Oracle® Tuxedo
Programming an Oracle Tuxedo Application Using COBOL

12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo Programming an Oracle Tuxedo Application Using COBOL, 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction to Oracle Tuxedo Programming

Oracle Tuxedo Distributed Application Programming.
Communication Paradigms.ot e
Oracle Tuxedo ClENtS.o e e
Oracle TUXEAD SEIVErSo e

Basic Server Operationottt

SErVErS @S REQUESIEIS. . . .o ottt e
Oracle Tuxedo API: ATMI . ..o e

2. Programming Environment

Updating the UBBCONFIG ConfigurationFile.
Setting Environment Variables.
Defining Equivalent Data TYPES. . . . o oottt e
Starting and Stopping the Application i i

3. Managing Typed Records

Overview of Typed ReCOrds.o s
Defining Typed Records.
UsingaVIEW Typed Record.o e
Setting Environment Variablesfor aVIEW Typed Record.
Creating aView Description File. i
Executingthe VIEW Compiler i
Usingan FML Typed Recordot

Programming an Oracle Tuxedo Application Using COBOL

Setting Environment Variablesfor an FML Typed Record 3-14

CregtingaField TableFile i 314
InitidlizingaTyped Record.t 3-16
Creatingan FML Header File. i 3-19
Usingan XML Typed Recordot e 3-20
4. Writing Clients
Joining an AppliCationt 4-1
Using Features of the TPINFDEF-REC Record, 4-3
Client Naming. e 4-4
Unsolicited NotificationHandling o i 4-5
SYStEM ACCESSMOE . . . oo 4-6
Resource Manager ASSOCIatioN.ot e 4-7
Client Authenticationt e 4-7
Leavingthe Application. o e 4-8
BUuilding Clients 4-8
SOE ALISD . et e 4-10
Client Process EXamplesot e 4-10

5. Writing Servers

Oracle Tuxedo System Controlling Program., 51
System-supplied Server and Services.o 5-3
System-supplied Server: AUTHSVR() oo e 5-3
System-supplied Services: TPSVRINIT Routine. 5-3
Receiving Command-lineOptions., 5-4
OpeningaResourceManagervviii i 5-6
System-supplied Services: TPSVRDONERoutine 5-8
Guidelinesfor Writing Servers. e e 59

Programming an Oracle Tuxedo Application Using COBOL

Terminating aServiceRoUtINE.o 5-19
Sending RePliEs. . ..o 5-19
Invalidating DEsCriptorsot 5-25
Forwarding REQUESES. oot 5-26

Advertising and Unadvertising Services.o oo 5-29
AQVErtISING SEIVICESottt 5-30
UnadvertisSing SErViCESottt 5-30
Example: Dynamic Advertising and Unadvertising of aService............. 5-31

BUIldiNg Servers. 5-32
SEE AlSD. L 5-34

6. Writing Request/Response Clients and Servers

Overview of Request/Response CommuniCation.ivieeinnnnan.. 6-1
Sending SynchronoUSMEeSSagES. oo oot 6-2
Example: Using the Same Record for Request and Reply Messages 6-3
Example: Sending a Synchronous Message with TPSIGRSTRT Set 6-6
Example: Sending a Synchronous Message with TPNOTRAN Set............ 6-8
Sending ASynchronOUSMESSagES. oo it 6-10
Sending an AsynchronOUSReqUESEottt 6-11
Gettingan AsynchronousReplyo 6-14
Setting and Getting Message Priorities. 6-15
SettingaMessage Priority.o 6-15
GettingaMessage Priority 6-17

/. Writing Conversational Clients and Servers
Overview of Conversational Communication ...ty 7-1

Joining an Application e 7-3

Programming an Oracle Tuxedo Application Using COBOL

Establishing aConnection 7-3

Sending and ReCaIVINg MESSA0ESo oo v it e 7-4
SENdiNg MESSAgES ottt 7-5
RECEIVING MEBSSA0ES oottt 7-6

Ending @aConversationou et 7-7
Example: EndingaSimple Conversation. 7-8
Example: Ending aHierarchical Conversation.ccoovvuu... 7-9
Executing aDisorderly DiSCONNECt. oo 7-10

Building Conversational Clientsand Servers., 7-11

Understanding Conversational Communication Events. 7-11

8. Writing Event-based Clients and Servers

OVErVIeW Of EVENESot 81
Unsolicited EVENLS oo e 8-2
BroKered EVENESt e 8-2

Notification ACHIONS.ot 8-2
EventBroker Servers 8-3
System-defined Bvents. 8-4
Programming Interface for the EventBroker. 8-4

Defining the Unsolicited MessageHandler i, 8-5

Sending Unsolicited MESSAgES.ot vttt e 8-6
Broadcasting Messagesby Name. i 8-6
Broadcasting Messages by Identifier i, 8-8

Checking for Unsolicited MeSSages.o oo v it 8-8

Getting Unsolicited MESSAgESo oot e 8-10

Subscribingto EVents.o 8-11

Unsubscribing from Events 8-15

POStING EVENESo 8-15

vi Programming an Oracle Tuxedo Application Using COBOL

9. Writing Global Transactions

What IsaGlobal Transaction?.t 9-1
Startingthe Transaction 9-2
Terminatingthe Transaction. e 9-10
Committing the Current Transaction.t 9-11
Prerequisitesfor a Transaction Commit.t 9-11
Two-phase Commit Protocol 9-12
Aborting the Current Transaction 9-13
Example: Committing a Transaction in Conversational Mode. 9-14
Example: Testing for Participant Errors 9-15
Implicitly Defining aGlobal Transaction. o i, 9-16
Defining Global Transactions for an XA-Compliant Server Group. 9-17
Testing Whether a TransactionHas Startedt 9-18
S AlSD. . o 9-20
10. Programming a Multithreaded and Multicontexted ATMI
Application
Support for Programming a Multithreaded/Multicontexted ATMI Application 10-1
Platform-specific Considerations for Multithreaded/Multicontexted Applications10-2
Planning and Designing a Multithreaded/Multicontexted ATMI Application. 10-3
What Are Multithreading and Multicontexting? oo, 10-3
What IsMultithreading? 10-3
What [SMuUlticontexting?t 10-5
Licensing a Multithreaded or Multicontexted Application. 10-6
Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application10-7
Advantages of a Multithreaded/Multicontexted ATMI Application. 10-7
Disadvantages of a Multithreaded/Multicontexted ATMI Application. 10-8
How Multithreading and Multicontexting Work inaClient 10-10

Programming an Oracle Tuxedo Application Using COBOL vii

viii

Client Threads Join MultipleContexts on. 10-10
Client Threads Switch to an Existing Context. 10-11
WOrK Phaseo 10-11
SEVICE REQUESESot 10-11
Repliesto Service ReqUESES. oot 10-12
TranSaCtioNS. . . . oot 10-12
UNnsolicited MESSAgES. . . . oo et eeeee 10-12
Userlog Maintains Thread-specific Information 10-14
Completion Phase 10-14
How Multithreading and Multicontexting Work inan ATMI Server 10-15
Start-up Phase 10-15
WOrK Phaseo 10-15
Server-dispatched ThreadsAreUsed. 10-16
Application-created ThreadsAreUsedt 10-17
Bulletin Board Liaison Verifies Sanity of System Processes. 10-17
System Keeps Statisticson Server Threads. 10-18
Userlog Maintains Thread-specific Information 10-18
Completion Phase 10-18
Design Considerations for a Multithreaded and Multicontexted ATMI Application 10-19
Environment Requirements.ot 10-19
Design ReqUIreMEeNtSottt e e e 10-20

Isthe Task of Your Application Suitable for Multithreading and/or Multicontexting?
10-20

How Many Applications and ConnectionsDo YouWant?. 10-21
What Synchronization Issues Need to Be Addressed?. 10-22
Will You Need to Port Your Application?., 10-22
Which Threads Model IsBestfor You? ..., 10-22

Programming an Oracle Tuxedo Application Using COBOL

Interoperability Restrictions for Workstation Clients 10-22

Implementing a Multithreaded/ Multicontexted ATMI Application 10-23
Preliminary Guidelines for Programming a M ultithreaded/M ulticontexted ATMI
Application 10-23
Prerequisites for a Multithreaded ATMI Application 10-23
General Multithreaded Programming Considerations. 10-24
Concurrency Considerations.ttt 10-24
Writing Code to Enable Multicontextinginan ATMI Client. 10-26
Context AttribULES 10-26
Setting Up Multicontexting at Initialization 10-27
Implementing Security for a Multicontexted ATMI Client. 10-28
Synchronizing Threads Before an ATMI Client Termination. 10-28
Switching CoNteXTS oot 10-28
Handling Unsolicited MeSsSageso 10-31
Coding Rules for Transactionsin a Multithreaded/M ulticontexted ATMI Application
10-32
Writing Code to Enable Multicontexting and Multithreading in an ATMI Server .. 10-33
Context AttribUtESo 10-33
Coding Rulesfor aMulticontexted ATMI Server. 10-33
Initializing and Terminating ATMI Serversand Server Threads 10-34
Programming an ATMI Serverto Create Threads. 10-35
Creating Threads i e 10-35
Associating ThreadswithaContext., 10-35
Sample Code for Creating an Application Thread in a Multicontexted ATMI Server .
10-36
Writing aMultithreaded ATMIClient e 10-38
Coding Rules for aMultithreaded ATMI Client 10-38
Initializing an ATMI Client to Multiple Contexts. 10-39

Programming an Oracle Tuxedo Application Using COBOL ix

Context State Changesfor an ATMI Client Thread 10-40

Getting Repliesin a Multithreaded Environment. 10-41
Using Environment Variables in a Multithreaded and/or Multicontexted Environment
10-42
Using Per-context Functions and Data Structures in a Multithreaded ATMI Client . .
10-44
Using Per-process Functions and Data Structures in a Multithreaded ATMI Client . .
10-46
Using Per-thread Functions and Data Structuresin a Multithreaded ATMI Client10-47
Sample Code for aMultithreaded ATMI Client 10-47
Writing aMultithreaded ATMI Server e 10-50
Compiling Code for a Multithreaded/Multicontexted ATMI Application. 10-50
Testing a Multithreaded/Multicontexted ATMI Application. 10-50
Testing Recommendations for a Multithreaded/M ulticontexted ATMI Application . .
10-51
Troubleshooting a Multithreaded/Multicontexted ATMI Application 10-51
Improper Use of the TPMULTICONTEXTS Flag to tpinit()........... 10-51
Callsto tpinit() Without TPMULTICONTEXTS.o .. 10-51
Insufficient Thread Stack Size.o it 10-52
Error Handling for a Multithreaded/Multicontexted ATMI Application 10-52

11. Managing Errors

Sy M EITOrS. .o e e e 11-1
ABOIt ErTOrS . . oo 11-3
Oracle Tuxedo SySteEM EIOrso e e e 11-3
Communication HaNdIE ErTors.ot 11-3
Limit ErTOrS. . .o 11-4
Invalid DesCriptor Errors.ot e 11-4

X Programming an Oracle Tuxedo Application Using COBOL

Conversational Ermors.ot 11-4

Duplicate ObJECt EFTOrot 11-5
General Communication Call Errors ... 11-5
TPESVCFAIL and TPESVCERREITOrSo oot 11-5
TPEBLOCK and TPGOTSIGEITOrso 11-6
Invalid Argument Brrors.o 11-6
NOENtry Errors. . ..o 11-7
Operating SySteM Errors.o e 11-7
PErmMiSSION ErTOrS . . .ot 11-8
ProtoCol ErTOrS . ..ot 11-8
QUEUING EITOr . . o oo 11-8
Release Compatibility Error. 11-8
Resource Manager ErTors. 11-9
TIMEOUL EFTOrS .« oottt et e e e e e e e e e e e 11-9
TranSaCtioN EFTOrS. . . oottt e e e 11-10
Typed RECOrA ENTOrS. . . .\ttt e e e 11-10
APPLCAION EFTOrS. . . ottt e e e 11-11
Handling ErrOrs.o e 11-11
Transaction ConSIdErations.ottt e 11-12
Communication Btiquette. 11-12
TranSaCtioN EFTOrS. . . oottt e e e 11-13
Non-fatal TransaCtion Errors.o e 11-13
Fatal TransaCtion EFrOrsot e e 11-14
Heuristic DECISION EITOrSottt ettt 11-15
Transaction TIMEOULSottt et 11-16
TPCOMMIT Call . ..o e 11-16
TPNOTRAN . . 11-16
TPRETURN and TPFORWARCallS 11-17

Programming an Oracle Tuxedo Application Using COBOL Xi

tpterm() FUNCLiON. 11-17

ResSOUrCE ManagersS 11-18
Sample Transaction SCeNariosot teeee 11-19
Called Servicein Same TransactionasCaller 11-19
Called Servicein Different Transaction with AUTOTRAN Set............. 11-19
Called Service That Starts a New Explicit Transaction 11-20
Oracle TUXEDO System-supplied Subroutines 11-21
Central EVENTLOGottt e e 11-21
LogName 11-22
Log Entry Format 11-22
Writingtothe Event Log.o oo 11-23

12. COBOL Language Bindings for the Workstation Component

UNIX BINAINGS. . . .ottt e e e e e e e e e 12-1
Writing Client Programs.t 12-1
Building Client Programsot e 12-1
Setting Environment Variables 12-2

Microsoft WindowsBindingso 12-4
Writing Client Programs.t 12-4
Building Client Programsot 12-4
Building ACCEPT/DISPLAY Clientsovvviiiiiii e 12-5

Xii Programming an Oracle Tuxedo Application Using COBOL

Introduction to Oracle Tuxedo
Programming

Thistopic includes the following sections:
e Oracle Tuxedo Distributed Application Programming
e Communication Paradigms
e Oracle Tuxedo Clients

Oracle Tuxedo Servers

e Oracle Tuxedo API: ATMI

Oracle Tuxedo Distributed Application Programming

A distributed application consists of a set of software modules that reside on multiple hardware
systems, and that communicate with one another to accomplish the tasks required of the
application. For example, as shown in Figure 1-1, a distributed application for aremote online
banking system includes software modules that run on a bank customer’ s home computer, and a
computer system at the bank on which all bank account records are maintained.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-1

Figure 1-1 Distributed Application Example - Online Banking System

Custamer Sequas! Chesk Account Balance o &

4
Syatem Mesponse: § 20,76

Customer's Bank's Computer on Which
Home Compuler Account Records A Siomed

The task of checking an account balance, for example, can be performed simply by logging on
and selecting an option from amenu. Behind the scenes, thelocal software module communicates
with the remote software modul e using special application programming interface (API) routines.

The Oracle Tuxedo distributed application programming environment providesthe API routines
necessary to enable secure, reliable communication between the distributed software modul es.
This APl isreferred to as the Application-to-Transaction Monitor Interface (ATMI).

The ATMI enables you to:

e Send and receive messages between clients and servers, possibly across a network of
heterogeneous machines

e Establish and use client naming and security features
e Define and manage transactions in which data may be stored in several locations

e Genericaly open and close a resource manager such as a Database Management System
(DBMS)

e Manage the flow of service requests and the availability of serversto processthem

Communication Paradigms

Table 1-1 describesthe Oracle Tuxedo ATMI communication paradigms availableto application
developers.

1-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

Communication Paradigms

Table 1-1 Communication Paradigms

Paradigm

Description

Request/response
communication

Reguest/response communi cation enables one software module
to send arequest to a second software module and wait for a
response. Can be synchronous (processing waits until the
requester receives the response) or asynchronous (processing
continues while the requester waits for the response).

Thismodeis also referred to as client/server interaction. The
first software module assumes the role of the client; the second,
of the server.

Refer to “Writing Request/Response Clients and Servers’ on
page 6-1 for more information on this paradigm.

Conversational
communication

Conversational communication is similar to request/response
communication, except that multiple requests and/or responses
need to take place before the “ conversation” isterminated. With
conversational communication, both the client and the server
maintain state information until the conversation is
disconnected. The application protocol that you are using
governs how messages are communicated between the client
and server.

Conversational communication is commonly used to buffer
portions of alengthy response from a server to aclient.

Refer to “Writing Conversational Clients and Servers’ on
page 7-1 for more information on this paradigm.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-3

Table 1-1 Communication Paradigms

Paradigm

Description

Application queue-based
communication

Application queue-based communication supports deferred or
time-independent communication, enabling a client and server
to communicate using an application queue. The Oracle
Tuxedo/Q facility allows messages to be queued to persistent
storage (disk) or to non-persistent storage (memory) for later
processing or retrieval.

For example, application queue-based communication is useful
for enqueuing requests when a system goes offline for
maintenance, or for buffering communicationsif the client and
server systems are operating at different speeds.

Refer to Using the ATMI /Q Component for moreinformation on
the /Q facility.

Event-based
communication

Event-based communication allowsaclient or server to notify a
client when a specific situation (event) occurs.

Events are reported in one of two ways:

* Unsolicited events are unexpected situations that are
reported by clients and/or servers directly to clients.

» Brokered events are unexpected situations or predictable
occurrenceswith unpredictable timeframesthat are reported
by serversto clientsindirectly, through an “anonymous
broker” program that receives and distributes messages.

Event-based communication is based on the Oracle Tuxedo
EventBroker facility.

Refer to “Writing Event-based Clientsand Servers’ on page 8-1
for more information on this paradigm.

Oracle Tuxedo Clients

1-4

An Oracle Tuxedo ATMI client is a software module that collects a user request and forwards it
to aserver that offers the requested service. Almost any software module can become an Oracle
Tuxedo client by calling the ATMI client initialization routine and “joining” the Oracle Tuxedo
application. The client can then exchange information with the server.

The client callsthe ATMI termination routine to “leave” the application and notify the Oracle
Tuxedo system that it (the client) no longer needs to be tracked. Consequently, Oracle Tuxedo
application resources are made available for other operations.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Oracle Tuxedo Servers

The operation of abasic client process can be summarized by the pseudo-code shown in
Listing 1-1.

Listing 1-1 Pseudo-code for a Client

START PROGRAM

enroll as a client of the BEA TUXEDO application
place initial client identification in data structure
perform until end

get user input

place user input in DATA-REC

send service request

receive reply

pass reply to the user

end perform

leave application

END PROGRAM

Most of the actions described in the above listing are implemented with ATMI calls. Others—
placing the user input in paTA-REC and passing the reply to the user—are implemented with
COBOL routines.

An ATMI client may send and receive any number of service requests before leaving the
application. The client may send these requests as a series of request/response calls or, if it is
important to carry state information from one call to the next, by establishing a connection to a
conversational server. In both cases, thelogicin theclient programissimilar, but different ATMI
calls are required for these two approaches.

Beforeyou can executean ATMI client, you must runthebuildclient -c commandtocompile
it and link it with the Oracle Tuxedo ATMI and required libraries. Refer to “Writing Clients’ on
page 4-1 for information on thebuildclient (1) command.

Oracle Tuxedo Servers

An Oracle Tuxedo ATMI server is aprocess that provides one or more servicesto aclient. A
serviceisaspecific businesstask that aclient may need to perform. Serversreceive requestsfrom
clients and dispatch them to the appropriate service subroutines.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-5

../rfcm/rfcmd.html

1-6

Basic Server Operation

To build server processes, applications combine their service subroutines with a controlling
program provided by the Oracle Tuxedo system. This system-supplied controlling programisa
set of predefined routines. It performs server initialization and termination and places user input
in data structures that can be used to receive and dispatch incoming requests to service routines.
All of this processing is transparent to the application.

Figure 1-2 summarizes, in pseudo-code, the interaction between a server and a service
subroutine.

Figure 1-2 Pseudo-code for a Request/Response Server and a Service Subroutine

Provided by the BEA Tuxedo System

-
| START PROGRAM I
| enroll as a server in the BEA Tuxedo application |
I advertise services
| perform until end |
| check message queue for service request |
| dequeue request |
|
I
' |
' |

dispatch request to service subrouting

recaive control back from subroutine 4
end perform

e ¥ M et ¥ o f o ¥ St st ¥ e f s’ ¥ e’ s I s it 't e s s s f i s § s

I SERVICE SUBROUTINE + }
| receive control from server |
I I
I I

process request
return contral to server

After initialization, an ATMI waits until arequest message is delivered to its message queue,
dequeues the request, and dispatchesiit to a service subroutine for processing. If areply is
required, thereply is considered part of request processing.

The conversational paradigm is somewhat different from request/response, as illustrated by the
pseudo-code in Figure 1-3.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Oracle Tuxedo API: ATMI

Figure 1-3 Pseudo-code for a Conversational Service Subroutine

SERVER 4

CONVERSATIOMNAL SERVICE SUBRCU TIN E-4—

Ecaiwe contml from s2ner

perform while true
Eceiwe data form conwereationzal client
pmocess Equest
==rd dak © conersational client

end perorm

eturn contml to s=ner.

The Oracle Tuxedo system-supplied controlling program contains the code needed to enroll a
process asan ATMI server, advertise services, and degqueue requests. ATMI calls are used in
service subroutines that process requests. When you are ready to compile and test your service
subroutines, you must link edit them with the server and generate an executable server. To do so,
runthebuildserver -c command.

Servers as Requesters

If aclient requests several services, or severa iterations of the same service, a subset of the
services might be transferred to another server for execution. In this case, the server assumesthe
role of aclient, or requester. Both clients and servers can be requesters; a client, however, can
only be arequester. This coding model is easily accomplished using the Oracle Tuxedo ATMI
cals.

Note: A request/response server can also forward arequest to another server. In this case, the
server does not assume the role of client (requester) because the reply is expected by the
original client, not by the server forwarding the request.

Oracle Tuxedo API: ATMI

In addition to the COBOL code that expresses the logic of your application, you must use the
Application-to-Transaction Monitor Interface (ATMI), the interface between your application
and the Oracle Tuxedo system.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-1

The ATMI isareasonably compact set of calls used to open and close resources, begin and end

transactions, and support communication between clientsand servers. Table 1-2 summarizesthe
ATMI calls. Each call is described in the Oracle Tuxedo ATMI COBOL Function Reference.

Table 1-2 Using the ATMI Calls

For a Task Use This COBOL Function.. To... For More Information,
Related to. .. Referto. ..
Client membership TPINITIALIZE Haveaclientjoin an “Writing Clients’ on
application page 4-1
TPTERM Have aclient leave an

application

Multiple application
context management

TPGETCTXT (3cbl)

Retrieve an identifier for the
current threads context

TPSETCTXT (3cbl)

Set the current thread’ s context
in amulticontexted process

“Programming a
Multithreaded and
Multicontexted ATMI
Application” on

page 1-1

Service entry and TPSVCSTART Get service information “Writing Servers’ on
return page 5-1
TPSVRINIT Initialize a server
TPSVRDONE Terminate a server
TPRETURN End a service routine
TPFORWAR Forward a request
Dynamic TPADVERTISE Advertise a service name “Writing Servers’ on
advertisement page 5-1
TPUNADVERTISE Unadvertise a service name
Message priority TPGPRIO Get the priority of the last “Writing Servers’ on
request page 5-1
TPSPRIO Set the priority of the next

request

1-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Table 1-2 Using the ATMI Calls (Continued)

Oracle Tuxedo API: ATMI

For a Task Use This COBOL Function.. To... For More Information,
Related to . . . Referto...
Request/Response TPCALL Initiate a synchronous e “Writing Servers’
communications request/response to a service on page 5-1
TPACALL Initiate an asynchronous " Wiiting
request (fanout) Reguest/Response
& Clients and
TPGETRPLY Receive an asynchronous Servers’ on
response page 6-1
TPCANCEL Cancel an asynchronous
request
Conversational TPCONNECT Begin a conversation with a “Writing
communications service Conversational
Clientsand Servers’
TPDISCON Abnormally terminate a on page 7-1
conversation
TPSEND Send amessagein a
conversation
TPRECV Receive amessagein a
conversation
Reliable queuing TPENQUEUE (3cbl) Engueue a message to a Using the ATMI /Q
message queue Component

TPDEQUEUE (3cbl)

Deqgueue a message from a
message queue

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-9

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Table 1-2 Using the ATMI Calls (Continued)

For a Task Use This COBOL Function.. To... For More Information,
Related to. . . Referto...
Event-based TPNOTIFY Send an unsolicited messageto “Writing Event-based
communications aclient Clientsand Servers’
on page 8-1
TPBROADCAST Send messages to several
clients
TPSETUNSOL Set unsolicited message
call-back
TPCHKUNSOL Check thearrival of unsolicited
messages
TPGETUNSOL Get an unsolicited message
TPPOST Post an event message
TPSUBSCRIBE Subscribe to event messages
TPUNSUBSCRIBE Unsubscribe to event messages
Transaction TPBEGIN Begin atransaction “Writing Global
management Transactions’ on
TPCOMMIT Commit the current transaction page 9-1
TPABORT Roll back the current
transaction
TPGETLEV Check whether in transaction
mode
Resource management TPOPEN (3cbl) Open a resource manager e “Programming a

TPCLOSE (3cbl)

Close a resource manager

Multithreaded and
Multicontexted
ATMI
Application” on
page 1-1

e Getting Sarted
with Oracle
Tuxedo CORBA
Applications

1-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Table 1-2 Using the ATMI Calls (Continued)

Oracle Tuxedo API: ATMI

For a Task Use This COBOL Function.. To... For More Information,
Related to. .. Referto...
Nontransactional TPGBLKTIME (3cbl) Get blocktime value Oracle Tuxedo ATMI
blocking time COBOL Function
management TPSBLKTIME (3cbl) Set blocktime valuein seconds Reference

or milliseconds
Security TPKEYOPEN (3cbl) Open akey handle for digital Using Security in

signature generation, message
encryption, or message
decryption

TPKEYGETINFO (3cbl)

Get information associated
with akey handle

TPKEYSETINFO (3cbl)

Set optional attributes
associated with akey handle

TPKEYCLOSE (3cbl)

Close akey handle previously
opened using TPKEYOPEN

CORBA Applications

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-1

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

1-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

Programming Environment

Thistopic includes the following sections:

Updating the UBBCONFIG Configuration File

Setting Environment Variables

Defining Equivalent Data Types

e Starting and Stopping the Application

Updating the UBBCONFIG Configuration File

The application administrator initially defines the configuration settings for an application in the
UBBCONFIG configuration file. To customize your programming environment, you may need to
create or update a configuration file.

If you need to create or update a configuration file, refer to the following guidelines:

e Copy and edit afilethat already exists. For example, the file ubbshm that comes with the
bankapp sample application can provide a good starting point.

e Minimize complexity. For test purposes, set up your application as a shared memory,
single-processor system. Use regular operating system files for your data.

e Make sure the TrckEY parameter in the configuration file does not conflict with any other
parameters being used at your installation. Check with your Oracle Tuxedo application
administrator, and refer to Setting Up an Oracle Tuxedo Application for more information.

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-1

e Set the uzp and gD parameters so that you are the owner of the configuration.

o Review the documentation. The configuration fileis described in usBconF1G (5) inthe
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Table 2-1 summarizesthe usBconr1c configuration file parametersthat affect the programming
environment. Parameters are listed by functional category.

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category

Functional Parameter Section Description
Category
Global resource MAXSERVERS RESOURCES Specifies the maximum number of
limits serversin the configuration. When
setting this value, you need to
consider theMax valuesfor all
Servers.
MAXSERVICES RESOURCES Specifies the maximum total number
of servicesin the configuration.
Data-dependent BUFTYPE ROUTING List of types and subtypes of data
routing records for which the specified
routing entry isvalid.
Link-level MINENCRYPTBITS NETWORK Sets the minimum encryption level
encryption that a process accepts.
MAXENCRYPTBITS NETWORK Sets the maximum encryption level

that a process accepts.

2-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf5/rf5.html

Updating the UBBCONFIG Configuration File

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional Parameter Section Description
Category
Load balancing LDBAL RESOURCES Flag for specifying whether or not

load balancing is enabled. If enabled,
the Oracle Tuxedo system attemptsto
balance requests across the network.

NETLOAD MACHINES Numeric value that is added to the
load factor of servicesthat areremote
from the invoking client, providing a
biasfor choosing alocal server over a
remote server. Load balancing must
be enabled (that is, LDBAL must be
set to v).

LOAD SERVICES Relative load factor associated with a
service instance. The default is 50.

Security AUTHSVC RESOURCES Specifies the name of an application
authentication servicethat isinvoked
by the system for each client joining
the system.

SECURITY RESOURCES Specifies the type of application
security to be enforced.

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-3

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional
Category

Parameter Section

Description

Conversational MAXCONV RESOURCES
communication

Sets the maximum number of
simultaneous conversations for a
single machine. Y ou can specify a
value between 0 and 32,767. The
default is 64 if any conversational
servers are defined in the SERVERS
section; otherwise, the default is 1.
The specified value can be overriden
for each machine in the MACHINES
section.

CONV SERVERS

Specifies whether or not
conversational communication is
supported. If this parameter isset toN
or unspecified, aTPCONNECT call to
aservicefails.

MIN/MAX SERVERS

Specifies the minimum and
maximum number of occurrences of
the server to be started by

tmboot (1) . If not specified, MIN
defaultsto 1 and MAX defaultsto MIN.
Thesameparametersareavailablefor
use with request/response servers.
However, conversational servers are
automatically spawned as needed. So
if you set MIN=1 and MAX=10, for
example, tmboot starts one server
initially. When a TPCONNECT call is
made to a service offered by that
server, the system starts a second
copy of aserver. Aseach copy is
called, anew oneis spawned, up to a
limit of 10.

2-4

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rfcm/rfcmd.html

Setting Environment Variables

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional Parameter Section Description

Category

Transaction AUTOTRAN SERVICES Controls whether a serviceroutineis
management placed in transaction mode. If you set

this parameter to v, atransaction in
the service subroutine is
automatically started whenever a
request message is received from
another process.

Multithreaded MAXDISPATCHTHREADS SERVERS Specifies the maximum number of
servers concurrently dispatched threads that
each server process may spawn.

MINDISPATCHTHREADS SERVERS Specifies the number of server
dispatch threads started on initial
server boot.

The configuration fileisan operating system text file. To makeit usable by the system, you must
execute the tmloadcf (1) command to convert the fileto abinary file.

See Also

e Setting Up an Oracle Tuxedo Application

e UBBCONFIG (5) inthe File Formats, Data Descriptions, MIBs, and System Processes
Reference

Setting Environment Variables

Initially, the application administrator sets the variables that define the environment in which
your application runs. These environment variables are set by assigning valuesto the ENVFILE
parameter inthemacHINES section of theuseconr1G file. (Refer to Setting Up an Oracle Tuxedo
Application for more information.)

For the client and server routines in your application, you can update existing environment
variables or create new ones. Table 2-2 summarizes the most commonly used environment
variables. The variables are listed by functional category.

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-5

../rf5/rf5.html
../rfcm/rfcmd.html

Table 2-2 Programming-related Environment Variables

Environment Variable

Defines the . ..

Used by...

TUXDIR Location of the Oracle Oracle Tuxedo application
Tuxedo system binary files. programs.

Configuration TUXCONFIG Location of the Oracle Oracle Tuxedo application
Tuxedo configuration file. programs.

Compiling anrecl Command that invokesthe buildclient() -C and
COBOL compiler. Default buildserver() -C
iScobcc. commands.

Specify cobcc85 to use
the Fujitsu NetCOBOL
compiler.

ALTCFLAGST Link editflagstobepassed buildclient() -C and
to the COBOL compiler. buildserver () -C
Link edit flagsare optional. commands.

COBOPT Arguments that you may buildclient() -C and
want to use on the compile buildserver() -C
command line. commands.

COBOPT cannot be used
with Fujitsu NetCOBOL
compiler. Please refer to
Fujitsu’s NetCOBOL
manuals for COBOL
environment variables.

COBCPY Directoriesthat containa ~ buildclient() -C and
set of the COBOL copy buildserver () -C
filesto be used by the commands.

compiler.

COBCPY cannot be used
with Fujitsu NetCOBOL
compiler. Please refer to
Fujitsu’s NetCOBOL
manuals for COBOL
environment variables.

2-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

Setting Environment Variables

Table 2-2 Programming-related Environment Variables

Function Environment Variable Defines the . .. Used by...
Data compression TMCMPPRFM Level of compression Oracle Tuxedo application
between 1 and 9. programs that perform data
compression.
Load balancing TMNETLOAD Numericvaluethatisadded Oracle Tuxedo application

totheload valuefor remote programs that perform load
gueues, making theremote balancing.

gueues appear to havemore

work than they actually do.

Asaresult, evenif load

balancing is enabled, local

requests are sent to local

gueues more often than to

remote queues.

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-1

Table 2-2 Programming-related Environment Variables

Function Environment Variahle

Defines the . ..

Used by...

Record management ~ FIELDTBLS oOf
FIELDTBLS32

Comma-separated list of
field table filenames for
FML and FML32 typed
records, respectively.
Required only for FML
VIEW types.

FML and FML3 2 record types
and FML VIEWS.

FLDTBLDIR O
FLDTBLDIR32

Colon-separated list of
directories to be searched
for thefield tablefiles for
FML and FML32,
respectively. For Windows
2003, a
semicolon-separated list is
used.

FML and FML32 record types
and FML VIEWS.

VIEWFILES Or
VIEWFILES32

Comma-separated list of
allowable tilenames for
VIEW and VIEW32 typed
records, respectively.

VIEW and VIEW3?2 record types.

VIEWDIR Or
VIEWDIR32

Colon-separated list of
directories to be searched
for vIEW and VIEW32
files, respectively. For
Windows 2003, a
semicolon-separated list is
used.

VIEW and VIEW32 record types.

1. On a Windows system, the ar.rcc and ALTcFLAGS environment variables are not applicable
and setting them will produce unexpected results. Y ou must compile your application first using
aCOBOL compiler and then passtheresulting object filetothebuildclient OF buildserver

command.

If operating inaUNIX environment, add $TUXDIR/bin t0 your environment pATH to ensure that
your application can locate the executables for the Oracle Tuxedo system commands. For more
information on setting up the environment, refer to Setting Up an Oracle Tuxedo Application.

2-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

Defining Equivalent Data Types

See Also

e Setting Up an Oracle Tuxedo Application

Defining Equivalent Data Types

Table 2-3 lists the C data types for which equivalent COBOL data types are available.

Table 2-3 COBOL Equivalents for C Data Types

C Data Type Equivalent COBOL Data Type

float COMP-1

double COMP-2

long S9(9) comp-51

short s9(4) comp-5t

dec_t COBOL COMP-3 packed decimal field

1. comp-5, provided for use with MicroFocus COBOL, alows the COBOL
integer fieldsto match the dataformat of the corresponding C fields. The datatype
for vs COBOL IT iScomp.

For storage efficiency, COBOL supports packed decimals: two decimal digits packed into each
byte with the low-order half byte used to store the sign. The length of a packed decimal may be
1to 9 byteswith storage available for 1 to 17 digits, including the sign.

The dec_t field isdefined in aview. The sizeis specified as two values separated by a comma.
Thefirst value indicates the total number of bytes occupied by the decimal in COBOL. The
second value indicates the number of digitsto the right of the decimal pointin COBOL. Y ou can
use the following formula to convert the dec_t field to a COBOL declaration:

dec_t(m, n) => S9(2*m-(n+1),n)COMP-3

For example, a size specification of 6,4 in theview indicatesthat there are 4 digitsto theright of
the decimal point and 7 digitsto theleft, and the last half byteisused to storethe sign. A COBOL
application programmer representsthisas 9 (7) v9 (4), where the v represents the decimal point
between each value. Note that Fu1. does not support the dec_t type; if Fur.-dependent views are
used, then each field must be mapped to ac typein the view file. For instance, a packed decimal

Programming an Oracle Tuxedo ATMI Application Using COBOL 2-9

can be mapped to an Fur string field, and then the mapping functions can be used to do the
conversion between formats.

Starting and Stopping the Application

2-10

To start the application, execute the tmboot (1) command. The command getsthe | PC resources
required by the application, and starts administrative processes and application servers.

To stop the application, execute the tmshutdown (1) command. The command stops the servers
and releases the | PC resources used by the application, except any that might be used by the
resource manager, such as a database.

See Also

e tmboot (1) and tmshutdown (1) in the Oracle Tuxedo Command Reference

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Managing Typed Records

Thistopic includes the following sections:

Overview of Typed Records

Defining Typed Records

Using aVIEW Typed Record

Using an FML Typed Record

Using an XML Typed Record

Overview of Typed Records

In order to send data to another application program, the sending program first placesthe datain
arecord. Oracle Tuxedo ATMI clients use typed records to send messagesto ATMI servers. The
term “typed record” refersto apair of COBOL records: adatarecord and an auxiliary typerecord.
The datarecord is defined in static storage and contains application data to be passed to another
application program. An auxiliary type record accompanies the data record. It specifiesthe
interpretation and trandation rules of the data record to be used by the Oracle Tuxedo system
when passing theinformation between heterogeneous systems. Typed records make up one of the
fundamental features of the distributed programming environment supported by the Oracle
Tuxedo system.

Why typed? In a distributed environment, an application may be installed on heterogeneous
systems that communicate across multiple networks using different protocols. Different types of
recordsrequire different routinesto initialize, send and receive messages, and encode and decode

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-1

data. Each record is designated as a specific type so that the appropriate routines can be called
automatically without programmer intervention.

Table 3-1 lists the typed records supported by the Oracle Tuxedo system and indicates whether
or not:

e Therecord is self-describing; in other words, the record data type and length can be
determined simply by (a) knowing the type and subtype, and (b) looking at the data.

e The record requires a subtype.
e The system supports data-dependent routing for the typed record.

e The system supports encoding and decoding for the typed record.

If any routing routines are required, the application programmer must provide them as part of the
application.Records.

3-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

Table 3-1 Typed Buffers

Overview of Typed Records

Typed Record

Description

Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding

CARRAY

Undefined array of characters, any of
which can be LOW-VALUE. This typed
record isused to handle the data opaquely,
as the Oracle Tuxedo system does not
interpret the semantics of the array.
Because a CARRAY is not self-describing,
thelength must always be provided during
transmission. Encoding and decoding are
not supported for messages sent between
machines because the bytes are not
interpreted by the system.

No

No No

No

FML (Field
Manipulation
Language)

Proprietary Oracle Tuxedo system type of
self-describing record in which each data
field carriesits own identifier, an
occurrence number, and possibly alength
indicator. T record offers
data-independence and greater flexibility

The FML record uses 16 bits for field
identifiers and lengths of fields.

Refer to “Using an FML Typed Record”
on page 3-13 for more information.

Yes

No Yes

Yes

FML32

Equivalent to FML but uses 32 bitsfor field
identifiers and lengths of fields, which
alowsfor larger and morefields and,
consequently, larger overall records.

However, the FML routines that are
available for manipulating the FML typed
record in the C programming language are
not available in COBOL.The primary use
of FML32 in COBOL issimply to work
with C programsin which vIEW32 or
FML32 typed records are used.

Refer to “Using an FML Typed Record”
on page 3-13 for more information.

Yes

No Yes

Yes

Programming an Oracle Tuxedo ATMI Application Using COBOL

3-3

Table 3-1 Typed Buffers (Continued)

Typed Record

Description

Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding

STRING

Array of charactersthat terminates with a
LOW-VALUE character. The Oracle
Tuxedo system can convert data
automatically when data is exchanged by
machines with different character sets.

No

No No

No

VIEW

COBOL data structure defined by the
application. VIEW types must have
subtypes that designate individual data
structures. A view description file, in
which the fields and types that appear in
the data structure are defined, must be
availableto client and server processesthat
use a data structure described in aVIEW
typed record. Encoding and decoding are
performed automatically if the record is
passed between machines of different
types. Refer to “Using a VIEW Typed

Record” on page 3-7 for moreinformation.

Yes Yes

Yes

VIEW32

Equivalent to VIEW but uses 32 bits for
length and count fields, which alows for
larger and more fields and, consequently,
larger overall records.

The primary use of vIEW32 in COBOL is
simply to work with C programs in which

VIEW32 or FML32 typed records are used.

Refer to “Using a VIEW Typed Record”
on page 3-7 for more information.

No

Yes Yes

Yes

X_COMMON

Equivalent to vIiEw, but used for
compatibility between COBOL and C
programs. Field types should be limited to
short, long, and string.

No

Yes Yes

Yes

34 Programming an Oracle Tuxedo ATMI Application Using COBOL

Table 3-1 Typed Buffers (Continued)

Overview of Typed Records

Typed Record

Description

Self-
Describing

Subtype Data- Encoding/
Dependent Decoding
Routing

XML

An XML document that consists of:

e Text, in the form of a sequence of
encoded characters

* A description of the logical structure
of the document and information about
that structure

The routing of an XML document can be
based on e ement content, or on element
type and an attribute value. The XML
parser determines the character encoding
being used; if theencoding differsfromthe
native character sets (US-ASCII or
EBCDIC) used in the Oracle Tuxedo
configuration files (UBBCONFIG (5) and
DMCONFIG (5)), theelement and attribute
names are converted to US-ASCII or
EBCDIC. Refer to “Using an XML Typed
Record” on page 3-20 for more
information.

No

No Yes No

X_OCTET

Equivalent to CARRAY.

No

No No No

All record types are defined in afile called tmtypesw. c inthe $TuxDIR/1ib directory. Only
record types defined in tmtypesw. c are known to your client and server programs. Y ou can edit
the tmtypesw. c fileto add or remove record types. In addition, you can use the BUFTYPE
parameter (in UBBCONFIG) to restrict the types and subtypes that can be processed by a given

service.

The tmtypesw. c fileisused to build a shared object or dynamic link library. This object is
dynamically loaded by both Oracle Tuxedo administrative servers, and application clients and

Servers.

See Also

e “Using aVIEW Typed Record” on page 3-7

e “Using an FML Typed Record” on page 3-13

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-5

../rf5/rf5.html
../rf5/rf5.html

e “Using an XML Typed Record” on page 3-20

e tuxtypes (5) inthe File Formats, Data Descriptions, MIBs, and System Processes
Reference

e UBBCONFIG (5) inthe File Formats, Data Descriptions, MIBs, and System Processes
Reference

Defining Typed Records

The rerypPE-REC COBOL structure is used whenever sending or receiving application data.

The following table lists the TeTYPE-REC Structure fields.

Field Description

REC-TYPE Specifies which record type the application wishes to send or
receive.

SUB-TYPE Specifies the subtype of therecord type, if further classification

isrequired (asit is, for example, in avIEW record).

LEN When dataisbeing sent, specifiesthe number of bytesto be sent.
After asuccessful transfer, LEN contains the number of bytes
transferred. When dataiis being received, LEN in TPTYPE-REC
specifies the number of bytes to be moved into the data record.
After asuccessful call, LEN contains the number of bytesmoved
into the datarecord. If the size of theincoming messageislarger
than the size specified in LEN, the dataistruncated, all data after
the LEN length isreachedisdiscarded, and TPTYPE-STATUS iS
set to TPTRUNCATE.

The following shows the TpTyPE data structure:

05 REC-TYPE PIC X(8).
88 X-OCTET VALUE “X_OCTET”.
88 X-COMMON VALUE “X_COMMON”.
05 SUB-TYPE PIC X(16).
05 LEN PIC S9(9) COMP-5.
88 NO-LENGTH VALUE 0.
05 TPTYPE-STATUS PIC S9(9) COMP-5.
88 TPTYPEOK VALUE O.
88 TPTRUNCATE VALUE 1.

3-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf5/rf5.html
../rf5/rf5.html

Using a VIEW Typed Record

Using a VIEW Typed Record

There are two kinds of view typed records. Thefirst, FML view, isa COBOL record generated
from an rur record. The second is simply an independent COBOL record.

The reason for converting rmr records into COBOL records and back again (and the purpose of
thermr viEw typed records) isthat FML functionsarenot availableinthe COBOL programming
environment.

For moreinformation on the Fur typed record, refer to the Oracle Tuxedo ATMI FML Function
Reference.

To use view typed records, you must perform the following steps:
e Set the appropriate environment variables.
e Describe each structure in view description files.

o Compilethe view description files using viewc -c, the Oracle Tuxedo view compiler. By
running this command you will produce one or more COBOL copy files (one per view),
each of which contains data description records. These records can be used in the LINKAGE
section or the worKING STORAGE section of thepaTa pIvIsION, according to the
demands of the program.

Setting Environment Variables for a VIEW Typed Record

To use avIew typed record in an application, you must set the following environment variables
shown in Table 3-2.

Table 3-2 Environment Variables for a VIEW Typed Record

Environment Variable Description

FIELDTBLS Or Comma-separated list of field tablefilenamesfor FML or FML32

FIELDTBLS32 typed records. Required only for FML VIEW types.

FLDTBLDIR Or Colon-separated list of directoriesto search for the field table

FLDTBLDIR32 filesfor FML and FML3 2 typed records. For Microsoft
Windows, use asemicolon-separated list. Required only for FML
VIEW types.

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-7

3-8

Tahle 3-2 Environment Variables for a VIEW Typed Record

Environment Variable Description

VIEWFILES Or Comma-separated list of allowable £ilenames for vIizw or
VIEWFILES32 VIEW32 description files.

VIEWDIR Of Colon-separated list of directoriesto search for vIEW or
VIEWDIR32 vIEW3?2 files. For Microsoft Windows, use a

semicolon-separated list.

Creating a View Description File

To use avIew typed record, you must define the COBOL record in aview description file. The
view description fileincludes, a view for each entry, aview that describes the characteristic
COBOL procedure mapping and the potential M1, conversion pattern. The name of the view
corresponds to the name of the copy file that isincluded in COBOL program.

The following format is used for each record in the view description file:

$ /* View structure */
VIEW viewname
type cname fbhname count flag size null

Table 3-3 describesthe fields that must be specified in the view description file for each COBOL
record.

Table 3-3 View Description File Fields

Field Description

type Datatype of thefield. Can be set to short, long, float,
double, char, string, Of carray.

cname Name of the field asit appears in the COBOL record.

fbname If you will be using the FML-t0-VIEW Or VIEW-tO-FML

conversion routines, thisfield must be included to indicate the
corresponding FML name. This field name must also appear in
the FML field table file. Thisfield is not required for
FML-independent VIEWS.

count Number of times field occurs.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Using a VIEW Typed Record

Tahle 3-3 View Description File Fields (Continued)

Field Description

flag Specifies any of the following optional flag settings:
e P—change the interpretation of the LOW-VALUE value
* S—one-way mapping from fielded record to structure
e F—one-way mapping from structure to fielded record
e N—zero-way mapping
* C—generate additional field for associated count member

(ACM)
e L—hold number of bytestransferred for STRING and
CARRAY
size For STRING and CARRAY record types, specifiesthemaximum
length of the value. Thisfield isignored for all other record
types.
null User-specified LOW-VALUE value, or minussign (-) to

indicate the default value for afield. LOW-VALUE vauesare
used in VIEW typed records to indicate empty COBOL record
members.

Thedefault LOW-VALUE valuefor al numeric typesis0 (0.0
for dec_t). For character types, the default LOW-VALUE
valueis‘\0’. For STRING and CARRAY types, the default
LOW-VALUE vaueis" ”.

Constants used, by convention, asescape characterscan also be
used to specify aLOW-VALUE value. The view compiler
recognizes the following escape constants: \ddd (where d is
an octal digit), \0, \n, \t, \v, \z, \£, \\, \ ", and \".

Y ou may enclose STRING, CARRAY, and LOW-VALUE
valuesin double or single quotes. The view compiler does not
accept unescaped quotes within a user-specified
LOW-VALUE vaue.

Y ou can al so specify the keyword NONE inthe LOW-VALUE
field of aview member description, which means that thereis
no LOW-VALUE valuefor the member. The maximum size of
default values for string and character array membersis 2660
characters. For more information, refer to the Oracle Tuxedo
ATMI FML Function Reference.

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-9

3-10

Y ou can include a comment line by prefixing it with the # or $ character. Lines prefixed by a$
sign areincluded in the . file.

Listing 3-1 is an excerpt from an example view description file based on an Fut. record. In this
case, the £bname field must be specified and match that which appearsin the corresponding field
table file. Note that the carravi field includes an occurrence count of 2 and setsthe ¢ flag to
indicate that an additional count element should be created. In addition, the . flag is set to
establish alength element that indicates the number of characters with which the application

populates the carravi field.

Listing 3-1 View Description File for FML VIEW

$ /* View structure */
VIEW MYVIEW

#type cname fbname count flag size null
float floatl FLOAT1 1 - - 0.0
double doublel DOUBLE1 1 - - 0.0
long longl LONG1 1 - - 0
short shortl SHORT1 1 - - 0
int intl INT1 1 - - 0
dec_t decl DEC1 1 - 9,16 0
char charl CHAR1 1 - - '"\O"
string stringl STRING1 1 - 20 "\0"'
carray carrayl CARRAY1 2 CL 20 "\0"'
END

Listing 3-2 illustrates the same view description file for an independent view.

Listing 3-2 View Description File for an Independent View

$ /* View data structure */
VIEW MYVIEW

#type cname fbname count flag size null
float floatl - 1 - - -
double doublel - 1 - - -
long longl - 1 - - _

Programming an Oracle Tuxedo ATMI Application Using COBOL

Using a VIEW Typed Record

short shortl - 1 - - -
int intl - 1 - - -
dec_t decl - 1 - 9,16 -
char charl - 1 - - -
string stringl - 1 - 20 -
carray carrayl - 2 CL 20 -

END

Note that the format issimilar to the Fvr.-dependent view, except that the foname and nu11 fields
are not relevant and are ignored by the viewc compiler. Y ou must include avalue (for example,
adash) as a placeholder in these fields.

Executing the VIEW Compiler

To compile aview typed record, run the viewe -c command, specifying the name of the view
description file as an argument. To specify an independent view, use the -n option. Y ou can
optionally specify adirectory in which the resulting output file should be written. By default, the
output file is written to the current directory.

For example, for an rFur-dependent view, the compiler isinvoked as follows:
viewc -C myview.v

Note: Tocompileaview32 typed record, run the viewc32 -c command.
For an independent view, use the -n option on the command line, as follows:
viewc -C -n myview.v

The output of the viewc command includes:

e One or more COBOL copy files; for example, MyvIEW. cbl

e Header file containing a structure definition that may be used by application programs for
C routines that share the same view

e Binary version of the source description file; for example, myview.v

Note: On case-insensitive platforms (for example, Microsoft Windows), the extension used
for the names of such filesisvv; for example, myview.vv.

Listing 3-3 provides an example of the COBOL copy file created by viewc.

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-11

3-12

Listing 3-3 COBOL COPY File Example

05
05
05
05
05
05
05

05
05
05
05

05

05
05

VIEWFILE: "myview.v"
VIEWNAME: "MYVIEW"
FLOAT1

DOUBLE1

LONG1

SHORT1

FILLER

INT1

DEC1.

07 DEC-EXP

07 DEC-POS

07 DEC-NDGTS

USAGE IS COMP-1.
USAGE IS COMP-2.

PIC
PIC
PIC
PIC

PIC
PIC
PIC

S9(9) USAGE IS COMP-5.
S9(4) USAGE IS COMP-5.
X(02).

S9(9) USAGE IS COMP-5.
S9(4) USAGE IS COMP-5.

S9(4) USAGE IS COMP-5.
S9(4) USAGE IS COMP-5.

DEC-DGTS is the actual packed decimal value

07 DEC-DGTS

07 FILLER

CHAR1

STRING1

FILLER

L-CARRAY1 OCCURS 2 TIMES
LENGTH OF CARRAY1l
C-CARRAY1

COUNT OF CARRAY1
CARRAY1 OCCURS 2 TIMES
FILLER

PIC
PIC
PIC
PIC
PIC
PIC

PIC

PIC
PIC

S9(1)V9(le) COMP-3.
X(07).

X(01).

X(20).

X(01).

9(4) USAGE IS COMP-5.
S9(4) USAGE IS COMP-5.

X(20).
X(02).

COBOL copry filesfor views must be brought into client programs and service subroutines with
Ccopy statements.

In the previous example, the compiler includes FrrLER files so that the alignment of fieldsin

COBOL code matches the alignment in C code.

Theformat of the packed decimal value, pec1, iscomposed of fivefields. Four fields—pec-Exp,
DEC-POS, DEC-NDGTS, and FIL.L.ER—areused only in C (they are defined inthe dec_t type); they
are included in the COBOL record for filler. Do not use these fieldsin COBOL applications.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Using an FML Typed Record

Thefifth field, pEc-paTs, is used by the system to store the actual packed decimal value. You
should use this value within the COBOL program. ATMI calls operate on the pec-pcTs field to:

e Populate the field before the record is passed from a C program to a COBOL program.

e Convert the field back to the dec_t type when passed from the COBOL program to the C
program.

The only restriction isthat a COBOL program cannot directly pass a record to a C function
outside of the ATMI interface because the decimal formatsin the COBOL program and C
function do not match.

Finally, note that the sample COBOL copy fileincludes an L-carray1 length field that occurs
twice, once for each occurrence of carRrRaY1, and ac-carray1 count field.

viewc createsaC version of the header file that you can useto mix C and COBOL service and/or
client programs.

See Also

e “Using an FML Typed Record” on page 3-13
e “Using an XML Typed Record” on page 3-20

e viewc, viewc32 (1) inthe Oracle Tuxedo Command Reference

Using an FML Typed Record

The ML interface was designed for use with the C language. For COBOL, routines are provided
that allow you to convert areceived rur record typeto a COBOL record for processing, and then
convert the record back to Fur.

To use ML typed records, you must perform the following steps:
e Set the appropriate environment variables.
e Describe the potentia fieldsin an FML field table.
e |nitialize the Fur record using FINIT.

e Create an FuL header file and specify the header file in a #include statement C routines
that share the same view in the application.

FML routines are used to manipulate typed records, including those that convert fielded recordsto
C structures and vice versa. By using these functions, you can access and update data values

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-13

../rfcm/rfcmd.html
../rfcm/rfcmd.html

without having to know how datais structured and stored. For more information on ML routines,
refer to the Oracle Tuxedo ATMI FML Function Reference.

Setting Environment Variables for an FML Typed Record

To use an Fur typed record in an application program, you must set the following environment
variables shown in Table 3-4.

Table 3-4 FML Typed Record Environment Variables

Environment Variable Description

FIELDTBLS Or Comma-separated list of field tablefilenamesfor FML or FML32
FIELDTBLS32 typed records, respectively.

FLDTBLDIR Of Colon-separated list of directoriesto search for the field table
FLDTBLDIR32 filesfor FML and FML3 2, respectively. For Microsoft Windows,

use a semicolon-separated list.

Creating a Field Table File

Field table files are always required when rum1 records and/or Fur-dependent views are used. A
field tablefile mapsthelogical name of afield in an Fur record to astring that uniquely identifies
thefield.

The following format is used for the description of each field in the 1. field table:

$ /* FML structure */
*base value

name number type flags comments

Table 3-5 describes the fields that must be specified in the ru field table file for each Fur field.

3-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

Using an FML Typed Record

Table 3-5 Field Table File Fields

Field

Description

*base value

Specifies a base for offsetting subsequent field numbers,
providing an easy way to group and renumber sets of related
fields. The *base option allowsfield numbersto be reused. For
a 16-hit record, the base plus the relevant number must be
greater than or equal to 100 and lessthan 8191. Thisfieldis
optional.

Note: The Oracle Tuxedo system reserves field numbers
1-100 and 6000-7000 for internal use. Field numbers
101-8191 are available for application-defined fields
with FML; field numbers 101-33, 554, and 431, for
FML32.

name

Identifier for the field. The value must be a string of up to 256
characters, consisting of alphanumeric and underscore
characters only.

rel-number

Relative numeric value of the field. Thisvalueis added to the
current base, if specified, to calculate the field number.

type Type of thefield. Thisvalue can be any of thefollowing: char,
string, short, long, float, double, Or carray.

flag Reserved for future use. A dash (-) should beincluded asa
placehol der.

comment Optiona comment.

All fields are optional, and may be included more than once.

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-15

3-16

Listing 3-4 illustrates afield table file that may be used with the Fv1.-dependent view example.

Listing 3-4 Field Table File for FML VIEW

name number type flags comments
FLOAT1 110 float - -
DOUBLE1 111 double - -

LONG1 112 long - -
SHORT1 113 short - -
INT1 114 long - -
DEC1 115 string - -
CHAR1 116 char - -
STRING1 117 string - -
CARRAY1 118 carray - -

Initializing a Typed Record

An ruL typed record must beinitialized using the Nt T procedure. The TeINIT proceduretakes
the specified v record (preferably aligned on a full-word boundary) and uses the value
specified in the FuL-L.ENGTH field in the FMLINFO record as the length.

If TPNOCHANGE iS Set, then any Fumr, record received by a program (rather than created by the
program) isinitialized automatically. In this case, it is unnecessary to call FINTT.

Listing 3-5 shows how to perform an initialization.

Listing 3-5 FML/VIEW Conversion

WORKING-STORAGE SECTION.
*RECORD TYPE AND LENGTH
01 TPTYPE-REC.
COPY TPTYPE.
*STATUS OF CALL
01 TPSTATUS-REC.
COPY TPSTATUS.
* SERVICE CALL FLAGS/RECORD

Programming an Oracle Tuxedo ATMI Application Using COBOL

Using an FML Typed Record

01 TPSVCDEF-REC.

COPY TPSVCDEF.
* TPINIT FLAGS/RECORD
01 TPINFDEF-REC.

COPY TPINFDEF.
* FML CALL FLAGS/RECORD
01 FML-REC.

COPY FMLINFO.

*

*

* APPLICATION FML RECORD - ALIGNED
01 MYFML.
05 FBFR-DTA OCCURS 100 TIMES PIC S9(9) USAGE IS COMP-5.
* APPLICATION VIEW RECORD
01 MYVIEW.
COPY MYVIEW.

* INITIALIZE FML RECORD

MOVE LENGTH OF MYFML TO FML-LENGTH.

CALL "FINIT" USING MYFML FML-REC.

IF NOT FOK
MOVE "FINIT Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM

END-IF.

* Convert VIEW to FML Record
SET FUPDATE TO TRUE.
MOVE "MYVIEW" TO VIEWNAME.
CALL "FVSTOF" USING MYFML MYVIEW FML-REC.
IF NOT FOK
MOVE "FVSTOF Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM
END-TIF.

Programming an Oracle Tuxedo ATMI Application Using COBOL

3-17

3-18

* CALL THE SERVICE USING THE FML RECORD
MOVE "FML" TO REC-TYPE IN TPTYPE-REC.
MOVE SPACES TO SUB-TYPE IN TPTYPE-REC.
MOVE LENGTH OF MYFML TO LEN.

CALL "TPCALL" USING TPSVCDEF-REC
TPTYPE-REC
MYFML
TPTYPE-REC
MYFML
TPSTATUS-REC.
IF NOT TPOK
MOVE "TPCALL MYFML Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM
END-IF.
* CONVERT THE FML RECORD BACK TO MYVIEW
CALL "FVFTOS" USING MYFML MYVIEW FML-REC.
IF NOT FOK
MOVE "FVFTOS Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM

END-IF.

In the preceding listing, the FvsTor procedure converts an FML record into a view record. The
view is defined by including the copy file generated by the view compiler. The FML-REC record
provides the viewname and the Fvr.-MoDE transfer mode, which can be set to FUPDATE, FOJOTN,
FJOIN, OF FCONCAT. The actions associated with these modes are the same as those described in
Fupdate, Fupdate32(3fml),Fojoin, Fojoin32(3fml), Fjoin, Fjoin32(3fml),and
Fconcat, Fconcat32(3fml).

The rvrTOS procedure converts a view record into an FuL record. The parameters are the same
asthose for an FvsToF procedure but you do not need to set FML-MODE. The system copiesthe
fieldsfrom the fielded record into the structure, based on the element descriptionsin the view. If
thereisno corresponding element in the COBOL record for afield in the fielded record, then the
system ignores the field. If thereis no corresponding field in the fielded record for an element
specified in the COBOL record, the system copies anull value into the element. The null value
used can be defined for each element in the view description.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Using an FML Typed Record

To store multiple occurrences of afieldinthe COBOL record, arecord el ement should be defined
with occurs. If the number of occurrences of the field in the record is smaller than the number

of occurrences of the element, the extra element slots are assigned null values. Alternatively, if

the number of occurrences of the field in the record is higher than the number of occurrences of
the element, then the surplus occurrences are ignored.

For FM1.32 and viEw32, the FINTIT32, FVSTOF32, and FvFTOS32 procedures should be used.

Upon successful completion, the system sets the FvL.- sTaTUS to FOK. On error, the system sets
the FML-STATUS tO @anon-zero value.

Creating an FML Header File

In order to use an Fur typed record in client programs or service subroutines, you must create an
FML header file and specify it in the application #include Statements.

To create an FvL header filefrom afield tablefile, usethemk f1dhdr (1) command. For example,
to create afile called myview. £1ds. h, enter the following command:

mkfldhdr myview.flds
For FML32 typed records, use the mkf1dhdr32 command.

Listing 3-6 showsthemyview. £1ds.h header file that is created by the mk £1dhdr command.

Listing 3-6 myview.flds.h Header File

/* fname fldid */

/= —me e */

#define FLOAT1 ((FLDID)24686) /* number: 110 type: float */
#define DOUBLEL ((FLDID)32879) /* number: 111 type: double */
#define LONG1 ((FLDID)8304) /* number: 112 type: long */
#define SHORTI1 ((FLDID)113) /* number: 113 type: short */
#define INT1 ((FLDID)8306) /* number: 114 type: long */
#define DEC1 ((FLDID)41075) /* number: 115 type: string */
#define CHARI1 ((FLDID)16500) /* number: 116 type: char */
#define STRING1 ((FLDID)41077) /* number: 117 type: string */
#define CARRAY1 ((FLDID)49270) /* number: 118 type: carray */

Specify the new header filein the #include statement of your application. Once the header file
isincluded, you can refer to fields by their symbolic names.

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-19

See Also

e “Using aVIEW Typed Record” on page 3-7
e “Using an XML Typed Record” on page 3-20

e mkfldhdr, mkfldhdr32 (1) inthe Oracle Tuxedo Command Reference

Using an XML Typed Record

3-20

xxML records enable Oracle Tuxedo applications to use XML for exchanging data within and
between applications. Oracle Tuxedo applications can send and receive simple xwr, records, and
route those records to the appropriate servers. All logic for dealing with xmr. documents,
including parsing, resides in the application.

An xmz, document consists of:
e A sequence of characters that encode the text of a document

e A description of thelogical structure of the document and information about that structure

Formatting and filtering for Events processing (which are supported when a sTrRING record type
is used) are not supported for the xur. record type. Therefore, the _tmfilter and _tmformat
pointersin the record type switch for xmr, records are set to LOW-VALUE.

The xm1 parser in the Oracle Tuxedo system performs the following routines:
e Autodetection of character encodings
e Character code conversion
e Detection of element content and attribute values

e Datatype conversion

Data-dependent routing is supported for xmr, records. The routing of an xu1, document can be
based on element content, or on element type and an attribute value. The xwvr parser determines
the character encoding being used; if the encoding differs from the native character sets
(US-ASCII or EBCDIC) used in the Oracle Tuxedo configuration files (uBBconFIG and
DMCONFIG), the element and attribute names are converted to US-ASCII or EBCDIC.

Attributes configured for routing must be included in an xu1. document. If an attributeis
configured as arouting criteria but it is not included in the xmr. document, routing processing
fails.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Using an XML Typed Record

The content of an element and the value of an attribute must conform to the syntax and semantics
required for arouting field value. The user must also specify the type of the routing field value.
xu1, supports only character data. If arange field is numeric, the content or value of that field is
converted to a numeric value during routing processing.

See Also

e “Using aVIEW Typed Record” on page 3-7
e “Using an FML Typed Record” on page 3-13

Programming an Oracle Tuxedo ATMI Application Using COBOL 3-21

3-22 Programming an Oracle Tuxedo ATMI Application Using COBOL

Writing Clients

Thistopic includes the following sections:

Joining an Application

Using Features of the TPINFDEF-REC Record

Leaving the Application

Building Clients

Client Process Examples

Joining an Application

Before an ATMI client can perform any service request, it must join the Oracle Tuxedo ATMI
application, either explicitly orimplicitly. Oncethe client hasjoined the application, it caninitiate
requests and receive replies.

A client joins an application explicitly by calling TpINITIALIZE (3cbl) with the following
signature:

01 TPINFDEF-REC.
COPY TPINFDEF.
01 USER-DATA-REC PIC X(any-length).
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPINITIALIZE" USING TPINFDEF-REC USER-DATA-REC TPSTATUS-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-1

../rf3cbl/rf3cbl.html

A client joins an application implicitly by issuing a service request (or any ATMI call) without
first calling TpINITIALIZE. Inthiscase, TpINITIALIZE iScalled by the Oracle Tuxedo system
on behalf of the client with the spacEs parameter.The TpINFDEF-REC record isaspecia Oracle
Tuxedo system typed record used by a client program to pass client identification and
authentication information to the system when the client attempts to join the application. It is
defined in aCOBOL cory file, asfollows:

05 USRNAME PIC X(30).

05 CLTNAME PIC X(30).

05 PASSWD PIC X(30).

05 GRPNAME PIC X(30).

05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
88 TPU-SIG VALUE 1.
88 TPU-DIP VALUE 2.
88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.
88 TPSA-FASTPATH VALUE 1.
88 TPSA-PROTECTED VALUE 2.

05 DATALEN PIC S9(9) COMP-5.

Table 4-1 lists the fields that are defined in a COBOL corv file.

Table 4-1 COBOL COPY File Fields

Field Description

USRNAME Namerepresenting the caller. Y ou may want to specify thevalue
returned by the UNIX command getuid(2) within thisfield.
The value of USRNAME may contain up to MAXTIDENT
characters (which is defined as 30).

CLTNAME Name of aclient for which the semantics are
application-defined. The value of CLTNAME may contain up to
MAXTIDENT characters (which is defined as 30).

PASSWD Application password in unencrypted format that is used by
TPINITIALIZE for validation against the application
password stored in the TUXCONFIG file. PASSWD isastring of
up to MAXTIDENT characters.

4-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

Using Features of the TPINFDEF-REC Record

Table 4-1 COBOL COPY File Fields

Field

Description

GRPNAME

Resource manager group namewith which you want to associate
the client. The client can access an XA-compliant resource
manager as part of aglobal transaction. The GRPNAME can be a
value up to MAXTIDENT characters (which is defined as 30).
Currently, however, the GRPNAME must be passed as SPACES
specifying that the client is not associated with aresource
manager group and isin the default client group.

NOTIFICATION-FLAG

Notification mechanism and system access mode to be used.
Refer to “Unsolicited Notification Handling” on page 4-5 for a
list of valid values.

ACCESS-FLAG

System access mode used. Refer to “ System Access Mode” on
page 4-6 for alist of values.

DATALEN

Length of the application-specific data that will be sent to the
authentication service. For nativeclients, it isnot encoded by the
system, but passed to the authentication service as provided by
the client. For workstation clients, client authentication is
handled by the system, and passed over the network in encrypted
form.

The usrname and cr.TNaME fields are associated with the client process when TPINITIALIZE iS

caled. Both fields are used for both broadcast notification and the retrieval of administrative

statistics.

See Also

e TPINITIALIZE (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

Using Features of the TPINFDEF-REC Record

The ATMI client must explicitly invoke TpINITIALIZE in order to take advantage of the

following features of the TPINFDEF-REC record:

e Client Naming

e Unsolicited Notification Handling

Programming an Oracle Tuxedo ATMI Application Using COBOL

43

../rf3cbl/rf3cbl.html

e System Access Mode
e Resource Manager Association

e Client Authentication

Client Naming

When an ATMI client joins an application, the Oracle Tuxedo system assigns a unique client
identifier toit. Theidentifier is passed to each service called by the client. It can also be used for
unsolicited notification.

Y ou can also assign unique client and usernames of up to 30 characters each, by passing them to
TPINITIALIZE Viathe TpINFDEF-REC record. The Oracle Tuxedo system establishes a unique
identifier for each process by combining the client and usernames associated with it, with the
logical machine identifier (LMID) of the machine on which the processis running. Y ou may
choose a method for acquiring the values for these fields.

Note: If aprocessis executing outside the administrative domain of the application (that is, if
it isrunning on aworkstation connected to the administrative domain), the LMID of the
machine used by the Workstation client to access the application is assigned.

Once aunique identifier for aclient processis created:
e Client authentication can be implemented.

e Unsolicited messages can be sent to a specific client or to groups of clientsvia TPNOTIFY
and TPBROADCAST.

e Detailed statistical information can be gathered via tmadmin (1).

Refer to “Writing Event-based Clients and Servers’ for information on sending and receiving
unsolicited messages, and the Oracle Tuxedo ATMI C Function Reference for moreinformation
ON tmadmin (1) .

Figure 4-1 shows how names might be associated with clients accessing an application. In the
example, the application uses the c1tname field to indicate ajob function.

4-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Using Features of the TPINFDEF-REC Record

Figure 4-1 Client Naming

LMID: NCODEL — LMID: l\ITODE]_
usrname: john N usmname: jane
cltname: teller o diname: teller
D
) Fe O
NETWORK - -
M T LMID: NODEZ2
3 N usrname: jane
o] clthame: manager
L o
o :
8 2
physical connections
logical connections

Unsolicited Notification Handling

Unsolicited notification refersto any communication withan ATMI client that is not an expected
response to a service request (or an error code). For example, an administrator may broadcast a
message to indicate that the system will go down in five minutes.

A client can be notified of an unsolicited message in a number of ways. For example, some
operating systemsmight send asignal to theclient and interrupt its current processing. By default,
the Oracle Tuxedo system checks for unsolicited messages each time an ATMI call isinvoked.
This approach, referred to as dip-in, is advantageous because it:

e Issupported on al platforms

e Does not interrupt the current processing
As some time may elapse between “dip-ins,” the application can call the recurkunsor call to
check for any waiting unsolicited messages. Refer to “Writing Event-based Clients and Servers’
in Programming An Oracle Tuxedo ATMI Application Using C for more information on the
TPCHKUNSOL call.

When aclient joinsan application using TPINITIALIZE, it can control how to handle unsolicited
notification messages by defining flags. For client notification, the possible values for
NOTIFICATION-FLAG are defined in Table 4-2.

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-5

../pgc/pgevb.html

Table 4-2 Client Notification Flags in a TPINFDEF-REC Record

Flag Description

TPU_SIG Select unsolicited notification by signals. This flag should be
used only with single-threaded, single-context applications. The
advantage of using this mode isimmediate notification. The
disadvantagesinclude:

e Thecaling process must have the same U1D asthe sending
process when you are running a native client. (Workstation
clients do not have this limitation.)

e TPU_SIGisnotavailableonall platforms(specificaly, itis
not available on MS-DOS workstations).

If you specify this flag but do not meet the system or
environmental requirements, theflagisset to TPU_DIP and the
event islogged.

TPU_DIP (default) Select unsolicited notification by dip-in. In this case, the client
can specify the name of the message handling routine using the
TPSETUNSOL call, and check for waiting unsolicited messages
using the TPCHKUNSOL call.

TPU_THREAD Select THREAD notification in a separate thread. Thisflagis
allowed only on platforms that support multithreading. If
TPU_THREAD is specified on a platform that does not support
multithreading, it isconsidered aninvalid argument. Asaresult,
an error isreturned and TP-STATUS iS Set t0 TPEINVAL.

TPU_IGN Ignore unsolicited notification.

Refer to TPINITIALIZE (3¢bl) inthe Oracle Tuxedo ATMI COBOL Function Reference for
more information on the TPINFDEF-REC flags.

System Access Mode

An application can access the Oracle Tuxedo system through either of two modes: protected or
fastpath. The ATMI client can request amode when it joins an application using TPINITIALIZE.
To specify amode, aclient passes one of the following valuesin the access-rFrac field of the
TPINFDEF-REC record to TPINITIALIZE.

4-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html

Using Features of the TPINFDEF-REC Record

Table 4-3 System Access Flags in a TPINFDEF-REC Record

Mode Description

TPSA-PROTECTED Allows ATMI calls within an application to access the Oracle
Tuxedo system internal tables via shared memory, but protects
shared memory against access by application code outside of the
Oracle Tuxedo system libraries. Overrides the valuein
UBBCONFIG, except whenNO_OVERRIDE isspecified. Refer to
Setting Up an Oracle Tuxedo Application for more information
0N UBBCONFIG.

TPSA-FASTPATH Allows ATMI calls within application code access to Oracle

(default) Tuxedo system internals via shared memory. Does not protect
shared memory against access by application code outside of the
Oracle Tuxedo system libraries. Overrides the value of
UBBCONF IG except when NO_OVERRIDE isspecified. Refer to
Setting Up an Oracle Tuxedo Application for more information
0N UBBCONFIG.

Resource Manager Association

An application administrator can configure groups for servers associated with aresource
manager, including servers that provide administrative processes for coordinating transactions.
Refer to Setting Up an Oracle Tuxedo Application for information on defining groups.

When joining the application, a client can join a particular group by specifying the name of that
group in the grpname field of TPINFDEF-REC.

Client Authentication

The Oracle Tuxedo system provides security at incremental levels, including operating system
security, application password, user authentication, optional access control lists, mandatory
access control lists, and link-level encryption. Refer to Setting Up an Oracle Tuxedo Application
for information on setting security levels.

The application password security level requires every client to provide an application password
when it joins the application. The administrator can set or change the application password and
must provide it to valid users.

If thislevel of security is used, Oracle Tuxedo system-supplied client programs, such asud (),
prompt for the application password. (Refer to Administering an Oracle Tuxedo Application at

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-7

Run Time for more information on ud, wud (1) .) In turn, application-specific client programs
must include code for abtaining the password from a user. The unencrypted password is placed
in the TPINFDEF-REC record and evaluated when the client calls TpINITIALIZE tO join the
application.

Note: The password should not be displayed on the screen.

Y ou can use TPCHKAUTH (3cbl) to determine:
e Whether the application requires any authentication

o |f the application requires authentication, which of the following types of authentication is
needed:
— System authentication based on an application password

— Application authentication based on an application password and user-specific
information

Typically, aclient should call TecukavuTH before TPINITIALIZE to identify any additional
security information that must be provided during initialization.

Refer to Using Security in CORBA Applications for more information on security programming
techniques.

Leaving the Application

Once all service requests have been issued and replies received, the ATMI client can leave the
application using TPTERM (3cbl) . The TpTERM call signatureis asfollows:

01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPTERM" USING TPSTATUS-REC.

Building Clients

4-8

To build an executable ATMI client, compile your application with the Oracle Tuxedo system
libraries and all other referenced files using the buildclient (1) command. Include the -c
option to indicate that you are compiling a COBOL program. Use the following syntax for the
buildclient command:

buildclient -C filename.cbl -o filename -f filenames -1 filenames

Table 4-4 describes the optionsto the buildclient command.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Building Clients

Table 4-4 buildclient Options

This Option or Argument. Allows You to Specify . . .

filename.cbl The COBOL application to be compiled.

-0 filename The executable output file. The default name for the output file
isa.out.

-f filenames A list of filesthat are to belink edited before the Oracle Tuxedo

system libraries are link edited. Y ou can specify - £ more than
once on the command line, and you can include multiple
filenames for each occurrence of - £. If you specify a COBOL
programfile(file.cbl),itiscompiled beforeitislinked. Y ou
can specify other object files(file. o) separately, or in groups
inan archivefile (file.a).

-1 filenames A list of filesthat are to be link edited after the Oracle Tuxedo
system libraries are link edited. Y ou can specify -1 more than
once on the command line, and you can include multiple
filenames for each occurrence of -1. If you specify a COBOL
programfile(£file.cbl),itiscompiled beforeitislinked. You
can specify other object files(file. o) separately, or in groups
inan archivefile(file.a).

-r The resource manager has accessto libraries that should be link
edited with the executable server. The application administrator
isresponsible for predefining all valid resource manager
information in the $TUXDIR/updataobj /RM file using the
buildtms (1) command. Only one resource manager can be
specified. Refer to Setting Up an Oracle Tuxedo Application for
more information.

Notes: The Oracle Tuxedo libraries are linked in automatically; you do not need to specify any
Oracle Tuxedo libraries on the command line.

Link editing must be done by running the buildclient command.

The order in which you specify thelibrary filesto belink edited issignificant: it depends on the
order in which functions are called in the code, and which libraries contain references to those
functions.

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-9

By default, the buildclient command invokesthe UNIX c¢c command. Y ou can set the anTcc
and ALTCFLAGS environment variables to specify an alternative compile command, and to set
flagsfor the compileand link-edit phases, respectively. By default, ALTcc isset to cobec, which
usesthe MicroFocus Net Express compiler. To use Fujitsu’ sNetCOBOL arTcc must be set, even
on aWindows system. Y ou must set aLTcc=cobec8s for NetCOBOL. For more information,
refer to “ Setting Environment Variables’ in Programming An Oracle Tuxedo ATMI Application
Using C.

Note: OnaWindows system, the aLTcc and ALTCFLAGS environment variables are not
applicable; setting them will produce unexpected results. Y ou must compile your
application by first using a COBOL compiler, and then passing the resulting object file
to thebuildclient command. For example:

buildclient -C -o audit -f audit.o

The following example command line compiles a COBOL program caled audit.cbl
and generates an executable file named audit.

buildclient -C -o audit -f audit.cbl

See Also
e “Building Serversin Programming An Oracle Tuxedo ATMI Application Using C

e buildclient (1) inthe Oracle Tuxedo Command Reference

Client Process Examples

4-10

The following pseudo-code in Listing 4-1shows how atypical ATMI client process works from
the time at which it joins an application to the time at which it leaves the application.

Listing 4-1 Typical Client Process Paradigm

Check level of security
CALL TPSETUNSOL to name your handler routine for TPU-DIP
get USRNAME, CLTNAME
prompt for application PASSWD
SET TPU-DIP TO TRUE.
CALL "TPINITIALIZE" USING TPINFDEF-REC

Programming an Oracle Tuxedo ATMI Application Using COBOL

../pgc/pgenv.html
../pgc/pgserv.html
../rfcm/rfcmd.html

Client Process Examples

USER-DATA-REC
TPSTATUS-REC.
IF NOT TPOK

error processing

make service call
receive the reply

check for unsolicited messages

CALL "TPTERM" USING TPSTATUS-REC.
IF NOT TPOK

error processing

EXIT PROGRAM.

In this example, TpINITIALIZE takes three arguments:
e TPINFDEF-REC, astructure defined in the COBOL copy file
e User data (USER-DATA-REC)

® TPSTATUS-REC, a status structure defined in the COBOL copy file

Both TPINITIALIZE and TPTERM return [TPOK] iN TP-STATUS IN TPSTATUS-REC UPON
success. If either command encountersan error, the command failsand setstp-staTus toavalue
that indicates the nature of the error. TpsTaTus-rEc isdefined in a COBOL cory file. Refer to
“Managing Errors’ in Programming An Oracle Tuxedo ATMI Application Using C for possible
TP-sTATUS Values. Refer to “Introduction to the COBOL A pplication-Transaction Monitor
Interface” in the Oracle Tuxedo ATMI COBOL Function Reference for acomplete list of error
codes that can be returned for each of the ATMI calls.

The following example illustrates how to use the TPINITIALIZE and TPTERM routines. This
exampleis borrowed from, bankapp, the sample banking application that is provided with the
Oracle Tuxedo system.

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-1

../pgc/pgerr.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Listing 4-2 Joining and Leaving an Application

IDENTIFICATION DIVISION.
PROGRAM-ID. FIG1-3.

AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

*

WORKING-STORAGE SECTION.

ER R R S R R I I R I I S I I I R S R S I R R I R

* Tuxedo definitions
hhkhkkhhkhhkhdhhhhhdhhhhhdhhhhhdhhrhdhhdrhdhhdrhdhhdrhdhdrrrrdrn
01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 TPINFDEF-REC.

COPY TPINFDEF.

R Rk Ik Sk Sk Rk S S S R I R R R R R R R R R Rk R O

* Log messages definitions

EE R R I S I I S I S S I S S I I I I S S S R I R S

01 LOGMSG.
05 FILLER PIC X(10) VALUE "FIGl2-3 =>".
05 LOGMSG-TEXT PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

*

01 USER-DATA-REC PIC X(75).

EEEEEEE S EESEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
PROCEDURE DIVISION.

START-HERE.

MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

ER R R I S R R I I I I I S I I S I R S R S I R R I I R S

* Now register the client with the system.

EE R R R EE S EEEEEEESEEEEEEEEEEEEESEEEEEEESEEEEEEEEEEESESE]
MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

MOVE SPACES TO PASSWD.

MOVE SPACES TO GRPNAME.

4-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

Client Process Examples

MOVE ZERO TO DATALEN.
SET TPU-DIP TO TRUE.

*
CALL "TPINITIALIZE" USING TPINFDEF-REC
USER-DATA-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE "TPINITIALIZE FAILED" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM.

EE R R S R R I I R I I I S I I R S I R S I R S R R S I R S

* Application specific code

R Rk Ik Sk Sk Rk S S S S S R R R R R R Rk kR I O

Rk Ik I I S I S R R R Rk Ik kR I I

*Leave Application

ok kK
CALL "TPTERM" USING TPSTATUS-REC.
IF NOT TPOK
MOVE "TPTERM FAILED" TO LOGMSG-TEXT
PERFORM DO-USERLOG.
EXIT-PROGRAM.
STOP RUN.

EE R R I S I S S I S S I I O S I I I I S S S R S S

* Log messages to the userlog

ok ko
DO-USERLOG.
CALL "USERLOG" USING LOGMSG

LOGMSG-LEN

TPSTATUS-REC.

The previous example shows the client process attempting to join the application with acall to
TPINITIALIZE. If anerror isencountered, amessage iswritten to the central event log viaacall
t0 USERLOG.

Programming an Oracle Tuxedo ATMI Application Using COBOL 4-13

4-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

Writing Servers

Thistopic includes the following sections:

e Oracle Tuxedo System Controlling Program

System-supplied Server and Services

Guidelines for Writing Servers

Defining a Service

Terminating a Service Routine

Advertising and Unadvertising Services

Building Servers

Oracle Tuxedo System Controlling Program

Tofacilitate the devel opment of ATMI servers, the Oracle Tuxedo system provides a predefined
controlling program for server load modules. When you executethebuildserver -c command,
the controlling program is automatically included as part of the server.

Note: The controlling program that the system provides is a closed abstraction; you cannot
modify it.

In addition to joining and exiting from an application, the predefined controlling program
accomplishes the following tasks on behalf of the server.

e Executes the process ignoring any hangups (that is, it ignores the stcrup signal).

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-1

o |nitiates the cleanup process on receipt of the standard operating system software
termination signal (stcTERM). The server is shut down and must be rebooted if needed

again.

e Attachesto shared memory for bulletin board services.
e Creates a message queue for the process.

e Advertisestheinitial servicesto be offered by the server. Theinitial services are either all
the serviceslink edited with the predefined controlling program, or a subset specified by
the Oracle Tuxedo system administrator in the configuration file.

e Processes command-line arguments up to the double dash (--), which indicates the end of
system-recognized arguments.

e Callsthe routine TpsVRINIT to process any command-line arguments listed after the
double dash (--) and optionally to open the resource manager. These command-line
arguments are used for application-specific initialization.

e Until ordered to halt, checks its request queue for service request messages.

e When a service request message arrives on the request queue, main () performsthe
following tasks until ordered to halt:

— If the -r option is specified, records the starting time of the service request.
— Updates the bulletin board to indicate that the server is Busy.

— Dispatches the service; that is, calls the service subroutine.

e When the service returns from processing itsinput, main () performsthe following tasks
until ordered to halt:

— If the -r option is specified, records the ending time of the service request.
— Updates statistics.

— Updates the bulletin board to indicate that the server is IpLE; that is, that the server is
ready for work.

— Checksits queue for the next service request.

e When the server isrequired to halt, calls TpsvrDoNE to perform any required shutdown
operations.

Asindicated above, themain () routine handles all of the details associated with joining and
exiting from an application, managing records and transactions, and handling communication.

5-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

System-supplied Server and Services

Note: Because the system-supplied controlling program accomplishes the work of joining and
leaving the application, you should not include callsto the TPINITIALIZE OF TPTERM
routine in your code. If you do, the routine encounters an error and returns TPEPROTO in
TP-STATUS. FOr more information on the TPINITIALIZE OF TPTERM routine, refer to
“Writing Clients’ in Programming Oracle Tuxedo ATMI Applications Using C.

System-supplied Server and Services

The controlling program provides one system-supplied ATMI server, AuTHSVR, and two
subroutines, TpsvRINIT and TPSVRDONE. The default versions of all three, which are described
in the following sections, can be modified to suit your application.

Notes: If you want to write your own versions of TPSVRINIT and TPSVRDONE, remember that
thedefault versions of thesetwo routinescall tx_open () and tx_close (), respectively.
If you write a new version of TpsvRINIT that calls tpopen () rather than tx_open (),
you should also write anew version of TpsvrDONE that callstpclose (). Inother words,
both routines in an open/close pair must belong to the same set.

System-supplied Server: AUTHSVR()

YoucanusetheauTHsVR (5) server to provideindividual client authentication for an application.
The rrInITIALIZE routine calls this server when the level of security for the application is
TPAPPAUTH, USER_AUTH, ACL, OF MANDATORY_ACL.

The service in auTasvR looks in the user-DaTA-REC record for a user password (not to be
confused with the application password specified in the passwp field of the TPINFDEF-REC
record). By default, the system takes the string in data and searches for amatching string in the
/etc/passwd file.

When called by anative-site client, TpinITIALIZE forwardsthe user-DATA-REC record asit is
received. This meansthat if the application requires the password to be encrypted, the client
program must be coded accordingly.

When called by a Workstation client, TrInITIALTIZE encrypts the data before sending it across
the network.

System-supplied Services: TPSVRINIT Routine

When aserver isbooted, the Oracle Tuxedo system controlling program callSTPSVRINIT (3cbl)
during itsinitialization phase, before handling any service requests.

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-3

../rf3cbl/rf3cbl.html
../rf5/rf5.html
../pgc/pgclt.html

5-4

If an application does not provide a custom version of this routine within the server, the system
uses the default routine provided by the controlling program, which opens the resource manager
and logs an entry in the central event log indicating that the server has successfully started. The
central user log is an automatically generated file to which processes can write messages by
calingtheuserLoG (3cbl) routine. Refer to“ Managing Errors’ in Programming Oracle Tuxedo
ATMI Applications Using C for more information on the central event log.

Y ou can use the TpsvrRINTT routine for any initialization processes that might be required by an
application, such as the following:

e Receiving command-line options

e Opening a database

The following sections provide code samples showing how these initialization tasks are
performed through callsto TesvrInTT. Although it is not illustrated in the following examples,
message exchanges can also be performed within this routine. However, TesvrInIT falsif it
returns with asynchronous replies pending. In this case, the replies are ignored by the Oracle
Tuxedo system, and the server exits gracefully.

Y ou can also use the TPSVRINIT routine to start and complete transactions, as described in
“Managing Errors’ in Programming Oracle Tuxedo ATMI Applications Using C.

Use the following signature to call the TesvrINIT :routine

LINKAGE SECTION.
01 CMD-LINE.

05 ARGC PIC 9(4) COMP-5.

05 ARGV.

10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
01 TPSTATUS-REC.
COPY TPSTATUS.

PROCEDURE DIVISION USING CMD-LINE TPSTATUS-REC.
* User code
EXIT PROGRAM.

Receiving Command-line Options

When a server is booted, its first task is to read the server options specified in the configuration
file. The options are passed through arcc, which contains the number of arguments, and ARGV,

which contains the arguments separated by asingle spack character. The predefined controlling
program then calls TPSVRINIT.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../pgc/pgerr.html
../pgc/pgerr.html

System-supplied Server and Services

Thefollowing code exampl e shows how the TpsvrINTIT routineisused to receive command-line

options.

Listing 5-1 Receiving Command-line Options in TPSVRINIT

IDENTIFICATION DIVISION.
PROGRAM-ID. TPSVRINIT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

DATA DIVISION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.

01 CMD-LINE.
05 ARGC PIC 9(4) COMP-5.
05 ARGV.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
01 SERVER-INIT-STATUS.
COPY TPSTATUS.

PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.

R R I S I I I S I I S I I S S S S S R S

* ARGC indicates the number of arguments and ARGV contains the
* arguments separated by a single SPACE.

Rk R Sk Sk Rk S S S R R R I R R R R R I R I kR R

A-START.

INSPECT the ARGV line and process arguments
IF arguments are invalid

SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE.
ELSE arguments are OK continue

SET TPOK IN SERVER-INIT-STATUS TO TRUE.

Programming an Oracle Tuxedo ATMI Application Using COBOL

9-9

5-6

EXIT PROGRAM.

Opening a Resource Manager

The following example illustrates another common use of TPSVRINIT: opening aresource
manager. The Oracle Tuxedo system provides routines to open a resource manager,

TPOPEN (3cbl) and TXOPEN (3cbl) . It also providesthe complementary routines,

TPCLOSE (3cbl) and TXCLOSE (3cbl). Applications that use these routines to open and close
their resource managers are portable in this respect. They work by accessing the resource
manager instance-specific information that is available in the configuration file.

These routine calls are optional and can be used in place of the resource manager specific calls
that are sometimes part of the Data Manipulation Language (DML) if the resource manager isa
database. Note the use of the userLoG (3cbl) routine to write to the central event log.

Note: To create aninitialization function that both receives command-line options and opens a
database, combine the following example with the previous example.

Listing 5-2 Opening a Resource Manager in TPSVRINIT

IDENTIFICATION DIVISION.
PROGRAM-ID. TPSVRINIT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TPSTATUS-REC.
COPY TPSTATUS.
01 LOGMSG PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.

LINKAGE SECTION.
01 CMD-LINE.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

System-supplied Server and Services

05 ARGC PIC 9(4) COMP-5.
05 ARGV.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
01 SERVER-INIT-STATUS.
COPY TPSTATUS.

PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.
A-START.
INSPECT the ARGV line and process arguments
IF arguments are invalid
MOVE "Invalid Arguments Passed" TO LOGMSG
PERFORM EXIT-NOW.

ELSE arguments are OK continue

CALL "TPOPEN" USING TPSTATUS-REC.
IF NOT TPOK
MOVE "TPOPEN Failed" TO LOGMSG
ELSE IF TPESYSTEM
MOVE "System /T error has occurred" TO LOGMSG
ELSE IF TPEOS
MOVE "An Operating System error has occurred" TO LOGMSG
ELSE IF TPEPROTO

MOVE "TPOPEN was called in an improper Context" TO LOGMSG

ELSE IF TPERMERR
MOVE "Resource manager Failed to Open" TO LOGMSG
PERFORM EXIT-NOW.
SET TPOK IN SERVER-INIT-STATUS TO TRUE.
EXIT PROGRAM.
EXIT-NOW.
SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE
MOVE 50 LOGMSG-LEN.
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.
EXIT PROGRAM.

Programming an Oracle Tuxedo ATMI Application Using COBOL

9-1

5-8

To guard against errors that may occur during initialization, TesvrRINIT can be coded to allow
the server to exit gracefully before starting to process service requests.

System-supplied Services: TPSVRDONE Routine

The TPSVRDONE routine calls TpcLosE to close the resource manager, similarly to the way
TPSVRINIT calls TPOPEN to openit.

Use the following signature to call the TPsvRDONE routine:

01 TPSTATUS-REC.
COPY TPSTATUS.
PROCEDURE DIVISION.
* User code
EXIT PROGRAM.

Thefollowing exampleillustrates how to use the TPsvVRDONE routineto close a resource manager
and exit gracefully.

Listing 5-3 Closing a Resource Manager with TPSVRDONE

IDENTIFICATION DIVISION.
PROGRAM-ID. TPSVRDONE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TPSTATUS-REC.
COPY TPSTATUS.
01 LOGMSG PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.
01 SERVER-DONE-STATUS.
COPY TPSTATUS.
PROCEDURE DIVISION.
A-START.
CALL "TPCLOSE" USING TPSTATUS-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Guidelines for Writing Servers

IF NOT TPOK
MOVE "TPCLOSE Failed" TO LOGMSG

ELSE IF TPESYSTEM
MOVE "System /T error has occurred" TO LOGMSG

ELSE IF TPEOS
MOVE "An Operating System error has occurred" TO LOGMSG

ELSE IF TPEPROTO
MOVE "TPCLOSE was called in an improper Context" TO LOGMSG

ELSE IF TPERMERR
MOVE "Resource manager Failed to Open" TO LOGMSG
PERFORM EXIT-NOW.

SET TPOK IN SERVER-DONE-STATUS TO TRUE.

EXIT PROGRAM.

EXIT-NOW.

SET TPEINVAL IN SERVER-DONE-STATUS TO TRUE

MOVE 50 LOGMSG-LEN.

CALL "USERLOG" USING LOGMSG

LOGMSG-LEN
TPSTATUS-REC.
EXIT PROGRAM.

Guidelines for Writing Servers

Because the communication details are handled by the Oracle Tuxedo system controlling
program, you can concentrate on the application service logic rather than communication
implementation. For compatibility with the system-supplied controlling program, however,
application services must adhere to certain conventions. These conventions are referred to,
collectively, as the service template for coding service routines. They are summarized in the
following list.

e A request/response service can receive only one regquest at atime and can send only one
reply.

e When processing a request, a request/response service works only on that request. It can
accept another only after it has either sent areply to the requester or forwarded the request
to another service for additional processing.

e Service routines must terminate by calling either the TPRETURN Or TPFORWAR routine.

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-9

e When communicating with another server via Tpacart, theinitiating service must either
wait for all outstanding replies or invalidate them with TecanceL before calling TPRETURN
Or TPFORWAR.

5-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

Defining a Service

Defining a Service

When writing aserviceroutine, you must call the TpsvcsTaRT (3¢cbl) routine before any others.
Thisroutineis used to retrieve the service' s parameters and data. Use the following signature to
call the TpSvVCSTART routine

01 TPSVCDEF-REC.
COPY TPSVCDEF.
01 TPTYPE-REC.
COPY TPTYPE.
01 DATA-REC.
COPY User Data.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

The service information data structure is defined as TpsveDeF in the COBOL copy file. It
includes the following members:

05 COMM-HANDLE PIC S9(9) COMP-5.
05 TPBLOCK-FLAG PIC S9(9) COMP-5.
88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) COMP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.

05 TPREPLY-FLAG PIC S9(9) COMP-5.
88 TPREPLY VALUE 0.
88 TPNOREPLY VALUE 1.

05 TPACK-FLAG PIC S9(9) COMP-5 REDEFINES TPREPLY-FLAG.
88 TPNOACK VALUE O.
88 TPACK VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPTIME VALUE 0.
88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE O.
88 TPSIGRSTRT VALUE 1.

05 TPGETANY-FLAG PIC S9(9) COMP-5.
88 TPGETHANDLE VALUE 0.
88 TPGETANY VALUE 1.

Programming an Oracle Tuxedo ATMI Application Using COBOL

5-11

../rf3cbl/rf3cbl.html

05 TPSENDRECV-FLAG PIC S9(9) COMP-5.

88 TPSENDONLY VALUE O.
88 TPRECVONLY VALUE 1.

05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
88 TPCHANGE VALUE 0.

88 TPNOCHANGE VALUE 1.
05 TPSERVICETYPE-FLAG PIC S9(9) COMP-5.

88 TPREQRSP VALUE 0.
88 TPCONV VALUE 1.
*
05 APPKEY PIC S9(9) COMP-5.
05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.
05 SERVICE-NAME PIC X(127).

The following table describes the members of a TesvcDEF data structure.

Table 5-1 TPSVCDEF Data Structure

Field Description

COMM-HANDLE Specifies, to the service routine, the communi cation handle used
by the requesting process to invoke the service.

SETTINGS Miscellaneous settings that control server characteristics. For
(TPBLOCK-FLAG more information on the settings, refer to the Oracle Tuxedo
TPTRAN-FLAG, €fc.) ATMI COBOL Function Reference.

APPKEY Reserved for use by the application. If application-specific
authentication is part of your design, the application-specific
authentication server, which iscalled at the time aclient joins
the application, should return aclient authentication key, aswell
as asuccess or failure indication. The Oracle Tuxedo system
holds the APPKEY on behalf of the client and passes the
information to subsequent service requestsin thisfield. By the
timethe APPKEY is passed to the service, the client has already
been authenticated. However, the APPKEY field can be used
within the service to identify the user invoking the service or
some other parameters associated with the user.

CLIENTID Identifier of the client that originates a request.

SERVICE-NAME Name of the service routine used by the requesting processto
invoke the service.

5-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

For adescription of the TeTyPE-REC data structure, refer to “ Defining Typed Records’ on

page 3-6.

Defining a Service

Y ou must code the service in such away that when it accesses the request data to be placed in

DATA-REC, it expects the datato be in arecord of the type defined for the servicein the

configuration file. Upon successful return, paTa-rEC containsthe datareceived and LEN contains

the actual number of bytes moved.

The following sample listing shows atypical service definition.

Listing 5-4 Typical Service Definition

IDENTIFICATION DIVISION.
PROGRAM-ID. BUYSR.

AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

INPUT-OUTPUT SECTION.

ER R I I I S S I I S I S I I I I I S I S I S I

* Tuxedo definitions

ER R R I I I I I I I I I I R S I I I R I R I I
01 TPSVCRET-REC.
COPY TPSVCRET.

01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

EE R I S S R R S I I I R S I R I I e R R I R R I R I I I I I I S I

* Log message definitions

Programming an Oracle Tuxedo ATMI Application Using COBOL

5-13

RO R Sk Sk Rk S R R R R I R R R S O R Rk

01 LOGMSG.
05 LOGMSG-TEXT PIC X(50).
*
01 LOGMSG-LEN PIC S9(9) COMP-5.

EE R I I S R R I I I R S R I I I I R I R R I R I I I S S I I S I S

* User defined data records

Rk R Ik S I R R R Ik kI kS S I Rk
01 CUST-REC.
COPY CUST.

LINKAGE SECTION.

PROCEDURE DIVISION.

START-BUYSR.
MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
OPEN files or DATABASE

RO R Sk Sk Rk R R R R I R kI R Sk I R Rk

* Get the data that was sent by the client
R Rk R R R I AR R kR R R R R R R R R A R R R R R I
MOVE "Server Started" TO LOGMSG-TEXT.
PERFORM DO-USERLOG.
MOVE LENGTH OF CUST-REC TO LEN IN TPTYPE-REC.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
CUST-REC
TPSTATUS-REC.
IF TPTRUNCATE
MOVE "Input data exceeded CUST-REC length" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM A-999-EXIT.
IF NOT TPOK
MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM A-999-EXIT.
IF REC-TYPE NOT = "VIEW"
MOVE "REC-TYPE in not VIEW" TO LOGMSG-TEXT

5-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

Defining a Service

PERFORM DO-USERLOG
PERFORM A-999-EXIT.
IF SUB-TYPE NOT = "cust"
MOVE "SUB-TYPE in not cust" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM A-999-EXIT.

set consistency level of the transaction

A
* Exit
Kk kkkkkkkkkkkkkkkkkkkkkkk Kk kkkkkkkkkkkkkkkkkkkk kK kkkk*
A-999-EXIT.
MOVE "Exiting" TO LOGMSG-TEXT.
PERFORM DO-USERLOG.
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY CUST-REC
TPSTATUS-REC BY TPSTATUS-REC.

Rk R I I I S R R Rk kI kS I Rk

* Write to userlog
Kok ko Kk ko Kk ko ko ko k kK ok K ok K ok K ok K ok K ok K ok ko ko ok o ok ok ok ok ok ok K ok K ok K
DO-USERLOG.
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.

In the preceding example, the request record on the client sidewas originally sent with REC-TYPE
set to view and the suB-TYPE set to cust. The BUySRr service is defined in the configuration file
asaservicethat knows about the view typed record. Buy SR retrievesthe datarecord by accessing
the cusT-rEC record. The consistency level of the transaction is specified after thisrecord is
retrieved but before the first database accessis made. For more details on transaction consistency
levels, refer to “Writing Global Transactions” in Programming Oracle Tuxedo ATMI
Applications Using C.

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-15

../pgc/pgglob.html

5-16

Note: TheTrcerrIO and TPsPRIO routines, used for getting and setting priorities, respectively,
are described in detail in “ Setting and Getting Message Priorities’ in Programming
Oracle Tuxedo ATMI Applications Using C.

The example code in this section shows how a service called PrRINTER tests the priority level of

the request just received using the Teagpr10 routine. Then, based on the priority level, the

application routes the print job to the appropriate destination printer RNAME.

Next, the contents of INPUT-REC are sent to the printer. The application queries TPSVCDEF-REC

to determine whether areply isexpected. If o, it returnsthe name of the destination printer to the
client. For more information on the TPRETURN routine, refer to “ Terminating a Service Routine”

on page 5-19.

Listing 5-5 Checking the Priority of a Received Request

IDENTIFICATION DIVISION.
PROGRAM-ID. PRINTSR.
AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

INPUT-OUTPUT SECTION.

ER R I I S I S S I I S I S I I I kS I S I

* Tuxedo definitions

EE R I S S R R I I I R R R R I I e R R I R S I R I I I S S I I S I I S

01 TPSVCRET-REC.
COPY TPSVCRET.

01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../pgc/pgreq.html

Defining a Service

01 TPPRIDEF-REC.
COPY TPPRIDEF.

ERE R I S I S S I S I S I I O I I S S I S I

* Log message definitions

ER R I S R R S I I I R S R R I I e R R I R I R I I I I S I I S I I I S

01 LOGMSG.
05 FILLER PIC S9(9) VALUE
"TP-STATUS=".
05 LOG-TP-STATUS PIC S9(9).
05 LOGMSG-TEXT PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

R R R Ik I S I R R Rk kI kS S I Rk

* User defined data records
hhkhkhhhhhhhhhhkhhhhdArrrrrrrdhhhhhhhhhhhhhdhhdrhrrrrrrrrrk
01 INPUT-REC PIC X(1000).
01 PRNAME PIC X(20).

LINKAGE SECTION.

PROCEDURE DIVISION.

START-PRINTSR.
MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
OPEN files or DATABASE

ERE R I I S I S S I S I S I I I I S S I I

* Get the data that was sent by the client
T 4TI
MOVE ZERO to TP-STATUS.
MOVE "Server Started" TO LOGMSG-TEXT.
PERFORM DO-USERLOG.
MOVE LENGTH OF INPUT-REC TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
INPUT-REC
TPSTATUS-REC.
IF NOT TPOK

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-11

MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
SET TPFAIL TO TRUE.
PERFORM A-999-EXIT.

Check other parameters
CALL "TPGPRIO" USING TPPRIDEF-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE "TPGPRIO Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
SET TPFAIL TO TRUE.
PERFORM A-999-EXIT.
IF PRIORITY < 20
MOVE "BIGJOBS" TO RNAME
ELSE IF PRIORITY < 60
MOVE "MEDJOBS" TO RNAME
ELSE
MOVE "HIGHSPEED" TO RNAME.

Print INPUT-REC on RNAME printer

IF TPNOREPLY
MOVE SPACES TO REC-TYPE
MOVE 0 TO LEN
SET TPSUCCESS TO TRUE
PERFORM A-999-EXIT
IF TPREPLY
MOVE "STRING" TO REC-TYPE
MOVE LENGTH OF PRNAME TO LEN
SET TPSUCCESS TO TRUE
PERFORM A-999-EXIT.
Kk kK Kk kK k kK k ok Kk ok ok k kA kk Ak kK k ok k Kk ok kkkkkkkkkkkk ok hk kK k kK k*x
* Exit
Kk kkkkkkkkkkkkkkkkkkkkkkk Kk kkkkhkkkkkkkkkkhk kK k kK kkkk*
A-999-EXIT.
MOVE "Exiting" TO LOGMSG-TEXT.
PERFORM DO-USERLOG.

5-18 Programming an Oracle Tuxedo ATMI Application Using COBOL

Terminating a Service Routine

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC buTPTYPE-REC
DATA-REC BY PRNAME
TPSTATUS-REC BY TPSTATUS-REC.

ER R I S R R S I I I R S R R I I e R R I R I R I I I I S I I S I I I S

* Write to userlog
R Rk R R R R R AR R kI R R R R R R R Rk S R R R R R kR
DO-USERLOG.
MOVE TP-STATUS TO LOG-TP-STATUS.
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.

Terminating a Service Routine

The TPRETURN (3¢cbl), TPCANCEL (3cbl), and TPFORWAR (3cbl) routines specify that a service

routine has completed with one of the following actions:
e TPRETURN Sends areply to the caling client.

e TPCANCEL cancels the current request.

e TPFORWAR forwards arequest to another service for further processing.

Sending Replies

The TPRETURN (3cbl) and TPFORWAR (3cbl) callsare COBOL copy filesthat contain x1T

statements to mark the end of a service routine and send a message to the requester or forward
the reguest to another service, respectively. Use the following signature to call the TPRETURN

routine:

01 TPSVCRET-REC.
COPY TPSVCRET.
01 TPTYPE-REC.
COPY TPTYPE.
01 DATA-REC.
COPY User Data.
01 TPSTATUS-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL

5-19

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

5-20

COPY TPSTATUS.
COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY DATA-REC
TPSTATUS-REC BY TPSTATUS-REC.

Note: You must use copy here instead of carr to ensure that the ex1T statement is called
properly, and the COBOL service routine returns control to the Oracle Tuxedo system.

The following listing provides the TpsvcrET-REC record signature:

05 TPRETURN-VAL PIC S9(9) COMP-5.
88 TPSUCCESS VALUE 0.
88 TPFAIL VALUE 1.
88 TPFAIL VALUE 2.

05 APPL-CODE PIC S9(9) COMP-5.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Terminating a Service Routine

Table 5-2 describes the members of a TPsVCRET-REC data structure.

Table 5-2 TPSVCRET-REC Data Structure Members

Member

Description

TP-RETURN-VAL

Indicates whether or not the service has completed successfully
on an application-level. The valueis an integer that is
represented by a symbolic name. Vaid settings include:

e TPSUCCESS—the caling routine succeeded. The routine
stores the reply message in the caller’ srecord. If thereisa
reply message, it isin the caller’ s record.

e TPFAIL (default)—the service terminated unsuccessfully.
The routine reports an error message to the client process
waiting for the reply. In this case, the client’s TPCALL or
TPGETRPLY routine call fails and the system sets the
TP-STATUS variable to TPESVCFAIL to indicate an
application-defined failure. If areply message was
expected, it isavailable in the caller’ s record.

e TPEXIT—the service terminated unsuccessfully. The
routinereportsan error messageto the client processwaiting
for the reply, and exits.

For adescription of the effect that the value of thisargument has
on global transactions, refer to “ Writing Global Transactions” in
Programming Oracle Tuxedo ATMI Applications Using C.

APPLC-CODE

Returns an application-defined return code to the caller. The
client can access the value returned in APPLC-CODE by
querying APPL-RETURN-CODE IN TPSTATUS-REC. The
routine returns this code regardless of success or failure.

Refer to “Defining a Service” on page 5-11 for a description of the TpTyPE-REC record.

The primary function of a serviceroutineisto process arequest and return areply to a client
process. It is not necessary, however, for asingle service to do al the work required to perform
the requested function. A service can act as arequester and pass arequest call to another service
the same way a client issues the original request: through callsto TPcALL Or TPACALL.

Note: TheTrcarr and TpacaLL routines are described in detail in “Writing Request/Response
Clients and Servers’ in Programming Oracle Tuxedo ATMI Applications Using C.

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-21

../pgc/pgreq.html
../pgc/pgreq.html
../pgc/pgglob.html

5-22

When TpRETURN is called, control always returnsto the controlling program. If aservice has sent
requests with asynchronous replies, it must receive all expected replies or invalidate them with
TPCANCEL beforereturning control to the controlling program. Otherwise, the outstanding replies
are automatically dropped when they are received by the Oracle Tuxedo system controlling
program, and an error is returned to the caller.

If the client invokes the service with TpcarL, after asuccessful call to TPrRETURN, the reply
message is available in the o-paTa-rec record. If TpacaLL isused to send the request, and
TPRETURN returns successfully, the reply message is available in the paTa-rEc record of
TPGETRPLY.

If areply is expected and TPRETURN encounters errors while processing its arguments, it sends a
failed message to the calling process. The caller detectsthe error by checking the value placed
inTp-sTATUS. Inthe case of failed messages, the system setsthe Tp-sTATUS t0 TPESVCERR. This
situation takes precedence over thevalue of APPL-RETURN-CODE IN TPSTATUS-REC. If thistype
of error occurs, no reply datais returned, and both the contents and |ength of the caller’s output
record remain unchanged.

If TPRETURN returns amessage in arecord of an unknown type or arecord that is not allowed by
the caller (that is, if the call is made with TPNOCHANGE), the system returns TPEOTYPE in
TP-STATUS. In this case, application success or failure cannot be determined, and the contents
and length of the output record remain unchanged.

Thevalue returned in APPL-RETURN-CODE IN TPSTATUS-REC iSnot relevant if the TPRETURN
routineisinvoked and atimeout occurs for the call waiting for the reply. This situation takes
precedence over all othersin determining the value that isreturned in Tp-sTaTus. In this case,
TP-STATUS iSset to TPETIME and the reply datais not sent, leaving the contents and length of the
caler’s reply record unchanged. There are two types of timeouts in the Oracle Tuxedo system:
blocking and transaction timeouts (discussed in “Writing Global Transactions’ in Programming
Oracle Tuxedo ATMI Applications Using C).

The example code in this section shows the TRANSFER service that is part of the xFER server.
Basicaly, the TrRansFER service makes synchronous calls to the wITHDRAWAL and DEPOSIT
services. It allocates a separate record for the reply message since it must use the request record
for the calls to both the wrTuprAWAL and the pErPosIT Services. If the call to wiTHDRAWAL fails,
the service writes the message cannot withdraw On the status line of the form and sets
TP-RETURN-VAL IN TPSVCRET-REC Of the TPRETURN routine to TpraIL. If the call succeeds,
the debit balanceis retrieved from the reply record.

Note: Inthefollowing example, the application moves the identifier for the “ destination
account” (which isretrieved from the cr_id variable) to the zeroth occurrence of the

Programming an Oracle Tuxedo ATMI Application Using COBOL

../pgc/pgglob.html

Terminating a Service Routine

accounT_1D field inthe trans £ fielded record. This move is necessary because this

occurrence of the field in an FuL record is used for data-dependent routing. Refer to

Setting Up an Oracle Tuxedo Application for more information.

A similar scenario isfollowed for the call to bEPosIT. On success, the service sets the

TP-RETURN-VAL IN TPSVCRET-REC tO TPSUCCESS, returning the pertinent account information

to the status line.

Listing 5-6 TPRETURN Routine

IDENTIFICATION DIVISION.
PROGRAM-ID. TRANSFER.
AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

INPUT-OUTPUT SECTION.

ER R I I I S S I I S I I S I I I I I S S I S I S

* Tuxedo definitions
ER R I I I I I I I I I R S I I I I R I R I I I I

01 TPSVCRET-REC.
COPY TPSVCRET.

01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

EE R S R R I I I R S R R I I R I R I R I I I S S I I S I I I

* User defined data records
R R R R R R R R R R I I I I i

01 TRANS-REC.
COPY TRANS-AMOUNT.

LINKAGE SECTION.
PROCEDURE DIVISION.

START-TRANSFER.

RO R Sk kR R R R I R R R R O R Rk

Programming an Oracle Tuxedo ATMI Application Using COBOL

5-23

* Get the data that was sent by the client
EE T I I I I I I I I R I I I R I R I I i
MOVE LENGTH OF TRANS-REC TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
TRANS-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE "Transaction Encountered An Error" TO STATUS-LINE
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY TRANS-REC
TPSTATUS-REC BY TPSTATUS-REC.
ELSE
Check other parameters

EE R S R R S I I I R I R R I I I R R I R I R I I I S S I I S I I S

* must have a valid debit and credit account number
R R R R R R R R R R R I I I I I

CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-DEBIT-ACCOUNT IN TRANS-REC.

IF TRANS-DEBIT-ACCOUNT is not wvalid
MOVE "Invalid Debit Account Number"
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-CREDIT-ACCOUNT IN TRANS-REC.

IF TRANS-CREDIT-ACCOUNT is not valid
MOVE "Invalid Credit Account Number"
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

R R Sk Sk Sk R R R R R R I R R R R S I R Rk

* Check amount to transfer
hAhkhkhkkhkhkhkhkdhhhkdhhhkhkdhhhkhkhhhkhdhhhkhhhhkdhkhhkdhdhhkhkhkdhhdrhkhhhdhkhhhkhkhrxdx*k
IF TRANS-AMOUNT IN TRANS-REC < O
MOVE "Invalid Transfer Amount Requested"
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

RO R Sk Sk Rk S I R R R R R R Rk kR Rk

* Make Withdrawal using another service
hAhkhkhkkhkhkhkhkkhhhkkhhhkhkdhhhhkhhhkhdhhhhhhkhdhhhkdhdhkhkhkhdhhdrhkhhhdhkhhhkhkhxdx*k

MOVE "WITHDRAWAL" TO SERVICE-NAME.

5-24 Programming an Oracle Tuxedo ATMI Application Using COBOL

Terminating a Service Routine

set other TPCALL parameters
CALL "TPCALL" USING
IF NOT TPOK
MOVE "Cannot withdraw from debit account"
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

R R R Ik I S R R Rk kI kI kS S I Rk

* Make Deposit using another service
ER R R I R R I I I I I I I I I R I I I I R I R I I I
MOVE "DEPOSIT" TO SERVICE-NAME.
set other TPCALL parameters
CALL "TPCALL" USING
IF NOT TPOK
MOVE "Cannot Deposit into credit account"
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

MOVE "Transfer completed" TO STATUS-LINE IN TRANS-REC
MOVE all the data into TRANS-REC needed by the client
SET TPSUCCESS TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

Invalidating Descriptors

If aservice calling TecETRPLY (described in detail in “Writing Request/Response Clients and
Servers’ in Programming Oracle Tuxedo ATMI Applications Using C) failswith TpeTIME and
decides to cancel the request, it can invalidate the descriptor with a call to TPCANCEL (3cbl). If
areply subsequently arrives, it is silently discarded.

TPCANCEL cannot be used for transaction replies (that is, for repliesto requests made without the
TPNOTRAN flag set). Within atransaction, TpABORT (3cbl) doesthe samejob of invalidating the
transaction call descriptor.

Listing 5-7 shows how to invalidate areply after timing out.

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-25

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../pgc/pgreq.html
../pgc/pgreq.html

5-26

Listing 5-7 Invalidating a Reply After Timing Out

Set up parameters to TPACALL
SET TPNOTRAN TO TRUE.
CALL "TPACALL" USING TPSVCDEF-REC
TPTYPE-REC
DEBIT-REC
TPSTATUS-REC.
IF NOT TPOK

error processing

CALL "TPGETRPLY" USING TPSVCDEF-REC
TPTYPE-REC
DEBIT-REC
TPSTATUS-REC.
IF NOT TPOK
error processing
IF TPETIME
CALL "TPCANCEL" TPSVCDEF-REC
TPSTATUS-REC.

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY DEBIT-REC
TPSTATUS-REC BY TPSTATUS-REC.

Forwarding Requests

TheTrPFORWAR (3cbl) routine allowsaserviceto forward arequest to another service for further
processing.

Use the following signature to call the TPFORWAR routine:

01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html

Terminating a Service Routine

01 DATA-REC.
COPY User Data.
01 TPSTATUS-REC.
COPY TPSTATUS.
COPY TPFORWAR REPLACING TPSVCDEF-REC BY TPSVCDEF-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY DATA-REC
TPSTATUS-REC BY TPSTATUS-REC.

For descriptions of the TpsvcDEF-REC and TPTYPE-REC records, refer to “ Defining a Service”
on page 5-11.

The functionality of TprorwaR differsfrom aservice call: aservice that forwards a request does
not expect areply. The responsibility for providing thereply is passed to the serviceto which the
request has been forwarded. The latter service sends the reply to the process that originated the
request. It becomes the responsibility of the last server in the forward chain to send the reply to
the originating client by invoking TPRETURN.

Figure 5-1 shows one possible sequence of events when arequest is forwarded from one service
to another. Here a client initiates a request using the TpcaLL routine and the last servicein the
chain (svc_c) provides areply using the TPRETURN routine.

Figure 5-1 Forwarding a Request

TPCALL TFFORWAR

TPRETUEREN Aza R TFFORWAR

Service routines can forward requests at specified priorities in the same manner that client
processes send requests, by using the Tespr10 routine.

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-21

When aprocesscallsTpForRwWAR, the system that supplied the controlling program regains control,
and the server processis free to do more work.

Note: If aserver processis acting as aclient and areply is expected, the server is not allowed
to request services from itself. If the only available instance of the desired service is
offered by the server process making the request, the call fails, indicating that arecursive
call cannot be made. However, if a service routine sends a request (to itself) with the
TPNOREPLY communication flag set, or if it forwards the request, the call does not fail
because the service is not waiting for itself.

Calling TrrorwAR can be used to indicate success up to that point in processing the request. If no
application errors have been detected, you can invoke TPFORWAR, Otherwise, you can call
TPRETURN With TP-RETURN-VAL IN TPSVCRET-REC Set {0 TPFATL.

The following example illustrates how the service sends its data record to the bEposIT Service
by calling Terorwar. If the new account is added successfully, the branch record is updated to
reflect the new account, and the data record is forwarded to the bEposIT service. On failure,
TPRETURN IS called with TP-RETURN-VAL IN TPSVCRET-REC Set to TPFAIL and thefailureis
reported on the status line of the form.

Listing 5-8 How to Use TPFORWAR

EE R I I S I S S I I S I S I I I S I S I I S S I S

* Get the data that was sent by the client
ER S R I I I I I I I R b I I I R I R I I i
MOVE LENGTH OF TRANS-REC TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
TRANS-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE "Transaction Encountered An Error" TO STATUS-LINE
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.
ELSE
Check other parameters

ER R I S S I S S I I S I S I I I I I R S I S I I

* Insert new account record
ER I R I I S I I I I R e I I I I R I R I I i
CALL "ADD-NEW-ACCOUNT-FUNCTION" USING TRANS-ACCOUNT IN TRANS-REC.
IF Adding New Account Failed
MOVE "Account not added" TO STATUS-LINE IN TRANS-REC

5-28 Programming an Oracle Tuxedo ATMI Application Using COBOL

Advertising and Unadvertising Services

SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.
R R R R R R R R R R R R R R I I I I i
* Forward record to the DEPOSIT service to add initial
* balance into account
B R R R R R R R R R R R R I R I I i
MOVE "DEPOSIT" TO SERVICE-NAME.
. set other TPFORWAR parameters
COPY TPFORWAR REPLACING
DATA-REC BY TRANS-REC.

Advertising and Unadvertising Services

When a server is booted, it advertises the servicesit offers based on the values specified for the
cLopT parameter in the configuration file.

Note: The servicesthat a server may advertise are initialy defined when the buildserver
command is executed. The -s option allows acomma-separated list of servicesto be
specified. It also allows you to specify aroutine with anamethat differsfrom that of the
advertised service that isto be called to process the service request. Refer to the
buildserver (1) inthe Oracle Tuxedo Command Reference for more information.

Thedefault specification callsfor the server to advertise all serviceswithwhichit wasbuilt. Refer
to the UBBCONFIG (5) Or servopts (5) reference pagein the File Formats, Data Descriptions,
MIBs, and System Processes Reference for more information.

Because an advertised service uses a service table entry in the bulletin board, and can therefore
be resource-expensive, an application may boot its serversin such away that only a subset of the
services offered are available. To limit the services availablein an application, define the cLopT
parameter, within the appropriate entry in the serveRs section of the configuration file, to
includethedesired servicesin acomma-separated list following the - s option. The -s option also
allows you to specify aroutine with a name other than that of the advertised service to be called
to process the request. Refer to the servopts (5) reference page in the File Formats, Data
Descriptions, MIBs, and System Processes Reference for more information.

An Oracle Tuxedo application administrator can use the advertise and unadvertise
commands of tmadmin (1) to control the services offered by servers. The TPADVERTISE and
TPUNADVERTISE routines enable you to dynamically control the advertisement of aserviceina
request/response or conversational server. The serviceto be advertised (or unadvertised) must be
available within the same server as the service making the request.

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-29

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

5-30

Advertising Services

Use the following signature to call the TPADVERTISE (3cbl) routine;

01 SERVICE-NAME PIC X(127).
01 PROGRAM-NAME PIC X(32).
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPADVERTISE" USING SERVICE-NAME PROGRAM-NAME TPSTATUS-REC.

Table 5-3 describes the members of a TPADVERTISE data structure.

Table 5-3 TPADVERTISE Data Structure Members

Member Description

SERVICE-NAME Name of the service to be advertised. The service name must be
acharacter string of up to 127 characters. Nameslonger than 127
charactersaretruncated. The SPACES stringisnot avalid value.
If itis specified, an error (TPEINVAL) results.

PROGRAM-NAME Oracle Tuxedo system routinethat iscalled to perform aservice.
Frequently, thisnameisthe same asthe name of the service. The
SPACES string is not avalid value. If it is specified, an error
results.

Unadvertising Services

The TPUNADVERTISE (3cbl) routine removesthe name of aservice from the service table of the
bulletin board so that the service is no longer advertised.

Use the following signature for the TPUNADVERTISE routine;

01 SERVICE-NAME PIC X(127).
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPUNADVERTISE" USING SERVICE-NAME TPSTATUS-REC.

The TPUNADVERTISE data structure contains one member, which is described in Table 5-4.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Advertising and Unadvertising Services

Table 5-4 TPUNADVERTISE Data Structure Member

Member Description

SERVICE-NAME Name of the serviceto be advertised. The service name must be
acharacter string of up to 127 characters. Nameslonger than 127
charactersaretruncated. The SPACES string isnot avalid value.
If itis specified, an error (TPEINVAL) results.

Example: Dynamic Advertising and Unadvertising of a
Service

The following example shows how to use the TPADVERTISE routine. In this example, a server
called TLR is programmed to offer only the service called TLrRINIT When booted. After some
initialization, TLRINIT advertises two services called pEposIT and wiTHDRAW. Both are
performed by the TL.rRFUNCS routine, and both are built into the TL.r server.

After advertising pEposTT and WITHDRAW, TLRINIT Unadvertises itself.

Listing 5-9 Dynamic Advertising and Unadvertising

EE R R R I R R I I I R I R R I I S I R R I S R I I S I I I b I

* Advertise DEPOSIT service to be processed by
* routine TLRFUNCS
EEEEE RS S EEEEEEEEEEEEEEEEEEEEEEEESESEEEEEEEEEEEEEE ST
MOVE "DEPOSIT" TO SERVICE-NAME.
MOVE "TLRFUNCS" TO PROGRAM-NAME.
CALL "TPADVERTISE" USING SERVICE-NAME
PROGRAM-REC
TPSTATUS-REC.
IF NOT TPOK
error processing
B
* Advertise WITHDRAW service to be processed by
* the same routine TLRFUNCS

Rk R Rk Rk R R S S R R R R R R R S i R S Rk R S I

Programming an Oracle Tuxedo ATMI Application Using COBOL 5-31

MOVE "WITHDRAW" TO SERVICE-NAME.
MOVE "TLRFUNCS" TO PROGRAM-NAME.
CALL "TPADVERTISE" USING SERVICE-NAME
PROGRAM-REC
TPSTATUS-REC.
IF NOT TPOK
error processing

Rk Ik I S S I R R Ik kI S I

* Unadvertise TLRINIT service (yourself)
ok ok ok ok ok K Kk ko ok ok ok K K Kk ok ok ok ok K Kk ok ok ok ok ok ok Kk ok ok ok ok K K Kk ok ok ok
MOVE "TLRINIT" TO SERVICE-NAME.
CALL "TPUNADVERTISE" USING SERVICE-NAME
TPSTATUS-REC.
IF NOT TPOK

error processing

Building Servers

To build an executable ATMI server, compile your application service subroutines with the
Oracle Tuxedo system server adaptor and all other referenced filesusing the buildserver (1)
command with the -c option.

Note: The Oracle Tuxedo server adaptor accepts messages, dispatches work, and manages
transactions (if transactions are enabled).

Use the following syntax for the buildserver command:

buildserver -C -o filename -f filenames -1 filenames -s -V

Table 5-5 describes the buildserver command-line options:

5-32 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rfcm/rfcmd.html

Building Servers

Table 5-5 buildserver Command-line Options

This Option . ..

Allows You to Specify the . . .

-o filename

Name of the executable output file. The default is SERVER.

-f filenames

List of filesthat are link edited before the Oracle Tuxedo system
libraries. Y ou can specify the - £ option more than once, and
multiple filenames for each occurrence of - £. If you specify a
COBOL programfile(file.cbl),itiscompiledbeforeitislinked.
Y ou can specify other object files(file. o) separately, or ingroups
inan archivefile(file.a).

-1 filenames

List of filesthat are link edited after the Oracle Tuxedo system
libraries. Y ou can specify the -1 option more than once, and
multiple filenames for each occurrence of -1. If you specify a
COBOL programfile(file.cbl),itiscompiled beforeitislinked.
Y ou can specify other object files(file. o) separately, or ingroups
inan archivefile(file.a).

-I filenames

List of resource manager accesslibrariesthat arelink edited with the
executable server. The application administrator is responsible for
predefining all valid resource manager information in the
$TUXDIR/updataobj/RM fileusingthebuildtms (1)
command. Y ou can specify only one resource manager. Refer to
Setting Up an Oracle Tuxedo Application for more information.

-S[service]routine

Name of service or services offered by the server and the name of
the routine that performs each service. Y ou can specify the -s
option more than once, and multiple services for each occurrence of
-s. The server uses the specified service namesto advertise its
servicesto clients.

Typically, you should assign the same name to both the service and
theroutine that performsthat service. Alternatively, you can specify
any names. To assign names, use the following syntax:
serviceiroutine.

Notes. The Oracle Tuxedo libraries are linked in automatically. Y ou do not need to specify the
Oracle Tuxedo library names on the command line.

Link editing must be done by running the buildclient command.

Programming an Oracle Tuxedo ATMI Application Using COBOL

5-33

../rfcm/rfcmd.html

The order in which you specify the library filesto be link edited is significant: it depends on the
order in which routines are called and which libraries contain references to those functions.

By default, the buildserver command invokesthe UNIX cobcc command, which usesthe
MicroFocus Net Express compiler. To use Fujitsu’s NetCOBOL arTcc must be set, even on a
Windows system. Y ou must set AL.TcCc=cobcc8s for NetCOBOL . Y ou can specify an alternative
compile command and set your own flags for the compile and link-edit phases, however, by
setting the aLrcc and ALTCFLAGS environment variables, respectively. For more information,
refer to “ Setting Environment Variables’ in Programming Oracle Tuxedo ATMI Applications
Using C.

Note: 1. On aWindows system, the a.Tcc and ALTCFLAGS environment variables are not
applicable and setting them will produce unexpected results. Y ou must compile your
application first using a COBOL compiler and then pass the resulting object file to the
buildserver command.

2. anTcrFLaGs only works for the MicroFocus COBOL compiler. For other supported
COBOL compilers(i.e.,, IBMCOBOL or AccuCOBOL), cFLags is supported and is
sufficient.

The following command processes the acct . o application file and creates a server called acct
that contains two services. NEw_accT, which calls the oPEN_accT routine, and CLOSE_AcCT,
which cals aroutine of the same name:

buildserver -C -o ACCT -f acct.o -s NEW_ACCT:0PEN_ACCT -s CLOSE_ACCT

See Also
e “Building Clients’ in Programming Oracle Tuxedo ATMI Applications Using C

e buildclient (1) inthe Oracle Tuxedo Command Reference

5-34 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rfcm/rfcmd.html
../pgc/pgglob.html
../pgc/pgclt.html

CHAPTERa

Writing Request/Response Clients and
Servers

Thistopic includes the following sections:
e Overview of Reguest/Response Communication
e Sending Synchronous Messages
e Sending Asynchronous M essages
e Setting and Getting Message Priorities

Overview of Request/Response Communication

In request/response communication mode, one software module sends a request to a second
software module and waits for aresponse. Because thefirst software module performstherol e of
the client, and the second, the role of the server, thismodeis also referred to as client/server
interaction. Many online banking tasks are programmed in request/response mode. For example,
arequest for an account balance is executed as follows:

1. A customer (the client) sendsarequest for an account balance to the Account Record Storage
System (the server).

2. The Account Record Storage System (the server) sends areply to the customer (the client),
specifying the dollar amount in the designated account.

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-1

Figure 6-1 Example of Request/Response Communication in Online Banking

‘ -

Customer Fequast’ Check Account Balance & L

4
Syshem Mesporse; £ 26,76

Customer's Bank's Computer on Which
Home Compuier Account Records Are Stoed

Once aclient process hasjoined an application, it can then send the request message to a service
subroutine for processing and receive areply message.

Sending Synchronous Messages

6-2

The TpcarL (3cbl) call sends areguest to a service subroutine and synchronously waits for a
reply. Use the following signature to call the TpcarL routine:

01 TPSVCDEF-REC.
COPY TPSVCDEF.
01 ITPTYPE-REC.
COPY TPTYPE.
01 IDATA-REC.
COPY User Data.
01 OTPYTPE-REC.
COPY TPTYPE.
01 ODATA-REC.
COPY User Data.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPCALL" USING TPSVCDEF-REC
ITPTYPE-REC
IDATA-REC
OTPTYPE-REC
ODATA-REC
TPSTATUS-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html

Sending Synchronous Messages

For more information on the TpsvcDEF data structure, refer to Programming Oracle Tuxedo
ATMI Applications Using C. The 1paTa-REC and I1TPTYPE-REC Structures define the request
record. The opaTa-rREC and oTPTYPE-REC Structures define the reply record. The ITPTYPE-REC
and oTpTYPE-REC data structures are similar to the TpTyPE-REC data structure.

TpcaLL waits for the expected reply.

Note: Caling the recart routineislogically the same as calling the TpacaLL routine,
immediately followed by TpcETRPLY, as described in “ Sending Asynchronous
Messages’ on page 6-10.

Therequest carriesthe priority set by the system for the specified service (serviCE-NaME) unless

adifferent priority has been explicitly set by acall to the Tespr10 routine (described in “ Setting

and Getting Message Priorities’ on page 6-15).

TPCALL returns an integer. On failure, the value of Tp-sTaTus is set to avalue that reflects the
type of error that occurred. For information on valid error codes, refer to TPcaLL (3¢cbl) inthe
Oracle Tuxedo ATMI COBOL Function Reference.

Note: Communication calls may fail for a variety of reasons, many of which can be corrected
at the application level. Possible causes of failure include: application defined errors
(TPESVCFAIL), &TOrsin processing return arguments (TPESVCERR), typed record errors
(TPEITYPE, TPEOTYPE), timeout errors (TPETIME), and protocol errors (TPEPROTO),
among others. For a detailed discussion of errors, refer to “Managing Errors’ in
Programming Oracle Tuxedo ATMI ApplicationsUsing C. For acompletelist of possible
errors, refer to TecaLL (3¢cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference.

The Oracle Tuxedo system automatically adjusts a record used for receiving a message if the
received messageistoo largefor theallocated record. Y ou should test for whether or not the reply
records have been resized.

To access the new size of the record, use the addressreturned in *LEN IN OTPTYPE-REC. TO
determine whether areply record has changed in size, compare the size of thereply record before
the call to TecaLL with thevalue of LEN IN oTpTYPE-REC after itsreturn. If LEN 1IN
OTPTYPE-REC iSlarger than the original size, the record has grown. If not, the record size has not
changed.

Example: Using the Same Record for Request and Reply
Messages

The following example shows how the client program makes a synchronous call using the same
record for both the request and reply messages. In this case, using the same record is appropriate

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-3

../rf3cbl/rf3cbl.html
../pgc/pgerr.html
../rf3cbl/rf3cbl.html

because the aupv-rEC message record has been set up to accommodate both request and reply
information. The following actions are taken in this code:

1. The service queriesthe B_1p field, but does not overwriteiit.

2. The application initializes the BaraNCE field to zero in preparation for the values to be
returned by the service.

3. The sERVICE-NAME represents the service name requested. In this example, these variables
represent account and teller, respectively.

Listing 6-1 Using the Same Record for Request and Reply Messages

WORKING-STORAGE SECTION.

EE R R I S I I S I S S I I S S I S I I S S S R R R S

* Tuxedo definitions

BRI R R I R R I I I I I I b O
01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

Rk Ik I I I S Ik kS I

* Log messages definitions

EE SR R I S I S S I S S I S S I S I I S S S R R I R S S

01 LOGMSG.
05 FILLER PIC X(6) VALUE "FIG =>".
05 LOGMSG-TEXT PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.
*
01 USER-DATA-REC PIC X(75).

ER R R I S R R I I I I I S I I S I R S R S I R R I I R S

* This VIEW record (audv) will be sent to the server

R Rk Ik Sk Sk kS S S R R R R R R R Rk Rk

01 AUDV-REC.
COPY AUDV.

6-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

Sending Synchronous Messages

*
Rk R Ik S I R R Rk kI kI kS S I Rk

PROCEDURE DIVISION.
START-FIG.
MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

EEE R R I S R R I I I I R S I I S I R S R R S I R R I I R

* Prepare the audv record
R Rk R R R R R R R R Ik R kR R R R R R R SR Rk R kS
MOVE "BRANCH" TO B-ID IN AUDV-REC.
MOVE 0 TO BALANCE IN AUDV-REC.
MOVE LENGTH OF AUDV-REC TO LEN.
MOVE "VIEW" TO REC-TYPE.
MOVE "audv" TO SUB-TYPE.
MOVE "SOMESERVICE" TO SERVICE-NAME.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USING TPSVCDEF-REC
TPTYPE-REC
AUDV-REC
TPTYPE-REC
AUDV-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE "Service Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM.
DISPLAY BRANCH and BALANCE

If thereply islarger than opaTa-REC, then opaTA-REC contains as much of the message asfits
in the record. The remainder is discarded and TPCALL SetS TP-STATUS IN TPSTATUS-REC tO
TPTRUNCATE.

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-5

Example: Sending a Synchronous Message with TPSIGRSTRT
Set

The following example is based on the TRaNSFER service, which is part of the xFER server
process of bankapp. (bankapp iSasample ATMI application delivered with the Oracle Tuxedo
system.) The exampleis based on a service that assumes the role of aclient when it callsthe
WITHDRAWAL and DEPOSIT Services. Theapplication setsthe communication flag to TPSIGRSTRT
in these service callsto give the transaction a better chance of committing. The resTGrsTRT flag
specifiesthe action to takeif thereisasigna interrupt. For moreinformation on communication
flags, refer to TpcALL (3¢cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference.

Listing 6-2 Sending a Synchronous Message with TPSIGRSTRT Set

WORKING-STORAGE SECTION.

EEE R R I S R R I I S I I I S I I I R S I R S R R I R S

* Tuxedo definitions

Rk Rk I I S I R R Ik kI

01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

EE R R I S I I S I S S I I S S I I I I S S S I R I I S

* This VIEW record (audv) will be sent to the server

EE R R I S R R I I I I I S I I S I R S R S I R R I R

01 AUDV-REC.
COPY AUDV.

*

RO R Sk Sk kR R R R R I R R kI kR R R Rk

PROCEDURE DIVISION.
START-FIG.

Rk Rk I I S S S R Rk Ik kR I O T

* Prepare the audv record for withdrawal

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html

Sending Synchronous Messages

R Rk R Sk Sk Sk S S S R R R R R R R R Rk Rk R O

MOVE "WITHDRAWAL" TO SERVICE-NAME.
SET TPSIGRSTRT TO TRUE.
PERFORM DO-TPCALL.
IF NOT TPOK
MOVE "Cannot withdraw from debit account" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM.
MOVE "DEPOSIT" TO SERVICE-NAME.
SET TPSIGRSTRT TO TRUE.
PERFORM DO-TPCALL.
IF NOT TPOK

MOVE "Cannot deposit into credit account" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM.

EE R R I S R R I I I I I R S I I S I R S R S R R I I R S

* Perform a TPCALL

hkhkhkkhkhkhkhkhhhkkhkhkkhkkkkhkkkkhkhkkhkhkkkhkhkkkkkkkkk k%
DO-TPCALL.
MOVE LENGTH OF AUDV-REC TO LEN.
MOVE "VIEW" TO REC-TYPE.
MOVE "audv" TO SUB-TYPE.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTIME TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USING TPSVCDEF-REC
TPTYPE-REC
AUDV-REC
TPTYPE-REC
AUDV-REC
TPSTATUS-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-7

6-8

Example: Sending a Synchronous Message with TPNOTRAN
Set

The following example illustrates a communication call that suppresses transaction mode. The
call ismadeto aservicethat isnot affiliated with aresource manager; it would be an error to allow
the service to participate in the transaction. The application prints an accounts receivable report,
Accrv, generated from information obtained from a database named AccounTs.

The service routine REPORT interprets the specified parameters and sends the byte stream for the
completed report as areply. The client uses TpcaLL to send the byte stream to a service called
PRINTER, Which, inturn, sendsthe byte stream to a printer that is conveniently closeto theclient.
Thereply is printed. Finally, the PRINTER service notifies the client that the hard copy is ready
to be picked up.

Note: Theexample* Sending an Asynchronous Message with TPNOTRAN or TPNOREPLY”
on page 6-12 shows a similar example using an asynchronous message call.

Listing 6-3 Sending a Synchronous Message with TPNOTRAN Set

WORKING-STORAGE SECTION.

R Rk Ik Sk Sk Sk S S S R R R R I R R R R R Rk I

* Tuxedo definitions

Rk Rk I I S S Ik kI kS I

01 ITPTYPE-REC.
COPY TPTYPE.
01 OTPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

EE R R I S I S S I S S I I S S I I I S S S R S

01 REPORT-REQUEST PIC X(100) VALUE SPACES.
01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.

ER R I I I S S I I S I S I

Programming an Oracle Tuxedo ATMI Application Using COBOL

Sending Synchronous Messages

PROCEDURE DIVISION.
START-FIG.

join application

start transaction

Rk Rk Ik Sk Sk kR R R R R R R R R I R R

* Send report request to REPORT service
* Receive results into REPORT-OUTPUT
ok ok ok ok o K Kk ok ok ok ok ok K K K ko ok ok ok ok Kk ok ok ok ok o K Kk ok ok ok ok ok K Kk ok ok ok ok ok K Kk ko
MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.
MOVE "STRING" TO REC-TYPE IN ITYPE-REC.
MOVE 29 TO LEN IN ITYPE-REC.
MOVE "STRING" TO REC-TYPE IN OITYPE-REC.
MOVE 50000 TO LEN IN OTYPE-REC.
MOVE "REPORT" TO SERVICE-NAME.
SET TPTRAN TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USING TPSVCDEF-REC
ITPTYPE-REC
REPORT-REQUEST
OTPTYPE-REC
REPORT-OUTPUT
TPSTATUS-REC.
IF NOT TPOK
error processing
IF TPETRUNCATE
The report was truncated
error processing

Rk Ik kI I R kI kI Ik ki S R S R

* Send REPORT-OUTPUT to PRINTER service

BRI R I R R I R R I I I R I I R I R I R I R I R R I I I I

MOVE "PRINTER" TO SERVICE-NAME.
SET TPNOTRAN TO TRUE.

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-9

MOVE "STRING" TO REC-TYPE IN ITTYPE-REC.
MOVE LEN IN OTYPE-REC TO LEN IN ITYPE-REC.
CALL "TPCALL" USING TPSVCDEF-REC
ITPTYPE-REC
REPORT-OUTPUT
OTPTYPE-REC
REPORT-OUTPUT
TPSTATUS-REC.
IF NOT TPOK

error processing

terminate transaction

leave application

Note: Inthepreceding example, thetermerror routine indicatesthat thefollowingtasksare
performed: an error message is printed, the transaction is aborted, the client leaves the
application, and the program is exited.

This example a so shows how the TpnocHANGE communication setting is used to enforce strong
record type checking by indicating that the reply message must be returned in the same type of
record that was originally allocated. The strong type check flag, TenocHANGE, forcesthe reply to
be returned in arecord of type sTRING.

A possible reason for this check isto guard against errors that may occur in the REPORT Service
subroutine, resulting in the use of areply record of anincorrect type. Another reason isto prevent
changes that are not made consistently across all areas of dependency. For example, another
programmer may have changed the ReporT service to standardize al repliesin another sTRING
format without modifying the client processto reflect the change.

Sending Asynchronous Messages

6-10

This section explains how to:
e Send an asynchronous request using the TpacarL routine

e Get an asynchronous reply using the TPGETRPLY routine

Programming an Oracle Tuxedo ATMI Application Using COBOL

Sending Asynchronous Messages

Thetype of asynchronous processing discussed in this section is sometimes referred to as fan-out
parallelism because it allows a client’ s requests to be distributed (or “fanned out™)
simultaneously to several servicesfor processing.

The other type of asynchronous processing supported by the Oracle Tuxedo system is pipeline
parallelisminwhich the TprorwAR routineis used to pass (or forward) aprocessfrom one service
to another. For adescription of the TpForwAR routine, refer to “Writing Servers’ in Programming
Oracle Tuxedo ATMI Applications Using C.

Sending an Asynchronous Request

The TPACALL (3cbl) routine sends arequest to a service and immediately returns. Use the
following signature to call the TPAcALL routine;

01 TPSVCDEF-REC.
COPY TPSVCDEF.
01 TPTYPE-REC.
COPY TPTYPE.
01 DATA-REC.
COPY User Data.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPACALL" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

For more information on the TpsvcDEF and TPTYPE-REC data structures, refer to “ Defining a
Service” in Programming Oracle Tuxedo ATMI Applications Using C.

The TpACALL routine sends a request message to the service named in the service-NamME and
immediately returns from the call. Upon successful completion of the call, the TpacaLr routine
returns an integer that serves as a communication handle used to access the correct reply for the
relevant request. While TpacaLL isin transaction mode (as described in “Writing Global
Transactions’ in Programming Oracle Tuxedo ATMI Applications Using C) there may not be any
outstanding replies when the transaction commits; that is, within a given transaction, for each
request for which areply is expected, a corresponding reply must eventually be received.

If the value TPNOREPLY iS Set, the parameter signalsto TpacarL that areply is not expected.
When set, on success TpacarL returnsavalue of 0 asthereply descriptor. If subsequently passed
to the TeGETRPLY routine, thisvalue becomesinvalid, this value becomesinvalid. Guidelinesfor
using this setting correctly when a processisin transaction mode are discussed in “Writing
Globa Transactions” in Programming Oracle Tuxedo ATMI Applications Using C.

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-11

../rf3cbl/rf3cbl.html
../pgc/pgserv.html
../pgc/pgserv.html
../pgc/pgserv.html
../pgc/pgglob.html
../pgc/pgglob.html
../pgc/pgglob.html
../pgc/pgglob.html

On error, TPACALL Sets Tp-sTATUS to avaue that reflects the nature of the error. TpacarL
returns many of the same error codes as TpcaLL. The differences between the error codes for
these functions are based on the fact that one call is synchronous and the other, asynchronous.
Theseerrorsare discussed at length in“Managing Errors” in Programming Oracle Tuxedo ATMI
Applications Using C.

The following example shows how TpPacarL usesthe TpNOTRAN and TPNOREPLY Settings. This
codeissimilar to the codein“Example: Sending a Synchronous Messagewith TPNOTRAN Set”
on page 6-8. In this case, however, areply is not expected from the PRINTER service. By setting
both TeNoTRAN and TPNOREPLY, the client isindicating that no reply is expected and the PRINTER
service will not participate in the current transaction. This situation is discussed more fully in
“Managing Errors’ in Programming Oracle Tuxedo ATMI Applications Using C.

Listing 6-4 Sending an Asynchronous Message with TPNOTRAN or TPNOREPLY

WORKING-STORAGE SECTION.

EER R R S R R I I I S I I S I I I R R S I R S I R R I I R S

* Tuxedo definitions
R R T s
01 ITPTYPE-REC.
COPY TPTYPE.
01 OTPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.
R R R R R R R R R R T
01 REPORT-REQUEST PIC X(100) VALUE SPACES.
01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.
R R R T T T T T I T
PROCEDURE DIVISION.
START-FIG.

join application

start transaction

6-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

../pgc/pgerr.html
../pgc/pgerr.html

Sending Asynchronous Messages

LR I I I I R R Rk kI kS I S S I R Rk

* Send report request to REPORT service
* Receive results into REPORT-OUTPUT

EE R I S S S I I I I I S S I I S S I R R S I R S I R S I R S R S S

MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.

MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.

MOVE 29 TO LEN IN ITPTYPE-REC.

MOVE "STRING" TO REC-TYPE IN OITYPE-REC.

MOVE 50000 TO LEN IN OTPTYPE-REC.

MOVE "REPORT" TO SERVICE-NAME.

SET TPTRAN TO TRUE.

SET TPBLOCK TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPREPLY TO TRUE.

SET TPNOCHANGE TO TRUE.

CALL "TPCALL" USING TPSVCDEF-REC
ITPTYPE-REC
REPORT-REQUEST
OTPTYPE-REC
REPORT-OUTPUT
TPSTATUS-REC.

IF NOT TPOK

error processing
IF TPETRUNCATE
The report was truncated

error processing

Rk Rk Ik Sk Sk kS S S R R R R R R R R Ik Rk R R

* Send REPORT-OUTPUT to PRINTER service

hokkkkhkhkk k& &k k k% %
MOVE "PRINTER" TO SERVICE-NAME.
SET TPNOTRAN TO TRUE.
SET TPNOREPLY TO TRUE.
MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-13

MOVE LEN IN OTPTYPE-REC TO LEN IN ITPTYPE-REC.
CALL "TPACALL" USING TPSVCDEF-REC

ITPTYPE-REC

REPORT-OUTPUT

TPSTATUS-REC.
IF NOT TPOK

error processing

commit transaction

leave application

Getting an Asynchronous Reply

A reply to aservice call can be received asynchronously by calling the TPGETRPLY (3¢cbl)
routine. The TeGETRPLY routine dequeues areply to arequest previously sent by TpacaLL.

Use the following signature to call the TpGETRPLY routine:

01 TPSVCDEF-REC.
COPY TPSVCDEF.
01 TPTYPE-REC.
COPY TPTYPE.
01 DATA-REC.
COPY User Data.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

For more information on the Tpsvcper and TpTYPE-REC data structures, refer to “ Defining a
Service” in Programming Oracle Tuxedo ATMI Applications Using C.

By default, the function waitsfor the arrival of the reply that correspondsto the value referenced
by the communication handle. During this waiting interval, a blocking timeout may occur. A
time-out occurs when TpcETRPLY fails and TP-sTATUS iS set to TPETIME (UNlE€SS TPNOTIME IS
Set).

6-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../pgc/pgserv.html
../pgc/pgserv.html

Setting and Getting Message Priorities

Setting and Getting Message Priorities

Two ATMI calls allow you to determine and set the priority of a message request:
TPSPRIO (3cbl) and TPGPRIO (3cbl). Thepriority affects how soon the request is dequeued by
the server; servers dequeue requests with the highest priorities first.

This section describes:
e Setting a Message Priority
e Getting a Message Priority

Setting a Message Priority
The TpsPRIO (3cbl) routine enablesyou to set the priority of a message request.

The TpsprIO routine affects the priority level of only one request: the next request to be sent by
TPCALL OF TPACALL, Of to be forwarded by a service subroutine.

Use the following signature to call the TpsprIO routine;

01 TPPRIDEF-REC.
COPY TPPRIDEF.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

Use the following signature for the TPPRIDEF-REC data structure.

05 PRIORITY PIC S9(9) COMP-5.
05 PRIO-FLAG PIC S9(9) COMP-5.
88 TPABSOLUTE VALUE 0.
88 TPRELATIVE VALUE 1.

Table 6-1 describes the arguments to the TpsprTO routine.

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-15

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

6-16

Table 6-1 TPSPRIO Routine Fields

Field Description

PRIORITY Integer indicating a new priority value. The effect of thisargument is
controlled by PRIO-FLAG. If PRIO-FLAG iSset to O, PRIORITY
specifies arelative value and the sign accompanying the value indicates
whether the current priority isincremented or decremented. Otherwise,
the value specified indicates an absol ute value and PRIORITY must be
set to avalue between 0 and 100. If you do not specify avaluewithin this
range, the system sets the value to 50.

PRIO-FLAG Indicateswhether thevalue of PRIORITY istreated asarelativevalue (0,
the default) or an absolute value (TPABSOLUTE).

The following sample code is an excerpt from the TRaNSFER service. In this example, the
TRANSFER Service acts as a client by sending a synchronous request, via TpcaLt, to the
WITHDRAWAL Sefvice. TRANSFER also invokes TPSPRIO to increase the priority of its request
message to w1 THDRAWAL, and to prevent the request from being queued for the wrTHDRAWATL
service (and later the DEPOSIT Service) after waiting on the TRANSFER queue.

Listing 6-5 Setting the Priority of a Request Message

WORKING-STORAGE SECTION.

ER R R I S R R I I I I I S I I S I R S R S I R R I I R S

* Tuxedo definitions

R R R Sk Sk Rk S S S S R R R R R R Ik R R Rk

01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 TPPRIDEF-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Setting and Getting Message Priorities

COPY TPPRIDEF.

R Rk Ik Sk Sk Rk S S S S S R R R R R R Rk kR I O

01 DATA-REC PIC X(100) VALUE SPACES.

RO R Sk Sk Sk R R Rk R I Rk R Ik R R

PROCEDURE DIVISION.
START-FIG.

join application

MOVE 30 TO PRIORITY.

SET TPRELATIVE TO TRUE.

CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC

IF NOT TPOK

error processing

MOVE "CARRAY" TO REC-TYPE.

MOVE 100 TO LEN.

MOVE "WITHDRAWAL" TO SERVICE-NAME.

SET TPTRAN TO TRUE

SET TPBLOCK TO TRUE

SET TPNOTIME TO TRUE

SET TPSIGRSTRT TO TRUE

SET TPREPLY TO TRUE

CALL "TPACALL" USING TPSVCDEF-REC
TPTYPE-REC
DATA-REC
TPSTATUS-REC.

IF NOT TPOK

error processing

leave application

Getting a Message Priority

The TPGPRIO (3cbl) routine enables you to get the priority of a message request.

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-17

../rf3cbl/rf3cbl.html

6-18

Use the following signature to call the TpgprIO routine:

01 TPPRIDEF-REC.
COPY TPPRIDEF.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPGPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

A requester can call the TpeprIO routine after invoking the TecarL or TPACALL routine to
retrieve the priority of the request message. If arequester callsthe function but no request is sent,
the routine fails, setting Tp-sTATUS t0 TPENOENT. UpON SUCCESS, TPGPRIO SELS TP-STATUS tO
TPOK and returnsan integer valuein therange of 1to 100 (wherethe highest priority valueis 100).

If apriority has not been explicitly set using the TpsprI0 routine, the system sets the message
priority to that of the service routine that handles the request. Within an application, the priority
of the request-handling service is assigned a default value of 50 unless a system administrator
overridesthis value.

The following example shows how to determine the priority of a message that was sent in an
asynchronous call.

Listing 6-6 Determining the Priority of the Sent Request

WORKING-STORAGE SECTION.

R Rk Ik Sk Sk Sk kS S S R R R R R R Rk kR O

* Tuxedo definitions
ok ok ok ok o Kk Kk ok ok ok ok K K ko ok ok ok ok o Kk ok ko ok ok ok o K K k ok ok ok ok K K Kk ok ok ok ok K K K
01 TPTYPE-REC-1.
COPY TPTYPE.
01 TPTYPE-REC-2.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC-1.
COPY TPSVCDEF.
01 TPSVCDEF-REC-2.
COPY TPSVCDEF.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Setting and Getting Message Priorities

01 TPPRIDEF-REC-1.
COPY TPPRIDEF.
01 TPPRIDEF-REC-2.
COPY TPPRIDEF.
Kk ko ko ko kK ok ok ko k ok ok ok ok ok ok ok ok ok ko kK ok ko ok ok ek
01 DATA-REC-1 PIC X(100) VALUE SPACES.
01 DATA-REC-2 PIC X(100) VALUE SPACES.
EEEEEEE S EESEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
PROCEDURE DIVISION.
START-FIG.

join application

populate DATA-REC1 and DATA-REC2 with send request

MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-1.
MOVE 100 TO LEN IN TYPE-REC-1.
MOVE "SERVICEl" TO SERVICE-NAME IN TPSVCDEV-REC-1.
SET TPTRAN TO TRUE IN TPSVCDEV-REC-1.
SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.
SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.
SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.
SET TPREPLY TO TRUE IN TPSVCDEV-REC-1.
CALL "TPACALL" USING TPSVCDEF-REC-1
TPTYPE-REC-1
DATA-REC-1
TPSTATUS-REC.
IF NOT TPOK
error processing
CALL "TPGPRIO" USING TPPRIDEF-REC-1 TPSTATUS-REC
IF NOT TPOK
error processing
MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-2.
MOVE 100 TO LEN IN TYPE-REC-2.
MOVE "SERVICE2" TO SERVICE-NAME IN TPSVCDEV-REC-2.
SET TPTRAN TO TRUE IN TPSVCDEV-REC-2.
SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.
SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.
SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-19

SET TPREPLY TO TRUE IN TPSVCDEV-REC-2.
CALL "TPACALL" USING TPSVCDEF-REC-2
TPTYPE-REC-2
DATA-REC-2
TPSTATUS-REC.
IF NOT TPOK
error processing
CALL "TPGPRIO" USING TPPRIDEF-REC-2 TPSTATUS-REC
IF NOT TPOK
error processing
IF PRIORITY IN TPSVCDEF-REC-1 >= PRIORITY IN TPSVCDEF-REC-2
PERFORM DO-GETREPLY1
PERFORM DO-GETREPLY2
ELSE
PERFORM DO-GETREPLY2
PERFORM DO-GETREPLY1
END-TIF.

leave application
DO-GETRPLY1.

SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-1.
SET TPCHANGE TO TRUE IN TPSVCDEV-REC-1.
SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.
SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.
SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.
CALL "TPGETRPLY" USING TPSVCDEF-REC-1

TPTYPE-REC-1

DATA-REC-1

TPSTATUS-REC.
IF NOT TPOK

error processing
DO-GETRPLY2

SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-2.
SET TPCHANGE TO TRUE IN TPSVCDEV-REC-2.
SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.
SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.
SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.
CALL "TPGETRPLY" USING TPSVCDEF-REC-2

6-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

Setting and Getting Message Priorities

TPTYPE-REC-2

DATA-REC-2

TPSTATUS-REC.
IF NOT TPOK

error processing

Programming an Oracle Tuxedo ATMI Application Using COBOL 6-21

6-22 Programming an Oracle Tuxedo ATMI Application Using COBOL

CHAPTERa

Writing Conversational Clients and
Servers

Thistopic includes the following sections:
e Overview of Conversational Communication

e Joining an Application

Establishing a Connection

Sending and Receiving Messages

Ending a Conversation

Building Conversational Clients and Servers

e Understanding Conversational Communication Events

Overview of Conversational Communication

Conversational communication is the Oracle Tuxedo system implementation of a human-like
paradigm for exchanging messages between ATMI clients and servers. In thisform of
communication, avirtual connection is maintained between the client (initiator) and server
(subordinate) and each side maintains information about the state of the conversation. The
connection remains active until an event occurs to terminate it.

During conversational communication, ahalf-duplex connection is established between the client
and server. A half-duplex connection allows messages to be sent in only one direction at any
given time. Control of the connection can be passed back and forth between the initiator and the

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-1

1-2

subordinate. The process that has control can send messages; the process that does not have
control can only receive messages.

To understand how conversational communication works in an Oracle Tuxedo ATMI
application, consider the following examplefrom an online banking application. In thisexample,
abank customer requests checking account statements for the past two months.

Figure 7-1 Example of Conversational Communication in an Online Banking Application

'..

1. Customer Request Send slabtemenis &

for last 2months 13
4 2 System Resporse: Here's the first ui:lLulmn‘ltInnl.anuﬁm?h
A Custormer Requast: Yes, send more -
-+ 4. Systen Responge. Here's the statement for the second month Lo -
Customer Residence Account Records Storage System

located at the Bank Headguarters

1. The customer requests the checking account statements for the past two months.

2. TheAccount Records Storage System responds by sending thefirst month’s checking account
statement followed by amore prompt for accessing the remaining month’s statement.

3. The customer requests the second month'’s account statement by selecting the More prompt.

Note: TheAccount Records Storage System must maintain state information so it knowswhich
account statement to return when the customer selects the more prompt.

4. The Account Records Storage System sends the remaining month’s account statement.

As with request/response communication, the Oracle Tuxedo system passes data using typed
records. The record types must be recognized by the application. For more information on record
types, refer to “Overview of Typed Records’ on page 3-1.

Conversational clients and servers have the following characteristics:
e Thelogica connection between them remains active until terminated.
e Any number of messages can be transmitted across a connection between them.

e Both clients and servers use the TpseEND and TPRECV routines to send and receive datain
conversations.

Conversational communication differs from reguest/response communication in the following
ways:

Programming an Oracle Tuxedo ATMI Application Using COBOL

Joining an Application

e A conversational client initiates a request for service using TPcoNNECT rather than TpcaLL
Or TPACALL.

e A conversationa client sends a service request to a conversational server.

e The configuration file reserves part of the conversational server for addressing
conversational services.

e Conversational servers are prohibited from making calls using TPFORWAR.

Joining an Application

A conversational client must join an application viaacall to reinITIALIZE before attempting to
establish a connection to a service. For more information, refer to “Writing Clients” in
Programming Oracle Tuxedo ATMI Applications Using C.

Establishing a Connection

The TPCONNECT (3cbl) routine sets up a conversation:

Use the following signature to call the TpcoNNECT routine.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY User Data.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” for more information on the TesvcpeF-REC record, and to
“Defining Typed Records’ on page 3-6 for more information on the TpTYPE-REC record.

At the same time the connection is being established, data can be sent through the paTa-rEC with
thelength of thedataspecified by LEN IN TPTYPE-REC. TherREC-TYPE and suB-TYPE Of thedata
in DATA-REC must be types recognized by the service being called. If no datais being sent, the
value of REC-TYPE iS SPACES, and DATA-REC and LEN are ignored.

The Oracle Tuxedo system returns acommunication handle, comM-HANDLE IN TPSVCDEF-REC,
when a connection is established with TPCONNECT OF TPSVCSTART. COMM-HANDLE iS used to

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-3

../rf3cbl/rf3cbl.html
../pgc/pgserv.html
../pgc/pgclt.html

identify subsequent message transmissions with a particular conversation. A client or
conversational service can participate in more than one conversation simultaneously. The
maximum number of simultaneous conversationsis 64.

Inthe event of afailure, TrcoNNECT Sets TP-STATUS to the appropriate error condition. For alist
of possible error codes, refer to TeconNECT (3cbl) inthe Oracle Tuxedo ATMI COBOL Function
Reference.

The following example shows how to use the TpconnNECT routine.

Listing 7-1 Establishing a Conversational Connection

* Prepare the record to send
MOVE "HELLO" TO DATA-REC.
MOVE 5 TO LEN.

MOVE "STRING" TO REC-TYPE.

SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.
SET TPSENDONLY TO TRUE.

CALL "TPCONNECT" USING TPSVCDEF-REC
TPTYPE-REC
DATA-REC
TPSTATUS-REC.

IF NOT TPOK

error processing ...
ELSE
COMM-HANDLE is valid.

Sending and Receiving Messages

Once the Oracle Tuxedo system establishes a conversational connection, communication
between the initiator and subordinate is accomplished using send and receive calls. The process

14 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html

Sending and Receiving Messages

with control of the connection can send messages using the TPSEND (3cb1) routine; the process
without control can receive messages using the TpRECV (3cbl) routine.

Note: Initially, the originator (that is, the client) decides which process has control using the
TPSENDONLY Of TPRECVONLY flag value of the TeconnEcT call. TPSENDONLY Specifies
that control isbeing retained by the originator; TPRECVONLY, that control isbeing passed
to the called service.

Sending Messages

To send amessage, use the TPSEND (3cbl) routine with the following signature:

01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY User Data.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC USER-DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” in Programming Oracle Tuxedo ATMI Applications Using C for
more information on the TpsvcpEF-REC record, and refer to “ Defining Typed Records’ on
page 3-6 for more information on the TpTYPE-REC record.

In the event of afailure, the TPSEND routine sets Tp-sTaATUS to the appropriate error condition.
For alist of possible error codes, refer to TPSEND (3¢bl) inthe Oracle Tuxedo ATMI COBOL
Function Reference.

Y ou are not required to pass control each time you issue the TpSEND routine. In some
applications, the process authorized to issue TpseND calls can execute as many calls as required
by the current task before turning over control to the other process. In other applications,
however, the logic of the program may require the same process to maintain control of the
connection throughout the life of the conversation.

The following example shows how to invoke the TPSEND routine.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-5

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../pgc/pgserv.html

1-6

Listing 7-2 Sending Data in Conversational Mode

SET TPNOBLOCK TO TRUE.
SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.
SET TPRECVONLY TO TRUE.

CALL "TPSEND" USING TPSVCDEF-REC
TPTYPE-REC
DATA-REC
TPSTATUS-REC.
IF NOT TPOK

error processing .

Receiving Messages

To receive data sent over an open connection, use the TpPRECV (3cbl) routine with the following
signature:

01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY User Data.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” for more information on the Tpsvcper-REC record. Refer to
“Defining Typed Records’ on page 3-6 for more information on the TpTYPE-REC record.

The following example shows how to use the TPrRECY routine.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../pgc/pgserv.html

Ending a Conversation

Listing 7-3 Receiving Data in Conversation

SET TPNOCHANGE TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.

MOVE LENGTH OF DATA-REC TO LEN.

CALL "TPRECV" USING TPSVCDEF-REC
TPTYPE-REC
DATA-REC
TPSTATUS-REC.
IF NOT TPOK

error processing .

Ending a Conversation

A connection can be taken down gracefully and a conversation ended normally through:
e A successful call to TPRETURN in a simple conversation.

e A series of successful callsto TPRETURN in a complex conversation based on a hierarchy of
connections.

e Global transactions, as described in “Writing Global Transactions” in Programming Oracle
Tuxedo ATMI Applications Using C.

Note: The TPRETURN routine is described in detail in “Writing Request/Response Clients and
Servers’ in Programming Oracle Tuxedo ATMI Applications Using C.

The following sections describe two scenarios for gracefully terminating conversations that do
not include global transactions in which the TpRETURN function is used.

Thefirst example shows how to terminate a simple conversation between two components. The
second example illustrates a more complex scenario, with ahierarchical set of conversations.

If you end a conversation with connections still open, the system returns an error. In this case,
either TercommIT Or TPRETURN failsin adisorderly manner.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-1

../pgc/pgreq.html
../pgc/pgreq.html
../pgc/pgglob.html

1-8

Figure 7-2 Simple Conversation Terminating Gracefully

Example: Ending a Simple Conversation

Figure 7-2 shows a simple conversation between A and B that terminates gracefully.

c
(Cis RECVONLY in BC)

Call TPSVCETART

Call TPRECWV

Get TFRENDONLY
to TRUE

(Cis SENDONLY on CB)

Copy TPFRETURN

A B
Call TPBEGIN (B is RECVONLY on AE)
(A is SENDONLY on AF)
4B Call TPEVCSTART
Call TPCONNECT Set TPSENDONLY
to TRUE
(B is SENDONLY on BC)
Call TPCONNECT
BEC
Set TFRECVONLY —
to TRUE
{41: RECVONLY on BA)
(B is SENDONLY on AE)
CE
Call TPRECV PR
Cal "TPRECV™
BA Copy TPRETURN
Call "TPCOMMIT'
EVENTS EVENTE

The program flow is as follows:

B ison the receiving end of the conversation.

A turns control of the connection over to B by calling TpsEND with TPRECVONLY Set, resulting

in the generation of a TPEV_SENDONLY event.

The next call by B to TPrRECV SetS TP-STATUS t0 TPEEVENT, and returns TPEV_SENDONLY in

TPEVENT, indicating that control has passed to B.

Programming an Oracle Tuxedo ATMI Application Using COBOL

1. A setsup the connection by calling TeconnECT With TPSENDONLY Set, indicating that process

Ending a Conversation

4. B callsTPRETURN With TPRETURN-VAL IN TPSVCRET Setto Tpsuccess. Thiscall generates
aTpEV_svcsucc event for A and gracefully brings down the connection.

5. A callsTprECy, learns of the event, and recognizesthat the conversation has been terminated.
Data can be received on this call to TprECV evenif the event iSset to TPEV_SVCFAIL.

Note: Inthisexample, A can be either aclient or a server, but B must be a server.
Example: Ending a Hierarchical Conversation
Figure 7-3 shows a hierarchical conversation that terminates gracefully.

Figure 7-3 Connection Hierarchy

EVENTS EVENTS
A B C
Move SVCB
to SERVICE-NAME
Call TPCONNECT 5
Call TPSVCSTART
Move SVCC
to SERVICE-NAME
Call TPCONNECT 5 Call TPSVCSTART
Call TPRECV
Call TPRECY Copy TPRETURY
Call "TPRECV" Copy TPRETURN

In the preceding example, service B isamember of aconversation that hasinitiated a connection
to asecond service called C. In other words, there are two active connections: A-to-B and B-to-C.
If B isin control of both connections, acall to TerETURN has the following effect: the call fails,
aTPEV_SVCERR event is posted on all open connections, and the connections are closed in a
disorderly manner.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-9

1-10

In order to terminate both connections normally, an application must execute the following
sequence:

1

3.

B calls TpsEnD with the TPrECVONLY flag set on the connection to C, transferring control of
the B-to-C connection to C.

C cadlsTPRETURN With TPRETURN-VAL IN TPSVCRET SettO TPSUCCESS, TPFAIL, Of TPEXIT,
as appropriate.

B can then call TPRETURN, posting an event (either TpEV_svcsucc or TPEV_svcFAIL) for A.

Note: Itislegal for aconversational service to make request/response callsif it needs to do so

to communicate with another service. Therefore, inthe preceding example, thecallsfrom
B to C may be executed using TpcaLL or TPACALL instead of TpconNECT. Conversational
services are not permitted to make callSto TPFORWAR.

Executing a Disorderly Disconnect

The only way in which a disorderly disconnect can be executed is through a call to the
TPDISCON (3cbl) routine (which isequivalent to “pulling the plug” on a connection). This
routine can be called only by the initiator of a conversation (that is, the client).

Note: Thisisnot the preferred method for bringing down a conversation. To bring down an

application gracefully, the subordinate (the server) should call the TPRETURN routine.

Use the following signature to call the TppISsCON routine:

01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 TPSTATUS-REC.

COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC.

The coMM-HANDLE argument specifies the communication handle returned by the TPcoNNECT
routine when the connection is established.

The TpDISCON routine generates aTpEvV_DIscoNIMM event for the service at the other end of the
connection, rendering the com-HANDLE invalid. If atransactionisin progress, the system aborts
it and data may belost.

If repIscon iscalled from a service that was not the originator of the connection identified by
CcoMM-HANDLE, the routine fails with an error code of TPEBADDESC.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html

Building Conversational Clients and Servers

For alist and descriptions of al event and error codes, refer to TppIScON (3cbl) inthe Oracle
Tuxedo ATMI COBOL Function Reference.

Building Conversational Clients and Servers

Use the following commands to build conversational clients and servers:

e buildclient () asdescribedin“Building Clients’ in Programming Oracle Tuxedo ATMI
Applications Using C

e buildserver () asdescribed in “Building Servers’ in Programming Oracle Tuxedo ATMI
ApplicationsUsing C

For conversational and request/response services, you cannot:
o Build both in the same server

e Assign the same name to both

Understanding Conversational Communication Events

The Oracle Tuxedo system recognizes five events in conversational communication. All five
events can be posted for TprECV; three can be posted for TPSEND.

Table 7-1 lists the events, the routines for which they are returned, and a detail ed description of
each.

Table 7-1 Conversational Communication Events

Event Received By Description

TPEV_SENDONLY TPRECV Control of the connection has been passed; this process
can now call TPSEND.

TPEV_DISCONIMM TPSEND, The connection has been torn down and no further
TPRECV, communication is possible. The TPDISCON routine posts
TPRETURN this event in the originator of the connection, and sendsit

toall open connectionswhen TPRETURN iscalled, aslong
as connections to subordinate services remain open.
Connections are closed in adisorderly fashion. If a
transaction exists, it is aborted.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-11

../rf3cbl/rf3cbl.html

1-12

Tahle 7-1 Conversational Communication Events

Event Received By

Description

TPEV_SVCERR TPSEND

Received by the originator of the connection, usually
indicating that the subordinate program issued a
TPRETURN without having control of the connection.

TPRECV

Received by the originator of the connection, indicating
that the subordinate program issued a TPRETURN With
TPSUCCESS or TPFAIL and avalid datarecord, but an
error occurred that prevented the call from completing.

TPEV_SVCFAIL TPSEND

Received by the originator of the connection, indicating
that the subordinate program issued a TPRETURN without
having control of the connection, and TPRETURN was
called with TPFAIL or TPEXIT and no data.

TPRECV

Received by the originator of the connection, indicating
that the subordinate service finished unsuccessfully
(TPRETURN was called with TPFATL or TPEXIT).

TPEV_SVCSUCC TPRECV

Received by the originator of the connection, indicating
that the subordinate service finished successfully; that is,
it called TPRETURN with TPSUCCESS.

Programming an Oracle Tuxedo ATMI Application Using COBOL

CHAPTERa

Writing Event-based Clients and
Servers

Thistopic includes the following sections:

e Overview of Events

Defining the Unsolicited Message Handler

Sending Unsolicited Messages

Checking for Unsolicited M essages

Getting Unsolicited Messages

Subscribing to Events

Unsubscribing from Events

e Posting Events

Overview of Events

Event-based communication provides a method for an Oracle Tuxedo system processto be
notified when a specific situation (event) occurs.

The Oracle Tuxedo system supports two types of event-based communication:
e Unsolicited events

e Brokered events

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-1

8-2

Unsolicited Events

Unsolicited events are messages used to communicate with client programs that are not waiting
for and/or expecting a message.

Brokered Events

Brokered events enable a client and a server to communicate transparently with one another via
an “anonymous’ broker that receives and distributes messages. Such brokering is another
client/server communication paradigm that is fundamental to the Oracle Tuxedo system.

The EventBroker isan Oracle Tuxedo subsystem that receives and filters event posting messages,
and distributes them to subscribers. A poster is an Oracle Tuxedo system process that detects
when a specific event has occurred and reports (posts) it to the EventBroker. A subscriber isan
Oracle Tuxedo system process with a standing request to be notified whenever a specific event
has been posted.

The Oracle Tuxedo system does not impose afixed ratio of service requestersto service
providers; an arbitrary number of posters can post a message for an arbitrary number of
subscribers. The posters simply post events, without knowing which processes receive the
information or how the information is handled. Subscribers are notified of specified events,
without knowing who posted the information. In this way, the EventBroker provides complete
location transparency.

Typically, EventBroker applications are designed to handle exception events. An application
designer must decide which events in the application constitute exception events and need to be
monitored. In a banking application, for example, it might be useful to post an event whenever
an unusually large amount of money iswithdrawn, but it would not be particularly useful to post
an event for every withdrawal transaction. In addition, not all users would need to subscribe to
that event; perhaps only the branch manager would need to be notified.

Notification Actions

The EventBroker may be configured such that whenever an event is posted, the EventBroker
invokes one or more notification actionsfor clientsand/or serversthat have subscribed. Table 8-1
lists the types of notification actions that the EventBroker can take.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Overview of Events

Tahle 8-1 EventBroker Notification Actions

Notification Action Description

Unsolicited notification Clients may receive event notification messagesin their
message unsolicited message handling routine, just asif they were sent by
the TPNOTIFY routine.

Service call Servers may receive event notification messages as input to
serviceroutines, just asif they were sent by TPACALL.

Reliable queue Event notification messages may be stored in an Oracle Tuxedo
system reliable queue, using TPDEQUEUE (3cbl) . Event
notification records are stored until requests for contents are
issued. An Oracle Tuxedo system client or server process may
cal TPDEQUEUE (3cbl) to retrieve these notification records,
or alternately TMQFORWARD (5) may be configured to
automatically dispatch an Oracle Tuxedo system serviceroutine
that retrieves a notification record.

For moreinformation on/Q, see Using the ATMI /Q Component.

In addition, the application administrator may create an evenT_MIB (5) entry (by using the
Oracle Tuxedo administrative API) that performs the following notification actions:

e Invokes a system command

o Writes amessage to the system’slog file on disk

Note: Only the Oracle Tuxedo application administrator isallowed to create an EVENT_MIB (5)
entry.

For information on the EvenT_M1B (5), refer to the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

EventBroker Servers

TMUSREVT IS the Oracle Tuxedo system-supplied server that acts as an EventBroker for user
events. TMUSREVT Processes event report message records, and then filters and distributes them.
The Oracle Tuxedo application administrator must boot one or more of these serversto activate
event brokering.

TMSYSEVT iSthe Oracle Tuxedo system-supplied server that acts as an EventBroker for
system-defined events. TMsysevT and TMUSREVT are similar, but separate servers are provided to

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-3

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

8-4

alow the application administrator the ability to have different replication strategies for
processing notifications of these two types of events. Refer to Setting Up an Oracle Tuxedo
Application for additional information.

System-defined Events

The Oracle Tuxedo system itself detects and posts certain predefined events related to system
warnings and failures. These tasks are performed by the EventBroker. For example,
system-defined events include configuration changes, state changes, connection failures, and
machine partitioning. For a complete list of system-defined events detected by the EventBroker,
See EVENTS (5) in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

System-defined events are defined in advance by the Oracle Tuxedo system code and do not
require posting. The name of a system-defined event, unlike that of an application-defined event,

alwaysbeginswith adot (“.”). Names of application-defined events may not begin with aleading
dot.

Clients and servers can subscribe to system-defined events. These events, however, should be
used mainly by application administrators, not by every client in the application.

When incorporating the EventBroker into your application, remember that it is not intended to
provide a mechanism for high-volume distribution to many subscribers. Do not attempt to post
an event for every activity that occurs, and do not expect all clients and serversto subscribe. If
you overload the EventBroker, system performance may be adversely affected and notifications
may be dropped. To minimize the possibility of overload, the application administrator should
carefully tune the operating system IPC resources, as explained in Installing the Oracle Tuxedo
System.

Programming Interface for the EventBroker

EventBroker programming interfacesare availablefor all Oracle Tuxedo system server and client
processes, including Workstation, in both C and COBOL.

The programmer’sjob is to code the following sequence:
1. A client or server posts arecord to an application-defined event name.

2. Theposted record istransmitted to any number of processesthat have subscribed to the event.

Subscribers may be notified in a variety of ways (as discussed in “Natification Actions”), and
events may be filtered. Notification and filtering are configured through the programming
interface, as well as through the Oracle Tuxedo system administrative API.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf5/rf5.html

Defining the Unsolicited Message Handler

Defining the Unsolicited Message Handler

To define the unsolicited message handler, use the TPSETUNSOL (3cbl) routine with the
following signature:

01 CURR-ROUTINE PIC S9(9) COMP-5.
01 PREV-ROUTINE PIC S9(9) COMP-5.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPSETUNSOL" USING CURR-ROUTINE PREV-ROUTINE TPSTATUS-REC.

TPSETUNSOL alows aclient to identify the routine that should be invoked when an unsolicited
message isreceived by the Oracle Tuxedo system libraries. Before thefirst call to TpsETUNSOL,
any unsolicited messages received by the Oracle Tuxedo system libraries on behalf of the client
are logged and ignored. The method used by the system for notification and detection is
determined by the application default, which can be overridden on a per-client basis. For more
information, refer to TPINITIALIZE (3cbl) inthe Oracle Tuxedo ATMI COBOL Function
Reference.

The cURR-ROUTINE parameter identifies one of 16 predefined routines that provide unsolicited
message handling: eight C routines, tm_displatchl through _tm dispatch8, and eight
COBOL routines, TMpIsPATCHY through TMDIsPATCHL6. (Alternatively, if you set
CURR-ROUTINE to avalue of 0, any unsolicited messages received by the Oracle Tuxedo system
libraries on behalf of the client are logged and ignored.) The C routines must conform to the
parameter definition provided on TPSETUNSOL (3cbl) . When a COBOL routine is used,
TPGETUNSOL must be called to receive the data.

The following sample code shows how to set an unsolicited routinein a COBOL program.

Listing 8-1 Setting an Unsolicited Routine

* Call TPSETUNSOL - Set a COBOL unsolicited message handler
* Routine TMDISPATCH9 will be called

MOVE 9 to CURR-ROUTINE.

CALL "TPSETUNSOL" USING
CURR-ROUTINE
PREV-ROUTINE

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-5

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

TPSTATUS-REC.
IF NOT TPOK

Routine TMDISPATCHY9 will receive unsolicited messages
ELSE

Process error condition

Sending Unsolicited Messages

01

01

01

01

8-6

The Oracle Tuxedo system allows unsolicited messages to be sent to client processes without
disturbing the processing of request/response calls or conversational communications.

Unsolicited messages can be sent to client processes by name, using TPBROADCAST (3cbl), Of by
an identifier received with a previously processed message, using TPNOTIFY (3cbl). Messages
sent via TPBROADCAST Can originate either in a service or in another client. Messages sent via
TPNOTIFY Can originate only in aservice.

Broadcasting Messages by Name

The TPBROADCAST (3cbl) routine allows a message to be sent to registered clients of the
application. It can be called by a service or another client. Registered clients are those that have
successfully made acal to TerInITIALIZE and have not yet made a call to TPTERM.

Use the following signature to call the TpBROADCAST routine:

TPBCTDEF-REC.
COPY TPBCTDEF.
TPTYPE-REC.
COPY TPTYPE.
DATA-REC.

COPY User Data.
TPSTATUS-REC.
COPY TPSTATUS.
CALL

"TPBROADCAST" USING TPBCTDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Table 8-2 describes the members of the TPBCTDEF-REC data structure.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Sending Unsolicited Messages

Table 8-2 TPBCTDEF-REC Data Structure Members

Member Description

LMID Pointer to the logical machine identifier for the client. A value of
SPACES acts asawildcard, so that a message can be directed to
groups of clients.

USRNAME Username of the client process, if one exists. A value of SPACES
acts as awildcard, so that a message can be directed to groups of
clients.

CLTNAME Client name of the client process, if one exists. A value of NULL
acts asawildcard, so that a message can be directed to groups of
clients.

Settings (such as Settings for the TPBROADCAST command. Refer to

TPBLOCK-FLAG) TPBROADCAST (3cbl) inthe Oracle Tuxedo ATMI COBOL

Function Reference for information on available settings.

Refer to “Defining a Service” in Programming Oracle Tuxedo ATMI Applications Using C for a
description of the TpTYPE-REC record.

The following exampleillustrates a call to TpBrROADCAST for which all clients are targeted. The
message to be sent is contained in a STRING record.

Listing 8-2 Using TPBROADCAST

Rk Ik Ik I S I Ik kI

* Prepare the record to broadcasted

EE R R I S I I I S S I I I I I S S I S I S S

MOVE "HELLO, WORLD" TO DATA-REC.
MOVE 11 TO LEN.
MOVE "STRING" TO REC-TYPE.

SET TPNOBLOCK TO TRUE.

SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-7

../rf3cbl/rf3cbl.html
../pgc/pgserv.html

MOVE SPACES TO LMID.

MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

CALL "TPBROADCAST" USING TPBCTDEF-REC
TPTYPE-REC
DATA-REC
TPSTATUS-REC.

IF NOT TPOK

error processing

Broadcasting Messages by Identifier

The TPNOTIFY (3cbl) routineisused to broadcast a message using an identifier received with a
previously processed message. It can be called only from a service.

Use the following signature to call the TpNOTIFY routine:

01 TPSVCDEF-REC.
COPY TPSVCDEF.
01 TPTYPE-REC.
COPY TPTYPE.
01 DATA-REC.
COPY User Data.
01 TPSTATUS-REC.
COPY TPSTATUS.

CALL

"TPNOTIFY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Writing Global Transactions’ in Programming Oracle Tuxedo ATMI Applications
Using C for information on the TpsvcpeEF-REC data structure, and “ Defining a Service” in
Programming Oracle Tuxedo ATMI Applications Using C for a description of the TpTYPE-REC
record.

Checking for Unsolicited Messages

8-8

To check for unsolicited messages while running the client in “dip-in” notification mode, usethe
TPCHKUNSOL (3cbl) routine with the following signature:

01 MSG-NUM PIC S9(9) COMP-5.
01 TPSTATUS-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../pgc/pgserv.html
../pgc/pgglob.html

Checking for Unsolicited Messages

COPY TPSTATUS.
CALL "TPCHKUNSOL" USING MSG-NUM TPSTATUS-REC.

If any messages are pending, the system invokes the unsolicited message handling routine that
was specified using TpseETUNSOL. Upon completion, the routine returns either the number of
unsolicited messages that were processed and sets Tp-STATUS t0 [TPOK].

If you issue this routine when the client is running in sTeNaL-based, thread-based notification
mode, or isignoring unsolicited messages, the routine has no impact and returns immediately.

The following example shows how to check for the arrival of an unsolicited message.

Listing 8-3 Arrival of an Unsolicited Message

*

* Check for unsolicited messages

*

CALL "TPCHKUNSOL" USING MESS-NUM
TPSTATUS-REC.

IF TPOK

IF MESS-NUM IS = 0

No messages were processed by the
unsolicited routine

ELSE

MESS-NUM number of messages were

processed by the unsolicited routine
END-IF
ELSE
process error

END-IF

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-9

Getting Unsolicited Messages

8-10

To get unsolicited messages, you must call the TPGETUNSOL (3¢cbl) routine. Thisroutine can be
called, however, only from an unsolicited message handler. Use the following signature to call
the TPGETUNSOL routine:

01 TPTYPE-REC.
COPY TPTYPE.
01 DATA-REC.
COPY User data.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPGETUNSOL" USING TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “ Defining a Service” in Programming Oracle Tuxedo ATMI Applications Using C for a
description of the TeryPE-REC record.

The following example shows how to get an unsolicited message.

Listing 8-4 Getting an Unsolicited Message

IDENTIFICATION DIVISION.
PROGRAM-ID. TMDISPATCHO.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

*

DATA DIVISION.
WORKING-STORAGE SECTION.

*

01 TPTYPE-REC.
COPY TPTYPE.

*

01 TPSTATUS-REC.
COPY TPSTATUS.

*

01 DATA-REC PIC X(1000).

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../pgc/pgserv.html

Subscribing to Events

*

PROCEDURE DIVISION.

*

A-000.

*

MOVE "CARRAY" TO REC-TYPE.

MOVE 1000 TO LEN.

CALL "TPGETUNSOL" USING TPTYPE-REC
DATA-REC
TPSTATUS-REC.

IF NOT TPOK

error processing

Process message

DISPLAY "TPGETUNSOL IS TPOK".
DISPLAY "MESSAGE IS" DATA-REC.
DISPLAY "LENGTH IS" LEN.

EXIT PROGRAM.

Subscribing to Events

The TPSUBSCRIBE (3cbl) routine enables an Oracle Tuxedo system ATMI client or server to
subscribe to an event.

A subscriber can be notified through an unsolicited notification message, aservicecall, areliable
gueue, or other notification methods configured by the application administrator. (For
information about configuring aternative notification methods, refer to Setting Up an Oracle
Tuxedo Application.)

Use the following signature to call the TPsUBSCRIBE routine:

01 TPEVTDEF-REC.
COPY TPEVTDEF.

01 TPQUEDEF-REC.
COPY TPQUEDEF.

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-11

../rf3cbl/rf3cbl.html

8-12

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL “TPSUBSCRIBE”

USING TPEVTDEF-REC TPQUEDEF-REC TPSTATUS-REC

The TPEVTDEF-REC data structure signature is as follows:

05 TPBLOCK-FLAG PIC S9(9) COMP-5.
88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) COMP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.

05 TPREPLY-FLAG PIC S9(9) COMP-5.
88 TPREPLY VALUE 0.
88 TPNOREPLY VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPTIME VALUE 0.
88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.
88 TPSIGRSTRT VALUE 1.

05 TPEV-METHOD-FLAG PIC S9(9) COMP-5.
88 TPEVNOTIFY VALUE 0.
88 TPEVSERVICE VALUE 1.
88 TPEVQUEUE VALUE 2.

05 TPEV-PERSIST-FLAG PIC S9(9) COMP-5.
88 TPEVNOPERSIST VALUE 0.
88 TPEVPERSIST VALUE 1.

05 TPEV-TRAN-FLAG PIC S9(9) COMP-5.
88 TPEVNOTRAN VALUE 0.
88 TPEVTRAN VALUE 1.

*

05 EVENT-COUNT PIC S9(9) COMP-5.

05 SUBSCRIPTION-HANDLE PIC S9(9) COMP-5.

05 NAME-1 PIC X(127).

05 NAME-2 PIC X(127).

05 EVENT-NAME PIC X(31).

05 EVENT-EXPR PIC X(255).

05 EVENT-FILTER PIC X(255).

Programming an Oracle Tuxedo ATMI Application Using COBOL

Subscribing to Events

The following table describes the members of the TpEvTDEF-REC data structure.

Member

Description

EVENT-COUNT

Event count.

SUBSCRIPTION-HANDLE

Subscription handle.

NAME-1, NAME-2

Name of queued spaces. If the subscriber sets TPEVQUEUE, then
event notifications are enqueued to the queue space named by
NAME-1 and the queue named by NAME-2.

EVENT-NAME

Event name.

EVENT-EXPR

Set of eventsto which to subscribe. Consists of anull-terminated

string of up to 255 characters containing a regular expression.

Regular expressions are of the form specified in

tpsubscribe (3¢) asdescribed in the Programming Oracle

Tuxedo ATMI Applications Using C. For example, if

eventexpr IS set to:

e "\\..*" —thecallerissubscribing to al system-defined
events.

e "\\.SysServer.*" —thecallerissubscribing to all
system-defined events related to servers.

e "[A-7].*" —thecalerissubscribing to al user events
starting with A-Z.
e "_*(ERR|err).*" —thecalerissubscribing to al user

events containing either the substring ERR or the substring
err (for example, account_error and ERROR_STATE
events would both qualify).

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-13

../rf3c/rf3c.html

8-14

Member

Description

EVENT-FILTER

String containing a Boolean filter rule that must be evaluated
successfully before the Event Broker posts the event. Upon
receiving an event to be posted, the Event Broker applies the
filter rule, if one exists, to the posted event’ s data. If the data
passes the filter rule, the Event Broker invokes the notification
method specified; otherwise, the Event Broker ignores the
notification method. The caller can subscribe to the same event
multiple times with different filter rules.

By using the event filtering capability, subscribers can be more
discriminating about the events for which they are notified. For
example, aposter can post an event for withdrawal s greater than
$10,000.00, but a subscriber may want to specify a higher
threshold for being notified, such as $50,000.00. Or, a
subscriber may want to be notified of large withdrawals only if
made by customers with specified IDs.

Filter rules are specific to the typed records to which they are
applied. Refer to the TPSUBSCRIBE (3cbl) reference pagein
the Oracle Tuxedo ATMI COBOL Function Reference for
further information on filter rules.

SETTINGS
(TPBLOCK-FLAG,

TPTRAN-FLAG, and so
on)

Miscellaneous settings that control the server characteristics.
For moreinformation on the settings, refer to the Oracle Tuxedo
ATMI COBOL Function Reference.

Refer to Using the ATMI /Q Component for more information on the TpQUEDEF-REC data

structure.

Y ou can subscribe to both system- and application-defined events using the TPSUBSCRIBE

routine.

For purposes of subscriptions (and for m1B updates), service routines executed in an Oracle

Tuxedo system server process are considered to be trusted code.

Refer toTpsuBSCcRIBE (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Referencefor more
information on the routine.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Unsubscribing from Events

Unsubscribing from Events

The TPUNSUBSCRIBE (3cbl) routine enables an Oracle Tuxedo system ATMI client or server to
unsubscribe from an event.

Use the following signature to call the TPUNSUBSCRIBE routine:

01 TPEVTDEF-REC.
COPY TPEVTDEF.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL “TPUNSUBSCRIBE” USING TPEVTDEF-REC TPSTATUS-REC

Refer to “ Subscribing to Events’ on page 8-11 for a detailed description of the TPEVTDEF-REC
data structure, and to Using the ATMI /Q Component for moreinformation on the TPQUEDEF-REC
data structure.

Posting Events

The TprosT (3cbl) routine enables an Oracle Tuxedo ATMI client or server to post an event.

Use the following signature to call the TerosT routine:

01 TPEVTDEF-REC.
COPY TPEVTDEF.

01 TPTYPE-REC.
COPY TPSTATUS.

01 TPDATA-REC.
COPY TPSTATUS.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL “TPPST” USING TPEVTDEF-REC TPTYPE-REC TPDATA-REC TPSTATUS-REC

Refer to “ Subscribing to Events’ on page 8-11 for a detailed description of the TPEVTDEF-REC
data structure, and to “Defining a Service” in Programming Oracle Tuxedo ATMI Applications
Using C for a description of the TpTyPE-REC record.

Programming an Oracle Tuxedo ATMI Application Using COBOL 8-15

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../pgc/pgserv.html

8-16 Programming an Oracle Tuxedo ATMI Application Using COBOL

Writing Global Transactions

Thistopic includes the following sections:

e What Isa Global Transaction?

Starting the Transaction

Terminating the Transaction

Terminating the Transaction

Implicitly Defining a Global Transaction

Defining Global Transactions for an XA-Compliant Server Group

Testing Whether a Transaction Has Started

What Is a Global Transaction?

A global transaction is a mechanism that allows a set of programming tasks, potentialy using
more than one resource manager and potentially executing on multiple servers, to be treated as
onelogical unit.

Once aprocessisin transaction mode, any service requests made to servers may be processed on
behalf of the current transaction. The servicesthat are called and join the transaction are referred
to astransaction participants. The value returned by a participant may affect the outcome of the
transaction.

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-1

A global transaction may be composed of several local transactions, each accessing the same
resource manager. The resource manager is responsible for performing concurrency control and
atomicity of updates. A given local transaction may be either successful or unsuccessful in
completing its access; it cannot be partially successful.

A maximum of 16 server groups can participate in a single transaction.

The Oracle Tuxedo system manages a global transaction in conjunction with the participating
resource managers and treats it as a specific sequence of operationsthat is characterized by
atomicity, consistency, isolation, and durability. In other words, aglobal transaction is alogical
unit of work in which:

e All portions either succeed or have no effect.

e Operations are performed that correctly transform resources from one consistent state to
another.

e Intermediate results are not accessible to other transactions, although some processesin a
transaction may access the data associated with another process.

e Once a seguence is complete, its results cannot be altered by any kind of failure.

The Oracle Tuxedo system tracks the status of each global transaction and determines whether it
should be committed or rolled back.

Starting the Transaction

To start aglobal transaction, use the TPBEGIN (3cbl) routine with the following signature;

*

01 TPTRXDEF-REC.
COPY TPTRXDEF.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.

Table 9-1 describes the TPTRXDEF-REC Structure fields

9-2 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html

Starting the Transaction

Table 9-1 TPTRXDEF Structure Field

Field

Description

T-0UT

Specifies the amount of time, in seconds, a transaction can execute before
timing out. Y ou can set this value to the maximum number of seconds allowed
by the system, by specifying avaue of 0. In other words, you can set
timeout to the maximum value for an unsigned Long as defined by the
system.

The use of 0 or an unredlistically large value for the T-oUT parameter delays
system detection and reporting of errors. The system uses the T-oUT
parameter to ensure that responses to service requests are sent within a
reasonabletime, and to terminate transactions that encounter problems such as
network failures before executing a commit.

For atransaction in which a person is waiting for aresponse, you should set
this parameter to asmall value: if possible, less than 30 seconds.

In a production system, you should set T-0UT to avalue large enough to
accommodate expected delays due to system load and database contention. A
small multiple of the expected average response time is often an appropriate
choice.

Note: Thevaueassigned to the T-ouT parameter should be consistent with
that of the SCANUNTIT parameter set by the Oracle Tuxedo application
administrator in the configuration file. The SCANUNIT parameter
specifies the frequency with which the system checks, or scans, for
timed-out transactionsand blocked callsin servicerequests. Thevalue
of this parameter represents the interval of time between these
periodic scans, referred to as the scanning unit.

Y ou should set the T-OUT parameter to avaluethat is greater than the
scanning unit. If you set the T-0UT parameter to avalue smaller than
the scanning unit, there will be adiscrepancy between the time at
which atransaction times out and the time at which thistimeout is
discovered by the system. The default value for SCANUNIT is 10
seconds. Y ou may need to discuss the setting of the T-oUT parameter
with your application administrator to make sure the value you assign
totheT-ouUT parameter iscompatiblewith the val ues assigned to your
system parameters.

TRANID

Transaction identifier.

Programming an Oracle Tuxedo ATMI Application Using COBOL

9-3

9-4

Any process may call TPBEGIN unlessthe processis aready in transaction mode. If TPBEGIN iS
called in transaction mode, the call fails due to a protocol error and Tp-STATUS iS Set to
TPEPROTO. If the processisin transaction mode, the transaction is unaffected by the failure.

The following example provides a high-level view of how a global transaction is defined.

Listing 9-1 Delineating a Transaction

MOVE 0 TO T-OUT.
CALL "TPBEGIN" USING
TPTRXDEF-REC
TPSTATUS-REC.

IF NOT TPOK

error processing

program statements

CALL "TPCOMMIT" USING
TPTRXDEF-REC

TPSTATUS-REC.
IF NOT TPOK

error processing

The following example shows how an outstanding reply can cause an error.

Listing 9-2 Error - Starting a Transaction with an Outstanding Reply

MOVE "BUY" TO SERVICE-NAME.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPREPLY TO TRUE.
SET TPNOTIME TO TRUE.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Starting the Transaction

SET TPSIGRSTRT TO TRUE.

CALL "TPACALL" USING
TPSVCDEF-REC
TPTYPE-REC
BUY-REC
TPSTATUS-REC.

IF NOT TPOK

error processing

MOVE 0 TO T-OUT.
CALL "TPBEGIN" USING
TPTRXDEF-REC
TPSTATUS-REC.
VIF NOT TPOK

error processing
* ERROR TP-STATUS is set to TPEPROTO

program statements

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPCHANGE TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPGETANY TO TRUE.

CALL "TPGETRPLY" USING
TPSVCDEF-REC
TPTYPE-REC
WK-AREA
TPSTATUS-REC.

IF NOT TPOK

error processing

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-5

If atransaction times out, acall to TpcommMIT causes the transaction to be aborted. As aresult,
TpcoMMIT fails and sets TP-STATUS tO TPEABORT.

The following example shows how to test for atransaction timeout. Note that the value of T-ouT
is set to 30 seconds.

Listing 9-3 Testing for Transaction Timeout

MOVE 30 TO T-OUT.
CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
IF NOT TPOK

MOVE "Failed to BEGIN a transaction" TO LOG-REC-TEXT.
MOVE 29 to LOG-REC-LEN
CALL "USERLOG" USING
LOG-REC-TEXT
LOG-REC-LEN
TPSTATUS-REC
CALL "TPTERM" USING
TPSTATUS-REC
PERFORM A-999-EXIT.

communication CALL statements

IF TPETIME
CALL "TPABORT" USING
TPTRXDEF-REC

TPSTATUS-REC
IF NOT TPOK

error processing
ELSE

CALL "TPCOMMIT" USING
TPTRXDEF-REC
TPSTATUS-REC
IF NOT TPOK

error processing

9-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

Starting the Transaction

Note: When aprocessisin transaction mode and makes acommunication call with TPNOTRAN,
it prohibits the called service from becoming a participant in the current transaction.
Whether the service request succeeds or fails has no impact on the outcome of the
transaction. The transaction can still timeout while waiting for areply that is due from a
service, whether it is part of the transaction or not. Refer to “Managing Errors’ in
Programming Oracle Tuxedo ATMI Applications Using C for more information on the
effects of the renoTRAN flag.

The following example shows how to define a transaction.

Listing 9-4 Defining a Transaction

DATA DIVISION.
WORKING-STORAGE SECTION.
*

01 TPTYPE-REC.
COPY TPTYPE.

*

01 TPSTATUS-REC.
COPY TPSTATUS.

*

01 TPINFDEF-REC.
COPY TPINFDEF.

*

01 TPSVCDEF-REC.
COPY TPSVCDEF.

*

01 TPTRXDEF-REC.
COPY TPTRXDEF.

*

01 LOG-REC PIC X(30) VALUE " ".
01 LOG-REC-LEN PIC S9(9) COMP-5.

*

01 USR-DATA-REC PIC X(16).

*

01 AUDV-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-7

../pgc/pgerr.html

9-8

05 AUDV-BRANCH-ID PIC S9(9) COMP-5.
05 AUDV-BALANCE PIC S9(9) COMP-5.
05 AUDV-ERRMSG PIC X(60).

PROCEDURE DIVISION.

*

A-000.

* Get Command Line Options set Variables (Q-BRANCH)
MOVE SPACES TO USRNAME.
MOVE SPACES TO CLTNAME.
MOVE SPACES TO PASSWD.
MOVE SPACES TO GRPNAME.
CALL "TPINITIALIZE" USING TPINFDEF-REC
USR-DATA-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE "Failed to join application" TO LOG-REC
MOVE 26 TO LOG-REC-LEN
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC
PERFORM A-999-EXIT.
* Start global transaction
MOVE 30 TO T-OUT.
CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
IF NOT TPOK
MOVE 29 to LOG-REC-LEN
MOVE "Failed to begin a transaction" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC
PERFORM DO-TPTERM.
* Set up record

MOVE Q-BRANCH TO AUDV-BRANCH-ID.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Starting the Transaction

MOVE ZEROS TO AUDV-BALANCE.
MOVE SPACES TO AUDV-ERRMSG.
* Set up TPCALL records
MOVE "GETBALANCE" TO SERVICE-NAME.
MOVE "VIEW" TO REC-TYPE.
MOVE LENGTH OF AUDV-REC TO LEN.
SET TPBLOCK TO TRUE.
SET TPTRAN IN TPSVCDEF-REC TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.
SET TPCHANGE TO TRUE.

CALL "TPCALL" USING TPSVCDEF-REC
TPTYPE-REC
AUDV-REC
TPTYPE-REC
AUDV-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE 19 to LOG-REC-LEN
MOVE "Service call failed" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC
PERFORM DO-TPABORT
PERFORM DO-TPTERM.
* Commit global transaction
CALL "TPCOMMIT" USING TPTRXDEF-REC
TPSTATUS-REC
IF NOT TPOK
MOVE 16 to LOG-REC-LEN
MOVE "Failed to commit" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-9

PERFORM DO-TPTERM.
* Show results only when transaction has completed successfully
DISPLAY "BRANCH=" Q-BRANCH.
DISPLAY "BALANCE=" AUDV-BALANCE.
PERFORM DO-TPTERM.
* Abort the transaction
DO-TPABORT.
CALL "TPABORT" USING TPTRXDEF-REC
TPSTATUS-REC
IF NOT TPOK
MOVE 26 to LOG-REC-LEN
MOVE "Failed to abort transaction" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC.
* Leave the application
DO-TPTERM.
CALL "TPTERM" USING TPSTATUS-REC.
IF NOT TPOK
MOVE 27 to LOG-REC-LEN
MOVE "Failed to leave application" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC.

EXIT PROGRAM.
*

A-999-EXIT.

*

EXIT PROGRAM.

Terminating the Transaction

To end aglobal transaction, call TpcomMMTT (3cb1) to commit the current transaction, or
TPABORT (3cbl) to abort the transaction and roll back all operations.

9-10 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Terminating the Transaction

Note: If TpCcALL, TPACALL, OF TPCONNECT IS called by a process that has explicitly set
TPNOTRAN, the operations performed by the called service do not become part of the
current transaction. In other words, when you call the TpaBorT routine, the operations
performed by these services are not rolled back.

Committing the Current Transaction

The TpcoMMIT (3cbl) routine commits the current transaction. When Tecomm1T returns
successfully, all changesto resources as aresult of the current transaction become permanent.

Use the following signature to call the TecommIT routine:

01 TPTRXDEF-REC.
COPY TPTRXDEF.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPCOMMIT" USING TPTRXDEF-REC TPSTATUS-REC.

Refer to “ Starting the Transaction” on page 9-2 for a description of the TPTRXDEF -REC Structure.

Prerequisites for a Transaction Commit
For TrcommIT to Succeed, the following conditions must be true:

e The calling process must be the same one that initiated the transaction with acall to
TPBEGIN.

e The calling process must have no transactional replies (calls made without the TPNOTRAN
flag) outstanding.

e The transaction must not be in arollback-only state and must not be timed out.

If the first condition isfase, the call fails and Tp-sTaTus is set to TPEPROTO, indicating a
protocol error. If the second or third condition isfalse, the call fails and Tp-sTaTUus isset to
TPEABORT, indicating that the transaction has been rolled back. If Tecomm1T iscalled by the
initiator with outstanding transaction replies, the transaction is aborted and those reply
descriptors associated with the transaction become invalid. If a participant calls TecomMzT Or
TPABORT, the transaction is unaffected.

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-11

../rf3cbl/rf3cbl.html

9-12

A transaction is placed in arollback-only state if any service cal returns TpFATL or indicates a
service error. If TecommIT is called for arollback-only transaction, the routine cancels the
transaction, returns -1, and sets Tp-sTATUS t0 TPEABORT. The results are the same if TecomurT
iscalled for atransaction that has already timed out: Tecomm1T returns-1 and sets Tp-sTATUS tO
TPEABORT. Refer to “Managing Errors’ in Programming Oracle Tuxedo ATMI Applications
Using C for more information on transaction errors.

Two-phase Commit Protocol

When the TrcommIT routine is called, it initiates the two-phase commit protocol. This protocol,
as the name suggests, consists of two steps:

1. Each participating resource manager indicates a readiness to commit.

2. Theinitiator of the transaction gives permission to commit to each participating resource
manager.

The commit sequence begins when the transaction initiator calls the Tecomv1T routine. The
Oracle Tuxedo TM S server processin the designated coordinator group contactsthe TMSin each
participant group that isto perform thefirst phase of the commit protocol. The TM Sin each group
then instructs the resource manager (RM) in that group to commit using the XA protocol that is
defined for communications between the Transaction Managers and RMs. The RM writes, to
stable storage, the states of the transaction before and after the commit sequence, and indicates
success or failure to the TMS. The TM S then passes the response back to the coordinating TMS.

When the coordinating TM S has received a successindication from all groups, it logs a statement
to the effect that a transaction is being committed and sends second-phase commit notifications
to al participant groups. The RM in each group then finalizes the transaction updates.

If the coordinator TMSisnotified of afirst-phase commit failure from any group, or if it failsto
receive areply from any group, it sends arollback notification to each RM and the RM s back out
all transaction updates. Tecomm1T then fails and sets TP-STATUS tO TPEABORT.

Selecting Criteria for a Successful Commit

When more than one group is involved in a transaction, you can specify which of two criteria
must be met for TecommIT to return successfully:

e When all participants have indicated a readiness to commit (that is, when all participants
have reported that phase 1 of the two-phase commit has been logged as complete and the
coordinating TM S has written its decision to commit to stable storage)

e When all participants have finished phase 2 of the two-phase commit

Programming an Oracle Tuxedo ATMI Application Using COBOL

../pgc/pgerr.html

Terminating the Transaction

To specify one of these prerequisites, set the cMTRET parameter in the RESOURCES section of the
configuration file to one of the following values:

e 1,O0GGED—10 require completion of phase 1

e COMPLETE—tO require completion of phase 2

By default, cMTRET iS Set t0 COMPLETE.

Trade-offs Between Possible Commit Criteria

In most cases, when all participantsin aglobal transaction have logged successful completion of
phase 1, they do not fail to complete phase 2. By setting cMTRET t0 LOGGED, you allow aslightly
faster return of callsto TcommzT, but you run the slight risk that a participant may heuristically

completeits part of the transaction in away that is not consistent with the commit decision.

Whether it is prudent to accept the risk dependsto alarge extent on the nature of your application.
If your application demands complete accuracy (for example, if you are running a financial
application), you should probably wait until al participantsfully complete the two-phase commit
process before returning. If your application is more time-sensitive, you may prefer to have the
application execute faster at the expense of accuracy.

Aborting the Current Transaction

Usethe TPABORT (3cbl) routineto indicate an abnormal condition and explicitly abort a
transaction. Thisfunction invalidatesthe call descriptors of any outstanding transactional replies.
None of the changes produced by the transaction are applied to the resource. Use the following
signature to call the TpaBORT routine:

*

01 TPTRXDEF-REC.
COPY TPTRXDEF.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPABORT" USING TPTRXDEF-REC TPSTATUS-REC.

Refer to “ Starting the Transaction” on page 9-2 for adescription of the TPTRXDEF-REC Structure.

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-13

../rf3cbl/rf3cbl.html

Example: Committing a Transaction in Conversational Mode

Figure 9-1 illustrates a conversational connection hierarchy that includes a global transaction.

Figure 9-1 Connection Hierarchy in Transaction Mode

A

Call TPBECIN
{4 is SENDONLY on AB)

Call TPCONNECT

et TFRECVOMNLY
to TRUE

(A1s RECVONLY on BA)

Cdl TPRECW

Call TPCOMMIT

AR

BA

B
(Bis RECVONLY an AB)

Call TPSVCSTART

et TPSENDONLY

to TRUE

(B is SENDONLY an BC)
Call TPCONMECT

(E is SENDONLY on AE)

Cdl TPRECW

Copy TERETURN

BC

CB

EVENTS

C
(Cis RECVONLY in BC)

Call TPEVCETART

Call TPRECVY

set TRRENDONLY
to TRUE

(Cis SENDONLY on CB)

Copy TPRETURN

EVENTSZ

The connection hierarchy is created through the following process:

1. A client (process A) initiates a connection in transaction mode by calling TpeEGIN and

TPCONNECT.

9-14

Programming an Oracle Tuxedo ATMI Application Using COBOL

Terminating the Transaction

2. Theclient calls subsidiary services, which are executed.

3. Aseach subordinate service completes, it sends areply indicating success or failure
(TPEV_sVCSUCC OF TPEV_SVCFAIL, respectively) back up through the hierarchy to the
process that initiated the transaction. In this example the process that initiated the transaction
isthe client (process A). When a subordinate service has completed sending replies (that is,
when no more replies are outstanding), it must call TPRETURN.

4. Theclient (process A) determines whether al subordinate services have returned
successfully.

— If so, the client commits the changes made by those services, by calling TecommrT, and
compl etes the transaction.

— If not, the client calls TpaBORT, Since it knows that TecommIT could not be successful.

Example: Testing for Participant Errors

In the following sample code, a client makes a synchronous call to the fictitious REPORT service
(line 24). Then the code checks for participant failures by testing for errors that can be returned
on acommunication call (lines 30-42).

Listing 9-5 Testing for Participant Success or Failure

01 Lo

02 CALL "TPINITIALIZE" USING TPINFDEF-REC

03 USR-DATA-REC

04 TPSTATUS-REC.

05 IF NOT TPOK

06 error message,

07 EXIT PROGRAM .

08 MOVE 30 TO T-OUT.

09 CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
10 IF NOT TPOK

11 error message,

12 PERFORM DO-TPTERM.

13 * Set up record

14 MOVE "REPORT=accrcv DBNAME=accounts" TP-RECORD.
15 MOVE 27 TO LEN.

16 MOVE "REPORTS" TO SERVICE-NAME.

17 MOVE "STRING" TO REC-TYPE.

18 SET TPBLOCK TO TRUE.

19 SET TPTRAN IN TPSVCDEF-REC TO TRUE.

20 SET TPNOTIME TO TRUE.

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-15

21 SET TPSIGRSTRT TO TRUE.
22 SET TPCHANGE TO TRUE.

23 %

24 CALL "TPCALL" USING TPSVCDEF-REC

25 TPTYPE-REC

26 TP-RECORD

27 TPTYPE-REC

28 TP-RECORD

29 TPSTATUS-REC.

30 IF TPOK

31 PERFORM DO-TPCOMMIT

32 PERFORM DO-TPTERM.

33 * Check return status

34 IF TPESVCERR

35 DISPLAY "REPORT service's TPRETURN encountered problems"

36 ELSE IF TPESVCFAIL

37 DISPLAY "REPORT service FAILED with return code=" APPL-RETURN-CODE
38 ELSE IF TPEOTYPE

39 DISPLAY "REPORT service's reply is not of any known REC-TYPE"
40 *

41 PERFORM DO-TPABORT

42 PERFORM DO-TPTERM.

43 * Commit global transaction
44 DO-TPCOMMIT.

45 CALL "TPCOMMIT" USING TPTRXDEF-REC
46 TPSTATUS-REC

47 IF NOT TPOK

48 error message

49 * Abort the transaction
50 DO-TPABORT.

51 CALL "TPABORT" USING TPTRXDEF-REC
52 TPSTATUS-REC

53 IF NOT TPOK

54 error message

55 * Leave the application
56 DO-TPTERM.

57 CALL "TPTERM" USING TPSTATUS-REC.
58 IF NOT TPOK

59 error message

60 EXIT PROGRAM.

Implicitly Defining a Global Transaction

An application can start a global transaction in either of two ways:

e Explicitly, by calling ATMI calls, as described in “ Starting the Transaction” on page 9-2.

9-16 Programming an Oracle Tuxedo ATMI Application Using COBOL

Defining Global Transactions for an XA-Compliant Server Group

o Implicitly, from within a service routine
This section describes the second method.

Y ou can implicitly place a service routine in transaction mode by setting the system parameter
AUTOTRAN in the configuration file. If you set auToTRAN tO v, the system automatically startsa
transaction in the service subroutine when arequest is received from another process.

When implicitly defining atransaction, observe the following rules:

o |f aprocess requests a service from another process when the calling processisnot in
transaction mode and the AuToTRAN System parameter is set to start atransaction, the
system initiates a transaction.

e |f aprocessthat isaready in transaction mode requests a service from another process, the
system’sfirst response is to determine whether or not the caller is set to TPNOTRAN.

If not set to TPNOTRAN, then the system places the called processin transaction mode
through the “rule of propagation.” The system does not check the aAuToTrAN parameter.

If TPTRN-FLAG IN TPSVCDEF-REC iSSet t0 TPNOTRAN, the services performed by the
called process are not included in the current transaction (that is, the propagation ruleis
suppressed). The system checks the AuToTRAN parameter.

— If auToTrAN IS set ton (or if it is not set), the system does not place the called process
in transaction mode.

— If auTOoTRAN IS Set to v, the system places the called processin transaction mode, but
treatsit as a new transaction.

Note: Because a service can be placed in transaction mode automatically, it is possible for a
servicewith the renoTRAN flag set to call servicesthat havethe auToTrRAN parameter set.
If such a service requests another service, the member of the service information
structure returns TeTRAN When queried. For example, if the call is made with TeNOTRAN
| TeNOREPLY, and the service automatically starts a transaction when called, the
information structure is set t0 TPTRAN | TPNOREPLY.

Defining Global Transactions for an XA-Compliant Server
Group

Generally, the application programmer writes a service that is part of an XA-compliant server
group to perform some operation via the group’ s resource manager. In the normal case, the
service expectsto perform al operations within atransaction. If, on the other hand, the serviceis

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-17

called with the communication setting of TPNOTRAN, YOUu may receive unexpected results when
executing database operations.

In order to avoid unexpected behavior, design the application so that servicesin groups associated
with XA-compliant resource managers are always called in transaction mode or are always
defined in the configuration filewith AuToTRAN Set to v. Y ou should &l so test the transaction level
in the service code early.

Testing Whether a Transaction Has Started

9-18

It isimportant to know whether or not a process isin transaction mode in order to avoid and
interpret certain error conditions. For example, it is an error for a process already in transaction
modeto call TrBEGIN. When TpBEGIN iscalled by such aprocess, it failsand sets Tp-sTaTus to
TPEPROTO to indicate that it was invoked while the caller was already participating in a
transaction. The transaction is not affected.

Y ou can design a service subroutine so that it tests whether it isin transaction mode before
invoking TPBEGIN. You can test the transaction level by either of the following methods:

e Querying the settings of the service information structure that is passed to the service
routine. The serviceisin transaction mode if the valueis set to TPTRAN.

e Calling the TPGETLEV (3cbl) routine.
Use the following signature to call the TpGETLEV routine:

01 TPTRXLEV-REC.
COPY TPTRXLEV.
01 TPSTATUS-REC.
COPY TPSTATUS.
CALL "TPGETLEV" USING TPTRXLEV-REC TPSTATUS-REC.

TPGETLEV returns Tp-NOT-IN-TRAN if the caller isnot in atransaction and Tp-IN-TRAN if the
cdleris.

The following code sample shows how to test for transaction level using the TPGETLEV routine
(line 3). If the processis not already in transaction mode, the application starts atransaction (line
5). If TeBEGIN fails, amessage is returned to the status line (line 9) and ApPL.-CODE IN
TPSVCRET-REC Of TPRETURN iS Set to a code that can be retrieved in APL-RETURN-CODE IN
TPSTATUS-REC (lines1 and 11).

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html

Testing Whether a Transaction Has Started

Listing 9-6 Testing Transaction Level

Application defined codes
001 77 BEG-FAILED PIC S9(9) VALUE 3.

002 PROCEDURE DIVISION.

003 CALL "TPGETLEV" USING TPTRCLEV-REC
TPSTATUS-REC.
004 IF NOT TPOK
error processing EXIT PROGRAM
005 IF TP-NOT-IN-TRAN
006 MOVE 30 TO T-OUT.
007 CALL "TPBEGIN" USING

TPTRXDEF-REC
TPSTATUS-REC.

008 IF NOT TPOK

009 MOVE "Attempt to TPBEGIN within service failed"
TO USER-MESSAGE.

010 SET TPFAIL TO TRUE.

011 MOVE BEG-FAILED TO APPL-CODE.

012 COPY TPRETURN REPLACING

013 DATA-REC BY USER-MESSAGE.

If the AauToTRAN parameter is set to v, you do not need to call the TPBEGIN, and TPcoMMIT OF
TPABORT transaction routines explicitly. Asaresult, you can avoid the overhead of testing for
transaction level. In addition, you can set the TRANTIME parameter to specify the time-out
interval: the amount of time that may elapse after atransaction for a service begins, and before it
isrolled back if not completed.

For example, suppose you are revising the orEN_accT service shown in the preceding code
listing. Currently, opEn_accT defines the transaction explicitly and then tests for its existence.
To reduce the overhead introduced by these tasks, you can eliminate them from the code.
Therefore, you need to require that whenever opeN_accT iscaled, itiscaled in transaction

Programming an Oracle Tuxedo ATMI Application Using COBOL 9-19

mode. To specify thisrequirement, enablethe AuToTrRAN and TRANTIME System parametersin the
configuration file.

See Also

e Description of the auToTrAN configuration parameter in the section “Implicitly Defining a
Global Transaction” on page 9-16 of Setting Up an Oracle Tuxedo Application.

e TRANTIME configuration parameter in Setting Up an Oracle Tuxedo Application.

9-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

CHAPTERo

Programming a Multithreaded and
Multicontexted ATMI Application

Thistopic includes the following sections:

Support for Programming a Multithreaded/M ulticontexted ATMI Application
Planning and Designing a Multithreaded/M ulticontexted ATMI Application

Implementing a Multithreaded/ Multicontexted ATMI Application

Testing a Multithreaded/Multicontexted ATMI Application

Support for Programming a
Multithreaded/Multicontexted ATMI Application

The Oracle Tuxedo system supports only:

o Kernel-level threads packages (user-level threads packages are not supported)

e Multithreaded applications written in C (multithreaded COBOL applications are not
supported)

e Multicontexted applications written in either C or COBOL

If your operating system supports POSIX threads functions as well as other types of threads
functions, we recommend using the POSIX threads functions, which make your code easier to
port to other platforms later.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-1

10-2

To find out whether your platform supports a kernel-level threads package, C functions, or
POSIX functions, see the data sheet for your operating system in Installing the Oracle Tuxedo
System.

Platform-specific Considerations for
Multithreaded/Multicontexted Applications

Many platforms have idiosyncratic requirements for multithreaded and multicontexted
applications. Installing the Oracle Tuxedo System lists these platform-specific requirements. To
find out what is needed on your platform, check the appropriate data sheet.

See Also

e “What Are Multithreading and Multicontexting?’ on page 1-3

e “Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application” on
page 1-7

e “How Multithreading and Multicontexting Work in a Client” on page 1-10
e “How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

Programming an Oracle Tuxedo ATMI Application Using COBOL

Planning and Designing a Multithreaded/Multicontexted ATMI Application

Planning and Designing a Multithreaded/Multicontexted
ATMI Application

This topic includes the following sections:
e What Are Multithreading and Multicontexting?
e Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI Application
e How Multithreading and Multicontexting Work in a Client
e How Multithreading and Multicontexting Work in an ATMI Server
e Design Considerations for a Multithreaded and Multicontexted ATMI Application

What Are Multithreading and Multicontexting?

The Oracle Tuxedo system allows you to use a single process to perform multiple tasks
simultaneously. The programming techniques for implementing this sort of process usage are
multithreading and multicontexting. This topic provides basic information about these
techniques:

e What Is Multithreading?

e What Is Multicontexting?

What Is Multithreading?

Multithreading is the inclusion of more than one unit of execution in asingle process. In a
multithreaded application, multiple simultaneous calls can be made from the same process. For
example, an individual processis not limited to one outstanding tpcall (3c).

In aserver, multithreading requires multicontexting except when application-created threads are
used in a singled-context server. The only way to create a multithreaded, single-context
application isto use application-created threads.

The Oracle Tuxedo system supports multithreaded applications written in C. It does not support
multithreaded COBOL applications.

Figure 1-1 shows how a multithreaded client can issue calls to three servers simultaneously.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-3

../rf3c/rf3c.html

Figure 1-1 Sample Multithreaded Process

SERVER A

In amultithreaded application, multiple service-dispatched threads are available in the
same server, which means that fewer servers need to be started for that application.

Figure 1-2 shows how a server process can dispatch multiple threads to different clients

simultaneously.

10-4 Programming an Oracle Tuxedo ATMI Application Using COBOL

CLIENT PROCESS

SERVER B

SERVER C

What Are Multithreading and Multicontexting?

Figure 1-2 Multiple Service Threads Dispatched in One Server Process

THREAD 1

SERVER
THREAD 2 PROCESS
THREAD 3

What Is Multicontexting?

A context is an association to adomain. Multicontexting isthe ability of asingle processto have
one of the following:

o More than one connection within adomain

e Connections to more than one domain

Multicontexting can be used in both clients and servers. When used in servers, multicontexting
implies the use of multithreading, as well.

For amore completelist of the characteristics of acontext, see“ Context Attributes’ in one of the
following sections:

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-5

e “Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

The Oracle Tuxedo system supports multicontexted applications written in either C or COBOL.
Multithreaded applications, however, are supported only in C.

Figure 1-3 shows how a multicontexted client process works within a domain. Each arrow
represents an outstanding call to a server.

Figure 1-3 Multicontexted Process in Two Domains

CLIENT PROCESS

Context 3 OraE:_Ie quedo Application B

— —

Licensing a Multithreaded or Multicontexted Application

For licensing purposes, each context is counted as one user. Additional licenses are not required
to accommodate multiple threads within one context. For example:

e |f aprocess has two contexts associated with Application A and one with Application B,
the Oracle Tuxedo system counts atotal of three users (two in Application A and onein
Application B).

o |If aprocess has multiple threads accessing one application within the same context, the
system counts only one user.

10-6 Programming an Oracle Tuxedo ATMI Application Using COBOL

Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application

See Also

e “Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application” on
page 1-7

e “How Multithreading and Multicontexting Work in a Client” on page 1-10
e “How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

Advantages and Disadvantages of a
Multithreaded/Multicontexted ATMI Application

Multithreading and multicontexting are powerful tools for enhancing the performance of Oracle
Tuxedo applications—given the appropriate circumstances. Before embarking on a plan to use
these techniques, however, it isimportant to understand potential benefits and pitfalls.

Advantages of a Multithreaded/Multicontexted ATMI
Application

Multithreaded and multicontexted ATMI applications offer the following advantages:

e Improved performance and concurrency

For certain applications, performance and concurrency can be improved by using
multithreading and multicontexting together. In other applications, performance can be
unaffected or even degraded by using multithreading and multicontexting together. How
performance is affected depends on your application.

e Simplified coding of remote procedure calls and conversations

In some applicationsit is easier to code different remote procedure calls and conversations
in separate threads than to manage them from the same thread.

e Simultaneous access to multiple applications

Your Oracle Tuxedo clients can be connected to more than one application at atime.

e Reduced number of required servers

Because one server can dispatch multiple service threads, the number of serversto start for
your application is reduced. This capability for multiple dispatched threads is especially
useful for conversational servers, which otherwise must be dedicated to one client for the
entire duration of a conversation.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-7

10-8

For applicationsin which client threads are created by the Microsoft Internet Information Server
API or the Netscape Enterprise Server interface (that is, the NSAPI), the use of multiple threads
isessentia if youwant to obtain the full benefits afforded by thesetools. Thismay betrue of other
tools, aswell.

Disadvantages of a Multithreaded/Multicontexted ATMI
Application

Multithreaded and multicontexted ATMI applications present the following disadvantages:

e Difficulty of writing code

Multithreaded and multicontexted applications are not easy to write. Only experienced
programmers should undertake coding for these types of applications.

e Difficulty of debugging

It is much harder to replicate an error in a multithreaded or multicontexted application than
itisto do so in asingle-threaded, single-contexted application. Asaresult, it is more
difficult, in the former case, to identify and verify root causes when errors occur.

e Difficulty of managing concurrency

The task of managing concurrency among threads is difficult and has the potential to
introduce new problems into an application.

e Difficulty of testing

Testing a multithreaded application is more difficult than testing a single-threaded
application because defects are often timing-related and more difficult to reproduce.

o Difficulty of porting existing code

Existing code often requires significant re-architecting to take advantage of multithreading
and multicontexting. Programmers need to:

— Remove static variables
— Replace any function callsthat are not thread-safe
— Replace any other code that is not thread-safe

Because the completed port must be tested and retested, the work required to port a
multithreaded and/or multicontexted application is substantial.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application

See Also
e “What Are Multithreading and Multicontexting?’ on page 1-3
e “How Multithreading and Multicontexting Work in a Client” on page 1-10
e “How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

e “Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 1-19

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-9

How Multithreading and Multicontexting Work in a Client

10-10

When a multithreaded and multicontexted application is active, the life cycle of aclient can be
described in three phases:

e Start-up Phase
e \Work Phase

e Completion Phase

Start-up Phase

In the start-up phase the following events occur:
e Some client threads join one or more Oracle Tuxedo applications by calling tpinit (3c).

e Other client threads share the contexts created by the first set of threads by calling
tpsetctxt (3c).

e Some client threads join multiple contexts.

e Some client threads switch to an existing context.

Note: There may also be threads that work independently of the Oracle Tuxedo system. We do
not consider such threads in this documentation.

Client Threads Join Multiple Contexts

A client in an Oracle Tuxedo multicontexted application can have more than one application
association as long as the following rules are observed:

e All associations must be made to the same installation of the Oracle Tuxedo system.

o All application associations must be made from the same type of client. In other words,
one of the following must be true:

— All application associations must be made from native clients only.
— All application associations must be made from Workstation clients only.

Tojoin multiple contexts, clientscall thetpinit (3c¢) functionwith the reMurTICONTEXTS flag
set inthe f1ags element of the TpINFO datatype.

When tpinit () iscaled with the TeMunTICONTEXTS flag set, a new application association is
created and is designated the current association for the thread. The Oracle Tuxedo domain to

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

How Multithreading and Multicontexting Work in a Client

which the new association is made is determined by the value of the TuxconFIG or
WSENVFILE/WSNADDR environment variable.

Client Threads Switch to an Existing Context

Many ATMI functions operate on a per-context basis. (For acomplete list, see “Using
Per-context Functions and Data Structures in a Multithreaded ATMI Client” on page 1-44.) In
such cases, the target context must be the current context. Although clients can join more than
one context, at any time, in any thread, only one context can be the current context.

Astask priorities shift within an application, requiring interactions with one Oracle Tuxedo
domain rather than another, it is sometimes advantageous to reassign a thread from one context
to another.

In such situations, one client threads calls tpgetctxt (3c¢) and passesthe handlethat isreturned
(the value of which isthe current context) to a second client thread. The second thread then
associates itself with the current context by calling tpsetctxt (3c) and specifying the handleit
received from tpgetctxt (3c) viathefirst thread.

Once the second thread is associated with the desired context, it is available to perform tasks
executed by ATMI functions that operate on a per-context basis. For details, see “Using
Per-context Functions and Data Structures in a Multithreaded ATMI Client” on page 1-44.

Work Phase

In this phase each thread performs atask. The following isalist of sample tasks:
e A thread issues arequest for a service.
e A thread getsthe reply to a service request.
e A thread initiates and/or participatesin a conversation.

e A thread begins, commits, or rolls back atransaction.

Service Requests

A thread sends arequest to a server by calling either tpcall (3¢) for asynchronous request or
tpacall (3c)for anasynchronousrequest. If the request is sent with tpcall (), thenthereply is
received without further action by any thread.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-11

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-12

Replies to Service Requests

If an asynchronous request for a service has been sent with tpcal1 (3c), athread in the same
context (which may or may not be the same thread that sent the request) getsthe reply by calling
tpgetrply (3c).

Transactions

If one thread starts a transaction, then all threads that share the context of that thread also share
the transaction.

Many threads in a context may work on atransaction, but only one thread may commit or abort
it. Thethread that commits or aborts the transaction can be any thread working on the transaction;
it is not necessarily the same thread that started the transaction. Threaded applications are
responsiblefor providing appropriate synchronization so that the normal rules of transactions are
followed. (For example, there can be no outstanding RPC calls or conversations when a
transaction is committed, and no stray callsare allowed after atransaction has been committed or
aborted.) A process may be part of at most one transaction for each of its application associations.

If onethread of an application calls tpcommit (3¢) concurrently with an RPC or conversational
call in another thread of the application, the system acts asif the calls wereissued in some serial
order. An application context may temporarily suspend work on atransaction by calling
tpsuspend (3c) and then start another transaction subject to the same restrictions that exist for
single-threaded and single-context programs.

Unsolicited Messages

For each context in a multithreaded or multicontexted application, you may choose one of three
methods for handling unsolicited messages.

A context may ... By setting . . .
Ignore unsolicited messages TPU_IGN
Use dip-in notification TPU_DIP
Use dedicated thread notification. TPU_THREAD

(available only for C applications)

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

How Multithreading and Multicontexting Work in a Client

The following caveats apply:
e SIGNAL-based notification is not allowed in multithreaded or multicontexted processes.

o |If your application runs on a platform that supports multicontexting but not multithreading,
then you cannot use the Tpu_THREAD unsolicited notification method. Asaresult, you
cannot receive immediate notification of events.

If receiving immediate notification of eventsisimportant to your application, then you
should carefully consider whether to use a multicontexted approach on this platform.

e Dedicated thread notification is available only:
— For applications writtenin C
— On multithreaded platforms supported by the Oracle Tuxedo system

When dedicated thread notification is chosen, the system dedicates a separate thread to receive
unsolicited messages and dispatch the unsolicited message handler. Only one copy of the
unsolicited message handler can run at any onetime in a given context.

If tpinit (3c) iscaled on aplatform for which the Oracle Tuxedo system does not support
threads, with parameters indicating that Tpu_THREAD notification is being requested on a
platform that does not support threads, tpinit () returns -1 and sets tperrno t0 TPEINVAL. If
the uBBCONFIG (5) default NoTIFY option is set to THREAD but threads are not available on a
particular machine, the default behavior for that machineisdowngradedto prpIn. Thedifference
between these two behaviors allows an administrator to specify a default for all machinesin a
mixed configuration—a configuration that includes some machines that support threads and
some that do not—but it does not allow a client to explicitly request a behavior that is not
available on its machine.

If tpsetunsol (3c)iscalled from athread that is not associated with a context, a per-process
default unsolicited message handler for al new tpinit (3c) contexts created is established. A
specific context may change the unsolicited message handler for that context by calling
tpsetunsol () again when the context is active. The per-process default unsolicited message
handler may be changed by again calling tpsetunsol () inathread not currently associated with
a context.

If aprocess has multiple associations with the same application, then each association is assigned
adifferent cL.TENTID SO that it ispossible to send an unsolicited message to aspecific application
association. If a process has multiple associations with the same application, then any
tpbroadcast (3c) iSsent separately to each of the application associations that meet the
broadcast criteria. When performing a dip-in check for receiving unsolicited messages, an
application checks for only those messages sent to the current application association.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-13

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

10-14

In addition to the ATMI functions permitted in unsolicited message handlers, it is permissible to
cal tpgetctxt (3c) within an unsolicited message handler. This functionality allows an
unsolicited message handler to create another thread to perform any more substantial ATMI work
required within the same context.

Userlog Maintains Thread-specific Information
For each thread in each application, userlog (3c) recordsthefollowing identifying information:

process_ID.thread ID.context_ID

Placeholders are printed in the thread_1p and context_1D fields of entries for non-threaded
platforms and single-contexted applications.

TheTv_m1B(5) supportsthisfunctionality intheta_rareapip and Ta_conTExTID fieldsinthe
T_ULOG class.

Completion Phase

In this phase, when the client processis about to exit, on behalf of the current context and all
associated threads, a thread ends its application association by calling tpterm(3c) . Like other
ATMI functions, tpterm() operates on the current context. It affects all threads for which the
context is set to the terminated context, and terminates any commonality of context among these
threads.

A well-designed application normally waitsfor all work in aparticular context to complete before
it calls tpterm (). Besurethat al threads are synchronized before your application calls
tpterm().

See Also

e “What Are Multithreading and Multicontexting?’ on page 1-3

e “Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 1-19

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26
e “Writing a Multithreaded ATMI Client” on page 1-38
e “Synchronizing Threads Before an ATMI Client Termination” on page 1-28

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

How Multithreading and Multicontexting Work in an ATMI Server

How Multithreading and Multicontexting Work in an ATMI

Server

The eventsthat occur in an ATMI server when amultithreaded and multicontexted applicationis

active can be described in three phases:
e Start-up Phase
e Work Phase

e Completion Phase

Start-up Phase

What happens during the start-up phase depends on the value of the MINDI SPATCHTHREADS and
MAXDISPATCHTHREADS parameters in the configuration file.

If the value of And the value of Then...

MINDISPATCHTHREADS MAXDISPATCHTHREADS

is. .. is...

0 >1 . The Oracle Tuxedo system creates a thread
dispatcher.

. Thedispatcher calls tpsvrinit (3c) tojoin

the application.

>0 >1 . The Oracle Tuxedo system creates a thread

dispatcher.

. Thedispatcher callstpsvrinit (3c) tojoin

the application.

. The Oracle Tuxedo system creates additional

threads for handling service requests, and a
context for each new thread.

Each new system-created thread calls
tpsvrthrinit (3c¢) tojoin the application.

Work Phase

In this phase, the following activities occur:

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-15

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-16

e Multiple client requests to one server are handled concurrently in multiple contexts. The
system allocates a separate thread for each request.

o |f necessary, additional threads (up to the number indicated by MAXDISPATCHTHREADS) are
created.

e The system keeps statistics on server threads.

Server-dispatched Threads Are Used
In responseto clients’ requests for aservice, the server dispatcher creates multiple threads (up to

a configurable maximum) in one server that can be assigned to various client requests
concurrently. A server cannot become aclient by calling tpinit (3c).

Each dispatched thread is associated with a separate context. This feature is useful in
conversational and RPC servers. Itisespecially useful for conversational serverswhich otherwise
sit idle, waiting for the client side of a conversation while other conversational connections are
waiting for service.

Thisfunctionality is controlled by the following parameters in the servERs section of the
UBBCONFIG (5) fileand the TM_mMIB(5).

UBBCONFIG Parameter MIB Parameter Default

MINDISPATCHTHREADS TA_MINDISPATCHTHREADS 0

MAXDISPATCHTHREADS TA_MAXDISPATCHTHREADS 1

THREADSTACKSIZE TA_THREADSTACKSIZE 0 (representing the
OS default)

e Each dispatched thread is created with the stack size specified by THREADSTACKSIZE (OF
TA_THREADSTACKSIZE). If this parameter is not specified or has avalue of O, the operating
system default is used. On afew operating systems on which the default istoo small to be
used by the Oracle Tuxedo system, alarger default is used.

o If the value of this parameter is not specified or is O, or if the operating system does not
support setting a THREADSTACKSIZE, then the operating system default is used.

e MINDISPATCHTHREADS (Or TA_MINDISPATCHTHREADS) must belessthan or equal to
MAXDTSPATCHTHREADS (Of TA_MAXDTSPATCHTHREADS).

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html

How Multithreading and Multicontexting Work in an ATMI Server

If MAXDISPATCHTHREADS (OF TA_MAXDISPATCHTHREADS) iS 1, then the dispatcher thread
and the service function thread are the same thread.

e |f MAXDISPATCHTHREADS (OF TA_MAXDISPATCHTHREADS) iSgreater than 1, any separate
thread used for dispatching other threads does not count toward the limit of dispatched
threads.

Initialy, the system boots MINDI SPATCHTHREADS (OF TA_MINDISPATCHTHREADS) Server
threads.

The system never boots more than MAXDISPATCHTHREADS (OF TA_MAXDI SPATCHTHREADS)
server threads.

Application-created Threads Are Used

Using your operating system functions, you may create additional threads within an application
server. Application-created threads may:

e Operate independently of the Oracle Tuxedo system
e Operate in the same context as an existing server dispatch thread

e Perform work on behalf of server dispatch contexts
Some restrictions govern what you can do if you create threads in your application.

e Servers may not become clients by calling tpinit (3c).

e Initialy, application-created server threads are not associated with any server dispatch
context. An application-created server thread may call tpsetctxt (3c¢) (and passit avalue
returned by a previous call to tpgetctxt (3¢) within a server-dispatched thread) to
associate itself with that server-dispatched context.

e An application-created server thread cannot call tpreturn (3c) OF tpforward (3c). When
an application-created server thread has finished itswork, it must call tpsetctxt (3c)
with the context set to renurLL.conTEXT before the originally dispatched thread calls

tpreturn().

Bulletin Board Liaison Verifies Sanity of System Processes

The Bulletin Board Liaison (BBL) periodically checks servers. If aserver istaking too long to
execute aparticular service request, the BBL killsthat server. (If specified, the BBL then restarts
the server.) If the BBL kills a multicontexted server, the other service calls that are currently
being executed are also terminated as aresult of the process being killed.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-17

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

The BBL also sends a message to any process or thread that has been waiting longer than its
timeout value to receive a message. The blocking message receive call then returns an error
indicating atimeout.

System Keeps Statistics on Server Threads
For each server, the Oracle Tuxedo system maintains statistics for the following information:

e Maximum number of server-dispatched threads allowed
e Number of server-dispatched threads currently in use (TA_CURDISPATCHTHREADS)

e High-water mark of concurrent server-dispatched threads since the server was booted
(TA_HWDISPATCHTHREADS)

o Number of server-dispatched threads historically started (TA_NUMDISPATCHTHREADS)

Userlog Maintains Thread-specific Information
For each thread in each application, userlog (3c) recordsthefollowingidentifying information:

process_ID.thread ID.context_ID

Placeholders are printed in the thread 1D and context_1Dfields of entriesfor non-threaded
platforms and single-contexted applications.

TheTM m1B(5) supportsthisfunctionality intheTa turEADID and Ta_conTExTID fieldsinthe
T_ULOG class.

Completion Phase

When the application is shut down, tpsvrthrdone (3c) and tpsvrdone (3c) arecaled to
perform any termination processing that is necessary, such as closing a resource manager.

See Also

e “What Are Multithreading and Multicontexting?’ on page 1-3

e “Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 1-19

e “Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

e “Writing a Multithreaded ATMI Server” on page 1-50

10-18 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Design Considerations for a Multithreaded and Multicontexted ATMI Application

Design Considerations for a Multithreaded and
Multicontexted ATMI Application

Multithreaded and multicontexted ATMI applications are appropriate for some Oracle Tuxedo
domains, but not all. To decide whether to create such applications, you should answer several
basic questions about the following:

e Your development and run-time environments
e Design requirements for your application
e Type of threads model to use

o Interoperability restrictions for Workstation clients

Environment Requirements

When considering the devel opment of multithreaded and/or multicontexted applications,
examine the following aspects of your development and run-time environments:

e Do you have an experienced team of programmers capable of writing and debugging
multithreaded and multicontexted programs that successfully manage concurrency and
synchronization?

e Arethe multithreading features of the Oracle Tuxedo system supported on the platform on
which you are developing your application? These features are supported only on platforms
with an OS-provided threads package, providing an appropriate level of functionality.

e Do the resource managers (RMs) used by your servers support multithreading? If so,
consider the following issues, aswell:

— Do you need to set any parameters required by your RM to enable multithreaded access
by your servers? For example, if you use an Oracle database with a multithreaded
application, you must set the THREADS=t rue parameter as part of the opENINFO String
passed to Oracle. By doing so, you make it possible for individual threads to operate as
separate Oracle associations.

— Does your RM support a mixed mode of operation? A mixed-mode operation isaform
of access such that multiple threads in a process can map to one RM association while
other threads in the same process simultaneously map to different RM associations.
Within one process, for example, Threads A and B map to RM Association X, while
Thread C mapsto RM Association Y.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-19

Not all RMs support mixed-mode operation. Some require al threadsin agiven
process to map to the same RM association. If you are designing an application that
will make use of transactional RM access within application-created threads, make sure
your RM supports mixed-mode operation.

Design Requirements
When designing a multithreaded and/or multicontexted application, you should consider the
following design questions:

o Isthetask performed by your application suitable for multithreading and/or
multicontexting?

e Do you want to connect to more than one Oracle Tuxedo application? How many
connections to each target application do you want?

e What synchronization issues need to be addressed in your application?

e Will you need to port your application to another platform after you have put your initial
application into production?

Is the Task of Your Application Suitable for Multithreading
and/or Multicontexting?

The following table provides alist of questions to help you decide whether your application
would beimproved if it were multithreaded and/or multicontexted. Thislist is not
comprehensive; your individual requirements will determine other factors that should be
considered.

For additional suggestions, we recommend that you consult a multithreaded and/or
multicontexted programming publication.

If the answer to this question . . . Is YES, then you might consider using . . .

Does your client need to connect to more than one application Multicontexting.
without using the Domains feature?

Does your client perform the role of a multiplexer within your Multicontexting.
application? For example, have you designated one machine in your
application the “ surrogate” for 100 other machines?

10-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted ATMI Application

If the answer to this question . . . Is YES, then you might consider using . . .

Does your client use multicontexting? Multithreading. By allocating one thread
per context, you can simplify your code.

Does your client perform two or more tasks that can be executed Multithreading.
independently for along time such that the performance gains from

concurrent execution outweigh the costs and compl exities of threads

synchronization?

Do you want one server to process multiple concurrent requests? Multithreading. Assign avalue greater
than 1to MAXDISPATCHTHREADS. This
value enables multiple clients, each in its
own thread, for the server.

If your client or server had multiple threads, would it be necessary to Not using multithreading.
synchronize them after each thread had performed only alittle work?

How Many Applications and Connections Do You Want?

Decide how many applications you want to access and the number of connections you want to
make.

e |If you want connections to more than one application, then we recommend one of the
following:

— A single-threaded, multicontexted application
— A multithreaded, multicontexted application

o |If you want more than one connection to an application, then we recommend a
multithreaded, multicontexted application.

e |f you want only one connection to one application, then we recommend one of the
following:

— Multithreaded, single-contexted clients
— Single-threaded, single-contexted clients

In both cases, multithreaded, multicontexted servers may be used.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-21

10-22

What Synchronization Issues Need to Be Addressed?

Thisissueis an important one during the design phase. It is, however, beyond the scope of this
documentation. Please refer to a publication about multithreaded and/or multicontexted
programming.

Will You Need to Port Your Application?

If you may need to port your application in the future, you should keep in mind that different
operating systems have different sets of functions. If you think you may want to port your
application after completing the initial version of it on one platform, remember to consider the
amount of staff time that will be needed to revise the code with a different set of functions.

Which Threads Model Is Best for You?

Various models for multithreaded programs are now being used, including the following:
e Boss/worker model
e Siblings model
o Workflow model

We do not discuss threads models in this documentation. We recommend that you research all
available modelsand consider your design requirements carefully when choosing aprogramming
model for your application.

Interoperability Restrictions for Workstation Clients

Interoperability between release 7.1 Workstation clients and applications based on pre-7.1
releases of the Oracle Tuxedo system is supported in any of the following situations:

e Theclient is neither multithreaded nor multicontexted.
e The client is multicontexted.

e Theclient is multithreaded and each thread isin a different context.

An Oracle Tuxedo Release 7.1 Workstation client with multiplethreadsin asingle context cannot
interoperate with a pre-7.1 release of the Oracle Tuxedo system.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Implementing a Multithreaded/ Multicontexted ATMI Application

See Also

e “Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application” on
page 1-7

e “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 1-23

Implementing a Multithreaded/ Multicontexted ATMI
Application

e “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 1-23

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

e “Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

e “Writing a Multithreaded ATMI Client” on page 1-38
e “Writing a Multithreaded ATMI Server” on page 1-50
e “Compiling Code for a Multithreaded/M ulticontexted ATMI Application” on page 1-50

Preliminary Guidelines for Programming a
Multithreaded/Multicontexted ATMI Application

Before you start coding, make sure you have fulfilled or thought about the following:
e “Prerequisites for aMultithreaded ATMI Application” on page 1-23
e “General Multithreaded Programming Considerations’ on page 1-24

e “Concurrency Considerations’ on page 1-24

Prerequisites for a Multithreaded ATMI Application

Make sure your environment meetsthe following prerequisites before starting your devel opment
project.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-23

10-24

e Your operating system must provide a suitable threads package supported by the Oracle
Tuxedo system.

The Oracle Tuxedo system does not supply tools for creating threads, but it supports
various threads packages provided by different operating systems. To create and
synchronize threads, you must use the functions native to your operating system. To find
out which, if any, threads packages are supported by your operating system, see Installing
the Oracle Tuxedo System.

e If you are using multithreaded servers, the resource managers used by those servers must
support threads.

General Multithreaded Programming Considerations

Only experienced programmers should write multithreaded programs. In particul ar, programmers
should already be familiar with basic design issues specific to this task, such as:

e The need for concurrency control among multiple threads
e The need to avoid the use of static variablesin most instances

e Potential problemsthat may arise from the use of signalsin multithreaded programs

These are just afew of the issues, too numerousto list here, with which we assume any
programmer undertaking the writing of a multithreaded program isalready familiar. Theseissues
are discussed in many commercially available books on the subject of multithreaded
programming.

Concurrency Considerations

Multithreading enables different threads of an application to perform concurrent operations on
the same conversation. We do not recommend this approach, but the Oracle Tuxedo system does
not forbid it. If different threads perform concurrent operations on the same conversation, the
system acts asif the concurrent calls were issued in some arbitrary order.

When programming with multiple threads, you must manage the concurrency among them by
using mutexes or other concurrency-control functions. Here are three examples of the need for
concurrency control:

e When multithreaded threads are operating on the same context, the programmer must
ensure that functions are being executed in the required seria order. For example, all RPC
calls and conversations must be compiled before tpcommit (3c) can be called. If
tpcommit () iscaled from athread other than the thread from which all these RPC or

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html

Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI Application

conversational calls are made, some concurrency control is probably required in the
application.

e Similarly, itispermissibleto call tpacall (3c) inonethread and tpgetrply (3c) in
another, but the application must either:

— Ensurethat tpacall () iscaled before tpgetrply (), Or

— Manage the consequences if tpacall () isnot called before tpgetrply ()

e Multiple threads may operate on the same conversation but application programmers must
realize that if different threadsissue tpsend (3c) at approximately the same time, the
system acts as though these tpsend () calls have been issued in an arbitrary order.

For most applications, the best strategy isto code all the operations for one conversation in
one thread. The second best strategy is to serialize these operations using concurrency
control.

See Also

e “Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 1-19

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

e “Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

e “Writing a Multithreaded ATMI Client” on page 1-38
e “Writing a Multithreaded ATMI Server” on page 1-50

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-25

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Writing Code to Enable Multicontexting in an ATMI Client

To enable multicontexting in a client, you must write code that:
e Sets up multicontexting at initialization time
o |mplements security
o |f multithreading is also being used, synchronizes threads
e Switches contexts

e Handles unsolicited messages for each context

If your application uses transactions, you should also keep in mind the consequences of
multicontexting for transactions. For more information, see “Coding Rules for Transactionsin a
Multithreaded/Multicontexted ATMI Application” on page 1-32.

Note: Theinstructions and sample code provided in this section refer to the C library functions
provided by the Oracle Tuxedo system. Equivalent COBOL library functions are also
available; for details, see the Oracle Tuxedo COBOL Function Reference.

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

o |If an application-created server thread exits without changing context before the original
dispatched thread exits, then tpreturn (3c¢) or tpforward(3c) fails. The execution of a
thread exit does not automatically trigger acall to tpsetctxt (3¢) to change the context
{0 TPNULLCONTEXT.

e For all contextsin a process, the same buffer type switch must be used.

e Aswith any other type of data structure, a multithreaded application must properly make
use of Oracle Tuxedo buffers, that is, buffers should not be used concurrently in two calls
when one of the following may be true:

— Both calls may use the buffer
— Both calls may free the buffer

— One call may use the buffer and one call may free the buffer

e If youcall tpinit (3c) morethan once, either to join multiple applications or to make
multiple connections to a single application, keep in mind that on each tpinit () you must
accommodate whatever security mechanisms have been established.

10-26 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Writing Code to Enable Multicontexting in an ATMI Client

Setting Up Multicontexting at Initialization

When aclient isready to join an application, specify tpiit (3c) with the TPMULTICONTEXTS
flag set, as shown in the following sample code.

Listing 1-1 Sample Code for a Client Joining a Multicontexted Application

#include <stdio.h>

#include <atmi.h>
TPINIT * tpinitbuf;
main ()

{

tpinitbuf = tpalloc (TPINIT, NULL, TPINITNEED(O)) ;

tpinitbuf->flags = TPMULTICONTEXTS;

if (tpinit (tpinitbuf) == -1) {
ERROR_PROCESSING_CODE

A new application association is created and assigned to the Oracle Tuxedo domain specified in
the TUXCONFIG Of WSENVFILE/WSNADDR environment variable.

Note: Inany one process, either al callsto tpinit (3¢) must include the TPMULTICONTEXTS
flag or elseno call to tpinit () may includethisflag. The only exception to thisruleis
that if all of aclient’s application associations are terminated by successful callsto
tpterm(3c), then the processis restored to a state in which the inclusion of the
TPMULTICONTEXTS flag in the next call to tpinit () isoptional.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-27

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-28

Implementing Security for a Multicontexted ATMI Client

Each application association in the same process requires a separate security validation. The
nature of that validation depends on the type of security mechanisms used in your application. In
an Oracle Tuxedo application you might, for example, use a system-level password or an
application password.

Asthe programmer of a multicontexted application, you are responsible for identifying the type
of security used in your application and implementing it for each application association in a
process.

Synchronizing Threads Before an ATMI Client Termination

When you are ready to disconnect a client from an application, invoke tpterm (3c). Keepin
mind, however, that in a multicontexted application tpterm () destroys the current context. All
the threads operating on that context are affected. As the application programmer, you must
carefully coordinate the use of multiple threads to make sure that tpterm () isnot called
unexpectedly.

Itisimportant to avoid calling tpterm(3c) onacontext while other threads are still working on
that context. If such acall to tpterm() is made, the Oracle Tuxedo system places the other
threads that had been associated with that context in a special invalid context state. When in the
invalid context state, most ATMI functions are disallowed. A thread may exit from theinvalid
context state by calling tpsetctxt (3c) Of tpterm(). Most well designed applications never
have to deal with the invalid context state.

Note: The Oracle Tuxedo system does not support multithreading in COBOL applications.

Switching Contexts

Thefollowing isasummary of the coding steps that might be made by aclient that calls services
from two contexts.

Set the TuxconFIG environment variable to the value required by firstapp.
Join thefirst application by calling tpinit (3¢) with the TeMuLTICONTEXTS flag set.

Obtain a handle to the current context by calling tpgetctxt (3c).

A W bdp PR

Switch the value of the TuxconFIc environment variable to the value required by the
secondapp context, by calling tuxputenv ().

5. Join the second application by calling tpinit (3c) with the TPMuLTICONTEXTS flag set.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Writing Code to Enable Multicontexting in an ATMI Client

6. Get ahandleto the current context by calling tpgetctxt (3c).

7. Beginning with the £irstapp context, start toggling between contexts by calling
tpsetctxt (3c).

8. Cdl firstapp services.

9. Switchtheclient tothe secondapp context (by calling tpsetctxt (3¢)) and cal secondapp
services.

10. Switch the client to the £irstapp context (by calling tpsetctxt (3¢)) and call firstapp
services.

11. Terminate the firstapp context by calling tpterm (3c).

12. Switchtheclient to the secondapp context (by calling tpsetctxt (3¢)) and call secondapp
services.

13. Terminate the secondapp context by calling tpterm(3c).

The following sample code provides an example of these steps.

Note: In order to simplify the sample, error checking code is not included.

Listing 1-2 Sample Code for Switching Contexts in a Client

#include <stdio.h>
#include "atmi.h"/* BEA Tuxedo header file */

#if defined(__STDC__) || defined(__cplusplus)
main (int argc, char *argvl[])

#else

main (argc, argv)

int argc;

char *argvl[];

#endif

{

TPINIT * tpinitbuf;
TPCONTEXT_T firstapp_contextID, secondapp_contextID;
/* Assume that TUXCONFIG is initially set to /home/firstapp/TUXCONFIG*/
/*
* Attach to the BEA Tuxedo system in multicontext mode.
*/
tpinitbuf=tpalloc (TPINIT, NULL, TPINITNEED(O0));
tpinitbuf->flags = TPMULTICONTEXTS;

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-29

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

if (tpinit ((TPINIT *) tpinitbuf) == -1) {
(void) fprintf (stderr, "Tpinit failed\n")
exit (1) ;

}

7

/*

* Obtain a handle to the current context.
*/

tpgetctxt (&firstapp_contextID, 0);

/*

* Use tuxputenv to change the value of TUXCONFIG,
* so we now tpinit to another application.

*/

tuxputenv ("TUXCONFIG=/home/second_app/TUXCONFIG") ;

/~k

* tpinit to secondapp.

*/
if (tpinit ((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit (1) ;

}

/*

* Get a handle to the context of secondapp.

*/

tpgetctxt (&secondapp_contextID, 0);

/*

* Now you can alternate between the two contexts

* using tpsetctxt and the handles you obtained from
* tpgetctxt. You begin with firstapp.

*/

tpsetctxt (firstapp_contextID, 0);

/*

* You call services offered by firstapp and then switch
* to secondapp.

*/

tpsetctxt (secondapp_contextID, 0);
/*
* You call services offered by secondapp.

* Then you switch back to firstapp.
*/

10-30 Programming an Oracle Tuxedo ATMI Application Using COBOL

Writing Code to Enable Multicontexting in an ATMI Client

tpsetctxt (firstapp_contextID, 0);

/*
* You call services offered by firstapp. When you have
* finished, you terminate the context for firstapp.

*/
tpterm() ;

/*
* Then you switch back to secondapp.
*/

tpsetctxt (secondapp_contextID, O0);
/*

* You call services offered by secondapp. When you have
finished, you terminate the context for secondapp and
end your program.

*/

tpterm() ;

return(0) ;

Handling Unsolicited Messages

For each context in which you want to handle unsolicited messages, you must set up an
unsolicited message handler or use the process handler default if you have set one up.

If tpsetunsol (3c) iscalled from athread that is not associated with a context, a per-process
default unsolicited message handler for all new tpinit (3c) contexts created is established. A
specific context may change the unsolicited message handler for that context by calling
tpsetunsol () again when the context is active. The per-process default unsolicited message
handler may be changed by again calling tpsetunsol () inathread not currently associated with
acontext.

Set up the handler in the same way you set one up for asingle-threaded or single-contexted
application. See tpsetunsol (3c) for details.

You can use tpgetctxt (3c) inan unsolicited message handler if you want to identify the
context in which you are currently working.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-31

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Coding Rules for Transactions in a
Multithreaded/Multicontexted ATMI Application

The following consequences of using transactions should be kept in mind while you are writing
your application:

e You can have only one transaction in any one context.
e You can have adifferent transaction for each context.

e All the threads associated with a given context at a given time share the same transaction
state (if any) of that context.

e You must synchronize your threads so al conversations and RPC calls are complete before
you call tpcommit (3c).

e You can call tpcommit (3c¢) from only one thread in any particular transaction.

See Also

e “How Multithreading and Multicontexting Work in a Client” on page 1-10

e “Writing a Multithreaded ATMI Client” on page 1-38

10-32 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html

Writing Code to Enable Multicontexting and Multithreading in an ATMI Server

Writing Code to Enable Multicontexting and
Multithreading in an ATMI Server

This topic includes the following sections:
e Coding Rulesfor a Multicontexted ATMI Server
e |nitializing and Terminating ATMI Servers and Server Threads
e Programming an ATMI Server to Create Threads
e Sample Code for Creating an Application Thread in a Multicontexted ATMI Server

Note: Theinstructions and sample code provided in this section refer to the C library functions
provided by the Oracle Tuxedo system. (See the Oracle Tuxedo C Function Reference
for details.) Equivalent COBOL routinesare not available because multithreading (which
isrequired to create a multicontexted server) is not supported for COBOL applications.

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

o |If an application-created server thread exits without changing context before the original
dispatched thread exits, then tpreturn (3c¢) or tpforward(3c) fails. The execution of a
thread exit does not automatically trigger acall to tpsetctxt (3c¢) to change the context
tO TPNULLCONTEXT.

e For all contextsin a process, the same buffer type switch must be used.

e Aswith any other type of data structure, a multithreaded application must properly make
use of Oracle Tuxedo buffers, that is, buffers should not be used concurrently in two calls
when one of the following may be true:

— Both calls may use the buffer.
— Both calls may free the buffer.

— One call may use the buffer and one call may free the buffer.

Coding Rules for a Multicontexted ATMI Server

Keep in mind the following rules for coding multicontexted servers.

e The Oracle Tuxedo dispatcher on the server may dispatch the same service and/or different
services multiple times, creating a different dispatch context for each service dispatched.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-33

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

e A server isprohibited from calling tpinit (3c) or otherwise acting asaclient. If a server
processcals tpinit (), tpinit () returns -1 and sets tperrno (5) t0 TPEPROTO. AN
application-created server thread may not make ATMI calls before caling
tpsetctxt (3c).

e Only aserver-dispatched thread may call tpreturn (3c) Of tpforward(3c).

e A server cannot execute a tpreturn (3c) Of tpforward (3c) if any application-created
thread is still associated with any application context. Therefore, before a server-dispatched
thread calls tpreturn (), each application-created thread associated with that context must
cal tpsetctxt (3¢) with the context set to either TPNULLCONTEXT Or another valid
context.

If thisruleisviolated, then tpreturn (3c) oOr tpforward (3c) Writes amessage to the
user log, indicates TPESVCERR to the caller, and returns control to the main server dispatch
loop. The threads that had been in the context where the invalid tpreturn () wasdone are
placed in an invalid context.

o |f there are outstanding ATMI calls, RPC calls, or conversations when tpreturn (3c) or
tpforward (3c) iscaled, tpreturn () Of tpforward () Writesamessage to the user log,
indicates TPESVCERR to the caller, and returns control to the main server dispatch loop.

e A server-dispatched thread may not call tpsetctxt (3c).

e Unlike single-contexted servers, it is permissible for a multicontexted server thread to call
aservice that is offered only by that same server process.

Initializing and Terminating ATMI Servers and Server
Threads

To initialize and terminate your servers and server threads, you can use the default functions
provided by the Oracle Tuxedo system or you can use your own.

Table 1-1 Default Functions for Initialization and Termination

To... Use the default function
Initialize aserver tpsvrinit (3c)
Initialize a server thread tpsvrthrinit (3c)

10-34 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Writing Code to Enable Multicontexting and Multithreading in an ATMI Server

Tahle 1-1 Default Functions for Initialization and Termination

To... Use the default function
Terminate a server tpsvrdone (3¢)
Terminate a server thread tpsvrthrdone (3c¢c)

Programming an ATMI Server to Create Threads

Y ou may create additional threads within an application server, although most applications using
multicontexted servers use only the dispatched server threads created by the system. This section
provides instructions for doing so.

Creating Threads

Y ou may create additional threads within an application server by using OS threads functions.
These new threads may operate independently of the Oracle Tuxedo system, or they may operate
in the same context as one of the server-dispatched threads.

Associating Threads with a Context

Initially, application-created server threads are not associated with any server-dispatched context.
If called before being initialized, however, most ATMI functions perform an implicit

tpinit (3c). Such callsintroduce problems because servers are prohibited from calling
tpinit (). (If aserver processcalls tpinit (), tpinit () returns-1 and sets tperrno (5) toO
TPEPROTO.)

Therefore, an application-created server thread must associate itself with an existing context
before calling any ATMI functions. To associate an application-created server thread with an
existing context, you must write code that implements the following procedure.

1. Server-dispatched-thread A gets ahandleto the current context by calling tpgetctxt (3c).

2. Server-dispatched-thread A passesthe handle returned by tpgetctxt (3c) to
Application_thread_B.

3. Application_thread B associatesitself with the current context by calling tpsetctxt (3c),
specifying the handle received from Server-dispatched-thread A.

4. Application-created server threads cannot call tpreturn (3c) Or tpforward (3c). Before
the originally dispatched thread calls tpreturn () Or tpforward (), al application-created

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-35

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

server threads that have been in that context must switch to TeNULLCONTEXT or another valid
context.

If thisruleis not observed, then tpforward (3c) Of tpreturn (3c¢) failsand indicates a
service error to the caller.

Sample Code for Creating an Application Thread in a
Multicontexted ATMI Server

For those applications with a need to create an application thread in a server, the following code
sampl e shows a multicontexted server in which a service creates another thread to help perform
itswork. Operating system (OS) threads functions differ from one OS to another. In this sample
POSIX and ATMI functions are used.

Notes: In order to simplify the sample, error checking codeis not included. Also, an example of
amulticontexted server using only threads dispatched by the Oracle Tuxedo systemisnot
included because such a server is coded in exactly the same way as a single-contexted
server, aslong as thread-safe programming practices are used.

Listing 1-3 Code Sample for Creating a Thread in a Multicontexted Server

#include <pthread.h>
#include <atmi.h>

void *withdrawalthread (void *);

struct sdata {
TPCONTEXT_T ctxt;
TPSVCINFO *svcinfoptr;
Y

void

TRANSFER (TPSVCINFO *svcinfo)

{
struct sdata transferdata;
pthread_t withdrawalthreadid;

tpgetctxt (&transferdata.ctxt, 0);

transferdata.svcinfoptr = svcinfo;

pthread_create (&withdrawalthreadid, NULL, withdrawalthread, &transferdata) ;
tpcall ("DEPOSIT", ...);

pthread_join (withdrawalthreadid, NULL) ;

tpreturn (TPSUCCESS, ...);

10-36 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html

Writing Code to Enable Multicontexting and Multithreading in an ATMI Server

void *

withdrawalthread (void *arg)

{
tpsetctxt (arg->ctxt, 0);
tpopen () ;
tpcall ("WITHDRAWAL", ...);
tpclose() ;
return (NULL) ;

The previous example accomplishes a funds transfer by invoking the pepostT servicein the
originally dispatched thread, and wiTHDRAWAL in an application-created thread. This exampleis
based on the assumption that the resource manager being used allows a mixed model such that
multiple threads of a server can be associated with a particular database connection without all
threads of the server being associated with that instance. Most resource managers, however, do
not support such amodel.

A simpler way to code thisexampleisto avoid the use of an application-created thread. To obtain
the same concurrency provided by the two callsto tpcall (3c) inthe example, substitute two
callsto tpacall (3c) andtwo calsto tpgetrply (3c) inthe server-dispatched thread.

See Also

e “How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-37

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Writing a Multithreaded ATMI Client

This topic includes the following sections:

Coding Rules for a Multithreaded ATMI Client

Initializing an ATMI Client to Multiple Contexts

Getting Replies in a Multithreaded Environment

Using Environment Variablesin a Multithreaded and/or Multicontexted Environment
Using Per-context Functions and Data Structures in a Multithreaded ATMI Client
Using Per-process Functions and Data Structures in a Multithreaded ATMI Client
Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client
Sample Code for a Multithreaded ATMI Client

Note: The Oracle Tuxedo system does not support multithreaded COBOL applications.

Coding Rules for a Multithreaded ATMI Client

Keep in mind the following rules for coding multithreaded clients:

10-38

Once a conversation has been started, any thread in the same process can work on that
conversation. Handles and call descriptors are portable within the same context in the same
process, but not between contexts or processes. Handles and call descriptors can be used
only in the application context in which they are originally assigned.

Any thread operating in the same context within the same process can invoke
tpgetrply (3c) toreceive aresponseto an earlier call to tpacall (3c), regardiess of
whether or not that thread originally called tpaca11 ().

A transaction can be committed or aborted by only one thread, which may or may not be
the same thread that started it.

All RPC calls and conversations must be completed before an attempt is made to commit
the transaction. If an application calls tpcommit (3¢) while RPC calls or conversations are
outstanding, tpcommit () abortsthe transaction, returns -1, and sets tperrno (5) to
TPEABORT.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Writing a Multithreaded ATMI Client

e Functions such as tpcall(3c), tpacall (3c¢c), tpgetrply (3c), tpconnect (3¢),
tpsend (3c), tprecv(3c), and tpdiscon (3¢) should not be called in transaction mode
unless you are sure that the transaction is not already committing or aborting.

e Two tpbegin (3c) callscannot be made simultaneously for the same context.
e tpbegin (3c) cannot beissued for acontext that is already in transaction mode.

e |f you are using aclient and you want to connect to more than one domain, you must
manually change the value of TuxconF1c or wsNADDR before calling tpinit (3c). You
must synchronize the setting of the environment variable and the tpinit () cal if multiple
threads may be performing such an action. All application associationsin aclient must
obey the following rules:

— All associations must be made to the same release of the Oracle Tuxedo system.

— Either every application association in a particular client must be made as a native
client, or every application association must be made as a Workstation client.

e To join an application, a multithreaded Workstation client must always call tpinit (3c)
with the reMuLTICONTEXTS flag set, even if the client is running in single-context mode.

Initializing an ATMI Client to Multiple Contexts

To have aclient join more than one context, issue acall to the tpinit (3c) function with the
TPMULTICONTEXTS flag set in the f1ags element of the TpINIT data structure.

In any one process, either al callsto tpinit (3c) must include the TeMuLTICONTEXTS flag or
nocall to tpinit () may includethisflag. The only exceptiontothisruleisthat if all of aclient’s
application associations are terminated by successful callsto tpterm(3c), then the processis
restored to a state in which the inclusion of the TeMurTICONTEXTS flag in the next call to
tpinit () isoptional.

Whentpinit (3c) isinvokedwiththerepmurTcoNTEXTS flag set, anew application association
iscreated and is designated the current association. The Oracle Tuxedo domain to which the new
association is made is determined by the value of the TUXCONFIG Of WSENVFILE/WSNADDR
environment variable.

When aclient thread successfully executes tpinit (3¢) without the TemMurTICcONTEXTS flag, all
threadsin the client are placed in the single-context state (TPSINGLECONTEXT).

Onfailure, tpinit (3c) leavesthe calling thread in its original context (that is, in the context
state in which it was operating before the call to tpinit ()).

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-39

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Do not cal tpterm(3c) from agiven context if any of the threads in that context are still
working. Seethetablelabeled “ Multicontext State Transitions’ on page 1-40 for a description of
the context states that result from calling tpterm () under these and other circumstances.

Context State Changes for an ATMI Client Thread

In amulticontext application, callsto various functions result in context state changes for the
calling thread and any other threads that are active in the same context as the calling process.
Figure 1-4 illustrates the context state changes that result from callsto tpinit (3c),
tpsetctxt (3c), and tpterm(3c). (The tpgetctxt (3c) function does not produce any
context state changes.)

Figure 1-4 Multicontext State Transitions

tpinit () without TPMULTICONTEXTS tpinit () with TPMULTICONTEXTS
or or
implicit tpinit () invoked by ATMI function tpsetctxt () to avalid context

tpterm()
or
tpsetctxt ()

tpterm()
or
tpsetctxt ()

tpterm()

(see Note)
tpinit () without
TPMULTICONTEXTS

INVALID
CONTEXT

tpsetctxt ()

Note: When tpterm(3c) iscaled by athread running in the multicontext state
(TeMuLTICONTEXTS), the calling thread is placed in the null context state

10-40 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Writing a Multithreaded ATMI Client

(TenuLLcoNTEXT). All other threads associated with the terminated context are switched
to theinvalid context state (TPINVALIDCONTEXT).

Table 1-2 lists al possible context state changes produced by calling tpinit (3c),
tpsetctxt(3c),andtpterm(3cL

Table 1-2 Context State Changes for a Client Thread

When this functionis Then a thread in this context state resultsin ...

executed . .. - - -

Null Context Single Context Multicontext Invalid Context
tpinit (3c) Single context Single context Error Error
without
TPMULTICONTEXTS
tpinit (3c) with Multicontext Error Multicontext Error
TPMULTICONTEXTS
tpsetctxt (3c) to Null Error Null Null
TPNULLCONTEXT
tpsetctxt (3c) to Error Single context Error Error
context O
tpsetctxt (3c) to Multicontext Error Multicontext Multicontext
context >0
Implicit Single context N/A N/A Error
tpinit (3c)
tpterm(3c) inthis Null Null Null Null
thread
tpterm(3c) ina N/A Null Invalid N/A
different thread of this
context

Getting Replies in a Multithreaded Environment

tpgetrply (3c) receives responses only to requests made viatpacall (3c). Requests made
with tpcall (3c¢) are separate and cannot be retrieved with tpgetrply () regardless of the

multithreading or multicontexting level.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-41

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

tpgetrply (3c) operatesin only one context, which isthe context in which it is called.
Therefore, when you call tpgetrply () with the TeeeTANY flag, only handles generated in the
same context are considered. Similarly, a handle generated in one context may not be used in
another context, but the handle may be used in any thread operating within the same context.

When tpgetrply (3c) iscalled inamultithreaded environment, the following restrictions apply:

o |f athread calls tpgetrply (3c) for aspecific handle while another thread in the same
context is already waiting in tpgetrply () for the same handle, tpgetrply () returns -1
and sets tperrno t0 TPEPROTO.

e If athread calls tpgetrply (3c) for aspecific handle while another thread in the same
context isalready waiting in tpgetrply () with the TegETANY flag, the call returns -1 and
Sets tperrno (5) tO TPEPROTO.

The same behavior occurs if athread calls tpgetrply (3c¢) with the regETANY flag while
another thread in the same context is already waiting in tpgetrply () for aspecific
handle. These restrictions protect a thread that iswaiting on a specific handle from having
its reply taken by athread waiting on any handle.

e At any given time, only onethread in aparticular context can wait in tpgetrply (3c) with
the receETANY flag set. If a second thread in the same context invokes tpgetrply () with
the receTANY flag while asimilar call is outstanding, this second call returns -1 and sets
tperrno (5) t0O TPEPROTO.

Using Environment Variables in a Multithreaded and/or
Multicontexted Environment

When an Oracle Tuxedo application isrun in an environment that is multicontexted and/or
multithreaded, the following considerations apply to the use of environment variables:

e A processinitially inheritsits environment from the operating system environment. On
platforms that support environment variables, such variables make up a per-process entity.
Therefore, applications that depend on per-context environment settings should use the
tuxgetenv (3c) function instead of an OS function.

Note: Theenvironment isinitially empty for those operating systems that do not recognize
an operating system environment.

e Many environment variables are read by the Oracle Tuxedo system only once per process
or once per context and then cached within the Oracle Tuxedo system. Changes to such
variables once cached in the process have no effect.

10-42 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html

Writing a Multithreaded ATMI Client

Caching is doneona...

For environment variables such as. ..

Per-context basis

TUXCONFIG

FIELDTBLS and FIELDTBLS32

FLDTBLDIR and FLDTBLDIR32

ULOGPFX

VIEWDIR and VIEWDIR32

VIEWFILES and VIEWFILES32

WSNADDR

WSDEVICE

WSENV

Per-process basis

TMTRACE

TUXDIR

ULOGDEBUG

e The tuxputenv (3c) function affects the environment for the entire process.

e When you call the tuxreadenv (3c) function, it reads afile containing environment
variables and adds them to the environment for the entire process.

e The tuxgetenv (3c) function returns the current value of the requested environment

variable in the current context. Initially, al contexts have the same environment, but the
use of environment files specific to a particular context can cause different contexts to have
different environment settings.

e If aclient intendsto initialize to more than one domain, the client must change the value of
the TUXCONFIG, WSNADDR, OF WSENVFILE environment variable to the proper value before

each call to tpinit (3c). If such an application is multithreaded, a mutex or other
application-defined concurrency control will probably be needed to ensure that:

— The appropriate environment variable is reset.

— Thecall to tpinit (3c) ismade without the environment variable being reset by any

other thread.

Programming an Oracle Tuxedo ATMI Application Using COBOL

10-43

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

e When aclient initializes to the system, the wsenvrILE and/or machine environment fileis
read and affects the environment in that context only. The previous environment for the
process as awhole remains for that context to the extent that it is not overridden within the
environment file(s).

Using Per-context Functions and Data Structures in a
Multithreaded ATMI Client

The following ATMI functions affect only the application contextsin which they are called:
® tpabort (3c)
® tpacall (3c)
® tpadmcall (3c)
® tpbegin(3c)
® tpbroadcast (3c)
® tpcall (3c)
® tpcancel (3c)
® tpchkauth(3c)
e tpchkunsol (3c¢)
® tpclose(3c)
® tpcommit (3c¢)
® tpconnect (3c)
® tpdequeue (3c)
® tpdiscon(3c)
® tpenqgueue (3c)
® tpforward(3c)
® tpgetlev(3c)
® tpgetrply(3c)
® tpinit(3c)
® tpnotify(3c)
® tpopen(3c)

® tppost (3c)

10-44 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Writing a Multithreaded ATMI Client

tprecv(3c)

tpresume (3¢)

tpreturn (3c)

tpscmt (3¢)

tpsend(3c)

tpservice(3c)

tpsetunsol (3c¢)

tpsubscribe (3¢)

tpsuspend (3c)

tpterm(3c)

tpsubscribe (3¢)

tx_begin(3c)

tx_close(3c)

tx_commit (3c¢)

tx_info(3c)

tx_open(3c)

tx_rollback (3c)
tx_set_commit_return(3c)
tx_set_ transaction_control (3c)
tX_set_transaction_timeout (3c)

userlog(3c)

Note: For tpbroadcast (3c), the broadcast message is identified as having come from a

particular application association. For tpnotify (3c), the notification isidentified as
having come from aparticular application association. See* Using Per-process Functions
and Data Structuresin a Multithreaded Client” for notes about tpinit (3c).

If tpsetunsol (3c) iscalled from athread that is not associated with a context, a
per-process default unsolicited message handler for al new tpinit (3c) contexts
created isestablished. A specific context may change the unsolicited message handler for
that context by calling tpsetunsol () again when the context isactive. The per-process
default unsolicited message handler may be changed by again calling tpsetunsol () in
athread not currently associated with a context.

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-45

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-46

The cLIENTID, client name, username, transaction 1D, and the contents of the TpsvcINFO
data structure may differ from context to context within the same process.

Asynchronous call handles and connection descriptors are valid in the contexts in which
they are created. The unsolicited notification type is specific per-context. Although
signal-based notification may not be used with multiple contexts, each context may choose
one of three options:

— Ignoring unsolicited messages
— Using dip-in notification

— Using dedicated thread notification

Using Per-process Functions and Data Structures in a
Multithreaded ATMI Client

The following Oracle Tuxedo functions affect the entire process in which they are called:

tpadvertise (3c)

tpalloc(3c)

tpconvert (3c)—therequested structure is converted, although it is probably relevant to only a
subset of the process.

tpfree(3c)

tpinit (3c¢c)—tothe extent that the per-process TPMULTICONTEXTS mode or single-context mode
is established. See also “Using Per-context Functions and Data Structures in a Multithreaded ATMI
Client” on page 1-44.

tprealloc (3c)

tpsvrdone (3¢)

tpsvrinit (3c)

tptypes (3c)

tpunadvertise (3c)

tuxgetenv (3c)—if the OS environment is per-process.
tuxputenv (3c¢)—if the OS environment is per-process.
tuxreadenv (3c)—if the OS environment is per-process.

Usignal (3c¢)

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Writing a Multithreaded ATMI Client

The determination of single-context mode, multicontext mode, or uninitialized mode affects an
entire process. The buffer type switch, the view cache, and environment variable values are al'so
per-process functions.

Using Per-thread Functions and Data Structures in a
Multithreaded ATMI Client

Only the calling thread is affected by the following:
® CATCH

® tperrordetail (3c)

® tpgetctxt (3c)

® tpgprio(3c)

® tpsetctxt(3c)

® tpsprio(3c)

® tpstrerror (3c)

® tpstrerrordetail (3c)

® TRY (3c)

® Uunix_err (3c)

TheFerror, Ferror32(5), tperrno (5), tpurcode(5), and Uunix_err variablesarespecific
to each thread.

Theidentity of the current context is specific to each thread.

Sample Code for a Multithreaded ATMI Client

The following example shows a multithreaded client using ATMI calls. Threads functions differ
from one operating system to another. In this example, POSIX functions are used.

Note: Inorder to simplify this example, error checking code has not been included.

Listing 1-4 Sample Code for a Multithreaded Client

#include <stdio.h>
#include <pthread.h>
#include <atmi.h>

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-47

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

TPINIT
int

pthread_t
TPCONTEXT_ T ctxt;

void * stackthread(void *);
void * withdrawalthread(void *);

main ()

{

void *

10-48

* tpinitbuf;
timeout=60;
withdrawalthreadid, stockthreadid;

tpinitbuf = tpalloc (TPINIT, NULL, TPINITNEED (0));

/*
*
*
*
*

*

This code will perform a transfer, using separate threads for the
withdrawal and deposit. It will also get the current

price of BEA stock from a separate application,
many shares the transferred amount can buy.
/

tpinitbuf->flags = TPMULTICONTEXTS;

/*

Fill in the rest of tpinitbuf. */

tpinit (tpinitbuf) ;

tpgetctxt (&ctxt, 0);
tpbegin (timeout, O0);
pthread_create (&withdrawalthreadid, NULL, withdrawalthread, NULL) ;
tpcall ("DEPOSIT", ...);

/* Wait for the withdrawal thread to complete. */
pthread_join (withdrawalthreadid, NULL) ;

tpcommit (0) ;
tpterm() ;

/* Wait for the stock thread to complete. */
pthread_join(stockthreadid, NULL) ;

/* Print the results. */
printf ("$%9.2f has been transferred \
from your savings account to your checking account.\n", ...);

printf ("At the current BEA stock price of $%8.3f,
you could purchase %d shares.\n", ...);

exit (0);

Programming an Oracle Tuxedo ATMI Application Using COBOL

and calculate how

Writing a Multithreaded ATMI Client

stockthread(void *arg)

{

/* The other threads have now called tpinit(), so resetting TUXCONFIG can
* no longer adversely affect them.
*/

tuxputenv ("TUXCONFIG=/home/users/xyz/stockconf") ;

tpinitbuf->flags = TPMULTICONTEXTS;

/* Fill in the rest of tpinitbuf. */

tpinit (tpinitbuf) ;

tpcall ("GETSTOCKPRICE", ...);

/* Save the stock price in a variable that can also be accessed in main(). */
tpterm() ;

return (NULL) ;

void *

withdrawalthread(void *arg)

{
/* Create a separate thread to get stock prices from a different
* application.
*/

pthread_create (&stockthreadid, NULL, stockthread, NULL) ;
tpsetctxt (ctxt, 0);

tpcall ("WITHDRAWAL", ...);

return (NULL) ;

See Also

e “How Multithreading and Multicontexting Work in a Client” on page 1-10

e “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 1-23

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-49

Writing a Multithreaded ATMI Server

Multithreaded servers are almost always multicontexted, as well. For information about writing
amultithreaded server, see “Writing Code to Enable Multicontexting and Multithreading in an
ATMI Server” on page 1-33.

Compiling Code for a Multithreaded/Multicontexted ATMI
Application

The programs provided by the Oracle Tuxedo system for compiling or building executables, such
aSbuildserver (1) andbuildclient (1), automaticaly include any required compiler flags.
If you use these toals, then you do not need to set any flags at compile time.

If, however, you compile your . c filesinto . o files before doing afinal compilation, you may
need to set platform-specific compiler flags. Such flags must be set consistently for al code
linked into a single process.

If you are creating amultithreaded server, you must runthebuildserver (1) command with the
-t option. This option is mandatory for multithreaded servers; if you do not specify it at build
time and later try to boot the new server with a configuration file in which the value of
MAXDISPATCHTHREADS IS greater than 1, awarning message is recorded in the user log and the
server reverts to single-threaded operation.

To identify any operating system-specific compiler parameters that are required when you
compile . c filesinto . o filesin amultithreaded environment, run buildclient (1) Or
buildserver (1) with the -v option set on atest file.

See Also

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 1-26

e “Writing Code to Enable Multicontexting and Multithreading in an ATMI Server” on
page 1-33

e “Writing a Multithreaded ATMI Client” on page 1-38

Testing a Multithreaded/Multicontexted ATMI Application

This topic includes the following sections:

e Testing Recommendations for a Multithreaded/Multicontexted ATMI Application

10-50 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Testing a Multithreaded/Multicontexted ATMI Application

e Troubleshooting a M ultithreaded/M ulticontexted ATMI Application
e Error Handling for a Multithreaded/Multicontexted ATMI Application

Testing Recommendations for a
Multithreaded/Multicontexted ATMI Application

We recommend following these recommendations during testing of your multithreaded and/or
multicontexted code:

e Use amultiprocessor.
e Use amultithreaded debugger (if your operating system vendor offers one).

e Run stress tests to introduce a variety of timing conditions.

Troubleshooting a Multithreaded/Multicontexted ATMI
Application

When you need to investigate possible causes of errors, we recommend that you start by checking
whether and how the reMurTIcONTEXTS flag has been set. Errors are frequently introduced by
failuresto set thisflag or to set it properly.

Improper Use of the TPMULTICONTEXTS Flag to tpinit()

If aprocess includes the TevuL.TICcONTEXTS flag in a state for which thisflag is not allowed (or
Omits TPMULTICONTEXTS in a state that requiresit), then tpinit (3c) returns -1 and sets
tperrno t0 TPEPROTO.

Calls to tpinit() Without TPMULTICONTEXTS

When tpinit (3c) isinvoked without TPMULTICONTEXTS, it behaves asit doeswhen called in
asingle-contexted application. When tpinit () hasbeen invoked once, subsequent tpinit ()

calls without the TevuLTICONTEXTS flag succeed without further action. Thisistrue even if the
value of the TuxCcoNFIG Or wSNADDR environment variable in the application has been changed.
Calling tpinit () without the TpvurTICONTEXTS flag set isnot alowed in multicontext mode.

If aclient has not joined an application and tpinit (3c) iscalled implicitly (asaresult of acall
to another function that calls tpinit ()), then the Oracle Tuxedo system interprets the action as
acall to tpinit () without the TemuLTTICONTEXTS flag for purposes of determining which flags
may be used in subsequent callsto tpinit ().

Programming an Oracle Tuxedo ATMI Application Using COBOL 10-51

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-52

For most ATMI functions, if afunctionisinvoked by athread that is not associated with a context
in a process aready operating in multicontext mode, the ATMI function fails with
tperrno (5) =TPEPROTO.

Insufficient Thread Stack Size

On certain operating systems, the operating system default thread stack sizeisinsufficient for use
with the Oracle Tuxedo system. Compag Tru64 UNIX and UnixWare are two operating systems
for which thisis known to be the case. If the default thread stack size parameter is used,
applications on these platforms dump core when a function with substantial stack usage
requirementsis called by any thread other than the main thread. Often the corefilethat is created
does not give any obvious clues to the fact that an insufficient stack sizeis the cause of the
problem.

When the Oracle Tuxedo system is creating threads on its own, such as server-dispatched threads
or aclient unsolicited message thread, it can adjust the default stack size parameter on these
platforms to a sufficient value. However, when an application is creating threads on its own, the
application must specify a sufficient stack size. At a minimum, avalue of 128K should be used
for any thread that will access the Oracle Tuxedo system.

On Compaqg Tru64 UNIX and other systems on which POSI X threadsare used, athread stack size
isspecified by invokingpthread_attr_setstacksize () beforecalingpthread_create ().
On UnixWare, the thread stack sizeis specified asan argument to thr_create (). Consult your
operating system documentation for further information on this subject.

Error Handling for a Multithreaded/Multicontexted ATMI
Application

Errorsarereportedin the user log. For each error, whether in single-context mode or multicontext
mode, the following information is recorded:

process_ID.thread ID.context_ID

See Also
e “How Multithreading and Multicontexting Work in a Client” on page 1-10
e “How Multithreading and Multicontexting Work in an ATMI Server” on page 1-15

e “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 1-23

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf5/rf5.html

Managing Errors

Thistopic includes the following sections:

e System Errors

Application Errors

Handling Errors

e Transaction Considerations

Central Event Log

System Errors

The Oracle Tuxedo system Uses TP-STATUS IN TPSTATUS-REC to supply information to a
process when aroutine fails. All ATMI calls set Tp-sTaTus to avalue that describes the nature
of the error. When a call does not return to its caller, as in the case of TPRETURN OF TPFORWAR,
which are used to terminate a service routine, the only way the system can communicate success
or failure isthrough Tp-status in the requester.

APPL-RETURN-CODE iS used to communicate user-defined conditions only. The system sets the
value of APPL-RETURN-CODE t0 the value of APPL.-CODE IN TPSVCRET-REC during TPRETURN.
The system sets APPL-RETURN-CODE, regardless of the value of APPL-RETURN-CODE IN
TPSTATUS-REC during TPRETURN, unless an error is encountered by TPRETURN Or atransaction
timeout occurs.

The codes returned in TP-sTaTUS represent categories of errors, which arelisted in Table 11-1.

Programming an Oracle Tuxedo ATMI Application Using COBOL 111

Table 11-1 TP-STATUS Error Categories

Error Category

TP-STATUS Values

Abort

TPEABORTZ

Oracle Tuxedo system®

TPESYSTEM

Communication handle

TPELIMIT and TPEBADDESC

Conversational

TPEVENT

Duplicate operation

TPEMATCH

General communication

TPESVCFAIL, TPESVCERR,
TPEBLOCK, and TPGOTSIG

Heuristic decision

TPEHAZARD? and TPEHEURTISTIC?

Invalid argument® TPEINVAL

MIB TPEMIB

No entry TPENOENT
Operating system* TPEOS
Permission TPEPERM
Protocol® TPEPROTO
Queueing TPEDIAGNOSTIC
Release compatibility TPERELEASE
Resource manager TPERMERR
Timeout TPETIME
Transaction TPETRANZ

Typed record mismatch TPEITYPE and TPEOTYPE

1. Applicable to all ATMI calls for which failure is reported by the

value returned in TP-STATUS.

Programming an Oracle Tuxedo ATMI Application Using COBOL

Abort Errors

2. Refer to “Fatal Transaction Errors’ on page11-14 for more
information on this error category.

Asfootnote 1 shows, four categories of errors are reported by Tp-sTaTus and are applicable to
all ATMI calls. The remaining categories are used only for specific ATMI calls.The following
sections describe some error categoriesin detail.

Abort Errors

For information on the errorsthat lead to abort, refer to “ Fatal Transaction Errors’ on page 11-14.

Oracle Tuxedo System Errors

Oracle Tuxedo system errorsindicate problems at the system level, rather than at the application
level. When Oracle Tuxedo system errors occur, the system writes messages explaining the exact
nature of the errorsto the central event log, and returns TPESYSTEM in TP-STATUS. FOr more
information, refer to the “ Central Event Log” on page 11-21. Because these errors occur in the
system, rather than in the application, you may need to consult the system administrator to correct
them.

Communication Handle Errors

Communication handle errors occur as aresult of exceeding the maximum limit of
communication handles or referencing an invalid value. Asynchronous and conversational cals
return TPELIMIT When the maximum number of outstanding communication handles has been
exceeded. TPEBADDESC iS returned when an invalid communication handle valueis specified for
an operation.

Communication handle errors occur only during asynchronous calls or conversational calls. (Call
descriptors are not used for synchronous calls.) Asynchronous calls depend on communication
handles to associate replies with the corresponding requests. Conversational send and receive
routines depend on communication handles to identify the connection; the call that initiates the
connection depends on the availability of a communication handle.

Communication handle errors can be done by checking for specific errors at the application level.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-3

Limit Errors

The system allows up to 50 outstanding communication handles (replies) per context (or Oracle
Tuxedo application association). Thislimit is enforced by the system; it cannot be redefined by
your application.

The limit for communication handles for simultaneous conversational connections is more
flexible than the limit for replies. The application administrator defines the limit in the
configuration file. When the application is not running, the administrator can modify the
MAXCONV parameter in the REsourcEs section of the configuration file. When the applicationis
running, the administrator can modify the MacuINES section dynamically. Refer to tmconfig,
wtmconfig (1) inthe Oracle Tuxedo Command Reference for more information.

Invalid Descriptor Errors

A communication handle can becomeinvalid and, if referenced, cause an error to be returned to
TP-STATUS in either of two situations:

e A communication handle is used to retrieve a message, which may be a failed message
(TPEBADDESC).

e An attempt is made to reuse a stale communication handle (TPEBADDESC).
A communication handle might become stale, for example, in the following circumstances:

e When the application calls TpaBoRT or TPcoMMIT and transaction replies (sent without
TPNOTRAN) remain to be retrieved.

e A transaction times out. When the timeout is reported by a call to TpcETRPLY, N0 message
isretrieved using the specified handle and the handle becomes stale.

Conversational Errors

11-4

When an unknown handle is specified for conversational services, the TpseND, TPRECY, and
TPDISCON routines return TPEBADDESC.

When TpseND and TpreCV fail with a TPEEVENT error after a conversational connection is
established, an event has occurred. Data may or may not be sent by TpseND, depending on the
event. The system returns TPEEVENT in the TPEVENT member of TpsTaTus-rEC and the course
of action is dictated by the particular event.

For a complete description of conversational events, refer to “ Understanding Conversational
Communication Events’ in Programming Oracle Tuxedo ATMI Applications Using C.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../pgc/pgconv.html
../pgc/pgconv.html

Duplicate Object Error

Duplicate Object Error

The TpEMATCH error code isreturned in Tp-sTaTUS when an attempt is made to perform an
operation that resultsin a duplicate object. The following table lists the routines that may return
the TpEMATCH error code and the associated cause.

Routine Cause

TPADVERTISE The svcname specified is aready advertised for the server but
with afunction other than func. Although the function fails,
svcname remains advertised with its current function (that is,
func does not replace the current function name).

TPRESUME The tranid pointsto atransaction identifier that another
process has already resumed. In this case, the caller’ s state with
respect to the transaction is not changed.

TPSUBSCRIBE The specified subscription information has already been listed
with the EventBroker.

For more information on these routines, refer to the Oracle Tuxedo ATMI COBOL Function
Reference.

General Communication Call Errors

General communication call errors can occur during any communication calls, regardless of
whether those calls are synchronous or asynchronous. Any of the following errors may be
returned in TP-STATUS: TPESVCFAIL, TPESVCERR, TPEBLOCK, O TPGOTSIG.

TPESVCFAIL and TPESVCERR Errors

If the reply portion of a communication fails asaresult of acall to TPcALL Or TPGETRPLY, the
system returns TPESVCERR OF TPSEVCFAIL t0 TP-STATUS. The system determines the error by
the arguments that are passed to TPRETURN and the processing that is performed by this call.

If TPRETURN encountersan error in processing or handling arguments, the system returns an error
totheoriginal requester and setsTe-sTaTUS t0 TPESVCERR. Thereceiver determinesthat an error
has occurred by checking the value of Tp-sTaTus. The system does not send the data from the
TPRETURN call, and if the failure occurred on TPGETRPLY, it renders the call handle invalid.

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-5

If TPRETURN does not encounter the TPESVCERR error, thenthevauereturned in TP-RETURN-VAL
determines the success or failure of the call. If the application specifies Tpra1L in the
TP-RETURN-VAL, the system returns TPESVCFAIL in TP-sTATUS and sends the data message to
the caler. If TP-RETURN-VAL iS Set to TPSUCCESS, the system returns successfully to the caller,
TP-STATUS IS not set, and the caller receives the data

TPEBLOCK and TPGOTSIG Errors

The TPEBLOCK and TPGOTSIG error codes may be returned at the request or the reply end of a
message and, as aresult, can be returned for all communication calls.

The system returns TpEBLOCK When ablocking condition exists and the process sending arequest
(synchronously or asynchronously) indicates, by setting TeeNoBLOCK that it does not want to wait
on ablocking condition. A blocking condition can exist when arequest is being sent if, for
example, al the system queues are full.

When trpcaLL indicates ano blocking condition, only the sending part of the communication is
affected. If acall successfully sends aregquest, the system does not return TPEBLOCK, regardless
of any blocking situation that may exist while the call waits for the reply.

The system returns TpEBLOCK for TPGETRPLY When acall is made TenoBLOCK and a blocking
condition isencountered while TeGETRPLY isawaiting the reply. This may occur, for example, if
amessage is not currently available.

The TpcoTs1c error indicates an interruption of a system call by asignal; this situation is not
actually an error condition. If TPSIGRSTRT is Set, the calls do not fail and the system does not
return the TpPGoTSIG error codein TP-STATUS.

Invalid Argument Errors

11-6

Invalid argument errorsindicate that aninvalid argument was passed to aroutine. Any ATMI call
that takes arguments can fail if you pass it arguments that are invalid. In the case of acall that
returns to the caller, the call fails and causes Tp-sTATUS to be set to TPEINVAL. INn the case of
TPRETURN Of TPFORWAR, the system sets Tp-sTATUS to TPESVCERR for either the TecaLL or
TPGETRPLY call that initiated the request and is waiting for results to be returned.

Y ou can correct an invalid argument error at the application level by ensuring that you pass only
valid arguments to routines.

Programming an Oracle Tuxedo ATMI Application Using COBOL

No Entry Errors

No Entry Errors

No entry errorsresult from alack of entriesin the system tables or the data structure used to
identify record types. The meaning of the no entry type error, TpENCENT, depends on the call that
isreturningit. Table 11-2 liststhe callsthat return thiserror and describes various causes of error.

Table 11-2 No Entry Errors

Call Cause

TPINITIALIZE The calling process cannot join the application because thereis no
space |eft in the bulletin board to make an entry for it. Check with
the system administrator.

TPCALL Thecalling processreferencesaservicecalled SERVICE-NAME IN

TPACALL TPSVCDEF-REC that is not known to the system since there is no
entry for itin the bulletin board. On an application level, ensure that
you have referenced the service correctly; otherwise, check with the
system administrator.

TPCONNECT The system cannot connect to the specified name becausethe service
named does not exist or it isnot a conversational service.

TPGPRIO The calling process seeks arequest priority when no request has
been made. Thisis an application-level error.

TPUNADVERTISE The system cannot unadvertise SERVICE-NAME IN
TPSVCDEF-REC because the nameis not currently advertised by
the calling process.

Operating System Errors

Operating system errors indicate that an operating system call has failed. The system returns
TPEOS in TP-sTATUS. On UNIX systems, the system returns a numeric value identifying the
failed system call inthe global variable tunixerr. TO resolve operating system errors, you may
need to consult your system administrator.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-1

Permission Errors

If acalling process does not have the correct permissions to join the application, the
TPINITIALIZE cal fals, returning TPEPERM in TP-STATUS. Permissions are set in the
configuration file, outside of the application. If you encounter this error, check with the
application administrator to make sure the necessary permissions are set in the configuration file.

Protocol Errors

Protocol errors occur when an ATMI call isinvoked, either in the wrong order or using an
incorrect process. For example, a client may try to begin communicating with a server before
joining the application. Or Tecomm1T May be called by atransaction participant instead of the
initiator.

Y ou can correct aprotocol error at the application level by enforcing therules of order and proper
usage of ATMI calls.

To determine the cause of aprotocol error, answer the following questions:
e Isthe call being made in the correct order?
e Isthe call being made by the correct process?

Protocol errorsreturn the TPEPROTO VAlUe in TP-STATUS.

Refer to “Introduction to the COBOL Application-Transaction Monitor Interface” in the Oracle
Tuxedo ATMI COBOL Function Reference for more information.

Queuing Error

The TPENQUEUE (3cbl) OF TPDEQUEUE (3cbl) routine returns TPEDIAGNOSTIC in TP-STATUS if
the enqueuing or dequeuing on a specified queue fails. The reason for failure can be determined
by the diagnostic returned viathe ct1 record. For alist of valid ct1 flags, refer to

TPENQUEUE (3cbl) Of TPDEQUEUE (3cbl) inthe Oracle Tuxedo ATMI COBOL Function
Reference.

Release Compatibility Error

The Oracle Tuxedo system returns TPERELEASE in TP-sTaTUS if a compatibility issue exists
between multiple releases of an Oracle Tuxedo system participating in an application domain.

11-8 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Resource Manager Errors

For example, the TPERELEASE error may be returned if the Tpack flag is set when issuing the
TPNOTIFY (3cbl) routine (indicating that the caller blocks until an acknowledgment messageis
received from the target client), but the target client is using an earlier release of the Oracle
Tuxedo system that does not support the Tpack acknowledgement protocol.

Resource Manager Errors

Resource manager errors can occur with callsto TPoPEN (3cbl) and TPCOSE (3cbl), in which
case the system returns the value of TPERMERR in TP-sTATUS. This error code is returned for
TPOPEN When the resource manager failsto open correctly. Similarly, thiserror codeis returned
for TrcL.OSE when the resource manager failsto close correctly. To maintain portability, the
Oracle Tuxedo system does not return amore detailed explanation of thistype of failure. To
determine the exact nature of a resource manager error, you must interrogate the resource
manager.

Timeout Errors

The Oracle Tuxedo system supports timeout errorsto establish alimit on the amount of time that
the application waitsfor aservice request or transaction. The Oracle Tuxedo system supportstwo
types of configurable timeout mechanisms: blocking and transaction.

A blocking timeout specifies the maximum amount of time that an application waits for areply
to aservicerequest. The application administrator defines the blocking timeout for the systemin
the configuration file.

A transaction timeout defines the duration of a transaction, which may involve several service
requests. To define the transaction timeout for an application, pass the T-ouT argument to
TPBEGIN.

The system may return timeout errors on communication calls for either blocking or transaction
timeouts, and on Tecomm1T for transaction timeouts only. In each case, if aprocessisin
transaction mode and the system returns TeETIME on afailed call, atransaction timeout has
occurred.

By default, if aprocessis not in transaction mode, the system performs blocking timeouts.

If aprocessisnot in transaction mode and ablocking timeout occurs on an asynchronouscall, the
communication call that blocked fails, but the call descriptor is still valid and may be used on a
reissued call. Other communication is not affected.

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-9

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

When atransaction timeout occurs, the communication handle to an asynchronous transaction
reply (specified without TPNOTRAN) becomes stale and may no longer be referenced.

TPETIME indicates a blocking timeout on a communication call if the call was not made in
transaction mode or if TPNOBLOCK Was Not Set.

Note: If you set TpNOBLOCK, a blocking timeout cannot occur because the call returns
immediately if ablocking condition exists.

For additional information on handling timeout errors, refer to “ Transaction Considerations’ on
page 11-12.

Transaction Errors

For information on transactions and the non-fatal and fatal errors that can occur, refer to
“Transaction Considerations’ on page 11-12.

Typed Record Errors

11-10

Typed record errors are returned when requests or replies to processes are sent in records of an
unknown type. The recart and TPacaLL cals return TPEITYPE When arequest datarecord is
sent to a service that does not recognize the type of the record.

Processes recogni ze record types that are identified in both the configuration file and the Oracle
Tuxedo system librariesthat arelinked into the process. Theselibrariesdefineandinitializeadata
structure that identifies the typed records that the process recognizes. Y ou can tailor the library
to each process, or an application can supply its own copy of afile that defines the record types.
An application can set up the record type data structure (referred to as arecord type switch) on a
process-specific basis. For more information, see tuxtypes (5)and typesw (5) inthe File
Formats, Data Descriptions, MIBs, and System Processes Reference.

TheTpcarL and TPGETRPLY calsreturn TeEOTYPE When areply messageis sent in arecord that
is not recognized or not allowed by the caller. In the latter case, the record typeisincluded in the
type switch, but the type returned does not match the record that was all ocated to receivethereply
and a change in record typeis not allowed by the caller. The caller indicates this preference by
setting TPNOCHANGE. In this case, strong type checking is enforced; the system returns TpEOTYPE
when it isviolated. By default, weak type checking is used. In this case, arecord type other than
thetype originally allocated may be returned, aslong asthat type is recognized by the caller. The
rules for sending replies are that the reply record must be recognized by the caller and, if strong
type checking has been indicated, you must observeit.

Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf5/rf5.html
../rf5/rf5.html

Application Errors

Application Errors

Within an application, you can pass information about user-defined errors to calling programs
using the rcode argument of TPRETURN. AlS0, the system sets the value of APPL-RETURN-CODE
to the value of APPL-CODE IN TPSVCRET-REC during TPRETURN. For more information about
TPRETURN (3cbl), refer to the Oracle Tuxedo ATMI COBOL Function Reference.

Handling Errors

Y our application logic should test for error conditions for the calls that have return values, and
take appropriate action when an error occurs.

Thefollowing example showsatypical method of handling errors. Theterm aTmMzcarL(3) isused
in this example to represent ageneric ATMI call.

Listing 11-1 Handling Errors

CALL "TPINITIALIZE" USING TPINFDEF-REC
USR-DATA-REC
TPSTATUS-REC.
IF NOT TPOK
error message, EXIT PROGRAM
CALL "TPBEGIN" USING TPTRXDEF-REC
TPSTATUS-REC.
IF NOT TPOK
error message, EXIT PROGRAM

Make atmi calls

Check return values

IF TPEINVAL
DISPLAY "Invalid arguments were given."
IF TPEPROTO

DISPLAY "A call was made in an improper context."

Include all error cases described in the ATMICALL(3)

reference page. Other return codes are not possible,

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-1

../rf3cbl/rf3cbl.html

so there is no need to test them.

continue

Thevauesof Tp-sTaTus provide details about the nature of each problem and suggest the level
at which it can be corrected. If your application defines alist of error conditions specific to your
processing, the same can be said for the values of APPL.-RETURN-CODE IN TPSTATUS-REC.

Transaction Considerations

The following sections describe how various programming features work when used in
transaction mode. The first section provides rules of basic communication etiquette that should
be observed in code written for transaction mode.

Communication Etiquette

When writing code to be run in transaction mode, you must observe the following rules of basic
communication etiquette:

e Processes that are participants in the same transaction must require replies for all requests.
To include arequest that requires no reply, set TPACALL tO TPNOTRAN OF TPNOREPLY.

e A service must retrieve all asynchronous transaction replies before calling TPRETURN Or
TPFORWAR. This rule must be observed regardless of whether the code isrunningin
transaction mode.

e Theinitiator must retrieve all asynchronous transaction replies (made without TPNOTRAN)
before calling TpcoMMIT.

e Replies must be retrieved for asynchronous calls that expect replies from non-participants
of the transaction, that is, replies to requests made with Tpacarr in which the transaction,
but not the reply, is suppressed.

e |If atransaction has not timed out but is marked “abort-only,” any further communication
should be performed with TpnoTRAN Set S0 that the results of the communication are
preserved after the transaction isrolled back.

e |If atransaction has timed out:

11-12 Programming an Oracle Tuxedo ATMI Application Using COBOL

Transaction Errors

— The handle for the timed-out call becomes stale and any further reference to it returns
TPEBADDESC.

— Further callsto TeeETRPLY OF TPRECV fOr any outstanding handles return a global state
of transaction timeout; the system sets Tp-STATUS {0 TPETIME.

— Asynchronous calls can be made with TpPACALL Set t0 TPNOREPLY, TPNOBLOCK, OF
TPNOTRAN.

e Once atransaction has been marked “abort-only” for reasons other than timeout, a call to
TPGETRPLY returns whatever value represents the local state of the call; that is, it returns
either success or an error code that reflects the local condition.

e Once ahandleis used with TPGETRPLY tO retrieve areply, or with TPSEND Or TPRECV tO
report an error condition, it becomesinvalid and any further referenceto it returns
TPEBADDESC. Thisruleis aways observed, regardless of whether the code isrunning in
transaction mode.

e Once atransaction is aborted, all outstanding transaction call handles (made without
TPNOTRAN) become stale, and any further references to them return TPEBADDESC.

Transaction Errors

The following sections describe transaction-related errors.

Non-fatal Transaction Errors

When transaction errors occur, the system returns TPETRAN in TP-STATUS. The precise meaning
of such an error, however, depends on the call that isreturning it. Table 11-3 lists the calls that
return transaction errors and describes possible causes of them.

Table 11-3 Transaction Errors

Call Cause

TPBEGIN Usually caused by atransient system error that occur during an
attempt to start the transaction. The problem may clear up with a
repeated call.

TPCANCEL Returns TPETRAN when called from atransaction.

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-13

Tahle 11-3 Transaction Errors

Call Cause

TPRESUME The Oracle Tuxedo system is unable to resume a global transaction
because the caller is currently participating in work outside the
global transaction with one or more resource managers. All such
work must be completed before the global transaction can be
resumed. The caller’s state with respect to the local transaction is
unchanged.

TPCONNECT, A call was made in transaction mode to a service that does not

TPCALL, and support transactions. Some services belong to server groups that

TPACALL access adatabase management system (DBMS) that, inturn, support

transactions. Other services, however, do not belong to such groups.
In addition, some services that support transactions may require
interoperation with software that does not. For example, aservice
that prints aform may work with a printer that does not support
transactions. Services that do not support transactions may not
function as participantsin a transaction.

The grouping of servicesinto servers and server groupsis an
administrative task. In order to determine which services support
transactions, check with your application administrator.

Y ou can correct transaction-level errors at the application level by
enabling the setting TPSVCDEF -REF Or by accessing the servicefor
which an error was returned outside of the transaction.

Fatal Transaction Errors

When afatal transaction error occurs, the application should explicitly abort the transaction by
having theinitiator call TpaBORT. Therefore, it isimportant to understand the errorsthat are fatal
to transactions. Three conditions cause a transaction to fail:

e Theinitiator or a participant in the transaction causes it to be marked “abort-only” for one
of the following reasons:

— TPRETURN encounters an error while processing its arguments; Tp-sTATUS iS Set to

TPESVCERR.

— The TP-RETURN-VAL t0 TPRETURN Was Set t0 TPFAIL; TP-STATUS iS Set to

TPESVCFAIL.

11-14 Programming an Oracle Tuxedo ATMI Application Using COBOL

Transaction Errors

— Thetype of the reply record is not known or not allowed by the caller and, as a result,
success or failure cannot be determined; Tp-sTATUS IS Set tO TPEOTYPE.

e The transaction times out; TP-STATUS iS Set t0 TPETIME.

e TpcoMMIT iS called by a participant rather than by the originator of atransaction;
TP-STATUS iS Set t0 TPEPROTO.

The only protocol error that isfatal to transactionsis calling TecomvzT from the wrong
participant in atransaction. Thiserror can be corrected in the application during the devel opment
phase.

If recommIT is called after an initiator/participant failure or transaction timeout, the result isan
implicit abort error. Then, because the commit failed, the transaction should be aborted.

If the system returns TPESVCERR, TPESVCFAIL, TPEOTYPE, OfF TPETIME for any communication
call, the transaction should be aborted explicitly with acall to TpaBORT. Y ou need not wait for
outstanding communication handles before explicitly aborting the transaction. However, because
these communication handles are considered stale after the call is aborted, any attempt to access
them after the transaction is terminated returns TPEBADDESC.

In the case of TPESVCERR, TPESVCFAIL, and TPEOTYPE, communication calls continue to be
allowed as long as the transaction has not timed out. When these errors are returned, the
transaction is marked abort-only. To preserve the results of any further work, you should call any
communication functions with TPNOTRAN. By setting this flag, you ensure that the work
performed for the transaction marked “abort-only” will not be rolled back when the transaction
is aborted.

When a transaction timeout occurs, communication can continue, but communication requests
cannot:

e Requirereplies
e Block

e Be performed on behalf of the caller’s transaction

Therefore, to make asynchronous calls, you must set TPNOREPLY, TPNOBLOCK, OF TPNOTRAN.

Heuristic Decision Errors

The TpcommIT call may return TPEHAZARD OF TPEHEURISTIC, depending on how
TP-COMMIT-CONTROL iS Set.

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-15

If you set TP-CcoOMMIT-CONTROL tO TP-CMT-LOGGED, the application obtains control before the
second phase of atwo-phase commit is performed. In this case, the application may not be aware
of aheuristic decision that occurs during the second phase.

TPEHAZARD Of TPEHEURISTIC can be returned in a one-phase commit, however, if asingle
resource manager isinvolved in the transaction and it returns a heuristic decision or a hazard
indication during a one-phase commit.

If you set TP_COMMIT _CONTROL tO TP_CMT_COMPLETE, then the system returns TPEHEURISTIC
if any resource manager reports a heuristic decision, and TPEHAZARD if any resource manager
reportsahazard. TrEHAZARD Specifiesthat aparticipant failed during the second phase of commit
(or during a one-phase commit) and that it is not known whether a transaction completed
successfully.

Transaction Timeouts

11-16

Asdescribed in“Transaction Errors’ on page 11-13, two types of timeouts can occur inan Oracle
Tuxedo application: blocking and transaction. The following sections describe how various
programming features are affected by transaction timeouts. Refer to “ Transaction Errors’ on
page 11-13 for more information on timeouts.

TPCOMMIT Call

What is the state of atransaction if atimeout occurs after acall to TecomviT? If the transaction
timed out and the system knows that it was aborted, the system reports these events by setting
TP-STATUS t0 TPEABORT. If the status of the transaction is unknown, the system sets the error
code to TPETIME.

When the state of atransaction isin doubt, you must query the resource manager. First, verify
whether or not any of the changes that were part of the transaction were applied. Then you can
determine whether the transaction was committed or aborted.

TPNOTRAN

When a processis in transaction mode and makes a communication call with TpNOTRAN, it
prohibits the called service from becoming a participant in the current transaction. Whether the
service request succeeds or fails has no impact on the outcome of the transaction. The transaction
can still timeout while waiting for areply that is due from a service, whether it is part of the
transaction or not.

Programming an Oracle Tuxedo ATMI Application Using COBOL

tpterm() Function

For additional information on using TpNoTRAN, refer to “TPRETURN and TPFORWAR Calls’
on page 11-17.

TPRETURN and TPFORWAR Calls

If you call aprocess while running in transaction mode, TPRETURN and TPFORWAR place the
service portion of the transaction in a state that allowsiit to be either committed or aborted when
the transaction completes. Y ou can call aservice severa timeson behalf of the same transaction.
The system does not fully commit or abort the transaction until theinitiator of thetransaction calls
TPCOMMIT Of TPABORT.

Neither TPRETURN nor TpForRwWAR should be called until all outstanding handles for the
communication calls made within the service have been retrieved. If you call TPRETURN With
outstanding handles for which TP-RETURN-VAL iS set to TPSUCCESS, the system encounters a
protocol error and returns TPESVCERR to the process waiting on TPGETRPLY. If the processisin
transaction mode, the system marksthe caller as “abort-only.” Even if the initiator of the
transaction calls Tecomm1T, the system implicitly aborts the transaction. If you call TPRETURN
with outstanding handles for which TP-RETURN-VAL iS Set to TPFATL, the System returns
TPESVCFAIL t0 the process waiting on TecETRPLY. The effect on the transaction is the same.

When you call TprRETURN While running in transaction mode, thisfunction can affect the result of
the transaction by the processing errorsthat it encounters or that are retrieved from the value
placed in TP-RETURN-VAL by the application.

Y ou can use TPFORWAR to indicate that success has been achieved up to a particular point in the
processing of arequest. If no application errors have been detected, the system invokes
TPFORWAR; Otherwise, the system invokes TPRETURN with TpFATL. If you call TPFORWAR
improperly, the system considers the call a processing error and returns a failed message to the
requester.

tpterm() Function

Use the rpTERM call to remove a client context from an application.

If the client context is in transaction mode, the call failswith TpEPrROTO returned in Tp-STATUS,
and the client context remains part of the application and in transaction mode.

When the call is successful, the client context is alowed no further communication or
participation in transactions because the current thread of execution is no longer part of the
application.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-17

Resource Managers

When you use an ATMI call to define transactions, the Oracle Tuxedo system executes an
internal call to passany global transaction information to each resource manager participating in
the transaction. When you call TecoMMIT Or TPABORT, for example, the system makes internal
callsto direct each resource manager to commit or abort the work it did on behalf of the caller’s
global transaction.

When aglobal transaction has been initiated, either explicitly or implicitly, you should not make
explicit calsto the resource manager’ s transaction calls in your application code. Failure to
follow this transaction rule causes indeterminate results. Y ou can use the TeceTLEV call to
determine whether a processis aready in aglobal transaction before calling the resource
manager’ s transaction call.

Some resource managers allow programmers to configure certain parameters (such as the
transaction consistency level) by specifying options available in the interface to the resource
managers themselves. Such options are made available in two forms:

e Resource manager-specific function calls that can be used by programmers of distributed
applications to configure options.

e Hard-coded options incorporated in the transaction interface supplied by the provider of the
resource manager.

Consult the documentation for your resource managers for additional information.

The method of setting options varies for each resource manager. In the Oracle Tuxedo System
SQL resource manager, for example, the set transaction statement is used to negotiate
specific options (consistency level and access mode) for a transaction that has aready been
started by the Oracle Tuxedo system.

11-18 Programming an Oracle Tuxedo ATMI Application Using COBOL

Sample Transaction Scenarios

Sample Transaction Scenarios

The following sections provide some considerations for the following transaction scenarios:

e Cdled Servicein Same Transaction as Caller
e Cdled Servicein Different Transaction with AUTOTRAN Set

e Called Service That Starts a New Explicit Transaction

Called Service in Same Transaction as Caller

When acaller in transaction mode calls another service to participate in the current transaction,
the following facts apply:

e TPRETURN and TPFORWAR, When called by the participating service, place that service's
portion of the transaction in a state from which it can be either aborted or committed by the
initiator.

e The success or failure of the called process affects the current transaction. If any fatal
transaction errors are encountered by the participant, the current transaction is marked
“abort-only.”

e Whether or not the tasks performed by a successful participant are applied depends on the
fate of the transaction. In other words, if the transaction is aborted, the work of all
participantsis reversed.

e TPNOREPLY cannot be used when calling another service to participate in the current
transaction.

Called Service in Different Transaction with AUTOTRAN Set

If you issue acommunication call with TenoTRAN set and the called service is configured such
that a transaction automatically starts when the serviceis called, the system places both the
calling and called processes in transaction mode, but the two constitute different transactions. In
this situation, the following facts apply:

e TPRETURN playstheinitiator’s transaction role: it terminates the transaction in the service
in which the transaction was automatically started. Alternatively, if the transaction is
automatically started in a service that terminates with TeForwAR, the TPRETURN call issued
in the last service in the forward chain plays the initiator’s transaction role; it terminates
the transaction. (For an example, refer to the figure called “ Transaction Roles of
TPFORWAR and TPRETURN with AUTOTRAN” on page 11-20.)

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-19

e Becauseit isin transaction mode, TPRETURN iS vulnerable to the failure of any participant
in the transaction, as well as to transaction timeouts. In this scenario, the system is more
likely to return afailed message.

e The state of the caller’s transaction is not affected by any failed messages or application
failures returned to the caller.

e The caller’s own transaction may timeout as the caller waits for areply.

e If noreply is expected, the caller’s transaction cannot be affected in any way by the
communication call.

Figure 11-1 Transaction Roles of TPFORWAR and TPRETURN with AUTOTRAN

Transaction A Transaction B
tpcall () Tplorwardl)
CLIEMT - ! WC B
with TPHOTERAM -
AUTOTEAN
Beginz B
threturn() . Cpforward()

Terrminates B

Called Service That Starts a New Explicit Transaction

If acommunication call is made with TpnoTrRAN, and the called serviceis not automatically
placed in transaction mode by a configuration option, the service can define multiple transactions
using explicit calls to reBEGIN, TPCOMMIT, and TPABORT. As aresult, the transaction can be
completed before acall isissued to TPRETURN.

In this situation, the following facts apply:

e TPRETURN plays no transaction role; that is, the role of TPRETURN is always the same,
regardless of whether transactions are explicitly defined in the service routine.

11-20 Programming an Oracle Tuxedo ATMI Application Using COBOL

Oracle TUXEDO System-supplied Subroutines

e TPRETURN Can return any value in TP-RETURN-VAL, regardless of the outcome of the
transaction.

e Typically, the system returns processing errors, record type errors, or application failure,
and follows the normal rules for TPESVCFAIL, TPEITYPE/TPEOTYPE, and TPESVCERR.

e The state of the caller’s transaction is not affected by any failed messages or application
failures returned to the caller.

e Thecaler isvulnerable to the possibility that its own transaction may time out as it waits
for itsreply.

o If no reply is expected, the caller’s transaction cannot be affected in any way by the
communication call.

Oracle TUXEDO System-supplied Subroutines

The Oracle Tuxedo system-supplied subroutines, TpsvrINIT and TPSVRDONE, must follow
certain rules when used in transactions.

The Oracle Tuxedo system server calls TesvrINTT during initialization. Specificaly,
TPSVRINIT is called after the calling process becomes a server but before it starts handling
service requests. If TpsvrRINIT performsany asynchronous communication, all replies must be
retrieved before the function returns; otherwise, the system ignores all pending replies and the
server exits. If TpsvrINIT defines any transactions, they must be completed with all
asynchronous replies retrieved before the function returns; otherwise, the system aborts the
transaction and ignores all outstanding replies. In this case, the server exits gracefully.

The Oracle Tuxedo system server abstraction calls TesvrRDONE after it finishes processing service
requests but before it exits. At this point, the server’s services are no longer advertised, but the
server has not yet | eft the application. If TPSVRDONE initiates communication, it must retrieve all
outstanding replies beforeit returns; otherwise, pending replies areignored by the system and the
server exits. If atransaction is started within TpsvRDONE, it must be completed with all replies
retrieved; otherwise, the system aborts the transaction and ignores the replies. In this case, too,
the server exits.

Central Event Log

The central event log is arecord of significant eventsin your Oracle Tuxedo application.
M essages about these events are sent to the log by your application clients and services viathe
USERLOG (3cbl) routine.

Programming an Oracle Tuxedo ATMI Application Using COBOL 1-21

../rf3cbl/rf3cbl.html

Any analysis of the central event log must be provided by the application. Y ou should establish
strict guidelines for the events that are to be recorded in the UsErRLOG (3cbl) . Application
debugging can be simplified by eliminating trivial messages.

For information on configuring the central event log on the Windows 2003 platform, refer to
Using Oracle Tuxedo ATMI on Windows.

Log Name

The application administrator defines (in the configuration fil€) the absolute pathname that is
used as the prefix of the name of the error message file on each machine. The USERLOG (3cbl)
routine creates adate—in the form mmddyy, representing the month, day, and year—and addsthis
date to the pathname prefix, forming the full filename of the central event log. A new fileis
created daily. Thus, if a process sends messages to the central event log on succeeding days, the
messages are written into different files.

Log Entry Format
Entriesin the log consist of the following components:
e Tag consisting of:
— Time of day (hhmmss)

— Machine name (for example, the name returned by the uname(1) command on a UNIX
system)

— Name, process ID, and thread ID (which is 0 on platforms that do not support threads)
of the thread calling USERLOG (3cbl)

— Context ID of the thread calling USERLOG (3cbl)

o Message text
The text of each message is preceded by the catalog name and number of that message.

For example, suppose that a security program executes the following call at 4:22:14pmoOna
UNIX machine called mach1 (as returned by the uname command):

01 LOG-REC PIC X(15) VALUE "UNKNOWN USER ".
01 LOGREC-LEN PIC S9(9) VALUES IS 13.
CALL "USERLOG" USING LOG-REC LOGREC-LEN TPSTATUS-REC.

The resulting log entry appears as follows:

162214 .machl!security.23451: UNKNOWN USER

11-22 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html

Central Event Log

In this example, the process ID for security is23451.

If the preceding message was generated by the Oracle Tuxedo system (rather than by the
application), it might appear as follows:

162214 .machl!security.23451: COBAPI_CAT: 999: UNKNOWN USER
In this case, the message catalog name iscoBarI_caT and the message number is 999.

If the message is sent to the central event log while the process isin transaction mode, other
components are added to the tag in the user log entry. These components consist of the literal
string gtrid followed by three long hexadecimal integers. The integers uniquely identify the
global transaction and make up what is referred to as the global transaction identifier, that is, the
gtrid. Thisidentifier is used mainly for administrative purposes, but it also appearsin the tag
that prefixesthe messagesin the central event log. If the system writes the message to the central
event log in transaction mode, the resulting log entry appears as follows:

162214 .machl!security.23451: gtrid x2 x24elb803 x239:
UNKNOWN USER

Writing to the Event Log

To write a message to the event log, you must perform the following steps:

e Assign the error message you wish to write to the log to arecord and use the record name
as the argument to the call.

e Specify the literal text of the message within double quotes, as the argument to the
USERLOG (3cbl) cal, asshown in the following example:

01 TPSTATUS-REC.
COPY TPSTATUS.
01 LOGMSG PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.

CALL "TPOPEN" USING TPSTSTUS-REC.
IF NOT TPOK
MOVE "TPSVRINIT: Cannot Open Data Base" TO LOGMSG
MOVE 43 LOGMSG-LEN
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.

Programming an Oracle Tuxedo ATMI Application Using COBOL 11-23

../rf3cbl/rf3cbl.html

In this example, the message is sent to the central event log if TPOPEN (3cbl) returns -1.

11-24 Programming an Oracle Tuxedo ATMI Application Using COBOL

../rf3cbl/rf3cbl.html

cHAPTER@

COBOL Language Bindings for the
Workstation Component

Thistopic includes the following sections:
e UNIX Bindings

e Microsoft Windows Bindings

Refer to Using the Oracle Tuxedo Workstation Component for more information on the
Workstation platform.

UNIX Bindings

The following sections describe how to write and build client programs, and set appropriate
environment variables when developing, in COBOL, an Oracle Tuxedo application on a UNIX
platform.

Writing Client Programs

Y ou can develop COBOL client programsfor aUNIX platform in the sameway that you develop
COBOL clientsin the Oracle Tuxedo administrative domain. All ATMI calls are available.

Building Client Programs

To compile and link-edit Workstation client programs, usethe buildclient (1) command. If
you are building a UNIX Workstation client on the native node, use the -w option to have the
client built using the Workstation libraries.

Programming an Oracle Tuxedo Application Using COBOL 1241

../rfcm/rfcmd.html

If you are building aclient on anative node, and both native and Workstation libraries are present,
the native libraries are used by default. In this case, specifying the -w option ensures that the
correct libraries for a Workstation client are used.

On aworkstation, where only the Workstation libraries are present, it is not necessary to specify

-W.

Listing 12-3 shows how to usethe buildclient command on a native node.

Listing 12-1 Example of Running buildclient on a UNIX Platform

ALTCC=cobcc ALTCFLAGS="-I /APPDIR/include"

COBCPY=$TUXDIR/cobinclude

COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
export COBOPT COBCPY ALTCC ALTCFLAGS

buildclient -C -w -o empclient -f name.cbl -f "userlibl.a userlib2.a"

12-2

The -o option enables you to specify anamefor your output file. Input files specified with the - £
option are linkedited before system libraries.

Asillustrated, the TuxpIr environment variable must be used to ensure that the buildclient
command can locate system libraries. Be surethat you have defined TuxpIr. Thecc environment
variable defaults to cc, but can be set to another compiler through arrcc.

Setting Environment Variables

Workstation clients make use of several environment variables.

Table 12-1 lists the environment variables that are checked by TpiNITIALIZE When a
Workstation client attempts to join an application.

Programming an Oracle Tuxedo Application Using COBOL

UNIX Bindings

Table 12-1 Environment Variables Checked by TPINITIALIZE on a UNIX Platform

Environment Variable

Description

WSENVFILE

Name of afile containing environment variable settings to be
used in the client’ s environment.

WSNADDR

Network address of the Workstation listener process through
which the client gains access to the application. Use the value
specified in the application configuration file for the
Workstation listener to be called. If the value begins with the
characters 0x, the systeminterpretsit asastring of hexadecimal
digits; otherwise, the system interpretsit as ASCII characters.

WSDEVICE

Name of the device to be used to access the network. Not
required by all transport layer interfaces.

WSTYPE

Workstation type. Used by TPINITIALIZE when that call is
invoked by a Workstation client to negotiate encode/decode
responsibilities with the native site. If you do not specify
WSTYPE, the system performs encoding, even if WSTYPE isnot
specified on the native site, either. Y ou must explicitly specify
the same wsTYPE value for both the native and Workstation
client sitesto ensure that the encode/decode featureisturned off.

WSRPLYMAX

Maximum amount of core memory that the ATMI uses for
buffering application replies before dumping them to disk. Used
by TPINITIALIZE. Thedefault system limit is 256,000 bytes.
Whether you should use WSRPLYMAX to set alower limit
depends on the amount of memory available on your machine.
Writing replies to disk causes a substantial reduction in
performance.

WSFADDR

The network address used by the Workstation client when
connecting to the Workstation listener or Workstation handler.
Thisvariable, along with the WSFRANGE variable, determines
the range of TCP/IP ports to which a Workstation client will
attempt to bind before making an outbound connection. This
address must be a TCP/IP address.

WSFRANGE

Therange of TCP/IP portsto which aWorkstation client process
attempts to bind before making an outbound connection. The
WSFADDR parameter specifiesthe base address of therange. The
defaultis 1.

Programming an Oracle Tuxedo Application Using COBOL 12-3

Other environment variables may be needed by Workstation COBOL clients on aUNIX
workstation, depending on which components of the Oracle Tuxedo system are being used.

Note: MicroFocus delivers LIBNSL . a as a shared object, which isrequired by buildclient
when linking a Workstation client. Because MicroFocus COBOL does not support
shared objects on UNIX 3.2, Workstation for UNIX 3.2 is hot supported.

Microsoft Windows Bindings

The following sections describe how to write and build client programs, build
ACCEPT/DISPLAY clients, block network behavior, and restore the network environment when
developing, in COBOL, an Oracle Tuxedo application for the Microsoft Windows platform.

Writing Client Programs
All program-specific ATMI calls are available.

Building Client Programs

To compilethe COBOL sourcefilesthat call the ATMI, you must use the COBOL compiler with
the L1TLINK Option. To linkedit the Workstation client object files, usethebuildclient (1)
command. While the syntax of the command is straightforward, the usage varies according to the
compilation system used.

Listing 12-2 shows how to usethe buildclient command.

Listing 12-2 Example of Running buildclient on a Windows Platform

COBCPY=C: \TUXEDO\COBINC

COBDIR=C:\COBOL\LBR; C:\COBOL\EXEDLL

PATH=C: \COBOL\EXEDLL; . ..

TUXDIR=C: \tuxedo
LIB=C:\NET\TOOLKIT\LIB;C:\MSVC\LIB;C:\TUXEDO\LIB;C:\COBOL\LIB
buildclient -C -o EMP.EXE -f EMP -f "/NOD/NOI/NOE/CO/SE:300" -1 WLIBSOCK

For Windows NT:

buildclient -C -o EMP.EXE -f empobj

Table 12-2 describes the buildclient command options used in the preceding example.

12-4 Programming an Oracle Tuxedo Application Using COBOL

../rfcm/rfcmd.html

Microsoft Windows Bindings

Table 12-2 buildclient Command Options for Windows Platform

Option Description

-0 name Name of the executable file being created. The default is
client.exe

-f firstfiles One or more object files to be included before the Oracle
Tuxedo libraries. Y ou can use the - £ option to pass options to
the compiler or linker. To specify more than one filename, enter
alist of files after - £, using white space to separate filenames
and doubl e quotation marksaround thelist. Y ou can al so specify
multiple filenames using multiple occurrences of the - £ option
on the command line.

-1 libfiles Librariesto be included after the Oracle Tuxedo libraries. To
specify morethan onefilename, you must separate the names by
white space and enclosethelist in quotation marks. Y ou can also
specify multiple filenames using multiple occurrences of the -1
option on the command line.

Building ACCEPT/DISPLAY Clients

The following example shows how to build an executable client for an accEpT/DISPLAY
application, such as csTMpaPP.

Listing 12-3 Building ACCEPT/DISPLAY clients

a) compile the COBOL module and create a file.obj
cobol file.cbl omf (obj) litlink;

b) use the following link statement
link FILE+cblwinaf,,,\
wcobatmi+cobws+wtuxws+ \
lcobol+lcoboldw+cobw+cobfp87w+ \
wlibsock,FILE.def /nod/noe;

For Windows NT the link statement is:

cbllink -oEMP.exe EMP.obj \
cobws.lib ncobatmi.lib wtuxws32.1lib \
libcmt.lib user32.1ib

Programming an Oracle Tuxedo Application Using COBOL 12-5

12-6 Programming an Oracle Tuxedo Application Using COBOL

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Programming an Oracle Tuxedo Application Using COBOL, 12c Release 2 (12.2.2)
	Introduction to Oracle Tuxedo Programming
	Basic Server Operation
	Servers as Requesters

	Programming Environment
	Managing Typed Records
	Setting Environment Variables for a VIEW Typed Record
	Creating a View Description File
	Executing the VIEW Compiler
	Setting Environment Variables for an FML Typed Record
	Creating a Field Table File
	Initializing a Typed Record
	Creating an FML Header File

	Writing Clients
	Client Naming
	Unsolicited Notification Handling
	System Access Mode
	Resource Manager Association
	Client Authentication
	See Also

	Writing Servers
	System-supplied Server: AUTHSVR()
	System-supplied Services: TPSVRINIT Routine
	Receiving Command-line Options
	Opening a Resource Manager

	System-supplied Services: TPSVRDONE Routine
	Sending Replies
	Invalidating Descriptors
	Forwarding Requests
	Advertising Services
	Unadvertising Services
	Example: Dynamic Advertising and Unadvertising of a Service
	See Also

	Writing Request/Response Clients and Servers
	Example: Using the Same Record for Request and Reply Messages
	Example: Sending a Synchronous Message with TPSIGRSTRT Set
	Example: Sending a Synchronous Message with TPNOTRAN Set
	Sending an Asynchronous Request
	Getting an Asynchronous Reply
	Setting a Message Priority
	Getting a Message Priority

	Writing Conversational Clients and Servers
	Sending Messages
	Receiving Messages
	Example: Ending a Simple Conversation
	Example: Ending a Hierarchical Conversation
	Executing a Disorderly Disconnect

	Writing Event-based Clients and Servers
	Unsolicited Events
	Brokered Events
	Notification Actions
	EventBroker Servers
	System-defined Events
	Programming Interface for the EventBroker

	Broadcasting Messages by Name
	Broadcasting Messages by Identifier

	Writing Global Transactions
	Committing the Current Transaction
	Prerequisites for a Transaction Commit
	Two-phase Commit Protocol

	Aborting the Current Transaction
	Example: Committing a Transaction in Conversational Mode
	Example: Testing for Participant Errors
	See Also

	Programming a Multithreaded and Multicontexted ATMI Application
	Platform-specific Considerations for Multithreaded/Multicontexted Applications
	What Is Multithreading?
	What Is Multicontexting?
	Licensing a Multithreaded or Multicontexted Application
	Advantages of a Multithreaded/Multicontexted ATMI Application
	Disadvantages of a Multithreaded/Multicontexted ATMI Application
	Start-up Phase
	Client Threads Join Multiple Contexts
	Client Threads Switch to an Existing Context

	Work Phase
	Service Requests
	Replies to Service Requests
	Transactions
	Unsolicited Messages
	Userlog Maintains Thread-specific Information

	Completion Phase
	Start-up Phase
	Work Phase
	Server-dispatched Threads Are Used
	Application-created Threads Are Used
	Bulletin Board Liaison Verifies Sanity of System Processes
	System Keeps Statistics on Server Threads
	Userlog Maintains Thread-specific Information

	Completion Phase
	Environment Requirements
	Design Requirements
	Is the Task of Your Application Suitable for Multithreading and/or Multicontexting?
	How Many Applications and Connections Do You Want?
	What Synchronization Issues Need to Be Addressed?
	Will You Need to Port Your Application?
	Which Threads Model Is Best for You?
	Interoperability Restrictions for Workstation Clients
	Prerequisites for a Multithreaded ATMI Application
	General Multithreaded Programming Considerations
	Concurrency Considerations
	Context Attributes
	Setting Up Multicontexting at Initialization
	Implementing Security for a Multicontexted ATMI Client
	Synchronizing Threads Before an ATMI Client Termination
	Switching Contexts
	Handling Unsolicited Messages
	Coding Rules for Transactions in a Multithreaded/Multicontexted ATMI Application
	Context Attributes
	Coding Rules for a Multicontexted ATMI Server
	Initializing and Terminating ATMI Servers and Server Threads
	Programming an ATMI Server to Create Threads
	Creating Threads
	Associating Threads with a Context

	Sample Code for Creating an Application Thread in a Multicontexted ATMI Server
	Coding Rules for a Multithreaded ATMI Client
	Initializing an ATMI Client to Multiple Contexts
	Context State Changes for an ATMI Client Thread
	Getting Replies in a Multithreaded Environment
	Using Environment Variables in a Multithreaded and/or Multicontexted Environment
	Using Per-context Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-process Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client
	Sample Code for a Multithreaded ATMI Client
	Testing Recommendations for a Multithreaded/Multicontexted ATMI Application
	Troubleshooting a Multithreaded/Multicontexted ATMI Application
	Improper Use of the TPMULTICONTEXTS Flag to tpinit()
	Calls to tpinit() Without TPMULTICONTEXTS
	Insufficient Thread Stack Size

	Error Handling for a Multithreaded/Multicontexted ATMI Application

	Managing Errors
	Limit Errors
	Invalid Descriptor Errors
	TPESVCFAIL and TPESVCERR Errors
	TPEBLOCK and TPGOTSIG Errors
	Non-fatal Transaction Errors
	Fatal Transaction Errors
	Heuristic Decision Errors
	TPCOMMIT Call

	TPNOTRAN
	TPRETURN and TPFORWAR Calls
	Called Service in Same Transaction as Caller
	Called Service in Different Transaction with AUTOTRAN Set
	Called Service That Starts a New Explicit Transaction
	Log Name
	Log Entry Format
	Writing to the Event Log

	COBOL Language Bindings for the Workstation Component
	Writing Client Programs
	Building Client Programs
	Setting Environment Variables
	Writing Client Programs
	Building Client Programs
	Building ACCEPT/DISPLAY Clients

