Oracle® Tuxedo
Using Security in CORBA Applications
12c Release 2 (12.2.2)

April 2016

ORACLE



Oracle Tuxedo Using Security in CORBA Applications, 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.



Contents

The CORBA Security FEalUreS. . .. ..ottt et e 1-1
The CORBA Security Environment . . ...t ei e 1-4
Oracle Tuxedo Security SPIS . ... ..o e e e 1-6
The SSL Protocol . . ... 2-2
Digital Certificates . ... e 2-5
Certificate AULNOTItY . .. ..o 2-6
Certificate REPOSITONIES. . . . .ot e 2-6
A PublicKey Infrastructure . ............ i e e e 2-7
PKCS5and PKCS-8ComplianCe .. .....oiv e et 2-8
Supported Public Key Algorithms .. ... ... 2-9
Supported Symmetric Key Algorithms. . ........ ... ... i 2-9
Supported Message Digest Algorithms. . ........ ... ... . . i i 2-10
Supported Cipher SUITES . . .. .. e 2-10
Standardsfor Digital Certificates . ............. .. i 2-11
Link-Level EnCryption . ... ... 3-2
Password AUtNentication. . . . ... ...t e 35
The SSL Protocol . .. ... 39
Certificate AUtNENLICAIoN . . . .. ... .. e 3-12
Using an Authentication Plug-in. . . ... i i e 3-20
AULNOMZALION. . . . . 3-20
AUAItING. . .o 321
PRI PIUG-INS . o e 3-22

Using Security in CORBA Applications iii



Commonly Asked Questions About the CORBA Security Features. ............. 3-24

Requirementsfor Using Public Key Security ..., 4-2
Who Needs Digital Certificates and Private/Private Key Pairs?. ................. 4-2
Reguesting aDigital Certificate. . ... 4-2
Publishing Certificatesin the LDAP Directory Service. . ... .. 4-3
Editingthe LDAP Search Filter File . ... .. o 4-4
Storing the Private KeysinaCommon Location. . ...t 4-6
Defining the Trusted Certificate Authorities . .. ........ ... o i, 4-7
CreatingaPeer RUleSFile . .. ... o e 4-8
Understandingminand max Values . ...t 51
Verifyingthe Installed Versionof LLE . . ... e 5-2
Configuring LLE on CORBA ApplicationLinks ............ ... ..ot 5-2
Setting Parametersfor the SSL Protocol ........... oo 6-2
Defining a Port for SSL Network Connections . . .. ..ot 6-2
Enabling Host Matching. . ... oo 6-2
Setting the Encryption Strength . .. ... ..o 6-4
Setting the Interval for Session Renegotiation. . ........ ... ... it 6-6
Defining Security Parameters for the [IOP Listener/Handler .................... 6-6
Example of Setting Parametersonthe ISL SystemProcess ..................... 6-8
Example of Setting Command-line Optionsonthe CORBA C++ORB............ 6-8
Configuring the Authentication Server . ........ . i 7-2
Defining Authorized USers. . . .. ..ot 7-3
DefiningaSecurity Level. . ... ... 7-6
Configuring Application Password Security . ..., 7-8
Configuring Password Authentication. . .. ... 7-8
Sample UBBCONFIG File for Password Authentication .. ..................... 7-9
Configuring Certificate Authentication . .. ........ ... i 7-11
Sample UBBCONFIG File for Certificate Authentication ..................... 7-13

Using Security in CORBA Applications



Configuring ACCeSS CONIOl . . . . oot eeeeeeeee 7-15

Configuring Security to Interoperate with Older WebL ogic Enterprise Client Applications
7-19

Registering the Security Plug-ins(SPIS) ... 8-1
Building and Running the Security Sample Application . ...................... 10-1
Building and Running the Secure Simpapp Sample Application. ... ............. 10-2
Using the Bootstrapping Mechanism . ... ... e e 9-1
Using Password Authentication . ... ... i e 9-5
Using Certificate Authentication . ............ i 9-11
Using the Interoperable Naming Service Mechanism .. ....................... 9-14
Using the Invocations Options Required() Method .. .......... ... ... ... .. ... 9-17
UsSingULOGSand ORB TraCing. . . .« v v vt e e e e e e eae e 10-2
CORBA::ORB initProblems. . ... ... o e e e 10-3
Password Authentication Problems .. ........... 10-4
Certificate Authentication Problems. . . ... i 10-4
Tobj::Bootstrap::

resolve initial_referencesProblems........... .. ... ... ... oo 10-5
IIOP Listener/Handler StartupProblems . .. ........... ... ... i, 10-6
Configuration Problems . .. ... ... . e 10-6
Problems with Using Callbacks Objects with the SSL Protocol ................. 10-7
Troubleshooting Tipsfor Digital Certificates. . ............. .. ... i, 10-8
The CORBA Security Model ... ... e 12-2
Functional Components of the CORBA Security Environment. . ................ 12-3
The Principal Authenticator Object . ............ i e 12-4
TheCredentids ObjeCt . . ... ..ot e e 12-6
The SecurityCurrent ObjeCt . ... ... i e e e 12-8
Method DesCriptions. . . .. oot e e e 16-1

Using Security in CORBA Applications v



vi Using Security in CORBA Applications



Part |  Security Concepts

Overview of the CORBA Security Features
Introduction to the SSL Technology
Fundamentals of CORBA Security

Using Security in CORBA Applications






CHAPTERo

Overview of the CORBA Security
Features

Thistopic includes the following sections:
e The CORBA Security Features
e The CORBA Security Environment
e Oracle Tuxedo Security SPIs

Notes: The Oracle Tuxedo product includes environments that allow you to build both
Application-to-Transaction Monitor Interfaces (ATMI) and CORBA applications. This
topic explains how to implement security in a CORBA application. For information
about implementing security in an ATMI application, see Using Security in ATMI
Applications.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The CORBA Security Features

Security refers to techniques for ensuring that data stored in a computer or passed between
computersis not compromised. Most security measures involve proof material and data

Using Security in CORBA Applications 1-1



1-2

encryption, where the proof material is a secret word or phrase that gives a user accessto a
particular program or system, and dataencryption isthetransl ation of datainto aform that cannot
be interpreted.

Distributed applications such as those used for electronic commerce (e-commerce) offer many
access points for malicious people to intercept data, disrupt operations, or generate fraudulent
input; the more distributed a business becomes, the more vulnerable it is to attack. Thus, the
distributed computing software, or middleware, upon which such applications are built must
provide security.

The CORBA security features of the Oracle Tuxedo product | ets you establish secure connections
between client and server applications. It has the following features:

e Authentication of CORBA C++ applications to the Oracle Tuxedo domain. Authentication
can be accomplished using a standard username/password combination or the identity
inside of the X.509 digital certificate provided to the server applications.

e Dataintegrity and confidentiality through Link-Level Encryption (LLE) or the Secure
Sockets Layer (SSL) protocol. CORBA C++ applications can establish SSL sessions with
an Oracle Tuxedo domain. Oracle Tuxedo client applications can use LLE or SSL to
protect network traffic between bridges and domains.

e Security Service Provider Interfaces (SPIs) that can be used to integrate security
mechanisms that provide authentication, authorization, auditing, and public key security
features. Security vendors can use the SPIsto integrate third-party security offerings into
the CORBA environment.

e A Public Key Infrastructure (PKI) that usesthe SSL protocol and X.509 digital certificates
to provide data privacy for messages sent over network links. In addition, a set of PKI SPIs
are provided.

To accessthe full security features of the CORBA environment, you need to install alicense that
enable the use of the SSL protocol, LLE, and PKI. For information about installing the license
for the security features, see the Installing the Oracle Tuxedo System.

Note:  Using Security in CORBA Applications describes the security features of the CORBA
environment in the Oracle Tuxedo product. For a complete description of using the
security featuresin the ATMI environment in the Oracle Tuxedo product, see Using
Security in ATMI Applications.

Table 1-1 summarizesthefeaturesin the CORBA security featuresin the Oracle Tuxedo product.

Using Security in CORBA Applications



Table 1-1 CORBA Security Features

The CORBA Security Features

Security Features

Description

Service Provider
Interface (SPI)

Default Implementation

Authentication

Proves the stated identity of
USErs or system processes,
safely remembers and

transportsidentity information;
and makesidentity information

available when needed.

Implemented as a
single interface

Provides security at three
levels: no authentication,
application password, and
certificate authentication.

Authorization

Controls access to resources
based on identity or other
information.

Implemented as a
singleinterface

N/A

Auditing

Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
singleinterface

Default auditing security is
implemented viathe features
of the user log (ULOG).

Link-Level Encryption

Uses symmetric key encryption

to establish data privacy for
messages moving over the
network links that connect the
machinesin a CORBA
application.

N/A

RC4 symmetric key
encryption.

Using Security in CORBA Applications 1-3



Tahle 1-1 CORBA Security Features (Continued)

Security Features

Description

Service Provider
Interface (SPI)

Default Implementation

The Secure Sockets
Layer (SSL) protocol

Uses asymmetric encryption to
establish data privacy for
messages moving over network
links between Oracle Tuxedo
domains.

N/A

The SSL version 3.0
protocol.

Public key security

Usespublic key (or asymmetric
key) encryption to establish
data privacy for messages
moving over the network links
between remote client
applications and the [1OP
Listener/Handler. Complies
with SSL version 3.0 allowing
mutual authentication based on
X.509 digital certificates.

Implemented as the
following
interfaces:

Public key
initialization
Key
management
Certificate
lookup
Certificate
parsing
Certificate
validation
Proof material
mapping

Default public key security
supports the following
algorithms:

* RSA for key exchange.

e AESorDESandits
variants RC2 and RC4
for bulk encryption.

e MDS5and SHA for
message digests.

The CORBA Security Environment

Direct end-to-end mutual authentication in adistributed enterprise middleware environment such
as the Oracle Tuxedo CORBA environment can be prohibitively expensive, especialy when
accomplished through security mechanisms optimized for long duration connections. It is not
efficient for principals to establish direct network connections with each server application, nor
isit practical to exchange and verify multiple authentication messages as part of processing each
service request. Instead, CORBA applicationsin an Oracle Tuxedo product implements a
delegated trust authentication model as shownin Figure 1-1.

1-4 Using Security in CORBA Applications



The CORBA Security Environment

Figure 1-1 Delegated Trust Model

Server
Client P nopP N

Application - ListeneriHandler | CORBA
Object

Trusted

Server

Computing

Base

BEA Tuxedo Domain

In a delegated trust model, principals (generally users of client applications) authenticate to a
trusted system gateway process. In the case of the CORBA applications, the trusted system
gateway process isthe [1OP Listener/Handler. As part of successful authentication, security
tokensareassigned totheinitiating principal . A security token isan opaquedatastructure suitable
for transfer between processes.

When areguest from an authenticated principal reaches the 110P Listener/Handler, the I1OP
Listener/Handler attachesthe principal’ s security tokensto the request and deliversthe request to
the target server application for authorization and auditing purposes.

In adelegated trust authentication model, the [1OP Listener/Handler truststhat the authentication
software in the Oracle Tuxedo domain will verify the identity of the principal and generates the
appropriate security tokens. Server applications, in turn, trust that the [1OP Listener/Handler will
attach the correct security tokens. Server applications also trust that any other server applications
involved in the process of arequest from a principal will safely deliver the security tokens.

A session is established between the initiating client application and the [1OP Listener/Handler
in the following way:

Using Security in CORBA Applications 1-5



. When aclient application wants to access an object within an Oracle Tuxedo domain, the

client application uses either a username and password or a X.509 digital certificate to
authenticate over the connection with the 11OP Listener/Handler.

. A security association called asecurity context isestablished between aprincipal and thellOP

Listener/Handler. This security context is used to control accessto objectsin the Oracle
Tuxedo domain.

The I10P Listener/Handler retrieves the authorization and auditing tokens from the security
context. Together, the authorization and auditing tokens represent the principal’s identity
associated with the security context.

. Once the authentication process is complete, the principal invokes an object in the Oracle

Tuxedo domain. The request is packaged into an |1OP request and forwarded to the 11OP
Listener/Handler. The IIOP Listener/Handler associates the request with the previously
established security context.

. ThellOP Listener/Handler receives the request from the initiating principal.

The protection of messages between the client application and the [1OP Listener/Handler is
dependent on the security technology used in the CORBA application. The default
behavior of the Oracle Tuxedo product is to encrypt the authentication information but not
to protect the message sent between the client application and the Oracle Tuxedo domain.
The messageis sent in clear text. The SSL protocol can be used to protect the message. If
the SSL protocol is configured to protect messages for integrity and confidentiality, the
request isdigitally signed and sealed (encrypted) beforeit is sent to the IIOP
Listener/Handler.

. ThellOP Listener/Handler forwards the request along with the authorization and auditing

tokens of theinitiating principal to the appropriate server application.

. Whentherequest isreceived by the server application, the Oracle Tuxedo systeminterrogates

the forwarded tokens of the requesting principal to determineif the request should be
processed or denied. The CORBA security features will, based on the decision of the
authorization implementation, deny the processing of any request on an object for which the
requesting principal has no permission to access.

Oracle Tuxedo Security SPIs

1-6

As shown in Figure 1-2, the authentication, authorization, auditing, and public key security
features available with the Oracle Tuxedo product are implemented through a plug-in interface,
which allows security plug-insto beintegrated into the CORBA environment. A security plug-in
is acode module that implements a particular security feature.

Using Security in CORBA Applications



Oracle Tuxedo Security SPIs

Figure 1-2 Architecture for the Oracle Tuxedo Security Service Provider Interfaces

Authentication
Plug-In
I

Authaorization

. Plug-ns
Client 0P op

Application - - ListenerfHandler |
Auditing
Plug-ns

PKI
Plug-ns

¥

CORBA Object

Authorization

Authentication

Tuxedo Domain

The Oracle Tuxedo product provides interfaces for the types of security plug-inslisted in
Table 1-2.

Using Security in CORBA Applications 1-1



Table 1-2 The Oracle Tuxedo Security Plug-Ins

Plug-In Description

Authentication Allows communicating processes to mutually
prove identification.

Authorization Allows system administrators to control accessto
CORBA applications. Specifically, an
administrator can use authorization to alow or
disallow principals to use resources or services
provided by a CORBA application.

Auditing Provides ameansto collect, store, and distribute
information about operating requests and their
outcomes. Audit-trail records may be used to
determine which principals performed, or
attempted to perform, actions that violated the
configured security policies of a CORBA
application. They may & so be used to determine
which operations were attempted, which ones
failed, and which ones successfully completed.

Public key initialization Allows public key software to open public and
privatekeys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using thisinterface, but no bulk dataencryptionis
performed using public key cryptography. Bulk
dataencryptionis performed using symmetric key

cryptography.

Certificate lookup Allows public key software to retrieve X.509v3
digital certificates for agiven principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

1-8 Using Security in CORBA Applications



Oracle Tuxedo Security SPIs

Table 1-2 The Oracle Tuxedo Security Plug-Ins (Continued)

Plug-In

Description

Certificate parsing

Allows public key software to associate asimple
principal namewith an X.509v3 digital certificate.
Theparser analyzesadigital certificateto generate
aprincipal name to be associated with the digital
certificate.

Certificate validation

Allowspublic key softwareto validate an X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping

Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.

The specifications for the SPIs are currently only available to third-party security vendors who
have entered into a special agreement with Oracle Systems, Inc. Customers who want to
customize a security feature must contact one of these vendors or Oracle Professional Services.
For example, an Oracle customer who wants a custom implementation of public key security
must contact a third-party vendor who can provide the appropriate security plug-in or Oracle

Professional Services.

For more information about security plug-ins, including installation and configuration
procedures, see your Oracle account executive.

Using Security in CORBA Applications 1-9



1-10 Using Security in CORBA Applications



CHAPTERa

Introduction to the SSL Technology

Thistopic includes the following sections:

e The SSL Protocol

Digital Certificates

Certificate Authority

Certificate Repositories

A Public Key Infrastructure

PKCS-5 and PKCS-8 Compliance

Supported Public Key Algorithms

Supported Symmetric Key Algorithms

Supported Message Digest Algorithms

Supported Cipher Suites
e Standardsfor Digital Certificates

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code

Using Security in CORBA Applications 2-1



samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The SSL Protocol

2-2

The Secure Sockets Layer (SSL) protocol allows you to integrate these essential featuresinto
your CORBA application:

e Confidentiaity

Confidentiality isthe ability to keep communications secret from parties other than the
intended recipient. It is achieved by encrypting data with strong algorithms. The SSL
protocol provides a secure mechanism that enables two communicating parties to negotiate
the strongest agorithm they both support and to agree on the keys with which to encrypt
the data.

Integrity

Integrity is a guarantee that the data being transferred has not been modified in transit. The
same handshake mechanism which allows the two parties to agree on algorithms and keys
also allows the two ends of an SSL connection to establish shared data integrity secrets
which are used to ensure that when data is received any modifications will be detected.

Authentication

Authentication is the ability to ascertain with whom you are speaking. By using digital
certificates and public key security, CORBA client and server applications can each be
authenticated to the other. This allows the two partiesto be certain they are communicating
with someone they trust. The SSL protocol provides a mechanism that can be used to
authenticate principal s to an Oracle Tuxedo domain using X.509 digital certificates. The
use of certificate authentication can be used as an alternative to password authentication.

The SSL protocol provides secure connections by allowing two applications connecting over a
network connection to authenticate the other’ s identity and by encrypting the data exchanged
between the applications. When using the SSL protocol, the target always authenticates itself to
theinitiator. Optionally, if the target requestsiit, the initiator can authenticate itself to the target.
Encryption makes data transmitted over the network intelligible only to the intended recipient.
An SSL connection begins with a handshake during which the applications exchange digital

Using Security in CORBA Applications



The SSL Protocol

certificates, agree on the encryption algorithmsto use, and generate encryption keys used for the
remainder of the session.

The SSL protocol uses public key encryption for authentication. With public key encryption, a
pair of asymmetric keys are generated for a principal or other entity such as the I1OP
Listener/Handler or an application server. The keys are related such that the data encrypted with
the public key can only be decrypted using the corresponding private key. Conversely, data
encrypted with the private key can be decrypted only with the public key. The private key is
carefully protected so that only the owner can decrypt messages. The public key, however, is
distributed freely so that anyone can encrypt messages intended for the owner.

Figure 2-1 illustrates how the SSL protocol worksin the CORBA security environment.

Using Security in CORBA Applications 2-3



2-4

Figure 2-1 The SSL Protocol in the CORBA Security Environment

Authentication
Plug-In

[
Authorization
Plug-Ins

Trusted CA
file Trusted CA
l file
Clont. lIOPISSL llop
o i bt Listener/Handler
Application
e —
/v \\\ Peer Validation
Rule file
Peer Validation | | Private Key
Rule file file

Using Security in CORBA Applications

Private Key
file |
PKI

Auditing
Plug-Ins

Plug-Ins

;

CORBA Object

Authentication

Authorization

BEA Tuxedo Domain

When using the SSL protocol in the CORBA security environment, the I1OP Listener/Handler
authenticatesitself to initiating principals. The I1OP Listener/Handler presentsits digital
certificate to the initiating principal. To successfully negotiate a SSL connection, the client
application must then authenticate the 11OP Listener/Handler but the 11OP Listener/Handler will
accept any client application into the SSL connection. This type of authentication isreferred to
as server authentication.

When using server authentication, the initiating client application is required to have digital
certificatesfor certificate authorities that are to be trusted. The [1OP Listener/Handler must have




Digital Certificates

aprivate key and digital certificatesthat representsitsidentity. Server authentication is common
on the Internet where customers want to create secure connections before they share personal
data. In this case, the client application has a similar role to that of a Web browser.

With SSL version 3.0, principals can also authenticate to the [ 1OP Listener/Handler. Thistype of
authenticationisreferred to asmutual authentication. In mutual authentication, principals present
their digital certificatesto the IlOP Listener/Handler. When using mutual authentication, both the
I1OP Listener/Handler and the principal need private keys and digital certificates that represent
their identity. Thistype of authentication is useful when you must restrict access to trusted
principals only.

The SSL protocol and theinfrastructure needed to use digital certificatesisavailablein the Oracle
Tuxedo product.

Digital Certificates

Digital certificates are electronic documents used to uniquely identify principalsand entitiesover
networks such asthe Internet. A digital certificate securely binds the identity of aprincipal or
entity, as verified by atrusted third party known as a certificate authority (CA), to a particular
public key. The combination of the public key and the private key provides a unique identity to
the owner of the digital certificate.

Digital certificatesallow verification of the claim that aspecific public key doesin fact belong to
aspecific principal or entity. A recipient of adigital certificate can use the public key contained
inthe digital certificate to verify that a digital signature was created with the corresponding
private key. If such verification is successful, this chain of reasoning provides assurance that the
corresponding private key is held by the subject named in the digital certificate, and that the
digital signature was created by that particular subject.

A digital certificate typically includes a variety of information, such as:

e The name of the subject (holder, owner) and other identification information required to
uniquely identify the subject, such asthe URL of the Web server using the digital
certificate, or an individual’s e-mail address.

e The subject’s public key.

e The name of the certificate authority that issued the digital certificate.

o A seria number.

e Thevalidity period (or lifetime) of the digital certificate (defined by a start date and an end
date).

Using Security in CORBA Applications 2-5



The most widely accepted format for digital certificatesis defined by the ITU-T X.509
international standard. Thus, digital certificates can be read or written by any application
complying with X.509. The PK1 in the CORBA security environment recognizes digital
certificates that comply with X.509 version 3, or X.509v3.

Certificate Authority

Digital certificates are issued by a certificate authority. Any trusted third-party organization or
company that iswilling to vouch for the identities of those to whom it issues digital certificates
and public keys can be a certificate authority. When a certificate authority creates adigital
certificate, the certificate authority signsit with its private key, to ensure the detection of
tampering. The certificate authority then returns the signed digital certificate to the requesting
subject.

The subject can verify the digital signature of theissuing certificate authority by using the public
key of the certificate authority. The certificate authority makesits public key available by
providing adigital certificate issued from ahigher-level certificate authority attesting to the
validity of the public key of the lower-level certificate authority. The second solution givesrise
to hierarchies of certificate authorities. This hierarchy isterminated by a self-signed digital
certificate known as the root key.

The recipient of an encrypted message can develop trust in the private key of acertificate
authority recursively, if the recipient has a digital certificate containing the public key of the
certificate authority signed by a superior certificate authority whom the recipient already trusts.
In this sense, adigital certificate is a stepping stonein digital trust. Ultimately, it is necessary to
trust only the public keys of a small number of top-level certificate authorities. Through achain
of digital certificates, trust in alarge number of users’ digital signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but adigital signature
can be trusted only to the extent that the public key for verifying the digital signature can be
trusted.

Certificate Repositories

2-6

To make apublic key and its identification with a specific subject readily available for usein
verification, the digital certificate may be published in arepository or made available by other
means. Certificate repositories are databases of digital certificates and other information
available for retrieval and use in verifying digital signatures. Retrieval can be accomplished
automatically by directly requesting digital certificates from the repository as needed.

Using Security in CORBA Applications



A Public Key Infrastructure

Inthe CORBA security environment, Lightweight Directory Access Protocol (LDAP) isused as
acertificate repository. Oracle Systems, Inc. does not provide or recommend any specific LDAP
server. The LDAP server you choose should support the X.500 scheme definition and the LDAP
version 2 or 3 protocol.

A Public Key Infrastructure

A Public Key Infrastructure (PK1) consists of protocols, services, and standards supporting
applications of public key cryptography. Because the technology is still relatively new, the term
PKI is somewhat loosely defined: sometimes PKI simply refersto atrust hierarchy based on
public key digital certificates; in other contexts, it embraces digital signature and encryption
services provided to end-user applications as well.

Thereisno single standard public key infrastructure today, though efforts are underway to define
one. It isnot yet clear whether a standard will be established or multiple independent PKIs will
evolve with varying degrees of interoperability. In this sense, the state of PKI technology today
can be viewed as similar to local and wide area (WAN) network technology in the 1980s, before
there was widespread connectivity viathe Internet.

Thefollowing services are likely to be found in a PK1:
e Key registration for issuing a new digital certificate for a public key.
e Certificate revocation for canceling a previousy-issued digital certificate and private key.
e Key selection for obtaining a party’s public key.

e Trust evaluation for determining whether adigital certificate is valid and which operations
it authorizes.

Figure 2-2 shows the PKI process flow.

Figure 2-2 PKI Process Flow

Certificate 3 . .
Authority 2/ > epository
Subject @ > Recipient

Using Security in CORBA Applications 2-1



1. Thesubject appliesto acertificate authority for digital certificate.
2. The certificate authority verifies the identity of subject and issues a digital certificate.

3. The certificate authority or the subject publishesthe digital certificate in a certificate
repository such as LDAP.

4. The subject digitally signs an electronic message with the associated private key to ensure
sender authenticity, message integrity, and nonrepudiation, and then sends message to
recipient.

5. Therecipient retrieves the sender’s certificate from the certificate repository and then
retrieves the public key from the certificate.

The Oracle Tuxedo product does not provide the tools necessary to be a certificate authority.
Oracle Systems, Inc. recommends using athird-party certificate authority such as VeriSign or
Entrust. By offering aPublic Key SPI, Oracle Systems, Inc. extends the opportunity to all Oracle
Tuxedo customers to use a PK 1 security solution with the PK| software from their vendor of
choice. See “PKI Plug-ins’ on page 3-22 for more information.

PKCS-5 and PKCS-8 Compliance

Informal but recognized industry standards for public key software have been issued by a group
of leading communications companies, led by RSA Laboratories. These standards are called
“Public-Key Cryptography Standards,” or PKCS. The Oracle Tuxedo product uses PKCS-5 and
PK CS-8 to protect the private keys used with the SSL protocol.

e PKCS-5 isaspecification of aformat for using password-based encryption that uses DES
to protect data.

e PKCS-8isaspecification of aformat for storing private keys, including the ability to
encrypt them with PKCS-5.

Supported Public Key Algorithms

Public key (or asymmetric key) algorithms are implemented through a pair of different but
mathematically related keys:

e A public key (which is distributed widely) for verifying adigital signature or transforming
datainto a seemingly unintelligible form.

e A private key (which is always kept secret) for creating a digital signature or returning the
datato itsoriginal form.

2-8 Using Security in CORBA Applications



Supported Symmetric Key Algorithms

The public key security in the CORBA security environment also supports digital signature
algorithms. Digital signature algorithms are simply public key algorithms used to provide digital
signatures.

The Oracle Tuxedo product supports the Rivest, Shamir, and Adelman (RSA) algorithm, the
Diffie-Hellman algorithm, and Digital Signature Algorithm (DSA). With the exception of DSA,
digital signature algorithms can be used for digital signatures and encryption. DSA can be used
for digital signatures but not for encryption.

Supported Symmetric Key Algorithms

In symmetric key algorithms, the same key is used to encrypt and decrypt a message. The public
key encryption system uses symmetric key encryption to encrypt a message sent between two
communicating entities. Symmetric key encryption operates at least 1000 timesfaster than public
key cryptography.

A block cipher is atype of symmetric key algorithm that transforms a fixed-length block of
plaintext (unencrypted text) datainto ablock of ciphertext (encrypted text) data of the same
length. This transformation takes place in accordance with the value of arandomly generated
session key. The fixed length is called the block size.

The Public key security feature in the CORBA security environment supports the following
symmetric key algorithms:

e DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a64-hit block cipher runin Cipher Block Chaining (CBC) mode. It provides
56-bit keys (8 parity bits are stripped from the full 64-bit key).

e Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES isa 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE)
mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit key).

For some time it has been common practice to protect and transport a key for DES
encryption with triple-DES, which means that the input data (in this case the single-DES
key) is encrypted, decrypted, and then encrypted again (an encrypt-decrypt-encrypt
process). The same key is used for the two encryption operations.

e RC2 (Rivest's Cipher 2)
RC2 isavariable key-size block cipher.
— RC4 (Rivest's Cipher 4)

Using Security in CORBA Applications 2-9



RC4 isavariable key-size block cipher with akey size range of 40 to 128 bits. It isfaster
than DES and is exportable with a key size of 40 bits. A 56-hit key size is allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC4 can be used with keys of virtually unlimited length, although the public key security
in the CORBA security environment restricts the key length to 128 hits.

e AES-256-CBC (Advanced Encryption Standard for Cipher Block Chaining)

AES-256-CBC is a 128-hit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 256-bits keys

Customers of the Oracle Tuxedo product cannot expand or modify thislist of algorithms.

Supported Message Digest Algorithms

The CORBA security environment supports the MD5 and SHA-1 (Secure Hash Algorithm 1)
message digest algorithms. Both MD5 and SHA-1 are well known, one-way hash algorithms. A
one-way hash algorithm takes a message and convertsit into a fixed string of digits, whichis
referred to as a message digest or hash value.

MD?5 is a high-speed, 128-hit hash; it isintended for use with 32-bit machines. SHA-1 offers
more security by using a 160-bit hash, but is slower than MD5.

Supported Cipher Suites

A cipher suiteisa SSL encryption method that includes the key exchange algorithm, the
symmetric encryption algorithm, and the secure hash a gorithm used to protect the integrity of
the communication. For example, the cipher suite Rsa_wITH_RC4_128_MD5 Uses RSA for key
exchange, RC4 with a 128-bit key for bulk encryption, and MD5 for message digest.

The CORBA security environment supports the cipher suites described in Table 2-1.

Table 2-1 SSL Cipher Suites Supported by the CORBA Security Environment

Cipher Suite Key Symmetric
Exchange Key
Type Strength
SSL_RSA_WITH_RC4_128_SHA RSA 128
SSL,_RSA_WITH_RC4_128_MD5 RSA 128

2-10 Using Security in CORBA Applications



Table 2-1 SSL Cipher Suites Supported by the CORBA Security Environment

Standards for Digital Certificates

Cipher Suite Key Symmetric
Exchange Key
Type Strength
SSL_RSA_WITH_DES_CDC_SHA RSA 56
SSIL_RSA_EXPORT_WITH_RC4_40_MD5 RSA 40
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA 40
SSIL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA 40
SSL_DH_DSS_EXPORT _WITH_DES40_CBC_SHA Diffie- 40
Hellman
SSL_DH_RSA_EXPORT WITH_DES40_CBC_SHA Diffie- 40
Hellman
SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 112
SSL,_RSA_WITH_NULIL_SHA RSA 0
SSL_RSA_WITH_NULL_MD5 RSA 0

Standards for Digital Certificates

The CORBA security environment supports the digital certificates that conform to the X.509v3
standard. The X.509v3 standard specifies the format of digital certificates. Oracle recommends
obtaining certificates from a certificate authority such as Verisign or Entrust.

Using Security in CORBA Applications 2-11



2-12 Using Security in CORBA Applications



CHAPTERa

Fundamentals of CORBA Security

Thistopic includes the following sections:
e Link-Level Encryption
e Password Authentication
e The SSL Protocol

Certificate Authentication

e Using an Authentication Plug-in

e Authorization

e Auditing

e PKI Plug-ins

e Commonly Asked Questions About the CORBA Security Features

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using Security in CORBA Applications 3-1



Link-Level Encryption

3-2

Link-Level Encryption (LLE) establishes data privacy for messages moving over the network
links. The objective of LLE isto ensure confidentiality so that a network-based eavesdropper
cannot learn the content of Oracle Tuxedo system messages or CORBA application-generated
messages. It employsthe symmetric key encryption technique (specifically, RC4), which usesthe
same key for encryption and decryption.

When LLE is being used, the Oracle Tuxedo system encrypts data before sending it over a
network link and decryptsit as it comes off the link. The system repeats this
encryption/decryption process at every link through which the data passes. For thisreason, LLE
isreferred to as a point-to-point facility.

LLE can be used to encrypt communication between machines and/or domainsin a CORBA
application..

Note: LLE cannot be used to protect connections between remote CORBA client applications
and the IOP Listener/Handler.

There are three levels of LLE security: 0-bit (no encryption), 56-bit (Export), and 128-bit
(Domestic). The Export LLE version allows 0-bit and 56-hit encryption. The Domestic LLE
version alows 0, 56, and 128-hit encryption.

How LLE Works

LLE worksin the following way:

1. The system administrator sets parameters for any processes that want to use LLE to control
the encryption strength.

— Thefirst configuration parameter is the minimum encryption level that a process will
accept. It is expressed as akey length: 0, 56, or 128 bits.

— The second configuration parameter is the maximum encryption level a process can
support. It aso is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (min, max). For example, the values
(56, 128) for a process mean that the process accepts at least 56-bit encryption but can
support up to 128-hit encryption.

2. Aninitiator process begins the communication session.

3. A target processreceivestheinitial connection and starts to negotiate the encryption level to
be used by the two processes to communicate.

Using Security in CORBA Applications



Link-Level Encryption

4. Thetwo processes agree on the largest common key size supported by both.

5. The configured maximum key size parameter isreduced to agree with theinstalled software's
capabilities. This step must be done at link negotiation time, because at configuration time it
may not be possible to verify a particular machine's installed encryption package.

6. The processes exchange messages using the negotiated encryption level.
Figure 3-1 illustrates these steps.

Figure 3-1 How LLE Works

BEA Tuxedo Domain
Machine 1 )
Initiating Process 1 [ Machine 2
Target Process
UBBCONFIG File N ] _
MINENCEYFTEITS 40 40, 1z UBBCONFIG File
MAXENCRYETEITS 1z& Bit MINENCRYPTEITS 40
Encryptien MAXENCRYPTEITS 128

Encryption Key Size Negotiation

When two processes at the opposite ends of anetwork link need to communicate, they must first
agree on the size of the key to be used for encryption. This agreement is resolved through a
two-step process of negotiation.

1. Each processidentifiesits own min-max values.
2. Together, the two processes find the largest key size supported by both.

Determining min-max Values

When either of the two processes starts up, the Oracle Tuxedo system (1) checksthe
bit-encryption capability of theinstalled L LE version by checking the LLE licensing information

Using Security in CORBA Applications 3-3



inthe1ic.txt fileand (2) checksthe LLE min-max valuesfor the particular link type as
specified in the two configuration files. The Oracle Tuxedo system then proceeds as follows:

o |f the configured min-max values accommodate the installed LLE version, then the local
software assigns those values as the min-max values for the process.

o |f the configured min-max values do not accommodate the installed LLE version, for
example, if the Export LLE version isinstalled but the configured min-max values are (O,
128), then the local software issues arun-time error; link-level encryption is not possible at
this point.

o If there are no min-max values specified in the configurations for a particular link type,
then the local software assigns 0 as the minimum value and assigns the highest
bit-encryption rate possible for the installed LLE versions as the maximum value, that is,
(O, 128) for the Domestic LLE version.

Finding a Common Key Size

After the min-max valuesare determined for the two processes, the negotiation of key size begins.
The negotiation process need not be encrypted or hidden. Once akey size is agreed upon, it
remains in effect for the lifetime of the network connection.

Table 3-1 shows which key size, if any, is agreed upon by two processes when all possible
combinations of min-max values are negotiated. The header row holdsthe min-max valuesfor one
process; the far left column holds the min-max values for the other.

Table 3-1 Interprocess Negotiation Results

0,0 (0, 56) (0,128) (56, 56) (56, 128) (128, 128)
(0,0) 0 0 0 ERROR ERROR ERROR
(0, 56) 0 56 56 56 56 ERROR
(0,128) 0 56 128 56 128 128
(56, 56) ERROR 56 56 56 56 ERROR
(96, 128) ERROR 56 128 56 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128
3-4 Using Security in CORBA Applications



Password Authentication

WSL/WSH Connection Timeout During Initialization

Thelength of time a Workstation client can take for initiaization is limited. By default, this
interval is 30 seconds in an application not using LLE, and 60 seconds in an application using
LLE. The 60-second interval includes the time needed to negotiate an encrypted link. Thistime
limit can be changed when LLE is configured by changing the value of the MAXINITTIME
parameter for the Workstation Listener (WSL) server in the ueeconr1G file, or the value of the
TA_MAXINITTIME attributeintheT_wst class of the ws_m1B(5).

Development Process

TouseLLE inaCORBA application, you need to install alicense that enables the use of LLE.
For information about installing the license, see Installing the Oracle Tuxedo System.

Theimplementation of LLE is an administrative task. The system administrators for each
CORBA application set min-max valuesin the usrconr1c file that control encryption strength.
When the two CORBA applications establish communication, they negotiate what level of
encryption to use to exchange messages. Once an encryption level is negotiated, it remainsin
effect for the lifetime of the network connection.

Password Authentication

The CORBA security environment supports a password mechanism to provide authentication to
existing CORBA applications and to new CORBA applications that are not prepared to deploy a
full Public Key Infrastructure (PKI). When using password authentication, the applications that
initiate invocations on CORBA objects authenticate themselves to the Oracle Tuxedo domain
using a defined username and password.

Thefollowing levels of password authentication are provided:

e None—indicates that no password or access checking is performed in the CORBA
application.

e Application Password—indicates that users are required to supply adomain password in
order to access the CORBA application.

e User Authentication—indicates that users are required to supply an application password as
well as the domain password in order to access the CORBA application.

o ACL—indicates that authorization is used in the CORBA application and access control
checks are performed on interfaces, queue names, and event names. If an associated ALC
isnot found for a user, it is assumed that access is granted.

Using Security in CORBA Applications 3-5



e Mandatory ACL—indicates that authorization is used in the CORBA application and
access control checks are performed on interfaces, queue names, and event names. The
value of Mandatory ACL issimilar to ACL, but permission is denied if an associated ACL
is not found for the user.

When using Password authentication, you have the option of using the

Tobj: :PrincipalAuthenticator: :logon () Or the
SecurityLevel2::PrincipalAuthenticator::authenticate () methodsin your client
application.

If you use password authentication, the SSL protocol can be used to provide confidentiality and
integrity to communication between applications. For moreinformation, see“ The SSL Protocol”
on page 3-9.

How Password Authentication Works

Password authentication works in the following way:

1. Theinitiating application accesses the Oracle Tuxedo domain in one of the following ways:

— Through the CORBA Interoperable Naming Service (INS) Bootstrapping mechanism.
Use this mechanism if you are using a client ORB from another vendor. For more
information about using CORBA INS, see the CORBA Programming Reference in the
Oracle Tuxedo online documentation

— The Oracle Bootstrapping mechanism. Use this mechanism if you are using Oracle
CORBA client applications.

2. Theinitiating application obtains credentials for the user. The initiating application must
provide proof material to be used by the Oracle Tuxedo domain to authenticate the user. This
proof materia consists of the name of the user and a password.

— Theinitiating application creates the security context using a
PrincipalAuthenticator object. Therequest for authentication is sent to the IIOP
Listener/Handler. The proof material in the authentication request is securely relayed to
the authentication server, which verifies the supplied information.

— If the verification succeeds, the Oracle Tuxedo system constructs acredentials
object that isused by all future invocations. The credentials object for the user is
associated with the current object that represents the security context.

3. Theinitiating application invokes a CORBA object in the Oracle Tuxedo domain using an
object reference. The request is packaged into an 110P request and is forwarded to the I1OP
Listener/Handler that associates the request with the previously established security context.

Using Security in CORBA Applications



Password Authentication

4. ThellOP Listener/Handler receives the request from the initiating application.

5. ThellOP Listener/Handler forwards the request, along with the credentials of the initiating
application, to the appropriate CORBA object.

Figure 3-2 illustrates these steps.

Figure 3-2 How Password Authentication Works

‘ Browse Courses |

CORBA Cs+ Client ‘ Get Course Details |

Application

University
Senver Application

L 4

|Lugun‘ ‘ Get Student Details | :

University
Databhase

I:I Security Required

Development Process for Password Authentication

Defining password authentication for a CORBA application includes administration and
programming steps. Table 3-2 and Table 3-3 list the administration and programming steps for
password authentication. For a detailed description of the administration steps for password
authentication, see “ Configuring Authentication” on page 7-1. For a complete description of the
programming steps, see “Writing a CORBA Application That Implements Security” on

page 10-1.

Using Security in CORBA Applications 3-7



3-8

Table 3-2 Administration Steps for Password Authentication

Step Description

1 Set the SECURITY parameter in the UBBCONFIG fileto APP_PW, USER_AUTH,
ACL, Of MANDATORY_ACL.

2 If you defined the SECURITY parameter aSUSER_AUTH, ACL, Of
MANDATORY_ACL, configure the authentication server (AUTHSRV) in the
UBBCONFIG file.

3 Usethe tpusradd and tpgrpadd commands to define lists of authorized users
and groups including the I1OP Listener/Handler.

4 Usethe tmloadcf command to load the UBBCONFIG file. Whenthe UBBCONFIG

fileis|loaded, the system administrator is prompted for a password. The password
entered at this time becomes the password for the CORBA application.

Table 3-3 Programming Steps for Password Authentication

Step Description

1 Write application code that uses the Bootstrap object to obtain areference to the
SecurityCurrent object or CORBA INSto obtain areferenceto a
Principal Authenticator object in the Oracle Tuxedo domain.

2 Write application code that obtains the Principal Authenticator object from the
SecurityCurrent object.

3 Write application code that uses the
Tobj: :PrincipalAuthenticator::logon () Or
SecurityLevel2: :PrincipalAuthenticator: :authenticate()
operation to establish a security context with the Oracle Tuxedo domain.

4 Write application code that prompts the user for the password defined when the

UBBCONFIG fileisloaded.

Using Security in CORBA Applications



The SSL Protocol

The SSL Protocol

The Oracle Tuxedo product provides the industry-standard SSL protocol to establish secure
communications between client and server applications. When using the SSL protocol, principals
use digital certificatesto prove their identity to a peer.

The default behavior of the SSL protocol inthe CORBA security environment isto havethellOP
Listener/Handler proveitsidentity to the principal who initiated the SSL connection using digital
certificates. The digital certificates are verified to ensure that each of the digital certificates has
not been tampered with or expired. If there is a problem with any of the digital certificatesin the
chain, the SSL connectionisterminated. In addition, theissuer of adigital certificateis compared
against alist of trusted certificate authoritiesto verify the digital certificate received from the
I1OP Listener/Handler has been signed by a certificate authority that istrusted by the Oracle
Tuxedo domain.

Like LLE, the SSL protocol can be used with password authentication to provide confidentiality
and integrity to communication between the client application and the Oracle Tuxedo domain.
When using the SSL protocol with password authentication, you are prompted for the password
of the IIOP Listener/Handler defined by the sEc_PRINCIPAL_NAME parameter when you enter
the tmloadcf command.

How the SSL Protocol Works

The SSL protocol works in the following manner:
1. ThellOP Listener/Handler presentsits digital certificate to the initiating application.

2. Theinitiating application comparesthedigital certificate of thellOP Listener/Handler against
itslist of trusted certificate authorities.

3. If theinitiating application validates the digital certificate of the I1OP Listener/Handler, the
application and the 11OP Listener/Handler establish an SSL connection.

The initiating application can then use either password or certificate authentication to
authenticate itself to the Oracle Tuxedo domain.

Figure 3-3 illustrates how the SSL protocol works.

Figure 3-3 How the SSL Protocol Works in a CORBA Application

Using Security in CORBA Applications 3-9



3-10

SSEL Protocol

CORBA Client lIoP
Application Certificate for Listeners
lnop Handler

Listener/Handler

Requirements for Using the SSL Protocol

To usethe SSL protocol in a CORBA application, you need to install alicense that enables the
use of the SSL protocol and PKI. For information about installing the license for the security
features, see Installing the Oracle Tuxedo System.

The implementation of the SSL protocol is flexible enough to fit into most public key
infrastructures. The Oracle Tuxedo product requires that digital certificates are stored in an
LDAP-enabled directory. Y ou can choose any L DA P-enabled directory service. Y ou also need
to choose the certificate authority from which to obtain digital certificates and private keys used
in a CORBA application. Y ou must have an LDAP-enabled directory service and a certificate
authority in place before using the SSL protocol in a CORBA application.

Development Process for the SSL Protocol

Using the SSL protocol in a CORBA application is primarily an administration process.
Table 3-4 lists the administration steps required to set up the infrastructure required to use the
SSL protocol and configure the 110P Listener/Handler for the SSL protocol. For a detailed
description of the administration steps, see “Managing Public Key Security” on page 4-1 and
“Configuring the SSL Protocol” on page 6-1.

Once the administration steps are complete, you can use either password authentication or
certificate authentication in your CORBA application. For more information, see “Writing a
CORBA Application That Implements Security” on page 10-1.

Using Security in CORBA Applications



Note:

The SSL Protocol

If you are using the Oracle CORBA C++ ORB as a server application, the ORB can also
be configured to use the SSL protocol. For more information, see “ Configuring the SSL
Protocol” on page 6-1.

Table 3-4 Administration Steps for the SSL Protocol

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the Oracle Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain adigital certificate and private key for the IIOP Listener/Handler from a
certificate authority.

4 Publish the digital certificates for the I1OP Listener/Handler and the certificate
authority in the LDAP-enabled directory service.

5 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters for the ISL server processin the
UBBCONFIG file.

6 Set the SECURITY parameter inthe UBBCONFIG fileto NONE.

7 Define aport for secure communication on the ||OP Listener/Handler using the -s
option of the ISL command.

8 Create a Trusted Certificate Authority file (trust_ca. cer) that definesthe
certificate authorities trusted by the 11OP Listener/Handler.

9 Usethe tmloadct command to load the UBBCONFIG file.

10 Optionally, create a Peer Rulesfile (peer_val.rul) for the IOP
Listener/Handler.

11 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in

placein your enterprise.

If you use the SSL protocol with password authentication, you need to set the SECURITY
parameter in the uBrcoNF1IG fileto desired level of authentication and if appropriate, configure

Using Security in CORBA Applications 3-11



the Authentication Server (auTusrv). For information about the administration steps for
password authentication, see “Password Authentication” on page 3-5.

Figure 3-4 illustrates the configuration of a CORBA application that uses the SSL protocol.

Figure 3-4 Configuration for Using the SSL Protocol in a CORBA Application

Nor
ListeneriHandler

CORBA Client
Application ISL —= -a
SEC_PRINCIFAL_HAME
SEC_PRINCIPAL_LOCATION
SEC_PRINCIFAL PASSVAR

Y

trust_ca. cer

LDAP
Directory Service

Private Key for
orP
ListeneriHandler

Certificate for IOP
Listener/Handler

Certificates for
Certificate
Authorities

Certificate Authentication

Certificate authentication requires that each side of an SSL connection provesitsidentity to the
other side of the connection. In the CORBA security environment, the 11OP Listener/Handler
presentsitsdigital certificateto the principal whoinitiated the SSL connection. Theinitiator then
provides a chain of digital certificates that are used by the IIOP Listener/Handler to verify the
identity of theinitiator.

3-12 Using Security in CORBA Applications



Certificate Authentication

Once achain of digita certificatesis successfully verified, the 1OP Listener/Handler retrieves
the value of the distinguished name from the subject of the digital certificate. The CORBA
security environment uses the e-mail address element of the subject’ s distinguished name as the
identity of the principal. The IIOP Listener/Handler uses the identity of the principal to
impersonate the principal and establish a security context between the initiating application and
the Oracle Tuxedo domain.

Once the principal has been authenticated, the principal that initiated the request and the 11OP
Listener/Handler agree on a cipher suite that represents the type and strength of encryption that
they both support. They also agree on the encryption key and synchronize to start encrypting al

subsequent messages.
Figure 3-5 provides a conceptual overview of the certificate authentication.

Figure 3-5 Certificate Authentication

SSL Protocol

CORBA Client orP
Application Certificate for Listener!
nop Handler

Listener/Handler

Commonly, X.509 V3 CA certificates are required to contain the Basic Constraints extension,
marked as being from a Certificate Authority (CA), and marked asacritical extension (see|[ETF
RFC 2459). Ensuring that V3 CA certificates protects against non-CA certificates from
masquerading as intermediate CA certificates.

For more information, please refer to the following URL.:
http://www.ietf.org/rfc/rfc2459.txt

Note: Thisdefault behavior will not check Basic Constraints on X.509 V1 and V2 certificates,
asthese versions of X.509 certificates do not support certificate extensions.

Using Security in CORBA Applications 3-13



3-14

Thereisamechanism provided to control thelevel of enforcement that will be performed in order
to avoid problems with some customer's applications:

The mechanism is used by setting the value of the environment variable
TUX_SSL_ENFORCECONSTRAINTS. Thelevels of enforcement are as follows:

1

Note:

Thislevel isthe default. No checking is performed on V1 or V2 certificatesin the
certificate chain. The Basic Constraints for V3 CA certificates are checked and the
certificates are verified to be CA certificates.

TUX_SSL_ENFORCECONSTRAINTS=1

Thislevel doesthe same checking aslevel 1, and additionally enforces two more
requirements:

All CA certificates in the certificate chain must be V 3 certificates.

The Basic Constraints extensions of the CA certificates must be marked as "critical” in
accordance with |IETF RFC 2459.

Thisisnot the default setting because anumber of current commercially available V3 CA
certificates do not mark the Basic Constraints as critical.

TUX_SSL_ENFORCECONSTRAINTS=2

In versions of Tuxedo prior to Tuxedo 12.1.1 a value of 0 was also allowed, which
disabled Basic Constraints enforcement entirely. This option was provided for
compatibility with older certificates back when Basic Constraintswerestill afairly recent
feature in the X.509 standard. Since thisis no longer the case, the
TUX_SSL_ENFORCECONSTRAINTS=0 value isno longer supported in Tuxedo 12.1.1 and
later releases.

How Certificate Authentication Works

Certificate authentication works in the following manner:

1. Theinitiating application accesses the Oracle Tuxedo domain in one of the following ways:

— Through the CORBA INS Bootstrapping mechanism. Use this mechanism if you are

using aclient ORB from another vendor. For more information about using CORBA
INS, see CORBA Programming Reference in the Oracle Tuxedo online documentation.

— The Oracle Bootstrapping mechanism. Use this mechanism if you are using the Oracle

client ORB.

Using Security in CORBA Applications



Certificate Authentication

2. Theinitiating application instantiates the Bootstrap object with a URL in the form of

corbaloc://host:port Of corbalocs://host :port and controls the requirement for
protection by setting attributes on the securitylevel2: :Credentials object returned as
aresult of the securityLevel2: :PrincipalAuthenticator: :authenticate Operation.

Note: Youcanadsousethe securitylLevel2: :Current: :authenticate () method to

secure the bootstrapping process and specify that certificate authentication isto be used.

. Theinitiating application obtains the digital certificates and the private key of the principal.
Retrieval of thisinformation may require proof material to be supplied to gain access to the
principal’s private key and certificate. The proof material typically isapass phraserather than
a password.

The security context is established as result of a
SecurityLevel2::PrincipalAuthenticator: :authenticate () method.

The I1OP Listener/Handler receives and validates the application’s digital certificate as part
of the authentication process.

. If theverification succeeds, the Oracle Tuxedo system constructsacredentials object. The
credentials object for the principal representsthe security context for the current thread of
execution.

. Theinitiating application invokes a CORBA object in the Oracle Tuxedo domain using an
object reference.

. Therequest is packaged into an I1OP request and is forwarded to the 11OP Listener/Handler
that associates the request with the established security context.

. Therequest isdigitally signed and encrypted before it is sent to the [1OP Listener/Handler.
The Oracle Tuxedo system performs the signing and sealing of requests.

. ThellOP Listener/Handler receives the request from theinitiating application. Therequestis
decrypted.

. ThellOP Listener/Handler retrievesthe e-mail component of the subjectDN of the principal’s
and uses that as the identity of the user.

10. The I1OP Listener/Handler forwards the request, along with the associated tokens of the

principal, to the appropriate CORBA aobject.

Using Security in CORBA Applications 3-15



3-16

Figure 3-6 How Certificate Authentication Works

CORBA Client

Bootstrap Object

Tobj_ Bootstrap
{orh,corbalocs://sling.com, 2143)

SecurityLevel2::Current Object

authenticatce |
Tokj::Certificatebased
emall address
rassphrase) ;

Simple-rto_upper():

BEA Tuxedo
Domain
ssL nop
Protocol Listener!
Handler \
CORBA
Object
Simple

Development Process for Certificate Authentication

To use certificate authentication in a CORBA application, you need to install alicense that
enables the use of the SSL protocol and PKI. For information about installing the license, see

Installing the Oracle Tuxedo System.

Using certificate authentication in a CORBA application includes administration and

programming steps. Table 3-5 and Table 3-6 list the administration and programming steps for
certificate authentication. For a detailed description of the administration steps, see “Managing

Public Key Security” on page 4-1 and “ Configuring the SSL Protocol” on page 6-1.

Using Security in CORBA Applications




Certificate Authentication

Table 3-5 Administration Steps for Certificate Authentication

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the Oracle Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain adigital certificate and private key for the [IOP Listener/Handler from a
certificate authority.

4 Obtain digital certificates and private keysfor the CORBA client applications from
a certificate authority.

5 Store the private key files for the CORBA client applications and the 11OP
Listener/Handler in the Home directory of the user or in
STUXDIR/udataobj/security/keys.

6 Publish the digital certificates for the 11OP Listener/Handler, the CORBA
applications, and the certificate authority in the LDAP-enabled directory service.

7 Definethe SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR for the ISL server processinthe UBBCONFIG file.

8 Set the SECURITY parameter in the UBBCONFIG fileto USER_AUTH, ACL, Or
MANDATORY_ACL.

9 Configure the Authentication Server (AUTHSRV) in the UBBCONFIG file.

10 Usethe tpusradd and tpgrpadd commands to define the authorized Users and
Groups of your CORBA application.

11 Define aport for SSL communication on the I1OP Listener/Handler using the -5
option of the ISL command.

12 Enable certificate authentication in the |1 OP Listener/Handler using the -a option
of the ISL command.

13 Create a Trusted Certificate Authority file (trust_ca.cer) that definesthe
certificate authorities trusted by the 11OP Listener/Handler.

12 Create a Trusted Certificate Authority file (trust_ca. cer) that definesthe

certificate authorities trusted by the CORBA client application.

Using Security in CORBA Applications 3-17



3-18

Table 3-5 Administration Steps for Certificate Authentication (Continued)

Step Description

13 Usethe tmloadcf command to load the UBBCONFIG file. Y ou will be prompted
for the password of the [1OP Listener/Handler defined in the
SEC_PRINCIPAL_NAME parameter.

14 Optionally, create a Peer Rulesfile (peer_val.rul) for both the CORBA client
application and the I1OP Listener/Handler.

15 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
placein your enterprise.

Figure 3-7 illustrates the configuration of a CORBA application that uses certificate
authentication.

Using Security in CORBA Applications



Certificate Authentication

Figure 3-7 Configuration for Using Certificate Authentication in a CORBA Application

CORBA Client IOP
Application ListeneriHandler
corbalocs: 77 .

host  port "] ISL —= -a

£

SEC_FRINCIFPAL_HAME

SEC_PRINCIPAL_LOCATION
peer_val.rul \ SEC_PRINCIPAL_PASSVAR

trust_ca. cer

trust_ca. cer LDAP
Directory Service

Certificate for IOP peer_wal rul
Listener/Handler

Private Key for
CORBA Client Certificates for

Application Certificate -
Authorities Private Key for

oP
Cerfificates for ListeneriHandler

CORBA Client
Applications

Table 3-6 lists the programming steps for using certificate authentication in a CORBA
application. For more information, see “Writing a CORBA Application That Implements
Security” on page 10-1.

Using Security in CORBA Applications 3-19



Table 3-6 Programming Steps for Certificate Authentication

Step Description

1 Write application code that uses the corbaloc or corbalocs URL address
formats of the Bootstrap object. Note that the CommonName in the Distinguished
Name of the certificate of the I1OP Listener/Handler must match exactly the host
name provided in the URL address format. For more information on the URL
address formats, see “Using the Bootstrapping Mechanism” on page 10-1.

Y ou can also use the CORBA INS bootstrap mechanism to object areferenceto a
Principal Authenticator object in the Oracle Tuxedo domain. For more information
about using CORBA INS, see the CORBA Programming Reference.

2 Write application code that usesthe authenticate () method of the
SecurityLevel2::PrincipalAuthenticator interfaceto perform
authentication. Specify Tobj : : CertificateBased for the method argument
and the pass phrase for the private key asthe auth_data argument for
Security: :0Opaque.

Using an Authentication Plug-in

The Oracle Tuxedo product allows the integration of authentication plug-insinto a CORBA
application. The Oracle Tuxedo product can accommodate authentication plug-ins using various
authentication technol ogies, including shared-secret password, one-time password,
challenge-response, and Kerberos. The authentication interface is based on the generic security
service (GSS) application programming interface (API) where applicable and assumes
authentication plug-ins have been written to the GSSAPI.

If you choseto use an authentication plug-in, you must configure the authentication plug-ininthe
registry of the Oracle Tuxedo system. For more detail about the registry, see “ Configuring
Security Plug-ins’ on page 8-1.

For more information about an authentication plug-ins, including installation and configuration
procedures, see your Oracle account executive.

Authorization

Authorization allows system administrators to control accessto CORBA applications.
Specifically, an administrator can use authorization to allow or disallow principalsto use
resources or services provided by a CORBA application.

3-20 Using Security in CORBA Applications



Auditing

The CORBA security environment supports the integration of authorization plug-ins.
Authorization decisions are based in part on the user identity represented by an authorization
token. Authorization tokens are generated during the authentication process so coordination
between the authentication plug-in and the authorization plug-in is required.

If you chose to use an authorization plug-in, you must configure the authorization plug-in the
registry of the Oracle Tuxedo system. For more detail about the registry, see “ Configuring
Security Plug-ins’ on page 8-1.

For more information about authorization plug-ins, including installation and configuration
procedures, see your Oracle account executive.

Auditing

Auditing provides a meansto collect, store, and distribute information about operating requests
and their outcomes. Audit-trail records may be used to determine which principals performed, or
attempted to perform, actions that violated the configured security policies of a CORBA
application. They may also be used to determine which operations were attempted, which ones
failed, and which ones successfully completed.

The current implementation of the auditing feature supports the recording of logon failures,
impersonation failures, and disallowed operations into the uLog file. In the case of disallowed
operations, the value of the parameters to the operation are not provided because there is no way
to know the order and data types of the parameter for an arbitrary operation. Audit entries for
logon and impersonation include the identity of the principal attempting to be authenticated. For
information about setting up the ur.oc file, see Setting Up an Oracle Tuxedo Application.

Y ou can enhance the auditing capabilities of your CORBA application by using an auditing
plug-in. The Oracle Tuxedo system will invoke the auditing plug-in at predefined execution
points, usually before an operation is attempted and then when potential security violations are
detected or when operations are successfully completed. The actions taken to collect, process,
protect, and distribute auditing information depend on the capabilities of the auditing plug-in.
Care should be taken with the performance impact of audit information collection, especially
successful operation audits, which may occur at a high rate.

Auditing decisionsare based partly on user identity, which isstoredin an auditing token. Because
auditing tokens are generated by the authentication plug-in, providers of authentication and
auditing plug-ins need to ensure that these plug-ins work together.

The purpose of an auditing request isto record an event. Each auditing plug-in returns one of two
responses: success (theaudit succeeded and the event waslogged) or failure (theaudit failed

Using Security in CORBA Applications 3-21



and the event was not logged the event). An auditing plug-in is called once before the operation
is performed and once after the operation compl etes.

e The preoperation audit allows the auditing of both attempts to call an operation, and also
allows storage of input data for the postoperation check.

e The postoperation audit reports the status of the completion of an operation. For failure
status, the postoperation audit is called to report a potential security violation. Usually this
type of report isissued when a preoperation or postoperation authorization check fails or
when some other potential security attack is detected.

Multiple implementations of the auditing plug-in can be used in a CORBA application. Using
multiple authorization plug-ins causes more than one preoperation and postoperation auditing
operation to be performed.

When using multiple auditing plug-ins, al the plug-ins are placed under a single master auditing
plug-in. Each subordinate authorization plug-in returns success or FAILURE. |f any plug-infails
the operation, the auditing master plug-in determines the outcome to be rFatL.urE. Other error
returns are also considered FAILURE. Otherwise, succEess isthe outcome.

In addition, an Oracle Tuxedo system process may call an auditing plug-in when a potential
security violation occurs. (Suspicion of a security violation arises when a preoperation or
postoperation authorization check fails or when an attack on security is detected.) In response,
the auditing plug-in performs a postoperation audit and returns whether the audit succeeded.

The auditing processis somewhat different for users of the auditing feature provided by the
Oracle Tuxedo product and users of auditing plug-ins. The default auditing feature does not
support preoperation audits. If the default auditing feature receives a preoperation audit request,
it returnsimmediately and does nothing.

If you choseto use an auditing plug-in other than the default auditing plug-in, you must configure
the auditing plug-in the registry of the Oracle Tuxedo system. For more detail about the registry,
see “Configuring Security Plug-ins” on page 8-1.

For more information about auditing plug-ins, including installation and configuration
procedures, see your Oracle account executive.

PKI Plug-ins

The Oracle Tuxedo product providesaPKI environment which includesthe SSL protocol and the
infrastructure needed to use digital certificatesin a CORBA application. However, you can use
the PKI interfacesto integrate a PK| plug-in that supplies custom message-based digital signature

3-22 Using Security in CORBA Applications



PKI Plug-ins

and message-based encryption to your CORBA applications. Table 3-7 describes the PKI

interfaces.

Table 3-7 PKI Interfaces

PKI Interface

Description

Public key initialization

Allows public key software to open public and
privatekeys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management

Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using thisinterface, but no bulk dataencryptionis
performed using public key cryptography. Bulk
dataencryptionis performed using symmetric key

cryptography.

Certificate lookup

Allows public key software to retrieve X.509v3
digital certificates for agiven principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

Certificate parsing

Allows public key software to associate asimple
principal namewith an X.509v3 digital certificate.
The parser analyzesadigital certificateto generate
aprincipal name to be associated with the digital
certificate.

Certificate validation

Allowspublic key softwareto validatean X.509v3
digital certificate in accordance with specific
businesslogic.

Proof material mapping

Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.

The PK1 interfaces support the following algorithms:

e Public key algorithms: Rivest, Shamir, and Adelman (RSA) and Digital Signature

Algorithm (DSA)

Using Security in CORBA Applications 3-23



o Symmetric key algorithms:
— Data Encryption Standard for Cipher Block Chaining (DES-CBC)
— Two-key triple-DES
— Rivest’s Cipher 4 (RC4)
e Message digest algorithms:
— Message Digest 5 (MD5)
— Secure Hash Algorithm 1 (SHA-1)

If you choseto useaPKI plug-in, you must configure the PKI plug-inintheregistry of the Oracle
Tuxedo system. For more detail about the registry, see “ Configuring Security Plug-ins’ on
page 8-1.

For more information about PK| plug-ins, including installation and configuration procedures,
see your Oracle account executive.

Commonly Asked Questions About the CORBA Security
Features

3-24

The following sections answer some of the commonly asked questions about the CORBA
security features.

Do | Have to Change the Security in an Existing CORBA
Application?

The answer isno. If you are using security interfaces from previous versions of the WebL ogic
Enterprise product in your CORBA application thereis no requirement for you to change your
CORBA application. You can leave your current security scheme in place and your existing
CORBA application will work with CORBA applications built with Oracle Tuxedo 8.0 or later.

For example, if your CORBA application consists of a set of server applications which provide
general information to al client applications which connect to them, there is really no need to
implement a stronger security scheme. If your CORBA application has a set of server
applications which provide information to client applications on an internal network which

provides enough security to detect sniffers, you do not need to implement the additional security
features.

Using Security in CORBA Applications



Commonly Asked Questions About the CORBA Security Features

Can | Use the SSL Protocol in an Existing CORBA
Application?

The answer isyes. Y ou may want to take advantage of the extra security protection provided by
the SSL protocol inyour existing CORBA application. For example, if you havea CORBA server
application which provides stock prices to a specific set of client applications, you can use the
SSL protocol to make sure the client applications are connected to the correct CORBA server
application and that they are not being routed to afake CORBA server application with incorrect
data. A username and password is sufficient proof material to authenticate the client application.
However, by using the SSL protocol, the message request/reply information can be protected as
an additional level of security.

The SSL protocol offers CORBA applications the following benefits:

e Protection of the entire conversation including the initial bootstrapping process. The SSL
protocol protects against Man-In-The-Middle attacks, replay attacks, tampering, and
sniffing.

e Evenif you only use the default settings, the SSL protocol provides signed and sealed
protection since the default encryption settings are a minimum of 56 bits by default.

e Client verification of the connected |10OP Listener/Handler using the digital certificate of
the 11OP Listener/Handler. The client application can then apply additional security rulesto
restrict access to the client application by the [1OP Listener/Handler. This protection also
appliesto 11OP Listener/Handlers connecting to remote server applications when using
callback objects.

To use the SSL protocol in a CORBA application, set up the infrastructure to use digital
certificates, change the command-line options on the ISL server processto usethe SSL protocol,
and configure a port for secure communications on the I1OP Listener/Handler. If your existing
CORBA application uses password authentication, you can use that code with the SSL protocol.
If your CORBA C++ client application does not already catch the 1nvalidpomain exception
when resolving initia references to the Bootstrap object and performing authentication, write
code to handle this exception. For more information, see “PKI Plug-ins’ on page 3-22.

When Should | Use Certificate Authentication?

Y ou might be ready to migrate your existing CORBA application to use Internet connections
between the CORBA application and Web browsers and commercial Web servers. For example,
users of your CORBA application might be shopping over the Internet. The users must be
confident that:

Using Security in CORBA Applications 3-25



e They arein fact communicating with the server at the online store and not an impostor that
mimics the store’s server to get credit card information.

e The data exchanged between the user of the CORBA application and the online store will
be unintelligible to network eavesdroppers.

e The data exchanged with the online store will arrive unaltered. An instruction to order
$500 worth of merchandise must not accidently or maliciously become a $5000 order.

Inthese situations, the SSL protocol and certificate authentication offer CORBA applicationsthe
maximum level of protection. In addition to the benefits achieved through the use of the SSL
protocol, certificate authentication offers CORBA applications:

e |IOP Listener/Handler verification of the client application that initiates a request using the
digital certificate of the client application. In addition, the I1OP Listener/Handler can apply
additional rules which restrict access to the client application based on the identity
established by the digital certificate. A remote ORB acting as a server application can also
be configured to allow mutual authentication and verify the identity of a client application
based on a digital certificate.

e Inside the Oracle Tuxedo domain, the client application can still have an Oracle Tuxedo
username and password. The I1OP Listener/Handler maps the identity defined in adigital
certificate to an Oracle Tuxedo username and password thus allowing existing CORBA
applications to have an identity in native CORBA server applications.

For more information, see “PK| Plug-ins’ on page 3-22.

3-26 Using Security in CORBA Applications



Part Il Security Adminstration

Managing Public Key Security
Configuring Link-Level Encryption
Configuring the SSL Protocol
Configuring Authentication
Configuring Security Plug-ins

Hybrid Templates for FrameMaker 5.5






CHAPTERa

Managing Public Key Security

Thistopic includes the following sections:
e Requirements for Using Public Key Security
e Who Needs Digital Certificates and Private/Private Key Pairs?

e Requesting a Digital Certificate

Publishing Certificatesin the LDAP Directory Service

Editing the LDAP Search Filter File

Storing the Private Keysin a Common Location

Defining the Trusted Certificate Authorities

e Creating a Peer Rules File
Perform thetasksin thistopic only if you are using the SSL protocol, or certificate authentication
in your CORBA application.

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code

Using Security in CORBA Applications 4-1



samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Requirements for Using Public Key Security

Tousethe SSL protocol and public key security to protect communi cation between principalsand
the Oracle Tuxedo domain, you need to install aspecial license. For information about installing
the license, see Installing the Oracle Tuxedo System.

Y ou aso need to choose a Lightweight Directory Access Protocol server and a certificate
authority (either commercial or private) setup for your organization before implementing Public
Key Security.

Who Needs Digital Certificates and Private/Private Key
Pairs?

To usethe SSL protocol in the CORBA security environment, you need a private key and a
digitally-signed certificate containing the matching public key. How many digital certificatesand
private keys you need depends on how you plan to use the SSL protocol.

e |If the SSL protocoal is being used for protection of a network connection between aremote
client and the 11OP Listener/Handler, you need to obtain adigital certificate and private
key for the IIOP Listener/Handler.

e |f the SSL protocol is being used with certificate authentication, you need to obtain a
digital certificate and private key for the 11OP Listener/Handler and each principal that will
access the CORBA application.

Any digital certificatethat is obtained and used must beissued from atrusted certificate authority
defined in the trusted CA file. For more information, see “ Defining the Trusted Certificate
Authorities’ on page 4-7.

Requesting a Digital Certificate

To acquire adigital certificate, you need to submit your request for adigital certificatein a
particular format called a certificate signature request (CSR). How you create a CSR depends on
the certificate authority you use. Certificate authorities typically provide a means to generate a

4-2 Using Security in CORBA Applications



Publishing Certificates in the LDAP Directory Service

public key, private key, and a CSR which contains your public key. To create a CSR follow the
steps outlined by your chosen certificate authority.

When you complete the stepsto create a CSR, you receive the following filesfrom the certificate

authority:
File Description
key.der The private key file.
request.pen The CSR file which you submit to the

certificateauthority. It containsthe samedata
asthe . dem file but thefileisencoded in
ASCII so that you can copy it into e-mail or
pasteit into aWeb form.

To purchaseadigital certificate from acertificate authority, you submit the CSR to the certificate
authority according to the enrollment procedure of the certificate authority. Some commercial
certificate authorities allow you to purchase digital certificates through the Web.

Publishing Certificates in the LDAP Directory Service

The use of aglobal directory service isthe most popular way to store digital certificates. A
directory service simplifies the management of information that needsto be globally availableto
an ever-growing number of users. An LDAP server provides access to avariety of directory
services.

The CORBA security environment in the Oracle Tuxedo product, when configured to use the
SSL protocol, can retrieve digital certificates for principals and certificate authorities from an
LDAP directory service, such as Netscape Directory Service or Microsoft Active Directory.
Before you can use the SSL protocol or certificate authentication, you need to install an LDAP
directory service and configure it for your organization. Oracle Systems does not provide nor
recommend any specific LDAP directory service. However, the LDAP directory service you
choose should support the X.500 scheme definition and the LDAP version 2 or 3 protocol.

LDAP directory services define a hierarchy of object classes. While there are a number of
different object classes, there isa small set associated with digital certificates. Figure 4-1
illustrates the object classes typically associated with digital certificates.

Using Security in CORBA Applications 4-3



Figure 4-1 LDAP Directory Structure for Digital Certificates

root

strongAuthenticationUser certificationAuthority

userCertificate caCertificate

Once you receive your digital certificates from the certificate authority, store them in the LDAP
directory service as follows:

e Digital certificates for the [IOP Listener/Handler and any principals are stored in the LDAP
directory service with an attribute of usercertificate on an object class with that
attribute defined. Typically, these digital certificates are stored as an instance of the
strongAuthenticationUser object class as defined by X.500.

e Digital certificatesfor certificate authorities are stored in LDAP directory service with an
attribute of cacertificate onan object classwith that attribute defined. Typically, these
digital certificates are stored as an instance of the certificateauthority classas
defined by X.500.

If your LDAP scheme requires the use of different classes, you will need to modify the LDAP
search file as described in “ Editing the LDAP Search Filter File’ on page 4-4.

The Oracle Tuxedo product requiresthat the digital certificates be stored in the directory service
in Privacy Enhanced Mail (PEM) format.

Refer to Installing the Oracle Tuxedo System for information about integrating an LDAP
directory service into the CORBA security environment.

Editing the LDAP Search Filter File

When configuring a CORBA application to use the SSL protocol or certificate authentication,
you may need to customize the LDAP search filter file to limit the scope of the search of the

4-4 Using Security in CORBA Applications



Editing the LDAP Search Filter File

directory service or specify the object classes that will be used to hold the digital certificates.
Customizing the LDAP search filter file can result in significant performance gains. The Oracle
Tuxedo product ships with the following LDAP search filters:

o A filter stanzathat searches the directory service for digital certificates assigned to
certificate authorities. The filter limitsits search to instances of the
certificationAuthority Object class.

o A filter stanzathat searches the directory service for digital certificates assigned to
principals. The filter limits its search to instances of the strongauthenticationUser
object class.

If the directory service scheme for your organization is defined to store digital certificatesin
object classes other than certificationAuthority and strongAuthenticationUser, the
LDAP search filter file must be modified to specify those object classes.

Y ou can specify alocation of the LDAP search filter file during the installation of the Oracle
Tuxedo product. For more information, see Installing the Oracle Tuxedo System.

The LDAP search filter file should be owned by the administrator account. Oracle recommends
that the file be protected so that only the owner has read and write privileges for the file and all
other users have only read privileges for thefile.

To limit the search of the directory service for digital certificates for principals and certificate
authorities, you need to modify the filter stanzas identified by the following tagsin the LDAP
search filter file:

® BEA_person_lookup

® BEA_issuer_lookup

These tags identify the stanzas in the LDAP search filter file that contains the filter expression

that will be used when looking up information inthe directory service. These Oracle-specific tags
allow the stanzas of an LDAP search filter file to be stored in acommon LDAP search filter file
with stanzas used by other L DA P-enabled applications that might be found in your organization.

The following is an example of the stanzas of an LDAP search filter file used by the Oracle
Tuxedo product for the SSL protocol and certificate authentication:

“BEA_person_lookup”
ZW,oxmowow v (g (objectClass=strongAuthenticationUser) (mail=%v))"”
“e-mail address”
“ (& (objectClass=strongAuthenticationUser) (mail=%v))"”
“start of e-mail address”
“BEA_issuer_lookup”
“,oxmowomow (g (objectClass=certificationAuthority)

Using Security in CORBA Applications 4-5



(cn=%v)” ‘“exact match cn”
(sn=%v) )" “exact match sn”

e BEA_person_lookup Specifiesto search the LDAP directory service for principals by their
e-mail addresses.

e BEA_issuer_lookup Specifiesto search the LDAP directory service for principals by their
common names (cn).

Seethe documentation for your L DA P-enabled directory servicefor additional information about
LDAP search filefilters.

Storing the Private Keys in a Common Location

46

When aprincipa generatesaCSR, they typically get afilewith aprivate key. Principals need this
private key file to verify their identity in the authentication process. Assign the private key file
protections so that only the owner of the private key file has read privileges and all other users
have no privilegesto access the file. Private key files must be stored as PEM-encoded PKCS #3
protected format.

The Oracle Tuxedo system uses the e-mail address of the principal to construct a name for the
private key file as follows:

1. The e character in the name is replaced by an underscore (_) character.
2. All characters after the dot (.) character are deleted.

3. A .peMfile extension is appended to thefile.

For example, if the name of the principal ismilozzie@bigcompany . com theresulting private key
fileismilozzi_bigcompany.pem. Thisnaming convention allows an enterprise to have
multiple principals that share a common username but are in different e-mail domains.

The Oracle Tuxedo software looksin the following directories for private key files:
Window 2000

SHOMEDRIVES\ $SHOMEPATHS

UNIX

SHOME

The Oracle Tuxedo software also looksin the following directory for private key files:

$TUXDIR/udataobj/security/keys

Using Security in CORBA Applications



Defining the Trusted Certificate Authorities

The $TUXDIR/udataobj/security/keys directory should be protected so that only the owner
has read privileges for the directory and all other users do not have privileges to access the
directory.

Listing 4-1 provides an example of a private key file.

Listing 4-1 Example of Private Key File

Defining the Trusted Certificate Authorities

When establishing an SSL connection, the CORBA processes (client applications and the [1OP
Listener/Handler) check the identity of the certificate authority and certificates from the peer’s
digital certificate chain against alist of trusted certificate authorities to ensure the certificate
authority istrusted by the organization. This check issimilar to the check donein Web browsers.
If the comparison fails, the initiator of the SSL connection refuses to authenticate the target and
drops the SSL connection. It istypically the job of the system administrator to define alist of
trusted certificate authorities.

Retrievefromthe LDAPdirectory servicethedigital certificatesfor the certificate authoritiesthat
are to be trusted. Cut and paste the PEM formatted digital certificates into afile named
trust_ca.cer Whichisstored in $TUXDIR/udataobj/security/certs. Thetrust_ca.cer
can be edited with any text editor.

The trust_ca. cer file should be owned by the administrator account. Oracle recommends that
thefile be protected so that only the owner has read and write privileges for the fileand all other
users have only read privileges for thefile.

Listing 4-2 provides an example of a Trusted Certificate Authority file.

Using Security in CORBA Applications 4-1



Listing 4-2 Example of Trusted Certificate Authority File

————— BEGIN CERTIFICATE----

MIIEuzCCBCSgAWIBAGIQKtZUM5A0zS9dZaIATIxIuDANBgkghkiGO9wOBAQQFADCE
zDEXMBUGA1UEChMOVMVyaVNpZ24sTE1uYy4xHzAdBgNVBASTF1Z1cmlTaWduIFRy
dXNOIE51dHdvemsxRIBEBgNVBASTPXA3dy522XJpc21lnbi5jb20vemVwb3NpdG9y
eS9SUEEgSW5jb3JwLiBCeSBSZWYULEXJQUIUTFREKGMpOTgxSDBGBgNVBAMTP1Z1
cmlTaWduIENsYXNzIDEgQOEgSW5kaXZpZHVhbCBTAWIzY3JpYmVyLVBlcnNvbmEg

————— BEGIN CERTIFICATE----

MITIEuzCCBCSgAWIBAgGIQKtZUM5A0zS9dZaIATIxIuDANBgkaghkiGOwOBAQQFADCB
zZDEXMBUGA1UEChMOVMVyaVNpZ24sIEluYy4xHzAdBgNVBASTF1Z1lcml TaWduIFRy
dXNOIE51dHdvcemsxRjBEBgNVBASTPXd3dy52ZXJIpc2lnbi5jb20vemVwb3NpdGoy

Creating a Peer Rules File

4-8

When communicating across network links, it isimportant to validate the peer to which you are
connected is the intended or authorized peer. Without this check, it is possible to make a secure
connection, exchange secure messages, and receive avalid chain of digital certificatesbut still be
vulnerable to a Man-in-the-Middl e attack. Y ou perform peer validation by verifying a set of
specified information contained in the peer digital certificate against alist of information that
specifies the rules for validating peer trust. The system administrator maintains the Peer Rules

file.

The Peer Rulesare maintained in an ASCI| filenamed peer_val.rul. Storethepeer_val.rul

filein the following location in the Oracle Tuxedo directory structure:
S$TUXDIR/udataobj/security/certs

Listing 4-3 provides an example of a Peer Rulesfile.

Using Security in CORBA Applications



Creating a Peer Rules File

Listing 4-3 Example of Peer Rules File

#

# This file contains the list of rules for validating if

# a peer is authorized as the target of a secure connection

#

O=Ace Industry

O="Acme Systems, Inc.”; OU=Central Engineering;L=Herkimer;S=NY
O0="Ball, Corp.”, C=US

o=Ace Industry, ou=QA, cn=www.ace.com

Each rulein the Peer Rulesfileis comprised of aset of elementsthat are identified by akey. The
Oracle Tuxedo product recognizes the key names listed in Table 4-1.

Table 4-1 Supported Keys for Peer Rules File

Key Attribute

CN CommonName

SN SurName

L LocalityName

S StateOrProvinceName

¢ OrganizationName

ouU Organizational UnitName
c CountryName

E Email Address

Each key is followed by an optional white space, the character =, an optional white space, and
finally the value to be compared. The key is not case sensitive. A rule is not amatch unless the
subject’ s distinguished name contains each of the specified elementsin the rule and the val ues of
those elements match the values specified in the rule, including case and punctuation.

Using Security in CORBA Applications 4-9



4-10

Each line in the Peer Rules file contains asingle rule that is used to determine if a secure
connection is to be established. Rules cannot span lines; the entire rule must appear on asingle
line. Each element in the rule can be separated by either acomma(,) or semicolon (;) character.

Lines beginning with the pound character (#) are comments. Comments cannot appear on the
same line as the name of an organization.

A value must be enclosed in single quotation marks if one of the following casesistrue:

e Strings contain any of the following characters:

+ = "" <CR> < > # ;

’

e Strings have leading or trailing spaces

e Strings contain consecutive spaces

By default, the Oracle Tuxedo product verifies peer information against the Peer Rulesfile. If you
do not want to perform this check, create an empty Peer Rulesfile.

Using Security in CORBA Applications



CHAPTERa

Configuring Link-Level Encryption

Thistopic includes the following sections
e Understanding min and max Values
o Verifying the Installed Version of LLE

e Configuring LLE on CORBA Application Links

Notes. The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Understanding min and max Values

Before you can configure LLE for your CORBA application, you need to be familiar with the
LLE notation: (min, max). The defaults for these parameters are:

e FOrmin: 0

e For max: Number of bits that indicates the highest level of encryption possible for the
installed LLE version

Using Security in CORBA Applications 5-1



For example, the default min and max values for the Domestic LLE version are (0, 128). If you
want to change the defaults, you can do so by assigning new valuesto min and max in the
UBBCONFIG file for your application.

Verifying the Installed Version of LLE

Before setting the min and max values for your CORBA application, you need to verify what
version of LLE isinstalled on your machine. Y ou can verify the LLE version installed on a
machine by running the tmadmin command in verbose mode as follows:

tmadmin -v

Key lines from the Oracle Tuxedo licensefile (1ic. txt) appear on your computer screen,
similar to information in Listing 5-1. Theentry 128-bit Encryption Package indicatesthat
the Domestic version of LLE isinstalled.

Listing 5-1 LLE Licence Information

INFO: BEA Engine, Version 2.4

INFO: Serial: 212889588, Expiration 2000-3-15, Maxusers 10000
INFO: Licensed to: ACME CORPORATION

INFO: 128-bit Encryption Package

Oracle Tuxedo license files are located in the following directories:
Windows 2003

$TUXDIR%\udataobj\lic.txt

UNIX

STUXDIR/udataobj/lic.txt

Configuring LLE on CORBA Application Links

To configure LLE in CORBA applications, you need to set the MINENCRYPTBITS and
MAXENCRYPTBITS parametersin the useconr1c file for each CORBA application participating
in the network connection, asfollows:

5-2 Using Security in CORBA Applications



Configuring LLE on CORBA Application Links

e The MINENCRYPTBITS parameter specifiesthat at least the defined number of bits are
meaningful.

e The MAXENCRYPTBITS parameter specifiesthat encryption should be negotiated up to the
defined level.

The possible values for the MTNENCRYPTBITS and MAXENCRYPTBITS parameters are 0, 40, and
128. A value of zero means no encryption is used, while 40 and 128 specify the number of
significant bitsin the encryption key.

Load the configuration file by running tmloadcf. The tmloadcf command parses UBBCONFIG
and loads the binary Tuxconr1c file to the location referenced by the Tuxconrzc variable.

Using Security in CORBA Applications 5-3



5-4 Using Security in CORBA Applications



CHAPTERa

Configuring the SSL Protocol

Thistopic includes the following sections:

e Setting Parameters for the SSL Protocol

Defining a Port for SSL Network Connections

Enabling Host Matching

Setting the Encryption Strength

Setting the Interval for Session Renegotiation

Defining Security Parameters for the 11OP Listener/Handler
e Example of Setting Parameters on the ISL System Process
e Example of Setting Command-line Options on the CORBA C++ ORB

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

Using Security in CORBA Applications 6-1



Setting Parameters for the SSL Protocol

To usethe SSL protocol or certificate authentication with the 11OP Listener/Handler or the
CORBA C++ object request broker (ORB), you need to:

e Specify the secure port on which SSL network connections will be accepted.
e Specify the strength that will be used when encrypting data.

e Optionaly, set the interval for session renegotiation (110P Listener/Handler only).

The following sections detail how to use the options of the ISL command or the command-line
options of the CORBA C++ ORB to set these SSL parameters.

Defining a Port for SSL Network Connections

To define aport for SSL network connections:

e Usethe -s option of the ISL command to specify which port of the IIOP Listener/Handler
will listen for secure connections using the SSL protocol. Y ou can configure the [1OP
Listener/Handler to allow only SSL connections by setting the -s option and -n  option of
the ISL command to the same value.

e If you are using aremote CORBA C++ ORB, use the -orRBsecurerort command-line
option on the ORB to specify which port of the ORB will listen for secure connections
using the SSL protocol. You should set this command-line option when using callback
objects or the CORBA Notification Service.

Note: If you are using the SSL protocol with ajoint client/server application, you must specify
aport number for SSL network connections. Y ou cannot use the default.

Defining a secure port for SSL network connections requires the license for the SSL protocol to
beinstalled. If the -s option or the -orRBsecurePort command-line option is executed and a
licenseto enablethe use of the SSL protocol does not exist, the Il OP Listener/Handler or CORBA
C++ ORB will not start.

Enabling Host Matching

The SSL protocol is capable of encrypting messages for confidentiality; however, the use of
encryption does nothing to prevent a man-in-the-middle attack. During a man-in-the-middle
attack, a principal masguerades as the location from which an initiating application retrieves the
initial object references used in the bootstrapping process.

6-2 Using Security in CORBA Applications



Enabling Host Matching

To prevent man-in-the-middle attacks, it is necessary to perform acheck to ensure that the digital
certificate received during an SSL connection isfor the principal for which the connection was
intended. Host Matching is a check that the host specified in the object reference used to make
the SSL connection matches the common name in the subject in the distinguished name specified
in the target’ s digital certificate. Host Matching is performed only by the initiator of an SSL
connection, and confirmsthat the target of arequest is actually located at the same network
address specified by the domain name in the target’ s digital certificate. If this comparison fails,
the initiator of the SSL connection refuses to authenticate the target and drops the SSL
connection. Host Matching is not technically part of the SSL protocol and is similar to the same
check donein Web browsers.

The domain name contained in the digital certificate must match exactly the host information
contained in the object reference. Therefore, the use of DNS host names instead of 1P addresses
is strongly encouraged.

By default, Host Matching in enabled in the I1OP Listener/Handler and the CORBA C++ ORB.
If you need to enable Host Matching, do one of the following:

e Inthe lIOP Listener/Handler, specify the -v option of the ISL command.

e Inthe CORBA C++ ORB, specify the ~-orBpeervalidate command-line option.

Thevauesfor the -v option and the -orBpeervalidate command-line option are asfollows:
e none—no0 host matching is performed.

e detect—if the object reference used to make the SSL connection does not match the host
namein the target’s digital certificate, the IIOP Listener/Handler or the ORB does not
authenticate the target and drops the SSL connection. The detect valueisthe default
value.

e warn—if the object reference used to make the SSL connection does not match the host
namein the target’s digital certificate, the 11OP Listener/Handler or the ORB sends a
message to the user log and continues processing.

If thereis more than one [ 1OP Listener/Handler in an Oracle Tuxedo domain configured for SSL
connections (for example, in the case of fault tolerance), Oracle recommends using DNS alias
names for the I1OP Listener/Handlers or creating different digital certificates for each [1OP
Listener/Handler. The -1 switch on the IlOP Listener can be used to specify the DNS alias name
so that object references will be created correctly.

Using Security in CORBA Applications 6-3



Setting the Encryption Strength

6-4

To set the encryption strength:

e Usethe -z and -z optionsof the ISL command to set the encryption strength in the [1OP
Listener/Handler.

e Usethe -orBminCrypto and -orRBmaxCrypto command-line option on the ORB to set the
encryption strength in the CORBA C++ ORB.

The -z option and the -orRBmincrypto command-line option set the minimum level of
encryption used when an application establishes an SSL connection with the I1OP
Listener/Handler or the CORBA C++ ORB. Thevalid values are 0, 40, 56, and 128. A value of
0 meansthe datais signed but not sealed while 40, 56, and 128 specify the length (in bits) of the
encryption key. If thisminimum level of encryption is not met, the SSL connection fails. The
default is 40.

The -z option and the -orRBmaxCrypto command-line option set the maximum level of
encryption used when an application establishes an SSL connection with the IlOP
Listener/Handler or the CORBA C++ ORB. Thevalid valuesare 0, 40, 56, and 128. Zero means
that datais signed but not sealed while 40, 56, and 128 specify the length (in bits) of the
encryption key. The default minimum value is 40. The default maximum value is whatever
capability is specified by the license.

The -z or -z options and the -orBminCrypto and -oRBmaxCrypto command-line options are
available only if the license for the SSL protocol isinstalled.

To change the strength of encryption currently used in a CORBA application, you need to shut
down the 11 OP Listener/Handler or the ORB.

The combination in which you set the encryption values is important. The encryption val ues set
intheinitiator of an SSL connection need to be a subset of the encryption values set in the target
of an SSL connection.

Table 6-1 lists combinations of encryption values and describes the encryption behavior.

Using Security in CORBA Applications



Table 6-1 Combinations of Encryption Values

Setting the Encryption Strength

-z
-ORBminCrypto

-Z
-ORBmaxCrypto

Description

No value specified

No value specified

If the use of the SSL protocol is specified by

some other command-line option or system
property but no values are specified for
ORBminCrypto and ORBmaxCrypto, these
command-line options or system properties are
assigned their default values.

0 No value specified  Maximum encryption defaults to the maximum
value specified in the license. Tamper/replay

detection and privacy protection are negotiated.

Tamper/replay detection is negotiated. Privacy
protection is not provided.

No vaue specified 0

0 0 Tamper/replay detection is negotiated. Privacy
protection is not provided.
40, 56, 128 No value specified  Maximum encryption defaults to the maximum

value specified in the license. Privacy
protection can be negotiated to the maximum
allowed by the SSL license.

40, 56, 12 Privacy protection can be negotiated to the
value specified by the -z option aslong asitis
less than the maximum allowed by the SSL

license. The -z option defaultsto 40.

No value specified

40, 56, 128 40, 56, 128 Privacy protection can be negotiated between
the values specified by the -z option up to the
value specified by the -z option aslong as the
values are less than the maximum allowed by

the SSL license.

Note: Inal combinationslisted in Table 6-1, the value of the SSL license controls the
maximum bit strength. If abit strength is specified beyond the maximum licensed value,
the I1OP Listener/Handler or ORB will not start and an error will be generated indicating
the bit strength setting isinvalid. Stopping the 11OP Listener/Handler or ORB from

starting, instead of lowering the maximum value and giving only awarning, protects

Using Security in CORBA Applications 6-5



against an incorrectly configured application running with less protection than was
expected.

If acipher that exceeds the maximum licensed hit strength is somehow negotiated, the
SSL connection is not established.

For alist of cipher suites supported by the CORBA security environment, see “ Supported
Cipher Suites’ on page 2-10.

Setting the Interval for Session Renegotiation

Note: You set theinterval for session renegotiation only in the I1OP Listener/Handler.

Use the -r option of the ISL command to control the time between session renegotiations.
Periodic renegotiation of an SSL session refreshes the symmetric keys used to encrypt and
decrypt information which limits the time a symmetric key is exposed. Y ou can keep long-term
SSL connections more secure by periodically changing the symmetric keys used for encryption.

The -r option specifies the renegotiation interval in minutes. If an SSL connection does
renegotiate within the specified interval, the 11 OP Listener/Handler will request the application
to renegotiate the SSL session for inbound connections or actually perform the renegotiation in
the case of outbound connections. The default is O minutes which resultsin no periodic session
renegotiations.

Y ou cannot use session renegotiation when enabling certificate authentication using the -a
option of the ISL command.

Defining Security Parameters for the 110P
Listener/Handler

For the 11OP Listener/Handler to participate in SSL connections, the |1 OP Listener/Handler
authenticates itself to the peer that initiated the SSL connection. This authentication requires a
digital certificate. The private key associated with the digital certificate is used as part of
establishing an SSL connection that results in an agreement between the principal and the peer
(in this case a client application and the I1OP Listener/Handler) on the session key. The session
key isasymmetric key (as opposed to the private-public keys) that is used to encrypt data during
an SSL session. Y ou definethefollowing information for the 11 OP Listener/Handler so that it can
be authenticated by peers:

® SEC_PRINCIPAL_NAME

Specifies the identity of the I|OP Listener/Handler.

Using Security in CORBA Applications



Defining Security Parameters for the [1OP Listener/Handler

® SEC_PRINCIPAL_LOCATION

Specifies the location of the private key file. For example,
STUXDIR/udataobj/security/keys/milozzi.pem.

® SEC_PRINCIPAL_PASSVAR

Specifies an environment variable that holds the pass phrase for the private key of the [1OP
Listener/Handler when the tmloadcf command is not run interactively. Otherwise, you
will be prompted for the pass phrase when you enter the tmloadcf command.

Note: If youdefineany of the security parametersfor thell OP Listener/Handler incorrectly, the
following errors are reported in the ULOG file:

ISH.28014: LIBPLUGIN_CAT:2008:ERROR:No such file or directory
SEC_PRINCIPAL_LOCATION

ISH.28014:ISNAT CAT:1552:ERROR:Could not open private key, erro
=-3011

ISH.28104:ISNAT_CAT:1544:ERROR:Could not perform SSL accept from
host/port//IPADDRESS : PORT

Toresolve the errors, correct information in the security parameters and reboot the |1OP
Listener/Handler.

These parameters are included in the part of the servERs section of the usBconF 1 file that
definesthe ISL system process.

Y ou a'so need to use the tpusradd command to define the |1OP Listener/Handler as an
authorized user in the Oracle Tuxedo domain. Y ou will be prompted for a password for the |1OP
Listener/Handler. Enter the pass phrase you defined for SEC_PRINCIPAL_PASSVAR.

During initialization, the I1OP Listener/Handler includes its principal hame as defined by
SEC_PRINCIPAL_NAME asan argument when calling the authentication plug-in to acquire its
credentials. An I1OP Listener/Handler requires credentials so that it can authenticate remote
client applications that want to interact with the CORBA application, and get authorization and
auditing tokens for remote client applications.

Because the I1OP Listener/Handler must authenticate its own identity to the Oracle Tuxedo
domainin order to become atrusted system process, it is necessary to configure an authentication
server when using the default authentication plug-in. See “Configuring the Authentication
Server” on page 7-2 for more information.

Using Security in CORBA Applications 6-7



Example of Setting Parameters on the ISL System
Process

Y ou set parameters for the SSL protocol in the portion of the serveERrs section of theuseconFIG
that definesinformation for the I SL server process. Listing 6-1 includes code from auBBCONFIG
filethat set parametersto configurethellOP Listener/Handl er for the SSL protocol and certificate
authentication.

Listing 6-1 Using the ISL Command in the UBBCONFIG File

ISL
SRVGRP = SYS_GRP
SRVID = 5
CLOPT = “-A -- -a -z40 -7Z128 -S3579 -n //ICEPICK:2569
SEC_PRINCIPAL_NAME="BLOTTO”
SEC_PRINCIPAL_LOCATION="BLOTTO.pem”
SEC_PRINCIPAL_VAR="AUDIT_PASS”

Example of Setting Command-line Options on the CORBA
C++ ORB

6-8

Listing 6-2 contains sample code that illustrates using the command-line options on the CORBA
C++ ORB to configure the ORB for the SSL protocol.

Listing 6-2 Example of Setting the Command-line Options on the CORBA C++ ORB

ChatClient -ORBid BEA_IIOP
-ORBsecurePort 2100
-ORBminCrypto 40
-ORBMaxCrypto 128

TechTopics

Using Security in CORBA Applications



Example of Setting Command-line Options on the CORBA C++ ORB

Using Security in CORBA Applications 6-9



6-10 Using Security in CORBA Applications



Configuring Authentication

Thistopic includes the following sections:

e Configuring the Authentication Server

Defining Authorized Users

Defining a Security Level

Configuring Application Password Security

Configuring Password Authentication

Sample UBBCONFIG File for Password Authentication

Configuring Certificate Authentication

Sample UBBCONFIG File for Certificate Authentication

Configuring Access Control

e Configuring Security to Interoperate with Older WebL ogic Enterprise Client Applications

Notes: The Oracle Tuxedo CORBA Javaclient and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code

Using Security in CORBA Applications 1-1



samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Configuring the Authentication Server

1-2

Note: You only need to configure the authentication server, if you have specified a value of
USER_AUTH or higher for the securtTy parameter and are using the default
authentication plug-in.

Authentication requires that an authentication server be configured for the purpose of

authenticating users by checking their individual passwords against afile of legal users. The

Oracle Tuxedo system uses a default authentication server called auTrsrv to perform

authentication. AuTHSVR provides a single service, autusve, which performs authentication.

auTHSVC isadvertised by the auTHSVR server as auTHsvc when the security level isset to acL or

MANDATORY_ACL.

For a CORBA application to authenticate users, the value of the autusvc parameter in the
RESOURCES Section of the uBBconF 1 file needs to specify the name of the process to be used as
the authentication server for the CORBA application. The service must be called auTtusvc. If the
AUTHSVC parameter is specified in the rREsourcEs section of the usBconr1G file, the SECURITY
parameter must also be specified with avalue of at least user_aurT. If thevalueis not specified,
an error will occur when the system executes the tmloadcf command. If the -m optionis
configured on the s processin the uBeconr1G file, the auTasve must be defined in the
uBBCONF1G file before the 1s1. process.

In addition, you need to define auTHsvr in the sErvERS section of the ueconr1c file. The
SERVERS Section contains information about the server processes to be booted in the CORBA
application. To add auTHsvc to an application, you need to define autusvc asthe authentication
service and AuTHSVR as the authentication server in theussconric file. Listing 7-1 contains the
portion of the useconr1G file that defines the authentication server.

Listing 7-1 Parameters for the Authentication Server

*RESOURCES
SECURITY USER_AUTH
AUTHSVC “AUTHSVC”

Using Security in CORBA Applications



Defining Authorized Users

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 CLOPT="-A"

If you omit the parameter-value entry autusvc, the Oracle Tuxedo system calls autusvc by
default.

AUTHSVR May be replaced with an authentication server that implements logic specific to the
application. For example, acompany may want to develop a custom authentication server so that
it can use the popular Kerberos mechanism for authentication.

To add a custom authentication service to an application, you need to define your authentication
service and server in the useconr1c file. For example:

*RESOURCES

SECURITY USER_AUTH

AUTHSVC KERBEROS

*SERVERS

KERBEROSSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

Once you configure the default authentication server, the identity of the 11OP Listener/Handler
(as specified in the sEc_PRINCIPAL_NAME parameter in the uBBconrIc file) must be specified
inthe tpusr file. In addition, all the users of the CORBA application must be specified in the
tpusr file. For moreinformation, see “ Defining Authorized Users’ on page 7-3.

Defining Authorized Users

As part of configuring security for a CORBA application, you need to define the principals and
groups of principals who have access to the CORBA application.

Authorized users can be defined in the following ways:

Using Security in CORBA Applications 1-3



7-4

e When using password authentication, authorized users are defined using a username and an
associated password.

e When using certificate authentication, authorized users are identified by their e-mail
address. The e-mail address maps the external identity of a principal represented by a
digital certificate to an identity used by a CORBA application.

Y ou use the tpusradd command to create files containing lists of authorized principals. The
tpusradd command adds anew principal entry to the Oracle Tuxedo security datafiles. This
information is used by the authentication server to authenticate principals. The file that contains
the principalsis called tpusr.

Thefileis acolon-delimited, flat ASCII file, readable only by the system administrator of the
CORBA application. The system file entries have alimit of 512 characters per line. Thefileis
kept in the application directory, specified by the environment variable sapppIR. The
environment variable sapppTR Must be set to the pathname of the CORBA application.

The tpusradd file should be owned by the administrator account. Oracle recommends that the
file be protected so that only the owner hasread and write privilegesfor thefileand all other users
have only read privileges for thefile.

The tpusradd command has the following options:
® -u uid

The user identification number. The UID must be a positive decimal integer below 128K.
The UID must be unique within the list of existing identifiers for the application. The UID
defaults to the next available (unique) identifier greater than 0.

® -g gid

The group identification number. The GID can be an integer identifier or character-string
name. This option defines the new user’s group membership. It defaultsto the other
group (identifier Q).

® -c client_name

A string of printable characters that specifies the name of the principal. The name may not
contain acolon (:). pound sign (#), or anewline (\n). The principal name must be unique
within the list of existing principals for the CORBA application.

® usrname

A string of printable characters that specifies the new login name of the user. The name
may not contain a colon (:). pound sign (#), or anewline (\n). The user name must be
unique within the list of existing users for the CORBA application

Using Security in CORBA Applications



Defining Authorized Users

If you are using the default authentication server, the identity of the IIOP Listener/Handler (as
specifiedinthe sec_pPrINCIPAL_NAME parameter intheuBecoNrIG fil€) must be specifiedinthe
tpusr file. In addition, all the users of the CORBA application must be specified in the tpusr
file

If you are using a custom authentication service, define the 11OP Listener/Handler and the users
of the CORBA application in the user registry of the custom authentication service. In addition,
no file caled tpusr should appear in $apepir. If afile by that name exists, a
CORBA/NO_PERMISSION exception will be raised.

Listing 7-2 includes a sample tpusr file.

Listing 7-2 Sample tpusr File

Usrname Cltname Password Entry Uid GID
milozzi “bar” 2 100 0
smart N 1 1 0

pat “tpsysadmin” 3 0 8192
butler “tpsysadmin” 3 N/A 8192

Note: Usethe tpgrpadd command to add groups of principals to the Oracle Tuxedo security
datafiles.

In addition to the tpusradd and tpgrpadd commands, the Oracle Tuxedo product provides the
following commands to modify the tpusr and tpgrp files:

® tpusrdel
® tpusrmod
® tpgrpdel
® tpgrpmod

For a complete description of the commands, see the Oracle Tuxedo Command Referencein the
Oracle Tuxedo online documentation.

Y ou may already havefiles containing lists of usersand groups on your host system. Y ou can use
them as the user and group files for your CORBA application, but only after converting them to
the format required by the Oracle Tuxedo system. To convert your files, run the tpaclcvt
command, as shown in the following sample procedure. The sample procedure is written for a
UNIX host machine,

Using Security in CORBA Applications 1-5



1. Ensure that you are working on the application MasTER machine and that the application is
inactive.

2. To convert the /etc/password fileinto the format needed by the Oracle Tuxedo system,
enter the following command:

tpaclcvt -u /etc/password

This command creates the tpusr file and stores the converted datain it. If the tpusr file
aready exists, tpaclcvt addsthe converted datato the file, but it does not add duplicate
user information to thefile.

Note: For systems on which a shadow password file is used, you are prompted to enter a
password for each user in thefile.

3. To convert the /etc/group fileinto the format needed by the Oracle Tuxedo system, enter
the following command:
tpaclcvt -g /etc/group

This command creates the tpgrp file and stores the converted datain it. If the tpgrp file
aready exists, tpaclcvt addsthe converted datato the file, but it does not add duplicate
group information to thefile.

Defining a Security Level

1-6

As part of defining security for a CORBA application, you need to define the SsECURITY
parameter in the RESOURCES section of the uBeconF1G file. The securITY parameter hasthe
following format:

*RESOURCES
SECURITY {NONE|APP_PW|USER_AUTH |ACL |MANDATORY_ACL}

Table 7-1 describes the values for the securRITY parameter.

Using Security in CORBA Applications



Defining a Security Level

Table 7-1 Values for the SECURITY Parameter

Value

Description

NONE

Indicates that no password or access checking is performed in the
CORBA application.

Tobj::PrincipalAuthenticator: :get_auth_type ()
returns avalue of TOBJ_NOAUTH.

APP_PW

Indicates that client applications are required to supply an
application password to access the Oracle Tuxedo domain. The
tmloadcf command prompts for an application password.

Tobj: :PrincipalAuthenticator: :get_auth_type ()
returnsavalue of TOBJ_SYSAUTH.

USER_AUTH

Indicates that client applications and the I1OP Listener/Handler
are required to authenticate themselves to the Oracle Tuxedo
domain using a password. The value USER_AUTH issimilar to
APP_PW but, in addition, indicatesthat user authentication will be
done during client initialization. The tmloadcf command
prompts for an application password.

Tobj::PrincipalAuthenticator: :get_auth_type ()
returns avalue of TOBJ_APPAUTH.

No access control checking is performed at this security level.

ACL

Indicates that authentication is used in the CORBA application
and access control checks are performed on interfaces, services,
gueue names, and event names. If an associated ACL isnot found
for aname, it is assumed that permission is granted. The
tmloadcf command prompts for an application password.

Tobj::PrincipalAuthenticator: :get_auth_type
returnsavalue of TOBJ_APPAUTH.

MANDATORY_ACL

Indicates that authentication is used in the CORBA application
and access control checks are performed on interfaces, services,
gueue names, and event names. The value MANDATORY_ACL iS
similar to ACL, but permissionisdenied if an associated ACL is
not found for the name.The tm1l oadc £ command promptsfor an
application password.

Tobj::PrincipalAuthenticator: :get_auth_type
returns avalue of TOBJ_APPAUTH.

Using Security in CORBA Applications

1-1



Note: If the IIOP Listener/Handler is configured for using certificate authentication, the value

of the securITY parameter must be USER_AUTH or greater.

Configuring Application Password Security

To configure application password security, complete the following steps:

1

Ensure that you are working on the application masTerR machine and that the application is
inactive.

Set the securRITY parameter in the RESOURCES section of the uBBconF1G fileto app_pw.

Load the configuration by running the tmloadcf command. The tmloadct command parses
UBBCONFIG and loadsthe binary Tuxconr1c fileto thelocation referenced by the Tuxconr1g
variable.

The system prompts you for apassword. The password you enter may be up to 30 characters
long. It becomes the password for the application and remainsin effect until you changeit by
using the passwd parameter of the tmadmin command.

Distribute the application password to authorized users of the application through an offline
means such as telephone or |etter.

Configuring Password Authentication

Password authentication requires that in addition to the application password, each client
application must provide avalid username and user-specific data, such as a password, to interact
with the CORBA application. The password must match the password associated with the
username stored in the tpusr file. The checking of user passwords against the
username/password combination in the tpusr fileis carried out by the authentication service
auTHSVC, Which is provided by the authentication server AUTHSVR.

1-8

To enable password authentication, compl ete the following steps:

1.

Define usersand their associated passwordsinthe tpusr file. For moreinformation about the
tpusr file, see “Defining Authorized Users’ on page 7-3.

Ensure that you are working on the application masTeR machine and that the application is
inactive.

Open uBBcONFIG With atext editor and add the following lines to the REsourcEs and
SERVERS Sections:

Using Security in CORBA Applications



Sample UBBCONFIG File for Password Authentication

*RESOURCES

SECURITY  USER_AUTH

AUTHSVC “AUTHSVC”

*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes the tmboot command to pass only the default command-line options
(invoked by "-a") to auTHSVR When the tmboot command starts the application.

4. Load the configuration by running the tmloadcf command. The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1c fileto thelocation referenced by the Tuxconr1c
variable.

5. The system prompts you for apassword. The password you enter may be up to 30 characters
long. It becomes the password for the application and remainsin effect until you changeit by
using the passwd parameter of the tmadmin command.

6. Distribute the application password to authorized users of the application through an offline
means such as telephone or |etter.

Sample UBBCONFIG File for Password Authentication

Listing 7-3 includes aussconric filefor an application which uses password authentication.
The key sections of the ursconF1c file are noted in boldface text.

Listing 7-3 Sample UBBCONFIG File for Password Authentication

*RESOURCES
IPCKEY 55432
DOMAINID securapp
MASTER SITE1
MODEL SHM
LDBAL N

SECURITY USER_AUTH
AUTHSVR “AUTHSVC”

*MACHINES

Using Security in CORBA Applications 1-9



"ICEAXE"
LMID = SITELl
APPDIR = "D:\TUXDIR\samples\corba\SECURAPP"
TUXCONFIG = "D:\TUXDIR\samples\corba\SECURAPP\results
\tuxconfig"
TUXDIR = "D:\Tux8"
MAXWSCLIENTS = 10
*GROUPS
SYS_GRP
LMID = SITEl
GRPNO =1
APP_GRP
LMID = SITE1l
GRPNO =2

*SERVERS
DEFAULT:
RESTART
MAXGEN
AUTHSVR

SRVGRP = SYS_GRP
SRVID =1
RESTART = Y
GRACE = 60
MAXGEN =2
TMSYSEVT
SRVGRP = SYS_GRP
SRVID 1
TMFFNAME
SRVGRP
SRVID
CLOPT
TMFFNAME
SRVGRP
SRVID
CLOPT
TMFFNAME
SRVGRP

I I
UK

SYS_GRP
2
oA —— -N -M"

SYS_GRP

I 1}
E)
1
b
1
1
|
2

SYS_GRP

Using Security in CORBA Applications



Configuring Certificate Authentication

SRVID = 4

CLOPT = "-A -- -F"
simple_server

SRVGRP = APP_GRP

SRVID =1
RESTART = N
ISL
SRVGRP = SYS_GRP
SRVID =5
CLOPT = “-A -- -n //PCWIZ::2500"

SEC_PRINCIPAL_NAME="IIOPListener"
SEC_PRINCIPAL_PASSVAR="ISH_PASS"

Configuring Certificate Authentication

Certificate authentication uses the SSL protocol so you need to install the license for the SSL
protocol and configure the SSL protocol before you can use certificate authentication.
Information about installing thelicense for the SSL protocol can befound in Installing the Oracle
Tuxedo System. For information about configuring the SSL protocol, see * Configuring the SSL
Protocol” on page 6-1.

Y ou aso need an LDAP-enabled directory and certificate authority in place before using
certificate authentication in aCORBA application. Y ou can choose any L DAP-enabled directory
service. Y ou can also choosethe certificate authority from which to obtain certificatesand private
keys used in a CORBA application. For more information, see “Managing Public Key Security”
on page 4-1.

To enable certificate authentication, compl ete the following steps:

Install the license for the SSL protocoal.

Set up an LDAP-enabled directory service.

Obtain a certificate and private key for the I1OP Listener/Handler from a certificate authority.

Obtain a certificate and private key for the CORBA application from a certificate authority.

o c w DdPRE

Store the private keys for the CORBA application in the Home directory of the user or in the
following directories:

Using Security in CORBA Applications 1-11



1-12

Windows 2003
$TUXDIR% \udataobj\security\keys
UNIX

$TUXDIR/udataobj/security/keys

6. Publish the certificates for the I1OP Listener/Handler, the CORBA application, and the
certificate authority in the LDAP-enabled directory service.

7. Definethe sEc_PRINCIPAL, SEC_PRINCIPAI_LOCATION, and SEC_PRINCIPAI_PASSVAR
for the ISL server process in the usconric file. For more information, see “Defining
Security Parameters for the [1OP Listener/Handler” on page 6-6.

8. Usethe tpusrada command to define the authorized users of your CORBA application and
[1OP Listener/Handler. Use the e-mail addresss of the user in the tpusr file. For more
information about the tpusr file, see“Defining Authorized Users’ on page 7-3. Usethe
phase phrase you defined in sEc_PRINCIPAL_PASSVAR as the password for the [1OP
Listener/Handler.

9. Defineaport onthe llOP Listener/Handler for secure communications using the -s option of
the ISL command. For more information, see “ Defining a Port for SSL Network
Connections’ on page 6-2.

10. Enable certificate authentication in the 11 OP Listener/Handler using the -a option of the ISL
command.

11. Create a Trusted Certificate Authority file (trust_ca. cer) that defines the certificate
authorities trusted by the CORBA application. For more information, see “ Defining the
Trusted Certificate Authorities” on page 4-7.

12. Open uBBCONFIG With atext editor and add the following lines to the REsourcEs and
SERVERS Sections:

*RESOURCES
SECURITY USER_AUTH

13. Load the configuration by running the tm1oadcf command. The tmloadcf command parses
uBBCONFIG and loadsthe binary Tuxconric fileto thelocation referenced by the TuxconrFIc
variable.

14. Optionally, create a Peer Rulesfile (peer_val . rul) for both the CORBA application and the
I1OP Listener/Handler. For more information, see “Creating a Peer Rules File” on page 4-8.

15. Optionally, modify the LDAP search filefilter to reflect the hierarchy in placein your
enterprise. For more information, see “ Editing the LDAP Search Filter File” on page 4-4.

Using Security in CORBA Applications



Sample UBBCONFIG File for Certificate Authentication

To enable certificate authentication, complete one of the following:

e Usethe -a option of the ISL command to specify that certificate authentication must be
used by applications connecting to the 11 OP Listener/Handler.

e Usethe -orBmutualauth command-line option on the ORB to specify that certificate
authentication must be used by applications connecting to the CORBA C++ ORB.

Enabling certificate authentication requiresthe license for the SSL protocol to beinstalled. If the
-a option or the -orBmutualauth command-line option is executed and alicense to enable the
use of the SSL protocol does not exist, the I1OP Listener/Handler or CORBA C++ ORB will not
start.

Sample UBBCONFIG File for Certificate Authentication

Listing 7-4 includes auseconr1c filefor a CORBA application which uses certificate
authentication. The key sections of the uBeconF1G file are noted in boldface text.

Listing 7-4 Sample UBBCONFIG File for Certificate Authentication

*RESOURCES
IPCKEY 55432
DOMAINID simpapp
MASTER SITE1l
MODEL SHM
LDBAL N

SECURITY USER_AUTH
AUTHSVR “AUTHSVC”

*MACHINES
"ICEAXE"
LMID = SITE1l
APPDIR = "D:\TUXDIR\samples\corba\SIMPAP~1"
TUXCONFIG = "D:\TUXDIR\samples\corba\SIMPAP~1
\results\tuxconfig"
TUXDIR = "D:\TUX8"
MAXWSCLIENTS = 10
*GROUPS

Using Security in CORBA Applications 1-13



SYS_GRP

LMID = SITEl
GRPNO =1
APP_GRP
LMID = SITELl
GRPNO =2
*SERVERS
DEFAULT:
RESTART =Y
MAXGEN = 5
AUTHSVR
SRVGRP = SYS_GRP
SRVID =1
RESTART = Y
GRACE = 60
MAXGEN = 2
TMSYSEVT
SRVGRP = SYS_GRP
SRVID =1
TMFFNAME
SRVGRP = SYS_GRP
SRVID =2
CLOPT = "-A -- -N -M"
TMFFNAME
SRVGRP = SYS_GRP
SRVID =3
CLOPT = "-A -- -N"
TMFFNAME
SRVGRP = SYS_GRP
SRVID =4
CLOPT = "-A -- -F"

simple_server
SRVGRP = APP_GRP

SRVID =1
RESTART = N

ISL
SRVGRP = SYS_GRP

1-14 Using Security in CORBA Applications



Configuring Access Control

SRVID =5

CLOPT = "-A -- -a -z40 -Z128 -S2458 -n //ICEAXE:2468"
SEC_PRINCIPAL_ NAME="IIOPListener"

SEC_PRINCIPAL_ LOCATION="IIOPListener.pem"

SEC_PRINCIPAL_ PASSVAR="ISH PASS"

Configuring Access Control

Note:  Access control only applies to the default authorization implementation. The default
authorization provider for the CORBA security environment does not enforce access
control checks. In addition, the setting of the secur1TY parameter in the ussconFIc file
does not control or enforce access control used by third-party authorization
implementation.

There are two levels of access control security: optional access control list (acr) and mandatory
access control list (manDaTORY_AcL). Only when users are authenticated to join an application
does the access control list become active.

By using an access control list, a system administrator can organize users into groups and
associate the groupswith objectsthat the member users have permission to access. Access control
is done at the group level for the following reasons:

e System administration is simplified. It is easier to give a group of people access to a new
object than it isto give individual users access to the object.

e Performance isimproved. Because access permission needs to be checked for each
invocation of an entity, permission should be resolved quickly. Because there are fewer
groups than users, it is quicker to search through alist of privileged groupsthanitisto
search through alist of privileged users.

When using the default authorization provider, the access control checking featureis based onthe
following files that are created and maintained by the system administrator:

e tpusr containsalist of users
e tpgrp containsalist of groups

e tpacl containsalist of ACLs

Using Security in CORBA Applications 1-15



1-16

Configuring Optional ACL Security

The difference between act. and MaNDATORY_ACL isthe following.

e In acL mode, a service request will be allowed if thereis not a specific ACL.

e |Nn MANDATORY_ACL Mode, the service request is denied if thereis not a specific ACL.

Optional ACL Security requires that each client provide an application password, a username,
and user-specific data, such as a password, to join the application.

To configure optional ACL security, complete the following steps:

1

Ensure that you are working on the application masTER machine and that the application is
inactive.

Open uBBcoNFIG With atext editor and add the following lines to the REsourcEs and
SERVERS Sections:

*RESOURCES

SECURITY ACL
AUTHSVC “AUTHSVC”
*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

cLopT="-a" causesthe tmboot command to pass only the default command-line options
(invoked by "-ar) to AuTHSVR When the tmboot command starts the application. By
default, auTHSVR USes the user information in the tpusr file to authenticate clients that
want to interact with the CORBA application.

Load the configuration by running the tm1oadcf command. The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1g fileto thelocation referenced by the TuxconrIc
variable.

The system prompts you for a password. The password you enter may be up to 30 characters
long. It becomes the password for the application and remainsin effect until you change it by
using the passwa command of tmadmin.

Distribute the application password to authorized users of the application through an offline
means such as telephone or |etter.

Using Security in CORBA Applications



Configuring Access Control

Configuring Mandatory ACL Security

Mandatory ACL security level requires that each client provide an application password, a
username, and user-specific data, such as a password, to interact with the CORBA application.

To configure mandatory ACL security, perform the following steps:

1

Ensure that you are working on the application masTeEr machine and that the application is
inactive.

Open uBBCONFIG With atext editor and add the following lines to the REsourcEs and
SERVERS Sections:

*RESOURCES

SECURITY MANDATORY_ACL
AUTHSVC . .AUTHSVC
*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes the tmboot command to pass only the default command-line options
(invoked by "-a") to auTHSVR When the tmboot command starts the application. By
default, auTHSVR Uses the client user information in the tpusr file named to authenticate
clients that want to join the application. The tpusr file residesin the directory referenced
by the first pathname defined in the application’s appDIR variable.

Load the configuration by running the tmloadcf command. The tmloadct command parses
UBBCONFIG and loadsthe binary Tuxconr1c fileto thelocation referenced by the Tuxconr1c
variable.

The system prompts you for apassword. The password you enter may be up to 30 characters
long. It becomes the password for the application and remainsin effect until you change it by
using the passwa command of tmadmin.

Distribute the application password to authorized users of the application through an offline
means such as telephone or |etter.

Setting ACL Policy Between CORBA Applications

Asthe administrator, you use the following configuration parametersto set and control the access
control list (ACL) policy between CORBA applications that reside in different Oracle Tuxedo
domains.

Using Security in CORBA Applications 1-11



Parameter Name Description

Setting

ACL_POLICY in DMCONFIG May appear in the DM_REMOTE_DOMAINS
(TA_DMACLPOLICY inDM_MIB) section of the DMCONF IG file for each remote

domain access point. Its value for a particular
remote domain access point determines whether
or not the local domain gateway modifies the
identity of service requests received from the
remote domain.*

LOCAL Or GLOBAL.
Default is LOCAL.

LOCAL means modify
the identity of service
requests, and GLOBAL
means pass service
reguests with no
change. DOMAINID
string for the remote
domain access point.

* A remote domain access point is aso known as an RDOM (pronounced “are dom”) or simply remote domain.

1-18

The following bullets explain how the acL_prorIcy configuration affects the operation of local

domain gateway (GWTDOMATIN) ProCesses.

e When using alocal ACL policy, each domain gateway (cwrpomMa1N) modifiesinbound
CORBA client requests (requests originating from the remote application and received over
the network connection) so that they take on the pomainID for the remote domain access
point and thus have the same access permissions as that identity. Each domain gateway

passes outbound client requests without change.

In this configuration, each application has an ACL database containing entries only for

usersin its own domain.

e When using aglobal ACL policy, each domain gateway (cwrpomMaIn) passesinbound and
outbound CORBA client requests without change. In this configuration, each application
has an ACL database containing entries for usersin its own domain as well as usersin the

remote domain.

Impersonating the Remote Domain Gateway

If the domain gateway receivesaclient request from aremote domain for which the act,_porzcy
parameter is set (or defaulted) to r.ocar in the local mconric file, the domain gateway removes
any tokensfrom the request and creates an application key containing the poma1nID Of theremote

domain access point.

Using Security in CORBA Applications



Configuring Security to Interoperate with Older WebLogic Enterprise Client Applications

Example DMCONFIG Entries for ACL Policy

In Listing 7-5, the connection through the remote domain access point bo1 is configured for
global ACL in thelocal pMconr1c file, meaning that the domain gateway process for domain
access point c01 passes client requests from and to domain access point bo1 without change.

Listing 7-5 Sample DMCONFIG File for ACL Policy

*DM_LOCAL_DOMAINS
# <LDOM name> <Gateway Group name> <domain type> <domain id>
# [<connection principal name>] [<security>]...
c01 GWGRP=bankgl
TYPE=TDOMAIN
DOMAINID="BA.CENTRALOL"
CONN_PRINCIPAL_NAME="BA.CENTRALO1l"
SECURITY=DM_PW

*DM_REMOTE_DOMAINS
# <RDOM name> <domain type> <domain id> [<ACL policy>]
# [<connection principal name>] [<local principal name>]...
b0l TYPE=TDOMAIN
DOMAINID="BA.BANKO1"
ACL_POLICY=GLOBAL
CONN_PRINCIPAL_NAME="BA.BANKO0O1"

Configuring Security to Interoperate with Older
WebLogic Enterprise Client Applications

It may be necessary for CORBA erver applications in an Oracle Tuxedo domain to securely
interoperate with client applications that were built with the security features availablein the 4.2
and 5.0 releases of the WebL ogic Enterprise product. To allow CORBA server applicationsto
interoperate with older, secure client applications, you need to either set the cLopT -t optionin

Using Security in CORBA Applications 1-19



1-20

the uBsconF1c file or specify the -orBinterop command-line option on the CORBA object
request broker (ORB).

By setting the cLopT -t option or specifying the -orBinterop command-line option, you are
lowering the effective level of security for a CORBA server. Therefore, the use of compatibility
mode should be carefully considered before enabling the mode in a server application.

Y ou need to set the cLopT -t option on any server applications that will interoperate with the
older client application. The copT -t option isspecified in the *sErvERs section of
Listing 7-6.

Listing 7-6 Example UBBCONFIG File Entries for Interoperability

*SERVERS
SecureSrv SRVGRP=group_name SRVID=server_number
CLOPT=A -t..

If you are using aremote CORBA C++ ORB, specify the-orBinterop command-line option on
the ORB to allow the ORB to interoperate with client application using the security featuresin
the 4.2 or 5.0 releases of the WebL ogic Enterprise product.

Using Security in CORBA Applications



CHAPTERa

Configuring Security Plug-ins

This topic includes the Registering the Security Plug-ins (SPIs) section.

Notes. The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBSs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

Registering the Security Plug-ins (SPIs)

The CORBA and ATMI environments in the Oracle Tuxedo product use a common transaction
processing (TP) infrastructure that consists of a set of core services, such as security. The TP
infrastructure is available to CORBA applications through well defined interfaces. These
interfaces allow system administrators to change the default behavior of the TP infrastructure by
loading and linking their own service code modules, referred to as security plug-ins.

In order to use asecurity plug-in, you need to register the security plug-in with the Oracle Tuxedo
system. The registry of the Oracle Tuxedo system is a disk-based repository for storing
information related to the security plug-ins. Initially, this registry holds information about the
default security plug-ins. Additional entries are made to the registry as custom security plug-ins
are added to the Oracle Tuxedo system. The registry entry for asecurity plug-in isaset of binary
files that stores information about the plug-in. Thereis one registry per Oracle Tuxedo

Using Security in CORBA Applications 8-1



8-2

installation. Every client application, server application, and server machine in a particular
CORBA application must use the same set of security plug-ins.

Theregistry islocated in the following directory:
Windows 2003

$STUXDIR\udataobj

UNIX

$TUXDIR/udataobj

The system administrator of a CORBA application in which custom security plug-insare used is
responsible for registering those plug-ins. A system administer can register security plug-insin
the registry of the Oracle Tuxedo system only from the local machine. That is, a system
administrator cannot register security plug-inswhilelogged on to the host machine from aremote
location.

The following commands are available for managing security plug-ins:
m epifreg—for registering a security plug-in
m epifunreg—for unregistering a security plug-in

m epifregedt—for editing registry information

Instructions for using these commands are available in Developing Security Services for ATMI
and CORBA Environments. (Thisdocument containsthe specificationsfor the Security SPIs, and
describes the Oracle Tuxedo plug-in framework feature that makes the dynamic loading and
linking of security plug-ins possible.) To obtain this document, see your Oracle account
executive.

When installing custom security plug-ins, the security vendor that provided the plug-in should
provide instructions for using the commands to set up the registry for the Oracle Tuxedo system
in order to access the customer security plug-ins.

Using Security in CORBA Applications



Part lll  Security Programming

Writing a CORBA Application That Implements Security
Building and Running the CORBA Sample Applications
Troubleshooting

Hybrid Templates for FrameMaker 5.5






CHAPTERa

Building and Running the CORBA
Sample Applications

The topic includes the following sections:
e Building and Running the Security Sample Application
e Building and Running the Secure Simpapp Sample Application

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

Building and Running the Security Sample Application

The Security sampl e application demonstrates using password authenti cation. For instructionsfor
building and running the Security sample application, see the Guide to the CORBA University
Sample Applications.

Using Security in CORBA Applications 10-1



Building and Running the Secure Simpapp Sample
Application

The Secure Simpapp sample application demonstrates using the SSL protocol and certificate
authentication to protect communications between client applications and the Oracle Tuxedo
domain.

To build and run the Secure Simpapp sampl e application, complete the following steps:
Copy thefilesfor the Secure Simpapp sample application into awork directory.
Change the protection attribute on the files for the Secure Simpapp sample application.

Verify the environment variables.

A w NP

Execute the runme command.

Before you can use the Secure Simpapp sample application, obtain a certificate and private key
(z10PListener.pem) for the IIOP Listener/Handler from the certificate authority in your
enterprise and load the certificate in a Lightweight Directory Access Protocol (LDAP)-enabled
directory service. The runme command prompts you for the pass phrase for the private key for
the I1OP Listener/Handler.

Step 1: Copy the Files for the Secure Simpapp Sample
Application into a Work Directory

Y ou need to copy the files for the Secure Simpapp sample application into awork directory on
your local machine.

The files for the Secure Simpapp sampl e application are located in the following directories:
Windows 2003

drive:\TUXdir\samples\corba\simpappSSL

UNIX

/usr/local/TUXdir/samples/corba/simpappSSL

You will usethefileslisted in Table 9-1 to build and run the Secure Simpapp sample application.

10-2 Using Security in CORBA Applications



Building and Running the Secure Simpapp Sample Application

Table 9-1 Files Included in the Secure Simpapp Sample Application

File

Description

Simple.idl

The OMG IDL code that declaresthe Simple and
SimpleFactory interfaces.

Simples.cpp

The C++ source code that overrides the default
Server::initialize and
Server: :release methods.

Simplec.cpp

The source code for the CORBA C++ client
application in the Secure Simpapp sample
application.

Simple_i.cpp

The C++ source code that implementsthe Simple
and SimpleFactory methods.

Simple_i.h

The C++ header file that defines the implementation
of the simple and SimpleFactory methods.

Readme.html

Thisfile provides the latest information about
building and running the Secure Simpapp sample
application.

runme . cmd

The Windows 2003 batch filethat buildsand runsthe
Secure Simpapp sample application.

runme . ksh

The UNIX Korn shell script that builds and executes
the Secure Simpapp sample application.

Using Security in CORBA Applications 10-3



10-4

Tahle 9-1 Files Included in the Secure Simpapp Sample Application (Continued)

File Description

makefile.mk The makefile for the Secure Simpapp sample
application on the UNIX operating system. Thisfile
isused to manually build the Secure Simpapp sample
application. Refer to the Readme . htm1 filefor
information about manually building the Secure
Simpapp sample application. The UNIX make
command needs to be in the path of your machine.

makefiles.nt The makefile for the Secure Simpapp sample

application on the Windows 2003 operating system.
Thismakefilecanbeused directly by theVisual C++
nmake command. Thisfileisused to manually build
the Secure Simpapp sample application. Refer to the
Readme . html filefor information about manually
building the Secure Simpapp sample application.
The Windows 2003 nmake command needsto bein
the path of your machine.

Step 2: Change the Protection Attribute on the Files for the
Secure Simpapp Sample Application

During the installation of the Oracle Tuxedo software, the sample application files are marked
read-only. Before you can edit or build the files in the Secure Simpapp sample application, you
need to change the protection attribute of the files you copied into your work directory, as
follows:

Windows 2003

prompt>attrib -r drive:\workdirectory\*.*
UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of runme. ksh
to give execute permission to thefile, as follows:

ksh prompt>chmod +x runme.ksh

Using Security in CORBA Applications



Building and Running the Secure Simpapp Sample Application

Step 3: Verify the Settings of the Environment Variables

Before building and running the Secure Simpapp sampl e application, you need to ensure that
certain environment variables are set on your system. |n most cases, these environment variables
are set as part of the installation procedure. However, you need to check the environment
variables to ensure they reflect correct information.

Table 9-2 lists the environment variables required to run the Secure Simpapp sample application.

Table 9-2 Required Environment Variables for the Secure Simpapp Sample Application

Environment Variable

Description

APPDIR

The directory path where you copied the sample application files. For example:
Windows 2003

APPDIR=c: \work\simpappSSL

UNIX

APPDIR=/usr/work/simpappSSL

TUXCONFIG

The directory path and name of the configuration file. For example:
Windows 2003

TUXCONFIG=c: \work\simpappSSL\tuxconfig

UNIX

TUXCONFIG=/usr/work/simpappSSL/tuxconfig

TOBJADDR

The host name and port number of the |1OP Listener/Handler. The port number must
be defined as a port for SSL communications. For example:

Windows 2003
TOBJADDR=trixie::1111
UNIX
TOBJADDR=trixie::1111

RESULTSDIR

A subdirectory of APPDIR where filesthat are created as aresult of executing the
runme command are stored. For example:

Windows 2003
RESULTSDIR=c: \workdirectory\
UNIX

RESULTSDIR=/usr/local/workdirectory/

Using Security in CORBA Applications 10-5



To verify that the information for the environment variables defined during installation is correct,
perform the following steps:

Windows 2003
1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.
The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings of the environment variables.
UNIX

ksh prompt>printenv TUXDIR
To change the settings, perform the following steps:
Windows 2003

1. On the Environment page in the System Properties window, click the environment variable
you want to change or enter the name of the environment variable in the variable field.

2. Enter the correct information for the environment variablein the value field.

3. Click OK to save the changes.
UNIX

ksh prompt>export TUXDIR=directorypath

Step 4: Execute the runme Command

The runme command automates the following steps:
1. Setting the system environment variables.
2. Loading the uBBconFIc file.

3. Compiling the code for the client application.

10-6 Using Security in CORBA Applications



Building and Running the Secure Simpapp Sample Application

Compiling the code for the server application.
Starting the server application using the tmboot command.

Starting the client application.

N o g A

Stopping the server application using the tmshutdown command.

Note: You can aso run the Secure Simpapp sample application manually. The steps for
manually running the Secure Simpapp sample application are described in the
Readme.html file.

To build and run the Secure Simpapp sampl e application, enter the runme command, as follows:
Windows 2003

prompt>cd workdirectory

prompt>runme

UNIX

ksh prompt>cd workdirectory
ksh prompt>./runme.ksh
The Secure Simpapp sample application runs and prints the following messages:

Testing simpapp
cleaned up
prepared
built
loaded ubb
booted
ran
shutdown
saved results

PASSED

During execution of the runme command, you are prompted for apassword. Enter the pass phrase
of the private key of the [IOP Listener/Handler.

Table 9-3 lists the C++ files in the work directory generated by the runme command.

Using Security in CORBA Applications 10-7



10-8

Table 9-3 C++ Files Generated by the runme Command

File

Description

Simple_c.cpp

Generated by the id1 command, thisfile contains
the client stubs for the SimpleFactory and
Simple interfaces.

Simple_c.h

Generated by the id1 command, thisfile contains
theclient definitionsof the SimpleFactory and
Simple interfaces.

Simple_s.cpp

Generated by the id1 command, thisfile contains
the server skeletonsfor thesimpleFactory and
Simple interfaces.

Simple_s.h

Generated by the id1 command, thisfile contains
the server definition for the SimpleFactory
and Simple interfaces.

Table 9-4 listsfilesin the REsuLTs directory generated by the runme command.

Table 9-4 Files in the results Directory Generated by the runme Command

File Description

input Contains the input that the runme command
provides to the CORBA client application.

output Containsthe output produced when the runme

command executes the CORBA client
application.

expected_output

Contains the output that is expected when the
CORBA client application is executed by the
runme command. The datain the output file
is compared to the datain the
expected_output fileto determine whether
or not the test passed or failed.

log

Contains the output generated by the runme
command. If the runme command fails, check
thisfile for errors.

Using Security in CORBA Applications



Building and Running the Secure Simpapp Sample Application

Tahle 9-4 Files in the results Directory Generated by the runme Command (Continued)

File Description

setenv.cmd Contains the commands to set the environment
variables needed to build and run the Secure
Simpapp sample application on the Windows
2003 operating system platform.

stderr Generated by the tmboot command, whichis
executed by the runme command.

stdout Generated by the tmboot command, whichis
executed by the runme command.

tmsysevt.dat Containsfiltering and notification rules used by
the TMSY SEVT (system event reporting)
process. Thisfileis generated by the tmboot
command in the runme command.

tuxconfig A binary version of the UBBCONF IG file.

ULOG.<date> A log file that contains messages generated by
the tmboot command.

Using the Secure Simpapp Sample Application

Run the server application in the Secure Simpapp sample application, as follows:

Windows 2003

prompt>tmboot -y

UNIX

ksh prompt>tmboot -y

Run the CORBA C++ client application in the Secure Simpapp sample application as follows:
Windows 2003

prompt> set TOBJADDR=corbalocs://host:port

prompt> simple_client -ORBid BEA_IIOP -ORBpeerValidate none
String?

Hello World

Using Security in CORBA Applications 10-9



HELLO WORLD
hello world

UNIX

ksh prompt>export TOBJADDR=corbalocs://host:port

ksh prompt>simple_client -ORBid BEA_IIOP -ORBpeerValidate none
String?

Hello World

HELLO WORLD

hello world

Windows 2003

prompt>tmshutdown -y
prompt>nmake -f makefile.nt clean
UNIX

ksh prompt>tmshutdown -y

ksh prompt>make -f makefile.mk clean

10-10 Using Security in CORBA Applications



cHAPTERﬂ

Writing a CORBA Application That
Implements Security

Thistopic includes the following sections:

Using the Bootstrapping Mechanism

Using Password Authentication

Using Certificate Authentication

Using the Interoperable Naming Service Mechanism

Using the Invocations Options Required() Method

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

Using the Bootstrapping Mechanism

Note: This mechanism should be used with the Oracle CORBA client applications.

The Bootstrap object in the Oracle Tuxedo CORBA environment has been enhanced so that users
can specify that all communication to agiven I1OP Listener/Handler be protected. The Bootstrap

Using Security in CORBA Applications 9-1



object supports corbaloc and corbalocs Uniform Resource Locator (URL) addressformatsto
be used when specifying the location of the IOP Listener/Handler. The type of security provided
depends on the format of URL used to specify the location of the I10P Listener/Handler.

Aswith the Host and Port address format, you use the URL address formats to specify the
location of the 11OP Listener/Handler, but the bootstrapping process behaves differently. When
using the corbaloc or corbalocs URL addressformat, theinitial connection to the I1OP
Listener/Handler is deferred until either:

e The principal uses password authentication with either the
Tobj: :PrincipalAuthenticator: : Logon Of the
SecurityLevel2::PrincipalAuthenticator: :authenticate methods.

e The principal cdlsthe Tobj_Bootstrap::resolve_initial references method
using an object 1D value other than SecurityCurrent.

Using the corbalocs URL address format indicates that the SSL protocol is used to protect at
least the integrity of the connection between the principal and the I1OP Listener/Handler.

Table 10-1 highlights the differences between the two URL address formats.

Table 10-1 Differences Between corhaloc and corbalocs URL Address Formats

URL Address Formats Functionality

corbaloc By default, invocations on the I1OP Listener/Handler are unprotected.

Configuring the I1OP Listener/Handler for the SSL protocol is optional.

A principal can secure the bootstrapping process by using the
authenticate () method of the
SecurityLevel2::PrincipalAuthenticator interfaceand the
invocation_options_required () method of the
SecurityLevel2: :Credentials interfaceto specify that certificate
authentication is to be used.

corbalocs Invocations on the [1OP Listener/Handler are protected and the I1OP

Listener/Handler or the CORBA C++ ORB must be configured to enable the use
of the SSL protocol. For more information, see “ Configuring the SSL Protocol”
on page 6-1.

9-2

Both the corbaloc and corbalocs URL address formats provide stringified object references
that are easily manipulated in both TCP/IP and Domain Name System (DNS) environments. The
corbaloc and corbalocs URL addressformats contain aDNS-style host name or an |P address
and port.

Using Security in CORBA Applications



Using the Bootstrapping Mechanism

The URL addressformatsfollow and extend the definition of object URL s adopted by the Object
Management Group (OMG) as part of the Interoperable Naming Service submission. The Oracle
Tuxedo software also extends the URL format described in the OMG Interoperable Naming
Service submission to support a secure form that is modeled after the URL for secure HTTP, as
well as to support functionality in previous releases of the WebL ogic Enterprise product.

Listing 10-1 contains examples of the new URL address formats.

Listing 10-1 Examples of the corbaloc and corbalocs URL Address Formats

corbaloc://555xyz.com:1024, corbaloc://555backup.com:1022,
corbaloc://555last.com:1999

corbalocs://555xyz.com:1024, (corbalocs://555backup.com: 1022 |corbalocs://55
5last.com:1999)

corbaloc://555xyz.com:1111

corbalocs://24.128.122.32:1011, corbalocs://24.128.122.34

As an enhancement to the URL syntax described in the OMG Interoperable Naming Service
submission, the Oracle Tuxedo product extends the syntax to support alist of multiple URLS,
each with a different scheme. Listing 10-2 contains examples of specifying multiple URLSs.

Listing 10-2 Examples of Specifying Multiple URL Address Formats

corbalocs://555xyz.com:1024, corbaloc://555xyz.com:1111
corbalocs://ctxobj.com:3434,corbalocs://mthd.com:3434, corbaloc://force.com:111
1

Inthe examplesin Listing 10-2, if the parser reachesthe URL corbaloc://force.com:1111,
it resetsitsinternal state asif it had never attempted secure connections, and then begins
attempting unprotected connections. This situation occursif the client application has not set any
SSL parameters on the Credential s object.

The following sections describe the behavior when using the different address formats of the
Bootstrap object.

Using Security in CORBA Applications 9-3



9-4

Using the Host and Port Address Format

If aCORBA client application uses the Host and Port address format of the Bootstrap object, the
constructor method of the Bootstrap object constructs an object reference using the specified host
name and port number. The invocation to the [1OP Listener/Handler is made without the
protections offered by the SSL protocol.

The client application can still authenticate using password authentication. However, since the
bootstrapping processis performed over an unprotected and unverified link, all communications
are vulnerable to the following security attacks:

e The Man-in-the-Middle attack, because there was no verification that the principal to
which the connection was made was the desired principal .

e The Denia of Service attack, because no object references were returned, the object
references returned were invalid, or the security token was invalid.

e The Sniffer attack, because the information was sent in the clear so that anyone with a
packet sniffer can see the content of a message that was not encrypted (for example, only
the username/password information is encrypted).

e The Tamper attack, because the integrity of the information is not protected. The contents
of the message could be changed and the change would not be detected.

e The Replay attack, because the same request can be sent repeatedly without detection.

Note: If the IIOP Listener/Handler is configured for the SSL protocol and the Host and Port
address format of the Bootstrap object is used, the invocation on the specified CORBA
object resultsin a INVALID_DOMAIN exception.

Using the corbaloc URL Address Format

By default, theinvocation on the I1OP Listener/Handler is unprotected when using the corbaloc
URL addressformat and password authentication. Therefore, all communications are vulnerable
to the following security attacks:

e The Man-in-the-Middle attack, because there was no verification that the principal to
which the connection was made was the desired principal .

e The Denia of Service attack, because no object references were returned, the object
references returned were invalid, or the security token was invalid.

Using Security in CORBA Applications



Using Password Authentication

e The Sniffer attack, because the information was sent in the clear so that anyone with a
packet sniffer can see the content of a message that was not encrypted (for example, only
the username/password information is encrypted).

e The Tamper attack, because the integrity of the information is not protected. The content of
the message could be changed and the change would not be detected.

e The Replay attack, because the same request can be sent repeatedly without detection.

Y ou can protect the bootstrapping process when using the corbaloc URL address format by
usi ng the securityLevel2: :PrincipalAuthenticator: :authenticate () method,
specifying that certificate authentication isto be used, and setting the
invocation_methods_required method on the Credentials object.

Note: If the IIOP Listener/Handler is configured for the SSL protocol but not configured for
certificate authentication and the corbaloc URL address format is used, the invocation
on the specified CORBA object resultsin an INVALID_DOMAIN exception.

Oracle recommends that existing CORBA applications migrate to the corbaloc URL address
format instead of using the Host and Port Address format.

Using the corbalocs URL Address Format

The corbalocs URL addressformat is the recommended format to use to ensure that
communications between principals and the [1OP Listener/Handler are protected. The
corbalocs URL address format functionsin the same way asthe corbaloc URL address
format, except the SSL protocol is used to protect all communications with the I1OP
Listener/Handler or the CORBA C++ ORB regardless of the type of authentication used.

When the defaults are used with the corbalocs URL address format, communications are
vulnerable only to Denial of Service security attacks. Using the SSL protocol and certificate
authentication guards against Sniffer, Tamper, and Replay attacks. In addition, the validation
check of the host specified in the digital certificate guards against Man-in-the-Middle attacks.

Tousethecorbalocs URL addressformat, thellOP Listener/Handler or the CORBA C++ ORB
must be configured to enablethe use of the SSL protocol. For moreinformation about configuring
the I1OP Listener/Handler or the CORBA C++ ORB for the SSL protocol, see “ Configuring the
SSL Protocol” on page 6-1.

Using Password Authentication

This section describes implementing password authentication in a CORBA applications.

Using Security in CORBA Applications 9-5



The Security Sample Application

The Security sample application demonstrates password authentication. The Security sample
application requires each student using the application to have an ID and a password. The
Security sample application worksin the following manner:

1. Theclient application has alogon method. This method invokes operations on the
Principal Authenticator object, which isobtained as part of the process of 1ogging on to access
the domain.

2. The server application implements aget_student_details () method ontheregistrar
object to return information about a student. After the user is authenticated and the logon is
complete, the get_student_details () method accesses the student information in the
database to obtain the student information needed by the client logon method.

3. The database in the Security sample application contains course and student information.

Figure 10-1 illustrates the Security sample application.

Figure 10-1 Security Sample Application

CORBA Server
Application

browse_courses()

get_course_details()

v Registrar Object
» logon() /

get_student_details() K

A

CORBA C++ Client
Application '\$

CORBA A

Database

|:| Security Required

9-6 Using Security in CORBA Applications



Using Password Authentication

The source files for the Security sample application are located in the
\samples\corba\university directory intheOracle Tuxedo software. For information about
building and running the Security sample application, see the Guide to the CORBA University
Sample Applications.

Writing the Client Application

When using password authentication, write client application code that does the following:

1. Usesthe Bootstrap object to obtain areference to the SecurityCurrent object for the specific
Oracle Tuxedo domain. You can use the Host and Port Address format, the corbaloc URL
address format, or the corbalocs URL address format.

2. Getsthe Principal Authenticator object from the SecurityCurrent object.

3. Usesone of the following methods to authenticate the principal:

— CH++—sSecuritylevel2: :PrincipalAuthenticator: :authenticate () USI ng
Tobj: :TuxedoSecurity

— C++—Tobj: :PrincipalAuthenticator: : logon ()

ThesecuritylLevel?2: :Principalauthenticator interfaceisdefinedinthe CORBAservices
Security Service specification. This interface contains two methods that are used to accomplish
the authentication of the principal. There are two methods because authentication of principals
may reguire more than one step. The authenticate () method allowsthe caller to authenticate
and optionally select attributes for the principal of this session.

The CORBA environment extends the Principal Authenticator object with functionality to
support similar security to that found in the ATMI environment in the Oracle Tuxedo product.
The enhanced functionality is provided by the Tobj : : Principalauthenticator interface.

The methods defined for the Tobj : : PrincipalaAuthenticator interface provide afocused,
simplified form of the equivalent CORBA-defined interface. Y ou can use either the
CORBA-defined or the Oracle Tuxedo extensions when developing a CORBA application.

The Tobj : : Principalauthenticator interface provides the same functionality as the
SecurityLevel2::PrincipalAuthenticator interface. However, unlike the
SecurityLevel2::PrincipalAuthenticator: :authenticate () method, the 1ogon ()
method of the Tobj : : PrincipalAuthenticator interface doesnot return aCredential s object.
Asaresult, CORBA applications that need to use more than one principal identity are required
tocal thecurrent: :get_credentials () method immediately after the 10gon () methodto

Using Security in CORBA Applications 9-7



retrieve the Credentials object asaresult of thelogon. Retrieval of the Credentials object directly
after alogon method should be protected with serialized access.

Note: The user data specified as part of the logon cannot contain embedded NULLSs.

The following sections contain C++ code examples that illustrate implementing password
authentication. For aVisual Basic code example, see “ Automation Security Reference” on
page 16-1.

C++ Code Example That Uses the
SecurityLevel2::PrincipalAuthenticator::authenticate() Method

Listing 10-3 contains C++ code that performs password authentication using the
SecurityLevel2::PrincipalAuthenticator: :authenticate () method.

Listing 10-3 C++ Client Application That Uses the SecurityLevel2::PrincipalAuthenticator::authenticate()
Method

//Create Bootstrap object
Tobj_Bootstrap* bootstrap = new Tobj_Bootstrap (orb,
corbalocs://sling.com:2143) ;
//Get SecurityCurrent object
CORBA: :Object_var var_security_current_oref =
bootstrap.resolve_initial_references (“SecurityCurrent”) ;
SecurityLevel2: :Current_var var_security_current_ref =
SecurityLevel2: :Current::_narrow(var_security_current_oref.in());
//Get the PrincipalAuthenticator
SecurityLevel2: :PrincipalAuthenticator_var var_principal_authenticator =
var_security_current_oref->principal_authenticator () ;

const char * user_name = “john”

const char * client_name = “university”;
char system_password[31] = {‘\0'};

char user_password([31] = {'\0’};

Tobj::PrincipalAuthenticator_ptr var_bea_principal_authenticator =

Tobj::PrincipalAuthenticator: :_narrow(var_bea_principal_authenticator.in())
//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();

switch (auth_type)
{

9-8 Using Security in CORBA Applications



case Tobj::TOBJ_NOAUTH;
break;

case Tobj::TOBJ_SYSAUTH

strcpy (system_password, “sys_pw”);

case Tobj::TOBJ_APPAUTH

strcpy (system_password, “sys_pw”);

strcpy (user_password, “john_pw”) ;
break;

(auth_type != Tobj::TOBJ_NOAUTH)

SecurityLevel2: :Credentials_var
Security: :0paque_var
Security: :AttributeList_var
Security: :0Opaque_var
Security: :0paque_var

Using Password Authentication

creds;
auth_data;
privileges;
cont_data;
auth_spec_data;

var_bea_principalauthenticator->build_auth_data (user_name,

Security: :AuthenticationStatus status

if

}

{

}

client_name,
system_password,
user_password,
NULL,

auth_data,
privileges) ;

var_bea_principalauthenticator->authenticate (

(status != Security::SecAuthSuccess)

//Failed authentication
return;

// Proceed with application

Tobj: : TuxedoSecurity,
user_name,

auth_data,

privileges,

creds,

cont_data, auth_spec_data);

Using Security in CORBA Applications 9-9



C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon()
Method

Listing 10-4 contains C++ code that performs password authentication using the
Tobj: :PrincipalAuthenticator: : logon () method.

Listing 10-4 C++ Client Application That Uses the Tobj::PrincipalAuthenticator:logon() Method

CORBA: :Object_var var_security current_oref =
bootstrap.resolve_initial_references (“SecurityCurrent”) ;

SecurityLevel2: :Current_var var_security_current_ref =
SecurityLevel2: :Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator

SecurityLevel2: :PrincipalAuthenticator_var var_principal_authenticator_oref =
var_security_current_oref->principal_authenticator() ;

//Narrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
Tobj::PrincipalAuthenticator: :_narrow
var_principal_authenticator_oref.in());

const char * user_name = “john”

const char * client_name = “university”;
char system_password[31] = {‘\0'};

char user_password[31] = {*\0'};

//Determine the security level
Tobj: :AuthType auth_type = var_bea_principal_authenticator->get_auth_type () ;
switch (auth_type)

{
case Tobj::TOBJ_NOAUTH;
break;
case Tobj::TOBJ_SYSAUTH
strcpy (system_password, “sys_pw”);
case Tobj::TOBJ_APPAUTH
strcpy (system_password, “sys_pw”) ;
strcpy (user_password, “john_pw”);
break;
}
if (auth_type != Tobj::TOBJ_NOAUTH)
{
SecurityLevel2: :Credentials_var creds;

9-10 Using Security in CORBA Applications



Using Certificate Authentication

Security: :0pagque_var auth_data;
Security: :AttributeList_var privileges;
Security: :0Opaque_var cont_data;
Security: :0Opaque_var auth_spec_data;

//Determine the security level
Tobj: :AuthType auth_type = var_bea_principal_ authenticator->get_auth_ type();
Security::AuthenticationStatus status = var bea principal_authenticator->logon(
user_name,
client_name,
system password,
user_password,
0);

if (status != Security::SecAuthSuccess)

//Failed authentication
return;

// Proceed with application

// Log off
try
{
logoff();
}

Using Certificate Authentication

This section describes implementing certificate authentication in CORBA applications.

The Secure Simpapp Sample Application

The Secure Simpapp sample application uses the existing Simpapp sample application and
modifies the code and configuration files to support secure communications through the SSL
protocol and certificate authentication.

The server application in the Secure Simpapp sampl e application provides an implementation of
a CORBA object that has the following two methods:

— Theupper method accepts a string from the client application and converts the string
to uppercase |etters.

Using Security in CORBA Applications 9-11



— The 1ower method accepts a string from the client application and converts the string
to lowercase letters.

The Simpapp sampl e application was modified in the following ways to support certificate
authentication and the SSL protocol:

e Inthe 1sL section of the uBeconr1G file, the -a, -5, -z, and -z options of the I SL
command are specified to configure the |1OP Listener/Handler for the SSL protocol.

e Inthe 1sL section of the uBsconF1G file, the SEC_PRINCIPAL NAME, the
SEC_PRINCIPAL_LOCATION, and the SEC_PRINCIPAL_PASSVAR parameters are defined to
specify proof material for the IIOP Listener/Handler.

e The code for the CORBA client application usesthe corbalocs URL address format.

e The code for the CORBA client application uses the authenticate () method of the
SecurityLevel2:PrincipalAuthenticator interface to authenticate the principa and
obtain credentials for the principals.

The source files for the C++ Secure Simpapp sample application are located in the
\samples\corba\simpappssL directory of the Oracle Tuxedo software. For instructions for
building and running the Secure Simpapp sample application, see “Building and Running the
CORBA Sample Applications’ on page 9-1.

Writing the CORBA Client Application

When using certificate authentication, write CORBA client application code that does the
following:

1. Usesthe Bootstrap object to obtain a reference to the SecurityCurrent object for the specific
Oracle Tuxedo domain. Use the corbalocs URL address format.

2. Getsthe Principal Authenticator object from the SecurityCurrent object.

3. Usestheauthenticate () method of the securityLevel2:PrincipalAuthenticator
interface to authenticate the principals and obtain credentials for the principals. When using
certificate authentication, specify Tobj: :CertificateBased for themethod argument and
the pass phrase for the private key asthe auth_data argument for security: :Opaque.

The following sections contain C++ code examples that illustrate implementing certificate
authentication.

9-12 Using Security in CORBA Applications



Using Certificate Authentication

C++ Code Example of Certificate Authentication
Listing 10-5 illustrates using certificate authentication in a CORBA C++ client application.

Listing 10-5 CORBA C++ Client Application That Uses Certificate Authentication

// Initialize the ORB

CORBA: :0ORB_var v_orb = CORBA::0RB_init (argc, argv, "");

// Create the bootstrap object

Tobj_Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com:2143);

// Resolve SecurityCurrent

CORBA: :Object_ptr seccurobj =

bootstrap.resolve_initial_references ("SecurityCurrent") ;

SecurityLevel2: :Current_ptr seccur =

SecurityLevel2: :Current: :_narrow(seccurobj) ;
// Perform certificate-based authentication
SecurityLevel2: :Credentials_ptr the_creds;
Security: :AttributeList_var privileges;
Security: :0paque_var continuation_data;
Security: :0paque_var auth_specific_data;
Security: :0paque_var response_data;

//Principal email address
char emailAddress[] = “milozzi@bigcompany.com;"”

// Pass phrase for principal’s digital certificate

char password[] = “asdawrewe98infldi7;”

// Convert the certificate private key password to opaque

unsigned long password_len = strlen (password) ;
Security: :0paque ssl_auth_data (password_len) ;

// Authenticate principal certificate with principal authenticator
for(int i = 0; (unsigned long) 1 < password_len; i++)
ssl_auth_datali] = passwordl[il];

Security: :AuthenticationStatus auth_status;
SecurityLevel2: :PrincipalAuthenticator_var PA =
seccur->principal_authenticator() ;
auth_status = PA->authenticate(Tobj::CertificateBased,
emailAddress,
ssl_auth_data,

Using Security in CORBA Applications 9-13



privileges,

the_creds,

continuation_data,

auth_specific_data);

while (auth_status == Security::SecAuthContinue) {
auth_status = PA->continue_authentication(

response_data,

the_creds,

continuation_data,

auth_specific_data);

Using the Interoperable Naming Service Mechanism

9-14

Note: This mechanism should be used with third-party client ORBs.

To use the Interoperable Naming Service mechanism to access the Oracle Tuxedo domain with
the proper credentia's, perform the following steps:

1. UsetheorB: :resolve_initial references () operation togeta
SecurityLevel2: :PrincipalAuthenticator object for the Oracle Tuxedo domain. The
SecurityLevel2: :PrincipalAuthenticator object adheresto the standard
CORBAservices Security Service instead of the proprietary Oracle delegated interfaces and
contains methods for the purpose of authenticating principals.

2. Usetheauthenticate () method of the securitylLevel2: :PrincipalAuthenticator
object to log on to the Oracle Tuxedo domain and authenticate the client ORB to the Oracle
Tuxedo domain. If security credentials are required to access the Oracle Tuxedo domain, the
authenticate () method will return a status indicating that continued authentication is
required.

3. Usethecontinue_authentication () method of the
SecurityLevel?2::PrincipalAuthenticator Object to passencyrpted logon and
credential information to the Oracle Tuxedo domain.

Using Security in CORBA Applications



Using the Interoperable Naming Service Mechanism

For more information about using the CORBA I nteroperable Naming Service (INS) mechanism,
see the CORBA Bootstrap Object Programming Reference for the
SecurityLevel2::PrincipalAuthenticator interface.

Protecting the Client Credentials

The following information provides a sample that protects the client credentials before
performing the step of continuing authentication.

The following example assumes a Java client using J2SE v 1.4, accessing an Oracle Tuxedo
application.

1
2.

Add $TUXDIR/udataobj/java/jdk/tuxsecenv.jar t0YOUr CLASSPATH.

Inyour client code, call com.bea.protectLogonbData () beforeyou call the
PrincipalAuthenticator continue_authentication () method.

Thefollowing issample code that showsaprotectLogonbata () cal. Thiscode dependson
Javaclassesthat are generated from these IDL filesin $TUXDIR/include: security.idl,
lcs.idl, ns.idl, tobj.idl.

Listing 10-6 Sample Client Code Using CORBA INS

try {

// Initialize the ORB.

ORB orb = ORB.init(args, null);

// Authentication

org.omg.CORBA.Object sec_obj =
orb.resolve_initial_ references ("PrincipalAuthenticator");

org.omg.SecurityLevel2.PrincipalAuthenticator pa =

org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow(sec_obj) ;

String userName = "geni';

String clientName = "SimpleClient";

org.omg.Security.SecAttribute[] privilege =

Using Security in CORBA Applications 9-15



new org.omg.Security.SecAttribute[l];

org.omg.SecurityLevel2.CredentialsHolder myCreds =

new org.omg.SecurityLevel2.CredentialsHolder () ;

org.omg.Security.OpagueHolder cont_data = // continuation data

new org.omg.Security.OpaqueHolder () ;

org.omg.Security.OpaqueHolder auth_data = // auth specific data

new org.omg.Security.OpaqueHolder () ;

org.omg.Security.AuthenticationStatus status = pa.authenticate(

1,

userName,

clientName.getBytes(),

privilege,

myCreds,

cont_data,

auth_data

)

if (status.value() == 2) {

// further authentication required

org.omg.SecurityLevel2.Credentials creds = myCreds.value;

String secUid = new String(cont_data.value);

org.omg.Security.OpagqueHolder cont_data_ 2 =

new org.omg.Security.OpaqueHolder () ;

org.omg.Security.OpagqueHolder auth_data_2
new org.omg.Security.OpaqueHolder () ;
org.omg.Security.OpagqueHolder opgholder =
new org.omg.Security.OpaqueHolder () ;
byte[] bal0 = new bytel[0];

String userPasswd = new String("abcl23");

String domainPasswd = new String("abcl23");

9-16 Using Security in CORBA Applications



Using the Invocations_Options_Required() Method

// encrypt the logon data
com.bea.LogonData td = new com.bea.LogonData() ;
int rc = td.protectLogonData (

userName,

clientName,

domainPasswd,

userPasswd,

secUid,

bal,

opgholder

) ;

// continue authentication
status = pa.continue_authentication (
opgholder.value,
creds,
cont_data_2,
auth_data_2
) ;
}
else {

System.out.println("No security required");

Using the Invocations_Options_Required() Method

When using certificate authentication, it may be necessary for aprincipal to explicitly definethe
security attributes it requires. For example, a bank application may have specific security
requirements it needs to meet before the bank application can transfer data to a database. The
invocation_ options_required () method of the SsecuritylLevel2: :Credentials
interface allows the principal to explicitly control the security characteristics of the SSL

Using Security in CORBA Applications 9-17



9-18

connection. When using the corbaloc URL address format, you can secure the bootstrapping
process by usi ng the authenticate ()and invocation_options_required () methodsof the
SecurityLevel2::Credentials interface.

Tousethe invocation options_required () method, complete the following steps:
1. Write application code that usesthe authenticate () method of the

SecurityLevel2: :PrincipalAuthenticator object to specify certificate authentication
isbeing used.

2. Usethe invocation_options_required () method to specify the security attributesthe
principal requires. Seethe description of the invocation_options_required () methodin
the “ C++ Security Reference” on page 14-1 and “ Java Security Reference” on page 15-1 for
acomplete list of security options.

Listing 10-7 providesaC++ examplethat usesthe invocation_options_required () method.

Listing 10-7 C++ Example That Uses the invocation_options_required() Method

// Initialize the ORB
CORBA: :0ORB_var v_orb = CORBA::0RB_init (argc, argv, "");
// Create the bootstrap object
Tobj_Bootstrap bootstrap (v_orb.in(), corbalocs://sling.com:2143);
// Resolve SecurityCurrent
CORBA: :Object_ptr seccurobj =
bootstrap.resolve_initial_references("SecurityCurrent") ;
SecurityLevel2: :Current_ptr seccur =
SecurityLevel2: :Current: :_narrow(seccurobj) ;
// Perform certificate-based authentication
SecurityLevel2: :Credentials_ptr the_creds;
Security: :AttributelList_var privileges;
Security: :0paque_var continuation_data;
Security: :0paque_var auth_specific_data;
Security: :0paque_var response_data;
//Principal email address
char emailAddress[] = “milozzi@bigcompany.com;”
// Pass phrase for principal’s digital certificate
char password[] = “asdawrewe98infldi7;”
// Convert the certificate private key password to opaque

unsigned long password_len = strlen (password) ;

Using Security in CORBA Applications



Using the Invocations_Options_Required() Method

Security: :0paque ssl_auth_data (password_len) ;

// Authenticate principal certificate with principal authenticator
for(int i = 0; (unsigned long) 1 < password_len; i++)
ssl_auth_datali] = passwordl[i];

Security: :AuthenticationStatus auth_status;
SecurityLevel2: :PrincipalAuthenticator_var PA =
seccur->principal_authenticator () ;
auth_status = PA->authenticate(Tobj::CertificateBased,
emailAddress,
ssl_auth_data,
privileges,
the_creds,
continuation_data,
auth_specific_data);
the_creds->invocation options_required(
Security::Integrity|
Security: :DetectReplay |
Security: :DetectMisordering|
Security::EstablishTrustInTarget |
Security::EstalishTrustInClient |
Security::SimpleDelegation);
while (auth_status == Security::SecAuthContinue) {
auth_status = PA->continue_authentication (
response_data,
the_creds,
continuation_data,

auth_specific_data);

Using Security in CORBA Applications 9-19



9-20 Using Security in CORBA Applications



Troubleshooting

Thistopic includes the following sections:

Using ULOGS and ORB Tracing

CORBA::ORB init Problems

Password Authentication Problems

Certificate Authentication Problems

Tobj::Bootstrap:: resolve initial_references Problems

[1OP Listener/Handler Startup Problems

Configuration Problems

Problems with Using Callbacks Objects with the SSL Protocol
Troubleshooting Tips for Digital Certificates

Notes. The Oracle Tuxedo CORBA Javaclient and Oracle Tuxedo CORBA Javaclient ORB

were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using Security in CORBA Applications 10-1



Using ULOGS and ORB Tracing

10-2

In general, Object Request Brokers (ORBSs) writeimportant failuresto the urog file. When using
the CORBA C++ ORB, you can a so enable ORB internal tracing which may provideinformation
in addition to the information that appearsin theuroc file.

When looking at the ur.oc file, note that remote ORB processes by default do not write datato
theurogc filein ApPDIR.

e On UNIX, the remote ORB writes information to auLoc filein the current directory.

o On Windows 2003, the remote ORB writes information to auLog fileinthe c: \ulog
directory.

Y ou can set the u.ocprx environment variable to control the location of the ur.og file for remote
ORBs (for example, you can set the location of the ur.oc fileto appp1r so that all information is
put in the same uLoc file). Set the uL.ocpFx environment variable as follows:

Windows 2003

set ULOGPFX=%APPDIR%\ULOG

UNIX

setenv ULOGPFX $APPDIR/ULOG

To enable ORB tracing, compl ete the following steps:

1. Createafilenamed trace.dat in appPDIR. The contentsof trace.dat should haveall=on.
2. Usethefollowing command to set the oBB_TRACE_INPUT environment variable to point to

the trace.dat file before running the application:

set OBB_TRACE_INPUT=%APPDIR%\trace.dat

If you want ORB tracing sent to separate files, add the following line to the trace . dat
file:

output=obbtrace%$p.log

This command sends the trace output to files that are named after each running process.
You may want to do thisif you are using ORB tracing on UNIX to an NFS mounted drive.
In this case, trace performance is slow due to the user log opening, writing, and closing the
file for each trace statement.

Using Security in CORBA Applications



CORBA::0RB_init Problems

CORBA::0RB _init Problems

Theors_init routinedoesnot performinternal ORB tracing so you will not see any trace output
for invalid argument processing. Therefore, you need to double check the arguments that were
passed to the orB_init routine.

If acorBa: : BAD_PARAM eXxception occurs when executing the ore_init routine, verify that al
required arguments have values. Also, check that arguments which expect avalue from a specific
set of valid values have the correct value. Note that values for the arguments of the ors_init
routine are case sensitive.

If acorBA: : NO_PERMISSION exception occurs and an SSL argument was specified to the
ORB_init routine, make sure the security licenseis enabled. Also, verify that the specified level
of encryption does not exceed the encryption level supported by the security license.

If acorea: : IMP_LIMIT exception occurs when executing the orB_init routine, verify that the
ORBport and oRBSecurePort System properties have the same value.

If acorBa: : Tnitialize exception occurswhen executing theore_init routine, verify that the
valuesfor orbId or configset arevalid.

If Secure Sockets Layer (SSL) arguments are passed to the ors_ini t routine, the ORB attempts
toload and initialize the SSL protocol. If no SSL arguments are passed, the ORB does not attempt
toinitialize the SSL protocol.

The ORB isnot aware of the new URL address formats for the Bootstrap object so if you specify
acorbaloc Of corbalocs URL addressformat, the ORB does not try to load the SSL protocol
during the ore_init routine.

If SSL arguments were specified to the ore_init routine, check the following:

e The specified values for the SSL arguments do not conflict with each other or other ORB
arguments.

e Whether or not the ORB is a native process. If the ORB is a native process, SSL arguments
are not supported.

e That the value specified for the maxcrypto system property is less than the value specified
for themincrypto System property. The values for the properties must be within the range
appropriate for the license.

e Application-controlled SSL configuration parameters that are not correct. The orB_init
routine does not perform digital certificate lookups check so look for missing or corrupted
files that would case the dynamic libraries not to be loaded. Also, verify the dynamic

Using Security in CORBA Applications 10-3



libraries are loaded. The ORB trace function will provide information about whether or not
the dynamic libraries are loaded.

If the problem persists, turn on ORB tracing. ORB tracing will log SSL failures that occur when
the 1liborbssl dynamic library isloaded and initialized.

Password Authentication Problems

If the client application fails when using the corbalocs URL address format with password
authentication, check the following:

e The proper configuration steps were performed. See “ Configuring the SSL Protocol” and
“Configuring Authentication” for the list of the required configuration steps.

e Aninitialization error occurred. Specify avalid SSL system property to the orB_init
routine, an error occursif:

— ThellOP Listener/Handler is not available. The ORB trace log will show failed
connection attempts.

— ThellOP Listener/Handler is available but it does not support the SSL protocol. The
urog file will show that a non-GIOP message was received.

— ThellOP Listener/Handler was available and configured for the SSL protocol but the
SSL connection could not be established. This error can occur when the range of
encryption strengths supported by the 11OP Listener/Handler and the range of
encryption strengths required by the client application do not match.

The uroc file will indicate that a non-GIOP message was received if the [|OP
Listener/Handler was configured for the SSL protocol but the CORBA client
application used a ToBJADDR Object without the corbalocs prefix to indicate a secure
connection.

Certificate Authentication Problems

If the client application fails when using the corbalocs URL address format with certificate
authentication, check the following:

e The proper configuration steps were performed. See “ Configuring the SSL Protocol” on
page 6-1 and “ Configuring Authentication” on page 7-1 for the list of the required
configuration steps.

e Determine whether or not an initialization error occurred.

10-4 Using Security in CORBA Applications



Tobj::Bootstrap:: resolve_initial_references Problems

e Specify avalid SSL system property to the orB_init routine, an error occurs if:
— ThellOP Listener/Handler is not available. The ORB trace log will show failed

connection attempts.

The llOP Listener/Handler is available but it does not support the SSL protocol. The
uLoc file will show that a non-GIOP message was received.

The lIOP Listener/Handler was available and configured for the SSL protocol but the
SSL connection could not be established. This error can occur when the range of
encryption strengths supported by the I10P Listener/Handler and the range of
encryption strengths required by the client application do not match. The error can aso
occur when the client application does not trust the certificate chain of the [IOP
Listener/Handler or the client application did not receive a certificate from the [IOP
Listener/Handler. The error will be written to the ur.og file and the error will also show
up in the ORB trace output.

If an error does not occur, the problem isin the authentication process and the ur.oc file
will contain one of the following error statements indicating the problem:

Couldn’t connect to an LDAP server

Couldn’t find a filter that matched the client certificate
The client certificate was not found in LDAP

The private key file could not be found

The passphrase used to open the private key is not correct

The public key from the client certificate did not match the
private key

Additional certificate problems can also occur. See“ Tobj::Bootstrap:: resolve_initial_references
Problems” on page 11-5 for more information about the types of certificate errorsthat can occur.

Note:

At this point of theinitialization process, the failure is not due to a problem in the [1OP
Listener/Handler.

Tobj::Bootstrap::
resolve_initial _references Problems

If afailure occurs when performing a Tob3: : Bootstrap: :resolve_initial references
with the corbaloc OF corbalocs URL addressformat, acorBa: : Invalidbomain exception
israised. This exception may mask CORBA : : NO_PERMISSION Of CORBA: : COMM_FAILURE
exceptions that are raised internally. Look at the ur.og file and turn on ORB tracing to get more
details on the error. The following errors may occur:

Using Security in CORBA Applications 10-5



e |f the IOP Listener/Handler is not available, the ORB trace log will show failed
connection attempts.

o If the [IOP Listener/Handler is available but it does not support the SSL protocol, the uLoc
file will show that a non-GI OP message was received.

o If the [IOP Listener/Handler is available and configured for the SSL protocol but the SSL
connection could not be established. An error can occur if the range of encryption strengths
supported by the 11OP Listener/Handler and required by the client application do not
match.

e ThellOP Listener/Handler could not map a certificate to a username/password
combination. Verify that the security level for the CORBA application is set to USER_AUTH
and that the specified username matches the principal name passed into the authenticate
call. Also, check that the username does not exceed the 30 character limit.

Additional certificate problems can occur. See“ Troubleshooting Tipsfor Digital Certificates’ on
page 11-8 for more information about the types of certificate errors that can occur.

[10P Listener/Handler Startup Problems

This section describes problems that can occur during the startup of the I1OP Listener/Handler.

If afailure occurswhen starting the 11OP Listener/Handler, check theuroc filefor adescription
of the error. The I1OP Listener/Hander verifies that the values for the SSL arguments specified
in the copT parameters are valid. If any of the values areinvalid, the appropriate error is
recorded in the urog file. This check is similar to the argument checking done by the ORB.

The llOP Listener/Handler will not start its processes unless the -m option is specified. The ISH
is the process that actually loads and initializesthe SSL libraries. If there is a problem loading
and initializing the SSL librariesin the ISH process, the error will not be recorded in the uLoc
file until the ISH process starts to handle incoming requests from client application.

If you suspect aproblem with the startup of the [1OP Listener/Handler processes, check theur.og
file.

Configuration Problems

10-6

The following are miscellaneous tips to resolve the common configuration problems which may
occur when using security:

e The ORB -0ORBpeervalidate command-line option and the -v option of the ISL
command do not control the peer validation rules checking. This system property and

Using Security in CORBA Applications



Problems with Using Callbacks Objects with the SSL Protocol

option only control the checking of the host name specified in the peer certificate against
the host name of the machine to which the principal was connected.

e The only way to disable the peer validation rules on an installed kit is to create an empty
f”efOF%TUXDIR%\udataobj\security\certs\peer_val.ruL|fy0uaﬁﬂNﬂﬂnga
script that builds your CORBA application, you cannot register the peer _val.rul filein
the script.

e When enabling renegotiation intervals in the 11OP Listener/Handler, check that the option
onthelSL commandis-r not -r. If youusean -r, the llOP Listener/Handler will use
the SSL protocol but the renegotiation interval will not be used. In addition, the ur.oc file
will note that an unknown option was specified on the [1OP Listener/Handler.

Another way to determineif the IIOP Listener/Handler is performing renegotiationsisto
enable ORB tracing on the client side and check whether the cipher suite negotiation
callback is being called the configured renegotiation interval. Note that the client
application must be sending requests for in order for renegotiations to occur.

o |f you have defined the securiTy parameter in the CORBA application’s uesconric file
to be app_pw or greater and you have configured the 110P Listener/Handler to use the SSL
protocol but not mutual authentication, you must use password authentication with the
corbalocs URL address format to communicate with the [1OP Listener/Handler. If you
try to use certificate authentication, the I1OP Listener/Handler will not ask the principal for
a certificate when establishing an SSL connection and the 11OP Listener/Handler is not
able to map the identity of the principal to an Oracle Tuxedo identity.

Problems with Using Callbacks Objects with the SSL
Protocol

If you have ajoint client/server application and the client portion of the joint client/server
application specifies security requirements using either the corbalocs URL address format or
by requiring credential's, you must usethe -orRBsecurePort System property withtheore_init
routine to specify that a secure port be used.

If you do not specify the -orBsecurePort System property, the server registration will fail with
A CORBA: :NO_PERMISSION exception. To verify thisis the problem, enable ORB tracing and
look for the following trace output:

TCPTransport::Listen: FAILURE: Attempt to listen on clear port while
Credentials require SSL be used

Using Security in CORBA Applications 10-7



If you want to use the SSL protocol with callback objects, the joint client/server application must
usethe securitylLevel2: :PrincipalAuthenticator: :authenticate () method with
certificate authentication. Otherwise, thejoint client/server application does not have acertificate
with which to identify itself to the |1 OP Listener/Handler which in this caseistheinitiator of the
SSL connection.

Troubleshooting Tips for Digital Certificates

In general, problems with digital certificates occur when:

10-8

e One of the digital certificatesin the certificate chain of the IIOP Listener/Handler is not

from a certificate authority defined inthe trust_ca. cer file. A problem can occur if any
certificate authority inthe trust_ca. cer fileisinvalid.

The name the I10P Listener/Handler connected to the client application does not match the
host name specified in digital certificates of the I1OP Listener/Handler when a host match
is performed. The name of the I1OP Listener/Handler is specified in the commonName
attribute of the distinguish name of the I1OP Listener/Handler. The host name and the
commonName attribute must match exactly.

You can verify this error by setting the -orBpeervalidate System property to none and
executing the orB_init routine again.

One of the digital certificates in the certificate chain of the IIOP Listener/Handler does not
match the specified peer validation rules.

The digital certificate of the IlOP Listener/Handler isinvalid. The digital certificate of the
I1OP Listener/Handler becomesinvalid when the digital certificate is tampered with, it
expires, or the certificate authority that issued the digital certificate expires.

If adigital certificateis rejected for no explainable reason, complete the following steps:

1
2.

Open the digital certificate in aviewer, for example, Microsoft Explorer.

Look at the keyUsage and BasicConstraints propertiesof thedigital certificate. A small
yellow triangle with an exclamation mark indicates the property is critical. Any digital
certificate with a property marked critical is rejected by the Oracle Tuxedo software.

If the none of the properties of the digital certificate are critical, check the properties of the
next digital certificate in the certificate chain. Perform this step until all the properties of all
the digital certificates in the certificate chain have been verified.

Using Security in CORBA Applications



Part IV Security Reference

CORBA Security APIs
Security Modules

C++ Security Reference

Java Security Reference
Automation Security Reference

Hybrid Templates for FrameMaker 5.5






CORBA Security APIs

Thistopic includes the following sections:
e The CORBA Security Model
e Functional Components of the CORBA Security Environment
e The Principal Authenticator Object
e The Credentials Object
e The SecurityCurrent Object

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

For the C++ and Automation method descriptions for the CORBA Security APIs, see the
following topics:

e “C++ Security Reference” on page -1
e “Java Security Reference” on page -1

Using Security in CORBA Applications 1241



e “Automation Security Reference” on page -1

The CORBA Security Model

12-2

The security model in the CORBA environment of the Oracle Tuxedo product defines only a
framework for security. The Oracle Tuxedo product provides the flexibility to support different
security mechanisms and policies that can be used to achieve the appropriate level of
functionality and assurance for a particular CORBA application.

The security model in the CORBA environment defines:
e Under what conditions client applications may access objectsin an Oracle Tuxedo domain

e What type of proof material principals are required to authenticate themselves to the Oracle
Tuxedo domain

The security model in the CORBA environment is a combination of the security model defined
in the CORBA services Security Service specification and the value-added extensions that
provide afocused, simplified form of the security model found in the ATMI environment of the
Oracle Tuxedo product.

The following sections describe the general characteristics of the CORBA security model.

Authentication of Principals

Authentication of principals (for example, an individual user, aclient application, a server
application, ajoint client/server application, or an 11OP Listener/Handler) provides security
officers with the ability to ensure that only registered principals have access to the objectsin the
system. An authenticated principal isused asthe primary mechanism to control accessto objects.
The act of authenticating principals allows the security mechanisms to:

e Make principals accountable for their actions
e Control access to protected objects
o |dentify the originator of arequest

o |ldentify the target of request

Controlling Access to Objects

The CORBA security model provides a simple framework through which a security officer can
limit access to the Oracle Tuxedo domain to authorized users only. Limiting access to objects

Using Security in CORBA Applications



Functional Components of the CORBA Security Environment

allows security officers to prohibit access to objects by unauthorized principals. The access
control framework consists of two parts:

e The object invocation policy that is enforced automatically on object invocation

e An application access policy that the user-written application can enforce

Administrative Control

The system administrator isresponsible for setting security policiesfor the CORBA application.
The Oracle Tuxedo product provides a set of configuration parameters and utilities. Using the
configuration parameters and utilities, a system administrator can configure the CORBA
application to force the principal s to be authenticated to access a system on which Oracle Tuxedo
softwareisinstalled. To enforce the configuration parameters, the system administrator uses the
tmloadcf command to update the configuration file for a particular CORBA application.

For more information about configuring security for your CORBA application, see“ Configuring
the SSL Protocol” on page 6-1 and “Configuring Authentication” on page 7-1.

Functional Components of the CORBA Security
Environment

The CORBA security model is based on the process of authenticating principals to the Oracle
Tuxedo domain. The objectsin the CORBA security environment are used to authenticate a
principal. The principal providesidentity and authentication data, such as a password, to the
client application. The client application usesthe Principal Authenticator object to makethecalls
necessary to authenticate the principal. The credentials for the authenticated principal are
associated with the security system’s implementation of the SecurityCurrent object and are
represented by a Credentials object.

Figure 12-1 illustrates the authentication process used in the CORBA security model.

Figure 12-1 Authentication Process in the CORBA Security Model

Using Security in CORBA Applications 12-3



—————

Client
Application

\
/  User \
J

/

-------

Security
Current
Object

Principal
Authenticator
Object

-—-—-q

Credentials
Object

The following sections describe the objects in the CORBA security model.

The Principal Authenticator Object

12-4

The Principal Authenticator object isused by aprincipal that requires authentication but has not
been authenticated prior to calling the object system. The act of authenticating a principal results
in the creation of a Credentials object that is made available as the default credentials for the
application.

The Principal Authenticator object isasingleton object; thereisonly asingleinstance allowed in
aprocess address space. The Principal Authenticator object isalso stateless. A Credentials object
is not associated with the Principal Authenticator object that created it.

All Principal Authenticator objectssupportthesecuritylLevel2: :PrincipalAuthenticator
interface defined in the CORBA services Security Service specification. Thisinterface contains
two methods that are used to accomplish the authentication of the principal. Thisis because
authentication of principals may require more than one step. Theauthenticate method allows
the caller to authenticate, and optionally select, attributes for the principal of this session.

Using Security in CORBA Applications



The Principal Authenticator Object

Any invocation that fails because the security infrastructure does not permit the invocation will
raise the standard exception corsa: :No_PERMISSION. A method that fails because the feature
requested is not supported by the security infrastructure implementation will raise the

CORBA: :NO_IMPLEMENT Standard exception. Any parameter that has inappropriate values will
raise the corBa: : BAD_pParaM Standard exception. If atiming-related problem occurs, they raise
ACORBA: : COMM_FAILURE. The Bootstrap object maps most system exceptions to

CORBA: :Invalid_Domain.

The Principal Authenticator object is alocality-constrained object. Therefore, a Principal

Authenticator object may not be used through the DII/DSI facilities of CORBA. Any attempt to
pass areferenceto this object outside of the current process, or any attempt to externalize it using
CORBA: :ORB: :object_to_string, Will resultintheraising of thecorsa: : MARSHAL exception.

Using the Principal Authenticator Object with Certificate
Authentication

The Principal Authenticator object has been enhanced to support certificate authentication. The
use of certificate authentication is controlled by specifying the
Security::AuthenticationMethod Value of Tobj::CertificateBased asaparameter to
the PrincipalAuthenticator: :authenticate operation. When certificate authenticationis
used, the implementation of the PrincipalAuthenticator: :authenticate operation must
retrieve the credentials for the principal by obtaining the private key and digital certificates for
the principal and registering them for use with the SSL protocol.

Thevalues of the security_name and auth_data parameters of the
PrincipalAuthenticator: :authenticate Operation are used to open the private key for the
principal. If the user does not specify the proper values for both of these parameters, the private
key cannot be opened and the user failsto be authenticated. As aresult of successfully opening
the private key, a chain of digital certificates that represent the local identity of the principal is
built. Both the private key and the chain of digital certificates must be registered to be used with
the SSL protocol.

Oracle Tuxedo Extensions to the Principal Authenticator
Object

The CORBA environment in the Oracle Tuxedo product extends the Principal Authenticator
object to support a security mechanism similar to the security in the ATMI environment in the
Oracle Tuxedo product. The enhanced functionality is provided by defining the

Tobj: : PrincipalAuthenticator interface. Thisinterface contains methodsto providesimilar

Using Security in CORBA Applications 12-5



capability to that available from the ATMI environment through the tpinit function. The
interface Tobj : : PrincipalAuthenticator iSderived from the CORBA
SecurityLevel2::PrincipalAuthenticator interface.

The extended Principal Authenticator object adheresto all the same rules as the Principal
Authenticator object defined in the CORBA services Security Service specification.

The implementation of the extended Principal Authenticator object requires usersto supply a
username, client name, and additional authentication data (for example, passwords) used for
authentication. Because the information needs to be transmitted over the network to the IIOP
Listener/Handler, it is protected to ensure confidentiality. The protection must include encryption
of any information provided by the user.

An extended Principal Authenticator object that supports the
Tobj::PrincipalAuthenticator interface provides the same functionality asif the
SecurityLevel2::PrincipalAuthenticator interface were used to perform the
authentication of the principal. However, unlike the

SecurityLevel2: :PrincipalAuthenticator::authenticate method, the logon method
definedonthe Tobj : : PrincipalaAuthenticator interface doesnot return aCredentials object.

The Credentials Object

12-6

A Credentials object (as shown in Figure 12-2) holds the security attributes of a principal. The
Credentials object provides methods to obtain and set the security attributes of the principals it
represents. These security attributes include its authenticated or unauthenticated identities and
privileges. It also containsinformation for establishing security associations.

Credentials objects are created as the result of:
o Authentication
e Copying an existing Credential s object
e Asking for a Credentials object viathe SecurityCurrent object

Figure 12-2 The Credentials Object

Using Security in CORBA Applications



The Credentials Object

(" A
Credentials - Containing Security Attributes
( ) ( . N
Unauthenticated Authenticated
Attributes Attributes
:'/ \‘\ // Identity \\
i [}
t  Public \  Attributes
\\ ,’ \\\ ’,’
\ - J \ == )
| J

Multiple references to a Credentials object are supported. A Credentials object is stateful. It
maintains state on behalf of the principal for which it was created. This state includes any
information necessary to determine the identity and privileges of the principal it represents.
Credentials objects are not associated with the Principal Authenticator object that created it, but
must contain some indication of the authentication authority that certified the principal’ sidentity.

The Credentials object isalocality-constrained object; therefore, a Credential s object may not be
used through the DII/DSI facilities. Any attempt to pass a reference to this object outside of the
current process, or any attempt to externalize it using CORBA: : ORB: : object_to_string, Will
result in the raising of the corBa : : MARSHAL exception.

The Credentials object has been enhanced to allow application devel opersto indicate the security
attributes for establishing secure connections. These attributes allow devel opers to indicate
whether a secure connection requires integrity, confidentiality, or both. To support this
capability, two new attributes were added to the securityLevel2: :Credentials interface.

e The invocation_options_supported attribute indicates which security options are
allowed when establishing a secure connection.

e The invocation_options_required attribute allows the application devel oper to
specify the minimum set of security options that must be used in establishing a secure
connection.

Using Security in CORBA Applications 12-1



The SecurityCurrent Object

12-8

The SecurityCurrent object (see Figure 12-3) represents the current execution context at both the
principal and target objects. The SecurityCurrent object represents service-specific state
information associated with the current execution context. Both client and server applications
have SecurityCurrent objects that represent the state associated with the thread of execution and
the process in which the thread is executing.

Figure 12-3 The SecurityCurrent Object

Current

PrincipalAuthenticator

principal_authenticator
authenticate Credentials Credentials
get_credentials

TID Ptr
Credentials _>|T—I_|

The SecurityCurrent object is a singleton object; there isonly asingle instance allowed in a
process address space. Multiple references to the SecurityCurrent object are supported.

The CORBA services Security Service specification defines two interfaces for the
SecurityCurrent object associated with security:

® SecurityLevell: :Current, Which derivesfrom corBa: : Current

® SecurityLevel2::Current, Which derivesfrom the securityLevell: :Current
interface

Both interfaces give access to security information associated with the execution context.

At any stage, aclient application can determine the default credential sfor subsequent invocations
by calling the current: :get_credentials method and asking for the invocation credentials.
These default credentials are used in all invocations that use object references.

Whenthe current: :get_attributes method isinvoked by aclient application, the attributes
returned from the Credentials object are those of the principal.

The SecurityCurrent object is alocality-constrained object; therefore, a SecurityCurrent object
may not be used through the DII/DSI facilities. Any attempt to pass a reference to this object

Using Security in CORBA Applications



The SecurityCurrent Object

outside of the current process, or any attempt to externalizeit using
CORBA: :ORB: :object_to_string, resultSin a CORBA: : MARSHAL exception.

Using Security in CORBA Applications 12-9



12-10 Using Security in CORBA Applications



Security Modules

Thistopic contains the Object Management Group (OMG) Interface Definition Language (IDL)
definitions for the following modules that are used in the CORBA security model:

e CORBA

e TimeBase

e Security

e Security Level 1
e Security Level 2
e Tobj

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using Security in CORBA Applications 13-1



13-2

CORBA Module

The OMG added the corBa: : current interface to the CORBA module to support the Current
pseudo-object. This change enables the CORBA module to support Security Replaceability and
Security Level 2.

Listing 13-1 shows the CORBA: : Current interface OMG IDL statements.

Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,
p. 15-230. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Listing 13-1 CORBA::Current Interface OMG IDL Statements

module CORBA {
// Extensions to CORBA
interface Current {

Yi

TimeBase Module

All data structures pertaining to the basic Time Service, Universal Time Object, and Time
Interval Object are defined in the TimeBase module. This allows other servicesto use these data
structures without requiring the interface definitions. The interface definitions and associated
enums and exceptions are encapsulated in the TimeBase module.

Listing 13-2 shows the TimeBase module OMG IDL statements.

Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,
p. 14-5. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Listing 13-2 TimeBase Module OMG IDL Statements

// From time service
module TimeBase {

// interim definition of type ulonglong pending the

Using Security in CORBA Applications



// adoption of the type extension by all client ORBs.

struct ulonglong {

unsigned long low;
unsigned long high;

}i

typedef ulonglong TimeT;

typedef short TAfT;

struct UtcT {
TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TAfT tdf; // 2 octets

// total 16 octets

Table 13-1 defines the TimeBase modul e data types.

Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,
p. 14-6. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Using Security in CORBA Applications 13-3



Table 13-1 TimeBase Module Data Type Definitions

Data Type Definition

Time OMG IDL does not at present have a native type representing an unsigned

ulonglong 64-bit integer. The adoption of technology submitted against that RFP will
provide ameans for defining a native type representing unsigned 64-bit
integersin OMG IDL.

Pending the adoption of that technology, you can use this structure to
represent unsigned 64-bit integers, understanding that when a native type
becomes available, it may not be interoperable with this declaration on all
platforms. Thisdefinitionisfor theinterim, and ismeant to beremoved when
the native unsigned 64-bit integer type becomes availablein OMG IDL.

Time TimeT TimeT representsasingletime value, whichis64-bitin size, and holdsthe
number of 100 nanoseconds that have passed since the base time. For
absolute time, the base is 15 October 1582 00:00.

Time TAfT  TAET isof size 16 bitsshort type and holds the time displacement factor in
the form of seconds of displacement from the Greenwich Meridian.
Displacements east of the meridian are positive, while those to the west are
negative.

Time UtcT  UtcT definesthe structure of the time value that is used universally in the
service. When the Ut cT structure is holding, arelative or absolute timeis
determined by itshistory. Thereisno explicit flag within the object holding
that state information. The inacclo and inacchi fieldstogether hold a
value of type InaccuracyT packedinto 48 bits. The tdf field holdstime
zone information. Implementation must place the time displacement factor
for thelocal time zone in this field whenever it creates a Universal Time
Object (UTO).

The content of this structureisintended to be opague; to be able to marshal
it correctly, the types of fields need to be identified.

Security Module

The Security module definesthe OMG IDL for security datatypes common to the other security
modules. This module depends on the TimeBase module and must be available with any ORB
that claims to be security ready.

Listing 13-3 shows the data types supported by the Security module.

13-4 Using Security in CORBA Applications



Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,

p. 15-193 to 15-195. Revised Edition:

with permission by OMG.

March 31, 1995. Updated: November 1997. Used

Listing 13-3 Security Module OMG IDL Statements

module Security {

typedef sequence<octet>

// Extensible families for s

struct ExtensibleFamily {
unsigned short
unsigned short

}i

//security attributes
typedef unsigned long
// identity attributes; fami
const SecurityAttributeType
const SecurityAttributeType

Opaque;

tandard data types

family_definer;

family;

SecurityAttributeType;

1y 0
AuditId = 1;

AccountingId = 2;

const SecurityAttributeType NonRepudiationId = 3;
// privilege attributes; family = 1
const SecurityAttributeType Public = 1;

const SecurityAttributeType

const SecurityAttributeType
const SecurityAttributeType
const SecurityAttributeType
const SecurityAttributeType
const SecurityAttributeType
const SecurityAttributeType
struct AttributeType {
ExtensibleFamily

SecurityAttributeType

AccessId = 2;

PrimaryGroupId = 3;
GroupId = 4;
Role 5;

AttributeSet

= 6;

7;
8 .

i

Clearance

Capability

attribute_family;
attribute_type;

Using Security in CORBA Applications



typedef sequence <AttributeType> AttributeTypelists;
struct SecAttribute {

AttributeType attribute_type;

Opaque defining_authority;

Opaque value;

// The value of this attribute can be

// interpreted only with knowledge of type
Y

typedef sequence<SecAttribute> AttributeList;

// Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

Y

// Authentication method

typedef unsigned long AuthenticationMethod;

enum CredentialType {
SecInvocationCredentials;
SecOwnCredentials;
SecNRCredentials

// Pick up from TimeBase
typedef TimeBase: :UtcT UtcT;

Table 13-2 describes the Security module data type.

13-6 Using Security in CORBA Applications



Tahle 13-2 Security Module Data Type Definition

Data Type Definition

sequence<octet> Datawhose representation is known only to the Security Service
implementation.

Security Level 1 Module

This section defines those interfaces available to client application objects that use only Level 1
Security functionality. This module depends on the CORBA module and the Security and
TimeBase modules. The Current interface is implemented by the ORB.

Listing 13-4 shows the Security Level 1 module OMG IDL statements.

Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,
p. 15-198. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Listing 13-4 Security Level 1 Module OMG IDL Statements

module SecurityLevell {
interface Current : CORBA::Current {// PIDL
Security::AttributeList get_attributes(
in Security::AttributeTypeList attributes
)

Security Level 2 Module

This section definesthe additional interfaces availableto client application objectsthat use L evel
2 Security functionality. This module depends on the CORBA and Security modules.

Listing 13-5 shows the Security Level 2 module OMG IDL statements.

Using Security in CORBA Applications 13-1



Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,
p. 15-198 to 15-200. Revised Edition: March 31, 1995. Updated: November 1997. Used
with permission by OMG.

Listing 13-5 Security Level 2 Module OMG IDL Statements

module SecurityLevel2 {

// Forward declaration of interfaces

interface PrincipalAuthenticator;

interface Credentials;

interface Current;

// Interface Principal Authenticator

interface PrincipalAuthenticator {

Security::AuthenticationStatus authenticate (

in Security::AuthenticationMethod method,
in string security_name,
in Security: :0Opaque auth_data,

in Security::AttributeList privileges,

out Credentials creds,
out Security::0Opaque continuation_data,
out Security::0Opaque auth_specific_data

)

Security: :AuthenticationStatus

continue_authentication (

in Security::0Opaque response_data,
inout Credentials creds,

out Security::0paque continuation_data,
out Security::0Opaque auth_specific_data

Y

// Interface Credentials
interface Credentials {
attribute Security::AssociationOptions
invocation_options_supported;

attribute Security::AssociationOptions

Using Security in CORBA Applications



invocation_options_required;

Security::AttributelList get_attributes(

in Security::AttributeTypeList attributes
)
boolean is_valid(

out Security::UtcT expiry_time
)
Y

// Interface Current derived from SecurityLevell::Current
// providing additional operations on Current at this
// security level. This is implemented by the ORB.
interface Current : SecurityLevell::Current { // PIDL
void set_credentials(
in Security::CredentialType cred_type,
in Credentials cred

)i

Credentials get_credentials(

in Security::CredentialType cred_type
)
readonly attribute PrincipalAuthenticator

principal_authenticator;

Tobj Module

This section defines the Tobj module interfaces.
This module provides the interfaces you use to program the ATMI-style of authentication.
Listing 13-6 shows the Tobj module OMG IDL statements.

Using Security in CORBA Applications

13-9



13-10

Listing 13-6 Tobj Module OMG IDL Statements

//Tobj Specific definitions

//get_auth_type
enum AuthType {

() return values

TOBJ_NOAUTH,
TOBJ_SYSAUTH,
TOBJ_APPAUTH

}i

typedef sequence<octet> UserAuthData;

interface PrincipalAuthenticator

SecurityLevel2: :PrincipalAuthenticator { // PIDL

AuthType get_auth_type() ;

Security::AuthenticationStatus logon (

in
in
in
in
in

);

string user_name,
string client_name,
string system_password,
string user_password,
UserAuthData user_data

void logoff () ;

void build_auth_data(

in string user_name,

in string client_name,

in string system_password,
in string user_password,
in UserAuthData user_data,

out Security::0Opaque auth_data,

out Security::AttributelList privileges

Using Security in CORBA Applications



C++ Security Reference

This topic contains the C++ method descriptions for CORBA security.

SecurityLevell::Current::get_attributes

Synopsis
Returns attributes for the Current interface.

OMG IDL Definition

Security: :AttributelList get_attributes (
in Security::AttributeTypelList attributes
)

Y

Argument

attributes
The set of security attributes (privilege attribute types) whose values are desired. If this
list isempty, al attributes are returned.

Description

This method gets privilege (and other) attributes from the principal’ s credentials for the Current
interface.

Using Security in CORBA Applications 141



Return Values
The following table describes valid return values.

Return Value Meaning

Security::Public Empty (Public is returned when no authentication was
performed).

Security: :AccessId Null terminated ASCI| string containing the Oracle

Tuxedo username.

Security: :PrimaryGroupId Null terminated ASCII string containing the Oracle
Tuxedo name of the principal.

Note: Thedefining_authority fieldisaways empty. Depending on the security level
defined in the useconrzc file not al the values for the get_attribute method may
beavailable. Two additional values, croup 1d and Role, are available with the security
level isset to ACL, Or MANDATORY_ACL in the uBBCONFIG file.

Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,
pp. 15-103, 104. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

SecurityLevel2::PrincipalAuthenticator::authenticate

Synopsis
Authenticates the principal and optionally obtains credentials for the principal.

OMG IDL Definition

Security: :AuthenticationStatus
authenticate(

in Security: :AuthenticationMethod method,

in Security: :SecurityName security name,

in Security: :0Opaque auth_data,

in Security: :AttributelList privileges,

out Credentials creds,

out Security::0Opaque continuation_data,
out Security::0Opaque auth_specific data );

14-2 Using Security in CORBA Applications



Arguments

method
The security mechanism to be used. Valid valuesare Tobj : : TuxedoSecurity and
Tobj::CertificateBased.

security_name
The principa’ sidentification information (for example, logon information). The value
must be a pointer to a NUL L-terminated string containing the username of the principal.
The string is limited to 30 characters, excluding the NULL character.

When using certificate authentication, this nameis used to look up acertificate in the
LDAP-enabled directory service. It is also used as the basis for the name of thefilein
which the private key is stored. For example:

milozzi@company.com iSthe e-mail address used to look up acertificate in the
LDAP-enabled directory serviceand milozzi_company.pem iSthe name of the private
key file.

auth_data
The principals’ authentication, such astheir password or private key. If the
Tobj : TuxedoSecurity Security mechanism is specified, the value of thisargument is
dependent on the configured level of authentication. If the Tobj: :CertificateBased
argument is specified, the value of this argument is the pass phrase used to decrypt the
private key of the principal.

privileges

The privilege attributes requested.

creds
The object reference of the newly created Credentials object. The object referenceis not
fully initialized; therefore, the object reference cannot be used until the return value of the
SecurityLevel?2: :Current: :authenticate methodiS SecauthSuccess.

continuation_data
If the return value of the securitylLevel2: :Current: :authenticate methodis
SecAuthContinue, thisargument contains the challenge information for the
authentication to continue. The value returned will always be empty.

auth_specific_data
Information specific to the authentication service being used. The value returned will
always be empty.

Using Security in CORBA Applications 14-3



Description

TheSecurityLeveIZ::Current:

:authenticate method is used by the client application to

authenticate the principal and optionally request privilege attributes that the principal requires
during its session with the Oracle Tuxedo domain.

If the Tob3 : : TuxedoSecurity security mechanism isto be specified, the same functionality
can be obtained by calling the Tob3j: : PrincipalAuthenticator: : logon operation, which
provides the same functionality but is specifically tailored for use with the ATMI authentication

security mechanism.

Return Values
The following table describes the valid return values.

Return Value

Meaning

SecAuthSuccess

The object reference of the newly created Credentials object
returned asthe value of the creds argument isinitialized and ready
to use.

SecAuthFailure

The authentication process was inconsistent or an error occurred
during the process. Therefore, the creds argument doesnot contain
an object reference to a Credential s object.

If the Tobj : : TuxedoSecuri ty security mechanismisused, this
return value indicates that authentication failed or that the client
application was already authenticated and did not call either the
Tobj: :PrincipalAuthenticator: :logoff or the
Tobj_Bootstrap: :destroy_current operation.

SecAuthContinue

Indicates that the authentication procedure uses a
challenge/response mechanism. The creds argument contains the
object reference of a partialy initialized Credentials object. The
continuation_data indicatesthe details of the challenge.

14-4

Using Security in CORBA Applications



Return Value

Meaning

SecAuthExpired Indicates that the authentication data contained some information,

the validity of which had expired; therefore, the creds argument
does not contain an object reference to a Credentials object.

If the Tobj : : TuxedoSecurity security mechanismisused, this
return value is never returned.

CORBA: : BAD_PARAM The CORBA: : BAD_PARAM exception occurs if:

¢ Valuesforthe security_name, auth_data, or
privileges arguments are not specified.

e Thelength of an input argument exceeds the maximum length
of the argument.

e Thevalue of themethod argument is
Tobj : : TuxedoSecurity and the content of the
auth_data argument contains ausername Orf a
clientname asanempty or aNULL string.

SecurityLevel2::Current::set_credentials

Synopsis
Sets credentials type.

OMG IDL Definition

void set_credentials(
in Security::CredentialType cred_type,
in Credentials creds

)

Arguments

cred_type
The type of credentialsto be set; that is, invocation, own, or non-repudiation.

creds
The object reference to the Credentials object, which isto become the default.

Using Security in CORBA Applications

14-5



Description

This method can be used only to set secInvocationCredentials; otherwise,
set_credentials raiSESCORBA: : BAD_PARAM. The credentials must have been obtained from a
previouscall to securitylLevel2::Current::get_credentials OF

SecurityLevel2: :PrincipalAuthenticator: :authenticate

Return Values
None.

Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,
p. 15-104. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

SecurityLevel2::Current::get_credentials

Synopsis
Gets credential s type.

OMG IDL Definition

Credentials get_credentials(
in Security: :CredentialType cred_type
)

Argument
cred_type
The type of credentialsto get.
Description

Thiscall can be used only to get secInvocationCredentials; Otherwise, get_credentials
raises CORBA: : BAD_PARAM. If no credentials are available, get_credentials raises
CORBA: : BAD_INV_ORDER.

Return Values
Returns the active credentials in the client application only.

Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,
p. 15-105. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

14-6 Using Security in CORBA Applications



SecurityLevel2::Current::principal_authenticator

Synopsis

Returnsthe principalauthenticator

OMG IDL Definition

readonly attribute PrincipalAuthenticator

principal_authenticator;

Description

The Principalauthenticator returned by the principal_authenticator attribute is of
actual type Tobj: : PrincipalAuthenticator. Therefore, it can be used both as a
Tobj: :PrincipalAuthenticator andasasecuritylLevel?2: :PrincipalAuthenticator.

Note: Thismethod raisescorBa: : BAD_INv_ORDER if it iscalled on aninvalid SecurityCurrent
object.

Return Values
Returnsthe principalauthenticator

SecurityLevel2::Credentials

Synopsis
Represents a particular principal’s credential information that is specific to a process. A
Credentials object that supportsthe securitylLevel2: :Credentials interfaceisa
locality-constrained object. Any attempt to pass areference to the object outside its locality, or
any attempt to externalize the object using the CORBA: : ORB: : object_to_string() oOperation,
resultsin acorBa: :Marshall exception.

OMG IDL Definition

#ifndef _SECURITY_LEVEL_2_ IDL
#define _SECURITY_LEVEL_2_ IDL

#include <SecurityLevell.idl>

#pragma prefix “omg.org”

Using Security in CORBA Applications 14-1



module SecurityLevel2
{
interface Credentials
{
attribute Security::AssociationOptions
invocation_options_supported;
attribute Security::AssociationOptions
invocation_options_required;
Security: :AttributelList
get_attributes (

in Security: :AttributeTypelist attributes );
boolean
is_valid(

out Security::UtcT expiry time );

i
i
#endif /* _SECURITY_LEVEL_2_IDL */

C++ Declaration
class SecurityLevel2

{
public:
classCredentials;

typedefCredentials *Credentials_ptr;

class Credentials : public virtual CORBA::Object
{
public:
static Credentials_ptr _duplicate(Credentials_ptr obj);
static Credentials_ptr _narrow (CORBA::0bject_ptr obj);
static Credentials_ptr _nil();

virtual Security::AssociationOptions

14-8 Using Security in CORBA Applications



invocation_options_supported() = 0;
virtual void
invocation_options_supported (
const Security::AssociationOptions options ) = 0;
virtual Security::AssociationOptions
invocation_options_required() = 0;
virtual void

invocation_options_required/(

const Security::AssociationOptions options ) = 0;
virtual Security::AttributelList *
get_attributes (
const Security::AttributeTypelist & attributes) = 0;

virtual CORBA: :Boolean

is_valid( Security::UtcT_out expiry_time) = 0;

protected:
Credentials (CORBA: :Object_ptr obj = 0);

virtual ~Credentials() { }

private:
Credentials( const Credentialsé&) { }
void operator=(const Credentials&) { }
}; // class Credentials

}; // class SecurityLevel2

SecurityLevel2::Credentials::get_attributes

Synopsis
Gets the attribute list attached to the credentials.

Using Security in CORBA Applications

14-9



OMG IDL Definition

Security: :AttributelList get_attributes (
in AttributeTypeList attributes
)

Argument

attributes
The set of security attributes (privilege attribute types) whose values are desired. If this
list isempty, all attributes are returned.

Description

This method returns the attribute list attached to the credentials of the principal. In thelist of
attribute types, you are required to include only the type value(s) for the attributes you want
returned in the AttributeList. Attributes are not currently returned based on attribute family
or identities. In most cases, thisisthe same result you would get if you called
SecurityLevell::Current::get_attributes (), Sincethereisonly onevalid set of
credentialsin the principal at any instanceintime. Theresultscould be different if the credentials
are not currently in use.

Return Values
Returns attribute list.

Note: Thisisinformation taken from CORBAservices: Common Object Services Specification,
p. 15-97. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

SecurityLevel2::Credentials::invocation_options_supported

Synopsis
Indicates the maximum number of security options that can be used when establishing an SSL
connection to make an invocation on an object in the Oracle Tuxedo domain.

OMG IDL Definition

attribute Security::AssociationOptions

invocation_options_supported;

Argument
None.

14-10 Using Security in CORBA Applications



Description

This method should be used in conjunction with the

SecurityLevel2: :Credentials: :invocation_options_required method.

The following security options can be specified:

Security Option Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol providesreplay detection. Replay occurswhen amessageis

sent repeatedly with no detection.

DetectMisordering

The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget

Indicates that the target of arequest authenticatesitself to theinitiating
principal.

NoDelegation

Indicates that the principal permits an intermediate object to useits privileges
for the purpose of accesscontrol decisions. However, theprincipal’ sprivileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

SimpleDelegation

Indicates that the principal permits an intermediate object to useits privileges
for the purpose of access control decisions, and delegates the privilegesto the
intermediate object. Thetarget object receives only the privileges of theclient
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.

CompositeDelegation

Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Return Values

Thelist of defined security options.

Using Security in CORBA Applications 14-11



If the Tob7 : : TuxedoSecurity Security mechanism is used to create the security association,

only theNoProtection, EstablishTrustInClient, and simpleDelegation Security options
arereturned. TheEstablishTrustInClient Security option appearsonly if the security level
of the CORBA application is defined to require passwords to access the Oracle Tuxedo domain.

Note: A CORBA: :NO_PERMISSION exceptionisreturnedif the security options specified are not
supported by the security mechanism defined for the CORBA application. Thisexception
can also occur if the security options specified have less capabilities than the security
options specified by the

SecuritylLevel2::Credentials::invocation_options_required method.

The invocation_options_supported attribute has set () and get () methods. You
cannot use the set () method when using the Tob7 : : TuxedoSecurity Security
mechanism to get a Credentials object. If you do use the set () method with the

Tobj : : TuxedoSecurity Security mechanism, acorBA: : NO_PERMISSION exceptionis
returned.

SecurityLevel2::Credentials::invocation_options_required

Synopsis
Specifies the minimum number of security options to be used when establishing an SSL
connection to make an invocation on atarget object in the Oracle Tuxedo domain.

OMG IDL Definition

attribute Security::AssociationOptions

invocation_options_required;

Argument
None.

Description

Use this method to specify that communication between principals and the Oracle Tuxedo
domain should be protected. After using this method, a Credentials object makes an invocation
on atarget object using the SSL protocol with the defined level of security options. This method
should be used in conjunction with the

SecurityLevel2::Credentials::invocation_options_supported method.

The following security options can be specified:

14-12 Using Security in CORBA Applications



Security Option

Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol providesreplay detection. Replay occurswhen amessageis

sent repeatedly with no detection.

DetectMisordering

The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget

Indicates that the target of arequest authenticatesitself to the initiating
principal.

NoDelegation

Indicates that the principal permits an intermediate object to useits privileges
for the purpose of access control decisions. However, theprincipa’ sprivileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

SimpleDelegation

Indicates that the principal permits an intermediate object to useits privileges
for the purpose of access control decisions, and delegates the privilegesto the
intermediate object. Thetarget object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.

CompositeDelegation

Indicates that the principal permits the intermediate object to useits
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Return Values

Thelist of defined security options.

If the Tob7 : : TuxedoSecurity Security mechanism is used to create the security association,
only theNopProtection, EstablishTrustInClient,and SimpleDelegation SecUrity options
arereturned. TheEstablishTrustInClient Security option appearsonly if the security level
of the CORBA application is defined to require passwords to access the Oracle Tuxedo domain.

Using Security in CORBA Applications 14-13



Note: A CORrBA: :NO_PERMISSION exceptionisreturnedif the security options specified are not
supported by the security mechanism defined for the CORBA application. Thisexception
can also occur if the security options specified have more capabilities than the security
options specified by the

SecurityLevel2: :Credentials: :invocation_options_supported method.

The invocation_options_required attribute has set () and get () methods. You
cannot use the set () method when using the Tob7 : : TuxedoSecurity Security
mechanism to get a Credentials object. If you do usethe set () method with the

Tobj : : TuxedoSecurity Security mechanism, acorBaA: : NO_PERMISSION exceptionis
returned.

SecurityLevel2::Credentials::is_valid

Synopsis
Checks status of credentials.

OMG IDL Definition

boolean is_valid(
out Security::UtcT expiry_ time

)

Description

This method returns TrRUE if the credentials used are active at the time; that is, you did not call
Tobj: :PrincipalAuthenticator: :logoff OfF Tobj_Bootstrap: :destroy current. If
this method is called after Tobj : : PrincipalaAuthenticator: : logoff (), FALSE iSreturned.
If this method is called after Tobj_Bootstrap: :destroy_current (), the

CORBA: : BAD_INV_ORDER exception is raised.

Return Values

The expiration date returned contains the maximum unsigned long long Vauein C++. Until
theunsigned long long datatypeisadopted, the ulonglong datatypeis substituted. The
ulonglong datatypeis defined asfollows:

// interim definition of type ulonglong pending the
// adoption of the type extension by all client ORBs.
struct ulonglong {

unsigned long low;

14-14 Using Security in CORBA Applications



}i

unsigned long high;

Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,

p. 15-97. Revised Edition: March 31, 1995. Updated: November 1997. Used with

permission by OMG.

SecurityLevel2::PrincipalAuthenticator

Synopsis

Allows aprincipal to be authenticated. A Principal Authenticator object that supports the

SecurityLevel2::PrincipalAuthenticator interfaceisalocality-constrained object. Any
attempt to pass areference to the object outside its locality, or any attempt to externalize the
object using the corBa: : ORB: : object_to_string () operation, resultsina
CORBA: :Marshall exception.

OMG IDL Definition

#ifndef _SECURITY_LEVEL_2_ IDL
#define _SECURITY_LEVEL_2_ IDL

#include <SecurityLevell.idl>

#pragma prefix “omg.org”

module SecurityLevel2

{

interface PrincipalAuthenticator

{ // Locality Constrained

Security: :AuthenticationStatus authenticate (

in
in
in
in
out
out

out

Security: :AuthenticationMethod method,

Security: :SecurityName security_name,
Security: :Opaque auth_data,
Security: :AttributelList privileges,
Credentials creds,

Security: :Opaque continuation_data,
Security: :Opaque auth_specific_data

Using Security in CORBA Applications

14-15



Security: :AuthenticationStatus continue_authentication (

in Security: :Opaque response_data,

in Credentials creds,

out Security::0paque continuation_data,
out Security::0paque auth_specific_data

)
}i
}i
#endif // SECURITY_LEVEL_2_IDL

#pragma prefix "beasys.com"
module Tobj

{

const Security::AuthenticationMethod
TuxedoSecurity = 0x54555800;
CertificateBased = 0x43455254;

i

C++ Declaration
class SecurityLevel2
{
public:
classPrincipalAuthenticator;

typedefPrincipalAuthenticator * PrincipalAuthenticator_ptr;

class PrincipalAuthenticator : public virtual CORBA::Object
{
public:
static PrincipalAuthenticator_ptr
_duplicate(PrincipalAuthenticator_ptr obj);
static PrincipalAuthenticator_ptr
_narrow (CORBA: :Object_ptr obj);

static PrincipalAuthenticator_ptr _nil();

14-16 Using Security in CORBA Applications



virtual Security::AuthenticationStatus
authenticate (

Security: :AuthenticationMethod method,
const char * security_name,
const Security::0paque & auth_data,
const Security::AttributelList & privileges,
Credentials_out creds,
Security: :0Opagque_out continuation_data,

Security: :0paque_out auth_specific_data) = 0;

virtual Security::AuthenticationStatus
continue_authentication (
const Security::0paque & response_data,
Credentials_ptr & creds,
Security: :0paque_out continuation_data,

Security: :0Opaque_out auth_specific_data) = 0;

protected:
PrincipalAuthenticator (CORBA: :0Object_ptr obj = 0);

virtual ~PrincipalAuthenticator() { }

private:
PrincipalAuthenticator( const PrincipalAuthenticator&) { }
void operator=(const PrincipalAuthenticatoré&) { }
}; // class PrincipalAuthenticator

i

SecurityLevel2::PrincipalAuthenticator::continue_authentication

Synopsis
Alwaysfails.

Using Security in CORBA Applications 14-17



OMG IDL Definition

Security: :AuthenticationStatus continue_authentication (

in Security: :Opadque response_data,

in Credentials creds,

out Security::0Opaque continuation_data,
out Security::0Opaque auth_specific_data

)

Description

Because the Oracle Tuxedo software does authentication in one step, this method alwaysfailsand
returns Security: :AuthenticationStatus: : SecAuthFailure.

Return Values

Alwaysreturns security: :AuthenticationStatus: : SecAuthFailure.

Note: Thisinformation istaken from CORBAservices: Common Object Services Specification,
pp. 15-92, 93. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Tobj::PrincipalAuthenticator::get_auth_type

Synopsis
Gets the type of authentication expected by the Oracle Tuxedo domain.

OMG IDL Definition

AuthType get_auth_type();
Description
This method returns the type of authentication expected by the Oracle Tuxedo domain.

Note: This method raises corBa: : BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values

A reference to the Tobj_authType enumeration. Returns the type of authentication required to
access the Oracle Tuxedo domain. The following table describes the valid return values.

14-18 Using Security in CORBA Applications



Return Value

Meaning

TOBJ_NOAUTH

No authentication is needed; however, the client
application can still authenticate itself by specifying a
username and a client application name. No password
isrequired.

To specify this level of security, specify the NONE
valuefor the SECURITY parameter in the RESOURCES
section of the UBBCONF IG file.

TOBJ_SYSAUTH

The client application must authenticate itself to the
Oracle Tuxedo domain, and must specify ausername, a
name, and a password for the client application.

To specify thislevel of security, specify the aApp_pu
valuefor the SECURITY parameter in the RESOURCES
section of the UBBCONFIG file.

TOBJ_APPAUTH

The client application must provide proof material that
authenticates the client application to the Oracle
Tuxedo domain.The proof material may be apassword
or adigital certificate.

To specify thislevel of security, specify the
USER_AUTH valuefor the SECURITY parameter inthe
RESOURCES section of the UBBCONFIG file.

Tobj::PrincipalAuthenticator:logon

Synopsis

Authenticates the principal.

OMG IDL Definition

Security::

in
in
in
in

in

AuthenticationStatus logon (

string
string
string
string

UserAuthData

user_name,
client_name,
system_password,
user_password,

user_data

Using Security in CORBA Applications

14-19



Arguments

user_name
The Oracle Tuxedo username. The authenticationlevel is TOBJ_NOAUTH. If user_name
isNULL or empty, or exceeds 30 characters, 1ogon raiSesS CORBA: : BAD_PARAM.

client_name
The Oracle Tuxedo name of the client application. The authentication level is
TOBJ_NOAUTH. If the c1ient_name iSNULL or empty, or exceeds 30 characters, logon
raises the CORBA : : BAD_PARAM exception.

system_password
The CORBA client application password. The authentication level is ToBJs_sysauTH. If
the client nameis NULL or empty, or exceeds 30 characters, logon raises the
CORBA: : BAD_PARAM exception.

Note: The system_password must not exceed 30 characters.

user_password
The user password (nheeded for use by the default Oracle Tuxedo authentication service).
The authentication level isToBg_appauTs. The password must not exceed 30 characters.

user_data
Datathat is specific to the client application (needed for use by a custom Oracle Tuxedo
authentication service). The authentication level is ToBJ_aAPPAUTH.

Note: ToBJs_svsautH includesthe requirementsof Toss_noauTH, plusaclient application
password. ToBJ_arPpaUTH includes the requirements of ToBJ_sysauTH, plus
additional information, such as a user password or user data.

Note: Theuser_password and user_data arguments are mutually exclusive, depending
on the requirements of the authentication service used in the configuration of the
Oracle Tuxedo domain. The Oracle Tuxedo default authentication service expects a
user password. A customized authentication service may require user data. Thelogon
call raisesthe COrRBA: : BAD_PARAM exception if both user_password and
user_data are specified.

Description

14-20

This method authenticates the principal viathe [1OP Listener/Handler so that the principal can
access an Oracle Tuxedo domain. This method is functionally equivalent to

SecurityLevel2: :PrincipalAuthenticator::authenticate, but the argumentsare
oriented to ATMI authentication.

Note: This method raises corBa: : BAD_INV_ORDER if it iscalled with an invalid
SecurityCurrent object.

Using Security in CORBA Applications



Return Values
The following table describes the valid return values.

Return Value Meaning

Security::AuthenticationStatus:: The authentication succeeded.

SecAuthSuccess

Security::AuthenticationStatus:: The authentication failed, or the client application was

SecAuthFailure already authenticated and did not call one of the following
methods:

Tobj::PrincipalAuthenticator:logoff

Tobj_Bootstrap: :destroy_current

Tobj::PrincipalAuthenticator::logoff

Synopsis
Discards the security context associated with the principal .

OMG IDL Definition

void logoff () ;

Description

This call discards the security context, but does not close the network connections to the Oracle
Tuxedo domain. Logof £ also invalidates the current credentials. After logging off, invocations
using existing object references fail if the authentication type is not ToBJ_NOAUTH.

If the principal is currently authenticated to an Oracle Tuxedo domain, calling
Tobj_Bootstrap::destroy_current()Cd|Slogoffiﬁm“dﬂy.

Note: This method raises corBa: : BAD_INV_ORDER if it iscalled with an invalid
SecurityCurrent object.

Return Values
None.

Using Security in CORBA Applications 14-21



Tobj::PrincipalAuthenticator::build_auth_data

Synopsis
Creates authentication data and attributes for use by

SecurityLevel2: :PrincipalAuthenticator: :authenticate

OMG IDL Definition

void build_auth_data(

in string user_name,

in string client_name,

in string system_password,
in string user_password,
in UserAuthData user_data,

out Security::Opaque auth_data,

out Security::AttributelList privileges
)
Arguments

user_name
The Oracle Tuxedo username.

client_name

The CORBA client name.

system_password

The CORBA client application password.

user_password
The user password (default Oracle Tuxedo authentication service).

user_data
Client application-specific data (custom Oracle Tuxedo authentication service).

auth_data
For use by authenticate.

privileges
For use by authenticate.

14-22 Using Security in CORBA Applications



Note: If user _name, client_name, Of system password ISNULL or empty, or exceeds
30 characters, the subsequent authenticate method invocation raises the
CORBA: : BAD_PARAM exception.

Note: Theuser_password anduser_data parameters are mutually exclusive, depending
on the requirements of the authentication service used in the configuration of the
Oracle Tuxedo domain. The Oracle Tuxedo default authentication service expects a
user password. A customized authentication service may require user data. If both
user_password and user_data are specified, the subsequent authentication call
raises the CORBA : : BAD_PARAM exception.

Description

This method is a helper function that creates authentication data and attributes to be used by

SecurityLevel2: :PrincipalAuthenticator: :authenticate.

Note: This method raises corBa: : BAD_INV_ORDER if it iscalled with an invalid
SecurityCurrent object.

Return Values
None.

Using Security in CORBA Applications 14-23



14-24 Using Security in CORBA Applications



Java Security Reference

For information about the security application programming interface (API), see the CORBA
Javadoc in the Oracle Tuxedo online documentation.

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using Security in CORBA Applications 15-1



15-2 Using Security in CORBA Applications



cHAPTER@

Automation Security Reference

Thistopic containsthe Automation method descriptionsfor CORBA security. Thistopicincludes
the following section:

e Method Descriptions
Notes: The Automation security methods do not support certificate authentication or the use of
the SSL protocol.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

Method Descriptions

This section describes the Automation Security Service methods.

DiSecurityLevel2_Current

ThepisecurityLevel2_cCurrent objectisan Oracleimplementation of the CORBA Security
model. In this release of the Oracle Tuxedo software, the get_attributes (),

Using Security in CORBA Applications 16-1



set_credentials (), get_credentials (), andPrincipal Authenticator () methodsare
supported.

DISecurityLevel2_Current.get_attributes

Synopsis
Returns attributes for the Current interface.

MIDL Mapping

HRESULT get_attributes(
[in] VARIANT attributes,
[in,out,optional] VARIANT* exceptionInfo,
[out, retval] VARIANT* returnValue) ;

Automation Mapping

Function get_attributes(attributes, [exceptionInfo])

Parameters

attributes
The set of security attributes (privilege attribute types) whose values are desired. If this
list isempty, al attributes are returned.

exceptioninfo
An optional input argument that allows the client application to get additional exception
dataif an error occurs.

Description

This method gets privilege (and other) attributes from the credentials for the client application
from the Current interface.

Return Values

A variant containing an array of bIsecurity_SecAttribute objects. The following table
describes the valid return values.

16-2 Using Security in CORBA Applications



Method Descriptions

Return Value Meaning

Security::Public Empty (Public is returned when no authentication was
performed.)

Security: :AccessId Null-terminated ASCI| string containing the Oracle

Tuxedo username.

Security: :PrimaryGroupId Null-terminated ASCII string containing the Oracle
Tuxedo name of the client application.

DiSecurityLevel2_Current.set_credentials

Synopsis
Sets credentials type.

MIDL Mapping

HRESULT set_credentials(
[in] Security_CredentialType cred_type,
[in] DISecurityLevel2_Credentials* cred,
[in,out,optional] VARIANT* exceptionInfo);

Automation Mapping

Sub set_credentials(cred_type As Security_CredentialType,
cred As DISecurityLevel2_Credentials,
[exceptionInfo])

Description
This method can be used only to set secInvocationCredentials; otherwise,
set_credentials raiSESCORBA: : BAD_PARAM. The credentials must have been obtained from a
previouscall to DISecuritylLevel2_ Current.get_credentials.

Arguments

cred_type
The type of credentialsto be set; that is, invocation, own, or nonrepudiation.

Using Security in CORBA Applications 16-3



cred
The object reference to the Credentials object, which isto become the default.

exceptioninfo
An optional input argument that allows the client application to get additional exception
dataif an error occurs.

Return Values
None.

DISecurityLevel2_Current.get_credentials

Synopsis
Gets credential s type.

MIDL Mapping

HRESULT get_credentials (
[in] Security_CredentialType cred_type,
[in,out,optional] VARIANT* exceptionInfo,
[out,retval] DISecurityLevel2_Credentials** returnValue) ;

Automation Mapping

Function get_credentials(cred_type As Security_ CredentialType,
[exceptionInfo]) As DISecurityLevel2_Credentials

Description

Thiscall can be used only to get secInvocationCredentials; Otherwise, get_credentials
raises CORBA: : BAD_PARAM. If no credentials are available, get_credentials raises
CORBA: : BAD_INV_ORDER.

Arguments

cred_type
The type of credentialsto get.

exceptioninfo
An optional input argument that allows the client application to get additional exception
dataif an error occurs.

16-4 Using Security in CORBA Applications



Method Descriptions

Return Values

A DISecurityLevel2_Credentials Object for the active credentialsin the client application
only.

DISecurityLevel2_Current.principal_authenticator

Synopsis
Returnsthe principalaAuthenticator.

MIDL Mapping

HRESULT principal_authenticator ([out, retval]
DITobj_PrincipalAuthenticator** returnvalue) ;

Automation Mapping

Property principal_authenticator As DITobj_PrincipalAuthenticator

Description

The PrincipalAuthenticator returned by theprincipal_authenticator property isof
actual type p1Tobj_Principalauthenticator. Therefore, it can be used asa
DISecurityLevel2_PrincipalAuthenticator.

Note: Thismethod raisescorea: : Bap_1Nv_ORDER if it iscalled on aninvalid SecurityCurrent
object.

Return Values

A DITobj_PrincipalAuthenticator Obj ect.

DITobj_PrincipalAuthenticator

ThepITobj_PrincipalaAuthenticator objectisusedtologintoandlog out of the Oracle
Tuxedo domain. In this release of the Oracle Tuxedo software, the authenticate,
build_auth_data(), continue_authentication(), get_auth type(), logon(), and
logoff () methods are implemented.

Using Security in CORBA Applications 16-5



DITobj_PrincipalAuthenticator.authenticate

Synopsis
Authenticates the client application.
MIDL Mapping
HRESULT authenticate(
[in] long method,
[in] BSTR security_name,
[in] VARIANT auth_data,
[in] VARIANT privileges,

[out] DISecurityLevel2_Credentials**

creds,
[out] VARIANT* continuation_data,
[out] VARIANT* auth_specific_data,
[in,out,optional] VARIANT* exceptionInfo,

[out,retval] Security_ AuthenticationStatus* returnvValue) ;

Automation Mapping

Function authenticate(method As Long, security_name As String,
auth_data, privileges, creds As DISecurityLevel2_Credentials,
continuation_data, auth_specific_data,

[exceptionInfo]) As Security_AuthenticationStatus

Arguments

method
Must be Tobj: :TuxedoSecurity. |f method isinvalid, authenticate raises
CORBA: : BAD_PARAM.

security_ name
The Oracle Tuxedo username.

auth_data
AsreﬂﬂnedbyDITobj_PrincipalAuthenticator.build_auth_datanauth_data
isinvalid, authenticate raiSeS CORBA: : BAD_PARAM.

16-6 Using Security in CORBA Applications



privileges

Method Descriptions

Asreturned by DITobj_PrincipalAuthenticator.build_auth_data. If
privileges isinvalid, authenticate raiSeS CORBA: : BAD_PARAM.

creds

Placed into the SecurityCurrent object.

continuation_data

Always empty.

auth_specific_data

Always empty.

exceptioninfo

An optional input argument that allows the client application to get additional exception

dataif an error occurs.

Description

This method authenticates the client application viathe 11OP Listener/Handler so that it can

access an Oracle Tuxedo domain.

Return Values

A Security_AuthenticationStatus Enum value. The following table describes the valid

return values.

Return Value

Meaning

Security: :Authentication
Status::
SecAuthSuccess

The authentication succeeded.

Security: :Authentication
Status::
SecAuthFailure

The authentication failed, or the client application was
already authenticated and did not invoke
Tobj::PrincipalAuthenticator:logoff or
Tobj_Bootstrap: :destroy_current.

Using Security in CORBA Applications 16-7



DITobj_PrincipalAuthenticator.build_auth_data

Synopsis
Creates authentication data and attributes for use by

DITobj_PrincipalAuthenticator.authenticate

MIDL Mapping
HRESULT build_auth_data(
[in] BSTR user_name,
[in] BSTR client_name,
[in] BSTR system_password,
[in] BSTR user_password,
[in] VARIANT user_data,
[out] VARIANT* auth_data,
[out] VARIANT¥* privileges,
[

in,out,optional] VARIANT* exceptionInfo);

Automation Mapping

Sub build_auth_data(user_name As String, client_name As String,
system_password As String, user_password As String, user_data,
auth_data, privileges, [exceptionInfol])

Arguments

user_name
The Oracle Tuxedo username.

client_name

A name of the CORBA client application.

system_password

The password for the CORBA client application.

user_password
The user password (for default authentication service).

user_data
Client application-specific data (custom authentication service).

16-8 Using Security in CORBA Applications



Method Descriptions

auth_data
For use by authenticate.

privileges
For use by authenticate.

exceptioninfo
An optional input argument that allows the client application to get additional exception
dataif an error occurs.

Note: If user_name, client_name, Of system_password iSNULL or empty, or exceeds
30 characters, the subsequent authenticate method invocation raises the
CORBA: : BAD_PARAM exception.

Note: Theuser_password anduser_data parametersare mutualy exclusive, depending
on the requirements of the authentication service used in the configuration of the
Oracle Tuxedo domain. The default authentication service expects a user password.
A customized authentication service may require user data. If both user_password
and user_data are specified, the subsequent authentication call raisesthe
CORBA: : BAD_PARAM exception.

Description

This method is a helper function that creates authentication data and attributes to be used by

DITobj_PrincipalAuthenticator.authenticate

Note: This method raises corBa: : BAD_INV_ORDER if it iscalled with an invalid
SecurityCurrent object.

Return Values
None.

DITobj_PrincipalAuthenticator.continue_authentication

Synopsis

Alwaysreturns security: :AuthenticationStatus: : SecAuthFailure.

MIDL Mapping

HRESULT continue_authentication(
[in] VARIANT response_data,
[in,out] DISecuritylLevel2_Credentials** creds,

Using Security in CORBA Applications 16-9



out] VARIANT* continuation_data,
out] VARIANT* auth_specific_data,

[
[
[in,out,optional] VARIANT* exceptionInfo,
[

out,retval] Security AuthenticationStatus* returnvValue);

Automation Mapping

Function continue_authentication (response_data,
creds As DISecuritylLevel2_Credentials, continuation_data,
auth_specific_data, [exceptionInfo]) As
Security_ AuthenticationStatus

Description

Because the Oracle Tuxedo software does authentication in one step, this method alwaysfailsand
returns Security: :AuthenticationStatus: :SecAuthFailure

Return Values
Alwaysreturns secauthFailure.

DITobj_PrincipalAuthenticator.get_auth_type

Synopsis
Gets the type of authentication expected by the Oracle Tuxedo domain.

MIDL Mapping

HRESULT get_auth_type(
[in, out, optional] VARIANT* exceptionInfo,
[out, retval] Tobj_AuthType* returnValue) ;

Automation Mapping

Function get_auth_type([exceptionInfo]) As Tobj_AuthType

Argument

exceptioninfo
An optional input argument that allows the client application to get additional exception
dataif an error occurs.

16-10 Using Security in CORBA Applications



Description

This method returns the type of authentication expected by the Oracle Tuxedo domain.

Method Descriptions

Note: This method raises corBa: : BAD_INV_ORDER if it iscalled with an invalid

SecurityCurrent object.

Returned Values

A reference to the Tobj_authType enumeration. The following table describes the valid return

values.

Return Value

Meaning

TOBJ_NOAUTH

No authentication is needed; however, the client
application can still authenticate itself by specifying
ausername and a client application name. No
password is required.

To specify thislevel of security, specify the NONE
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_SYSAUTH

The client application must authenticate itself to the
Oracle Tuxedo domain, and must specify a
username, a name, and a password for the client
application.

To specify thislevel of security, specify the ApPp_pPwW
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_APPAUTH

The client application must provide proof material
that authenticates the client application to the Oracle
Tuxedo domain.The proof material may be a
password or adigital certificate.

To specify thislevel of security, specify the
USER_AUTH value for the SECURITY parameter in
the RESOURCES section of the UBBCONFIG file.

Using Security in CORBA Applications

16-1



DITobj_PrincipalAuthenticator.logon

Synopsis
Logsin to the Oracle Tuxedo domain. The correct input parameters depend on the authentication
level.
MIDL Mapping
HRESULT logon (
[in] BSTR user_name,
[in] BSTR client_name,
[in] BSTR system_password,
[in] BSTR user_password,
[in] VARIANT user_data,
[in,out,optional] VARIANT* exceptionInfo,
[

out,retval] Security AuthenticationStatus*

returnValue) ;

Automation Mapping

Function logon(user_name As String, client_name As String,
system_password As String, user_password As String,
user_data, [exceptionInfo]) As Security_ AuthenticationStatus

Description

For remote CORBA client applications, this method authenticates the client application viathe
I1OP Listener/Handler so that the remote client application can access an Oracle Tuxedo domain.
Thismethodisfunctionally equivalenttoDITobj_PrincipalAuthenticator.authenticate,
but the parameters are oriented to security.

Arguments

user_name
The Oracle Tuxedo username. This parameter isrequired for ToBJ_NOAUTH,
TOBJ_SYSAUTH, and ToBJ_APPAUTH authentication levels.

client_name
The name of the CORBA client application. This parameter isrequired for ToBJ_NOAUTH,
TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.

16-12 Using Security in CORBA Applications



Method Descriptions

system_password
A password for the CORBA client application. This parameter is required for
TOBJ_SYSAUTH and ToBJ_APPAUTH authentication levels.

user_password
The user password (default authentication service). This parameter is required for the
TOBJ_APPAUTH authentication level.

user_data
Application-specific data (custom authentication service). This parameter is required for
the ToBJ_appauTH authentication level.

Note: If user_name, client_name, Of system_password iSNULL or empty, or exceeds
30 characters, the subsequent authenticate method invocation raises the
CORBA: : BAD_PARAM exception.

Note: If the authorization level is ToBg_aprpauTH, only one of user_password or
user_data may be supplied.

exceptioninfo

An optional input argument that allows the client application to get additional exception
dataif an error occurs.

Return Values
The following table describes the valid return values.

Return Value Meaning

Security::AuthenticationStatus:: The authentication succeeded.

SecAuthSuccess

Security::AuthenticationStatus::  Theauthentication failed, or the client application was aready
SecAuthFailure authenticated and did not call one of the following methods:

Tobj: :PrincipalAuthenticator:logoff
Tobj_Bootstrap::destroy current

DITobj_PrincipalAuthenticator.logoff

Synopsis
Discards the current security context associated with the CORBA client application.

Using Security in CORBA Applications 16-13



MIDL Mapping

HRESULT logoff([in, out, optional] VARIANT* exceptionInfo);

Automation Mapping

Sub logoff ([exceptionInfo])

Description

This call discards the context associated with the CORBA client application, but does not close
the network connections to the Oracle Tuxedo domain. Logof £ also invalidates the current
credentials. After logging off, calls using existing object referencesfail if the authentication type
iSNot TOBJ_NOAUTH.

If the client application is currently authenticated to an Oracle Tuxedo domain, calling
Tobj_Bootstrap.destroy_current()Cd|Slogoff"np”dﬂy.

Argument

exceptioninfo
An optional input argument that allows the client application to get additional exception
dataif an error occurs.

Return Values
None.

DiSecurityLevel2_Credentials

TheDIsecurityLevel2 Credentials oObject isan Oracleimplementation of the CORBA
Security model. In this release of the Oracle Tuxedo software, the get_attributes () and
is_valid () methods are supported.

DiSecurityLevel2_Credentials.get_attributes

Synopsis
Gets the attribute list attached to the credentials.

16-14 Using Security in CORBA Applications



Method Descriptions

MIDL Mapping

HRESULT get_attributes(
[in] VARIANT attributes,
[in,out,optional] VARIANT* exceptionInfo,
[out, retval] VARIANT* returnValue) ;

Automation Mapping

Function get_attributes (attributes, [exceptionInfol])

Arguments

attributes
The set of security attributes (privilege attribute types) whose values are desired. If this
listisempty, al attributes are returned.

exceptioninfo
An optional input argument that allows the client application to get additional exception
dataif an error occurs.

Description

This method returns the attribute list attached to the credentials of the client application. In the
list of attributetypes, you arerequired toinclude only thetype value(s) for the attributes you want
returned in the attributeList. Attributes are not currently returned based on attribute family
or identities. In most cases, thisisthe same result you would get if you called
DISecurityLevel2.Current::get_attributes (), Sincethereisonly onevalid set of
credentialsin the client application at any instance in time. The results could be different if the
credentials are not currently in use.

Return Values
A variant containing an array of DISecurity_SecAttribute Objects.

DiSecurityLevel2_Credentials.is_valid

Synopsis
Checks the status of credentials.

Using Security in CORBA Applications 16-15



MIDL Mapping

HRESULT is_valid(
[out] IDispatch** expiry_time,
[in,out,optional] VARIANT* exceptionInfo,
[out, retval] VARIANT_BOOL* returnValue

Automation Mapping
Function is_valid(expiry_ time As Object,
[exceptionInfo]) As Boolean
Description

This method returns TrRUE if the credentials used are active at the time; that is, you did not call
DITobj_PrincipalAuthenticator.logoff Of destroy_current. If thismethodis caled
after DITobj_PrincipalAuthenticator.logoff (), FALSE isreturned. If thismethod is
called after destroy_current (), the CORBA: : BAD_INV_ORDER exception is raised.

Return Values

The output expiry_time 8SaDITimeBase_UtcT Object set to max.

16-16 Using Security in CORBA Applications



	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Using Security in CORBA Applications, 12c Release 2 (12.2.2)
	Overview of the CORBA Security Features
	The CORBA Security Features
	The CORBA Security Environment
	Oracle Tuxedo Security SPIs

	Introduction to the SSL Technology
	The SSL Protocol
	Digital Certificates
	Certificate Authority
	Certificate Repositories
	A Public Key Infrastructure
	PKCS-5 and PKCS-8 Compliance
	Supported Public Key Algorithms
	Supported Symmetric Key Algorithms
	Supported Message Digest Algorithms
	Supported Cipher Suites
	Standards for Digital Certificates

	Fundamentals of CORBA Security
	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Determining min-max Values
	Finding a Common Key Size

	WSL/WSH Connection Timeout During Initialization
	Development Process

	Password Authentication
	How Password Authentication Works
	Development Process for Password Authentication

	The SSL Protocol
	How the SSL Protocol Works
	Requirements for Using the SSL Protocol
	Development Process for the SSL Protocol

	Certificate Authentication
	How Certificate Authentication Works
	Development Process for Certificate Authentication

	Using an Authentication Plug-in
	Authorization
	Auditing
	PKI Plug-ins
	Commonly Asked Questions About the CORBA Security Features
	Do I Have to Change the Security in an Existing CORBA Application?
	Can I Use the SSL Protocol in an Existing CORBA Application?
	When Should I Use Certificate Authentication?


	Managing Public Key Security
	Requirements for Using Public Key Security
	Who Needs Digital Certificates and Private/Private Key Pairs?
	Requesting a Digital Certificate
	Publishing Certificates in the LDAP Directory Service
	Editing the LDAP Search Filter File
	Storing the Private Keys in a Common Location
	Defining the Trusted Certificate Authorities
	Creating a Peer Rules File

	Configuring Link-Level Encryption
	Understanding min and max Values
	Verifying the Installed Version of LLE
	Configuring LLE on CORBA Application Links

	Configuring the SSL Protocol
	Setting Parameters for the SSL Protocol
	Defining a Port for SSL Network Connections
	Enabling Host Matching
	Setting the Encryption Strength
	Setting the Interval for Session Renegotiation
	Defining Security Parameters for the IIOP Listener/Handler
	Example of Setting Parameters on the ISL System Process
	Example of Setting Command-line Options on the CORBA C++ ORB

	Configuring Authentication
	Configuring the Authentication Server
	Defining Authorized Users
	Defining a Security Level
	Configuring Application Password Security
	Configuring Password Authentication
	Sample UBBCONFIG File for Password Authentication
	Configuring Certificate Authentication
	Sample UBBCONFIG File for Certificate Authentication
	Configuring Access Control
	Configuring Optional ACL Security
	Configuring Mandatory ACL Security
	Setting ACL Policy Between CORBA Applications
	Impersonating the Remote Domain Gateway
	Example DMCONFIG Entries for ACL Policy


	Configuring Security to Interoperate with Older WebLogic Enterprise Client Applications

	Configuring Security Plug-ins
	Registering the Security Plug-ins (SPIs)

	Building and Running the CORBA Sample Applications
	Building and Running the Security Sample Application
	Building and Running the Secure Simpapp Sample Application
	Step 1: Copy the Files for the Secure Simpapp Sample Application into a Work Directory
	Step 2: Change the Protection Attribute on the Files for the Secure Simpapp Sample Application
	Step 3: Verify the Settings of the Environment Variables
	Step 4: Execute the runme Command
	Using the Secure Simpapp Sample Application


	Writing a CORBA Application That Implements Security
	Using the Bootstrapping Mechanism
	Using the Host and Port Address Format
	Using the corbaloc URL Address Format
	Using the corbalocs URL Address Format

	Using Password Authentication
	The Security Sample Application
	Writing the Client Application
	C++ Code Example That Uses the SecurityLevel2::PrincipalAuthenticator::authenticate() Method
	C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon() Method


	Using Certificate Authentication
	The Secure Simpapp Sample Application
	Writing the CORBA Client Application
	C++ Code Example of Certificate Authentication


	Using the Interoperable Naming Service Mechanism
	Protecting the Client Credentials

	Using the Invocations_Options_Required() Method

	Troubleshooting
	Using ULOGS and ORB Tracing
	CORBA::ORB_init Problems
	Password Authentication Problems
	Certificate Authentication Problems
	Tobj::Bootstrap:: resolve_initial_references Problems
	IIOP Listener/Handler Startup Problems
	Configuration Problems
	Problems with Using Callbacks Objects with the SSL Protocol
	Troubleshooting Tips for Digital Certificates

	CORBA Security APIs
	The CORBA Security Model
	Authentication of Principals
	Controlling Access to Objects
	Administrative Control

	Functional Components of the CORBA Security Environment
	The Principal Authenticator Object
	Using the Principal Authenticator Object with Certificate Authentication
	Oracle Tuxedo Extensions to the Principal Authenticator Object

	The Credentials Object
	The SecurityCurrent Object

	Security Modules
	CORBA Module
	TimeBase Module
	Security Module
	Security Level 1 Module
	Security Level 2 Module
	Tobj Module

	C++ Security Reference
	SecurityLevel2::Credentials
	SecurityLevel2::PrincipalAuthenticator

	Java Security Reference
	Automation Security Reference
	Method Descriptions
	DISecurityLevel2_Current
	DITobj_PrincipalAuthenticator
	DISecurityLevel2_Credentials



