
Oracle® Tuxedo
Service Component Architecture
12c Release 2 (12.2.2)

April 2016

Oracle Tuxedo Programming an Oracle Tuxedo Application Using Java, 12c Release 2 (12.2.2)

Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
1. Administering Oracle Tuxedo SCA Components
Oracle Tuxedo SCA Deployment Model . 1-1

SCA Composite Configuration File. 1-2

SCA Component Configuration File . 1-3

Configuring Oracle Tuxedo SCA Components . 1-6

Configuring an SCA ATMI Client . 1-6

Configuring an SCA JATMI Client . 1-7

Configuring an SCA Workstation Client . 1-9

Configuring an SCA Web Service Client . 1-10

Configuring an SCA ATMI Server . 1-12

Configuring an SCA Web Service Server . 1-14

Configuring SCA Client Security . 1-17

Oracle Tuxedo Application Domain Security. 1-17

Oracle Tuxedo Link-Level Security . 1-19

Administering Oracle Tuxedo SCA Components. 1-21

Tracing the SCA ATMI Server and Client. 1-21

Oracle Tuxedo TMTRACE. 1-22

SCA Runtime, ATMI Service, and Reference Binding Tracing. 1-22

Monitoring SCA ATMI Servers. 1-23

Tracing SCA JATMI Clients . 1-25
Service Component Architecture i

2. Oracle Tuxedo SCA Programming
Overview. 2-2

SCA Utilities. 2-2

SCA Client Programming. 2-2

SCA Client Programming Steps . 2-3

Setting Up the Client Directory Structure . 2-3

Developing the Client Application. 2-4

Composing the SCDL Descriptor. 2-6

Building the Client Application . 2-7

Running the Client Application . 2-7

Handling TPFAIL Data . 2-9

SCA Component Programming . 2-11

SCA Component Programming Steps . 2-13

Setting Up the Component Directory. 2-13

Developing the Component Implementation . 2-14

Composing the SCDL Descriptor. 2-17

Compiling and Linking the Components . 2-18

Building the Oracle Tuxedo Server Host . 2-18

SCA Python, Ruby, and PHP Programming . 2-18

Prerequisites . 2-19

SCA Python, Ruby, and PHP Programming Overview. 2-19

Python, Ruby, and PHP Client Programming . 2-20

SCDL Clients . 2-21

Python Clients . 2-21

Ruby Clients . 2-21

PHP Clients . 2-21

Python, Ruby, and PHP Component Programming. 2-22
ii Service Component Architecture

SCDL Components . 2-22

Python Components . 2-26

Ruby Components. 2-26

PHP Components . 2-27

SCA Structure Support . 2-28

SCA Structure Support Overview . 2-28

Using SCA Structure Description Files . 2-30

Using tuxscagen to Generate Structures . 2-32

SCA Remote Protocol Support . 2-32

/WS . 2-32

/Domains . 2-33

SCA Binding . 2-33

ATMI Binding . 2-33

Java ATMI (JATMI) Binding. 2-35

Python, Ruby, and PHP Binding . 2-38

Python, Ruby, and PHP Binding Limitations . 2-39

Web Services Binding . 2-40

SCA Data Type Mapping . 2-44

Run-Time Data Type Mapping . 2-45

Simple Oracle Tuxedo Buffer Data Mapping . 2-45

Complex Return Type Mapping . 2-48

Complex Oracle Tuxedo Buffer Data Mapping . 2-49

SCA Utility Data Type Mapping . 2-54

C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping 2-55

C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping 2-57

C++ Parameter Type and Oracle Tuxedo Complex Type Mapping 2-57

Parameter and Return Types to Parameter-Level Keyword Restrictions 2-61

Python, Ruby, and PHP Data Type Mapping. 2-62
Service Component Architecture iii

Python Data Type Mapping . 2-63

Ruby Data Type Mapping . 2-66

PHP Data Type Mapping . 2-69

SCA Structure Data Type Mapping. 2-71

SCA Structure and FML32 or FML Mapping . 2-71

SCA Structure and VIEW32, VIEW, X_OCTET, or X_C_TYPE Mapping . 2-72

SCA Structure and Mbstring Mapping. 2-72

TPFAIL Return Data . 2-72

SCA and Oracle Tuxedo Interoperability . 2-73

SCA Transactions . 2-74

SCA Security . 2-75

3. Web Application Server Programming
Overview. 3-1

Developing Native Oracle Tuxedo Web Applications . 3-2

Developing Python Web Applications . 3-7

Prerequisites . 3-7

Usage . 3-7

Example(s). 3-9

Stand-Alone Script/Application . 3-9

Django-Based Application . 3-10

Developing Ruby Web Applications . 3-11

Prerequisites . 3-11

Usage . 3-12

Example(s). 3-13

Developing PHP Web Applications . 3-15

Prerequisites . 3-15

Usage . 3-16
iv Service Component Architecture

Example(s) . 3-16

See Also . 3-16

4. SCA Command Reference
buildscaclient. 4-2

buildscacomponent . 4-6

buildscaserver . 4-10

mkfldfromschema, mkfld32fromschema . 4-14

mkviewfromschema, mkview32fromschema . 4-15

scaadmin . 4-16

SCAHOST (5) . 4-18

scapasswordtool . 4-20

scastructc32, scastructc(1). 4-21

scastructdis32, scastructdis . 4-23

scatuxgen(1) . 4-24

setSCAPasswordCallback(3c). 4-26

tuxscagen(1) . 4-28

5. Oracle Tuxedo SCA Sample Applications
Basic Sample: simpappp . 5-1

Other Uses . 5-1

Advanced Sample: uBike . 5-2

Other Uses . 5-2

SCA Sample Using Web Services: calc client . 5-2

A. Appendix A: Oracle Tuxedo SCA ATMI Binding Reference
SCA ATMI Binding Schema . 6-1

SCA ATMI Binding Attributes Description . 6-3

</binding.atmi/@requires> . 6-3
Service Component Architecture v

</binding.atmi/tuxconfig>. 6-4

</binding.atmi/map> . 6-5

</binding.atmi/serviceType>. 6-5

</binding.atmi/inputBufferType>, </binding.atmi/outputBufferType>,
</binding.atmi/errorBufferType>. 6-5

</binding.atmi/workStationParameters>. 6-7

</binding.atmi/authentication> . 6-8

</binding.atmi/fieldTablesLocation> . 6-9

</binding.atmi/fieldTablesLocation32> . 6-9

</binding.atmi/fieldTables> . 6-9

</binding.atmi/fieldTables32> . 6-9

</binding.atmi/viewFilesLocation> . 6-9

</binding.atmi/viewFilesLocation32> . 6-9

</binding.atmi/viewFiles>. 6-10

</binding.atmi/viewFiles32>. 6-10

</binding.atmi/remoteAccess> . 6-10

</binding.atmi/transaction/@timeout> . 6-10

B. Appendix B:
Oracle Tuxedo SCA Schemas

ATMI and JTMI Binding Schema For C/C++ . 7-1

Web Service Binding Schema . 7-5
vi Service Component Architecture

C H A P T E R 1
Administering Oracle Tuxedo SCA
Components
This chapter contains the following sections:

Oracle SALT SCA Deployment Model

Configuring Oracle Tuxedo SCA Components

Administering Oracle Tuxedo SCA Components

Oracle Tuxedo SCA Deployment Model
An SCA composite is typically described in an associated configuration file, the file name ends
with ".composite". This file uses an XML-based format call the Service Component Definition
Language (SCDL) to describe the components this composite contains and specify how they
related to one another. Deploying Oracle Tuxedo SCA requires at least one root composite file
that is located in $APPDIR.

There are two configuration file types:

SCA Composite Configuration File (.composite)

SCA Component Configuration File (.componentType)

There can be one or more components configured in the root composite file, and each of these
components has its own .composite and .componentType file residing in its own subdirectory.
Service Component Architecture 1-1

SCA Composite Configuration File
There can be zero or more component elements within a composite. The root composite files must
be stored in $APPDIR in a server environment.

Listing 1-1shows an example of a root composite which contains two components:

Listing 1-1 Root Composite with Two Components

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="ECHO.app">
 <component name="ECHO">
 <implementation.composite name="ECHO" />
 </component>
 <component name="TOUPPER">
 <implementation.composite name="TOUPPER" />
 </component>
</composite>

Based on the configuration in Listing 1-1, Listing 1-2 shows the implied the directory hierarchy.

Listing 1-2 SCA Composite Directory Hierarchy

$APPDIR/ECHO.app.composite
$APPDIR/ECHO
$APPDIR/ECHO/ECHO.composite
$APPDIR/ECHO/ECHO.componentType
$APPDIR/TOUPPER
$APPDIR/TOUPPER/TOUPPER.composite
$APPDIR/TOUPPER/TOUPPER.componentType

This example is a typical server configuration. The Oracle Tuxedo SCA client also has a similar
application topology meaning that the client application is located in a subdirectory of the root
1-2 Service Component Architecture

Orac le Tuxedo SCA Dep lo yment Mode l
composite file. Listing 1-3 lists the directory structure for a client named EchoClient that uses
the ECHO1 service provided by ECHO.

Listing 1-3 Directory Structure

$APPDIR/root.composite
$APPDIR/EchoClient/EchoClient.composite
$APPDIR/EchoClient.composite
$APPDIR/EchoClient/EchoClient.dll
$APPDIR/EchoClient/EchoClient.exe

Note: One slight difference between an SCA server environment and an SCA client
environment is that there is no need to have a component configuration file in the client
environment.

SCA Component Configuration File
Components are the basic elements of business function in an SCA assembly, which are
combined into complete business solutions by SCA composites. Components are configured
instances of implementations. Components provide and consume services. More than one
component can use and configure the same implementation, where each component configures
the implementation differently.

Components are declared as sub-elements of a composite in an xxx.composite file. A
component is represented by a component element that is a child of the composite element. Using
the composite from Listing 1-1, the 2 components (ECHO and TOUPPER), contains specific
information. For the ECHO service ($APPDIR/ECHO/ECHO.composite), the ECHO.composite
information is shown in Listing 1-4.

Listing 1-4 ECHO.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="ECHO">
 <service name="ECHO">
 <interface.cpp header="ECHO.h" />
Service Component Architecture 1-3

 <binding.atmi requires="legacy">
 <map target="EchoString1">ECHO1</map>
 <map target="EchoString2">ECHO2</map>
 </binding.atmi>
 <reference>EchoServiceComponent</reference>
 </service>
 <component name="EchoServiceComponent">
 <implementation.cpp library="ECHO" header="ECHOImpl.h" />
 </component>
</composite>

The ECHO service provides two Oracle Tuxedo services: ECHO1 and ECHO2. ECHO1 executes CPP
function “EchoString1”. ECHO2 executes CPP function "EchoString2". The existence of
$APPDIR/ECHO/ECHOImpl.componentType and $APPDIR/ECHO/ECHO.so. are implied.
Listing 1-5 shows information that may be contained in ECHOImpl.componentType.

Note: On some Unix systems the suffix is .so.71 or .sl.

ECHO.so (or ECHO.dll Windows), is the shared library that contains the actual implementation
of EchoString1 and EchoString2 and is loaded into memory when the service is initialized.
ECHO1 and ECHO2 are dynamically advertised at server initialization. For example, if
EchoServer is the Oracle Tuxedo server that provides these two services, the Oracle Tuxedo
UBBCONFIG file should contain information as shown in Listing 1-6.

Listing 1-5 ECHOImpl.componentType

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <service name="ECHO">
 <interface.cpp header="ECHO.h"/>
 </service>
</componentType>
1-4 Service Component Architecture

Orac le Tuxedo SCA Dep lo yment Mode l
Listing 1-6 UBBCONFIG File Example

...
*SERVERS
DEFAULT:
 CLOPT="-A"
EchoServer SRVGRP=GROUP1 SRVID=1001
...

For the TOUPPER service, the existence of $APPDIR/TOUPPER/TOUPPER.composite is also
implied by the ECHO.app.composite file. Listing 1-7 shows information that may be contained
in TOUPPER.composite file.

Listing 1-7 TOUPPER.composite file Example

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="TOUPPER">
 <service name="TOUPPER">
 <interface.cpp header="TOUPPER.h" />
 <binding.atmi requires="legacy">
 <map target="UpperString1">TOUPPER1</map>
 <map target="UpperString2">TOUPPER2</map>
 </binding.atmi>
 <reference>ToupperServiceComponent</reference>
 </service>

 <component name="ToupperServiceComponent">
 <implementation.cpp library="TOUPPER" header="TOUPPERImpl.h"

/>
 </component>

</composite>
Service Component Architecture 1-5

This composite file also implies the existence of
$APPDIR/TOUPPER/TOUPPERImpl.componentType and $APPDIR/TOUPPER/TOUPPER.so.

Note: Oracle Tuxedo SCA only supports "cpp" implementation types.

Configuring Oracle Tuxedo SCA Components
Configuring Oracle Tuxedo SCA components comprises the following:

Configuring an SCA ATMI Client

Configuring an SCA Workstation Client

Configuring an SCA Workstation Client

The above SCA component are hosted in an Oracle Tuxedo server built using
buildscaserver with the -w option (for Web services) and named WSServer

The above SCA component are hosted in an Oracle Tuxedo server built using
buildscaserver with the -w option (for Web services) and named WSServer

Configuring an SCA Web Service Server

Configuring SCA Client Security

Configuring an SCA ATMI Client
The SCA ATMI client is a native Oracle Tuxedo client that is written using the SCA paradigm
and built using the buildscaclient utility. The client executable must be in a subdirectory of a
directory that contains the root.composite file.

Note: The APPDIR environment variable must point to the root.composite file directory.

Listing 1-8 shows the client application root composite file $APPDIR/root.composite.

Listing 1-8 Client Application Root Composite File

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="testApp">
 <component name="testStringClientComp">
 <implementation.composite name="ECHO"/>
 </component>
</composite>
1-6 Service Component Architecture

Conf igur ing Orac le Tuxedo SCA Components
The $APPDIR/ECHO directory contains the ECHO application. The directory name, "ECHO",
must match the name specified in <implementation.composite name="ECHO"/>.
Listing 1-9 shows the client application composite file.

Listing 1-9 Client Application Composite File

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="ECHO">
 <reference name="ECHO">
 <interface.cpp header="ECHO.h"/>
 <binding.atmi requires="legacy">
 <tuxconfig>/tux/application/ECHOServer/tuxconfig</tuxconfig>
 <inputBufferType target="TestString">STRING</inputBufferType>
 <outputBufferType target="TestString">STRING</outputBufferType>
 <errorBufferType target="TestString">STRING</errorBufferType>
 <binding.atmi>
 </reference>
</composite>

The client dynamic link library for this client application is also contained in this directory. For
example, using the example in Listing 1-9, the $APPDIR/ECHO/ECHO.so shared object exists in
the ECHO directory. The target "TestStr" is used to group buffer types together.

The client executable also exists in this directory. There is no naming convention associated with
a client application. This client ECHO application could very well contain "doEchoClient" in
the ECHO application directory. For example: $APPDIR/ECHO/doEchoClient.

Note: You must set SCA_COMPONENT. See Listing 1-9,
SCA_COMPONENT=testStringClientComp.

Configuring an SCA JATMI Client
The JATMI client application configuration composite file is part of the Java .jar file. The
JATMI client composite file is not part of any package and is located in the base of the .jar file.
Service Component Architecture 1-7

When client application is invoked, SCA Java runtime loads the composite file. No special setup
is required.

Note: The client application .jar file must be included in the CLASSPATH. The following .jar
files should also be part of CLASSPATH:

binding-jatmi-extension.jar

com.oracle.jatmi.dataxfm_1.0.0.0.jar

com.bea.core.jatmi_1.2.0.3.jar

com.bea.core.i18n_1.4.0.0.jar

tuscany-sca-manifest.jar

Listing 1-10 shows an SCA JATMI client composite file example.

Listing 1-10 SCA JATMI Client Composite File Example

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:f="binding-atmi.xsd"
name="EchoComposite">
 <reference name="ECHO" promote="EchoComponent/ECHO">
 <interface.java class="com.abc.sca.java.Echo" />
 <f:binding.atmi requires="legacy">
 <f:serviceType>RequestResponse</f:serviceType>
 <f:inputBufferType>FML</f:inputBufferType>
 <f:outputBufferType>FML</f:outputBufferType>
 <f:fieldTables>com.abc.sca.java.fml.FMLTABLE
 </f:fieldTables>
 <f:workStationParameters>
 <f:networkAddress>//STRIATUM:15011
 </f:networkAddress>
 </f:workStationParameters>
 </f:binding.atmi>
 </reference>
 <component name="EchoComponent">
 <implementation.java
 class="com.abc.sca.java.EchoComponentImpl />
1-8 Service Component Architecture

Conf igur ing Orac le Tuxedo SCA Components
 </component>
</composite>

Configuring an SCA Workstation Client
Configuring an SCA workstation clients is similar to configuring SCA native clients. One
difference is that an SCA workstation client requires using the <workStationParameters>
element and its sub-elements in the composite. The SCA runtime automatically detects whether
the client is built as an SCA native client or SCA workstation client and loads the correct
reference binding library accordingly.

An SCA Oracle Tuxedo Workstation client has a similar directory hierarchy to an SCA native
client. Both rely on the environment variable $APPDIR, which points to where the client
application is located.

Listing 1-11 and Listing 1-12 show SCA Oracle Tuxedo workstation client configuration
examples.

Listing 1-11 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="testApp">
 <component name="testStringClientComp">
 <implementation.composite name="ECHO"/>
 </component>
</composite>

Listing 1-12 $APPDIR/ECHO/ECHO.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="ECHO">
 <reference name="ECHO">
 <interface.cpp header="ECHO.h"/>
 <binding.atmi requires="legacy">
 <inputBufferType target="TestString">STRING</inputBufferType>
Service Component Architecture 1-9

 <outputBufferType target="TestString">STRING</outputBufferType>
 <errorBufferType target="TestString">STRING</errorBufferType>
 <workStationParameters>
 <networkAddress>//STRIATUM:4890</networkAddress>
 <encryptBits>128/128</encryptBits>
 </workStationParameters>
 <remoteAccess>WorkStation</remoteAccess>
 </binding.atmi>
 <reference>
</composite>

Configuring an SCA Web Service Client
The SCA Web service client is basically the same as SCA native client except that is uses the
<binding.ws> element instead of <binding.atmi>. The SCA runtime automatically detects
which binding the client is using, and loads the correct reference binding accordingly.

The SCA Web service client has a similar directory hierarchy as native client. They both rely on
the $APPDIR environment variable to point to where the client application is located.

Listing 1-13 and Listing 1-14 show SCA Web service client configuration examples.

Listing 1-13 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="testApp">
 <component name="calcClient">
 <implementation.composite name="calcClient"/>
 </component>
</composite>

Listing 1-14 $APPDIR/calcClient/calcClient.composite

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"name="calcClient">
 <reference name="Calculator">
1-10 Service Component Architecture

Conf igur ing Orac le Tuxedo SCA Components
 <interface.cpp header="CalcService.h"/>
 <binding.ws
 endpoint="http://calc.sample#wsdl.endpoint
 (Calculator/CalculatorSOAP11port)"/>
 </reference>

</composite>

The <interface.cpp> element is required to build the appropriate proxy stub. Also, the client
directory should contain the WSDL file where the endpoint specified in <binding.ws> is
located. In addition, the configuration of the Oracle Tuxedo Web services gateway (GWWS) is
necessary and requires the following steps:

1. Make sure the TMMETADATA and GWWS servers are shut down.

2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, an Oracle
Tuxedo Metadata Repository interface definitions file, fml32 field tables and XML schemas.

3. Optionally, modify the generated WSDF file to override the actual endpoint address used at
runtime. For more information, see WSDF documentation.

4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA
server repository (e.g.: $ tmloadrepos -I calc.mif metadata.repos -y). For more
information, see tmloadrepos documentation.

5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for
example). Listing 1-15 shows the added elements highlighted in blue.

6. Reload the GWWS binary configuration file to take into account the changes performed in
the previous five (e.g.: $ wsloadcf -y gwws.dep).

7. Reboot GWWS and TMMETADATA.

Listing 1-15 GWWS Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<saltdep:Deployment

xmlns:saltdep="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"
Service Component Architecture 1-11

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <saltdep:WSDF>
 <saltdep:Import location="calc.wsdf"/>
 </saltdep:WSDF>
 <saltdep:WSGateway>
 <saltdep:GWInstance id="GWWS1">
 <saltdep:Outbound>
 <saltdep:Binding ref="calc:CalculatorSOAP11Binding">
 <saltdep:Endpoint use="CalculatorSOAP11port"/>
 </saltdep:Binding>
 </saltdep:Outbound>
 </saltdep:GWInstance>
 </saltdep:WSGateway>
 <saltdep:System/>
</saltdep:Deployment>

Configuring an SCA ATMI Server
For an SCA ATMI server, the SCA ROOT is the same as $APPDIR. There should be at least one
composite file that describes the SCA application. The SCA runtime searches for this composite
file and from there it loads all the composite and componentType files for SCA server
applications that are hosted in an Oracle Tuxedo environment.

Listing 1-16 shows a root composite file, named root.composite contains two SCA
applications hosted in an Oracle Tuxedo application domain. The two applications are called
Purchase and Finance. There are at least two subdirectories for these two SCA applications. One
is called Purchase.component and the other is called Finance.component.

Listing 1-16 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="root">
 <component name="Purchase.component">
 <implementation.composite name="Purchase" />
 </component>
 <component name="Finance.component">
1-12 Service Component Architecture

Conf igur ing Orac le Tuxedo SCA Components
 <implementation.composite name="Finance" />
 </component>
</composite>

Listing 1-17 shows the Purchase.component directory contains a composite file for the
Purchase application named Purchase.composite. Similarly, the Finance.component
directory contains a composite file for the Finance application named Finance.composite.

Listing 1-17 $APPDIR/Purchase.component/Purchase.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="Purchase">
 <service name="purchase">
 <interface.cpp header="Purchase.h" />
 <binding.atmi requires="legacy">
 <map target="Order">ORDER</map>
 <map target="TrackOrder">TRACKORDER</map>
 </binding.atmi>
 <reference>PurchaseServiceComponent</reference>
 </service>
 <component name="PurchaseServiceComponent">
 <implementation.cpp library="Purchase"

header="PurchaseImpl.h" />
 </component>
</composite>

Listing 1-18 shows Purchase.composite contains the PurchaseImpl.componentType file
in the $APPDIR/Purchase.component directory and uses CPP as its application
implementation. When an SCA server using this configuration is built using the
buildscaserver utility, it advertises two SCA services automatically at runtime (ORDER and
TRACKORDER). The actual CPP implementation of the services is called Order and TrackOrder.
Service Component Architecture 1-13

Listing 1-18 $APPDIR/Purchase.component/PurchaseImpl.componentType

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <service name="purchase">
 <interface.cpp header="Purchase.h"/>
 </service>
</componentType>

Assume these two SCA applications hosted in Oracle Tuxedo and built using buildscaserver
are called PurchaseSvr and FinanceSvr. You must add the following lines to the *SERVERS
section in the UBBCONFIG file:
PurchaseSvr SRVGRP=PURCHASEGRP SRVID=500

FinanceSvr SRVGRP=FINANCEGRP SRVID=600

There is no need to add a service in the *SERVICES section. SCA services hosted by Oracle
Tuxedo are dynamically advertised.

Configuring an SCA Web Service Server
Configuring Web services binding for components (server side) is similar to configuring ATMI
binding for hosting SCA components.

Listing 1-19 shows a root composite file named root.composite. It contains one SCA
component hosted in an Oracle Tuxedo application domain. The two applications are called
Purchase and Finance. There are at least two subdirectories for these two SCA applications, one
is called Purchase.component, and the other is called Finance.component.

Listing 1-20 shows the actual component subdirectory. Listing 1-21 shows the componentType
side file

Listing 1-19 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="root">
 <component name="account">
1-14 Service Component Architecture

Conf igur ing Orac le Tuxedo SCA Components
 <implementation.composite name="account" />
 </component>
</composite>

Listing 1-20 $APPDIR/account/account.composite

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="account">
 <service name="AccountService">
 <interface.wsdl

interface="http://www.bigbank.com/AccountService#wsdl.interface(AccountSer

vice)"/>
 <binding.ws/>
 <reference>AccountServiceComponent</reference>
 </service>

 <component name="AccountServiceComponent">
 <implementation.cpp library="Account"

header="AccountServiceImpl.h"/>
 </component>
</composite>

Listing 1-21 $APPDIR/account/AccountServiceImpl.componentType

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <service name="AccountService">
 <interface.cpp header="AccountService.h"/>

 </service>
</componentType>
Service Component Architecture 1-15

The above SCA component are hosted in an Oracle Tuxedo server built using buildscaserver
with the -w option (for Web services) and named WSServer

Then in the Oracle Tuxedo UBBCONFIG file you need to add the following line in the
*SERVERS section: WSServer SRVGRP=ACCTGRP SRVID=500.

There is no need add a service in the *SERVICES section. SCA services hosted by Oracle
Tuxedo are dynamically advertised.

In addition, configuration of the Oracle Tuxedo Web services gateway (GWWS) is necessary. Do
the following steps:

1. Make sure the TMMETADATA and GWWS servers are shut down

2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, an Oracle
Tuxedo Metadata Repository interface definitions file, fml32 field tables and XML schemas.

3. Modify the generated WSDF file to specify the actual endpoint address used at runtime to
accept requests. For more information, see WSDF documentation.

4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA
server repository (for example, $ tmloadrepos -I AccountService.mif
metadata.repos -y). For more information, see tmloadrepos documentation.

5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for
example). Listing 1-22 shows the elements added highlighted in blue.

6. Reload the GWWS binary configuration file to take into account the changes performed in
the step five (e.g.: $ wsloadcf -y gwws.dep).

7. Reboot GWWS and TMMETADATA.

Listing 1-22 gwws.dep File

<?xml version="1.0" encoding="UTF-8"?>
<saltdep:Deployment

xmlns:saltdep="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <saltdep:WSDF>
 <saltdep:Import location="AccountService.wsdf"/>
 </saltdep:WSDF>
 <saltdep:WSGateway>
1-16 Service Component Architecture

Conf igur ing Orac le Tuxedo SCA Components
 <saltdep:GWInstance id="GWWS1">
 <saltdep:Inbound>
 <saltdep:Binding

ref="AccountService:AccountServiceSOAP">
 <saltdep:Endpoint use="AccountServiceSOAP"/>
 </saltdep:Binding>
 </saltdep:Inbound>
 </saltdep:GWInstance>
 </saltdep:WSGateway>
 <saltdep:System/>
</saltdep:Deployment>

Configuring SCA Client Security
Oracle Tuxedo SCA components support two types of security:

Oracle Tuxedo Application Domain Security

Oracle Tuxedo Link-Level Security

Oracle Tuxedo Application Domain Security
Oracle Tuxedo Application Domain Security is set when the TUXCONFIG file for the Oracle
Tuxedo Application Domain contains the SECURITY keyword in the *RESOURCES section. There
are five levels of application security: NONE, APP_PW, USER_PW, ACL, and MANDATORY_ACL. All
security levels except NONE require at least an application password from user to gain access to
the Oracle Tuxedo application. At the USER_PW level and above there is an additional user
password to authenticate the user and establish user credentials. In total there are potentially two
passwords that need to be configured.

All SCA clients require this password information in order to gain access to Oracle Tuxedo
application servers. There are two ways for an SCA client to retrieve password information:

The client application may provide password information to ATMI/JATMI reference
binding extensions through a callback mechanism.

The client application may configure the identification of the password to be retrieved by
the ATMI/JATMI reference binding extensions in the appropriate composite file.
Service Component Architecture 1-17

Note: For more information, see Password callback methods in Oracle Tuxedo SCA
Programming.

In order for the Oracle Tuxedo administrator to configure password retrieval, the administrator
must:

Maintain the password.store file and set this file up correctly for the client application.
The administrator must duplicate the password.store file across different machines if
necessary.

Add or delete password and identification pairs when necessary.

Configure the client application composite file with correct information.

Listing 1-23 and Listing 1-24 contain SCA ATMI client application examples.

Listing 1-23 $APPDIR/password.store $APPDIR/simple.app.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="simple.app">

 <component name="simpapp.TuxClient">
 <implementation.composite name="simpapp.client"/>
 <reference name="TOUPPER">tuxToupper</reference>
 </component>

</composite>

Listing 1-24 $APPDIR/simpapp.client/simpapp.client.composite

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="simpapp.client">

 <reference name="TOUPPER">
 <interface.cpp header="ToupperTuxService.h"/>
 <binding.atmi requires="legacy">
1-18 Service Component Architecture

Conf igur ing Orac le Tuxedo SCA Components
 <tuxconfig>d:\tests\tuxedo\sca\tests\TUXCONFIG</tuxconfig>
 <inputBufferType target="charToup">STRING</inputBufferType>
 <outputBufferType target="charToup">STRING</outputBufferType>
 <authentication
 <passwordIdentifier>aaa</passwordIdentifier>
 </authentication>
 </binding.atmi>
 </reference>
</composite>

The above composite defines an Oracle Tuxedo application domain password identification
"aaa" which causes the ATMI reference binding to retrieve the password with identification
"aaa" from the password.store file at the runtime. If you increased Oracle Tuxedo application
domain security by requiring user authentication. (SECURITY=USER_PW or above) you would use
the following command: scapasswordtool -i crusoe -a.

Then use a text editor or any other tool that can edit the simpapp.client.composite file and
add the following entry in the <binding.atmi/authentication> element:
<userPasswordIdentifier>crusoe</userPasswordIdentifier>

Anyone using the password "crusoe" can access Oracle Tuxedo applications.

Oracle Tuxedo Link-Level Security
Oracle Tuxedo Link-Level Security has two variations. One is the easily configured Link-Level
Encryption (LLE) and the other one is the more commonly used Transport Layer Security (TLS)
also known as Secured Socket Layer (SSL). An SCA ATMI client using the native ATMI
reference binding does not need link-level security configured at the SCA level since its transport
method is native message queues and the Oracle Tuxedo BRIDGE.

The SCA JATMI client reference binding does not support link-level security. The only type of
SCA client that allows configuration of link-level security is SCA Workstation ATMI client.

The SCA Workstation ATMI client contains a <workStationParameters> element configured
in the composite file. The SCA runtime automatically loads the correct reference binding for this
type of client.
Service Component Architecture 1-19

Configuring Link-Level Encryption
Link-level encryption can be configured by adding an <encryptBits> element in the composite
file. The following elements should not be configured for LLE, since they are specific to SSL
encryption and imply that SSL encryption is used:

secPrincipalName

secPrincipalLocation

secPrincipalPassId

The <encryptBits> element specifies the encryption strength that this client attempts to
negotiate. The syntax for the <encryptBits> element is <minimum encryption
strength>/<maximum encryption strength>. To configure minimum 56-bit encryption you
must add the following to the composite file:
<networkAddress>//STRIATUM:8741</networkAddress>

<encryptBits>56/128</encryptBits>

Note: encryptBits specifies the encryption strength that the client connection attempts to
negotiate. The format is <minencryptbits>/<maxencprytbits> (for example,
128/128). Values can be 0 (no encryption is used), 40, 56, 128, or 256. Invalid values
result in a configuration exception.

This tells SCA Workstation Reference binding to require 56 to 128 bits encryption strength when
negotiating with WSH. You must also add the following line to the *SERVERS section in the
UBBCONFIG file:
WSL SRVGRP=GROUP1 SRVID=1001 CLOPT="-A -- -n //STRIATUM:8741 -a -z 56 -Z
256

Configuring Transport Layer Security
In addition to <encryptBits>, to enable Link-Level Security over TLS/SSL you must configure
secPrincipalName, secPrincipalLocation, and secPrincipalPassId.

secPrincipalName - the name of the security principal. It is used for searching the client
X.509 certification from the LDAP server.

secPrincipalLocation - the client private key file.

secPrincipalPassId - the password identifier that is used to retrieve client password
used to encrypt the private key file.
1-20 Service Component Architecture

Admin is te r ing Orac le Tuxedo SCA Components
Note: The "cn" attribute of a distinguished name is used as key for certificate lookup. Wildcards
used in a name are not supported. Empty subject fields are not allowed. This limitation
is also found in Oracle Tuxedo.

These three parameters specify the parameters needed when a TLS/SSL connection needs to be
established by a SCA Workstation ATMI client.

Listing 1-25 contains the lines you must add to the client composite file in
/binding.atmi/workStationParameters to configure TLS/SSL.

Listing 1-25 Client Composite File

<networkAddress>//STRITUM:8742</networkAddress>
<secPrincipalName>crusoe</secPrincipalName>
<secPrincipalLocation>/tux/udataobj/security/keys/crusoe.pem</secPrincipal

Location>
<secPrincipalPassId>crusoe</secPrincipalPassId>

In Oracle Tuxedo, you must add -S 8742 to WSL to indicate that TLS/SSL is used if the client
connects through port 8742.

WSL SRVGRP=GROUP1 SRVID=1001
 CLOPT="-A -- -n //STRIATUM:8741 -S 8742 -z 56 -Z 128"

Administering Oracle Tuxedo SCA Components
This section contains the following topics:

Tracing the SCA ATMI Server and Client

Log File Contents

Log File Contents

Tracing the SCA ATMI Server and Client
Both The SCA ATMI server and client can utilized the existing tracing capability provided by
Oracle Tuxedo and SCA. The following sections describe how to use them in detail:

Oracle Tuxedo TMTRACE
Service Component Architecture 1-21

SCA Runtime, ATMI Service, and Reference Binding Tracing

Oracle Tuxedo TMTRACE
SCA ATMI servers and clients support the Oracle Tuxedo tmtrace(5)function. All traces
generated from TMTRACE are logged in the ULOG file. Checking the ULOG file trace information
helps to determine the cause of a failure. The Oracle Tuxedo TMTRACE facility is enabled by
setting TMTRACE environmental variable, or by using the tmadmin chtr sub-command.

Note: To trace Oracle Tuxedo ATMI messages enter: export TMTRACE=atmi:ulog at the
command line.

SCA Runtime, ATMI Service, and Reference Binding Tracing
There are two environment variables used for tracing:

SCACPP_LOGGING: Set to a numeric value and controls the number of trace messages
produced.

SCACPP_ULOG: Set to "yes" to send trace messages to the ULOG. If this environment
variable is not set or is set to "no", then trace messages are written to standard output.

Note: These tracing facilities are only available for Oracle Tuxedo server builds using
buildscaserver and SCA client builds using buildscaclient.

Listing 1-26 shows a ULOG example containing SCA runtime tracing:

Note: Lines starting with ">>" or with "<<" is not printed when the code is compiled

Listing 1-26 SCA Runtime Tracing Information ULOG File

142059.STRIATUM!?proc.1108.3000.-2:

osoa::sca::CompositeContext::getCurrent
142059.STRIATUM!?proc.1108.3000.-2: >>

Tuscany::sca::SCARuntime::getCurrent Runtime
142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::util::ThreadLocal::getValu e
142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::util::ThreadLocal::getValu e
142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::SCARuntime::getShared Runtime
1-22 Service Component Architecture

Admin is te r ing Orac le Tuxedo SCA Components
142059.STRIATUM!?proc.1108.3000.-2: SCARuntime::getSharedRuntime()
142059.STRIATUM!?proc.1108.3000.-2: >> tuscany::sca::util::Mutex::lock

142059.STRIATUM!?proc.1108.3000.-2: << tuscany::sca::util::Mutex::lock

142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::util::Mutex::unlock
142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::util::Mutex::unlock
142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::SCARuntime::getSharedR untime
142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::util::ThreadLocal::Thread Local
142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::util::ThreadLocal::Thread Local
142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::SCARuntime::SCARuntime
142059.STRIATUM!?proc.1108.3000.-2: SCA runtime install root

f:\tuxedo\tux101rp _wsc\udataobj\salt\sca
142059.STRIATUM!?proc.1108.3000.-2: Default component:

testStringClientComp
142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::util::ThreadLocal::getValu e
142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::util::ThreadLocal::getValu e

Monitoring SCA ATMI Servers
An Oracle Tuxedo SCA server built with the buildscaserver utility can be monitored using the
scaadmin utility. This utility shows service statistics information and helps perform maintenance
through dynamic shared library loading and unloading.

To reload all components hosted by the uBikeServer Oracle Tuxedo server previously built
using the buildscaserver command, do the following:

1. prompt> scaadmin

2. prompt> reload -s uBikeServer
Service Component Architecture 1-23

Enter the following at the command line to display statistics on the services offered by the
uBikeServer Oracle Tuxedo server (Table 1-1 shows the results):

1. prompt> scaadmin

2. prompt> pstats -s uBikeServer

Before scaadmin is executed, you must set the TUXCONFIG environment variable. Table 1-2 lists
scaadmin sub-commands.

Note: Both Windows and HP systems have a limitation using the "reload" sub-command.

When multiple servers share the same component library on Windows and HP systems,
the shared component library cannot be reloaded. To reload a component library common
to multiple servers, the "scaadmin" reload sub-command must be performed on all
affected servers simultaneously.

Table 1-1 pstats 0utput Service Statics

Service Method Status Requests Processed

SEARCHINVENTORY searchInventory A 37

Table 1-2 scaadmin Sub-Commands

Sub-Command Abbrev. Description

default d Sets the corresponding argument to default, and it can be
machine name, group name, server id, or server name. If
the default command is entered without an argument, the
current default values is printed.

reload r Dynamically reloads the SCA components hosted in a
Oracle Tuxedo server.

printstats pstats Displays the list of services hosted by an Oracle Tuxedo
server, and the associated method, number of queries, and
status (active, idle)

verbose v Produces output in verbose mode.

echo e Switches echo input on/off echo.

quit q Terminates the session.
1-24 Service Component Architecture

Admin is te r ing Orac le Tuxedo SCA Components
Tracing SCA JATMI Clients
The Oracle Tuxedo SCA Java reference binding and data transformation support output to the
console and to a log file. By default there are at most 10 log files, the maximum size of each file
is 100000 bytes, and are located in $APPDIR with name jatmi<number>.log file. The log file
names are cycled with the latest one using the number 0, and the one just before latest one uses 1
(for example. jatmi0.log is the latest log file, and jatmi9.log is the oldest log file). If the
APPDIR environment variable is not set and com.oracle.jatmi.APPDIR java property is not
specified, the log is placed in the current working directory.

By default, the log files are overwritten each time the application starts. Many logger parameters
can be fine tuned. Table 1-3 lists tunable Java properties related to logging.

To have the Oracle Tuxedo SCA Java reference binding log in a different language, first check
the supported languages that are installed. The default is English. To switch to a different
language, add: "-Duser.language=<your preferred language>" to your Java command
line when starting the Oracle Tuxedo SCA Java client. For example:

Table 1-3 Logger Tuning Property Table

Function Properties Value Range Default Value

Log File
Location

com.oracle.jatmi.APPDIR valid path name APPDIR environmental
variable, if APPDIR is not
set uses current working
directory

Log File Size com.oracle.jatmi.LogFil
eSize

0 ... maximum file
size supported by the
system

100,000 bytes

Append File com.oracle.jatmi.LogFil
eAppend

{true,false} false

Number of Log
Files

com.oracle.jatmi.LogFil
eCount

1 ... maximum number
of files in a directory

10

Log Output com.oracle.jatmi.LogDes
tination

{file,console,b
oth}

both

Log Format com.oracle.jatmi.LogFil
eFormat

{xml,plain} plain
Service Component Architecture 1-25

java -classpath .:/apps/classes:$CLASSPATH -Duser.langueage=ES
-Dcom.oracle.jatmi.LogDestination=console myApplication.

This generates an English log in plain text format to the console only.

Table 1-3 shows an example of the log file contents.

Listing 1-27 Log File Contents

9/3/08:3:19:14 PM:10:TRACE[TuxedoConversion,processSendBuf]< (10) return

1st args
9/3/08:3:19:14 PM:10:DBG[AtmiBindingInvoker,invoke]ServiceType:

requestresponse
9/3/08:3:19:14 PM:10:DBG[AtmiBindingInvoker,invoke]Return Type Class:

simpapp.View7Rep
9/3/08:3:19:14 PM:10:DBG[AtmiBindingInvoker,invoke]target service name:

RULE7
9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]TPURCODE: 0
9/3/08:3:19:15 PM:10:TRACE[TuxedoConversion,processReplyBuffer]> (reply

simpapp.View7Rep@191777e:0:null)
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]returnType:

simpapp.View7Rep
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]Reply Buffer

Class: simpapp.View7Rep
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]Reply Buffer

Type: X_COMMON
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]Reply Buffer

Subtype: View7Rep
9/3/08:3:19:15 PM:10:TRACE[TuxedoConversion,processReplyBuffer]< (30)

return buffer directly
9/3/08:3:19:15 PM:10:DBG[Accessors,getConventionProperty]Convention

Property: CONVENTIONS_TUX
9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]networkAddress: host =

STRIATUM, port = 8080
9/3/08:3:19:15

PM:10:TRACE[AtmiBindingInvoker,determineServiceCallParameters]> ()
9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,isLegacy]> ()
9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,isLegacy]< (10) return true
9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,isMap]> ()
1-26 Service Component Architecture

Admin is te r ing Orac le Tuxedo SCA Components
9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,isMap]< (10) return false
9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]Operation name

= rule7_OVVO
9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getServiceType]> (rule7_OVVO)
9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getServiceType]< (10) return

null
9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getInputBufferType]>

(rule7_OVVO)
9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getInputBufferType]< (10)

return null
9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getOutputBufferType]>

(rule7_OVVO)
9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getOutputBufferType]< (10)

return null
9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,getErrorBufferType]> (rule7_OVVO)

9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,getErrorBufferType]< (10) return

null
9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]svcName =

RULE7
9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]svcType =

requestresponse
9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]inbuf =

X_COMMON
9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]outbuf =

X_COMMON
9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]errbuf = null

9/3/08:3:19:15

PM:10:TRACE[AtmiBindingInvoker,determineServiceCallParameters]< (10)

return
9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]Input Buffer Type:

X_COMMON
Service Component Architecture 1-27

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]Output Buffer Type:

X_COMMON
9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]Error Buffer Type: null

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]inBufType:X_COMMON,

count: 1
9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]outBufType:X_COMMON,

count: 1
9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]View Classes:

simpapp.View7Req,simpapp.View7Rep
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Req
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Rep
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,setFieldClasses]setFldClasses:

null
9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]Passing thro invoker...

9/3/08:3:19:15 PM:10:TRACE[TuxedoConversion,processSendBuf]> (args

[Ljava.lang.Object;@ab1b4)
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]args[0] class

simpapp.Rule7Req
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,needConversion]buftype: X_COMMON

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]Argument Class

Name: simpapp.Rule7Req
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]Input Buffer Id

: XCOMMON
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]Type code :

10
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]InputBufferType:

XCOMMON
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Req
9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Rep
9/3/08:3:19:15 PM:10:TRACE[Accessors,determineConvention]>

(simpapp.Rule7Req)
9/3/08:3:19:15 PM:10:DBG[Accessors,determineConvention]Method name: getId
1-28 Service Component Architecture

Admin is te r ing Orac le Tuxedo SCA Components
9/3/08:3:19:15 PM:10:DBG[Accessors,determineConvention]Method name: setCmd

9/3/08:3:19:15 PM:10:DBG[Accessors,determineConvention]Method name: setId

9/3/08:3:19:15 PM:10:DBG[Accessors,determineConvention]Method name: getCmd

9/3/08:3:19:15 PM:10:TRACE[Accessors,determineConvention]< (30) return BEAN
Service Component Architecture 1-29

1-30 Service Component Architecture

C H A P T E R 1
Oracle Tuxedo SCA Programming
This chapter contains the following topics:

Overview

SCA Utilities

SCA Client Programming

SCA Component Programming

SCA Python, Ruby, and PHP Programming

SCA Structure Support

SCA Remote Protocol Support

SCA Binding

SCA Data Type Mapping

SCA and Oracle Tuxedo Interoperability

SCA Transactions

SCA Security
Service Component Architecture 2-1

tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)

<~runChNum>
Overview
One important aspect of Service Component Architecture (SCA) is the introduction of a new
programming model. As part of the Oracle Tuxedo architecture, SCA allows you to better blend
high-output, high-availability and scalable applications in an SOA environment.

SCA components run on top of the Oracle Tuxedo infrastructure using ATMI binding. The ATMI
binding implementation provides native Oracle Tuxedo communications between SCA
components, as well as SCA components and Oracle Tuxedo programs (clients and servers).

In addition to the programming model, the Service Component Definition Language (SCDL)
describes what components can perform in terms of interactions between each other, and instructs
the framework to set-up necessary links (wires).

SCA Utilities
The following utilities are used in conjunction with Oracle Tuxedo SCA programming:

buildscaclient: Builds client processes that call SCA components.

buildscacomponent: Builds SCA components.

buildscaserver: Builds an Oracle Tuxedo server containing SCA components.

SCAHOST: Generic server for Python, Ruby or PHP SCA components.

scatuxgen: Generates Oracle Tuxedo Service Metadata Repository interface information
from an SCA interface.

scastructc32,scastructc: Structure description file compiler.

scastructdis32, scastructdis: Binary structure and view files disassembler.

tuxscagen: Generates SCA, SCDL, and server-side interface files for Oracle Tuxedo
services.

For more information, see the SCA Command Reference.

SCA Client Programming
The runtime reference binding extension is the implementation of the client-side aspect of the
SCA container. It encapsulates the necessary code used to call other services, SCA components,
Oracle Tuxedo servers or even Web services, transparently from an SCA-based component.
2-2 Service Component Architecture

SCA C l i en t P rogramming
SCA Client Programming Steps
Developing SCA client programs requires the following steps:

1. Setting Up the Client Directory Structure

2. Developing the Client Application

3. Composing the SCDL Descriptor

4. Building the Client Application

5. Running the Client Application

6. Handling TPFAIL Data

Setting Up the Client Directory Structure
You must define the applications physical representation. Strict SCA client applications are SCA
component types. Listing 1-1shows the directory structure used to place SCA components in an
application.

Listing 1-1 SCA Component Directory Structure

myApplication/ (top-level directory, designated by the APPDIR environment

variable)
 root.composite (SCDL top-level composite, contains the list of

components in this application)
 myClient/ (directory containing actual client component described in

this section)
 myClient.composite (SCDL for the client component)

 myClient.cpp (client program source file)
 TuxService.h (interface of component called by client program)

Listing 1-2 shows an example of typical root.composite content.
Service Component Architecture 2-3

<~runChNum>
Listing 1-2 root.composite Content

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="simple.app">
 <component name="myClientComponent">
 <implementation.composite name="myClient"/>
 </component>
</composite>

The implementation.composite@name parameter references the directory that contains the
component named 'myClientComponent'. This value is required at runtime. For more
information, see Running the Client Application.

Developing the Client Application
Client programs are required to implement a call to a single API. This following call is required
in order to set up the SCA runtime:

...
 CompositeContext theContext = CompositeContext::getCurrent();
...
Actual calls are based on an interface. This interface is usually developed along with the
component being called. In the case of existing Oracle Tuxedo ATMI services, this interface can
be generated by accessing the Oracle Tuxedo METADATA repository.

In the case of calling external Web services, an interface matching the service WSDL must be
provided. For more information, see SCA Data Type Mapping for the correspondence between
WSDL types and C++ types.

Listing 1-3 shows an interface example.

Listing 1-3 Interface Example

#include <string>
/**
 * Tuxedo service business interface
 */
 class TuxService
2-4 Service Component Architecture

SCA C l i en t P rogramming
 {
 public:
 virtual std::string TOUPPER(const std::string inputString) = 0;
 };

In the interface shown in Listing 1-3, a single method TOUPPER is defined. It takes a single
parameter of type std::string, and returns a value of type std::string. This interface needs
to be located in its own .h file, and is referenced by the client program by including the .h file.

Listing 1-4 shows an example of a succession of calls required to perform an invocation.

Listing 1-4 Invocation Call Example

// SCA definitions
// These also include a Tuxedo-specific exception definition:

ATMIBindingException
#include "tuxsca.h"
// Include interface
#include "TuxService.h"
...
 // A client program uses the CompositeContext class
 CompositeContext theContext = CompositeContext::getCurrent();
...
 // Locate Service
 TuxService* toupperService =
 (TuxService *)theContext.locateService("TOUPPER");
...
 // Perform invocation
 const std::string result = toupperService->TOUPPER("somestring");
...

Notes: The invocation itself is equivalent to making a local call (as if the class were in another
file linked in the program itself).

For detailed code examples, see the SCA samples located in following directories:
Service Component Architecture 2-5

<~runChNum>
UNIX samples: $TUXDIR/samples/salt/sca

Windows samples: %TUXDIR%\samples\salt\sca

Composing the SCDL Descriptor
The link between the local call and the actual component is made by defining a binding in the
SCDL side-file. For example, Listing 1-4 shows a call to an existing Oracle Tuxedo ATMI
service, the SCDL descriptor shown in Listing 1-5 should be used. This SCDL is contained in a
file called <componentname>.composite.

Listing 1-5 SCDL Descriptor

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="simpapp.client">
 <reference name="TOUPPER">
 <interface.cpp header="TuxService.h"/>
 <binding.atmi requires="legacy">
 <inputBufferType target="TOUPPER">STRING</inputBufferType>
 <outputBufferType target="TOUPPER">STRING</outputBufferType>
 </binding.atmi>
 </reference>
</composite>

This composite file indicates that a client component may perform a call to the TOUPPER
reference, and that this call is performed using the ATMI binding. In effect, this results in a
tpcall() to the "TOUPPER" Oracle Tuxedo service. This Oracle Tuxedo service may be an actual
existing Oracle Tuxedo ATMI service, or another SCA component exposed using the ATMI
binding. For more information, see SCA Component Programming.

The inputBufferType and outputBufferType elements are used to determine the type of
Oracle Tuxedo buffer used to exchange data. For more information, see SCA Data Type Mapping
and the ATMI Binding Element Reference for a description of all possible values that can be used
in the binding.atmi element.
2-6 Service Component Architecture

../sca/sca_bindschema.html

SCA C l i en t P rogramming
Building the Client Application
Once all the elements are in place, the client program is built using the buildscaclient command.
You must do the following steps:

1. Navigate to the directory containing the client source and SCDL composite files

2. Execute the following command:

$ buildscaclient -c myClientComponent -s . -f myClient.cpp

This command verifies the SCDL code, and builds the following required elements:

A shared library (or DLL on Windows) containing generated proxy code

The client program itself

If no syntax or compilation error is found, the client program is ready to use.

Running the Client Application
To execute the client program, the following environment variables are required:

APPDIR - designates the application directory; in the case of SCA this typically contains
the top-level SCDL composite.

SCA_COMPONENT - the default SCA component (the value 'myClientComponent' in the
example shown in Listing 1-2). It tells the SCA runtime where to start when looking for
services in the locateService() call.

Invoking Existing Oracle Tuxedo Services
Access to existing Oracle Tuxedo ATMI services from an SCA client program can be simplified
using the examples shown in Listing 1-6, Listing 1-7, and Listing 1-8.

Note: These examples can also be used for server-side SCA components.

Starting from a Oracle Tuxedo METADATA repository entry as shown in Listing 1-6, the
tuxscagen(1) command can be used to generate interface and SCDL.

Listing 1-6 SCA Components Calling an Existing Oracle Tuxedo Service

service=TestString
tuxservice=ECHO
servicetype=service
Service Component Architecture 2-7

<~runChNum>
inbuf=STRING
outbuf=STRING

service=TestCarray
tuxservice=ECHO
servicetype=service
inbuf=CARRAY
outbuf=CARRAY

Listing 1-7 Generated Header

#ifndef ECHO_h
#define ECHO_h
#include <string>
#include <tuxsca.h>
class ECHO
{
public:
 virtual std::string TestString(const std::string arg) = 0;
 virtual std::string TestCarray(const struct carray_t * arg) = 0; };
#endif /* ECHO_h */

Listing 1-8 Generated SCDL Reference

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="ECHO">
 <reference name="ECHO">
 <interface.cpp header="ECHO.h"/>
 <binding.atmi requires="legacy">
 <serviceType target="TestString">RequestResponse</serviceType>
 <inputBufferType target="TestString">STRING</inputBufferType>
 <outputBufferType target="TestString">STRING</outputBufferType>
 <serviceType target="TestCarray">RequestResponse</serviceType>
 <inputBufferType target="TestCarray">CARRAY</inputBufferType>
 <outputBufferType target="TestCarray">CARRAY</outputBufferType>
2-8 Service Component Architecture

SCA C l i en t P rogramming
 </binding.atmi>
 </reference>
</composite>

The steps used to invoke these services are identical to the examples shown in Listing 1-6 through
Listing 1-8.

Handling TPFAIL Data
Invoking a non-SCA Oracle Tuxedo ATMI service may return an error, but still send back data
by using tpreturn(TPFAIL, …). When this happens, an SCA client or component is interrupted
by the ATMIBindingException type.

The data returned by the service, if present, can be obtained by using the
ATMIBindingException.getData()API. For more information see, TPFAIL Return Data.

The example in Listing 1-9 corresponds to a binding.atmi definition as shown in Listing 1-10.

Listing 1-9 Invocation Interruption Example

...
 try {
 const char* result = toupperService->charToup("someInput");
 } catch (tuscany::sca::atmi::ATMIBindingException& abe) {
 // Returns a pointer to data corresponding to
 // mapping defined in <errorBufferType> element
 // in SCDL
 const char* *result = (const char **)abe.getData();
 if (abe.getData() == NULL) {
 // No data was returned
 } else {
 // Process data returned
 ...
 }
 } catch (tuscany::sca::ServiceInvocationException& sie) {
 // Other type of exception is returned
Service Component Architecture 2-9

<~runChNum>
 }
...

Listing 1-10 /binding.atmi Definition

...
 <binding.atmi requires="legacy">
 <inputBufferType target="charToup">STRING</inputBufferType>
 <outputBufferType

target="charToup">STRING</outputBufferType>
 <errorBufferType target="charToup">STRING</errorBufferType>
<binding.atmi/>
...

Other returned data types must be cast to the corresponding type. For example, an invocation
returning a commonj::sdo::DataObjectPtr as shown in Listing 1-11.

Listing 1-11 SCDL Invocation Example

...
 <errorBufferType target="myMethod">FML32/myType</errorBufferType>
...

The ATMIBindingException.getData() result is shown in Listing 1-12.

Listing 1-12 ATMIBindingException.getData() Results

...
 catch (tuscany::sca::atmi::ATMIBindingException& abe) {
 const commonj::sdo::DataObjectPtr *result =
 (const commonj::sdo::DataObjectPtr *)abe.getData();
...
2-10 Service Component Architecture

SCA Component P rogramming
The rules for returning TPFAIL data to the calling application are as follows:

For each <errorBufferType>, a canonical type is defined, where <errorBufferType> is
converted. When the <errorBufferType> is equal to the <outputBufferType>, the
canonical type is the same C++ type that is returned in a successful service
implementation.

When the <errorBufferType> is different from the <outputBufferType>, the canonical
type is as follows:

– For STRING buffers, a C++ char* or char[]data type.

– For MBSTRING buffers, a C++ wchar_t* or wchar_t[].

– For CARRAY buffers, a C++ CARRAY_PTR.

– For X_OCTET buffers, a C++ X_OCTET_PTR.

– For XML buffers, a C++ XML_PTR.

– For FML, FML32, VIEW, VIEW32, X_COMMON, and X_C_TYPE buffers, a C++
commonj::sdo::DataObjectPtr.

In each case, the value returned by getData() is a pointer to one of the types listed above.

For more conversion rules between Oracle Tuxedo buffer types and C++ data information, see
SCA Data Type Mapping.

SCA Component Programming
The SCA Component terminology designates SCA runtime artifacts that can be invoked by other
SCA or non-SCA runtime components. In turn, these SCA Components can perform calls to other
SCA or non-SCA components. This is different from strict SCA clients which can only make
calls to other SCA or non-SCA components, but cannot be invoked.

The Oracle Tuxedo SCA container provides the capability of hosting SCA components in an
Oracle Tuxedo server environment. This allows you to take full advantage of proven Oracle
Tuxedo qualities: reliability, scalability and performance.

Figure 1-1 summarizes SCA components and Oracle Tuxedo server mapping rules.
Service Component Architecture 2-11

<~runChNum>
Figure 1-1 SCA Component and Oracle Tuxedo Server Mapping Rules

While SCA components using Oracle Tuxedo references do not require special processing, SCA
components offering services must still be handled in an Oracle Tuxedo environment.

The mapping is as follows:

An SCA composite declaring one or more services with a <binding.atmi> definition
maps to a single Oracle Tuxedo server advertising the same number of services as the SCA
composite.

There can be more than one composite.

Composites can be nested.

Promotion handling:

– A composite promoting a service contained in a nested component results in the
promoted service being advertised as an Oracle Tuxedo service.

– A service declared in a component, but not promoted, is not advertised.

The resulting Oracle Tuxedo server advertises as many services as there are
binding.atmi sections in the SCDL definition

Interfaces may declare multiple methods. Each method is linked to an Oracle Tuxedo
native service using the /binding.atmi/@map attribute. A method not declared via the
2-12 Service Component Architecture

SCA Component P rogramming
/binding.atmi/@map attribute is not accessible through Oracle Tuxedo. The use of
duplicate service names are detected at server generation time, so that Oracle Tuxedo
service names-to-interface method mapping in a single Oracle Tuxedo server instance is
1:1.

A generated Oracle Tuxedo server acts as a proxy for SCA components. An instance of
this generated server corresponds to an SCA composite as defined in the SCDL
configuration. Such servers are deployed as necessary by the Oracle Tuxedo administrator.

SCA composites are deployed in an Oracle Tuxedo application by configuring instances of
generated SCA servers in the UBBCONFIG file. Multiple instances are allowed. Multi-threading
capabilities are also allowed and controllable using already-existing Oracle Tuxedo features.

SCA Component Programming Steps
The steps required for developing SCA component programs are as follows:

1. Setting Up the Component Directory

2. Developing the Component Implementation

3. Composing the SCDL Descriptor

4. Compiling and Linking the Components

5. Building the Oracle Tuxedo Server Host

Setting Up the Component Directory
You must first define the applications physical representation. Listing 1-13 shows the directory
structure used to place SCA components in an application:

Listing 1-13 SCA Component Directory Structure

myApplication/ (top-level directory, designated by the APPDIR environment

variable)
 root.composite (SCDL top-level composite, contains the list of

components in this application)
 myComponent/ (directory containing actual component described in this

section)
 myComponent.composite (SCDL for the component)
 myComponent.componentType
Service Component Architecture 2-13

<~runChNum>
 myComponentImpl.cpp (component implementation source file)
 TuxService.h (interface of component being exposed)
 TuxServiceImpl.h (component implementation definitions)

Listing 1-14 shows typical root.composite content.

Listing 1-14 root.composite Content

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="simple.app">
 <component name="myComponent">
 <implementation.composite name="myComponent"/>
 </component>
</composite>

The implementation.composite@name parameter references the directory that contains the
'myComponent' component.

Developing the Component Implementation
Components designed to be called by other components do not need to be aware of the SCA
runtime. There are, however, limitations in terms of interface capabilities, such as:

C++ classes (other than std::string and commonj::sdo::DataObjectPtr) cannot be
used as parameters or return values

Parameter arrays are not supported

For more information, see SCA Data Type Mapping.

Listing 1-15 shows an example of an interface implemented for a client program.

Listing 1-15 Component Implementation Interface

#include <string>
/**
2-14 Service Component Architecture

SCA Component P rogramming
 * Tuxedo service business interface
 */
 class TuxService
 {
 public:
 virtual std::string TOUPPER(const std::string inputString) = 0;
 };

The component implementation then generally consists of two source files (as shown
Listing 1-16 and Listing 1-17 respectively):

component implementation definitions, contained in a <servicename>Impl.h file, and

component implementation, contained in a <servicename>Impl.cpp file

Listing 1-16 Example (TuxServiceImpl.h):

#include "TuxService.h"

 /**
 * TuxServiceImpl component implementation class
 */
 class TuxServiceImpl: public TuxService
 {
 public:
 virtual std::string toupper(const std::string inputString);
 };

Listing 1-17 Example (TuxServiceImpl.cpp):

#include "TuxServiceImpl.h"
 #include "tuxsca.h"

using namespace std;
using namespace osoa::sca;
Service Component Architecture 2-15

<~runChNum>

/**
* TuxServiceImpl component implementation
*/
std::string TuxServiceImpl::toupper(const string inputString)
{
 string result = inputString;

 int len = inputString.size();

 for (int i = 0; i < len; i++) {
 result[i] = std::toupper(inputString[i]);
 }

 return result;
}

Additionally, a side-file (componentType), is required. It contains the necessary information for
the SCA wrapper generation and possibly proxy code (if this component calls another
component).

This componentType file (<componentname>Impl.componentType)is an SCDL file type.
Listing 1-18 shows an example of a componentType file (TuxServiceImpl.componentType).

Listing 1-18 componentType File Example

<?xml version="1.0" encoding="UTF-8"?>
 <componentType xmlns="http://www.osoa.org/xmlns/sca/1.0" >
 <service name="TuxService">
 <interface.cpp header="TuxService.h"/>
 </service>
 </componentType>
2-16 Service Component Architecture

SCA Component P rogramming
Composing the SCDL Descriptor
The link between the local implementation and the actual component is made by defining a
binding in the SCDL side-file. For example, for the file type in Listing 1-18 to be exposed as an
Oracle Tuxedo ATMI service, the SCDL in Listing 1-19 should be used. This SCDL is contained
in a file called <componentname>.composite (for example, myComponent.composite).

Listing 1-19 Example SCDL Descriptor

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="myComponent">

 <service name="TuxService">

 <interface.cpp header="TuxService.h"/>

 <binding.atmi requires="legacy"/>

 <map target="toupper">TUXSVC</map>

 <inputBufferType target="toupper">STRING</inputBufferType>

 <outputBufferType target="toupper">STRING</outputBufferType>

 <reference>MYComponent</reference>

 </service>

 <component name="MYComponent">

 <implementation.cpp library="TuxService" header="TuxServiceImpl.h"/>

 </component>

</composite>

This composite file indicates that the service, mySVC, can be invoked via the Oracle Tuxedo
infrastructure. It further indicates that the toupper() method is advertised as the TUXSVC service
in the Oracle Tuxedo system. Once initialized, another SCA component may now call this
service, as well as a non-SCA Oracle Tuxedo ATMI client.

The inputBufferType and outputBufferType elements are used to determine the type of
Oracle Tuxedo buffer used to exchange data. For more information, see SCA Data Type Mapping
Service Component Architecture 2-17

<~runChNum>
and the ATMI Binding Element Reference for a description of all possible values that can be used
in the binding.atmi element.

Note: The mycomponent.componentType service name should be same as the composite file,
otherwise an exception is thrown.

Compiling and Linking the Components
Once all the elements are in place, the component is built using the buildscacomponent command.
The steps are as follows:

1. Navigate to the APPDIR directory. The component and side files should be in its own directory
one level down

2. Execute the following command:

$ buildscacomponent -c myComponent -s . -f TuxServiceImpl.cpp

This command verifies the SCDL code, and builds the following required elements:

A shared library (or DLL on Windows) containing generated proxy code

Building the Oracle Tuxedo Server Host
In order for components to be supported in an Oracle Tuxedo environment, a host Oracle Tuxedo
server must be built. This is achieved using the buildscaserver command.

For example: $ buildscaserver -c myComponent -s . -o mySCAServer

When the command is executed, mySCAServer is ready to be used. It automatically locates the
component(s) to be deployed according to the SCDL, and performs the appropriate Oracle
Tuxedo/SCA associations.

SCA Python, Ruby, and PHP Programming
This section contains the following topics:

Prerequisites

SCA Python, Ruby, and PHP Programming Overview

Python, Ruby, and PHP Client Programming

Python, Ruby, and PHP Component Programming

Python, Ruby, and PHP Data Type Mapping
2-18 Service Component Architecture

../sca/sca_bindschema.html

SCA Py thon , Ruby , and PHP Prog ramming
Python, Ruby, and PHP Binding

Prerequisites
A Python 2.5.5 installation.

A Ruby 1.9.x installation.

PHP 5.3.2 installation.

Python, Ruby, and PHP must be built with shared-libraries enabled. This is usually the case
for out-of-the-box installations. If you are building from source, the --enable-shared
options must be used in the configure step.

There are no known database or third-party library support restrictions.

SCA Python, Ruby, and PHP Programming Overview
Integration of Python, Ruby or PHP scripts in an environment such as Oracle Tuxedo via SALT,
is intended for providing additional flexibility in terms of program development.

Python, Ruby, and PHP are comparable object-oriented scripting languages that offer many
advantages over C/C++:

No compilation

Dynamic data typing

Garbage collection

Existing libraries of utility functions and objects

SALT SCA Python, Ruby, and PHP support provides a set of APIs to perform SCA calls from
Python, Ruby or PHP client programs, and language extensions to call Python, Ruby or PHP
components. For more information, see Python, Ruby, and PHP Client Programming and Python,
Ruby, and PHP Component Programming.

The buildscaclient, buildscaserver and buildscacomponent commands do not need
adapting for use with Python, Ruby or PHP programs, as they are not be required to produce
executables or component libraries.

Note: A system server, SCAHOST, is provided to correctly marshal requests and responses to and
from Python, Ruby or PHP scripts. It contains Python, Ruby, and PHP scripts exposed as
SCA services (via the Oracle Tuxedo Metadata Repository). The definitions describe the
Service Component Architecture 2-19

<~runChNum>
parameters and return types of the corresponding exposed Python, Ruby or PHP
functions.

For more information, see Python, Ruby, and PHP Data Type Mappingfor Service
Metadata Repository entry examples.

Available bindings are used from Python, Ruby or PHP programs, or are used to invoke Python,
Ruby or PHP components. Like C++, the Python, Ruby, and PHP language extension is
binding-independent.

Figure 1-2 provides an overview of the SALT SCA environment Python, Ruby, and PHP support
architecture.

Figure 1-2 SALT SCA Python, Ruby, and PHP Programming Support Architecture

Python, Ruby, and PHP Client Programming
SCDL Clients

Python Clients

Ruby Clients

PHP Clients
2-20 Service Component Architecture

SCA Py thon , Ruby , and PHP Prog ramming
SCDL Clients
From a client component perspective, the SCDL code only has to mention the referenced
component and possibly the binding used (that is, no interface element is required).

For example, the following snippet allows a Python, Ruby or PHP client to make an invocation
to an SCA component via ATMI binding, and using the default buffer type (STRING input,
STRING output):

<reference name="CalculatorComponent">

 <binding.atmi/>

</reference>

Python Clients
To invoke an SCA component from a Python program, you must do the following:

1. Import the SCA library using the following command:

import sca

2. Use the following API to locate the service:

calc = sca.locateservice("CalculatorComponent")

The calc object is used to invoke the “add” operation (for example, result =
calc.add(val1, val2)).

Ruby Clients
To invoke an SCA component from a Ruby program, you must do the following:

1. Load the Ruby proxy extension:

require("sca_ruby")

2. Use the following API to locate the service:

calculator = SCA::locateService("CalculatorComponent")

The calculator object is used to invoke the “add” operation (for example, x =
calculator.add(3, 2)).

PHP Clients
To invoke an SCA component from a PHP program, you must do the following:
Service Component Architecture 2-21

<~runChNum>
1. users will have to first load the SCA library as follows:

<?php

dl('sca.so');

2. Use the following API to locate the service:

$svc = Sca::locateService("uBikeService");

At this point the svc object can be used to invoke the searchBike operation, for instance:

$ret = $svc->searchBike('YELLOW');

Python, Ruby, and PHP Component Programming
SCDL Components

Python Components

Ruby Components

PHP Components

SCDL Components
In order to use Python, Ruby or PHP scripts in SCA as components, you must use the
implementation.python, implementation.ruby and implementation.php parameters.

Note: implementation.python implementation.ruby and implementation.php usage
is similar to the implementation.cpp element (see Listing 1-19 and Listing 1-31); the
difference is that the interface.python and interface.ruby elements, or
.componentType are not required.

Their syntax and attributes are as follows:

implementation.python

<implementation.python
 module="string"
 scope="scope"? >
<implementation.python/>

The implementation.python element has the following attributes:

– module: string (1..1)

Name of the Python module (.py file) containing the operation(s) that this component
offers in the form of module-level function(s).
2-22 Service Component Architecture

SCA Py thon , Ruby , and PHP Prog ramming
– scope: PythonImplementationScope(0..1)

Identifies the scope of the component implementation. The default is stateless,
indicating that there is no correlation between implementation instances used to
dispatch service requests. A composite value indicates that all service requests are
dispatched to the same implementation instance for the lifetime of the containing
composite.

implementation.ruby

<implementation.ruby
 script="string"
 class="string"
 scope="scope"? >
<implementation.ruby/>

The implementation.ruby element has the following attributes:

– script: string(1..1)

Name of the Ruby script (.rb file) containing the operation(s) that the component
offers in the form of methods of a class contained in the script file. The name of the
script is its full name (that is, it also includes the .rb extension).

– class: string(1..1)

Name of the Ruby class (.rb file) containing the operation(s) that the component
offers.

– scope: RubyImplementationScope(0..1)

Identifies the scope of the component implementation. The default is stateless,
indicating that there is no correlation between implementation instances used to
dispatch service requests. A composite value indicates that all service requests are
dispatched to the same implementation instance for the lifetime of the containing
composite.

implementation.php

<implementation.php
 script="string"
 class="string"
 scope="scope"? >
<implementation.php/>

The implementation.php element has the following attributes:

– script: string(1..1)
Service Component Architecture 2-23

<~runChNum>
Name of the PHP script (.php file) containing the operation(s) that this component will
offer, in the form of methods of a class contained in the script file. The name of the
script is its full name, i.e. it also includes the .php extension.

– class: string(1..1)

Name of the PHP class (.php file) containing the operation(s) that this component will
offer.

– scope: PHPImplementationScope(0..1)

Identifies the scope of the component implementation. The default is stateless,
indicating that there is no correlation between implementation instances used to
dispatch service requests. A value of composite indicates that all service requests are
dispatched to the same implementation instance for the lifetime of the containing
composite.

Listing 1-20 shows an example of a Python component in an SCA composite accessible using the
ATMI binding. In this example, runtime looks for a Python component located in a file named
ToupperService.py in the same location as the composite file.

Similarly, a Ruby component is required in a file named ToupperService.rb, in the same
location as the composite file.

Listing 1-20 Python Component in an SCA Composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="simpapp.server">

 <service name="SCASVC">
 <binding.atmi/>
 <reference>ToupperServiceComponent</reference>
</service>

<component name="ToupperServiceComponent">
 <implementation.python module="ToupperService"
 scope="composite"/>
</component>
2-24 Service Component Architecture

SCA Py thon , Ruby , and PHP Prog ramming

</composite>

Listing 1-21 shows an example of a PHPcomponent in an SCA composite accessible using the
ATMI binding

Listing 1-21 PHP Component in an SCA Composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simpapp.PHP">

<service name="TESTPHP">

 <!-- No interface, it is contained in TMMETADATA -->

 <binding.atmi>

 <map target="charToup">TOUPPHP</map>

 <inputBufferType target="charToup">STRING</inputBufferType>

 <outputBufferType target="charToup">STRING</outputBufferType>

 </binding.atmi>

 <reference>ToupperServiceComponent</reference>

</service>

<component name="ToupperServiceComponent">

<implementation.php script="toupper.php"

class="Toupper"/>

scope="composite"/>

</component>
Service Component Architecture 2-25

<~runChNum>

</composite>

Python Components
Python operations are exposed as module-level functions contained in a Python module file. For
example, a ToupperService.py file would contain the code shown in Listing 1-22.

Listing 1-22 Python Module File

def charToup(val1):
 print "input: " + val1
 result = "result"
 print "Python - toupper"
 return result

Parameter and return values types are dynamically determined at runtime. Application exceptions
are caught by the extension runtime and re-thrown as
tuscany::sca::ServiceInvocationException.

During input, unsupported types or an error processing an input DataObject results in the
following exception:
a tuscany::sca::ServiceDataException.

During output, simple return types are always processed. An error generating a DataObject (from
XML data) results in the following exception:
tuscany::sca::ServiceDataException.

For more information, see Python, Ruby, and PHP Data Type Mapping.

Ruby Components
Ruby operations are exposed as methods of an implementation class contained in a Ruby script
file (.rb extension). For example, a ToupperService.rb file would contain the code shown in
Listing 1-23.
2-26 Service Component Architecture

SCA Py thon , Ruby , and PHP Prog ramming
Listing 1-23 Ruby Script File

class ToupperService

 def initialize()
 print "Ruby - ToupperService.initialize\n"
 end

 def charToup(arg1)
 print "Ruby - ToupperService.div\n"
 arg1.ToUpper()
 end

end

Parameter and return values types are dynamically determined at runtime. Application exceptions
are caught by the extension runtime and re-thrown as
tuscany::sca::ServiceInvocationException.

During input, unsupported types or an error processing an input DataObject results in the
following exception:
a tuscany::sca::ServiceDataException.

During output, simple return types are always processed. An error generating a DataObject (from
XML data) results in the following exception: tuscany::sca::ServiceDataException.

For more information, see Python, Ruby, and PHP Data Type Mapping.

PHP Components
PHP operations are exposed as functions contained in a PHP class. For example, a toupper.php
file would contain the code shown in Listing 1-24

Listing 1-24 PHP Class

<?php

class MyClass {
Service Component Architecture 2-27

<~runChNum>
 public static function toupper(val) {

 print "PHP - toupper";

 return val.toupper();

 }

}

?>

Parameter and return values types are dynamically determined at runtime. Application exceptions
are caught by the extension runtime and re-thrown as
tuscany::sca::ServiceInvocationException.

During input, unsupported types or an error processing an input DataObject results in the
following exception:
a tuscany::sca::ServiceDataException.

During output, simple return types are always processed. An error generating a DataObject (from
XML data) results in the following exception: tuscany::sca::ServiceDataException.

For more information, see Python, Ruby, and PHP Data Type Mapping.

SCA Structure Support
This section contains the following topics:

SCA Structure Support Overview

Using SCA Structure Description Files

Using tuxscagen to Generate Structures

Note: This section applies to application defined structures only. For information on Oracle
Tuxedo SCA defined structures, see SCA Data Type Mapping.

SCA Structure Support Overview
SCA Structure support provides:

Additional C++ structure functionality
2-28 Service Component Architecture

SCA St ruc ture Suppor t
Improved performance for applications processing data that can be placed in a structure
without significant wasted space

You must use the struct data type specified in the SCA method parameter definition or in the
definition of a return value from an SCA method as follows:

struct structurename *

struct structurename &

Elements within the structure can be any of the following simple data types/arrays that are
supported as an SCA parameter:

bool

char, unsigned char, signed char

wchar_t

short, unsigned short

int, unsigned int

long, unsigned long

long long, unsigned long long

float

double

long double

struct nestedstructurename

typedef

Note: The scagen utility parses typedef and struct keywords. For more information, see
the SCA Command Reference.

SCA Structure Limitations

The following cannot be specified as part of a structure”

– DataObjectPtr

– Point data types

– std::string or a std::wstring

– A union

– struct carray_t, struct_x_octet_t, or struct xml_t
Service Component Architecture 2-29

<~runChNum>
CARRAY data is supported in the same way that it is supported for views

.h and .cpp files referencing the use of structures are required to include a definition for
the structure being used and for any nested structures contained within that structure.

Using SCA Structure Description Files
A structure description file may be used to describe the format of an SCA structure parameter.
Structure description files are very similar to Oracle Tuxedo viewfiles, with additional
capabilities added for SCA.

Note: The use of structure description files is optional, and is needed only when FML field
names corresponding to structure elements are different from the names of the structure
elements, or when some other non-default structure related feature is required. If an
application wants to make use of an Associated Length Member, an Associated Count
Member, or an application-specified default value for a structure element, it may choose
to make use of a structure description file.

If no structure description file is provided for a particular structure, then the structure definition
used in application code is used, and FML field names in SCA-ATMI mode are the same as
structure element names. Since field numbers are generated automatically for SCA-SCA
applications, these applications do not need to specify a structure description file.

The structure description file format is identical to the Oracle Tuxedo viewfile format, with the
following exceptions:

The type parameter in column 1 allows the additional values bool, unsignedchar,
signedchar, wchar_t, unsignedint, unsignedlong, longlong, unsignedlonglong,
longdouble, and struct.

If the value in column1 is struct, then the cname value in column 2 is the name of a
previously defined VIEW that describes a nested structure. In this case, the count value in
column 4 may optionally be specified to specify the number of occurrences of the nested
structure.

If a structure described in a structure description file is converted to (or from) an FML32 or FML
buffer at runtime in an SCA-ATMI application, then the name of the corresponding FML field is
the fbname value specified in column 3, if any, and is the cname value specified in column 2 (if
no value is specified in column 3). When compiled, the structure description file produces a
binary structure description file as shown in Listing 1-25. The binary structure header file is
shown in shown in Listing 1-26.

Note: In an SCA-SCA application, FML32 field numbers are generated automatically.
2-30 Service Component Architecture

SCA St ruc ture Suppor t
Listing 1-25 SCA Structure Description File

VIEW empname
#TYPE CNAME FBNAME COUNT FLAG SIZE NULL
string fname EMP_FNAME 1 - 25 -
char minit EMP_MINI 1 - - -
string lname EMP LNAME 1 - 25 -
END

VIEW emp
struct empname ename 1 - - -
unsignedlong id EMP_ID 1 - - -
long ssn EMP_SSN 1 - - -
double salaryhist EMP_SAL 10 - - -
END

Listing 1-26 Binary Structure Header File

struct empname {
 char fname[25];
 char minit;
 char lname[25];
};

struct emp {
 struct empname ename;
 unsigned long id;
 long ssn;
 double salaryhist[10];
}

The scastructc32 and scastructc commands are used to convert a source structure
description file into a binary structure description file and to generate a header file describing the
structure(s) in the structure description file. The scastructdis32 and scastructdis
Service Component Architecture 2-31

<~runChNum>
commands accept the same arguments as viewdis32 and viewdis. For more information, see
the SCA Command Reference.

Notes: scastructc32 and scastructc generate a binary file with suffix .V on Unix and suffix
.VV on Windows.

If the structure description file contains no SCA extensions that are not available in
Oracle Tuxedo views, then the magic value for the binary structure description file shall
be the same as the magic value used by viewc32. If any SCA specific extensions are used,
then a different magic value shall be used for the binary structure description file.

Using tuxscagen to Generate Structures
When invoked with the option -S, tuxscagen(1) generates a structure for any function parameter
or return value that would otherwise have been passed using DataObjectPtr.

Note: If tuxscagen -S is run, then simple data types are generated just as they would have
been if tuxscagen were run without the -S option. It is possible to mix simple data types,
structures, and other complex data types within a single metadata repository. In order to
use simple data types in an application that also uses structures, it is not necessary to run
tuxscagen without -S.

SCA Remote Protocol Support
SCA Oracle Tuxedo invocation supports the following remote protocols:

/WS

/Domains

/WS
SCA invocations made using the SCA container have the capability of being performed using the
Oracle Tuxedo WorkStation protocol (/WS). This is accomplished by specifying the value
WorkStation (not abbreviated so as not to confuse it with WebServices) in the
<remoteAccess> element of the <binding.atmi> element.

Only reference-type invocations are be available in this mode. Service-type invocations may be
performed using the /WS transparently (there is no difference in behavior or configuration, and
setting the <remoteAccess> element to WorkStation for an SCA service has no effect).

Since native and WorkStation libraries cannot be mixed within the same process, client
processes must be built differently depending on the type of remote access chosen.
2-32 Service Component Architecture

SCA B ind ing
Note: When using the value propagatesTransaction in /binding.atmi/@requires, the
behavior of the ATMI binding does not actually perform any transaction propagation. It
actually starts a transaction, since the use of this protocol is reserved for client-side access
to Oracle Tuxedo (SCA or non-SCA) applications only. For more information, see ATMI
Binding.

/Domains
SCA invocations made using the SCA container have the capability of being performed using the
Oracle Tuxedo /Domains protocol. No additional configurations are necessary on
<binding.atmi> declarations in SCDL files.

Note: /Domains interoperability configuration is controlled by the Oracle Tuxedo
administrator.

The SCA service name configured for Oracle Tuxedo /Domains is as follows:

SCA -> SCA mode - /binding.atmi/service/@name attribute followed by a '/'
and method name

Legacy mode (SCA -> Tux interop mode) - /binding.atmi/service/@name
attribute.

For more information, see SCA and Oracle Tuxedo Interoperability.

SCA Binding
Oracle Tuxedo supports

ATMI Binding

Java ATMI (JATMI) Binding

Python, Ruby, and PHP Binding

Web Services Binding

ATMI Binding
Oracle Tuxedo communications are configured in SCDL using a <binding.atmi> element. This
allows you to specify configuration elements specific to the ATMI transport, such as the location
of the TUXCONFIG file, the native Oracle Tuxedo buffer types used, Oracle Tuxedo-specific
authentication or /WS (WorkStation) configuration elements, etc.
Service Component Architecture 2-33

<~runChNum>
Listing 1-27 shows a summary of the <binding.atmi> element.

Note:

refers to a parameter that can be specified 0 or 1 times.

refers to a parameter that can be specified 0 or more times.

For more information, see Appendix A: Oracle Tuxedo SCA ATMI Binding Reference.

Listing 1-27 ATMI Binding Pseudoschema

<binding.atmi requires="transactionalintent legacyintent"?>
 <tuxconfig>...</tuxconfig>?
 <map target="name">...</map>*
 <serviceType target="name">...</serviceType>*
 <inputBufferType target="name">...</inputBufferType>*
 <outputBufferType target="name">...</outputBufferType>*
 <errorBufferType target="name">...</errorBufferType>*
 <workStationParameters>?
 <networkAddress>...</networkAddress>?
 <secPrincipalName>...</secPrincipalName>?
 <secPrincipalLocation>...</secPrincipalLocation>?
 <secPrincipalPassId>...</secPrincipalPassId>?
 <encryptBits>...</encryptBits>?
 </workStationParameters>
 <authentication>?
 <userName>...</userName>?
 <clientName>...</clientName>?
 <groupName>...</groupName>?
 <passwordIdentifier>...</passwordIdentifier>?
 <userPasswordIdentifier>...
 </userPasswordIdentifier>?
 </authentication>
 <fieldTablesLocation>...</fieldTablesLocation>?
 <fieldTables>...</fieldTables>?
 <fieldTablesLocation32>...</fieldTablesLocation32>?
 <fieldTables32>...</fieldTables32>?
 <viewFilesLocation>...</viewFilesLocation>?
 <viewFiles>...</viewFiles>?
2-34 Service Component Architecture

SCA B ind ing
 <viewFilesLocation32>...</viewFilesLocation32>?
 <viewFiles32>...</viewFiles32>?
 <remoteAccess>...</remoteAccess>?
 <transaction timeout="xsd:long"/>?
</binding.atmi>

Java ATMI (JATMI) Binding
Java ATMI (JATMI) binding allows SCA clients written in Java to call Oracle Tuxedo services
or SCA components. It provides one-way invocation of Oracle Tuxedo services based on the
Oracle Tuxedo WorkStation protocol (/WS). The invocation is for outbound communication only
from a Java environment to Oracle Tuxedo application acting as a server. Apart from a composite
file for SCDL binding declarations, no external configuration is necessary. The service name,
workstation address and authentication data are provided in the binding declaration.

Note: SSL is supported through the Oracle 12c JCA Adapter. LLE is not currently supported.

Most of the Oracle Tuxedo CPP ATMI binding elements support JATMI binding and have the
same usage. However, due to different underlying technology and running environment
differences, some elements are not supported and some that are supported but have different
element names.

The following Oracle Tuxedo CPP ATMI binding elements are not supported:

binding.atmi/tuxconfig

binding.atmi/fieldTablesLocation

binding.atmi/fieldTablesLocation32

binding.atmi/viewFilesLocation

binding.atmi/viewFilesLocation32

binding.atmi/transaction

The following Oracle Tuxedo CPP ATMI binding workStationParameters elements are not
supported:

binding.atmi/workStationParameters/secPrincipalName

binding.atmi/workStationParameters/secPrincipalLocation

binding.atmi/workStationParameters/secPrincipalPassId

binding.atmi/workStationParameters/encryptBits
Service Component Architecture 2-35

http://docs.oracle.com/cd/E35855_01/jca/docs12c/index.html

<~runChNum>
The following Oracle Tuxedo CPP ATMI binding element is supported in a limited fashion.

binding.atmi/remoteAccess

Note: Only the value "WorkStation" is allowed. If not specified, "WorkStation" is
assumed.

All the classes in the elements mentioned below must be specified in Java CLASSPATH:

binding.atmi/fieldTables - Specifies a comma-separated list of Java classes that are
extended from the weblogic.wtc.jatmi.TypedFML base class.

binding.atmi/fieldTables32 - Specifies a comma-separated list of Java classes that
are extended from the weblogic.wtc.jatmi.TypedFML32 base class.

binding.atmi/viewFiles - Specifies a comma-separated list of Java classes that are
extended from the weblogic.wtc.jatmi.TypedView base class. These derived classes
usually are generated from an Oracle Tuxedo VIEW file using the
weblogic.wtc.jatmi.viewj compiler. These also includes derived from
weblogic.wtc.jatmi.TypedXCType and weblogic.wtc.jatmi.TypedXCommon.

 For more information, see How to Use the viewj Compiler in the Oracle Tuxedo
WebLogic Tuxedo Connector Programmer's Guide.

binding.atmi/viewFiles32 - Specifies a comma-separated list of Java classes that are
extended from the webogic.wtc.jatmi.TypedView32 base class. These derived classes
usually are aslo generated from an Oracle Tuxedo VIEW file using the
weblogic.wtc.jatmi.viewj32 compiler.

Listing 1-28 shows an example of composite file for binding declaration of an Oracle Tuxedo
service named "ECHO“.

Listing 1-28 ECHO Composite File

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:f="binding-atmi.xsd"
name="ECHO">
 <reference name="ECHO" promote="EchoComponent/ECHO">
 <interface.java interface="com.abc.sca.jclient.Echo" />
 <f:binding.atmi requires="legacy">
 <f:inputBufferType target="echoStr">STRING</f:inputBufferType>
 <f:outputBufferType target="echoStr">STRING</f:outputBufferType>
2-36 Service Component Architecture

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wtc_atmi/Views.html#wp1113817

SCA B ind ing
 <f:errorBufferType target="echoStr">STRING</f:errorBufferType>

 <f:workStationParameters>

<f:networkAddress>//STRIATUM:9999,//STRIATUM:1881</f:networkAddr
ess>
 </f:workStationParameters>
 <f:remoteAccess>WorkStation</f:remoteAccess>
 </f:binding.atmi>
 </reference>
 <component name="EchoComponent">
 <implementation.java class="com.abc.sca.jclient.EchoComponentImpl"

/>
 </component>
</component>

Listing 1-29 shows the interface for the example mentioned in Listing 1-28.

Listing 1-29 ECHO Interface

package com.abc.sca.jclient;

import com.oracle.jatmi.AtmiBindingException;

public interface Echo {
 String echoStr(String requestString) throws AtmiBindingException;

}

Listing 1-30 shows an example of an SCA client implementation.

Listing 1-30 SCA Client Implementation

package com.abc.sca.jclient;

Service Component Architecture 2-37

<~runChNum>
import org.osoa.sca.annotations.Constructor;
import org.osoa.sca.annotations.Reference;
import com.oracle.jatmi.AtmiBindingException;

/**
* A simple client component that uses a reference with a JATMI binding.
*/
public class EchoComponentImpl implements Echo {

 private Echo echoReference;

 @Constructor
 public EchoComponentImpl(@Reference(name = "ECHO", required = true)

Echo
 echoReference) {
 this.echoReference = echoReference;
 }

 public String echoStr(String requestString) throws

AtmiBindingException {
 return echoReference.echoStr(requestString);
 }
}

Python, Ruby, and PHP Binding
The Python, Ruby, and PHP language extensions are binding-independent, meaning that binding
extensions are not aware of the language of clients or components. Language extensions are not
aware of the binding used.

Binding extensions are not modified to comply with Python, Ruby, and PHP program support.
Note the following:

If the data types defined in Python, Ruby or PHP binding do not match the Python, Ruby
or PHP source files, then Oracle Tuxedo will throw an exception.

If a binding is configured with a data type that does not match what the Python, Ruby or
PHP component is designed to handle, an exception is thrown by the Python, Ruby or PHP
2-38 Service Component Architecture

SCA B ind ing
runtime (for example, binding.atmi configured with STRING Oracle Tuxedo buffers and
a Python function handling numerical data).

For a Python, Ruby or PHP client code mismatch with what binding is configured with, an
exception occurs originating from the binding code.

Since Python, Ruby, and PHP code is not compiled, any configuration mismatch between
binding and component/client can only be detected at runtime.

Python, Ruby or PHP programs with a composite scope require an Oracle Tuxedo server
reload when the script is modified. A stateless scope allows dynamic reloading of modified
scripts.

In order to expose Python, Ruby or PHP scripts as Web services, the SCAHOST command
must use the -w option in order to load the correct service binding during initialization.

Note: SCAHOST does not allow mixing both ATMI and Web services binding types in one
SCAHOST instance.

For more information, see the SCA Command Reference.

TMMETADATA server is required in order to expose Python, Ruby, and PHP components.

Python, Ruby, and PHP Binding Limitations
Using Python, Ruby, and PHP bindings have the following limitations:

When using the ATMI binding for interoperability calls (that is, when
requires="legacy" is set), mixing named and non-named parameters is not allowed (for
example, Python: def func(a, *b, **c), Ruby: def func(a, *b, hash)), since
there is no mechanism to restore the parameter names.

The names of the parameters must be configured in FML32 tables (ATMI binding), or by
way of WSDL (Web services binding). It is not possible to interoperate with lists of
non-named parameters because such calls cannot be accurately mapped to C++ or WSDL
interfaces due to the lack of guaranteed ordering of FML/FML32 Oracle Tuxedo buffers.

The supported modes are:

– Multiple parameters: def func(a, b, c) (same syntax for Python, Ruby, and PHP)

– Multiple parameters and list of parameters: def func(a, *b) (same syntax for
Python and Ruby)

– Named parameters: PHP - $svc->searchBike(array('COLOR' => 'RED', 'TYPE'
=> 'MTB')). For more information, see PHP Data Type Mapping.
Service Component Architecture 2-39

<~runChNum>
– Dictionary or hash: Python: def func(**a), Ruby: def func(hash)

Note: Python parameters defined with ** are considered named parameters. Ruby
parameters defined with hash are considered named parameters. For more
information, see Python Parameters and Ruby Parameters.

In SCA to SCA mode, the above limitation still concerns named parameters since the order
of elements in a Python dictionary or Ruby hash is not guaranteed. To transmit a Python
dictionary or Ruby hash, you must work in "legacy" mode.

In SCA to SCA mode, using lists of parameters (excluding dictionaries or hashes) are
supported since Oracle Tuxedo Service Metadata interfaces describe service-side lists of
parameters/types (on the reference side parameters/types are self-described at runtime).

Unicode strings are not supported; accordingly MBSTRING buffers or FLD_MBSTRING fields
are not supported.

Web Services Binding
The Web services binding (binding.ws) leverages previously existing Oracle Tuxedo
capabilities by funneling Web service traffic through the GWWS gateway. SCA components are
hosted in Oracle Tuxedo servers, and communications to and from those servers are performed
using the GWWS gateway.

SCA clients using a Web services binding remain unchanged whether the server is running in an
Oracle Tuxedo environment or a native Tuscany environment (for example, exposing the
component using the Axis2 Web services binding).

Note: HTTPS is not currently supported.

When SCA components are exposed using the Web services binding (binding.ws), tooling
performs the generation of WSDF information, metadata entries and FML32 field definitions.

When SCDL code of SCA components to be hosted in an Oracle Tuxedo domain (for example,
service elements) contains <binding.ws> elements, the buildscaserver command generates
an WSDF entry in a file named service.wsdf where 'service' is the name of the service
exposed. An accompanying service.mif and service.fml32 field table files are also generated,
based on the contents of the WSDL interface associated with the Web service. You must compose
a WSDL interface. If no WSDL interface is found, an error message is generated.

Web services accessed from an Oracle Tuxedo domain using a Web services binding (for
example, reference elements found in SCDL) require the following manual configuration steps:
2-40 Service Component Architecture

SCA B ind ing
1. Convert the WSDL file into a WSDF entry by using the wsdlcvt tool. Simultaneously, a
Service Metadata Entry file (.mif), and fml32 mapping file are generated.

2. Make sure that the UBB source has the TMMETADATA and GWWS servers configured

3. Import the WSDF file into the SALTDEPLOY file

4. Convert the SALTDEPLOY file into binary using wsloadcf.

5. Load the Service Metadata Entry file (.mif) into the Service Metadata Repository using the
tmloadrepos command.

6. Boot (or re-boot) the GWWS process to initiate the new deployment.

The Web services binding reference extension initiates the Web services call.

Listing 1-31 shows an SCA component service exposed as a Web service.

Listing 1-31 Example SCA Component Service Exposed as a Web Service

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="bigbank.account">
...
 <service name="AccountService">
 <interface.wsdl interface="http://www.bigbank.com/AccountService
 #wsdl.interface(AccountService)"/>
 <binding.ws/>
 <reference>AccountServiceComponent</reference>
 </service>

 <component name="AccountServiceComponent">
 <implementation.cpp
 library="Account" header="AccountServiceImpl.h"/>
 <reference name="accountDataService">
 AccountDataServiceComponent
 </reference>
 </component>
...
</composite>
Service Component Architecture 2-41

../rfcm/index.html

<~runChNum>
The steps required to expose the corresponding service are as follows:

1. Compose a WSDL interface matching the component interface.

2. Use buildscacomponent to build the application component runtime, similar to building a
regular SCA component.

3. buildscaserver -w is used to convert SCDL code into a WSDF entry, and produce a
deployable server (Oracle Tuxedo server + library + SCDL).

The service from the above SCDL creates a WSDF entry as shown in Listing 1-32.

Listing 1-32 WSDF Entry

<Definition>
 <WSBinding id="AccountService_binding">
 <ServiceGroup id="AccountService">
 <Service name="TuxAccountService"/>
 </ServiceGroup>
 </WSBinding>
</Definition>

4. buildscaserver -w also constructs a Service Metadata Repository entry based by parsing
the SCDL and interface. The interface needs to be in WSDL form, and manually-composed
in this release.

5. Make sure that the UBB source has the TMMETADATA and GWWS servers configured.

6. The Service Metadata Repository entry is loaded into the Service Metadata Repository using
the tmloadrepos command.

7. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted into
binary using wsloadcf.

8. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository.

9. The Oracle Tuxedo server hosting the Web service is booted and made available.

10. The GWWS is rebooted to take into account the new deployment.
2-42 Service Component Architecture

../rfcm/index.html

SCA B ind ing
These steps are required, in addition to the SALTDEPLOY configuration, in order to set up the
GWWS gateway for Web services processing (for example, configuration of GWInstance,
Server Level Properties, etc.). When completed, Web service clients (SCA or other) have access
to the Web service.

Listing 1-33 shows a reference accessing a Web service.

Listing 1-33 Example Reference Accessing a Web Service

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="bigbank.account">
...
 <reference name="StockQuoteWebService">
 <interface.wsdl interface="http://www.webserviceX.NET/#
 wsdl.interface(StockQuoteSoap)"/>
 <binding.ws endpoint="http://www.webserviceX.NET/#
 wsdl.endpoint(StockQuote/StockQuoteSoap)"/>
 </reference>
...
</composite>

The steps required to access the Web service are as follows:

1. A WSDL file is necessary. This is usually published by the Web Service provider.

2. The WSDL file must be converted into a WSDF entry using the wsdlcvt tool. At the same
time a Service Metadata Entry file (.mif), and fml32 mapping file is generated.

3. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted into
binary using wsloadcf.

4. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository using
the tmloadrepos command.

5. The GWWS process is rebooted to take into account the new deployment.

These steps are required, in addition to the SALTDEPLOY configuration, in order to set up the
GWWS gateway for Web services processing (for example, configuration of GWInstance,
Server Level Properties, etc.). When completed, the SCA client has access to the Web service.
Service Component Architecture 2-43

../rfcm/index.html

<~runChNum>
The process is the same, whether the client is stand-alone SCA program or an SCA component
(already a server) referencing another SCA component via the Web service binding.

SCA Data Type Mapping
Using ATMI binding leverages the Oracle Tuxedo infrastructure. Data exchanged between SCA
components, or Oracle Tuxedo clients/services and SCA clients/components is performed using
Oracle Tuxedo typed buffers. Table 1-1 through Table 1-10 summarize the correspondence
between native types and Oracle Tuxedo buffers/types, as well as SOAP types when applicable.

In the example shown in Listing 1-34, implementations send and receive an Oracle Tuxedo
STRING buffer. To the software (binding and reference extension implementations), the
determination of the actual Oracle Tuxedo buffer to be used is provided by the contents of the
/binding.atmi/inputBufferType, /binding.atmi/outputBufferType, or
/binding.atmi/errorBufferType elements in the SCDL configuration, and the type of buffer
returned (or sent) by a server (or client). It does not matter whether client or server is an ATMI
program or an SCA component.

Notice that the Oracle Tuxedo simpapp service has its own namespace within namespace
services. A C++ method toupper is associated with this service.

Listing 1-34 C++ Interface Example

#include <string>
namespace services
{
 namespace simpapp
 {
 /**
 * business interface
 */
 class ToupperService
 {
 public:

 virtual std::string
 toupper(const std::string inputString) = 0;
 };
2-44 Service Component Architecture

SCA Data Type Mapp ing

 } // End simpapp
} // End services

The following data type mapping rules apply:

Run-Time Data Type Mapping

SCA Utility Data Type Mapping

Run-Time Data Type Mapping
Simple Oracle Tuxedo Buffer Data Mapping

Complex Return Type Mapping

Complex Oracle Tuxedo Buffer Data Mapping

Simple Oracle Tuxedo Buffer Data Mapping
The following are considered to be simple Oracle Tuxedo buffers:

STRING

CARRAY (and X_OCTET)

MBSTRING

XML

Table 1-1 lists simple Oracle Tuxedo buffer types that are mapped to SCA binding.

Table 1-1 Simple Oracle Tuxedo Buffer Type Data Mapping

C++ or STL Type Java Type Oracle Tuxedo Buffer
Type

Notes

char*, char array
or std::string

 java.lang.String STRING

CARRAY_T byte[] or
java.lang.Byte[]

CARRAY
Service Component Architecture 2-45

<~runChNum>
When a service called by an SCA client returns successfully, a pointer to the service return data
is passed back to the Proxy stub generated by buildscaclient. The Proxy stub then
de-references this pointer and returns the data to the application.

Table 1-1 can be interpreted as follows:

When the reference or service binding extension runtime sees an Oracle Tuxedo STRING
buffer, it looks for either a char*, char array, std::string parameter or return type
(depending on the direction). If a different type is found, an exception is thrown with a
message explaining what happened.

When the reference or service binding extension runtime sees a char* (for example) as a
single parameter or return type, it looks for STRING as the buffer type in the
binding.atmi element. If a different Oracle Tuxedo buffer type is found, an exception is
thrown with a message explaining what happened.

Multibyte String Data Mapping
Oracle Tuxedo uses multibyte strings to represent multibyte character data with encoding names
based on iconv (as defined by Oracle Tuxedo). C++ uses a wstring, wchar_t*, or wchar_t[]
data type to represent multibyte character data with encoding names (as defined by the C++
library).

X_OCTET_T byte[] or
java.lang.Byte[]

X_OCTET

XML_T byte[] or
java.lang.Byte[]

XML This type is passed as a
C++ array within the data
element of struct XML or
as an array of java bytes.
It is transformed to SDO.

wchar_t * or
wchar_t array

N/A MBSTRING See Multibyte String
Data Mapping

std::wstring java.lang.String MBSTRING See Multibyte String
Data Mapping

Table 1-1 Simple Oracle Tuxedo Buffer Type Data Mapping

C++ or STL Type Java Type Oracle Tuxedo Buffer
Type

Notes
2-46 Service Component Architecture

SCA Data Type Mapp ing
Oracle Tuxedo and C++ sometimes use different names to represent a particular multibyte
encoding. Mapping between Oracle Tuxedo encoding names and C++ encoding names is as
follows:

Receiving a Multibyte String Buffer

When an SCA client or server receives an MBSTRING buffer or an FML32 buffer with a
FLD_MBSTRING field, it considers the encoding for that multibyte string to be the first
locale from the following cases:

a. Locale associated with the FLD_MBSTRING field, if present.

Note: For more information, see Table 1-2.

b. Locale associated with the MBSTRING or FML32 buffer.

c. Locale set in the environment of the SCA client or server.

If case a or b is matched, Oracle Tuxedo invokes the setlocale() function for locale type
LC_CTYPE with the locale for the received buffer. If setlocale() fails (indicating there is
no such locale) and an alternate name has been associated with this locale in the optional
$TUXDIR/locale/setlocale_alias file, Oracle Tuxedo attempts to set the LC_CTYPE
locale to the alternate locale.

The $TUXDIR/locale/setlocale_alias file may be optionally created by the Oracle
Tuxedo administrator. If present, it contains a mapping of Oracle Tuxedo MBSTRING
codeset names to an equivalent operating system locale accepted by the setlocale()
function.

Lines consist of an Oracle Tuxedo MBSTRING codeset name followed by whitespace and
an OS locale name. Only the first line in the file corresponding to a particular MBSTRING
codeset name are considered. Comment lines begin with #.

The $TUXDIR/locale/setlocale_alias file is used by the SALT SCA software when
converting MBSTRING data into C++ wstring or wchar_t[] data. If setlocale() fails
when using the Oracle Tuxedo MBSTRING codeset name, then the SALT SCA software
attempts to use the alias name, if present. For example, if the file contains a line 'GB2312
zh_CN.GB2312' then if setlocale(LC_CTYPE, 'GB2312') fails, the SALT SCA
software attempts setlocale(LC_CTYPE, 'zh_CN.GB2312').

Sending a Multibyte String Buffer

When an SCA client or server converts a wstring, wchar_t[], or wchar_t* to an
MBSTRING buffer or a FLD_MBSTRING field, it uses the TPMBENC environment variable
value as the locale to set when converting from C++ wide characters to a multibyte string.
Service Component Architecture 2-47

<~runChNum>
If the operating system does not recognize this locale, Oracle Tuxedo uses the alternate
locale from the $TUXDIR/locale/setlocale_alias file, if any.

Note: It is possible to transmit multibyte data retrieved from an MBSTRING buffer, an FML32
FLD_MBSTRING field, or a VIEW32 mbstring field. It is also possible to transmit
multibyte data entered using the SDO setString() method.

However, it is not possible to enter multibyte characters directly into an XML
document and transmit this data via SALT. This is because multibyte characters
entered in XML documents are transcoded into multibyte strings, and SDO uses
wchar_t arrays to represent multibyte characters.

Complex Return Type Mapping
The following C++ built-in types (used as return types) are considered complex and
automatically encapsulated in an FML/FML32 buffer as a single generic field following the
complex buffer mapping rules described in Complex Oracle Tuxedo Buffer Data Mapping. This
mechanism addresses the need for returning types where a corresponding Oracle Tuxedo buffer
cannot be used.

Note: Interfaces returning any of the built-in types assume that FML/FML32 is the output buffer
type. The name of this generic field is TUX_RTNdatatype based on the type of data being
returned. TUX_RTNdatatype fields are defined in the Usysflds.h/Usysfl32.h and
Usysflds/Usysfl32 shipped with Oracle Tuxedo.

bool : maps to TUX_RTNCHAR field

char: maps to TUX_RTNCHAR field

signed char: maps to TUX_RTNCHAR field

unsigned char: maps to TUX_RTNCHAR field

short: maps to TUX_RTNSHORT field

unsigned short: maps to TUX_RTNSHORT field

int: maps to TUX_RTNLONG field

unsigned int: maps to TUX_RTNLONG field

long: maps to TUX_RTNLONG field

unsigned long: maps to TUX_RTNLONG field

long long: (maps to TUX_RTNLONG field
2-48 Service Component Architecture

SCA Data Type Mapp ing
unsigned long long: maps to TUX_RTNLONG field

float: maps to TUX_RTNFLOAT field

double: maps to TUX_RTNDOUBLE field

long double: maps to TUX_RTNDOUBLE field

Complex Oracle Tuxedo Buffer Data Mapping
The following are considered to be complex Oracle Tuxedo buffers:

FML

FML32

VIEW (and X_* equivalents)

VIEW32

Table 1-2 lists the complex Oracle Tuxedo buffer types that are mapped to SCA binding.

For FML and FML32 buffers, parameter names in interfaces must correspond to field names, and
follow the restrictions that apply to Oracle Tuxedo fields (length, characters allowed). When
these interfaces are generated from metadata using tuxscagen(1), the generated code contains the
properly formatted parameter names.

If an application manually develops interfaces without parameter names, manually develops
interfaces that are otherwise incorrect, or makes incompatible changes to SALT generated
interfaces, then incorrect results are likely to occur.

VIEW (and X_* equivalents) and VIEW32 buffers require the use of SDO DataObject
wrappers.

Listing 1-35 shows an interface example. The associated field definitions (following the
interface) must be present in the process environment.
Service Component Architecture 2-49

<~runChNum>
Table 1-2 Complex Oracle Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Oracle Tuxedo
field type

Oracle Tuxedo
view type

Notes

bool boolean or
java.lang.Bo
olean

FLD_CHAR char Maps to 'T' or 'F'. (This
matches the mapping used
elsewhere in SALT.)

char, signed
char, or
unsigned char

byte or
java.lang.By
te

FLD_CHAR char

short or
unsigned short

short or
java.lang.Sh
ort

FLD_SHORT short An unsigned short is cast to
a short before being
converted to FLD_SHORT
or short.

int or unsigned
int

int or
java.lang.In
teger

FLD_LONG int An unsigned int being
converted to FML or
FML32 is cast to a long
before being converted to
FLD_LONG or long. An
unsigned int being
converted to a VIEW or
VIEW32 member is cast to
an int.

long or
unsigned long

long or
java.lang.Lo
ng

FLD_LONG long An exception is thrown if
the value of a 64-bit
long does not fit into a
FLD_LONG or long on a
32-bit platform. An
unsigned long is cast to
long before being
converted to FLD_LONG or
long.
2-50 Service Component Architecture

SCA Data Type Mapp ing
long long or
unsigned long
long

N/A FLD_LONG long An exception is thrown if
the data value does not fit
within a FLD_LONG or
long. An unsigned long
long is cast to long
long before being
converted to FLD_LONG or
long.

float float or
java.lang.Fl
oat

FLD_FLOAT float

double double or
java.lang.Do
uble

FLD_DOUBLE double

long double N/A FLD_DOUBLE double

char* or char
array

N/A FLD_STRING string

std::string java.lang.St
ring

FLD_STRING string

CARRAY_T or
X_OCTET_T

 class
CARRAY

FLD_CARRAY carray Will map externally
following GWWS rules.
This departs from the
OSOA spec. (which does
not support them), and
should be considered an
improvement.

Bytes N/A FLD_CARRAY Carray This mapping is used when
part of a DataObject

wchar_t* or
wchar_t array

N/A FLD_MBSTRING
(FML32 only)

mbstring
(VIEW32
only)

(Java char is Unicode and
can range from -32768 to
+32767.)

See also Multibyte String
Data Mapping

Table 1-2 Complex Oracle Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Oracle Tuxedo
field type

Oracle Tuxedo
view type

Notes
Service Component Architecture 2-51

<~runChNum>
Listing 1-35 Interface Example

...
int myService(int param1, float param2); ...
Field table definitions
#name number type flag comment
#---
param1 20 int - Parameter 1
param2 30 float - Parameter 2
...

std::wstring java.lang.St
ring

FLD_MBSTRING
(FML32 only)

mbstring
(VIEW32
only)

See also Multibyte String
Data Mapping

commonj::sdo::
DataObjectPtr

TypedFML32 FLD_FML32
(FML32 only)

N/A Generate a data
transformation exception,
which is translated to an
ATMIBindingExceptio
n before being returned to
the application, when:
• Attempting to add such

a field in an Oracle
Tuxedo buffer other
than FML32

• The data object is not
typed (i.e., there is no
corresponding schema
describing it).

See also Multibyte String
Data Mapping

commonj::sdo::
DataObjectPtr

TypedView32 FLD_VIEW32
(FML32 only)

N/A See also Multibyte String
Data Mapping

struct
structurename

N/A FLD_FML32
(FML32 only)

structurenam
e

See also SCA Structure
Support

Table 1-2 Complex Oracle Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Oracle Tuxedo
field type

Oracle Tuxedo
view type

Notes
2-52 Service Component Architecture

SCA Data Type Mapp ing
SDO Mapping
C++ method prototypes that use commonj::sdo::DataObjectPtr objects as parameter or
return types are mapped to an FML, FML32, VIEW, or VIEW32 buffer.

You must provide an XML schema that describes the SDO object. The schema is made available
to the service or reference extension runtime by placing the schema file (.xsd file) in the same
location as the SCDL composite file that contains the reference or service definition affected. The
schema is used internally to associate element names and field names.

Note: When using view or view32, a schema type (for example, complexType) which name
matches the view or view32 used is required.

For example, a C++ method prototype defined in a header such as:
long myMethod(commonj::sdo::DataObjectPtr data);

Listing 1-36 shows the associated schema.

Listing 1-36 Schema

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns="http://www.example.com/myExample"
 targetNamespace="http://www.example.com/myExample">

 <xsd:element name="bike" type="BikeType"/>
 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="BikeType">
 <xsd:sequence>
 <xsd:element name="serialNO" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string"/>
 <xsd:element name="price" type="xsd:float"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>
Service Component Architecture 2-53

<~runChNum>
Table 1-3 shows the generated field table.

The following restrictions in XML schemas apply:

Attributes cannot be specified and are ignored if specified

Values in restrictions are ignored (their meaning is application-related), only the field name
and type are generated

When using XML schema types, only signed integral types are supported.
See "SDO C++ Specification" for a list of available SDO primitive types.

SCA Utility Data Type Mapping
The scatuxgen and tuxscagen utilities are used to generate manual SCA data type mapping.
The scatuxgen mapping rules are as follows:

C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping

C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping

C++ Parameter Type and Oracle Tuxedo Complex Type Mapping

Parameter and Return Types to Parameter-Level Keyword Restrictions

Note: The mapping rules for tuxscagen are executed in the reverse direction (Oracle Tuxedo
Buffer Type -> C++ Parameter Type).

Table 1-3 Generated Field Tables

NAME NUMBER TYPE FLAG Comment

bike 20 fml32 -

comment 30 string -

serialNO 40 string -

name 50 string -

type 60 string -

price 70 float -
2-54 Service Component Architecture

SCA Data Type Mapp ing
C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping
Table 1-4 shows the correspondence between parameter/return types and Oracle Tuxedo buffer
types (inbuf service-level keyword).

Table 1-4 'inbuf' Keyword Buffer Type Mapping Table

C++ Parameter Type Oracle Tuxedo Buffer Type

std::string or char* STRING

struct carray_t CARRAY

char FML32

short FML32

int FML32

long FML32

float FML32

double FML32

wchar_t[] MBSTRING

struct xml_t XML

struct x_octet_t X_OCTET

commonj::sdo::DataOb
jectPtr

X_COMMON, X_C_TYPE, VIEW, VIEW32, FML, or FML32 depending
on intputBufferType setting

struct structurename X_COMMON, X_C_TYPE, VIEW, VIEW32, FML, or FML32 depending
on intputBufferType setting

multiple parameters, or one
commonj::sdo::DataObjectPt
r or struct structurename and
no binding.atmi or no
corresponding
inputBufferType and the
input buffer is not specified
using a command line option

FML32
Service Component Architecture 2-55

<~runChNum>
Table 1-5shows the correspondence between parameter/return types and Oracle Tuxedo buffer
types (outbuf or err buf service-level keywords).

Table 1-5 outbuf' or 'errbuf' Keyword Buffer Type Mapping Table

C++ Return Type Oracle Tuxedo Buffer Type

std::string or char* STRING

struct carray_t CARRAY

char FML32

short FML32

int FML32

long FML32

float FML33

double FML32

wchar_t[], wstring MBSTRING

struct xml_t XML

struct x_octet_t X_OCTET

commonj::sdo::DataOb
jectPtr

X_COMMON, X_C_TYPE, VIEW, VIEW32, FML or FML32 depending on
the binding.atmi/outputBufferType or
binding.atmi/errorBufferType setting.

commonj::sdo::DataOb
jectPtr

FML32 if no binding.atmi is set, or binding.atmi is set and
binding.atmi/outputBufferType or binding.atmi/errorBufferType aren't
specified.

struct structurename X_COMMON, X_C_TYPE, VIEW, VIEW32, FML or FML32 depending on
the binding.atmi/outputBufferType or binding.atmi/errorBufferType setting.

struct structurename FML32 if no binding.atmi is set, or binding.atmi is set and
binding.atmi/outputBufferType or binding.atmi/errorBufferType are not
specified.
2-56 Service Component Architecture

SCA Data Type Mapp ing
C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping
Table 1-7 shows how scatuxgen handles interface parameter types and converts them to an
Oracle Tuxedo Service Metadata Repository parameter-level keyword value when more than one
parameter is used in the method signature.

C++ Parameter Type and Oracle Tuxedo Complex Type Mapping
This section contains the following topics:

SDO Mapping

C Struct Mapping

SDO Mapping
When a method takes an SDO object as an argument, or returns an SDO object, for example as
follows: commonj::sdo::DataObjectPtr myMethod(commonj::sdo::DataObjectPtr
input).

Table 1-6 Parameter-Level/Field Type Mapping Table

C++ Parameter Data Type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

char byte(FLD_CHAR)

short short(FLD_SHORT)

int integer(FLD_LONG)

long integer(FLD_LONG)

float float(FLD_FLOAT)

double double(FLD_DOUBLE)

std::string or char * string(FLD_STRING)

struct carray_t carray(FLD_CARRAY)

std::wstring mbstring(FLD_MBSTRING)

commonj::sdo::DataOb
jectPtr

fml32(FLD_FML32)

struct structurename fml32(FLD_FML32)
Service Component Architecture 2-57

<~runChNum>
The corresponding runtime type may be described by an XML schema as shown in Listing 1-37
and then referenced in the binding as shown in Listing 1-38.

Listing 1-37 XML Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="tuxedo"

targetNamespace="tuxedo">

 <xsd:complexType name="BikeInventory">
 <xsd:sequence>
 <xsd:element name="BIKES" type="Bike"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="STATUS" type="xsd:string" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Bike">
 <xsd:sequence>
 <xsd:element name="SERIALNO" type="xsd:string"/>
 <xsd:element name="SKU" type="xsd:string"/>
 <xsd:element name="NAME" type="xsd:string"/>
 <xsd:element name="TYPE" type="xsd:string"/>
 <xsd:element name="PRICE" type="xsd:float"/>
 <xsd:element name="SIZE" type="xsd:int"/>
 <xsd:element name="INSTOCK" type="xsd:string"/>
 <xsd:element name="ORDERDATE" type="xsd:string"/>
 <xsd:element name="COLOR" type="xsd:string"/>
 <xsd:element name="CURSERIALNO" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>
2-58 Service Component Architecture

SCA Data Type Mapp ing
Listing 1-38 Binding

...
 <reference name="UBIK">
 <interface.cpp header="uBikeService.h"/>
 <binding.atmi>
 <inputBufferType>FML32/Bike</inputBufferType>
 <outputBufferType>FML32/BikeInventory</outputBufferType>
 </binding.atmi>
 </reference>
 ...

When such a schema is present, scatuxgen parses it and generates the corresponding
parameter-level mapping entries as listed in Table 1-7.

Table 1-7 Parameter-level/Field Type Mapping

XML Schema element type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

xsd:byte byte(FLD_CHAR)

xsd:short short(FLD_SHORT)

xsd:int integer(FLD_LONG)

xsd:long integer(FLD_LONG)

xsd:float float(FLD_FLOAT)

xsd:double double(FLD_DOUBLE)

xsd:string string(FLD_STRING)

xsd:string mbstring(FLD_MBSTRING) when -t option is specified

xsd:base64binary carray(FLD_CARRAY)

xsd:complexType fml32(FLD_FML32)

xsd:minOccurs requiredcount

xsd:maxOccurs count
Service Component Architecture 2-59

<~runChNum>
C Struct Mapping
When a method takes a C struct as an argument, or returns a C struct (for example, as shown in
Listing 1-39), scatuxgen parses it and generates the corresponding parameter-level mapping
entries listed in Table 1-8.

Listing 1-39 C Struct

struct customer {
 char firstname[80];
 char lastname[80];
 char address[240];
};

struct id {
 int SSN;
 int zipCode;
};

struct customer* myMethod(struct *id input);

Table 1-8 Parameter-Level/Field Type Mapping

Struct Member Type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

char, unsigned char,
signed char

byte(FLD_CHAR)

char [] string(FLD_STRING)

wchar_t [] mbstring(FLD_MBSTRING)

short, unsigned
short

short(FLD_SHORT)

int, unsigned int integer(FLD_LONG)
2-60 Service Component Architecture

SCA Data Type Mapp ing
Parameter and Return Types to Parameter-Level Keyword Restrictions
For parameter-level keywords, the Oracle Tuxedo buffer type/parameter type restrictions are
consistent with the contents expected by tmloadrepos. An error message is returned when an
attempt to match any combinations that are not listed in Table 1-9 and Table 1-10.

long, unsigned long,
long long, unsigned
long long

integer(FLD_LONG)

float float(FLD_FLOAT)

double, long double double(FLD_DOUBLE)

struct
nestedstructname
(for more
information, see SCA
Structure Support)

fml32 (FLD_FML32)

array type count=requiredcount=array specifier

Table 1-8 Parameter-Level/Field Type Mapping

Struct Member Type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

Table 1-9 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 1)

Parameter Type /
Oracle Tuxedo Buffer

byte(char) short integer float double String

CARRAY

FML X X X X X X

FML32 X X X X X X

VIEW X X X X X X

VIEW32 X X X X X X

X_COMMON X X X

X_C_TYPE X X X X X X

X_OCTET
Service Component Architecture 2-61

../rfcm/index.html

<~runChNum>
Python, Ruby, and PHP Data Type Mapping
The following sections describe the supported data types in Python, Ruby, and PHP clients or
components with respect to the native, C/C++ based environment, and in order to give the
correspondence for writing the Oracle Tuxedo Service Metadata Repository interface required by

STRING X

XML X

MBSTRING

Table 1-9 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 1)

Parameter Type /
Oracle Tuxedo Buffer

byte(char) short integer float double String

Table 1-10 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 2)

Parameter Type /
Oracle Tuxedo Buffer

carray xml view32 fml32 mbstring

CARRAY X

FML X

FML32 X X X X X

VIEW X

VIEW32 X X

X_COMMON

X_C_TYPE

X_OCTET X

STRING

XML X

MBSTRING X X
2-62 Service Component Architecture

SCA Data Type Mapp ing
the ATMI binding. Corresponding Oracle Tuxedo buffer and field type are also indicated for uses
with the ATMI or Web Services binding.

Python Data Type Mapping

Ruby Data Type Mapping

PHP Data Type Mapping

Python Data Type Mapping
In Python, clients or components only use parameters and return values which types are listed in
Table 1-11. Multiple parameters are supported (in the same way that multiple parameters are
supported in C++), using FML32 Oracle Tuxedo buffers.

Note: Arrays are not supported as they are not supported by bindings or the C++ language
extension.

Table 1-11 Supported Python, C++ and Oracle Tuxedo Buffer Types

Python parameter(s) or Return Type C/C++ Native Type
ATMI Binding Type
Buffer type/Field Type

int short, unsigned short FML32/FLD_SHORT

long short, unsigned short FML32/FLD_SHORT

int long, unsigned long FML32/FLD_LONG

long long, unsigned long FML32/FLD_LONG

bool bool FML32/FLD_CHAR

float float FML32/FLD_FLOAT

float double, long double FML32/FLD_DOUBLE

string of length 1 char FML32/FLD_CHAR

string char *, std::string STRING

xml commonj::sdo::DataObject
Ptr

FML32, VIEW, VIEW32
Service Component Architecture 2-63

<~runChNum>
Notes: int (short), long, int (long), float (float) are allowed in the C++ to Python direction only.
The Python runtime catches any overflow situation (e.g.: when copying a C++ long into
a Python int).

In order to map a string of length 1 to a char*/std::string/STRING, the originating
Python variable will have to have 2 ending zeroes (for example, 't = "a\x00").

Supported XML objects in Python must be xml.etree.ElementTree objects, (that is, the
language extension converts xml.etree.ElementTree objects into
commonj::sdo::DataObjectPtr objects, and commonj::sdo::DataObjectPtr objects into
xml.etree.ElementTree objects.

Using lists and dictionaries are also supported, as detailed in Python Parameters and Dictionaries.

Note: Lists and dictionaries are allowed as parameters, but are not allowed to be returned.

Some limitations concerning multiple parameters and lists will stand with respect to using
bindings. For more information, see Python, Ruby, and PHP Binding.

Python Parameters
You can use the list notation (*) to pass an undetermined number of parameters to/from a Python
program. For example:
def test(*params)

 for p in params:

 print "parameter:", p

and an example of call: test(1, 2, 3, 4, 5)

This notation is equivalent to having an actual list of parameters, such as:
def test(parm1, parm2, parm3, parm4, parm5)

 ...

Individual supported types are limited to the types listed in Table 1-11.

Exposing a Python function as an SCA service with ATMI or Web services binding requires an
interface. This interface is stored in the Oracle Tuxedo Service Metadata Repository as outlined
in Python, Ruby, and PHP Component Programming.

When called, the Python function receives a list of parameters corresponding exactly to what the
interface specifies. Any extra parameters passed by the client are ignored, and any type mismatch
results in a data mapping exception.
2-64 Service Component Architecture

SCA Data Type Mapp ing
Note: Using this notation is limited to local calls (no binding), or using ATMI binding between
SCA components (that is, the <binding.atmi> element with no requires="legacy"
attribute).

For local calls (no binding specified), or references, no interface is required.

Dictionaries
You can use the named parameters notation (**) to pass name/value pairs, also known as
dictionaries, to/from Python programs. For example:
def test(**params):

 for p in params.keys():

 print "key:", p, " parameter:", params[p]

and an example of call: test(a=1, b=2)

Individual supported types are limited to the types listed in Table 1-11.

Exposing a Python function as an SCA service with the ATMI or Web Services binding requires
an interface. This interface is stored in the Oracle Tuxedo Service Metadata Repository as
outlined in Python, Ruby, and PHP Component Programming.

For example, consider the Oracle Tuxedo Service Metadata Repository entry shown in
Listing 1-40

Listing 1-40 Oracle Tuxedo Service Metadata Repository Entry for Python

service=testPython2
tuxservice=TESTPT
inbuf=FML32
outbuf=FML32

param=NUMBER
type=long
access=in

param=TEXT
type=string
access=in

Service Component Architecture 2-65

<~runChNum>
param=FNUMBER
type=double
access=in
##

When called, the Python function receives a list of parameters corresponding exactly to what the
interface specifies. Any extra parameters passed by the client are ignored, and any type mismatch
results in a data mapping exception.

The names of the parameters match the key names passed to the Python function. The interface
is obtained by making an internal call to the TMMETADATA server. The TMMETADATA server must
be running in order to make calls to Python, Ruby or PHP functions.

A Python function called with the interface is equivalent to the following Python call:
test(a=1, b=2)

Ruby Data Type Mapping
Table 1-12 lists supported Ruby, C/C++ and Oracle Tuxedo buffer types. Multiple parameters are
supported (in the same way that multiple parameters are supported in C++), using FML32 Oracle
Tuxedo buffers.

Arrays are not supported as they are not supported by bindings or the C++ language extension.

Table 1-12 Supported Ruby, C++ and Oracle Tuxedo Buffer Types

Ruby parameter or return type C/C++ native type
ATMI binding type
Buffer type/Field type

Fixnum short, unsigned short FML32/FLD_SHORT

Fixnum long, unsigned long FML32/FLD_LONG

Bignum double, long double FML32/FLD_DOUBLE

True/false bool FML32/FLD_CHAR

Float float FML32/FLD_FLOAT

Float double, long double FML32/FLD_DOUBLE
2-66 Service Component Architecture

SCA Data Type Mapp ing
Notes: Ruby runtime may catch an overflow exception.

Possible loss of precision when the Ruby Bignum is bigger than a C++ double.

Float (float) is allowed in C++ to Ruby direction only.

There is no mapping to single character (char/FLD_CHAR) possible in Ruby.

Supported XML objects in Ruby must be REXML (that is, the language extension converts
REXML::Document objects into commonj::sdo::DataObect objects, and
commonj::sdo::DataObjectPtr objects into REXML::Document objects.

Using variable argument lists and hashes are also be supported, as detailed in the following
paragraphs.

Note: Variable argument lists and hashes are allowed as parameters, but are not allowed to be
returned.

Some limitations concerning multiple parameters and lists will stand with respect to using
bindings. For more information, see Python, Ruby, and PHP Binding.

Ruby Parameters
You can use the list notation (*) to pass an undetermined number of parameters to/from a Ruby
script. For example:
def func(a, b, *otherargs)

 puts a

 puts b

 otherargs.each { |arg| puts arg }

end

which can be called like this: func(1, 2, 3, 4, 5)

Individual supported types are limited to the types listed in Table 1-12.

String char *, std::string STRING

REXML Object commonj::sdo::DataObject
Ptr

FML32, VIEW, VIEW32

Table 1-12 Supported Ruby, C++ and Oracle Tuxedo Buffer Types

Ruby parameter or return type C/C++ native type
ATMI binding type
Buffer type/Field type
Service Component Architecture 2-67

<~runChNum>
Exposing a Ruby function as an SCA service with the ATMI or Web Services binding requires
an interface. This interface is stored in the Oracle Tuxedo Service Metadata Repository as
outlined in Python, Ruby, and PHP Component Programming.

For example, consider the Oracle Tuxedo Service Metadata Repository entry shown in
Listing 1-41

Listing 1-41 Oracle Tuxedo Service Metadata Repository Entry for Ruby

service=testRuby
tuxservice=TESTRU
inbuf=FML32
outbuf=FML32

param=first
type=char
access=in

param=next
type=long
access=in

param=last
type=string
access=in

##

When called, the Ruby function receives a list of parameters corresponding exactly to what the
interface specifies. Any extra parameters passed by the client are ignored, and any type mismatch
results in a data mapping exception.

Notes: Using this notation is limited to local calls (no binding), or with using the ATMI binding
between SCA components (that is, the <binding.atmi> element with no
requires="legacy" attribute).

Local calls (no binding specified), or references, do not require an interface.
2-68 Service Component Architecture

SCA Data Type Mapp ing
Hash
You can use named parameters in the form of hash type parameters to pass name/value pairs
to/from Ruby scripts. For example:
def func2(hash)

 hash.each_pair do |key, val|

 puts "#{key} -> #{val}"

 end

end

which can be called like this: func2("first" => true, "next" => 5, "last" => "hi")

Individual supported types are limited to the types listed inTable 1-12.

When exposing a Ruby function as an SCA service with the ATMI or Web Services binding, an
interface is required. This interface is stored in the Oracle Tuxedo Service Metadata Repository
as outlined in Python, Ruby, and PHP Component Programming.

When called, the Ruby function receives a list of parameters corresponding exactly to what the
interface specifies. Any extra parameters passed by the client are ignored, and any type mismatch
results in a data mapping exception.

The names of the parameters match the key names passed to the Ruby function (that is, a Ruby
function called with the above interface is equivalent to the following Ruby client call:
func2("first" => true, "next" => 5, "last" => "hi")

where the values 'true', 5 and 'hi' are arbitrary, not the keys.

PHP Data Type Mapping
Table 1-13 lists supported Ruby, C/C++ and Oracle Tuxedo buffer types. Multiple parameters are
supported (in the same way that multiple parameters are supported in C++), using FML32 Oracle
Tuxedo buffers.

Arrays are not supported as they are not supported by bindings or the C++ language extension.

Table 1-13 Supported PHP, C++ and Oracle Tuxedo Buffer Types

PHP parameter(s) or return type C/C++ native type
ATMI binding type
Buffer type/Field type

integer short, unsigned short FML32/FLD_SHORT

integer long, unsigned long FML32/FLD_LONG
Service Component Architecture 2-69

<~runChNum>
Returning XML data in PHP is done by returning a STRING object which is then converted into
a SimpleXMLElement as follows:

$ret = $svc->searchBike('YELLOW');

$xml = new SimpleXMLElement($ret, LIBXML_NOWARNING);

Once the XML object constructed, it will be accessed as follows:

echo "First serialno:".$xml->BIKES[0]->SERIALNO."\n";

echo "Second serialno:".$xml->BIKES[1]->SERIALNO."\n";

List of Parameters
You are permitted to pass an undetermined number of parameters when making an SCA reference
using the PHP extension. For example:

test(1, 2, 3, 4, 5);

Individual supported types are limited to the types listed in Listing 1-13, with the exception of
types originating from or becoming commonj::sdo::DataObjectPtr objects.

Note: Using this notation is limited to:

boolean bool FML32/FLD_CHAR

float1

float FML32/FLD_FLOAT

float double, long double FML32/FLD_DOUBLE

string of length 1 char FML32/FLD_CHAR

string char *, std::string STRING

string (return type, see
below)

commonj::sdo::DataObject
Ptr

FML32, VIEW, VIEW32

object of type
SimpleXMLElement
(parameter, see below)

commonj::sdo::DataObject
Ptr

FML32, VIEW, VIEW32

Table 1-13 Supported PHP, C++ and Oracle Tuxedo Buffer Types

PHP parameter(s) or return type C/C++ native type
ATMI binding type
Buffer type/Field type
2-70 Service Component Architecture

SCA Data Type Mapp ing
local calls (no binding), or

using the ATMI binding between SCA components (i.e., <binding.atmi> element
with no requires="legacy" attribute). For local calls (no binding specified), or

references

No interface is required.

Named Parameters
You can use named parameters to pass name/value pairs using the PHP SCA extension. For
example:

$svc->searchBike(array('COLOR' => 'RED', 'TYPE' => 'MTB'));

Individual supported types are limited to the types listed in Table 1-13.

SCA Structure Data Type Mapping
In SCA-ATMI applications, an SCA structure parameter can be mapped to an ATMI FML32,
FML, VIEW32, VIEW, X_COMMON, or X_C_TYPE data type, and this is the data type that is
specified in the SCA composite file.

If a VIEW32, VIEW, X_COMMON, or X_C_TYPE data type is specified, then this view must
exactly match the structure used as an SCA parameter or return type.

Note: In order for the view to exactly match the structure, the compilation of the view needs to
produce the same structure with the same fields and same offsets as the structure used in
the application.

SCA Structure and FML32 or FML Mapping
If the SCA structure parameter is mapped to FML32 or FML, then the field type of the associated
FML32 or FML field is a type that can be converted to and from the SCA structure data type For
more informations, see SCA Data Type Mapping.

FML Field Naming Requirements
In SCA-SCA applications, fields are identified by field number, and FML32 field numbers are
automatically generated. In the case of nested structures, field numbers are assigned as if the
fields in the inner structure had occurred as flat fields in the outer structure in the place where the
inner structure is defined in the outer structure.
Service Component Architecture 2-71

<~runChNum>
In SCA-ATMI applications, the FML32 or FML field name associated with a structure element
shall be obtained from the structure description file. For more information, see Using SCA
Structure Description Files.

Long Element Truncation
When converting an FML32 or FML string, carray, or mbstring field to a structure element, any
data that does not fit in the structure element is truncated (without warning) to the provided
length.

For example, if a structure element is char COMPANY_NAME[20]; and FML field COMPANY_NAME
with value "International Business Machines" is mapped to this structure element, then
"International Busine" is copied to the structure element with no trailing null character.

SCA Structure and VIEW32, VIEW, X_OCTET, or X_C_TYPE Mapping
If an SCA structure is mapped to a VIEW32, VIEW, X_OCTET, or X_C_TYPE data type, then
the structure used for the Oracle Tuxedo view-based type must exactly match the SCA structure,
and is copied byte-by-byte. In other words, no marshalling of data is done when converting
between an SCA structure, and a view. FML32 or FML should be used if data marshalling is
required.

When an SCA structure is mapped to a view-based Oracle Tuxedo type, you cannot specify bool,
wchar_t, long long, unsigned long long, long double, or nested structure data types
within the SCA structure since corresponding data types do not exist within Oracle Tuxedo
views. Elements corresponding to any Oracle Tuxedo Associated Count Member or Associated
Length Member fields must be provided. Appropriate values for any such elements must also be
provided by the application if converting an SCA structure to an Oracle Tuxedo view.

SCA Structure and Mbstring Mapping
An mbstring field type currently exists in VIEW32 (for more information, see tpconvvmb32).
SCA structures treat the mbstring field type in the same way as in VIEW32. The encoding
information is part of an mbstring structure element, and Fmbunpack32() and Fmbpack32()
must be used in application programs using mbstring data in structures.

TPFAIL Return Data
You can specify a structure pointer as data returned on TPFAIL if the same structure pointer is
also returned on successful output. Since SCA must store internal information describing the
2-72 Service Component Architecture

../rf3fml/index.html
../rf3fml/index.html
../rf3fml/index.html

SCA and Orac le Tuxedo In te roperab i l i t y
returned structure along with the application data, <tuxsca.h> is used to define the structure and
typedef as shown in Listing 1-42.

Listing 1-42 <tuxsca.h> SCA Structure and Typedef Definition

struct scastruct_t {
 void *data;
 void *internalinfo;
};
typedef struct scastruct_t *SCASTRUCT_PTR;

If an application normally returns "struct mystruct *" data, it accesses TPFAIL data as shown
in Listing 1-42.

Listing 1-43 TPFAIL Example

… catch (Tuscany::sca::atmi::ATMIBindingException& abe) {
 SCASTRUCT_PTR *scap = (SCASTRUCT_PTR *)abe.getData();
 struct mystruct *result = (struct mystruct *)scap->data;
}

SCA and Oracle Tuxedo Interoperability
Existing Oracle Tuxedo service interoperability is performed by using the
/binding.atmi/@requires attribute with the legacy value. When a legacy value is specified,
invocations are performed using the following behavior:

If a <map> element is present in either a <reference> or a <service>, that value is used
to determine which Oracle Tuxedo service is associated with the specified method name to
call or advertise.

Otherwise:

In a <reference> element: the value specified in the /reference/@name element is used
to perform the Oracle Tuxedo call, with semantics according to the interface method used.
Service Component Architecture 2-73

<~runChNum>
In a <service> element: the Oracle Tuxedo service specified in the /binding.atmi/map
element is advertised, and mapped to the method specified in the
/binding.atmi/map/@target attribute.

Additionally, the /binding.atmi/@requires attribute is used to internally control data
mapping, such that FML32 or FML field tables are not required.

Note: When not specified, communications are assumed to have SCA -> SCA semantics where
the actual Oracle Tuxedo service name is constructed from /service/@name or
/reference/@name and actual method name (see the pseudo schema shown
Listing 1-27).

SCA Transactions
The ATMI binding schema supports SCA transaction policies by using the
/binding.atmi/@requires attribute and three transaction values. These transaction values
specify the transactional behavior that the binding extension follows when ATMI binding is used
(see the pseudo schema shown Listing 1-27).

The transaction values are as follows:

Not specified (no value)

All transactional behavior is left up to the Oracle Tuxedo configuration. If the Oracle
Tuxedo configuration supports transactions, then a transaction can be propagated if it
exists.

If the Oracle Tuxedo configuration does not support transactions and a transaction exists,
then an error occurs.

Note: A transaction is not started if a transaction does not already exist.

suspendsTransaction

When specified, the transaction context is not propagated to the service called. For a
<service>, the transaction (if present), is automatically suspended before invoking the
application code, and resumed afterwards, regardless of the outcome of the invocation. For
a <reference>, equivalent to making a tpcall() with the TPNOTRAN flag.

propagatesTransaction

Only applicable to <reference> elements, ignored for <service> elements. Starts a new
transaction if one does not already exist, otherwise participate in existing transaction. Such
a behavior can be obtained in a component or composite <service> by configuring it
AUTOTRAN in the UBBCONFIG. An error is generated if an Oracle Tuxedo server hosts the
2-74 Service Component Architecture

SCA Secur i t y
SCA component implementation and is not configured in a transactional group in the
UBBCONFIG.

SCA Security
SCA references pass credentials using the <authentication> element of the binding.atmi
SCDL element.

SCA services can be ACL protected by referencing their internal name:
/binding.atmi/service/@name attribute followed by a '/' and method name in SCA -> SCA
mode, /binding.atmi/service/@name attribute in legacy mode (SCA -> Tux interop mode).

For more information, see SCA and Oracle Tuxedo Interoperability.
Service Component Architecture 2-75

<~runChNum>
2-76 Service Component Architecture

C H A P T E R 2
Web Application Server Programming
This section contains the following topics:

Overview

Developing Native Oracle Tuxedo Web Applications

Developing Python Web Applications

Developing Ruby Web Applications

Developing PHP Web Applications

Overview
Oracle SALT adds features that enable Web Applications to run in Oracle Tuxedo and be
accessed easily through HTTP server plug-ins. Using HTTP servers such as Apache 2, Oracle
HTTP Server and iPlanet, you can directly expose applications to the World Wide Web. HTTP
servers must use Oracle Tuxedo-specific plug-ins (referred to as mod_tuxedo) that translates
HTTP requests into Oracle Tuxedo requests, and translates Oracle Tuxedo responses into HTTP
responses.

Note: On HP platforms, plug-in libraries must be built with multi-threading enabled via the
compiler -mt flag because the GWWS system server is a multi-threaded program.

Applications can be written in C or C++ using a Gateway Interface similar to CGI but specific to
Oracle Tuxedo servers and their mode of communication, or in dynamic languages such as PHP,
Python and Ruby. Using dynamic languages, programs are not aware that they are running in
Oracle SALT Programming Guide 3-1

Oracle Tuxedo, which allows re-using application frameworks such as Symfony (PHP), Django
(Python) or Rails (Ruby) directly into an Oracle Tuxedo-based environment.

Developing Native Oracle Tuxedo Web Applications
While mod_tuxedo provides the Oracle Tuxedo client part of Web requests serving, on the
Oracle Tuxedo side one of the methods of processing the requests is to access them directly. This
is permitted by documenting the format of the received buffer, which is an Oracle Tuxedo FML32
typed buffer.

This method allows you to generate dynamic HTTP content by developing Oracle Tuxedo
services and leverage Oracle Tuxedo RASP and integration capabilities in doing so.

The relevant elements of an HTTP request are exposed (Method name, Query string URL, File
name, POST data, etc.). As well as the return data to mod_tuxedo (HTTP Response Headers (if
necessary), HTML document).

For more information, see Oracle SALT reference Guide.

The development process is similar to developing a regular Oracle Tuxedo service that generates
HTML code, the difference being that developing RESTful services adheres to a set of
conventions or rules governing the behavior of the service (a service processing GET should
behave differently than when processing PUT). RESTful services are generally not designed to
be accessed using an HTML browser (that is, similar to SOAP services).

The data flow is as follows:

An Apache2 or OHS process is configured to handle certain URLs using the mod_tuxedo
module.

mod_tuxedo intercepts the request.

mod_tuxedo formats the request and sends it to an Oracle Tuxedo service, which name is
derived from the SCRIPT_NAME value. In the examples that follow, the service in question
is named TUXSVC.

The Oracle Tuxedo service receives the data and processes it accordingly:

– REQUEST_METHOD contains the REST operation: GET, PUT, POST or DELETE.

– PATH_INFO may contain the resource accessed. In this example, it contains "/1234".
The program can parse this value according to a documented convention between client
and server to obtain the account number.
3-2 Oracle SALT Programming Guide

../../../salt/docs1222/ref/index.html

Deve lop ing Nat ive Orac le Tuxedo Web App l icat ions
– QUERY_STRING or POST_DATA (for GET or POST) may contain additional parameters.
Pre-determined conventions govern what the parameters look like and what they
contain. This is determined by service developers and published as application
documentation so client programs can be developed to communicate with these
services.

The Oracle Tuxedo service composes a response which is implicitly sent back to
mod_tuxedo.

– The format of the response is up to you:

• "XML

• "CSV (comma-separated values)

• JSON

• …

mod_tuxedo sends the response back to the client program.

The different components are shown in Listing 2-1 through Listing 2-4

Listing 2-1 Configure OHS or Apache2 (httpd.conf excerpt)

<Location "/ACCOUNT">

 <IfModule mod_tuxedo.c>

 SetHandler tuxedo-script

 Tuxconfig "/home/maurice/src/tests/secsapp/work/tuxconfig"

 </IfModule>

</Location>

Write the Oracle Tuxedo service as shown in Listing 2-2
Oracle SALT Programming Guide 3-3

Listing 2-2 Oracle Tuxedo Service

void

ACCOUNT(TPSVCINFO *rqst)

{

 char val[1024]; /* TODO: query size first */

 long len;

 int rc;

 /* Fetch PATH_INFO value, which contains the resource */

 len = sizeof(val);

 rc = Fget32((FBFR32 *)inbuf, PATH_INFO, 0, (char *)val, &len);

 if (rc < 0) {

 /* Handle error */

 }

 /* Variable 'val' contains resource name, process it */

 ...

 /* Fetch QUERY_STRING, which optionally contains

 additional parameters */

 len = sizeof(val);

 rc = Fget32((FBFR32 *)inbuf, QUERY_STRING, 0, (char *)val, &len);

 if (rc < 0) {

 /* Handle error */

 }

 /* Depending on method, do processing */
3-4 Oracle SALT Programming Guide

Deve lop ing Nat ive Orac le Tuxedo Web App l icat ions
 len = sizeof(val);

 rc = Fget32((FBFR32 *)inbuf, REQUEST_METHOD, 0, (char *)val, &len);

 if (rc < 0) {

 /* Handle error */

 }

 if (strcmp(val, "GET") == 0) {

 ...

 } else if (strcmp(val, "PUT") == 0) {

 ...

 } else if (strcmp(val, "POST") == 0) {

 /* Get POST_DATA, parse it */

 ...

 } else if (strcmp(val, "DELETE") == 0) {

 ...

 }

 /* Compose return document, using xml or JSON */

 ...

 /* Return result document */

 tpreturn(TPSUCCESS, 0, result, 0L, 0);

}

Example URL/response:

Method: GET

Request URL: http://myhost/ACCOUNT/1234
Oracle SALT Programming Guide 3-5

Response (XML) as shown in Listing 2-3.

Note: XML generation can be done using existing libtxml.

Listing 2-3 XML Response

<account id="1234">

 <balance value="10000"/>

 <customer name="John Smith"/>

</account>

Response (JSON) as shown in Listing 2-4.

Note: JSON generation can be done using JSON-C, a free and redistributable JSON
implementation in C (MIT license), provided as source code. Many libraries exist in
a number of languages including PHP, Perl, Python, Ruby, Java, etc.

Listing 2-4 JSON Response

[

 "account": {

 "id": "1234",

 "balance": {

 "value": "10000"

 },

 "customer": {

 "name": "John Smith"

 }

 }

]

3-6 Oracle SALT Programming Guide

Deve lop ing Py thon Web App l i cat i ons
Developing Python Web Applications
Similar to how PHP applications can run inside the WEBHNDLR Oracle Tuxedo System Server,
Oracle SALT allows writing applications for the Web in Python.Unlike PHP (where all scripts
are designed to run in a CGI-like model), Python require running using a specific Web layer.

This layer is designated as WSGI (Web Server Gateway Interface) and is built into the language.
It actually is a Python specification (PEP 333). In Python, although applications may be written
for WSGI, complete application frameworks are available (conforming to WSGI. Django seems
to be the most popular).

The following sections describe how to configure WEBHNDLR to run Python WSGI applications
(including using the Django framework).

Prerequisites

Usage

Example(s)

Prerequisites
A Python 2.5.5 or higher installation.

Python must be built with shared-libraries enabled. This is usually the case for
out-of-the-box installations. If you are building from source, the --enable-shared
options must be used in the configure step.

There are no known database or third-party library support restrictions.

Usage
A simple WSGI application example is shown in Listing 2-5

Listing 2-5 WSGI Application Example

import cgi

def application(environ, start_response):

 form = cgi.FieldStorage(fp=environ['wsgi.input'],
Oracle SALT Programming Guide 3-7

 environ=environ,

 keep_blank_values=1)

 write = start_response('200 OK', [('Content-type', 'text/html')])

 if form.getvalue('name'):

 write('<html><head><title>Hello!</title></head>\n')

 write('<body>\n')

 write('<h1>Hello %s!</h1>\n' % form['name'].value)

 else:

 write('<html><head><title>Who is there?</title></head>\n')

 write('<body>\n')

 write('<h1>Who is there?</h1>\n')

 write('<form action="%s" method="POST">\n' % environ['SCRIPT_NAME'])

 write('What is your name?
\n')

 write('<input type="text" name="name" value="%s">
\n'

 % cgi.escape(form.getvalue('name', ''), 1))

 write('<input type="submit" value="That is my name"></form>\n')

 write('</body></html>\n')

 return None

With frameworks such as Django, this is performed in a handler script that is not seen by the
application developer.

Any Python WSGI application may run inside the WEBHNDLR System Server by performing the
following steps:

1. Configure Apache (or OHS) to forward requests to WEBHNDLR. This may require additional
configuration to indicate the path to necessary static files (for example, images, CSS
stylesheets or javascript files).

2. Add the application path to the PYTHONPATH environment variable.
3-8 Oracle SALT Programming Guide

Deve lop ing Py thon Web App l i cat i ons
3. Set APP_CONFIG for WEBHNDLR to load the application or middleware handler (for
frameworks like Django).

For more information, see Oracle SALT Reference Guide.

Example(s)

Stand-Alone Script/Application
Listing 2-6 shows an Apache configuration for a WSGI application example.

Listing 2-6 Stand-Alone Script/Application Example

<VirtualHost 10.143.7.223:2280>

DocumentRoot "/media/src/tests"

<Directory "/media/src/tests">

<IfModule mod_tuxedo.c>

 SetHandler tuxedo-script

 Tuxconfig "/media/src/TUX11g/web/tests/tuxconfig"

 TuxService PYWEB

</IfModule>

</Directory>

</VirtualHost>

The ubbconfig file and setting for a standalone WSGI application are located in a script named
test_app.py (==module), in the /media/src/tests directory (PYTHONPATH must contain
/media/src/tests):

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8
 CLOPT="-A -- -l Python -S PYWEB "

Before booting WEBHNDLR, you must either

set APP_CONFIG to test_app ('export APP_CONFIG=test_app' on Unix), or
Oracle SALT Programming Guide 3-9

../../../salt/docs1222/ref/index.html

use an ENVFILE with the value APP_CONFIG=test_app.

Django-Based Application
For an Apache Django-based application you must note the RewriteEngine rules and Alias. These
are there to indicate the location of static files (for example, CSS, images or javascript), and also
map the root URL to the application (see last RewriteRule) as shown in Listing 2-7.

Listing 2-7 Django-Based Application

<VirtualHost 10.143.7.223:2280>

DocumentRoot "/media/src/test_django/mysite"

Alias /media /usr/lib/python2.5/site-packages/django/contrib/admin/media

<Directory "/media/src/test_django/mysite">

 <IfModule mod_tuxedo.c>

 SetHandler tuxedo-script

 Tuxconfig "/media/src/TUX11g/web/tests/tuxconfig"

 TuxService PYWEB

 </IfModule>

</Directory>

 RewriteEngine On

 RewriteRule ^/(media.*)$ /$1 [QSA,L,PT]

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteRule ^/(.*)$ /mysite/$1 [QSA,L]

</VirtualHost>

The environment variable DJANGO_SETTINGS_MODULE must be set before booting WEBHNDLR.
For example, for an application named mysite:

DJANGO_SETTINGS_MODULE=mysite.settings
3-10 Oracle SALT Programming Guide

Deve lop ing Ruby Web App l icat ions
The PYTHONPATH setting for a Django example, called mysite and located in the
/media/src/test_django directory:

PYTHONPATH=/media/src/test_django

The ubbconfig setting for the Django example mentioned here:

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8

 CLOPT="-A -- -l Python -S PYWEB"

Before booting WEBHNDLR, you must either:

set APP_CONFIG to django.core.handlers.wsgi (WSGIHandler) ('export
APP_CONFIG="django.core.handlers.wsgi (WSGIHandler)"' on Unix), or

use an ENVFILE with the value APP_CONFIG=" django.core.handlers.wsgi
(WSGIHandler)".

Developing Ruby Web Applications
Similar to how PHP applications can run inside the WEBHNDLR Oracle Tuxedo System Server,
Oracle SALT allows writing applications for the Web in Ruby.Unlike PHP (where all scripts are
designed to run in a CGI-like model), Ruby requires running using a specific Web layer.

There is an equivalent to WSGI (called Rack), which is done in the form of a library that installs
separately. In Ruby, although applications may be written on top of Rack directly, complete
application frameworks are available such as Rails. A rack application is an interface between
application and servers for Ruby (similar to WSGI). It is usually installed as an add-on to the
language, and is a pre-requisite to application server environments such as Rails. The sections
below describe how to configure WEBHNDLR to run Ruby Rack-conformant applications,
including using the Rails framework.

Prerequisites

Usage

Example(s)

Prerequisites
A Ruby 1.9.x installation.
Oracle SALT Programming Guide 3-11

Ruby must be built with shared-libraries enabled. This is usually the case for
out-of-the-box installations. If building from source the '--enable-shared' options must
be used in the configuration.

Rails 2.x or 3.0.x libraries.

There are no known database or third-party library support restrictions.

Usage
Listing 2-8 shows a simple Rack application example.

Listing 2-8 Simple Rack Application Example

class HelloWorld

 def call(env)

 [200, {"Content-Type" => "text/plain"}, ["Hello world!"]]

 end

end

With frameworks like Ruby, this is performed in a handler script that is not seen by the
application developer.

The script in Listing 2-8 is passed to the handler using a RackUp script that allows adding more
functionality (such as pretty exceptions, LINT wrappers, etc.) to the application.

A RackUp script example loading the application is shown in Listing 2-9.

Listing 2-9 RackUp Script Example

require 'hello'

use Rack::ShowExceptions

run HelloWorld.new
3-12 Oracle SALT Programming Guide

Deve lop ing Ruby Web App l icat ions
Any Ruby Rack-compliant application may run inside the WEBHNDLR system server by
performing the following steps:

1. Configure Apache (or OHS) to forward requests to WEBHNDLR. This may require additional
configuration to indicate the path to necessary static files (for example, CSS stylesheets or
javascript files).

2. Configure WEBHNDLR to load the application or middleware handler (for frameworks like
Rails).

Example(s)
Ruby Rack Lobster
Listing 2-10 shows an Apache (or OHS) configuration example.

Listing 2-10 Apache (or OHS) Configuration Example

<VirtualHost 10.143.7.223:2380>

 DocumentRoot "/media/src/tests"

 <Directory "/media/src/tests">

 <IfModule mod_tuxedo.c>

 SetHandler tuxedo-script

 Tuxconfig "/media/src/TUX11g/web/tests/tuxconfig"

 TuxService RBWEB

 </IfModule>

 </Directory>

</VirtualHost>

The ubbconfig file WEBHNDLR setting is as follows:

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8

 CLOPT="-A -- -l Ruby -S RBWEB"

Set APP_CONFIG.
Oracle SALT Programming Guide 3-13

Ruby Rails Application
For an Apache (or OHS) configuration, you must note e the RewriteEngine rules and
AddHandler directive (as opposed to SetHandler). These are there to re-direct the HTTP server
to static files (CSS, images, javascript, etc.) as shown in Listing 2-11.

Listing 2-11 Ruby Rails Application

<VirtualHost 10.143.7.223:2380>

SetEnv RAILS_RELATIVE_URL_ROOT /media/src/rails_test

DocumentRoot "/media/src/rails_test/public"

RewriteEngine On

RewriteRule ^(/stylesheets/.*)$ - [L]

RewriteRule ^(/javascripts/.*)$ - [L]

RewriteRule ^(/images/.*)$ - [L]

RewriteRule ^$ index.html [QSA]

RewriteRule ^([^.]+)$ $1.html [QSA]

RewriteCond %{REQUEST_FILENAME} !-f

RewriteRule ^/(.*)$ /rails3.tuxrb [QSA,L]

<Directory "/media/src/rails_test/public">

Allow from All

<IfModule mod_tuxedo.c>

 AddHandler tuxedo-script .tuxrb

 Tuxconfig "/media/src/TUX11g/web/tests/tuxconfig"

 TuxService RBWEB
3-14 Oracle SALT Programming Guide

Deve lop ing PHP Web App l icat ions
</IfModule>

</Directory>

</VirtualHost>

The ubbconfig file WEBHNDLR setting (assuming the Rails application has been set up in the
/media/src/rails_test directory and is named RailsTest) is as follows:

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8

CLOPT="-A -- -l Ruby -S RBWEB'. That is, remove the "-a /media..."
portion

Before booting WEBHNDLR, you must either:

set APP_CONFIG to path to rack up script ('export APP_CONFIG="
/media/src/rails_test/config.ru"' on Unix), or use an ENVFILE with the value
APP_CONFIG=" /media/src/rails_test/config.ru".

Developing PHP Web Applications
PHP scripts are directly supported by WEBHNDLR and no specific changes are required for
applications to run in an Oracle Tuxedo environment. Configuring the location of PHP scripts in
the HTTP server is sufficient. Once the framework is configured to run PHP scripts in WEBHNDLR,
PHP applications are automatically supported.

For more information, see Oracle SALT Command Reference Guide.

Prerequisites

Usage

Example(s)

Prerequisites
PHP 5.3.2 or higher installation.

PHP must be built using the --enable-embed configure option.

There are no known database or third-party library support restrictions.
Oracle SALT Programming Guide 3-15

../../../salt/docs1222/ref/index.html

Usage
PHP scripts are directly supported by WEBHNDLR; no specific changes are required for
applications to run in an Oracle Tuxedo environment. Configuring the location of PHP scripts in
the HTTP server is sufficient. Once the framework is configured to run PHP scripts in WEBHNDLR,
PHP applications are automatically supported.

Example(s)
Place a script named "test.php" (as shown in Listing 2-12) in the document root folder of the
HTTP server:

Listing 2-12 test. php Script

-- listing x-x test.php script

<?php

phpinfo();

?>

--

Point your browser to: http://<your_host>:<port>/test.php.

See Also
Oracle SALT Administration Guide

Oracle SALT Reference Guide
3-16 Oracle SALT Programming Guide

../../../salt/docs1222/admin/index.html
../../../salt/docs1222/ref/index.html

C H A P T E R 4
SCA Command Reference
Table 4-1 lists SCA commands and functions.

Table 4-1 Oracle Tuxedo Commands and Functions

Name Description

buildscaclient Builds processes that call SCA components.

buildscacomponent Builds SCA components.

buildscaserver Parses SCDL definitions and interfaces and produces a
Tuxedo-deployable server and elements.

mkfldfromschema,
mkfld32fromschema

The mkfldfromschema and mkfld32fromschema
commands take an XML schema as input and produce
a field table.

mkviewfromschema,
mkview32fromschema

The mkviewfromschema and mkview32fromschema
commands take an XML schema as input and produce
a view file.

scaadmin SCA server management command interpreter.

SCAHOST (5) Generic server for Python, Ruby, or PHP components.

scapasswordtool Manages passwords for Oracle Tuxedo authentication in
SCA clients.
Service Component Architecture 4-1

buildscaclient
Name

buildscaclient – Builds processes that call SCA components.

Synopsis
buildscaclient -c default_component [-v] [-h] [-k] [-o name] [-s SCAroot]

[-f firstfiles] [-l lastfiles] [-S structurefiles]

Description
This command is used to build client processes that can call SCA components hosted in Tuxedo
environments. The command combines files, specified using the -f and -l options, with the SCA
and standard Tuxedo ATMI libraries to form a client application. The client application is built
using the default C++ language compile command defined for the operating system in use, unless
overridden using the CC environment variable.

All specified .c and .cpp files are compiled in one invocation of the compilation system based
on the operating system. Users may specify the compiler to invoke by setting the CC environment
variable to the name of the compiler. If the CC environment variable is not defined when
buildscaclient is invoked, the default C++ language compile command for the operating
system is invoked to compile all .c and .cpp files.

scastructc32, scastructc(1) Oracle Tuxedo structure description file compiler

scastructdis32, scastructdis Binary structure and view files disassembler.

scatuxgen(1) Generates Oracle Tuxedo Service Metadata Repository
interface information from an SCA interface.

setSCAPasswordCallback(3c) Sets the callback for retrieving a password associated
with an identifier in a <binding.atmi> element.

tuxscagen(1) Generates SCA, SCDL, and server-side interface files for
Tuxedo services.

Table 4-1 Oracle Tuxedo Commands and Functions

Name Description
4-2 Service Component Architecture

bui ldscac l i ent
You may specify additional options to be passed to the compiler by setting the CFLAGS or the
CPPFLAGS environment variables. If CFLAGS is not defined when buildobjclient is invoked,
then buildscaclient uses the value of CPPFLAGS, if that variable is defined.

Parameters and Options
buildscaclient supports the following parameters and options:

-c defaultcomponent

Required parameter. Indicates which component should be used for this application.

[-v]

Specifies that the buildscaclient command should work in verbose mode. In
particular, it writes the compile command to its standard output.

[-k]

Maintains the generated stubs. buildscaclient generates proxy files that allow
dynamic interfacing of clients and references. This is normally compiled and then
removed when the proxy is built. This option indicates that the source file should be
retained.

Caution: The generated contents of this file may change from release to release. It is advised
that you do not depend on the data structures and interfaces exposed in this file. This
option is provided to aid in debugging of build problems.

[-o name]

Specifies the name of the client application generated by this command. If the name is not
supplied, the application file is named client<.type>, where type is an extension that
is dependent on the operating system. For example, on a UNIX system, there would not
be a type, but on a Windows system, the type would be .EXE.

[-s scaroot]

Specifies the location of SCA root, where the SCDL files for the required components are
located. If not set, the APPDIR environment value is used.

[-f firstfiles]

Specifies the file to be included first in the compile and link phases of the
buildscaclient command. The specified file is included before the SCA libraries are
included. There are two ways of specifying a file or files:
Service Component Architecture 4-3

Note: Filenames that include spaces are not supported.
The -f option may be specified multiple times.

[-l lastfiles]

Specifies a file to be included last in the compile and link phases of the buildscaclient
command. The specified file is included after the SCA libraries are included. There are
two ways of specifying the file, as shown in the following table.

Note: Filenames that include spaces are not supported.
The -l option may be specified multiple times.

[-S structurefiles]

Specifies an SCA structure description file. The structure description file may be either a
source file or a binary structure description file. If more than one file is specified, file
names must be separated by white space and the entire list must be enclosed in quotation
marks. The -S option may be specified multiple times on the same command line.

The use of structure description files is optional. If a structure description is not provided
for a particular structure then the source code where the structure is defined is used
describe the structure; in SCA-ATMI mode, the FML32 field name corresponding to each
structure element is the same as the name of the structure element.

Note: Filenames that include spaces are not supported.
The -S option may be specified multiple times.

Filename Specification Description

-f firstfile One file is specified

-f "file1.cpp file2.cpp
file3.cpp …"

Multiple files may be specified if their names are
enclosed in quotation marks and are separated using
white spaces.

Filename Specification Description

-l lastfile One file is specified

-l "file1.cpp file2.cpp
file3.cpp …"

Multiple files may be specified if their names are
enclosed in quotation marks and are separated using
white spaces.
4-4 Service Component Architecture

bui ldscac l i ent
Environment Variables
Following is a list of environment variables for buildSCAclient:

TUXDIR

Finds the SCA libraries and includes files to use when compiling the client applications.

CC

Indicates the compiler for all files with .c or .cpp file extensions. If not defined, the
default C++ language compile command is invoked to compile all .c and .cpp files,
based on the operating system.

CFLAGS

Indicates any arguments that are passed as part of the compiler command line for any files
with .c or .cpp file extensions. If CFLAGS does not exist in the buildscaclient
command environment, the command checks for the CPPFLAGS environment variable.

Note: Arguments passed by the CFLAGS environment variable take priority over the
CPPFLAGS variable.

CPPFLAGS
Contains a set of arguments that are passed as part of the compiler command line for any
files with .c or .cpp file extensions.

This is in addition to the command line option "-I$(TUXDIR)/include" for UNIX
systems or the command line option /I%TUXDIR%\include for Windows systems, which
is passed automatically by the buildscaclient command. If CPPFLAGS does not exist
in the buildscaclient command environment, no compiler commands are added.

LD_LIBRARY_PATH (UNIX systems)

Indicates the directories that contain shared objects to be used by the compiler, in addition
to the objects shared by the CORBA software. A colon (:) is used to separate the list of
directories. Some UNIX systems require different environment variables:

HP-UX systems use the SHLIB_PATH environment variable

AIX systems use LIBPATH

LIB (Windows systems)

Indicates a list of directories that contain the library files. A semicolon (;) is used to
separate the list of directories.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.
Service Component Architecture 4-5

Example(s)
buildscaclient -s /myApplication/scaSrc/uBike -c uBike.client -f
uBikeClient.cpp -o uBikeClient

See Also
[-S],

buildscacomponent
Name

buildscacomponent - builds SCA components

Synopsis
buildscacomponent [-v] [-s scaroot] [-f firstfiles] [-l lastfiles] [-S

structurefiles] -c compositename[/componentname][,compositename,..]] [-y]

[-k] [-h]

Description
buildscacomponent is used to build individual SCA components from source code. The
command reads SCDL source, finds the component(s) in the composite(s) file(s) specified, parses
the corresponding .componentType file(s) and produces corresponding executable libraries, in
the same location as the .componentType files.

The command automatically builds component implementations based on the contents of
<implementation.cpp> elements as follows:

The value of /implementation.cpp/@header is used to determine the name of the
source and componentType files containing the implementation.

For example, an element such as
<implementation.cpp library="myLib" header="myComponentImpl.h"/>

causes buildscacomponent to look for a myComponentImpl.cpp file and compile it,
along with stubs generated from its interface located in a corresponding
myComponentImpl.componentType file.

Composites may contain one or more components, and the buildscacomponent command may
build one or more composites in one pass. If more than one component is built, the files specified
using the -f and -l switches are included in each component. To build a single component, the
4-6 Service Component Architecture

bui ldscacomponent
-c composite/component syntax should be used. This addresses the cases where individual
components are made up of specific sets of source code or libraries.

All specified .c and .cpp files are compiled in one invocation of the compilation system for the
operating system in use. Users may specify the compiler to be invoked by setting the CC
environment variable to the name of the compiler. If the CC environment variable is not defined
when buildscacomponent is invoked, the default C++ language compile command for the
operating system in use is invoked to compile all .c and .cpp files.

Users may specify options to be passed to the compiler by setting the CFLAGS or the CPPFLAGS
environment variable. If CFLAGS is not defined but CPPFLAGS is defined when
buildscacomponent is invoked, the CPPFLAGS value is used.

Parameters and Options
buildscacomponentsupports the following parameters and options:

[-v]

Specifies that buildscacomponent should work in verbose mode.

[-s scaroot]

Specifies the location of the SCA root, where the SCDL file(s) for the component(s) is
(are) located, and where the source code of components is processed.

If not specified, the value of APPDIR is used.

[-f firstfiles]

Specifies a file to be included first in the compile and link phases of the
buildscacomponent command. The specified file is included before the SCA libraries
are included. There are two ways of specifying a file or files, as shown in the following
table.

Note: Filenames that include spaces are not supported.
The -f option may be specified multiple times.

Table 4-2 File Specification Using [-f firstfiles]

Filename Specification Definition

-f firstfile One file is specified

-f "file1.cpp file2.cpp file3.cpp …" Multiple files may be specified if their names are
enclosed in quotation marks and are separated by
white space.
Service Component Architecture 4-7

[-l lastfiles]

Specifies a file to be included last in the compile and link phases of the
buildscacomponent command. The specified file is included after the SCA libraries are
included. There are two ways of specifying a file, as shown in the following table.

Note: Filenames that include spaces are not supported.
The -l option may be specified multiple times.

-c {composite[,composite]|composite/component}

Specifies the name(s) of the composite(s) processed. The composite(s) is (are) searched
in APPDIR or in the SCDL directory specified above with the -s switch. If it cannot be
found, the component libraries are not built.

A list of composites may be specified, in which case all the components listed in the
composites will be built. If any of the composites cannot be found or an error is detected
(incorrect name, composite does not have any ATMI service binding), a warning message
is displayed and the user is prompted to confirm whether the command should continue
processing or abort.
If the composite/component notation is used, a single component contained in the
specified composite is allowed. This notation covers the situation where specific source
files specified with -f and -l need to be included in the build process of a component.

[-y]

Optionally forces processing of input files, automatically ignoring warnings, such as
composites specified using the -c switch but not physically present from the root
directory.

[-k]

Keeps the generated proxy and wrapper source. buildscacomponent generates proxy
and wrapper code with data structures such as the method operation and parameter
handling. This is normally compiled and then removed when the component is built. This
option indicates that the source file should be kept (to see what the source filename is, use
the -v option).

Table 4-3 File Specification Using [-l lastfiles]

Filename Specification Definition

-l lastfile One file is specified

-l "file1.cpp file2.cpp file3.cpp …“ Multiple files may be specified if their names are
enclosed in quotation marks and are separated by
white space.
4-8 Service Component Architecture

bui ldscacomponent
Note: The generated contents of this file may change from release to release. Do Not
count on the data structures and interfaces exposed in this file. This option is
provided to aid in debugging of build problems.

[-S structurefiles]

Specifies an SCA structure description file. The structure description file may be either a
source file or a binary structure description file. If more than one file is specified, file
names must be separated by white space and the entire list must be enclosed in quotation
marks. The -S option may be specified multiple times on the same command line.

The use of structure description files is optional. If a structure description is not provided
for a particular structure then the source code where the structure is defined is used
describe the structure; in SCA-ATMI mode, the FML32 field name corresponding to each
structure element is the same as the name of the structure element.

Note: Filenames that include spaces are not supported.
The -S option may be specified multiple times.

Environment Variables
TUXDIR

Finds the SCA libraries and include files to use when compiling the client applications.

APPDIR

Indicates the SCA application root location, where the top-level composite should reside.

CC

Indicates the compiler to use to compile all files with .c or .cpp file extensions. If not
defined, the default C++ language compile command for the operating system in use will
be invoked to compile all .c and .cpp files.

CFLAGS

Indicates any arguments that are passed as part of the compiler command line for any files
with a .c or .cpp file extensions. If CFLAGS does not exist in the buildscacomponent
command environment, the buildscacomponent command checks for the CPPFLAGS
environment variable.

CPPFLAGS

Note: Arguments passed by the CFLAGS environment variable take priority over the
CPPFLAGS variable.

Contains a set of arguments that are passed as part of the compiler command line for any
files with a .c or .cpp file extensions.

This is in addition to the command line option -I$(TUXDIR)/include for UNIX systems
or the command line option /I%TUXDIR%\include for Windows systems, which is
Service Component Architecture 4-9

passed automatically by the buildscacomponent command. If CPPFLAGS does not exist
in the buildscacomponent command environment, no compiler commands are added.

LD_LIBRARY_PATH (UNIX systems)

Indicates which directories contain shared objects to be used by the compiler, in addition
to the objects shared by the CORBA software. A colon (:) is used to separate the list of
directories. Some UNIX systems require different environment variables: for HP-UX
systems, use the SHLIB_PATH environment variable; for AIX, use LIBPATH.

LIB (Windows systems)

Indicates a list of directories within which to find libraries. A semicolon (;) is used to
separate the list of directories.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example(s)
buildscacomponent -f utils.c -c searchInventory,updateItem

See also
[-S],Filenames that include spaces are not supported. The -f option may be
specified multiple times.

buildscaserver
Name

buildscaserver – Builds an Oracle Tuxedo server containing SCA components.

Synopsis
-o servername -c composite[,composite][-v][-s scaroot]
[-w] [-r rmname][-y] [-k] [-t] [-S]

Description
buildscaserver is used to build a Tuxedo server that is used to route requests to SCA
components previously built with the buildscacomponent command. The command generates a
main routine that contains bootstrap routines to route Tuxedo or SCA requests to SCA
components, and compiles it to form a server host application. The server host application is built
using the default C++ compiler provided for the platform.
4-10 Service Component Architecture

bui ldscaserve r
If the SCDL code contains references or services with <binding.ws> elements, these are
automatically converted into WSDF files for use by the Web Services gateway (GWWS). All
SCA servers built using buildscaserver are multi-threaded servers.

Parameters and Options
buildscaserver supports the following parameters and options:

-o servername

Required. Specifies the name of the server application generated by this command.

-c compositename[,compositename]

Required. Specifies the name of the composite hosted. The composite is searched for
starting in APPDIR, or in the SCDL directory specified above with the -s switch. If it is
not found, the server is not built. In case you specify a list of composites, then all the listed
composites are hosted by the same Tuxedo server.

If any of the composites are not found or an error is detected such as incorrect name or
composite does not have any atmi service binding, a warning message is
displayed and the user is prompted to confirm whether the command should continue
processing or abort.

[-v]

Specifies that buildscaserver should work in verbose mode.

[-s scaroot]

Specifies the target location of the SCA root, where the SCDL files for the components to
be deployed are located.

This directory has a layout suitable to SCA composites and components. Each composite
is represented as a directory and contains components in the run-time form, which
includes SCDL code and libraries. At run time, the server application uses this directory
to find the run-time SCA components.

If components are using the Web Services binding, the root location also receives a WSDF
definition file.

[-w]

Specifies that the generated server will host Web services binding enabled components.
By default, a server hosting ATMI binding enabled components is generated. Both types
of servers can host the same actual components simultaneously (i.e. there can exist an
ATMI and a WS servers, both hosting the same components previously built using the
buildscacomponent command).
Service Component Architecture 4-11

[-r rmname]

Specifies the resource manager associated with this server. The value rmname must appear
in the resource manager table located in $TUXDIR/udataobj/RM on UNIX systems or
%TUXDIR%\udataobj\RM on Windows systems. Each entry in this file is of the following
form:

rmname:rmstructure_name:library_names

Using the rmname value, the entry in $TUXDIR/udataobj/RM or
%TUXDIR%\udataobj\RM automatically includes the associated libraries for the resource
manager and sets up the interface between the transaction manager and the resource
manager. The value TUXEDO/SQL includes the libraries for the Oracle Tuxedo
System/SQL resource manager. Other values can be specified once they are added to the
resource manager table. If the -r option is not specified, the null resource manager is used,
by default.

[-y]

Optionally forces processing of input files, automatically ignoring warnings.

[-k]

Keeps the server main stub. buildscaserver generates a main stub with data structures
such as the service table and a main() function. This is normally compiled and then
removed when the server is built. This option indicates that the source file should be
retained.

Note: To see the source filename, use the -v option.

Caution: The generated contents of this file may change from release to release. It is advised
that you do not depend on the data structures and interfaces exposed in this file. This
option is provided to aid in debugging build problems.

[-t]

Not used in current release.

[-S]
Required when the server makes use of C structure input or output buffers and the -w
option is specified.

Note: When the -w option is not specified, buildscaserver uses ATMI binding to
determines if structures are used.The -S option is not required.

The buildscaserver -S option does not take an option argument.
4-12 Service Component Architecture

bui ldscaserve r
Environment Variables
TUXDIR

Finds the SCA libraries and include files to use when compiling the client applications.

CC

Indicates the compiler to use to compile all files with .c or .cpp file extensions. If not
defined, the default C++ language compile command is invoked to compile all .c and
.cpp files.

CFLAGS

Indicates any arguments that are passed as part of the compiler command line for any files
with a .c or .cpp file extensions. If CFLAGS does not exist in the buildscaserver
command environment, the buildscaserver command checks for the CPPFLAGS
environment variable.

Note: Arguments passed by the CFLAGS environment variable take priority over the
CPPFLAGS variable.

CPPFLAGS

Contains a set of arguments that are passed as part of the compiler command line for any
files with a .c or .cpp file extensions.

This is in addition to the command line option "-I$(TUXDIR)/include" for UNIX
systems or the command line option /I%TUXDIR%\include for Windows systems, which
is passed automatically by the buildscaserver command. If CPPFLAGS does not exist
in the buildscaserver command environment, no compiler commands are added.

LD_LIBRARY_PATH (UNIX systems)

Indicates the directories that contain shared objects to be used by the compiler, in addition
to the objects shared by the CORBA software. A colon (:) is used to separate the list of
directories. Some UNIX systems require different environment variables:

HP-UX systems use SHLIB_PATH

AIX systems use LIBPATH

LIB (Windows only)

Indicates a list of directories where libraries are available. A semicolon (;) is used to
separate the list of directories.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example(s)
buildscaserver -c uBike.server -o uBikeSCASvr
Service Component Architecture 4-13

Error Reporting
This command checks for the following inconsistencies in the SCDL code and reports error
messages if:

at least one syntax error in the SCDL files

none of the composites contain any service with an ATMI binding

at least one composite contains services defining ATMI bindings with incompatible
<remoteAccess> elements. <remoteAccess> elements with a value of WorkStation are
not supported by this command.

/binding.atmi/@requires contains a legacy value and /binding.atmi/map elements
contain values that conflict (for example, the same Tuxedo service name mapped to two or
more different methods)

mkfldfromschema, mkfld32fromschema
The mkfldfromschema and mkfld32fromschema commands take an XML schema as input and
produce a field table. This table can be processed by the mkfldhdr or mkfldhdr32 command or
is loaded by programs that need it. mkfldfromschema is used with 16-bit FML and
mlfld32fromschema is used with 32-bit FML.

These commands have the following restrictions:

Attributes cannot be specified

Restrictions are ignored because their meaning is application-related

Name
mkfldfromschema, mkfld32fromschema – Generates field table from an XML schema

Synopsis
mkfldfromschema [{-i schema|-u schemaurl}] [-b basenumber]]-o outputfile]

mkfld32fromschema [{-i schema|-u schemaurl}] [-b basenumber]]-o

outputfile]

Description
These commands take an XML schema as input and generate a field table. The XML schema may
be specified using either the -i option or the -u option. If neither option is specified, the schema
is read from standard input.
4-14 Service Component Architecture

mkviewf romschema, mkv iew32f romschema
Parameters and Options
mkfldfromschema and mkfld32fromschema supports the following options:

-b basenumber

Adds a *base basenumber line to the generated field table.

-i schema

Displays the name of a file containing an XML schema. The -i option cannot be specified
in conjunction with the -u option.

-u schemaurl

A URL where the input schema is located. The URL must start with http://. The -u option
cannot be specified in conjunction with the -i option.

-o outputfile

The name of a file that will contain the field table. If this option is not specified, the field
table will be written to standard output.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo server environment.

See Also
SCAHOST (5)

mkviewfromschema, mkview32fromschema
The mkviewfromschema and mkview32fromschema commands take an XML schema as input
and produce a view file. This file can be processed by the viewc or viewc32 command.
mkviewfromschema is used with 16-bit views and mkview32fromschema is used with 32-bit
views.

Name
mkviewfromschema, mkview32fromschema – Generates view table from an XML schema

Synopsis
mkviewfromschema [{-i schema|-u schemaurl}] [-o outputfile]

mkview32fromschema [{-i schema|-u schemaurl}] [-o outputfile]
Service Component Architecture 4-15

Description
These commands take an XML schema as input and generate a view file. The XML schema may
be specified using either the -i option or the -u option. If neither option is specified, the schema
is read from standard input.

Options
mkviewfromschema, mkview32fromschema supports the following options:

-i schema

The name of a file containing an XML schema. The -i option cannot be specified in
conjunction with the -u option.

-u schemaurl

A URL where the input schema is located. The URL must start with http://. The -u option
cannot be specified in conjunction with the -i option.

-o outputfile

The name of a file that contains the output view file. If this option is not specified, the field
table is written to standard output.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo server environment.

See Also
SCAHOST (5)

SDO for C++ Specification V2.1published December, 2006

scaadmin
Name

scaadmin – SCA server management command interpreter

Synopsis
scaadmin [-v]

Description
Use the scaadmin command to dynamically redeploy SCA composites or display statistics and
status of individual services. The TUXCONFIG environment variable is used to determine the
location where the Tuxedo configuration file is loaded.
4-16 Service Component Architecture

scaadmin
This command has no effect on servers that have not been built using the buildscaserver(1)
command.

Options
The scaadmin command supports the following option:

[-v]

Causes scaadmin to display the Oracle Tuxedo version number, Tuxedo Patch Level. The
command exits after print out.

scaadmin must run on an active node.

Commands
default [-m machine] [-g groupename] [-i srvid]] [-s servername]

Sets the corresponding argument to be the default machine name, groupname, server id,
or servername. If the default command is entered with no arguments, the current defaults
are printed.

reload [-m machine] [-g groupname] [-i srvid]] [-s servername]

This command dynamically reloads the SCA components hosted on Tuxedo servers. The
-m, -g, -i and -s options can be used to restrict the reloaded servers to any combination
of machine, group, server id and server name.

printstats [-m machine] [-g groupname] [-i srvid] [-s servername]

This command displays the list of services hosted by a server and the associated method,
number of queries, and status (active, idle). The -m, -g, -i and -s options can be used
to restrict the reloaded servers to any combination of machine, group, server id and server
name.

verbose (v) [{off | on}]

Produces output in verbose mode. If no option is given, the current setting is toggled and
the new setting is printed. The initial setting is set to off.

help (h) [{command | all}]

Prints help messages. If command is specified, the abbreviation, arguments, and
description for that command are printed. all causes a description of all commands to be
displayed. Omitting all arguments causes the syntax of all commands to be displayed.

echo (e) [{off | on}]

Echoes input command lines when set to on. If no option is given, the current setting is
toggled, and the new setting is printed. The initial setting is off.

quit (q)

Terminates the session
Service Component Architecture 4-17

Interoperability
The scaadmin command must run on an active node.

Environment Variables
TUXCONFIG

Used to determine the location where the Tuxedo configuration file is loaded.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example(s)
The following command reloads all the composites hosted by the uBikeServer Tuxedo
application server, which was built using the buildscaserver(1) command.
scaadmin

> reload -s uBikeServer

The following command displays statistics on the services offered by the uBikerServer Tuxedo
application server, which was built using the buildscaserver(1) command.

scaadmin

> printstats -s uBikeServer

Service Method Status Requests

 Processed

SEARCHINVENTORY searchInventory A 37

SCAHOST (5)
Name

SCAHOST - Generic server for Python, Ruby, or PHP SCA components.

Synopsis
SCAHOST SRVGRP="identifier" SRVID="number"

 CLOPT="[-A] [servopts options]

 -- -w -c composite"
4-18 Service Component Architecture

SCAHOST (5)
Description
SCAHOST is an Oracle Tuxedo system provided server that provides boot-strapping functionality
for Python, Ruby, or PHP programs hosted as SCA components.

SCAHOST relies on Oracle Tuxedo Service Metadata Repository information, and therefore
requires being defined after the TMMETADATA system process in the UBBCONFIG file.

Python, Ruby, and PHP components can be hosted by a single SCAHOST. It is preferable that the
component(s) hosted contain only Python, Ruby, and PHP components (i.e., no C++
components).

Parameters and Options
-w

Specifies that an SCAHOST instance exposes Web services. By default, only ATMI binding
services are exposed. Webs services and ATMI bindings cannot be hosted by the same
SCAHOST server, if a composite has services exposed with both bindings, two SCAHOST
instances must be configured in order to expose all ATMI and Web Services bindings.

-c composite

Specifies the name of the component that this server will host.

Portability
This command is available on any platform on which the Oracle Tuxedo server environment is
supported.

Example(s)
Listing 4-1 provides an SCAHOST example.

Listing 4-1 SCAHOST Example

*SERVERS

SCAHOST SRVGRP=GROUP1 SRVID=100

CLOPT="-A -- -c Account"

SCAHOST SRVGRP=GROUP2 SRVID=100

CLOPT="-A -- -c Loan"
Service Component Architecture 4-19

scapasswordtool
Name

scapasswordtool – Manages passwords for Tuxedo authentication in SCA clients.

Synopsis
scapasswordstore -i passwordidentifier -[a|d]

Description
This command manages the password.store file used by SCA components to refer to
Tuxedo-based services.

Passwords are prompted and encrypted. The encrypted version is stored in this file, associated
with a clear-text identifier. This command is also used to delete identifier/password pairs from
the file.

The password is limited to 40 characters. If standard input is not a terminal, that is, if the user
cannot be prompted for a password (as with a Here file, for example), then the APP_PW
environment variable is accessed to set the password. If the APP_PW environment variable is not
set and standard input is not a terminal, then scapasswordtool prints an error message and
exits.

A password.store file is created in the current directory if it does not previously exist.

Parameters and Options
-i passwordidentifier

Required. The identifier specified in the <binding> element. SCA components search the
password for this element.

-[a|d]

The -a option adds an identifier/password pair, whereas the -d option deletes it. An error
message is printed out and the command processing is aborted in one of the following
situations:

If -a is used to add an already existing identifier

If -d is used to delete a non-existing identifier

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.
4-20 Service Component Architecture

scast ruc tc32 , scast ructc (1)
See Also
setSCAPasswordCallback(3c)

scastructc32, scastructc(1)
Name

scastructc32, scastructc - Structure description compiler for Oracle Tuxedo.

Synopsis
scastructc32 [-n] [-d viewdir] structfile [structfile . . .]
scastructc [-n] [-d viewdir] structfile [structfile . . .]

Description
scastructc32 and scastructc are a Oracle Tuxedo SCA structure description compiler
programs. These commands take a source structure description file and produces:

A binary file, which is interpreted at run time to effect the actual mapping of data between
FML buffers and C++ structures.

One or more header files.

Note: COBOL is not supported in the SCA environment, therefore scastructc32 and
scastructc do not have options to generate COBOL copyfiles.

SCA structure description files are identical to Oracle Tuxedo viewfiles, with the exception that
SCA structure description files allow the following extensions:

Nested structures are supported. A nested structure may be specified by using the struct
keyword in column 1. When this keyword is used, the "cname" value in column 2 must be
the name of a previously defined view that describes a nested structure.

The value in column 3 will be interpreted as the name of the element for the inner structure
within the outer structure. If the value in column 3 is "-", then the name of the inner
structure element will be the same as the name of the inner structure.

As with other types, the value in column 4 can be used to specify a count of the number of
times the inner structure is included in the outer structure. The "flag" and "size" values in
columns 5 and 6 are not used for struct elements.

scastructc32 is used for 32-bit FML. It uses the FIELDTBLS32 and FLDTBLDIR32
environment variables. scastructc is used for 16-bit FML. It uses the FIELDTBLS and
FLDTBLDIR environment variables.
Service Component Architecture 4-21

If none of the SCA structure file extensions are used, then binary files produced by
scastructc32 are compatible with binary files produced by viewc32 and binary files produced
by scastructc are compatible with binary files produced by viewc.

The structfile is a file containing source structure descriptions. More than one structfile can be
specified on the scastructc32 or scastructc command line as long as the same VIEW name
is not used in more than one structfile.

By default, all views in the structfile are compiled and two or more files are created: a view object
file (with a .V suffix) and a C header file (with a .h suffix). The name of the object file is
structfile.V in the current directory unless an alternate directory is specified through the -d
option. C header files are created in the current directory.

Note: scastructc32 and scastructc generate a binary file with suffix .V on Unix and suffix
.VV on Windows.

At scastructc32 or scastructc compile time, the compiler matches each field id and field
name specified in the viewfile with information obtained from the field table file, and stores
mapping information in an object file for later use. Therefore, it is essential to set and export the
environment variables FIELDTBLS and FLDTBLDIR to point to the related field table file. For
more information, see Programming an Oracle Tuxedo ATMI Application Using FML and
Programming an Oracle Tuxedo ATMI Application Using C.

If the scastructc32 or scastructc compiler cannot match a field name with its field id
because either the environment variables are not set properly or the field table file does not
contain the field name, a warning message, Field not found, is displayed.

With the -n option, it is possible to create a view description file for a C structure that is not
mapped to an FML buffer. Programming an Oracle Tuxedo ATMI Application Using C discusses
how to create and use such an independent view description file.

Parameters and Options
The following options are interpreted by scastructc32 and scastructc:

-n

Used when compiling a structure description file for a C structure that does not map to an
FML buffer. It informs the structure compiler not to look for FML information.

-d viewdir

Used to specify that the structure object file is to be created in a directory other than the
current directory.

Note: On Windows, the following additional options are recognized:
4-22 Service Component Architecture

../pgc/index.html
../fml/index.html
../pgc/index.html

scas t ruc td is32, scast ruc td is
-c { m | b }

Specifies the C compilation system to be used. The supported value for this option
is m for the Microsoft C compiler. The Microsoft C compiler is the default for this
option. The -c option is supported for Windows only.

-1 filename

Specifies that pass 1 should be run, and the resulting batch file called filename.bat should be
created. After this file is created, it, should be executed before running

pass 2. Using pass 1 and pass 2 increases the size of the views that can be compiled.
The -1 option is supported for Windows only.

-2 filename
Specifies that pass 2 should be run to complete processing, using the output from
pass 1. The -2 option is supported for Windows only.

Portability
The output view file is a binary file that is machine and compiler-dependent. It is not possible to
generate a view on one machine with a specific compiler and use that view file on another
machine type or with a compiler that generates structure offsets differently (for example, with
different padding or packing).

See Also
scastructdis32, scastructdis

Programming an Oracle Tuxedo ATMI Application Using FML

Introduction to FML Functions in Oracle Tuxedo ATMI FML Function Reference

Programming an Oracle Tuxedo ATMI Application Using C

scastructdis32, scastructdis
Name

scastructdis32, scastructdis - Disassembler for binary structure files and viewfiles.

Synopsis
scastructdis32 [-E envlabel] viewobjfile [viewobjfile...]
scastructdis [-E envlabel] viewobjfile [viewobjfile...]
Service Component Architecture 4-23

../fml/index.html
../pgc/index.html
../rf3fml/rf3fml.html

Description
scastructdis32 disassembles a view object file produced by scastructc32 or viewc32 and
displays view information in viewfile format. In addition, it displays the offsets of structure
members in the associated structure.

One or more viewobjfiles (with a .V suffix) can be specified on the command line. By default,
the viewobjfile in the current directory is disassembled. If this is not found, an error message is
displayed.

Because the information in the viewobjfile was obtained from a match of each field id and field
name in the viewfile with information in the field table file, it is important to set and export the
environment variables FIELDTBLS32 and FLDTBLDIR32.

The scastructdis32 output looks the same as the original structure description(s), and is
mainly used to verify the accuracy of the compiled object structure descriptions.

scastructdis is used for files originally compiled with scastructc or viewc. It uses the
FIELDTBLS and FLDTBLDIR environment variables instead of FIELDTBLS32 and
FLDTBLDIR32.

See Also
pass 2. Using pass 1 and pass 2 increases the size of the views that can be
compiled. The -1 option is supported for Windows only.

Programming an Oracle Tuxedo ATMI Application Using FML

scatuxgen(1)
Name

scatuxgen - Generates Tuxedo Service Metadata Repository interface information from an SCA
interface.

Synopsis
scatuxgen (-c <composite file name> | -i <interface file name> [-I <inbuf>]

[-O <outbuf>])-s <service name> [-t <string-type>][-w [-n <namespace> -a

<network address>]] [-v]

Description
Generates Tuxedo Service Metadata Repository interface information based on SCA abstract
class definitions. Service Metadata generation is performed by parsing a composite file (in
4-24 Service Component Architecture

../fml/index.html

scatuxgen(1)
SCDL) which allows locating the interface referenced by the <service name> value, or directly
by specifying the interface to process at the command line.

The interface is an SCA-compliant abstract class definition contained in a C++ header file.
Parsing the composite file allows you to take advantage of binding.atmi details (for example,
buffer types and xsd schemas) when available.

When binding.atmi information is not available, scatuxgen can directly process a C++
interface directly by giving the name of the header file containing it as an argument to the
command line.

The generated file name is composed using the service name, input using the command-line
option, and the .mif file, and possibly the.wsdf extension.

Options
-c composite file name

Specifies the pathname of the composite file to be processed. This path is relative to where
the command is run.

-i interface file name

Specifies the name of the interface file to be processed. This path is relative to where the
command is run.

-I inbuf

Specifies the type of input Tuxedo buffer to generate in the service metadata entry. This
option is only valid when used in conjunction with the -i and -w options . Acceptable
values are STRING, CARRAY, X_OCTET, VIEW/<viewname>, X_C_TYPE /<viewname>,
X_COMMON/<viewname>, VIEW32/<viewname>, FML, FML32, MBSTRING and XML.

-O outbuf

Specifies the type of output Tuxedo buffer to generate in the service metadata entry. This
option is only valid when used in conjunction with option -i. Acceptable values are
STRING, CARRAY, X_OCTET, VIEW/<viewname>, X_C_TYPE/<viewname>,
X_COMMON/<viewname>, VIEW32/<viewname>, FML, FML32, MBSTRING and XML.

-E outbuf

Specifies the type of error Tuxedo buffer to generate in the service metadata entry. This
option is only valid when used in conjunction with option -i. Acceptable values are
STRING, CARRAY, X_OCTET, VIEW/<viewname>, X_C_TYPE/<viewname>,
X_COMMON/<viewname>, VIEW32/<viewname>, FML, FML32, MBSTRING and XML.

-s service name

Specifies the name of the service to be generated when using an interface file. It also
specifies the base of the output file(s).
Service Component Architecture 4-25

-t string-type

Specifies that scatuxgen should map xsd:string types in XML schemas to Tuxedo
mbstring (FLD_MBSTRING).

-w

Specifies scatuxgen produces a WSDF document.

-n

When producing a WSDF document, can be used to indicate the
Definition/@wsdlNameSpace attribute value. If not specified, the
Definition/@wsdlNamespace attribute contains the '##NAMESPACE##' placeholder.

-a

When producing a WSDF document, can be used to indicate the
Definition/WSBinding/AccessingPoints/Endpoint/@address attribute value. If
not specified, the Definition/WSBinding/AccessingPoints/Endpoint/@address
attribute will contain the '##ADDRESS##' placeholder.

-v

Specifies scatuxgen in verbose mode.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example
The following example results in a TOUPPER.mif file created in the same directory where
scatuxgen is invoked:
$ scatuxgen -c simpapp.composite -s TOUPPER

See Also
Flat File view. If this option is specified, then all the generated files
are put in the target root directory. The default is Tree File view.

setSCAPasswordCallback(3c)
Name

setSCAPasswordCallback() – Sets the callback for retrieving a password associated with an
identifier in a <binding.atmi> element.
4-26 Service Component Architecture

se tSCAPasswordCal lback(3c)
Synopsis
#include <tuxsca.h>
void setSCAPasswordCallback(char * (_TMDLLENTRY *)(*disp) (char
*identifier))

Description
setSCAPasswordCallback() allows an SCA component to identify the callback that returns
the clear-text password that is passed to the appropriate authentication code.

The function pointer passed on the call to setSCAPasswordCallback() must conform to the
specified parameter definition. The _TMDLLENTRY macro is required for Windows-based
operating systems to obtain the proper calling conventions between the Tuxedo libraries and your
code. On UNIX systems, the _TMDLLENTRY macro is not required because it expands to the null
string.

The identifier points to the password identifier passed to the callback function. The callback
function then returns a char * that points to the actual clear-text password.

Return Values
The setSCAPasswordCallback() function does not return any data.

Errors
On failure, setSCAPasswordCallback() sets tperrno to one of the following values:

[TPEPROTO]

setSCAPasswordCallback() has been called in an improper context.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

See Also
scapasswordtool
Service Component Architecture 4-27

tuxscagen(1)
Name

tuxscagen – Generates SCA, SCDL, and server-side interface files for Tuxedo services.

Synopsis
tuxscagen [-s <target-root-directory>] [-d <service-name>][-C

<TUXEDO_cltname>][-u <TUXEDO_username>][(-S | -j <java_package_name>)][-o

<output_SCDL_filename>][-i <output_interface_filename>[-m

<max-intf-arguments>][-y] [-v] [-F] [-c] [-h][-g<i|a|s>]

[-trepository=<filename> | -tinfile=<metarepos.infile> | -tmetadata]

Description
tuxscagen is used to generate interface and SCDL files. The interface files are used for
developing the SCA component using ATMI binding, or wrap existing Tuxedo services in an
SCA component. The SCDL files are assembly artifacts that help SCA run time to locate the
module and services.

Parameters and Options
tuxscagen supports the following options:

-s target-root-directory

Specifies the location of the root directory where the generated SCDL and interface files
are located. The directory must exist and with write access permission; if it does not exist,
the tool issues an error message and fails.

-d<service-name>

Specifies the name of Tuxedo service in the Tuxedo Metadata Repository. If this option
is not specified, all services in the repository or in the input file are selected.

Abbreviation: there is no abbreviation for this option

-C <TUXEDO_cltname>

The Tuxedo client name. Use cltname as the client name when joining the Tuxedo
application.

-u <TUXEDO_username>

The Tuxedo user name. Use username as the user name when joining the Tuxedo
application. This is required when Tuxedo security level is higher than APP_PW and input
method is to retrieve Tuxedo Service Metadata from TUXEDO.TMMETAREPOS Service.
4-28 Service Component Architecture

tuxscagen(1)
-j <java_package_name>

This option generates JAVA interface files. By default, tuxscagen generates C++ header
files. If -g is not specified but if -j <java_package_name> is specified then -ga is
assumed. However, if -g sub-option i or s is specified, a warning message is displayed.

-o <output_SCDL_filename>

This option specifies the output SCDL filenames for single composite and single
componentType file. If this option is not specified, then by default, one composite and
one componentType are generated for each Tuxedo service. However, if this option is
specified with the output filename, only one composite and one componentType file is
generated for all the matching Tuxedo services. If the specified
<output_SCDL_filename> already exists, an interactive prompt is displayed and
requires user input (unless -y is specified). If this option is specified, -F is automatically
implied.

-i <output_interface_filename>

This option specifies the output interface filenames for single abstract class header file and
single class implementation header file. If this option is not specified, then by default, it
generates one abstract interface class header file and one implementation class header file.

However, if this option is specified with output interface filename then only one abstract
class header file and one implementation header file is generated for all matching Tuxedo
services. If the specified <output_interface_filename> already exists, an interactive
prompt is displayed and requires user input (unless -y is specified).

If this option is specified, -F is automatically implied.

-m <max-intf-arguments>

This option specifies the maximum number of arguments allowed in the interface method.
If the number of arguments exceeds the specified threshold then a complex data type is
used as the input argument for the interface method. The complex data type used is
commonj::sdo::DataObjectPtr.

If -m is not specified, the default threshold is 10.

If 0 specified, it will always generate using commonj::sdo::DataObjectPtr.

If -ga is not specified, this option is ignored.

-y

This option suppresses Really overwrite files:<filename> [y, q] ? so that the
script can run without user input. This question appears if either or both -o and -i are
specified. If both these options are not specified, by default existing files are replaced.

-v

This option turns on the verbose mode.
Service Component Architecture 4-29

-h

If this option is specified, online help is printed and all other options are ignored.

-F

Flat File view. If this option is specified, then all the generated files are put in the target
root directory. The default is Tree File view.

-c

Generates client-side SCDL. By default tuxscagen generates server-side SCDL,
specifying this option changes it to generate client-side SCDL.

-g a|i|s

This option is used to specify the files to generate. The sub-options can be
combined. The a sub-option is used to generate abstract base class header files.
The sub-option i is to generate implementation class header files. Sub-option s is
used to generate SCDL files. To generate both header files, specify -gai. To
generate all files, specify -gais.
If not specified, -gais is assumed.

[-trepository=<filename> | -tinfile=<metarepos.infile> | -tmetadata]

This option specifies the processing type.

If -trepository=<filename> is specified, tuxscagen retrieves service parameter
information from the Service Metadata repository file <filename>.If
-tinfile=<metarepos.infile> is specified, then tuxscagen retrieves service
parameter information from <metarepos.infile>, where the <metarepos.infile>
syntax is suitable for input to tmloadrepos. If -tmetadata is specified, tuxscagen
retrieves service parameter information from the Tuxedo TMMETADATA server.

At most, one -t option can be specified; the default is -tmetadata.

[-S]

Specifies tuxscagen generate a structures for any function parameter or return value that
would otherwise have been passed using DataObjectPtr.

When the -S option is used, a structure definition is generated as part of the generated
abstract class header file ${TUXSERVICE}.h. tuxscagen -S also generates a Tuxedo
view file ${TUXSERVICE}.v describing the generated view(s).

If tuxscagen input does not specify a maximum number of occurrences for a field, then
tuxscagen -S generates 1 occurrence for that field. If tuxscagen input specifies an
unlimited number of occurrences for a field, then tuxscagen -S generates an error.
4-30 Service Component Architecture

tuxscagen(1)
If tuxscagen input does not specify a maximum length for a string, carray, or mbstring
parameter, then tuxscagen generates a maximum length of 80 characters plus trailing
NULL for that parameter and outputs a warning message to check if this is sufficient.

Note: The use of an 80 character default is different from viewc. An unspecified length
in viewc causes a length of 1 character plus trailing null to be generated, which is
insufficient for most applications.

The tuxscagen -S option will not change the underlying Tuxedo transport type specified
for the <inputBufferType>, <outputBufferType>, and <errorBufferType>
elements in the generated composite file. When data is passed via DataObjectPtr or via
a structure, this will normally be FML32.

Note: Structures are not supported for the SCA Java interface. Using tuxscagen with
both the -j and -S options results in an error.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo environment.

Example
The following command is used to generate SCDL, interface, and implementation header files
from a Tuxedo Metadata Repository file named myrepository in the current working directory.
The number of interface method input arguments is limited to 8. If the limit is exceeded, the XSD
schema file is still generated.
tuxscagen -s /home/tux/sca -Dname=TRANSFER -gais -m 8
-trepository=myrepository

See Also
scatuxgen(1),tmloadrepos(1), tmunloadrepos(1)

Managing The Tuxedo Service Metadata Repository in Setting up an Oracle Tuxedo Application
Service Component Architecture 4-31

../rfcm/index.html
../rfcm/index.html
../ads/admrp.html

4-32 Service Component Architecture

C H A P T E R 5
Oracle Tuxedo SCA Sample
Applications
Three bundled SCA sample applications demonstrate how to develop applications using the SCA
programming model, as well as configure the Oracle Tuxedo SCA container.

Basic Sample: simpappp

Advanced Sample: uBike

SCA Sample Using Web Services: calc client

Basic Sample: simpappp
The Basic Sample demonstrates how to write a simple SCA application made up of a client
program calling an SCA component via the Tuxedo infrastructure. It contains all the needed files
to configure and deploy an SCA component hosted on a Tuxedo server, as well as the needed files
to compile and configure an SCA client program to invoke the component. It represents an
end-to-end application of SCA technology.

Other Uses
The Basic Sample can invoke a regular Tuxedo ATMI service, or the SCA component may be
invoked by a regular ATMI client. Also, the same SCA code can run without using
<binding.atmi> in its SCDL configuration, demonstrating the flexibility of the setup.
Service Component Architecture 5-1

Advanced Sample: uBike
The Advanced Sample contains all the needed files to configure and deploy an SCA component
hosted on a Tuxedo server, as well as the needed files to compile and configure an SCA client
program to invoke the component. Data exchanged between client and component is of type
commonj::sdo::DataObject, with the underlying transport being Tuxedo ATMI using
STRING and FML32 Tuxedo buffers. It represents an end-to-end application of SCA and SDO
technology.

Other Uses
The Advanced Sample can invoke a regular Tuxedo ATMI service, or the SCA component can
be invoked by a regular ATMI client. Also, the same SCA code may run without using
<binding.atmi> in its SCDL configuration, demonstrating the flexibility of the setup.

SCA Sample Using Web Services: calc client
The Web Services Sample demonstrates how to develop an SCA client program that invokes an
external Web service. It contains all the needed files to configure Oracle Tuxedo as needed by the
runtime SCA configuration.
5-2 Service Component Architecture

A P P E N D I X A
Appendix A: Oracle Tuxedo SCA ATMI
Binding Reference
The following sections provide SCA ATMI Binding reference information:

SCA ATMI Binding Schema

SCA ATMI Binding Attributes Description

SCA ATMI Binding Schema
Listing A-1 shows how the ATMI binding element (<binding.atmi>) is defined. This is a
pseudoschema that depicts how the grammar is used and what parameters are legal.

Notes: The parameters "transactionalintent legacyintent" are not literal values.
transactionalintent can be substituted with "suspendsTransaction" or
"propagatesTransaction" or omitted. "legacyintent" can be substituted with
"legacy" or omitted.

Parameters with a ? may be specified 0 or 1 times, and parameters with * may be
specified 0 or more times.

When using the <binding.atmi>element, the total length of /reference/@name
(or/service/@name) and method name must be equal to or less than the maximum
length of a Tuxedo service name (this varies depending on the Tuxedo release). To
overcome this limitation, see </binding.atmi/map>.
Service Component Architecture 6-1

Append ix A : Orac l e Tuxedo SCA ATMI B ind ing Refe rence
Listing A-1 SCA ATMI Binding Pseudoschema

<binding.atmi requires="transactionalintent legacyintent"?>
<tuxconfig>...</tuxconfig>?

<map target="name">...</map>*
<serviceType target="name">...</serviceType>*
<inputBufferType target="name">...</inputBufferType>*
<outputBufferType target="name">...</outputBufferType>*
<errorBufferType target="name">...</errorBufferType>*
<workStationParameters>?

<networkAddress>...</networkAddress>?
<secPrincipalName>...</secPrincipalName>?
<secPrincipalLocation>...</secPrincipalLocation>?
<secPrincipalPassId>...</secPrincipalPassId>?
<encryptBits>...</encryptBits>?

</workStationParameters>
<authentication>?

<userName>...</userName>?
<clientName>...</clientName>?
<groupName>...</groupName>?
<passwordIdentifier>...</passwordIdentifier>?
<userPasswordIdentifier>...

</userPasswordIdentifier>?
</authentication>
<fieldTablesLocation>...</fieldTablesLocation>?
<fieldTables>...</fieldTables>?
<fieldTablesLocation32>...</fieldTablesLocation32>?
<fieldTables32>...</fieldTables32>?
<viewFilesLocation>...</viewFilesLocation>?
<viewFiles>...</viewFiles>?
<viewFilesLocation32>...</viewFilesLocation32>?
<viewFiles32>...</viewFiles32>?
<remoteAccess>...</remoteAccess>?
<transaction timeout="xsd:long"/>?

</binding.atmi>
6-2 Service Component Architecture

SCA ATMI B ind ing A t t r ibu tes Descr ip t ion
SCA ATMI Binding Attributes Description
The <binding.atmi> element supports the following attributes

</binding.atmi/@requires>

</binding.atmi/tuxconfig>

</binding.atmi/map>

</binding.atmi/serviceType>

</binding.atmi/inputBufferType>, </binding.atmi/outputBufferType>,
</binding.atmi/errorBufferType>

</binding.atmi/workStationParameters>

</binding.atmi/authentication>

</binding.atmi/fieldTablesLocation>

</binding.atmi/fieldTablesLocation32>

</binding.atmi/fieldTables>

</binding.atmi/fieldTables32>

</binding.atmi/viewFilesLocation>

</binding.atmi/viewFilesLocation32>

</binding.atmi/viewFiles>

</binding.atmi/viewFiles32>

</binding.atmi/remoteAccess>

</binding.atmi/transaction/@timeout>

</binding.atmi/@requires>
When this attribute contains the legacy value, it is used to perform interoperability with
existing Tuxedo services. When not specified, communications are assumed to have SCA
to SCA semantics where the actual Tuxedo service name is constructed from
/service/@name or /reference/@name and actual method name (see Listing A-1),
unless a /binding.atmi/map element is defined. When this attribute encounters a legacy
Service Component Architecture 6-3

Append ix A : Orac l e Tuxedo SCA ATMI B ind ing Refe rence
value, and no /binding.atmi/map element is defined for the method being called, it has
the following run-time behavior:

– In a <reference> element: the value specified in the /reference/@name is used to
perform the Tuxedo call, with semantics used according to the interface method.

– In a <service> element: the Tuxedo service specified in the /binding.atmi/map
element is advertised, and mapped to the method specified in the
/binding.atmi/map/@target attribute.

When this attribute contains a transaction value, it specifies the transactional behavior that
the binding extension follows when this binding is used. Possible values are as follows:

– not specified (no value) - all transactional behavior is controlled by the Tuxedo
configuration. If the Tuxedo configuration supports transactions, then one may be
propagated if it exists. If the Tuxedo configuration does not support transactions and
one exists then an error will occur. However, a transaction cannot start if one does not
already exist.

– suspendsTransaction - transaction context is propagated to the called service. For a
<service> element when a transaction is present, it is automatically suspended before
invoking the application code. It resumes afterwards, regardless of the outcome of the
invocation. For a <reference> element, it is equivalent to making a tpcall() with
the TPNOTRAN flag.

– propagatesTransaction - only applicable to <reference> elements. It is ignored
for <service> elements. This value starts a new transaction if one does not already
exist, otherwise it participates in the existing transaction.

Such behavior can be obtained in a component or composite <service> element by
configuring AUTOTRAN in the UBBCONFIG file. An error is generated if a Tuxedo
server hosts the SCA component implementation and it is not configured in a
transactional group in the UBBCONFIG file.

</binding.atmi/tuxconfig>
Used in <reference> elements when /binding.atmi/workstationParameters is not set,
and for client-only processes. It indicates the Tuxedo application that the process should join. One
process can join multiple applications, or switch applications without having to restart.

If not set, the TUXCONFIG environment variable is used. If not set, but one is required, the process
exits and returns an error.
6-4 Service Component Architecture

SCA ATMI B ind ing A t t r ibu tes Descr ip t ion
</binding.atmi/map>
For <reference> elements, </binding.atmi/map>provides the Tuxedo service name that
should be used when performing the invocation to the corresponding
/binding.atmi/map/@target value, this value being the name of the method being called.

For <service> elements, </binding.atmi/map> provides the Tuxedo service name that
should be advertised for the corresponding /binding.atmi/map/@target value.

The /binding.atmi/map/@target value must match the method name of the corresponding
service interface.

If a /binding.atmi/map element is present, it takes precedence over any other form of
service/method to Tuxedo service name mapping. See </binding.atmi/@requires> attribute.

</binding.atmi/serviceType>
Optional element that specifies the type of call being handled. The accepted values are:

Oneway - the call will not expect a response.

RequestResponse - regular call paradigm, default value.

</binding.atmi/inputBufferType>,
</binding.atmi/outputBufferType>,
</binding.atmi/errorBufferType>
Optional elements that specify the type of buffer that the processes exchange. The
inputBufferType element is used by the binding extension to determine or check the type of
the request.

The outputBufferType element is used by the binding extension to determine or check the type
of the reply.

The errorBufferType element is used to determine the type of buffer specified in the data
portion of the Exception thrown received by a client or thrown by a server.

Table A-1 lists supported values and corresponding Tuxedo buffer types. An incorrect value or
syntax is detected at run time and causes the call to fail. If not specified, the default value used is
STRING.
Service Component Architecture 6-5

Append ix A : Orac l e Tuxedo SCA ATMI B ind ing Refe rence
Table A-1 SCA Supported Tuxedo Buffer Types

/binding.atmi/bufferType value Tuxedo buffer type Note

STRING STRING

CARRAY CARRAY

X_OCTET X_OCTET

VIEW VIEW Format is VIEW/<subtype>

X_C_TYPE X_C_TYPE Format is
X_C_TYPE/<subtype>

X_COMMON X_COMMON Format is:
X_COMMON/<subtype>

VIEW32 VIEW32 Format is VIEW32/<subtype>

XML XML

FML FML Format is:

FML/<subtype>, <subtype>
is optional

The <subtype> value allows
to specify the SDO type to use
for that message (request or
response) when it is described in
an XML schema

Note: FML32 <subtype> is
not available for JATMI
binding.
6-6 Service Component Architecture

SCA ATMI B ind ing A t t r ibu tes Descr ip t ion
</binding.atmi/workStationParameters>
An optional element that specifies parameters specific to the Tuxedo WorksStation protocol.
Only used in references.

/binding.atmi/workStationParameters/networkAddress

The address of the workstation listener to which this application will connect. Any address
format accepted by the Tuxedo workstation software is allowed. The most common address
format is:

//<hostname or IP address>:<port>.

For more information, see the SALT Programming Guide

More than one address can be specified (if required), by specifying a comma-separated list of
pathnames for WSNADDR Addresses are tried in order until a connection is established. Any
member of an address list can be specified as a parenthesized grouping of pipe-separated network
addresses. For example:

<networkAddress>

 (//m1.acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050

</networkAddress>

FML32 FML32 Format is:

FML32/<subtype>,
<subtype> is optional

The <subtype> value allows
to specify the SDO type to use
for that message (request or
response) when it is described in
an XML schema

Note: FML32 <subtype> is
not available for JATMI
binding.

MBSTRING MBSTRING

Table A-1 SCA Supported Tuxedo Buffer Types

/binding.atmi/bufferType value Tuxedo buffer type Note
Service Component Architecture 6-7

Append ix A : Orac l e Tuxedo SCA ATMI B ind ing Refe rence
Tuxedo randomly selects one of the parenthesized addresses. This strategy distributes the load
randomly across a set of listener processes. Addresses are tried in order until a connection is
established.

On versions of Tuxedo that support ipv6, the corresponding addressing format will also be
supported, following the same format as used in WSNADDR for Tuxedo /WS clients.

secPrincipalName, secPrincipalLocation, secPrincipalPassId

These parameters specify the necessary parameters when an SSL connection is required by
a workstation client. The password is stored in a separate file and accessed using a callback
mechanism. The default callback uses the password.store file maintained using the
scapasswordtool command. For more information, see the SALT Programming Guide

encryptBits

Specifies the encryption strength that this client connection will attempt to negotiate. The
format is <minencryptbits>/<maxencprytbits> (for example, 128/128), those values
being numerical. Invalid values will result in a configuration exception being thrown.
Values can be 0 (if no encryption is used), or 40, 56, 128, or 256 (if the number specified is
the number of significant bits in the encryption key).

</binding.atmi/authentication>
Specifies the security parameters used in reference-type calls to establish a connection with the
Tuxedo application. The following values respectively correspond to the TPINFO structure
elements usrname, cltname, grpname and passwd (for more information, see tpinit(3c) in
the Oracle Tuxedo ATMI C Function Reference guide):

/binding.atmi/authentication/userName

/binding.atmi/authentication/clientName

/binding.atmi/authentication/groupName

/binding.atmi/authentication/passwordIdentifier-(application password)

/binding.atmi/authentication/userPasswordIdentifier-(user password in
per-user authentication)

Passwords are not stored in clear text, but are looked up using an identifier. A callback
function may be used to retrieve passwords. For more information, see
setSCAPasswordCallback()in the Oracle Tuxedo Reference Guide.

By default, passwords are maintained encrypted in a passwords store file located in the
same directory as the composite file that contains the
/reference/binding.atmi/authentication/passwordIdentifier or
6-8 Service Component Architecture

SCA ATMI B ind ing A t t r ibu tes Descr ip t ion
/reference/binding.atmi/authentication/userPasswordIdentifier element.
This identifier is read as necessary to perform authentication.

For more information, see scapasswordtool and setSCAPasswordCallback(3c) in the
Oracle Tuxedo Reference Guide.

Note: This information should be handled with policy sets and intents when the SCA Kernel
supports it.

</binding.atmi/fieldTablesLocation>
Optional element that specifies a directory in the local file system where field tables should be
searched. If a relative path is specified, files are searched in that location relative to $APPDIR,
otherwise the location is assumed to be absolute.

</binding.atmi/fieldTablesLocation32>
Same as fieldTablesLocation, but for FML32 buffers.

</binding.atmi/fieldTables>
Optional element that specifies the FML field tables available. Field tables are searched in the
location specified by the /binding.atmi/fieldTablesLocation element.

If the /binding.atmi/bufferType value is FML and this element is not specified or invalid
(that is, the tables indicated cannot be found or are not field tables), an error is displayed at
initialization time for client processes, or boot time for server processes.

</binding.atmi/fieldTables32>
Same as fieldTables, but for FML32 buffers.

</binding.atmi/viewFilesLocation>
Optional element that specifies a directory in the local file system where view tables should be
searched. If a relative path is specified, files are searched in that location relative to $APPDIR,
otherwise the location is assumed to be relative.

</binding.atmi/viewFilesLocation32>
Same as viewTablesLocation, but for VIEW32 buffers.
Service Component Architecture 6-9

Append ix A : Orac l e Tuxedo SCA ATMI B ind ing Refe rence
</binding.atmi/viewFiles>
Optional element that specifies the VIEW files to be used by the affected component(s). If the
/binding.atmi/bufferType value is VIEW and this element is not specified or invalid (that
is, the files indicated cannot be found, or are not view files), an error is displayed at run time for
client processes, or boot time for server processes.

</binding.atmi/viewFiles32>
Same as ViewFiles but for VIEW32 buffers.

Note: FML/FML32 and VIEW/VIEW32 parameters are optional and may be omitted, in which
case the corresponding Tuxedo environment variables are required (FLDTBLDIR/32,
FLDTBLS/32, VIEWDIR/32 and VIEWFILES/32). If neither are used, an error message
is printed at run time when attempting to use a fielded buffer. If both are set, the
parameters contained in the SCDL code take precedence.

</binding.atmi/remoteAccess>
Optional element that specifies the communication protocol with one of the values below. The
default is Native.

Native - indicates that components use standard Tuxedo native communications (IPC
queues)

WorkStation - indicates that components use the Tuxedo /WS communication protocol.

If set to this value, the binding extension checks that the
/binding.atmi/workStationParameters element is also populated and valid; if not, it
reports a run-time error message.

</binding.atmi/transaction/@timeout>
Specifies the amount of time, in seconds, a transaction can execute before timing out. This
attribute affects components or clients that effectively start a global transaction. It is mandatory
for <reference> components and ignored if set on <service> components. Additionally, the
value is ignored on components for which the transaction has already been started. If a transaction
needs to be started and this attribute is not present (for example,
"requires=propagatesTransaction" is set), a configuration error occurs.
6-10 Service Component Architecture

A P P E N D I X A
Appendix B:
Oracle Tuxedo SCA Schemas
This section contains the following information:

ATMI and JTMI Binding Schema For C/C++

Web Service Binding Schema

ATMI and JTMI Binding Schema For C/C++
Listing A-1 shows an ATMI and JTMI C/C++ binding schema.

Listing A-1 ATMI and JTMI Binding Schema For C/C++

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"
 elementFormDefault="qualified">

 <element name="binding.atmi" type="sca:AtmiBinding"
 substitutionGroup="sca:binding"/>

 <complexType name="AtmiBinding">
Service Component Architecture 7-1

Append ix B : Orac le Tuxedo SCA Schemas
 <complexContent>
 <extension base="sca:Binding">
 <sequence>
 <element name="tuxconfig" type="string"
 minOccurs="0"/>
 <element name="map" type="sca:TargetMapType" minOccurs="0"

 maxOccurs="unbounded"/>
 <element name="serviceType" type="sca:SvcType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="inputBufferType" type="sca:BufferType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="outputBufferType" type="sca:BufferType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="errorBufferType" type="sca:BufferType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="workStationParameters"
 type="sca:WorkStationParameters"
 minOccurs="0"/>
 <element name="authentication" type="sca:Authentication"
 minOccurs="0"/>
 <element name="fieldTablesLocation" type="string"
 minOccurs="0"/>
 <element name="fieldTables" type="string"
 minOccurs="0"/>
 <element name="fieldTablesLocation32" type="string"
 minOccurs="0"/>
 <element name="fieldTables32" type="string"
 minOccurs="0"/>
 <element name="viewFilesLocation" type="string"
 minOccurs="0"/>
 <element name="viewFiles" type="string" minOccurs="0"/>
 <element name="viewFilesLocation32" type="string"
 minOccurs="0"/>
 <element name="viewFiles32" type="string"
 minOccurs="0"/>
 <element name="remoteAccess" type="sca:RemoteAccess"
 minOccurs="0"/>
7-2 Service Component Architecture

ATMI and JTMI B ind ing Schema For C/C++
 <element name="transaction" type="sca:TransactionType"
 minOccurs="0"/>
 </sequence>
 <anyAttribute namespace="##any" processContents="lax" />
 </extension>
 </complexContent>
 </complexType>

 <complexType name="TargetMapType">
 <simpleContent>
 <extension base="TargetSimple">
 <attribute name="target" type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="TargetSimple">
 <restriction base="string"/>
 </simpleType>

 <complexType name="SvcType">
 <simpleContent>
 <extension base="SvcTypeEnum">
 <attribute name="target" type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="SvcTypeEnum">
 <restriction base="string">
 <enumeration value="oneway"/>
 <enumeration value="requestresponse"/>
 </restriction>
 </simpleType>

 <complexType name="BufferType">
 <simpleContent>
 <extension base="BufferTypeEnum">
Service Component Architecture 7-3

Append ix B : Orac le Tuxedo SCA Schemas
 <attribute name="target" type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="BufferTypeEnum">
 <restriction base="string">
 <enumeration value="string"/>
 <enumeration value="carray"/>
 <enumeration value="x_octet"/>
 <enumeration value="view"/>
 <enumeration value="x_c_type"/>
 <enumeration value="x_common"/>
 <enumeration value="view32"/>
 <enumeration value="xml"/>
 <enumeration value="fml"/>
 <enumeration value="fml32"/>
 <enumeration value="mbstring"/>
 </restriction>
 </simpleType>

 <complexType name="WorkStationParameters">
 <sequence>
 <element name="networkAddress" type="string" minOccurs="0"/>
 <element name="secPrincipalName" type="string" minOccurs="0"/>
 <element name="secPrincipalLocation" type="string"
 minOccurs="0"/>
 <element name="secPrincipalPassId" type="string"
 minOccurs="0"/>
 <element name="encryptbits" type="string" minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="Authentication">
 <sequence>
 <element name="userName" type="string" minOccurs="0"/>
 <element name="clientName" type="string" minOccurs="0"/>
 <element name="groupName" type="string" minOccurs="0"/>
7-4 Service Component Architecture

Web Serv i ce B ind ing Schema
 <element name="passwordIdentifier" type="string"
 minOccurs="0"/>
 <element name="userPasswordIdentifier" type="string"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="RemoteAccess">
 <restriction base="string">
 <enumeration value="native"/>
 <enumeration value="workstation"/>
 </restriction>
 </complexType>

 <complexType name="TransactionType">
 <attribute name="timeout" type="int" use="optional"/>
 </complexType>
</schema

Web Service Binding Schema
Listing A-2 shows a Web service binding schema..

Listing A-2 Web Service Binding Schema

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one
 or more contributor license agreements. See the NOTICE file
 distributed with this work for additional information
 regarding copyright ownership. The ASF licenses this file
 to you under the Apache License, Version 2.0 (the
 "License"); you may not use this file except in compliance
 with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0
Service Component Architecture 7-5

Append ix B : Orac le Tuxedo SCA Schemas

 Unless required by applicable law or agreed to in writing,
 software distributed under the License is distributed on an
 "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 KIND, either express or implied. See the License for the
 specific language governing permissions and limitations
 under the License.
-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"
 elementFormDefault="qualified">

 <element name="binding.ws" type="sca:WebServiceBinding"

substitutionGroup="sca:binding"/>
 <complexType name="WebServiceBinding">
 <complexContent>
 <extension base="sca:Binding">
 <sequence>
 <element name="soapbinding" type="sca:SOAPBinding"

minOccurs="0" maxOccurs="unbounded"/>
 <any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attribute name="endpoint" type="anyURI" use="optional" />

 <attribute name="location" type="anyURI" use="optional" />

 <attribute name="conformanceURIs"

type="sca:ConformanceURIList" use="optional" />
 <attribute name="interfaceMapping" type="string"

use="optional" />
 <anyAttribute namespace="##any" processContents="lax" />

 </extension>
 </complexContent>
 </complexType>

 <complexType name="SOAPBinding">
7-6 Service Component Architecture

Web Serv i ce B ind ing Schema
 <sequence>
 <any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="NCName" use="optional" />
 <attribute name="version" type="string" use="optional" />
 <anyAttribute namespace="##any" processContents="lax" />
 </complexType>

 <simpleType name="ConformanceURIList">
 <list itemType="anyURI"/>
 </simpleType>
</schema>
Service Component Architecture 7-7

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Programming an Oracle Tuxedo Application Using Java, 12c Release 2 (12.2.2)
	Contents
	Administering Oracle Tuxedo SCA Components
	Oracle Tuxedo SCA Deployment Model
	SCA Composite Configuration File
	Listing 1-1 Root Composite with Two Components
	Listing 1-2 SCA Composite Directory Hierarchy
	Listing 1-3 Directory Structure

	SCA Component Configuration File
	Listing 1-4 ECHO.composite
	Listing 1-5 ECHOImpl.componentType
	Listing 1-6 UBBCONFIG File Example
	Listing 1-7 TOUPPER.composite file Example

	Configuring Oracle Tuxedo SCA Components
	Configuring an SCA ATMI Client
	Listing 1-8 Client Application Root Composite File
	Listing 1-9 Client Application Composite File

	Configuring an SCA JATMI Client
	Listing 1-10 SCA JATMI Client Composite File Example

	Configuring an SCA Workstation Client
	Listing 1-11 $APPDIR/root.composite
	Listing 1-12 $APPDIR/ECHO/ECHO.composite

	Configuring an SCA Web Service Client
	Listing 1-13 $APPDIR/root.composite
	Listing 1-14 $APPDIR/calcClient/calcClient.composite
	1. Make sure the TMMETADATA and GWWS servers are shut down.
	2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, an Oracle Tuxedo Metadata Repository interface definitions file, fml32 field tables and XML schemas.
	3. Optionally, modify the generated WSDF file to override the actual endpoint address used at runtime. For more information, see WSDF documentation.
	4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA server repository (e.g.: $ tmloadrepos -I calc.mif metadata.repos -y). For more information, see tmloadrepos documentation.
	5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for example). Listing 1-15 shows the added elements highlighted in blue.
	6. Reload the GWWS binary configuration file to take into account the changes performed in the previous five (e.g.: $ wsloadcf -y gwws.dep).
	7. Reboot GWWS and TMMETADATA.

	Listing 1-15 GWWS Configuration File

	Configuring an SCA ATMI Server
	Listing 1-16 $APPDIR/root.composite
	Listing 1-17 $APPDIR/Purchase.component/Purchase.composite
	Listing 1-18 $APPDIR/Purchase.component/PurchaseImpl.componentType

	Configuring an SCA Web Service Server
	Listing 1-19 $APPDIR/root.composite
	Listing 1-20 $APPDIR/account/account.composite
	Listing 1-21 $APPDIR/account/AccountServiceImpl.componentType
	1. Make sure the TMMETADATA and GWWS servers are shut down
	2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, an Oracle Tuxedo Metadata Repository interface definitions file, fml32 field tables and XML schemas.
	3. Modify the generated WSDF file to specify the actual endpoint address used at runtime to accept requests. For more information, see WSDF documentation.
	4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA server repository (for example, $ tmloadrepos -I AccountService.mif metadata.repos -y). For more information, see tmloadrepos documentation.
	5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for example). Listing 1-22 shows the elements added highlighted in blue.
	6. Reload the GWWS binary configuration file to take into account the changes performed in the step five (e.g.: $ wsloadcf -y gwws.dep).
	7. Reboot GWWS and TMMETADATA.

	Listing 1-22 gwws.dep File

	Configuring SCA Client Security
	Oracle Tuxedo Application Domain Security
	Listing 1-23 $APPDIR/password.store $APPDIR/simple.app.composite
	Listing 1-24 $APPDIR/simpapp.client/simpapp.client.composite

	Oracle Tuxedo Link-Level Security
	Configuring Link-Level Encryption
	Configuring Transport Layer Security
	Listing 1-25 Client Composite File

	Administering Oracle Tuxedo SCA Components
	Tracing the SCA ATMI Server and Client
	Oracle Tuxedo TMTRACE
	SCA Runtime, ATMI Service, and Reference Binding Tracing
	Listing 1-26 SCA Runtime Tracing Information ULOG File

	Monitoring SCA ATMI Servers
	1. prompt> scaadmin
	2. prompt> reload -s uBikeServer
	1. prompt> scaadmin
	2. prompt> pstats -s uBikeServer
	Table 1-1 pstats 0utput Service Statics
	Table 1-2 scaadmin Sub-Commands

	Tracing SCA JATMI Clients
	Table 1-3 Logger Tuning Property Table
	Listing 1-27 Log File Contents
	Oracle Tuxedo SCA Programming

	Overview
	SCA Utilities
	SCA Client Programming
	SCA Client Programming Steps
	1. Setting Up the Client Directory Structure
	2. Developing the Client Application
	3. Composing the SCDL Descriptor
	4. Building the Client Application
	5. Running the Client Application
	6. Handling TPFAIL Data
	Setting Up the Client Directory Structure
	Listing 1-1 SCA Component Directory Structure
	Listing 1-2 root.composite Content

	Developing the Client Application
	Listing 1-3 Interface Example
	Listing 1-4 Invocation Call Example
	Notes: The invocation itself is equivalent to making a local call (as if the class were in another file linked in the program itself).

	Composing the SCDL Descriptor
	Listing 1-5 SCDL Descriptor

	Building the Client Application
	1. Navigate to the directory containing the client source and SCDL composite files
	2. Execute the following command:

	Running the Client Application
	Invoking Existing Oracle Tuxedo Services
	Listing 1-6 SCA Components Calling an Existing Oracle Tuxedo Service
	Listing 1-7 Generated Header
	Listing 1-8 Generated SCDL Reference

	Handling TPFAIL Data
	Listing 1-9 Invocation Interruption Example
	Listing 1-10 /binding.atmi Definition
	Listing 1-11 SCDL Invocation Example
	Listing 1-12 ATMIBindingException.getData() Results

	SCA Component Programming
	Figure 1-1 SCA Component and Oracle Tuxedo Server Mapping Rules
	SCA Component Programming Steps
	1. Setting Up the Component Directory
	2. Developing the Component Implementation
	3. Composing the SCDL Descriptor
	4. Compiling and Linking the Components
	5. Building the Oracle Tuxedo Server Host
	Setting Up the Component Directory
	Listing 1-13 SCA Component Directory Structure
	Listing 1-14 root.composite Content

	Developing the Component Implementation
	Listing 1-15 Component Implementation Interface
	Listing 1-16 Example (TuxServiceImpl.h):
	Listing 1-17 Example (TuxServiceImpl.cpp):
	Listing 1-18 componentType File Example

	Composing the SCDL Descriptor
	Listing 1-19 Example SCDL Descriptor

	Compiling and Linking the Components
	1. Navigate to the APPDIR directory. The component and side files should be in its own directory one level down
	2. Execute the following command:

	Building the Oracle Tuxedo Server Host

	SCA Python, Ruby, and PHP Programming
	Prerequisites
	SCA Python, Ruby, and PHP Programming Overview
	Figure 1-2 SALT SCA Python, Ruby, and PHP Programming Support Architecture

	Python, Ruby, and PHP Client Programming
	SCDL Clients
	Python Clients
	1. Import the SCA library using the following command:
	2. Use the following API to locate the service:

	Ruby Clients
	1. Load the Ruby proxy extension:
	2. Use the following API to locate the service:

	PHP Clients
	1. users will have to first load the SCA library as follows:
	2. Use the following API to locate the service:

	Python, Ruby, and PHP Component Programming
	SCDL Components
	Listing 1-20 Python Component in an SCA Composite
	Listing 1-21 PHP Component in an SCA Composite

	Python Components
	Listing 1-22 Python Module File

	Ruby Components
	Listing 1-23 Ruby Script File

	PHP Components
	Listing 1-24 PHP Class

	SCA Structure Support
	SCA Structure Support Overview
	SCA Structure Limitations

	Using SCA Structure Description Files
	Listing 1-25 SCA Structure Description File
	Listing 1-26 Binary Structure Header File
	Notes: scastructc32 and scastructc generate a binary file with suffix .V on Unix and suffix .VV on Windows.

	Using tuxscagen to Generate Structures

	SCA Remote Protocol Support
	/WS
	/Domains

	SCA Binding
	ATMI Binding
	Listing 1-27 ATMI Binding Pseudoschema

	Java ATMI (JATMI) Binding
	Listing 1-28 ECHO Composite File
	Listing 1-29 ECHO Interface
	Listing 1-30 SCA Client Implementation

	Python, Ruby, and PHP Binding
	Python, Ruby, and PHP Binding Limitations

	Web Services Binding
	1. Convert the WSDL file into a WSDF entry by using the wsdlcvt tool. Simultaneously, a Service Metadata Entry file (.mif), and fml32 mapping file are generated.
	2. Make sure that the UBB source has the TMMETADATA and GWWS servers configured
	3. Import the WSDF file into the SALTDEPLOY file
	4. Convert the SALTDEPLOY file into binary using wsloadcf.
	5. Load the Service Metadata Entry file (.mif) into the Service Metadata Repository using the tmloadrepos command.
	6. Boot (or re-boot) the GWWS process to initiate the new deployment.
	Listing 1-31 Example SCA Component Service Exposed as a Web Service
	1. Compose a WSDL interface matching the component interface.
	2. Use buildscacomponent to build the application component runtime, similar to building a regular SCA component.
	3. buildscaserver -w is used to convert SCDL code into a WSDF entry, and produce a deployable server (Oracle Tuxedo server + library + SCDL).

	Listing 1-32 WSDF Entry
	4. buildscaserver -w also constructs a Service Metadata Repository entry based by parsing the SCDL and interface. The interface needs to be in WSDL form, and manually-composed in this release.
	5. Make sure that the UBB source has the TMMETADATA and GWWS servers configured.
	6. The Service Metadata Repository entry is loaded into the Service Metadata Repository using the tmloadrepos command.
	7. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted into binary using wsloadcf.
	8. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository.
	9. The Oracle Tuxedo server hosting the Web service is booted and made available.
	10. The GWWS is rebooted to take into account the new deployment.

	Listing 1-33 Example Reference Accessing a Web Service
	1. A WSDL file is necessary. This is usually published by the Web Service provider.
	2. The WSDL file must be converted into a WSDF entry using the wsdlcvt tool. At the same time a Service Metadata Entry file (.mif), and fml32 mapping file is generated.
	3. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted into binary using wsloadcf.
	4. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository using the tmloadrepos command.
	5. The GWWS process is rebooted to take into account the new deployment.

	SCA Data Type Mapping
	Listing 1-34 C++ Interface Example
	Run-Time Data Type Mapping
	Simple Oracle Tuxedo Buffer Data Mapping
	Table 1-1 Simple Oracle Tuxedo Buffer Type Data Mapping
	Multibyte String Data Mapping
	a. Locale associated with the FLD_MBSTRING field, if present.
	b. Locale associated with the MBSTRING or FML32 buffer.
	c. Locale set in the environment of the SCA client or server.

	Complex Return Type Mapping
	Complex Oracle Tuxedo Buffer Data Mapping
	Table 1-2 Complex Oracle Tuxedo Buffer Type Data Mapping
	Listing 1-35 Interface Example
	SDO Mapping
	Listing 1-36 Schema
	Table 1-3 Generated Field Tables

	SCA Utility Data Type Mapping
	C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping
	Table 1-4 'inbuf' Keyword Buffer Type Mapping Table
	Table 1-5 outbuf' or 'errbuf' Keyword Buffer Type Mapping Table

	C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping
	Table 1-6 Parameter-Level/Field Type Mapping Table

	C++ Parameter Type and Oracle Tuxedo Complex Type Mapping
	SDO Mapping
	Listing 1-37 XML Schema
	Listing 1-38 Binding
	Table 1-7 Parameter-level/Field Type Mapping

	C Struct Mapping
	Listing 1-39 C Struct
	Table 1-8 Parameter-Level/Field Type Mapping

	Parameter and Return Types to Parameter-Level Keyword Restrictions
	Table 1-9 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 1)
	Table 1-10 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 2)

	Python, Ruby, and PHP Data Type Mapping
	Python Data Type Mapping
	Table 1-11 Supported Python, C++ and Oracle Tuxedo Buffer Types
	Notes: int (short), long, int (long), float (float) are allowed in the C++ to Python direction only. The Python runtime catches any overflow situation (e.g.: when copying a C++ long into a Python int).
	Python Parameters
	Dictionaries
	Listing 1-40 Oracle Tuxedo Service Metadata Repository Entry for Python

	Ruby Data Type Mapping
	Table 1-12 Supported Ruby, C++ and Oracle Tuxedo Buffer Types
	Notes: Ruby runtime may catch an overflow exception.
	Ruby Parameters
	Listing 1-41 Oracle Tuxedo Service Metadata Repository Entry for Ruby
	Notes: Using this notation is limited to local calls (no binding), or with using the ATMI binding between SCA components (that is, the <binding.atmi> element with no requires="legacy" attribute).

	Hash

	PHP Data Type Mapping
	Table 1-13 Supported PHP, C++ and Oracle Tuxedo Buffer Types
	List of Parameters
	Named Parameters

	SCA Structure Data Type Mapping
	SCA Structure and FML32 or FML Mapping
	FML Field Naming Requirements
	Long Element Truncation

	SCA Structure and VIEW32, VIEW, X_OCTET, or X_C_TYPE Mapping
	SCA Structure and Mbstring Mapping
	TPFAIL Return Data
	Listing 1-42 <tuxsca.h> SCA Structure and Typedef Definition
	Listing 1-43 TPFAIL Example

	SCA and Oracle Tuxedo Interoperability
	SCA Transactions
	SCA Security

	Web Application Server Programming
	Overview
	Developing Native Oracle Tuxedo Web Applications
	Developing Python Web Applications
	Prerequisites
	Usage
	Example(s)
	Stand-Alone Script/Application
	Django-Based Application

	Developing Ruby Web Applications
	Prerequisites
	Usage
	Example(s)

	Developing PHP Web Applications
	Prerequisites
	Usage
	Example(s)

	See Also
	SCA Command Reference
	Table 4-1 Oracle Tuxedo Commands and Functions

	buildscaclient
	Name
	Synopsis
	Description
	Parameters and Options
	-c defaultcomponent
	[-v]
	[-k]
	[-o name]
	[-s scaroot]
	[-f firstfiles]
	[-l lastfiles]
	[-S structurefiles]

	Environment Variables
	TUXDIR
	CC
	CFLAGS
	CPPFLAGS
	LD_LIBRARY_PATH (UNIX systems)
	LIB (Windows systems)

	Portability
	Example(s)
	See Also

	buildscacomponent
	Name
	Synopsis
	Description
	Parameters and Options
	[-v]
	[-s scaroot]
	[-f firstfiles]
	Table 4-2 File Specification Using [-f firstfiles]

	[-l lastfiles]
	Table 4-3 File Specification Using [-l lastfiles]

	-c {composite[,composite]|composite/component}
	[-y]
	[-k]
	[-S structurefiles]

	Environment Variables
	TUXDIR
	APPDIR
	CC
	CFLAGS
	CPPFLAGS
	LD_LIBRARY_PATH (UNIX systems)
	LIB (Windows systems)

	Portability
	Example(s)
	See also

	buildscaserver
	Name
	Synopsis
	Description
	Parameters and Options
	-o servername
	-c compositename[,compositename]
	[-v]
	[-s scaroot]
	[-w]
	[-r rmname]
	[-y]
	[-k]
	[-t]
	[-S]

	Environment Variables
	TUXDIR
	CC
	CFLAGS
	CPPFLAGS
	LD_LIBRARY_PATH (UNIX systems)
	LIB (Windows only)

	Portability
	Example(s)
	Error Reporting

	mkfldfromschema, mkfld32fromschema
	Name
	Synopsis
	Description
	Parameters and Options
	-b basenumber
	-i schema
	-u schemaurl
	-o outputfile

	Portability
	See Also

	mkviewfromschema, mkview32fromschema
	Name
	Synopsis
	Description
	Options
	-i schema
	-u schemaurl
	-o outputfile

	Portability
	See Also

	scaadmin
	Name
	Synopsis
	Description
	Options
	[-v]

	Commands
	default [-m machine] [-g groupename] [-i srvid]] [-s servername]
	reload [-m machine] [-g groupname] [-i srvid]] [-s servername]
	printstats [-m machine] [-g groupname] [-i srvid] [-s servername]
	verbose (v) [{off | on}]
	help (h) [{command | all}]
	echo (e) [{off | on}]
	quit (q)

	Interoperability
	Environment Variables
	TUXCONFIG

	Portability
	Example(s)

	SCAHOST (5)
	Name
	Synopsis
	Description
	Parameters and Options
	-w
	-c composite

	Portability
	Example(s)
	Listing 4-1 SCAHOST Example

	scapasswordtool
	Name
	Synopsis
	Description
	Parameters and Options
	-i passwordidentifier
	-[a|d]

	Portability
	See Also

	scastructc32, scastructc(1)
	Name
	Synopsis
	Description
	Parameters and Options
	-n
	-d viewdir
	-c { m | b }
	-1 filename
	-2 filename

	Portability
	See Also

	scastructdis32, scastructdis
	Name
	Synopsis
	Description
	See Also

	scatuxgen(1)
	Name
	Synopsis
	Description
	Options
	-c composite file name
	-i interface file name
	-I inbuf
	-O outbuf
	-E outbuf
	-s service name
	-t string-type
	-w
	-n
	-a
	-v

	Portability
	Example
	See Also

	setSCAPasswordCallback(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tuxscagen(1)
	Name
	Synopsis
	Description
	Parameters and Options
	-s target-root-directory
	-d<service-name>
	-C <TUXEDO_cltname>
	-u <TUXEDO_username>
	-j <java_package_name>
	-o <output_SCDL_filename>
	-i <output_interface_filename>
	-m <max-intf-arguments>
	-y
	-v
	-h
	-F
	-c
	-g a|i|s
	[-trepository=<filename> | -tinfile=<metarepos.infile> | -tmetadata]
	[-S]

	Portability
	Example
	See Also
	Oracle Tuxedo SCA Sample Applications

	Basic Sample: simpappp
	Other Uses

	Advanced Sample: uBike
	Other Uses

	SCA Sample Using Web Services: calc client
	Appendix A: Oracle Tuxedo SCA ATMI Binding Reference

	SCA ATMI Binding Schema
	Notes: The parameters "transactionalintent legacyintent" are not literal values. transactionalintent can be substituted with "suspendsTransaction" or "propagatesTransaction" or omitted. "legacyintent" can be substituted with "legacy" or omitted.
	Listing A-1 SCA ATMI Binding Pseudoschema

	SCA ATMI Binding Attributes Description
	</binding.atmi/@requires>
	</binding.atmi/tuxconfig>
	</binding.atmi/map>
	</binding.atmi/serviceType>
	</binding.atmi/inputBufferType>, </binding.atmi/outputBufferType>, </binding.atmi/errorBufferType>
	Table A-1 SCA Supported Tuxedo Buffer Types

	</binding.atmi/workStationParameters>
	</binding.atmi/authentication>
	</binding.atmi/fieldTablesLocation>
	</binding.atmi/fieldTablesLocation32>
	</binding.atmi/fieldTables>
	</binding.atmi/fieldTables32>
	</binding.atmi/viewFilesLocation>
	</binding.atmi/viewFilesLocation32>
	</binding.atmi/viewFiles>
	</binding.atmi/viewFiles32>
	</binding.atmi/remoteAccess>
	</binding.atmi/transaction/@timeout>
	Appendix B: Oracle Tuxedo SCA Schemas

	ATMI and JTMI Binding Schema For C/C++
	Listing A-1 ATMI and JTMI Binding Schema For C/C++

	Web Service Binding Schema
	Listing A-2 Web Service Binding Schema

