Oracle® Tuxedo
Service Component Architecture

12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo Programming an Oracle Tuxedo Application Using Java, 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Administering Oracle Tuxedo SCA Components

Oracle Tuxedo SCA DeploymentModelt 1-1
SCA Composite ConfigurationFile. it 1-2
SCA Component Configuration File............. ... i, 1-3

Configuring Oracle Tuxedo SCA COMPONENESottt i i ee e i 1-6
Configuringan SCA ATMI Client. e 1-6
Configuringan SCA JATMIClientt e 1-7
Configuring an SCA WorkstationClient., 1-9
Configuring an SCA Web ServiceClient i, 1-10
Configuringan SCA ATMI Serveroviii et 1-12
Configuringan SCA Web ServiceServert 1-14
Configuring SCA Client Security i 1-17

Oracle Tuxedo Application Domain Security. 1-17
Oracle Tuxedo Link-Level Security, 1-19

Administering Oracle Tuxedo SCA Components.coveennnenennenn. 1-21

Tracing the SCA ATMI Serverand Client.t 1-21
Oracle Tuxedo TMTRACE. oo e 1-22
SCA Runtime, ATMI Service, and Reference Binding Tracing. 1-22

Monitoring SCA ATMI SErVErS. . ..ot et 1-23

Tracing SCA JATMI Clients e 1-25

Service Component Architecture i

2. Oracle Tuxedo SCA Programming

OV, .« oottt e e e e e e e 2-2
SCA ULIlItIES. . o oo 2-2
SCA Client Programming.o ottt e et e e 2-2
SCA Client Programming StEPS . . .« o oo v e e 2-3
Setting Up the Client Directory Structure 2-3
Developing the Client Application. 2-4
Composing the SCDL DesCriptor. oo vt e 2-6
Building the Client Application. it 2-7
Running the Client Application o i i 2-7
Handling TPRFAIL Datao o e 2-9

SCA Component Programmingt e 2-11
SCA Component Programming Steps.o v it 2-13
Setting Up the Component Directory. 2-13
Developing the Component Implementation 2-14
Composing the SCDL DesCriptor. oo it 2-17
Compiling and Linking the Components.co ... 2-18
Building the Oracle Tuxedo Server Hostt 2-18

SCA Python, Ruby, and PHP Programmingcoiiiinieinnann. 2-18
PrEreqUISITES . o o 2-19
SCA Python, Ruby, and PHP Programming Overview. 2-19
Python, Ruby, and PHP Client Programmingcooviiineenn. .. 2-20
SCDL ClBNS . . .ottt et e e e e e 2-21

Python Clientso 2-21

Ruby Clients. 2-21

PHP Clients 2-21

Python, Ruby, and PHP Component Programming. 2-22

Service Component Architecture

SCDL COmMPONENES. . . .ottt et et et
Python Componentst

Ruby Components. e

SCA BINAING. . . . oottt
ATMIBINAING
Java ATMI (JATMD) Binding.o e
Python, Ruby, and PHP BIinding

Python, Ruby, and PHP Binding Limitations.
Web ServicesBindingo

SCA DataTypeMappingttt e e e e

Run-Time Data Type Mapping oot
Simple Oracle Tuxedo Buffer DataMapping.ovviveneeen. ..
Complex Return Type Mappingo v e
Complex Oracle Tuxedo Buffer DataMappingcoovvvnn...

SCA Utility Data Type Mapping« oo et e e
C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping
C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping
C++ Parameter Type and Oracle Tuxedo Complex Type Mapping
Parameter and Return Types to Parameter-Level Keyword Restrictions. . . .

Python, Ruby, and PHP Data Type Mapping.« covvviineiie e

Service Component Architecture

iv

Python Data Type Mapping oo vttt e 2-63

Ruby Data Type Mappingovun it 2-66

PHP Data Type Mappingo v vttt e e 2-69

SCA Structure Data Type Mapping. oot 2-71
SCA Structureand FML32 or FML Mappingc.coovvvinnnn.. 2-71

SCA Structure and VIEW32, VIEW, X_OCTET, or X_C_TYPE Mapping . 2-72

SCA Structure and Mbstring Mapping. 2-72

TPFAIL ReturnData e 2-72

SCA and Oracle Tuxedo Interoperabilityt 2-73
SCA TranSaCtioNS. . . . oot ettt e e e e e e e e 2-74
SCA SECUNLY v ottt ettt e e e e e e 2-75

3. Web Application Server Programming

OV BV, .« oottt e e e e e e e 31
Developing Native Oracle Tuxedo Web Applications. 32
Developing Python Web Applications. e 3-7
PrereqUISITES . . .o 3-7
USB0. . ot e 37
EXample(S). . ..o 39
Stand-Alone Script/Application. 39
Django-Based Application. 3-10
Developing Ruby Web Applications 311
PrereqUISItES . ..o 311
USB0. . ot 312
EXample(S). . .o 3-13
Developing PHP Web Applications. 315
PrereqUISItES . ..o 3-15
USB0. . ot 3-16

Service Component Architecture

4. SCA Command Reference

buildscaclient. 4-2
buildscacomponent o 4-6
bUIldsCaserver 4-10
mkfldfromschema, mkfld32fromschemao it 4-14
mkviewfromschema, mkview32fromschema. 4-15
SCAAAMIN .« oot e e 4-16
SCAHOST (B) . ettt et e e e e e e e e e e 4-18
SCAPaSSWOrALOO0l o 4-20
SCastructC32, SCastruCtC(L). . . .o vt e 4-21
scastructdis32, SCastruCtdiSot 4-23
SCAUXGEN(L) -« v v ettt et e e e 4-24
SetSCAPasswordCallback(3C). . . oo oo 4-26
TUXSCAgEN(L) - - v e ettt e e e e 4-28

5. Oracle Tuxedo SCA Sample Applications

BasiC Sample: SIMPaDPD .+« o v vt e 51
Other USES . . oo e 5-1
Advanced Sample: UBIKEt 5-2
Other USES . . oo e 5-2
SCA Sample Using Web Services. calcclient 5-2
A. Appendix A: Oracle Tuxedo SCA ATMI Binding Reference
SCA ATMI BindingSchema 6-1
SCA ATMI Binding Attributes Description.t 6-3
</binding.atmi/@reqUireS> o 6-3

Service Component Architecture v

vi

</binding.ami/tuxconfig>. 6-4

</binding.ami/map>. 6-5
</binding.atmi/ServiCETYPE>. . . . ot 6-5
</binding.atmi/inputBufferType>, </binding.atmi/outputBufferType>,
</binding.atmi/errorBufferType>. o 6-5
</binding.atmi/workStationParameters>. 6-7
</binding.atmi/authentication> 6-8
</binding.atmi/fieldTablesLocation> oo, 6-9
</binding.atmi/fieldTablesLocation32> i, 6-9
</binding.atmi/fieldTables> 6-9
</binding.atmi/fieldTables32> 6-9
</binding.atmi/viewFilesLocation> i, 6-9
</binding.atmi/viewFilesLocation32> i, 6-9
</binding.ami/viewFiles>. 6-10
</binding.atmi/viewFiles32>. 6-10
</binding.atmi/remOtEACCESS™ottt e 6-10
</binding.atmi/transaction/@timeout> i 6-10

B. Appendix B:

Oracle Tuxedo SCA Schemas
ATMI and JTMI Binding SchemaFor C/C++ 7-1
Web ServiceBindingSchema 7-5

Service Component Architecture

CHAPTERo

Administering Oracle Tuxedo SCA
Components

This chapter contains the following sections:
e Oracle SALT SCA Deployment Model
e Configuring Oracle Tuxedo SCA Components

e Administering Oracle Tuxedo SCA Components

Oracle Tuxedo SCA Deployment Model

An SCA composite istypically described in an associated configuration file, the file name ends
with ".composite". Thisfile uses an XML-based format call the Service Component Definition
Language (SCDL) to describe the components this composite contains and specify how they
related to one another. Deploying Oracle Tuxedo SCA requires at least one root composite file
that islocated in $APPDIR.

There are two configuration file types:
e SCA Composite Configuration File (.composite)

e SCA Component Configuration File (. componentType)

There can be one or more components configured in the root composite file, and each of these
components hasitsown . composite and . componentType fileresiding initsown subdirectory.

Service Component Architecture 1-1

1-2

SCA Composite Configuration File

There can be zero or more component elementswithin acomposite. Theroot compositefiles must
be stored in $APPDIR in aserver environment.

Listing 1-1shows an example of aroot composite which contains two components:

Listing 1-1 Root Composite with Two Components

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/l.0" name="ECHO.app">
<component name="ECHO">
<implementation.composite name="ECHO" />
</component>
<component name="TOUPPER">
<implementation.composite name="TOUPPER" />
</component>

</composite>

Based on the configuration in Listing 1-1, Listing 1-2 shows the implied the directory hierarchy.

Listing 1-2 SCA Composite Directory Hierarchy

SAPPDIR/ECHO.app.composite
$SAPPDIR/ECHO
SAPPDIR/ECHO/ECHO.composite
SAPPDIR/ECHO/ECHO. componentType
SAPPDIR/TOUPPER
SAPPDIR/TOUPPER/TOUPPER. composite
SAPPDIR/TOUPPER/TOUPPER. componentType

Thisexampleisatypical server configuration. The Oracle Tuxedo SCA client also hasasimilar
application topology meaning that the client application islocated in a subdirectory of the root

Service Component Architecture

Oracle Tuxedo SCA Deployment Model

compositefile. Listing 1-3 lists the directory structure for a client named Echoclient that uses
the EcHO1 service provided by echo.

Listing 1-3 Directory Structure

SAPPDIR/root.composite
SAPPDIR/EchoClient/EchoClient.composite
SAPPDIR/EchoClient.composite
SAPPDIR/EchoClient/EchoClient.dll
SAPPDIR/EchoClient/EchoClient.exe

Note: One dlight difference between an SCA server environment and an SCA client
environment is that there is no need to have a component configuration file in the client
environment.

SCA Component Configuration File

Components are the basic elements of business function in an SCA assembly, which are
combined into compl ete business solutions by SCA composites. Components are configured
instances of implementations. Components provide and consume services. More than one
component can use and configure the same implementation, where each component configures
the implementation differently.

Components are declared as sub-elements of a compositein an xxx . composite file. A
component isrepresented by acomponent element that isachild of the composite element. Using
the composite from Listing 1-1, the 2 components (EcHo and TOUPPER), contains specific
information. For the EcHo service ($APPDIR/ECHO/ECHO. composite), the ECHO. composite
information is shown in Listing 1-4.

Listing 1-4 ECHO.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="ECHO">
<service name="ECHO">

<interface.cpp header="ECHO.h" />

Service Component Architecture 1-3

1-4

<binding.atmi requires="legacy">
<map target="EchoStringl">ECHOl</map>
<map target="EchoString2">ECHO2</map>
</binding.atmi>
<reference>EchoServiceComponent</reference>
</service>
<component name="EchoServiceComponent">
<implementation.cpp library="ECHO" header="ECHOImpl.h" />
</component>

</composite>

The EcHO service provides two Oracle Tuxedo services: EcHO1 and ECHO2. ECHO1 executes CPP
function “Echostringl”. ECHO2 executes CPP function "Echostring2". The existence of
$APPDIR/ECHO/ECHOImpl . componentType and $APPDIR/ECHO/ECHO. so. areimplied.
Listing 1-5 shows information that may be contained in ECHOTmp1 . component Type.

Note: On some Unix systems the suffix is.so.71 or .5l

ECHO. so (or EcHO.d11 Windows), isthe shared library that contains the actual implementation
of Echostringl and Echostring2 and isloaded into memory when the serviceisinitialized.
EcHO1 and Ecro2 are dynamically advertised at server initialization. For example, if
EchosServer isthe Oracle Tuxedo server that provides these two services, the Oracle Tuxedo
UBBCONFIG file should contain information as shown in Listing 1-6.

Listing 1-5 ECHOImpl.componentType

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<service name="ECHO">
<interface.cpp header="ECHO.h"/>
</service>

</componentType>

Service Component Architecture

Oracle Tuxedo SCA Deployment Model

Listing 1-6 UBBCONFIG File Example

*SERVERS
DEFAULT:
CLOPT="-A"
EchoServer SRVGRP=GROUP1 SRVID=1001

For the TouPPER Sservice, the existence of $APPDIR/TOUPPER/TOUPPER. composite iSalso
implied by the ECHO . app . composite file. Listing 1-7 showsinformation that may be contained
inTOUPPER.composite file

Listing 1-7 TOUPPER.composite file Example

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="TOUPPER" >
<service name="TOUPPER">
<interface.cpp header="TOUPPER.h" />
<binding.atmi requires="legacy">
<map target="UpperStringl">TOUPPER1</map>
<map target="UpperString2">TOUPPER2</map>
</binding.atmi>
<reference>ToupperServiceComponent</reference>

</service>

<component name="ToupperServiceComponent">
<implementation.cpp library="TOUPPER" header="TOUPPERImpl.h"
/>

</component>

</composite>

Service Component Architecture 1-5

This composite file also implies the existence of
SAPPDIR/TOUPPER/TOUPPERImpl .componentType and SAPPDIR/TOUPPER/TOUPPER. so.

Note: Oracle Tuxedo SCA only supports "cpp" implementation types.

Configuring Oracle Tuxedo SCA Components

1-6

Configuring Oracle Tuxedo SCA components comprises the following:

e Configuring an SCA ATMI Client

Configuring an SCA Workstation Client

Configuring an SCA Workstation Client

e The above SCA component are hosted in an Oracle Tuxedo server built using
buildscaserver with the-w option (for Web services) and named WSServer

The above SCA component are hosted in an Oracle Tuxedo server built using
buildscaserver with the -w option (for Web services) and named WsServer

Configuring an SCA Web Service Server

Configuring SCA Client Security

Configuring an SCA ATMI Client

The SCA ATMI client is a native Oracle Tuxedo client that is written using the SCA paradigm
and built using thebuildscaclient utility. The client executable must bein asubdirectory of a
directory that containsthe root . composite file.

Note: Thearppir environment variable must point to the root . composite file directory.

Listing 1-8 shows the client application root composite file $APPDIR/root . composite.

Listing 1-8 Client Application Root Composite File

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/l1.0" name="testApp">
<component name="testStringClientComp">
<implementation.composite name="ECHO"/>
</component>

</composite>

Service Component Architecture

Configuring Oracle Tuxedo SCA Components

The $APPDIR/ECHO directory containsthe ECHO application. The directory name, "ecuo",
must match the name specified in <implementation.composite name="ECHO"/>.
Listing 1-9 shows the client application composite file.

Listing 1-9 Client Application Composite File

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/l.0" name="ECHO">
<reference name="ECHO">
<interface.cpp header="ECHO.h"/>
<binding.atmi requires="legacy">
<tuxconfig>/tux/application/ECHOServer/tuxconfig</tuxconfig>
<inputBufferType target="TestString">STRING</inputBufferType>
<outputBufferType target="TestString">STRING</outputBufferType>
<errorBufferType target="TestString">STRING</errorBufferType>
<binding.atmi>
</reference>

</composite>

The client dynamic link library for this client application is also contained in this directory. For
example, using the examplein Listing 1-9, the sAPPDIR/ECHO/ECHO. so shared object existsin
the ECHO directory. Thetarget "Teststr" is used to group buffer types together.

The client executable also existsin thisdirectory. Thereis no naming convention associated with
aclient application. This client ECHO application could very well contain "doEchoClient” in
the ECHO application directory. For example: $APPDIR/ECHO/doEchoClient.

Note: You must set sca_coMPONENT. See Listing 1-9,
SCA_COMPONENT=testStringClientComp.

Configuring an SCA JATMI Client

The JATMI client application configuration composite fileis part of the Java . jar file. The
JATMI client compositefileis not part of any package and islocated in the base of the . jar file.

Service Component Architecture 1-7

When client application isinvoked, SCA Javaruntime loads the composite file. No specia setup
isrequired.
Note: Theclient application . jar filemust beincludedinthecrasspats. Thefollowing . jar
files should also be part of cLASSPATH:
® binding-jatmi-extension.jar
® com.oracle.jatmi.dataxfm_1.0.0.0.jar
® com.bea.core.jatmi_1.2.0.3.jar
® com.bea.core.il8n_1.4.0.0.jar
® tuscany-sca-manifest.jar

Listing 1-10 shows an SCA JATMI client composite file example.

Listing 1-10 SCA JATMI Client Composite File Example

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:f="binding-atmi.xsd"
name="EchoComposite">
<reference name="ECHO" promote="EchoComponent/ECHO">
<interface.java class="com.abc.sca.java.Echo" />
<f:binding.atmi requires="legacy">
<f:serviceType>RequestResponse</f:serviceType>
<f:inputBufferType>FML</f:inputBufferType>
<f:outputBufferType>FML</f:outputBufferType>
<f:fieldTables>com.abc.sca.java. fml.FMLTABLE
</f:fieldTables>
<f:workStationParameters>
<f:networkAddress>//STRIATUM: 15011
</f:networkAddress>
</f:workStationParameters>
</f:binding.atmi>
</reference>
<component name="EchoComponent">
<implementation.java

class="com.abc.sca.java.EchoComponentImpl />

Service Component Architecture

Configuring Oracle Tuxedo SCA Components

</component>

</composite>

Configuring an SCA Workstation Client

Configuring an SCA workstation clientsis similar to configuring SCA native clients. One
differenceisthat an SCA workstation client requires using the <workstationParameters>
element and its sub-elements in the composite. The SCA runtime automatically detects whether
the client is built as an SCA native client or SCA workstation client and loads the correct
reference binding library accordingly.

An SCA Oracle Tuxedo Workstation client has asimilar directory hierarchy to an SCA native
client. Both rely on the environment variable sappp1R, Which points to where the client
application islocated.

Listing 1-11 and Listing 1-12 show SCA Oracle Tuxedo workstation client configuration
examples.

Listing 1-11 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/l.0" name="testApp">
<component name="testStringClientComp">
<implementation.composite name="ECHO"/>
</component>

</composite>

Listing 1-12 $APPDIR/ECHO/ECHO.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/l.0" name="ECHO">
<reference name="ECHO">
<interface.cpp header="ECHO.h"/>
<binding.atmi requires="legacy">

<inputBufferType target="TestString">STRING</inputBufferType>

Service Component Architecture 1-9

1-10

<outputBufferType target="TestString">STRING</outputBufferType>
<errorBufferType target="TestString">STRING</errorBufferType>

<workStationParameters>
<networkAddress>//STRIATUM: 4890</networkAddress>
<encryptBits>128/128</encryptBits>

</workStationParameters>

<remoteAccess>WorkStation</remoteAccess>

</binding.atmi>

<reference>

</composite>

Configuring an SCA Web Service Client

The SCA Web service client is basically the same as SCA native client except that is uses the
<binding.ws> element instead of <binding.atmi>. The SCA runtime automatically detects
which binding the client is using, and loads the correct reference binding accordingly.

The SCA Web service client has asimilar directory hierarchy as native client. They both rely on
the sappDIR environment variable to point to where the client application is located.

Listing 1-13 and Listing 1-14 show SCA Web service client configuration examples.

Listing 1-13 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/l1.0" name="testApp">
<component name="calcClient">
<implementation.composite name="calcClient"/>
</component>

</composite>

Listing 1-14 $APPDIR/calcClient/calcClient.composite

<composite xmlns="http://www.osoa.org/xmlns/sca/l.0"name="calcClient">

<reference name="Calculator">

Service Component Architecture

Configuring Oracle Tuxedo SCA Components

<interface.cpp header="CalcService.h"/>
<binding.ws
endpoint="http://calc.sample#wsdl.endpoint
(Calculator/CalculatorSOAPllport) " />

</reference>

</composite>

The<interface.cpp> element isrequired to build the appropriate proxy stub. Also, the client
directory should contain the WSDL file where the endpoint specified in <binding.ws> is
located. In addition, the configuration of the Oracle Tuxedo Web services gateway (GWWS) is
necessary and requires the following steps:

1. Make sure the TmMETADATA and GWWS servers are shut down.

2. Runwsdlcvt onthe WSDL of the service(s) used. This produces a WSDF file, an Oracle
Tuxedo Metadata Repository interface definitions file, fml32 field tables and XML schemas.

3. Optionally, modify the generated WSDF file to override the actual endpoint address used at
runtime. For more information, see WSDF documentation.

4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA
server repository (e.9.: ¢ tmloadrepos -I calc.mif metadata.repos -y). FOr more
information, see tmloadrepos documentation.

5. Add areference to the WSDF in the GWWS configuration input file (named gwws . dep for
example). Listing 1-15 shows the added elements highlighted in blue.

6. Reload the GWWS binary configuration file to take into account the changes performed in
the previousfive (e.9.: ¢ wsloadcf -y gwws.dep).

7. Reboot GWWS and TMMETADATA.

Listing 1-15 GWWS Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<saltdep:Deployment
xmlns:saltdep="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"
xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

Service Component Architecture 1-1

1-12

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<saltdep:WSDF>
<saltdep:Import location="calc.wsdf"/>
</saltdep:WSDF>
<saltdep:WSGateway>
<saltdep:GWInstance id="GWWS1">
<saltdep:0utbound>
<saltdep:Binding ref="calc:CalculatorSOAP11Binding">
<saltdep:Endpoint use="CalculatorSOAPllport"/>
</saltdep:Binding>
</saltdep:Outbound>
</saltdep:GWInstance>
</saltdep:WSGateway>
<saltdep:System/>
</saltdep:Deployment>

Configuring an SCA ATMI Server

For an SCA ATMI server, the SCA ROOT isthe same as $appDIR. There should be at east one
compositefile that describes the SCA application. The SCA runtime searches for this composite
file and from there it loads all the composite and componentType filesfor SCA server
applications that are hosted in an Oracle Tuxedo environment.

Listing 1-16 shows aroot composite file, named root . composite containstwo SCA
applications hosted in an Oracle Tuxedo application domain. The two applications are called
Purchase and Finance. There are at | east two subdirectories for these two SCA applications. One
iscaled Purchase. component and the other iscalled Finance. component.

Listing 1-16 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/l.0" name="root">
<component name="Purchase.component">
<implementation.composite name="Purchase" />
</component>

<component name="Finance.component">

Service Component Architecture

Configuring Oracle Tuxedo SCA Components

<implementation.composite name="Finance" />
</component>

</composite>

Listing 1-17 shows the purchase. component directory contains a composite file for the
Purchase application named pPurchase. composite. Similarly, the Finance. component
directory contains a composite file for the Finance application named Finance.composite.

Listing 1-17 $APPDIR/Purchase.component/Purchase.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="Purchase">
<service name="purchase">
<interface.cpp header="Purchase.h" />
<binding.atmi requires="legacy">
<map target="Order">ORDER</map>
<map target="TrackOrder">TRACKORDER</map>
</binding.atmi>
<reference>PurchaseServiceComponent</reference>
</service>
<component name="PurchaseServiceComponent">
<implementation.cpp library="Purchase"
header="PurchaseImpl.h" />
</component>

</composite>

Listing 1-18 showsPurchase . composite containsthe PurchaseImpl . componentType file
inthe $APPDIR/Purchase. component directory and uses CPP asits application
implementation. When an SCA server using this configuration is built using the
buildscaserver Utility, it advertises two SCA services automatically at runtime (orper and
TRACKORDER). The actual CPP implementation of the servicesis called order and TrackOrder.

Service Component Architecture 1-13

1-14

Listing 1-18 $APPDIR/Purchase.component/Purchaselmpl.componentType

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<service name="purchase">
<interface.cpp header="Purchase.h"/>
</service>

</componentType>

Assume these two SCA applications hosted in Oracle Tuxedo and built using buildscaserver
arecaled Purchasesvr and Financesvr. You must add the following lines to the * SERVERS
section in the UBBCONFIG file:

PurchaseSvr SRVGRP=PURCHASEGRP SRVID=500

FinanceSvr SRVGRP=FINANCEGRP SRVID=600

There is no need to add a service in the * SERVICES section. SCA services hosted by Oracle
Tuxedo are dynamically advertised.

Configuring an SCA Web Service Server

Configuring Web services binding for components (server side) is similar to configuring ATMI
binding for hosting SCA components.

Listing 1-19 shows aroot composite file named root . composite. It contains one SCA
component hosted in an Oracle Tuxedo application domain. The two applications are called
Purchase and Finance. There are at least two subdirectories for these two SCA applications, one
iscdled purchase. component, and the other iscalled Finance. component.

Listing 1-20 showsthe actual component subdirectory. Listing 1-21 shows the componentType
sidefile

Listing 1-19 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/l.0" name="root">

<component name="account">

Service Component Architecture

Configuring Oracle Tuxedo SCA Components

<implementation.composite name="account" />
</component>

</composite>

Listing 1-20 $APPDIR/account/account.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="account">
<service name="AccountService">

<interface.wsdl
interface="http://www.bigbank.com/AccountService#wsdl.interface (AccountSer
vice)"/>

<binding.ws/>

<reference>AccountServiceComponent</reference>

</service>

<component name="AccountServiceComponent">
<implementation.cpp library="Account"
header="AccountServiceImpl.h"/>
</component>

</composite>

Listing 1-21 $APPDIR/account/AccountServicelmpl.componentType

<?xml version="1.0" encoding="UTF-8"?>

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<service name="AccountService">

<interface.cpp header="AccountService.h"/>

</service>

</componentType>

Service Component Architecture 1-15

1-16

The above SCA component are hosted in an Oracle Tuxedo server built using buildscaserver
with the -w option (for Web services) and named wsserver

Then in the Oracle Tuxedo UBBCONFIG file you need to add the following line in the
*SERVERS section: wsserver SRVGRP=ACCTGRP SRVID=500.

Thereis no need add a service in the * SERVICES section. SCA services hosted by Oracle
Tuxedo are dynamically advertised.

In addition, configuration of the Oracle Tuxedo Web services gateway (GWWS) isnecessary. Do
the following steps:

1. Make sure the MmMeETADATA and GWWS servers are shut down

2. Runwsdilcvt onthe WSDL of the service(s) used. This produces a WSDF file, an Oracle
Tuxedo Metadata Repository interface definitionsfile, fml32 field tables and XML schemas.

3. Modify the generated WSDF file to specify the actual endpoint address used at runtime to
accept requests. For more information, see WSDF documentation.

4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA
server repository (for example, $ tmloadrepos -I AccountService.mif
metadata.repos -y). For moreinformation, see tmloadrepos documentation.

5. Add areference to the WSDF in the GWWS configuration input file (named gwws . dep for
example). Listing 1-22 shows the elements added highlighted in blue.

6. Reload the GWWS hinary configuration file to take into account the changes performed in
the step five (6.0.: $ wsloadcf -y gwws.dep).

7. Reboot GWWS and TMMETADATA.

Listing 1-22 gwws.dep File

<?xml version="1.0" encoding="UTF-8"?>
<saltdep:Deployment
xmlns:saltdep="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"
xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<saltdep:WSDF>
<saltdep:Import location="AccountService.wsdf"/>
</saltdep:WSDF>
<saltdep:WSGateway>

Service Component Architecture

Configuring Oracle Tuxedo SCA Components

<saltdep:GWInstance id="GWWS1">
<saltdep:Inbound>
<saltdep:Binding
ref="AccountService:AccountServiceSOAP">
<saltdep:Endpoint use="AccountServiceSOAP"/>
</saltdep:Binding>
</saltdep: Inbound>
</saltdep:GWInstance>
</saltdep:WSGateway>
<saltdep:System/>
</saltdep:Deployment>

Configuring SCA Client Security

Oracle Tuxedo SCA components support two types of security:
e Oracle Tuxedo Application Domain Security
e Oracle Tuxedo Link-Level Security

Oracle Tuxedo Application Domain Security

Oracle Tuxedo Application Domain Security is set when the Tuxconrc file for the Oracle
Tuxedo Application Domain contains the secur1Ty keyword in the *RESOURCES section. There
are five levels of application security: NONE, APP_Pw, USER_PW, ACL, and MANDATORY_ACL. All
security levels except NONE require at |east an application password from user to gain access to
the Oracle Tuxedo application. At the user_prw level and above thereis an additional user
password to authenticate the user and establish user credentials. In total there are potentially two
passwords that need to be configured.

All SCA clients require this password information in order to gain access to Oracle Tuxedo
application servers. There are two ways for an SCA client to retrieve password information:

e The client application may provide password information to ATMI/JATMI reference
binding extensions through a callback mechanism.

e The client application may configure the identification of the password to be retrieved by
the ATMI/JATMI reference binding extensionsin the appropriate composite file.

Service Component Architecture 1-17

Note: For more information, see Password callback methods in Oracle Tuxedo SCA
Programming.

In order for the Oracle Tuxedo administrator to configure password retrieval, the administrator
must:

e Maintain the password.store file and set thisfile up correctly for the client application.
The administrator must duplicate the password. store file across different machines if
necessary.

e Add or delete password and identification pairs when necessary.

e Configure the client application composite file with correct information.

Listing 1-23 and Listing 1-24 contain SCA ATMI client application examples.

Listing 1-23 $APPDIR/password.store $APPDIR/simple.app.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simple.app">

<component name="simpapp.TuxClient">
<implementation.composite name="simpapp.client"/>
<reference name="TOUPPER">tuxToupper</reference>

</component>

</composite>

Listing 1-24 $APPDIR/simpapp.client/simpapp.client.composite

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simpapp.client">
<reference name="TOUPPER">

<interface.cpp header="ToupperTuxService.h"/>

<binding.atmi requires="legacy">

Service Component Architecture

Configuring Oracle Tuxedo SCA Components

<tuxconfig>d:\tests\tuxedo\sca\tests\TUXCONFIG</tuxconfig>

<inputBufferType target="charToup">STRING</inputBufferType>

<outputBufferType target="charToup">STRING</outputBufferType>
<authentication

<passwordIdentifier>aaa</passwordIdentifier>
</authentication>
</binding.atmi>
</reference>

</composite>

The above composite defines an Oracle Tuxedo application domain password identification
"aaa" which causes the ATMI reference binding to retrieve the password with identification
"aaa" fromthepassword. store fileat theruntime. If you increased Oracle Tuxedo application
domain security by requiring user authentication. (SECURITY=USER_Pw Of above) you would use
thefo”omﬂngcon“ﬂand:scapasswordtool -i crusoe -a

Then use atext editor or any other tool that can edit the simpapp.client.composite fileand
add thefollowing entry inthe <binding.atmi/authentication> €lement:

<userPasswordIdentifier>crusoe</userPasswordIdentifier>

Anyone using the password "crusoe" can access Oracle Tuxedo applications.

Oracle Tuxedo Link-Level Security

Oracle Tuxedo Link-Level Security hastwo variations. One isthe easily configured Link-Level
Encryption (LLE) and the other oneisthe more commonly used Transport Layer Security (TLS)
also known as Secured Socket Layer (SSL). An SCA ATMI client using the native ATMI
reference binding does not need link-level security configured at the SCA level sinceitstransport
method is native message queues and the Oracle Tuxedo BRIDGE.

The SCA JATMI client reference binding does not support link-level security. The only type of
SCA client that allows configuration of link-level security is SCA Workstation ATMI client.

The SCA Workstation ATMI client containsa<worksStationParameters> €lement configured
in the compositefile. The SCA runtime automatically loads the correct reference binding for this
type of client.

Service Component Architecture 1-19

1-20

Configuring Link-Level Encryption
Link-level encryption can be configured by adding an <encryptBits> element in the composite
file. The following elements should not be configured for LLE, since they are specific to SSL
encryption and imply that SSL encryption is used:

® secPrincipalName

® secPrincipalLocation

® secPrincipalPassId

The <encryptBits> element specifies the encryption strength that this client attempts to

negotiate. The syntax for the <encryptBits> element iS<minimum encryption

strength>/<maximum encryption strengths>. T configureminimum 56-bit encryptionyou

must add the following to the composite file:

<networkAddress>//STRIATUM: 8741</networkAddress>

<encryptBits>56/128</encryptBits>

Note: encryptBits specifiesthe encryption strength that the client connection attempts to
negotiate. The format is <minencryptbits>/<maxencprytbits> (for example,

128/128). Values can be 0 (no encryption is used), 40, 56, 128, or 256. Invalid values
result in a configuration exception.

Thistells SCA Workstation Reference binding to require 56 to 128 bits encryption strength when
negotiating with WSH. Y ou must also add the following line to the * SERVERS section in the
UBBCONFIG file:

WSL SRVGRP=GROUP1 SRVID=1001 CLOPT="-A -- -n //STRIATUM:8741 -a -z 56 -Z
256

Configuring Transport Layer Security
Inadditionto <encryptBits>, to enable Link-Level Security over TLS/SSL you must configure

secPrincipalName, secPrincipallocation, and secPrincipalPassId.

® secPrincipalName - the name of the security principal. It isused for searching the client
X.509 certification from the LDAP server.

e secPrincipalLocation - theclient private key file.

® secPrincipalPassId - the password identifier that is used to retrieve client password
used to encrypt the private key file.

Service Component Architecture

Administering Oracle Tuxedo SCA Components

Note: The"cn" attribute of adistinguished nameisused askey for certificate lookup. Wildcards
used in a name are not supported. Empty subject fields are not allowed. This limitation
isalso found in Oracle Tuxedo.

These three parameters specify the parameters needed when a TLS/SSL connection needs to be
established by a SCA Workstation ATMI client.

Listing 1-25 contains the lines you must add to the client composite filein
/binding.atmi/workStationParameters to configure TLS/SSL.

Listing 1-25 Client Composite File

<networkAddress>//STRITUM: 8742</networkAddress>
<secPrincipalName>crusoe</secPrincipalName>
<secPrincipalLocation>/tux/udataobj/security/keys/crusoe.pem</secPrincipal
Location>

<gsecPrincipalPassId>crusoe</secPrincipalPassId>

In Oracle Tuxedo, you must add -s 8742 to WSL to indicatethat TLS/SSL isused if the client
connects through port 8742.

WSL SRVGRP=GROUP1 SRVID=1001
CLOPT="-A -- -n //STRIATUM:8741 -S 8742 -z 56 -Z 128"

Administering Oracle Tuxedo SCA Components

This section contains the following topics:
e Tracing the SCA ATMI Server and Client
e Log File Contents

e Log File Contents

Tracing the SCA ATMI Server and Client

Both The SCA ATMI server and client can utilized the existing tracing capability provided by
Oracle Tuxedo and SCA. The following sections describe how to use them in detail

e Oracle Tuxedo TMTRACE

Service Component Architecture 1-21

e SCA Runtime, ATMI Service, and Reference Binding Tracing

Oracle Tuxedo TMTRACE

SCA ATMI servers and clients support the Oracle Tuxedo tmtrace (5) function. All traces
generated from TMTRACE arelogged in the ULOG file. Checking the ULOG filetraceinformation
helps to determine the cause of afailure. The Oracle Tuxedo TuTrACE facility is enabled by
setting TMTRACE environmental variable, or by using the tmadmin chtr sub-command.

Note: To trace Oracle Tuxedo ATMI messages enter: export TMTRACE=atmi:ulog a the
command line.

SCA Runtime, ATMI Service, and Reference Binding Tracing
There are two environment variables used for tracing:

e SCACPP_LOGGING: Set to anumeric value and controls the number of trace messages
produced.

e SCACPP_ULOG: Setto "yes' to send trace messages to the ULOG. If this environment
variableis not set or is set to "no", then trace messages are written to standard output.

Note: Thesetracing facilities are only available for Oracle Tuxedo server builds using
buildscaserver and SCA client buildsusing buildscaclient.

Listing 1-26 shows a ULOG example containing SCA runtime tracing:

Note: Lines starting with ">>" or with "<<" is not printed when the code is compiled

Listing 1-26 SCA Runtime Tracing Information ULOG File

142059 .STRIATUM! ?proc.1108.3000.-2:

osoa: :sca: :CompositeContext: :getCurrent

142059 .STRIATUM! ?proc.1108.3000.-2: >>
Tuscany: :sca: : SCARuntime: :getCurrent Runtime
142059 .STRIATUM! ?proc.1108.3000.-2: >>
tuscany: :sca::util::ThreadLocal: :getValu e
142059 .STRIATUM! ?proc.1108.3000.-2: <<
tuscany: :sca::util::ThreadLocal: :getValu e
142059 .STRIATUM! ?proc.1108.3000.-2: >>

tuscany: :sca: : SCARuntime: :getShared Runtime

1-22 Service Component Architecture

142059 .STRIATUM! ?proc.1108.
142059 .STRIATUM! ?proc.1108.

142059 .STRIATUM! ?proc.1108.

142059 .STRIATUM! ?proc.1108.

tuscany: :sca::util::Mutex:

142059 .STRIATUM! ?proc.1108.

tuscany: :sca::util::Mutex:

142059 .STRIATUM! ?proc.1108.

Administering Oracle Tuxedo SCA Components

tuscany: :sca: :SCARuntime: :getSharedR untime

142059 .STRIATUM! ?proc.1108.
tuscany: :sca::util: :ThreadLocal
142059 .STRIATUM! ?proc.1108.
tuscany: :sca: :util: :ThreadLocal
142059 .STRIATUM! ?proc.1108.
tuscany: :sca: : SCARuntime: : SCARuntime
142059 .STRIATUM! ?proc.1108.3000.-2:

3000.-2: SCARuntime: :getSharedRuntime ()
3000.-2: >> tuscany::sca::util::Mutex::lock
3000.-2: << tuscany::sca::util::Mutex::lock
3000.-2: >>
:unlock
3000.-2: <<
:unlock
3000.-2: <<
3000.-2: >>
: :Thread Local
3000.-2: <<
: :Thread Local
3000.-2: >>

SCA runtime install root

f:\tuxedo\tuxl1l0lrp _wsc\udataobj\salt\sca

142059 .STRIATUM! ?proc.1108.

testStringClientComp

142059 .STRIATUM! ?proc.1108.
tuscany: :sca::util::ThreadLocal:
142059 .STRIATUM! ?proc.1108.

tuscany: :sca::util::ThreadLocal:

3000.-2: Default component:
3000.-2: >>

:getvalu e
3000.-2: <<

:getvValu e

Monitoring SCA ATMI Servers

An Oracle Tuxedo SCA server built withthebuildscaserver utility can be monitored using the
scaadmin utility. Thisutility shows service statisticsinformation and hel ps perform maintenance
through dynamic shared library loading and unloading.

To reload all components hosted by the uBikeserver Oracle Tuxedo server previously built
using the buildscaserver command, do the following:

1. prompt> scaadmin

2. prompt> reload -s uBikeServer

Service Component Architecture 1-23

Enter the following at the command line to display statistics on the services offered by the
uBikeserver Oracle Tuxedo server (Table 1-1 shows the results):

1. prompt> scaadmin

2. prompt> pstats -s uBikeServer

Table 1-1 pstats Output Service Statics

Service Method Status Requests Processed

SEARCHINVENTORY searchInventory A 37

Before scaadmin isexecuted, you must set the TuxconrFIc environment variable. Table 1-2 lists
scaadmin sub-commands.

Table 1-2 scaadmin Sub-Commands

Sub-Command Abbrev. Description

default a Sets the corresponding argument to default, and it can be
machine name, group name, server id, or server name. If
the default command is entered without an argument, the
current default valuesis printed.

reload r Dynamically reloads the SCA components hosted in a
Oracle Tuxedo server.

printstats pstats Displaysthe list of services hosted by an Oracle Tuxedo
server, and the associated method, number of queries, and
status (active, idle)

verbose v Produces output in verbose mode.
echo e Switches echo input on/off echo.
quit q Terminates the session.

Note: Both Windows and HP systems have a limitation using the "reload" sub-command.

When multiple servers share the same component library on Windows and HP systems,
the shared component library cannot be rel oaded. To reload acomponent library common
to multiple servers, the "scaadmin" reload sub-command must be performed on all
affected servers simultaneoudly.

1-24 Service Component Architecture

Administering Oracle Tuxedo SCA Components

Tracing SCA JATMI Clients

The Oracle Tuxedo SCA Java reference binding and data transformation support output to the
console and to alog file. By default there are at most 10 log files, the maximum size of each file
is 100000 bytes, and are located in $APPDIR With name jatmi<numbers . 1og file. Thelog file
names are cycled with the latest one using the number 0, and the one just before latest one uses 1
(for example. jatmi0.log isthelatest logfile, and jatmi9.1og istheoldest log file). If the
APPDIR environment variableisnot set and com.oracle.jatmi.APPDIR javaproperty is not
specified, the log is placed in the current working directory.

By default, thelog files are overwritten each time the application starts. Many logger parameters
can be fine tuned. Table 1-3 lists tunable Java properties related to logging.

Table 1-3 Logger Tuning Property Table

Function Properties Value Range Default Value
Log File com.oracle.jatmi.APPDIR valid path name APPDIR environmental
Location variable, if APPDIR isnot
set uses current working
directory
Log File Size com.oracle.jatmi.LogFil 0 ... maximum file 100,000 bytes
eSize Size supported by the
system
Append File com.oracle.jatmi.LogFil {true, false} false
eAppend
Number of Log com.oracle.jatmi.LogFil 1..maximumnumber 10
Files eCount of filesin adirectory
Log Output com.oracle.jatmi.LogDes {file,console,b both
tination oth}
Log Format com.oracle.jatmi.LogFil {xml,plain} plain

eFormat

To have the Oracle Tuxedo SCA Javareference binding log in a different language, first check
the supported languages that are installed. The default is Eng1ish. To switch to adifferent
Ianguage, add: "-Duser. language=<your preferred language>" {0 your Java command

line when starting the Oracle Tuxedo SCA Javaclient. For example:

Service Component Architecture

1-25

java -classpath .:/apps/classes:$CLASSPATH -Duser.langueage=ES
-Dcom.oracle.jatmi.LogDestination=console myApplication.

This generates an English log in plain text format to the console only.

Table 1-3 shows an example of the log file contents.

Listing 1-27 Log File Contents

9/3/08:3:19:14 PM:10:TRACE[TuxedoConversion,processSendBuf]l< (10) return
1st args

9/3/08:3:19:14 PM:10:DBG[AtmiBindingInvoker, invoke] ServiceType:
requestresponse

9/3/08:3:19:14 PM:10:DBG[AtmiBindingInvoker, invoke]Return Type Class:
simpapp.View7Rep

9/3/08:3:19:14 PM:10:DBG[AtmiBindingInvoker, invoke] target service name:
RULE7

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker, invoke] TPURCODE: 0
9/3/08:3:19:15 PM:10:TRACE[TuxedoConversion,processReplyBuffer]> (reply
simpapp.View7Rep@191777e:0:null)

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]returnType:
simpapp.View7Rep

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]Reply Buffer
Class: simpapp.View7Rep

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]Reply Buffer
Type: X_COMMON

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]Reply Buffer
Subtype: View7Rep

9/3/08:3:19:15 PM:10:TRACE [TuxedoConversion,processReplyBuffer]l< (30)
return buffer directly

9/3/08:3:19:15 PM:10:DBG[Accessors,getConventionProperty]Convention
Property: CONVENTIONS_TUX

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker, invoke]lnetworkAddress: host =
STRIATUM, port = 8080

9/3/08:3:19:15

PM:10:TRACE [AtmiBindingInvoker,determineServiceCallParameters]> ()
9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl, isLegacyl> ()

9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl, isLegacyl< (10) return true
9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl, isMap]l> ()

1-26 Service Component Architecture

Administering Oracle Tuxedo SCA Components

9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,isMapl< (10) return false

9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker, determineServiceCallParameters]Operation name

= rule7_0OVVO

9/3/08:3:19:15 PM:
PM:

9/3/08:3:19:15
null
9/3/08:3:19:15
(rule7_0VVO)
9/3/08:3:19:15
return null
9/3/08:3:19:15
(rule7_0OVVO)
9/3/08:3:19:15
return null
9/3/08:3:19:15

9/3/08:3:19:15
null
9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker, determineServiceCallParameters]svcName

RULE7
9/3/08:3:19:15

PM:

PM:

PM:

PM:

PM:

PM:

10:
10:

10

10

10

10

10

10

TRACE [AtmiBindingImpl, getServiceTypel> (rule7_0VVO)
TRACE [AtmiBindingImpl, getServiceTypel< (10) return

:TRACE[AtmiBindingImpl, getInputBufferType]>

:TRACE[AtmiBindingImpl, getInputBufferTypel< (10)

:TRACE[AtmiBindingImpl, getOutputBufferType] >

:TRACE[AtmiBindingImpl, getOutputBufferTypel< (10)

:DBG[AtmiBindingImpl, getErrorBufferTypel> (rule7_0VVO)

:DBG[AtmiBindingImpl, getErrorBufferTypel< (10) return

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]svcType =

requestresponse

9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]inbuf =

X_COMMON
9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]outbuf =

X_COMMON
9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker, determineServiceCallParameters]errbuf = null

9/3/08:3:19:15

PM:10:TRACE [AtmiBindingInvoker,determineServiceCallParameters]< (10)

return

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker, invoke] Input Buffer Type:

X_COMMON

Service Component Architecture 1-21

1-28

9/3/08

:3:19:

X_COMMON

9/3/08

9/3/08
count:
9/3/08

count:
9/3/08

:3:19:

:3:19:

1

:3:19:

1
:3:19

15 PM:10:DBG[AtmiBindingInvoker, invoke]Output Buffer Type:

15 PM:10:DBG[AtmiBindingInvoker, invoke]Error Buffer Type: null

15 PM:10:DBG[AtmiBindingInvoker, invoke] inBufType:X_COMMON,

15 PM:10:DBG[AtmiBindingInvoker, invoke]outBufType:X COMMON,

:15 PM:10:DBG[AtmiBindingInvoker, invoke]View Classes:

simpapp.View7Req, simpapp.View7Rep

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:
Getting class for simpapp.View7Req

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Rep

9/3/08:

null

9/3/08:

9/3/08
[Ljava
9/3/08

3:19

3:19

:3:19

.lang

:3:19

:15 PM:10:DBG[TuxedoConversion, setFieldClasses]setFldClasses:

:15 PM:10:DBG[AtmiBindingInvoker, invoke]Passing thro invoker...

:15 PM:10:TRACE[TuxedoConversion,processSendBuf]> (args
.Object;@ablb4)

:15 PM:10:DBG[TuxedoConversion,processSendBuflargs[0] class

simpapp.Rule7Req
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,needConversion]buftype: X_ COMMON

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion, processSendBuf]Argument Class

Name:
9/3/08

:3:19

XCOMMON

9/3/08
10
9/3/08

:3:19

:3:19

XCOMMON

9/3/08

:3:19

simpapp.Rule7Req

:15 PM:10:DBG[TuxedoConversion, processSendBuf]Input Buffer Id

:15 PM:10:DBG[TuxedoConversion, processSendBuf] Type code

:15 PM:10:DBG[TuxedoConversion, processSendBuf] InputBufferType:

:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Req
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Rep
9/3/08:3:19:15 PM:10:TRACE[Accessors,determineConvention]>

(simpapp.Rule7Req)
9/3/08:3:19:15 PM:10:DBG[Accessors,determineConvention]Method name: getId

Service Component Architecture

9/3/08:3:
9/3/08:3:
9/3/08:3:

9/3/08:3:

19:

19:

19:

19:

Administering Oracle Tuxedo SCA Components

15 PM:10:DBG[Accessors,determineConvention]Method name: setCmd
15 PM:10:DBG[Accessors,determineConvention]Method name: setId
15 PM:10:DBG[Accessors,determineConvention]Method name: getCmd

15 PM:10:TRACE [Accessors,determineConvention]< (30) return BEAN

Service Component Architecture 1-29

1-30 Service Component Architecture

CHAPTERa

Oracle Tuxedo SCA Programming

This chapter contains the following topics:
e Overview
e SCA Utilities
e SCA Client Programming
e SCA Component Programming
e SCA Python, Ruby, and PHP Programming
e SCA Structure Support
e SCA Remote Protocol Support
e SCA Binding
e SCA Data Type Mapping
e SCA and Oracle Tuxedo Interoperability
e SCA Transactions

e SCA Security

Service Component Architecture 2-1

tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)

<~runChNum>

Overview

One important aspect of Service Component Architecture (SCA) is the introduction of a new
programming model. As part of the Oracle Tuxedo architecture, SCA allows you to better blend
high-output, high-availability and scalable applicationsin an SOA environment.

SCA componentsrun on top of the Oracle Tuxedo infrastructure using ATMI binding. The ATMI
binding implementation provides native Oracle Tuxedo communications between SCA
components, as well as SCA components and Oracle Tuxedo programs (clients and servers).

In addition to the programming model, the Service Component Definition Language (SCDL)
describeswhat components can perform in terms of interactions between each other, and instructs
the framework to set-up necessary links (wires).

SCA Utilities

The following utilities are used in conjunction with Oracle Tuxedo SCA programming:
e buildscaclient: Buildsclient processesthat call SCA components.
® buildscacomponent: Builds SCA components.
e buildscaserver: Buildsan Oracle Tuxedo server containing SCA components.
e scanoST: Generic server for Python, Ruby or PHP SCA components.

e scatuxgen: Generates Oracle Tuxedo Service Metadata Repository interface information
from an SCA interface.

® scastructc32, scastructc: Structure description file compiler.
® scastructdis32, scastructdis: Binary structure and view files disassembler.

e tuxscagen: Generates SCA, SCDL, and server-side interface files for Oracle Tuxedo
services.

For more information, see the SCA Command Reference.

SCA Client Programming

The runtime reference binding extension is the implementation of the client-side aspect of the
SCA container. It encapsul ates the necessary code used to call other services, SCA components,
Oracle Tuxedo servers or even Web services, transparently from an SCA-based component.

2-2 Service Component Architecture

SCA Client Programming

SCA Client Programming Steps

Developing SCA client programs requires the following steps:
Setting Up the Client Directory Structure

Developing the Client Application

Composing the SCDL Descriptor

Building the Client Application

Running the Client Application

©o g c w b B

Handling TPFAIL Data

Setting Up the Client Directory Structure

Y ou must define the applications physical representation. Strict SCA client applicationsare SCA
component types. Listing 1-1shows the directory structure used to place SCA componentsin an
application.

Listing 1-1 SCA Component Directory Structure

myApplication/ (top-level directory, designated by the APPDIR environment
variable)

root.composite (SCDL top-level composite, contains the list of
components in this application)

myClient/ (directory containing actual client component described in
this section)

myClient.composite (SCDL for the client component)

myClient.cpp (client program source file)

TuxService.h (interface of component called by client program)

Listing 1-2 shows an example of typical root .composite content.

Service Component Architecture 2-3

<~runChNum>

2-4

Listing 1-2 root.composite Content

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="simple.app">
<component name="myClientComponent">
<implementation.composite name="myClient"/>
</component>

</composite>

The implementation.composite@name parameter references the directory that contains the
component named 'myC1ientComponent'. Thisvalueisrequired at runtime. For more
information, see Running the Client Application.

Developing the Client Application

Client programs are required to implement acall to asingle API. Thisfollowing call isrequired
in order to set up the SCA runtime:

CompositeContext theContext = CompositeContext::getCurrent();

Actua calls are based on an interface. Thisinterfaceis usually developed along with the
component being called. In the case of existing Oracle Tuxedo ATMI services, thisinterface can
be generated by accessing the Oracle Tuxedo METADATA repository.

In the case of calling external Web services, an interface matching the service WSDL must be
provided. For more information, see SCA Data Type Mapping for the correspondence between
WSDL types and C++ types.

Listing 1-3 shows an interface example.

Listing 1-3 Interface Example

#include <string>

/**

* Tuxedo service business interface
*/

class TuxService

Service Component Architecture

SCA Client Programming

{
public:
virtual std::string TOUPPER (const std::string inputString) = 0;

}i

In the interface shown in Listing 1-3, asingle method ToupPER is defined. It takes asingle
parameter of typestd: : string, and returnsavalue of type std: : string. Thisinterface needs
to belocated in its own .k file, and is referenced by the client program by including the .k file.

Listing 1-4 shows an example of a succession of calls required to perform an invocation.

Listing 1-4 Invocation Call Example

// SCA definitions

// These also include a Tuxedo-specific exception definition:
ATMIBindingException

#include "tuxsca.h"

// Include interface

#include "TuxService.h"

// A client program uses the CompositeContext class

CompositeContext theContext = CompositeContext::getCurrent();

// Locate Service
TuxService* toupperService =
(TuxService *)theContext.locateService ("TOUPPER") ;

// Perform invocation

const std::string result = toupperService->TOUPPER("somestring") ;

Notes. Theinvocation itself is equivalent to making alocal call (asif the class were in another
file linked in the program itself).

For detailed code examples, see the SCA samples located in following directories:

Service Component Architecture 2-5

<~runChNum>

2-6

e UNIX samples. $TUXDIR/samples/salt/sca

e Windows samples; $TUXDIR%\samples\salt\sca

Composing the SCDL Descriptor

Thelink between thelocal call and the actual component is made by defining a binding in the
SCDL side-file. For example, Listing 1-4 shows acall to an existing Oracle Tuxedo ATMI
service, the SCDL descriptor shown in Listing 1-5 should be used. This SCDL iscontainedin a

file called <componentname>.composite.

Listing 1-5 SCDL Descriptor

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="simpapp.client">

<reference name="TOUPPER">
<interface.cpp header="TuxService.h"/>
<binding.atmi requires="legacy">

<inputBufferType target="TOUPPER">STRING</inputBufferType>
<outputBufferType target="TOUPPER">STRING</outputBufferType>

</binding.atmi>

</reference>

</composite>

This composite file indicates that a client component may perform acall to the TouprPER
reference, and that this call is performed using the ATMI binding. In effect, thisresultsina
tpcall () tothe"TourpER" Oracle Tuxedo service. ThisOracle Tuxedo service may be an actual
existing Oracle Tuxedo ATMI service, or another SCA component exposed using the ATMI
binding. For more information, see SCA Component Programming.

The inputBufferType and outputBufferType €lements are used to determine the type of
Oracle Tuxedo buffer used to exchange data. For moreinformation, see SCA Data Type Mapping
and the ATMI Binding Element Reference for adescription of all possible valuesthat can be used
inthebinding.atmi element.

Service Component Architecture

../sca/sca_bindschema.html

SCA Client Programming

Building the Client Application

Once all the elements are in place, the client program is built using the buildscaclient command.
Y ou must do the following steps:

1. Navigate to the directory containing the client source and SCDL composite files
2. Execute the following command:
$ buildscaclient -c myClientComponent -s . -f myClient.cpp
This command verifies the SCDL code, and builds the following required elements:
e A shared library (or DLL on Windows) containing generated proxy code

e Theclient program itself
If no syntax or compilation error isfound, the client program is ready to use.

Running the Client Application
To execute the client program, the following environment variables are required:

e APPDIR - designates the application directory; in the case of SCA thistypically contains
the top-level SCDL composite.

e SCca_COMPONENT - the default SCA component (the value 'myc1ientComponent' in the
example shown in Listing 1-2). It tells the SCA runtime where to start when looking for
servicesin the locateservice () cal.

Invoking Existing Oracle Tuxedo Services

Accessto existing Oracle Tuxedo ATMI services from an SCA client program can be simplified
using the examples shown in Listing 1-6, Listing 1-7, and Listing 1-8.

Note: These examples can also be used for server-side SCA components.

Starting from a Oracle Tuxedo METADATA repository entry as shown in Listing 1-6, the
tuxscagen(1) command can be used to generate interface and SCDL.

Listing 1-6 SCA Components Calling an Existing Oracle Tuxedo Service

service=TestString
tuxservice=ECHO

servicetype=service

Service Component Architecture 2-1

<~runChNum>

inbuf=STRING
outbuf=STRING

service=TestCarray
tuxservice=ECHO
servicetype=service
inbuf=CARRAY
outbuf=CARRAY

Listing 1-7 Generated Header

#ifndef ECHO_h
#define ECHO_h
#include <string>
#include <tuxsca.h>
class ECHO

{
public:
virtual std::string TestString(const std::string arg) = 0;
virtual std::string TestCarray(const struct carray_t * arg) = 0; };

#endif /* ECHO_h */

Listing 1-8 Generated SCDL Reference

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="ECHO" >
<reference name="ECHO">
<interface.cpp header="ECHO.h"/>
<binding.atmi requires="legacy">
<serviceType target="TestString">RequestResponse</serviceType>
<inputBufferType target="TestString">STRING</inputBufferType>
<outputBufferType target="TestString">STRING</outputBufferType>
<serviceType target="TestCarray">RequestResponse</serviceType>
<inputBufferType target="TestCarray">CARRAY</inputBufferType>
<outputBufferType target="TestCarray">CARRAY</outputBufferType>

2-8 Service Component Architecture

SCA Client Programming

</binding.atmi>
</reference>

</composite>

The stepsused to invokethese services areidentical to the examplesshownin Listing 1-6 through
Listing 1-8.

Handling TPFAIL Data

Invoking anon-SCA Oracle Tuxedo ATMI service may return an error, but still send back data
by using tpreturn (TPFAIL, ..). Whenthishappens, an SCA client or component isinterrupted
by the ATMIBindingException type.

The datareturned by the service, if present, can be obtained by using the
ATMIBindingException.getData () APl. For moreinformation see, TPFAIL Return Data.

Theexamplein Listing 1-9 correspondsto abinding.atmi definition asshownin Listing 1-10.

Listing 1-9 Invocation Interruption Example

try {

const char* result = toupperService->charToup ("someInput") ;
} catch (tuscany::sca::atmi::ATMIBindingException& abe) {

// Returns a pointer to data corresponding to

// mapping defined in <errorBufferType> element

// in SCDL
const char* *result = (const char **)abe.getDatal();
if (abe.getData() == NULL) {

// No data was returned
} else {

// Process data returned
}

} catch (tuscany::sca::ServiceInvocationException& sie) {

// Other type of exception is returned

Service Component Architecture 2-9

<~runChNum>

Listing 1-10 /hinding.atmi Definition

<binding.atmi requires="legacy">
<inputBufferType target="charToup">STRING</inputBufferType>
<outputBufferType
target="charToup">STRING</outputBufferType>
<errorBufferType target="charToup">STRING</errorBufferType>

<binding.atmi/>

Other returned data types must be cast to the corresponding type. For example, an invocation
returning a commonyj : : sdo: : DataObjectPtr asshown in Listing 1-11.

Listing 1-11 SCDL Invocation Example

<errorBufferType target="myMethod">FML32/myType</errorBufferType>

The ATMIBindingException.getData () resultisshownin Listing 1-12.

Listing 1-12 ATMIBindingException.getData() Results

catch (tuscany::sca::atmi::ATMIBindingException& abe) {
const commonj::sdo::DataObjectPtr *result =

(const commonj::sdo::DataObjectPtr *)abe.getDatal();

2-10 Service Component Architecture

SCA Component Programming

The rulesfor returning TprFAIL datato the calling application are as follows:

e For each <errorBufferType>, acanonical type is defined, where <errorBuf ferType> IS
converted. When the <errorBufferType> iSequd to the <outputBufferType>, the
canonical type isthe same C++ type that is returned in a successful service
implementation.

o When the <errorBufferType> isdifferent from the <outputBufferTypes, the canonical
typeisasfollows:

— For sTrRING buffers, aC++ char* or char[]datatype.

For MmBSTRING buffers, a C++ wchar_t* Of wchar_t[1.

For carray buffers, a C++ CARRAY_PTR.

For x_octeT buffers, aC++ X_OCTET_PTR.

For XML buffers, aC++ XML_PTR.

For FML, FML32, VIEW, VIEW32, X_COMMON, and X_C_TY PE buffers, a C++

commonj: :sdo: :DataObjectPtr.

e In each case, the value returned by getpata () isapointer to one of the types listed above.

For more conversion rules between Oracle Tuxedo buffer types and C++ datainformation, see
SCA Data Type Mapping.

SCA Component Programming

The SCA Component terminology designates SCA runtime artifactsthat can beinvoked by other
SCA or non-SCA runtime components. Inturn, these SCA Components can perform callsto other
SCA or non-SCA components. Thisis different from strict SCA clients which can only make
callsto other SCA or non-SCA components, but cannot be invoked.

The Oracle Tuxedo SCA container provides the capability of hosting SCA componentsin an
Oracle Tuxedo server environment. This allows you to take full advantage of proven Oracle
Tuxedo qualities: reliability, scalability and performance.

Figure 1-1 summarizes SCA components and Oracle Tuxedo server mapping rules.

Service Component Architecture 2-11

<~runChNum>

Figure 1-1 SCA Component and Oracle Tuxedo Server Mapping Rules

/ Tuxedo Domain \

4

Ty
-

Il rrmcr't" bindings Explicit atmi bindings

B SCA Composite [© Reference
2 Service
i Tuxedo Server — Wire

While SCA components using Oracle Tuxedo references do not require special processing, SCA
components offering services must still be handled in an Oracle Tuxedo environment.

The mapping is asfollows:

e An SCA composite declaring one or more services with a <binding.atmi> definition
maps to asingle Oracle Tuxedo server advertising the same number of services asthe SCA
composite.

e There can be more than one composite.
e Composites can be nested.

e Promoation handling:

— A composite promoting a service contained in a nested component resultsin the
promoted service being advertised as an Oracle Tuxedo service.

— A service declared in a component, but not promoted, is not advertised.

e Theresulting Oracle Tuxedo server advertises as many services asthere are
binding.atmi sectionsinthe SCDL definition

e Interfaces may declare multiple methods. Each method is linked to an Oracle Tuxedo
native service using the /binding.atmi/emap attribute. A method not declared viathe

2-12 Service Component Architecture

SCA Component Programming

/binding.atmi/@map attribute isnot accessible through Oracle Tuxedo. The use of
duplicate service names are detected at server generation time, so that Oracle Tuxedo
service names-to-interface method mapping in asingle Oracle Tuxedo server instanceis
11

e A generated Oracle Tuxedo server acts as a proxy for SCA components. An instance of
this generated server correspondsto an SCA composite as defined in the SCDL
configuration. Such servers are deployed as necessary by the Oracle Tuxedo administrator.

SCA composites are deployed in an Oracle Tuxedo application by configuring instances of
generated SCA serversin the useconr1c file. Multiple instances are allowed. Multi-threading
capabilities are aso allowed and controllable using already-existing Oracle Tuxedo features.

SCA Component Programming Steps

The steps required for devel oping SCA component programs are as follows:
Setting Up the Component Directory

Developing the Component Implementation

Composing the SCDL Descriptor

Compiling and Linking the Components

o > w bd PR

Building the Oracle Tuxedo Server Host

Setting Up the Component Directory

Y ou must first define the applications physical representation. Listing 1-13 shows the directory
structure used to place SCA components in an application:

Listing 1-13 SCA Component Directory Structure

myApplication/ (top-level directory, designated by the APPDIR environment
variable)
root.composite (SCDL top-level composite, contains the list of
components in this application)
myComponent/ (directory containing actual component described in this
section)
myComponent .composite (SCDL for the component)

myComponent . componentType

Service Component Architecture 2-13

<~runChNum>

2-14

myComponentImpl.cpp (component implementation source file)
TuxService.h (interface of component being exposed)

TuxServiceImpl.h (component implementation definitions)

Listing 1-14 showstypical root.composite content.

Listing 1-14 root.composite Content

<composite xmlns="http://www.osoa.org/xmlns/sca/l1.0"
name="simple.app">
<component name="myComponent">
<implementation.composite name="myComponent"/>
</component>

</composite>

The implementation.composite@name parameter references the directory that contains the
'myComponent ' component.

Developing the Component Implementation

Components designed to be called by other components do not need to be aware of the SCA
runtime. There are, however, limitations in terms of interface capabilities, such as:

e C++ classes (other than std: : string and common3j : : sdo: : DataObjectPtr) cannot be
used as parameters or return values

e Parameter arrays are not supported
For more information, see SCA Data Type Mapping.
Listing 1-15 shows an example of an interface implemented for a client program.

Listing 1-15 Component Implementation Interface

#include <string>

/**

Service Component Architecture

SCA Component Programming

* Tuxedo service business interface
*/
class TuxService
{
public:
virtual std::string TOUPPER (const std::string inputString)
Y

The component implementation then generally consists of two source files (as shown
Listing 1-16 and Listing 1-17 respectively):

e component implementation definitions, contained in a <servicename>Tmpl.h file, and

e component implementation, contained in a <servicename>Impl.cpp file

Listing 1-16 Example (TuxServicelmpl.h):

#include "TuxService.h"

/**

* TuxServiceImpl component implementation class

*/
class TuxServiceImpl: public TuxService

{
public:

virtual std::string toupper (const std::string inputString);
Y

Listing 1-17 Example (TuxServicelmpl.cpp):

#include "TuxServiceImpl.h"

#include "tuxsca.h"

using namespace std;

using namespace osoa::scajy

Service Component Architecture

2-15

<~runChNum>

2-16

/**

* TuxServiceImpl component implementation

*/

std: :string TuxServiceImpl: :toupper (const string inputString)
{

string result = inputString;
int len = inputString.size();
for (int 1 = 0; 1 < len; 1i++) {

result[i] = std::toupper (inputString([i]);

return result;

Additionally, aside-file (componentType) , isrequired. It containsthe necessary information for
the SCA wrapper generation and possibly proxy code (if this component calls another
component).

This componentType file (<componentname>Impl . componentType)isan SCDL file type.
Listi ng 1-18 shows an example of adcomponentType file (TuxServiceImpl . componentType).

Listing 1-18 componentType File Example

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0" >
<service name="TuxService">
<interface.cpp header="TuxService.h"/>
</service>

</componentType>

Service Component Architecture

SCA Component Programming

Composing the SCDL Descriptor

Thelink between the local implementation and the actual component is made by defining a
binding in the SCDL side-file. For example, for thefiletypein Listing 1-18 to be exposed as an
Oracle Tuxedo ATMI service, the SCDL in Listing 1-19 should be used. This SCDL is contained

H1af“eca”ed<componentname>.composite(fOfexanuﬂe,myComponent.composite)

Listing 1-19 Example SCDL Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/l.0" name="myComponent">
<service name="TuxService">
<interface.cpp header="TuxService.h"/>
<binding.atmi requires="legacy"/>
<map target="toupper">TUXSVC</map>
<inputBufferType target="toupper">STRING</inputBufferType>
<outputBufferType target="toupper">STRING</outputBufferType>
<reference>MYComponent</reference>
</service>
<component name="MYComponent">
<implementation.cpp library="TuxService" header="TuxServiceImpl.h"/>
</component>

</composite>

This composite file indicates that the service, mysvc, can be invoked via the Oracle Tuxedo
infrastructure. It further indicatesthat the toupper () method isadvertised asthe Tuxsvc service
in the Oracle Tuxedo system. Once initialized, another SCA component may now call this
service, aswell asanon-SCA Oracle Tuxedo ATMI client.

The inputBufferType and outputBufferType €lements are used to determine the type of
Oracle Tuxedo buffer used to exchange data. For moreinformation, see SCA Data Type Mapping

Service Component Architecture 2-11

<~runChNum>

and the ATMI Binding Element Reference for adescription of all possible valuesthat can be used
inthebinding.atmi element.

Note: Themycomponent . componentType Service name should be same asthe compositefile,
otherwise an exception is thrown.

Compiling and Linking the Components

Onceadll theelementsarein place, the component is built using the buildscacomponent command.
The steps are as follows:

1. Navigatetothearpp1r directory. The component and sidefilesshould beinitsown directory
one level down

2. Execute the following command:
S buildscacomponent -c¢ myComponent -s . -f TuxServiceImpl.cpp
This command verifies the SCDL code, and builds the following required elements:

e A shared library (or DLL on Windows) containing generated proxy code

Building the Oracle Tuxedo Server Host

In order for componentsto be supported in an Oracle Tuxedo environment, ahost Oracle Tuxedo
server must be built. Thisis achieved using the buildscaserver command.

For example: $ buildscaserver -c myComponent -s . -o mySCAServer

When the command is executed, myscaserver iSready to be used. It automatically locates the
component(s) to be deployed according to the SCDL, and performs the appropriate Oracle
Tuxedo/SCA associations.

SCA Python, Ruby, and PHP Programming

This section contains the following topics:
e Prerequisites
e SCA Python, Ruby, and PHP Programming Overview
e Python, Ruby, and PHP Client Programming
e Python, Ruby, and PHP Component Programming
e Python, Ruby, and PHP Data Type Mapping

2-18 Service Component Architecture

../sca/sca_bindschema.html

SCA Python, Ruby, and PHP Programming

e Python, Ruby, and PHP Binding

Prerequisites
e A Python 2.5.5 installation.
e A Ruby 1.9.x installation.
e PHP 5.3.2 installation.

e Python, Ruby, and PHP must be built with shared-libraries enabled. Thisis usually the case
for out-of-the-box installations. If you are building from source, the --enable-shared
options must be used in the configure step.

e There are no known database or third-party library support restrictions.

SCA Python, Ruby, and PHP Programming Overview

Integration of Python, Ruby or PHP scriptsin an environment such as Oracle Tuxedo via SALT,
isintended for providing additional flexibility in terms of program development.

Python, Ruby, and PHP are comparabl e object-oriented scripting languages that offer many
advantages over C/C++;

e No compilation

e Dynamic datatyping

e Garbage collection

e Existing libraries of utility functions and objects

SALT SCA Python, Ruby, and PHP support provides a set of APIsto perform SCA calls from
Python, Ruby or PHP client programs, and language extensions to call Python, Ruby or PHP
components. For moreinformation, see Python, Ruby, and PHP Client Programming and Python,
Ruby, and PHP Component Programming.

The buildscaclient, buildscaserver and buildscacomponent commands do not need
adapting for use with Python, Ruby or PHP programs, as they are not be required to produce
executables or component libraries.

Note: A system server, scaHOST, isprovided to correctly marshal requests and responsesto and
from Python, Ruby or PHP scripts. It contains Python, Ruby, and PHP scripts exposed as
SCA services (viathe Oracle Tuxedo M etadata Repository). The definitions describe the

Service Component Architecture 2-19

<~runChNum>

parameters and return types of the corresponding exposed Python, Ruby or PHP
functions.

For more information, see Python, Ruby, and PHP Data Type Mappingfor Service
M etadata Repository entry examples.

Available bindings are used from Python, Ruby or PHP programs, or are used to invoke Python,

Ruby or PHP components. Like C++, the Python, Ruby, and PHP language extension is
binding-independent.

Figure 1-2 provides an overview of the SALT SCA environment Python, Ruby, and PHP support
architecture.

Figure 1-2 SALT SCA Python, Ruby, and PHP Programming Support Architecture

/ Tuxedo Domain \

fF

!rm#citE bindings Exp;;g;t atmi bindings
[j SCA Composite % ijii:::ce
_ Tuxedo Server — Wire
Python, Ruhy, and PHP Client Programming

e SCDL Clients
e Python Clients
e Ruby Clients
e PHP Clients

2-20 Service Component Architecture

SCA Python, Ruby, and PHP Programming

SCDL Clients

From aclient component perspective, the SCDL code only has to mention the referenced

component and possibly the binding used (that is, no interface element is required).

For example, the following snippet alows a Python, Ruby or PHP client to make an invocation

to an SCA component via ATMI binding, and using the default buffer type (STRING input,

STRING output):

<reference name="CalculatorComponent">

<binding.atmi/>

</reference>

Python Clients

To invoke an SCA component from a Python program, you must do the following:

1

Import the SCA library using the following command:
import sca

Use the following API to locate the service:

calc = sca.locateservice("CalculatorComponent")

The calc object isused to invoke the “add” operation (for example, result =
calc.add(vall, val2)).

Ruby Clients

To invoke an SCA component from a Ruby program, you must do the following:

1

L oad the Ruby proxy extension:

require ("sca_ruby")

Use the following API to locate the service:

calculator = SCA::locateService("CalculatorComponent")

The calculator object is used to invoke the “add” operation (for example, x =
calculator.add(3, 2)).

PHP Clients

To invoke an SCA component from a PHP program, you must do the following:

Service Component Architecture

2-21

<~runChNum>

1. userswill haveto first load the SCA library as follows:
<?php
dl('sca.so');
2. Usethefollowing API to locate the service:
$svc = Sca::locateService("uBikeService");
At this point the svc object can be used to invoke the searchBike operation, for instance:

Sret = $svc->searchBike('YELLOW'),

Python, Ruby, and PHP Component Programming

e SCDL Components
e Python Components
e Ruby Components

e PHP Components

SCDL Components
In order to use Python, Ruby or PHP scriptsin SCA as components, you must use the
implementation.python, implementation.ruby and implementation.php parameters.

Note: implementation.python implementation.ruby and implementation.php usage
issimilar tothe implementation.cpp element (see Listing 1-19 and Listing 1-31); the
differenceisthat the interface.python and interface. ruby elements, or
.componentType are not required.

Their syntax and attributes are as follows:

® implementation.python

<implementation.python
module="string"
scope="scope"? >

<implementation.python/>

The implementation.python element hasthe following attributes:
— module: string (1..1)

Name of the Python module (. py file) containing the operation(s) that this component
offersin the form of module-level function(s).

2-22 Service Component Architecture

SCA Python, Ruby, and PHP Programming

— scope: PythonlmplementationScope(0..1)

| dentifies the scope of the component implementation. The default is stateless,
indicating that there is no correlation between implementation instances used to
dispatch service requests. A composite value indicates that all service requests are
dispatched to the same implementation instance for the lifetime of the containing
composite.

® implementation.ruby

<implementation.ruby
script="string"
class="string"
scope="scope"? >

<implementation.ruby/>

The implementation.ruby element has the following attributes:
— script: string(1..1)

Name of the Ruby script (. rb file) containing the operation(s) that the component
offersin the form of methods of a class contained in the script file. The name of the
script isitsfull name (that is, it also includesthe . rb extension).

— class: string(1..1)

Name of the Ruby class (. rb file) containing the operation(s) that the component
offers.

— scope: Rubyl mplementationScope(0..1)

| dentifies the scope of the component implementation. The default is stateless,
indicating that there is no correlation between implementation instances used to
dispatch service regquests. A composite value indicates that all service requests are
dispatched to the same implementation instance for the lifetime of the containing
composite.

® implementation.php

<implementation.php
script="string"
class="string"
scope="scope"? >

<implementation.php/>

The implementation.php element has the following attributes:

— script: string(1..1)

Service Component Architecture 2-23

<~runChNum>

2-24

Name of the PHP script (. php file) containing the operation(s) that this component will
offer, in the form of methods of a class contained in the script file. The name of the
script isitsfull name, i.e. it aso includes the . php extension.

— class: string(1..1)

Name of the PHP class (. php file) containing the operation(s) that this component will
offer.

— scope: PHPImplementationScope(0..1)

I dentifies the scope of the component implementation. The default is statel ess,
indicating that there is no correlation between implementation instances used to
dispatch service requests. A value of composite indicates that all service requests are
dispatched to the same implementation instance for the lifetime of the containing
composite.

Listing 1-20 showsan example of aPython component in an SCA composite accessible using the
ATMI binding. In this example, runtime looks for a Python component located in afile named
ToupperService.py in the same location as the composite file.

Similarly, a Ruby component isrequired in afile named Toupperservice.rb, in the same
location as the compositefile.

Listing 1-20 Python Component in an SCA Composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simpapp.server">

<service name="SCASVC">
<binding.atmi/>
<reference>ToupperServiceComponent</reference>

</service>

<component name="ToupperServiceComponent">
<implementation.python module="ToupperService"
scope="composite"/>

</component>

Service Component Architecture

SCA Python, Ruby, and PHP Programming

</composite>

Listing 1-21 shows an example of a PHPcomponent in an SCA composite accessible using the

ATMI binding

Listing 1-21 PHP Component in an SCA Composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simpapp.PHP">

<gervice name="TESTPHP">
<!-- No interface, it is contained in TMMETADATA -->
<binding.atmi>
<map target="charToup">TOUPPHP</map>

<inputBufferType target="charToup">STRING</inputBufferType>

<outputBufferType target="charToup">STRING</outputBufferType>

</binding.atmi>
<reference>ToupperServiceComponent</reference>

</service>

<component name="ToupperServiceComponent">
<implementation.php script="toupper.php"
class="Toupper" />
scope="composite" />

</component>

Service Component Architecture

<~runChNum>

2-26

</composite>

Python Components

Python operations are exposed as module-level functions contained in a Python module file. For
example, a Toupperservice.py file would contain the code shown in Listing 1-22.

Listing 1-22 Python Module File

def charToup(vall):
print "input: " + vall
result = "result"
print "Python - toupper"

return result

Parameter and return valuestypesare dynamically determined at runtime. Application exceptions
are caught by the extension runtime and re-thrown as

tuscany: :sca: :ServicelInvocationException.

During input, unsupported types or an error processing an input DataObject resultsin the
following exception:

dtuscany: :sca: :ServiceDataException.

During output, simplereturn types are always processed. An error generating a DataObject (from
XML data) resultsin the following exception:

tuscany: :sca: :ServiceDataException.

For more information, see Python, Ruby, and PHP Data Type Mapping.

Ruby Components

Ruby operations are exposed as methods of an implementation class contained in a Ruby script
file (. rb extension). For example, a Toupperservice. rb file would contain the code shownin
Listing 1-23.

Service Component Architecture

SCA Python, Ruby, and PHP Programming

Listing 1-23 Ruby Script File

class ToupperService

def initialize()
print "Ruby - ToupperService.initialize\n"

end

def charToup (argl)
print "Ruby - ToupperService.div\n"
argl.ToUpper ()

end

end

Parameter and return val uestypes are dynamically determined at runtime. A pplication exceptions
are caught by the extension runtime and re-thrown as

tuscany: :sca: :ServicelInvocationException.

During input, unsupported types or an error processing an input DataObject resultsin the
following exception:

dtuscany::sca::ServiceDataException.

During output, simplereturn types are always processed. An error generating a DataObject (from
XML data) resultsin the following exception: tuscany: :sca: :ServiceDataException.

For more information, see Python, Ruby, and PHP Data Type Mapping.

PHP Components

PHP operations are exposed as functions contained in a PHP class. For example, a toupper . php
file would contain the code shown in Listing 1-24

Listing 1-24 PHP Class

<?php

class MyClass {

Service Component Architecture 2-27

<~runChNum>

public static function toupper (val) {
print "PHP - toupper";

return val.toupper () ;

?>

Parameter and return valuestypesare dynamically determined at runtime. Application exceptions
are caught by the extension runtime and re-thrown as

tuscany: :sca: :ServicelInvocationException.

During input, unsupported types or an error processing an input DataObject resultsin the
following exception:
Adtuscany: :sca: :ServiceDataException.

During output, simplereturn types are always processed. An error generating a DataObject (from
XML data) resultsin the following exception: tuscany: :sca::ServiceDataException.

For more information, see Python, Ruby, and PHP Data Type Mapping.

SCA Structure Support

This section contains the following topics:
e SCA Structure Support Overview
e Using SCA Structure Description Files

e Using tuxscagen to Generate Structures

Note: This section applies to application defined structures only. For information on Oracle
Tuxedo SCA defined structures, see SCA Data Type Mapping.

SCA Structure Support Overview

SCA Structure support provides:

e Additional C++ structure functionality

2-28 Service Component Architecture

SCA Structure Support

e Improved performance for applications processing data that can be placed in a structure
without significant wasted space

You must use the st ruct datatype specified in the SCA method parameter definition or in the
definition of areturn value from an SCA method as follows:

® struct structurename *

® struct structurename &

Elements within the structure can be any of the following simple data types/arrays that are
supported as an SCA parameter:

® bool

® char, unsigned char, signed char
® wchar_t

® short, unsigned short

® int, unsigned int

® long, unsigned long

® long long, unsigned long long
e float

® double

® long double

® struct nestedstructurename

® typedef

Note: Thescagen utility parses typedef and struct keywords. For moreinformation, see
the SCA Command Reference.

SCA Structure Limitations
e Thefollowing cannot be specified as part of a structure”

— DataObjectPtr

Point data types
— std::string Or astd: :wstring

A union

— struct carray_t, struct_x_octet_t, Ol struct xml_t

Service Component Architecture 2-29

<~runChNum>

2-30

e CARRAY datais supported in the same way that it is supported for views

e .hand .cpp filesreferencing the use of structures are required to include a definition for
the structure being used and for any nested structures contained within that structure.

Using SCA Structure Description Files

A structure description file may be used to describe the format of an SCA structure parameter.
Structure description files are very similar to Oracle Tuxedo viewfiles, with additional
capabilities added for SCA.

Note: The use of structure description filesis optional, and is needed only when FML field
names corresponding to structure elements are different from the names of the structure
elements, or when some other non-default structure related feature is required. If an
application wants to make use of an Associated Length Member, an Associated Count
Member, or an application-specified default value for astructure element, it may choose
to make use of a structure description file.

If no structure description file is provided for a particular structure, then the structure definition
used in application codeis used, and FML field namesin SCA-ATMI mode are the same as
structure element names. Since field numbers are generated automatically for SCA-SCA
applications, these applications do not need to specify a structure description file.

The structure description file format isidentical to the Oracle Tuxedo viewfile format, with the
following exceptions:

e Thetype parameter in column 1 alows the additional valuesbool, unsignedchar,
signedchar, wchar_t, unsignedint, unsignedlong, longlong, unsignedlonglong,
longdouble, and struct.

e If thevaluein columnlis struct, then the cname valuein column 2 isthe name of a
previously defined VIEW that describes a nested structure. In this case, the count valuein
column 4 may optionally be specified to specify the number of occurrences of the nested
structure.

If astructure described in astructure description fileis converted to (or from) an FML32 or FML
buffer at runtimein an SCA-ATMI application, then the name of the corresponding FML fieldis
the fbname value specified in column 3, if any, and is the cname value specified in column 2 (if
no valueis specified in column 3). When compiled, the structure description file produces a
binary structure description file as shown in Listing 1-25. The binary structure header fileis
shown in shown in Listing 1-26.

Note: Inan SCA-SCA application, FML32 field numbers are generated automatically.

Service Component Architecture

Listing 1-25 SCA Structure Description File

SCA Structure Support

VIEW empname

#TYPE CNAME FBNAME

string fname EMP_FNAME
char minit EMP_MINT
string 1lname EMP LNAME

END

VIEW emp

struct empname ename
unsignedlong id EMP_ID
long ssn EMP_SSN
double salaryhist EMP_SAL
END

COUNT

FLAG

SIZE NULL
25 -

25 -

Listing 1-26 Binary Structure Header File

struct empname {
char fname[25];
char minit;
char lname[25];
Y

struct emp {
struct empname ename;
unsigned long id;
long ssn;
double salaryhist[10];

The scastructc32 and scastructc commands are used to convert a source structure
description fileinto abinary structure description file and to generate a header file describing the
structure(s) in the structure description file. The scastructdis32 and scastructdis

Service Component Architecture 2-31

<~runChNum>

commands accept the same arguments as viewdis32 and viewdis. For more information, see
the SCA Command Reference.

Notes. scastructe32 and scastructc generateabinary filewith suffix .V on Unix and suffix
.VV on Windows.

If the structure description file contains no SCA extensions that are not available in
Oracle Tuxedo views, then the magic value for the binary structure description file shall
bethe same asthe magic value used by viewc32. If any SCA specific extensions are used,
then a different magic value shall be used for the binary structure description file.

Using tuxscagen to Generate Structures

When invoked with the option -s, tuxscagen(1) generates a structure for any function parameter
or return value that would otherwise have been passed using Dataobjectptr.

Note: If tuxscagen -sisrun, then simple datatypes are generated just asthey would have
beenif tuxscagen wererunwithout the -s option. It ispossibleto mix simple datatypes,
structures, and other complex data types within a single metadata repository. In order to
use simple datatypesin an application that also uses structures, it is not necessary to run
tuxscagen without -s.

SCA Remote Protocol Support

2-32

SCA Oracle Tuxedo invocation supports the following remote protocols:
o /WS

e /Domains

/WS

SCA invocationsmade using the SCA contai ner havethe capability of being performed usingthe
Oracle Tuxedo WorkStation protocol (/WS). Thisis accomplished by specifying the value
WorksStation (not abbreviated so as not to confuse it with webservices) inthe
<remoteAccess> element of the <binding.atmi> element.

Only reference-type invocations are be available in this mode. Service-type invocations may be
performed using the /WS transparently (thereis no difference in behavior or configuration, and
setting the <remoteAccess> element to workstation for an SCA service has no effect).

Since native and workstation libraries cannot be mixed within the same process, client
processes must be built differently depending on the type of remote access chosen.

Service Component Architecture

SCA Binding

Note: When using the value propagatesTransaction in /binding.atmi/@requires, the
behavior of the ATMI binding does not actually perform any transaction propagation. It
actually startsatransaction, since the use of thisprotocol isreserved for client-side access
to Oracle Tuxedo (SCA or non-SCA) applicationsonly. For moreinformation, see ATMI
Binding.

/Domains

SCA invocations made using the SCA container have the capability of being performed using the
Oracle Tuxedo /Domains protocol. No additional configurations are necessary on
<binding.atmi> declarationsin SCDL files.

Note: /Domainsinteroperability configuration is controlled by the Oracle Tuxedo
administrator.

The SCA service name configured for Oracle Tuxedo /Domainsis as follows:

e SCA -> SCA mode - /binding.atmi/service/@name attribute followed by a'/
and method name

e Legacy mode (SCA -> Tux interop mode) - /binding.atmi/service/@name
attribute.

For more information, see SCA and Oracle Tuxedo Interoperability.

SCA Binding

Oracle Tuxedo supports
e ATMI Binding
e JavaATMI (JATMI) Binding
e Python, Ruby, and PHP Binding
e Web Services Binding

ATMI Binding

Oracle Tuxedo communicationsare configuredin SCDL usinga<binding.atmi> element. This
allowsyou to specify configuration elements specific to the ATMI transport, such asthelocation
of the TUXCONFIG file, the native Oracle Tuxedo buffer types used, Oracle Tuxedo-specific
authentication or /WS (WorkStation) configuration elements, etc.

Service Component Architecture 2-33

<~runChNum>

2-34

Listing 1-27 shows a summary of the <binding.atmi> element.
Note:

o refersto a parameter that can be specified O or 1 times.

o refersto a parameter that can be specified O or more times.

For more information, see Appendix A: Oracle Tuxedo SCA ATMI Binding Reference.

Listing 1-27 ATMI Binding Pseudoschema

<binding.atmi requires="transactionalintent legacyintent"?>

<tuxconfig>...</tuxconfig>?
<map target="name">...</map>*
<serviceType target="name">...</serviceType>*

<inputBufferType target="name">...</inputBufferType>*
<outputBufferType target="name">...</outputBufferType>*
<errorBufferType target="name">...</errorBufferType>*
<workStationParameters>?
<networkAddress>...</networkAddress>?
<secPrincipalName>. ..</secPrincipalName>?
<secPrincipalLocation>...</secPrincipalLocation>?
<secPrincipalPassId>...</secPrincipalPassId>"?
<encryptBits>...</encryptBits>?
</workStationParameters>

<authentication>?

<userName>. . .</userName>?
<clientName>. . .</clientName>?
<groupName>. . .</groupName>?

<passwordIdentifier>...</passwordIdentifier>?
<userPasswordIdentifier>...
</userPasswordIdentifier>?

</authentication>
<fieldTablesLocation>...</fieldTablesLocation>?
<fieldTables>...</fieldTables>?
<fieldTablesLocation32>...</fieldTablesLocation32>?
<fieldTables32>...</fieldTables32>?
<viewFilesLocation>...</viewFilesLocation>?

<viewFiles>...</viewFiles>?

Service Component Architecture

SCA Binding

<viewFilesLocation32>...</viewFilesLocation32>?
<viewFiles32>...</viewFiles32>?
<remoteAccess>...</remoteAccess>?

<transaction timeout="xsd:long"/>?

</binding.atmi>

Java ATMI (JATMI) Binding

Java ATMI (JATMI) binding allows SCA clients written in Javato call Oracle Tuxedo services
or SCA components. It provides one-way invocation of Oracle Tuxedo services based on the
Oracle Tuxedo WorkStation protocol (/WS). Theinvocationisfor outbound communication only
from aJavaenvironment to Oracle Tuxedo application acting asaserver. Apart from acomposite
filefor SCDL binding declarations, no external configuration is necessary. The service name,
workstation address and authentication data are provided in the binding declaration.

Note: SSL issupported through the Oracle 12c JCA Adapter. LLE isnot currently supported.

Most of the Oracle Tuxedo CPP ATMI binding elements support JATMI binding and have the
same usage. However, due to different underlying technology and running environment
differences, some elements are not supported and some that are supported but have different
element names.

The following Oracle Tuxedo CPP ATMI binding elements are not supported:
® binding.atmi/tuxconfig
® binding.atmi/fieldTablesLocation
® binding.atmi/fieldTablesLocation32
® binding.atmi/viewFilesLocation
® binding.atmi/viewFilesLocation32
® binding.atmi/transaction

The following Oracle Tuxedo CPP ATMI binding workstationParameters € ements are not
supported:

® binding.atmi/workStationParameters/secPrincipalName
® binding.atmi/workStationParameters/secPrincipallLocation
® binding.atmi/workStationParameters/secPrincipalPassId

® binding.atmi/workStationParameters/encryptBits

Service Component Architecture 2-35

http://docs.oracle.com/cd/E35855_01/jca/docs12c/index.html

<~runChNum>

The following Oracle Tuxedo CPP ATMI binding element is supported in alimited fashion.
® binding.atmi/remoteAccess

Note: Only the value "workstation" isalowed. If not specified, "workstation" is
assumed.

All the classes in the elements mentioned below must be specified in Java CLASSPATH:

® binding.atmi/fieldTables - Specifies acomma-separated list of Java classesthat are
extended from the weblogic.wtc.jatmi . TypedFML base class.

® binding.atmi/fieldTables32 - Specifiesacomma-separated list of Java classes that
are extended from theweblogic.wtc.jatmi.TypedFML32 base class.

® binding.atmi/viewFiles - Specifies acomma-separated list of Java classesthat are
extended from the weblogic.wtc.jatmi.Typedview base class. These derived classes
usually are generated from an Oracle Tuxedo VIEW file using the
weblogic.wtc.jatmi.viewj compiler. These aso includes derived from
weblogic.wtc.jatmi.TypedXCType and weblogic.wtc.jatmi . TypedXCommon

For more information, see How to Use the viewj Compiler in the Oracle Tuxedo
WebL ogic Tuxedo Connector Programmer's Guide.

® binding.atmi/viewFiles32 - Specifies acomma-separated list of Java classes that are
extended from the webogic.wtc.jatmi . Typedview32 base class. These derived classes
usually are aslo generated from an Oracle Tuxedo VIEW file using the
weblogic.wtc.jatmi.viewj32 compiler.

Listing 1-28 shows an example of composite file for binding declaration of an Oracle Tuxedo
service named "ECHO".

Listing 1-28 ECHO Composite File

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns: f="binding-atmi.xsd"
name="ECHO">
<reference name="ECHO" promote="EchoComponent/ECHO">
<interface.java interface="com.abc.sca.jclient.Echo" />
<f:binding.atmi requires="legacy">
<f:inputBufferType target="echoStr">STRING</f:inputBufferType>
<f:outputBufferType target="echoStr">STRING</f:outputBufferType>

2-36 Service Component Architecture

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wtc_atmi/Views.html#wp1113817

SCA Binding

<f:errorBufferType target="echoStr">STRING</f:errorBufferType>

<f:workStationParameters>

<f:networkAddress>//STRIATUM: 9999, //STRIATUM: 1881</f :networkAddr
ess>
</f:workStationParameters>
<f:remoteAccess>WorkStation</f:remoteAccess>
</f:binding.atmi>
</reference>
<component name="EchoComponent">
<implementation.java class="com.abc.sca.jclient.EchoComponentImpl"
/>
</component>

</component>

Listing 1-29 shows the interface for the example mentioned in Listing 1-28.

Listing 1-29 ECHO Interface

package com.abc.sca.jclient;

import com.oracle.jatmi.AtmiBindingException;

public interface Echo {
String echoStr (String requestString) throws AtmiBindingException;

Listing 1-30 shows an example of an SCA client implementation.

Listing 1-30 SCA Client Implementation

package com.abc.sca.jclient;

Service Component Architecture 2-317

<~runChNum>

2-38

import org.osoa.sca.annotations.Constructor;
import org.osoa.sca.annotations.Reference;

import com.oracle.jatmi.AtmiBindingException;

/**

* A simple client component that uses a reference with a JATMI binding.
*/

public class EchoComponentImpl implements Echo {

private Echo echoReference;

@Constructor
public EchoComponentImpl (@Reference (name = "ECHO", required = true)
Echo
echoReference) {

this.echoReference = echoReference;

public String echoStr (String requestString) throws
AtmiBindingException {

return echoReference.echoStr (requestString) ;

Python, Ruby, and PHP Binding

The Python, Ruby, and PHP language extensions are binding-independent, meaning that binding
extensions are not aware of the language of clients or components. Language extensions are not
aware of the binding used.

Binding extensions are not modified to comply with Python, Ruby, and PHP program support.
Note the following:

o |f the datatypes defined in Python, Ruby or PHP binding do not match the Python, Ruby
or PHP source files, then Oracle Tuxedo will throw an exception.

e If abinding is configured with a data type that does not match what the Python, Ruby or
PHP component is designed to handle, an exception is thrown by the Python, Ruby or PHP

Service Component Architecture

SCA Binding

runtime (for example, binding.atmi configured with STRING Oracle Tuxedo buffers and
a Python function handling numerical data).

e For a Python, Ruby or PHP client code mismatch with what binding is configured with, an
exception occurs originating from the binding code.

e Since Python, Ruby, and PHP code is not compiled, any configuration mismatch between
binding and component/client can only be detected at runtime.

e Python, Ruby or PHP programs with a composite scope require an Oracle Tuxedo server
reload when the script is modified. A stateless scope allows dynamic rel oading of modified
scripts.

e In order to expose Python, Ruby or PHP scripts as Web services, the scarosT command
must use the -w option in order to load the correct service binding during initialization.

Note: scanosT does not allow mixing both ATMI and Web services binding typesin one
SCAHOST instance.

For more information, see the SCA Command Reference.

e TMMETADATA Server isrequired in order to expose Python, Ruby, and PHP components.

Python, Ruby, and PHP Binding Limitations
Using Python, Ruby, and PHP bindings have the following limitations:
e When using the ATMI binding for interoperability calls (that is, when
requires="legacy" iSSet), mixing named and non-named parametersis not allowed (for

example, Python: def func(a, *b, **c), Ruby: def func(a, *b, hash)), Since
there is no mechanism to restore the parameter names.

The names of the parameters must be configured in FML 32 tables (ATMI binding), or by
way of WSDL (Web services binding). It is not possible to interoperate with lists of
non-named parameters because such calls cannot be accurately mapped to C++ or WSDL
interfaces due to the lack of guaranteed ordering of FuL/FML32 Oracle Tuxedo buffers.

The supported modes are;
— Multiple parameters. def func(a, b, c) (same syntax for Python, Ruby, and PHP)

— Multiple parameters and list of parameters. def func(a, *b) (same syntax for
Python and Ruby)

— Named parameters: PHP - $svc->searchBike (array ('COLOR' => 'RED', 'TYPE'
=> 'MTB')). For more information, see PHP Data Type Mapping.

Service Component Architecture 2-39

<~runChNum>

2-40

— Dictionary or hash: Python: def func(**a), Ruby: def func (hash)

Note: Python parameters defined with ** are considered named parameters. Ruby
parameters defined with hash are considered named parameters. For more
information, see Python Parameters and Ruby Parameters.

e In SCA to SCA mode, the above limitation still concerns named parameters since the order
of elementsin a Python dictionary or Ruby hash is not guaranteed. To transmit a Python
dictionary or Ruby hash, you must work in "legacy" mode.

e In SCA to SCA mode, using lists of parameters (excluding dictionaries or hashes) are
supported since Oracle Tuxedo Service Metadata interfaces describe service-side lists of
parameters/types (on the reference side parameters/types are self-described at runtime).

e Unicode strings are not supported; accordingly msTrING buffersor F.o_mMBSTRING fields
are not supported.

Web Services Binding

The Web services binding (binding.ws) leverages previously existing Oracle Tuxedo
capabilities by funneling Web service traffic through the GWWS gateway. SCA components are
hosted in Oracle Tuxedo servers, and communications to and from those servers are performed
using the GWWS gateway.

SCA clients using a Web services binding remain unchanged whether the server isrunning in an
Oracle Tuxedo environment or a native Tuscany environment (for example, exposing the
component using the Axis2 Web services binding).

Note: HTTPSisnot currently supported.

When SCA components are exposed using the Web services binding (binding.ws), tooling
performs the generation of WSDF information, metadata entries and FML 32 field definitions.

When SCDL code of SCA components to be hosted in an Oracle Tuxedo domain (for example,
service elements) contains <binding.ws> elements, the buildscaserver command generates
an WSDF entry in afile named service.wsdf where'service'isthe name of the service
exposed. Anaccompanying service.mif and service. fm132 field tablefilesare also generated,
based on the contents of the WSDL interface associated with the Web service. Y ou must compose
aWSDL interface. If no WSDL interface is found, an error message is generated.

Web services accessed from an Oracle Tuxedo domain using a Web services binding (for
example, reference elements found in SCDL) require the following manual configuration steps:

Service Component Architecture

o > w0 D

6.

SCA Binding

Convert the WSDL fileinto a WSDF entry by using the wsdlcvt tool. Simultaneoudly, a
Service Metadata Entry file (.mi £), and fml32 mapping file are generated.

Make sure that the UBB source has the TvveTADATA @and GWWS servers configured
Import the WSDF file into the sar.pEPLOY file
Convert the sanTpEPLOY fileinto binary using ws1oadcf.

L oad the Service Metadata Entry file (. mi £) into the Service M etadata Repository using the
tmloadrepos command.

Boot (or re-boot) the GWWS process to initiate the new deployment.

The Web services binding reference extension initiates the Web services call.

Listing 1-31 shows an SCA component service exposed as a Web service.

Listing 1-31 Example SCA Component Service Exposed as a Web Service

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="bigbank.account">

<service name="AccountService">
<interface.wsdl interface="http://www.bigbank.com/AccountService
#wsdl.interface (AccountService) " />
<binding.ws/>
<reference>AccountServiceComponent</reference>

</service>

<component name="AccountServiceComponent">
<implementation.cpp
library="Account" header="AccountServiceImpl.h"/>
<reference name="accountDataService">
AccountDataServiceComponent
</reference>

</component>

</composite>

Service Component Architecture 2-41

../rfcm/index.html

<~runChNum>

2-42

The steps required to expose the corresponding service are as follows:
1. Compose aWSDL interface matching the component interface.

2. Usebuildscacomponent to build the application component runtime, similar to building a
regular SCA component.

3. buildscaserver -wisused to convert SCDL codeinto a WSDF entry, and produce a
deployable server (Oracle Tuxedo server + library + SCDL).

The service from the above SCDL creates a WSDF entry as shown in Listing 1-32.

Listing 1-32 WSDF Entry

<Definition>
<WSBinding id="AccountService_binding">
<ServiceGroup id="AccountService">
<Service name="TuxAccountService"/>
</ServiceGroup>
</WSBinding>

</Definition>

4. pbuildscaserver -w alS0 constructsa Service Metadata Repository entry based by parsing
the SCDL and interface. The interface needs to be in WSDL form, and manually-composed
inthisrelease.

5. Make sure that the UBB source has the TMMETADATA and GWWS servers configured.

6. The Service Metadata Repository entry isloaded into the Service M etadata Repository using
the tmloadrepos command.

7. The WSDF file must be imported into the sar.TpEPLOY file and sarLTDEPLOY converted into
binary using ws1loadcf.

8. The Service Metadata Entry file (.mi£) isloaded into the Service Metadata Repository.
9. The Oracle Tuxedo server hosting the Web service is booted and made available.

10. The GWWS is rebooted to take into account the new deployment.

Service Component Architecture

../rfcm/index.html

SCA Binding

These steps are required, in addition to the sar.TpEPL.OY configuration, in order to set up the
GWWS gateway for Web services processing (for example, configuration of cwInstance,
Server Level Properties, etc.). When completed, Web service clients (SCA or other) have access
to the Web service.

Listing 1-33 shows a reference accessing a Web service.

Listing 1-33 Example Reference Accessing a Web Service

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="bigbank.account">

<reference name="StockQuoteWebService">
<interface.wsdl interface="http://www.webserviceX.NET/#
wsdl.interface (StockQuoteSoap) " />
<binding.ws endpoint="http://www.webserviceX.NET/#
wsdl.endpoint (StockQuote/StockQuoteSoap) " />

</reference>

</composite>

The steps required to access the Web service are as follows:
1. AWSDL fileisnecessary. Thisis usually published by the Web Service provider.

2. The WSDL file must be converted into a WSDF entry using the wsdicvt tool. At the same
time a Service Metadata Entry file (.mi £), and fml32 mapping file is generated.

3. The WSDF file must be imported into the sar.TpEPLOY file and saL.TDEPLOY converted into
binary using wsloadcf.

4. The Service Metadata Entry file (.mif) isloaded into the Service M etadata Repository using
the tmloadrepos command.

5. The GWWS process is rebooted to take into account the new deployment.

These steps are required, in addition to the sar.TpEPL.OY configuration, in order to set up the
GWWS gateway for Web services processing (for example, configuration of cwinstance,
Server Level Properties, etc.). When completed, the SCA client has access to the Web service.

Service Component Architecture 2-43

../rfcm/index.html

<~runChNum>

The process is the same, whether the client is stand-alone SCA program or an SCA component
(already a server) referencing another SCA component via the Web service binding.

SCA Data Type Mapping

2-44

Using ATMI binding leverages the Oracle Tuxedo infrastructure. Data exchanged between SCA
components, or Oracle Tuxedo clients/services and SCA clients’componentsis performed using
Oracle Tuxedo typed buffers. Table 1-1 through Table 1-10 summarize the correspondence

between native types and Oracle Tuxedo buffergitypes, as well as SOAP types when applicable.

In the example shown in Listing 1-34, implementations send and receive an Oracle Tuxedo
STRING buffer. To the software (binding and reference extension implementations), the
determination of the actual Oracle Tuxedo buffer to be used is provided by the contents of the
/binding.atmi/inputBufferType, /binding.atmi/outputBufferType, OF
/binding.atmi/errorBufferType elementsinthe SCDL configuration, and thetype of buffer
returned (or sent) by aserver (or client). It does not matter whether client or serverisan ATMI
program or an SCA component.

Notice that the Oracle Tuxedo simpapp Service has its own namespace within namespace
services. A C++ method toupper is associated with this service.

Listing 1-34 C++ Interface Example

#include <string>
namespace services
{
namespace simpapp
{
/**
* business interface
*/
class ToupperService
{
public:

virtual std::string

toupper (const std::string inputString) = 0;
}i

Service Component Architecture

SCA Data Type Mapping

} // End simpapp

} // End services

The following data type mapping rules apply:
e Run-Time Data Type Mapping
e SCA Utility Data Type Mapping

Run-Time Data Type Mapping
e Simple Oracle Tuxedo Buffer Data Mapping
e Complex Return Type Mapping
e Complex Oracle Tuxedo Buffer Data Mapping

Simple Oracle Tuxedo Buffer Data Mapping

The following are considered to be simple Oracle Tuxedo buffers:
® STRING
® CARRAY (and X_OCTET)
® MBSTRING

® XML

Table 1-1 lists simple Oracle Tuxedo buffer types that are mapped to SCA binding.

Table 1-1 Simple Oracle Tuxedo Buffer Type Data Mapping

C++ or STL Type Java Type Oracle Tuxedo Buffer Notes
Type
char*, char array java.lang.String STRING

or std: :string

CARRAY_T bytel[] or CARRAY
java.lang.Bytel]

Service Component Architecture

2-45

<~runChNum>

Table 1-1 Simple Oracle Tuxedo Buffer Type Data Mapping

C++ or STL Type Java Type Oracle Tuxedo Buffer Notes
Type
X_OCTET_T bytel[] or X_OCTET

java.lang.Bytel[]

XML_T byte[] or XML Thistypeispassed asa
java.lang.Bytel] C++array withinthedata
element of struct XML or

as an array of java bytes.
Itistransformed to SDO.

wchar_t *or N/A MBSTRING See Multibyte String

wchar_t array Data Mapping

std: :wstring java.lang.String MBSTRING See Multibyte String
Data Mapping

2-46

When a service called by an SCA client returns successfully, a pointer to the service return data
is passed back to the Proxy stub generated by buildscaclient. The Proxy stub then
de-references this pointer and returns the data to the application.

Table 1-1 can be interpreted as follows:

e When the reference or service binding extension runtime sees an Oracle Tuxedo STRING
buffer, it looks for either achar*, char array, std::string parameter or return type
(depending on the direction). If adifferent typeisfound, an exception is thrown with a
message explaining what happened.

o When the reference or service binding extension runtime sees a char* (for example) asa
single parameter or return type, it looks for STRING as the buffer type in the
binding.atmi element. If adifferent Oracle Tuxedo buffer typeisfound, an exception is
thrown with a message explaining what happened.

Multibyte String Data Mapping

Oracle Tuxedo uses multibyte strings to represent multibyte character data with encoding names
based on iconv (as defined by Oracle Tuxedo). C++ usesawstring, wchar_t*, Of wchar_t[]
data type to represent multibyte character data with encoding names (as defined by the C++
library).

Service Component Architecture

SCA Data Type Mapping

Oracle Tuxedo and C++ sometimes use different names to represent a particular multibyte
encoding. Mapping between Oracle Tuxedo encoding names and C++ encoding namesis as
follows:

e Receiving a Multibyte String Buffer

When an SCA client or server receives an MBsTRING buffer or an Fmr32 buffer with a
FLD_MBSTRING field, it considers the encoding for that multibyte string to be the first
locale from the following cases:

a Locale associated with the FLp_MBSTRING field, if present.

Note: For moreinformation, see Table 1-2.
b. Locale associated with the MBsTRING Or FML32 buffer.

c. Locae set in the environment of the SCA client or server.

If case aor b is matched, Oracle Tuxedo invokesthe set1ocale () function for locaetype
rc_cTyPE with the locale for the received buffer. If setlocale () fails(indicating thereis
no such locale) and an aternate name has been associated with thislocale in the optional
$TUXDIR/locale/setlocale_alias file, Oracle Tuxedo attemptsto set the L.c_cTYPE
locale to the alternate locale.

The $TUXDIR/1locale/setlocale_alias file may be optionally created by the Oracle
Tuxedo administrator. If present, it contains a mapping of Oracle Tuxedo MBSTRING
codeset names to an equivalent operating system locale accepted by the set1ocale()
function.

Lines consist of an Oracle Tuxedo MBSTRING codeset name followed by whitespace and
an OS locale name. Only the first line in the file corresponding to a particular MBSTRING
codeset name are considered. Comment lines begin with #.

The $TUXDIR/1locale/setlocale_alias fileisused by the SALT SCA software when
converting MBSTRING datainto C++ wstring Of wchar_t [] data If setlocale () fails
when using the Oracle Tuxedo MBsSTRING codeset name, then the SALT SCA software
attempts to use the alias name, if present. For example, if the file containsaline ‘cB2312
zh_CN.GB2312'thenif setlocale (LC_CTYPE, 'GB2312') fails, the SALT SCA
software attemptsS setlocale (LC_CTYPE, 'zh_CN.GB2312').

e Sending a Multibyte String Buffer

When an SCA client or server converts awstring, wchar_t[], Of wchar_t* toan
MBSTRING buffer or arLp_MBSTRING field, it usesthe TPMBENC environment variable
value as the locale to set when converting from C++ wide characters to a multibyte string.

Service Component Architecture 2-47

<~runChNum>

2-48

If the operating system does not recognize this locale, Oracle Tuxedo uses the aternate
locale from the $TUXDIR/1locale/setlocale_alias file, if any.

Note: Itispossibletotransmit multibyte dataretrieved from an msTrING buffer, an FM1.32
FLD_MBSTRING field, or aview32 mbstring field. It is also possible to transmit
multibyte data entered using the SDO setstring () method.

However, it is not possible to enter multibyte characters directly into an XML
document and transmit this datavia SALT. Thisis because multibyte characters
entered in XML documents are transcoded into multibyte strings, and SDO uses
wchar_t arraysto represent multibyte characters.

Complex Return Type Mapping

The following C++ built-in types (used as return types) are considered complex and
automatically encapsulated in an FmL/FML3 2 buffer as asingle generic field following the
complex buffer mapping rules described in Complex Oracle Tuxedo Buffer DataMapping. This
mechanism addresses the need for returning types where a corresponding Oracle Tuxedo buffer
cannot be used.

Note: Interfaces returning any of the built-in types assume that Fv1./FML3 2 iSthe output buffer
type. The name of thisgenericfield isTux_RTNdatatype based on thetype of databeing
returned. Tux_RTNdatatype fields are defined in the usysflds.h/Usysf132.h and
Usysflds/Usysf132 shipped with Oracle Tuxedo.

® bool : mapsto Tux_RTNCHAR field

e char: mapsto Tux_RTNCHAR field

® signed char: Mapsto Tux_RTNCHAR field

® unsigned char: Mapsto Tux RTNCHAR field

e short: mapsto Tux_RTNSHORT field

® unsigned short: Mapsto Tux_RTNSHORT field
e int: mapsto Tux_ RTNLONG field

e unsigned int: Mapsto Tux_RTNLONG field

e long: mapsto Tux_RTNLONG field

e unsigned long: Mapsto Tux_ RTNLONG field

e long long: (Mapsto Tux_RrRTNLONG field

Service Component Architecture

SCA Data Type Mapping

® unsigned long long: Mapsto Tux_RTNLONG field
e float: Mapsto Tux_RTNFLOAT field
e double: Mapsto Tux_RTNDOUBLE field

e |long double: maps to Tux_rTNDOUBLE field

Complex Oracle Tuxedo Buffer Data Mapping
The following are considered to be complex Oracle Tuxedo buffers:
® FML
® FML32
® VIEW (and X_* equivalents)
® VIEW32
Table 1-2 lists the complex Oracle Tuxedo buffer types that are mapped to SCA binding.

For FML and FML 32 buffers, parameter namesin interfaces must correspond to field names, and
follow the restrictions that apply to Oracle Tuxedo fields (length, characters alowed). When
these interfaces are generated from metadata using tuxscagen(1), the generated code containsthe
properly formatted parameter names.

If an application manually develops interfaces without parameter names, manually develops
interfaces that are otherwise incorrect, or makes incompatible changesto SALT generated
interfaces, then incorrect results are likely to occur.

VIEW (and x_* equivaents) and VIEW32 buffers require the use of SDO pataobject
wrappers.

Listing 1-35 shows an interface example. The associated field definitions (following the
interface) must be present in the process environment.

Service Component Architecture 2-49

<~runChNum>

Table 1-2 Complex Oracle Tuxedo Buffer Type Data Mapping

C++, STL, or SDO Java Type Oracle Tuxedo Oracle Tuxedo Notes

type field type view type

bool boolean or FLD_CHAR char Mapsto T' or 'F. (This
java.lang.Bo matches the mapping used
olean elsawherein SALT.)

char, signed byte or FLD_CHAR char

char, or java.lang.By

unsigned char te

short or short or FLD_SHORT short Anunsigned short iscast to

unsigned short java.lang.Sh ashort before being
ort converted to FLD_SHORT

or short.

int or unsigned int or FLD_LONG int Anunsigned int being

int java.lang.In converted to FML or
teger FML32iscasttoalong

before being converted to
FLD_LONG Of 1long. An
unsigned int being
convertedtoa VIEW or
VIEW32 member is cast to

anint.
long or long or FLD_LONG long An exception isthrown if
unsigned long java.lang.Lo thevalueof a64-bit
ng long doesnot fitinto a

FLD_LONG Or long Ona
32-hit platform. An
unsigned long is cast to
long before being
converted to FLD_LONG or
long.

2-50 Service Component Architecture

Table 1-2 Complex Oracle Tuxedo Buffer Type Data Mapping

SCA Data Type Mapping

C++, STL, or SDO Java Type Oracle Tuxedo Oracle Tuxedo Notes
type field type view type
long long or N/A FLD_LONG long An exception isthrown if
unsigned long the data value does not fit
long within a FLD_LONG or
long. Anunsigned long
long iscastto long
long before being
converted to FLD_LONG or
long.
float float or FLD_FLOAT float
java.lang.F1l
oat
double double or FLD_DOUBLE double
java.lang.Do
uble
long double N/A FLD_DOUBLE double
char* or char N/A FLD_STRING string
array
std::string java.lang.St FLD_STRING string
ring
CARRAY_T or class FLD_CARRAY carray Will map externally
X_OCTET_T CARRAY following GWWS rules.
This departs from the
OSOA spec. (which does
not support them), and
should be considered an
improvement.
Bytes N/A FLD_CARRAY Carray Thismapping is used when
part of aDataObject
wchar_t* or N/A FLD_MBSTRING mbstring (Java char is Unicode and
wchar_t array (FML32 only) (VIEW32 canrangeﬂon1—32768to
only) +32767.)

See also Multibyte String
Data Mapping

Service Component Architecture 2-51

<~runChNum>

Table 1-2 Complex Oracle Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type

Oracle Tuxedo
field type

Oracle Tuxedo
view type

Notes

std: :wstring

java.lang.St
ring

FLD_MBSTRING
(FML32 only)

mbstring
(VIEW32
only)

See aso Multibyte String
Data Mapping

commonj: :sdo: :

DataObjectPtr

TypedFML32

FLD_FML32
(FML32 only)

N/A

Generate adata
transformation exception,
which istrandated to an
ATMIBindingExceptio
n before being returned to
the application, when:

* Attempting to add such
afieldin an Oracle
Tuxedo buffer other
than FML32

e Thedataobject isnot
typed (i.e., thereisno
corresponding schema
describing it).

See also Multibyte String

Data Mapping

commonj: :sdo: :

DataObjectPtr

TypedView32

FLD_VIEW32
(FML32 only)

N/A

See also Multibyte String
Data Mapping

struct
structurename

N/A

FLD_FML32
(FML32 only)

structurenam
e

See also SCA Structure
Support

Listing 1-35 Interface Example

int myService (int paraml,

Field table definitions

float param?) ;

#name number type
paraml 20 int
param2 30 float

2-52

Service Component Architecture

flag comment

- Parameter 1

- Parameter 2

SCA Data Type Mapping

SDO Mapping

C++ method prototypes that use common3 : : sdo: : DataObjectPtr Objectsas parameter or
return types are mapped to an FML, FML32, VIEW, or VIEW32 buffer.

Y ou must provide an XML schemathat describesthe SDO object. The schemais made available
to the service or reference extension runtime by placing the schemafile (.xsd file) in the same
location asthe SCDL composite filethat containsthe reference or service definition affected. The

schema s used internally to associate element names and field names.

Note: When using view or view32, a schematype (for example, complexType) which name

matches the view or view32 used is required.
For example, a C++ method prototype defined in a header such as:
long myMethod (commonj: :sdo: :DataObjectPtr data) ;
Listing 1-36 shows the associated schema.

Listing 1-36 Schema

<xsd:schema xmlns:xsd=http://www.w3.o0rg/2001/XMLSchema
xmlns="http://www.example.com/myExample"

targetNamespace="http://www.example.com/myExample">

<xsd:element name="bike" type="BikeType"/>

<xsd:element name="comment" type="xsd:string"/>

<xsd:complexType name="BikeType">
<xsd:sequence>
<xsd:element name="serialNO" type="xsd:string"/>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>
<xsd:element name="price" type="xsd:float"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Service Component Architecture

<~runChNum>

2-54

Table 1-3 shows the generated field table.

Table 1-3 Generated Field Tahles

NAME NUMBER TYPE FLAG Comment
bike 20 fm132 -
comment 30 string -
serialNO 40 string -
name 50 string -
type 60 string -
price 70 float -

The following restrictions in XML schemas apply:
o Attributes cannot be specified and are ignored if specified

e Valuesin restrictions are ignored (their meaning is application-related), only the field name
and type are generated

e When using XML schematypes, only signed integral types are supported.
See "SDO C++ Specification” for alist of available SDO primitive types.

SCA Utility Data Type Mapping

The scatuxgen and tuxscagen Uutilities are used to generate manual SCA data type mapping.
The scatuxgen mapping rules are as follows:

e C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping
e C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping
e C++ Parameter Type and Oracle Tuxedo Complex Type Mapping

e Parameter and Return Types to Parameter-L evel Keyword Restrictions

Note: Themapping rulesfor tuxscagen areexecuted in the reverse direction (Oracle Tuxedo
Buffer Type -> C++ Parameter Type).

Service Component Architecture

SCA Data Type Mapping

C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping

Table 1-4 shows the correspondence between parameter/return types and Oracle Tuxedo buffer
types (inbuf service-level keyword).

Table 1-4 'inbuf' Keyword Buffer Type Mapping Table

C++ Parameter Type Oracle Tuxedo Buffer Type

std::string or char* STRING

struct carray_t CARRAY
char FML32
short FML32
int FML32
long FML32
float FML32
double FML32
wchar_t[] MBSTRING
struct xml_t XML
struct x_octet_t X_OCTET

commonj: :sdo: :DataOb X_COMMON, X_C_TYPE, VIEW, VIEW32, FML, or FML32 depending
jectPtr on intputBufferType setting

struct structurename X_COMMON, X_C_TYPE, VIEW, VIEW32, FML, or FML32 depending
on intputBufferType setting

multiple parameters, or one FML32
commonj::sdo::DataObj ectPt

r or struct structurename and

no binding.atmi or no

corresponding

inputBufferType and the

input buffer is not specified

using acommand line option

Service Component Architecture 2-55

<~runChNum>

Table 1-5shows the correspondence between parameter/return types and Oracle Tuxedo buffer
types (outbuf or err buf service-level keywords).

Table 1-5 outbuf' or 'errbuf' Keyword Buffer Type Mapping Tahle

C++ Return Type

Oracle Tuxedo Buffer Type

std::string or char* STRING
struct carray_t CARRAY
char FML32
short FML32
int FML32
long FML32
float FML33
double FML32
wchar_t[], wstring MBSTRING
struct xml_t XML
struct x_octet_t X_OCTET

commonj: :sdo: :DataOb
jectPtr

X_COMMON, X_C_TYPE, VIEW, VIEW32, FML or FML32 dependingon
thebinding.atmi/outputBufferType Or
binding.atmi/errorBufferType Setting.

commonj: :sdo: :DataOb
jectPtr

FML32 if no binding.atmi is set, or binding.atmi is set and
binding.atmi/outputBufferType or binding.atmi/errorBufferType aren't
specified.

struct structurename

X_COMMON, X_C_TYPE, VIEW, VIEW32, FML or FML32 dependingon
the binding.atmi/outputBufferType or binding.atmi/errorBufferType setting.

struct structurename

FML32 if no binding.atmi is set, or binding.atmi is set and
binding.atmi/outputBufferType or binding.atmi/errorBufferType are not
specified.

2-56 Service Component Architecture

SCA Data Type Mapping

C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping

Table 1-7 shows how scatuxgen handles interface parameter types and converts them to an
Oracle Tuxedo Service Metadata Repository parameter-level keyword value when morethan one
parameter is used in the method signature.

Table 1-6 Parameter-Level/Field Type Mapping Table

C++ Parameter Data Type

Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

char byte (FLD_CHAR)
short short (FLD_SHORT)
int integer (FLD_LONG)
long integer (FLD_LONG)
float float (FLD_FLOAT)
double double (FLD_DOUBLE)

std: :string or char *

string (FLD_STRING)

struct carray_ t

carray (FLD_CARRAY)

std: :wstring

mbstring (FLD_MBSTRING)

commonj: :sdo: :DataOb
jectPtr

fml32 (FLD_FML32)

struct structurename

fml132 (FLD_FML32)

C++ Parameter Type and Oracle Tuxedo Complex Type Mapping
This section contains the following topics:

e SDO Mapping
e C Struct Mapping

SDO Mapping

When a method takes an SDO object as an argument, or returns an SDO object, for example as
follows. commoni: :sdo: :DataObjectPtr myMethod (commoni: :sdo: :DataObjectPtr

input) .

Service Component Architecture 2-57

<~runChNum>

The corresponding runtime type may be described by an XML schemaas shown in Listing 1-37
and then referenced in the binding as shown in Listing 1-38.

Listing 1-37 XML Schema

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="tuxedo"

targetNamespace="tuxedo">

<xsd:complexType name="BikeInventory">
<xsd:sequence>
<xsd:element name="BIKES" type="Bike"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="STATUS" type="xsd:string" maxOccurs="1"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Bike">

<xsd:sequence>
<xsd:element name="SERIALNO" type="xsd:string"/>
<xsd:element name="SKU" type="xsd:string"/>
<xsd:element name="NAME" type="xsd:string"/>
<xsd:element name="TYPE" type="xsd:string"/>
<xsd:element name="PRICE" type="xsd:float"/>
<xsd:element name="SIZE" type="xsd:int"/>
<xsd:element name="INSTOCK" type="xsd:string"/>
<xsd:element name="ORDERDATE" type="xsd:string"/>
<xsd:element name="COLOR" type="xsd:string"/>
<xsd:element name="CURSERIALNO" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

2-58 Service Component Architecture

SCA Data Type Mapping

Listing 1-38 Binding

<reference name="UBIK">
<interface.cpp header="uBikeService.h"/>
<binding.atmi>
<inputBufferType>FML32/Bike</inputBufferType>
<outputBufferType>FML32/BikeInventory</outputBufferType>
</binding.atmi>

</reference>

When such a schemais present, scatuxgen parsesit and generates the corresponding
parameter-level mapping entries aslisted in Table 1-7.

Table 1-7 Parameter-level/Field Type Mapping

XML Schema element type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

xsd:byte byte (FLD_CHAR)
xsd:short short (FLD_SHORT)
xsd:int integer (FLD_LONG)
xsd:long integer (FLD_LONG)
xsd:float float (FLD_FLOAT)
xsd:double double (FLD_DOUBLE)
xsd:string string (FLD_STRING)
xsd:string mbstring (FLD_MBSTRING) when -t option is specified
xsd:base6dbinary carray (FLD_CARRAY)
xsd:complexType fml32 (FLD_FML32)
xsd:minOccurs requiredcount
xsd:maxOccurs count

Service Component Architecture 2-59

<~runChNum>

C Struct Mapping

When a method takes a C struct as an argument, or returns a C struct (for example, as shown in
Listing 1-39), scatuxgen parses it and generates the corresponding parameter-level mapping
entrieslisted in Table 1-8.

Listing 1-39 C Struct

struct customer {
char firstname[80];
char lastname[80];
char address[240];
Y

struct id {
int SSN;
int zipCode;

}i

struct customer* myMethod(struct *id input) ;

Table 1-8 Parameter-Level/Field Type Mapping

Struct Member Type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

char, unsigned char, byte (FLD_CHAR)
signed char

char [] string (FLD_STRING)
wchar_t [1 mbstring (FLD_MBSTRING)
short, unsigned short (FLD_SHORT)

short

int, unsigned int integer (FLD_LONG)

2-60 Service Component Architecture

SCA Data Type Mapping

Table 1-8 Parameter-Level/Field Type Mapping

Struct Member Type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)
long, unsigned long, integer (FLD_LONG)

long long, unsigned

long long

float float (FLD_FLOAT)

double, long double double (FLD_DOUBLE)

struct

nestedstructname

(for more

information, see SCA

Structure Support) fml32 (FLD_FML32)

array type count=requiredcount=array specifier

Parameter and Return Types to Parameter-Level Keyword Restrictions

For parameter-level keywords, the Oracle Tuxedo buffer type/parameter type restrictions are
consistent with the contents expected by tmloadrepos. An error message is returned when an
attempt to match any combinations that are not listed in Table 1-9 and Table 1-10.

Table 1-9 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 1)

Parameter Type / byte(char) short integer float double String
Oracle Tuxedo Buffer

CARRAY

FML

FML32

VIEW

X | X | X | X
X | X | X | X
X | X | X | X

VIEW32

X_COMMON

X | X| X[X| X[X
X | X| X[X| X[X
X | X| X[X[X[X

X_C_TYPE X

X_OCTET

Service Component Architecture 2-61

../rfcm/index.html

<~runChNum>

Table 1-9 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 1)

Parameter Type / byte(char) short integer float double String
Oracle Tuxedo Buffer

STRING X
XML X
MBSTRING

Table 1-10 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 2)

Parameter Type / carray xml view32 fmi32 mbstring
Oracle Tuxedo Buffer

CARRAY

FML

FML32

VIEW

X | X[X| X[X
X
X
X
X

VIEW32

X_COMMON

X_C_TYPE

X_OCTET X

STRING

XML X

MBSTRING X X

Python, Ruby, and PHP Data Type Mapping

The following sections describe the supported data types in Python, Ruby, and PHP clients or
components with respect to the native, C/C++ based environment, and in order to give the
correspondence for writing the Oracle Tuxedo Service M etadata Repository interface required by

2-62 Service Component Architecture

SCA Data Type Mapping

the ATMI binding. Corresponding Oracle Tuxedo buffer and field type area so indicated for uses
with the ATMI or Web Services binding.

e Python Data Type Mapping
e Ruby Data Type Mapping
e PHP Data Type Mapping

Python Data Type Mapping

In Python, clients or components only use parameters and return values which types arelisted in
Table 1-11. Multiple parameters are supported (in the same way that multiple parameters are
supported in C++), using FML 32 Oracle Tuxedo buffers.

Note: Arrays are not supported as they are not supported by bindings or the C++ language

extension.

Table 1-11 Supported Python, C++ and Oracle Tuxedo Buffer Types

Python parameter(s) or Return Type

C/C++ Native Type

ATMI Binding Type
Buffer type/Field Type

Ptr

int short, unsigned short FML32/FLD_SHORT
long short, unsigned short FML32/FLD_SHORT

int long, unsigned long FML32/FLD_LONG
long long, unsigned long FML32/FLD_LONG
bool bool FML32/FLD_CHAR
float float FML32/FLD_FLOAT
float double, long double FML32/FLD_DOUBLE
string of length 1 char FML32/FLD_CHAR
string char *, std::string STRING

xml commonj: :sdo: :DataObject FML32, VIEW, VIEW32

Service Component Architecture

2-63

<~runChNum>

2-64

Notes. int (short), long, int (long), float (float) are allowed in the C++ to Python direction only.
The Python runtime catches any overflow situation (e.g.: when copying a C++ long into
a Python int).

In order to map a string of length 1 to achar*/std: : string/STRING, the originating
Python variable will have to have 2 ending zeroes (for example, 't = "a\x00").

Supported XML objectsin Python must be xm1 . etree.ElementTree objects, (thatis, the
language extension converts xml . etree . ElementTree Objectsinto

commonj : :sdo: : DataObjectPtr Objects, and commonj : : sdo: : DataObjectPtr Objectsinto
xml.etree.ElementTree ODjeCtS.

Using listsand dictionaries are also supported, asdetailed in Python Parameters and Dictionaries.

Note: Listsand dictionaries are allowed as parameters, but are not allowed to be returned.

Some limitations concerning multiple parameters and lists will stand with respect to using
bindings. For more information, see Python, Ruby, and PHP Binding.

Python Parameters

Y ou can use thelist notation (*) to pass an undetermined number of parametersto/from aPython
program. For example;

def test (*params)
for p in params:

print "parameter:", p
and an example of call: test (1, 2, 3, 4, 5)

This notation is equivalent to having an actual list of parameters, such as:

def test(parml, parm2, parm3, parmd, parmb)

Individual supported types are limited to the types listed in Table 1-11.

Exposing a Python function as an SCA service with ATMI or Web services binding requires an
interface. Thisinterfaceis stored in the Oracle Tuxedo Service Metadata Repository as outlined
in Python, Ruby, and PHP Component Programming.

When called, the Python function receives alist of parameters corresponding exactly to what the
interface specifies. Any extraparameters passed by the client areignored, and any type mismatch
resultsin a data mapping exception.

Service Component Architecture

SCA Data Type Mapping

Note: Usingthisnotationislimited tolocal calls (no binding), or using ATMI binding between
SCA components (that is, the <binding.atmi> element with N0 requires="1legacy"
attribute).

For local calls (no binding specified), or references, no interface is required.

Dictionaries

Y ou can use the named parameters notation (**) to pass name/value pairs, also known as
dictionaries, to/from Python programs. For example:

def test (**params) :
for p in params.keys():
print "key:", p, " parameter:", params|[p]
and an example of call: test (a=1, b=2)
Individual supported types are limited to the typeslisted in Table 1-11.

Exposing a Python function as an SCA service with the ATMI or Web Services binding requires
an interface. Thisinterfaceis stored in the Oracle Tuxedo Service Metadata Repository as
outlined in Python, Ruby, and PHP Component Programming.

For example, consider the Oracle Tuxedo Service Metadata Repository entry shown in
Listing 1-40

Listing 1-40 Oracle Tuxedo Service Metadata Repository Entry for Python

##
service=testPython2
tuxservice=TESTPT
inbuf=FML32
outbuf=FML32

param=NUMBER
type=1long

access=in
param=TEXT

type=string

access=in

Service Component Architecture 2-65

<~runChNum>

param=FNUMBER
type=double
access=in

##

When called, the Python function receives alist of parameters corresponding exactly to what the
interface specifies. Any extraparameters passed by the client areignored, and any type mismatch
resultsin a data mapping exception.

The names of the parameters match the key names passed to the Python function. The interface
is obtained by making an internal call to the mvETADATA Server. The TMMETADATA server must
be running in order to make calls to Python, Ruby or PHP functions.

A Python function called with the interface is equivalent to the following Python call:

test(a=1, b=2)

Ruby Data Type Mapping

Table 1-12 lists supported Ruby, C/C++ and Oracle Tuxedo buffer types. Multiple parametersare
supported (in the sameway that multiple parameters are supported in C++), using FML 32 Oracle
Tuxedo buffers.

Arrays are not supported as they are not supported by bindings or the C++ language extension.

Table 1-12 Supported Ruby, C++ and Oracle Tuxedo Buffer Types

ATMI binding type

Ruby parameter or return type C/C++ native type Buffer type/Field type
Fixnum short, unsigned short FML32/FLD_SHORT
Fixnum long, unsigned long FML32/FLD_LONG

Bignum double, long double FML32/FLD_DOUBLE
True/false bool FML32/FLD_CHAR

Float float FML32/FLD_FLOAT
Float double, long double FML32/FLD_DOUBLE

2-66 Service Component Architecture

SCA Data Type Mapping

Table 1-12 Supported Ruby, C++ and Oracle Tuxedo Buffer Types

ATMI binding type

Ruby parameter or return type C/C++ native type Buffer type/Field type

String char *, std::string STRING

REXML Object commonj: :sdo: :DataObject FML32, VIEW, VIEW32
Ptr

Notes: Ruby runtime may catch an overflow exception.
Possible loss of precision when the Ruby Bignum is bigger than a C++ double.
Float (float) is alowed in C++ to Ruby direction only.
There is no mapping to single character (char/FLD_CHAR) possible in Ruby.

Supported XML objectsin Ruby must be REXML (that is, the language extension converts
REXML : : Document Objectsinto commonj: : sdo: : DataoObect Objects, and
commonj : : sdo: : DataObjectPtr Objects int0 REXML : : Document Objects.

Using variable argument lists and hashes are also be supported, as detailed in the following

paragraphs.
Note: Variable argument lists and hashes are allowed as parameters, but are not allowed to be
returned.

Some limitations concerning multiple parameters and lists will stand with respect to using
bindings. For more information, see Python, Ruby, and PHP Binding.

Ruby Parameters
Y ou can use thelist notation (*) to pass an undetermined number of parameters to/from a Ruby
script. For example:
def func(a, b, *otherargs)
puts a
puts b
otherargs.each { |arg| puts arg }
end

which can be called like this: func(1, 2, 3, 4, 5)
Individual supported types are limited to the typeslisted in Table 1-12.

Service Component Architecture 2-67

<~runChNum>

2-68

Exposing a Ruby function as an SCA service with the ATMI or Web Services binding requires
an interface. Thisinterfaceis stored in the Oracle Tuxedo Service Metadata Repository as
outlined in Python, Ruby, and PHP Component Programming.

For example, consider the Oracle Tuxedo Service Metadata Repository entry shown in
Listing 1-41

Listing 1-41 Oracle Tuxedo Service Metadata Repository Entry for Ruby

#4#
service=testRuby
tuxservice=TESTRU
inbuf=FML32
outbuf=FML32

param=first
type=char

access=in

param=next
type=1long

access=in

param=last
type=string

access=in

##

When called, the Ruby function receives alist of parameters corresponding exactly to what the
interface specifies. Any extraparameters passed by the client areignored, and any type mismatch
results in a data mapping exception.

Notes: Using thisnotation islimited tolocal calls (no binding), or with using the ATMI binding
between SCA components (that is, the <binding.atmi> element with no
requires="legacy" atribute).

Local calls (no binding specified), or references, do not require an interface.

Service Component Architecture

SCA Data Type Mapping

Hash

Y ou can use named parameters in the form of hash type parameters to pass name/value pairs
to/from Ruby scripts. For example:

def func?2 (hash)
hash.each_pair do |key, vall|
puts "#{key} -> #{val}"
end

end

which can be called likethis: func2 ("first" => true, "next" => 5, "last" => "hi")
Individual supported types are limited to the types listed inTable 1-12.

When exposing a Ruby function as an SCA service with the ATMI or Web Services binding, an
interface is required. Thisinterfaceis stored in the Oracle Tuxedo Service Metadata Repository
as outlined in Python, Ruby, and PHP Component Programming.

When called, the Ruby function receives alist of parameters corresponding exactly to what the
interface specifies. Any extraparameters passed by the client areignored, and any type mismatch
results in a data mapping exception.

The names of the parameters match the key names passed to the Ruby function (that is, a Ruby
function called with the above interface is equivalent to the following Ruby client call:

func2 ("first" => true, "next" => 5, "last" => "hi")

where the values 'true, 5 and 'hi* are arbitrary, not the keys.

PHP Data Type Mapping

Table 1-13listssupported Ruby, C/C++ and Oracle Tuxedo buffer types. Multiple parametersare
supported (in the same way that multiple parameters are supported in C++), using FML 32 Oracle
Tuxedo buffers.

Arrays are not supported as they are not supported by bindings or the C++ language extension.

Table 1-13 Supported PHP, C++ and Oracle Tuxedo Buffer Types

ATMI binding type

PHP parameter(s) or return type C/C++ native type Buffer type/Field type
integer short, unsigned short FML32/FLD_SHORT
integer long, unsigned long FML32/FLD_LONG

Service Component Architecture 2-69

<~runChNum>

Table 1-13 Supported PHP, C++ and Oracle Tuxedo Buffer Types

ATMI binding type

PHP parameter(s) or return type C/C++ native type Buffer type/Field type
boolean bool FML32/FLD_CHAR
floatl

float FML32/FLD_FLOAT

float double, long double FML32/FLD_DOUBLE
string of length 1 char FML32/FLD_CHAR
string char *, std::string STRING

string (return type, see commonj: :sdo: :DataObject FML32, VIEW, VIEW32

below) Ptr
object of type commonj: :sdo: :DataObject FML32, VIEW, VIEW32
SimpleXMLElement Ptr

(parameter, see below)

2-70

Returning XML datain PHP is done by returning a STRING object which isthen converted into
asSimplexXMLElement asfollows:

Sret = S$svc->searchBike ('YELLOW') ;
Sxml = new SimpleXMLElement (Sret, LIBXML_NOWARNING) ;
Once the XML object constructed, it will be accessed as follows:

echo "First serialno:".$xml->BIKES[0]->SERIALNO."\n";

echo "Second serialno:".$xml->BIKES[1]->SERIALNO."\n";

List of Parameters

Y ou are permitted to pass an undetermined number of parameterswhen making an SCA reference
using the PHP extension. For example:

test(1l, 2, 3, 4, 5);

Individual supported types are limited to the types listed in Listing 1-13, with the exception of
types originating from or becoming common3j : : sdo: : DataObjectPtr objects.

Note: Using this notation is limited to:

Service Component Architecture

SCA Data Type Mapping

e local calls (no binding), or

e using the ATMI binding between SCA components (i.e., <binding.atmi> element
with no requires="legacy" attribute). For local calls (no binding specified), or

e references

No interfaceis required.

Named Parameters
Y ou can use named parameters to pass name/value pairs using the PHP SCA extension. For
example:

$svc->searchBike (array ('COLOR' => 'RED', 'TYPE' => 'MTB'));

Individual supported types are limited to the typeslisted in Table 1-13.

SCA Structure Data Type Mapping

In SCA-ATMI applications, an SCA structure parameter can be mapped to an ATMI FML32,
FML, VIEW32, VIEW, X_COMMON, or X_C_TYPE datatype, and thisisthe datatypethatis
specified in the SCA composite file.

If aviEw32, VIEW, X_COMMON, or X_C_TYPE datatypeis specified, then thisview must
exactly match the structure used as an SCA parameter or return type.

Note: Inorder for the view to exactly match the structure, the compilation of the view needsto
produce the same structure with the same fields and same offsets as the structure used in
the application.

SCA Structure and FML32 or FML Mapping

If the SCA structure parameter is mapped to FML.32 or FuL, then the field type of the associated
FML32 or FML field isatype that can be converted to and from the SCA structure data type For
more informations, see SCA Data Type Mapping.

FML Field Naming Requirements

In SCA-SCA applications, fields are identified by field number, and FML 32 field numbers are
automatically generated. In the case of nested structures, field numbers are assigned as if the
fieldsin theinner structure had occurred asflat fieldsin the outer structure in the place wherethe
inner structure is defined in the outer structure.

Service Component Architecture 2-1

<~runChNum>

2-12

In SCA-ATMI applications, the FML32 or FML field name associated with a structure element
shall be obtained from the structure description file. For more information, see Using SCA
Structure Description Files.

Long Element Truncation

When converting an FML32 or FML string, carray, or mbstring field to a structure element, any
data that does not fit in the structure element is truncated (without warning) to the provided
length.

For example, if astructure element is char company_nName[20]; and FML field coMpany NaME
with value "International Business Machines' is mapped to this structure element, then
"International Busine" is copied to the structure element with no trailing null character.

SCA Structure and VIEW32, VIEW, X_OCTET, or X_C_TYPE Mapping

If an SCA structureis mapped to avIEW32, VIEW, X_OCTET, or X_C_TYPE datatype, then
the structure used for the Oracle Tuxedo view-based type must exactly match the SCA structure,
and is copied byte-by-byte. In other words, no marshalling of datais done when converting
between an SCA structure, and aview. FML32 or FML should be used if data marshalling is
required.

When an SCA structure is mapped to aview-based Oracle Tuxedo type, you cannot specify boo1,
wchar_t, long long, unsigned long long, long double, O nested structure data types
within the SCA structure since corresponding data types do not exist within Oracle Tuxedo
views. Elements corresponding to any Oracle Tuxedo Associated Count Member or Associated
Length Member fields must be provided. Appropriate values for any such elements must also be
provided by the application if converting an SCA structure to an Oracle Tuxedo view.

SCA Structure and Mbstring Mapping

An mbstring field type currently existsin VIEW32 (for more information, see tpconvvmb32).
SCA structures treat the mbstring field type in the same way asin VIEW32. The encoding
information is part of an mbstring structure element, and Fmbunpack32 () and Fmbpack32 ()
must be used in application programs using mbstring datain structures.

TPFAIL Return Data

Y ou can specify a structure pointer as data returned on TPFAIL if the same structure pointer is
also returned on successful output. Since SCA must store internal information describing the

Service Component Architecture

../rf3fml/index.html
../rf3fml/index.html
../rf3fml/index.html

SCA and Oracle Tuxedo Interoperability

returned structure along with the application data, <tuxsca . h> isused to definethe structure and
typedef asshownin Listing 1-42.

Listing 1-42 <tuxsca.h> SCA Structure and Typedef Definition

struct scastruct_t {
void *data;
void *internalinfo;
Y
typedef struct scastruct_t *SCASTRUCT_ PTR;

If an application normally returns"struct mystruct *" data, it accesses TPFAIL dataasshown
in Listing 1-42.

Listing 1-43 TPFAIL Example

. catch (Tuscany::sca::atmi::ATMIBindingException& abe) {
SCASTRUCT_PTR *scap = (SCASTRUCT_PTR *)abe.getDataf():;

struct mystruct *result = (struct mystruct *)scap->data;

SCA and Oracle Tuxedo Interoperability

Existing Oracle Tuxedo service interoperability is performed by using the
/binding.atmi/@requires attribute with the legacy value. When alegacy value is specified,
invocations are performed using the following behavior:

o |f a<map> element ispresent in either a <reference> Or a<service>, that valueis used
to determine which Oracle Tuxedo service is associated with the specified method name to
call or advertise.

Otherwise:

e Ina<reference> element: the value specified in the /reference/@name element is used
to perform the Oracle Tuxedo call, with semantics according to the interface method used.

Service Component Architecture 2-13

<~runChNum>

e Ina<service> element: the Oracle Tuxedo service specified inthe /binding.atmi/map
element is advertised, and mapped to the method specified in the
/binding.atmi/map/@target attribute.

Additionally, the /binding.atmi/@requires atributeisused to internaly control data
mapping, such that FML 32 or FML field tables are not required.

Note: When not specified, communications are assumed to have SCA -> SCA semanticswhere
the actual Oracle Tuxedo service name is constructed from /service/@name Of
/reference/@name and actual method name (see the pseudo schema shown
Listing 1-27).

SCA Transactions

2-14

The ATMI binding schema supports SCA transaction policies by using the
/binding.atmi/@requires attribute and three transaction values. These transaction values
specify thetransactional behavior that the binding extension followswhen ATMI binding isused
(see the pseudo schema shown Listing 1-27).

The transaction values are as follows:

e Not specified (no value)

All transactional behavior isleft up to the Oracle Tuxedo configuration. If the Oracle
Tuxedo configuration supports transactions, then a transaction can be propagated if it
exists.

If the Oracle Tuxedo configuration does not support transactions and a transaction exists,
then an error occurs.

Note: A transaction isnot started if atransaction does not already exist.
® suspendsTransaction

When specified, the transaction context is not propagated to the service called. For a
<service>, the transaction (if present), is automatically suspended before invoking the
application code, and resumed afterwards, regardless of the outcome of the invocation. For
a<reference>, equivaent to making atpcall () with the TenoTRAN flag.

® propagatesTransaction

Only applicableto <reference> elements, ignored for <service> elements. Starts a new
transaction if one does not already exist, otherwise participate in existing transaction. Such
abehavior can be obtained in a component or composite <service> by configuring it

AUTOTRAN in the UBBCONFIG. An error is generated if an Oracle Tuxedo server hosts the

Service Component Architecture

SCA Security

SCA component implementation and is not configured in atransactional group in the
UBBCONFIG

SCA Security

SCA references pass credentials using the <authentication> element of thebinding.atmi
SCDL element.

SCA services can be ACL protected by referencing their internal name:
/binding.atmi/service/@name atributefollowed by a'/' and method namein SCA -> SCA
mode, /binding.atmi/service/@name @tributein 1egacy mode (SCA -> Tux interop mode).

For more information, see SCA and Oracle Tuxedo Interoperability.

Service Component Architecture 2-715

<~runChNum>

2-76 Service Component Architecture

CHAPTERa

Web Application Server Programming

This section contains the following topics:

o Overview

Developing Native Oracle Tuxedo Web Applications

Developing Python Web Applications

Developing Ruby Web Applications

Developing PHP Web Applications

Overview

Oracle SALT adds features that enable Web Applications to run in Oracle Tuxedo and be
accessed easily through HTTP server plug-ins. Using HT TP servers such as Apache 2, Oracle
HTTP Server and iPlanet, you can directly expose applicationsto the World Wide Web. HTTP
servers must use Oracle Tuxedo-specific plug-ins (referred to asmod_tuxedo) that trandates
HTTP requestsinto Oracle Tuxedo requests, and transl ates Oracle Tuxedo responsesinto HTTP
responses.

Note: On HP platforms, plug-in libraries must be built with multi-threading enabled viathe
compiler -mt flag because the GWWS system server is a multi-threaded program.

Applications can bewritten in C or C++ using a Gateway Interface similar to CGI but specific to
Oracle Tuxedo servers and their mode of communication, or in dynamic languages such as PHP,
Python and Ruby. Using dynamic languages, programs are not aware that they are running in

Oracle SALT Programming Guide 3-1

Oracle Tuxedo, which allows re-using application frameworks such as Symfony (PHP), Django
(Python) or Rails (Ruby) directly into an Oracle Tuxedo-based environment.

Developing Native Oracle Tuxedo Weh Applications

3-2

While mod_tuxedo provides the Oracle Tuxedo client part of Web requests serving, on the
Oracle Tuxedo side one of the methods of processing the requestsisto accessthem directly. This
ispermitted by documenting the format of the received buffer, whichisan Oracle Tuxedo FML32
typed buffer.

This method allows you to generate dynamic HT TP content by developing Oracle Tuxedo
services and leverage Oracle Tuxedo RA SP and integration capabilities in doing so.

The relevant elements of an HTTP request are exposed (Method name, Query string URL, File
name, POST data, etc.). Aswell asthe return datato mod_tuxedo (HTTP Response Headers (if
necessary), HTML document).

For more information, see Oracle SALT reference Guide.

The development processis similar to developing aregular Oracle Tuxedo service that generates
HTML code, the difference being that devel oping RESTful services adheres to a set of
conventions or rules governing the behavior of the service (a service processing GET should
behave differently than when processing PUT). RESTful services are generally not designed to
be accessed using an HTML browser (that is, similar to SOAP services).

The data flow is as follows:

e An Apache2 or OHS process is configured to handle certain URL s using the mod_tuxedo
module.

e mod_tuxedo intercepts the request.

e mod_tuxedo formats the request and sends it to an Oracle Tuxedo service, which nameis
derived from the scrzpT_NamE value. In the examples that follow, the servicein question
is named Tuxsvc.

e The Oracle Tuxedo service receives the data and processes it accordingly:
— REQUEST_METHOD contains the REST operation: GET, PUT, POST Of DELETE.

— PATH_INFO May contain the resource accessed. In this example, it contains "/1234".
The program can parse this value according to a documented convention between client
and server to obtain the account number.

Oracle SALT Programming Guide

../../../salt/docs1222/ref/index.html

Developing Native Oracle Tuxedo Web Applications

— QUERY_STRING Or POST_DATA (for GET or posT) may contain additional parameters.
Pre-determined conventions govern what the parameters ook like and what they
contain. Thisis determined by service developers and published as application
documentation so client programs can be devel oped to communicate with these
services.

e The Oracle Tuxedo service composes a response which isimplicitly sent back to
mod_ tuxedo.

— Theformat of the responseis up to you:
* "XML
» "CSV (comma-separated values)
* JSON
e mod_tuxedo sends the response back to the client program.
The different components are shown in Listing 2-1 through Listing 2-4

Listing 2-1 Configure OHS or Apache2 (httpd.conf excerpt)

<Location "/ACCOUNT">

<IfModule mod_tuxedo.c>
SetHandler tuxedo-script
Tuxconfig "/home/maurice/src/tests/secsapp/work/tuxconfig"

</IfModule>

</Location>

Write the Oracle Tuxedo service as shown in Listing 2-2

Oracle SALT Programming Guide 3-3

Listing 2-2 Oracle Tuxedo Service

void

ACCOUNT (TPSVCINFO *rgst)

{

char val[1024]; /* TODO: query size first */
long len;

int rc;

/* Fetch PATH_INFO value, which contains the resource */

len = sizeof(val);

rc = Fget32((FBFR32 *)inbuf, PATH_INFO, 0, (char *)val, &len);
if (rc < 0) {

/* Handle error */

/* Variable 'val' contains resource name, process it */

/* Fetch QUERY_STRING, which optionally contains
additional parameters */
len = sizeof (val);
rc = Fget32((FBFR32 *)inbuf, QUERY_STRING, 0, (char *)val, &len);
if (rc < 0) {

/* Handle error */

/* Depending on method, do processing */

Oracle SALT Programming Guide

Developing Native Oracle Tuxedo Web Applications

len = sizeof (val);
rc = Fget32((FBFR32 *)inbuf, REQUEST_METHOD, 0, (char *)val, &len);
if (rc < 0) {

/* Handle error */

if (strcmp(val, "GET") == 0) {
} else if (strcmp(val, "PUT") == 0) {
} else if (strcmp(val, "POST") == 0) {

/* Get POST_DATA, parse it */

} else if (strcmp(val, "DELETE") == 0) {

/* Compose return document, using xml or JSON */

/* Return result document */

tpreturn (TPSUCCESS, 0, result, OL, 0);

Example URL/response:
Method: GET

Request URL: http: //myhost/ACCOUNT/1234

Oracle SALT Programming Guide 3-5

3-6

Response (XML) as shown in Listing 2-3.

Note: XML generation can be done using existing 1ibtxml.

Listing 2-3 XML Response

<account id="1234">
<balance value="10000"/>
<customer name="John Smith"/>

</account>

Response (JSON) as shown in Listing 2-4.

Note: JSON generation can be done using JSSON-C, a free and redistributable JSON
implementation in C (MIT license), provided as source code. Many librariesexist in
anumber of languages including PHP, Perl, Python, Ruby, Java, etc.

Listing 2-4 JSON Response

"account": {
Ilid": l|1234l|’
"balance": {

"value": "10000"
.
"customer": {

"name": "John Smith"

Oracle SALT Programming Guide

Developing Python Web Applications

Developing Python Weh Applications

Similar to how PHP applications can run inside the weBaNDLR Oracle Tuxedo System Server,
Oracle SALT allows writing applications for the Web in Python.Unlike PHP (where all scripts
are designed to run in a CGl-like model), Python require running using a specific Web layer.

Thislayer isdesignated as WSGI (Web Server Gateway Interface) and isbuilt into the language.
It actually is a Python specification (PEP 333). In Python, although applications may be written
for WSGI, complete application frameworks are available (conforming to WSGI. Django seems
to be the most popular).

The following sections describe how to configure weBHNDLR to run Python WSGI applications
(including using the Django framework).

e Prerequisites
e Usage
e Example(s)

Prerequisites
e A Python 2.5.5 or higher installation.

e Python must be built with shared-libraries enabled. Thisis usually the case for
out-of-the-box installations. If you are building from source, the --enable-shared
options must be used in the configure step.

e There are no known database or third-party library support restrictions.

Usage

A simple WSGI application exampleis shown in Listing 2-5

Listing 2-5 WSGI Application Example

import cgi

def application(environ, start_response):

form = cgi.FieldStorage (fp=environ['wsgi.input'],

Oracle SALT Programming Guide 3-7

3-8

environ=environ,
keep_blank_values=1)
write = start_response('200 OK', [('Content-type', 'text/html')])
if form.getvalue('name'):
write('<html><head><title>Hello!</title></head>\n")
write('<body>\n"')
write('<hl>Hello %s!</hl>\n' % form['name'].value)
else:
write('<html><head><title>Who is there?</title></head>\n")
write('<body>\n"')
write('<hl>Who is there?</hl>\n')
write('<form action="%s" method="POST">\n' % environ['SCRIPT NAME'])
write('What is your name?
\n')
write('<input type="text" name="name" value="%s">
\n'
% cgi.escape(form.getvalue('name', ''), 1))
write('<input type="submit" value="That is my name"></form>\n')
write('</body></html>\n")

return None

With frameworks such as Django, thisis performed in a handler script that is not seen by the
application developer.

Any Python WSGI application may run inside the weBHNDLR System Server by performing the
following steps:

1

Configure Apache (or OHS) to forward reguests to weBHNDLR. This may require additional
configuration to indicate the path to necessary static files (for example, images, CSS
stylesheets or javascript files).

Add the application path to the pyTHONPATH environment variable.

Oracle SALT Programming Guide

Developing Python Web Applications

3. set app_conrIc for wEBHNDLR to |oad the application or middleware handler (for
frameworks like Django).

For more information, see Oracle SALT Reference Guide.

Example(s)
Stand-Alone Script/Application

Listing 2-6 shows an Apache configuration for a WSGI application example.

Listing 2-6 Stand-Alone Script/Application Example

<VirtualHost 10.143.7.223:2280>

DocumentRoot "/media/src/tests"

<Directory "/media/src/tests">

<IfModule mod_tuxedo.c>
SetHandler tuxedo-script
Tuxconfig "/media/src/TUXllg/web/tests/tuxconfig"
TuxService PYWEB

</IfModule>

</Directory>

</VirtualHost>

The ubbconfig file and setting for a standalone WSGI application are located in a script named
test_app.py (==module),inthe /media/src/tests directory (PYTHONPATH Must contain

/media/src/tests):

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8
CLOPT="-A -- -1 Python -S PYWEB "

Before booting wEBHNDLR, you must either

e Set APP_CONFIG tO test_app (' export APP_CONFIG=test_app' 0N Unix), or

Oracle SALT Programming Guide 3-9

../../../salt/docs1222/ref/index.html

e USe an ENVFILE Withthevalue APpP_CONFIG=test_app.

Django-Based Application

For an A pache Django-based application you must note the RewriteEngine rulesand Alias. These
arethereto indicate thelocation of static files (for example, CSS, images or javascript), and also
map the root URL to the application (see last RewriteRule) as shown in Listing 2-7.

Listing 2-7 Django-Based Application

<VirtualHost 10.143.7.223:2280>
DocumentRoot "/media/src/test_django/mysite"
Alias /media /usr/lib/python2.5/site-packages/django/contrib/admin/media
<Directory "/media/src/test_django/mysite">
<IfModule mod_tuxedo.c>
SetHandler tuxedo-script
Tuxconfig "/media/src/TUX1lg/web/tests/tuxconfig"
TuxService PYWEB
</IfModule>

</Directory>

RewriteEngine On

RewriteRule "/ (media.*)$ /$1 [QSA,L,PT]
RewriteCond ${REQUEST_ FILENAME} !-f
RewriteRule "/ (.*)$ /mysite/$1l [QSA,L]

</VirtualHost>

The environment variable pJanGo_sETTINGS_MODULE must be set before booting weEBHNDLR.
For example, for an application named mysite:

DJANGO_SETTINGS_MODULE=mysite.settings

3-10 Oracle SALT Programming Guide

Developing Ruby Web Applications

The pyTHONPATH Setting for a Django example, called mysite and located in the
/media/src/test_django directory:

PYTHONPATH=/media/src/test_django
The ubbconfig setting for the Django example mentioned here:

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8
CLOPT="-A -- -1 Python -S PYWEB"

Before booting weBHNDLR, you must either:

e Set APP_CONFIGtO django.core.handlers.wsgi (WSGIHandler) (' export
APP_CONFIG="django.core.handlers.wsgi (WSGIHandler)"' on Unix), or

e Use an ENVFILE With the value APP_CONFIG=" django.core.handlers.wsgi
(wsGIHandler)".

Developing Ruby Web Applications

Similar to how PHP applications can run inside the wesunDLR Oracle Tuxedo System Server,
Oracle SALT allowswriting applications for the Web in Ruby.Unlike PHP (where all scriptsare
designed to run in a CGl-like model), Ruby requires running using a specific Web layer.

Thereisan equivalent to WSGI (called Rack), which is donein the form of alibrary that installs
separately. In Ruby, although applications may be written on top of Rack directly, complete
application frameworks are available such as Rails. A rack application is an interface between
application and servers for Ruby (similar to WSGI). It is usually installed as an add-on to the
language, and is a pre-requisite to application server environments such as Rails. The sections
below describe how to configure weBHNDLR to run Ruby Rack-conformant applications,
including using the Rails framework.

e Prerequisites
e Usage
e Example(s)

Prerequisites
e A Ruby 1.9.x installation.

Oracle SALT Programming Guide 3-11

e Ruby must be built with shared-libraries enabled. Thisis usualy the case for
out-of-the-box installations. If building from source the '~ -enable-shared' options must
be used in the configuration.

e Rails2.x or 3.0.x libraries.

e There are no known database or third-party library support restrictions.

Usage

Listing 2-8 shows a simple Rack application example.

Listing 2-8 Simple Rack Application Example

class HelloWorld
def call(env)
[200, {"Content-Type" => "text/plain"}, ["Hello world!"]]
end

end

With frameworks like Ruby, thisis performed in a handler script that is not seen by the
application devel oper.

The script in Listing 2-8 is passed to the handler using a RackUp script that allows adding more
functionality (such as pretty exceptions, LINT wrappers, etc.) to the application.

A RackUp script example loading the application is shown in Listing 2-9.

Listing 2-9 RackUp Script Example

require 'hello’

use Rack::ShowExceptions

run HelloWorld.new

3-12 Oracle SALT Programming Guide

Developing Ruby Web Applications

Any Ruby Rack-compliant application may run inside the wEBHNDLR System server by

performing the following steps:

1. Configure Apache (or OHS) to forward requests to weBaNDLR. This may require additional
configuration to indicate the path to necessary static files (for example, CSS stylesheets or

javascript files).

2. Configure weBHNDLR to |oad the application or middleware handler (for frameworks like

Rails).

Example(s)

Ruby Rack Lobster
Listing 2-10 shows an Apache (or OHS) configuration example.

Listing 2-10 Apache (or OHS) Configuration Example

<VirtualHost 10.143.7.223:2380>
DocumentRoot "/media/src/tests"
<Directory "/media/src/tests">
<IfModule mod_tuxedo.c>
SetHandler tuxedo-script
Tuxconfig "/media/src/TUX1lg/web/tests/tuxconfig"
TuxService RBWEB
</IfModule>
</Directory>

</VirtualHost>

The ubbconfig file weBHNDLR Setting is as follows:
WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8
CLOPT="-A -- -1 Ruby -S RBWEB"

Set APP_CONFIG.

Oracle SALT Programming Guide

3-13

3-14

Ruby Rails Application

For an Apache (or OHS) configuration, you must note e the RewriteEngine rulesand
AddHandler directive (asopposed to setHandler). Thesearethereto re-direct the HTTP server
to static files (CSS, images, javascript, etc.) as shown in Listing 2-11.

Listing 2-11 Ruby Rails Application

<VirtualHost 10.143.7.223:2380>
SetEnv RAILS_RELATIVE_URL_ROOT /media/src/rails_test

DocumentRoot "/media/src/rails_test/public"

RewriteEngine On

RewriteRule ~(/stylesheets/.*)$ - [L]
RewriteRule ~(/javascripts/.*)$ - [L]
RewriteRule ~(/images/.*)$ - [L]

RewriteRule "$ index.html [QSA]
RewriteRule ~([".]+)$ $1.html [QSA]

RewriteCond ${REQUEST FILENAME} !-f

RewriteRule "/ (.*)$ /rails3.tuxrb [QSA,L]

<Directory "/media/src/rails_test/public">
Allow from All
<IfModule mod_tuxedo.c>
AddHandler tuxedo-script .tuxrb
Tuxconfig "/media/src/TUXllg/web/tests/tuxconfig"

TuxService RBWEB

Oracle SALT Programming Guide

Developing PHP Web Applications

</IfModule>

</Directory>

</VirtualHost>

The ubbconfig file weBHNDLR Setting (assuming the Rails application has been set up in the
/media/src/rails_test directory and isnamed railsTest) isasfollows:

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8
CLOPT="-A -- -1 Ruby -S RBWEB'. That is, remove the "-a /media..."
portion

Before booting weBHNDLR, you must either:

e set APP_CONFIG to path to rack up script (‘export APP_CONFIG="
/media/src/rails_test/config.ru"' on Unix), or use an ENVFILE with the value
APP_CONFIG=" /media/src/rails_test/config.ru".

Developing PHP Web Applications

PHP scripts are directly supported by wesaNDLR and no specific changes are required for
applicationsto run in an Oracle Tuxedo environment. Configuring the location of PHP scriptsin
the HTTP server issufficient. Once the framework is configured to run PHP scriptsin WEBHNDLR,
PHP applications are automatically supported.

For more information, see Oracle SALT Command Reference Guide.
e Prerequisites
e Usage
o Example(s)

Prerequisites
e PHP 5.3.2 or higher installation.
e PHP must be built using the --enable-embed configure option.

e There are no known database or third-party library support restrictions.

Oracle SALT Programming Guide 3-15

../../../salt/docs1222/ref/index.html

Usage

PHP scripts are directly supported by weBHNDLR; no specific changes are required for
applicationsto run in an Oracle Tuxedo environment. Configuring the location of PHP scriptsin
the HTTP server issufficient. Once the framework is configured to run PHP scriptsin WwEBHNDLR,
PHP applications are automatically supported.

Example(s)

Place a script named "test . php" (as shown in Listing 2-12) in the document root folder of the
HTTP server:

Listing 2-12 test. php Script

-- listing x-x test.php script
<?php

phpinfo () ;

?>

Point your browser to: http: //<your_host>:<port>/test.php.

See Also

3-16

e Oracle SALT Administration Guide

e Oracle SALT Reference Guide

Oracle SALT Programming Guide

../../../salt/docs1222/admin/index.html
../../../salt/docs1222/ref/index.html

SCA Command Reference

Table 4-1 lists SCA commands and functions.

Table 4-1 Oracle Tuxedo Commands and Functions

Name

Description

buildscaclient

Builds processes that call SCA components.

buildscacomponent

Builds SCA components.

buildscaserver Parses SCDL definitions and interfaces and produces a

Tuxedo-deployable server and elements.
mkfldfromschema, Themkfldfromschema and mkf1d32fromschema
mkfld32fromschema

commands take an XML schemaas input and produce
afield table.

mkviewfromschema,
mkview32fromschema

The mkviewfromschema and mkview32fromschema
commands take an XML schemaasinput and produce
aview file.

scaadmin SCA server management command interpreter.
SCAHOST (5) Generic server for Python, Ruby, or PHP components.
scapasswordtool Manages passwords for Oracle Tuxedo authentication in

SCA clients.

Service Component Architecture 4-1

Table 4-1 Oracle Tuxedo Commands and Functions

Name Description

scastructc32, scastructc(l) Oracle Tuxedo structure description file compiler
scastructdis32, scastructdis Binary structure and view files disassembler.
scatuxgen (1) Generates Oracle Tuxedo Service Metadata Repository

interface information from an SCA interface.

setSCAPasswordCallback (3c) Sets the callback for retrieving a password associated
with an identifier in a<binding.atmi> element.

tuxscagen (1) Generates SCA, SCDL, and server-side interface files for
Tuxedo services.

huildscaclient

Name
buildscaclient — Builds processesthat call SCA components.

Synopsis
buildscaclient -c¢ default_component [-v] [-h] [-k] [-o name] [-s SCAroot]
[-f firstfiles] [-1 lastfiles] [-S structurefiles]

Description

Thiscommand is used to build client processes that can call SCA components hosted in Tuxedo
environments. The command combines files, specified using the -f and -1 options, with the SCA
and standard Tuxedo ATMI librariesto form aclient application. The client application is built
using the default C++ language compile command defined for the operating systemin use, unless
overridden using the cc environment variable.

All specified .c and . cpp files are compiled in one invocation of the compilation system based
on the operating system. Users may specify the compiler to invoke by setting the CC environment
variable to the name of the compiler. If the cc environment variable is not defined when
buildscaclient isinvoked, the default C++ language compile command for the operating
system isinvoked to compileall .c and . cpp files.

4-2 Service Component Architecture

buildscaclient

Y ou may specify additional options to be passed to the compiler by setting the crr.aGs or the
CPPFLAGS environment variables. If crLacs is not defined when buildobjclient isinvoked,
then buildscaclient usesthevaue of cprrLAGs, if that variable is defined.

Parameters and Options
buildscaclient supports the following parameters and options:

-c¢ defaultcomponent

Required parameter. | ndicates which component should be used for this application.

[-v]
Specifiesthat the buildscaclient command should work in verbose mode. In
particular, it writes the compile command to its standard output.

[-k]
Maintains the generated stubs. buildscaclient generates proxy filesthat allow
dynamic interfacing of clients and references. Thisis normally compiled and then
removed when the proxy is built. This option indicates that the source file should be
retained.

Caution: The generated contents of this file may change from releaseto release. It is advised
that you do not depend on the data structures and interfaces exposed in thisfile. This
option is provided to aid in debugging of build problems.

[-o name]
Specifiesthe name of the client application generated by this command. If the nameisnot
supplied, the application fileisnamed client<. type>, Wheretypeis an extension that
is dependent on the operating system. For example, on a UNIX system, there would not
be atype, but on a Windows system, the type would be . ExE.

[-s scaroot]
Specifiesthelocation of SCA root, wherethe SCDL filesfor the required componentsare
located. If not set, the appDIR environment value is used.

[-f firstfiles]
Specifiesthe file to be included first in the compile and link phases of the
buildscaclient command. The specified fileisincluded before the SCA libraries are
included. There are two ways of specifying afile or files:

Service Component Architecture 4-3

Filename Specification Description

-f firstfile Onefileis specified

-f "filel.cpp file2.cpp Multiple files may be specified if their names are

file3.cpp .." enclosed in quotation marks and are separated using
white spaces.

Note: Filenames that include spaces are not supported.
The -£ option may be specified multiple times.

[-1 lastfiles]
Specifiesafileto beincluded last in the compile and link phases of thebuildscaclient
command. The specified fileisincluded after the SCA libraries are included. There are
two ways of specifying the file, as shown in the following table.

Filename Specification Description

-1 lastfile Onefileis specified

-1 "filel.cpp file2.cpp Multiple files may be specified if their names are

file3.cpp .." enclosed in quotation marks and are separated using
white spaces.

Note: Filenames that include spaces are not supported.
The -1 option may be specified multiple times.

[-S structurefiles]
Specifiesan SCA structure description file. The structure description file may be either a
source file or abinary structure description file. If more than one file is specified, file
names must be separated by white space and the entire list must be enclosed in quotation
marks. The -s option may be specified multiple times on the same command line.

The use of structure description filesis optional. If astructure description is not provided
for aparticular structure then the source code where the structure is defined is used
describethe structure; in SCA-ATMI mode, the FM L 32 field name corresponding to each
structure element is the same as the name of the structure element.

Note: Filenames that include spaces are not supported.
The -s option may be specified multiple times.

4-4 Service Component Architecture

buildscaclient

Environment Variables
Following isalist of environment variables for buildscaclient:

TUXDIR
Finds the SCA libraries and includes files to use when compiling the client applications.

CC
Indicates the compiler for al fileswith .c or . cpp file extensions. If not defined, the
default C++ language compile command isinvoked to compileall .c and . cpp files,
based on the operating system.

CFLAGS
Indicates any argumentsthat are passed as part of the compiler command linefor any files
with .c or . cpp fileextensions. If cFLacs doesnot exist inthebuildscaclient
command environment, the command checks for the cpprLAGS environment variable.

Note: Arguments passed by the crracs environment variable take priority over the
CPPFLAGS Variable.

CPPFLAGS
Contains a set of arguments that are passed as part of the compiler command line for any
fileswith .c or . cpp file extensions.

Thisisin addition to the command line option "-1$ (TUXDIR) /include" for UNIX
systemsor the command line option / 1$TUXDIR%\ include for Windows systems, which
is passed automatically by thebuildscaclient command. If cPprLAGS does not exist
inthebuildscaclient command environment, no compiler commands are added.

LD_LIBRARY PATH (UNIX systems)
Indicatesthe directoriesthat contain shared objectsto be used by the compiler, in addition
to the objects shared by the CORBA software. A colon (:) is used to separate the list of
directories. Some UNIX systems require different environment variables:

e HP-UX systemsusethe SHLIB_PATH environment variable
e AlX systemsuse LIBPATH

LIB (Windows systems)
Indicates alist of directoriesthat contain the library files. A semicolon (;) is used to
separate the list of directories.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.

Service Component Architecture 4-5

Example(s)

buildscaclient -s /myApplication/scaSrc/uBike -c uBike.client -f
uBikeClient.cpp -o uBikeClient

See Also
[-s1,

buildscacomponent

Name
buildscacomponent - builds SCA components

Synopsis
buildscacomponent [-v] [-s scaroot] [-f firstfiles] [-1 lastfiles] [-S
structurefiles] -c compositename[/componentname] [, compositename,..]] [-Yy]
[-k] [-h]

Description

buildscacomponent iSsused to build individual SCA components from source code. The
command reads SCDL source, findsthe component(s) inthe composite(s) file(s) specified, parses
the corresponding .componentType file(s) and produces corresponding executable libraries, in
the same location as the .componentType files.

The command automatically builds component implementations based on the contents of
<implementation.cpp> elements asfollows:
e Thevalueof /implementation.cpp/@header iSused to determine the name of the
source and component Type files containing the implementation.
For example, an element such as
<implementation.cpp library="myLib" header="myComponentImpl.h"/>

causes buildscacomponent to look for amyComponentlmpl.cpp file and compileit,
along with stubs generated from its interface located in a corresponding
myComponentl mpl.componentType file.

Composites may contain one or more components, and the bui 1dscacomponent command may
build one or more compositesin one pass. If more than one component is built, the files specified
using the - £ and -1 switches are included in each component. To build a single component, the

4-6 Service Component Architecture

buildscacomponent

-c composite/component Syntax should be used. This addresses the cases where individual
components are made up of specific sets of source code or libraries.

All specified . c and . cpp files are compiled in one invocation of the compilation system for the
operating system in use. Users may specify the compiler to be invoked by setting the cc
environment variable to the name of the compiler. If the cc environment variable is not defined
when buildscacomponent isinvoked, the default C++ language compile command for the
operating system in use isinvoked to compileal .c and . cpp files.

Users may specify options to be passed to the compiler by setting the crracs or the cpprraGS
environment variable. 1f crracs isnot defined but crerraGs is defined when
buildscacomponent iSinvoked, the cpprLaGs valueis used.

Parameters and Options
buildscacomponentsupports the following parameters and options:

[-v]
Specifiesthat buildscacomponent should work in verbose mode.

[-s scaroot]

Specifies the location of the SCA root, where the SCDL file(s) for the component(s) is
(are) located, and where the source code of components is processed.

If not specified, the value of APPDIR is used.

[-f firstfiles]
Specifies afileto beincluded first in the compile and link phases of the
buildscacomponent command. The specified fileisincluded before the SCA libraries
are included. There are two ways of specifying afile or files, as shown in the following
table.

Table 4-2 File Specification Using [-f firstfiles]

Filename Specification Definition

-f firstfile Onefileis specified

-f "filel.cpp file2.cpp file3.cpp .." Multiplefiles may be specified if their names are
enclosed in quotation marks and are separated by
white space.

Note: Filenames that include spaces are not supported.
The - £ option may be specified multiple times.

Service Component Architecture 4-7

4-8

[-1 lastfiles]

Specifies afile to beincluded last in the compile and link phases of the
buildscacomponent command. The specified fileisincluded after the SCA librariesare
included. There are two ways of specifying afile, as shown in the following table.

Table 4-3 File Specification Using [- lastfiles]

Filename Specification Definition
-1 lastfile Onefileis specified
-1 "filel.cpp file2.cpp file3.cpp .." Multiplefiles may be specified if their namesare

enclosed in quotation marks and are separated by
white space.

Note: Filenames that include spaces are not supported.
The -1 option may be specified multiple times.

-c {compositel, composite] |composite/component}

Specifies the name(s) of the composite(s) processed. The composite(s) is (are) searched
in appDIR Or inthe SCDL directory specified above with the -s switch. If it cannot be
found, the component libraries are not built.

A list of composites may be specified, in which case all the components listed in the
composites will be built. If any of the composites cannot be found or an error is detected
(incorrect name, composite does not have any ATMI service binding), awarning message
is displayed and the user is prompted to confirm whether the command should continue
processing or abort.

If the composite/component notation is used, a single component contained in the
specified composite is alowed. This notation covers the situation where specific source
files specified with - £ and -1 need to be included in the build process of a component.

Optionally forces processing of input files, automatically ignoring warnings, such as
composites specified using the -c switch but not physically present from the root
directory.

K eeps the generated proxy and wrapper source. buildscacomponent generates proxy
and wrapper code with data structures such as the method operation and parameter
handling. Thisisnormally compiled and then removed when the component is built. This
option indicatesthat the source file should be kept (to see what the sourcefilenameis, use
the -v option).

Service Component Architecture

buildscacomponent

Note: The generated contents of this file may change from release to release. Do Not
count on the data structures and interfaces exposed in thisfile. This optionis
provided to aid in debugging of build problems.

[-S structurefiles]
Specifiesan SCA structure description file. The structure description file may be either a
source file or abinary structure description file. If more than one file is specified, file
names must be separated by white space and the entire list must be enclosed in quotation
marks. The -s option may be specified multiple times on the same command line.

The use of structure description filesis optional. If astructure description is not provided
for aparticular structure then the source code where the structure is defined is used
describethe structure; in SCA-ATMI mode, the FM L 32 field name corresponding to each
structure element is the same as the name of the structure element.

Note: Filenames that include spaces are not supported.
The -s option may be specified multiple times.

Environment Variables

TUXDIR
Finds the SCA libraries and include files to use when compiling the client applications.

APPDIR
Indicatesthe SCA application root location, where the top-level composite should reside.

cc
Indicates the compiler to use to compile al fileswith . c or . cpp file extensions. If not
defined, the default C++ language compile command for the operating system in use will
be invoked to compiledl .c and . cpp files.

CFLAGS
Indicates any argumentsthat are passed as part of the compiler command linefor any files
witha.c or .cpp file extensions. If crr.aGs does not exist in the buildscacomponent
command environment, the buildscacomponent command checks for the cpprLAGS
environment variable.

CPPFLAGS

Note: Arguments passed by the crracs environment variable take priority over the
CPPFLAGS variable.

Contains a set of arguments that are passed as part of the compiler command line for any
fileswitha .c or . cpp file extensions.

Thisisin additionto thecommandlineoption -1¢$ (TUXDIR) /include for UNIX systems
or the command line option /1$TUXDIR%\include for Windows systems, which is

Service Component Architecture 4-9

passed automatically by the buildscacomponent command. If cPprLAGS does hot exist
inthe buildscacomponent command environment, no compiler commands are added.

LD_LIBRARY_ PATH (UNIX systems)
Indicates which directories contain shared objectsto be used by the compiler, in addition
to the objects shared by the CORBA software. A colon (:) is used to separate the list of
directories. Some UNIX systems require different environment variables: for HP-UX
systems, use the sur.IB_paTH environment variable; for AlX, use LIBPATH.

LIB (Windows systems)
Indicates alist of directories within which to find libraries. A semicolon (;) is used to
separate the list of directories.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example(s)

buildscacomponent -f utils.c -c¢ searchInventory,updateIltem

See also

[-S],Filenames that include spaces are not supported. The -f option may be
specified multiple times.

huildscaserver

Name
buildscaserver — Buildsan Oracle Tuxedo server containing SCA components.

Synopsis
-0 servername -c compositel[,composite] [-v][-s scaroot]
[-w] [-r rmname] [-y] [-k] [-t] [-S]

Description

buildscaserver isused to build a Tuxedo server that is used to route requests to SCA
components previously built with the buildscacomponent command. The command generates a
main routine that contains bootstrap routines to route Tuxedo or SCA requeststo SCA
components, and compilesit to form aserver host application. The server host applicationisbuilt
using the default C++ compiler provided for the platform.

4-10 Service Component Architecture

buildscaserver

If the SCDL code contains references or services with <binding.ws> elements, these are
automatically converted into WSDF files for use by the Web Services gateway (GWWS). All
SCA serversbuilt using buildscaserver are multi-threaded servers.

Parameters and Options
buildscaserver supportsthe following parametersand options:

-0 servername

Required. Specifies the name of the server application generated by this command.

-c compositename[, compositename]

[-v]

Required. Specifies the name of the composite hosted. The composite is searched for
starting in APPDIR, or in the SCDL directory specified above with the -s switch. If itis
not found, the server isnot built. In case you specify alist of composites, then all thelisted
composites are hosted by the same Tuxedo server.

If any of the composites are not found or an error is detected such as incorrect name Of
composite does not have any atmi service binding, awarni Nng message is
displayed and the user is prompted to confirm whether the command should continue
processing or abort.

Specifiesthat buildscaserver should work in verbose mode.

[-s scaroot]

[-w]

Specifiesthetarget location of the SCA root, where the SCDL filesfor the componentsto
be deployed are located.

Thisdirectory has alayout suitableto SCA composites and components. Each composite
is represented as a directory and contains components in the run-time form, which
includes SCDL code and libraries. At run time, the server application uses this directory
to find the run-time SCA components.

If componentsare using the Web Servicesbinding, theroot |ocation also receivesaWSDF
definition file.

Specifies that the generated server will host Web services binding enabled components.
By default, a server hosting ATMI binding enabled components is generated. Both types
of servers can host the same actual components simultaneoudly (i.e. there can exist an
ATMI and a WS servers, both hosting the same components previously built using the
buildscacomponent command).

Service Component Architecture 4-1

4-12

[-r rmname]

[-¥]

[-k]

Specifiesthe resource manager associated with thisserver. Thevalue rmname must appear
in the resource manager table located in $TUXDIR/udataobj/RM on UNIX systems or
$TUXDIR%\udataobj \RM on Windows systems. Each entry in thisfileis of thefollowing
form:

rmname:rmstructure_name:library_names

Using the rmname value, the entry in $TUXDIR /udataobj/RM OF

$TUXDIR% \udataobj\RM automatically includesthe associated librariesfor theresource
manager and sets up the interface between the transaction manager and the resource
manager. The value Tuxepo/soL includes the libraries for the Oracle Tuxedo
System/SQL resource manager. Other values can be specified once they are added to the
resource manager table. If the -r optionisnot specified, the null resource manager isused,
by default.

Optionally forces processing of input files, automatically ignoring warnings.

Keepsthe server main stub. buildscaserver generates amain stub with data structures
such asthe servicetable and amain () function. Thisisnormally compiled and then
removed when the server is built. This option indicates that the source file should be
retained.

Note: To see the source filename, use the -v option.

Caution: The generated contents of this file may change from releaseto release. It is advised

that you do not depend on the data structures and interfaces exposed in thisfile. This
option is provided to aid in debugging build problems.

Not used in current release.

Required when the server makes use of C structure input or output buffers and the -w
option is specified.

Note: When the -w option is not specified, buildscaserver uses ATMI binding to
determines if structures are used.The -s option is not required.

Thebuildscaserver -s option doesnot take an option argument.

Service Component Architecture

buildscaserver

Environment Variables

TUXDIR
Finds the SCA libraries and include files to use when compiling the client applications.

cc
Indicates the compiler to use to compile al fileswith .c or . cpp file extensions. If not
defined, the default C++ language compile command is invoked to compile all .c and
.cppf“eS

CFLAGS
Indicates any argumentsthat are passed as part of the compiler command linefor any files
witha .c or . cpp file extensions. If crracs does not exist inthe buildscaserver
command environment, the buildscaserver command checks for the cpprrAGS
environment variable.

Note: Arguments passed by the crracs environment variable take priority over the
CPPFLAGS Variable.

CPPFLAGS
Contains a set of arguments that are passed as part of the compiler command line for any
fileswitha .c or . cpp file extensions.

Thisisin addition to the command line option "-1$ (TUXDIR) /include" for UNIX
systemsor the command line option / 1$TUXDIR%\ include for Windows systems, which
is passed automatically by thebuildscaserver command. If CPPFLAGS does not exist
inthe buildscaserver command environment, no compiler commands are added.

LD_LIBRARY PATH (UNIX systems)
Indicatesthe directoriesthat contain shared objectsto be used by the compiler, in addition
to the objects shared by the CORBA software. A colon (:) isused to separate the list of
directories. Some UNIX systems require different environment variables:

e HP-UX systems use SHLIB_PATH
e AlX systems use LIBPATH

LIB (Windows only)
Indicates alist of directories where libraries are available. A semicolon (;) isusedto
separate the list of directories.

Portability

This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example(s)

buildscaserver -c uBike.server -o uBikeSCASvr

Service Component Architecture 4-13

Error Reporting

This command checks for the following inconsistencies in the SCDL code and reports error
messages if:

e at least one syntax error in the SCDL files
e none of the composites contain any service with an ATMI binding

e at least one composite contains services defining ATMI bindings with incompatible
<remoteAccess> €l@ments. <remoteaccess> elementswith avalue of WorkStation are
not supported by this command.

e /binding.atmi/@requires containsalegacy value and /binding.atmi/map €lements
contain values that conflict (for example, the same Tuxedo service name mapped to two or
more different methods)

mkfldfromschema, mkfld32fromschema

Themkfldfromschema andmkf1d32 fromschema commandstake an XML schemaasinput and
produce afield table. Thistable can be processed by the mk f1dhdr or mkf1dhdr32 command or
isloaded by programs that need it. mkf1dfromschema is used with 16-bit FML and
mlfld32fromschema iSused with 32-bit FML.

These commands have the following restrictions:
e Attributes cannot be specified

e Restrictions are ignored because their meaning is application-related

Name
mkfldfromschema, mkfld32fromschema — Generatesfield table from an XML schema

Synopsis
mkfldfromschema [{-i schema|-u schemaurl}] [-b basenumber]]-o outputfile]
mkfld32fromschema [{-i schema|-u schemaurl}] [-b basenumber]]-o
outputfile]

Description

These commandstake an XML schemaasinput and generate afield table. The XML schemamay
be specified using either the -1 option or the -u option. If neither option is specified, the schema
is read from standard input.

4-14 Service Component Architecture

mkviewfromschema, mkview32fromschema

Parameters and Options
mkfldfromschema and mkf1d32 fromschema supports the following options:

-b basenumber
Adds a *base basenumber lineto the generated field table.

-i schema
Displaysthe name of afilecontainingan XML schema. The -1 option cannot be specified
in conjunction with the -u option.

-u schemaurl
A URL wheretheinput schemaislocated. The URL must start with http://. The -u option
cannot be specified in conjunction with the -1 option.

-o outputfile
The name of afile that will contain the field table. If this option is not specified, the field
table will be written to standard output.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo server environment.

See Also
SCAHOST (5)

mkviewfromschema, mkview32fromschema

Themkviewfromschema and mkview32fromschema commands take an XML schema as input
and produce aview file. Thisfile can be processed by the viewc Or viewc32 command.
mkviewfromschema iSused with 16-bit views and mkview32 fromschema IS used with 32-bit
views.

Name
mkviewfromschema, mkview32fromschema —Generatesview tablefrom an XML schema

Synopsis
mkviewfromschema [{-i schema|-u schemaurl}] [-o outputfile]
mkview32fromschema [{-i1 schema|-u schemaurl}] [-o outputfile]

Service Component Architecture 4-15

Description

These commandstake an XML schemaasinput and generate aview file. The XML schemamay
be specified using either the -1 option or the -u option. If neither option is specified, the schema
isread from standard input.

Options
mkviewfromschema, mkview32fromschema supportsthe following options:

-i schema
The name of afile containing an XML schema. The -1 option cannot be specified in
conjunction with the -u option.

-u schemaurl
A URL wheretheinput schemaislocated. The URL must start with http://. The -u option
cannot be specified in conjunction with the -i option.

-o outputfile
Thenameof afilethat containsthe output view file. If thisoption isnot specified, thefield
table is written to standard output.

Portability

This utility can be used on any platform that supports the Oracle Tuxedo server environment.
See Also

SCAHOST (5)

SDO for C++ Specification V2.1published December, 2006

scaadmin

Name
scaadmin — SCA server management command interpreter

Synopsis

scaadmin [-V]

Description

Use the scaadmin command to dynamically redeploy SCA composites or display statistics and
status of individual services. The TuxconrF1c environment variable is used to determine the
location where the Tuxedo configuration file is loaded.

4-16 Service Component Architecture

scaadmin

This command has no effect on serversthat have not been built using the buildscaserver (1)
command.

Options
The scaadamin command supports the following option:

[-v]
Causes scaadmin to display the Oracle Tuxedo version number, Tuxedo Patch Level. The
command exits after print out.

scaadmin Must run on an active node.

Commands

default [-m machine] [-g groupename] [-i srvid]] [-s servername]
Sets the corresponding argument to be the default machine name, groupname, server id,
or servername. If the default command is entered with no arguments, the current defaults
are printed.

reload [-m machine] [-g groupname] [-i srvid]] [-s servername]
This command dynamically reloads the SCA components hosted on Tuxedo servers. The
-m, -g, -1 and -s options can be used to restrict the rel oaded serversto any combination
of machine, group, server id and server name.

printstats [-m machine] [-g groupname] [-i srvid] [-s servername]
This command displaysthelist of services hosted by a server and the associated method,
number of queries, and status (active, idle). The -m, -g, -i and -s options can be used
to restrict the reloaded serversto any combination of machine, group, server id and server
name.

verbose (v) [{off | on}]
Produces output in verbose mode. If no option is given, the current setting istoggled and
the new setting is printed. Theinitial settingissetto of £.

help (h) [{command | all}]
Prints help messages. If command is specified, the abbreviation, arguments, and
description for that command are printed. all causes a description of al commands to be
displayed. Omitting all arguments causes the syntax of all commands to be displayed.

echo (e) [{off | om}]
Echoes input command lines when set to on. If no option is given, the current setting is
toggled, and the new setting is printed. Theinitial settingisoft.

quit (q)
Terminates the session

Service Component Architecture 4-11

Interoperability
The scaadmin command must run on an active node.

Environment Variables
TUXCONFIG
Used to determine the location where the Tuxedo configuration file is loaded.
Portability

This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example(s)

The following command rel oads all the composites hosted by the uBikeserver Tuxedo
application server, which was built using the buildscaserver (1) command.

scaadmin

> reload -s uBikeServer

Thefollowing command displays statistics on the services offered by the uBikerserver Tuxedo
application server, which was built using the buildscaserver (1) command.

scaadmin

> printstats -s uBikeServer

Service Method Status Requests
Processed
SEARCHINVENTORY searchInventory A 37
Name

SCAHOST - Generic server for Python, Ruby, or PHP SCA components.

Synopsis
SCAHOST SRVGRP="identifier" SRVID="number"

CLOPT="[-A] [servopts options]

-- -w -c composite"

4-18 Service Component Architecture

SCAHOST (5)

Description
scaHosT isan Oracle Tuxedo system provided server that provides boot-strapping functionality
for Python, Ruby, or PHP programs hosted as SCA components.

scanosT relies on Oracle Tuxedo Service Metadata Repository information, and therefore
requires being defined after the TMMETADATA system process in the UBBCONFIG file.

Python, Ruby, and PHP components can be hosted by asingle scanosr. It is preferable that the
component(s) hosted contain only Python, Ruby, and PHP components (i.e., no C++
components).

Parameters and Options

-w
Specifiesthat an scanosT instance exposes Web services. By default, only ATMI binding
services are exposed. Webs services and ATMI bindings cannot be hosted by the same
SCAHOST Server, if acomposite has services exposed with both bindings, two scanosT
instances must be configured in order to expose all ATMI and Web Services bindings.

-c composite
Specifies the name of the component that this server will host.

Portability

This command is available on any platform on which the Oracle Tuxedo server environment is
supported.

Example(s)
Listing 4-1 provides an scanosT example.

Listing 4-1 SCAHOST Example

*SERVERS

SCAHOST SRVGRP=GROUP1 SRVID=100
CLOPT="-A -- -c Account"

SCAHOST SRVGRP=GROUP2 SRVID=100
CLOPT="-A -- -c Loan"

Service Component Architecture 4-19

scapasswordtool

Name
scapasswordtool —Manages passwords for Tuxedo authentication in SCA clients.

Synopsis

scapasswordstore -i passwordidentifier -[a|d]

Description
This command manages the password. store file used by SCA components to refer to
Tuxedo-based services.

Passwords are prompted and encrypted. The encrypted version is stored in this file, associated
with aclear-text identifier. This command is also used to delete identifier/password pairs from
thefile.

The password is limited to 40 characters. If standard input is not aterminal, that is, if the user
cannot be prompted for a password (as with a Here file, for example), then the app_rw
environment variable is accessed to set the password. If the app_pw environment variableis not
set and standard input is not aterminal, then scapasswordtool prints an error message and
exits.

A password. store fileis created in the current directory if it does not previoudly exist.

Parameters and Options

-i passwordidentifier
Required. Theidentifier specifiedinthe<binding> element. SCA componentssearch the
password for this element.

-[a|d]
The -a option adds an identifier/password pair, whereas the -d option deletesit. An error
message is printed out and the command processing is aborted in one of the following
situations:

e If —aisused to add an aready existing identifier
o If —disused to delete a non-existing identifier

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.

4-20 Service Component Architecture

scastructc32, scastructc(l)

See Also
setSCAPasswordCallback (3c)

scastructc32, scastructc(1)

Name
scastructc32, scastructc - Structure description compiler for Oracle Tuxedo.

Synopsis
scastructc32 [-n] [-d viewdir] structfile [structfile . . . 1]
scastructc [-n] [-d viewdir] structfile [structfile . . . 1]
Description

scastructc32 and scastructc areaOracle Tuxedo SCA structure description compiler
programs. These commands take a source structure description file and produces:

e A binary file, which isinterpreted at run time to effect the actual mapping of data between
FML buffers and C++ structures.

o One or more header files.

Note: COBOL is not supported in the SCA environment, therefore scastructe32 and
Scastructc do not have options to generate COBOL copyfiles.

SCA structure description files are identical to Oracle Tuxedo viewfiles, with the exception that
SCA structure description files allow the following extensions:

o Nested structures are supported. A nested structure may be specified by using the struct
keyword in column 1. When this keyword is used, the "cname" value in column 2 must be
the name of a previously defined view that describes a nested structure.

The value in column 3 will be interpreted as the name of the element for the inner structure
within the outer structure. If the valuein column 3 is"-", then the name of the inner
structure element will be the same as the name of the inner structure.

As with other types, the value in column 4 can be used to specify a count of the number of
times the inner structure isincluded in the outer structure. The "flag" and "size" valuesin
columns 5 and 6 are not used for struct elements.

scastructc32 isused for 32-bit FML. It usesthe FIELDTBLS32 and FLDTBLDIR32
environment variables. scastructc isused for 16-bit FML. It usesthe FIELDTBLS and
FLDTBLDIR environment variables.

Service Component Architecture 41

If none of the SCA structure file extensions are used, then binary files produced by
scastructc32 arecompatiblewith binary files produced by viewc32 and binary files produced
by scastructc are compatible with binary files produced by viewc.

The structfile is afile containing source structure descriptions. More than one structfile can be
specified on the scastructc32 Or scastructc command line aslong as the same VIEW name
is not used in more than one structfile.

By default, all viewsinthe structfile are compiled and two or more files are created: aview object
file (with a . v suffix) and a C header file (with a . h suffix). The name of the object fileis
structfile.V in the current directory unless an aternate directory is specified through the -a
option. C header files are created in the current directory.

Note: scastructc32andscastructc generateabinary filewith suffix . v on Unix and suffix
.vv on Windows.

At scastructc32 Of scastructc compile time, the compiler matches each field id and field
name specified in the viewfile with information obtained from the field table file, and stores
mapping information in an object file for later use. Therefore, it isessential to set and export the
environment variables FIELDTBL S and FLDTBLDIR to point to therelated field tablefile. For
more information, see Programming an Oracle Tuxedo ATMI Application Using FML and
Programming an Oracle Tuxedo ATMI Application Using C.

If the scastructc32 Or scastructc compiler cannot match afield name with itsfield id
because either the environment variables are not set properly or the field table file does not
contain the field name, a warning message, Field not found, is displayed.

With the -n option, it is possible to create a view description file for a C structure that is not
mapped to an FML buffer. Programming an Oracle Tuxedo ATMI Application Using C discusses
how to create and use such an independent view description file.

Parameters and Options

4-22

The following options are interpreted by scastructc32 and scastructc:

-n
Used when compiling a structure description file for a C structure that does not map to an
FML buffer. It informs the structure compiler not to look for FML information.

-d viewdir
Used to specify that the structure object file isto be created in adirectory other than the
current directory.

Note: On Windows, the following additional options are recognized:

Service Component Architecture

../pgc/index.html
../fml/index.html
../pgc/index.html

scastructdis32, scastructdis

-c{m | b}
Specifiesthe C compilation system to be used. The supported value for thisoption
ism for the Microsoft C compiler. The Microsoft C compiler isthe default for this
option. The -c option is supported for Windows only.

-1 filename

Specifiesthat pass 1 should be run, and the resulting batch file called filename.bat should be
created. After thisfileiscreated, it, should be executed before running

pass 2. Using pass 1 and pass 2 increasesthe size of the viewsthat can be compiled.
The -1 option is supported for Windows only.

-2 filename

Specifies that pass 2 should be run to complete processing, using the output from
pass 1. The -2 option is supported for Windows only.

Portability

The output view fileisabinary file that is machine and compiler-dependent. It is not possible to
generate aview on one machine with a specific compiler and use that view file on another
machine type or with acompiler that generates structure offsets differently (for example, with
different padding or packing).

See Also

scastructdis32, scastructdis

Programming an Oracle Tuxedo ATMI Application Using FML

Introduction to FML Functionsin Oracle Tuxedo ATMI FML Function Reference
Programming an Oracle Tuxedo ATMI Application Using C

scastructdis32, scastructdis

scastructdis3?2, scastructdis - Disassembler for binary structure files and viewfiles.

Synopsis

scastructdis32 [-E envlabel] viewobjfile [viewobjfile...]

scastructdis [-E envlabel] viewobjfile [viewobjfile...]

Service Component Architecture 4-23

../fml/index.html
../pgc/index.html
../rf3fml/rf3fml.html

Description

scastructdis32 disassemblesaview object file produced by scastructc32 or viewc32 and
displays view information in viewfile format. In addition, it displays the offsets of structure
members in the associated structure.

One or more viewobjfiles (with a . v suffix) can be specified on the command line. By defaullt,
the viewobjfile in the current directory is disassembled. If thisis not found, an error messageis
displayed.

Because the information in the viewobjfile was obtained from a match of each field id and field

name in the viewfile with information in the field tablefile, it isimportant to set and export the
environment variables FIELDTBLS32 and FLDTBLDIR32.

The scastructdis32 output looks the same as the original structure description(s), and is
mainly used to verify the accuracy of the compiled object structure descriptions.

scastructdis isused for files originally compiled with scastructc or viewc. It usesthe
FIELDTBLS and FLDTBLDIR environment variables instead of FIELDTBL S32 and
FLDTBLDIR32.

See Also

pass 2. Using pass 1 and pass 2 increases the size of the views that can be
compiled. The -1 option is supported for Windows only.

Programming an Oracle Tuxedo ATMI Application Using FML

scatuxgen(1)

Name
scatuxgen - Generates Tuxedo Service Metadata Repository interfaceinformation from an SCA
interface.

Synopsis
scatuxgen (-c <composite file name> | -i <interface file name> [-I <inbuf>]
[-O <outbuf>])-s <service name> [-t <string-type>][-w [-n <namespace> -a
<network address>]1] [-V]

Description

Generates Tuxedo Service Metadata Repository interface information based on SCA abstract
class definitions. Service Metadata generation is performed by parsing a composite file (in

4-24 Service Component Architecture

../fml/index.html

scatuxgen(l)

SCDL) which allowslocating theinterface referenced by the <service name> value, or directly
by specifying the interface to process at the command line.

Theinterfaceis an SCA-compliant abstract class definition contained in a C++ header file.
Parsing the composite file allows you to take advantage of binding.atmi details (for example,
buffer types and xsd schemas) when available.

When binding.atmi information is not available, scatuxgen can directly process a C++
interface directly by giving the name of the header file containing it as an argument to the
command line.

The generated file name is composed using the service name, input using the command-line
option, and the .mif file, and possibly the.wsdf extension.

Options

-C

-0

-E

composite file name
Specifiesthe pathname of the compositefileto be processed. Thispathisrelativeto where
the command is run.

interface file name
Specifies the name of the interface file to be processed. This path isrelative to where the
command is run.

inbuf
Specifies the type of input Tuxedo buffer to generate in the service metadata entry. This
option isonly valid when used in conjunction with the -1 and -w options . Acceptable
values are STRING, CARRAY, X_OCTET, VIEW/<viewname>, X_C_TYPE [<vi ewname>,
X_COMMON/<viewname>, VIEW32/<viewname>, FML, FML32, MBSTRING and xML.

outbuf
Specifiesthe type of output Tuxedo buffer to generatein the service metadataentry. This
option isonly valid when used in conjunction with option -i. Acceptable values are
STRING, CARRAY, X_OCTET, VIEW/<viewname>, X C_TYPE/<viewname>,
X_COMMON/<viewname>, VIEW32/<viewname>, FML, FML32, MBSTRING and XML.

outbuf
Specifies the type of error Tuxedo buffer to generate in the service metadata entry. This
option isonly valid when used in conjunction with option -i. Acceptable values are
STRING, CARRAY, X_OCTET, VIEW/<viewname>, X_C_TYPE/<viewname>,
X_COMMON/ <viewname>, VIEW32/<viewname>, FML, FML32, MBSTRING and XML.

service name
Specifies the name of the service to be generated when using an interfacefile. It aso
specifies the base of the output file(s).

Service Component Architecture 4-25

-t string-type
Specifiesthat scatuxgen should map xsd: string typesin XML schemas to Tuxedo
mbstring (FLD_MBSTRING).

-w
Specifies scatuxgen produces a WSDF document.

-n
When producing a WSDF document, can be used to indicate the
Definition/@wsdlNameSpace ditribute value. If not specified, the
Definition/@wsdlNamespace atribute containsthe ' ##NaMEsPAcE## ' placeholder.

When producing a WSDF document, can be used to indicate the
Definition/WSBinding/AccessingPoints/Endpoint/@address attribute value. If
not specified, the befinition/wWSBinding/AccessingPoints/Endpoint/@address
attribute will contain the ' ##apprRESS##4 ' placehol der.

-V
Specifies scatuxgen in verbose mode.

Portability

This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example

The following example resultsin aTourper . mi £ file created in the same directory where
scatuxgen iSinvoked:

$ scatuxgen -c¢ simpapp.composite -s TOUPPER

See Also

Flat File view. If this option is specified, then all the generated files
are put in the target root directory. The default is Tree File view.

setSCAPasswordCallback(3c)

Name

setSCAPasswordCallback () — Setsthe callback for retrieving a password associated with an
identifier in a<binding.atmi> element.

4-26 Service Component Architecture

setSCAPasswordCallback(3c)

Synopsis
#include <tuxsca.h>
void setSCAPasswordCallback(char * (_TMDLLENTRY *) (*disp) (char

*identifier))

Description
setSCAPasswordCallback () alowsan SCA component to identify the callback that returns
the clear-text password that is passed to the appropriate authentication code.

The function pointer passed on the call to setscarPasswordcallback () must conform to the
specified parameter definition. The _TMpLLENTRY macro is required for Windows-based
operating systemsto obtain the proper calling conventions between the Tuxedo librariesand your
code. On UNIX systems, the _TMDLLENTRY Macro is not required because it expands to the null
string.

Theidentifier points to the password identifier passed to the callback function. The callback
function then returnsa char * that pointsto the actual clear-text password.

Return Values
The setscarasswordcallback () function does not return any data.

Errors
Onfailure, setscarasswordCallback () SetS tperrno to one of the following values:

[TPEPROTO]
setSCAPasswordCallback () hasbeen called in an improper context.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

scapasswordtool

Service Component Architecture 4-21

tuxscagen(1)

Name

tuxscagen — Generates SCA, SCDL, and server-side interface files for Tuxedo services.

Synopsis
tuxscagen [-s <target-root-directory>] [-d <service-name>][-C
<TUXEDO_cltname>] [-u <TUXEDO_username>] [(-S | -j <java_package_name>)] [-0
<output_SCDL_filename>] [-i <output_interface_filename>[-m
<max-intf-arguments>] [-y] [-v] [-F] [-c] [-h][-g<i|a]|s>]
[-trepository=<filename> | -tinfile=<metarepos.infile> | -tmetadata]
Description

tuxscagen iSused to generate interface and SCDL files. The interface files are used for
developing the SCA component using ATMI binding, or wrap existing Tuxedo servicesin an
SCA component. The SCDL files are assembly artifacts that help SCA run time to locate the
module and services.

Parameters and Options

4-28

tuxscagen sSupports the following options:

-s target-root-directory
Specifies the location of the root directory where the generated SCDL and interface files
arelocated. The directory must exist and with write access permission; if it does not exist,
the tool issues an error message and fails.

-d<service-name>
Specifies the name of Tuxedo service in the Tuxedo Metadata Repository. If this option
isnot specified, all servicesin the repository or in the input file are selected.

Abbreviation: there is no abbreviation for this option

-C <TUXEDO_cltname>
The Tuxedo client name. Use c1tname as the client name when joining the Tuxedo
application.

-u <TUXEDO_username>
The Tuxedo user name. Use username as the user name when joining the Tuxedo
application. Thisisrequired when Tuxedo security level is higher than app_pw and input
method is to retrieve Tuxedo Service Metadata from TUXEDO . TMMETAREPOS Service.

Service Component Architecture

tuxscagen(l)

-j <java_package_name>

Thisoption generates JAV A interfacefiles. By default, tuxscagen generates C++ header
files. If -g isnot specified but if -5 <java_package_name> is specified then -ga is
assumed. However, if -g sub-option i or s isspecified, awarning message is displayed.

-o <output_SCDL_filename>

This option specifies the output SCDL filenames for single composite and single
componentType file. If thisoption is not specified, then by default, one composite and
one componentType are generated for each Tuxedo service. However, if thisoption is
specified with the output filename, only one composite and one componentType fileis
generated for all the matching Tuxedo services. If the specified
<output_SCDIL_filename> already exists, an interactive prompt is displayed and
requires user input (unless -y is specified). If thisoption is specified, -F is automatically
implied.

-i <output_interface_filename>

Thisoption specifiesthe output interface filenamesfor single abstract class header fileand
single class implementation header file. If this option is not specified, then by default, it
generates one abstract interface class header file and oneimplementation class header file.

However, if this option is specified with output interface filename then only one abstract
class header file and one implementation header fileis generated for all matching Tuxedo
services. If the specified <output_interface filename> already exists, aninteractive
prompt is displayed and requires user input (unless -y is specified).

If this option is specified, -F is automatically implied.

-m <max-intf-arguments>

'

-V

This option specifiesthe maximum number of arguments allowed in theinterface method.
If the number of arguments exceeds the specified threshold then a complex datatypeis
used as the input argument for the interface method. The complex datatype used is
commonj: :sdo: :DataObjectPtr.

If -m is not specified, the default threshold is 10.

If 0 specified, it will always generate using common3j : : sdo: : DataObjectPtr.

If -ga isnot specified, this option isignored.

This option suppresseSReally overwrite files:<filename> [y, g] ? SOthatthe

script can run without user input. This question appearsif either or both -0 and -1 are
specified. If both these options are not specified, by default existing files are replaced.

This option turns on the verbose maode.

Service Component Architecture 4-29

4-30

If this option is specified, online help is printed and all other options are ignored.

-F
Flat FileVview. If thisoptionisspecified, then all the generated filesare put in thetarget
root directory. The default isTree File view.
-C
Generates client-side SCDL. By default tuxscagen generates server-side SCDL,
specifying this option changesit to generate client-side SCDL.
-g ali|s
This option is used to specify the files to generate. The sub-options can be
combined. The a sub-option is used to generate abstract base class header files.
The sub-option i isto generate implementation class header files. Sub-option s is
used to generate SCDL files. To generate both header files, specify -gai. To
generate al files, specify -gais.
If not specified, -gais isassumed.
[-trepository=<filename> | -tinfile=<metarepos.infile> | -tmetadatal

[-s]

This option specifies the processing type.

If -trepository=<filename> iSspecified, tuxscagen retrieves service parameter
information from the Service Metadata repository file <filenames.If
-tinfile=<metarepos.infile> isspecified, then tuxscagen retrieves service
parameter information from <metarepos.infile>, wherethe <metarepos.infile>
syntax is suitable for input to tmloadrepos. If -tmetadata isspecified, tuxscagen
retrieves service parameter information from the Tuxedo TMMETADATA server.

At most, one -t option can be specified; the default is -tmetadata.

Specifies tuxscagen generate astructuresfor any function parameter or return value that
would otherwise have been passed using bataobjectPtr.

When the -s option is used, a structure definition is generated as part of the generated
abstract class header file $ {TUXSERVICE} .h. tuxscagen -S aso generatesa Tuxedo
view file $ {TuxSERVICE} .v describing the generated view(s).

If tuxscagen input does not specify amaximum number of occurrencesfor afield, then
tuxscagen -S generates 1 occurrence for that field. If tuxscagen input specifies an
unlimited number of occurrences for afield, then tuxscagen -s generatesan error.

Service Component Architecture

tuxscagen(l)

If tuxscagen input does not specify a maximum length for a string, carray, or mbstring
parameter, then tuxscagen generates a maximum length of 80 characters plustrailing
NULL for that parameter and outputs a warning message to check if thisis sufficient.

Note: Theuse of an 80 character default is different from viewc. An unspecified length
in viewc causes alength of 1 character plustrailing null to be generated, whichis
insufficient for most applications.

The tuxscagen -s optionwill not changethe underlying Tuxedo transport type specified
for the <inputBufferType>, <outputBufferType>, and <errorBuf ferType>
elementsin the generated compositefile. When datais passed viapataobjectPtr Of via
astructure, thiswill normally be FML32.

Note: Structures are not supported for the SCA Javainterface. Using tuxscagen with
both the -5 and -s optionsresultsin an error.
Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example

The following command is used to generate SCDL, interface, and implementation header files
from a Tuxedo Metadata Repository file named myrepository inthe current working directory.
The number of interface method input argumentsislimited to 8. If thelimit isexceeded, the XSD
schemafileis still generated.

tuxscagen -s /home/tux/sca -Dname=TRANSFER -gais -m 8
-trepository=myrepository

See Also

scatuxgen (1), tmloadrepos (1), tmunloadrepos(1l)

Managing The Tuxedo Service M etadata Repository in Setting up an Oracle Tuxedo Application

Service Component Architecture 4-31

../rfcm/index.html
../rfcm/index.html
../ads/admrp.html

4-32 Service Component Architecture

Oracle Tuxedo SCA Sample
Applications

Three bundled SCA sample applications demonstrate how to develop applications using the SCA
programming model, as well as configure the Oracle Tuxedo SCA container.

e Basic Sample: simpappp
e Advanced Sample: uBike
e SCA Sample Using Web Services: calc client

Basic Sample: simpappp

The Basic Sample demonstrates how to write a simple SCA application made up of aclient
program calling an SCA component viathe Tuxedo infrastructure. It contains all the needed files
to configure and deploy an SCA component hosted on aTuxedo server, aswell asthe needed files
to compile and configure an SCA client program to invoke the component. It represents an
end-to-end application of SCA technology.

Other Uses

The Basic Sample can invoke aregular Tuxedo ATMI service, or the SCA component may be
invoked by aregular ATMI client. Also, the same SCA code can run without using
<binding.atmi> inits SCDL configuration, demonstrating the flexibility of the setup.

Service Component Architecture 5-1

Advanced Sample: uBike

The Advanced Sample contains all the needed files to configure and deploy an SCA component
hosted on a Tuxedo server, aswell as the needed files to compile and configure an SCA client
program to invoke the component. Data exchanged between client and component is of type
commonj : : sdo: : DataObject, With the underlying transport being Tuxedo ATMI using
STRING and FML 32 Tuxedo buffers. It represents an end-to-end application of SCA and SDO
technology.

Other Uses

The Advanced Sample can invoke aregular Tuxedo ATMI service, or the SCA component can
beinvoked by aregular ATMI client. Also, the same SCA code may run without using
<binding.atmi> inits SCDL configuration, demonstrating the flexibility of the setup.

SCA Sample Using Weh Services: calc client

The Web Services Sample demonstrates how to develop an SCA client program that invokes an
external Web service. It containsall the needed filesto configure Oracle Tuxedo as needed by the
runtime SCA configuration.

5-2 Service Component Architecture

APPENDlxa

Appendix A: Oracle Tuxedo SCA ATMI
Binding Reference

The following sections provide SCA ATMI Binding reference information:
e SCA ATMI Binding Schema
e SCA ATMI Binding Attributes Description

SCA ATMI Binding Schema

Listing A-1 shows how the ATMI binding element (<binding.atmi>) isdefined. Thisisa
pseudoschema that depicts how the grammar is used and what parameters are legal.

Notes: The parameters"transactionalintent legacyintent” arenot literal values.
transactionalintent can be substituted with "suspendsTransaction" Or
"propagatesTransaction" Or omitted. "legacyintent" can be substituted with
"legacy" or omitted.

Parameters with a » may be specified 0 or 1 times, and parameters with * may be
specified O or more times.

When using the <binding.atmi>€element, the total length of /reference/@name
(or/service/@name) and method name must be equal to or less than the maximum
length of a Tuxedo service name (this varies depending on the Tuxedo release). To
overcome thislimitation, see </binding.atmi /map>.

Service Component Architecture 6-1

Appendix A: Oracle Tuxedo SCA ATMI Binding Reference

Listing A-1 SCA ATMI Binding Pseudoschema

<binding.atmi requires="transactionalintent legacyintent"?>

<tuxconfig>...</tuxconfig>?
<map target="name">...</map>*
<serviceType target="name">...</serviceType>*

<inputBufferType target="name">...</inputBufferType>*
<outputBufferType target="name">...</outputBufferType>*
<errorBufferType target="name">...</errorBufferType>*
<workStationParameters>?
<networkAddress>...</networkAddress>?
<secPrincipalName>. . .</secPrincipalName>?
<secPrincipallocation>...</secPrincipalLocation>?
<secPrincipalPassId>...</secPrincipalPassId>"?
<encryptBits>...</encryptBits>?
</workStationParameters>
<authentication>?
<userName>. ..</userName>?
<clientName>...</clientName>?
<groupName>. . .</groupName>?
<passwordIdentifier>...</passwordIdentifier>?
<userPasswordIdentifier>...
</userPasswordIdentifier>?
</authentication>
<fieldTablesLocation>...</fieldTablesLocation>?
<fieldTables>...</fieldTables>?
<fieldTablesLocation32>...</fieldTablesLocation32>?
<fieldTables32>...</fieldTables32>?
<viewFilesLocation>...</viewFilesLocation>?
<viewFiles>...</viewFiles>?
<viewFilesLocation32>...</viewFilesLocation32>?
<viewFiles32>...</viewFiles32>?
<remoteAccess>...</remoteAccess>?
<transaction timeout="xsd:long"/>?

</binding.atmi>

6-2 Service Component Architecture

SCA ATMI Binding Attributes Description

SCA ATMI Binding Attributes Description

The <binding.atmi> element supports the following attributes

</binding.atmi/@requires>
</binding.atmi/tuxconfig>
</binding.atmi/map>
</binding.atmi/serviceType>

</binding.atmi/inputBufferType>, </binding.atmi/outputBufferType>,
</binding.atmi/errorBufferType>

</binding.atmi/work StationParameters>
</binding.atmi/authenti cation>
</binding.atmi/fieldTablesL ocation>
</binding.atmi/fieldTablesL ocation32>
</binding.atmi/fieldTables>
</binding.atmi/fieldTables32>
</binding.atmi/viewFilesL ocation>
</binding.atmi/viewFilesL ocation32>
</binding.atmi/viewFiles>
</binding.atmi/viewFiles32>
</binding.atmi/remoteA ccess>

</binding.atmi/transaction/ @timeout>

</hinding.atmi/@requires>

When this attribute contains the 1egacy value, it is used to perform interoperability with
existing Tuxedo services. When not specified, communications are assumed to have SCA
to SCA semantics where the actual Tuxedo service nameis constructed from
/service/@name Of /reference/@name and actual method name (see Listing A-1),
unlessa /binding.atmi/map element is defined. When this attribute encounters alegacy

Service Component Architecture 6-3

Appendix A: Oracle Tuxedo SCA ATMI Binding Reference

6-4

value, and N0 /binding.atmi/map element is defined for the method being called, it has
the following run-time behavior:

— Ina<reference> element: the value specified in the /reference/@name isused to
perform the Tuxedo call, with semantics used according to the interface method.

— Ina<service> element: the Tuxedo service specified in the /binding.atmi/map
element is advertised, and mapped to the method specified in the
/binding.atmi/map/@target attribute.

e When this attribute contains a transaction value, it specifies the transactional behavior that
the binding extension follows when this binding is used. Possible values are as follows:

— not specified (no value) - all transactional behavior is controlled by the Tuxedo
configuration. If the Tuxedo configuration supports transactions, then one may be
propagated if it exists. If the Tuxedo configuration does not support transactions and
one exists then an error will occur. However, a transaction cannot start if one does not
aready exist.

— suspendsTransaction - transaction context is propagated to the called service. For a
<service> element when atransaction is present, it is automatically suspended before
invoking the application code. It resumes afterwards, regardless of the outcome of the
invocation. For a<reference> element, it is equivalent to making a tpcall () with
the TpNOTRAN flag.

— propagatesTransaction - only applicableto <reference> elements. It isignored
for <service> elements. Thisvalue starts a new transaction if one does not already
exist, otherwise it participates in the existing transaction.

Such behavior can be obtained in a component or composite <service> element by
configuring auToTrAN in the UBBCONFIG file. An error is generated if a Tuxedo
server hosts the SCA component implementation and it is not configured in a
transactional group in the UBBCONFIG file.

</hinding.atmi/tuxconfig>

Used in <reference> elementswhen /binding.atmi/workstationParameters iSNot Set,
and for client-only processes. It indicatesthe Tuxedo application that the process should join. One
process can join multiple applications, or switch applications without having to restart.

If not set, the TuxconFIc environment variableisused. If not set, but oneisrequired, the process
exits and returns an error.

Service Component Architecture

SCA ATMI Binding Attributes Description

</hinding.atmi/map>

For <reference> elements, </binding.atmi/map>provides the Tuxedo service name that
should be used when performing the invocation to the corresponding
/binding.atmi/map/@target value, thisvalue being the name of the method being called.

For <service> elements, </binding.atmi/map> provides the Tuxedo service name that
should be advertised for the corresponding /binding.atmi/map/@target value.

The /binding.atmi/map/@target Value must match the method name of the corresponding
serviceinterface.

If a /binding.atmi/map €element is present, it takes precedence over any other form of
service/method to Tuxedo service name mapping. See </binding.atmi/@requires> attribute.

</hinding.atmi/serviceType>
Optional element that specifies the type of call being handled. The accepted values are:

e Oneway - the call will not expect aresponse.

® RequestResponse - regular call paradigm, default value.

</binding.atmi/inputBufferType>,
</binding.atmi/outputBufferType>,
</binding.atmi/errorBufferType>

Optional elements that specify the type of buffer that the processes exchange. The
inputBufferType element is used by the binding extension to determine or check the type of
the request.

TheoutputBuf ferType element isused by the binding extension to determine or check thetype
of thereply.

The errorBufferType element is used to determine the type of buffer specified in the data
portion of the Exception thrown received by a client or thrown by a server.

Table A-1 lists supported values and corresponding Tuxedo buffer types. An incorrect value or
syntax is detected at run time and causes the call to fail. If not specified, the default value used is
STRING.

Service Component Architecture 6-5

Appendix A: Oracle Tuxedo SCA ATMI Binding Reference

Tahle A-1 SCA Supported Tuxedo Buffer Types

/binding.atmi/bufferType value Tuxedo buffer type Note

STRING STRING

CARRAY CARRAY

X_OCTET X_OCTET

VIEW VIEW Format is VIEW/<subtype>

X_C_TYPE X_C_TYPE Format is
X_C_TYPE/<subtype>

X_COMMON X_COMMON Format is:
X_COMMON/<subtype>

VIEW32 VIEW32 Format iSVIEW32 /<subtype>

XML XML

FML FML Format is:

FML/<subtype>,<subtype>
is optional

The <subtype> value alows
to specify the SDO type to use
for that message (reguest or
response) when it isdescribed in
an XML schema

Note: FML32 <subtype> is
not available for JATMI
binding.

Service Component Architecture

SCA ATMI Binding Attributes Description

Tahle A-1 SCA Supported Tuxedo Buffer Types

/hinding.atmi/bufferType value Tuxedo buffer type Note
FML32 FML32 Format is:
FML32/<subtype>,

<subtype> isoptiona

The <subtype> valueallows
to specify the SDO typeto use
for that message (request or
response) when it isdescribed in
an XML schema

Note: FML32 <subtype> is
not available for JATMI
binding.

MBSTRING MBSTRING

</hinding.atmi/workStationParameters>

An optional element that specifies parameters specific to the Tuxedo WorksStation protocol.
Only used in references.

® /binding.atmi/workStationParameters/networkAddress

The address of the workstation listener to which this application will connect. Any address
format accepted by the Tuxedo workstation software is allowed. The most common address
format is:

//<hostname or IP address>:<port>.
For more information, see the SALT Programming Guide

More than one address can be specified (if required), by specifying a comma-separated list of
pathnames for wsNADDR Addresses are tried in order until a connection is established. Any
member of an addresslist can be specified as aparenthesi zed grouping of pipe-separated network
addresses. For example:

<networkAddress>
(//ml.acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050

</networkAddress>

Service Component Architecture 6-7

Appendix A: Oracle Tuxedo SCA ATMI Binding Reference

Tuxedo randomly selects one of the parenthesi zed addresses. This strategy distributes the load
randomly across a set of listener processes. Addresses aretried in order until a connection is
established.

On versions of Tuxedo that support ipv6, the corresponding addressing format will also be
supported, following the same format as used in wsnappr for Tuxedo /WS clients.

® secPrincipalName, secPrincipalLocation, secPrincipalPassId

These parameters specify the necessary parameters when an SSL connection is required by
aworkstation client. The password is stored in a separate file and accessed using a callback
mechanism. The default callback usesthe password. store file maintained using the
scapasswordtool command. For more information, see the SALT Programming Guide

® encryptBits

Specifies the encryption strength that this client connection will attempt to negotiate. The
format is <minencryptbits>/<maxencprytbits> (for example, 128/128), those values
being numerical. Invalid values will result in a configuration exception being thrown.
Values can be O (if no encryption is used), or 40, 56, 128, or 256 (if the number specified is
the number of significant bitsin the encryption key).

</bhinding.atmi/authentication>

Specifies the security parameters used in reference-type calls to establish a connection with the
Tuxedo application. The following val ues respectively correspond to the TPINFO structure
elementsusrname, cltname, grpname and passwd (for moreinformation, see tpinit (3c) in
the Oracle Tuxedo ATMI C Function Reference guide) :

® /binding.atmi/authentication/userName

® /binding.atmi/authentication/clientName

® /binding.atmi/authentication/groupName

® /binding.atmi/authentication/passwordIdentifier- (application password)

® /binding.atmi/authentication/userPasswordIdentifier-(user password in
per-user authentication)

Passwords are not stored in clear text, but are looked up using an identifier. A callback
function may be used to retrieve passwords. For more information, see
setSCAPasswordCallback ()in the Oracle Tuxedo Reference Guide.

By default, passwords are maintained encrypted in a passwords store file located in the
same directory as the composite file that contains the
/reference/binding.atmi/authentication/passwordIdentifier OF

6-8 Service Component Architecture

SCA ATMI Binding Attributes Description

/reference/binding.atmi/authentication/userPasswordIdentifier €lement.
Thisidentifier is read as necessary to perform authentication.

For more information, see scapasswordtool and setSCAPasswordCallback(3c) in the
Oracle Tuxedo Reference Guide.

Note: Thisinformation should be handled with policy setsand intentswhen the SCA Kernel
supportsit.

</hinding.atmi/fieldTablesLocation>

Optional element that specifies adirectory in the local file system where field tables should be
searched. If arelative path is specified, files are searched in that location relative to $ApPDIR,
otherwise the location is assumed to be absol ute.

</hinding.atmi/fieldTablesLocation32>

Same as fieldTablesLocation, but for FML32 buffers.

</hinding.atmi/fieldTables>

Optional element that specifiesthe FML field tables available. Field tables are searched in the
location specified by the /binding.atmi/fieldTablesLocation element.

If the /binding.atmi/bufferType valueis FML and thiselement is not specified or invalid
(that is, the tablesindicated cannot be found or are not field tables), an error is displayed at
initialization time for client processes, or boot time for server processes.

</binding.atmi/fieldTables32>

Same as fieldTables, but for FML32 buffers.

</binding.atmi/viewFilesLocation>

Optional element that specifies adirectory in the local file system where view tables should be
searched. If arelative path is specified, files are searched in that location relative to $ApPDIR,
otherwise the location is assumed to be relative.

</binding.atmi/viewFilesLocation32>

Same as viewTablesLocation, but for VIEW32 buffers.

Service Component Architecture 6-9

Appendix A: Oracle Tuxedo SCA ATMI Binding Reference

6-10

</hinding.atmi/viewFiles>

Optional element that specifiesthe VIEW filesto be used by the affected component(s). If the
/binding.atmi/bufferType ValueisVIEW and this element is not specified or invalid (that
is, the filesindicated cannot be found, or are not view files), an error is displayed at run time for
client processes, or boot time for server processes.

</binding.atmi/viewFiles32>
Same as ViewFiles but for VIEW32 buffers.

Note: FML/FML32and VIEW/VIEW32 parametersare optional and may be omitted, in which
case the corresponding Tuxedo environment variables are required (FLDTBLDIR/32,
FLDTBLS/32, VIEWDIR/32 and VIEWFILES/32). If neither are used, an error message
is printed at run time when attempting to use afielded buffer. If both are set, the
parameters contained in the SCDL code take precedence.

</binding.atmi/remoteAccess>

Optional element that specifies the communication protocol with one of the values below. The
default is Native.

e Native - indicates that components use standard Tuxedo native communications (IPC
queues)

e WorkStation - indicates that components use the Tuxedo /WS communication protocol.

If set to this value, the binding extension checks that the
/binding.atmi/workStationParameters element isalso populated and valid; if not, it
reports a run-time error message.

</hinding.atmi/transaction/@timeout>

Specifies the amount of time, in seconds, a transaction can execute before timing out. This
attribute affects components or clients that effectively start a global transaction. It is mandatory
for <reference> componentsand ignored if set on <service> components. Additionally, the
valueisignored on componentsfor which thetransaction has already been started. If atransaction
needs to be started and this attribute is not present (for example,
"requires=propagatesTransaction" iSSet), a configuration error occurs.

Service Component Architecture

Appendix B:
Oracle Tuxedo SCA Schemas

This section contains the following information:
e ATMI and JTMI Binding Schema For C/C++
e Web Service Binding Schema

ATMI and JTMI Binding Schema For C/C++

Listing A-1 shows an ATMI and JTMI C/C++ binding schema.

Listing A-1 ATMI and JTMI Binding Schema For C/C++

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.osoa.org/xmlns/sca/1.0"
xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"

elementFormDefault="qualified">

<element name="binding.atmi" type="sca:AtmiBinding"

substitutionGroup="sca:binding"/>

<complexType name="AtmiBinding">

Service Component Architecture

1-1

Appendix B: Oracle Tuxedo SCA Schemas

<complexContent>
<extension base="sca:Binding">
<sequence>
<element name="tuxconfig" type="string"
minOccurs="0"/>

<element name="map" type="sca:TargetMapType" minOccurs="0"

maxOccurs="unbounded" />

<element name="serviceType" type="sca:SvcType"
minOccurs="0" maxOccurs="unbounded" />

<element name="inputBufferType" type="sca:BufferType"
minOccurs="0" maxOccurs="unbounded"/>

<element name="outputBufferType" type="sca:BufferType"
minOccurs="0" maxOccurs="unbounded"/>

<element name="errorBufferType" type="sca:BufferType"
minOccurs="0" maxOccurs="unbounded" />

<element name="workStationParameters"
type="sca:WorkStationParameters"
minOccurs="0"/>

<element name="authentication" type="sca:Authentication"
minOccurs="0"/>

<element name="fieldTablesLocation" type="string"
minOccurs="0"/>

<element name="fieldTables" type="string"
minOccurs="0"/>

<element name="fieldTablesLocation32" type="string"
minOccurs="0"/>

<element name="fieldTables32" type="string"
minOccurs="0"/>

<element name="viewFilesLocation" type="string"
minOccurs="0"/>

<element name="viewFiles" type="string" minOccurs="0"/>

<element name="viewFilesLocation32" type="string"
minOccurs="0"/>

<element name="viewFiles32" type="string"
minOccurs="0"/>

<element name="remoteAccess" type="sca:RemoteAccess"

minOccurs="0"/>

1-2 Service Component Architecture

ATMI and JTMI Binding Schema For C/C++

<element name="transaction" type="sca:TransactionType"

minOccurs="0"/>

</sequence>

<anyAttribute namespace="##any" processContents="lax" />

</extension>
</complexContent>

</complexType>

<complexType name="TargetMapType">
<simpleContent>
<extension base="TargetSimple">
<attribute name="target" type="string"
</extension>
</simpleContent>

</complexType>

<simpleType name="TargetSimple">
<restriction base="string"/>

</simpleType>

<complexType name="SvcType">
<simpleContent>
<extension base="SvcTypeEnum">
<attribute name="target" type="string"
</extension>
</simpleContent>

</complexType>

<simpleType name="SvcTypeEnum">
<restriction base="string">
<enumeration value="oneway"/>
<enumeration value="requestresponse"/>
</restriction>

</simpleType>

<complexType name="BufferType">
<simpleContent>

<extension base="BufferTypeEnum">

use="optional"/>

use="optional"/>

Service Component Architecture 1-3

Appendix B: Oracle Tuxedo SCA Schemas

<attribute name="target" type="string" use="optional"/>
</extension>
</simpleContent>

</complexType>

<simpleType name="BufferTypeEnum">

<restriction base="string">
<enumeration value="string"/>
<enumeration value="carray"/>
<enumeration value="x_octet"/>
<enumeration value="view"/>
<enumeration value="x_c_type"/>
<enumeration value="x_common" />
<enumeration value="view32"/>
<enumeration value="xml"/>
<enumeration value="fml"/>
<enumeration value="fml32"/>
<enumeration value="mbstring"/>

</restriction>

</simpleType>

<complexType name="WorkStationParameters">
<sequence>
<element name="networkAddress" type="string" minOccurs="0"/>
<element name="secPrincipalName" type="string" minOccurs="0"/>
<element name="secPrincipallLocation" type="string"
minOccurs="0"/>
<element name="secPrincipalPassId" type="string"
minOccurs="0"/>
<element name="encryptbits" type="string" minOccurs="0"/>
</sequence>

</complexType>

<complexType name="Authentication">
<sequence>
<element name="userName" type="string" minOccurs="0"/>
<element name="clientName" type="string" minOccurs="0"/>

<element name="groupName" type="string" minOccurs="0"/>

1-4 Service Component Architecture

Web Service Binding Schema

<element name="passwordIdentifier" type="string"
minOccurs="0"/>
<element name="userPasswordIdentifier" type="string"
minOccurs="0"/>
</seqguence>

</complexType>

<complexType name="RemoteAccess">
<restriction base="string">
<enumeration value="native"/>
<enumeration value="workstation"/>
</restriction>

</complexType>

<complexType name="TransactionType">
<attribute name="timeout" type="int" use="optional"/>
</complexType>

</schema

Web Service Binding Schema

Listing A-2 shows a Web service binding schema..

Listing A-2 Web Service Binding Schema

<?xml version="1.0" encoding="UTF-8"?>

<!--
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance

with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Service Component Architecture 1-5

Appendix B: Oracle Tuxedo SCA Schemas

1-6

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.osoa.org/xmlns/sca/1.0"
xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"

elementFormDefault="qualified">

<element name="binding.ws" type="sca:WebServiceBinding"

substitutionGroup="sca:binding" />
<complexType name="WebServiceBinding">
<complexContent>
<extension base="sca:Binding">
<sequence>

<element name="soapbinding" type="sca:SOAPBinding"
minOccurs="0" maxOccurs="unbounded" />

<any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded" />
</sequence>

<attribute name="endpoint" type="anyURI" use="optional" />
<attribute name="location" type="anyURI" use="optional" />

<attribute name="conformanceURIs"

type="sca:ConformanceURIList" use="optional" />

<attribute name="interfaceMapping" type="string"
use="optional" />

<anyAttribute namespace="##any" processContents="lax" />

</extension>
</complexContent>

</complexType>

<complexType name="SOAPBinding">

Service Component Architecture

Web Service Binding Schema

<sequence>
<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
<attribute name="name" type="NCName" use="optional" />
<attribute name="version" type="string" use="optional" />
<anyAttribute namespace="##any" processContents="lax" />

</complexType>

<simpleType name="ConformanceURIList">
<list itemType="anyURI"/>
</simpleType>

</schema>

Service Component Architecture 1-1

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Programming an Oracle Tuxedo Application Using Java, 12c Release 2 (12.2.2)
	Contents
	Administering Oracle Tuxedo SCA Components
	Oracle Tuxedo SCA Deployment Model
	SCA Composite Configuration File
	Listing 1-1 Root Composite with Two Components
	Listing 1-2 SCA Composite Directory Hierarchy
	Listing 1-3 Directory Structure

	SCA Component Configuration File
	Listing 1-4 ECHO.composite
	Listing 1-5 ECHOImpl.componentType
	Listing 1-6 UBBCONFIG File Example
	Listing 1-7 TOUPPER.composite file Example

	Configuring Oracle Tuxedo SCA Components
	Configuring an SCA ATMI Client
	Listing 1-8 Client Application Root Composite File
	Listing 1-9 Client Application Composite File

	Configuring an SCA JATMI Client
	Listing 1-10 SCA JATMI Client Composite File Example

	Configuring an SCA Workstation Client
	Listing 1-11 $APPDIR/root.composite
	Listing 1-12 $APPDIR/ECHO/ECHO.composite

	Configuring an SCA Web Service Client
	Listing 1-13 $APPDIR/root.composite
	Listing 1-14 $APPDIR/calcClient/calcClient.composite
	1. Make sure the TMMETADATA and GWWS servers are shut down.
	2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, an Oracle Tuxedo Metadata Repository interface definitions file, fml32 field tables and XML schemas.
	3. Optionally, modify the generated WSDF file to override the actual endpoint address used at runtime. For more information, see WSDF documentation.
	4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA server repository (e.g.: $ tmloadrepos -I calc.mif metadata.repos -y). For more information, see tmloadrepos documentation.
	5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for example). Listing 1-15 shows the added elements highlighted in blue.
	6. Reload the GWWS binary configuration file to take into account the changes performed in the previous five (e.g.: $ wsloadcf -y gwws.dep).
	7. Reboot GWWS and TMMETADATA.

	Listing 1-15 GWWS Configuration File

	Configuring an SCA ATMI Server
	Listing 1-16 $APPDIR/root.composite
	Listing 1-17 $APPDIR/Purchase.component/Purchase.composite
	Listing 1-18 $APPDIR/Purchase.component/PurchaseImpl.componentType

	Configuring an SCA Web Service Server
	Listing 1-19 $APPDIR/root.composite
	Listing 1-20 $APPDIR/account/account.composite
	Listing 1-21 $APPDIR/account/AccountServiceImpl.componentType
	1. Make sure the TMMETADATA and GWWS servers are shut down
	2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, an Oracle Tuxedo Metadata Repository interface definitions file, fml32 field tables and XML schemas.
	3. Modify the generated WSDF file to specify the actual endpoint address used at runtime to accept requests. For more information, see WSDF documentation.
	4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA server repository (for example, $ tmloadrepos -I AccountService.mif metadata.repos -y). For more information, see tmloadrepos documentation.
	5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for example). Listing 1-22 shows the elements added highlighted in blue.
	6. Reload the GWWS binary configuration file to take into account the changes performed in the step five (e.g.: $ wsloadcf -y gwws.dep).
	7. Reboot GWWS and TMMETADATA.

	Listing 1-22 gwws.dep File

	Configuring SCA Client Security
	Oracle Tuxedo Application Domain Security
	Listing 1-23 $APPDIR/password.store $APPDIR/simple.app.composite
	Listing 1-24 $APPDIR/simpapp.client/simpapp.client.composite

	Oracle Tuxedo Link-Level Security
	Configuring Link-Level Encryption
	Configuring Transport Layer Security
	Listing 1-25 Client Composite File

	Administering Oracle Tuxedo SCA Components
	Tracing the SCA ATMI Server and Client
	Oracle Tuxedo TMTRACE
	SCA Runtime, ATMI Service, and Reference Binding Tracing
	Listing 1-26 SCA Runtime Tracing Information ULOG File

	Monitoring SCA ATMI Servers
	1. prompt> scaadmin
	2. prompt> reload -s uBikeServer
	1. prompt> scaadmin
	2. prompt> pstats -s uBikeServer
	Table 1-1 pstats 0utput Service Statics
	Table 1-2 scaadmin Sub-Commands

	Tracing SCA JATMI Clients
	Table 1-3 Logger Tuning Property Table
	Listing 1-27 Log File Contents
	Oracle Tuxedo SCA Programming

	Overview
	SCA Utilities
	SCA Client Programming
	SCA Client Programming Steps
	1. Setting Up the Client Directory Structure
	2. Developing the Client Application
	3. Composing the SCDL Descriptor
	4. Building the Client Application
	5. Running the Client Application
	6. Handling TPFAIL Data
	Setting Up the Client Directory Structure
	Listing 1-1 SCA Component Directory Structure
	Listing 1-2 root.composite Content

	Developing the Client Application
	Listing 1-3 Interface Example
	Listing 1-4 Invocation Call Example
	Notes: The invocation itself is equivalent to making a local call (as if the class were in another file linked in the program itself).

	Composing the SCDL Descriptor
	Listing 1-5 SCDL Descriptor

	Building the Client Application
	1. Navigate to the directory containing the client source and SCDL composite files
	2. Execute the following command:

	Running the Client Application
	Invoking Existing Oracle Tuxedo Services
	Listing 1-6 SCA Components Calling an Existing Oracle Tuxedo Service
	Listing 1-7 Generated Header
	Listing 1-8 Generated SCDL Reference

	Handling TPFAIL Data
	Listing 1-9 Invocation Interruption Example
	Listing 1-10 /binding.atmi Definition
	Listing 1-11 SCDL Invocation Example
	Listing 1-12 ATMIBindingException.getData() Results

	SCA Component Programming
	Figure 1-1 SCA Component and Oracle Tuxedo Server Mapping Rules
	SCA Component Programming Steps
	1. Setting Up the Component Directory
	2. Developing the Component Implementation
	3. Composing the SCDL Descriptor
	4. Compiling and Linking the Components
	5. Building the Oracle Tuxedo Server Host
	Setting Up the Component Directory
	Listing 1-13 SCA Component Directory Structure
	Listing 1-14 root.composite Content

	Developing the Component Implementation
	Listing 1-15 Component Implementation Interface
	Listing 1-16 Example (TuxServiceImpl.h):
	Listing 1-17 Example (TuxServiceImpl.cpp):
	Listing 1-18 componentType File Example

	Composing the SCDL Descriptor
	Listing 1-19 Example SCDL Descriptor

	Compiling and Linking the Components
	1. Navigate to the APPDIR directory. The component and side files should be in its own directory one level down
	2. Execute the following command:

	Building the Oracle Tuxedo Server Host

	SCA Python, Ruby, and PHP Programming
	Prerequisites
	SCA Python, Ruby, and PHP Programming Overview
	Figure 1-2 SALT SCA Python, Ruby, and PHP Programming Support Architecture

	Python, Ruby, and PHP Client Programming
	SCDL Clients
	Python Clients
	1. Import the SCA library using the following command:
	2. Use the following API to locate the service:

	Ruby Clients
	1. Load the Ruby proxy extension:
	2. Use the following API to locate the service:

	PHP Clients
	1. users will have to first load the SCA library as follows:
	2. Use the following API to locate the service:

	Python, Ruby, and PHP Component Programming
	SCDL Components
	Listing 1-20 Python Component in an SCA Composite
	Listing 1-21 PHP Component in an SCA Composite

	Python Components
	Listing 1-22 Python Module File

	Ruby Components
	Listing 1-23 Ruby Script File

	PHP Components
	Listing 1-24 PHP Class

	SCA Structure Support
	SCA Structure Support Overview
	SCA Structure Limitations

	Using SCA Structure Description Files
	Listing 1-25 SCA Structure Description File
	Listing 1-26 Binary Structure Header File
	Notes: scastructc32 and scastructc generate a binary file with suffix .V on Unix and suffix .VV on Windows.

	Using tuxscagen to Generate Structures

	SCA Remote Protocol Support
	/WS
	/Domains

	SCA Binding
	ATMI Binding
	Listing 1-27 ATMI Binding Pseudoschema

	Java ATMI (JATMI) Binding
	Listing 1-28 ECHO Composite File
	Listing 1-29 ECHO Interface
	Listing 1-30 SCA Client Implementation

	Python, Ruby, and PHP Binding
	Python, Ruby, and PHP Binding Limitations

	Web Services Binding
	1. Convert the WSDL file into a WSDF entry by using the wsdlcvt tool. Simultaneously, a Service Metadata Entry file (.mif), and fml32 mapping file are generated.
	2. Make sure that the UBB source has the TMMETADATA and GWWS servers configured
	3. Import the WSDF file into the SALTDEPLOY file
	4. Convert the SALTDEPLOY file into binary using wsloadcf.
	5. Load the Service Metadata Entry file (.mif) into the Service Metadata Repository using the tmloadrepos command.
	6. Boot (or re-boot) the GWWS process to initiate the new deployment.
	Listing 1-31 Example SCA Component Service Exposed as a Web Service
	1. Compose a WSDL interface matching the component interface.
	2. Use buildscacomponent to build the application component runtime, similar to building a regular SCA component.
	3. buildscaserver -w is used to convert SCDL code into a WSDF entry, and produce a deployable server (Oracle Tuxedo server + library + SCDL).

	Listing 1-32 WSDF Entry
	4. buildscaserver -w also constructs a Service Metadata Repository entry based by parsing the SCDL and interface. The interface needs to be in WSDL form, and manually-composed in this release.
	5. Make sure that the UBB source has the TMMETADATA and GWWS servers configured.
	6. The Service Metadata Repository entry is loaded into the Service Metadata Repository using the tmloadrepos command.
	7. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted into binary using wsloadcf.
	8. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository.
	9. The Oracle Tuxedo server hosting the Web service is booted and made available.
	10. The GWWS is rebooted to take into account the new deployment.

	Listing 1-33 Example Reference Accessing a Web Service
	1. A WSDL file is necessary. This is usually published by the Web Service provider.
	2. The WSDL file must be converted into a WSDF entry using the wsdlcvt tool. At the same time a Service Metadata Entry file (.mif), and fml32 mapping file is generated.
	3. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted into binary using wsloadcf.
	4. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository using the tmloadrepos command.
	5. The GWWS process is rebooted to take into account the new deployment.

	SCA Data Type Mapping
	Listing 1-34 C++ Interface Example
	Run-Time Data Type Mapping
	Simple Oracle Tuxedo Buffer Data Mapping
	Table 1-1 Simple Oracle Tuxedo Buffer Type Data Mapping
	Multibyte String Data Mapping
	a. Locale associated with the FLD_MBSTRING field, if present.
	b. Locale associated with the MBSTRING or FML32 buffer.
	c. Locale set in the environment of the SCA client or server.

	Complex Return Type Mapping
	Complex Oracle Tuxedo Buffer Data Mapping
	Table 1-2 Complex Oracle Tuxedo Buffer Type Data Mapping
	Listing 1-35 Interface Example
	SDO Mapping
	Listing 1-36 Schema
	Table 1-3 Generated Field Tables

	SCA Utility Data Type Mapping
	C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping
	Table 1-4 'inbuf' Keyword Buffer Type Mapping Table
	Table 1-5 outbuf' or 'errbuf' Keyword Buffer Type Mapping Table

	C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping
	Table 1-6 Parameter-Level/Field Type Mapping Table

	C++ Parameter Type and Oracle Tuxedo Complex Type Mapping
	SDO Mapping
	Listing 1-37 XML Schema
	Listing 1-38 Binding
	Table 1-7 Parameter-level/Field Type Mapping

	C Struct Mapping
	Listing 1-39 C Struct
	Table 1-8 Parameter-Level/Field Type Mapping

	Parameter and Return Types to Parameter-Level Keyword Restrictions
	Table 1-9 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 1)
	Table 1-10 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 2)

	Python, Ruby, and PHP Data Type Mapping
	Python Data Type Mapping
	Table 1-11 Supported Python, C++ and Oracle Tuxedo Buffer Types
	Notes: int (short), long, int (long), float (float) are allowed in the C++ to Python direction only. The Python runtime catches any overflow situation (e.g.: when copying a C++ long into a Python int).
	Python Parameters
	Dictionaries
	Listing 1-40 Oracle Tuxedo Service Metadata Repository Entry for Python

	Ruby Data Type Mapping
	Table 1-12 Supported Ruby, C++ and Oracle Tuxedo Buffer Types
	Notes: Ruby runtime may catch an overflow exception.
	Ruby Parameters
	Listing 1-41 Oracle Tuxedo Service Metadata Repository Entry for Ruby
	Notes: Using this notation is limited to local calls (no binding), or with using the ATMI binding between SCA components (that is, the <binding.atmi> element with no requires="legacy" attribute).

	Hash

	PHP Data Type Mapping
	Table 1-13 Supported PHP, C++ and Oracle Tuxedo Buffer Types
	List of Parameters
	Named Parameters

	SCA Structure Data Type Mapping
	SCA Structure and FML32 or FML Mapping
	FML Field Naming Requirements
	Long Element Truncation

	SCA Structure and VIEW32, VIEW, X_OCTET, or X_C_TYPE Mapping
	SCA Structure and Mbstring Mapping
	TPFAIL Return Data
	Listing 1-42 <tuxsca.h> SCA Structure and Typedef Definition
	Listing 1-43 TPFAIL Example

	SCA and Oracle Tuxedo Interoperability
	SCA Transactions
	SCA Security

	Web Application Server Programming
	Overview
	Developing Native Oracle Tuxedo Web Applications
	Developing Python Web Applications
	Prerequisites
	Usage
	Example(s)
	Stand-Alone Script/Application
	Django-Based Application

	Developing Ruby Web Applications
	Prerequisites
	Usage
	Example(s)

	Developing PHP Web Applications
	Prerequisites
	Usage
	Example(s)

	See Also
	SCA Command Reference
	Table 4-1 Oracle Tuxedo Commands and Functions

	buildscaclient
	Name
	Synopsis
	Description
	Parameters and Options
	-c defaultcomponent
	[-v]
	[-k]
	[-o name]
	[-s scaroot]
	[-f firstfiles]
	[-l lastfiles]
	[-S structurefiles]

	Environment Variables
	TUXDIR
	CC
	CFLAGS
	CPPFLAGS
	LD_LIBRARY_PATH (UNIX systems)
	LIB (Windows systems)

	Portability
	Example(s)
	See Also

	buildscacomponent
	Name
	Synopsis
	Description
	Parameters and Options
	[-v]
	[-s scaroot]
	[-f firstfiles]
	Table 4-2 File Specification Using [-f firstfiles]

	[-l lastfiles]
	Table 4-3 File Specification Using [-l lastfiles]

	-c {composite[,composite]|composite/component}
	[-y]
	[-k]
	[-S structurefiles]

	Environment Variables
	TUXDIR
	APPDIR
	CC
	CFLAGS
	CPPFLAGS
	LD_LIBRARY_PATH (UNIX systems)
	LIB (Windows systems)

	Portability
	Example(s)
	See also

	buildscaserver
	Name
	Synopsis
	Description
	Parameters and Options
	-o servername
	-c compositename[,compositename]
	[-v]
	[-s scaroot]
	[-w]
	[-r rmname]
	[-y]
	[-k]
	[-t]
	[-S]

	Environment Variables
	TUXDIR
	CC
	CFLAGS
	CPPFLAGS
	LD_LIBRARY_PATH (UNIX systems)
	LIB (Windows only)

	Portability
	Example(s)
	Error Reporting

	mkfldfromschema, mkfld32fromschema
	Name
	Synopsis
	Description
	Parameters and Options
	-b basenumber
	-i schema
	-u schemaurl
	-o outputfile

	Portability
	See Also

	mkviewfromschema, mkview32fromschema
	Name
	Synopsis
	Description
	Options
	-i schema
	-u schemaurl
	-o outputfile

	Portability
	See Also

	scaadmin
	Name
	Synopsis
	Description
	Options
	[-v]

	Commands
	default [-m machine] [-g groupename] [-i srvid]] [-s servername]
	reload [-m machine] [-g groupname] [-i srvid]] [-s servername]
	printstats [-m machine] [-g groupname] [-i srvid] [-s servername]
	verbose (v) [{off | on}]
	help (h) [{command | all}]
	echo (e) [{off | on}]
	quit (q)

	Interoperability
	Environment Variables
	TUXCONFIG

	Portability
	Example(s)

	SCAHOST (5)
	Name
	Synopsis
	Description
	Parameters and Options
	-w
	-c composite

	Portability
	Example(s)
	Listing 4-1 SCAHOST Example

	scapasswordtool
	Name
	Synopsis
	Description
	Parameters and Options
	-i passwordidentifier
	-[a|d]

	Portability
	See Also

	scastructc32, scastructc(1)
	Name
	Synopsis
	Description
	Parameters and Options
	-n
	-d viewdir
	-c { m | b }
	-1 filename
	-2 filename

	Portability
	See Also

	scastructdis32, scastructdis
	Name
	Synopsis
	Description
	See Also

	scatuxgen(1)
	Name
	Synopsis
	Description
	Options
	-c composite file name
	-i interface file name
	-I inbuf
	-O outbuf
	-E outbuf
	-s service name
	-t string-type
	-w
	-n
	-a
	-v

	Portability
	Example
	See Also

	setSCAPasswordCallback(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tuxscagen(1)
	Name
	Synopsis
	Description
	Parameters and Options
	-s target-root-directory
	-d<service-name>
	-C <TUXEDO_cltname>
	-u <TUXEDO_username>
	-j <java_package_name>
	-o <output_SCDL_filename>
	-i <output_interface_filename>
	-m <max-intf-arguments>
	-y
	-v
	-h
	-F
	-c
	-g a|i|s
	[-trepository=<filename> | -tinfile=<metarepos.infile> | -tmetadata]
	[-S]

	Portability
	Example
	See Also
	Oracle Tuxedo SCA Sample Applications

	Basic Sample: simpappp
	Other Uses

	Advanced Sample: uBike
	Other Uses

	SCA Sample Using Web Services: calc client
	Appendix A: Oracle Tuxedo SCA ATMI Binding Reference

	SCA ATMI Binding Schema
	Notes: The parameters "transactionalintent legacyintent" are not literal values. transactionalintent can be substituted with "suspendsTransaction" or "propagatesTransaction" or omitted. "legacyintent" can be substituted with "legacy" or omitted.
	Listing A-1 SCA ATMI Binding Pseudoschema

	SCA ATMI Binding Attributes Description
	</binding.atmi/@requires>
	</binding.atmi/tuxconfig>
	</binding.atmi/map>
	</binding.atmi/serviceType>
	</binding.atmi/inputBufferType>, </binding.atmi/outputBufferType>, </binding.atmi/errorBufferType>
	Table A-1 SCA Supported Tuxedo Buffer Types

	</binding.atmi/workStationParameters>
	</binding.atmi/authentication>
	</binding.atmi/fieldTablesLocation>
	</binding.atmi/fieldTablesLocation32>
	</binding.atmi/fieldTables>
	</binding.atmi/fieldTables32>
	</binding.atmi/viewFilesLocation>
	</binding.atmi/viewFilesLocation32>
	</binding.atmi/viewFiles>
	</binding.atmi/viewFiles32>
	</binding.atmi/remoteAccess>
	</binding.atmi/transaction/@timeout>
	Appendix B: Oracle Tuxedo SCA Schemas

	ATMI and JTMI Binding Schema For C/C++
	Listing A-1 ATMI and JTMI Binding Schema For C/C++

	Web Service Binding Schema
	Listing A-2 Web Service Binding Schema

