Oracle® Tuxedo
Using the ATMI /Q Component
12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo Using the ATMI /Q Component , 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Oracle Tuxedo /Q Overview
General DesCriptionot
Queuing System Componentsand TaskSo oottt et e
AdMINISIEAIOr TASKS . . . vttt
Programmer TasksS . ..o ov ittt e e e
TransaCtion Management.o vttt e e
Handling Reply MESSagES oot i ittt e et e e

Error Handling

2. Oracle Tuxedo /Q Administration

INErOdUCHION. . . o o
Available Sample Program Called gsample.
ConfigUIAtion
Specifyingthe QM Server Group oo oot
Specifying the Message Quelue SErVer.ot
Operation TIMEOULttt i

Queue Space Names, Queue Names, and ServiceNames.
Data-dependent ROULING oo v e e
Customized Buffer TYPeS.ot

Buffer SUDLYPES
Specifying the Message Forwarding Server ...,

Using the ATMI /Q Component

Queue Names and Service Names: The-qoption...................... 2-6

Controlling Transaction Timeout: The-toption 2-6
Controlling Idle Time: The-ioption 2-7
Controlling Server Exit: The-eoption 2-7

Delete Message After Service Failure: The-doption................... 2-7
Customized Buffer TYpes.ot 2-7
Dynamic Configuration.t e 2-8
Creating Queue Spacesand QUEUES.o vttt ittt e e e 2-8
Working with gmadmin Commands.t 2-8
Creating an Entry in the Universal DevicelList:crdl 2-8
Creating aQueue Space: gSPaceCrEateo oottt e 2-9
Creating aQUEUE: (CIEaEE.\ ittt et e e e 2-10
SpecifyingQueue Order 2-11
Enabling Out-of-Order ENQUEUINGo v e e e 2-11
Specifying Retry Parameters. 2-12

Using Queue Capacity Limits............. .ot 2-12

Reply and Fallure QUEUESot tieeeee 2-13

Error QUEUIESot 2-14
Handling Encrypted Message Buffers. i 2-14
Maintenance of the Oracle Tuxedo /Q Feature, 2-15
Adding EXtentsto aQUEUE SPaCE.o oot 2-15
BackingUp or Moving QUeUe Spaceo oo i v it 2-15
Moving the Queue Space to a Different Type of Machine.................. 2-16
TMQFORWARD and Non-Global Transactions 2-16
TMQFORWARD and Commit Control oo, 2-16
Handling Transaction TIMeOULto oottt 2-16
TMQFORWARD and Retriesfor an Unavailable Service 2-17
Windows Standard 1/0. oo 2-17

Using the ATMI /Q Component

3. Oracle Tuxedo /Q C Language Programming

INEFOdUCLION. e e e e e e 31
Prerequisite Knowledgeo e 31
Where Requests Can Originate.ottt i 32
EmphasisontheDefault Case 32
ENQUEUING MEBSSA0ES. . . . o oottt et e e e e e e 32
tpenqUEUE(3C) ATQUMENTS ottt e e e e e e e 33
tpenqueue(): Thegspace Argumentt 33
tpenqueue(): Thegname Argumentoo ittt 3-4
tpenqueue(): Thedataand len Arguments.t 34
tpenqueue(): TheflagsArguments. 34
TPQCTL SIUCIUNE . .ot e e e e e e e e e e 35
OverridingtheQueue Order.t 311
Overriding the Queue Priority o 312
Setting aMessage Availability Time. o i 312
tpenqueue() and TranSactions oottt 3-13
Dequelting MESSAgES . . .« vttt et e e e e 3-13
tpdequeus(3c) ArgUMENES oot 3-14
tpdequeue(): Thegspace Argument v et 3-14
tpdequeue(): Thegname Argumentove ittt 3-15
tpdequeue(): Thedataand len Arguments. 3-15
tpdequeue(): TheflagsSArguments. 3-15
TPQCTL SHUCLUIE . . oottt e e e e e et 3-16
USING TPQWAIT . ottt ettt e e e e 3-20
Error Handling When Using TMQFORWARD Servicesttt 3-20
Procedure for Dequeuing Replies from Services Invoked Through TM QFORWARD
3-22

Using the ATMI /Q Component v

Sequential Processingof Messageso e 3-23
Using Queues for Peer-to-Peer Communication.cooo... 3-23

4. Oracle Tuxedo /Q COBOL Language Programming

INEFOTUCTION . . o e e e e e e e e e 4-1
Prerequisite Knowledgeo 4-1
Where Requests Can Originateoo i i 4-2
EmphasisontheDefault Case 4-2
ENQUEUING MESSA0ESttt e et et e e e 4-2
TPENQUEUE() ArgQUMENES . . . o oottt et et e e 4-3
TPENQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument . .. 4-3
TPENQUEUE(): The QNAME in TPQUEDEF-REC Argument 4-4
TPENQUEUE(): The DATA-REC and LEN in TPTY PE-REC Arguments. . 4-4
TPENQUEUE(): The Settingsin TPQUEDEF-REC 4-5
TPQUEDEF-REC SITUCIUIE . . . o o oo e ettt e e e e e e e e e e e e e 4-6
OverridingtheQueue Ordert 4-14
Overridingthe Queue Priorityo 4-14

Setting aMessage Availability Time. 4-15
TPENQUEUE() and Transactionsouuiuiiii i 4-16
DeqUEUING MESSAES . . . o . ottt et e e e 4-16
TPDEQUEUE() ArgumeNntsSo ottt et e e e e e e i e e 4-17
TPDEQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument.. 4-17
TPDEQUEUE(): The QNAME in TPQUEDEF-REC Argument 4-18
TPDEQUEUE(): The DATA-REC and LEN in TPTY PE-REC Arguments. 4-18
TPDEQUEUE(): The Settingsin TPQUEDEF-REC 4-19
TPQUEDEF-REC SIUCIUrE o o oo et e e et et 4-20
USiNg TPOWAIT . . oottt 4-24
Error Handling When Using TMQFORWARD Services................... 4-24

vi Using the ATMI /Q Component

Procedure for Dequeuing Replies from Services Invoked Through TM QFORWARD

4-26
Sequential Processing of Messageso 4-27
Using Queues for Peer-to-Peer Communication., 4-27

OVEIVIBIV. oottt e A-1
PrErEgUISITES . . . ottt e A-1
What 1S QSamMPlE? . . . o A-2
Building gsample A-2
Suggestions for Further Exploration.co i A-4
setenv: Setthe Environment e A-5
makefile: Make Your Application. A-5
ubb.sample: The ASCII ConfigurationFile A-5
crlog: Createthe Transaction Logo oo i i A-6
crque: Createthe Queue Spaceand QUEUES oot i i e e A-6
Boot, Run, and Shut Down the Application A-6
Clean U oo A-6

Using the ATMI /Q Component vii

viii Using the ATMI /Q Component

Oracle Tuxedo /Q Overview

Thistopic includes the following sections:
e General Description
e Queuing System Components and Tasks
e Administrator Tasks

e Programmer Tasks

General Description

The Oracle Tuxedo /Q component all ows messages to be queued to persistent storage (disk) or to
non-persistent storage (memory) for later processing or retrieval. The Oracle Tuxedo
Application-to-Transaction Monitor Interface (ATMI) provides functionsthat allow messagesto
be added to or read from queues. Reply messages and error messages can be queued for later
return to client programs. An administrative command interpreter is provided for creating, listing,
and modifying the queues. Servers are provided to accept requests to enqueue and dequeue
messages, to forward messages from the queue for processing, and to manage the transactions
that involve the queues.

Queuing System Components and Tasks

Figure 1-1 shows the components of the queued message facility.

Using the ATMI /Q Component 1-1

1-2

Figure 1-1 Queued Service Invocation

CLIENT

tpenqueue |¢

tpdequeue ¢

System/T
Clients
Using /Q

| TMQUEUE TMQFORWARD
1,3 l local local l'5

: enqueue enqueue l

I \ t I 6

pcall
I
8,10 | '\‘l\

| ocal local |

| dequeue dequeue |

: TMS_QM :

| 2 APP 4 |

| 9 Queue 7 |

I Space I

I At -—--——F——-— | I

I . . I

| I SERVICE1 | |

| | | |

I : : I

| ! SERVICE2 ! |

I I I I

: | CLIENT_REPLY1 1 | :

| | | |

: | FAILUREQ | :

I Lo] | I

I I

: QUEUE SERVER :

I GROUP gmadmin I

SERVER

SERVICE1
{

tpreturn

}

SERVER

SERVICE2
{

tpreturn

}

System/T
Servers

Thefigureillustrates how each component of the queuing system operates for queued service
invocation. In this discussion, we use the figure to explain how administrators and programmers
work with the Oracle Tuxedo /Q component to define it and use it to queue a message for
processing and get back areply. The queuing service may a so be used for simple peer-to-peer

communication by using a subset of the components shown in the figure.

A queue space is aresource. Access to the resource is provided by an X/OPEN XA-compliant
resource manager interface. Thisinterface is necessary so that enqueuing and dequeuing can be
done as part of atwo-phase committed transaction in coordination with other XA-compliant

resource managers.

Using the ATMI /Q Component

Administrator Tasks

Administrator Tasks

The Oracle Tuxedo administrator is responsible for defining servers and creating queue spaces
and queues like those shown between the vertical dashed linesin the figure “Queued Service
Invocation” on page 1-2.

The administrator must define at least one queue server group with Tvs_om as the transaction
manager server for the group.

Two additional system-provided servers need to be defined in the configuration file. These
servers perform the following functions:

e The message queue server, TMQUEUE (5) , iS used to enqueue and dequeue messages. This
provides a surrogate server for doing message operations for clients and servers, whether
or not they arelocal to the queue.

e The message forwarding server, TMQFORWARD (5) , iS used to dequeue and forward
messages to application servers. The Oracle Tuxedo system providesamain () for servers
that handles server initialization and termination, allocates buffers to receive and dispatch
incoming requests to service routines, and routes replies to the correct destination. All of
this processing is transparent to the application. Existing servers do not dequeue their own
messages or engueue replies. One goal of Oracle Tuxedo /Q isto be able to use existing
servers to service queued messages, without change. The TMoFORWARD Server dequeues a
message from one or more queues in the queue space, forwards the message to a server
with a service that is named the same as the queue, waits for the reply, and queues the
success reply or failure reply on the associated reply or failure queues, respectively, as
specified by the originator of the message (if the originator specified areply or failure
queue).

An administrator also must create a queue space using the queue administration program,
gmadmin (1), or theaprg_MIB(5) Management Information Base (MIB). The queue space
contains a collection of queues. In the figure “Queued Service Invocation” on page 1-2, for
example, four queues are present within the APP queue space. There is a one-to-one mapping of
gueue space to queue server group since each queue space is aresource manager (RM) instance
and only asingle RM can exist in agroup.

The notion of queue space allows for reducing the administrative overhead associated with a
gueue by sharing the overhead among a collection of queues in the following ways:

e The queues in a queue space share persistent and non-persistent storage areas for messages.

Using the ATMI /Q Component 1-3

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rfcm/rfcmd.html

1-4

e A single message queue server, TMQUEUE in the figure “ Queued Service Invocation” on
page 1-2, can be used to enqueue and dequeue messages for multiple queues within a
single queue space.

e A single message forwarding server, TMQFORWARD in the figure “ Queued Service
Invocation” on page 1-2, can be used to dequeue and forward messages to services from
multiple queues within a single queue space.

e Two instances of the transaction manager server, Tms_gm in the figure “Queued Service
Invocation” on page 1-2, can be used to complete transactions for multiple queues within a
single queue space. One instance of the transaction manager server is reserved for
non-blocking transactions so that they will be processed as quickly as possible and not be
held up by blocking transactions. Blocking transactions are handled by the second instance
of the transaction manager server.

The administrator can define asingle server group in the application configuration for the queue
space by specifying the group in uBBcoNFIG Or by using tmconfig (1) (See
tmconfig, wtmconfig (1)) to add the group dynamically.

e Finally, when the administrator moves messages between queues within a queue space, the
overhead isless than if the messages were in different stable storage areas, because a
one-phase commit can be done.

Part of the task of defining a queue is specifying the order for messages on the queue. Queue
ordering can be determined by message availability time, expiration time, priority, FIFo, LIFO,
or acombination of these criteria

The administrator specifies one or more of these sort criteriafor the queue, listing the most
significant criteriafirst. The F1ro and n.1ro values must be the least significant sort criteria.

M essages are put on the queue according to the specified sort criteria and dequeued from the top
of the queue. The administrator can configure as many message queuing servers as are needed to
keep up with the requests generated by clients for the stable queues.

Data-dependent routing can be used to route between multiple server groupswith serversoffering
the same service.

For housekeeping purposes, the administrator can set up a command to be executed when a
threshold is reached for a queue that does not routinely get drained. This can be based on the
bytes, blocks, or percentage of the queue space used by the queue or the number of messages on
the queue. The command might boot a TMOFORWARD Server to drain the queue or send mail to the
administrator for manual handling.

The Oracle Tuxedo system uses the Queueing Services component of the Oracle Tuxedo
infrastructure for some operations. (The Oracle Tuxedo infrastructure provides services such as

Using the ATMI /Q Component

../rfcm/rfcmd.html

Programmer Tasks

security, scalability, message queuing, and transactions.) For exampl e, administrative operations
for shared memory are provided by the Queuing Services component. Some functions are not
currently applicable to Oracle Tuxedo applications; thisis noted in descriptions of these
functions.

Y ou can a'so use the queued message facility for peer-to-peer communication between clients,
such that a client communicates with other clients without using any forwarding server. The
peer-to-peer communication model is shown in Figure 1-2.

Figure 1-2 Peer-to-Peer Communication

STORAGE
CLIENT (persistent or CLIENT

non-persistent)

<

tpenqueue > p tpdequeue

tpdequeue ¢ ¢ tpenqueue

Programmer Tasks

In steps 1 through 3 of the figure “ Queued Service Invocation” on page 1-2, a client enqueues a
message to the servICcEL queuein the APP queue space using tpenqueue (3c) . Optionally, the
name of areply queue and afailure queue can beincluded in the call to tpenqueue (). Inthe
example they are the queues cL.TENT _REPLY1 and FATLURE_Q. The client can specify a
correlation identifier value to accompany the message. Thisvalueis persistent across queues so
that any reply or failure message associated with the queued message can be identified when it is
read from the reply or failure queue.

Theclient can use the default queue ordering (for example, atime after which the message should
be made available for dequeuing), or can specify an override of the default queue ordering
(asking, for example, that this message be put at the top of the queue or ahead of another message
on the queue). tpenqueue() sends the message to the TMQUEUE server, the message is queued,
and an acknowledgment (step 3) is sent to the client; the acknowledgment is not seen directly by
the client but can be assumed when the client gets a successful return. (A failure return includes
information about the nature of the failure.)

Using the ATMI /Q Component 1-5

../rf3c/rf3c.html

1-6

A message identifier assigned by the queue manager isreturned to the application. The identifier
can be used to dequeue a specific message. It can also be used in another tpenqueue () to
identify a message already on the queue that the subsequent message should be enqueued ahead
of.

Before an enqueued message is made available for dequeuing, the transaction in which the
message is enqueued must be committed successfully.

When using Oracle Tuxedo /Q for queued service invocation, and the message reaches the top of
the queue, the TMoFORWARD Server dequeues the message and forwardsit, via tpcall (3c),toa
service with the same name as the queue name. In the figure “Queued Service Invocation” on
page 1-2, the queue and the service are named servIcEL and steps 4, 5, and 6 in the figure show
this. The client identifier and the application authentication key are set to the client that caused
the message to be enqueued; they accompany the dequeued message as it is sent to the service.

When the service returns areply, TMororRwWARD enqueues the reply (with an optional user-return
code) to the reply queue (step 7 in the figure “ Queued Service Invocation” on page 1-2).

Sometime later (steps 8, 9 and 10 in the figure “ Queued Service Invocation” on page 1-2), the
client uses tpdequeue (3¢) to read from the reply queue cL.TENT_REPLY1 in order to get the
reply message.

Y ou can dequeue messages without removing them from the queue by using the TrorEEK flag
with tpdequeue (). Messages that have expired or have been deleted by an administrator are
immediately removed from the queue.

Transaction Management

With regard to transaction management, one goal is to ensure reliability by enqueuing and
dequeuing messages within global transactions. However, a conflicting goa is to reduce the
execution overhead by minimizing the number of transactions that are involved.

An option is provided for the caller to enqueue a message outside any transaction in which the
caller isinvolved (decoupling the queuing from the caller's transaction). However, atimeout in
this situation leaves it unknown as to whether or not the message is enqueued.

A better approach is to enqueue the message within the caller's transaction, asis shown in
Figure 1-3.

Using the ATMI /Q Component

../rf3c/rf3c.html
../rf3c/rf3c.html

Programmer Tasks

Figure 1-3 Transaction Demarcation

CLIENT
TRAN1 tpbegin ()
Put Request Message on QUEUE tpenqueue ()

tpcommit ()

TMQFORWARD
TRAN2 tpbegin()
Get Request Message and Delete from Queue tpdequeue ()
Process Message tpcall()
Put Reply Message on Queue tpenqueue ()

tpcommit ()

CLIENT
TRAN3 tpbegin ()
Get Reply Message and Delete from Queue tpdequeue ()
Put Next Request Message on Queue tpenqueue ()

tpcommit ()

Inthe figure, the client starts atransaction, queues the message and commitsthe transaction. The
message is degueued within a second transaction started by TMorForRwARD; the serviceis called
with tpcall (3c), isexecuted and the reply is enqueued within the same transaction. A third
transaction, started by the client, is used to degqueue the reply (and possibly enqueue another
request message). I n ongoing processing, the third and first transactions can meld into one since
enqueuing the next request can be done in the same transaction as dequeuing the response from
the previous request.

Note: The system alows you to dequeue a response from one message and enqueue the next
request within the same transaction, but does not allow you to enqueue a request and
dequeue the response within the same transaction. The transaction in which the request
is enqueued must be successfully committed before the message is available for
dequeuing.

Handling Reply Messages

A reply queue can be either specified or not by the application when calling tpenqueue (). The
effect isasfollows:

Using the ATMI /Q Component 1-1

../rf3c/rf3c.html

1-8

o |f areply queueis not specified for a queued message, then no further work is required
beyond processing the message.

o If amessage is dequeued that does specify areply queue, then the originator of the
message expects areply to be enqueued upon successful completion of the execution of the
request.

— Inthe case where the application explicitly dequeues the message using
tpdequeue (), it isthe responsibility of the application to call tpenqueue () to
engueue the reply. Normally, this would be done in the same transaction in which the
request message is dequeued and executed so the entire operation is handled atomically
(that is, the reply is enqueued only if the transaction succeeds).

— In the case where the message is automatically processed by a service (dequeued and
passed to the application viaa tpcall ()) by TMOFORWARD, TMQFORWARD enqueues a
reply if the application service returns successfully (that is, the service routine called
tpreturn (3c) With Tpsuccess and tpcall () did not return 1). If tpcall () receives
data, then the typed buffer used is enqueued to the reply queue. If no dataisreceived in
tpcall (), then amessage with no data (that is, aNULL message) is enqueued; the
fact that amessage is enqueued (even if NULL) is sufficient to signify that the
operation has been completed.

Error Handling

Handling of errors requires both an understanding of the nature of the errors the application may
encounter and careful planning and coordination between the Oracle Tuxedo administrator and
the application program devel opers. The way Oracle Tuxedo /Q works, if amessageis dequeued
within atransaction and the transaction is rolled back, then (if the retry parameter is greater than
0) the message ends up back on the queue where it can be dequeued and executed again.

For atransient problem, it may be desirable to delay for a short period before retrying to dequeue
and execute the message, allowing the transient problem to clear. For example, if thereisalot of
activity against the application database, there may be occasionswhen all you need isalittletime
to allow locksin adatabase to be rel eased by another transaction. Normally, alimit on the number
of retriesis also useful to ensure that some application flaw doesn't cause significant waste of
resources. When aqueueis configured by the administrator, both aretry count and adelay period
(in seconds) can be specified. A retry count of 0 impliesthat no retries are done. After the retry
count is reached, the message is moved to an error queue that can be configured by the
administrator for the queue space.

There are caseswherethe problem isnot transient. For example, the queued message may regquest
operations on an account that does not exist. In thiscase, it is desirable not to waste any resources

Using the ATMI /Q Component

../rf3c/rf3c.html

Programmer Tasks

by trying again. If the application programmer or administrator determines that failuresfor a
particular operation are never transient, then it issimply amatter of setting theretry count to zero.
It ismore likely the case that for the same service some problems will be transient and some
problemswill be permanent; the administrator and application devel opers need to have morethan
asingle approach to handle errors.

Other variations come about because the application may either dequeue messagesdirectly or use
the TMQFORWARD Server and because an error may cause a transaction to be rolled back and the
message requeued whilelogic dictates that the transaction should be committed. These variations
and ways to deal with them are discussed in “Oracle Tuxedo /Q Administration” on page 2-1,
“Oracle Tuxedo /Q C Language Programming” on page 3-1, and “Oracle Tuxedo /Q COBOL
Language Programming” on page 4-1.

Summary

To summarize, Oracle Tuxedo /Q provides the following features to Oracle Tuxedo application
programmers and administrators:

e An application programming interface that lets you enqueue a request for subsequent
processing. The system guarantees to execute the request successfully exactly once (by
default, failure causes the message to be put back on the queue). An application
programming interface is also provided to dequeue messages either from the top of a queue
or by message identifier or correlation identifier.

e The application program and/or the administrator can control the ordering of messages on
the queue. Control is viathe sort criteria, which may be based on message availability
time, expiration time, priority, LIFo, FIFO, or a combination of these criteria. The
application can override the ordering to place the message at the queue top or ahead of a
specific message that is already queued.

e An Oracle Tuxedo server is provided to enqueue and dequeue messages on behalf of,
possibly remote, clients and servers. The administrator decides how many copies of the
server should be configured.

e An Oracle Tuxedo server is provided to dequeue queued messages and forward them to
services for execution. This server allows for existing servers to handle queued requests
without modification. Each forwarding server can be configured to handle one or more
gueues. Transactions are used to guarantee exactly-once processing. The administrator
controls how many forwarding servers are configured.

Using the ATMI /Q Component 19

1-10

e The administrator can control messages stored on the queues for processing. Thisincludes
the number of times requests are retried on failure and how much time elapses between
retries, reordering messages on queues, managing queue capacity and so on.

There are many application paradigms in which queued messages can be used. This feature can
be used to queue requests when a machine, server, or resource is unavailable or unreliable (for
example, in the case of awide area or wireless networks). Thisfeature can also be used for work
flow provisioning where each step generates a queued request to do the next step in the process.
Y et another useis for batch processing of potentially long running transactions, such that the
initiator does not have to wait for completion but is assured that the message will eventually be
processed. Thisfacility may aso be used to provide a data pipe between two otherwise unrelated
applications in a peer-to-peer relationship.

Using the ATMI /Q Component

CHAPTERa

Oracle Tuxedo /Q Administration

Thistopic includes the following sections:

e Introduction

Configuration

Creating Queue Spaces and Queues

Handling Encrypted Message Buffers

Maintenance of the Oracle Tuxedo /Q Feature

Windows Standard 1/O

Introduction

The Oracle Tuxedo /Q administrator has three primary areas of responsibility, which are:
e Configuration of resources
e Creation of the queue space and queues

e Monitoring and maintenance of the facility

Close cooperation with the application devel opers and programmersis a must; the configuration
and the queue attributes must reflect the requirements of the application.

Using the ATMI /Q Component 2-1

Available Sample Program Called gsample

A brief example of the use of the queued message facility is distributed with the software and is
described in “A Sample Application” on page A-1.

Configuration

2-2

Three servers are provided with the Oracle Tuxedo /Q component. One is the Transaction
Manager Server (TMS), Tus_ouw, for the Oracle Tuxedo /Q resource manager. That is, it manages
global transactions for the queued message facility. It must be defined in the croups section of
the configuration file.

The other two, TMQUEUE (5) and TMQFORWARD (5), provide services to users. They must be
defined in the servERs section of the configuration file.

The application can also create its own queue servers, if the functionality of TMoForRwARD does
not fully meet the needs of the application. For example, the administrator might want to have a
special server to dequeue messages moved to the error queue.

The application can a so choose peer-to-peer communication. In this case, the application
communicates with other applications, or a client communicates with other clients, by not using
any forwarding server.

Specifying the QM Server Group

In addition to the standard requirements of a group name tag and a value for creno (see
UBBCONFIG (5) for details), there must be a server group defined for each queue space the
application will use. The TMsNaME and OPENINFO parameters need to be set. Here are examples:

TMSNAME=TMS_ QM
and

OPENINFO="TUXEDO/QM:<device_ name:<queue_space_name>"

™S_oM iSthe name for the transaction manager server for Oracle Tuxedo /Q. In the oPENINFO
parameter, TuxEDO/ QM is the literal name for the resource manager asit appearsin
$TUXDIR/udataobj/RM. Thevauesfor <device name> and <queue_space_name> are
instance-specific and must be set to the pathname for the universal device list and the name
associated with the queue space, respectively. These values are specified by the Oracle Tuxedo
administrator using gmadmin (1).

Using the ATMI /Q Component

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rfcm/rfcmd.html

Configuration

Note: The chronological order of these specificationsis not critical. The configuration file can
be created either before or after the queue space is defined. The important thing is that
the configuration must be defined and queue space and queues created before the facility
can be used.

There can be only one queue space per GRoUPS Section entry. The CLOSEINFO parameter is not
used.

The following example is taken from the reference page for TMQUEUE (5) .

*GROUPS

TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM: /dev/devicel :myqueuespace"

TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM: /dev/device2 :myqueuespace"

Specifying the Message Queue Server

The TMQUEUE (5) reference page gives afull description of the servERs section of the
configuration file, but there are some points worth additional emphasis here.

Operation Timeout

TMQUEUE recognizesa-t timeout option when specified after the double dash (- -) inthecropT
parameter. This timeout value affects only operations begun within the server if it findsthat a
transaction is not in effect, in other words, either the client called tpenqueue (3¢) or
tpdequeue (3c) without first calling tpbegin (3c) or it began atransaction and called
tpengueue () Of tpdequeue () Withthe TPNoTRAN flag set to exclude the queue request from the
client's transaction. The default for timeout is 30 seconds. If a tpdequeue request is received
withthe f1ags setto TPowaIT, aTPETIME error will bereturned if the wait exceeds -t timeout
seconds.

Note: ct1 isastructure of type TpocTL used by tpenqueue (3¢) and tpdequeue (3c) to pass
parameters between the calling process and the system. TeowatT is aflag setting
available in tpdequeue to indicate that the process wishesto wait for areply message.
The structure is explained in detail in “TPQCTL Structure” on page 3-5 and
“TPQUEDEF-REC Structure” on page 4-6. The COBOL equivaent isthe
TPQUEDEF-REC record.

Using the ATMI /Q Component 2-3

../rf5/rf5.html
../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

2-4

Queue Space Names, Queue Names, and Service Names

Thereis potential confusion among queue space names, queue names, and service names. The
first place you are apt to encounter the confusion isin the specification of the message queue
server: TMQUEUE. When specifying this server in the configuration file you can use the -s flag of
the cLopT parameter to name the queue space served by a given instance of the server, whichis
the same as saying it isaservice advertised by the function: TmQueuE. In an application that uses
only one queue space, it is not necessary to specify the cL.opt -s option; it will default to -s
TMQUEUE : TMQUEUE. |f the application requires more than a single queue space, the names of the
gueue spaces are included as arguments to the -s option in the servERS section entry for the
gueued message server.

An alternative way of making this specification is to rebuild the message queue server, using
buildserver (1), and name the queue spaces with the similar sounding -s option. This hasthe
result of fixing, or hardcoding, the service namesin the server executable.

The following two specifications are equivalent:

*SERVERS

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0 \
CLOPT="-s myqueuespace: TMQUEUE"

and

buildserver -o TMQUEUE -s myqueuespace:TMQUEUE -r TUXEDO/QM \
-f ${TUXDIR}/1lib/TMQUEUE. o
followed by

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0 \
CLOPT="-A"

Data-dependent Routing

The preceding discussion described the specification of services (that is, queue space names) in
the message queue server. This capability can be used to bring about data-dependent routing of
queued messages such that the message is queued for processing by a service within a specific
group depending on avalue in afield of the message buffer. To do this the same queue space
name is specified in two different groups and a routing specification is made part of the

Using the ATMI /Q Component

../rfcm/rfcmd.html

Configuration

configuration file to govern the group where the message is queued. The following exampleis
taken from the TMQUEUE (5) reference page (the queue space name has been changed).

*GROUPS

TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM: /dev/devicel :myqueuespace"

TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM: /dev/device2 :myqueuespace"

*SERVERS

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0 \
CLOPT="-s ACCOUNTING:TMQUEUE"

TMQUEUE SRVGRP="TMQUEUEGRP2" SRVID=1000 RESTART=Y GRACE=0 \
CLOPT="-s ACCOUNTING:TMQUEUE"

*SERVICES

ACCOUNTING ROUTING="MYROUTING"

*ROUTING

MYROUTING FIELD=ACCOUNT BUFTYPE="FML" \
RANGES="MIN-60000: TMQUEUEGRP1, 60001 -MAX: TMQUEUEGRP2 "

Customized Buffer Types

TMQUEUE supports al of the standard ATMI buffer types. If your application needs to add other
types, it can be done by copying $TUXDIR/tuxedo/tuxlib/types/tmsypesw.c, adding an
entry for your special buffer types, making sureto leave the final line null, and using the revised
fileasinput to abuildserver (1) command. An example of the buildserver command is
shown on the TMQUEUE (5) reference page.

You can aso use the -s option of the bui1dserver command to associate additiona service
names with TMQUEUE as an alternative to specifying them in the server cL.opt parameter (see
above).

Buffer Subtypes

Y ou can assign a subtypeto abuffer using the tpalloc (3c¢) subtype parameter and later extract
the subtype using the tptypes (3c) function. This gives you the ability to assign atype to data
without having to create an entirely new user-defined ATMI buffer type. Thisisespecially useful
for buffers containing character arrays (CARRAY) Or strings (STRING).

Using the ATMI /Q Component 2-5

../rf5/rf5.html
../rf5/rf5.html
../rfcm/rfcmd.html
../rf3c/rf3c.html
../rf3c/rf3c.html

2-6

Specifying the Message Forwarding Server

The third system-supplied server included with the Oracle Tuxedo /Q component is
TMQFORWARD (5) . Thisisthe server that takes messages from specified queues, passesthem along
to Oracle Tuxedo serversviatpcall (3c), and handles associated reply messages. The full
description of how the server is defined in the configuration file can be found on the
TMQFORWARD (5) reference page, but the topics that follow bring out some points that are worth
additional emphasis.

TMQFORWARD IS referred to as a server and each instance used by an application must be defined
in the servERs section of the configuration file, but it has characteristics that set it apart from
ordinary servers. For example:

e Itisincorrect to specify services for TMQFORWARD.

e A client process cannot post a message for TMoFORWARD as you would expect in a normal
request/response relationship.

e TMOFORWARD should not be defined as a member of an Mssg set.

e TMQFORWARD should never have areply queue.

An instance of TMOFORWARD is tied to a queue space through the server group with which it is
associated, specifically through the third field in the openTNFO Statement for the group. In the
topicsthat follow wewill examine other key parameters, especialy cr.opT parametersthat come
after the double dash.

Queue Names and Service Names: The -q option

A required parameter iS-g queuename, queuename. . . Thisparameter specifies the queue(s) to
be checked by thisinstance of the server. gueuename isa NULL-terminated string of up to 127
characters; it isthe same asthe name of the application service that will processthe message once
it has been taken off the queue by TMoForRwWARD. It is also the name that a programmer specifies
as the second argument of tpenqueue (3¢) OfF tpdequeue (3c) When preparing to call the
message queue Server, TMQUEUE.

Controlling Transaction Timeout: The -t option

TMQFORWARD doesitswork within atransaction that it beginsand ends. The -t trantime oOption
is available to specify the length of time in seconds before the transaction is timed out. The
transaction is begun when TvororwaRD finds a message on the queueit is checking; it is
committed after areply has been enqueued either to the reply queue or the failure queue, so the

Using the ATMI /Q Component

../rf5/rf5.html
../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Configuration

transaction encompasses calling the service that processes the message and receiving areply. The
default is 60 seconds.

Controlling Idle Time: The -i option

Once T™oFORWARD iS booted it periodically checks the queue to which it isassigned. If it finds
the queue empty, it pausesfor -i idietime seconds before checking again. If avalueisnot
specified, the default is 30 seconds; a value of 0 saysto keep checking the queue constantly,
which can be wasteful of CPU resources if the queue is frequently empty.

Controlling Server Exit: The -e option

If the -e option is specified, the server will shut itself down gracefully (and will create auser log
message) when it finds the queue empty. This behavior may be used to your advantage in
connection with the threshold command that you can specify for aqueue. Thereisamore
compl ete discussion about the -e option and the threshold command in “ Creating Queue Spaces
and Queues’ on page 2-8.

Delete Message After Service Failure: The -d option

When aservicerequest failsafter being called by TvMorForRwWARD, thetransactionisrolled back, and
the message is put back on the queue for alater retry (up to alimit of retries specified for the
gueue). The -a option adds the following refinement: if the failed service returns anon-NULL
reply, thereply (and itsassociated tpurcode) are put on afailure queue (if oneisassociated with
the message and the queue exists) and the original request message is deleted. Also with the -a
option, if the original request message isto be deleted at the same time as the retry limit
configured for the queue is reached, the original request message is put into the error queue.

The rationale behind this option isthat rather than blindly retrying, the originating client can be
coded to examine the failure message and determine whether further attempts are reasonable. It
provides away of handling afailure that is due to some inherently reasonable condition (for
example, arecord is not found because the account does not exist).

Customized Buffer Types

Customized application buffer types can be added to the type switch and incorporated into
TMQFORWARD With the buildserver (1) command. It should be noted, however, that when you
customize TMQFORWARD it iS an error to specify service nameswith a -s option.

Using the ATMI /Q Component 2-1

../rfcm/rfcmd.html

Dynamic Configuration

We have described configuration parameters in terms of uBBcoNFIG parameters. However, it
should be noted that the specificationsin the crouprs and sErVERS sections can also be added to
the TuxconF1c file of arunning application by using tmconfig(1) (See

tmconfig, wtmconfig (1)). Of course, the group and the serverswill have to be booted once
they have been defined.

Creating Queue Spaces and Queues

Thistopic coversthree of the qmadmin (1) commands that are used to establish the resources of
the Oracle Tuxedo /Q component. The appg_mMTB Management Information Base provides an
alternative method of administering Oracle Tuxedo /Q programmatically. Seethe appg_MIB(5)
reference page for more information on the MIB.

Working with gmadmin Commands

Most of the key commands of gqmadmin have positional parameters. If the positional parameters
(those not specified with adash (-) preceding the option) are not specified on the command line
when the command is invoked, gmadmin prompts you for the required information.

Creating an Entry in the Universal Device List: crdl

The universal devicelist (UDL) isaVTOC file under the control of the Oracle Tuxedo system.
It mapsthe physical storage space on amachine wherethe Oracle Tuxedo systemisrun. An entry
in the UDL pointsto the disk space where the queues and messages of a queue space are stored,;
the Oracle Tuxedo system manages the input and output for that space. If the queued message
facility isinstalled as part of anew Oracle Tuxedo installation, the UDL is created by
tmloadcf (1) when the configuration fileisfirst loaded.

Before you create a queue space, you must create an entry for itinthe UDL. Thefollowingisan
example of the commands:

First invoke the /Q administrative interface, gmadmin

The QMCONFIG variable points to an existing device where the UDL
either resides or will reside.

QMCONFIG=/dev/rawfs gmadmin

Next create the device list entry

crdl /dev/rawfs 50 500

2-8 Using the ATMI /Q Component

../rf5/rf5.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Creating Queue Spaces and Queues

The above command sets aside 500 physical pages beginning at block # 50

If the UDL has no previous entries, offset (block number) 0 must # be used

If you are going to add an entry to an existing Oracle Tuxedo UDL, the value for the gMconFIG
variable must be the same pathname specified in TuxconFIc. Once you haveinvoked gmadmin,
it is recommend that you run a1id1 command to see where space is available before creating
your new entry.

Creating a Queue Space: gspacecreate

A queue space makes use of 1PC resources; when you define a queue space you are allocating a
shared memory segment and a semaphore. As noted above, the easiest way to use the command
isto let it prompt you. (You can also use the T_arrospacE class of the appg_MIB (5) tO create
a queue space.) The sequence looks like this:

> gspacecreate

Queue space name: mygueuespace

IPC Key for queue space: 230458

Size of queue space in disk pages: 200

Number of queues in queue space: 3

Number of concurrent transactions in queue space: 3
Number of concurrent processes in queue space: 3
Number of messages in queue space: 12

Error queue name: errg

Initialize extents (y, n [default=n]):

Blocking factor [default=16]: 16

The program insiststhat you provide valuesfor al prompts except the final three. Asyou can see,
there are defaults for the last two; while you will almost certainly want to name an error queue,
you are not required to. If you provide a name here, you must create the error queue with the
qgcreate command. If you choose not to name an error queue, bear in mind that messages that
normally would be moved to the error queue (for example, when aretry limit is reached), are
permanently lost.

The program does not prompt you to specify the size of the areato reserve in shared memory for
storing non-persistent messages for al queues in the queue space. When you require
non-persistent (memory-based) messages, you must specify the size of the memory area on the
gspacecreate command line with the -n option.

Thevaluefor the IPC key should be picked so as not to conflict with your other requirementsfor
IPC resources. It should be a value greater than 32,768 and less than 262,143.

Using the ATMI /Q Component 2-9

../rf5/rf5.html

2-10

The size of the queue space, the number of queues, and the number of messages that can be
gueued at one time all depend on the needs of your application. Of course, you cannot specify a
size greater than the number of pages specified in your UDL entry. In connection with these
parameters, you a so heed to look ahead to the queue capacity parametersfor anindividual queue
within the queue space. Those parameters allow you to (a) set alimit on the number of messages
that can be put on aqueue, and (b) name acommand to be executed when the number of enqueued
messages on the queue reachesthe threshold. If you specify alow number of concurrent messages
for the queue space, you may create a situation where your threshold on a queue will never be
reached.

To calculate the number of concurrent transactions, count each of the following as one
transaction:

e Each Tvs_ow server in the group that uses this queue space

e Each TMQUEUE Or TMOFORWARD Sefver in the group that uses this queue space
® gmadmin
If your client programs begin transactions before they call tpenqueue, increase the count by the

number of clientsthat might accessthe queue space concurrently. Theworst caseisthat all clients
access the queue space at the sametime.

For the number of concurrent processes count one for each T™Ms_oM, TMQUEUE OF TMQFORWARD
server in the group that uses this queue space and one for afudge factor.

Y ou can chooseto initialize the queue space as you use the gspacecreate command, or you can
let it be done by the gopen command when you first open the queue space.

Creating a Queue: gcreate

Each queue that you intend to use must be created with the gmadmin gcreate command. You
first have to open the queue space with the gopen command. If you do not provide a queue space
name, gopen Will prompt for it. (You canalso usetheT_arpo classof theappg MIB(5) tocreate
aqueue.)

The prompt sequence for gcreate looks like the following:

> gcreate

Queue name: servicel

Queue order (priority, time, fifo, 1lifo): fifo
Out-of-ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 2

Using the ATMI /Q Component

../rf5/rf5.html

Creating Queue Spaces and Queues

Retry delay in seconds [default=0]: 30

High limit for queue capacity warning (b for bytes used, B for blocks used,
% for percent used, m for messages [default=100%]): 80%

Reset (low) limit for queue capacity warning [default=0%]: 0%

Queue capacity command:

No default queue capacity command

Queue 'servicel' created

You can skip all of these prompts (except the prompt for the queue name); if you do not provide
aname for the queue, the program displays a warning message and prompts again. For the other
parameters, the program provides a default and displays a message that specifies the default.

The program does not prompt you for a default delivery policy and memory threshold options.
The default delivery policy option alows you to specify whether messages with no specified
delivery mode are delivered to persistent (disk-based) or non-persistent (memory-based) storage.
The memory threshold option allows you to specify values used to trigger command execution
when anon-persistent memory threshold is reached. To use these options, you must specify them
on the gcreate command line with -d and -n, respectively.

Specifying Queue Order

Messages are put into the queue based on the order specified by this parameter and dequeued
from the top of the queue unless selection criteria are applied to the dequeuing operation. If
priority, expiration, and/or time are chosen as queue order criteria, then messages are
inserted into the queue according to valuesin the TpocTL structure. A combination of sort criteria
may be specified with the most significant criteria specified first. Separate multiple criteriawith
commas (,). If £ifo or 1ifo (which are mutually exclusive) are specified, they must be the last
value specified. The sequence in which parameters are specified determines the sort criteriafor
the queue. In other words, a specification of priority, fifo would say that the queue should
be arranged by message priority and that within messages of equal priority they should be
dequeued on afirst in, first out basis.

Enabling Out-of-Order Enqueuing

If the administrator enables out-of-order enqueues; that is, if top and/or msgid are specified at
the prompt, programmers can specify (viavauesin the TpocTL structure of a tpenqueue call)
that a message isto be put at the top of the queue or ahead of the message identified by msgid.
Give this option some thought; once the choice is made you have to destroy and recreate the
gueue to changeit.

Using the ATMI /Q Component 2-11

2-12

Specifying Retry Parameters

Normal behavior for a queued message facility isto put a message back on the queue if the
transaction that dequeuesit isrolled back. It will be dequeued again when it reaches the top of
the queue. Y ou can specify the number of retries that should be attempted and aso atime delay
between retries. Note that when a dequeued message is put back on the queue for retry, queue
order specifications are, in effect, suspended for retry delay seconds. During thistime, the
message is unavailable for any dequeuing operation.

The default for the number of retriesis 0, which means that no retries are attempted. When the
retry limit is reached, the system moves the message to the error queue for the queue space,
assuming an error queue has been named and created. If the error queue does not exist the
message is discarded.

The delay timeis expressed in seconds. When message queues are lightly populated so that a
message restored to the queue reaches the top almost immediately, you can save CPU cycles by
building in adelay factor. Y our general policy on retries should be based on the experience of
your particular application. If you have afair amount of contention for the service associated with
agiven queue, you may get alot of transient problems. One way to deal with them isto specify
alarge number of retries. (The number isstrictly subjective, asisthe time between retries.) If the
nature of your application is such that any rolled back transaction signals afailure that is never
going to go away, you might want to specify 0 retries and move the message immediately to the
error queue. (Thisisvery much like what happens when you specify the -a option for
TMQFORWARD; the only difference is that a non-zero length failure message must be received for
TMQFORWARD automatically to drop the message from the queue.)

Using Queue Capacity Limits

There are three parameters of the gcreate command that can be used to partially automate the
management of aqueue. The parameters set ahigh and low threshold figure (it can be expressed
asbytes, blocks, messages or percent of queue capacity) and allow you to specify acommand that
is executed when the high threshold is reached. (Actually, the command is executed once when
the high threshold isreached, but not again until thelow threshold isreached first prior to the high
threshold.)

The following are two examples of ways the parameters can be used:

High limit for queue capacity warning (b for bytes used, B for blocks used,
% for percent used, m for messages [default=100%]): 80%
Reset (low) limit for queue capacity warning [default=0%]: 10%

Queue capacity command: /usr/app/bin/mailme myqueuespace servicel

Using the ATMI /Q Component

Creating Queue Spaces and Queues

This sequence sets the upper threshold at 80% of disk-based queue capacity and specifiesa
command to be executed when the queue is 80% full. The command is a script you have created
that sendsyou amail message when the threshold isreached. (myqueuespace and servicel are
hypothetical arguments to your command.) Presumably, once you have been informed that the
queueisfilling up you can take action to ease the situation. Y ou do not get the warning message
again unless the queue load dropsto 10% of capacity or below, and then rises again to 80%. You
can also set thresholds and specify commands for the management of non-persistent
(memory-based) queue capacity using the -n option of the gcreate command.

Note: If you are working on a Windows machine, see “Windows Standard 1/O” on page 2-17
for additional information about configuring commands within a gmadmin () session.

The second example is somewhat more automated and takes advantage of the -e option of the
TMQFORWARD SErver.

High limit for queue capacity warning (b for bytes used, B for blocks used,
% for percent used, m for messages [default=100%]): 90%
Reset (low) limit for queue capacity warning [default=0%]: 0%

Queue capacity command: tmboot -i 1002

This sequence assumes that you have configured a reserve TmMororwWARD Server for the queuein
guestion with srvip=1002 and have included the -e option in its cL.opT parameter. (It a'so
assumes that the server is not booted or, if booted, has shut itself down as aresult of finding the
queue empty.) When the queue reaches 90% capacity, the tmboot command is executed to boot
the reserve server. The -e option causes the server to shut itself down when the queue is empty.
Y ou have set the low threshold to 0% so as not to kick off unnecessary tmboot commandsfor a
server that is aready booted.

The default values for the three options are 100%, 0%, and no command.

Reply and Failure Queues

The discussion above about creating a queue and providing parameters for its operation was
written from the viewpoint of creating a queue for messages to be processed by a service of the
same name. A queue may also be used for other purposes as well, such as peer-to-peer
communication. The parameters for creating a queue are the same regardless of itsuse. The
TPQCTL Structure used when a message is enqueued to a service queue includes fields to specify
areply queue and afailure queue. TMoFORWARD detectsthe successor failure of the tpacall (3c)
it makes to the requested service and, if these queues have been created by the administrator,
engueuesthereply accordingly. If noreply or failure queue exists, the success or failure response
message from the service is dropped leaving the originating client with no information about the

Using the ATMI /Q Component 2-13

../rf3c/rf3c.html

outcome of the queued request. Even if there is no reply message from the service, if areply
queue exists, a zero-length message is enqueued there by TMoForwWARD to inform the originating
client of the outcome.

When creating areply or afailure queue, bear in mind that in most cases messages are dequeued
from these queues by a client process|ooking for information about an earlier enqueued reguest.
Since the most common way of dequeuing such messagesisby themsgid (messageidentifier) or
corrid (correlation identifier) associated with the message—as opposed to taking a message off
the top of the queue—the queue ordering criteriaare less significant. In thiscase, fifo is
probably sufficient. The retries and retry delay parameters have no significance for reply
gueues, just take the defaults. The queue capacity thresholds and commands are likely to be
useful on reply queues, and the recommended usage isto aert the administrator so that he or she
can intervene.

Error Queues

An error queue is a system queue. One of the gspacecreate prompts asks for the name of the
error queue for the queue space. When you have actually created an error queue of the name
specified, the system usesit asaplace to move messages from the service queue that have reached
their retry limit. The management of the error queue is up to the administrator who can either
handl e the messages manually through commands of gmadmin or can set up an automated way
of handling them through the appg_mM1B MIB. The queue capacity parameterscan be used, but
al of the other gcreate parameters, with the exception of gname, are not useful for the error
queue.

Note: Werecommend against using the same queue as both an error queue and aservicefailure
gueue; doing so makesit more difficult to cleanly manage the application and could lead
to clients trying to access the administrator's area.

Handling Encrypted Message Buffers

2-14

In general, TMouEUE and TMoFoRWARD handle encrypted message buffers without decrypting
them. However, there are situations where the /Q component needs to decrypt enqueued message
buffers, as described in “ Compatibility/Interaction with /Q” in Using Security in ATMI
Applications.

As mentioned in the “ Compatibility/Interaction with /Q” discussion, a non-transactional
tpdequeue () operation has the side effect of destroying an encrypted queued message if the
invoking process does not hold avalid decryption key. Thus, application programmers need to

Using the ATMI /Q Component

../sec/secovr.html
../sec/secovr.html

Maintenance of the Oracle Tuxedo /Q Feature

open a decryption key for a process before the process calls tpdequeue () to retrieve an
encrypted message; otherwise, the message will be lost.

For information on opening a decryption key, see “Initializing Decryption Keys Through the
Plug-ins’ and “Writing Code to Receive Encrypted Messages’ in Using Security in ATMI
Applications.

Maintenance of the Oracle Tuxedo /Q Feature

Thistopic covers some things the queue administrator may have to do from timeto time to keep
a queue space operating efficiently.

Adding Extents to a Queue Space

If you find you need more disk storage for a queue space, you can add it with the gaddext
command of gmadmin (1). (You can aso use the Ta_mMaxpaGes attribute of the T_aprpospacke
class of aprg_m1B (5) to add extents.) The qgmadmin command takes the queue space name and
anumber of pages as arguments. The pages come from extentsdefined in the UDL for the device
inyour guconr1c variable. The queue space must beinactive; you can use the exclamation point
to execute a command outside of gmadmin to shut down the associated server group. For
example:

> ltmshutdown -g TMQUEUEGRP1
followed by

> gclose

> gaddext myqueue 100

The queue space must be closed; qmadmin closesit for you if you try to add extentsto it whileit
is open. All non-persistent messages currently in the queue space are lost when the gaddext
command isissued and completes successfully.

Backing Up or Moving Queue Space

A convenient command to use to back up a queue space is the UNIX command ad. Shut down
the associated server group first. The command lines should look like this:

tmshutdown -g TMQUEUEGRP1

dd if=<gspace_device_file> of=<output_device_filename>

For other options, see dda(1) in aUNIX system reference manual.

Using the ATMI /Q Component 2-15

../rf5/rf5.html
../rfcm/rfcmd.html
../sec/secadm.html
../sec/secpgm.html

2-16

This same command can be used to migrate the queue space to a machine of the same
architecture, although you may need to start the command sequence with a gmadmin chdl
command to provide anew device name if the present name does not exist on the target machine.

Similar archival techniques are available on server platforms that do not have the aa command.
First, shut down the group containing the queue space you want to back up or migrate. Then, use
an archival tool to save the queue space deviceto afile or other medium that may then be used
as a backup or used to move the queue space to another server.

Moving the Queue Space to a Different Type of Machine

If you need to move a queue space to a machine with a different architecture (primarily byte
order), the procedure is more complex. Create and run an application program to dequeue all
messages from all queuesin the queue space and write them out in machine-independent format.
Then enqueue the messages in the new queue space.

TMQFORWARD and Non-Glohal Transactions

M essages dequeued and forwarded using TMOFORWARD are executed within aglobal transaction
because the operation crosses group boundaries. If the messages are executed by serversthat are
not associated with an RM or that do not run within aglobal transaction, they should have aserver
group with rmsname=Tus (for the NULL XA interface).

TMQFORWARD and Commit Control

The global transaction begun by TMgrorwARD When it dequeues a message for execution is
terminated by atpcommi t(). Theadministrator can set the cMuTRET parameter in the configuration
fileto control whether the transaction commitswhen it islogged or when it is complete. (Seethe
discussion of cMTRET in the RESOURCES section of the uBBconF1G (5) reference page.)

Handling Transaction Timeout

Handling transaction timeout requires cooperation between the queue administrator and the
programmer devel oping client programsthat dequeue messages. When tpdequeue (3c) iscalled
with the f1ags argument set to include TrowartT, the TMQUEUE server will wait for amessage to
arrive on aqueue beforereturning to the caller. The number of secondsbeforeit timesout isbased
on the following:

e The timeout specified inthe tpbegin call (if the transaction is started in the client)

Using the ATMI /Q Component

../rf5/rf5.html
../rf3c/rf3c.html

Windows Standard 1/0

e The -t timeout flag of the TMoUEUE server (if the client has not started the transaction)

If amessage is not immediately available when using TpowAIT, TMQUEUE requires an action
resource so that TMQUEUE may service other requests. Y ou may want to increase the number of
actions the queue space may handle concurrently. Use the -2 actions option to the
gspacecreate Of gspacechange commands. This option specifies the number of additional
actionsthat can be handled concurrently. When awaiting operation is encountered and additional
actions are available, the blocking operation is set aside until it can be satisfied. If no actionsare
available, the cal to tpdequeue fails.

TMQFORWARD and Retries for an Unavailable Service

When a TMQFORWARD Server attempts to forward messages to a service that is not available, the
situation can develop where the retry limit for the queue may be reached. The message is then
moved to the error queue (if one exists). To avoid this situation the administrator should either
shut the TMOFORWARD Server down or set the retry count higher.

When amessage is moved to the error queue it is no longer associated with the original queue. If
errors are going to be handled by the administrator moving the message back to the service queue
when the service is known to be available, then the queue name may be stored as part of the
corrid inthe TrocTL structure so the queue name is associated with the message.

Windows Standard 1/0

In order to carry out acommand that you have configured within a gmadmin () session, such as
the gchange ... Queue capacity command describedin“Using Queue Capacity Limits’ on
page 2-12, the Windows createProcess () function spawns a child process as a DETACHED
PROCESS. Thistype of process does not have an associated console for standard input/output.
Therefore, for instance, if you use standard DOS syntax to set the gchange ... Queue
capacity command torunabuilt-in DOS command (such asdir or date) and then pipe or
redirect the standard output to afile, the file will be empty when the command compl etes.

Asan example of resolving this problem, suppose that for the gqchange ... Queue capacity
command YOu want to capture date information in afile using command date /t > x.out.TO
accomplish this task interactively, you would proceed as follows:

agmadmin
> gopen yourQspace
> gchange yourQname

> go through all the setups... the threshold queue capacity warning,

Using the ATMI /Q Component 2-17

2-18

and so on

> "Queue capacity command: " cmd /c date /t > x.out

To accomplish thistask from acommand file, say yourFile.cmd, you would add the command
date /t > x.out {0 yourFile.cmd and then proceed asfollows:

gmadmin

> gopen yourQspace

> gchange yourQname

> go through all the setups... the threshold queue capacity warning,
and so on

> "Queue capacity command: " yourFile.cmd

Using the ATMI /Q Component

CHAPTERa

Oracle Tuxedo /Q C Language
Programming

Thistopic includes the following sections:

e Introduction

Prerequisite Knowledge

Where Reguests Can Originate

Emphasis on the Default Case

Enqueuing Messages

Dequeuing M essages
Sequentia Processing of Messages

Introduction

This topic deals with the use of the ATMI C language functions for enqueuing and degqueuing
Messages. tpengqueue (3c) and tpdequeue (3c), plus some ancillary functions.

Prerequisite Knowledge

The Oracle Tuxedo programmer coding client or server programsfor the queued message facility
should be familiar with the C language binding to the Oracle Tuxedo ATMI. Genera guidance
on Oracle Tuxedo programming is availablein Programming Oracle Tuxedo ATMI Applications

Using the ATMI /Q Component 3-1

../rf3c/rf3c.html
../rf3c/rf3c.html

Using C. Detailed pages on all the ATMI functions are in the Oracle Tuxedo ATMI C Function
Reference.

Where Requests Can Originate

The calls used to place amessage on an Oracle Tuxedo /Q queue can originate from any client or
server process associated with the application. Thelist includes:

e Clients or servers on the same machine as the queue space or on another machine on the
network.

e Conversational programs, although you cannot have a conversational connection with a
gueue (or with the TMQUEUE (5) server).

o Workstation clients via a surrogate process on the server side; the administrative interface
isalso entirely on the server side.

Emphasis on the Default Case

The coverage of Oracle Tuxedo /Q programming in this topic primarily reflects the left-hand
portion of thefigure“ Queued Servicelnvocation” on page 1-2. Inthefigure, aclient (or aprocess
actingintheroleof aclient) queuesamessageby calling tpenqueue (3¢) and specifying aqueue
space made available through a TMQUEUE (5) server. Theclient later retrievesareply viaa
tpdequeue (3¢) cal to TMQUEUE.

Thefigure* Queued Service Invocation” on page 1-2 shows the queued message being dequeued
by the server TmoroRWARD (5) and sent to an application server for processing (Viatpcall (3c)).
When areply to the tpcall () isreceived, TMOFORWARD enqueues the reply message. Because a
major goal of TMoFoRWARD is to provide an interface between the queue space and existing
application services, it does not require further application coding. For that reason, thistopic
concentrates on the client-to-queue space side.

A brief example of the use of the queued message facility is distributed with the softwareand is
described in “A Sample Application” on page A-1.

Enqueuing Messages

The syntax for tpenqueue () isasfollows:

3-2 Using the ATMI /Q Component

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Enqueuing Messages

#include <atmi.h>
int tpenqueue (char *gspace, char *gname, TPQCTL *ctl,

char *data, long len, long flags)

When atpengueue () cal isissued, it tellsthe system to store amessage on the queueidentified
in gname in the space identified in gspace. The message isin the buffer pointed to by data and
has alength of 1en. By the use of bit settingsin f1ags, the system isinformed how the call to
tpengueue () isto behandled. Further information about the handling of the enqueued message
and repliesis provided in the TMocTL structure pointed to by ct1.

tpenqueue(3c) Arguments

There are some important arguments to control the operation of tpenqueue (3¢). Let'slook at
some of them.

tpenqueue(): The gspace Argument

gspace identifiesaqueue space previously created by the administrator. When aserver isdefined
in the sErvERS section of the configuration file, the service names it offers are aliases for the
actual queue space name (which is specified as part of the opENTINFO parameter in the croups
section). For example, when your application uses the server TMQUEUE, the value pointed at by
the gspace argument is the name of a service advertised by TmouruE. If no service aliases are
defined, the default service is the same as the server name, TMQUEUE. In this case the
configuration file might include:

TMQUEUE
SRVGRP = QUEl SRVID = 1
GRACE = 0 RESTART = Y CONV = N
CLOPT = "-A"

or
CLOPT = "-s TMQUEUE"

Theentry for server group QuE1 hasan oPENINFO parameter that specifiesthe resource manager,
the pathname of the device and the queue space name. The gspace argument in aclient program
then looks like this:

if (tpenqueue ("TMQUEUE", "STRING", (TPQCTL *)&qgctl,
(char *)regstr, 0,0) == -1) {

Error checking

Using the ATMI /Q Component 33

../rf3c/rf3c.html

3-4

The example shown on the TMQUEUE (5) reference page shows how alias service names can be
included when the server is built and specified in the configuration file. The sample program in
“A Sample Application” on page A-1, also specifies an alias service name.

tpenqueue(): The gname Argument

Within aqueue space, when queues are being used to invoke services, message queues are named
according to the application services available to process requests. gname isapointer to such an
application service. Otherwise, gname issimply the name of the location where the messageisto
be stored until it is dequeued by an application (either the same application that enqueued it or
another one).

tpenqueue(): The data and len Arguments

data points to a buffer that contains the message to be processed. The buffer must be one that
was allocated with acall to tpalloc (3c). len givesthe length of the message. Some Oracle
Tuxedo buffer types (such as FML) do not require that the length of the message be specified; in
such cases, the 1en argument isignored. data can be NULL; whenitis, Zen isignored and the
message is enqueued with no data portion.

tpenqueue(): The flags Arguments

flags values are used to tell the Oracle Tuxedo system how the tpenqueue () call ishandled;
the following are valid flags:

TPNOTRAN
If the caller isin transaction mode and this flag is set, the message is not queued within
the caller’ stransaction. A caller in transaction mode that setsthisflagisstill subject tothe
transaction timeout (and no other) when queuing the message. If message queuing fails,
the caller’ stransaction is not affected.

TPNOBLOCK
The message is not enqueued if ablocking condition exists. If thisflagis set and a
blocking condition exists such astheinternal buffersinto which the messageistransferred
arefull, thecall failsand tperrno (5) isset to TPEBLOCK. If thisflagisset and ablocking
condition exists because the target queueis opened exclusively by ancther application, the
cal fails, tperrno () isset to TPEDIAGNOSTIC, and the diagnostic field of the TrocTL
structure is set to gMESHARE. |n the latter case, the other application, which is based on an
Oracle product other than the Oracle Tuxedo system, opened the queue for exclusive read
and/or write using the Queuing Services APl (QSAPI).

Using the ATMI /Q Component

../rf5/rf5.html
../rf5/rf5.html
../rf3c/rf3c.html

Enqueuing Messages

When TpNOBLOCK is hot set and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). If a
timeout occurs, the call failsand tperrno () iSSet to TPETIME.

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
Setting thisflag indicates that any underlying system callsthat are interrupted by asignal
should be reissued. When thisflag is not set and asignal interrupts a system call, the call
failsand sets tperrno (5) 10 TPGOTSIG.

TPQCTL Structure

The third argument to tpengueue () iSapointer to a structure of type TpocTL. The TPQCTL
structure has members that are used by the application and by the Oracle Tuxedo system to pass
parametersin both directions between application programs and the queued messagefacility. The
client that calls tpenqueue () setsflagsto mark fields the application wants the system to fill in.
The structure is also used by tpdequeue (); some of the fields do not come into play until the
application calls that function. The complete structure is shown in Listing 3-1.

Listing 3-1 The tpqctl_t Structure

#define TMQNAMELEN 127
#define TMMSGIDLEN 32
#define TMCORRIDLEN 32

struct tpgctl_t { /* control parameters to queue primitives */
long flags; /* indicates which of the values are set */
long deqg _time; /* absolute/relative time for dequeuing */
long priority; /* enqueue priority */
long diagnostic; /* indicates reason for failure */
char msgid[TMMSGIDLEN] ; /* ID of message before which to queue */
char corrid[TMCORRIDLEN] ; /* correlation ID used to identify message */
char replygueue[TMONAMELEN+1] ; /* queue name for reply message */
char failurequeue[TMQNAMELEN+1]; /* queue name for failure message */
CLIENTID cltid; /* client identifier for originating client */
long urcode; /* application user-return code */
long appkey; /* application authentication client key */
long delivery_gos; /* delivery quality of service */
long reply_dgos; /* reply message quality of service */
long exp_time; /* expiration time */

Using the ATMI /Q Component 3-5

../rf5/rf5.html

i

typedef struct tpgctl_t TPQCTL;

3-6

Thefollowingisalist of valid bits for the £1ags parameter controlling input information for

tpenqueue ().

TPNOFLAGS

No flags or values are set. No information is taken from the control structure. Leaving
fields of the structure not set is equivalent to a setting of TpNOFLAGS.

TPQTOP

Setting this flag indicates that the queue ordering be overridden and the message placed
at the top of the queue. Thisrequest may not be granted depending on whether or not the
gueue was configured to allow overriding the queue ordering to put a message at the top
of the queue. TroTOP and TPOBEFOREMSGID are mutually exclusive flags

TPOBEFOREMSGID

Setting this flag indicates that the queue ordering be overridden and the message placed
in the queue before the message identified by ct1->msgid. Thisrequest may not be
granted depending on whether or not the queue was configured to allow overriding the
queueordering. TroTOP and TPOBEFOREMSGID are mutually exclusiveflags. Notethat the
entire 32 bytes of the message identifier value are significant, so the value identified by
ctl->msgidmust becompletely initialized (for example, padded with NULL characters).

TPQTIME_ABS

If thisflag is set, the message is made available after the time specified by
ctl->deqg_time. The deq_time isan absolute time value as generated by time (2) or
mktime (3C), if they areavailableto your application, or gp_mktime (3c), provided with
the Oracle Tuxedo system. Thevalue setin ct1->deg time iSthe number of seconds
since 00:00:00 Universal Coordinated Time—UTC, January 1,1970. The absolutetimeis
set based on the clock on the machine where the queue manager process resides.
TPQTIME_ABS and TPQTIME_REL are mutually exclusive flags.

TPQTIME_REL

If thisflag is set, the message is made available after atime relative to the completion of
the enqueuing operation. ct1->deqg_time Specifiesthe number of secondsto delay after
the enqueuing compl etes before the submitted message should be available.
TPQTIME_ABS and TPQTIME_REL are mutually exclusive flags.

Using the ATMI /Q Component

../rf3c/rf3c.html

Enqueuing Messages

TPQPRIORITY
If thisflag is set, the priority at which the request should be enqueued is stored in
ctl->priority. Thepriority must bein the range 1 to 100, inclusive. The higher the
number, the higher the priority, that is, amessage with ahigher number isdequeued before
amessage with alower number from queues ordered by priority. For queues not ordered
by priority, the value is informational.

If thisflag is not set, the priority for the message is 50 by default.

TPQCORRID
If thisflagis set, the correlation identifier value specified in ct1->corridisavailable
when arequest is dequeued with tpdequeue (3¢) . Thisidentifier accompaniesany reply
or failure message that is queued so an application can correlate areply with a particular
request. Note that the entire 32 bytes of the correlation identifier value are significant, so
the value specified in ct1->corrid must be completely initialized (for example, padded
with NULL characters).

TPQREPLYQ
If thisflagisset, areply queuenamedin ct1->replyqueue isassociated with the queued
message. Any reply to the message is queued to the named queue within the same queue
space as the request message. This string must be NUL L-terminated (maximum 127
charactersin length). If areply is generated for the service and areply queueis not
specified or the reply queue does not exist, the reply is dropped.

TPQFAILUREQ
If thisflag isset, afailure queue namedinthe ct1->failurequeueisassociated with the
queued message. If (1) the enqueued message is processed by TMQFORWARD (), (2)
TMQFORWARD Was started with the -a option, and (3) the service fails and returns a
non-NULL reply, afailure message consisting of thereply and itsassociated tpurcode is
engueued to the named queue within the same queue space as the original request
message. This string must be NULL-terminated (maximum 127 charactersin length).

TPQDELIVERYQOS, TPQREPLYQOS
If the TPQDELTVERYQOS flag is set, the flags specified by ct1->delivery._gos control
the quality of service for delivery of the message. In this case, one of three mutually
exclusive flags— TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT, OF
TPQQOSNONPERSISTENT—MUSt be set in ct1->delivery gos. |f TPODELIVERYQOS iS
not set, the default delivery policy of the target queue dictates the delivery quality of
service for the message.

If theTrorEPLYQOS flagisset, theflags specified by ct1->reply gos control thequality
of service for any reply to the message. In this case, one of three mutually exclusive
flags—TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT, OF TPQQOSNONPERSI STENT—

Using the ATMI /Q Component 3-1

../rf3c/rf3c.html

3-8

must besetin ct1->reply_gos. The TPorEPLYQOS flag isused when areply isreturned
from messages processed by TmMororwaRD. Applications not using TMQFORWARD to invoke
services may use the TrorEPLYQOS flag asa hint for their own reply mechanism.

If TPQREPLYQOS iS Not set, the default delivery policy of the ct1->replyqueue queue
dictatesthe delivery quality of servicefor any reply. Note that the default delivery policy
is determined when the reply to a message is enqueued. That is, if the default delivery
policy of the reply queue is modified between the time that the original messageis
engueued and the reply to the message is enqueued, the policy used isthe one in effect
when thereply isfinally enqueued.

Thefollowing isthelist of valid flagsfor ct1->delivery. _gos and ctl->reply. gos:

TPQQOSDEFAULTPERSIST
Thisflag specifies that the message is to be delivered using the default delivery
policy specified on the target queue.

TPQQOSPERSISTENT
Thisflag specifies that the message isto be delivered in a persistent manner using
the disk-based delivery method. When specified, this flag overrides the default
delivery policy specified on the target queue.

TPQOOSNONPERSISTENT
This flag specifies that the message is to be delivered in a non-persistent manner
using the memory-based delivery method. Specifically, the message is queued in
memory until it is dequeued. When specified, this flag overrides the default
delivery policy specified on the target queue. If the caller is transactional,
non-persi stent messages are enqueued within the caller’ s transaction, however,
non-persistent messages are lost if the system is shut down, crashes, or the IPC
shared memory for the queue space is removed.

TPQEXPTIME_ABS

If thisflag is set, the message has an absolute expiration time, which is the absolute time
when the message will be removed from the queue.

The absolute expiration time is determined by the clock on the machine where the queue
manager process resides.

The absolute expiration time isindicated by the value stored in ct1->exp_time. The
value of ct1->exp_time must be set to an absolute time value generated by time (2),
mktime (3C), Of gp_mktime (3c) (the number of seconds since 00:00:00 Universa
Coordinated Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue operation, the
operation succeeds, but the message is not counted for the purpose of calculating

Using the ATMI /Q Component

../rf3c/rf3c.html

Enqueuing Messages

thresholds. If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is changed so
that the availability time is before the expiration time. In addition, these messages are
removed from the queue at expiration time even if they were never available for
dequeuing. If amessage expires while it is within a transaction, the expiration does not
cause the transaction to fail. Messages that expire while being enqueued or dequeued
within a transaction are removed from the queue when the transaction ends. There is no
notification that the message has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flagsis set, the default expiration time associated with the target
gueue is applied to the message.

TPQEXPTIME_REL
If thisflag is set, the message has arelative expiration time, which is the number of
seconds after the message arrives at the queue that the message is removed from the
gueue. Therelative expiration timeisindicated by the value stored in ct1->exp_time.

If the expiration time is before the message availability time, the messageis not available
for dequeuing unless either the availability or expiration time is changed so that the
availability timeis before the expiration time. In addition, these messages are removed
from the queue at expiration time even if they were never available for dequeuing. The
expiration of a message during atransaction, does not cause the transaction to fail.

M essages that expire while being enqueued or dequeued within atransaction are removed
from the queue when the transaction ends. There is no acknowledgment that the message
has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
gueue is applied to the message.

TPQEXPTIME_NONE
Setting this flag indicates that the message should not expire, even if the default policy of
the queue includes an expiration time.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flagsis set, the default expiration time associated with the target
gueue is applied to the message.

Additionally, the urcode field of TrocTL can be set with a user-return code. This vaue will be
returned to the application that calls tpdequeue (3c) to dequeue the message.

On output from tpenqueue (), the following fields may be set in the TpocTL structure:

Using the ATMI /Q Component 39

../rf3c/rf3c.html

3-10

long flags; /* indicates which of the values are set */
char msgid[32]; /* ID of enqueued message */

long diagnostic; /* indicates reason for failure */

Thefollowing isavalid bit for the f1ags parameter controlling output information from
tpenqueue (). If thisflag isturned on when tpenqueue () iscalled, the/Q server TMQUEUE (5)
populates the associated element in the structure with a message identifier. If thisflag isturned
off when tpenqueue () iscalled, TMouEUE () does not populate the associated element in the
structure with a message identifier.

TPOMSGID
If thisflagisset andthecall to tpenqueue () issuccessful, the messageidentifier isstored
in ct1->msgid. Theentire 32 bytes of the messageidentifier value are significant, so the
value stored in ct1->msgid iscompletely initialized (for example, padded with null
characters). The actual padding character used for initialization varies between rel eases of
the Oracle Tuxedo /Q component.

The remaining members of the control structure are not used on input to tpengqueue ().
If the call to tpenqueue () failsand tperrno (5) isset to TPEDTIAGNOSTIC, avalue indicating
the reason for failureisreturned in ct1->diagnostic. The possible values are;

[oMEINVAL]
Aninvalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[oMENOTOPEN]
The resource manager is not currently open.

[oMETRAN]
The call was made in transaction mode or was made with the TenoTRAN flag set and an
error occurred trying to start atransaction in which to enqueue the message. This
diagnostic is not returned by queue managers from Oracle Tuxedo release 7.1 or later.

[oMEBADMSGID]
An invalid message identifier was specified.

[oMESYSTEM]
A system error occurred. The exact nature of the error iswritten to alog file.

[oMEOS]
An operating system error occurred.

Using the ATMI /Q Component

../rf5/rf5.html
../rf5/rf5.html

Enqueuing Messages

[QMEABORTED]
The operation was aborted. If the aborted operation was being executed within a global
transaction, the global transaction is marked rollback-only. Otherwise, the queue manager
aborts the operation.

[oMEPROTO]
An engueue was done when the transaction state was not active.

[oMEBADQUEUE]
Aninvalid or deleted queue name was specified.

[oMENOSPACE]
Dueto an insufficient resource, such as no space on the queue, the message with its
required quality of service (persistent or non-persistent storage) was not enqueued.
QMENOSPACE is returned when any of the following configured resourcesis exceeded: (1)
the amount of disk (persistent) space alotted to the queue space, (2) the amount of
memory (non-persistent) space allotted to the queue space, (3) the maximum number of
simultaneously active transactions allowed for the queue space, (4) the maximum number
of messages that the queue space can contain at any one time, (5) the maximum number
of concurrent actions that the Queuing Services component can handle, or (6) the
maximum number of authenticated usersthat may concurrently use the Queuing Services
component.

[QMERELEASE]
An attempt was made to enqueue a message to a queue manager that is from aversion of
the Oracle Tuxedo system that does not support a newer feature.

[oMESHARE]
When enqueuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on an Oracle
product other than the Oracle Tuxedo system that opened the queue for exclusive read
and/or write using the Queuing Services APl (QSAPI).

Overriding the Queue Order

If the administrator, in creating a queue, allows tpenqueue () calsto override the order of
messages on the queue, you have two mutually exclusive ways to use that capability. You can
specify that the messageisto be placed at the top of the queue by setting £1ags toincludeTporop
or you can specify that it be placed ahead of a specific message by setting £f1ags to include
TPQBEFOREMSGID and setting ct1->msgid to the ID of the message you wish to precede. This
assumes that you saved the message-ID from a previous call in order to be able to use it here.

Using the ATMI /Q Component 3-1

3-12

Y our administrator must tell you what the queue supports; it can be created to allow either or both
of these overrides, or to alow neither.

Overriding the Queue Priority

Youcansetavauein ct1->priority to specify the priority of the message. The value must be
in the range 1 to 100; the higher the number the higher the priority. If priority was not one of
the queue ordering parameters, setting a priority here has no effect on the dequeuing order,
however the priority valueis retained so that the value can be inspected when the message is
dequeued.

Setting a Message Availability Time

Y ou can specify in deg_time €either an absolute time or atime relative to the completion of the
enqueuing operation for the message to be made available. You set £1ags to include either
TPQTIME_ABS OF TPQTIME_REL t0 indicate how the value should be treated. A queue may be
created with time as a queue ordering criterion, in which case the messages are ordered by the
message availability time.

Oracle Tuxedo /Q provides afunction, gp_mktime (3c), that is used to convert a date and time
provided in a tm structure to the number of seconds since January 1, 1970. The t ime(2) and
mktime(3C) functions may also be used instead of gp_mktime(3c). Thevalueisreturnedin
time_t,atypedef 'dlong. To set an absolutetimefor the messageto be dequeued (we areusing
12:00 noon, December 9, 2001), do the following.

1. Placethe vauesfor the date you want to use in the tm structure.

#include <stdio.h>
#include <time.h>

static char *const wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

}i
struct tm time_str;

VA

time_str.tm_year = 2001 - 1900;
time_str.tm mon = 12 - 1;
time_str.tm_mday
time_str.tm _hour
time_str.tm_min
time_str.tm sec
time_str.tm_ isdst

- 9;
= 12;

Using the ATMI /Q Component

../rf3c/rf3c.html

Dequeuing Messages

2. Call gp_mktime to produce avaluefor deq_time and set the f1ags to indicate that an
absolute timeis being provided.
#include <atmi.h>
TPQCTL gctl;
if ((gctl->deqg _time = (long)gp_mktime(&time_str)) == -1) {
/* check for errors */

}
gctl->flags = TPQTIME_ABS

3. Cal tpenqueue().

if (tpenqueue(gspace, gname, gctl, *data,*len,*flags) == -1) {
/* check for errors */
}
If you want to specify arelative time for dequeuing, for example, nnn seconds after the
completion of the enqueuing operation, place the number of secondsin deq_time and set £lags
to include TPQTIME_REL.

tpenqueue() and Transactions

If acaller of tpenqueue () isintransaction mode and TPNOTRAN iS not set, then the enqueuing is
done within the caller's transaction. The caller knows for certain from the success or failure of
tpengueue () Whether the message was enqueued or not. If the call succeeds, the messageis
guaranteed to be on the queue. If the call fails, the transaction is rolled back, including the part
where the message was placed on the queue.

If acaller of tpengueue () isnot in transaction mode or if TPNOTRAN iS Set, the messageis
enqueued outside of the caller’ s transaction. If the call to tpenqueue () returns success, the
message is guaranteed to be on the queue. If thecall to tpenqueue () failswith acommunication
error or with atimeout, the caller isleft in doubt about whether the failure occurred before or after
the message was enqueued.

Note that specifying TenoTRAN While the caller is not in transaction mode has no meaning.

Dequeuing Messages

The syntax for tpdequeue () isasfollows:

#include <atmi.h>
int tpdequeue (char *gspace, char *gname, TPQCTL *ctl, \
char **data, long *len, long flags)

Using the ATMI /Q Component 3-13

3-14

When this call isissued it tells the system to dequeue a message from the gname queue in the
gueue space named gspace. The message is placed in a buffer (originally alocated by
tpalloc(3c)) at the address pointed to by * data. Ien pointsto the length of the data. If 1enis
0 on return from tpdequeue (), the message had no data portion. By the use of bit settingsin
flags, the system isinformed how the call to tpdequeue () isto be handled. The TrocTL
structure pointed to by ct1 carries further information about how the call should be handled.

tpdequeue(3c) Arguments

There are some important arguments to control the operation of tpdequeue (3c). Let'slook at
some of them.

tpdequeue(): The gspace Argument

gspace identifies a queue space previously created by the administrator. When the TMoUEUE
server is defined in the servERs section of the configuration file, the service namesit offers are
aliases for the actual queue space name (which is specified as part of the oPENINFO parameter in
the Groups section). For example, when your application uses the server TMQUEUE, the value
pointed at by the gspace argument isthe name of a service advertised by TmoUEUE. If no service
aliases are defined, the default service is the same as the server name, TMQuEUE. In this case the
configuration file may include:

TMQUEUE
SRVGRP = QUE1l SRVID = 1
GRACE = 0 RESTART = Y CONV = N
CLOPT = "-A"
or
CLOPT = "-s TMQUEUE"

The entry for server group QUEL hasan oPENINFO parameter that specifiesthe resource manager,
the pathname of the device and the queue space name. The gspace argument in aclient program
then looks like this:

if (tpdequeue ("TMQUEUE", "REPLYQ", (TPQCTL *)&qgctl,
(char **)®str, &len,TPNOTIME) == -1) {
Error checking

}

The example shown on the TMQUEUE (5) reference page shows how alias service names can be
included when the server is built and specified in the configuration file. The sample program in
“A Sample Application” on page A-1, also specifies an alias service/queue space name.

Using the ATMI /Q Component

../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Dequeuing Messages

tpdequeue(): The gname Argument

Queue namesin aqueue space must be agreed upon by the applicationsthat will accessthe queue
space. Thisis especially important for reply queues. If gname refersto areply queue, the
administrator createsit (and often an error queue) in the same manner that he or she creates any
other queue. gname is a pointer to the name of the queue from which to retrieve the message or

reply.

tpdequeue(): The data and len Arguments

These arguments have slightly different meanings than their counterpartsin tpenqueue ().
* data pointsto the address of abuffer where the system isto place the message being degueued.
When tpdequeue () iscalled, it isan error for its value to be NULL.

When tpdequeue () returns, 1en pointsto avalue of type 1ong that carries information about
the length of the dataretrieved. If it is 0, it means that the reply had no data portion. This can be
alegitimate and successful reply in some applications; receiving even a0 length reply can be used
to show successful processing of the enqueued request. If you wish to know whether the buffer
has changed from before the call to tpdequeue (), save the length prior to the call to
tpdequeue () and compare it to Ien after the call completes.

tpdequeue(): The flags Arguments

flags values are used to tell the Oracle Tuxedo system how the tpdequeue () call ishandled;
the following are valid flags:

TPNOTRAN
If the caller isin transaction mode and thisflag is set, the message is not dequeued within
the caller’ stransaction. A caller in transaction modethat setsthisflagisstill subject tothe
transaction timeout (and no other) when dequeuing the message. If message dequeuing
fails, the caller’ stransaction is not affected.

TPNOBLOCK
The message is not dequeued if ablocking condition exists. If thisflagis set and a
blocking condition exists such astheinternal buffersinto which the messageistransferred
arefull, thecall failsand tperrno (5) isset to TPEBLOCK. If thisflagisset and ablocking
condition exists because the target queueis opened exclusively by another application, the
cal fails, tperrno () isset to TPEDIAGNOSTIC, and the diagnostic field of the TrocTL
structure is set to guESHARE. |n the latter case, the other application, which is based on an
Oracle product other than the Oracle Tuxedo system, opened the queue for exclusive read
and/or write using the Queuing Services APl (QSAPI).

Using the ATMI /Q Component 3-15

../rf5/rf5.html

3-16

When TpNOBLOCK is hot set and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking timeout). This
blocking condition does not include blocking on the queueitself if the TeowarT optionin
flags (of the TrocTL Structure) is specified.

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPNOCHANGE
When thisflag is set, the type of the buffer pointed to by * data is not allowed to change.
By default, if abuffer isreceived that differsin type from the buffer pointed to by * data,
then * data's buffer type changes to the received buffer's type so long as the receiver
recognizes the incoming buffer type. That is, the type and subtype of the received buffer
must match the type and subtype of the buffer pointed to by *data.

TPSIGRSTRT
Setting thisflag indicates that any underlying system callsthat are interrupted by asignal
should be reissued. When thisflag is not set and a signal interrupts a system call, the call
fails and sets tperrno (5) t0 TPGOTSIG.

TPQCTL Structure

The third argument to tpdequeue () iSapointer to a structure of type TpocTL. The TPQCTL
structure has members that are used by the application and by the Oracle Tuxedo system to pass
parametersin both directions between application programs and the queued messagefacility. The
client that calls tpdequeue () setsflagsto mark fieldsfor which the system should supply values.
Asdescribed earlier, the structureisalso used by tpenqueue () ; Some of the membersapply only
to that function. The entire structure is shown in “ The tpqctl_t Structure” on page 3-5.

Asinput to tpdequeue (), the following fields may be set in the TrocTL structure:

long flags; /* indicates which of the values are set */
char msgid[32]; /* 1d of message to dequeue */
char corrid[32]; /* correlation identifier of message to dequeue */

The following are valid flags on input to tpdequeue () :

TPNOFLAGS
No flags are set. No information is taken from the control structure.

Using the ATMI /Q Component

../rf5/rf5.html

Dequeuing Messages

TPQGETBYMSGID
Setting this flag requests that the message with the message identifier specified by
ct1->msgid be dequeued. The message identifier is determined through a prior cal to
tpengueue () . Notethat the messageidentifier changesif the messageis moved from one
gueue to another. Note also that the entire 32 bytes of the message identifier value are
significant, so the value specified by ct1->msgid must be completely initialized (for
example, padded with null characters).

TPOGETBYCORRID
Setting this flag requests that the message with the correlation identifier specified by
ctl->corridbedegueued. Thecorrelationidentifier isspecified by the application when
enqueuing the message with tpenqueue () . Notethat the entire 32 bytes of the correlation
identifier value are significant, so the value specified by ct1->corrid must be
completely initialized (for example, padded with null characters).

TPQWAIT
Setting this flag indicates that an error should not be returned if the queue is empty.
Instead, the process should wait until a message is available. If reowatT issetin
conjunction with TPQGETBYMSGID OF TPQGETBYCORRID, it indicates that an error should
not bereturned if no message with the specified messageidentifier or correlationidentifier
is present in the queue. Instead, the process should wait until a message meeting the
criteriaisavailable. The processisstill subject to the caller’ stransaction timeout, or, when
not in transaction mode, the processis still subject to the timeout specified for the
TMQUEUE process by the -t option.

If amessage matching the desired criteriais not immediately available and the configured
action resources are exhausted, tpdequeue () returns-1, tperrno () iSset to
TPEDIAGNOSTIC, and the diagnostic field of the TpocTL structureis set to QMESYSTEM.

Note that each tpdequeue () request specifying the TeowatT control parameter requires
that a queue manager (TMQUEUE) action object be available if a message satisfying the
condition is not immediately available. If an action object is not available, the
tpdequeue () request fails. The number of available queue manager actions are specified
when a queue space is created or modified. When awaiting dequeue request compl etes,
the associated action object associated is made available for another request.

TPQPEEK
If thisflag is set, the specified message is read but is not removed from the queue. The
TPNOTRAN flag must also be set.

When athread is non-destructively dequeuing a message using TPQPEEK, the message
may not be seen by other non-blocking dequeuers for the brief time the system is
processing the non-destructive dequeue request. This includes dequeuers using specific

Using the ATMI /Q Component 3-17

3-18

selection criteria(such as messageidentifier and correlation identifier) that arelooking for
the message currently being non-destructively dequeued.

Thefollowingisalist of valid bitsfor the f1ags parameter controlling output information from
tpdequeue () . For any of these bits, if theflag bit isturned on when tpdequeue () iscaled, the
associated field in the structure (see “ The tpqctl_t Structure” on page 3-5) is populated with the
value provided when the message was queued, and the bit remains set. If avalueisnot available
(that is, no value was provided when the message was queued) or the bit is not set when
tpdequeue () iscaled, tpdequeue () completes with the flag turned off.

TPOQPRIORITY
If thisflagisset, thecall to tpdequeue () issuccessful, and the message was queued with
an explicit priority, then the priority is stored in ct1->priority. Thepriority isin the
range 1 to 100, inclusive, and the higher the number, the higher the priority (that is, a
message with a higher number is dequeued before a message with alower number). For
gueues not ordered by priority, the valueis informational.

If no priority was explicitly specified when the message was queued and the call to
tpdequeue () issuccessful, the priority for the messageis 50.

TPOMSGID
If thisflagisset andthecall to tpdequeue () issuccessful, the message identifier isstored
in ct1->msgid. The entire 32 bytes of the message identifier value are significant.

TPQCORRID
If thisflagisset, thecall to tpdequeue () issuccessful, and the message was queued with
acorrelation identifier, then the correlation identifier is stored in ct1->corrid. The
entire 32 bytes of the correlation identifier value are significant. Any Oracle Tuxedo /Q
provided reply to a message has the correlation identifier of the original request message.

TPOQDELIVERYQOS
If thisflagisset, thecall to tpdequeue () issuccessful, and the message was queued with
adelivery quality of service, then the flag—TPQQOSDEFAULTPERSIST,
TPQQOSPERSISTENT, Of TPQQOSNONPERSISTENT—iISStored in ctl->delivery gos. If
no delivery quality of service was explicitly specified when the message was queued, the
default delivery policy of the target queue dictates the delivery quality of service for the
message.

TPQREPLYQOS
If thisflag isset, thecall to tpdequeue () issuccessful, and the message was queued with
areply quality of service, then the flag—TPQQOSDEFAULTPERSIST, TPQQOSPERSI STENT,
Or TPQQOSNONPERSISTENT—ISStored in ct1->reply._gos. If noreply quality of service

Using the ATMI /Q Component

Dequeuing Messages

was explicitly specified when the message was queued, the default delivery policy of the
ctl->replyqueue queue dictates the delivery quality of service for any reply.

Note that the default delivery policy is determined when the reply to amessageis
enqueued. That is, if the default delivery policy of the reply queue is modified between
the time that the original message is enqueued and the reply to the message is enqueued,
the policy used isthe onein effect when the reply isfinally enqueued.

TPOQREPLYQ
If thisflagisset, thecall to tpdequeue () issuccessful, and the message was queued with
areply queue, then the name of thereply queueisstored in ct1->replyqueue. Any reply
to the message should go to the named reply queue within the same queue space as the

request message.

TPQFAILUREQ
If thisflag isset, thecall to tpdequeue () issuccessful, and the message was queued with
afailure queue, then the name of thefailure queueisstoredin ct1->rfailurequeue. Any
failure message should go to the named failure queue within the same queue space asthe
request message.

The following remaining bits for the f1ags parameter are cleared (set to zero) when

tpdequeue () iscaled: TPQTOP, TPQBEFOREMSGID, TPQTIME_ABS, TPQTIME_ REL,

TPQEXPTIME_ABS, TPQEXPTIME_ REL, and TPQEXPTIME_NONE. These bits are valid bits for the

flags parameter controlling input information for tpenqueue ().

If the call to tpdequeue () failed and tperrno (5) isset to TPEDIAGNOSTIC, avalueindicating
the reason for failureisreturned in ct1->diagnostic. Thevalid codesfor ct1->diagnostic
include those for tpenqueue () described in“TPQCTL Structure” on page 3-5 (except for
QMENOSPACE and gMERELEASE) and the following additional codes.

[oMENOMSG]
No message was available for dequeuing. Note that it is possible that the message exists
on the queue and another application process has read the message from the queue. In this
case, the message may be put back on the queue if that other process rolls back the
transaction.

[oMEINUSE]
When dequeuing a message by message identifier or correlation identifier, the specified
message is in use by another transaction. Otherwise, all messages currently on the queue
arein use by other transactions. This diagnostic is not returned by queue managers from
Oracle Tuxedo release 7.1 or later.

Using the ATMI /Q Component 3-19

../rf5/rf5.html

3-20

Using TPQWAIT

When tpdequeue () iscalled with f1ags (of the TrocTL structure) set to include TeowarT, if a
message is not immediately available, the TMouEUE server waits for the arrival, on the queue, of
amessage that matches the tpdequeue () request before tpdequeue () returnscontrol to the
caller. The TMQUEUE process sets the waiting request aside and processes requests from other
processes while waiting to satisfy the first request. If TPoeETBYMSGTID and/or TPQGETBYCORRID
are also specified, the server waits until a message with the indicated message identifier and/or
correlation identifier becomes available on the queue. If neither of these flagsis set, the server
waits until any message is put onto the queue. The amount of time it waits is controlled by the
caller’s transaction timeout, if the call isin transaction mode, or by the -t optionin the cLopT
parameter of the TMOUEUE server, if the call is not in transaction mode.

The TmourUE server can handle a number of waiting tpdequeue () requests at the sametime, as
long as action resources are available to handle the request. If there are not enough action
resources configured for the queue space, tpdequeue () fails. If this happens on your system,
increase the number of action resources for the queue space.

Error Handling When Using TMQFORWARD Services

In considering how best to handle errorswhen dequeuing it ishel pful to differentiate betweentwo
types of errors:

e Errors encountered by TMoFORWARD (5) asit attempts to dequeue a message to forward to
the requested service

e Errorsthat occur in the service that processes the request

By default, if amessage is dequeued within atransaction and the transaction is rolled back, then
(if the retry parameter is greater than 0) the message ends up back on the queue and can be
dequeued and executed again. It may be desirable to delay for a short period before retrying to
dequeue and execute the message, allowing the transient problemto clear (for example, allowing
for locksin adatabase to be released by another transaction). Normally, alimit on the number of
retriesis also useful to ensure that an application flaw doesn't cause significant waste of
resources. When aqueueis configured by the administrator, both aretry count and adelay period
(in seconds) can be specified. A retry count of 0 impliesthat no retries are done. After the retry
count is reached, the message is moved to an error queue that is configured by the administrator
for the queue space. If the error queueis not configured, then messagesthat have reached theretry
count are simply deleted. M essages on the error queue must be handled by the administrator who
must work out away of notifying the originator that meets the requirements of the application.

Using the ATMI /Q Component

../rf5/rf5.html

Dequeuing Messages

The message handling method chosen should be mostly transparent to the originating program
that put the message on the queue. Thereisavirtual guarantee that once amessageis successfully
enqueued it will be processed according to the parameters of tpenqueue () and the attributes of
the queue. Notification that a message has been moved to the error queue should be arare
occurrence in a system that has properly tuned its queue parameters.

A failure queue (normally, different from the queue space error queue) may be associated with
each queued message. Thisqueueis specified on the enqueuing call asthe placeto put any failure
messages. The failure message for a particular request can be identified by an
application-generated correlation identifier that is associated with the message when it is
engueued.

Thedefault behavior of retrying until success (or apredefined limit) isquite appropriate when the
failureiscaused by atransient problem that islater resolved, allowing the message to be handled
appropriately.

There are caseswhere the problem isnot transient. For example, the queued message may request
operating on an account that does not exist (and the application is such that it won't come into
existence within areasonable time period if at all). In this case, it is desirable not to waste any
resources by trying again. If the application programmer or administrator determinesthat failures
for aparticular operation are never transient, then it is simply a matter of setting the retry count
to zero, although thiswill require amechanism to constantly clear the queue space error queue of
these messages (for example, abackground client that reads the queue periodically). Morelikely,
it isthe case that some problems will be transient (for example, database lock contention) and
some problems will be permanent (for example, the account doesn't exist) for the same service.

Inthe casethat the messageis processed (dequeued and passed to the applicationviaatpcall ())
by TMOFORWARD, there is no mechanism in the information returned by tpcall () toindicate
whether aTPESVCFATL error is caused by atransient or permanent problem.

Asin the case where the application is handling the degqueuing, a simple solution isto return
successfor theservice, that is, tpreturn with Tpsuccess, even though the operation failed. This
allows the transaction to be committed and the message removed from the queue. If reply
messages are being used, the information in the buffer returned from the service can indicate that
the operation failed and the message will be enqueued on the reply queue. The rcode argument
of tpreturn can also be used to return application specific information.

In the case where the service fails and the transaction must be rolled back, it is not clear whether
or not TMoFORWARD should execute a second transaction to remove the message from the queue
without further processing. By default, TmororwarD will not delete a message for a service that
fails. TMQFORWARD ' s transaction is rolled back and the message is restored to the queue. A

Using the ATMI /Q Component 3-21

3-22

command-line option may be specified for TMororwWARD that indicates that a message should be
deleted from the queue if the service fails and a reply message is sent back with length greater
than 0. The messageisdel eted in asecond transaction. The queue must be configured with adelay
time and retry count for thisto work. If the message is associated with afailure queue, the reply
datawill be enqueued to the failure queue in the same transaction asthe onein which the message
is deleted from the queue.

Procedure for Dequeuing Replies from Services Invoked
Through TMQFORWARD

If your application expects to receive replies to queued messages, the following is a procedure
you may want to follow:

1

Asapreliminary step, the queue space must include areply queue and afailure queue. The
application must also agree on the content of the correlation identifier. The service should be
coded to return Tesuccess on alogica failure and return an explanatory code in the rcode
argument of tpreturn.

When you cal tpengueue () to put the message on the queue, set f1ags to turn on the bits
for the following flags:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID

Fill inthevaluesfor corrid, replyqueue and failurequeue beforeissuing the call. On
return from the call, save corrid.

When you cal tpdequeue () to check for areply, specify the reply queue in the gname
argument and set £1ags to turn on the bits for the following flags:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQOMSGID
TPQGETCORRID

Use the saved correlation identifier to populate corrid beforeissuing the cal. If the call to
tpdequeue () failsand sets tperrno (5) to TPEDIAGNOSTIC, then further information is
availablein diagnostic. If you receive the error code gueNoOMSG, it means that no
message was available for degqueuing.

Set up another call to tpdequeue (). Thistime have gname point to the name of the failure
gueue and set f1ags to turn on the bits for the following flags:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETBYCORRID

Using the ATMI /Q Component

../rf5/rf5.html

Sequential Processing of Messages

Populate corrid with the correlation identifier. When the call returns, check 1en to seeif
data has been received and check urcode to seeif the service has returned a user return
code.

Sequential Processing of Messages

Sequential processing of messages can be achieved by having one service enqueue amessage for
the next servicein the chain beforeitstransaction is committed. The originating process can track
the progress of the sequence with a series of tpdequeue () calstothe reply_queue, if each
member uses the same correlation-1D and returns a 0 length reply.

Alternatively, word of the successful completion of the entire sequence can be returned to the
originator by using unsolicited notification. To make sure that the last transaction in the sequence
ended with a tpcommit, ajob step can be added that calls tpnot i fy using the client identifier
that iscarried inthe TpocTL structure returned from tpdequeue () or inthe TpsvcINFo structure
passed to the service. The originating client must have called tpsetunsol to name the
unsolicited message handler being used.

Using Queues for Peer-to-Peer Communication

In all of the foregoing discussion of enqueuing and dequeuing messages there has been an
implicit assumption that queues were being used as an alternative form of request/response
processing. A message does not have to be a service request. The queued message facility can
transfer data from one process to another as effectively as a service request. This style of
communication between applications or clientsis called peer-to-peer communication.

If it suitsyour application to use Oracle Tuxedo /Q for this purpose, have the administrator creste
aseparate queue and code your own receiving program for dequeuing messages from that queue.

Using the ATMI /Q Component 3-23

3-24 Using the ATMI /Q Component

CHAPTERo

Oracle Tuxedo /Q COBOL Language
Programming

Thistopic includes the following sections:

e Introduction

Prerequisite Knowledge

Where Reguests Can Originate

Emphasis on the Default Case

Enqueuing Messages

Dequeuing M essages
Sequentia Processing of Messages

Introduction

This topic provides information about using the ATMI COBOL language functions for
enqueuing and dequeuing messages. TPENQUEUE (3cbl) and TPDEQUEUE (3cbl), plus some
ancillary functions.

Prerequisite Knowledge

The Oracle Tuxedo programmer coding client or server programsfor the queued message facility
should be familiar with the COBOL language binding to the Oracle Tuxedo ATMI. General
guidance on Oracle Tuxedo programming is available in Programming Oracle Tuxedo ATMI

Using the ATMI /Q Component 4-1

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Applications Using COBOL. Detailed pages on al the ATMI functions are in the Oracle Tuxedo
ATMI COBOL Function Reference.

Where Requests Can Originate

The calls used to place amessage on an Oracle Tuxedo /Q queue can originate from any client or
server process associated with the application. Thelist includes:

e Clients or servers on the same machine as the queue space or on another machine on the
network

e Conversational programs, although you cannot have a conversational connection with a
gueue (or with the TMQUEUE (5) server)

o Workstation clients via a surrogate process on the native side; the administrative interface
isalso entirely on the native side

Emphasis on the Default Case

The discussion of Oracle Tuxedo /Q programming in thistopic primarily reflects the client-side
portion of the figure“Queued Service Invocation” on page 1-2. Thefigure showshow aclient (or
aprocess acting in the role of a client) queues a message by calling TPENQUEUE (3c¢bl) and
specifying a queue space made available through aTMQUEUE (5) server. Theclient later retrieves
areply viaa TPDEQUEUE (3cbl) cal to TMQUEUE.

The figure shows the queued message being degqueued by the server TMoFoORWARD (5) and sent to
an application server for processing (via TpPcaLL (3cbl)). When areply to TPCALL isreceived,

TMQFORWARD enqueues the reply message. Because TMQFORWARD provides an interface between
the queue space and existing application services, further application coding is not required. For
that reason, this topic concentrates on the client-to-queue space side.

Some examples of customization are given after the discussion of the basic model.

Enqueuing Messages

01
01

01

42

The syntax for TPENQUEUE () is asfollows:

TPQUEDEF-REC.
COPY TPQUEDEF.
TPTYPE-REC.
COPY TPTYPE.
DATA-REC.

Using the ATMI /Q Component

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Enqueuing Messages

COPY User Data.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPENQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.
When aTreENQUEUE () call isissued it tellsthe system to store a message on the queue identified
in QNAME in TPQUEDEF-REC in the space identified in QsPACE-NAME in TPQUEDEF-REC. The
message is in paTa-rec, and LEN in TpTYPE-REC has the length of the message. By the use of
settingsin TrouEDEF-REC, the system isinformed how the call to TPENQUEUE () isto be handled.
Further information about the handling of the enqueued message and repliesis provided in the
TPQUEDEF-REC Structure.

TPENQUEUE() Arguments

There are some important arguments to control the operation of TPENQUEUE (3cbl) . Letslook at
some of them.

TPENQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument

QsPACE-NAME identifies a queue space previously created by the administrator. When aserver is
defined inthe servERs section of the configuration file, the service namesit offersare aliasesfor
the actual queue space name (which isspecified as part of the oPENINFO parameter in the cRours
section). For example, when your application uses the server TMOUEUE, the value pointed at by
QSPACE-NAME IS the name of a service advertised by TmouruE. If no service aliases are defined,
the name of the default service is the same as the server name, TmMQUEUE. In this case the
configuration file might include the following:

TMQUEUE
SRVGRP = QUEl SRVID = 1
GRACE = 0 RESTART = Y CONV = N
CLOPT = "-A"
or
CLOPT = "-s TMQUEUE"

Theentry for server group Que1 hasan oPENINFO parameter that specifies the resource manager,
the pathname of the device and the queue space name. The gspPaACE-NAME argument in a client
program then looks like this:

01 TPQUEDEF-REC.
COPY TPQUEDEF.

01 TPTYPE-REC.
COPY TPTYPE.

Using the ATMI /Q Component 4-3

../rf3cbl/rf3cbl.html

44

01 TPSTATUS-REC.
COPY TPSTATUS.
01 USER-DATA-REC PIC X(100).

*
*

*

MOVE LOW-VALUES TO TPQUEDEF-REC.
MOVE "TMQUEUE" TO QSPACE-NAME IN TPQUEDEF-REC.
MOVE "STRING" TO ONAME IN TPQUEDEF-REC.
SET TPTRAN IN TPQUEDEF-REC TO TRUE.
SET TPBLOCK IN TPQUEDEF-REC TO TRUE.
SET TPTIME IN TPQUEDEF-REC TO TRUE.
SET TPSIGRSTRT IN TPQUEDEF-REC TO TRUE.
MOVE LOW-VALUES TO TPTYPE-REC.
MOVE "STRING" TO REC-TYPE IN TPTYPE-REC.
MOVE LENGTH OF USER-DATA-REC TO LEN IN TPTYPE-REC.
CALL "TPENQUEUE" USING
TPQUEDEF-REC
TPTYPE-REC
USER-DATA-REC
TPSTATUS-REC.

The example shown on the TMQUEUE (5) reference page shows how alias service names can be
included when the server is built and specified in the configuration file. The sample program in
“A Sample Application” on page A-1, also specifies an dias service name.

TPENQUEUE(): The QNAME in TPQUEDEF-REC Argument

When message queues are being used within a queue space to invoke services, they are named
according to application services that process the requests. oNaME contains such avalue; an
exception in which gname isnot an application service is described in “ Procedure for Dequeuing
Replies from Services Invoked Through TMQFORWARD” on page 4-26.

TPENQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments

DATA-REC contains the message to be processed. L.EN in TPTYPE-REC gives the length of the
message. Some Oracle Tuxedo record types (view, for example) do not require LEN to be
specified; in such cases, the argument isignored. If RECTYPE in TPTYPE-REC iS SPACES,
para-rec and LEN are ignored and the message is enqueued with no data portion.

Using the ATMI /Q Component

../rf5/rf5.html

Enqueuing Messages

TPENQUEUE(): The Settings in TPQUEDEF-REC

Settingsin TrouEDEF-REC are used to tell the Oracle Tuxedo system how the TPENQUEUE () call
is handled; the following are valid settings:

TPNOTRAN
If the caller isin transaction mode and this setting is used, the message is not enqueued
within the caller’ stransaction. A caller in transaction mode that sets thisto trueis still
subject to the transaction timeout (and no other). If message enqueuing fails that was
invoked with this setting, the caller’ s transaction is not affected. Either TenoTRAN OF
TPTRAN Must be set.

TPTRAN
If the caller isin transaction mode, this setting specifiesthat the enqueuing of the message
is to be done within the same transaction. Either TPNOTRAN OF TPTRAN Must be set.

TPNOBLOCK
The message is not enqueued if ablocking condition exists. If TpNoBLOCK IS set and a
blocking condition exists such astheinternal buffersinto which the messageistransferred
arefull, the call failsand tperrno (5) is set to TPEBLOCK. If TPNOBLOCK iSSet and a
blocking condition exists because the target queue is opened exclusively by another
application, the call fails, tperrno () isset to TPEDIAGNOSTIC, and the diagnostic field
of the TpocTL structure is set to oMesHARE. In thelatter case, the other application, which
is based on an Oracle product other than the Oracle Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services APl (QSAPI). Either TenOBLOCK
Or TPBLOCK must be set.

TPBLOCK
When teeLOCK IS Set and ablocking condition exists, the caller blocks until the condition
subsides or atimeout occurs (either transaction or blocking timeout). Either TPNOBLOCK
Or TPBLOCK Must be set.

TPNOTIME
This setting asks that the call be immune to blocking timeouts; transaction timeouts may
till occur. Either TeNOTIME OF TPTIME Must be set.

TPTIME
This setting asks that the call will receive blocking timeouts. Either TPNOTIME OF TPTIME
must be set.

TPSIGRSTRT
This setting says that any underlying system calls that are interrupted by a signal should
be reissued. Either TPSTGRSTRT OF TPNOSIGRSTRT must be set.

Using the ATMI /Q Component 4-5

../rf5/rf5.html

46

TPNOSIGRSTRT
This setting says that any underlying system calls that are interrupted by a signal should
not bereissued. The call fails and sets Tp-sTaATUS to TPEGOTSIG. Either TPSIGRSTRT Or
TPNOSIGRSTRT must be set.

TPQUEDEF-REC Structure

The TrouEDEF-REC Structure has members that are used by the application and by the Oracle
Tuxedo system to pass parameters in both directions between application programs and the
queued message facility. It is defined in the COBOL copy file. The client that calls
TPQUEDEF-REC USES Settings to mark members the application wants the system to fill in. The
structure is also used by TPDEQUEUE () ; Some of the members do not come into play until the
application calls that function. The complete structure is shown in Listing 4-1.

Listing 4-1 The TPQUEDEF-REC Structure

05 TPBLOCK-FLAG PIC S9(9) COMP-5.
88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.
05 TPTRAN-FLAG PIC S9(9) COMP-5.
88 TPTRAN VALUE 0
88 TPNOTRAN VALUE 1
05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPTIME VALUE 0
88 TPNOTIME VALUE 1.
05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.
88 TPSIGRSTRT VALUE 1.
05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
88 TPCHANGE VALUE 0.
88 TPNOCHANGE VALUE 1.
05 TPQUE-ORDER-FLAG PIC S9(9) COMP-5.
88 TPQDEFAULT VALUE 0.
88 TPQTOP VALUE 1.
88 TPQBEFOREMSGID VALUE 2.
05 TPQUE-TIME-FLAG PIC S9(9) COMP-5.
88 TPONOTIME VALUE 0.
88 TPQTIME-ABS VALUE 1.

Using the ATMI /Q Component

05

05

05

05

05

05

05

05

05

05

05

88 TPQTIME-REL
TPQUE-PRIORITY-FLAG

88 TPQNOPRIORITY

88 TPQPRIORITY
TPQUE-CORRID-FLAG

88 TPQNOCORRID

88 TPQCORRID
TPQUE-REPLYQ-FLAG

88 TPQNOREPLYQ

88 TPQREPLYQ
TPQUE-FAILQ-FLAG

88 TPQNOFAILUREQ

88 TPQFAILUREQ

PIC

PIC

PIC

PIC

TPQUE-MSGID-FLAG PIC
88 TPONOMSGID
88 TPQMSGID
TPQUE-GETBY-FLAG PIC
88 TPQGETNEXT
88 TPQGETBYMSGIDOLD
88 TPQGETBYCORRIDOLD
88 TPQGETBYMSGID
88 TPQGETBYCORRID
TPQUE-WAIT-FLAG PIC
88 TPONOWAIT
88 TPQWAIT
TPQUE-DELIVERY-FLAG PIC

88 TPQONODELIVERYQOS
88 TPQDELIVERYQOS
TPQUEQOS-DELIVERY-FLAG

88 TPQQOSDELIVERYDEFAULTPERSIST VALUE

88 TPQQOSDELIVERYPER

88 TPQQOSDELIVERYNON
TPQUE-REPLY-FLAG PIC

88 TPQNOREPLYQOS

88 TPQREPLYQOS
TPQUEQOS-REPLY-FLAG PIC

88 TPQQOSREPLYDEFAUL

88 TPQQOSREPLYPERSIS

Enqueuing Messages

VALUE 2.
S9(9) COMP-5.
VALUE 0.
VALUE 1.
S9(9) COMP-5.
VALUE 0.
VALUE 1.
S9(9) COMP-5.
VALUE 0.
VALUE 1.
S9(9) COMP-5.
VALUE 0.
VALUE 1.
S9(9) COMP-5.
VALUE 0.
VALUE 1.
S9(9) COMP-5.
VALUE 0.
VALUE
VALUE
VALUE
VALUE 4.
S9(9) COMP-5.
VALUE 0.
VALUE 1.
S9(9) COMP-5.
VALUE 0.
VALUE 1.
PIC S9(9)

w N

COMP-5.

SISTENT VALUE
PERSISTENT VALUE
S9(9) COMP-5.
VALUE 0
VALUE 1
S9(9) COMP-5.
TPERSIST VALUE 0
TENT VALUE 1

Using the ATMI /Q Component 4-7

88 TPQQOSREPLYNONPERSISTENT VALUE 2.
05 TPQUE-EXPTIME-FLAG PIC S9(9) COMP-5.

88 TPQNOEXPTIME VALUE 0.
88 TPQEXPTIME-ABS VALUE 1.
88 TPQEXPTIME-REL VALUE 2.
88 TPQEXPTIME-NONE VALUE 3.

05 TPQUE-PEEK-FLAG PIC S9(9) COMP-5.
88 TPQNOPEEK VALUE 0.
88 TPQPEEK VALUE 1.

05 DIAGNOSTIC PIC S9(9) COMP-5.
88 QMEINVAL VALUE -1.
88 QMEBADRMID VALUE -2.
88 QMENOTOPEN VALUE -3.
88 QMETRAN VALUE -4.
88 QMEBADMSGID VALUE -5.
88 QMESYSTEM VALUE -6.
88 QMEOS VALUE -7.
88 QMEABORTED VALUE -8.
88 QMEPROTO VALUE -9.
88 QMEBADQUEUE VALUE -10.
88 QMENOMSG VALUE -11.
88 QMEINUSE VALUE -12.
88 QMENOSPACE VALUE -13.
88 QMERELEASE VALUE -14.
88 QMEINVHANDLE VALUE -15.
88 QMESHARE VALUE -16.

05 DEQ-TIME PIC 9(9) COMP-5.

05 EXP-TIME PIC 9(9) COMP-5.

05 PRIORITY PIC S9(9) COMP-5.

05 MSGID PIC X(32).

05 CORRID PIC X(32).

05 QNAME PIC X(127)

05 QSPACE-NAME PIC X(127)

05 REPLYQUEUE PIC X(127).

05 FAILUREQUEUE PIC X(127)

05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.

05 APPL-RETURN-CODE PIC S9(9) COMP-5.

05 APPKEY PIC S9(9) COMP-5.

4-8 Using the ATMI /Q Component

Enqueuing Messages

Thefollowing isalist of valid settings for the parameters controlling input information for
TPENQUEUE.

TPQTOP
Setting this value indicates that the queue ordering be overridden and the message placed
at the top of the queue. This request may not be granted depending on whether or not the
gueue was configured to allow overriding the queue ordering. Set TPODEFAULT tO Use
default queue ordering. TPQTOP, TPQBEFOREMSGID, OF TPQDEFAULT Must be set.

TPOQBEFOREMSGID
Setting this value indicates that the queue ordering be overridden and the message placed
in the queue before the message identified by Msc1p. This request may not be granted
depending on whether or not the queue was configured to alow overriding the queue
ordering. Set TropEFAULT to USe default queue ordering. TPQTOP, TPQBEFOREMSGID, OF
TPQDEFAULT must be set.

Note that the entire 32 bytes of the message identifier value are significant, so the value
identified by mscIDp must be completely initialized (for example, padded with spaces).

TPQTIME-ABS
If thisvalueis set, the message is made available after the time specified by peEg-T1ME.
DEQ-TIME iSan absolute time value as generated by time(2) Or mktime (3C) (the number
of seconds since 00:00:00 Universal Coordinated Time—UTC, January 1, 1970). Set
TPONOTIME if neither an absolute or relative time value is set. TPQTIME-ABS,
TPQTIME-REL, Of TPQNOTIME must be set. The absolute timeis determined by the clock
on the machine where the queue manager process resides.

TPQTIME-REL
If thisvalueis set, the message is made available after atime relative to the completion of
the enqueuing operation. peQ-TIME specifies the number of seconds to delay after the
enqueuing completes before the submitted message should be available. Set TronoTTIME
if neither an absolute or relative time value is set. TPOTIME-ABS, TPQTIME-REL, Of
TPONOTIME mMust be set.

TPQPRIORITY
If thisvalueis set, the priority at which the message should be enqueued is stored in
PRIORITY. The priority must bein the range 1 to 100, inclusive. The higher the number,
the higher the priority (that is, a message with a higher number is dequeued before a
message with alower number). For queues not ordered by priority, thisvalueis
informational. If TPONOPRIORITY IS Set, the priority for the message is 50 by default.

Using the ATMI /Q Component 4-9

4-10

TPQCORRID
If thisvalueisset, the correlation identifier value specified in corr1D isavailablewhen a
message is dequeued with TPpEQUEUE () . Thisidentifier accompaniesany reply or failure
message that is queued so that an application can correlate areply with a particular
request. Set TroNocorRID if acorrelation identifier is not available.

Note that the entire 32 bytes of the correlation identifier value are significant, so thevalue
specified in corrID must be completely initialized (for example, padded with spaces).

TPOQREPLYQ
If thisvalueis set, areply queue named in REPLYQUEUE iS associated with the queued
message. Any reply to the message is queued to the named queue within the same queue
space as the request message. Set TPoNOREPLYQ if areply queue nameis not available.

TPQFAILUREQ
If thisvalueisset, afailure queue named in FATILUREQUEUE iS associated with the queued
message. If (1) the enqueued message is processed by TMOFORWARD (), (2) TMQFORWARD
was started with the -a option, and (3) the service fails and returns anon-NULL reply, a
failure message consisting of the reply and its associated tpurcode isengqueued to the
named queue within the same queue space as the original request message. Set
TPONOFATLUREQ if afailure queue name is not available.

TPQDELIVERYQOS

TPQREPLYQOS
If TPQDELIVERYQOS IS Set, the flags specified by TPQUEQOS-DELIVERY-FLAG control the
quality of service for message delivery. One of the following mutually exclusive flags
must be set: TPQQOSDELIVERYDEFAULTPERSIST, TPQQOSDELIVERYPERSISTENT, OF
TPQQOSDELIVERYNONPERSISTENT. |f TPQDELTVERYQOS iS NOt Set, TPONODELIVERYQOS
must be set. When TroNODELTVERYQOS iS Set, the default delivery policy of the target
gueue dictates the delivery quality of service for the message.

If TPOREPLYQOS iS set, the flags specified by TPQUEQOS-REPLY-FLAG control the quality
of service for reply message delivery for any reply. One of the following mutually
exclusiveflagsmust be set: TPQQOSREPLYDEFAULTPERSIST, TPQQOSREPLYPERSISTENT,
Or TPQQOSREPLYNONPERSISTENT. The TPoREPLYQOS flag is used when areply is
returned from messages processed by TMoFORWARD. Applications not using TMQFORWARD
toinvoke servicesmay usethe TrorEPLYQOS flag asahint for their own reply mechanism.

If TPOREPLYQOS iS NOt Set, TPONOREPLYQOS Must be set. When TPONOREPLYQOS IS Set,
the default delivery policy of the REPLYQUEUE queue dictates the delivery quality of
service for any reply. Note that the default delivery policy is determined when the reply
to amessage isenqueued. That is, if the default delivery policy of the reply queueis
modified between the time that the original message is enqueued and the reply to the

Using the ATMI /Q Component

Enqueuing Messages

message is enqueued, the policy used isthe one in effect when the reply isfinally
enqueued.

Thevalid TPQUEQOS-DELIVERY-FLAG and TPQUEQOS-REPLY-FLAG flags are:

TPQOQOSDELIVERYDEFAULTPERSIST

TPQOQOSREPLYDEFAULTPERSIST
These flags specify that the message is to be delivered using the default delivery
policy specified on the target or reply queue.

TPQOOSDELIVERYPERSISTENT

TPQOOSREPLYPERSISTENT
These flags specify that the messageisto be delivered in a persistent manner using
the disk-based delivery method. When specified, these flags override the default
delivery policy specified on the target or reply queue.

TPOQOSDELIVERYNONPERSISTENT

TPOQQOSREPLYNONPERSISTENT
These flags specify that the message is to be delivered in a non-persistent manner
using the memory-based delivery method; the message is queued in memory until
it is dequeued. When specified, these flags override the default delivery policy
specified on the target or reply queue.

If the caller is transactional, non-persistent messages are enqueued within the
caller’ stransaction, however, non-persistent messages arelost if the systemis shut
down or crashes or the IPC shared memory for the queue space is removed.

TPQEXPTIME-ABS
If thisvalueis set, the message has an absol ute expiration time, which isthe absolute time
when the message will be removed from the queue.
The absolute expiration timeis determined by the clock on the machine where the queue
manager process resides.

The absolute expiration time is specified by the value stored in Exp-TIME. EXP-TIME
must be set to an absol ute time generated by t ime(2) or mkt ime(3C) (the number of
seconds since 00:00:00 Universal Coordinated Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue operation, the
operation succeeds, but the message is not counted for the purpose of calculating
thresholds. If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration timeis changed so
that the availability time is before the expiration time. In addition, these messages are
removed from the queue at expiration time even if they were never available for
dequeuing. If amessage expires during atransaction, the expiration does not cause the

Using the ATMI /Q Component 4-11

4-12

transaction to fail. Messages that expire while being enqueued or dequeued within a
transaction are removed from the queue when the transaction ends. Thereis no
acknowledgment that the message has expired.

One of the following must be set: TPQEXPTIME-ABS, TPQEXPTIME-REL,
TPQEXPTIME-NONE, Of TPQNOEXPTIME.

TPQEXPTIME-REL
If thisvalueis set, the message has a relative expiration time, which is the number of
seconds after the message arrives at the queue that the message is removed from the
gueue. Therelative expiration time is specified by the value stored in Exp-TIME.

If the expiration time is before the message availability time, the messageis not available
for dequeuing unless either the availability or expiration time is changed so that the
availability timeis before the expiration time. In addition, these messages are removed
from the queue at expiration time even if they were never available for dequeuing. The
expiration of a message during a transaction does cause the transaction to fail. Messages
that expire while being enqueued or dequeued within atransaction are removed from the
gueue when the transaction ends. There is no acknowledgment that the message has
expired.

One of the following must be set: TPQEXPTIME-ABS, TPQEXPTIME-REL,
TPQEXPTIME-NONE, Of TPQNOEXPTIME.

TPQEXPTIME-NONE
Setting this value indicates that the message should not expire. This flag overrides any
default expiration policy associated with the target queue. Y ou can remove a message by
dequeuing it or by deleting it via an administrative interface. One of the following must
be&i:TPQEXPTIME—ABS,TPQEXPTIME—REL,TPQEXPTIME—NONE,OFTPQNOEXPTIME

TPONOEXPTIME
Setting thisvalue specifiesthat the default expiration time associated with the target queue
applies to the message. One of the following must be set: TPQEXPTIME-ABS,
TPQEXPTIME-REL, TPQEXPTIME-NONE, O TPQNOEXPTIME.

Additionally, the AppL.-RETURN-CODE member of TPoUEDEF-REC Can be set with a user-return
code. Thisvalueis returned to the application that calls TPDEQUEUE () to dequeue the message.

As output from TPENQUEUE (), the following may be set in the TPouEDEF-REC Structure:

05 DIAGNOSTIC PIC S9(9) COMP-5.
05 MSGID PIC X(32).

Thefollowing isavalid setting in TroUEDEF-REC controlling output information from
TPENQUEUE () . If this setting is true when TPENQUEUE () is called, the Oracle Tuxedo /Q server

Using the ATMI /Q Component

Enqueuing Messages

TMQUEUE (5) populates the associated element in the record with a message identifier. If this
setting is not true when TPENQUEUE () is called, TMOUEUE () does not populate the associated
element in the record with a message identifier.

TPOMSGID
If thisvalueis set and the call to TPENQUEUE () is successful, the message identifier is
stored inMsc1Dp. The entire 32 bytes of the message identifier value are significant, so the
valuestoredinmscIpiscompletely initialized (for example, padded with null characters).
The actual padding character used for initialization varies between rel eases of the Oracle
Tuxedo /Q component. If TPoNOMSGID iS Set, the message identifier is not available.

The remaining members of the control structure are not used on input t0 TPENQUEUE () .

If thecall to TrENQUEUE () faillsand Tp-sTaTUS isset to TPEDIAGNOSTIC, avalueindicating the
reason for failureisreturned in pracenosTIC. The following are the possible values:

[oMEINVAL]
An invalid setting value was specified.

[oMEBADRMID]
Aninvalid resource manager identifier was specified.

[oMENOTOPEN]
The resource manager is not currently open.

[oMETRAN]
The call was not in transaction mode or was made with the TenoTRAN Setting and an error
occurred trying to start a transaction in which to enqueue the message. Thisdiagnostic is
not returned by a queue manager from Oracle Tuxedo release 7.1 or later.

[oMEBADMSGID]
Aninvalid message identifier was specified.

[oMESYSTEM]
A system error has occurred. The exact nature of the error iswritten to alog file.

[oMEOS]
An operating system error has occurred.

[oMEABORTED]
The operation was aborted. If the aborted operation was being executed within a global
transaction, the global transaction is marked rollback-only. Otherwise, the queue manager
aborts the operation.

Using the ATMI /Q Component 4-13

../rf5/rf5.html

4-14

[oMEPROTO]
An enqueue was done when the transaction state was not active.

[oMEBADQUEUE]
Aninvalid or deleted queue name was specified.

[oMENOSPACE]
Due to an insufficient resource, such as no space on the queue, the message with its
required quality of service (persistent or non-persistent storage) was not enqueued.
QMENOSPACE is returned when any of the following configured resourcesis exceeded: (1)
the amount of disk (persistent) space allotted to the queue space, (2) the amount of
memory (non-persistent) space allotted to the queue space, (3) the maximum number of
simultaneously active transactions allowed for the queue space, (4) the maximum number
of messages that the queue space can contain at any onetime, (5) the maximum number
of concurrent actions that the Queuing Services component can handle, or (6) the
maximum number of authenticated usersthat may concurrently use the Queuing Services
component.

[OMERELEASE]
An attempt was made to enqueue a message to a queue manager that isfrom aversion of
the Oracle Tuxedo system that does not support a newer feature.

[QMESHARE]
When enqueuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on an Oracle
product other than the Oracle Tuxedo system that opened the queue for exclusive read
and/or write using the Queuing Services APl (QSAP!).

Overriding the Queue Order

If the administrator, in creating a queue, allows TPENQUEUE () callsto override the order of
messages on the queue, you have two mutually exclusive waysto usethe override capability. You
can specify that the messageisto be placed at the top of the queue by setting TpoTOP OF You can
specify that it be placed ahead of a specific message by setting TPQBEFOREMSGID and setting
MsGID tothelD of the message you wish to precede. Thisassumesthat you saved the message-1D
from a previous call in order to be able to useit here. Y our administrator must tell you what the
gueue supports; it can be created to allow either or both of these overrides, or to alow neither.

Overriding the Queue Priority

You can set avaluein PRIORITY to specify the priority for the message. The value must bein the
range 1 to 100; the higher the number, the higher the priority, unlike values specified with the

Using the ATMI /Q Component

Enqueuing Messages

UNIX nice command. If PrRIORITY Was hot one of the queue ordering parameters, setting a
priority here has no effect on the dequeuing order. The priority value is retained however, so that
it can be inspected when the message is dequeued.

Setting a Message Availability Time

Y ou can specify in pEQ-TIME either an absolute time or atime relative to the completion of the
engueuing operation at which the message is made available. You set either TPoTIME-ABS OF

TPQTIME-REL t0 indicate how the value should be treated. A queue may be created with time as
aqueue-ordering criterion, in which case messages are ordered by the message availability time.

The following example shows how to enqueue a message with arelative time. The sample

message will become available sixty secondsin the future.

01

01

01

01

TPQUEDEF-REC.

COPY TPQUEDEF.

TPTYPE-REC.

COPY TPTYPE.

TPSTATUS-REC.

COPY TPSTATUS.
USER-DATA-REC PIC X(100).

MOVE LOW-VALUES TO TPQUEDEF-REC.

MOVE
MOVE

SET
SET
SET
SET
SET
SET

"QSPACELl" TO QSPACE-NAME IN TPQUEDEF-REC.
"Ql" TO QNAME IN TPQUEDEF-REC.
TPTRAN IN TPQUEDEF-REC TO TRUE.
TPBLOCK IN TPQUEDEF-REC TO TRUE.
TPTIME IN TPQUEDEF-REC TO TRUE.
TPSIGRSTRT IN TPQUEDEF-REC TO TRUE.
TPQDEFAULT IN TPQUEDEF-REC TO TRUE.
TPQTIME-REL IN TPQUEDEF-REC TO TRUE.

MOVE 60 TO DEQ-TIME IN TPQUEDEF-REC.

SET
SET
SET
SET
SET

TPONOPRIORITY IN TPQUEDEF-REC TO TRUE.
TPONOCORRID IN TPQUEDEF-REC TO TRUE.
TPONOREPLYQ IN TPQUEDEF-REC TO TRUE.
TPONOFAILUREQ IN TPQUEDEF-REC TO TRUE.
TPOQMSGID IN TPQUEDEF-REC TO TRUE.

Using the ATMI /Q Component

MOVE LOW-VALUES TO TPTYPE-REC.
MOVE "STRING" TO REC-TYPE IN TPTYPE-REC.
MOVE LENGTH OF USER-DATA-REC TO LEN IN TPTYPE-REC.
CALL "TPENQUEUE" USING
TPQUEDEF-REC
TPTYPE-REC
USER-DATA-REC
TPSTATUS-REC.

TPENQUEUE() and Transactions

If thecaller of TPENQUEUE () isin transaction mode and TPTRAN iS Set, then the enqueuing isdone
within the caller's transaction. The caller knows for certain from the success or failure of
TPENQUEUE () Whether the message was enqueued or not. If the call succeeds, the messageis
guaranteed to be on the queue. If the call fails, the transaction is rolled back, including the part
where the message was placed on the queue.

If the caller of TPENQUEUE () isnot in transaction mode or if TPNOTRAN iS Set, the message is
enqueued outside of the caller’ stransaction. If the call to TPENQUEUE () returns success, the
message is guaranteed to be on the queue. If the call to TPENQUEUE () failswith acommunication
error or with atimeout, the caller isleft in doubt about whether the failure occurred before or after
the message was enqueued.

Note that specifying TenoTrRAN While the caller is not in transaction mode has no meaning.

Dequeuing Messages

01

01

01

01

The syntax for TPDEQUEUE () isasfollows:

TPQUEDEF-REC.
COPY TPQUEDEF.
TPTYPE-REC.
COPY TPTYPE.
DATA-REC.

COPY User Data.
TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPDEQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

4-16

When this call isissued it tells the system to dequeue a message from the gname in
TPQUEDEF-REC (UeUE, in the queue space named QSPACE-NAME iN TPQUEDEF-REC. The message
isplaced in pATA-REC. LEN in TPTYPE-REC IS Set to the length of the data. If LEN is 0 on return

Using the ATMI /Q Component

Dequeuing Messages

from TPDEQUEUE () , the message had no data portion. By the use of settingsin TroUEDEF-REC
the system isinformed how the call to TPDEQUEUE () isto be handled.

TPDEQUEUE() Arguments

There are some important argumentsto control the operation of TPDEQUEUE (3cbl) . Let'slook at
some of them.

TPDEQUEUE(): The QSPACE-NAME in TPQUEDEF-REC
Argument

QSPACE-NAME identifies a queue space previously created by the administrator. When the
TMQUEUE Server isdefined in the servERS section of the configuration file, the service names it
offers are aliases for the actual queue space name (which is specified as part of the oPENTINFO
parameter in the croups section). For example, when your application uses the server TMQUEUE,
the value pointed at by ospAcE-NaME isthe name of a service advertised by TvQuEuE. If ho
service aliases are defined, the name of the default service is the same asthat of the server,
TMQUEUE. In this case the configuration file may include the following:

TMQUEUE
SRVGRP = QUE1l SRVID = 1

GRACE = 0 RESTART = Y CONV = N
CLOPT = "-A"

or
CLOPT = "-s TMQUEUE"

The entry for server group QUEL hasan oPENINFO parameter that specifiesthe resource manager,
the pathname of the device, and the queue space name. The QspPACE-NaME argument in aclient
program then looks like the following:

01 TPQUEDEF-REC.
COPY TPQUEDEF.
01 TPTYPE-REC.
COPY TPTYPE.
01 TPSTATUS-REC.
COPY TPSTATUS.
01 USER-DATA-REC PIC X(100).

Using the ATMI /Q Component 4-17

../rf3cbl/rf3cbl.html

4-18

MOVE LOW-VALUES TO TPQUEDEF-REC.
MOVE "TMQUEUE" TO QSPACE-NAME IN TPQUEDEF-REC.
MOVE "REPLYQ" TO QNAME IN TPQUEDEF-REC.
SET TPTRAN IN TPQUEDEF-REC TO TRUE.
SET TPBLOCK IN TPQUEDEF-REC TO TRUE.
SET TPTIME IN TPQUEDEF-REC TO TRUE.
SET TPSIGRSTRT IN TPQUEDEF-REC TO TRUE.
MOVE LOW-VALUES TO TPTYPE-REC.
MOVE "STRING" TO REC-TYPE IN TPTYPE-REC.
MOVE LENGTH OF USER-DATA-REC TO LEN IN TPTYPE-REC.
CALL "TPDEQUEUE" USING
TPQUEDEF-REC
TPTYPE-REC
USER-DATA-REC
TPSTATUS-REC.

The example shown on the TMQUEUE (5) reference page shows how alias service names can be
included when the server is built and specified in the configuration file. The sample program in
“A Sample Application” on page A-1, also specifies an alias service name.

TPDEQUEUE(): The QNAME in TPQUEDEF-REC Argument

Queue namesin aqueue space must be agreed upon by the applicationsthat will accessthe queue
space. Thisrequirement isespecially important for reply queues. If onauve refersto areply queue,
the administrator createsit (and often an error queue) in the same manner that he or she creates
any other queue. pvame containsthe name of the queue from which to retrieve amessage or reply.

TPDEQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments

These arguments have a different flavor than they do on TPENQUEUE () . DATA-REC iSwhere the
system is to place the message being dequeued.

Itisan error for LEN to be 0 on input. When TPDEQUEUE () returns, LEN containsthe length of the
dataretrieved. If itis O, it means that the reply had no data portion. This can be alegitimate and
successful reply in some applications; receiving even a 0 length reply can be used to show
successful processing of the enqueued request. If you wish to know whether the record has
changed from before the call to TPDEQUEUE (), save the length prior to the call to TPDEQUEUE ()
and compareit to L.EN after the call completes. If thereply islarger than L.EN, then paTa-rEC will
contain only as many bytes aswill fit. The remainder are discarded and TppEQUEUE () failswith
TPTRUNCATE.

Using the ATMI /Q Component

../rf5/rf5.html

Dequeuing Messages

TPDEQUEUE(): The Settings in TPQUEDEF-REC

Settingsin TrouEDEF-REC are used to tell the Oracle Tuxedo system how the TpDEQUEUE () call
is handled; the following are valid settings:

TPNOTRAN
If the caller isin transaction mode, this setting specifiesthat the messageisto be dequeued
outside of the caller’ stransaction. Either TPNOTRAN Or TPTRAN Must be set.

TPTRAN
If the caller isin transaction mode, this setting specifiesthat the messageisto be dequeued
within the same transaction. Either TPNOTRAN Or TPTRAN Must be set.

TPNOBLOCK
The message is not dequeued if ablocking condition exists. If TpNoBLOCK IS set and a
blocking condition exists such astheinternal buffersinto which the messageistransferred
arefull, the call failsand tperrno (5) is set to TPEBLOCK. If TPNOBLOCK iSSet and a
blocking condition exists because the target queue is opened exclusively by another
application, the call fails, tperrno () isset to TPEDIAGNOSTIC, and the diagnostic field
of the TpocTL structureis set to oMesHARE. In thelatter case, the other application, which
is based on an Oracle product other than the Oracle Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services APl (QSAPI). Either TenOBLOCK
Or TPBLOCK must be set.

TPBLOCK
When TpBL.OCK iS set and ablocking condition exists, the caller blocks until the condition
subsides or atimeout occurs (either transaction or blocking timeout). This blocking
condition does not include blocking on the queueitself if the TrowarT setting is specified.
Either TPNOBLOCK Or TPBLOCK must be set.

TPNOTIME
Setting this value asks that the call be immune to blocking timeouts; transaction timeouts
may still occur. Either TpNOTIME OF TPTIME Must be set.

TPTIME
Setting thisvalue asksthat the call receive blocking timeouts. Either TPNOT IME OF TPTIME
must be set.

TPNOCHANGE
If thisvalueisset, therecord type of paTa-rEcisnot allowed to change. That is, thetype
and subtype of the received record must match the type and subtype of the record
DATA-REC. Either TPNOCHANGE Or TPCHANGE must be set.

Using the ATMI /Q Component 4-19

../rf5/rf5.html

4-20

TPCHANGE
By default, if arecord is received that differsin type from the record paTa-rEC,
DATA-REC'S record type changes to the received record's type so long as the receiver
recognizes the incoming record type. That is, the type and sub-type of the received record
must match the type and sub-type of the record paTa-rEec. Either TPNOCHANGE Or
TPCHANGE must be set.

TPSIGRSTRT
Setting this value says that any underlying system calls that are interrupted by a signal
should be reissued. Either TPSIGRSTRT OF TPNOSIGRSTRT must be set.

TPNOSIGRSTRT
If thisvalueisset and asignal isreceived, thecall failsand setsTp-STATUS tO TPEGOTSIG.
Either TPSIGRSTRT OF TPNOSIGRSTRT Must be set.

TPQUEDEF-REC Structure

Thefirst argument to TPDEQUEUE () isthe structure TPoUEDEF-REC. The TPQUEDEF-REC
structure has members that are used by the application and by the Oracle Tuxedo system to pass
parametersin both directions between application programs and the queued messagefacility. The
client that calls TPDEQUEUE () uses settingsto mark members the application wantsthe system to
fill in. Asdescribed earlier, the structureisal so used by TPENQUEUE () ; Some of the membersonly
apply to that function. The entire structure is shown in “ The TPQUEDEF-REC Structure” on

page 4-6.
Asinput to TPDEQUEUE () , the following elements may be set in the TPQUEDEF structure:

05 MSGID PIC X(32).
05 CORRID PIC X(32).

Thefollowingisalist of valid settings in TPouEDEF-REC that control input for TPDEQUEUE () :

TPOGETNEXT
Setting this value requests that the next message on the queue be dequeued, using the
default queue order. One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, OF
TPOGETBYCORRID.

TPQGETBYMSGID
Setting this value requests that the message identified by msc1p be dequeued. The
message identifier is returned by a prior call to TPENQUEUE () . Note that the message
identifier isnot valid if the message has moved from one queue to another. Note also that
the entire 32 bytes of the message identifier value are significant, so the value identified
by mscID must be completely initialized (for example, padded with spaces).

Using the ATMI /Q Component

Dequeuing Messages

One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, Of TPQGETBYCORRID.

TPOGETBYCORRID
Setting this value requests that the message identified by corrID be dequeued. The
correlation identifier is specified by the application when enqueuing the message with
TPENQUEUE () . Note that the entire 32 bytes of the correlation identifier value are
significant, sothevalueidentified by corr1D must be completely initialized (for example,
padded with spaces).

One of the following must be set; TPQGETNEXT, TPQGETBYMSGID, Of TPQGETBYCORRID.

TPQWAIT
Setting this value indicates that an error should not be returned if the queue is empty.
Instead, the process should wait until a message is available. Set TeoNnowATT tO not wait
until amessageisavailable. If TpowaIT IS Set in conjunction with TPQGETBYMSGID OF
TPQGETBYCORRID, it indicatesthat an error should not be returned if no message with the
specified message identifier or correlation identifier is present in the queue. Instead, the
process should wait until a message meeting the criteriais available. The processis still
subject to the caller’ s transaction timeout, or, when not in transaction mode, the process
is still subject to the timeout specified on the TMQUEUE process by the -t option.

If amessage matching the desired criteriais not immediately available and the configured
action resources are exhausted, TPDEQUEUE fails, TP-STATUS iS Set t0 TPEDIAGNOSTIC,
and DIAGNOSTIC iS Set to QMESYSTEM.

Note that each TPDEQUEUE () request specifying the TeowatT control parameter requires
that a queue manager (TMQUEUE) action object be available if a message satisfying the
condition is not immediately available. If oneis not available, the TPDEQUEUE () request
fails. The number of available queue manager actions are specified when aqueue spaceis
created or modified. When a waiting dequeue request completes, the associated action
object associated is made available for another request.

TPQPEEK
If TPQPEEK iS Set, the specified message is read but not removed from the queue. The
TPNOTRAN flag must be set. It is not possible to read messages enqueued or dequeued
within a transaction before the transaction compl etes.

When athread is non-destructively dequeuing a message using TPQPEEK, the message
may not be seen by other non-blocking dequeuers for the brief time the system is
processing the non-destructive dequeue request. This includes degqueuers using specific
selection criteria (such asmessageidentifier and correlation identifier) that arelooking for
the message currently being non-destructively dequeued.

On output from TPDEQUEUE () , the following elements may be set in TPoUEDEF-REC:

Using the ATMI /Q Component 4-21

4-22

05
05
05
05
05
05
05
05
05
05
05

PRIORITY PIC S9(9) COMP-5.

MSGID PIC X(32).

CORRID PIC X(32).
TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.
TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.
REPLYQUEUE PIC X(127).
FATILUREQUEUE PIC X(127).
DIAGNOSTIC PIC S9(9) COMP-5.
CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5
APPL-RETURN-CODE PIC S9(9) COMP-5.
APPKEY PIC S9(9) COMP-5.

Thefollowingisalist of valid settings in TrouEDEF-REC controlling output information from
TPDEQUEUE () . For any of these settings, if the setting is true when TppEQUEUE () iscalled, the
associated element in the record is popul ated with the value provided when the message was
gueued, and the setting remains true. If the value is not available (that is, no value was provided
when the message was queued) or the setting is not true when TPDEQUEUE () iscalled,
TPDEQUEUE () completes with the setting not true.

TPQPRIORITY

If thisvalueis set, the call to TPDEQUEUE () is successful, and the message was queued
with an explicit priority, then the priority is stored in pPRIORITY. The priority isin the
range 1 to 100, inclusive, and the higher the number, the higher the priority (that is, a
message with a higher number is dequeued before a message with alower number). If
TPQNOPRIORITY IS Set, the priority is not available.

Notethat if no priority wasexplicitly specified when the message was queued, the priority
for the message is 50.

TPQMSGID

If thisvalueis set and the call to TPDEQUEUE () is successful, the message identifier is
stored in MmscID. The entire 32 bytes of the message identifier value are significant. If
TPQNOMSGID IS Set, the message identifier is not available.

TPQCORRID

If thisvalueis set, the call to TPDEQUEUE () is successful, and the message was queued
with acorrelation identifier, then the correlation identifier is stored in corr1D. The entire
32 bytesof thecorrelationidentifier value are significant. Any Oracle Tuxedo /Q provided
reply to amessage has the correlation identifier of the original message. If TPoNOCORRID
is set, the correlation identifier is not available.

Using the ATMI /Q Component

Dequeuing Messages

TPQDELIVERYQOS
If thisvalueis set, the call to TPDEQUEUE () is successful, and the message was queued
with adelivery quality of service, then the flag—TPQQOSDELIVERYDEFAULTPERSIST,
TPQQOSDELIVERYPERSISTENT, OF TPQQOSDELTIVERYNONPERSTSTENT—Specified by
TPQUEQOS-DELIVERY-FLAG indicates the delivery quality of service. If
TPQNODELIVERYQOS iS Set, the delivery quality of serviceis not available.

Note that if no delivery quality of service was explicitly specified when the message was
gueued, the default delivery policy of the target queue dictates the delivery quality of
service for the message.

TPQREPLYQOS
If thisvalueis set, the call to TPDEQUEUE () is successful, and the message was queued
with areply quality of service, then the flag—TPQQOSREPLYDEFAULTPERSIST,
TPQQOSREPLYPERSISTENT, Of TPQQOSREPLYNONPERSISTENT—Specified by
TPQUEQOS-REPLY-FLAG indicates the reply quality of service. If TPONOREPLYQOS iS Set,
the reply quality of serviceis not available.

Note that if no reply quality of service was explicitly specified when the message was
queued, the default delivery policy of the REPLYQUEUE queue dictates the delivery quality
of service for any reply. The default delivery policy is determined when the reply to a
message is enqueued. That is, if the default delivery policy of the reply queueis modified
between the time that the original message is enqueued and the reply to the message is
enqueued, the policy used is the one in effect when the reply isfinally enqueued.

TPOQREPLYQ
If thisvalueis set, the call to TPpEQUEUE () is successful, and the message was queued
with areply queue, then the name of the reply queueis stored in REPLYQUEUE. Any reply
to the message should go to the named reply queue within the same queue space as the
request message. If TPONOREPLYQ iS Set, the reply queueis not available.

TPQFAILUREQ
If thisvalueis set, the call to TPDEQUEUE () is successful, and the message was queued
with afailure queue, then the name of the failure queue is stored in FATLUREQUEUE. Any
failure message should go to the named failure queue within the same queue space asthe
request message. If TPONOFAILUREQ iS Set, the failure queue is not available.

The remaining settingsin TPoueDEF-REC are set to the following values when TPDEQUEUE () iS
called: TPQNOTOP, TPQNOBEFOREMSGID, TPONOTIME_ABS, TPQNOTIME_REL,
TPQONOEXPTIME_ABS, TPOQNOEXPTIME_REL, and TPQNOEXPTIME_NONE.

If thecall to TepEQUEUE () failsand TP-sTATUS iSSet to TPEDTIAGNOSTIC, avalueindicating the
reason for failureisreturned in ptagnosTIC. The valid settings for pracnosTIC include those

Using the ATMI /Q Component 4-23

4-24

for TPENQUEUE () described in “TPQUEDEF-REC Structure” on page 4-6 (except for
QMENOSPACE and oMERELEASE) and the following additional codes.

[oMENOMSG]
No message was available for dequeuing. Note that it is possible that the message exists
on the queue and another application process has read the message from the queue. In this
case, the message may be put back on the queue if that other process rolls back the
transaction.

[oMEINUSE]
When dequeuing a message by message identifier or correlation identifier, the specified
message is in use by another transaction. Otherwise all messages currently on the queue
arein use by other transactions. This diagnostic is not returned by a queue manager from
Oracle Tuxedo release 7.1 or later.

Using TPQWAIT

When TrpEQUEUE () iscalled with flags set to include TeowazT, if amessageisnot immediately
available, the TmouEUE server waits for the arrival, on the queue, of a message that matches the
TPDEQUEUE () request before TPDEQUEUE () returns control to the caller. The TMOUEUE process
setsthewaiting request aside and processes requests from other processeswhilewaiting to satisfy
thefirst request. If TPQGETBYMSGID and/or TPQGETBYCORRID are also specified, the server waits
until a message with the indicated message identifier and/or correlation identifier becomes
available on the queue. If neither of these flagsis set, the server waits until any message is put
onto the queue. The amount of timeit waitsis controlled by the caller’ stransaction timeout, if the
call isin transaction mode, or by the -t option in the cLopT parameter of the TMOUEUE server, if
the call is not in transaction mode.

The TmouEUE server can handle a number of waiting TPDEQUEUE () requests at the sametime, as
long as action resources are available to handle the request. If there are not enough action
resources configured for the queue space, TPDEQUEUE () fails. If this happens on your system,
increase the number of action resources for the queue space.

Error Handling When Using TMQFORWARD Services

In considering how best to handle errorswhen dequeuing it is hel pful to differentiate between two
types of errors:

e Errors encountered by TMoFORWARD (5) asit attempts to dequeue a message to forward to
the requested service

Using the ATMI /Q Component

../rf5/rf5.html

Dequeuing Messages

e Errorsthat occur in the service that processes the request

By default, if amessage is dequeued within atransaction and the transaction is rolled back, then
the message ends up back on the queue and can be dequeued and executed again. It may be
desirableto delay for ashort period beforeretrying to dequeue and execute the message, allowing
the transient problem to clear (for example, allowing for locks in a database to be released by
another transaction). Normally, alimit on the number of retriesis also useful to ensure that an
application flaw doesn't cause significant waste of resources. When a queue is configured by the
administrator, both aretry count and a delay period (in seconds) can be specified. A retry count
of 0 impliesthat no retries are done. After the retry count is reached, the message is moved to an
error queue that is configured by the administrator for the queue space. If the error queue is not
configured, then messages that have reached the retry count are simply deleted. Messages on the
error queue must be handled by the administrator who must work out away of notifying the
originator that meets the requirements of the application. The message handling method chosen
should be mostly transparent to the originating program that put the message on the queue. There
isavirtual guaranteethat once amessageis successfully enqueued it will be processed according
to the parameters of TPENQUEUE () and the attributes of the queue. Notification that a message
has been moved to the error queue should be arare occurrencein asystem that has properly tuned
its queue parameters.

A failure queue (normally, different from the queue space error queue) may be associated with
each queued message. Thisqueueis specified on the enqueuing call asthe placeto put any failure
messages. The failure message for a particular request can be identified by an
application-generated correlation identifier that is associated with the message when it is
engueued.

Thedefault behavior of retrying until success (or apredefined limit) isquite appropriate when the
failureiscaused by atransient problem that islater resolved, allowing the message to be handled
appropriately.

Thereare caseswhere the problem isnot transient. For example, the queued message may request
operating on an account that does not exist (and the application is such that it won't come into
existence within areasonable time period if at all). Inthis case, it is desirable not to waste any
resources by trying again. If the application programmer or administrator determinesthat failures
for aparticular operation are never transient, then it is simply a matter of setting the retry count
to zero, although this will require amechanism to constantly clear the queue space error queue of
these messages (for example, abackground client that reads the queue periodically). Morelikely,
it isthe case that some problems will be transient (for example, database lock contention) and
some problems will be permanent (for example, the account doesn't exist) for the same service.

Using the ATMI /Q Component 4-25

4-26

In the case that the message is processed (dequeued and passed to the application viaa TpcALL)
by TMOFORWARD, there is no mechanism in the information returned by TecaLL to indicate
whether aTPESVCFAIL error is caused by atransient or permanent problem.

Asin the case where the application is handling the dequeuing, a simple solution isto return
successfor theservice, that is, TPRETURN With TPsuccEss, even though the operation failed. This
allows the transaction to be committed and the message removed from the queue. If reply
messages are being used, the information in the buffer returned from the service can indicate that
the operation failed and the message will be enqueued on the reply queue. The app1.-coDpE in the
TPSVCRET-REC argument of TPRETURN can also be used to return application specific
information.

In the case where the service fails and the transaction must be rolled back, it is not clear whether
or not TMoFORWARD should execute a second transaction to remove the message from the queue
without further processing. By default, TmororwarD will not delete a message for a service that
fails. TmororRwARD'S transaction is rolled back and the message is restored to the queue. A
command-line option may be specified for TMororwWARD that indicates that a message should be
deleted from the queue if the service fails and a reply message is sent back with length greater
than 0. The message isdel eted in asecond transaction. The queue must be configured with adelay
time and retry count for thisto work. If the message is associated with afailure queue, the reply
datais enqueued to the failure queue in the same transaction as the one in which the message is
deleted from the queue.

Procedure for Dequeuing Replies from Services Invoked
Through TMQFORWARD

If your application expects to receive replies to queued messages, the following is a procedure
you may want to follow:

1. Asapreliminary step, the queue space must include areply queue and afailure queue. The
application must also agree on the content of the correlation identifier. The service should be
coded to return Tesuccess on alogical failure and return an explanatory codein the
APPL-CODE in the TPSVCRET-REC argument of TPRETURN.

2. When you call TPENQUEUE () to put the message on the queue, set the following:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID

(Fill in the values for corrRID, REPLYQUEUE and FATLUREQUEUE before issuing the call. On
return from the call, save corRrRID.)

Using the ATMI /Q Component

Sequential Processing of Messages

3. When you call TrpEQUEUE () to check for areply, specify the reply queue in oname and set

the following:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPOMSGID
TPQGETBYCORRID

(Use the saved correlation identifier to populate corr1D before issuing the call. If the call
to TPDEQUEUE () failsand sets Tp-sTaTUS to TPEDIAGNOSTIC, then further informationis
available in the pragNosTIC Settings. If you receive the error code gueENoMSG, it means that
no message was available for dequeuing.)

4. Set up another call to TPDEQUEUE () . Thistime have oNamE point to the name of the failure
gueue and set the following:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETBYCORRID

Populate TrocorrID With the correlation identifier. When the call returns, check LEN to see
if data has been received and check AppL-RETURN-CODE t0 seeif the service has returned a
user return code.

Sequential Processing of Messages

Sequentia processing of messages can be achieved by having one service enqueue amessage for
the next serviceinthe chain beforeitstransaction is committed. The originating process can track
the progress of the sequence with a series of TPDEQUEUE () callsto the reply_queue, if each
member uses the same correlation-1D and returns a 0 length reply.

Alternatively, word of the successful completion of the entire sequence can be returned to the
originator by using unsolicited notification. To make surethat the last transaction in the sequence
ended with aTpcommrT, @job step can be added that calls TenoTIFY USing the client identifier
that is carried in the TrouEDEF-REC Structure. The originating client must have called
TPSETUNSOL t0 nhame the unsolicited message handler being used.

Using Queues for Peer-to-Peer Communication

In al of the foregoing discussion of enqueuing and dequeuing messages there has been an
implicit assumption that queues were being used as an aternative form of request/response
processing. A message does not have to be a service request. The queued message facility can
transfer data from one process to another as effectively as a service request. This style of
communication between applications or clientsis called peer-to-peer communication.

Using the ATMI /Q Component 4-21

If it suitsyour application to use Oracle Tuxedo /Q for this purpose, have the administrator create
aseparate queue and code your own receiving program for dequeuing messages from that queue.

4-28 Using the ATMI /Q Component

A Sample Application

Thistopic includes the following sections:

o Overview

Prerequisites

What Is gsample?

Building gsample
e Suggestions for Further Exploration

Overview

The sample application in thistopic contains a description of aone-client, one-server application
using Oracle Tuxedo /Q called gsample. Aninteractive form of this softwareis distributed with
the Oracle Tuxedo software.

Prerequisites

Before you can run the sample application, the Oracle Tuxedo software must be installed and
built so that the files and commands referred to in this topic are available. If you are personally
responsible for installing the Oracle Tuxedo software, consult the Installing the Oracle Tuxedo
System for information about how to install the Oracle Tuxedo system.

If theinstallation has aready been done by someone else, you need to know the pathname of the
root directory of the installed software. Y ou also need to have read and execute permissions on

Using the ATMI /Q Component A-1

the directories and files in the Oracle Tuxedo directory structure so you can copy gsample files
and execute Oracle Tuxedo commands.

What Is gsample?

gsample isavery basic Oracle Tuxedo application that uses Oracle Tuxedo /Q. It has one
application client and server, and uses two system servers. TMQUEUE (5) and TMQFORWARD (5) .
The client calls TMQUEUE to enqueue a message in a queue space created for gsample. The
message is dequeued by TMororwARD and passed to the application server. The server convertsa
string from lower caseto upper case and returnsto TMQFORWARD. TMQFORWARD endqueuesthereply
message. The client meanwhile has called TmouEUE to dequeue the reply. When thereply is
received, the client displays it on the user's screen.

Building gsample

A-2

Thefollowing procedure providesinstructions on building and running the gsamp1 e application.

1. Makeadirectory for gsample and ca toit:

mkdir gsampdir
cd gsampdir

Thisis suggested so you will be able to see clearly the gsamp1e files you have at the start
and the additional files you create along the way. Use the standard shell (/bin/sh) or the
Korn shell; not the C shell (/bin/csh).

2. Copy the gsample files.
cp S$TUXDIR/apps/dgsample/* .

You will be editing some of the files and making them executable, so it is best to begin
with acopy of the files rather than the originals delivered with the software.

3. Listthefiles.

S 1s
README
client.c
crlog
crque
makefile
rmipc
runsample
server.c
setenv

Using the ATMI /Q Component

../rf5/rf5.html
../rf5/rf5.html

Building gsample

ubb.sample
$

Thefiles that make up the application are:

README
A file that describes the application and how to configure and run it.

setenv
A script that sets environment variables.

crlog
A script that creates a oG file.

crque

A script that defines the queue space and queues for the application.

makefile

A makefile that creates the executables for the application.

client.c
The source code for the client program.

server.c
The source code for the server program.

ubb.sample
The ASCII form of the configuration file for the application.

runsample
A script that calls all the necessary commands to build and run the sample
application.

rmipc
A script that removes the | PC resources for the queue space.

4. Editthe setenv file.

Open the setenv file and modify the Tuxp1r value to the absolute path of the root
directory of the Oracle Tuxedo system installation. Remove the angle bracket characters (<
and >) when editing this value.

5. Run runsample.

The runsample script contains several commands; each command is preceded by a
comment line that describes the purpose of the command.

#set the environment
. /setenv
chmod +w ubb.sample

Using the ATMI /Q Component A-3

uname=""uname -n "

ed ubb.sample<<!

g;<uname -n>;s;;S{uname};

g;<full path of Tuxedo software>;s;;S${TUXDIR};
g;<full path of APPDIR>;s;;S{APPDIR};

w

q

|

#build the client and server
make client server

#create the tuxconfig file
tmloadcf -y ubb.sample
#create the TLOG

./crlog

#create the QUE

. /crque

#boot the application

tmboot -y

#run the client

client

#shutdown the application
tmshutdown -y

#remove the client and server
make clean

#remove the QUE ipc resources
./rmipc

#remove all files created

rm tuxconfig QUE stdout stderr TLOG ULOG*

When you run this script you will see a series of messages on your screen that are
generated by the various commands. Included among them are the following lines:

before: this is a g example

after: THIS IS A Q EXAMPLE

Thebefore: lineisacopy of the string that c1ient enqueues for processing by server.
Theafter: lineiswhat server sends back. These two lines prove that the program
worked successfully.

Suggestions for Further Exploration

A-4

While it might prove interesting to build and run the sample application using runserver, you
will probably find it more instructive to examine the individual pieces of the application. In this
topic, we suggest some things that we recommend you look at and try; you will undoubtedly be
able to think of others as you explore the application more closely.

Using the ATMI /Q Component

Suggestions for Further Exploration

setenv: Set the Environment

The script setenv isan example of afile often used in Oracle Tuxedo development. Three of the
variablesthat are set (TuxDIR, APPDIR, and PATH) are needed whenever you are working with the
Oracle Tuxedo system. Noticethat if you are running on a Sun machine, thereisanother bin you
must have at the beginning of your paTH variable. LD_LIBRARY_PATH, SHLIB_PATH, Of LIBPATH
areimportant if you are building the system with shared libraries. The correct variable to use
depends on your operating system. TuxcoNFIG must be set before you can boot the system.
QMADMIN can be set in avariable or provided on the gmadmin (1) command line.

Points to consider: should you plan to have such afile where you will be doing your Oracle
Tuxedo /Q work? Should you have acommand in your .profile S0 that you set your
environment asyou log in?

makefile: Make Your Application

Notice that themakefile USeSbuildserver (1) and buildclient (1) to build the server and
client, respectively. Y ou can, of course, execute these commands individually or use the
capability of make to keep the application current.

While we are on the subject of themakefile, this might be agood time to look through the . ¢
filesfor the client and server programs. Of particular interest in connection with Oracle Tuxedo
/Q are the tpenqueue and tpdequeue calls. Notice particularly the values for the gspace and
the gname arguments. When we look at the configuration file, we will see where those values
come from.

ubb.sample: The ASCII Configuration File

The three most pertinent entries in the configuration file are the cLopT parameters for the
TMQUEUE and TMQFORWARD Servers and the opENINFO parameter in the *crours entry. We will
extract those items to call them to your attention here:

First the CLOPT parameter from TMQUEUE:
CLOPT = "-s QSPACENAME:TMQUEUE -- "

Then the CLOPT parameter from TMQFORWARD:
CLOPT="-- -i 2 -g STRING"

Finally, the OPENINFO parameter from the QUEl group:
OPENINFO = "TUXEDO/QM:<APPDIR pathname>/QUE:QSPACE"

The cropT parameter from TmoUEUE specifies a service alias of gspacenamE. Look back again
at client.c and check the gspace argument of tpenqueue and tpdequeue. The cLopT

Using the ATMI /Q Component A-5

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

A-6

parameter for TMQFORWARD Specifiesaservice sTRING by meansof the -q option. Thisisalso the
name given to the queue where messages are enqueued for that service and is specified as the
gname argument of tpenqueue inclient.c.

The tmloadcf (1) command is used to compile the ASCII configuration file into a TuxcoNFIG
file.

crlog: Create the Transaction Log

Thescriptin crloginvokes tmadmin (1) to createadevicelist entry for the TLoc and then create
the log for the site specified in our configuration. Because all messages for the queued message
facility are enqueued and degueued within transactions, you must have alog in which to keep
track of transactions managed by the Tvs_om server.

crque: Create the Queue Space and Queues

The script in crque invokes gmadmin (1) to create the queue space and queues for the sample
application. Notice that the queue space is named spacE (that is aso the name specified asthe
last argument of the oPENINFO parameter in the configuration file). Queues named sTrING and
RPLYQ are created. In the gspacecreate portion of the script an error queue is named, but the
script does not include any gcreate command to create that queue. That isamodification you
might want to make later.

Boot, Run, and Shut Down the Application

After making the application programs, loading TuxconrF1G, and creating the queue space and
queues, the next step isto boot the application and run it. The command to boot is:

tmboot -y

The -y option keeps tmboot from prompting for an okay before booting.
The sample application is run simply by entering the command:

client

The tmshutdown command is used to bring the application down.

Clean Up

The runsample script includes three commands that restore the environment to the state it was
in before the script wasrun. Themake clean command usesmake to remove the object and
executable files for the client and server.

Using the ATMI /Q Component

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Suggestions for Further Exploration

The rmipc command isincluded because the IPC resources for the queue space are not
automatically removed by tmshutdown (Which does remove the Oracle Tuxedo | PC resources
used by the application). If you look at rmipc, you will find that it invokes gmadmin and usesits
version of the ipcrm command naming QspaCE to identify resources to be removed.

The final command in the script is the rm command, which removes anumber of files that are
generated by the application. Thereis no harm in leaving these files; in fact, as you work more
with the sampl e application you will probably want to keep tuxconfig, QUE, and TLOG to save
having to recreate them.

Using the ATMI /Q Component A-7

A-8 Using the ATMI /Q Component

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Using the ATMI /Q Component , 12c Release 2 (12.2.2)
	Contents
	Oracle Tuxedo /Q Overview
	General Description
	Queuing System Components and Tasks
	Figure 1-1 Queued Service Invocation

	Administrator Tasks
	Figure 1-2 Peer-to-Peer Communication

	Programmer Tasks
	Transaction Management
	Figure 1-3 Transaction Demarcation

	Handling Reply Messages
	Error Handling
	Summary
	Oracle Tuxedo /Q Administration

	Introduction
	Available Sample Program Called qsample

	Configuration
	Specifying the QM Server Group
	Specifying the Message Queue Server
	Operation Timeout

	Queue Space Names, Queue Names, and Service Names
	Data-dependent Routing
	Customized Buffer Types
	Buffer Subtypes

	Specifying the Message Forwarding Server
	Queue Names and Service Names: The -q option
	Controlling Transaction Timeout: The -t option
	Controlling Idle Time: The -i option
	Controlling Server Exit: The -e option
	Delete Message After Service Failure: The -d option
	Customized Buffer Types

	Dynamic Configuration

	Creating Queue Spaces and Queues
	Working with qmadmin Commands
	Creating an Entry in the Universal Device List: crdl
	Creating a Queue Space: qspacecreate
	Creating a Queue: qcreate
	Specifying Queue Order
	Enabling Out-of-Order Enqueuing
	Specifying Retry Parameters
	Using Queue Capacity Limits
	Reply and Failure Queues
	Error Queues

	Handling Encrypted Message Buffers
	Maintenance of the Oracle Tuxedo /Q Feature
	Adding Extents to a Queue Space
	Backing Up or Moving Queue Space
	Moving the Queue Space to a Different Type of Machine
	TMQFORWARD and Non-Global Transactions
	TMQFORWARD and Commit Control
	Handling Transaction Timeout
	TMQFORWARD and Retries for an Unavailable Service

	Windows Standard I/O
	Oracle Tuxedo /Q C Language Programming

	Introduction
	Prerequisite Knowledge
	Where Requests Can Originate
	Emphasis on the Default Case
	Enqueuing Messages
	tpenqueue(3c) Arguments
	tpenqueue(): The qspace Argument
	tpenqueue(): The qname Argument
	tpenqueue(): The data and len Arguments
	tpenqueue(): The flags Arguments
	TPNOTRAN
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	TPQCTL Structure
	Listing 3-1 The tpqctl_t Structure
	#define TMQNAMELEN 127 #define TMMSGIDLEN 32 #define TMCORRIDLEN 32 struct tpqctl_t { /* control parameters to queue primitives */ long flags; /* indicates which of the values are set */ long deq_time; /* absolute/relative time for dequeuing */ long ...
	TPNOFLAGS
	TPQTOP
	TPQBEFOREMSGID
	TPQTIME_ABS
	TPQTIME_REL
	TPQPRIORITY
	TPQCORRID
	TPQREPLYQ
	TPQFAILUREQ
	TPQDELIVERYQOS, TPQREPLYQOS
	TPQQOSDEFAULTPERSIST
	TPQQOSPERSISTENT
	TPQQOSNONPERSISTENT

	TPQEXPTIME_ABS
	TPQEXPTIME_REL
	TPQEXPTIME_NONE
	TPQMSGID
	[QMEINVAL]
	[QMEBADRMID]
	[QMENOTOPEN]
	[QMETRAN]
	[QMEBADMSGID]
	[QMESYSTEM]
	[QMEOS]
	[QMEABORTED]
	[QMEPROTO]
	[QMEBADQUEUE]
	[QMENOSPACE]
	[QMERELEASE]
	[QMESHARE]

	Overriding the Queue Order
	Overriding the Queue Priority

	Setting a Message Availability Time
	1. Place the values for the date you want to use in the tm structure.
	2. Call gp_mktime to produce a value for deq_time and set the flags to indicate that an absolute time is being provided.
	3. Call tpenqueue().

	tpenqueue() and Transactions

	Dequeuing Messages
	tpdequeue(3c) Arguments
	tpdequeue(): The qspace Argument
	tpdequeue(): The qname Argument
	tpdequeue(): The data and len Arguments
	tpdequeue(): The flags Arguments
	TPNOTRAN
	TPNOBLOCK
	TPNOTIME
	TPNOCHANGE
	TPSIGRSTRT

	TPQCTL Structure
	TPNOFLAGS
	TPQGETBYMSGID
	TPQGETBYCORRID
	TPQWAIT
	TPQPEEK
	TPQPRIORITY
	TPQMSGID
	TPQCORRID
	TPQDELIVERYQOS
	TPQREPLYQOS
	TPQREPLYQ
	TPQFAILUREQ
	[QMENOMSG]
	[QMEINUSE]

	Using TPQWAIT
	Error Handling When Using TMQFORWARD Services
	Procedure for Dequeuing Replies from Services Invoked Through TMQFORWARD
	1. As a preliminary step, the queue space must include a reply queue and a failure queue. The application must also agree on the content of the correlation identifier. The service should be coded to return TPSUCCESS on a logical failure and return an...
	2. When you call tpenqueue() to put the message on the queue, set flags to turn on the bits for the following flags:
	3. When you call tpdequeue() to check for a reply, specify the reply queue in the qname argument and set flags to turn on the bits for the following flags:
	4. Set up another call to tpdequeue(). This time have qname point to the name of the failure queue and set flags to turn on the bits for the following flags:

	Sequential Processing of Messages
	Using Queues for Peer-to-Peer Communication
	Oracle Tuxedo /Q COBOL Language Programming

	Introduction
	Prerequisite Knowledge
	Where Requests Can Originate
	Emphasis on the Default Case
	Enqueuing Messages
	01 TPQUEDEF-REC. COPY TPQUEDEF. 01 TPTYPE-REC. COPY TPTYPE. 01 DATA-REC. COPY User Data. 01 TPSTATUS-REC. COPY TPSTATUS. CALL "TPENQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.
	TPENQUEUE() Arguments
	TPENQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument
	TPENQUEUE(): The QNAME in TPQUEDEF-REC Argument
	TPENQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments
	TPENQUEUE(): The Settings in TPQUEDEF-REC
	TPNOTRAN
	TPTRAN
	TPNOBLOCK
	TPBLOCK
	TPNOTIME
	TPTIME
	TPSIGRSTRT
	TPNOSIGRSTRT

	TPQUEDEF-REC Structure
	Listing 4-1 The TPQUEDEF-REC Structure
	TPQTOP
	TPQBEFOREMSGID
	TPQTIME-ABS
	TPQTIME-REL
	TPQPRIORITY
	TPQCORRID
	TPQREPLYQ
	TPQFAILUREQ
	TPQDELIVERYQOS TPQREPLYQOS
	TPQQOSDELIVERYDEFAULTPERSIST TPQQOSREPLYDEFAULTPERSIST
	TPQQOSDELIVERYPERSISTENT TPQQOSREPLYPERSISTENT
	TPQQOSDELIVERYNONPERSISTENT TPQQOSREPLYNONPERSISTENT

	TPQEXPTIME-ABS
	TPQEXPTIME-REL
	TPQEXPTIME-NONE
	TPQNOEXPTIME
	TPQMSGID
	[QMEINVAL]
	[QMEBADRMID]
	[QMENOTOPEN]
	[QMETRAN]
	[QMEBADMSGID]
	[QMESYSTEM]
	[QMEOS]
	[QMEABORTED]
	[QMEPROTO]
	[QMEBADQUEUE]
	[QMENOSPACE]
	[QMERELEASE]
	[QMESHARE]

	Overriding the Queue Order
	Overriding the Queue Priority

	Setting a Message Availability Time
	TPENQUEUE() and Transactions

	Dequeuing Messages
	01 TPQUEDEF-REC. COPY TPQUEDEF. 01 TPTYPE-REC. COPY TPTYPE. 01 DATA-REC. COPY User Data. 01 TPSTATUS-REC. COPY TPSTATUS. CALL "TPDEQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.
	TPDEQUEUE() Arguments
	TPDEQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument
	TPDEQUEUE(): The QNAME in TPQUEDEF-REC Argument
	TPDEQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments
	TPDEQUEUE(): The Settings in TPQUEDEF-REC
	TPNOTRAN
	TPTRAN
	TPNOBLOCK
	TPBLOCK
	TPNOTIME
	TPTIME
	TPNOCHANGE
	TPCHANGE
	TPSIGRSTRT
	TPNOSIGRSTRT

	TPQUEDEF-REC Structure
	TPQGETNEXT
	TPQGETBYMSGID
	TPQGETBYCORRID
	TPQWAIT
	TPQPEEK
	TPQPRIORITY
	TPQMSGID
	TPQCORRID
	TPQDELIVERYQOS
	TPQREPLYQOS
	TPQREPLYQ
	TPQFAILUREQ
	[QMENOMSG]
	[QMEINUSE]

	Using TPQWAIT
	Error Handling When Using TMQFORWARD Services
	Procedure for Dequeuing Replies from Services Invoked Through TMQFORWARD
	1. As a preliminary step, the queue space must include a reply queue and a failure queue. The application must also agree on the content of the correlation identifier. The service should be coded to return TPSUCCESS on a logical failure and return an...
	2. When you call TPENQUEUE() to put the message on the queue, set the following:
	3. When you call TPDEQUEUE() to check for a reply, specify the reply queue in QNAME and set the following:
	4. Set up another call to TPDEQUEUE(). This time have QNAME point to the name of the failure queue and set the following:

	Sequential Processing of Messages
	Using Queues for Peer-to-Peer Communication
	A Sample Application

	Overview
	Prerequisites
	What Is qsample?
	Building qsample
	1. Make a directory for qsample and cd to it:
	2. Copy the qsample files.
	3. List the files.
	README
	setenv
	crlog
	crque
	makefile
	client.c
	server.c
	ubb.sample
	runsample
	rmipc
	4. Edit the setenv file.
	5. Run runsample.

	Suggestions for Further Exploration
	setenv: Set the Environment
	makefile: Make Your Application
	ubb.sample: The ASCII Configuration File
	crlog: Create the Transaction Log
	crque: Create the Queue Space and Queues
	Boot, Run, and Shut Down the Application
	Clean Up

