceed 2,147,483,647 (231 - 1, or about 70 years). A value of zero
impliesthere is no timeout for the transaction. (The default is 30 seconds.)

e You must specify arouTInG parameter for transactions that request data-dependent
routing.

Table 5-6 describes the characteristics of the AUTOTRAN, TRANTIME, and ROUTING parameters:

Table 5-6 Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters

Parameter Characteristics

AUTOTRAN Makes a service the initiator of a transaction.
Relieves the client of the transactional burden.
If atransaction already exists, a new oneis not started.
Default isN.

TRANTIME Represents the timeout for the AUTOTRAN transactions.

Valid values are between 0 and 23 - 1, inclusive.
0 represents no timeout.
Default is 30 seconds.

ROUTING Pointsto an entry in the ROUTING section where data-dependent routing
is specified for transactions that request this service.

Using CORBA Transactions 5-9

Modifying the Domain Configuration File to Support
Transactions (Oracle Tuxedo CORBA Servers)

5-10

This topic includes the following sections:

e Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN,
and MAXTRAN Parameters

e Characteristics of the AUTOTRAN and TRANTIME Parameters (Oracle Tuxedo CORBA
and ATMI Servers)

To enable transactions across domains, you need to set parameters in both the
DM_LOCAL_DOMAINS and the pM_RrREMOTE_SERVICES Sections of the Domains configuration file
(pmconF1G). Entriesin the pm_rocar_pomains section definelocal domain characteristics.
Entriesin the pM_REMOTE_SERVICES Section define information on services that are imported
and that are available on remote domains.

Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

The pM_r.ocar,_poMaINs section of the Domains configuration file identifies local domains and
their associated gateway groups. This section must have an entry for each gateway group (local
domain). Each entry specifies the parameters required for the Domains gateway processes
running in that group.

Table 5-7 provides a description of the five transaction-rel ated parameters in this section:
DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN.

Using CORBA Transactions

Modifying the Domain Configuration File to Support Transactions (Oracle Tuxedo CORBA Servers)

Tahle 5-7 Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN
Parameters

Parameter Characteristics

DMTLOGDEV Specifies the Oracle Tuxedo file system that contains the Domains
transaction log (DMTLOG) for this machine. The DMTLOG is stored asan
Oracle Tuxedo vToc table on the device. If this parameter is not
specified, the Domains gateway group isnot allowed to process requests
in transaction mode. Local domains running on the same machine can
share the same DMTLOGDEYV file system, but each local domain must
haveitsown log (atable in the DMTLOGDEV) named as specified by the
DMTLOGNAME keyword.

DMTLOGNAME Specifies the name of the Domains transaction log for this domain. This
name must be unigque when the same DMTLOGDEV is used for severa
local domains. If avalueis not specified, the value defaults to the string
DMTLOG. The name must contain 30 characters or less.

DMTLOGSIZE Specifies the numeric size of the Domains transaction log for this
machine (in pages). It must be greater than zero and |ess than the amount
of available space on the Oracle Tuxedo file system. If avalueis not
specified, the value defaults to 100 pages.

Note: The number of domainsin atransaction determine the number
of pagesyou must specify inthe DMTLOGSIZE parameter. One
transaction does not necessarily equal one log page.

MAXRDTRAN Specifies the maximum number of domains that can beinvolvedin a
transaction. It must be greater than zero and less than 32,768. If avalue
is not specified, the value defaultsto 16.

MAXTRAN Specifies the maximum number of simultaneous global transactions
allowed onthislocal domain. It must be greater than or equal to zero, and
lessthan or equal totheMAXGTT parameter specified inthe TUXCONFIG
file. If not specified, the default is the value of MAXGTT.

Characteristics of the AUTOTRAN and TRANTIME Parameters
(Oracle Tuxedo CORBA and ATMI Servers)

The pi_REMOTE_SERVICES Section of the Domains configuration file identifies information on
services imported and available on remote domains. Remote services are associated with a
particular remote domain.

Using CORBA Transactions 5-11

Table 5-8 describes the two transaction-related parameters in this section: aAuToTrAN and
TRANTIME.

Tahle 5-8 Characteristics of the AUTOTRAN and TRANTIME Parameters

Parameter Characteristics

AUTOTRAN Used by gateways to automatically start/terminate transactions for
remote services. This capability isrequired if you want to enforce
reliable network communication with remote services. Y ou specify this
capability by setting the AUTOTRAN parameter to v in the corresponding
remote service definition.

TRANTIME Specifies the default timeout value in seconds for a transaction
automatically started for the associated service. The value must be
greater than or equal to zero, and less than 2147483648. The default is
30 seconds. A value of zero implies the maximum timeout value for the
machine.

5-12 Using CORBA Transactions

Sample Distributed Application Using Transactions

Sample Distributed Application Using Transactions

This topic includes the following sections:
e RESOURCES Section
¢ MACHINES Section
o GROUPS and NETWORK Sections

e SERVERS, SERVICES, and ROUTING Sections

This topic describes a sample configuration file for a sample CORBA application that enables
transactions and distributes the application over three sites. The application includes the
following features:

e Data-dependent routing on ACCOUNT_ID.
e Datadistributed over three databases.
e BRIDGE processes communicating with the system viathe atuz interface.

e System administration from one site.

The configuration file includes seven sections: RESOURCES, MACHINES, GROUPS, NETWORK,
SERVERS, SERVICES, and ROUTING.

RESOURCES Section

The rRESOURCES section shown in Listing 5-1 specifies the following parameters:

® MAXSERVERS, MAXSERVICES, and MAXGTT are less than the defaults. This makes the
Bulletin Board smaller.

e MASTER iS SITE3 and the backup master is sITE1.

e MODEL iS Set to Mp and oPTIONS iS Set to LaN, MIGRATE. This allows a networked
configuration with migration.

e BBLQUERY iSSet to 180 and scanunIT is set to 10. This means that pBBL checks of the
remote BBLs are done every 1800 seconds (one half hour).

Using CORBA Transactions 5-13

Listing 5-1 Sample RESOURCES Section

*RESOURCES

#

IPCKEY 99999
UID 1
GID 0
PERM 0660

MAXACCESSERS 25
MAXSERVERS 25
MAXSERVICES 40

MAXGTT 20

MASTER SITE3, SITEl
SCANUNIT 10
SANITYSCAN 12

BBLQUERY 180
BLOCKTIME 30

DBBLWAIT 6

OPTIONS LAN, MIGRATE
MODEL MP

LDBAL Y

MACHINES Section

The MACHINES section shown in Listing 5-2 specifies the following parameters:
e TLOGDEVICE and TLoGNAME are specified, which indicate that transactions will be done.

e The Typr parameters are all different, which indicates that encode/decode will be done on
all messages sent between machines.

Listing 5-2 Sample MACHINES Section

*MACHINES

Gisela LMID=SITE1l
TUXDIR="/usr/tuxedo”
APPDIR="/usr/home”

5-14 Using CORBA Transactions

Sample Distributed Application Using Transactions

ENVFILE="/usr/home/ENVFILE”
TLOGDEVICE="/usr/home/TLOG”
TLOGNAME=TLOG
TUXCONFIG="/usr/home/tuxconfig”
TYPE="3B600"

romeo LMID=SITE2
TUXDIR="/usr/tuxedo”
APPDIR="/usr/home”
ENVFILE="/usr/home/ENVFILE”
TLOGDEVICE="/usr/home/TLOG”
TLOGNAME=TLOG
TUXCONFIG="/usr/home/tuxconfig”
TYPE="SEQUENT"”

juliet LMID=SITE3
TUXDIR="/usr/tuxedo”
APPDIR='/usr/home”
ENVFILE="/usr/home/ENVFILE”
TLOGDEVICE="/usr/home/TLOG”
TLOGNAME=TLOG
TUXCONFIG="/usr/home/tuxconfig”
TYPE="AMDAHL"”

GROUPS and NETWORK Sections

The croups and NETWORK Sections shown in Listing 5-3 specify the following parameters:

e The TMscounT is set to 2, which means that only two T™vs_sor transaction manager servers
will be booted per group.

e The opENINFO String indicates that the application will perform database access.

Using CORBA Transactions 5-15

5-16

Listing 5-3 Sample GROUPS and NETWORK Sections

*GROUPS

DEFAULT: TMSNAME=TMS_ SQL TMSCOUNT=2

BANKB1 LMID=SITELl GRPNO=1
OPENINFO="TUXEDO/SQL: /usr/home/bankdll:bankdb:readwrite”

BANKB2 LMID=SITE2 GRPNO=2
OPENINFO="TUXEDO/SQL: /usr/home/bankdl2:bankdb:readwrite”

BANKB3 LMID=SITE3 GRPNO=3

OPENINFO="TUXEDO/SQL: /usr/home/bankdl3:bankdb:readwrite”

*NETWORK

SITEL NADDR="0X0002abl117B2D4359"
BRIDGE="/dev/tcp”
NLSADDR="0X0002abl127B2D4359"

SITE2 NADDR="0X0002abl117B2D4360"
BRIDGE="/dev/tcp”
NLSADDR="0X0002abl27B2D4360"

SITE3 NADDR="0X0002abl117B2D4361"

BRIDGE="/dev/tcp”
NLSADDR="0X0002abl127B2D4361"

SERVERS, SERVICES, and ROUTING Sections

The SERVERS, SERVICES, and ROUTING Sections shown in Listing 5-4 specify the following
parameters:

e The TR servershave a-T number passed to their tpsrvrinit () functions.
o All requests for the services are routed on the account_1D field.

o None of the services will be performed in auToTrRAN mode.

Using CORBA Transactions

Sample Distributed Application Using Transactions

Listing 5-4 Sample SERVERS, SERVICES, and ROUTING Sections

*SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLOPT="-A"

TLR SRVGRP=BANKB1 SRVID=1 CLOPT="-A -- -T 100"
TLR SRVGRP=BANKB2 SRVID=3 CLOPT="-A -- -T 400"
TLR SRVGRP=BANKB3 SRVID=4 CLOPT="-A -- =T 700"
XFER SRVGRP=BANKB1 SRVID=5 REPLYQ=Y

XFER SRVGRP=BANKB2 SRVID=6 REPLYQ=Y

XFER SRVGRP=BANKB3 SRVID=7 REPLYQ=Y

*SERVICES

DEFAULT: AUTOTRAN=N

WITHDRAW ROUTING=ACCOUNT_ID

DEPOSIT ROUTING=ACCOUNT_ID

TRANSFER ROUTING=ACCOUNT_ID

INQUIRY ROUTING=ACCOUNT_ID

*ROUTING

ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE="FML"

RANGES="MON -
10000 - 39999
40000 - 69999

9999:*,

: BANKB1
: BANKB2

70000 - 100000 :BANKB3

W

Using CORBA Transactions 5-11

5-18 Using CORBA Transactions

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Using CORBA Transactions, 12c Release 2 (12.2.2)
	Contents
	Introducing Transactions
	Overview of Transactions in Oracle Tuxedo CORBA Applications
	ACID Properties of Transactions
	Resource Manager
	Supported Programming Model
	Supported API Model
	Support for Business Transactions
	Distributed Transactions and the Two-Phase Commit Protocol

	When to Use Transactions
	How to Use Transactions in Oracle Tuxedo CORBA Applications
	How to Use Transactions When Using the Oracle Bootstrapping Mechanism
	How to Use Transactions When Using the INS Bootstrapping Mechanism

	Writing a Transactions Sample Application
	Workflow for the Transactions Sample Application
	Development Steps
	Step 1: Writing the OMG IDL
	Step 2: Defining Transaction Policies for the Interfaces
	Step 3: Writing the Server Application
	Step 4: Writing the Client Application
	Step 5: Creating a Configuration File

	Transaction Service
	About the Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Support for Third-Party Clients Using INS
	Multithreaded Transaction Client Support
	Transaction Propagation (CORBA Only)
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Interoperability Between CORBA Remote Clients and the Oracle Tuxedo Domain
	Intradomain and Interdomain Interoperability
	Network Interoperability
	Relationship of the Transaction Service to Transaction Processing
	Process Failure
	General Constraints

	Transaction Service in CORBA Applications
	Getting Initial References to the TransactionCurrent Object Using the Bootstrap Object
	Getting Initial References to the TransactionFactory Object Using INS
	CORBA Transaction Service API
	Data Types
	Exceptions
	Current Interface
	Control Interface
	Terminator Interface
	TransactionalObject Interface
	TransactionFactory Interface
	Other CORBAservices Object Transaction Service Interfaces

	CORBA Transaction Service API Extensions
	Exception
	TransactionCurrent Interface

	Notes on Using Transactions in Oracle Tuxedo CORBA Applications

	UserTransaction API
	UserTransaction Methods
	Exceptions Thrown by UserTransaction Methods

	Transactions in CORBA Server Applications
	Integrating Transactions in an Oracle Tuxedo Client and Server Application
	Transaction Support in CORBA Applications
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Using an XA Resource Manager
	Opening an XA Resource Manager
	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database
	When to Assign the Transaction Activation Policy
	Transaction Policies to Use with the Transaction Activation Policy

	User-defined Exceptions
	About User-defined Exceptions
	Defining the Exception
	Throwing the Exception

	How the Transactions University Sample Application Works
	About the Transactions University Sample Application
	Transactional Model Used by the Transactions University Sample Application
	Object State Considerations for the University Server Application
	Object Policies Defined for the Registrar Object
	Object Policies Defined for the RegistrarFactory Object
	Using an XA Resource Manager in the Transactions Sample Application

	Configuration Requirements for the Transactions Sample Application

	Transactions in CORBA Client Applications
	Overview of Oracle Tuxedo CORBA Transactions
	Summary of the Development Process for Transactions
	Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object
	C++ Example

	JStep 2: Using the TransactionCurrent Methods
	C++ Example

	Administering Transactions
	Modifying the UBBCONFIG File to Accommodate Transactions
	Summary of Steps
	Step 1: Specify Application-wide Transactions in the RESOURCES Section
	Step 2: Create a Transaction Log (TLOG)
	Creating the UDL
	Defining Transaction-related Parameters in the MACHINES Section
	Creating the Domains Transaction Log (Oracle Tuxedo ATMI Servers Only)

	Step 3: Define Each Resource Manager (RM) and the Transaction Manager Server in the GROUPS Section
	Sample GROUPS Section
	Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

	Step 4: Enable an Interface to Begin a Transaction
	Changing the INTERFACES Section (Oracle Tuxedo CORBA Servers)
	Changing the SERVICES Section (Oracle Tuxedo ATMI Servers)

	Modifying the Domain Configuration File to Support Transactions (Oracle Tuxedo CORBA Servers)
	Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters
	Characteristics of the AUTOTRAN and TRANTIME Parameters (Oracle Tuxedo CORBA and ATMI Servers)

	Sample Distributed Application Using Transactions
	RESOURCES Section
	MACHINES Section
	GROUPS and NETWORK Sections
	SERVERS, SERVICES, and ROUTING Sections

