Oracle® Tuxedo
Using the CORBA Notification Service

12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo Using the CORBA Natification Service, 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Overview

INtrOUCLION. . . . e e 1-1
Functional OVEIVIEW. o e 1-2
Product CompPoNentS.ottt e 1-3
2. CORBA Notification Service APl Reference

INErOdUCHION. . . o o 2-1
Quality Of SErVICE ... oo 2-2
Obtainingthe Channel Factory 2-3
USINg TranSaCtions.o ottt e e e e 2-4
Structured Event Fields, Types, and Filters., 2-5
Designing EVENtS.o 2-6
Creating FML Field TableFilesforEvents.o 2-7
Interoperability with Oracle Tuxedo Applications 2-9
Parameters Used When Creating Subscriptions. 2-11
Oracle SImple EVentS API e 2-15
TOBJ _SimpleEvents::Channel Interface.o, 2-16
Channel:isubscribe 2-17
Channel::unsubscribeo 2-19
Channel::push_structured event. i, 2-20
ChanneliexistSo 2-21
TOBJ_SimpleEvents::ChannelFactory Interface. 2-22

Using the CORBA Notification Service iii

Channel_Factory::find_channel. o . 2-23

CosNotification Service APl 2-23
Overview of Supported CosNotification ServiceClasses. 2-24
Detailed Descriptions of CosNotification ServiceClasses. 2-27

CosNotifyFilter::Filter::add_constraints, 2-28
CosNotifyFilter::Filter::destroyo 2-29
CosNotifyFilter::FilterFactory::create filter 2-30
CosNotifyChannel Admin:: StructuredProxyPushSupplier::
connect_structured_push_CONSUMEYo i e e e e een s 2-32
CosNotifyChannel Admin:: StructuredProxyPushSupplier:iset qos 2-33
CosNotifyChannel Admin:: StructuredProxyPushSupplier::add_filter. 2-35
CosNotifyChannel Admin:: StructuredProxyPushSupplier::get filter 2-36
CosNotifyChannel Admin:: StructuredProxyPushSupplier::
disconnect_structured_push supplier............. 2-37
CosNotifyChannel Admin:: StructuredProxyPushSupplier::MyType. 2-38
CosNotifyChannel Admin:: StructuredProxyPushConsumer::
connect_structured_push _supplier.......... ..., 2-38
CosNotifyChannel Admin:: StructuredProxyPushConsumer::
push_structured evento 2-39
CosNotifyChannel Admin:: StructuredProxyPushConsumer::
disconnect_structured_push_consumerc.o..... 2-41
CosNotifyChannel Admin:: StructuredProxyPushConsumer::MyType 2-41
CosNaotifyChannel Admin::ConsumerAdmin::
obtain_notification_push supplier............ 2-42
CosNotifyChannel Admin::ConsumerAdmin::get_proxy_supplier........ 2-44
CosNotifyChannel Admin::SupplierAdmin::
obtain_notification_push _consumer.coiiina.. 2-45

Using the CORBA Notification Service

CosNotifyChannel Admin::EventChannel::

ConsumerAdmin default_consumer admin...................... 2-47
CosNotifyChannel Admin::EventChannel::

ConsumerAdmin default_supplier admin 2-48
CosNotifyChannel Admin::EventChannel::default_filter factory 2-48
CosNotifyChannel Admin::EventChannel Factory::get_event_channel 2-49
CosNotifyComm:: StructuredPushConsumer::push_structured event. 2-51
CosNotifyComm:: StructuredPushConsumer::

disconnect_structured_push consumer. 2-52
CosNotifyComm:: StructuredPushConsumer::Offer_change............. 2-52

Exception Minor Codes.ot 2-53

3. Using the Oracle Simple Events AP

Development PrOCESS oottt e 31
Designing EVENtSo 3-2
Step 1: Writing an Applicationto Post Events. 32
Gettingthe Event Channel. 3-2
Creatingand Posting Eventst 33
Step 2: Writing an Application to SubscribetoBEvents oL 3-4
Implementing the CosNotifyComm:: StructuredPushConsumer Interface 35
Gettingthe Event Channel. 3-7
CreatingaCallback Object 3-7
Creating a SUbSCriptiono e 3-8
Step 3: Compiling and Running Notification Service Applications. 311
Generating the Client Stub and Skeleton Files 312
Building and Running Applications, 312
4. Using the CosNotification Service API
DevelopmMENnt ProCESSot tee a 4-1

Using the CORBA Notification Service

DesignNiNg EVENtSo 4-2

Step 1: Writing an Applicationto Post Events. 4-2
Gettingthe Event Channel 4-2
Creatingand Posting EVents.ot 4-3

Step 2: Writing an Application to SubscribetoEventsl 4-5
Implementing the CosNotifyComm:: StructuredPushConsumer Interface. 4-5
Getting the Event Channel, ConsumerAdmin Object, and Filter Factory Object. . 4-8
CreatingaCallback Objecto 49
Creating aSubscription. 4-10

Step 3: Compiling and Running Notification Service Applications 4-12
Generating the Client Stub and Skeleton Files. 4-12
Compiling and Linking the ApplicationCodeo ... 4-13

5. Building the Introductory Sample Application

OV VI BV . . oottt e e e e e e e e 5-1
Building and Running the Introductory Sample Application. 5-4
Verifying the Settings of the Environment Variables 5-4

Copying the Files for the Introductory Sample Application into a Work Directory 5-6
Changing the Protection Attribute on the Files for the Introductory Sample

APPlCAION. . 5-8
SettingUptheEnvironment 59
Building the Introductory Sample Application. 5-9
Starting the Introductory Sample Application 5-10
Using the Introductory Sample Application............................. 5-11
Shutting Down the System and Cleaning Up the Directory 5-12

vi Using the CORBA Notification Service

Verifying the Settings of the Environment Variables 6-7
Copying the Files for the Advanced Sample Application into a Work Directory . . 6-8
Changing the Protection Attribute on the Files for the Advanced Sample Application

6-11
Setting Upthe Environment e 6-12
Building the Advanced Sample Application. 6-12
Starting the Advanced Sample Application. 6-13
Using the Advanced Sample Application 6-14
Shutting Down the System and Cleaning Up the Directory 6-17
/. CORBA Notification Service Administration
INtrOdUCKION. . . . oo e 7-2
Configuring the Natification Service e 7-2
Configuring Data Filters. e e 7-2
Settingthe Host and Port 7-5
Creating aTransaCtion LOg.o vttt et e 7-6
Creating EVENt QUEUES.ot i ettt et e e ettt 7-6
Determining Space Parameters for Transient and Persistent Subscriptions 7-7
Creating aDeviceon Disk fortheQueueSpace., 7-9
Configuring aQUEUE SPaCE. oot te ettt e 7-10
Creatingthe QUEUES.ttt e e 7-11
Setting |PC Parameters on Microsoft Windows 7-12
Creating the UBBCONFIG Fileand the TUXCONFIG File. 7-15
Managing the Notification Service. i e 7-23
Synchronizing Databases.o 7-23
Purging the System of Dead Subscriptions.o.... 7-23
Monitoring Queue Utilization. i 7-24
Purging the Queuesof Unwanted Events, 7-25

Using the CORBA Notification Service vii

Index

viii

Notification Service Administration Utility and Commands. 7-25
ntsadmin Utility.o 7-26
NESAOMIN. . .. e 7-26
NtSadMin COMMANGS. oot 7-27
Usingthentsadmin Utility i 7-30
NOtIfiCaION SEIVErS oo 7-32
TMINT S e 7-32
TMNTSFWD T e e e e 7-33
TMNTSFWD P, . e e e 7-34

Using the CORBA Notification Service

Overview

Thistopic includes the following sections:
e Introduction
e Functional Overview

e Product Components

Introduction

The Notification Service provides an event service for the Oracle Tuxedo CORBA environment.
It is not meant to be a standal one product, but rather alayered product on Oracle Tuxedo.

The Notification Service offers similar capabilities to those of the Oracle Tuxedo EventBroker,
but with a programming model and interface that is natural for CORBA users. A side effect of
thisapproach isthat the mgjority of the CORBA -based Notification Serviceisnot supported since
it is either incompatible with, or provides capabilities well beyond that of the Oracle Tuxedo
EventBroker.

The Notification Service is an Oracle Tuxedo subsystem that receives event posting messages,
filters them, and distributes them to subscribers. A poster is an Oracle Tuxedo CORBA
application that detects when an event of interest has occurred and reports (posts) it to the
Notification Service. A subscriber isan Oracle Tuxedo CORBA application that requests that
some notification action be taken when an event of interest is posted.

The concept of an “anonymous’ service—the Naotification Service—that receives and distributes
messages provides another client-server communication paradigm to Oracle Tuxedo CORBA

Using the CORBA Notification Service 1-1

environment. Instead of aone-to-onerelationship between arequester and aprovider, an arbitrary
number of posters can post amessage for an arbitrary number of subscribers. The posters simply
post events, without knowing who receives the information or what is done about it. The
subscribers can receive whatever information they areinterested in from the Notification Service,
without knowing who posted it, and subscribers can be notified and take action in a variety of
ways.

Typically, Notification Service applications are designed to handle exception events. The
application designer has to decide what events in the application need to be monitored. In a
banking application, for example, an event might be posted for an unusually large withdrawal
transaction; but it would not be particularly useful to post an event for every withdrawal
transaction. And not all users would need to subscribe to that event; perhaps just the branch
manager, would need to be notified.

The programming model for the Notification Service is based on the CORBA programming
model. There are two sets of interfaces: oneisaminimal subset of the CORBA-based
Notification Service interface (referred to in this document as the CosNoatification Service
interface), and the other is the Oracle Simple Events interface (an Oracle proprietary interface)
designed to be easy to use. Both interfaces pass standard, structured events, as defined by the
CORBA-based Notification Service specification.

The two interfaces are compatible with each other; that is, events posted using the
CosNoatification Serviceinterface can be subscribed to by the Oracle Simple Eventsinterfaceand
vice versa

Functional Overview

The Notification Service system comprises three basic components (see Figure 1-1):

e The event poster, or supplier.

The supplier is the producer of events. It creates events and posts them to the Notification
Service.

e The Notification Service, also known as the event channel.
The Notification Service processes events.
e The event subscriber, or consumer.

The consumer isthe recipient of the events. It connects to the Notification Service and
subscribes to some set of events.

Using the CORBA Notification Service

Product Components

When the Notification Service receives an event that matches a consumer’ s subscription, it
attemptsto deliver the event to that consumer. There can be many suppliers and consumers.
Logically, thereis only one Naotification Service, even though the Notification Service can be
replicated.

Figure 1-1 Notification Service Model

Event

Poster .\

Subscribe
Notification
Service

Event
Subscriber 'I

According to the CORBA-based Notification Service specification, event posters always use the
push model. Thus, event posters push eventsto the Notification Service by invoking an operation.
The Notification Service takes responsibility for filtering and delivering the event. Thereis no
direct association between event posters and event subscribers. At any point in time there may be
zero, one, or many event posters or event subscribers.

Also, according to the CORBA-based Notification Service specification, subscribers can select
one of two event delivery models, push or pull. Only the push model is supported in thisrelease
of Oracle Tuxedo. Thus, the Natification Service pushes events to the consumer by invoking an
operation on the consumer. Depending on the Quality of Service (QoS) of the matching
subscription, the event might be stored durably, pending delivery to the consumer.

Product Components

The Oracle Tuxedo CORBA Noatification Service supports the following:

e An Oracle Simple Events application programming interface (API) for ease-of-use.
e A minimal set of operations defined by the CosNotification Service API.

e Two Qualities of Service (QoS) for subscriptions: transient and persistent.

For transient subscriptions, the Notification Service makes only one attempt to deliver the
event to asubscriber. If that attempt fails, the event is discarded and if the Notification
Service determines that the subscriber is shutdown or otherwise not available, the
subscription is cancelled.

Using the CORBA Notification Service 1-3

For persistent subscriptions, if the first delivery attempt fails, the Notification Service holds
the event and keeps attempting to deliver the subscription until the configurable retry limit
isreached. After theretry limit is reached, the Notification Service moves the event to an
error queue, whereit is held for disposition by the system administrator. The system
administrator either removes the event from the error queue, which in effect discardsiit, or
movesit back to the pending queue so that further attemptsto deliver it can be made.

e Using the uraconF1c filefor initial configuration of the system, event queues, and server
processes.

e Using the Oracle Tuxedo style FML field tables. Through the use of FML field tables, the
Notification Service can support:

— Event datafiltering between event posters and event subscribers.

— Interoperability with Oracle Tuxedo EventBroker such that events posted by the
Notification Service can be consumed by the Tuxedo EventBroker and vice versa.

e Using the following Oracle Tuxedo Notification Service servers to process events:
— TMNTS
— TMNTSFWD_P
— TMNTSFWD_T
e Using the following Oracle Tuxedo system servers to process events:
— TMSYSEVT
— TMUSREVT
- TMQUEUE
— TMQFORWARD

e Using the Oracle Tuxedo ntsadmin administrative utility to manage event queues.

e Using the Oracle Tuxedo gqmadmin administrative utility to configure and manage event
queues.

e Using the Oracle Tuxedo tmadmin administrative utility to configure and manage
transaction logs.

1-4 Using the CORBA Notification Service

CHAPTERa

CORBA Notification Service AP
Reference

Thistopic includes the following sections:
e Introduction
e Oracle Simple Events API

e CosNatification Service API

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Introduction

The Oracle Tuxedo CORBA Notification Service supports two application programming
interfaces. One is based on the CORBA-based Notification Service as defined by the
CORBAservices: Common Object Services Specification. Thisinterface isreferred to in this
document asthe CosNotification Service interface. The other interface, called the Oracle Simple
Eventsinterface, is an Oracle proprietary interface designed as an easier to use alternative.

Using the CORBA Notification Service 2-1

Both interfaces pass structured events as defined by the CORBA-based Notification Service
specification and are compatible with each other; that is, events posted using the CosNoatification
Service interface can be subscribed to by the Oracle Simple Events interface and vice versa.

Before using the Notification Service APIs, consider the following topics:

e Quality of Service

Obtaining the Channel Factory

Using Transactions

Structured Event Fields, Types, and Filters
e Creating FML Field Table Files for Events

e Interoperability with Oracle Tuxedo Applications

Quality of Service

To determine the persistence of the subscription and whether or not events delivery is retried
following afailed delivery, subscribers specify aQuality of Service (QoS). Therearetwo Quality
of Service settings. persistent and transient Quality of Service (QoS). The QoSis a property of
the subscription.

Persistent Subscriptions

Persistent subscriptions provide strong guarantees about event delivery and the permanence of
the subscription. Persistent subscriptions do come with a cost, however, as they consume more
system resources (for example, disk space, CPU cycles, and so on), and require more
administration (such as managing queues and detecting dead subscribers).

Persistent subscriptions exhibit the following properties:

e The subscription isin effect until an unsubscribe operation is performed. This means that a
subscriber application can be shut down and its subscription can still be active. In this case,
events are stored for the subscriber and, when the subscriber restarts, are delivered to the
subscriber without it having to recreate the subscription.

o If an event cannot be delivered, event delivery isretried until the administrative retry limit
is exceeded.When the event retry limit has been exceeded, the event is moved from the
pending queue to an error queue. An administrator can move events from the error queue
back to the pending queue, where delivery attempts will restart.

Using the CORBA Notification Service

Introduction

o |f an event is successfully delivered to a subscriber, but the Notification Service for some
reason does not receive the “successful delivery” return message, the Notification Service
may deliver the same event more than once.

Transient Subscriptions

Transient subscriptions provide the best performance with the least overhead and exhibit the
following properties:

e One attempt is made to deliver the event to each matching subscription. If that attempt
fals, theevent islost.

The subscription isin effect until afailed event delivery is detected. On detection of afailed
delivery, the subscription is terminated. Normally, the Notification Service, for performance
reasons, does not check whether it successfully delivered an event to a transient subscriber.
However, occasionally, when the Notification Service delivers an event to atransient subscriber,
it checks whether or not the event was successfully delivered. If it was not successfully delivered
and the corBa : : TRANSTENT exception is not returned, the Notification Service assumes that the
subscription has gone away and cancels the subscription. If the Notification Service receivesthe
CORBA: : TRANSTIENT exception when an attempt to deliver fails, it assumes that the subscriber is
busy and discards the event, but it does not cancel the subscription.

The automatic cancellation of dead transient subscriptions provides a cleanup mechanism for
transient subscribers that forget to unsubscribe. Note, however, that the Notification Service
checksfor successful delivery thefirst timeit sendsan event to a subscriber, but does not perform
it again until five minutes have elapsed and it delivers another event. Therefore, the interval
between checksisat least five minutes, but will belonger if thereisno event to deliver when five
minutes have elapsed. The minimum interval of five minutesisfixed and cannot be changed.
Therefore, event delivery failureis not necessarily detected on thefirst failed delivery attempt. It
is only detected when the Notification Service checks.

Obtaining the Channel Factory

The Channel Factory is used by event poster applications and subscriber applicationsto find the
event channel. The event channel isthen used to post events and to subscribe, or create
subscriptions, and unsubscribe, or cancel subscriptions.

Notification Service applications use the Bootstrap object to obtain an object reference to the
event channel factory. Thisis done by using the

Tobj_Bootstrap: :resolve_initial_references operation. The Bootstrap object supports
two service IDs for Notification Service applications, NotificationService and

Using the CORBA Notification Service 2-3

Tobj_SimpleEventsService. TheNotificationService oObject isused in applications that
use the CosNotification Service API. The Tobj_simpleEventsService objectisusedin
applications that use the Oracle SimpleEvents API.

Service ID Object Type

NotificationService CosNotifyChannelAdmin: :EventChannelFactory

Tobj_SimpleEventsService Tobj_SimpleEvents::ChannelFactory

2-4

Note: Release 8.0 of Oracle Tuxedo CORBA continues to include the Oracle client
environmental objects provided in previous releases of Oracle WebL ogic Enterprise for
use with the Tuxedo 8.0 CORBA clients. Oracle Tuxedo 8.0 clients should continue to
use these environmental objectsto resolve initia references bootstrapping, security and
transaction objects. In release 8.0 of Oracle Tuxedo CORBA, support has been added for
using the OMG Interoperable Naming Service (INS) to resolve initial referencesto
bootstrapping, security, and transaction objects. For information on INS, seethe CORBA
Programming Reference.

Using Transactions

The behavior regarding transactions is the same for the Oracle SimpleEvents API and the
CosNatification Service API. The only operation that supports transactional behavior is
push_structured_event, Which is supported by the

CosNotifyChannelAdmin: : StructuredProxyPushConsumer and

Tobj_SimpleEvents: :Channel interfaces. All other operations can be used in the context of
atransaction, but work the same regardless of whether they are executed in atransaction or not.

The behavior when posting an event is tied to the QoS of the subscription. If an event is posted
in the context of atransaction, and the event delivery QoS of the subscription is persistent, the
delivery will be affected by the outcome of thetransaction; that is, if the transaction iscommitted,
the Notification Service attempts to deliver the event to subscribers asit normally would. If the
transaction is rolled back, then the Notification Service does not attempt to deliver the event.

If an event is posted in the context of atransaction, and the event delivery QoS of the subscriber’s
subscription is transient, one attempt will be made to deliver the event, regardless of the
transaction outcome. That is, the transaction has no effect on whether the event is delivered or
not, and one attempt will be made to deliver the event.

Using the CORBA Notification Service

Introduction

Note: Thereis no transaction context associated with event delivery. However, in the case of
persistent subscriptions, once the poster’ s transaction commits, the Notification Service
guarantees that the event will be delivered to the subscriber or put on the error queue to
await administrative action.

Structured Event Fields, Types, and Filters

All events that are either pushed by posters to the Notification Service, or delivered to
subscribers, are COS Structured Events; that is, they conform to the definition of Structured
Events as specified by the CORBA-based Notification Service—a service which extends the
CORBAservices Event Service (see Figure 2-1). If the events are to be filtered based on content
(versusfiltering on domain and type), or if the events are going to be subscribed to by Oracle
Tuxedo applications, then additional restrictions apply. The restrictions apply to data types and
filtering based on event content. These restrictions are explained below.

Figure 2-1 Structured Event

domain_name

type_name — Fixed Header
Event Header —| event_name
priority 1-100 Variable Header
name value
name value .
—— Filterable Body
Event Body — Fields
name value
remainder_of_body Remaining Body

e The Fixed Header section consists of three fields that can be used when you create
structured events: fixed _header.event_type.domain_name and
fixed_header.event_type.type _name, and fixed _header.event_type.event_name. When an
event is posted all three of the these fields are passed in the Notification Service. However,
when subscriptions are created, only the first two fields, domain_name and type_name, are
used to filter events. These fields are defined in the subscription as regular expressions.
The event_name field cannot be used in subscriptions.

e The Variable Header consists of asingle name/value (NV) pair, namely Priority. Priority
can take avauein the range 1-100 (versus arange of —32767 to 32767 as specified in

Using the CORBA Notification Service 2-5

2-6

CORBA Notification Service specification). Priority is used internally to the system to
prioritize the processing of events. The highest priority is 100. There is no guarantee that
higher priority events will, in fact, be given priority over lower priority events. The support
provided for the Variable Header differs from that specified in the CORBA Notification
Service specification in two ways: first, thereis asingle field supported (Priority) versus
the five fields listed in the specification; and second, user-defined fields are supported, but
no action is taken in response to their content. The user-defined fields are merely passed
through.

e The Filterable Body consists of zero or more NV pairs. The valuesin these pairs are
limited to the following types: any, 1ong, unsigned long, short, unsigned short
octet, char, float, double, string, boolean, void, and null. These fields can be used
in filter expressions.

e The Remaining Body consists of asingle anv. The value is limited to the following types:
any, long, unsigned long, short, unsigned short, OCtét, char, float, double,
string, boolean, void, and null. Thisfield cannot be used in afilter expression.

Designing Events

The design of eventsis basic to any notification service. The design impacts not only the volume
of information that is delivered to matching subscriptions, but the efficiency and performance of
the Notification Service aswell. Therefore, careful planning should be done to ensure that your
Notification Service will be able to handle your needs now and allow for future growth.

The Noatification Service supports five levels of event design: (1) domain name, (2) type name,
(3) priority, (4) filterable data, and (5) remainder of body. When designing an event, you must
specify adomain name and a type name; priority and filterable data are optional. The domain
name you choose can relate to your business. Hospitals, for example, are in the health care
business, so for a Notification Service application for a hospital you might choose
“HEALTHCARE” asadomain hame. Y ou might want to categorize the events by the type of
insurance provider, so you may choose “HMO” or “UNINSURED” as the type name. Y ou may
want to further define the events by the entity responsible for payment, so you might choose to
use the filterable data to identify the entity as “billing” for a specific “HMO_Account” or a
specific or “Patient_Account.” Listing 2-1 shows an example of thistype of event design.

Listing 2-1 Event Design

domain_name = “HEALTHCARE”
type_name = “HMO”

Using the CORBA Notification Service

Introduction

#Filterable data name/value pairs.
filterable_data.name = “billing”
filterable_data.value = 4498
filterable_data.name = “patient_account”
filterable _data.value = 37621

Obviously, the more specific and precise you are in designing the events that you want your
Notification Service application to post and receive, the fewer will be the eventsthe Notification
Service will have to process. This has a direct impact on system resources and configuration
requirements. Therefore, alot of thought should be given to event design.

Creating FML Field Table Files for Events

Y ou must create Field Manipulation Language (FML) field table files for events only if one of
the following capabilitiesis required; otherwise FML tables are not required.

e Event datafiltering (in addition to domain and type fields) between Oracle Tuxedo event
posters and subscribers

o Interoperability between the Oracle Tuxedo Notification Service and the Oracle Tuxedo
EventBroker

A structured event’s filterable_data field contains alist of name/value (NV) pairs. An
event’'sdataistypically storedinthislist. Thefield namesin the FML field table files must match
the name in the structured event. The field type can be any alowable FML type (1ong, short,
double, float, char, string) except carray. The valuein the structured event must be the
sametype as defined in the field table. Table 2-1 shows the CORBA Any Types supported by
Oracle Tuxedo, and which ones can be used for datafiltering and Oracle Tuxedo interoperability.

Table 2-1 Supported CORBA Any Types
CORBA Any Types Supported for Data Filtering and Tuxedo Interoperability

short Yes
long Yes
unsigned No
short

Using the CORBA Notification Service 2-1

Table 2-1 Supported CORBA Any Types (Continued)

CORBA Any Types Supported for Data Filtering and Tuxedo Interoperability

unsigned No
long

float Yes
double Yes
char Yes
boolean No
octet No
string Yes
void No
null No
any No

Listing 2-2 shows an example of an FML field tablefile. The *base 2000 isthe base number for
the fields. Thefirst entry has afield name of bi11ing, afield number of 1 relative to the base,
and afield type of 1ong.

Listing 2-2 Data Filtering FML Field Tahle File

*base 2000

#Field Name Field # Field Type Flags Comments
__
billing 1 long - -
stock_name 2 string - -
price_per_share 3 double - -
number_ of_shares 5 long - -

2-8 Using the CORBA Notification Service

Introduction

The following guidelines and restrictions apply to Oracle Tuxedo FML field table files;
e The FML filename cannot exceed 15 charactersin length.

e Because Oracle Tuxedo uses FML 32, the base number plus the field number is restricted to
be between 101 and 33,554,431, inclusive.

e When FML is used with other software that also uses fields, additional restrictions may be
imposed on field numbers.

For information on how to create and configure FML field tablefiles, see field_tables inthe
Oracle Tuxedo Command Reference and the Programming Oracle Tuxedo ATMI Applications
Using FML.

Interoperability with Oracle Tuxedo Applications

Applications that use the Oracle Tuxedo CORBA Notification Service are interoperable with
Oracle Tuxedo applications that use the Oracle Tuxedo EventBroker. An application using the
Oracle Tuxedo Notification Service can post events that are delivered to Oracle Tuxedo
EventBroker subscribers, and can receive events that have been posted by Oracle Tuxedo
EventBroker.

To achieve thisinteroperahility, it is necessary to understand the mapping between
CosNotification Structured Events and the Oracle Tuxedo FML buffer so that the contents of the
FML field tables can be coordinated by Oracle Tuxedo. There are two casesto consider: posting
eventsthat areto be received by Oracle Tuxedo applicationsviaOracle Tuxedo EventBroker; and
receiving events that have been posted to the Notification Service Event Channel by Oracle
Tuxedo applications.

Posting Events

For an Oracle Tuxedo application to subscribe to events posted by an Oracle Tuxedo application,
you must understand how an Oracle Tuxedo structured event is mapped to FML 32 and the event
name at posting time. The mapping is as follows:

e Thedomain_name and type_name are assembled into a string in the form
domain_name. type_name to form the event name. Thisisthe event name (eventname
parameter) used on the tppost operation.

e Each name/value (NV) pair in the Filterable Body and the variable header portion of the
structured event is mapped to an FML 32 field of the same name if the field is also defined
in FML. If you set the domain to ~tMevT”, then the event name equal s the type name.

Using the CORBA Notification Service 2-9

2-10

Receiving Events

Oracle Tuxedo system events and user events can be received by Oracle Tuxedo applications.
System events are generated by the Oracle Tuxedo system—not by applications. User events are
generated by Oracle Tuxedo applications. For alisting of System events see evenTs inthe Oracle
Tuxedo Command Reference. System events and user events are mapped in CosNotification
Structured Events as follows:

Structured Event Fields Value

domain_name Always set to “TMEVT”
type_name Empty string
event_name Empty string

Variable Header (Priority) Empty sequence

Filterable Body Fields Same as FML field name

Note: Filterable body fields consist of name/value pair,
wherethe name portionisthe sameasthe FML field
name.

Remainder of Body Always set to void

The Oracle Tuxedo system detects and posts certain predefined eventsrel ated to system warnings
and failures. For example, system-generated events report on configuration changes, state
changes, connection failures, and machine partitioning.

In order for an Oracle Tuxedo application to receive events posted by an Oracle Tuxedo
application, it is necessary to understand how a FML buffer containing an Oracle Tuxedo event
is used to fabricate an Oracle Tuxedo structured event. It is also necessary to know how the
domain_name and type_name arerelated to the Oracle Tuxedo event name. There are two cases
to consider: system events and user events.

Note that Oracle Tuxedo uses aleading dot (".") in the event name to distinguish
system-generated events from application-defined events. An example of a system event is

. SysNetworkDropped. An example of auser event is eventsdropped. TO subscribe to these
events, the Notification Service subscriber application must define the subscription as follows:

e System event

Using the CORBA Notification Service

Introduction

domain_name =“TMEVT”
type_name=" . SysNetworkDropped”

e User event

domain_name =“TMEVT”
type_name=+eventsdropped”

When the events are received, the Notification Service subscriber application parses each
event asfollows:

domain_name="TMEVT"

type_name="~

event_name=""

variable_header=empty
Filterable_data=(content of the FML buffer)

Parameters Used When Creating Subscriptions

When you create subscriptions, you can specify the following parameters. These parameters
support the Oracle Simple Events APl and the CosNotification Service API.

subscription_name
Specifies a name that identifies the subscription to the Notification Service and the
subscriber. Applications should use names that are meaningful to a system administrator
since thisis the primary way that an administrator associates an application with a
subscription and the events that are delivered to the subscriber via the subscription. This
parameter is optional (that is, an empty string can be passed in). More than one
subscription can use the same name.

The subscription_name must not exceed 128 charactersin length.

domain_type
Same parameter as the domain_type field in the Fixed Header portion of a structured
event, as defined by the CORBA-based Notification Service specification. Thisfieldisa
string that is used to identify a particular vertical industry domain in which the event type
is defined, for example, “Telecommunications’, “Finance’, and “Health Care’. Because
this parameter isaregular expression, you can also useit to set domain patterns on which
to filter. For example, to subscribe to all domains that begin with the letter F, set the
domainto “F.*~. For information on how to construct regular expressions, see the
recomp command in the Oracle Tuxedo ATMI C Function Reference.

Using the CORBA Notification Service 2-11

type_name
Same parameter asthe type_name field in the Fixed Header portion of a structure event,
as defined in the CORBA-based Notification Service specification. It is astring that
categorizes the type of event, uniquely within the domain, for example, Comm_alarm,
StockQuote, and Vital Signs. Because this parameter isaregular expression, you can aso
useit to set event type patterns on which to filter. For example, to subscribe to all event
typesthat begin with theletter F, you would set thetypeto “r. = ». For information on how
to construct regular expressions, see the recomp command in the Oracle Tuxedo ATMI C
Function Reference.

data_filter
Specifiesthe values of thefields of filterable dataand variable headers on which you want
tofilter. For example, asubscription to news stories may have adomain of “News’, atype
of “Sports’, and adata filter of “Scores> 20".

This parameter defines the data that the subscription must match in Boolean expressions.

The following data types are supported: short, long, char, float, double, and
string. Table 2-2 lists the Boolean expression operators that are supported.

Tahle 2-2 Boolean Expression Operators

Expression Operators

unary +, -1~
multiplicative * 1, %

additive +, -

relational <, > <=, >=, == 1=
equality and matching ==, 1=, %%, !%
exclusive OR A

logical AND &&

logical OR II

To use data filtering, you must set up an FML table, include filters in the subscription, filter the
data, and post the event. Listing 2-3 shows an exampl e of these tasks.

2-12 Using the CORBA Notification Service

Listing 2-3 Data Filtering Requirements

Introduction

//Setting up the FML Table

Field table file.

*base 2000

*Field Name Field # Field Type Flags Comments
StockName 1 string - -
PricePerShare 2 double - -
CustomerId 3 long - -
CustomerName 4 string - -

//Subscription data filtering.
1) "NumberOfShares > 100 && NumberOfShares < 1000"
2) "CustomerId == 3241234"

3) "PricePerShare > 125.00"

4) "StockName == 'BEAS'"

5) "CustomerName %% '.*Jones.*'" // CustomerName contains "Jones"

6) "StockName == 'BEAS' && PricePerShare > 150.00"

//Posting the event.

// C++

CosNotification: :StructuredEvent ev;

ev.filterable _datal[0] .name = CORBA: :string_dup ("StockName") ;

ev.filterable_data[0] .value <<= "BEAS";

ev.filterable_datal[l] .name = CORBA: :string dup ("PricePerShare") ;

ev.filterable_data[l].value <<= CORBA: :Double(175.00);

ev.filterable_data[2] .name = CORBA::string_dup ("CustomerId") ;

ev.filterable_data[2].value <<= CORBA::Long(1234567) ;

ev.filterable_datal[3] .name = CORBA: :string_dup ("CustomerName") ;
[

ev.filterable_datal[3].value <<= "Jane Jones";

Using the CORBA Notification Service 2-13

For more information about filter grammar, see“ Creating FML Field Table Filesfor
Events’ on page -7 and the section “Boolean Expression of fielded Buffers’ in
Programming Oracle Tuxedo ATMI Applications Using FML.

push_consumer

Identifies the callback object that will be used by the Notification Service to deliver a
structured event. Subscriber applications must implement the

CosNotifyComm:: StructuredPushConsumer interface so that the Notification Service can
call it to deliver events.

Note: You can use either transient or persistent object references for the callback objects.
Both QoS and application run times should betaken into consideration when deciding
which type of object referenceto use. For information to assist you in deciding which
type of object reference to use, refer to Table 2-3.

Table 2-3 When to Use Transient Versus Persistent Object References for Joint Client/Servers

If the subscription ...

Then ...

Will have atransient QoS
and will start and shut
down once.

Y ou should use atransient object reference. It this case, Oracle Systems, Inc.
recommends the subscriber application unsubscribe on shutdown so as to release
system resources, however, thisis not a requirement.

Will have a persistent QoS
and will start and shut
down once.

Y ou should use atransient object reference.

Will have a persistent Qos
and will start and shut
down multiple times.

Y ou must use a persistent object reference and store the host and port so the same
host and port is used each time the subscriber shuts down and restarts. In this case,
use of the bidirectional |1OP feature is not recommended.

Note: If ajoint client/server isused, it must be remote (outside the Oracle Tuxedo
domain) because persistent object references are not supported inside the

domain.

Will have atransient QoS
and will start and shut
down multiple times.

Y ou can use a persistent object reference; however, Oracle Systems, Inc. does not
recommend this configuration unless you can guarantee that no events for this
subscriber will be posted while the subscriber is shut down.

gos (quality of service)
Specifies the desired quality of service of the subscription. It can take one of two values:
transient or persistent.

2-14

Using the CORBA Notification Service

Oracle Simple Events API

For transient subscriptions, the Notification Service makes only one attempt to deliver the
event to asubscriber. If that attempt fails, the event is discarded and, if the Notification
Service does not receive the corsa : : TRANSTENT exception, it concludes that the
subscriber is shutdown or otherwise not available and cancels the subscription. If the
Notification Service receives the corBa: : TRANSIENT exception when an attempt to
deliver fails, it assumes that the subscriber is busy and discards the event, but it does not
cancel the subscription.

For persistent subscriptions, if the first delivery attempt fails, the Notification Service
holdsthe event in the pending queue and keeps attempting to deliver the subscription until
the configurable retry limit is reached. When the retry limit is reached, the Notification
Service moves the event on an error queue where it is held for disposition by the system
administrator. The system administrator either removes the event from the error queue,
which in effect discards it, or movesit back to the pending queue so that further attempts
to deliver it can be made.

Note: For persistent subscriptions, the Notification Service always does atwo-way invoke
on callback objects to deliver events. If ajoint client/server does not activate a
callback object (the event receiver) beforeit calls orb->run and then the Notification
Service invokes on the callback object, asfar asthe POA is concerned, the callback
object doesnot exist. Inthiscase cCorBa: : OBJECT_NOT_EXIST exceptionisreturned.
If the Notification Service receives a CorBA: : OBJECT_NOT_EXIST exception, it
drops the subscription and the event; otherwise, the subscription is retained and the
event isretried.

Oracle Simple Events API

Simplicity and ease-of-use are the defining characteristics of the Oracle Simple Events
application programming interface (API). Its capabilities are similar to those of the Oracle
Tuxedo EventBroker.

The Oracle Simple Events API consists of the following interfaces (see Figure 2-2):
® Tobj_SimpleEvents: :Channel
® Tobj_SimpleEvents::ChannelFactory

® CosNotifyComm: : StructuredPushConsumer

Using the CORBA Notification Service 2-15

2-16

Figure 2-2 Oracle Simple Events Interfaces

Channel
Factory
Interface

i“Impiemented in the i
| Subscriber's Callback !
! |

Push
Consumer
Class

Channel
Interface

The Tobj_SimpleEvents: :Channel and the Tobj_SimpleEvents: :ChannelFactory
interfaces are implemented by the Notification Service and are described below.

ThecosNoti fyComm: : StructuredPushConsumer interfaceisimplemented by the subscribers.
For a description of thisinterface, see
“CosNotifyComm:: StructuredPushConsumer::push_structured event” on page -51.

Note: The CosNotification Service classes referred to in this section are fully described in the
CosNotification Service IDL files, which are located in the tuxdir/include directory.

Note: If you use class operationsthat are not supported, the corea : : NO_TMPLEMENT exception
israised.
TOBJ_SimpleEvents::Channel Interface

The Channel interface is used:

e By subscribers to subscribe and unsubscribe to events and to determine if a subscription
exists
e By postersto post events to the Notification Service
Thisinterface provides these operations:

- subscribe()
- unsubscribe ()

- exists()

Using the CORBA Notification Service

Oracle Simple Events API

- push_structured_event ()
The CORBA IDL for thisinterface:

module Tobj_SimpleEvents
{
typedef long SubscriptionID;
typedef string RegularExpression;

typedef string FilterExpression;

const SubscriptionType TRANSIENT SUBSCRIPTION = 0;
const SubscriptionType PERSISTENT_ SUBSCRIPTION = 1;

interface Channel
{

void push_structured_event (

in CosNotification::StructuredEvent event) ;

SubscriptionID subscribe (

in string subscription_name,
in RegularExpression domain,

in RegularExpression type,

in FilterExpression data_filter,

in CosNotification: :QoSProperties gos,

in CosNotifyComm: : StructuredPushConsumer push_consumer) ;

boolean exists(in SubscriptionID id);

void unsubscribe(in SubscriptionID id);
i
i

These operations are described in the following section.
Channel::subscribe
CORBA IDL

SubscriptionID subscribe (

in string subscription_name,
in RegularExpression domain,

in RegularExpression type,

in FilterExpression data_filter,

Using the CORBA Notification Service

2-17

// The filter expression must length 1 and the name must
// be TRANSIENT_SUBSCRIPTION or PERSISTENT_SUBSCRIPTION.
in CosNotification: :QoSProperties gos,

in CosNotifyComm: : StructuredPushConsumer push_consumer

)

Parameters

For a description of the parameters supported by this operation, see “ Parameters Used When
Creating Subscriptions’ on page -11.

Exceptions

CORBA: : BAD_PARAM
Indicates one of the following problems:
Tobj_Events: : SUB_INVALID_FILTER_EXPRESSION
Tobj_Events: : SUB_UNSUPPORTED_QOS_VALUE

CORBA: : IMP_LIMIT
Indicates one of the following problems:
Tobj_Events: : SUB_DOMAIN_BEGINS_WITH_SYSEV
Tobj_Events: : SUB_EMPTY_DOMAIN
Tobj_Events: : SUB_EMPTY_TYPE
Tobj_Events: : SUB_DOMATN_AND_TYPE_TOO_LONG
Tobj_Events: : SUB_FILTER_TOO_LONG
Tobj_Events: : SUB_NAME_TO_LONG
Tobj_Events: : TRANSTENT_ONLY_CONFIGURATION

CORBA: : INV_OBJREF
Indicates the following problem:
Tobj_Events: : SUB_NIL_CALLBACK_REF

Note: For more information on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

Description

Use this operation to subscribe to events. This operation is called by a subscriber application on
the Notification Service to create a subscription to a particular event. The subscription name,
domain name, type name, data filter, quality of service, and the object reference of the
subscriber’s callback object are passed in. The callback object implements the
CosNotifyComm:: StructuredPushConsumer IDL interface.

Note: For subscribers that shut down and restart, you must write the subscription_id to
persistent storage.

2-18 Using the CORBA Notification Service

Oracle Simple Events API

To use datafiltering or subscribe to Oracle Tuxedo system events or events posted by an Oracle
Tuxedo application, seethe sections*“ Creating FML Field Table Filesfor Events’ on page -7 and
“Interoperability with Oracle Tuxedo Applications’ on page -9.

Return Value

Returns a unique subscription identifier. The effect of this operation is not instantaneous. There
can be a delay between returning from this operation and the actual start of event delivery. The
length of the delay period may be significant depending on your configuration. For more
information on factors impacting this delay period, see “ Synchronizing Databases’ on page -23.

Note: Notification Service applications that start and shut down only once can use the
subscription_id todetermineif their subscription has been cancelled automatically
or by the system administrator.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see“ Creating
a Subscription” on page -8.
C++ code example:
subscription_id = channel->subscribe (
subscription_name,
"News", // domain
“Sports”, // type
"y // No data filter.
qos,

news_consumer.in ()

Channel::unsubscribe
CORBA IDL

void unsubscribe(in SubscriptionID id);

Parameter

subscription_id
The subscription identifier.

Using the CORBA Notification Service 2-19

Exceptions

CORBA: : BAD_ PARAM
Indicates the following problem: Tobj_Events: : INVALID_SUBSCRIPTION_ID

Note: For more information on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

Description

Used to unsubscribe. Subscriber applications use this operation to terminate subscriptions. On
return from this operation, no further events can be delivered. There is one input parameter:
SubscriptionID, wWhich you got when you subscribed.

Note: Thisoperationisnot instantaneous. After returning from this operation, a subscriber may
continue to receive events for a period of time. The period of time may be significant
depending on your configuration. For more information on factors impacting this period
of time, see “ Synchronizing Databases’ on page -23.

Examples
C++ code example:

channel->unsubscribe (subscription_id) ;

Channel::push_structured_event

CORBA IDL
void push_structured_event (
in CosNotification: :StructuredEvent notification
)
Parameter
notification
This parameter contains the structured event as defined by the CosNotification Service
specification.
Exceptions

CORBA_IMP_LIMIT
Indicates one of the following problems with the subscription:
Tobj_Events: : POST_UNSUPPORTED_VALUE_IN_ANY
Tobj_Events: :POST_UNSUPPORTED_PRIORITY_VALUE
Tobj_Events: :POST DOMAIN CONTAINS SEPARATOR

2-20 Using the CORBA Notification Service

Oracle Simple Events API

Tobj_Events: : POST_TYPE_CONTAINS_SEPARATOR
Tobj_Events: : POST_SYSTEM_EVENTS_UNSUPPORTED
Tobj_Events: : POST_EMPTY_DOMAIN

Tobj_Events: : POST_EMPTY_TYPE

Tobj_Events: : POST_DOMAIN_AND_TYPE_TOO_LONG

Note: For more information on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

Description
Used by the poster application to post an event to the Notification Service.

Note: Thisoperation has transactional behavior when used in the context of atransaction. For
more information, see the section “Using Transactions’ on page -4.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see“ Creating
and Posting Events’ on page -3.

C++ code example:

channel->push_structured_event (notification) ;

Channel::exists
CORBA IDL

boolean exists(in SubscriptionID subscription_id) ;

Parameter

subscription_id
The subscription identifier.

Exceptions

CORBA: : BAD_PARAM
Indicates the following problem: Tobj_Events: : INVALID_SUBSCRIPTION_ID

If the subscription_id isfor asubscription created using the CosNotification Service
AP, this exception is always returned.

Note: For more information on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

Using the CORBA Notification Service 2-21

Description
Used by subscriber applications to determine if a subscription exists. Since the system
administrator can del ete subscriptions manually and the Notification Service can delete transient
subscriptions automatically, a subscriber application might want to use this operation so that it
can recreate the subscription, if necessary. The subscription_id used in this operation isthe
same one that you got when you subscribed.

Return Value
Returns Boolean True of the subscription exists and Falseiif it does not.

Examples
C++ code example:

if channel->exists (subscription_id) {
// The subscription is still valid.
} else {

// The subscription no longer exists.

TOBJ_SimpleEvents::ChannelFactory Interface

The channelFactory interface is used to find event channels. Thisinterface provides asingle
operation: find_channel.

The CORBA IDL for this interface:

module Tobj_SimpleEvents

{
typedef long ChannellID;

interface ChannelFactory
{
Channel find_channel (
in ChannelID channel_id // Must be DEFAULT_ CHANNEL
)
Y
Y

2-22 Using the CORBA Notification Service

CosNotification Service API

Channel_Factory::find_channel

CORBA IDL

Channel find_channel (

in ChannelID channel_id);

Parameter

In thisrelease of Oracle Tuxedo, there can only be one event channel; therefore, the channe11D
that is passed in must be set to Tobj_SimpleEvents: : DEFAULT_CHANNEL (for C++).

Exceptions

CORBA: : BAD_PARAM
Indicates the following problem:
Tobj_Events: :INVALID CHANNEL_ID

Note: For more information on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.
Description

Used by poster applications and subscriber applications. This operation is used to find the event
channel so that it can be used by the poster to post events and by the subscriber to subscribe and
unsubscribe to events.

Return Value
Returns the default event channel’ s object reference.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “ Getting
the Event Channel” on page -2.

C++ code example:

channel_factory->find_channel (
Tobj_SimpleEvents: :DEFAULT_CHANNEL) ;

CosNotification Service API

This section contains a discussion of the operations defined by the CosNotification Service that
are implemented by the Oracle Tuxedo CORBA Natification Service. These operations are only

Using the CORBA Notification Service 2-23

2-24

asubset of the complete set of operations. This subset isafunctionally complete API that can be
used as an alternative to the Oracle Simple Events API.

This API is more complex then the Oracle Simple Events API. There are two reasons for this.
First, the CosNotification Service APl is more complex. Second, the Oracle Tuxedo
implementation of the CosNotification Service API places additional restrictions on the
operations that are supported. Because this complexity offers no advantages in terms of
performance or flexibility, Oracle Systems, Inc. recommends that you use the Oracle Simple
Events APl whenever possible.

The CosNotification API isprovided for those who require that a standard API be used whenever
possible for purposes of portability. In regard to functionality, this API provides no benefits
beyond those offered by the Simple Events API. Applications that are developed using this API
will be mostly, but not completely, portable. The reason for thisis that not enough of the
CosNotification Service API is supported to facilitate portability. For example, the filtering
grammar required by the CORBA-based Natification Service is based on the COS Trader
grammar. Since Oracle Tuxedo does not support this grammar, but supports an aternative
grammar based on the Oracle Tuxedo EventBroker grammar, any application that requires
filtering will not be portable. The same istrue for QoS, that is, the CosNotification Service API
does not support the CORBA -based Natification Service standard qualities of service, but it does
support alternative qualities of service.

Overview of Supported CosNotification Service Classes

Figure 2-3 shows the CosNoatification Service classes implemented, in full or in part, in this
release of Oracle Tuxedo and their relationships.

Using the CORBA Notification Service

Figure 2-3 Implemented CosNotification Service Classes

CosNotification Service API

Event
Channel
Factory Class

Event
Channel
Class

Filter
Factory
Class

Supplier
Admin Class

Proxy Push
Consumer
Class

! Implemented in the |
| Subscriber's Callback
1
L

Push
Consumer
Class

Consumer
Admin Class

Proxy Push
Supplier
Class

The operations supported by each class are summarized below. For more detailed descriptions,
see “Detailed Descriptions of CosNotification Service Classes’ on page -27.

e CosNotifyChannel Admin::EventChannel Factory Class

This classis used by the event poster and subscriber applications. It supports the
get_channel_factory operation which isused to get the channel factory when posting,

subscribing, and unsubscribing to events.

e CosNotifyChannel Admin::EventChannel Class

Thisclassis used by event poster and subscriber applications. It supports three operations:

— default_consumer_admin—used by event subscriber applicationsto get the

consumer admin object.

— default_supplier_admin—used by event poster applications to get the supplier

admin object.

Using the CORBA Notification Service 2-25

— default_filter_factory—used by event subscriber applicationsto get the filter
factory object.

e CosNotifyChannel Admin::SupplierAdmin Class

This classis used by event poster applications. It supports the
obtain_notification_push_consumer Operation. Poster applications use this operation
to create proxy push consumer objects which in turn are used to post eventsto the
Notification Service.

e CosNotifyChannel Admin:: StructuredProxyPushConsumer Class
Thisclassisused by event poster applications. It supports the following operations:

— connect_structured_push_supplier—used by event poster applications to connect
the proxy push supplier to the Notification Service event channel.

— push_structured_event—used by event poster applications to post the event to the
Notification Service event channel.

— disconnect_structured_push_consumer—used by event poster applicationsto
disconnect the proxy push supplier from the Notification Service event channel.

e CosNotifyFilter::FilterFactory Class

This classis used by event subscriber applications to create afilter object. It supports the
create_filter operation. Thefilter object provides all datafiltering including domain,
type, and filterable data.

o CosNotifyFilter::Filter Class
This classis used by event subscriber applications. It supports the following operations:
— add_contraints operation—used to set the filter’s domain, type, and datafilter.

— destroy operation—used to destroy the filter object.

e CosNotifyChannel Admin::ConsumerAdmin Class
Thisclassis used by event subscriber applications. It supports the following operations:

— obtain_notification_push_supplier—used by event subscriber applicationsto
create proxy push supplier objects which in turn are used to deliver eventsto the
subscriber’s callback object.

— get_proxy_supplier—used by event subscriber applications to retrieve the object
reference for the proxy push supplier object. This operation is only used when the
subscriber application shuts down then restarts and cancels the subscription. Thisis

2-26 Using the CORBA Notification Service

CosNotification Service API

because subscribers need to discard the object reference from the first run and get it
back again for the next run. Subscribers cannot reuse object references from one run to
the next.

e CosNotifyChannel Admin:: StructuredProxyPushSupplier Class
This classis used by event subscriber applications. It supports the following operations:

— connect_structured_push_consumer—used by event subscriber applications to
connect the subscriber to the proxy push supplier.

— set_qgos—used by event subscriber applications to set the quality of service for
subscriptions.

— add_filter—used by event subscriber applicationsto add the filter object to the
subscription.

— get_filter—used by event subscriber applications when performing unsubscribe
operations to get the filter associated with the subscription. This operation is only used
when the subscriber application shuts down then restarts.

— disconnect_structured_push_supplier—used by event subscriber applicationsto
unsubscribe.

e CosNotifyComm::StructuredPushConsumer

Thisinterface isimplemented by event subscriber applications. It supports the
push_structured_event operation. The Notification Service invokes this operation to
deliver eventsto the subscriber.

Detailed Descriptions of CosNotification Service Classes

This section describes the CosNoatification Service classes that this release of Oracle Tuxedo
implements. These classesarefully described in the CosNatification Service IDL files, which are
located in the tuxdir/include directory.

Note: If you use class operationsthat are not supported, the corBa : : NO_IMPLEMENT exception
israised.

CosNotifyFilter::Filter Class
This classis used by event subscriber applications. The OMG IDL for this classis as follows:

Module CosNotifyFilter
{

interface Filter {

Using the CORBA Notification Service 2-21

ConstraintInfoSeq add_constraints (
in ConstraintExpSeqg constraint)

raises (InvalidConstraint);

void destroy () ;
}i
}; //CosNotifyFilter

CosNotifyFilter::Filter::add_constraints

Synopsis
Sets the domain, type, and datafilter parameters on the filter object.

OMG IDL

ConstraintInfoSeq add_constraints (
in ConstraintExpSeq constraint)

raises (InvalidConstraint);

Exceptions

CosNotifyFilter::InvalidConstraint
Never raised.

CORBA: :BAD_PARAM
Indicatesthe following problem: Tobj_Events: : SUB_INVALID_FILTER_EXPRESSION.

CORBA_IMP_LIMIT
Indicates one of the following problems;
Tobj_Notification::SUB_ADD_CONS_ON_TIMED_OUT_FILTER
Tobj_Notification: :SUB_MULTIPLE_CALLS_TO_ADD_CONS
Tobj_Notification::SUB_MULTIPLE_CONSTRAINTS_IN_LIST
Tobj_Notification::SUB_MULTIPLE_TYPES_IN_CONSTRAINT
Tobj_Notification: :SUB_SYSTEM_EVENTS_UNSUPPORTED
Tobj_Events: : SUB_DOMAIN_BEGINS_WITH_SYSEV
Tobj_Events: :SUB_EMPTY_ DOMAIN
Tobj_Events: : SUB_EMPTY_TYPE
Tobj_Events: : SUB_FILTER_TOO_LONG

Note: For more information on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

2-28 Using the CORBA Notification Service

CosNotification Service API

Description

Used when subscribing. This operation is used in subscriber applicationsto define the kind of
event to which you want to subscribe. Y ou set the domain, type, and datafilter parameters on the
filter object. For a description of these parameters, see “Parameters Used When Creating
Subscriptions’ on page -11.

Note: The Oracle Tuxedo implementation of the add_constraints operation (1) can only be
called once, (2) must be called before thefilter is added to the proxy object, and (3) must
consist of only asingle constraint that has a single event type.

Return Value
Returnsan empty 1ist, which we recommend that the caller ignores.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “ Creating
a Subscription” on page -10.

C++ code example:

// set the filtering parameters
// (domain = "News", type, and no data filter)
CosNotifyFilter::ConstraintExpSeq constraints;
constraints.length (1) ;
constraints[0] .event_types.length(1l);
constraints[0] .event_types[0] .domain_name =
CORBA: :string_dup ("News") ;
constraints[0] .event_types[0].type_name =
CORBA: :string dup (“Sports”);
// no data filter
constraints[0] .constraint_expr = CORBA::string dup("");
CosNotifyFilter::ConstraintInfoSeq var
add_constraints_results = // ignore this returned value

filter->add_constraints (constraints) ;

CosNotifyFilter::Filter::destroy

Synopsis
Destroys the filter object.

Using the CORBA Notification Service 2-29

OMG IDL

void destroy () ;

Exceptions

CORBA: : BAD_ PARAM
Indicatesthe following problem: Tobj_Events: : SUB_INVALID_ FILTER_EXPRESSION.

Note: For moreinformation on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

Description

Used when unsubscribing. This operation is used in subscriber applications to destroy the target
filter object.

Note: Do not destroy the filter object until you are ready to cancel the corresponding
subscription.

CosNotifyFilter::FilterFactory Class
This classis used by event subscriber applications. The OMG IDL for this classis as follows:

Module CosNotifyFilter
{
interface FilterFactory {
Filter create_ filter (
in string constraint_grammar)
raises (InvalidGrammar) ;
destroy () ;
};
}; //CosNotifyFilter

CosNotifyFilter::FilterFactory::create_filter

Synopsis
Determines which events are delivered to a subscription.

OMG IDL

Filter create_filter (
in string constraint_grammar)
raises (InvalidGrammar) ;

2-30 Using the CORBA Notification Service

CosNotification Service API

Exceptions

CosNotifyFilter: :InvalidGrammar
Indicates the constraint_grammar iSnot supported

Description
Used in the subscriber application to create a new filter object. Thisfilter is used to determine
which events are delivered to a subscription. The subscriber must set up the filter and add it to the
proxy within five minutes; otherwise, the filter will be destroyed. Thefilter grammar must be set
t0 Tobj_Notification: :Constraint_grammar; Otherwise, the InvalidGrammar exception
israised.

Return Value
Returns the new filter’ s object reference.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “ Creating
a Subscription” on page -10.

C++ code example:
filter_factory->create_filter(

Tobj_Notification: :CONSTRAINT_GRAMMAR
)

CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

This classis used by event subscriber applications. The OMG IDL for this classis as follows:

Module CosNotifyChannelAdmin
{
interface StructuredProxyPushSupplier :
ProxySupplier,
CosNotifyComm: : StructuredPushSupplier {

void connect_structured_push_consumer (
in CosNotifyComm: :StructuredPushConsumer push_consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;
};
// The following operations are inherited.

void set_qgos (in QoSProperties gos)

Using the CORBA Notification Service 2-31

raises (UnsupportedQoS) ;

FilterID add_filter (in Filter new_filter);

Filter get_filter(in FilterID filter)
raises (FilterNotFound) ;

void disconnect_structured_push_supplier () ;

readonly attribute ProxyType MyType;

Y
}; //CosNotifyChannelAdmin

CosNotifyChannelAdmin::StructuredProxyPushSupplier::
connect_structured_push_consumer

Synopsis
Completes a subscription.

OMG IDL

void connect_structured_push consumer (
in CosNotifyComm: :StructuredPushConsumer push_consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Exceptions

CosEventChannelAdmin: : TypeError
Never raised.

CORBA: : INV_OREF
Tobj_Events::SUB_NIL_CALLBACK_REF

CORBA: : IMP_LIMIT
Indicates one of the following problems:
Tobj_Events: : SUB_DOMATN_AND_TYPE_TOO_LONG
Tobj_Events: : SUB_NAME_TO_LONG
Tobj_Events: : TRANSIENT_ONLY_CONFIGURATION
Tobj_Notification::SUBSCRIPTION_DOESNT_EXIST.

CORBA: : OBJECT_NOT_EXIST
The proxy does not exist.

2-32 Using the CORBA Notification Service

CosNotification Service API

CosEventChannelAdmin: :AlreadyConnected
Indicates that the connect_structured push_consumer Operation has aready been
invoked.

Note: For exception definitions and corresponding minor codes, see “ Exception Minor Codes’
on page -53.

Description

Use this operation when subscribing. This operation is used in subscriber applications to
subscribe to events. The push_consumer parameter identifies the subscriber’s callback object.

Oncetheconnect_structured push consumer hasbeen called, the Notification Service will
proceed to send events to the subscriber by invoking the callback object’s
push_structured_event operation. If the connect_structured_push_consumer has
already been called, the a1readyConnected exception is raised.

Note: You must call set_qgos and add_filter before calling
connect_structured_push_ consumer.
Examples

Note: Code examples shown here are abbreviated. For complete code examples, see“ Creating
a Subscription” on page -10.

C++ code example:

subscription->connect_structured_push_consumer (

news_consumer.in()

CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_gqos

Synopsis
Sets the QoS for the subscription.

OMG IDL

void set_gos(in QoSProperties gos)
raises (UnsupportedQoS) ;

Exceptions

UnsupportedQosS
Never raised.

Using the CORBA Notification Service 2-33

ORBA: : IMP_LIMIT
Indicates one of the following problems:
Tobj_Notification::SUB_MULTIPLE_CALLS_TO_SET_QOS
Tobj_Notification::SUB_CANT_ SET_QOS_AFTER_CONNECT
Tobj_Notification: :SUBSCRIPTION_DOESNT_EXIST
Tobj_Notification::SUB_UNSUPPORTED_QOS_VALUE

Note: For more information on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

Description

Used when subscribing. This operation is used in subscriber applications to set the QoS for the
subscription. It takes as an input parameter a sequence of name-value pairs which encapsulates
quality-of-service property settings that the subscriber is requesting.

There are two components of the QoS: the subscription type and the subscription name. The
subscription typeis set by constructing a name-value pair where the name is
Tobj_Notification::SUBSCRIPTION_TYPE and thevalueiseither
Tobj_Notification::PERSISTENT SUBSCRIPTION, OF
Tobj_Notification::TRANSIENT_SUBSCRIPTION. For moreinformation and additional
usage details, see “Quality of Service” on page -2.

The subscription name is set by constructing a name-value pair, where the name is
Tobj_Notification::SUBSCRIPTION NAME, and the valueisauser-defined string.

For more information on this parameter, see“ Parameters Used When Creating Subscriptions’ on
page -11.

Examples

2-34

Note: Code examples shown here are abbreviated. For complete code examples, see “ Creating
a Subscription” on page -10.

C++ code example:

CosNotification: :QoSProperties gos;
gos.length(2);
gos[0] .name =

CORBA: :string dup (Tobj_Notification: :SUBSCRIPTION_NAME) ;
gos[0] .value <<= “MySubsription”;
gos[l] .name =

CORBA: :string_dup (Tobj_Notification: :SUBSCRIPTION_TYPE) ;
gos[1l].value <<=

Tobj_Notification::TRANSIENT SUBSCRIPTION;

Using the CORBA Notification Service

CosNotification Service API

subscription->set_gos (gos) ;

CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter

Synopsis

Setsthe filter object on the subscriber’s callback object.

OMG IDL

add_filter(

in Filter new_filter

)

Exceptions

CORBA: : IMP_LIMIT

Indicates one of the following problems:

Tobj_Notification:
Tobj_Notification:
Tobj_Notification:
Tobj_Notification::

CORBA: : OBJECT_NOT_EXIST

: SUB_MULTIPLE_CALLS_TO_SET FILTER
:SUB_ADD_FILTER_AFTER_CONNECT
:SUB_NIL_FILTER_REF

SUB_NO_CUSTOM_FILTERS

Indicates that the subscription does not exist.

Note: For more information on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

Description

Used when subscribing. This operation isused in subscriber applicationsto set thefilter object to
the subscriber’s callback object. If the application using this operation will be shut down and
restarted, the £i1ter_id should be written to persistent storage.

Note: Thisoperation: (1) cannot be called after the subscriber callback object is connected (see
connect_structured_push_consumer above), (2) cannot be called more than once,
and (3) when it is called, the filter constraint expression must already be present in the
filter (see cosNotifyFilter: :Filter add_constraints).

Note: Only filters created by the event channel’ s defaullt filter factory can be added.

Return Value

Returns a filter_id.

Using the CORBA Notification Service 2-35

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see“ Creating
a Subscription” on page -10.

C++ code example:

CosNotifyFilter::FilterID filter_id =

subscription->add_filter (filter.in());

CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter

Synopsis
Gets an object reference to the filter currently associated with the subscriber’ s callback object.

OMG IDL

Filter get_filter(in FilterID filter)

raises (FilterNotFound) ;

Exceptions

CosNotifyChannelAdmin: :FilterNotFound
The filter could not be found.

Description
Used when a restartable subscriber wants to unsubscribe. This operation is used in subscriber
applications to get an object reference to the filter currently associated with the subscriber’s
callback object. Therilter1D that is passed in must be valid for the subscriber’s
StructuredProxyPushSupplier object. If theriiter1pisnot valid for any proxy object associated
with the event channel, then ari1terNotFound exception isthrown. The operationisonly used
by subscribers that shut down and restart.

Restrictions
The following usage restrictions and guidelines apply to this operation:

a. Filter object referencesthat are returned from this operation cannot be used in comparison
operations.

b. Filter object references returned by this operation can be used by the
CosNotifyFilter::Filter::destroy operationsbut areof little use sincethey cannot
be modified or added to proxy objects.

2-36 Using the CORBA Notification Service

CosNotification Service API

Return Value

Returns afilter object reference to the filter currently associated with the subscriber’ s callback
object.

Examples
C++ code example:

CosNotify::Filter_var filter =
subscription->get_filter(filter_id());

CosNotifyChannelAdmin::StructuredProxyPushSupplier::
disconnect_structured_push_supplier

Synopsis

Used to unsubscribe.

OMG IDL

void disconnect_structured_push_supplier () ;

Exceptions

CORBA: : OBJECT_NOT_EXIST
Indicates that the subscription to be disconnected does not exist.

Note: For more information on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

Description

Used by subscriber applications when unsubscribing. This operation is used in subscriber
applications to terminate a connection between the Notification Service and the subscriber’s
callback object.

Note: This operation does not stop event delivery instantaneously. After returning from this
operation, a subscriber may continue to receive events for a period of time.

Examples
C++ code example:

subscription->disconnect_structured_push_supplier () ;

Using the CORBA Notification Service 2-31

CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType

Synopsis

Alwaysreturns cosNotifyChannelAdmin: : PUSH_STRUCTURED Proxy

OMG IDL

readonly attribute ProxyType MyType

Description

Always returns CosNot i fyChannelAdmin: : PUSH_STRUCTURED Proxy

CosNotifyChannelAdmin::StructuredProxyPushConsumer Class
This classis used by event posting applications. The OMG IDL for thisclassis asfollows:

Module CosNotifyChannelAdmin
{
interface StructuredProxyPushConsumer :
ProxyConsumer,

CosNotifyComm: : StructuredPushConsumer {

void connect_structured_push_supplier (
in CosNotifyComm: :StructuredPushSupplier push_supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;
// The following operations are inherited.
readonly attribute MyType;
void push_structured_event (
in CosNotification::StructuredEvent notification)
raises(CosEventComm: :Disconnected) ;
void disconnect_structured_push_consumer () ;
Y

}; \\StructuredProxyPushConsumer

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
connect_structured_push_supplier

Synopsis

Prepares the Notification Service to receive an event.

2-38 Using the CORBA Notification Service

CosNotification Service API

OMG IDL

void connect_structured_push_ supplier (
in CosNotifyComm: :StructuredPushSupplier push_supplier)

raises (CosEventChannelAdmin: :AlreadyConnected) ;

Exception

CosEventChannelAdmin: :AlreadyConnected
Never raised.

Description

Used by poster applications when posting events. Y ou must call this operation to prepare the
Notification Serviceto receive an event and you must passin aNIL when you use this operation.
The sequence of usageis as follows:

Make a proxy.
Use this operation to connect to the Notification Service and passin aNIL.

Post events.

E A

Before exiting the poster program, disconnect.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see“ Creating
and Posting Events’ on page -3.

C++ code example:

proxy_push_consumer->connect_structured_push_supplier (

CosNotifyComm: : StructuredPushSupplier::_nil()

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
push_structured_event

Synopsis
Posts events to the event channel.

Using the CORBA Notification Service 2-39

OMG IDL

void push_structured_event (

in CosNotification::StructuredEvent notification)

raises(CosEventComm: :Disconnected) ;

Exceptions

CosEventComm: : Disconnected

Never raised.

CORBA: : IMP_LIMIT

Indicates one of the following problems:

Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:
Tobj_Events:

: POST_UNSUPPORTED_VALUE_IN_ANY
:POST_UNSUPPORTED_PRIORITY_VALUE
: POST_DOMAIN_CONTAINS_SEPARATOR
:POST_TYPE_CONTAINS_SEPARATOR
:POST_SYSTEM_EVENTS_UNSUPPORTED
:POST_EMPTY_DOMAIN
:POST_EMPTY_TYPE

: POST_DOMAIN_AND_TYPE_TOO_LONG

Note: For moreinformation on exceptions and corresponding minor codes, see “ Exception
Minor Codes’ on page -53.

Descriptions
Used when posting events. Thisoperation isused in poster applicationsto post eventsto the event

2-40

channel.

Note: Thisoperation differs from the standard CORBA definition in the following ways:

a. The Priority in the variable header section of the event, if specified, must be short
valuein the range of 1 to 100.

b. If event filterable datafiltering (versusfiltering on domain and type only) isrequired,
or if eventsareto be received by an Oracle Tuxedo subscriber, then additional restrictions
apply. See“ Structured Event Fields, Types, and Filters’ on page -5 and “ Interoperability
with Oracle Tuxedo Applications’ on page -9.

Note: Thisoperation has transactional behavior when used in the context of atransaction. For
more information, see “Using Transactions’ on page 2-4.

Using the CORBA Notification Service

CosNotification Service API

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see“ Creating
and Posting Events’ on page -3.

C++ code example:

proxy_push_consumer->push_structured_event (notification) ;

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
disconnect_structured_push_consumer

Synopsis

Stops posting events.

OMG IDL

void disconnect_structured_push_consumer () ;

Descriptions

Used when posting events. This operation is used by poster applications to stop posting events.
It takes no input parameters and returns no values. The recommended usage sequenceis as
follows:

1. Make aproxy.
2. Connect and disconnect on every run of the poster application.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “ Creating
and Posting Events” on page -3.

C++ code example:

proxy_push_consumer->disconnect_structured_push_consumer () ;

CosNotifyChannelAdmin::StructuredProxyPushConsumer:MyType
Synopsis

Alwaysreturns cosNotifyChannelAmdmin: : PUSH_STRUCTURED Proxy.

Using the CORBA Notification Service 2-11

OMG IDL

readonly attribute ProxyType MyType

Description
Alwaysreturns cosNotifyChannelAmdmin: : PUSH_STRUCTURED Proxy

CosNotifyChannelAdmin::ConsumerAdmin Class
Thisclassis used by event subscriber applications. The OMG IDL for this classis asfollows:

Module CosNotifyChannelAdmin
{

interface ConsumerAdmin

CosNotification: :QoSAdmin,
CosNotifyComm: :NotifySubscribe,
CosNotifyFilter::FilterAdmin,

CosEventChannelAdmin: :ConsumerAdmin {

ProxySupplier obtain notification_ push supplier (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded)

ProxySupplier get_proxy supplier (
in ProxyID proxy_id)

raises (ProxyNotFound) ;

}i
}; //CosNotifyChannelAdmin

CosNotifyChannelAdmin::ConsumerAdmin::
obtain_notification_push_supplier

Synopsis

Creates proxy push supplier objects.

OMG IDL

ProxySupplier obtain notification_push_supplier (

in ClientType ctype,

2-42 Using the CORBA Notification Service

CosNotification Service API

out ProxyID proxy_id)

raises (AdminLimitExceeded)

Exceptions

CosNotifyChannelAdmin: :AdminLimitExceeded
Never raised.

CORBA: : IMP_LIMIT
Indicates the following problem:
Tobj_Notification: : SUB_UNSUPPORTED_CLIENT TYPE

Description

Used when subscribing. This operation is used in subscriber applicationsto create proxy push
supplier objects. Only structured eventsare supported (that is, ANY_EVENT and SEQUENCE_EVENT
ClientTypes are not supported). Therefore, the c1ientType input parameter must be set to
CosNotifyComm: : STRUCTURED_EVENT. |f you shut down and restart the subscriber and
subscription survives more than one run of your program, the proxy D returned by this operation
should be durably stored. The subscriber must narrow the proxy supplier to
CosNotifyChannelAdmin: : StructuredProxyPushSupplier. All required operations must
be completed in five minutes.

Note: Notification Service applications that start and shut down only once can use the
proxy_id todetermineif their subscription has been cancelled automatically or by the
system administrator.

Return Value

This operation returns the new proxy’s object reference. The new proxy_id isalso returned
through the proxy_id out parameter.

Examples
Note: Code examples shown here are abbreviated. For complete code examples, see“ Creating
a Subscription” on page -10.
C++ code example:
CosNotifyChannelAdmin: :ProxySupplier_var generic_proxy =
consumer_admin->obtain_notification_push_supplier (
CosNotifyChannelAdmin: : STRUCTURED_EVENT,

proxy_id
)

Using the CORBA Notification Service 2-43

CosNotifyChannelAdmin: : StructuredProxyPushSupplier_var proxy =
CosNotifyChannelAdmin: : StructuredProxyPushSupplier: :_narrow (
generic_proxy.in ()
)

CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier

Synopsis
Returns the proxy push supplier object created using the consumer admin object
obtain_notification_push_supplier operation.

OMG IDL
ProxySupplier get_proxy supplier (
in ProxyID proxy_id)
raises (ProxyNotFound) ;
Exceptions

CosNotifyChannelAdmin: : ProxyNotFound
Indicates that the proxy1D could not be found.

Descriptions

Used when unsubscribing. This operation is used in subscriber applications to return the proxy
push supplier object created using the consumer admin object
obtain_notification_push_supplier operation. The proxyID input parameter uniquely
identifies the proxy object. Callers should be aware that the proxy object can be destroyed either
dueto an error in delivering atransient subscription or through an ntsadmin administrative
command. When aproxy object is destroyed, the proxy1D associated with it isinvalidated. If the
proxyIDisinvalid, arProxyNotFound exception israised. The subscriber must narrow the proxy
supplier 10 CosNotifyChannelAdmin: : StructuredProxyPushSupplier.

Return Value

Returns the object reference for the existing proxy.

Examples
C++ code example:

CosNotifyChannelAdmin: :ProxySupplier_var generic_proxy =

m_consumer_admin->get_proxy_supplier (

2-44 Using the CORBA Notification Service

CosNotification Service API

m_subscription_info.news_proxy_id()
)
CosNotifyChannelAdmin: :StructuredProxyPushSupplier_var proxy =
CosNotifyChannelAdmin: : StructuredProxyPushSupplier: :_narrow (
generic_proxy.in()

) ;

CosNotifyChannelAdmin::SupplierAdmin Class

This classis used by event poster applications. The OMG IDL for this classis as follows:

Module CosNotifyChannelAdmin
{
interface SupplierAdmin
CosNotification: :QoSAdmin,
CosNotifyComm: :NotifyPublish,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin: : SupplierAdmin {

ProxyConsumer obtain notification_push_consumer (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);
}i
}; //SupplierAdmin

CosNotifyChannelAdmin::SupplierAdmin::
obtain_notification_push_consumer

Synopsis

Creates proxy push consumer objects.

OMG IDL

ProxyConsumer obtain notification_push_ consumer (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded) ;

Using the CORBA Notification Service

2-45

Exceptions

CosNotifyChannelAdmin: :AdminLimitExceeded
Never raised.

CORBA: : IMP_LIMIT
Indicates the following problem:
Tobj_Notification: :SUB_UNSUPPORTED_CLIENT_ TYPE

Description

Used when posting events. This operation is used in poster applications to create proxy push
consumer objects. clientType must be set to

“CosNotifyChannelAdmin: : STRUCTURED_EVENT”. The proxy1D returned should beignored.
The Proxy Consumer must be narrowed the proxy supplier to

CosNotifyChannelAdmin: : StructuredProxyPushConsumer

Note: Notification Service applications that start and shut down only once can use the
proxy_id todetermineif their subscription has been cancelled automatically or by the
system administrator.

Return Value

This operation returns the new proxy’s object reference. The new proxy_id isalso returned
through the proxy_id out parameter.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see“ Creating
and Posting Events’ on page -3.

C++ code example:

CosNotifyChannelAdmin: : ProxyConsumer_var generic_proxy_consumer =
supplier_admin->obtain_notification_push_consumer (
CosNotifyChannelAdmin: : STRUCTURED_EVENT,
proxy_id
) ;

CosNotifyChannelAdmin: : StructuredProxyPushConsumer_var
proxy_push_consumer =
CosNotifyChannelAdmin: : StructuredProxyPushConsumer: : _narrow (
generic_proxy_consumer

)

2-46 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::EventChannel Class
This classis used by event poster applications. The OMG IDL for this classis as follows:

Module CosNotifyChannelAdmin
{

interface EventChannel :
CosNotification: :QoSAdmin,
CosNotification: :AdminPropertiesAdmin,
CosEventChannelAdmin: :EventChannel {

readonly attribute ConsumerAdmin default_consumer admin;

readonly attribute SupplierAdmin default_supplier admin;

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

}i
}; //CosNotifyChannelAdmin

CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_consumer_admin

Synopsis
Gets the ConsumerAdmin object.

OMG IDL

readonly attribute ConsumerAdmin default_consumer admin;

Description

Used when subscribing and unsubscribing. This operation is used in subscriber applications to
get the ConsumerAdmin object.

Return Value
Returns the object reference to the ConsumerAdmin object.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “ Getting
the Event Channel, ConsumerAdmin Object, and Filter Factory Object” on page -8.

C++ code example:

Using the CORBA Notification Service 2-41

channel->default_consumer_admin() ;

CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_supplier_admin

Synopsis
Gets the SupplierAdmin object.

OMG IDL

readonly attribute SupplierAdmin default_supplier admin;

Description

Used when posting events. This operation is used in event poster applications to get the
SupplierAdmin object.

Return Value
SupplierAdmin object reference.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see“ Creating
and Posting Events’ on page -3.

C++ code example:

channel->default_supplier_admin();

CosNotifyChannelAdmin::EventChannel::default_filter_factory

Synopsis
Gets the default FilterFactory object.

OMG IDL

readonly attribute CosNotifyFilter::FilterFactory
default_filter factory;

2-48 Using the CORBA Notification Service

CosNotification Service API

Description

Used when subscribing. This operation is used in subscriber applicationsto get the default
FilterFactory object.

Return Value
Default FilterFactory object reference.

Examples

Note: Code examples shown here are abbreviated. For complete code examples, see “ Getting
the Event Channel, ConsumerAdmin Object, and Filter Factory Object” on page -8.

C++ code example:

channel->default_filter factory();

CosNotifyChannelAdmin::EventChannelFactory Class
This classis used by event poster applications. The OMG IDL for this classis as follows:
Module CosNotifyChannelAdmin
{
interface EventChannelFactory {
EventChannel get_event_channel (in ChannelID id)
raises (ChannelNotFound) ;
I

}; //CosNotifyChannelAdmin

CosNotifyChannelAdmin::EventChannelFactory::get_event_channel

Synopsis
Getsthe EventChannel object.

OMG IDL

EventChannel get_event_channel (in ChannelID id)

raises (ChannelNotFound) ;

Exceptions

CosNotifyChannelAdmin: :ChannelNotFound
Indicates the channel cannot be found.

Using the CORBA Notification Service 2-49

Description

Used when subscribing, unsubscribing, and posting events. Thisoperationisused in applications
to get the Eventchannel object. When subscribing, the EventChannel object is used to get the
filter factory object and the ConsumerAdmin object. When unsubscribing, the EventChannel
object isused to get the ConsumerAdmin object.When posting an event, the EventChannel object
is used to get the SupplierAdmin object. The channel1D parameter that is passed in must be set
t0 Tobj_Notification: : DEFAULT_CHANNEL; Otherwise, the channelNotFound exception is
raised.

Return Value
Returns the default event channel’ s object reference.

Examples
Note: Code examples shown here are abbreviated. For complete code examples, see “ Getting
the Event Channel” on page -2 and “ Getting the Event Channel, ConsumerAdmin
Object, and Filter Factory Object” on page -8.

C++ code example:

channel_factory->get_event_channel (
Tobj_Notification: :DEFAULT_CHANNEL) ;

CosNotifyComm::StructuredPushConsumer Interface

Thisinterface is used by event subscriber applications for event delivery. Y ou must implement
thisinterface so that the Notification Service can invoke on it to deliver events to subscribers. It
has three methods which you have to implement.

The OMG IDL for thisclassis as follows:

Module CosNotifyComm
{

interface StructuredPushConsumer : NotifyPublish {

void push_structured_event (
in CosNotification::StructuredEvent event)
raises (CosEventComm: : Disconnected) ;
void disconnect_structured_push_consumer:
//The following operations are inherited.
void offer_change (
in CosNotification: :EventTypeSeq added,

2-50 Using the CORBA Notification Service

i

CosNotification Service API

in CosNotification::EventTypeSeq removed)

raises (InvalidEventType);

}; //CosNotifyComm

CosNotifyComm::StructuredPushConsumer::push_structured_event

Synopsis

Delivers a structured event.

OMG IDL

void push_structured_event (

Exceptions

in CosNotification::StructuredEvent event)

raises (CosEventComm: : Disconnected) ;

CosEventComm: : Disconnected

Description

The subscriber should never raise this exception.

Used when subscribing. This operation isimplemented by the subscriber’s callback object andis
invoked by the Notification Service each time a structured event is delivered. This operation
contains asingle input parameter, which is a structured event.

Note:

Examples
Note:

This operation will not be called in atransaction. Also, when this operation is called, it
must return quickly because the Notification Service might not start delivering eventsto
other subscribers until this operation returns.

Code examples shown here are abbreviated. For complete code examples, see
“Implementing the CosNotifyComm::StructuredPushConsumer Interface” on page -5.

C++ code example:

virtual void push_structured_event (

const CosNotification::StructuredEvent& notification);

{
// Process the event.

}

Using the CORBA Notification Service 2-51

CosNotifyComm::StructuredPushConsumer::
disconnect_structured_push_consumer

Synopsis
Never invoked.

OMG IDL

void disconnect_structured_push_consumer;

Description

This operation is never invoked. The subscriber application must provide a stubbed-out version
of this operation.

Examples
C++ code example:

virtual void push_structured_event (

const CosNotification::StructuredEvent& notification);

throw new CORBA: :NO_IMPLEMENT () ;

CosNotifyComm::StructuredPushConsumer::0ffer_change

Synopsis
Never invoked.

OMG IDL

void offer_change (
in CosNotification: :EventTypeSeq added,
in CosNotification: :EventTypeSeqg removed)

raises (InvalidEventType);

Exceptions

CosNotifyComm: : InvalidEventType
The subscriber should never raise this exception.

2-52 Using the CORBA Notification Service

CosNotification Service API

Description

This operation is never invoked. The subscriber application must provide a stubbed-out version
of this operation.

Examples
C++ code example:

virtual void offer_change (
const CosNotification: :EventTypeSeqg& added,

const CosNotification: :EventTypeSeg& removed)

throw CORBA::NO_IMPLEMENT () ;

Exception Minor Codes

This section provides information about the Notification Service exception symbols and minor
codes. The minor codes arein the Tobj_Events.idl and Tobj_Notification.idl files.
Thesefiles arelocated in the tuxdir\include directory (for Microsoft Windows systems) and
tuxdir/include directory (for UNIX systems).

Table 2-4 and Table 2-5 list the exception symbols and corresponding minor codes for the
Tobj_Events and Tobj_Noatification exceptions respectively. CORBA system events have a
minor code field and those minor codes are also defined in these tables.

Note: The exception symbols are organized within the tables by the higher-level exceptions
(CORBA: :IMP_LIMIT, CORBA: : CORBA: : BAD_PARAM, CORBA: : BAD_INV_ORDER,
CORBA: : INV_OBHJREF, and CORBA : : OBJECT_NOT_ExTST) and listed in al phabetical
order.

Using the CORBA Notification Service 2-53

Table 2-4 Tobj_Events Exception Minor Codes

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

CORBA: : IMP_LIMIT Exceptions

Tobj_Events::
POST_DOMAIN_AND_ TYPE_TOO_LONG

This exception israised by:

Tobj_SimpleEvents: :Channel: :
push_structured_event

CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event

When posting an event, the user
specified adomain name and type
name whose combined length was
greater than 31 characters.

5455580D

Tobj_Events::
POST_DOMAIN_CONTAINS_SEPARATOR

This exceptionisraised by:

Tobj_SimpleEvents: :Channel::
push_structured_event

CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event

When posting an event, the user
specified adomain name that
contained the " . " character.

54555802

Tobj_Events: : POST_EMPTY_ DOMAIN

This exception israised by:

Tobj_SimpleEvents: :Channel: :
push_structured_event

CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event

When posting an event, the user
specified an empty domain name.

5455580B

Tobj_Events: :POST_EMPTY_TYPE

This exception is raised by:

Tobj_SimpleEvents: :Channel: :
push_structured_event

CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event

When posting an event, the user
specified an empty type name.

5455580C

2-54

Using the CORBA Notification Service

CosNotification Service API

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj_Events: : When posting an event, theuser tried 54555804
POST_SYSTEM_EVENTS_UNSUPPORTED to post an Oracle Tuxedo system
This exception is raised by: event; that is, the domain nameis
- "TMEVT" and the type name starts
e Tobj_SimpleEvents::Channel:: .
withthe " . » character.

push_structured_event
e CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event
Tobj_Events: : When posting an event, the user 54555803
POST_TYPE_CONTAINS_SEPARATOR specified atype name that contained
This exception israised by: the . character.
e Tobj_SimpleEvents: :Channel::

push_structured_event
e CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event
Tobj_Events:: When posting an event, the user 54555801
POST_UNSUPPORTED_PRIORITY_ VALUE added a "Priority" fieldinthe
Thisis exception is raised by: variable header. However, the user

s did not set thefield'svalueto a

e Tobj_SimpleEvents:: vshort " in the range of 1-100

Channel: :push_structured_event shor g :
e CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :

push_structured_event
Tobj_Events: : When posting an event, theuser put 54555800

POST_UNSUPPORTED_VALUE_IN_ANY
This exception is raised by:
e Tobj_SimpleEvents::
Channel: :push_structured_event
e CosNotifyChannelAdmin: :

StructuredProxyPushConsumer: :
push_structured_event

an unsupported type (for example, a
structure, union, sequence, etc.) into
one of the "anys" in the structured
event field. The unsupported typeis
in the variable header's valuefield,
thefilterable data'svaluefield, or the
remainder_of_body field.

Using the CORBA Notification Service

2-55

Tahle 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)

Tobj_Events: : When subscribing, the user specified 54555809
SUB_DOMAIN_AND_TYPE_TOO_LONG adomain name and type name
whose combined length is greater

This exception israised by: +hen 255 cheract
an characters.

e Tobj_SimpleEvents::Channel::
subscribe

e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier: :
connect_structured_push_consumer

Tobj_Events: : When subscribing, theuser specified 54555805
SUB_DOMAIN_BEGINS_WITH_SYSEV adomain name that begins with the
" character.

This exception israised by:

e Tobj_SimpleEvents::Channel::
subscribe

e CosNotifyFilter::Filter::
add_constraints

Tobj_Events::SUB_EMPTY DOMAIN The user specified an empty domain 54555807

This exception is raised by: name when subscribing.

e Tobj_SimpleEvents::Channel::
subscribe

e CosNotifyFilter::Filter::
add_constraints

Tobj_Events::SUB_EMPTY TYPE The user specified an empty type 54555808

This exception is raised by: name when subscribing.

e Tobj_SimpleEvents::Channel::
subscribe

e CosNotifyFilter::Filter::
add_constraints

Tobj_Events::SUB_FILTER_TOO_LONG The user specified a datafilter 5455580A
This exception is raised by: expression longer than 255
characters.

e Tobj_SimpleEvents::Channel::
subscribe

e CosNotifyFilter::Filter::
add_constraints

2-56 Using the CORBA Notification Service

CosNotification Service API

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj_Events::SUB_NAME_TO_LONG When subscribing, the user specified 5455580E
This exception is raised by: asubscription name longer than 127
s characters.
e Tobj_SimpleEvents::Channel::
push_structured_event
e CosNotifyChannelAdmin: :
StructuredProxyPushConsumer: :
push_structured_event
Tobj_Events:: The user tried to create apersistent 54555806
TRANSIENT_ONLY_CONFIGURATION subscription, but the system was
This exception is raised by: configured to support transient
s subscriptions only.
e Tobj_SimpleEvents::Channel:: P y
subscribe
e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier: :
connect_structured_push_consumer
CORBA: :BAD PARAM Exceptions
Tobj_Events::INVALID_ CHANNEL_ID When looking up the channel using 54555813

This exception israised by:
e Tobj_SimpleEvents::ChannelFactory
:: find_channel

the Simple Events API, the user
specified aninvalid channel ID, that
is, achanndl 1D that is not
Tobj_SimpleEvents::
DEFAULT_CHANNEL.

Using the CORBA Notification Service

2-57

Tahle 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj_Events: : When unsubscribing using the 54555812
INVALID_SUBSCRIPTION_ID Simple Events AP, the user
This exception is raised by: specified an invalid subscription 1D,
e Tobj_SimpleEvents::Channel:: that is, a non-existent or a
J—>b o o CosNotification subscription ID.
unsubscribe) o
e CosNotifyChannelAdmin: : W_hen looking up_gsupscnphop
c S using the CosNotification Service
onsumerAdmin: :get_proxy_ e . .
supplier API, the user specified an invalid
. Tobi SimpleEvents: : subscription ID, that is, a
J—>1mp et o non-existent or aSimple Events API
Channel: :exists .
subscription ID.
When callingthe exists operation
using the Oracle Simple Events AP,
the user passed in a CosNotification
subscription_id
Tobj_Events: : When subscribing, the user specified 54555810

SUB_INVALID_FILTER_EXPRESSION

This exception israised by:

Tobj_SimpleEvents: :Channel::

subscribe

CosNotifyFilter::Filter::
add_constraints

aninvalid datafilter expression.
This either means that thereisa
syntax error in the expression or that
one of the field namesin the
expression isnot defined asan FML
field.

Check that you have correctly
created FML field tablesthat contain
all fields that you want to datafilter
on, and check that the UBBCONFIG
fileisproperly configured so that the
field tablefiles can be found.

2-58

Using the CORBA Notification Service

CosNotification Service API

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Definitions Minor Codes
(Hexadecimal)

Tobj_Events::
SUB_UNSUPPORTED_QOS_VALUE

This exception israised by:

e Tobj_SimpleEvents::Channel::

subscribe
e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :

set_gos

54555811

When subscribing, the user specified aninvalid subscription
quality of service.

For the Simple Events API, this means that the quality of
service specified did not meet one of the following
reguirements:

e The sequence must be of length one.

* Thename must be Tobj_SimpleEvents: :
SUBSCRIPTION_TYPE.

¢ Thevaue must be either Tobj_SimpleEvents: :
TRANSIENT_SUBSCRIPTION Or
Tobj_SimpleEvents::
PERSISTENT SUBSCRIPTION.

For the CosNotification Service API, this means that the
quality of service specified did not meet one of thefollowing
reguirements:

¢ Thequality of service must contain a name/value pair
wherethe nameis Tobj_Notification::
SUBSCRIPTION_TYPE andthevaueis
Tobj_Notification::
TRANSIENT_SUBSCRIPTION Of
Tobj_Notification::
PERSISTENT_SUBSCRIPTION.

e Thequality of service may contain a name/value pair
where the nameis
Tobj_Notification::SUBSCRIPTION_NAME
and the value is a string containing the subscription’s
administrative name.

Using the CORBA Notification Service 2-59

Tahle 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

CORBA: : INV_OBHJREF

Tobj_Events::
SUB_NIL_CALLBACK_REF

This exception is raised by:

e Tobj_SimpleEvents::Channel::

subscribe

e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier: :
connect_structured_push_consumer

When subscribing, the user specified
aNIL object reference for the
callback object which receives
events.

54555830

Tahle 2-5 Tobj_Notification Exception Minor Codes

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

CORBA: :IMP_LIMIT Exceptions

Tobj_Notification::

SUB_ADD_CONS_ON_TIMED_OUT_FILTER

This exception israised by:

e CosNotifyFilter::Filter::

add_constraints

A CosNotification subscriber waited
more than five minutes after creating
afilter to call add_constraints
onthefilter. Thismeansthat thefilter
has been destroyed (timed out) and
the subscriber must create a new
filter.

54555858

Tobj_Notification::

SUB_ADD_CONS_TO_ADDED_FILTER

This exception is raised by:

e CosNotifyFilter::Filter::

add_constraints

A CosNoatification subscriber called
add_constraints on afilter that
had already been added to a proxy.

5455585E

2-60 Using the CORBA Notification Service

CosNotification Service API

Tahle 2-5 Tohj_Notification Exception Minor Codes (Continued)

Exception Symbols

Minor Codes
(Hexadecimal)

Definitions

Tobj_Notification::
SUB_ADDED_TIMED_OUT_FILTER
This exception israised by:
e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :
add_filter

After creating afilter and calling
"add_constraints' onit, a
CosNotification subscriber waited
more than five minutes to call
add_filter to add thefilter tothe
proxy. This means that the filter has
been destroyed (timed out) and that
the subscriber must create a new
filter.

5455585D

Tobj_Notification::
SUB_ADD_FILTER_AFTER_CONNECT
This exception israised by:

e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :
add_filter

A CosNotification subscriber called 54555852
add_filter after connectingtothe

proxy.

Tobj_Notification::

SUB_CANT_SET QOS_AFTER_CONNECT

This exception israised by:

e CosNotifyChannelAdmin: :Structured
ProxyPushSupplier: :set_gos

A CosNotification subscriber called 54555856
set_qgos after connecting to the

proxy.

Tobj_Notification::

SUB_MULTIPLE_CALLS_TO_ADD_CONS

This exception israised by:

e CosNotifyFilter::Filter::
add_constraints

A CosNotification subscriber called 54555859
add_constraints morethanonce
on afilter.

Tobj_Notification::

SUB_MULTIPLE CALLS_TO_SET FILTER
This exception israised by:

e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :
add_filter

A CosNotification subscriber called 54555851
add_filter morethan onceona

proxy.

Using the CORBA Notification Service

2-61

Tahle 2-5 Tohj_Notification Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj_Notification::
SUB_MULTIPLE_ CALLS_TO_SET QOS
This exception israised by:

e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :
set_gos

A CosNotification subscriber called
set_gos morethan once onaproxy.

54555855

Tobj_Notification::

SUB_MULTIPLE_CONSTRAINTS_ IN LIST

This exception israised by:

e CosNotifyFilter::Filter::
add_constraints

When a CosNotification subscriber
caled add_constraints ona
filter, the subscriber passedin alist of
constraints that had more than one
item; that is, the subscriber wastrying
tosendinalist of datafiltersinstead
of one data filter.

5455585A

Tobj_Notification::

SUB_MULTIPLE_TYPES_IN_ CONSTRAINT

This exception israised by:

e CosNotifyFilter::Filter::
add_constraints

When a CosNatification subscriber
called add_constraints ona
filter, the subscriber passed on a
constraint that had more than one
domain/type set; that is, the
subscriber wastrying to send in alist
of desired event types instead of one
event type.

54555858

Tobj_Notification::
SUB_NIL_FILTER_REF

This exception israised by:

e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :
add_filter

A CosNoatification subscriber passed
aNIL filter object reference into
add_filter

54555853

2-62 Using the CORBA Notification Service

CosNotification Service API

Tahle 2-5 Tohj_Notification Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj_Notification:: A CosNoatification subscriber passed 54555854
SUB_NO_CUSTOM_FILTERS afilter object that was not created by
This exception israised by the default filter factory into
e CosNotifyChannelAdmin: : add_f}}te;.Foreanme,a
. CosNotification subscriber
StructuredProxyPushSupplier:: imol ted th
add_filter tmplemented the
CosNotifyFilter::Filter
interfaceto do somekind of "custom”
filtering and passed one of thosefilter
objectsinto add_filter.
Tobj_Notification:: A CosNoatification subscriber did not 54555850
SUB_SET_FILTER_NOT CALLED cal add_filter tothe proxy
This exception is raised by: before connecting to the proxy.
e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier: :
connect_structured_push_
consumer
Tobj_Notification:: A CosNotification subscriber did not 54555857
SUB_SET_QOS_NOT_CALLED cal add_filter tothe proxy
This exception is raised by: before connecting to the proxy.
e CosNotifyChannelAdmin: :
StructuredProxyPushSupplier::
connect_structured_push_
consumer
Tobj_Notification:: A CosNotification subscriber passed 5455585C

SUB_SYSTEM_EVENTS_UNSUPPORTED
This exception israised by:
e CosNotifyChannelAdmin: :

StructuredProxyPushSupplier: :

set_gos

inadomain name of "TMEVT" and a
type name that beginswith " . ; that
is, the CosNotification subscriber was
trying to subscribe to Tuxedo system
events. Thisis not supported. It is
only supported by the Simple Events
API.

Using the CORBA Notification Service

2-63

Tahle 2-5 Tohj_Notification Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj_Notification:: When creating a proxy, a 5455585F
SUB_UNSUPPORTED_CLIENT TYPE CosNoatification subscriber or poster
Thisis exception raised by: passed in aclient type other than
) CosNotifyChannelAdmin: : ST
e ConsumerAdmin: : RUCTURED EVENT
obtain_notification_push_ -
supplier
e SupplierAdmin::
obtain_notification_push_
consumer
CORBA: :OBJECT NOT_EXIST Exception
Tobj_Notification:: A CosNatification subscriber calleda 54555880

SUBSCRIPTION_DOESNT_ EXIST

This exception israised by:

e StructuredProxyPushSupplier::
add_filter

e StructuredProxyPushSupplier::
set_gos

e StructuredProxyPushSupplier::
connect_structured_push_
consumer

e StructuredProxyPushSupplier::
disconnect_structured_push_
supplier

Note: connect_structured_push_
consumer can raise this exception since
auser can create the proxy, then use the
ntsadmin utility to delete the
subscription, and then call
connect_structured_push_
consumer 0N the proxy.

method on a proxy that had already
been destroyed. The proxy has been
destroyed by one of the following
actions:;

¢ The CosNoatification subscriber
disconnected the proxy.

¢ The CosNoatification subscriber
waited more than five minutes
from creating the proxy to
connecting it; that is, it took
longer than five minutes to
complete the subscription.

¢ Theadministrator used the

ntsadmin utility to destroy the
subscription.

2-64 Using the CORBA Notification Service

CHAPTERa

Using the Oracle Simple Events API

This chapter describes the devel opment steps required to create Notification Service applications
using the Oracle Simple Events APl and the C++ languages.

This topic includes the following sections:
e Development Process
e Step 1: Writing an Application to Post Events
e Step 2: Writing an Application to Subscribe to Events
e Step 3: Compiling and Running Notification Service Applications

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBSs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

Development Process

Table 3-1 outlines the devel opment process for creating Notification Service applications.

Using the CORBA Notification Service 3-1

Table 3-1 Development Process

Step Description

1 Designing events

2 Writing an application that posts events

3 Writing an application that subscribes to events
4 Compiling a Notification Service application

These steps are explained in detail in subsequent topics.

Designing Events

Thedesign of eventsisbasic to any natification service. The design impacts not only the volume
of information that is delivered to matching subscriptions, but the efficiency and performance of
the Notification Service aswell. Therefore, careful planning should be done to ensure that your
Notification Service will be able to handle your needs now and allow for future growth. For a
discussion of event design, see “Designing Events’ on page -6.

Step 1: Writing an Application to Post Events

3-2

The following types of CORBA applications can post events:
e C++clients, joint client/servers and servers.

e Foreign ORB clients.
To post events, an application must, at a minimum, implement the following functions:

e Get the event channel factory object reference and use it to get the event channel.

e Create and post events.

The following sections describe each of these functions.

Getting the Event Channel

Before the client application can post an event, it must first get the event channel.

Using the CORBA Notification Service

Step 1: Writing an Application to Post Events

This development step isillustrated in Listing 3-1. Listing 3-1 is based on the Notification
Service sample applications that use the Oracle Simple Events API.

To get the event channel factory object reference, the resolve_initial_ references method
isinvoked on the Bootstrap object using the "Tobj_SimpleEventsService" environmental
object. The object reference is used to get the channel factory, which isin turnis used to get the
event channel. Listing 3-1 show code examplesin C++,

Listing 3-1 Getting the Event Channel (C++)

// Get the Simple Events channel factory object reference.
CORBA: :Object_var channel_factory_oref =
bootstrap.resolve_initial_references (
"Tobj_SimpleEventsService") ;
Tobj_SimpleEvents: :ChannelFactory_var channel_factory =
Tobj_SimpleEvents: :ChannelFactory: :_narrow (
channel_factory_oref.in());
// Use the channel factory to get the default channel.
Tobj_SimpleEvents: :Channel_var channel =
channel_factory->find_channel (
Tobj_SimpleEvents: : DEFAULT_CHANNEL) ;

Creating and Posting Events

Before an event can be posted, it must be created. The following listings are based on the
Notification Service sample applications.

Listing 3-2 show how thisisimplemented in C++. To report news to the events channel, this
application executes the following steps:

1. Creates an event and sets the domain name and type name. In the code samples, the domain
nameis set to “News’ and the event typeis set to “ Sports’.

2. Addsafield to the event'sfilterable data to contain the story, setsthe name of the added field
to “Story”, and the value of the field to a string containing the story.

3. Usesthepush_structured_event operation to post the event to the Notification Service.

Using the CORBA Notification Service 3-3

Listing 3-2 Creating and Posting the Event (C++)

// Create an event.
CosNotification: :StructuredEvent notification;
// Set the domain to "News".
notification.header.fixed_header.event_type.domain_name =
CORBA: :string_dup ("News") ;
// Set the type to the news category.
notification.header.fixed_header.event_type.type_name =
CORBA: :string_dup (“Sports”) ;
// Add one field, which will contain the story, to the
// event's filterable data. Set the field's name to
// "Story" and value to a string containing the story.
notification.filterable_data.length(1l);
notification.filterable_data[0] .name =
CORBA: :string dup("Story");
notification.filterable_data[0].value <<= “John Smith wins again”;
// Post the event.
// Subscribers who subscribed to events whose domain is
// "News" and whose type matches the news category will
// receive this event

channel->push_structured_event (notification) ;

Step 2: Writing an Application to Subscribe to Events

The following types of CORBA applications can subscribe to events:
e C++joint client/servers and servers.

e Foreign ORB clients.

To subscribe to events, an application must, at a minimum, implement the following functions:

e Implement a CosNotifyComm OMG IDL interface that supports the
push_structured_eventOpaaﬁon

o Get the event channel factory object reference and use it to get the event channel.

e Define and create a subscription that includes the callback object reference.

34 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

e Create a callback object that implements the CosNotifyComm:: StructuredPushConsumer
interface.

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

In order for the callback object to receive events, it must implement the

CosNotifyComm:: StructuredPushConsumer interface that supports the
push_structured_event operation. When an event occurs that has a matching subscription,
the Notification Service invokes this operation on the callback object to push the event to the
subscriber application.

The CosNotifyComm:: StructuredPushConsumer interface also defines the operations
offer_change and disconnect_structured_push_consumer. The Notification Service
never invokes these operations, so you should implement stubbed out versions that throw
CORBA: :NO_TMPLEMENT.

Listing 3-3 and Listing 3-4 show how thisinterface isimplemented in C++.

Listing 3-3 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation
(NewsGonsumer_i.h)

#ifndef _news_consumer_i_h
#define _news_consumer_i_h
#include "CosNotifyComm_s.h"
// For the servant class to receive news events,
// it must implement the CosNotifyComm: :StructuredPushConsumer
// idl interface.
class NewsConsumer_3i : public POA_CosNotifyComm: :StructuredPushConsumer
{
public:
// This method will be called when a news event occurs.
virtual void push_structured_event (
const CosNotification::StructuredEvent& notification
)
// OMG's CosNotifyComm: :StructuredPushConsumer idl
// interface defines the methods "offer_change" and

// "disconnect_structured_push_consumer". Since the

Using the CORBA Notification Service 3-5

3-6

// Notification Service never invokes these methods, just

// have
virtual
const

const

throw
}
virtual
{

throw

#endif

them throw a CORBA: :NO_IMPLEMENT exception

void offer_change (

CosNotification: :EventTypeSeqg& added,

CosNotification: :EventTypeSeg& removed)

CORBA: :NO_IMPLEMENT () ;

void disconnect_structured_push_consumer ()

CORBA: : NO_IMPLEMENT () ;

Listing 3-4 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation
(NewsConsumer_i.cpp)

#include

"NewsConsumer_1i.h"

#include <iostream.h>

// Subscriber.cpp creates a simple events subscription to "News"

// events and has the events delivered to a NewsConsumer_i

// object. When a news event occurs

(this happens when a user

// runs the Reporter application and reports a news story), this
// method will be invoked:

void NewsConsumer_i: :push_structured_event (

const CosNotification::StructuredEvent& notification)

{

// Extract the story from the first field in the event's
// filterable data.

char* story;

notification.filterable_datal[0].value >>= story;

// For coding simplicity, assume "story" is not "null".

// Print out the event.

cout

Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

<< endl

<< "Category : "

<< notification.header.fixed_header.
event_type.type_name.in|()

<< endl

<< "Story

<< story

<< endl;

Getting the Event Channel

This step is the same for event posters and event subscribers. For a discussion of this step, see
“Implementing the CosNotifyComm::StructuredPushConsumer Interface” on page -5.

Creating a Callback Object

To receive events, the application must also be aserver; that is, the application must implement
a callback object that can be invoked (called back) when an event occurs that matches the
subscriber’s subscription.

Creating a callback object includes the following steps:

Note: The following steps apply to an Oracle Tuxedo CORBA joint client/server. Oracle
Tuxedo CORBA servers can al so subscribe to events.

1. Createacallback object. Callback objects can beimplemented using either the BEAWrapper
Callback API or the CORBA Portable Object Adaptor (POA).

2. Create the servant.

3. Create an object reference to the callback servant.

For a complete description of the BEAWTrapper Callbacks object and its methods, see the Joint
Client/Servers chapter in the CORBA Programming Reference.

pay attention to”BEAWrapper”

Using the CORBA Notification Service 3-7

3-8

Note: Using the BEAWrapper Callback object to create a callback object is discussed below.
For adiscussion of how to implement a callback object using the POA, see Using
CORBA Server-to-Server Communication.

Listing 3-5 show show to use the BEAWrapper Callbacks object to create a callback object in
C++. In the code examples, the NewsConsumber_i servant iScreated and the
start_transient method isused to create atransient object reference.

Listing 3-5 Sample Code for Creating a Callback 0bject With Transient Object Reference (Introductory
Application Subscriber.cpp)

// Create a callback wrapper object since this client needs to
// support callbacks.
BEAWrapper: :Callbacks wrapper (orb.in());
NewsConsumer_i* news_consumer_impl = new NewsConsumer_i;
CORBA: :Object_var news_consumer_oref =
wrapper.start_transient (
news_consumer_impl,
CosNotifyComm: : _tc_StructuredPushConsumer->id ()
)
CosNotifyComm: : StructuredPushConsumer_var
news_consumer =
CosNotifyComm: : StructuredPushConsumer: : _narrow (
news_consumer_oref.in()

)i

Creating a Subscription

In order for the subscriber to receive events, it must subscribe to the Notification Service. You
can create either a transient subscription or a persistent subscription.

Listing 3-6 from the Introductory sample application, show how to create atransient subscription
in C++.

The following steps must be performed:

1. Set the subscription’s quality of service (Qo0S) to either transient or persistent.

Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

2. Determinethe subscription_name (Optiona), domain_name, type_name, and
data_filter (optional).

3. Create the subscription. The subscription setsthe domain_name, type_name, and
data_filter (optional), the Quality of Service (QoS), and supplies the object reference to
the subscriber’s callback object to the Notification Service.

Listing 3-6 Creating a Transient Subscription (C++)

// Set the quality of service to TRANSIENT.
CosNotification: :QoSProperties gos;
gos.length(1);
gos[0] .name =
CORBA: :string dup (Tobj_SimpleEvents: :SUBSCRIPTION_TYPE) ;
gos[0] .value <<=
Tobj_SimpleEvents: : TRANSIENT SUBSCRIPTION;
// Set the type to the news category.
const char* type = “Sports”;
// Create the subscription. Set the domain to "News" and
// the data filter to age greater than 30.
Tobj_SimpleEvents: :SubscriptionID subscription_id =
channel->subscribe (
subscription_name,
"News", // domain
“Sports”, // type
"Age > 30", // Data filter.
gos,
news_consumer.in()

)i

Note: When you use datafiltering, you must also perform some configuration tasks. For a
discussion of datafiltering configuration requirements, see* Configuring Data Filters’ on

page -2.
Listing 3-7, which show code in the Advanced sample application in C++, illustrates the coding
stepsrequired to create a persistent subscription to the Notification Service. The stepsrequired to

Using the CORBA Notification Service 3-9

3-10

create a persistent subscription are the same as those required to create atransient subscription,
as described previoudly.

Note: While the code examples shown here assume that the news_consumer callback object
has a persistent object reference, you can also create persistent subscriptions with
transient callback object references. For a discussion of transient versus persistent
callback object references, see Table 2-3.

Listing 3-7 Creating a Persistent Subscription (Advanced Subscriber.cpp)

CosNotification: :QoSProperties gos;
gos.length(1);
gos[0] .name =
CORBA: :string dup (Tobj_SimpleEvents: :SUBSCRIPTION_TYPE) ;
gos[0] .value <<= Tobj_SimpleEvents: :PERSISTENT_ SUBSCRIPTION;
CosNotifyComm: : StructuredPushConsumer_var
news_consumer =
CosNotifyComm: : StructuredPushConsumer: : _narrow (
news_consumer_oref.in ()
) ;
Tobj_SimpleEvents: :SubscriptionID sub_id =
channel->subscribe (
subscription_info.subscription_name(),
"News", // domain
“Sports”, // type
w, // No data filter.
qos,

news_consumer.in()

Threading Considerations for C++ Joint Client/Server Applications

A joint client/server application may first function as a client application and then switch to
functioning as a server application. To do this, the joint client/server application turns complete
control of the thread to the Object Request Broker (ORB) by making the following invocation:

Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

orb -> run();

If amethod in the server portion of ajoint client/server application invokesorB: : shutdown (),
all server activity stops and control is returned to the statement after orB: : run () isinvoked in
the server portion of the joint client/server application. Only under this condition does control
return to the client functionality of thejoint client/server application.

Sinceaclient application hasonly asinglethread, the client functionality of thejoint client/server
application must sharethe central processing unit (CPU) with the server functionality of thejoint
client/server application. This sharing is accomplished by occasionaly checking with the ORB
to seeif the joint client/server application has server application work to perform. Use the
following code to perform the check with the ORB:

if (orb->work_pending()) orb->perform_work() ;

After the ORB compl etes the server application work, the ORB returnsto the joint client/server
application, which then performs client application functions. The joint client/server application
must remember to occasionally check with the ORB; otherwise, thejoint client/server application
will never process any invocations.

Y ou should be aware that the ORB cannot service callbacks while the joint client/server
application is blocking on arequest. If ajoint client/server application invokes an object in
another Oracle Tuxedo CORBA server application, the ORB blocks while it waits for the
response. Whilethe ORB isblocking, it cannot service any callbacks, so the callbacks are queued
until the request is compl eted.

Step 3: Compiling and Running Notification Service
Applications

Thefinal step in the development of a Notification Service application isto compile, build, and
run the application. To do this, you need to perform the following steps.

1. Generate the required client stub and skeleton files to define interfaces between the
Notification Service and event poster and subscriber applications. Event poster applications
can be clients, joint client/servers, or servers. Event subscriber applications can be joint
client/servers or servers.

2. Compile the application code and link against the skeleton and client stub files.
3. Build the application.

4. Run the application.

Using the CORBA Notification Service 3-11

3-12

Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must execute the a1 command for each of the
Notification IDL filesthat your application uses. Table 3-2 showsthe id1 commands used for
each type of subscriber.

Table 3-2 idl Command Requirements

Language Oracle Tuxedo CORBA Joint Oracle Tuxedo CORBA Server
Client/Server

CH++ idl -Pp idl

The following is an example of an id1 command:

>idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl

Table 3-3 liststhe IDL files required by each type of Notification Service application that uses
the Oracle Simple Events Interface.

Table 3-3 IDL Files Required by Notification Service Applications

Application Type Required OMG IDL Files

Event poster (can beaclient, ajoint client/server, or CosEventComm.idl

aserver). (Stubs arerequired for al files.) CosNotification.idl
CosNotifyComm.idl
Tobj_Events.idl
Tobj_SimpleEvents.idl

Subscriber (can be aserver or ajoint client/server). CosEventComm.idl

(Stubs arerequired for all files. Skeletonisrequired CosNotification.idl

for the CosNotifyComm.1d1 file.) CosNotifyComm.idl
Tobj_Events.idl
Tobj_SimpleEvents.idl

Building and Running Applications

The build procedure differs depending on the type of Notification Service application you are
building. Table 3-4 provides an overview of the commands and types of files used to build each
type of the Notification Service application.

Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Table 3-4 Application Build Requirements

Application Type Client Joint Client/Server Server
C++ Events Poster Usethe Usethebuildobjclient Usethe
buildobjclient command withthe -P option buildobjserver

command to compilethe
application files and the

to compile the application
filesand the IDL stubs.

command to compile the
application files and the

IDL stubs. IDL client stubs.
C++ Events Not applicable. Usethebuildobjclient Usethe
Subscriber command with the -p option buildobjserver

to compile the application
files, the IDL stubs, the IDL
skeletons, and link with the
BEAWTrapper library.

command to compile the
application files, the IDL
stubs, and the IDL
skeletons.

Listing 3-8 shows the commands used for a C++ poster application (Reporter.cpp) On a
Microsoft Windows system. To form a C++ executable, the id1 command is run on therequired
IDL file and the buildobjclient command compilesthe C++ client application file and the

IDL stubs.

Listing 3-8 C++ Reporter Application Build and Run Commands (Microsoft Windows)

Run the idl command.

idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \

#+ QO Q Q0

Run the buildobjclient command.

:\tuxdir\include\CosNotification.idl \
:\tuxdir\include\CosNotifyComm.idl \
:\tuxdir\include\Tobj_Events.idl \
:\tuxdir\include\Tobj_SimpleEvents.idl

buildobjclient -v -o subscriber.exe -f " \

-DWIN32

Reporter.cpp
CosEventComm_c.cpp
CosNotification_c.cpp
CosNotifyComm_c.cpp
Tobj_Events_c.cpp

P G

Using the CORBA Notification Service

3-13

Tobj_SimpleEvents_c.cpp \
Run the application.

is_reporter

Listing 3-9 and Listing 3-10 show the commands used for a C++ subscriber application
(subscriber. cpp) on Microsoft Windows and UNIX respectively. To form a C++ executable,
thebuildobjclient command, with the -p option, compilesthe joint client/server application
files (subscriber. cpp and NewsConsumer_1i . cpp), the IDL stubs, and the IDL skeleton
(CosNotifyComm_s.cpp)

Listing 3-9 C++ Subscriber Application Build and Run Commands (Microsoft Windows)

Run the idl command.
idl -P -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
C:\tuxdir\include\CosNotification.idl \
C:\tuxdir\include\CosNotifyComm.idl \
C:\tuxdir\include\Tobj_Events.idl \
C:\tuxdir\include\Tobj_SimpleEvents.idl
Run the buildobjclient command.
buildobjclient -v -P -o subscriber.exe -f "

-DWIN32

Subscriber. cpp

NewsConsumer_i .cpp

CosEventComm_c.cpp

CosNotification_c.cpp

CosNotifyComm_c.cpp

CosNotifyComm_s.cpp

P g

Tobj_Events_c.cpp
Tobj_SimpleEvents_c.cpp \
c:\tuxdir\lib\libbeawrapper.lib \
Run the application.

is_subscriber

3-14 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Listing 3-10 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl command.
idl -P -I/usr/local/tuxdir/include
/usr/local/tuxdir/include/CosEventComm.idl \
/usr/local/tuxdir/include/CosNotification.idl \
/usr/local/tuxdir/include/CosNotifyComm.idl \
/usr/local/tuxdir/include/Tobj_Events.idl \
/usr/local/tuxdir/include/Tobj_SimpleEvents.idl
Run the buildobjclient command.
buildobjclient -v -P -o subscriber -f "
Subscriber. cpp
NewsConsumer_i .cpp
CosEventComm_c.cpp
CosNotification_c.cpp
CosNotifyComm_c.cpp
CosNotifyComm_s.cpp
Tobj_Events_c.cpp
Tobj_SimpleEvents_c.cpp

P R g G

-lbeawrapper

Run the application.

is_subscriber

Using the CORBA Notification Service 3-15

3-16 Using the CORBA Notification Service

CHAPTERa

Using the CosNotification Service API

This chapter describes the devel opment steps required to create Notification Service applications
using the CosNoatification Service APl and the C++ programming language.

This topic includes the following sections:
e Development Process
e Step 1: Writing an Application to Post Events
e Step 2: Writing an Application to Subscribe to Events
e Step 3: Compiling and Running Notification Service Applications

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBSs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

Development Process

Table 4-1 outlines the devel opment process for creating Notification Service applications.

Using the CORBA Notification Service 4-1

Table 4-1 Development Process

Step Description

1 Designing events

2 Writing an application that posts events

3 Writing an application that subscribes to events
4 Compiling a Natification Service application

These steps are explained in detail in subsequent topics.

Designing Events

Thedesign of eventsisbasic to any natification service. The design impacts not only the volume
of information that is delivered to matching subscriptions, but the efficiency and performance of
the Notification Service aswell. Therefore, careful planning should be done to ensure that your
Notification Service will be able to handle your needs now and allow for future growth. For a
discussion of event design, see “Designing Events’ on page -6.

Step 1: Writing an Application to Post Events

42

The following types of CORBA applications can post events:
e C++clients, joint client/servers and servers.

e Foreign ORB clients.
To post events, an application must, at a minimum, implement the following functions:

e Get the event channel factory object reference and use it to get the event channel.

e Create and post events.

The following sections describe each of these functions.

Getting the Event Channel

Before the client application can post an event, it must get the event channel.

Using the CORBA Notification Service

Step 1: Writing an Application to Post Events

This development step isillustrated in Listing 4-1. Listing 4-1 is code from the Reporter. cpp
filein the Introductory sample application that uses the CosNotification Service API.

To get the event channel factory object reference, the resolve_initial_ references method
isinvoked on the Bootstrap object using the "NotificationService" environmental object.
The object reference is used to get the channel factory, which is, in turn, is used to get the event
channel. Listing 4-1 shows code examplesin C++.

Listing 4-1 Getting the Event Channel (Reporter.cpp)

// Get the CosNotification channel factory object reference.
CORBA: :Object_var channel_factory_oref =
bootstrap.resolve_initial_references (
"NotificationService");
CosNotifyChannelAdmin: :EventChannelFactory_var
channel_factory =
CosNotifyChannelAdmin: :EventChannelFactory: :_narrow (
channel_factory_oref.in());
// use the channel factory to get the default channel
CosNotifyChannelAdmin: :EventChannel_var channel =
channel_factory->get_event_channel (
Tobj_Notification: :DEFAULT_CHANNEL) ;

Creating and Posting Events

To post events, you must get the SupplierAdmin object, useit to create aproxy, create the event,
and then post the event to the proxy.

Listing 4-2 shows how thisisimplemented in C++.

Listing 4-2 Creating and Posting the Event (Reporter.cpp)

// Since we are a supplier (that is, we post events),

// get the SupplierAdmin object

Using the CORBA Notification Service 4-3

44

CosNotifyChannelAdmin: : SupplierAdmin_var supplier_admin =
channel->default_supplier_admin() ;
// Use the supplier admin to create a proxy. Events are posted
// to the proxy (unlike the simple events interface where events
// are posted to the channel).
CosNotifyChannelAdmin: :ProxyID proxy_id;
CosNotifyChannelAdmin: : ProxyConsumer_var generic_proxy_consumer =
supplier_admin->obtain_notification_push_consumer (
CosNotifyChannelAdmin: : STRUCTURED_EVENT, proxy_id);
CosNotifyChannelAdmin: : StructuredProxyPushConsumer_var
proxy_push_consumer =
CosNotifyChannelAdmin: : StructuredProxyPushConsumer: :_narrow (
generic_proxy_consumer) ;
// Connect to the proxy so that we can post events.
proxy_push_consumer->connect_structured_push_supplier (

CosNotifyComm: : StructuredPushSupplier::_nil());

// create an event
CosNotification: :StructuredEvent notification;

// set the domain to "News"
notification.header.fixed_header.event_type.domain_name =

CORBA: :string_dup ("News") ;
// set the type to the news category
notification.header.fixed_header.event_type.type_name =

CORBA: :string_dup (“Sports”);
// add one field, which will contain the story, to the
// event's filterable data. set the field's name to
// "Story" and value to a string containing the story
notification.filterable_data.length(1l);
notification.filterable_data[0] .name =

CORBA: :string dup("Story");

notification.filterable_datal[0].value <<= “John Smith wins again”;
// post the event
// Subscribers who subscribed to events whose domain is
// "News" and whose type matches the news category will
// receive this event

proxy_push_consumer->push_structured_event (notification) ;

Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

// Disconnect.

proxy_push_consumer->disconnect_structured_push_consumer () ;

Step 2: Writing an Application to Subscribe to Events

The following types of CORBA applications can subscribe to events:

e C++joint client/servers and servers.
e Foreign ORB clients that support callbacks.
To subscribe to events, an application must, at a minimum, support the following functions:

e Implement a CosNotifyComm OMG IDL interface that supports the
push_structured_event operation.

o Get the event channel factory object reference and use it to get the event channel.
e Define and create a subscription that includes the callback object reference.

e Create a callback aobject that implements the
CosNotifyComm: : StructuredPushConsumer interface.

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

In order for the callback servant object to receive events, it must implement the
CosNotifyComm:: StructuredPushConsumer interface that supports the
push_structured_event operation. When an event occurs that has a matching subscription,
the Notification Service invokes this operation on the servant callback object in the subscriber
application to deliver the event to the subscriber application.

The CosNotifyComm:: StructuredPushConsumer interface also defines the operations
offer_change and disconnect_structured_push_consumer. The Notification Service
never invokes these operations, so you should implement stubbed out versions that throw
CORBA: :NO_IMPLEMENT.

Listing 4-3 and Listing 4-4 show how this interface isimplemented in C++.

Using the CORBA Notification Service 4-5

Listing 4-3 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation
(NewsConsumer_i.h)

#ifndef _news_consumer_i_h
#define _news_consumer_i_h
#include "CosNotifyComm_s.h"
// For the servant class to receive news events,
// it must implement the CosNotifyComm: :StructuredPushConsumer
// 1idl interface
class NewsConsumer_i : public POA_CosNotifyComm: :StructuredPushConsumer
{
public:
// this method will be called when a news event occurs
virtual void push_structured_event (
const CosNotification::StructuredEvent& notification
)
// OMG's CosNotifyComm: :StructuredPushConsumer idl
// interface defines the methods "offer_change" and
// "disconnect_structured_push_consumer". Since the
// Notification Service never invokes these methods, just
// have them throw a CORBA::NO_IMPLEMENT exception

virtual void offer_change (
const CosNotification: :EventTypeSeqg& added,

const CosNotification: :EventTypeSeqg& removed)

throw CORBA: :NO_IMPLEMENT () ;
}
virtual void disconnect_structured_push_consumer ()
{

throw CORBA: :NO_IMPLEMENT () ;

#endif

4-6 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

Listing 4-4 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation
(NewsConsumer_i.cpp)

#include "NewsConsumer_i.h"

#include <iostream.h>

// Subscriber.cpp creates a simple events subscription to "News"
// events and has the events delivered to a NewsConsumer_i
// object. When a news event occurs (this happens when a user
// runs the Reporter application and reports a news story), this
// method will be invoked:
void NewsConsumer_i::push_structured_event (
const CosNotification::StructuredEvent& notification)
{

// extract the story from the first field in the event's
// filterable data
char* story;
notification.filterable_data[0].value >>= story;
// for coding simplicity, assume "story" is not "null"
// print out the event
cout

<< M "

<< endl

<< "Category : "

<< notification.header.fixed_header.

v event_type.type_name.in()

<< endl

<< "Story HE

<< story

<< endl;

Using the CORBA Notification Service 4-7

Getting the Event Channel, ConsumerAdmin Object, and
Filter Factory Object

Before an application can create a subscription, it must get the event channel and the
ConsumerAdmin and Filter Factory objects. Listing 4-5 shows how thisisimplemented in C++.

To get the event channel factory object reference, the resolve_initial_references method
isinvoked on the Bootstrap object using the "NotificationService" environmental object.
The object reference is used to get the channel factory, which is, in turn, used to get the event
channel. Finally, the event channel is used to get the ConsumerAdmin object and the
FilterFactory object.

Listing 4-5 Getting the Event Channel and ConsumerAdmin and Filter Factory Objects (Subscriber.cpp)

// Get the CosNotification channel factory object reference.
CORBA: :Object_var
channel_factory_ oref =
bootstrap.resolve_initial_references(
"NotificationService");
channel_factory =
CosNotifyChannelAdmin: :EventChannelFactory: :_narrow (
channel_factory_oref.in());
// Use the channel factory to get the default channel.
CosNotifyChannelAdmin: :EventChannel_var channel =
channel_factory->get_event_channel (
Tobj_Notification: :DEFAULT_CHANNEL) ;
// Use the channel to get the consumer admin and the filter factory.
CosNotifyChannelAdmin: :ConsumerAdmin_var consumer_admin =
channel->default_consumer_admin() ;
CosNotifyFilter::FilterFactory_var filter_factory =

channel->default_filter_ factory();

4-8 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

Creating a Callback Object

To receive events, the application must also be aserver; that is, the application must implement
acallback object that can be invoked (called back) when an event occurs that matches the
subscriber’ s subscription.

Creating a callback object includes the following steps:

Note: Thefollowing steps apply to ajoint client/server. Oracle Tuxedo CORBA servers can
also subscribe to events.

1. Creating acallback wrapper object. This can be implemented using either the BEAWrapper
Callbacks object or the CORBA Portable Object Adaptor (POA).

2. Creating the servant.

3. Creating an object reference to the callback servant.

For a complete description of the BEAWTrapper Callbacks object and its methods, see the Joint
Client/Servers chapter in the CORBA Programming Reference.

Note: Using the BEAWrapper Callback object to create a callback object is discussed below.
For adiscussion of how to implement a callback object using the POA, see Using
CORBA Server-to-Server Communication.

Listing 4-6 shows how to use the BEAWrapper Callbacks object to create a callback object in
C++. In the code examples, the NewsConsumber_i servant iscreated and the
start_transient method isused to create atransient object reference.

Listing 4-6 Sample Code for Creating a Callback Object with Transient Object Reference (Introductory
Application Subscriber.cpp)

// Create a callback wrapper object since this client needs to
// support callbacks
BEAWrapper: :Callbacks wrapper (orb.in()) ;
NewsConsumer_i* news_consumer_impl = new NewsConsumer_i;
// Create a transient object reference to this servant.
CORBA: :Object_var news_consumer_oref =
wrapper.start_transient (
news_consumer_impl,
CosNotifyComm: : _tc_StructuredPushConsumer->id ()
)

Using the CORBA Notification Service 4-9

CosNotifyComm: : StructuredPushConsumer_var
news_consumer =
CosNotifyComm: : StructuredPushConsumer: :_narrow (

news_consumer_oref.in());

Creating a Subscription

In order for the subscriber to receive events, it must subscribe to the Notification Service. You
can create a transient subscription or a persistent subscription.

To create a subscription, the following steps must be performed:

1. Create anotification proxy push supplier and useit to create a StructuredProxySupplier
object.

2. Set the subscription’s Quality of Service (QoS). You can set the QoSto transient or persistent.

3. Createafilter object and assign the domain_name, type_name, and data_filter (Optiona)
toit.

4. Add thefilter to the proxy.

5. Connect to the proxy passing in the subscription’s callback object reference.

Listing 4-7 from the Introductory sample application, shows how to create atransient
subscription in C++.

Listing 4-7 Creating a Transient Subscription

// Create a new subscription (at this point, it is not complete).
CosNotifyChannelAdmin: :ProxyID subscription_id;
CosNotifyChannelAdmin: : ProxySupplier_var generic_subscription =
consumer_admin->obtain_notification_push_supplier (
CosNotifyChannelAdmin: : STRUCTURED_EVENT,
subscription_id);
CosNotifyChannelAdmin: : StructuredProxyPushSupplier_var
subscription =
CosNotifyChannelAdmin: : StructuredProxyPushSupplier: :_narrow (

generic_subscription);

4-10 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

s_subscription = subscription.in();
// Set the quality of service. This sets the subscription name
// and subscription type (=TRANSIENT).
CosNotification: :QoSProperties gos;
gos.length(2) ;
gos[0] .name =
CORBA: :string dup (Tobj_Notification::SUBSCRIPTION_NAME) ;
gos[0] .value <<= subscription_name;
gos[1l] .name =
CORBA: :string_dup (Tobj_Notification: :SUBSCRIPTION_TYPE) ;
gos[1l] .value <<=
Tobj_Notification::TRANSIENT_SUBSCRIPTION;
subscription->set_gos (gos) ;
// Create a filter (used to specify domain, type and data filter).
CosNotifyFilter::Filter_var filter =
filter factory->create_filter (
Tobj_Notification::CONSTRAINT_GRAMMAR) ;
s_filter = filter.in();
// Set the filtering parameters.
// (domain = "News", type = “Sports”, and no data filter)
CosNotifyFilter::ConstraintExpSeq constraints;
constraints.length(1l) ;
constraints[0] .event_types.length(l);
constraints[0].event_types[0] .domain_name =
CORBA: :string_dup ("News") ;
constraints[0].event_types[0].type_name =
CORBA: :string_dup (“Sports”) ;
constraints[0].constraint_expr =
CORBA: :string_dup(""); // No data filter.
CosNotifyFilter::ConstraintInfoSeq_var
add_constraints_results = // ignore this returned value
filter->add_constraints (constraints) ;
// Add the filter to the subscription.
CosNotifyFilter::FilterID filter_id =
subscription->add_filter (filter.in());
// Now that we have set the subscription name, type and filtering
// parameters, complete the subscription by passing in the

// reference of the callback object to deliver the events to.

Using the CORBA Notification Service 4-1

subscription->connect_structured_push_consumer (

news_consumer.in());

Step 3: Compiling and Running Notification Service
Applications

4-12

Thefina step in the development of a Notification Service application isto compile, build, and
run the application. To do this, you need to perform the following steps.

1. Generate the required client stub and skeleton files to define interfaces between the
Notification Service and event poster and subscriber applications. Event poster applications
can be clients, joint client/servers, or servers. Event subscriber applications can be joint
client/servers or servers.

2. Compile the application code and link against the skeleton and client stub files.
3. Build the application.
4. Run the application.

Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must execute the 1d1 command for each of the
Notification IDL filesthat your application uses. Table 4-2 showsthe id1 commands used for
each type of subscriber.

Table 4-2 idl Command Requirements

Language Oracle Tuxedo CORBA Joint Oracle Tuxedo CORBA
Client/Server Server

C++ idl -p idl

The following is an example of an id1 command:
>idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl

Table 4-3 liststhe IDL files required by each type of Notification Service application.

Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Table 4-3 IDL Files Required by Notification Service Applications

Application Type Required OMG IDL Files

Event poster (can beaclient, ajoint client/server, or CosEventChannelAdmin.idl

aserver) CosEventComm. idl
CosNotification.idl
CosNotifyChannelAdmin
CosNotifyComm.idl
CosNotifyFilter
Tobj_Events.idl
Tobj_Notification.idl

Subscriber (can bejoint client/server or a server) CosEventChannelAdmin. idl
CosEventComm. idl
CosNotification.idl
CosNotifyChannelAdmin
CosNotifyComm.idl
CosNotifyFilter
Tobj_Events.idl
Tobj_Notification.idl

Compiling and Linking the Application Code

The compiling and linking procedure differs depending on the type of Notification Service
application you are building. Table 4-4 provides an overview of the commands and files used to
compile each type of application.

Using the CORBA Notification Service 4-13

Table 4-4 Application Build Requirements

Application Type Client Joint Client/Server Server
C++ Events Poster Usethe Usethebuildobjclient Usethe
buildobjclient command withthe -P option buildobjserver
command to compilethe to compile the application command to compile the
application filesand the filesand the IDL stubs. application files and the
IDL stubs. IDL client stubs.
C++ Events Not applicable. Usethebuildobjclient Usethe
Subscriber command with the -p option buildobjserver
to compile the application command to compile the
files, the IDL stubs, and the application files, the IDL
IDL skeletons. stubs, and the IDL
skeletons.

Listing 4-8 shows the commands used for a C++ Reporter application (Reporter.cpp) ONa
Microsoft Windows system. To form a C++ executable, the id1 command is run on therequired
IDL file and the buildobjclient command compilesthe C++ client application file and the
IDL stubs.

Listing 4-8 C++ Reporter Application Build and Run Commands

Run the idl command.
idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \

C:\tuxdir\include\CosEventChannelAdmin \
C:\tuxdir\include\CosNotification.idl \
C:\tuxdir\include\CosNotifyComm.idl \
C:\tuxdir\include\CosNotifyFilter.idl \
C:\tuxdir\include\Tobj_Notification.idl
Run the buildobjclient command.
buildobjclient -v -0 is_reporter.exe -f ”\
-DWIN32 \
Reporter.cpp \
CosEventComm_c.cpp \
CosEventChannelAdmin_c.cpp \
CosNotification_c.cpp \

4-14 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

CosNotifyComm_c.cpp
CosNotifyFilter_c.cpp
CosNotifyChannelAdmin_c.cpp

~ s s

Tobj_Events_c.cpp
Tobj_Notification_c.cpp ”
Run the application.

is_reporter

Listing 4-9 and Listing 4-10 show the commands used for a C++ Subscriber application

(subscriber . cpp) on Microsoft Windows and UNIX, respectively. To form a C++ executable,
the buildobjclient command, with the -p option, compilesthejoint client/server application

files (subscriber.cpp and NewsConsumer_1i . cpp), the IDL stubs, the IDL skeleton (for
CosNotifyComm_s.cpp).

Listing 4-9 C++ Subscriber Application Build and Run Commands (Microsoft Windows)

Run the idl command.

idl -P -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
:\tuxdir\include\CosEventChannelAdmin \
:\tuxdir\include\CosNotification.idl \
:\tuxdir\include\CosNotifyComm.idl \
:\tuxdir\include\CosNotifyFilter.idl \
:\tuxdir\include\CosNotifyChannelAdmin \
\C:\tuxdir\include\Tobj_Events.idl \
\C:\tuxdir\include\Tobj_Notification

Q0 00N

Run the buildobjclient command.

buildobjclient -v -P -o is_subscriber.exe -f " \
-DWIN32 \
Subscriber.cpp
NewsConsumer_i .cpp
CosEventComm_c.cpp
CosEventChannelAdmin_c.cpp
CosNotification_c.cpp
CosNotifyComm_c.cpp
CosNotifyComm_s.cpp

P g

CosNotifyFilter_c.cpp

Using the CORBA Notification Service

CosNotifyChannelAdmin_c.cpp
Tobj_Events_c.cpp
Tobj_Notification_c.cpp
C:\tuxdir\lib\libbeawrapper.lib

~ - = =

Run the application.

is_subscriber

Listing 4-10 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl command.
idl -P -I/usr/local/tuxdir/include
/usr/local/tuxdir/include/CosEventChannelAdmin \
/usr/local/tuxdir/include/CosEventComm.idl \
/usr/local/tuxdir/include/CosNotification.idl \
/usr/local/tuxdir/include/CosNotifyComm.idl \
/usr/local/tuxdir/include/CosNotifyFilter.idl \
/usr/local/tuxdir/include/CosNotifyChannelAdmin \
/usr/local/tuxdir/include/Tobj_Events.idl \
/usr/local/tuxdir/include/Tobj_SimpleEvents.idl
Run the buildobjclient command.
buildobjclient -v -P -o subscriber -f "
Subscriber. cpp
NewsConsumer_i .cpp
CosEventComm_c.cpp
CosEventChannelAdmin_c.cpp
CosNotification_c.cpp
CosNotifyComm_c.cpp
CosNotifyComm_s.cpp
CosNotifyFilter_c.cpp
CosNotifyChannelAdmin_c.cpp
Tobj_Events_c.cpp
Tobj_SimpleEvents_c.cpp

P

-lbeawrapper

4-16 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Run the application.

is_subscriber

Using the CORBA Notification Service 4-11

4-18 Using the CORBA Notification Service

CHAPTERa

Building the Introductory Sample
Application

Thistopic includes the following sections:
e Overview

e Building and Running the Introductory Sample Application

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Overview

The Introductory sample applications simulate a newsroom environment in which a news
reporter posts astory and a news subscriber consumes the story.

One implementation of the Introductory sample application is provided: the C++ programming
language that uses the Oracle Simple Events application programming interface (API). The
Introductory sample application consists of the Reporter and Subscriber applications and the
Notification Service. The Reporter application implements a client application that prompts the
user to enter news articles, and then posts the news articles as events to the Oracle Tuxedo
CORBA Notification Service. The Subscriber application implements ajoint client/server

Using the CORBA Notification Service 5-1

5-2

application that acts as client when it subscribes and unsubscribes for events, and acts asa server
when it receives events. To receive events, the subscriber implements a callback object whichis
invoked by the Notification Service when an event needs to be delivered.

The Introductory sample application shows the simplest usage of the Natification Service. It
demonstrates how to use the Oracle Simple Events API, the CosNoatification API, transient
subscriptions, and transient object references. It does not demonstrate the use of persistent
subscriptions or datafiltering. For asample application that uses persistent subscriptionsand data
filtering, see Chapter 6, “Building the Advanced Sample Application.”

This Introductory sample application provides two executables (see Figure 5-1):

e A Reporter application that posts events to the Notification Service. It is a client without
callback capability.

e A Subscriber application that subscribes to the Notification Service and receives events.
The subscriber isajoint client/server that acts as a client when it subscribes to events and
acts as a server when it receives events.

Figure 5-1 Introductory Sample Application Components

Reporter
p Push Event / BEA Tuxedo Domain

(Client)
Subscrib :'

Subscriber Notification

(Joint Client/ Service
Server)

The event poster, the Reporter application, usesthe structured event domain_name, type_name,
and filterable_data fieldsto construct the event. The domain name defines the industry. In
thisapplication, domain_nameisset to “News'. The type_name definesthe kind of event in the
industry and it is set to the category of news story (for example, “ Sports’). The application user
specifiesthisvalue. Inthe filterable_data fields, afield named “ Story” is added, which
containsthe text of the news story being posted. Thistext isalso specified by the application user.

Using the CORBA Notification Service

Overview

The Subscriber application uses the structured event domain_name and type_name fieldsto
create a subscription to the Notification Service. The subscription definesthe domain_name asa
fixed string with the content of “News’. At run time, the Subscriber application queries the user
for the “News Category” and uses the input to define the type_name field in the subscription.
Obviously, the users of both applications, the reporter and the subscriber, must collaborate on the
“News Category” string for the subscription to match an event, otherwise, no events will be
delivered to the subscriber. The subscription does not do any checking of the filterable_data
field, but rather assumes that the body of the story will be a string, and that the story will bein
the first Named/Value pair inthe filterable data field of astructured event.

To post events, the Reporter application uses the push_structured_event method to push
news eventsto the Notification Service. For each event, the Reporter application queriesthe user
for a“News category” (for example, “Sports’) and a story (a multiple-line text string).

To subscribe to news events, the Subscriber application invokes the Notification Service to
subscribe to news events. For each subscription, the Subscriber application queriesthe user for a
“News category” (for example, “ Sports’). The Subscriber application also implements a callback
object (viathe NewsConsumer_i servant class) which isused to receive and process news events.
When the Subscriber subscribes, it gives the Notification Service areference to this callback
object. When a matching event occurs; that is, when the Reporter posts an event with a“News
category” that matches the news category of the subscription, the Notification Service invokes
the push_structured_event method on the callback object to deliver the event to the callback
object in the subscriber. This method prints out the event, invokes the unsubscribe method on
the Notification Serviceto cancel the subscription, and shuts down the Subscriber. For simplicity,
the push_structured_event method assumes that the domain_name, type_name, length,
and name field match and the story isin the vaiue field.

Note: The“News category” isjust astring that the Reporter user and the Subscriber user agree
on. There are no fixed categoriesin this sample. Therefore, both the Reporter user and
the Subscriber user must type the same string when prompted for a category (including
case and white space).

To run this sample, you must start at least one Reporter application and at |east one Subscriber
application; however, you may run multiple Reporters and Subscribers. Events posted by any
Reporter will be delivered to all matching Subscribers (based on “News category”).

Also, be sure to start any subscribers before posting events; otherwise, the events will be lost.

Using the CORBA Notification Service 5-3

Building and Running the Introductory Sample
Application

To build and run the Introductory sample application, you must perform these steps:
Verify that the "TuxpIR" environment variable are set to the correct directory path.
Unset “JAVA_HOME”
Copy thefilesfor the Introductory sample application into awork directory.

Change the protection attributes on the files to grant write and execute access.

o > W bd PR

For UNIX, ensure the make fileisin your path. For Microsoft Windows, ensure the nmake
fileisin your path

Set the application environment variables.
Build the sample.

Boot the system.

© ®© N o

Run the Subscriber and Reporter applications.
10. Shut down the system.

11. Restore the directory to its original state.

These steps are described in detail in the following sections.

Verifying the Settings of the Environment Variables

Beforeyou build and run the Introductory sampl e application, you need to ensure that the Tuxpir
environment variableis set on your system. In most cases, this environment variableis set as part
of theinstallation procedure. However, you need to check the environment variablesto ensure
they reflect correct information.

Table 5-1 lists the environment variables required to run the Introductory sample application.

5-4 Using the CORBA Notification Service

Table 5-1

Building and Running the Introductory Sample Application

Required Environment Variables for the Introductory Sample Application

Environment Variable Description

TUXDIR

The directory path where you installed the Oracle Tuxedo software. For example:
Windows

TUXDIR=c:\tuxdir

UNIX

TUXDIR=/usr/local/tuxdir

To verify that the information for the environment variables defined during installation is correct,
perform the following steps:

Windows

1
2.

5.

From the Start menu, select Settings.

From the Settings menu, select the Control Panel.
The Control Panel appears.

Click the System icon.

The System Properties window appears.

Click the Environment tab.

The Environment page appears.

Check the setting for TUxDpIR

UNIX

ksh prompt>printenv TUXDIR

To change the settings, perform the following steps:

Windows

1

On the Environment page in the System Properties window, click the environment variable
you want to change.

Enter the correct information for the environment variable in the Value field.

Click OK to save the changes.

Using the CORBA Notification Service 5-5

5-6

UNIX

ksh prompt>export TUXDIR=directorypath
Or

csh> setenv TUXDIR=directorypath

Copying the Files for the Introductory Sample Application
into a Work Directory

Y ou need to copy the files for the Introductory sample application and filesin the common
directory into awork directory on your local machine.

Note: The application directory and the common directory must be copied to the same parent
directory.

Thefiles are located in the following directories:

Windows

For the C++ Introductory sample:
drive: \tuxdir\samples\corba\notification\introductory_ simple_cxx
drive: \tuxdir\samples\corba\notification\common

UNIX

For the C++ Introductory sample;
/usr/local/tuxdir/samples/corba/notification/
introductory_simple_cxx
/usr/local/tuxdir/samples/corba/notification/common

You usethefileslisted in Table 5-2 and Table 5-3 to build and run the C++ Introductory sample
application, which isimplemented using the Oracle Simple Events API.

Table 5-2 Files Located in the introductory_sample_c++ Directory

File Description

Readme. txt Describes the Introductory sample application and
providesinstructions for setting up the environment and
building and running the application.

setenv.cmd Sets the environment for Microsoft Windows systems.

setenv.ksh Sets the environment for UNIX systems.

Using the CORBA Notification Service

Building and Running the Introductory Sample Application

Tahle 5-2 Files Located in the introductory_sample_c++ Directory (Continued)

File

Description

makefile.nt

Makefile for Microsoft Windows systems.

makefile.mk

Makefile for UNIX systems.

makefile.inc

Common makefile used by themakefile.nt andthe
makefile.mk files.

Reporter.cpp

Code for the reporter.

Subscriber.cpp

Code for the subscriber.

NewsConsumer_1i.h and
NewsConsumer . cpp

The callback servant classthat subscribers useto receive
news events. (For the Subscriber application.)

Table 5-3 lists other files that the Introductory sample application uses.

Table 5-3 Other Files the Introductory Sample Application Uses

File

Description

Thefollowing files are located in the common directory.

common.nt

Makefile symbols for Microsoft Windows systems.

common . mk

Makefile symbols for UNIX systems.

introductory.inc

Makefile for administrative targets.

ex.h

Utilities to print exceptions. (For C++ only.)

client_ex.h

Client utilities to handle exceptions. (For C++ only.)

Thefollowing files are located in the \tuxdir\include directory.

CosEventComm. idl

The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl

The OMG IDL code that declares the
CosNotification module.

CosNotifyComm.idl

The OMG IDL code that declaresthe
CosNotifyComm module.

Using the CORBA Notification Service 5-1

Tahle 5-3 Other Files the Introductory Sample Application Uses (Continued)

File Description

Tobj_Events.idl The OMG IDL code that declares the Tobj_Events
module.

Tobj_SimpleEvents.idl The OMG IDL code that declares the

Tobj_SimpleEvents module.

Note: Thisfileisneeded only for the application
that was developed using Oracle Simple
Events API.

Thefollowing files are needed only for the application that was developed using
CosNotification Service API.

CosEventChannelAdmin.idl The OMG IDL code that declares the
CosEventChannel Admin module.

CosNotifyFilter.idl The OMG IDL code that declares the
CosNotifyFilter module.

CosNotifyChannelAdmin.idl The OMG IDL codethat declaresthe
CosNotifyChannel Admin module.

Tobj_Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Changing the Protection Attribute on the Files for the
Introductory Sample Application

During the installation of the Oracle Tuxedo CORBA software, the sample application files are
marked read-only. Before you can edit or build the filesin the Introductory sample application,
you need to change the protection attribute of the files you copied into your work directory, as
follows:

Windows
1. InaDOS window, change (cd) to your work directory.

2. prompt>attrib -r drive:\workdirectory*.*

UNIX

5-8 Using the CORBA Notification Service

Building and Running the Introductory Sample Application

1. Change (cd) to your work directory.
2. prompt>/bin/ksh
3. ksh prompt>chmod u+w /workdirectory/*.*

On UNIX systems, you also need to change the permission of setenv.ksh to give execute
permission to the file, asfollows:

ksh prompt>chmod +x setenv.ksh

Setting Up the Environment

To set up the environment, enter the following command:
Windows

prompt>.\setenv.cmd

UNIX

ksh prompt>. ./setenv.ksh

Building the Introductory Sample Application

Y ou use the make command to run makefiles, which are provided for Microsoft Windows and
UNIX, to build the sample application. For UNIX, usemake. For Microsoft Windows, use nmake.

Makefile Summary
The makefile automates the following steps:

1. Checksthat the set environment command (setenv.cmd) has been run. If the environment
variables have not been set, the makefile prints an error message to the screen and exits.

2. Includesthe common .nt (for Microsoft Windows) or common . mk (for UNIX) command file.
Thisfile defines the makefile symbols used by the samples. These symbols allow the UNIX
and Microsoft Windows makefiles to delegate the build rules to platform-independent
makefiles.

3. Includesthemakefile.inc command file. Thisfile buildsthe is_reporter and
is_subscriber executables, and cleans up the directory of unneeded files and directories.

4. Includesthe introductory.inc command file. Thisfile creates the uBsconr1G file and
executesthe tmloadcf -y ubb command to create the Tuxconric file. Thisisa

Using the CORBA Notification Service 5-9

5-10

platform-independent makefile fragment that defines the administrative build rules common
to the Introductory sample application.

Executing the Makefile

Before executing themakefile, you need to check the following:

e Ensure that you have the appropriate administrative privileges to build and run
applications.

e On Microsoft Windows, verify that nmake isin the path of your machine.

e On UNIX, verify that make isin the path of your machine.
To build the Introductory sample application, enter the make command as follows:
Windows
nmake -f makefile.nt

UNIX

make -f makefile.mk

Starting the Introductory Sample Application

To start the Introductory sample application, enter the following commands:

1. To boot the Oracle Tuxedo system:
prompt>tmboot -y
This command starts the following server processes:
- TMSUSREVT

An Oracle Tuxedo system-provided, EventBroker server that is used by the Notification
Service.

- TMNTS

An Oracle Tuxedo Notification Service server that processes requests for subscriptions
and event postings.

- TMNTSFWD_T

An Oracle Tuxedo Natification Service server that forwards events to subscribers that
have transient subscriptions.

- ISL

Using the CORBA Notification Service

Building and Running the Introductory Sample Application

The lIOP Listener/Handler process.
To start the Subscriber application:

For C++: prompt>is_subscriber

To start another Subscriber, open another window, change (cd) to your work directory, set
the environment variables (by running setenv. cmd Or setenv. ksh), and enter the start
command that is appropriate for your platform.

To start the Reporter application, open another window and enter the following:
For C++: prompt>is_reporter

To start another Reporter, open another window, change (cd) to your work directory, set
the environment variables (by running setenv.cmd Or setenv.ksh), and enter the start
command that is appropriate for your platform.

Using the Introductory Sample Application

To usethe Introductory sample application, you must use the Subscriber application to subscribe
to an event and the Reporter application to post an event. Be sure to subscribe before you post
each event; otherwise, events will be lost.

Note: The Subscriber application shuts down after it receives one event.

Using the Subscriber Application to Subscribe to Events
Perform these steps:

1

When you start the Subscriber application (prompt>is_subscriber), thefollowing prompts
are displayed:

Name? (Enter a name (without spaces).)
Ccategory (or all)? (Enter the category of newsyou want or "al".)

You may type in any string for the news category; that is, thereis no fixed list of news
categories. However, when you use the Reporter application to post an event, make sure to
specify the same string for the news category.

The Subscriber application creates a subscription then prints “ Ready” when it is ready to
receive events. After the Subscriber receives one event, it shuts down.

Note: Y ou should always use the Subscriber application to subscribe to events before you
use the Reporter application to post events; otherwise, events will be lost.

Using the CORBA Notification Service 5-11

5-12

Using the Reporter Application to Post Events
Perform these steps:

1. Whenyou start the Reporter application (prompt> is_reporter), thefollowing promptsare
displayed:

(r) Report news
(e) Exit

Option?
2. Enter r to report news. The following prompt is displayed:
Category?

3. Enter the news category. It must match exactly the category you typed on the Subscriber
application (including white space and case).

After you enter the news category, the following prompt is displayed:

Enter story (terminate with '.')

4. Enter your story. It can span multiple lines. Finish the story by typing aperiod only (" . ") on
aline, followed by acarriage return.

Subscribers whose category matches the category of this story will receive, and print out
the story. When a subscriber receives a story, the subscriber automatically shuts down.

5. To send and receive more news stories, start another subscriber, then report ancther story.
When you are done reporting news, choose the Exit (e) option.

Note: The Subscriber application shuts down after it receives one event. Therefore, always
use the Subscriber application to subscribe to events before you use the Reporter
application to post an event; otherwise, events will be lost.

Shutting Down the System and Cleaning Up the Directory
Perform the following steps:

Note: Make sure the Reporter and Subscriber processes have stopped.

1. To shut down the system, in any window, type:

prompt>tmshutdown -y
2. Torestorethe directory toitsorigina state, in any window, type:

Windows

Using the CORBA Notification Service

Building and Running the Introductory Sample Application

prompt>nmake -f makefile.nt clean
UNIX

prompt>make -f makefile.mk clean

Using the CORBA Notification Service 5-13

5-14 Using the CORBA Notification Service

CHAPTERa

Building the Advanced Sample
Application

Thistopic includes the following sections:
e Overview

e Building and Running the Advanced Sample Application

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Overview

The Advanced sample application simulates a newsroom environment in which a news reporter
posts a story, awire service posts the story as an event to the Notification Service, and anews
subscriber consumes the story.

One implementation of the Advanced sample application is provided: the C++ that uses the
CosNotification Service API.

The Advanced sample application consists of the reporter, subscriber, and wire service
applications that use the Oracle Tuxedo CORBA Notification Service. The reporter application
implements aclient application. This application promptsthe user to enter newsarticlesand calls

Using the CORBA Notification Service 6-1

6-2

the WireService server using application specific IDL. The WireService server, in turn, poststhe
events. The subscriber implementsajoint client/server application. Thisapplication actsasclient
when it subscribes and unsubscribes for events, and acts as a server when it receives events. To
receive events, the Subscriber implements callback objectswhich areinvoked by the Notification
Service when an event needs to be delivered.

Note: On UNIX systems, you cannot immediately restart the subscriber because the port takes
some time (the actual time depends on the platform) to become available again. If you
restart too soon, you will get acorea: : 0BJ_ADAPTER exception. If thisoccurs, just wait
and try again. On Solaris systems, the port can take up to 10 minutesto become available.
To seeif the port is still in use, use thiscommand: “Restart -a | grep <the port

number>".

This Advanced sample application demonstrates how to use the Oracle Simple Events API, the
CosNotification Service API, transient and persistent subscriptions, and datafiltering.

This Advanced sample provides three executables (see Figure 6-1):

e A WireService application that posts events. It is a Notification Service client and an
Oracle Tuxedo CORBA server. It implements an OMG IDL interface, which the Reporter
application uses.

o A Reporter application that reports news stories by invoking methods on the WireService.
The WireService, in turn, converts the stories into events and posts them using the
Notification Service. The reporter is apure client.

e A Subscriber application that subscribes to the Notification Service and receives events.
The subscriber isajoint client/server that acts as a client when it subscribes for events, and
acts asaserver when it receives events.

Using the CORBA Notification Service

Overview

Figure 6-1 Advanced Sample Application Components

Report_news
Reporter \ Shutdown / WireSevice

ol
(Client) LCanceI A/ '& Server

Push Event

BEA Tuxedo Domain

Notification Service

Substribe
Su‘bscrllber UnsubXcribe
(Joint Client/
Server) Push Ev

The event poster, the WireService application, uses the structured event domain_name,
type_name, and filterable_data fieldsto construct three events: a news event, a subscriber
shutdown event, and a subscriber cancel event.

— News event

For this event, the domain nameisastring and is preset by the application as“News’.
The type nameis astring and defined by the Reporter application user at runtime. It is
set to the category of news (for example, “ Sports’). Filterable data contains a
name/value pair whose nameis“Story” and whose value is a string that contains the
body of the news story being posted.

— Subscriber Shutdown event

For this event, the domain nameisastring and is preset by the application as
“NewsAdmin”. The type nameisastring and is preset by the application as
“Shutdown”. Thefilterable datais not used.

— Subscriber Cancel event

For this event, the domain nameisastring and is preset by the application as
“NewsAdmin”. The type nameisastring and is preset by the application as“ Cancel”.
Thefilterable datais not used.

Using the CORBA Notification Service 6-3

6-4

The Subscriber application uses the structured event domain_name, type_name, and
filterable_data fieldsto construct two subscriptions: anews subscription that processes news
stories; and a shutdown subscription that processes Cancel and Shutdown events. At runtime, the
Subscriber application establishes these two subscriptions with the Notification Service.

— News subscription

The Subscriber application uses the structured event domain_name, type_name, and
filterable_data fieldsto create a subscription to the Notification Service. The
subscription defines the domain name as afixed string with the content of “News’. At
run time, the Subscriber application queries the user for the “News Category” and
“Keyword” and uses the inputs to define the type_name and data filter fieldsin the
subscription. Obviously, the users of both applications, the reporter and the subscriber,
must collaborate on the “News Category” and “keyword” strings for the subscription to
match an event, otherwise, no News events will be delivered to the subscriber. The
subscription does not do any checking of the filterable_data field, but rather
assumes that the body of the story will be a string, and that the story will bein the first
Named/Value pair inthe filterable_data field of astructured event.

— Shutdown subscription

The Subscriber application uses the structured event domain_name and type_name,
fields to create a subscription to the Notification Service. The subscription defines the
domain_name as afixed string with the content of “NewsAdmin”, the type nameasa
string of either “ Shutdown” or “Cancel”. Thefilterable datafield isan empty string.

The Reporter application isresponsible for implementing the user interface for reporting news as
well as for producing Shutdown and Cancel events. Rather than use the Notification Service
directly to post events, it calls methods on the WireService server.

The WireService server uses the Notification Service to post three kinds of events:
e “News’ events (used to deliver news to subscribers)
e “Shutdown” events (used to shut down subscribers temporarily)
e “Cance” events (used to shut down subscribers permanently)

The Notification Service, in turn, delivers the events to the subscribers.

The subscriber uses the Notification Service to create a persistent subscription to news events.
The subscriber implements a persistent callback object (viathe Newsconsumer_i Servant class),
which is used to receive and process news events. When the subscriber subscribes, it gives the
Notification Service areference to this callback object. When a matching event occurs, the

Using the CORBA Notification Service

Overview

Notification Serviceinvokesapush_structured_event method onthiscallback object to push
the event to the subscriber. This method prints out the event.

The subscriber also uses the Notification Service to create atransient subscription to Shutdown
and Cancel events. The subscriber implements another callback object (viathe
ShutdownConsumer_i Servant class), which is used to receive and process these events.

Whenever the subscriber runs, it prompts the user for aname. The first time this user runsthe
subscriber program, the subscriber creates a persistent subscription to News events. To do this,
the subscriber prompts the user for which kind of news stories to subscribe to and which port
number the subscriber should run on. The subscriber runs on this port, subscribes, then writesthe
subscription ID, thefilter ID (if using the CosNotification API), and the port number to afile (the
name of thefileis <user_name>.pstore). The next time the subscriber runs, the subscriber
promptsthe user for aname, opensup thefile <user_name> . pstore then readsthe subscription
ID, filter ID (if using the CosNatification API) and port number for this user from the file. This
satisfies the requirement that the subscriber runs on the same port number each time because its
news callback object's object reference is persistent.

The Subscriber creates a transient subscription to receive the Shutdown and Cancel events,
therefore, the transient subscription is created and destroyed every time the subscriber isrun and
shut down. This subscription ID is not written out to the file <user_name>.pstore.

When the subscriber receives a Shutdown event, it destroys the shutdown/callback subscription
but leaves the News subscription intact. If News events are posted after the subscriber is shut
down and before it is restarted, then the notification service will either deliver the events when
the subscriber isrestarted, or will put the events on the error queue. (You can usethentsadmin
utility to either delete these events from the error queue or retry delivering them.)

Whether the event is redelivered or is put on the error queue depends on whether the subscriber
restarts quickly enough. This depends on the retry parameters of the queue. See advanced. inc
(in the notification samples common directory) for the values of the queue retry parameters.

News events have two parts: a category (for example, headline) and a story (a multiple-line text
string). The Subscriber application promptsthe user to input anews category. Next the subscriber
subscribes to news events whose category matches this string. The Reporter application prompts
the user for anews category and a story. Next the reporter (by invoking a method on the wire
service) posts a corresponding news event. The event will only be delivered to subscribers who
subscribed to that category of news.

Note: The category isastring. The same string must be used by the Reporter user and the
Subscriber user. There are no fixed categories in this sample. Therefore both users, the

Using the CORBA Notification Service 6-5

Reporter user and the Subscriber user, must type the same string when prompted for a

category (including case and white space).
This sample also uses data filtering. When a user first runs the Subscriber, the user will be
prompted for a“keyword.” Events whose category matches and whose story contains the
keyword will be delivered to the subscriber. For example, if the user enters akeyword of “none,”
datafiltering will not be used (thus the user will receive all eventsfor the chosen news category).
If the user enters akeyword “smith”, it trandatesto “story %% ’.*smith.*~. Thiskeyword
specifiesthat the subscription only accepts eventsthat have a“ Story” field that containsa string,
and that the field starts with any number of characters, hasaliteral string “smith”, and then ends
with any number of characters.

To run this sample, you need to run at least one Reporter and at |east one Subscriber; however,
you may run multiple Reporters and multiple Subscribers. Events posted by any Reporter will be
delivered to all matching Subscribers (based on the category).

Also, be sureto start any subscribers before posting events. Events posted before the subscribers
are started will not be delivered.

Building and Running the Advanced Sample Application

To build and run the Introductory sample application, you must perform these steps:
Verify that the "TuxpIR" environment variable is set to the correct directory path.
Unset and “JAVA_HOME”

Copy thefilesfor the Introductory sample application into awork directory.

Change the protection attributes on the files to grant write and execute access.

o c w Dd PkE

For UNIX, ensure themake fileisin your path. For Microsoft Windows, ensure the nmake
fileisinyour path

Set the application environment variables.
Build the sample.

Boot the system.

© ®©® N o

Run the Subscriber and Reporter applications.
10. Shut down the system.

11. Restore the directory to its original state.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

These steps are described in detail in the following sections.

Verifying the Settings of the Environment Variables

Before you build and run the Advanced sample application, you need to ensure that the TuxpIrR
environment variableis set on your system. In most cases, thisenvironment variableis set as part
of the installation procedure. However, you need to check the environment variables to ensure
they reflect the correct information.

Table 6-1 lists the environment variables required to run the Callback sample application.

Table 6-1 Required Environment Variables for the Callback Sample Application

Environment Variable Description

TUXDIR The directory path where you installed the Oracle Tuxedo software. For example:
Windows
TUXDIR=c:\tuxdir
UNIX

TUXDIR=/usr/local/tuxdir

To verify that theinformation for the environment variabl es defined during installation is correct,
perform the following steps:

Windows

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.
The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the setting for Tuxpir
UNIX

Using the CORBA Notification Service 6-7

6-8

ksh prompt>printenv TUXDIR
To change the settings, perform the following steps:

Windows

1. On the Environment page in the System Properties window, click the environment variable
you want to change.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.
UNIX

ksh prompt>export TUXDIR=directorypath

Copying the Files for the Advanced Sample Application into
a Work Directory

Y ou need to copy the files for the Advanced sample application into awork directory on your
local machine.

Note: The application directory and the common directory must be copied to the same parent
directory.
Thefilesfor the Advanced sample application are located in the following directories:

Windows

For the C++ Advanced sample:
drive: \tuxdir\samples\corba\notification\advanced_cos_cxx
drive: \tuxdir\samples\corba\notification\common

UNIX

For the C++ Advanced sample;
/usr/local/tuxdir/samples/corba/notification/advanced_cos_cxx
/usr/local/tuxdir/samples/corba/notification/common

You usethefileslisted in Table 6-2 and Table 6-3 to build and run the C++ Advanced sample
application, which is implemented using the CosNotification API.

You use thefileslisted in Table 6-2 and Table 6-3 to build and run the Advanced sample
application.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

Tahle 6-2 Files Located in the advanced_cos_c++ Notification Directory

File

Description

Readme. txt

Describesthe Advanced sample application and provides
instructions for setting up the environment and building
and running the application.

setenv.cmd

Sets the environment for Microsoft Windows systems.

setenv.ksh

Sets the environment for UNIX systems.

makefile.nt

Makefile for Microsoft Windows systems.

makefile.mk

Makefile for UNIX systems.

makefile.inc

Common makefile used by themakefile.nt andthe
makefile.mk files.

Reporter.cpp

Code for the reporter.

Subscriber. cpp

Code for the subscriber.

NewsConsumer_i.hand
NewsConsumer . cpp

Callback servant class that subscribers use to receive
news events. (For the Subscriber application.)

ShutdownConsumer_1i.h
and
ShutdownConsumer . cpp

Callback servant classes that subscribers use to receive
Shutdown and Cancel events. (For the Subscriber
application.)

WireServiceServer.cpp

Code for the WireService server.

News.icf

ICF file for the WireService interfaces.

WireService_i.hand
WireService.cpp

Implements the WireService interfaces.

Table 6-3 lists other files that the Advanced sample application uses. With the exception of the
IDL files, thefiles are located in the Notification common directory.

Using the CORBA Notification Service 6-9

6-10

Table 6-3 Other Files That the Advanced Sample Uses

File Description

Thefollowing files are located in the common directory.

News.idl IDL definitions for the WireService server.

news_flds FML field definitions used to perform data filtering
and news events.

common.nt Makefile symbols for Microsoft Windows systems.

common .mk Makefile symbols for UNIX systems.

advanced.inc Makefile for administrative targets.

ex.h Utilities to print exceptions (C++ only).

client_ex.h Client utilities to handle exceptions (C++ only).

server_ex.h Server utilities to handle exceptions.

Thefollowing files arelocated in the \tuxdir\include directory.

CosEventComm. idl The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl The OMG IDL code that declares the
CosNotification module.

CosNotifyComm.idl The OMG IDL code that declares the
CosNotifyComm module.

Tobj_Events.idl The OMG IDL code that declares the Tobj_Events
module.

Tobj_SimpleEvents.idl The OMG IDL code that declares the

Tobj_SimpleEvents module.

Note: Thisfileisneeded only for the application
that was developed using Oracle Simple
Events API.

Thefollowing files are needed only for the application that was developed using
CosNotification Service API.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

Tahle 6-3 Other Files That the Advanced Sample Uses (Continued)

File Description

CosEventChannelAdmin. idl The OMG IDL code that declares the
CosEventChannel Admin module.

CosNotifyFilter.idl The OMG IDL code that declares the
CosNotifyFilter module.

CosNotifyChannelAdmin.idl The OMG IDL codethat declaresthe
CosNotifyChannel Admin module.

Tobj_Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Changing the Protection Attribute on the Files for the
Advanced Sample Application

During theinstallation of the Oracle Tuxedo software, the Advanced sample application filesare
marked read-only. Before you can edit or build thefilesin the Advanced sample application, you
need to change the protection attribute of the files you copied into your work directory, as
follows:

Windows
1. Change (cd) to your work directory
2. prompt>attrib -r drive:\workdirectory*.*

UNIX

1. Change (cd) to your work directory
2. prompt>/bin/ksh
3. ksh prompt>chmod u+w /workdirectory/*.*

Onthe UNIX operating system platform, you a so need to change the permission of setenv.ksh
to give execute permission to thefile, as follows:

ksh prompt>chmod +x setenv.ksh

Using the CORBA Notification Service 6-11

6-12

Setting Up the Environment

To set up the environment, enter the following command:
Windows

prompt>.\setenv.cmd

UNIX

prompt>. ./setenv.ksh

Building the Advanced Sample Application

Y ou use themake command to run makefiles, which are provided for Microsoft Windows and
UNIX, to build the sample application. For Microsoft Windows, usenmake. For UNIX, usemake.

Makefile Summary
The makefile automates the following steps:

1. Checksthat the set environment command (setenv. cmd) has been run. If the environment
variables have not been set, the makefile prints an error message to the screen and exits.

2. Includesthe common . nt (for Microsoft Windows) or common . mk (for UNIX) command file.
This file defines the makefile symbols used by the samples. These symbols allow the UNIX
and Microsoft Windows makefiles to delegate the build rules to platform-independent
makefiles.

3. Includesthemakefile.inc command file. Thisfile buildsthe is_reporter,
is_subscriber and AS_WIRESERVICE executables, and cleans up the directory of
unnecessary files and directories.

4. Includesthe advanced. inc command file. Thisfile executes tmadmin and gadmin
commands to create the transaction log and the queues required by the persistent
subscriptions. It also creates the ussconr1c file and executesthe tmloadcf -y ubb
command to create the Tuxconr 1 file.

Executing the Makefile

Before executing themakefile, you need to check the following:

e Ensure that you have the appropriate administrative privileges to build and run
applications.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

e On Microsoft Windows, make sure nmake isin the path of your machine.

e On UNIX, make suremake isin the path of your machine.

To build the Advanced sample application, enter the make command as follows:

Windows

nmake -f makefile.nt

UNIX

make -f makefile.mk

Starting the Advanced Sample Application

To start the Advanced sample application, enter the following commands:

1. To boot the Oracle Tuxedo system:

prompt>tmboot -y

This command starts the following server processes:

TMSUSREVT

An Oracle Tuxedo system-provided, EventBroker server that is used by the Notification
Service.

TMNTS

An Oracle Tuxedo CORBA Notification Service server that processes requests for
subscriptions and event postings.

TMNTSFWD_T

An Oracle Tuxedo CORBA Notification Service server that forwards events to
subscribers that have transient subscriptions. This server isrequired for transient
subscriptions.

TMNTSFWD_P

An Oracle Tuxedo CORBA Natification Service server that forwards persistent events
to subscribers that have persistent subscriptions. This server isrequired for persistent
subscriptions.

TMQUEUE

The message queue manager is an Oracle Tuxedo system-provided server that enqueues
and dequeues messages on behalf of programs calling tpenqueue(3) and
tpdequeue(3), respectively. This server isrequired for persistent subscriptions.

Using the CORBA Notification Service 6-13

6-14

- TMQFORWARD

The message forwarding server is an Oracle Tuxedo system-provided server that
forwards messages that have been stored using tpenqueue(3c) for later processing.
This server isrequired for persistent subscriptions.

— WIRE_SERVICE_SERVER

A server, specifically built for the Advanced sample application, that receives events
from the Reporter application and posts them to the Notification Service. Thisreceive
and server posts three types of events. News, Shutdown, and Cancel.

- ISL
The I1OP Listener/Handler process.
2. To start the Subscriber application:
For C++: prompt>is_subscriber

To start another Subscriber, open another window, change (cd) to your work directory, set
the environment variables (by running setenv. cmd Or setenv. ksh), and enter the start
command that is appropriate for your platform.

3. To start the Reporter application, open another window and enter the following:

For C++: prompt>is_reporter

To start another Reporter, open another window, change (cd) to your work directory, set
the environment variables (by running setenv.cmd Or setenv.ksh), and enter the start
command that is appropriate for your platform.

Using the Advanced Sample Application

To use the Advanced sample application, you must use the Subscriber application to subscribe to
an event and the Reporter application to post to an event. Be sure to subscribe before you post
each event; otherwise, events will be lost.

Using the Subscriber Application to Subscribe to Events
Perform the following steps:

1. When you start the Subscriber application (prompt>is_subscriber) for the first time, the
following prompts are displayed:

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

Name? (Enter aname (without spaces).)

port (e.g. 2463) (Enter the port number that this subscriber should run on.)

category (or all) (Enterthe category of newsyou want or "al.")

Keyword (or none) (Enter akeyword that you want all delivered storiesto
contain.)

Note: If the Subscriber application is shut down by a Shutdown event from the Reporter
application (Shutdown events do not cancel persistent subscriptions), on subsequent
startups of the Subscriber application, you will only be prompted for your name. The
Subscriber application retrieves the remaining information from the
<user_name>.pstore file. This guarantees that the same port number isused, whichis
required for persistent subscriptions.

If the Subscriber application is shut down by a Cancel event from the Reporter
application (Cancel eventscancel all subscriptionsincluding persistent subscriptions), on
subsequent startups of the Subscriber application, you will be prompted for your name,
port number, category, and keyword.

2. You may typein any string for the news category, that is, thereis no fixed list of news
categories. However, when you use the Reporter application to post an event, make sure you
specify the same string for the news category.

Similarly, you may typein astring for akeyword. Thereis no fixed list of keywords either
so when you run the reporter and enter the story, make sure that the story contains the same
string; otherwise, the story will not be delivered to your subscription.

Thefirst time the Subscriber application is run for your username, category (or al), and
keyword (optional), it creates a news subscription. On subsequent runs, the subscriber
reuses this subscription. In all cases, the Subscriber application prints “ Ready” when it is
ready to receive events.

The Subscriber application creates a subscription then prints“ Ready” when it isready to
receive events.

Note: Y ou should always use the Subscriber application to subscribe to events before you
use the Reporter application to post events; otherwise, eventswill belost. Thisis
because even though the Subscriber application creates a persistent subscription to
News events, that subscription is not created until the Subscriber application is
started.

Note: You can start multiple subscribers by opening another window and repeating this
procedure.

Using the CORBA Notification Service 6-15

6-16

Using the Reporter Application to Post Events
Perform the following steps:

1. Whenyou start the Reporter application (prompt> is_reporter), the following prompt is
displayed:

r) Report news

s) Shutdown subscribers
c) Cancel Subscribers
e)

(
(
(
(Exit

Option?
2. Enter r to report news. The following prompt is displayed:
Category?

3. Enter the news category. It must match exactly the category you typed on the Subscriber
application (including white space and case).

After you enter the news category, the following prompt is displayed:

Enter story (terminate with '.')

4. Enter your story. It can span multiple lines. Finish the story by typing aperiod only (".") on a
line, followed by a carriage return. If you typed in a keyword when subscribing, make sure
the story contains this string (including white space and case).

Subscribers whose category and keyword (if specified) matches the category and a
keyword in this story will receive and print out the story.

5. If you choose the “s” option, a Shutdown event will be posted and received by all the
subscribers and the subscriberswill shut down. While the subscribers are shut down, you may
post another news story (by using the “+” option again). The Notification Service will place
the news story on the pending queue but the News event subscription is persistent and,
therefore, isdtill in effect. After you restart the subscribers, they will receive this second news
story (unlessarestart delay caused the event to be moved to the error queue). Thisis because
the subscriber created a persistent subscription for news stories.

Note: You can usethentsadmin retryerrevents command to move events from the
error queue back to the pending queue.

6. If youchoosethe“c” option, aCancel event will be posted and received by al the subscribers.
The subscribers will cancel their news subscriptions and shut down. If you try to restart the
subscribers, then you will be prompted again for port, category, and keyword because you are
creating a new subscription.

Using the CORBA Notification Service

Building and Running the Advanced Sample Application

7. When you are finished reporting news, choose the Exit (e) option.

Note: You can start multiple reporters by opening another window and repeating this
procedure. Any news story reported by any reporter will be delivered to all matching
subscribers. Make sure you have exited al reporters before shutting down the system.

Shutting Down the System and Cleaning Up the Directory
Make sure the Reporter and Subscriber processes have stopped and perform the following steps:
1. To shut down the system, in any window, type:

prompt>tmshutdown -y
2. Torestorethe directory to its original state, in any window, type:

Windows

prompt>nmake -f makefile.nt clean

UNIX

prompt>make -f makefile.mk clean

Using the CORBA Notification Service 6-17

6-18 Using the CORBA Notification Service

CORBA Notification Service
Administration

Thistopic includes the following sections:
e Introduction

e Configuring the Notification Service. This section includes the following topics:
— Configuring Data Filters
— Setting the Host and Port
— Creating a Transaction Log
— Creating Event Queues
— Creating the UBBCONFIG File and the TUXCONFIG File

e Managing the Notification Service
o Notification Service Administration Utility and Commands
e Notification Servers

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Javaclient and Oracle Tuxedo CORBA Javaclient ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using the CORBA Notification Service 1-1

Introduction

The Oracle Tuxedo CORBA Notification Service islayered on the Oracle Tuxedo EventBroker
and Queuing systems. This means that administering the CORBA Notification Service requires
that you also administer these other Oracle Tuxedo systems. Y ou use the Oracle Tuxedo utilities
tmadmin, gmadmin, and ntsadmin to administer the Notification Service.

Notification Service administration is comprised of two related tasks: configuration and
management. Although these areas are discussed separately, they are in fact, interrelated. Thus,
to fully understand configuration, you must also understand management and vice versa.

Configuring the Notification Service

Before you can run event Notification Service applications, the following configuration
requirements must be satisfied:

o If datafiltering or Oracle Tuxedo ATMI interoperability isto be used, create Oracle
Tuxedo ATMI FML field definition files that describe the fields on which to filter or to
interoperate.

o If persistent subscriptions are to be used:

— If using aajoint client/server, set the host and port number for the callback object
references.

— Create atransaction log.

— Create queuesto hold events.

e Create a system configuration file (uBBconF1G) and a TuxconFIc file.

Configuring Data Filters

If datafiltering or Oracle Tuxedo ATMI interoperability isused in subscriber applications, you
must perform the following steps to use data filtering in subscriptions:

1. Createthe Oracle Tuxedo ATMI FML field table definition file that describes the fields on
which to filter (see Listing 7-2).

2. IntheussconFic file, specify where the FML field table definition file is located so that
when the application is started, the location of field definition filesis passed to the
Notification Service servers (see Listing 7-3).

1-2 Using the CORBA Notification Service

Configuring Data Filters

In Listing 7-1, the code that is shown in bold text shows how the datafiltering isimplemented in
an event poster application. Only subscriptions that contain the name/value pair billing and
patient_account Will receive the event.

Listing 7-1 Sample Data Filtering Using the Oracle Simple Events APl (C++)

CosNotification: :StructuredEvent notif;
notif.header.fixed_header.event_type.domain_name =

CORBA: :string_dup ("HEALTHCARE") ;
notif.header.fixed_header.event_type.type_name =

CORBA: :string_dup ("HMO") ;
// Specify an additional filter, based upon name and value
// for this event.
notif.filterable_data.length(2);
notif.filterable_data[0] .name = CORBA::string_dup ("billing");
notif.filterable_data[0].value <<= CORBA: :Long(1999);
notif.filterable_datal[l] .name =

CORBA: :string_dup ("patient_account") ;

notif.filterable_datal[l].value <<= CORBA::Long (2345);
// Push the structured event onto the channel.

testChannel->push_structured_event (notif) ;

Listing 7-2 shows the FML field table definitions file needed to use data filtering.

Listing 7-2 Data Filtering FML Field Tahle File

*base 2000

#Field Name Field # Field Type Flags Comments
__
billing 1 long - -
patient_account 2 long - -

Using the CORBA Notification Service 1-3

7-4

Listing 7-3 showsthe content of environment variablefile (envfile). Theenvfile containsthe
location of the FML field definitionsfile.

Note: Y ou can name the environment variablefile whatever you want, but the name used must
match the name specified for the ENVFILE configuration option n, the SERVERS Section
of the uBBconF1c file.

Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft Windows)

FLDTBLDIR32=D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_cxx\common
FIELDTBLS32=news_flds

Listing 7-4 shows, in bold text, how the location of the FML field table file is specified in the
uBBCONFIG file for the Advanced samples.

Listing 7-4 Specifying the FML Field Definitions File in the UBBCONFIG File

*SERVERS
TMSYSEVT

SRVGRP = NTS_GRP

SRVID 1
TMUSREVT

SRVGRP = NTS_GRP>>%@

SRVID = 2

ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED_ Simple CXX\envfile"
TMNTS

SRVGRP = NTS_GRP

SRVID = 3

ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED Simple_ CXX\envfile"

CLOPT = "-A -- -s TMNTSQS"
TMNTSFWD_T

SRVGRP = NTS_GRP

SRVID = 4

ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED Simple_ CXX\envfile"
TMNTSFWD_P

SRVGRP = NTS_GRP

Using the CORBA Notification Service

Setting the Host and Port

SRVID = 5
ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED Simple_ CXX\envfile"

Setting the Host and Port

The object references host and port number requirements for the callback object are as follows:

e For transient callback objects, any port is sufficient and can be obtained dynamically by the
ORB.

e For persistent callback objects, the ORB must be configured to accept requests for the
callback object on the same port on which the object reference for the callback object was
created.

Y ou specify the port number from the user range of port numbers, rather than from the dynamic
range. Assigning port numbers from the user range preventsjoint client/server applicationsfrom
using conflicting ports.

The method you use to set the host and port depends on the programming language you are using.

e Setting Host and Port on C++ Subscriber Applications

For C++ subscriber applications, to specify a particular port for the joint client/server
application to use, include the following on the command line that starts the process for the
joint client/server application:

-ORBport nnnn -IRBid BEA_IIOP

where nnnn is the number of the port to be used by the ORB when creating invocations
and listening for invocations on the callback object in the joint client/server application.

Use this command when you want the object reference for the callback object in ajoint
client/server application to be persistent and when you want to stop and restart the joint
client/server application. If thiscommand is not used, the ORB uses arandom port. If a
random port is used when the joint client/server application is stopped and then restarted,
invocations to persistent callback objectsin the joint client/server application will fail.

The port number is part of the input to the argv argument of the CorBa: :orb_init
member function. When the argv argument is passed, the ORB reads that information,
establishing the port for any object references created in that process.

Using the CORBA Notification Service 1-5

Creating a Transaction Log

When you use persistent subscriptions, you must configure and boot the Oracle Tuxedo queuing
system. The queuing systemrequiresatransaction log. Listing 7-5 shows how to usethe tmadmin
utility to create atransaction log.

Listing 7-5 Creating a Transaction Log (createtlog) (Microsoft Windows)

>tmadmin

>crdl -b 100 -z D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_CXX\TLOG
>crlog -m SITE1L

>quit

>

Creating Event Queues

When you use persistent events, you must configure and boot the Oracle Tuxedo queuing system.
Two event queues must be created:

® TMNTSFWD_P

Thisisthe event forwarding queue for persistent subscriptions. Events go to this queue
first and then are forwarded to matching persistent subscriptions. If an event cannot be
delivered on the first attempt, it is held in this queue and repeated attempts are made to
deliver it. If the settable retry limit is reached before the event can be successfully
delivered, the event is moved to the error queue.

This queue requires the following configuration parameters:

— Queuing order (for example, first in, first out).

How to handle out-of-order enqueuing.

Retry limit (how many retries before moving the event to the error queue).

Retry timeinterval.

How full the queue can get before administrative intervention is required.

How low the queue can get after getting full before administrative intervention is
required.

1-6 Using the CORBA Notification Service

Creating Event Queues

— Definition of the administrative intervention command.

® TMNTSFWD_E

Thisisthe error queue. This queue receives events from the TMNTSFWD_P queue that
cannot be delivered to subscriptions. This queue requires the same configuration
parameters as the TMnTsFwp_p forwarding queue, however, the retry limit and retry time
interval parameters are irrelevant because thisis the error queue and errors are only
removed by administrative intervention.

To configure these queues, perform the following steps:
1. Create adevice on disk for the queue space.
2. Configure a queue space.

3. Createthe queues.
These steps are described in the following sections.

Determining Space Parameters for Transient and
Persistent Subscriptions

To tune your system for maximum performance, you should determine the optimal valuesfor the
following parameters:

e The number of transient forwarding servers (TMnrsFwp_T) and persistent forwarding
servers (TMNTSFWD_P).

e |PC queue space (thisis used for transient subscriptions).

e Size of /Q queues (thisis used for persistent subscriptions).

IPC Queue Space for Transient Subscriptions
Proceed as follows to determine space parameters for transient subscriptions:

1. Determine how many events may bein the pipeline for transient subscriptions; that is, how
many events may bein the process of being delivered at any given time. This equals the
number of events multiplied by the number of subscribers receiving them.

2. Determine the size of your events. For purposes of this discussion, we will assume that they
arerelatively small—about 300 bytes or less.

Using the CORBA Notification Service 1-1

1-8

3.

Determine how many transient forwarding serversyou would like to start, most likely one or
two—one per processor on your machine is agood number to start with.

Determine how much IPC queue space you will need to hold your transient events. The
amount of space you need is 1000 bytes multiplied by the number of events you allow in the
pipeline. Divide thisnumber by the number | PC queuesyour transient forwarders have. If you
use MSSQ sets, then your transient forwarders share one |PC queue; if you do not, then each
forwarder hasits own | PC queue.

For example, if you estimate that there will be 10 events delivered to 50 subscribersin the
pipeline, and you start 2 transient forwarders and they do not share an IPC queue (that is,
you do not use M SSQ sets), the amount of 1PC queue space you need is:

10 events * 50 subscribers* 1000 bytes/ 2 forwarders = 250,000 bytes

Configure the IPC queue size to that number by changing the entries in the system registry.
How you do thisis platform-specific.

— For Microsoft Windows systems, see “ Setting |PC Parameters on Microsoft Windows’
on page -12.

— For UNIX systems, refer to the system reference manual supplied with the system.

/Q Queue Size Parameter Persistent Subscriptions
Proceed as follows to determine space parameters for persistent subscriptions:

1

Determine how many events may be in the pipeline for persistent subscriptions; that is, how
many events may bein the process of being delivered at any given time. This equals the
number of events multiplied by the number of subscribers receiving them.

Determine the size of your events. For purposes of this discussion, we will assume that they
arerelatively small—about 300 bytes or less.

Determine the size your /Q queues need to be to hold your persistent events (both for your
pending queue and error queue). Proceed as follows to do this:

a. Determine the size of adisk page. Thisis platform-specific. For example, on Microsoft
Windows, adisk pageis500 bytes. On UNIX machines, adisk page could range from 500
to 4000 bytesin size.

b. Determine how many disk pages you will need to store one event rounding up. For
example, if you need 1000 bytes per event and disk pages are 500 bytes, you will need 2
disk pages per event.

Using the CORBA Notification Service

Creating Event Queues

c. Determine how many disk pagesyou will need for your events. For example, if you want
to allow 500 pending events and 200 error events, and an event takes up 2 disk pages, you

will need 1400 disk pages.

d. Determine how many disk pagesyou will need for your gspace. Thisisthe number of disk
pages you need for your events plus some pages for gspace overhead. For example, if you
need 1400 disk pages for events, then your gspace needs approximately 1450 disk pages

(50 pages of gspace overhead).

e. Determine how many pages you will need for your gspace device. Thisis the number of
pages you need for the gspace plus some pages for device overhead. For example, if you
need 1450 disk pages for your gspace, then your device needs approximately 1500 pages

(50 pages of device overhead).

4. When you use qmadmin to create the qspace for your persistent events, the first phase isto
create a device. Use the size computed above in step 3e above (approximately 1500 pages).
Next, specify the size of the gspace. Use the size computed in step 3d (approximately 1450
pages). Next, specify how many events can bein the pending queue and how many events can
be in the error queue. The following sections explain how to create and configure gspaces.

Creating a Device on Disk for the Queue Space

Y ou use the gmadmin command utility to create a device on disk for the queue space.

Before you create aqueue space, you must createan entry for itinthe universal devicelist (UDL).

Listing 7-6 shows an example of the commands.

Listing 7-6 Creating a Device on Disk for Queue Space (UNIX)

prompt>gmadmin d:\smith\reg\QUE

amadmin - Copyright (c) 1996-1999 BEA Systems, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All Rights Reserved.

Distributed under license by BEA Systems, Inc.

Oracle Tuxedo is a registered trademark.
QMCONFIG=d:\smith\reg\QUE

> crdl d:\smith\reg\QUE 0 1100
Created device d:\smith\reg\QUE, offset 0, size 1100
on d:\smith\reg\QUE

Using the CORBA Notification Service

1-9

1-10

For more information about creating a device on disk, see Using the ATMI /Q Component.

Configuring a Queue Space

Y ou usethe gmdamin gspacecreate command to configure queue spaces. A queue space makes
use of 1PC resources; therefore, when you define a queue space you are allocating a shared
memory segment and a semaphore. The easiest way to use the gspacecreate commandisto let
it prompt you. Listing 7-7 shows an example queue space that is configured for the Advanced
sample application.

Listing 7-7 Creating Queue Space

> gspacecreate

Queue space name: TMNTSQS

IPC Key for queue space: 52359

Size of queue space in disk pages: 1050

Number of queues in queue space: 2

Number of concurrent transactions in queue space: 10
Number of concurrent processes in queue space: 10
Number of messages in queue space: 500

Error queue name: TMNTSFWD_E

Initialize extents (y, n [default=n]): y
Blocking factor [default=16]:

In the queue space created in Listing 7-7, take note of the following size settings:

Number of messages in queue space:500
Setting this parameter to 500 allowsroom for atotal of 500 eventsin the pending and error
queues.

Size of queue space in disk pages:1050
On Microsoft Windows, each disk page is 500 bytes and each event needs 1000 bytes. In
addition, you must allow 2 disk pages per event. Since you estimate that there will be 500
eventsin the pending and error queues, then you must allow 1000 disk pagesto storethem
(500 * 2). Also, you must allow 50 disk pages for gspace overhead, so the qspace sizeis
set to 1050 disk pages. Finally, the device needs 50 disk pages of overhead too, so the
device sizeis 1100 disk pages, which you set using the crd1l command (see Listing 7-6).

Using the CORBA Notification Service

Creating Event Queues

For more information about creating queue space, see Using the ATMI /Q Component.

Creating the Queues

Y ou must use the gmadmin gcreate command to create each queue that you intend to use.
Before you can create a queue, you first have to open the queue space with the gmadmin gopen
command. If you do not provide a queue space name, gopen Will prompt for it.

Listing 7-8 shows an example of creating the TMNTSFWD_P and TMNTSFWD_E queues that are
created for the Advanced sample application.

Listing 7-8 Creating Queues

> gopen
Queue space name: TMNTSQS

> gcreate

Queue name: TMNTSFWD_P

Queue order (priority, time, fifo, lifo): fifo

Out-of-ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 5

Retry delay in seconds [default=0]: 3

High limit for queue capacity warning (b for bytes used, B for

Q

blocks used, % for percent used, m for messages [default=100%]):
80%

Reset (low) limit for queue capacity warning [default=0%]: 0%
Queue capacity command:

No default queue capacity command

Queue 'TMNTSFWD_P' created

> gcreate

Queue name: TMNTSFWD_E

Queue order (priority, time, fifo, lifo): fifo

Out-of-ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 2

Retry delay in seconds [default=0]: 30

High limit for queue capacity warning (b for bytes used, B for

Q

blocks used, % for percent used, m for messages [default=100%]):

80%

Using the CORBA Notification Service 1-11

1-12

Reset (low) limit for queue capacity warning [default=0%]: 0%
Queue capacity command:

No default queue capacity command

Q_CAT:1438: INFO: Create queue - error queue TMNTSFWD_E created
Queue 'TMNTSFWD_E' created

> q

For more information about creating queues, see Using the ATMI /Q Component.

Setting IPC Parameters on Microsoft Windows

The Oracle Tuxedo software for Microsoft Windows systems provides you with Oracle Tuxedo
IPC Helper (TUXIPC), an interprocess communication subsystem, that isinstalled with the
product. On most machines, |PC Helper runs as installed; however, you can use the IPC
Resources page of the control panel applet to tune the TUXIPC subsystem and maximize
performance.

To display the IPC Resources page of the IPC Control Panel, perform these steps:

1. Click Start—>Settings—>Control Panel. The Microsoft Windows Control Panel isdisplayed
(Figure 7-1).

Using the CORBA Notification Service

Creating Event Queues

Figure 7-1 Microsoft Windows Control Panel
B3 Control Panel M=l E3

= — rn = - péq @

v Add/Remove BEf Console Date/Time Devices

Programs Administration

Find Fast Faontz Internet K.evboard Mail and Fax

g

3
B
2

0
EE:

MGA Dizplay todems Mouze Multimedia M etwork, ODBC
Froperties
> 2 P €& £
PC Card Parts Frinters Regional SCSI Adapters Semer
[PCRCIA) Settingz
= AT
“» = &
Semvices Sounds System Tape Devices Telephony UPS
|30 objeci(s) v

2. Click the Oracle Administration icon. The Oracle Administration Control Panel is displayed
(Figure 7-2).

3. Click onthe IPC Resources tab. The IPC Resources Control Panel portion of the Oracle
Administration Control Panel is displayed (Figure 7-2).

Using the CORBA Notification Service 1-13

Figure 7-2 Oracle Tuxedo Software for Microsoft Windows IPC Resources Control Panel

BEA Administration - \WPCWIZ1

tachines | Environmentl Logging | Listerner IPC Resaurces |
— Current Resource: Default —————— Mairum Allowed Message Size: |BS536
|PC Resournces K Mawirurn Murmber OF Message Headers: 128

M axirmumm kMessage Queue Size: |FR53E
Masimum Hurmber of Mezzage Queues: |25

Size of Meszage Segment:

=

RUALEL

Murmber Of Meszage Segments: |32767

b aximum Mumber of Proceszes Using IPC: |266

M axirmurn Mumber OF Semaphares: |1024

¥ Use Detault IPC Settings b axirnum Mumber OF Semaphore Sets: 1024

tlamirumn Murmmber Of Semaphore Undao Structures: 1024

(5]
=

19991

F &xirnunn Murmber OF Procezses Per Shared Segment; |50

MHurmber OF Shared Memaoy Segments: (50

0k I Cancel | Ll

To define |PC settings for your Oracle Tuxedo machine, proceed as follows:

1. Inthe Current Resource Default box, click the Use Default 1PC Settings check box to clear it.
2. Click theinsert box.

3. Enter the name of your machine and press Enter.

4. Click thefields next to the IPC resources you want to set, enter the desired values, and click
Apply. Clicking Apply saves the changesin the Registry Table. You must then stop and then
restart the tuxipc . exe service for the changes to take effect.

5. Click OK to close the Control Panel.

Y ou can view the performance of arunning Oracle Tuxedo server application on the Performance
Monitor.

1-14 Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

To start the Performance Monitor, click
Start—>Programs—>Administration Tools—>Performance Monitor on the taskbar. The
Performance Monitor screen is displayed (Figure 7-3).

Figure 7-3 Oracle Tuxedo Software for Microsoft Windows Performance Monitor

iz Performance Monitor M= E
File Edit Wiew Options Help

100
90
20
70
B
5
1
30
20
10
0
Last| 0000 Awerage 0.000 Min 0.000 Max 0000 Graph Tirme 100000

Color Scale Counter Instance Parent Object Computer

|Data: Current Activity

Creating the UBBCONFIG File and the TUXCONFIG File

For event poster and subscriber applicationsto communicate with a CORBA object in the Oracle
Tuxedo domain, in this case the Notification Service, aursconric fileisrequired for the
Notification Service. The uBeconr1c file must be written as part of the development of the
Notification Service application; otherwise, you will not be able to build and run the application.

After you write the uBBconF1G file, you use the tmloadcf command to produce the TUXCONFIG
file, which isused at run time. Therefore, the Tuxconr1c file must exist before the Notification
Service application is started. The Tuxconr1c fileis simply abinary version of the urBcoNFIG
file. The following is an example of how to use the tmloadcf command:

tmloadcf -y ubb

Before writing the uBecoNF1G, You should list the configuration requirements of your
Notification Service application. To list requirements, determine the required servers and
processes to support the subscription. Table 7-1 shows the configuration requirements for the
different types of subscriptions.

Using the CORBA Notification Service 1-15

Table 7-1 Configuration Requirements for Transient and Persistent Subscriptions

To support these types of subscriptions Your uBeconrFza file must include the following servers, and
processes

Transient subscription TMUSREVT, TMNTS, and TMNTSFWD_T

Persistent subscription TMUSREVT, TMNTS, TMNTSFWD_P, TMQUEUE,,
TMQFORWARD

1-16

If you are using event subscriber applications that use 11OP, you need to configure the I1OP
Listener (ISL) command in the uBecoNnF1G file with parameters that enable outbound 110P to
invoke callback objects that are not connected to an I1OP Handler (ISH). The -o option
(uppercase letter O) of the ISL command enables outbound I1OP. Additional parameters allow
system administrators to obtain the optimum configuration for their Notification Service
application. For more information about the ISL command, see Setting Up an Oracle Tuxedo
Application.

When devel oping a Notification Service application, the servERs section of the uBBconF1G file
may include the following types of servers:

® TMUSREVT

An Oracle Tuxedo system-provided server that processes event report message buffers
from tppost (3), and acts as an EventBroker to filter and distribute them. (Required)

® TMNTS
An Oracle Tuxedo Notification Service server that processes regquests for subscriptions and
event postings. (Required)

® TMNTSFWD_T

An Oracle Tuxedo Notification Service server that forwards transient events to subscribers
of transient subscriptions. (Required for transient subscriptions)

® TMNTSFWD_P

An Oracle Tuxedo Notification Service server that forwards persistent events to subscribers
that have persistent subscriptions. Events that cannot be delivered to subscribers are sent to
the error queue. (Required for persistent subscriptions)

® TMQUEUE

Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

An Oracle Tuxedo server that manages event queues. (Required for persistent
subscriptions)

® TMQFORWARD

An Oracle Tuxedo server that forwards events to the Notification Service TMNTSFWD_P
server so that they can be forwarded to persistent subscribers. (Required for persistent
subscriptions)

® ISL

The Oracle Tuxedo I10P Server Listener/Handler process. (Required if the event poster or
subscriber is remote, that is outside the local domain)

The useconF1g file shown in Listing 7-9 is from the Notification Service Introductory sample
application. The Introductory sample application supports transient subscriptions only; it does
not support persistent subscriptions or data filtering.

Listing 7-9 The Introductory Sample UBBCONFIG File

This UBBCONFIG file supports transient subscriptions only; it does
not persistent subscriptions or data filtering.
*RESOURCES

IPCKEY 52359

DOMAINID events_intro_simple_cxx

MASTER SITE1l

MODEL SHM
B
*MACHINES

"BEANIE"

LMID = SITEL

APPDIR = "D:\tuxdir\EVENTS~1\INTROD~2"

TUXCONFIG = "D:\tuxdir\EVENTS~1\INTROD~2\tuxconfig"

TUXDIR = "d:\tuxdir"

MAXWSCLIENTS = 10

ULOGPFX = "D:\tuxdir\EVENTS~1\INTROD~2\ULOG"
o

Since we are using transient events, the group need not be
transactional.
*GROUPS

SYS_GRP

Using the CORBA Notification Service 1-11

LMID = SITEl

*SERVERS

DEFAULT:

CLOPT = "-A"

TMSYSEVT

SRVGRP = SYS_GRP

SRVID = 1
TMUSREVT

SRVGRP = SYS_GRP

SRVID = 2
TMFFNAME

SRVGRP = SYS_GRP

SRVID 3

CLOPT = "-A -- -N -M"
TMFFNAME

SRVGRP = SYS_GRP

SRVID = 4

CLOPT = "-A -- -N"
TMFFNAME

SRVGRP = SYS_GRP

SRVID = 5

CLOPT = "-A -- -F"

Start the notification service server.
#
TMNTS
SRVGRP = SYS_GRP
SRVID = 6
Start the Notification Service transient event forwarder.
#
TMNTSFWD_T
SRVGRP = SYS_GRP

SRVID = 7
Start the ISL with -O since we are using callbacks to clients.
ISL

SRVGRP = SYS_GRP

SRVID = 8

1-18 Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

CLOPT = "-A -- -0 -n //BEANIE:2359"

*SERVICES

The code example shown in Listing 7-10 is from the Notification Service Advanced sample
application. The Advanced sample application supportstransient and persistent subscriptionsand
datafiltering.

Listing 7-10 The Advanced Sample UBBCONFIG File

This UBBCONFIG file supports transient and persistent
subscriptions and data filtering.
*RESOURCES

IPCKEY 52363

DOMAINID events_advanced_simple_cxx

MASTER SITE1l

MODEL SHM
oo
*MACHINES

"BEANIE"

LMID = SITEl

APPDIR = "D:\tuxdir\EVENTS~1\ADVANC~1"

TUXCONFIG = "D:\tuxdir\EVENTS~1\ADVANC~1\tuxconfig"

TUXDIR = "d:\tuxdir"

MAXWSCLIENTS = 10

ULOGPFX = "D:\tuxdir\EVENTS~1\ADVANC~1\ULOG"

Since we are using persistent events, we need a transaction log.

TLOGDEVICE = "D:\tuxdir\EVENTS~1\ADVANC~I1\TLOG"
TLOGSIZE = 10

*GROUPS
SYS_GRP
LMID = SITEl
GRPNO = 1

Using the CORBA Notification Service 1-19

1-20

Create a null transactional group for the notification service

servers.

#

NTS_GRP
LMID = SITEl
GRPNO = 2

TMSNAME = TMS
TMSCOUNT = 2

Since we are using persistent events,

create a queue transactional group for the queue servers.

#

QUE_GRP
LMID = SITEL
GRPNO = 3
TMSNAME = TMS_QM
TMSCOUNT = 2

#

Make the queue group manage the QUE space we create.

The name of the queue space specified here as TMNTSQS must match

name of the queue space you created.

#
OPENINFO = "TUXEDO/QM:D:\tuxdir\EVENTS~1\ADVANC~1\QUE; TMNTSQS"

*SERVERS
DEFAULT:
CLOPT = "-A"
#
Start the queue server.
The name of the queue space specified in the -s option of
CLOPT must match the name of the queue space you created.
#
TMQUEUE
SRVGRP = QUE_GRP
SRVID = 1
CLOPT = "-s TMNTSQS:TMQUEUE -- "

Start the queue forwarder,

have it forward events to the

notification service persistent forwarder.

Using the CORBA Notification Service

we need a persistent gqueue

the

Creating the UBBCONFIG File and the TUXCONFIG File

#
TMQFORWARD
SRVGRP = QUE_GRP
SRVID = 2
CLOPT = "-- -1 2 -g TMNTSFWD_P"
TMSYSEVT
SRVGRP = NTS_GRP
SRVID = 1
#
Start the user EventBroker. Pass in the environment file
so that the user EventBroker can find the "Story" fml field
definition. This allows the user EventBroker to perform
data filtering.
#
TMUSREVT
SRVGRP = NTS_GRP
SRVID = 2
ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
TMFFNAME
SRVGRP = SYS_GRP
SRVID = 1
CLOPT = "-A -- -N -M"
TMFFNAME
SRVGRP = SYS_GRP
SRVID = 2
CLOPT = "-A -- -N"
TMFFNAME
SRVGRP = SYS_GRP
SRVID = 3
CLOPT = "-A -- -F"
#
Start the notification service server. Pass in the environment
file so that the notification server can perform data filtering.
The -s option must be specified since we are using
persistent events. Note that the -s option specifies the name
of the queue space as TMNTSQS. This name must match the name
of the queue space you created.
#

Using the CORBA Notification Service 1-21

1-22

TMNTS
SRVGRP = NTS_GRP

SRVID = 3
ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
CLOPT = "-A -- -s TMNTSQS"

Start the notification service transient event forwarder.

#
#
Pass in the environment file so that the server can perform
data filtering.

#

TMNTSFWD_T

SRVGRP = NTS_GRP

SRVID = 4

ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1l\envfile"
#
Start the notification service persistent event forwarder.
Pass in the environment file so that the server can perform
data filtering.
#

TMNTSFWD_P
SRVGRP = NTS_GRP
SRVID = 5
ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
#
Start the ISL with -O since we're using callbacks to clients.
#

ISL

SRVGRP = SYS_GRP

SRVID = 4

CLOPT = "-A -- -O -n //BEANIE:2363"
o
*SERVICES

Using the CORBA Notification Service

Managing the Notification Service

Managing the Notification Service

After you have deployed the Notification Service application, you may need to perform the
following administrative tasks on an on-going basis:

Synchronize databases.
Purge the system of dead subscriptions.
Monitor queue utilization.

Purge the queues of unwanted events.

o c w bd PR

Move or remove events from the error queue.

Synchronizing Databases

If you configure more than one EventBroker, then your Notification Service subscription
databaseswill haveto be synchronized. Because the synchronization processrequirestime—time
that can impact event delivery—and increases network traffic, you should not configure more
than one EventBroker unless the event traffic warrantsiit.

When you configure more than one EventBroker, you can configuretime required to synchronize
the databases using the -p option on the TMUSREVT server. For more information on how to
set this option, see TMusrEvT (5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Note: Thetime reguired to synchronize the databases affects the elapsed time from when a
subscriber subscribes and when it receives events. It also affects the elapsed time from
when a subscriber unsubscribes and when it stops receiving events.

Purging the System of Dead Subscriptions

A subscription diesin one of two ways. (1) the subscriber creates a persistent subscription, shuts
down without unsubscribing, and then does not restart and reconnect to the Notification Service,
or, (2) the subscriber creates a subscription that never matches any event. Whileit is allowable
for a subscriber to create a persistent subscription and then shut down without unsubscribing, it
isan error if the subscriber does not periodically reconnect for the purpose of picking up
accumul ated events. Because the Notification Service periodically attemptsto deliver eventsthat
match persistent subscriptions, such events accumulate while the subscriber is disconnected,
consume queue space, and waste system resources.

Using the CORBA Notification Service 1-23

1-24

Subscriptionsthat will never match any events should not be created because they serve no useful
purpose. Also, subscriptions consume system resources because each posted event must be
compared against each subscription.

Using the ntsadmin commands listed in Table 7-2, you can view all subscriptions and see how
many events are currently in the pending queue and in the error queue for each subscription. Y ou
can also remove subscriptionsusing antsadmin command or move events from the error queue
to the pending queue. For a description of the ntsadmin utility, see “ntsadmin” on page -26.

Table 7-2 ntsadmin Commands Summary

Command Usage

subscriptions Lists subscriptionsin the subscription database.
rmsubscriptions Removes subscriptions for the subscription database.
pendevents Lists information about events in the pending events

queue. (For persistent subscriptions only.)

rmpendevents Removes eventsin the pending events queue. (For
persistent subscriptions only.)

errevents Lists eventsin the event error queue. (For persistent
subscriptions only.)

rmerrevents Removes eventsin the events error queue. (For
persistent subscriptions only.)

Although there is no way of automatically detecting adead subscription, thentsadmin utility is
helpful in determining when and if a subscription is dead.

Monitoring Queue Utilization

Queues are created with a fixed amount of space allocated to them. This space is consumed as
events accumulate in the queues. If the queues become full, subsequent attempts to enqueue
events will fail.

Y 0u use gmadmin OF ntsadmin t0 monitor queue utilization (see gmadmin (1) inthe Oracle
Tuxedo Command Reference).

When the queue space was created to hold the pending events, the maximum number of events
that could be held by the queue space was specified. For example, in the Advanced sample

Using the CORBA Notification Service

Notification Service Administration Utility and Commands

application, the maximum number of events for the TMnTSQS queue space was set to 200 (see
“Creating Event Queues’ on page -6). With knowledge of queue space capacity, you can use the
ntsadmin pendevents command to determine the number of events pending in the event queue.
If the event queueisfull or nearly full, you may want to increase the setting for maximum number
of events or increase the number of event queues.

Note: Usethethreshold command option (cmd) onthe gmadmin gcreate command to generate
awarning when a queue is nearing capacity. For information on this command, see
amadmin(1) in the Oracle Tuxedo Command Reference.

Purging the Queues of Unwanted Events

Y ou can purge events from either the pending queue or the error queue by using the ntsadmin
commands rmerrevents and rmpendevents.

WARNING: After an event has been removed from the queue thereisno way to recover it. The
event is gone and the subscribing application will never receive the event.

Managing the Error Queue

After apreset number of attemptsto deliver an event, the event ismoved to the error queue. Once
on the error queue, the administrator must take some action to either purge the event from the
system, or move the event from the error queue back to the pending queue. Purging of eventsis
discussed in the previous section.

When you move an event from the error queue back to the pending queue, you are requesting that
the system resume delivery attempts of the event. Because failed attemptsto deliver events
consume system resources, you should not do this unless you have some reason to believe that
the condition that prevented delivery before has been corrected. The ntsadmin
retryerrevents command is provided specifically to move events back to the pending queue.

Notification Service Administration Utility and
Commands

This topic includes the following sections:
e ntsadmin Utility
e ntsadmin Commands

e Using the ntsadmin Utility

Using the CORBA Notification Service 1-25

ntsadmin Utility

This section describes the nt sadmin utility.

ntsadmin

Synopsis
Oracle Tuxedo CORBA Notification Service administration command interpreter.

Syntax

ntsadmin

Description

The Notification Service includes an administration command interpreter, nt sadmin, that
provides commands to perform the following tasks for CORBA Notification Service
applications;

e List subscriptions
e Delete subscriptions

Display summary information about structured events on the pending and error queues

e Delete structured events on the pending and error queues

e Move structured events from the error queue to the pending queue

Note: When you enter ntsadmin to start the program, if your application only has transient
subscriptions, the commands for persistent subscriptions are disabled.

Note: The Notification Service must be running before you can use nt sadmin.

Y ou can exit thentsadmin program by entering aq (for quit) at the command prompt. Y ou can
terminate the output from a command by pressing the Break key; the program then prompts for
anew command.

Output from ntsadmin is paginated according to the pagination command in use (see the
paginate command).

Note: The subscription command has different output depending on the setting of the
verbose command.

1-26 Using the CORBA Notification Service

Notification Service Administration Utility and Commands

Security
This utility can only be used by the system administrator.

See Also

TMNTS, TMNTSFWD_T, TMNTSFWD_P, gmadmin

ntsadmin Commands

Commands may be entered either by their full name or by an abbreviation (if available, the
abbreviation is listed below in parentheses following the full name), followed by appropriate
arguments. Arguments that appear in square brackets [] are optional; argumentsin curly braces
{} indicate a selection from mutually exclusive options. Each command offers the following
options:

Option Definition

[-1 identifier] If specified, identifies the subscription that matches
identifier.

[-n name] If specified, identifies the subscription(s) with a subscription
name that matches name only. To specify names which match
theempty string (that is, subscriptionswith no name), enclosean
empty string between quotes (™).

Note: This option does not support the wildcard character (*)
S0 name must match the subscription name exactly.

[-t] If specified, designates subscriptions with a QoS of transient
only.

[-p] If specified, designates subscriptions with a QoS of persistent
only.

The ntsadmin commands are as follows:

subscriptions (sub) [{-i identifier |-n name |-t | -p}]
Lists subscriptions in the subscription database.

Note: The subscription command has different output depending on whether the verbose
modeison or off (the verbose command is described below). Listing 7-11 shows
examples of subscription output with verbose on and off.

Using the CORBA Notification Service 1-21

Listing 7-11 Subscription Command Output with Verbose Mode On and Off

> verbose on
Verbose mode is now on
> sub
ID: 1000000006
Name: marcello
QoS: Transient
Qspace: <N/A>
Expression: stock trade\.quote
Filter: stock_name %% 'BEAS' && price_per_share > 150
ID: 1000000005
Name: marcello
QoS: Persistent
Qspace: TMNTSQS
Expression: stock trade\.sell
Filter:
ID: 1000000004
Name: marcello
QoS: Persistent
Qspace: TMNTSQS
Expression: stock trade\.buy
Filter:
> verbose off

Verbose mode is now off

> sub

ID Name Expression

1000000006 marcello [T] stock trade\.quote

1000000005 marcello [P] stock trade\.sell

1000000004 marcello [P] stock trade\.buy
rmsubscriptions (rmsub) [{-i identifier |-n name |-t | -pl}I[-¥y]

Removes subscriptions from the subscription database. This command prompts for
confirmation unless -y is used.

1-28 Using the CORBA Notification Service

Notification Service Administration Utility and Commands

This command displays the number of subscriptions removed.

pendevents (pevt) [{-i identifier |-n name}]
Listsinformation about events in the pending events queue.

rmpendevents (rmpevt) [{-i identifier |-n name |-o0}]I[-y]
Removes events in the pending events queue. If —o is specified, al eventsthat do not
currently have a corresponding subscription in the subscription database will be removed.

This command prompts for confirmation unless -y is used and displays the number of
events removed.

errevents (eevt) [{-i identifier |-n name}]
Lists eventsin the events error queue.

rmerrevents (rmeevt) [{-i identifier |-n name |-o0}1[-y]
Removes events in the events error queue. If -o is specified, all events that do not
currently have a corresponding subscription in the subscription database will be removed.

This command prompts for confirmation unless -y is used and displays the number of
events removed.

retryerrevents (reteevt) [{-i identifier |—n name}] [-v]
Retries the events in the events error queue. Thiswill move the events from the error

gueue to the pending queue.

This command prompts for confirmation unless -y is used and displays the number of
events moved from the error queue to the pending queue.

quit (q)
Terminates the session.

echo (e) [{off |on}]
Echoes input command lines when set to on. If no input is given, then the current setting
istoggled and the new setting is printed. Theinitial setting isoff.

help (h) [{command |all}]
Printshelp messages. If command is specified, the abbreviation, arguments and description
for that command are printed. a11 causes a description of the commands to be displayed.
Omitting all arguments causes the syntax of all commandsto be displayed.

paginate (page) [{off |on}]
Paginates output. If no input is given, the current setting istoggled and the new setting is
printed. The initial setting is on, unless either standard input or standard output is a
non-terminal device. Pagination may only be turned on when both standard input and
standard output are terminal devices. The shell environment variable pAceR may be used

Using the CORBA Notification Service 1-29

1-30

to override the default command used for paging output. The default paging command is
the pager indigenous to the native operating system environment; for example, the
command pg is the default on UNIX operating systems.

verbose (v) [{on | off }]
Produces output in verbose mode. If no option is given then the current setting will be
toggled, and the setting is printed. Theinitial setting isof£.

! shellcommand
Use this command to escape to shell and execute shellcommand.

Use this command to repeat the previous shell command.

#[text]
Use this command to designate the line as a comment.

<CR>
Use this command to repeat the previous command.

Using the ntsadmin Utility
This section provides examples of using the ntsadmin utility.

Listing 7-12 shows an example of using ntsadmin to move events from the error queue back to
the pending queue. The following steps are performed:

1. Look up al subscriptionsfor marcello.
2. Usethe unique subscription_id to display information about events on the error queue.

3. Movethe events from the error queue to the pending queue.

Listing 7-12 Moving Events from the Error Queue to the Pending Queue

D:\smith\reg>ntsadmin

ntsadmin - Copyright (c) 1996-1999 BEA Systems, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All Rights Reserved.

Distributed under license by BEA Systems, Inc.

Oracle Tuxedo is a registered trademark.

INFO: /Q Qspace - TMNTSQS

INFO: /Q Device - D:\smith\reg\QUE (SITE1l)

> subscriptions -n marcello

Using the CORBA Notification Service

Notification Service Administration Utility and Commands

D Name Expression
1000000002 marcello [T] stock trade\.quote
1000000001 marcello [P] stock trade\.sell
1000000000 marcello [P] stock trade\.buy

> verbose off

Verbose mode is now off

> eevt -i 1000000003

ID Name Count

1000000003 marcello 1
> reteevt -i 1000000003 -y

1 event(s) retried

Listing 7-13 shows an example of using ntsadmin to remove subscriptions and purge events.

Listing 7-13 Removing a Subscription

rmsub -n BillJones -y
subscription(s) removed
rmeevt -n marcello -y

event (s) removed

vV B VvV NV

rmpevt -n BillJones -y

No events removed

Listing 7-14 shows how to check events pending for a specific subscription.

Listing 7-14 Checking for Pending Events

> pevt -n marcello

ID Name Count

1000000003 marcello 1

Using the CORBA Notification Service 1-31

Notification Servers

This section provides descriptions of the following servers:
® TMTNS

® TMNTSFWD_T

® TMNTSFWD_P

The Notification Service also uses the following Oracle Tuxedo system servers. For descriptions
of these servers, refer to the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

® TMSYSEVT (5)
® TMUSREVT (5)
® TMQFORWARD (5)

® TMQUEUE (5)

TMNTS

Synopsis
Processes requests for subscriptions and event postings.

Syntax

TMNTS SRVGRP="identifier” SRVID="number”
[CLOPT="[-A] [servopts options]

[--[-S queuespacel "]

Description
TMNTS isan Oracle Tuxedo-provided server that processesall requestsfor subscriptionsand event
postings.

Parameter

-S queuespace
The name of the queue space to use. This queue space must contain two queues:
TMNTSFWD_P and TMNTSFWD_E. Thisoption isrequired for persistent subscriptions only.

1-32 Using the CORBA Notification Service

Notification Servers

Note: If you plan to use subscriptions with a QoS of persistent, you must create a queue
space, a queue for holding events, and an error queue before the system is operational.
The queue space name must match the queuespace name specified using the cLopT -s
queuespace parameter for the TMnTs server. The event queue must be named
TMNTSFWD_P. The error queue must be named TMNTSFWD_E.

It is possible to boot more then one TvNTS server to increase reliability and availability.

The TvMnTs server must be part of atransactional group if events will be posted in the context of
atransaction.

Interoperability
TMNTS must run on Oracle WebL ogic Enterprise version 5.0 or later or Oracle Tuxedo 8.0 or | ater.

Notes
ThetMnTs server relieson services provided by the TMusrEvT and TMsYSEVT servers. Therefore,
these servers must be booted before the system is operational. If transient subscriptions are used,
the TMnTSFWD_T Server must also be booted before the system is operational. If persistent
subscriptions are used, the TMNTSFWD_P, TMQUEUE, and TMQFORWARD Servers must al so be booted
before the system is operational.

Example
*SERVERS

TMNTS SRVGRP = NTS_GRP SRVID = 3
CLOPT "-A -- -s TMNTSQS"

See Also

TMSYSEVT (5), TMUSREVT (5) , TMOQUEUE (5), TMOFORWARD (5) , TMNTSFWD_P, TMNTSFWD_T (5),
UBBCONFIG (5)

TMNTSFWD T
Synopsis
Forwards events to transient subscribers.
Syntax
TMNTSFWD_T SRVGRP="identifier” SRVID="number”

[CLOPT="[-A] [--"]

Using the CORBA Notification Service 1-33

Description

TMNTSFWD_T IS an Oracle Tuxedo-provided server that forwards events to subscribers who
specified a QoS of Transient. Thereis no transaction context associated with event delivery.

Note: It ispossibleto boot more then one TMNTSFWD_T Server to increase reliability and
availability.

Interoperability
TMNTS must run on Oracle WebL ogic Enterpriseversion 5.0 or later or Oracle Tuxedo 8.0 or | ater.

Notes

The TMnTSFWD_T Server relies on services provided by the TMNTS, TMUSREVT, and TMSYSEVT
servers. Therefore, these servers must be booted before the system is operational.

Example
*SERVERS

TMNTSFWD_T SRVGRP = SYS_GRP SRVID = 7

See Also

TMSYSEVT (5), TMUSREVT (5), TMNTS (5) , TMNTSFWD_P, UBBCONFIG (5). Also, see “IPC Queue
Space for Transient Subscriptions’ on page -7.

TMNTSFWD_P
Synopsis
Forwards events to persistent subscribers.
Synopsis
TMNTSFWD_P SRVGRP="identifier” SRVID="number”
CLOPT="[-A] [--"]
Description

TMNTSFWD_P IS an Oracle Tuxedo-provided server that forwards events to subscribers who
specified a QoS of persistent. There is no transaction context associated with event delivery.

It is possible to boot more then one TMnTSFWD_P Server to increase reliability and availability.

1-34 Using the CORBA Notification Service

Notification Servers

Interoperability
TMNTS Must run on Oracle WebL ogic Enterprise version 5.0 or later or Oracle Tuxedo 8.0 or later.

Notes

The TvNTSFWD_P server relies on services provided by the TMNTS, TMUSREVT, TMSYSEVT,
TMQUEUE, and TMQFORWARD Servers. Consequently, these servers must be booted before the
system is operational .

This server must be booted in a transactional group.
The number of TMNTSFWD_ P servers booted should be the same as the number of TMOFORWARD
servers booted.

Example
*SERVERS

TMNTSFWD_P SRVGRP = NTS_GRP SRVID = 5

See Also

TMSYSEVT (5), TMUSREVT (5), TMNTS, TMNTSFWD_T, servopts (5), UBBCONFIG(5)

Using the CORBA Notification Service 1-35

1-36 Using the CORBA Notification Service

Index

A

Advanced application process
Advanced sample application 6-13
Advanced sample application
building 6-6
changing protection on files 6-11
setting up the work directory 6-8
source files 6-8
starting the server application 6-13

Oracle Administration Control Panel
IPC Resources page 7-12
Oracle Tuxedo system servers 1-4
BEAWTrapper callback
object 3-8
Boolean expression operators 2-12
Bootstrap Object
service IDs 2-3
building

C++ joint client/server applications 3-11,

4-12
buildobjclient command 3-13, 4-14

C

C++ joint client/server applications
compiling 3-11, 4-12
threading considerations 3-11

callback object
creating 3-7, 4-9
persistent 7-5

transient 7-5

Callback sample application
environment variables 6-7
JAVA_HOME directory path 6-7

required environment variables 5-4, 6-7

Channel Factory 2-3
client stub files 3-12, 4-13
compiling

C++ joint client/server applications 3-11,

4-12
ConsumerAdmin object 4-8
copy samplefiles 5-6
copying sample files 6-8
COS Structured Events 2-5

filterable body 2-6

fixed header 2-5

remaining body 2-6

variable header 2-5

CosNotification Service API

overview 2-23

Push Consumer class 2-51

service classes
descriptions 2-27
model 2-25

D

datafiltering 2-12, 6-6
configuring 7-2

directory location of sourcefiles
Advanced sample application 6-8
Introductory sample application 5-6

directory path 5-5, 6-7

Using the CORBA Notification Service

Index-1

E

environment variables 5-4
Callback sample application 5-4, 6-7
JAVA_HOME 5-4, 6-7
TUXDIR 5-4, 5-5, 6-7, 6-8

error queue 7-25

event channel
finding 2-3
getting 3-2, 4-2

event design 2-6, 3-2, 4-2

event queues
creating 7-6

events
creating and posting 3-3, 4-3
news 6-5
posting 2-9, 3-2
receiving 2-10
subscribing 3-4
system 2-10

example 2-10
user 2-10
example 2-11
exception
CORBA:: TRANSIENT 2-3

F
Field Manipulation Language (FML)
buffer 2-9
creating field table files 2-7
field table definition
files 7-2
field table files 2-9
filenames 2-9
FML32 2-9
file protections
Advanced sample application 6-11
Introductory sample application 5-8
FilterFactory object 4-8
FML field table files 2-9
FML field tables 1-4

Index-2 Using the CORBA Notification Service

FML filename 2-9

host and port
number requirements 7-5

idl command 3-12
IDL files3-12
Introductory application process
Introductory sample application 5-10
Introductory sample application
building 5-4
changing protection on files 5-8
description 5-1
setting up the work directory 5-6
source files 5-6
starting the server application 5-10
IPC Helper (TUXIPC) 7-12
ISL 7-17

J

JAVA_HOME parameter
Callback sample application 5-4, 6-7

makefile
executing 5-10, 6-12
summary 5-9, 6-12

news events 6-5

Notification servers 1-4, 7-32
TMNTSFWD_P 7-32
TMNTSFWD_T 7-32
TMQFORWARD 7-32
TMQUEUE 7-32

TMSYSEVT 7-32
TMTNS 7-32
TMUSREVT 7-32
Notification Service
application build
requirements 4-14
Bootstrap object 2-3
build requirements 3-13
compiling and running 4-12
configuring 7-2
defined 1-1
event design 2-6
exception symbols 2-53
managing 7-22
minor codes 2-53
product features 1-3
programming model 1-2
TUXCONFIG file 7-15
UBBCONFIG file 7-15
Notification Service system
components 1-2
ntsadmin
commands 7-27
utility
description 7-26
using 7-30

P

Performance Monitor screen 7-15

Q

gmadmin command 7-9
Quality of Service (QoS) 2-14
persistent 1-3, 2-2
persistent subscription 1-4, 2-2
setting 2-2
subscription
persistent
properties 2-2
transactions 2-4

transient 1-3, 2-2
transient subscription 1-3
properties 2-3

transient versus persistent 2-14
queue

creating a 7-11

managing error queue 7-25

monitoring space 7-24

purging unwanted events 7-25
queue space

configuring 7-10

creating a device 7-9

R

Reporter application 5-2, 6-4
post an event 6-16

retry limit 1-4

)

server applications
starting
Advanced sample application 6-13
Introductory sample application 5-10
servers 7-32
Setting |PC Parameters 7-12
Simple Events API 2-15
Channel Factory interface 2-22
Channedl interface 2-16
skeleton files 3-12, 4-13
Subscriber application 5-2
news subscription 6-4
shutdown subscription 6-4
subscribe to event 6-14
subscription
cancellation 2-3
checking successful delivery 2-3
cleanup mechanism 2-3
creating 4-10
parameters 2-11
data filter 2-12

Using the CORBA Notification Service Index-3

domain_type 2-11
push_consumer 2-14
QoS 2-14
subscription_name 2-11
type_name 2-12
persistent
/Q queue size parameter 7-8
creating 3-8
creating atransaction log 7-6
creating an event queue 7-6
IPC queue space 7-7
properties 2-2
purging dead subscriptions 7-23
retry limit 1-4
synchronizing databases 7-23
transient
creating 3-8, 4-11
IPC queue space 7-7
properties 2-3
viewing with ntsadmin 7-23

T

TMFFNAME application process
Advanced sample application 6-13
Introductory sample application 5-10

TMNTS 1-4, 7-16, 7-33, 7-34

TMNTSFWD_P 1-4, 7-16, 7-35

TMNTSFWD_T 1-4, 7-16, 7-34

TMQFORWARD 1-4, 7-17

TMQUEUE 1-4, 7-16

TMSUSREVT 1-4, 7-33, 7-34

TMSYSEVT 1-4, 7-33, 7-34

TMSY SEVT application process
Advanced sample application 6-13
Introductory sample application 5-10

TMUSREVT 7-16

transaction log
creating 7-6

transactions
QoS 2-4

Index-4 Using the CORBA Notification Service

TUXCONFIG file

creating 7-15
TUXDIR parameter

Callback sample application 5-4, 6-7
TUXIPC 7-12

U

UBBCONFIGfile 1-4
creating 7-15

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Using the CORBA Notification Service, 12c Release 2 (12.2.2)
	Contents

	Overview
	Introduction
	Functional Overview
	Figure 1-1 Notification Service Model

	Product Components

	CORBA Notification Service API Reference
	Introduction
	Quality of Service
	Persistent Subscriptions
	Transient Subscriptions

	Obtaining the Channel Factory
	Using Transactions
	Structured Event Fields, Types, and Filters
	Figure 2-1 Structured Event

	Designing Events
	Listing 2-1 Event Design

	Creating FML Field Table Files for Events
	Table 2-1 Supported CORBA Any Types
	Listing 2-2 Data Filtering FML Field Table File

	Interoperability with Oracle Tuxedo Applications
	Posting Events
	Receiving Events

	Parameters Used When Creating Subscriptions
	subscription_name
	domain_type
	type_name
	data_filter
	Table 2-2 Boolean Expression Operators

	Listing 2-3 Data Filtering Requirements
	push_consumer
	Table 2-3 When to Use Transient Versus Persistent Object References for Joint Client/Servers

	qos (quality of service)

	Oracle Simple Events API
	Figure 2-2 Oracle Simple Events Interfaces
	TOBJ_SimpleEvents::Channel Interface

	Channel::subscribe
	CORBA IDL
	Parameters
	Exceptions
	CORBA::BAD_PARAM
	CORBA::IMP_LIMIT
	CORBA::INV_OBJREF

	Description
	Return Value
	Examples

	Channel::unsubscribe
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Examples

	Channel::push_structured_event
	CORBA IDL
	Parameter
	notification

	Exceptions
	CORBA_IMP_LIMIT

	Description
	Examples

	Channel::exists
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples
	TOBJ_SimpleEvents::ChannelFactory Interface

	Channel_Factory::find_channel
	CORBA IDL
	Parameter
	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples
	CosNotification Service API
	Overview of Supported CosNotification Service Classes
	Figure 2-3 Implemented CosNotification Service Classes

	Detailed Descriptions of CosNotification Service Classes
	CosNotifyFilter::Filter Class

	CosNotifyFilter::Filter::add_constraints
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidConstraint
	CORBA::BAD_PARAM
	CORBA_IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyFilter::Filter::destroy
	Synopsis
	OMG IDL
	Exceptions
	CORBA::BAD_PARAM

	Description
	CosNotifyFilter::FilterFactory Class

	CosNotifyFilter::FilterFactory::create_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidGrammar

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: connect_structured_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosEventChannelAdmin::TypeError
	CORBA::INV_OREF
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST
	CosEventChannelAdmin::AlreadyConnected

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_qos
	Synopsis
	OMG IDL
	Exceptions
	UnsupportedQoS
	ORBA::IMP_LIMIT

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter
	Synopsis
	OMG IDL
	Exceptions
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::FilterNotFound

	Description
	Restrictions
	a. Filter object references that are returned from this operation cannot be used in comparison operations.
	b. Filter object references returned by this operation can be used by the CosNotifyFilter::Filter::destroy operations but are of little use since they cannot be modified or added to proxy objects.

	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: disconnect_structured_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CORBA::OBJECT_NOT_EXIST

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: connect_structured_push_supplier
	Synopsis
	OMG IDL
	Exception
	CosEventChannelAdmin::AlreadyConnected

	Description
	1. Make a proxy.
	2. Use this operation to connect to the Notification Service and pass in a NIL.
	3. Post events.
	4. Before exiting the poster program, disconnect.

	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected
	CORBA::IMP_LIMIT

	Descriptions
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: disconnect_structured_push_consumer
	Synopsis
	OMG IDL
	Descriptions
	1. Make a proxy.
	2. Connect and disconnect on every run of the poster application.

	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::ConsumerAdmin Class

	CosNotifyChannelAdmin::ConsumerAdmin:: obtain_notification_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ProxyNotFound

	Descriptions
	Return Value
	Examples
	CosNotifyChannelAdmin::SupplierAdmin Class

	CosNotifyChannelAdmin::SupplierAdmin:: obtain_notification_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannel Class

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_consumer_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_supplier_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel::default_filter_factory
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannelFactory Class

	CosNotifyChannelAdmin::EventChannelFactory::get_event_channel
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ChannelNotFound

	Description
	Return Value
	Examples
	CosNotifyComm::StructuredPushConsumer Interface

	CosNotifyComm::StructuredPushConsumer::push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected

	Description
	Examples

	CosNotifyComm::StructuredPushConsumer:: disconnect_structured_push_consumer
	Synopsis
	OMG IDL
	Description
	Examples

	CosNotifyComm::StructuredPushConsumer::Offer_change
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyComm::InvalidEventType

	Description
	Examples
	Exception Minor Codes
	Table 2-4 Tobj_Events Exception Minor Codes
	Table 2-5 Tobj_Notification Exception Minor Codes

	Using the Oracle Simple Events API
	Development Process
	Table 3-1 Development Process

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 3-1 Getting the Event Channel (C++)

	Creating and Posting Events
	1. Creates an event and sets the domain name and type name. In the code samples, the domain name is set to “News” and the event type is set to “Sports”.
	2. Adds a field to the event’s filterable data to contain the story, sets the name of the added field to “Story”, and the value of the field to a string containing the story.
	3. Uses the push_structured_event operation to post the event to the Notification Service.
	Listing 3-2 Creating and Posting the Event (C++)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 3-3 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 3-4 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.cpp)

	Getting the Event Channel
	Creating a Callback Object
	1. Create a callback object. Callback objects can be implemented using either the BEAWrapper Callback API or the CORBA Portable Object Adaptor (POA).
	2. Create the servant.
	3. Create an object reference to the callback servant.
	Listing 3-5 Sample Code for Creating a Callback Object With Transient Object Reference (Introductory Application Subscriber.cpp)

	Creating a Subscription
	1. Set the subscription’s quality of service (QoS) to either transient or persistent.
	2. Determine the subscription_name (optional), domain_name, type_name, and data_filter (optional).
	3. Create the subscription. The subscription sets the domain_name, type_name, and data_filter (optional), the Quality of Service (QoS), and supplies the object reference to the subscriber’s callback object to the Notification Service.
	Listing 3-6 Creating a Transient Subscription (C++)
	Listing 3-7 Creating a Persistent Subscription (Advanced Subscriber.cpp)
	Threading Considerations for C++ Joint Client/Server Applications

	Step 3: Compiling and Running Notification Service Applications
	1. Generate the required client stub and skeleton files to define interfaces between the Notification Service and event poster and subscriber applications. Event poster applications can be clients, joint client/servers, or servers. Event subscriber a...
	2. Compile the application code and link against the skeleton and client stub files.
	3. Build the application.
	4. Run the application.
	Generating the Client Stub and Skeleton Files
	Table 3-2 idl Command Requirements
	Table 3-3 IDL Files Required by Notification Service Applications

	Building and Running Applications
	Table 3-4 Application Build Requirements
	Listing 3-8 C++ Reporter Application Build and Run Commands (Microsoft Windows)
	Listing 3-9 C++ Subscriber Application Build and Run Commands (Microsoft Windows)
	Listing 3-10 C++ Subscriber Application Build and Run Commands (UNIX)

	Using the CosNotification Service API
	Development Process
	Table 4-1 Development Process

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 4-1 Getting the Event Channel (Reporter.cpp)

	Creating and Posting Events
	Listing 4-2 Creating and Posting the Event (Reporter.cpp)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 4-3 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 4-4 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.cpp)

	Getting the Event Channel, ConsumerAdmin Object, and Filter Factory Object
	Listing 4-5 Getting the Event Channel and ConsumerAdmin and Filter Factory Objects (Subscriber.cpp)

	Creating a Callback Object
	1. Creating a callback wrapper object. This can be implemented using either the BEAWrapper Callbacks object or the CORBA Portable Object Adaptor (POA).
	2. Creating the servant.
	3. Creating an object reference to the callback servant.
	Listing 4-6 Sample Code for Creating a Callback Object with Transient Object Reference (Introductory Application Subscriber.cpp)

	Creating a Subscription
	1. Create a notification proxy push supplier and use it to create a StructuredProxySupplier object.
	2. Set the subscription’s Quality of Service (QoS). You can set the QoS to transient or persistent.
	3. Create a filter object and assign the domain_name, type_name, and data_filter (optional) to it.
	4. Add the filter to the proxy.
	5. Connect to the proxy passing in the subscription’s callback object reference.
	Listing 4-7 Creating a Transient Subscription

	Step 3: Compiling and Running Notification Service Applications
	1. Generate the required client stub and skeleton files to define interfaces between the Notification Service and event poster and subscriber applications. Event poster applications can be clients, joint client/servers, or servers. Event subscriber a...
	2. Compile the application code and link against the skeleton and client stub files.
	3. Build the application.
	4. Run the application.
	Generating the Client Stub and Skeleton Files
	Table 4-2 idl Command Requirements
	Table 4-3 IDL Files Required by Notification Service Applications

	Compiling and Linking the Application Code
	Table 4-4 Application Build Requirements
	Listing 4-8 C++ Reporter Application Build and Run Commands
	Listing 4-9 C++ Subscriber Application Build and Run Commands (Microsoft Windows)
	Listing 4-10 C++ Subscriber Application Build and Run Commands (UNIX)

	Building the Introductory Sample Application
	Overview
	Figure 5-1 Introductory Sample Application Components

	Building and Running the Introductory Sample Application
	1. Verify that the "TUXDIR" environment variable are set to the correct directory path.
	2. Unset “JAVA_HOME”
	3. Copy the files for the Introductory sample application into a work directory.
	4. Change the protection attributes on the files to grant write and execute access.
	5. For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure the nmake file is in your path
	6. Set the application environment variables.
	7. Build the sample.
	8. Boot the system.
	9. Run the Subscriber and Reporter applications.
	10. Shut down the system.
	11. Restore the directory to its original state.
	Verifying the Settings of the Environment Variables
	Table 5-1 Required Environment Variables for the Introductory Sample Application
	1. From the Start menu, select Settings.
	2. From the Settings menu, select the Control Panel.
	3. Click the System icon.
	4. Click the Environment tab.
	5. Check the setting for TUXDIR
	1. On the Environment page in the System Properties window, click the environment variable you want to change.
	2. Enter the correct information for the environment variable in the Value field.
	3. Click OK to save the changes.

	Copying the Files for the Introductory Sample Application into a Work Directory
	Table 5-2 Files Located in the introductory_sample_c++ Directory
	Table 5-3 Other Files the Introductory Sample Application Uses

	Changing the Protection Attribute on the Files for the Introductory Sample Application
	1. In a DOS window, change (cd) to your work directory.
	2. prompt>attrib -r drive:\workdirectory*.*
	1. Change (cd) to your work directory.
	2. prompt>/bin/ksh
	3. ksh prompt>chmod u+w /workdirectory/*.*

	Setting Up the Environment
	Building the Introductory Sample Application
	Makefile Summary
	1. Checks that the set environment command (setenv.cmd) has been run. If the environment variables have not been set, the makefile prints an error message to the screen and exits.
	2. Includes the common.nt (for Microsoft Windows) or common.mk (for UNIX) command file. This file defines the makefile symbols used by the samples. These symbols allow the UNIX and Microsoft Windows makefiles to delegate the build rules to platform-i...
	3. Includes the makefile.inc command file. This file builds the is_reporter and is_subscriber executables, and cleans up the directory of unneeded files and directories.
	4. Includes the introductory.inc command file. This file creates the UBBCONFIG file and executes the tmloadcf -y ubb command to create the TUXCONFIG file. This is a platform-independent makefile fragment that defines the administrative build rules co...

	Executing the Makefile

	Starting the Introductory Sample Application
	1. To boot the Oracle Tuxedo system:
	2. To start the Subscriber application:
	3. To start the Reporter application, open another window and enter the following:

	Using the Introductory Sample Application
	Using the Subscriber Application to Subscribe to Events
	1. When you start the Subscriber application (prompt>is_subscriber), the following prompts are displayed:
	2. The Subscriber application creates a subscription then prints “Ready” when it is ready to receive events. After the Subscriber receives one event, it shuts down.

	Using the Reporter Application to Post Events
	1. When you start the Reporter application (prompt> is_reporter), the following prompts are displayed:
	2. Enter r to report news. The following prompt is displayed:
	3. Enter the news category. It must match exactly the category you typed on the Subscriber application (including white space and case).
	4. Enter your story. It can span multiple lines. Finish the story by typing a period only (".") on a line, followed by a carriage return.
	5. To send and receive more news stories, start another subscriber, then report another story. When you are done reporting news, choose the Exit (e) option.

	Shutting Down the System and Cleaning Up the Directory
	1. To shut down the system, in any window, type:
	2. To restore the directory to its original state, in any window, type:

	Building the Advanced Sample Application
	Overview
	Figure 6-1 Advanced Sample Application Components

	Building and Running the Advanced Sample Application
	1. Verify that the "TUXDIR" environment variable is set to the correct directory path.
	2. Unset and “JAVA_HOME”
	3. Copy the files for the Introductory sample application into a work directory.
	4. Change the protection attributes on the files to grant write and execute access.
	5. For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure the nmake file is in your path
	6. Set the application environment variables.
	7. Build the sample.
	8. Boot the system.
	9. Run the Subscriber and Reporter applications.
	10. Shut down the system.
	11. Restore the directory to its original state.
	Verifying the Settings of the Environment Variables
	Table 6-1 Required Environment Variables for the Callback Sample Application
	1. From the Start menu, select Settings.
	2. From the Settings menu, select the Control Panel.
	3. Click the System icon.
	4. Click the Environment tab.
	5. Check the setting for TUXDIR
	1. On the Environment page in the System Properties window, click the environment variable you want to change.
	2. Enter the correct information for the environment variable in the Value field.
	3. Click OK to save the changes.

	Copying the Files for the Advanced Sample Application into a Work Directory
	Table 6-2 Files Located in the advanced_cos_c++ Notification Directory
	Table 6-3 Other Files That the Advanced Sample Uses

	Changing the Protection Attribute on the Files for the Advanced Sample Application
	1. Change (cd) to your work directory
	2. prompt>attrib -r drive:\workdirectory*.*
	1. Change (cd) to your work directory
	2. prompt>/bin/ksh
	3. ksh prompt>chmod u+w /workdirectory/*.*

	Setting Up the Environment
	Building the Advanced Sample Application
	Makefile Summary
	1. Checks that the set environment command (setenv.cmd) has been run. If the environment variables have not been set, the makefile prints an error message to the screen and exits.
	2. Includes the common.nt (for Microsoft Windows) or common.mk (for UNIX) command file. This file defines the makefile symbols used by the samples. These symbols allow the UNIX and Microsoft Windows makefiles to delegate the build rules to platform-i...
	3. Includes the makefile.inc command file. This file builds the is_reporter, is_subscriber and AS_WIRESERVICE executables, and cleans up the directory of unnecessary files and directories.
	4. Includes the advanced.inc command file. This file executes tmadmin and qadmin commands to create the transaction log and the queues required by the persistent subscriptions. It also creates the UBBCONFIG file and executes the tmloadcf -y ubb comma...

	Executing the Makefile

	Starting the Advanced Sample Application
	1. To boot the Oracle Tuxedo system:
	2. To start the Subscriber application:
	3. To start the Reporter application, open another window and enter the following:

	Using the Advanced Sample Application
	Using the Subscriber Application to Subscribe to Events
	1. When you start the Subscriber application (prompt>is_subscriber) for the first time, the following prompts are displayed:
	2. You may type in any string for the news category, that is, there is no fixed list of news categories. However, when you use the Reporter application to post an event, make sure you specify the same string for the news category.

	Using the Reporter Application to Post Events
	1. When you start the Reporter application (prompt> is_reporter), the following prompt is displayed:
	2. Enter r to report news. The following prompt is displayed:
	3. Enter the news category. It must match exactly the category you typed on the Subscriber application (including white space and case).
	4. Enter your story. It can span multiple lines. Finish the story by typing a period only (".") on a line, followed by a carriage return. If you typed in a keyword when subscribing, make sure the story contains this string (including white space and ...
	5. If you choose the “s” option, a Shutdown event will be posted and received by all the subscribers and the subscribers will shut down. While the subscribers are shut down, you may post another news story (by using the “r” option again). The...
	6. If you choose the “c” option, a Cancel event will be posted and received by all the subscribers. The subscribers will cancel their news subscriptions and shut down. If you try to restart the subscribers, then you will be prompted again for por...
	7. When you are finished reporting news, choose the Exit (e) option.

	Shutting Down the System and Cleaning Up the Directory
	1. To shut down the system, in any window, type:
	2. To restore the directory to its original state, in any window, type:

	CORBA Notification Service Administration
	Introduction
	Configuring the Notification Service
	Configuring Data Filters
	1. Create the Oracle Tuxedo ATMI FML field table definition file that describes the fields on which to filter (see Listing 7-2).
	2. In the UBBCONFIG file, specify where the FML field table definition file is located so that when the application is started, the location of field definition files is passed to the Notification Service servers (see Listing 7-3).
	Listing 7-1 Sample Data Filtering Using the Oracle Simple Events API (C++)
	Listing 7-2 Data Filtering FML Field Table File
	Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft Windows)
	Listing 7-4 Specifying the FML Field Definitions File in the UBBCONFIG File

	Setting the Host and Port
	Creating a Transaction Log
	Listing 7-5 Creating a Transaction Log (createtlog) (Microsoft Windows)

	Creating Event Queues
	1. Create a device on disk for the queue space.
	2. Configure a queue space.
	3. Create the queues.
	Determining Space Parameters for Transient and Persistent Subscriptions
	IPC Queue Space for Transient Subscriptions
	1. Determine how many events may be in the pipeline for transient subscriptions; that is, how many events may be in the process of being delivered at any given time. This equals the number of events multiplied by the number of subscribers receiving them
	2. Determine the size of your events. For purposes of this discussion, we will assume that they are relatively small—about 300 bytes or less.
	3. Determine how many transient forwarding servers you would like to start, most likely one or two—one per processor on your machine is a good number to start with.
	4. Determine how much IPC queue space you will need to hold your transient events. The amount of space you need is 1000 bytes multiplied by the number of events you allow in the pipeline. Divide this number by the number IPC queues your transient for...
	5. Configure the IPC queue size to that number by changing the entries in the system registry. How you do this is platform-specific.

	/Q Queue Size Parameter Persistent Subscriptions
	1. Determine how many events may be in the pipeline for persistent subscriptions; that is, how many events may be in the process of being delivered at any given time. This equals the number of events multiplied by the number of subscribers receiving ...
	2. Determine the size of your events. For purposes of this discussion, we will assume that they are relatively small—about 300 bytes or less.
	3. Determine the size your /Q queues need to be to hold your persistent events (both for your pending queue and error queue). Proceed as follows to do this:
	a. Determine the size of a disk page. This is platform-specific. For example, on Microsoft Windows, a disk page is 500 bytes. On UNIX machines, a disk page could range from 500 to 4000 bytes in size.
	b. Determine how many disk pages you will need to store one event rounding up. For example, if you need 1000 bytes per event and disk pages are 500 bytes, you will need 2 disk pages per event.
	c. Determine how many disk pages you will need for your events. For example, if you want to allow 500 pending events and 200 error events, and an event takes up 2 disk pages, you will need 1400 disk pages.
	d. Determine how many disk pages you will need for your qspace. This is the number of disk pages you need for your events plus some pages for qspace overhead. For example, if you need 1400 disk pages for events, then your qspace needs approximately 1...
	e. Determine how many pages you will need for your qspace device. This is the number of pages you need for the qspace plus some pages for device overhead. For example, if you need 1450 disk pages for your qspace, then your device needs approximately ...
	4. When you use qmadmin to create the qspace for your persistent events, the first phase is to create a device. Use the size computed above in step 3e above (approximately 1500 pages). Next, specify the size of the qspace. Use the size computed in st...

	Creating a Device on Disk for the Queue Space
	Listing 7-6 Creating a Device on Disk for Queue Space (UNIX)

	Configuring a Queue Space
	Listing 7-7 Creating Queue Space
	Number of messages in queue space:500
	Size of queue space in disk pages:1050

	Creating the Queues
	Listing 7-8 Creating Queues

	Setting IPC Parameters on Microsoft Windows
	1. Click Start—>Settings—>Control Panel. The Microsoft Windows Control Panel is displayed (Figure 7-1).
	Figure 7-1 Microsoft Windows Control Panel
	2. Click the Oracle Administration icon. The Oracle Administration Control Panel is displayed (Figure 7-2).
	3. Click on the IPC Resources tab. The IPC Resources Control Panel portion of the Oracle Administration Control Panel is displayed (Figure 7-2).

	Figure 7-2 Oracle Tuxedo Software for Microsoft Windows IPC Resources Control Panel
	1. In the Current Resource Default box, click the Use Default IPC Settings check box to clear it.
	2. Click the insert box.
	3. Enter the name of your machine and press Enter.
	4. Click the fields next to the IPC resources you want to set, enter the desired values, and click Apply. Clicking Apply saves the changes in the Registry Table. You must then stop and then restart the tuxipc.exe service for the changes to take effect.
	5. Click OK to close the Control Panel.

	Figure 7-3 Oracle Tuxedo Software for Microsoft Windows Performance Monitor

	Creating the UBBCONFIG File and the TUXCONFIG File
	Table 7-1 Configuration Requirements for Transient and Persistent Subscriptions
	Listing 7-9 The Introductory Sample UBBCONFIG File
	Listing 7-10 The Advanced Sample UBBCONFIG File

	Managing the Notification Service
	1. Synchronize databases.
	2. Purge the system of dead subscriptions.
	3. Monitor queue utilization.
	4. Purge the queues of unwanted events.
	5. Move or remove events from the error queue.
	Synchronizing Databases
	Purging the System of Dead Subscriptions
	Table 7-2 ntsadmin Commands Summary

	Monitoring Queue Utilization
	Purging the Queues of Unwanted Events
	Managing the Error Queue

	Notification Service Administration Utility and Commands
	ntsadmin Utility

	ntsadmin
	Synopsis
	Syntax
	Description
	Security
	See Also
	ntsadmin Commands
	subscriptions (sub) [{-i identifier |-n name |-t | -p}]
	Listing 7-11 Subscription Command Output with Verbose Mode On and Off
	rmsubscriptions (rmsub) [{-i identifier |-n name |-t | -p]}[-y]
	pendevents (pevt) [{-i identifier |-n name}]
	rmpendevents (rmpevt) [{-i identifier |-n name |-o}][-y]
	errevents (eevt) [{-i identifier |-n name}]
	rmerrevents (rmeevt) [{-i identifier |-n name |-o}][-y]
	retryerrevents (reteevt) [{-i identifier |-n name}][-y]
	quit (q)
	echo (e) [{off |on}]
	help (h) [{command |all}]
	paginate (page) [{off |on}]
	verbose (v) [{on | off }]
	! shellcommand
	!!
	#[text]
	<CR>

	Using the ntsadmin Utility
	1. Look up all subscriptions for marcello.
	2. Use the unique subscription_id to display information about events on the error queue.
	3. Move the events from the error queue to the pending queue.
	Listing 7-12 Moving Events from the Error Queue to the Pending Queue
	Listing 7-13 Removing a Subscription
	Listing 7-14 Checking for Pending Events

	Notification Servers

	TMNTS
	Synopsis
	Syntax
	Description
	Parameter
	-S queuespace

	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_T
	Synopsis
	Syntax
	Description
	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_P
	Synopsis
	Synopsis
	Description
	Interoperability
	Notes
	Example
	See Also
	Index

