Oracle® Tuxedo
Using Oracle Jolt
12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo Using Oracle Jolt, 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Introducing Oracle Jolt

Oracle Jolt COMPONENTSttt e e et 1-2
Ky FEaUrES . . . oo 1-3
How Oracle JOIt WOrKS.o e 1-5
Jolt Serversand RepOSITOry SErVErS . ..o v vvi ittt 1-6
Jolt Class Libraryoo i e 1-7
JOIBEANS . . . oo 1-9
Jolt Server and Jolt Client Communication.ooviviiiinnn... 1-9
Oracle Tuxedo Service MetadataRepository ..., 1-10
JoltInternet Relay 1-11
Creating a Jolt Client to Access Oracle Tuxedo Applications 1-11

2. Bulk Loading Oracle Tuxedo Services

UsingtheBulk Loader oo 2-1
ActivatingtheBulk Loader i 2-2
TheBulk Load File o 2-2

Syntax of the Bulk Loader DataFiles. ... 2-3
Guidelinesfor Using Keywords.t 2-3
Keyword Order inthe Bulk Loader DataFile............................. 2-4
Using Service-Level KeywordsandValues.o, 2-5
Using Parameter-Level KeywordsandValues. 2-6

TroubleShoOtiNg oot 2-8

Using Oracle Jolt iii

Sample Bulk Load Data.ot 2-9

3. Configuring the Oracle Jolt System

Quick Configuration. o 31
Editingthe UBBCONFIGFile 32
Configuring the Tuxedo Service Metadata Repository. 3-3
Initializing Services That Use Oracle Tuxedo and the Repository Editor 3-3
Configuring the Oracle Tuxedo TMUSREVT Server for Event Subscription ... 3-3
Configuring Jolt Relay e 34

Jolt Background Information 35
JOI SV 35
Startingthe JSLo 3-6
Shutting Downthe JSL o 3-6
Restartingthe JSL 3-7
ConfiguringtheJSL 3-7
JSL Command-line OptionSot 37
Security and ENCryption 312

JOIt RE Y .. oo 3-12
Jolt Relay Fallover 314
Jolt Relay ProCESS . . . oo e 314
JRLY Command-line Options for Windows2003 3-15
JRLY Command-lineOptionfor UNIX 3-18
JRLY Configuration File. o 3-18

Jolt Relay Adapter 3-20
JRAD Configurationt e 3-20
Network Address Configurationst 3-23

Oracle Tuxedo Service Metadata Repository.o 3-23
Initializing Services By Using Oracle Tuxedo and the Repository Editor 323

Using Oracle Jolt

Event SUDSCiption 3-24

Configuring for Event Subscriptiono 324
Filtering Oracle Tuxedo FML or VIEW Buffers. 325
Oracle Tuxedo Background Information, 3-26
Configuration File. 3-26
Creatingthe UBBCONFIGFile e 3-27
Sample Applicationsin Oracle Jolt Online Resources.coovvevnn. .. 3-36
4. Using the Jolt Class Library
Class Library Functionality OVerview 4-2
Java Applications Versus Java Applets.o 4-2
Jolt ClassLibrary Features 4-3
Error and Exception Handling. 4-3
Jolt Client/Server Relationshipot 4-4
Jolt Object Relationships 4-7
Jolt Class Library Walkthrough 4-8
Logonand Logoff 4-8
Synchronous Service Calling. 4-8
Transaction Begin, Commit,and Rollback 4-9
Using Oracle Tuxedo Buffer Typeswith Jolt. 4-14
Usingthe STRING BUffer Typeo oo 4-15
Using the CARRAY Buffer Typeot 4-20
Usingthe FML Buffer Typeo e 4-22
Usingthe VIEW Buffer Type oo 4-26
Usingthe XML Buffer Type. et 4-30
Usingthe MBSTRING Buffer Typeo 4-33
Multithreaded Applicationsot 4-35
Threadsof Control. 4-35

Using Oracle Jolt

Using Jolt with Non-Preemptive Threading, 4-36

Using Threads for AsynchronousBehavior, 4-36
Using Threadswith Jolt e 4-37
Event Subscription and Notifications. oo 4-41
Event Subscription Classes.o 4-41
Notification EventHandler. i 4-42
ConNeCioNMOES oo 4-43
Notification DataBuffers 4-43
Oracle Tuxedo Event SUbSCHiptiont 4-44
Using the Jolt API to Receive Oracle Tuxedo Natifications 4-45
Clearing Parameter ValUES.t 4-46
ReUuSINg OJECES oo 4-49
Deploying and Localizing Jolt Applets 4-54
DeployingaJdolt Applet o 4-54
Client ConSiderations oot e 4-54
Web Server Considerations. 4-55
LocalizingaJdolt Applet 4-55
USING SO .o 4-56

5. Using JoltBeans

Overview of Jolt Beans o 5-2
JOItBEANS TEIMS et eeeeee e 5-3
Adding JoltBeans to Your Java Development Environment. 5-4
Using Development and Run-time JoltBeans.t 5-4

Basic Stepsfor Using JoItBeans.ot 5-5

JavaBeans Eventsand Oracle Tuxedo Events., 5-5
Using Oracle Tuxedo Event Subscription and Notification with JoltBeans. 5-6

How JoltBeansUse JavaBeansEvents. e 5-7

vi Using Oracle Jolt

The JoltBeans ToolKit.ot e e e 5-8

JOItSESSIONBEAN. . . . oot 5-8
JOItServiceBeaNno 5-9
JoltUserEventBean 5-10
Jolt-Aware GUI Beansot 5-10
JoltTextField . ..o 511
JoltLabel ... 511
JOI ISt . .ot 511
JOICheCKbOX . . . oo 5-12
JOIECNOICE . . . 5-12
Using the Property List and the Property Editor to Modify the JoltBeans Properties . 5-12
JoltBeans Class Library Walkthrough i 5-15
Buildingthe Sample Form. 5-16
Wiring the JoltBeans Togetherot 5-23
Using the Oracle Tuxedo Service Metadata Repository and Setting the Property Values. .
5-41
JoltBeans Programming TaskS oo ittt 5-44
Using Transactionswith JoltBeans it 5-45
Using Custom GUI Elements with the JoltServiceBean 5-46

6. Using Servlet Connectivity for Oracle Tuxedo

What IS a Servlet . . .o 6-2
How ServletsWork with Jolt e 6-2
The Jolt Servlet Connectivity Classes. . ..o ii i 6-2
Writing and RegisteringHTTP Servlets. i 6-3
Jolt Servlet Connectivity Sample. e 6-5
Viewing the Sample Servlet Applications. 6-5
SIMPAPD SamMPlE. . oo 6-5

Using Oracle Jolt vii

BankApp Sample . ..o

Admin Sample. -
Additional InformationonServlets -

/. Migrating from Jolt Repository to Oracle Tuxedo Service
Metadata Repository

Replacing JREPSVR with TMMETADATA inUBBCONFIG

Loading Jolt Repository to Oracle Tuxedo Service Metadata Repository. -
Sample: joltapp Migrationt -

A. Oracle Jolt Exceptions

viii Using Oracle Jolt

Introducing Oracle Jolt

Oracle Jolt is a Java-based interface to the Oracle Tuxedo system that extends the functionality
of existing Oracle Tuxedo applications to include Intranet- and I nternet-wide availability. Using
Jolt, you can now easily transform any Oracle Tuxedo application so that its servicesare available
to customers using an ordinary browser on the Internet. Jolt interfaces with existing and new
Oracle Tuxedo applications and services to allow secure, scalable, intranet/Internet transactions
between client and server. Jolt enables you to build client applications and applets that can
remotely invoke existing Oracle Tuxedo services, such as application messaging, component
management, and distributed transaction processing.

Because you develop your applications with the Jolt API, which use Oracle Tuxedo and the Java
programming language, the Jolt documentation is written with the assumption that you are
familiar with Oracle Tuxedo and Java programming. This documentation isintended for system
administrators, network administrators, and developers.

This topic includes the following sections:
e Oracle Jolt Components
o Key Features
e How Oracle Jolt Works

e Creating a Jolt Client to Access Oracle Tuxedo Applications

Using Oracle Jolt 1-1

Oracle Jolt Components

Oracle Jolt isa Javaclasslibrary and API that provides an interface to Oracle Tuxedo from
remote Java clients. Oracle Jolt consists of the following components for creating Java-based
client programs that access Oracle Tuxedo services:

e Jolt Serversand Repository Servers—one or more Jolt servers listen for network
connections from clients, trandate Jolt messages, multiplex multiple clientsinto asingle
process, and submit and retrieve requests to and from Oracle Tuxedo-based applications
running on one or more Oracle Tuxedo servers.

e Jolt Class Library—the Jolt class library is a Java package containing the class files that
implement the Jolt API. These classes enable Java applications and applets to invoke
Oracle Tuxedo services. The Jolt class library includes functionality to set, retrieve,
manage, and invoke communication attributes, notifications, network connections,
transactions, and services.

e JoltBeans—Oracle JoltBeans provides a JavaBeans-compliant interface to Oracle Jolt.
JoltBeans are Beans components that you can use in JavaBeans-enabled integrated
devel opment environments (IDES) to construct Oracle Jolt clients. Jolt Beans consists of
two sets of Java Beans. JoltBeans toolkit (a JavaBeans-compliant interface to Oracle Jolt
that includes the JoltServiceBean, JoltSessionBean, and JoltUserEventBean) and Jolt GUI
beans, which consist of Jolt-aware Abstract Window Toolkit (AWT) and Swing-based
beans.

e Jolt Internet Relay—the Jolt Internet Relay is a component that routes messages from a
Jolt client to a Jolt Server Listener (JSL) or Jolt Server Handler (JSH). This component
eliminates the need for the JSH and Oracle Tuxedo to run on the same machine as the Web
server. The Jolt Internet Relay consists of the Jolt Relay (JRLY) and the Jolt Relay Adapter
(JRAD).

e Jolt ECID —The Jolt call processisasfollows: JoLT client --> JSL/JSH -->
tuxedo server --> SErvice

1. Jolt Connection Pool supports ECID propagation between Weblogic and Oracle Tuxedo.
ECID is propagated and inserted into arequest message if java option
"-Dtuxedo.ECID_ENABLE" Or environment variable "EcID_ENABLE" issetto'y'. Java
option "-ptuxedo . ECID_ENABLE" has higher priority than environment variable
"ecIp_ENABLE". ECID also can be sent back within areply message from Oracle Tuxedo.

2. ECID relieson DMS (Dynamic Monitoring Service), ECID is not supported for
standalonejolt client by default. If you want ECID to be created, DM S should be installed
first.

1-2 Using Oracle Jolt

Key Features

3. Jolt ECID does not impact JRLY and JRAD. The format for ECID injolt client traceis
asfollows:

000915:30475@s1c05are:1: ECID <0000KgPMc659XbHpIsT4if1LPfwR000001>:
atmi: { JoltSession.send(len 132)

Key Features

With Oracle Jolt, you can leverage existing Oracle Tuxedo services and extend your transaction
environment to the corporate intranet or world-wide Internet. The key feature of Jolt architecture
isitssimplicity. Y ou can build, deploy, and maintain robust, modular, and scalable electronic
commerce systems that operate over the Internet.

Oracle Jolt includes the following features:

e Java-based API for simplified development—with its Java-based API, Oracle Jolt
simplifies application design by providing well-designed object interfaces. Jolt supports the
Java 2 Software Development Kit (SDK) and is fully compatible with Java threads. Jolt
enables Java programmers to build graphical front-ends that use the Oracle Tuxedo
application and transaction services without having to understand detailed transactional
semantics or rewrite existing Oracle Tuxedo applications.

e Pure Java client development—using Jolt, you can build a pure Java client that runsin
any Java-enabled browser. Jolt automatically converts from Javato native Oracle Tuxedo
data types and buffers, and from Oracle Tuxedo back to Java. As a pure Javaclient, your
applet or application does not need resident client-side libraries or installation; thus, you
can download client applications from the network.

e Easy accessto Oracle Tuxedo servicesthrough Oralce Tuxedo Service Metadata
Repository—the Oralce Tuxedo Service M etadata Repository facilitates Java application
development by managing and presenting Oracle Tuxedo service definitions that you can
useinyour Javaclient. A bulk loading utility lets you quickly integrate your existing
Oracle Tuxedo servicesinto the Jolt devel opment environment. Jolt and Oracle Tuxedo
simplify network and application scalability, while encouraging the reuse of application
components. You can also use tmloadrepos to create or update the binary Tuxedo Service
Metadata Repository file and load it with service parameter information. See
tmloadrepos (1) for moreinformation.

e GUI-Based maintenance and distribution of Oracle Tuxedo services—the GUI lets you
manage Oracle Tuxedo service definitions such as service names, inputs and outputs. The
GUI provides support for different input and output names for services defined in the
Metadata Repository.

Using Oracle Jolt 1-3

../rfcm/rfcmd.html#wp1789066

1-4

e Encryption for secure transaction processing—Oracle Jolt allows you to encrypt data
transmitted between Jolt clients and the JSL/JSH. Jolt encryption hel ps ensure secure
Internet transaction processing.

e Added security through I nternet Relay—network administrators can use the Oracle Jolt
Internet Relay component to separate their Web server and Oracle Tuxedo application
server. Web servers are generally considered insecure because they often exist outside a
corporate firewall. Using the Jolt Internet Relay, you can locate your Oracle Tuxedo server
in asecure location or environment on your network, yet still handle transactions from Jolt
clients on the Internet.

e Event Subscription Support—Jolt Event Subscription enables you to receive event
notifications from Oracle Tuxedo services and Oracle Tuxedo clients. Jolt Event
Subscription lets you subscribe to two types of Oracle Tuxedo application events:

— Unsolicited Event Notifications—a Jolt client can receive these notifications when an
Oracle Tuxedo client or service subscribes to unsolicited events and an Oracle Tuxedo
client issues a broadcast or a directly targeted message.

— Brokered Event Notifications—the Jolt client receives these notifications through the
Oracle Tuxedo Event Broker. The Jolt client receives these notifications only when it
subscribes to an event and any Oracle Tuxedo client or server posts an event.

e Jolt Trace—If java option -ptuxedo. TMTRACE iS Set, JOLT client prints out trace asthe
trace format. JOLT trace format is the same as Oracle Tuxedo. Four trace categories,

"atmi", "inet", "trace" and "+" are supported.
— atmi
Trace points for explicit application callsto the ATMI and TX interfaces.
— inet
Trace points related to network.
— trace
Trace points related to the tracing feature itself, including message dyeing.

— %

All trace points.

Using Oracle Jolt

How QOracle Jolt Works

Listing 1-1 Jolt Trace Category Example

-Dtuxedo.TMTRACE=trace_spec atmi/inet:jtrace
-Dtuxedo.JTRACEPATH=path_to_trace_file (optional, if not set, use
user.dir)

-Dtuxedo.ECID_ENABLE=y|n (optional)

Usage:
atmi+inet+trace:jtrace:dye
atmi+inet:jtrace:dye
*:jtrace:dye

atmi-inet:jtrace:undye

Output file name:

Jtrace.yyyymmdd

How Oracle Jolt Works

Oracle Jolt connects Java clients to applications that are built using the Oracle Tuxedo system.
TheOracle Tuxedo system providesaset of modular services, each offering specific functionality
related to the application as awhole.

Theend-to-end view of the Oracle Jolt architecture, aswell asrelated Oracle Tuxedo components
and their interactions, isillustrated in the figure “ Oracle Jolt Architecture” on page 1-6.

Using Figure 1-1 as an example, a simple banking application might have services such as
INQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, service requests are
implemented in C or COBOL asasequence of callsto aprogram library. Accessingalibrary from
anative program means installing the library for the specific combination of CPU and operating
system release on the client machine, a situation that Java was expressly designed to avoid. The
Jolt Server implementation acts as aproxy for the Jolt client, invoking the Oracle Tuxedo service
on behalf of the client. The Oracle Jolt Server accepts requests from the Jolt clients and maps
those requests into Oracle Tuxedo service requests.

Using Oracle Jolt 1-5

Figure 1-1 Oracle Jolt Architecture

CLIENT SERVER
\JA%’SEPS‘VB'S%? yy Internet Application Server
HTML, Applet, and Oracle Jolt Oracle Tuxedo
Jolt Code Transaction Protocol

INQUIRY Service

Java Virtual Machine

Oracle Jolt Serve DEPOSIT Service

Legacy
Access Services

databases

Jolt Server Listener

Jolt Server Handler
Repository Server

Jolt
\pplet/Application

Oracle Jolt
Connectivit
Module

Oracle Jolt
Class Library

Tuxedo Metadat
Repository
Repositor

Service

Definitions

Jolt Servers and Repository Servers

Jolt Servers

The following Jolt Server components act in concert to pass Jolt client transaction processing
requests to the Oracle Tuxedo application.

e Jolt Server Listener (JSL)

The JSL handlesthe initial Jolt client connection, and assigns a Jolt client to the Jolt Server
Handler.

e Jolt Server Handler (JSH)

The JSH manages network connectivity, executes service requests on behalf of the client
and translates Oracle Tuxedo buffer datainto the Jolt buffer, as well as Jolt buffer datainto
the Tuxedo buffer.

Using Oracle Jolt

How QOracle Jolt Works

Repository Servers
e TMMETADATA Server

TMMETADATA Server retrieves Jolt service definitions from the Tuxedo Service Metadata
Repository and returns the service definitions to the gsu. The TMMETADATA server also
updates or adds Jolt service definitions.

Figure 1-2 illustrates the Jolt-related server and repository components.

Figure 1-2 Jolt-Related Server and Repository Components

Jolt Server Oracle Tuxedo
/T
Jﬂ;ﬁ;fgff Metadata Oracle Tuxedo
(JSH) - REeposito Services
on
Application
| Server
Jolt Server TMMETADATA
Listener Server
(JSL)

Jolt Class Library

TheOracle Jolt Class Library isaset of classesthat you can usein your Javaapplication or applet
to make service requests to the Oracle Tuxedo system from a Java-enabled client. Y ou access
Oracle Tuxedo transaction services by using Jolt class objects.

When developing a Jolt client application, you only need to know about the classes that Jolt
provides and the Oracle Tuxedo servicesthat are exported by the M etadata Repository. Jolt hides
the underlying application details. To use Jolt and the Jolt Class Library, you do not need to
understand: the underlying transactional semantics, the language in which the services were
coded, buffer manipulation, the location of services, or the names of databases used.

TheJolt API isaJavaclasslibrary and hasthe benefitsthat Javaprovides: appl ets are downl oaded
dynamically and are only resident during run time. As aresult, thereis no need for client
installation, administration, management, or version control. If services are changed, the client
application notes the changes at the next call to the Metadata Repository.

Using Oracle Jolt 1-1

Figure 1-3 shows the flow of activity from a Jolt client to and from the Oracle Tuxedo system.
The call-out numbers correspond to descriptions of the activity in the table “ Using the Jolt Class
Library” on page 1-8.

Figure 1-3 Using the Jolt Class Library to Access Oracle Tuxedo Services

connection
CLIENT - 1,2 N . Web Server HOST

JAVA-Enabled Oracle Tuxedo Environment
Web Browser

Application Serve

3 connection

6 request

connection/request
reply

4,5

Metadata
Repository

. contains Oracle Tuyged
'un-Time service definitions

Table 1-1 briefly describes the flow of activity involved in using the Jolt Class Library to access
Oracle Tuxedo services, as shown in the previous figure “ Using the Jolt Class Library to Access
Oracle Tuxedo Services.”

Table 1-1 Using the Jolt Class Library

Process Step Action
Connection 1 A Java-enabled Web browser uses HT TP protocol to download
an HTML page.
2 A Jolt applet is downloaded and executed in the Java Virtual
Machine on the client.
3 Thefirst Java applet task is to open a separate connection to the
Jolt Server.
Request 4 The Jolt client now knows the signature of the service (such as

name, parameters, types); can build a service request object
based on Jolt class definitions, and make a method call.

Using Oracle Jolt

How QOracle Jolt Works

Table 1-1 Using the Jolt Class Library (Continued)

5 The request is sent to the Jolt Server, which translates the
Java-based request into an Oracle Tuxedo request and forwards
the request to the Oracle Tuxedo environment.

Reply 6 The Oracle Tuxedo system processes the request and returns the
information to the Jolt Server, which trand atesit back to the Java
applet.

JoltBeans

Oracle Jolt now includes JoltBeans, Java beans components that you usein a Java-enabled
integrated devel opment environment (IDE) to construct Oracle Jolt clients. Using JoltBeans, and
popular JavaBeans-enabled development tools such as Symantec Visual Café, you can
graphically create client applications.

Oracle JoltBeans provide a JavaBeans-compliant interface to Oracle Jolt that enables you to
develop afully functional Oracle Jolt client without writing any code. Y ou can drag and drop
JoltBeans from the component palette of a devel opment tool and position them on the Javaform
(or forms) of the Jolt client application you are creating. Y ou can populate the properties of the
beans and graphically establish event source-listener relationships between various beans of the
application or applet. Typically, the development tool isused to generate the event hook-up code,
or you can code the hook-up manually. Client development with JoltBeansisintegrated with the
Oracle Tuxedo Service Metadata Repository, which provides easy access to available Oracle
Tuxedo functions.

Jolt Server and Jolt Client Communication

The Jolt system handles all communication between the Jolt Server and the Jolt client using the
Oracle Jolt Protocol. The communication process between the Jolt Server and the Jolt client
applet or applications functions as follows:

1. Oracle Tuxedo servicerequests and associated parameters are packaged into amessage buffer
and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message and performs necessary data conversions,
such as numeric format conversions or character set conversions.

3. The Jolt Server makes the appropriate service request to the application service requested by
the Jolt client.

Using Oracle Jolt 1-9

1-10

4. Once aservice request enters the Oracle Tuxedo system, it is executed in exactly the same
manner as requests issued by any other Oracle Tuxedo client.

5. Theresults are then returned to the Oracle Jolt Server, which packages the results and any
error information into a message that is sent to the Jolt client.

6. The Jolt client then maps the contents of the message into the various Jolt client interface
objects, completing the request.

Oracle Tuxedo Service Metadata Repository

Jolt uses the Oracle Tuxedo Service Metadata Repository as the database where Oracle Tuxedo
servicesare defined, such asname, number, type, parameter size, and permissions. Therepository
functions as a central database of definitions for Oracle Tuxedo services and permits new and
existing Oracle Tuxedo services to be made available to Jolt client applications. An Oracle
Tuxedo application can have many services or service definitions, such as ADD_CUSTOMER,
GET_ACCOUNTBALANCE, CHANGE_LOCATION, and GET_STATUS. All or only afew
of these definitions can be exported to the M etadata Repository. Within the M etadata Repository,
the devel oper or system administrator usesthe M etadata Editor to export these servicesto the Jolt
client application. The original Jolt Repository is deprecated now and all service definitions that
it stores can beloaded to Oracle Tuxedo Service M etadata Repository. For more information, see
Migrating from Jolt Repository to Oracle Tuxedo Service Metadata Repository.

All Repository servicesthat are exported to one client are exported to all clients. Oracle Tuxedo
handl es the cases where subsets of services may be needed for one client and not others.

Figure 1-4 illustrates how the M etadata Repository brokers Oracle Tuxedo servicesto multiple
Jolt client applications. (Four Oracle Tuxedo services are shown; however, the WITHDRAW
service is not defined in the repository and the TRANSFER service is defined but not exported.)

Figure 1-4 Distributing Oracle Tuxedo Services Through Jolt

Jolt Client
Application
DEPOSIT, INQUIRY

Oracle Tuxedo

Application
Services

Jolt Repository
Services

INQUIRY Jolt Client
DEPOSIT ?ﬁgg;’l Application
WITHDRAW
TRANSFER DEPOSIT, INQUIRY

TRANSFER

Using Oracle Jolt

Creating a Jolt Client to Access Oracle Tuxedo Applications

Jolt Internet Relay

The Jolt Internet Relay is a component that routes messages from a Jolt client to the Jolt Server.
The Jolt Internet Relay consists of the Jolt Relay (JRLY) and the Jolt Relay Adapter (JRAD).
JRLY isa stand-alone software component that routes Jolt messages to the Jolt Relay Adapter.
Requiring only minimal configuration to work with Jolt clients, the Jolt Relay eliminatesthe need
for the Oracle Tuxedo system to run on the same machine as the Web server.

The JRAD isan Oracle Tuxedo system server, but does not include any Oracle Tuxedo services.
It requires command-line arguments to allow it to work with the JSH and the Oracle Tuxedo
system. JRAD receives client requests from JRLY , and forwards the request to the appropriate
JSH. Replies from the JSH are forwarded back to the JRAD, which sends the response back to
the JRLY. A single Jolt Internet Relay (JRLY/JRAD pair) handles multiple clients concurrently.

Creating a Jolt Client to Access Oracle Tuxedo
Applications

The main stepsfor creating and deploying a Jolt client, are described in the following procedure
and in the figure “ Creating a Jolt Application” on page 1-13.

1. Make sure you have created an Oracle Tuxedo system application.

For information about installing Oracle Tuxedo and creating an Oracle Tuxedo application,
refer to Installing the Oracle Tuxedo System and Setting Up an Oracle Tuxedo Application.

2. Install the Jolt system.
Refer to Installing the Oracle Tuxedo System.

3. Usethe Bulk Loader utility to load Tuxedo services into the Jolt Repository Database.
For information on using this utility, see “Bulk Loading Tuxedo Services.”
Table 1-2 shows the mapping relationship between the Jolt repository data types and

Tuxedo services data types.

Table 1-2 Mapping Relationship Between Jolt Repository Database and Tuxedo Services Data Types

Tuxedo Data Type Jolt Repository Data Type
char (byte) byte
short short

Using Oracle Jolt 1-1

Tahle 1-2 Mapping Relationship Between Jolt Repository Database and Tuxedo Services Data Types

Tuxedo Data Type Jolt Repository Data Type
int integer

float float

double double

bool boolean

long long long

struct nestedstructname view32

string string

string carray

Note: Thelong type size of Tuxedo service can be 32 bitsor 64 bits. If the Tuxedo service uses
32-bit long type, map it to integer in Jolt Client. Otherwise, if the Tuxedo service uses
64-bit long type, map it to 1ong in Jolt Client.

Since Javadoes not support unsigned datatype, to use the unsigned datatypesin Tuxedo
services, you need to map them to Jolt datatypes, which have the same storage space. For
example, "unsigned int" should bemappedto"integer" inJolt client. Besides, if you
want to show the exact value of unsigned data type in Jolt client, you need to do
additional casting worksin Java.

4. Create aclient application by using the Jolt Class Library.

The following documentation shows you how to program your client application using the
Jolt Class Library:

— Using the Jolt Class Library
— Oracle Jolt APl Reference

5. Run the Jolt-based client applet or application.

1-12 Using Oracle Jolt

Creating a Jolt Client to Access Oracle Tuxedo Applications

Figure 1-5 Creating a Jolt Application

Creating a New Oracle Tuxedo o
Application? Have an Existing Oracle

BN BN BN BN BN BN BN BN BN B B Tuxedo Application?

| (Design Your Application)| pommmmmEEEEE

Services] Oracle Tuxedo Application Is
: — Installed
| Write/Deploy Your Application and) |

| Oracle Tuxedo Services | mommm m l
Ee EEEEEEE N -JC _Install Jolt)

|
< Start Oracle Tuxedo Application

J L
Decide Which Oracle Tuxedo
Services to Make Available to Jolt
J L

Use Repository Editor to Define
Services Available from Jolt

Program Client by Using
Test Each Service Jolt Class Library
Make Jolt Classes Available
Export Services (for example, through the Web)

Run Your Jolt Application I

Using Oracle Jolt 1-13

1-14 Using Oracle Jolt

CHAPTERa

Bulk Loading Oracle Tuxedo Services

As asystems administrator, you may have an existing Oracle Tuxedo application with multiple
Oracle Tuxedo services. Manually creating these definitions in the repository database may take
hours to complete. The Bulk Loader isacommand utility that allows you to load multiple,
previously defined Oracle Tuxedo services to the Oracle Tuxedo Service Metadata Repository
database in asingle step. Using the jb1d program, the Bulk Loader utility reads the Oracle
Tuxedo service definitions from the specified text file and bulk loads them into the Metadata
Repository. The services are loaded to the repository database in one “bulk load.” After the

services popul ate the M etadata Repository, you can create, edit, and group services with the
Metadata Editor.

This topic includes the following sections:
e Using the Bulk Loader
e Syntax of the Bulk Loader Data Files
e Troubleshooting
e Sample Bulk Load Data

Using the Bulk Loader

The jb1d program is a Java application. Before running the b1d command, set the cLAsSSPATH
environment variable (or its equivalent) to point to the directory where the Jolt class directory
(thatis, jolt.jar and joltadmin.jar) islocated. If thecrasspaTH variableisnot set, the
JavaVirtua Machine (JVM) cannot |locate any Jolt classes.

Using Oracle Jolt 2-1

2-2

For security reasons, jb1d does not use command-line arguments to specify user authentication
information (user password or application password). Depending on the server’s security level,
jbld automatically prompts the user for passwords.

The Bulk Loader utility getsitsinput from command-line arguments and from the input file.

Activating the Bulk Loader

1. Typethefollowing at the prompt (with the correct options):

java bea.jolt.admin.jbld [-n][-p packagel] [-u usrname] [-r usrrole]
//host:port filename

2. UseTable 2-1 to correctly specify the command-line options.
Command-line Options

Table 2-1 Bulk Loader Command-line Options

Option Description

-u usrname Specifies the username (default is your account
name). (Mandatory if required by security.)

-r usrrole Specifiestheuser role (defaultisadmin). (Mandatory
if required by security.)

-n Validatesinpuit file against the current repository; no
updates are made to the repository. (Optional)

//host:port Specifiesthe JRLY or JSL address (host name and |P
port number). (Mandatory)

filename Specifies the file containing the service definitions.
(Mandatory)

The Bulk Load File

The bulk load file is atext file that defines services and their associated parameters. The Bulk
Loader loads the services defined in the bulk loader file into the Metadata Repository using the
package name “BULKPKG” by default.

If aservice existsin apackage other than the package you name that usesthe -p option, the Bulk
L oader reports the conflict and does not load a service from the bulk loader file into the

Using Oracle Jolt

Syntax of the Bulk Loader Data Files

repository. Use the Repository Editor to remove duplicate services and load the bulk [oader file

again.

Syntax of the Bulk Loader Data Files

Each service definition consists of service properties and parameters that have a set number of
parameter properties. Each property is represented by a keyword and avalue.

Keywords are divided into two levels:

e Service-level

e Parameter-level

Guidelines for Using Keywords

The jb14a program reads the service definitionsfrom atext file. To use the keywords, observe the

guidelinesin Table 2-2.

Table 2-2 Guidelines for Using Keywords

Guideline

Example

Each keyword must be followed
by an equal sign (=) and the
value.

Correct: type=string
Incorrect: type

Only one keyword isallowed on
each line.

Correct: type=string

Incorrect: type=string access=out

Any lines not having an equal
sign (=) areignored.

Correct: type=string
Incorrect: type string

Certain keywords only accept a
well-defined set of values.

The keyword access accepts only thesevalues: in,
out, inout, noaccess

Using Oracle Jolt 2-3

2-4

Table 2-2 Guidelines for Using Keywords (Continued)

Guideline Example
Theinput file can contain service=INQUIRY
multiple service definitions. <service keywords and values>

service=DEPOSIT

<service keywords and values>
service=WITHDRAWAL

<service keywords and values>
service=TRANSFER

<service keywords and values>

Each service definition consists service=DEPOSIT

of multiple keywords and export=true

values. inbuf=VIEW32
outbuf=VIEW32
inview=INVIEW
outview=0OUTVIEW

Keyword Order in the Bulk Loader Data File

Keyword order must be maintained within the datafilesto ensure an error-free transfer during the
bulk load.

Thefirst keyword definition in the bulk loader datatext file must betheinitial service=<NaAME>
keyword definition (shown in the listing “ Keyword Hierarchical Order in aDataFile”).
Following the service=<name> keyword, all remaining service keywords that apply to the
named service must be specified before the first param=<nave> definition. These remaining
service keywords can be in any order.

All parameters associated with the service must be specified. Following each param=<NaAME>
keywords are all the parameter keywords that apply to the named parameter until the next
occurrence of aparameter definition. These remaining parameter keywords can be in any order.
When al the parameters associated with the first service are defined, specify anew
service=<NaME> keyword definition.

Listing 2-1 lists the keyword hierarchical order in adatafile.

Using Oracle Jolt

Syntax of the Bulk Loader Data Files

Listing 2-1 Keyword Hierarchical Order in a Data File

service=<NAME>

<service keyword>=<value>
<service keyword>=<value>
<gervice keyword>=<value>
param—-<NAME>

<parameter keyword>=<value>
<parameter keyword>=<value>
param=<NAME>

<parameter keyword>=<value>

<parameter keyword>=<value>

Using Service-Level Keywords and Values

A service definition must begin with the service=<Name> keyword. Servicesusing CARRAY,
STRING, or XML buffer typesshould only have one parameter in the service. The recommended
parameter name for a service that uses a carray buffer typeis carray with carray asthe data
type. For aservicethat uses a sTrInG buffer type, the recommended parameter nameis STRING
with string asthe datatype. For a service that uses a xur buffer type, the recommended
parameter name is xML With xm1 asthe data type.

Table 2-3 contains the guidelines for use of the service-level keywords and acceptable valuesfor
each.

Table 2-3 Service-Level Keywords and Values

Keyword Value
service Any Oracle Tuxedo service name
export True or false (default isfalse)

Using Oracle Jolt 2-5

2-6

Tahle 2-3 Service-Level Keywords and Values (Continued)

Keyword

Value

inbuf/outbuf

Select one of these buffer types:
FML
FML32
VIEW
VIEW32
STRING
CARRAY
XML
X_OCTET
X_COMMON
X_C_TYPE

inview

Any view name for input parameters

(This keyword is optional only if one of the
following buffer typesis used: VIEW, VIEW32,

X_COMMON, X_C_TYPE.)

outview

Any view name for output parameters (Optional)

Using Parameter-Level Keywords and Values

A parameter begins with the param=<navE> keyword followed by a number of parameter
keywords. It ends when another param or service keyword, or end-of-fileis encountered. The
parameters can be in any order after the param=<namME> keyword.

Table 2-4 contains the guidelines for use of the parameter-level keywords and acceptable values

for each.

Using Oracle Jolt

Table 2-4 Parameter-Level Keywords and Values

Syntax of the Bulk Loader Data Files

Keyword

Values

param

Any parameter name

type

byte
short
integer
float
double
string
carray
xml
boolean
long

view32

access

in

out
inout
noaccess

count

Maximum number of occurrences (defaultis1). The
valuefor unlimited occurrencesis0. Used only by the

Repository Editor to format test screens.

Subtype

n (n and u) n

If the parameter is of view32 type, thisfield
specifies the view structure name. Otherwise, this
field isignored. All the sub-parameters of nested

view32 are enclosed in parentheses.

Using Oracle Jolt

2-1

Troubleshooting

If you encounter problems using the Bulk Loader utility, refer to Table 2-5. For a complete list
of Bulk Loader utility error messages and solutions, see “ System Messages.”

Table 2-5 Bulk Loader Troubleshooting Table

If... Then...
The datafileis not found Check to ensure that the path is correct.
The keyword isinvalid Check to ensure that the keyword is valid for the

package, service, or parameter.

The value of the keyword is null Type avalue for the keyword.

Thevaueisinvaid Check to ensure that the value of a parameter iswithin
the allocated range for that parameter.

The datatypeisinvalid Check to ensure that the parameter isusing avalid data
type.

2-8 Using Oracle Jolt

Sample Bulk Load Data

Sample Bulk Load Data

Listing 2-2 contains a sample datafile in the correct format using the UNIX command cat
servicefile. Thissampleloads TRANSFER, LOGIN, and PAYROLL service definitionsto the
BULKPKG.

Listing 2-2 Sample Bulk Load Data

service=TRANSFER
export=true
inbuf=FML
outbuf=FML
param=ACCOUNT_ID
type=integer
access=in
count=2
param=SAMOUNT
type=string
access=in
param=SBALANCE
type=string
access=out
count=2
param=STATLIN
type=string

access=out

service=LOGIN
inbuf=VIEW
inview=LOGINS
outview=LOGINR
export=true
param=user
type=string
access=in
param=passwd
type=string

access=in

Using Oracle Jolt 2-9

param=token
type=integer

access=out

service=PAYROLL
inbuf=FML
outbuf=FML
param=EMPLOYEE_NUM
type=integer
access=in
param=SALARY
type=float
access=inout
param=HIRE_DATE
type=string
access=inout
service=QUERY
export=true
inbuf=VIEW32
outbuf=VIEW32
inview=MYVIEW2
outview=MYVIEW2
param=Longl
type=1long
access=inout

count=1

param=Myviewl
type=view32
subtype=MYVIEW1l
access=inout

count=1

param=Floatl
type=float
access=inout

count=1

2-10 Using Oracle Jolt

Sample Bulk Load Data

param=Doublel
type=double
access=inout

count=1

param=Longl
type=1long
access=inout

count=3

param=Stringl
type=string
access=inout

count=2

Using Oracle Jolt 2-11

2-12 Using Oracle Jolt

CHAPTERa

Configuring the Oracle Jolt System

This chapter describes how to configure Oracle Jolt. “ Quick Configuration” isfor userswho are
familiar with Jolt. The other sections provide more detailed information. It is presumed that
readers are system administrators or application developers who have experience with the
operating systems and workstation platforms on which they are configuring Oracle Jolt.

This topic includes the following sections:
e Quick Configuration
e Jolt Background Information
e Jolt Relay
e Jolt Relay Adapter
e Oracle Tuxedo Service Metadata Repository
e Event Subscription
e Oracle Tuxedo Background Information

e Sample Applicationsin Oracle Jolt Online Resources

Quick Configuration

If you are already familiar with Oracle Jolt and Oracle Tuxedo, “Quick Configuration” provides
efficient guidelines for the configuration procedure. If you have not used Jolt, refer to “ Jolt
Background Information” on page 3-5 before you begin any configuration procedures.

Using Oracle Jolt 3-1

3-2

Quick Configuration contains the information you need to configure the Jolt Server Listener
(JSL) on Oracle Tuxedo and covers the following procedures:

Editing the UBBCONFIG File

Configuring the Tuxedo Service Metadata Repository

Initializing Services That Use Oracle Tuxedo and the Repository Editor
Configuring the Oracle Tuxedo TMUSREVT Server for Event Subscription

Configuring Jolt Relay

Editing the UBBCONFIG File

1

In the MACHINES section, specify MAXWSCLIENTS=number (Required).

Note: If MaxwscLIENTS isnot set, JSL does not boot.

2.
3.

In the croUPS section, Set GROUPNAME required parameters [optional parameters].

Set the sErVERS section (Required).
Lines within this section have the form:
JSL required parameters [optional parameters]

where gs1. specifiesthefile (string_value) to be executed by tmboot (1).

Set the required parameters for Jst.

Required parameters are;
SVRGRP=string value
SRVID=number

CLOPT="-A...-n.../ /host port~

Set other parameters for Jsr.

You can use the following parameters with the JSL, but you need to understand how
doing so affects your application. Refer to “ Parameters Usable with JSL” on page 3-30
for additional information.

MAX # of JSHs

MIN # of JSHs

Using Oracle Jolt

Quick Configuration

Configuring the Tuxedo Service Metadata Repository

See Managing the Oracle Tuxedo Service Metadata Repository for more information about
configuring the Tuxedo Service Metadata Repository.

Initializing Services That Use Oracle Tuxedo and the
Repository Editor

Define the Oracle Tuxedo services that use Oracle Tuxedo and Oracle Jolt in order to make the
Jolt services available to the client.

1. Build the Oracle Tuxedo server that contains the service.

2. Accessthe Oracle Tuxedo Service Metadata Repository Editor.

Configuring the Oracle Tuxedo TMUSREVT Server for Event
Subscription

Jolt Event Subscription receives event notifications from either Oracle Tuxedo services or other
Oracle Tuxedo clients. Configure the Oracle Tuxedo TmMusrEVT server and modify the
application ussconF1G file. The following listing, “TMUSREVT Parametersin the
UBBCONFIG File,” shows the relevant TMUsREVT parameters in the uBeconr1c file:

Listing 3-1 TMUSREVT Parameters in the UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600
ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"
CLOPT="-e tmusrevt.out -o tmusrevt.out -A --
-f /usr/tuxedo/bankapp/tmusrevt.dat"
SEQUENCE=11

In the servERS sections of the usBconF1G file, specify the SRVGRP and SRVID.

Using Oracle Jolt 3-3

../ads/admrp.html

3-4

Configuring Jolt Relay
On UNIX

Start the JRLY process on UNIX by typing the following command at the system prompt:

jrly -f <config file_path>

If the configuration file does not exist or cannot be opened, the JRLY writes a message to
standard error, attempts to log the startup failure in the error log, then exits.

On UNIX and Windows 2003

The format of the configuration fileisa TAG=VALUE format. Blank lines or lines starting
with a“#” areignored. The following listing, “Formal Configuration File Specifications,”
is an example of the formal specifications of the configuration file.

Listing 3-2 Formal Configuration File Specifications

LOGDIR=<LOG_DIRECTORY_PATH>

ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>

ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>

LISTEN=<IP:Port combination where JRLY will accept comma-separated
connections>

CONNECT=<IP:Portl, IP:Port2...IP:PortN:Port (List of IP:Port combinations
associated with JRADs: can be 1...N)>

On Windows 2003 Only (Optional)

SOCKETTIMEOUT iSthe timein seconds for which JRLY Windows 2003 service blocks for
network activity (new connections, data to be read, closed connections). SoCKETTIMEOUT alSO
affectsthe Service Control Manager (SCM). When the SCM requests the Windows 2003 service
to stop, the SCM must wait for at least sockeTTIMEOUT Seconds before quitting.

Note: Theformat for directory and filenames is determined by the operating system. UNIX
systems use the forward slash (/). Windows 2003 systems use the backslash (\). If any
files specified in LOGDIR, ACCESS_LOG, Of ERROR_LOG cannot be opened for writing,
JRLY prints an error message on stderr and exits.

The formats for the host names and the port numbers are shown in Table 3-1.

Using Oracle Jolt

Jolt Background Information

Start the Jolt Relay Adapter (JRAD)

1. Typetmloadcf -y <UBBFILE>.

2. Type tmboot.

Configure the JRAD

A single JRAD process can only be connected to asingle JRLY . A JRAD can be configured to
communicate with only one JSL and its associated JSH. However, multiple JRADs can be
configured to communicate with one JSL. The cLopT parameter for Oracle Tuxedo services must
be included in the uBsconF1G file.

1. Type-1 hexadecimal format (TheJSL port towhichthe JRLY connectson behalf of the
client.)

2. Type -c hexadecimal format (The address of the corresponding JSL to which JRAD
connects.)

Note: Theformat is 0XO002PPPNNN, or, in dot notation, 100.100.10.100.

3. Configure networked components.

Jolt isnow configured.

Jolt Background Information

This section contains additional information on Jolt components.

Jolt Server

The Jolt Server isalistener that supports one or more handlers.

Jolt Server Listener (JSL)—the JSL is configured to support clients on an | P/port
combination.The JSL works with the Jolt Server Handler (JSH) to provide client connectivity to
the back-end of the Oracle Jolt system. The JSL runs as an Oracle Tuxedo server.

Jolt Server Handler (JSH)—the JSH is a program that runs on an Oracle Tuxedo server
machine to provide a network connection point for remote clients. The JSH works with the JSL
to provide client connectivity residing on the back-end of the Oracle Jolt system. More than one
JSH can be available to the JSL, up to 32,767. (Refer to the description of the -m command-line
option in “JSL Command-line Options’ on page 3-8 for additional information.)

Using Oracle Jolt 3-5

3-6

System Administrator Responsibilities—the system administrator’ s responsibilities for the
server components of Oracle Jolt include:

e Determining the JSL network address.

e Determining the number of Jolt clients to be serviced. (The number of clientsto be
serviced islimited by MAXWSCLIENTS in UBB.)

e Determining the minimum and maximum number of JSHs.

Starting the JSL

To start all administrative and server processes in the uBeconrIG file:

1. Type tmloadct.

This command parses the configuration file and loads the binary version of the
configuration file.

2. Type tmboot -y.
This command activates the application specified in the configuration file.

If you do not enter any options, a prompt asks you if you really want to overwrite your
TUXCONFIG file.

See Administering an Oracle Tuxedo Application at Run Time or the Oracle Tuxedo Command
Reference for information about tmloadcf and tmboot.

Shutting Down the JSL

All shutdown requests to the Jolt servers areinitiated by the Oracle Tuxedo command:

tmshutdown -y
During shutdown:

e No new client connections are accepted.

e All current client connections are terminated. Oracle Tuxedo rolls back in-flight
transactions. Each client receives an error message indicating that the serviceis
unavailable.

Using Oracle Jolt

Jolt Background Information

Restarting the JSL

Oracle Tuxedo monitors the JSL and restarts it in the event of afailure. When Oracle Tuxedo
restarts the listener process, the following events occur:

e Clients attempting alistener connection must try to reconnect. Clients attempting a handler
connection receive atimeout or atime delay.

e Clients currently connected to a handler are disconnected (JSH exits when its
corresponding JSL exits normally).

Configuring the JSL

The Jolt Server Listener (JSL) isan Oracle Tuxedo server responsiblefor distributing connection
requests from Jolt to the Jolt Server Handler (JSH). Oracle Tuxedo must be running on the host
machine where the JSL and JREPSVR are |located.

Note: Theway the JSL selects ports for the JSH is different than the process for the Oracle
Tuxedo Workstation Server Listener (WSL). For detailed information regarding on
properly configuring JSL ports, refer to the “ SERVERS Section” of “ Creating the
UBBCONFIG File’ on page 3-27.

JSL Command-line Options

The server may need to obtain information from the command line. The CLOPT parameter
allowsyou to specify command-line optionsthat can change some defaultsin the server. The JSL
command-line options are described in Table 3-1.

Using Oracle Jolt 3-7

Table 3-1 JSL Command-line Options

Option

Description

[-a]

Enables or disables the security context for a Jolt connection pool. This
option should be enabled if you want to implement authentication
propagation between WebL ogic Server and Jolt. If identity propagation is
desired, then the Jolt Service Handler (JSH) must be started with thisoption.
If the -a option is not set, but SecurityContext is enabled, the JSH will not
accept thisrequest. If the SecurityContext attribute is enabled, then the Jolt
client will pass the username of the caller to the JSH.

If the JSH, gets a message with the caller’ sidentity, it calls
impersonate_user () to get the appkey for the user. JSH caches the
appkey, so the next time the caller makes arequest, the appkey isretrieved
from the cache and the request is forwarded to the service. A cacheis
maintained by each JSH, which meansthat there will be a cache maintained
for al the session pools connected to the same JSH.

Specifies that certificate-based authentication should be required when
accepting an SSL connection from aremote application.

Note: TheJSL -a option isequivaent to the ISL(5) and WSL(5) -a
option. For more information see, Section 5 - File Formats, Data
Descriptions, MIBs, and System Processes Reference.

[-c
compression_threshold]

Enables application data sent between a Jolt client and a Jolt server (JSH) to
be compressed during transmission over the network.

compression_thresholdisanumber that you specify between O and
2,147,483,647 bytes. Any messages that are larger than the specified
compression threshold are compressed before transmission.

The default is no compression; that is, if no compression thresholdis
specified, Oracle Jolt does not compress messages on client or server.

[-d device name]

The device for platforms using the Transport Layer Interface. Thereis no
default. Required. (Optional for sockets)

3-8 Using Oracle Jolt

../rf5/rf5.html
../rf5/rf5.html

Table 3-1 JSL Command-line Options

Jolt Background Information

Option

Description

[-H external netaddr]

Specifies the network address mask Jolt clients use to connect to the
application when thereis network addresstranslation. The JSL process uses
this addressto listen for clients attempting to connect at this address. If the
external address mask is 0x0002MMMMdddddddd and the JSH network
addressis 0x00021111ff£££££F, the known (or external) network
addressis 0x00021111dddddddd. If the address startswith "//" network
address, thetypeis| P based and the TCP/I P port number of the JSH network
address is copied into the address to form the combined network address.

The external |P address mask must be specified in the following form:
-H //external ip address:MMMM

(Optional for JSL in Oracle Tuxedo 6.4 and 6.5)

Note: The option does not support 1Pv6.

[-I init-timeout]

The time (in seconds) that a Jolt client is allowed to completeinitialization
through the JSH before it istimed out by the JSL. Default is 60 seconds.
(Optional)

[-j connection_mode]

The following connection modes from clients are allowed:
RETAINED—the network connection is retained for the full duration of a
session.

RECONNECT—the client establishes and brings down a connection when
an idle timeout is reached, reconnecting for multiple requests within a
session.

ANY—the server allows a client to request either aRETAINED or
RECONNECT type of connection for a session.

The default isANY. That is, if no option is specified, the server allows a
client to request either aRETAINED or RECONNECT type of connection.
(Optional)

[-K {client | handler
both | none}]

The -K option turns on the network keep-alive feature for the client, the
handler, or both. Y ou can turn off this option for both the client and handler
by specifying none.

[-m minh]

The minimum number of JSHsthat are available in conjunction with the
JSL at onetime. The range of this parameter isfrom 0 through 255. Default
is0. (Optional)

Using Oracle Jolt 3-9

Table 3-1 JSL Command-line Options

Option Description

[-M maxh] The maximum number of JSHs that are available in conjunction with the
JSL at onetime. If thisoption is not specified, the parameter defaultsto the
MAXWSCLIENTS divided by the -x multiplexing factor (MPX), with the
result rounded up. If specified, the -M option takesavaluefrom 1 to 32,767.
(Optional)

[-n netaddr] Network address used by the Oracle Jolt listener with Oracle Tuxedo 6.4
and 6.5, and WebL ogic Enterprise 4.2.
TCP/IP addresses may be specified in the following formats:
e IPv4
//IP:port
//hostname:port_number
//# . #.#.#:port_number

The domain finds an address for hos tname by using the local name
resolution facilities (usually DNS). hostname must be the local
machine, and the local name resolution facilities must unambiguously
resolve hostname to the address of the local machine.
The“###4#" isin dotted decimal format. In dotted decimal format,
each # should be a number from 0 to 255. This dotted decimal number
represents the | P address of the local machine. In both of the above
formats, port_number isthe TCP port number at which the domain
process listens for incoming requests. port_number can either be a
number between 0 and 65535 or a name.

* IPv6
/[[1Pv6 address]:port
//hostname: port_number
Note: 1Pv6 does not support hexadecimal format

e SDP
sdp://IB_IP:port

3-10 Using Oracle Jolt

Table 3-1 JSL Command-line Options

Jolt Background Information

Option

Description

[-R
renegotiation-intervall

Specifies the renegotiation interval in minutes. After the specified number
of minutes have elapsed without renegotiation of the SSL encryption
parametersfor aparticular SSL session, the SSL encryption parameterswill
be renegotiated on the next exchange of data, as described in the SSL and
TLSstandards. Thedefault isO minuteswhich resultsin no periodic session
renegotiation.

Note: If the-R parameter isspecified and the -S parameter is not specified
or set to O, the JSL sends awarning message to the userlog.

[-S Client-timeout]

Theidle time (in minutes) when the client does not have any outstanding
reguests. In other words, when the client is “ snoozing.”

This option can be used together with the -T option. When either timeout
reached, JSH will close the session.

If aparameter is not specified, the default is no timeout. (Optional)

[-s secure-port]

Specifies the port number that the JSL should use to listen for secure
connections using the SSL protocol. Y ou can configure the JSL to allow
only secure connections by setting the port numbers specified by the -sand
-n options to the same value.

This option cannot be used if the JRLY and JRAD processes are used.

The JSL -s optionis equivalent to the ISL(5) and WSL (5) -s option. For
more information see, Section 5 - File Formats, Data Descriptions, MIBs,
and System Processes Reference.

[-T Client-timeout]

The time (in minutes) allowed for aclient to stay idle. If aclient does not
make any requests during this time, the JSH disconnects the client and the
session isterminated. If an argument is not supplied, the session does not
timeout.

Whenthe -j ANY or -j RECONNECT option is used, aways specify -T
with an idle timeout value. If -T isnot specified and the connection is
suspended, JSH does not automatically terminate the session. The session
never terminates if a client abnormally ends the session.

If a parameter is not specified, the default is no timeout. (Optional)

[-w JSH]

Thiscommand-line option indicatesthe Jolt Server Handler. Default isJSH.
(Optional)

Using Oracle Jolt 3-11

../rf5/rf5.html
../rf5/rf5.html

Table 3-1 JSL Command-line Options

Option Description

[-x mpx-factor] Thisisthe number of clientsthat one JSH can service. Use this parameter

to control the degree of multiplexing within each JSH process. If specified,
this parameter takes avalue from 1 to 32767 for UNIX and Windows 2003.
Default valueis 10. (Optional)

[-z 0]56]128|256] Specifies the minimum level of encryption when establishing a

network connection between a Jolt client and the JSH. 0 means no
encryption while 56, 128, and 256 specify the length (in bits) of the
encryption key. If thisminimum level of encryption cannot be met, a
connection will not be established.

[-Z2 0|56]128]256] When anetwork link between a Jolt client and the JSH is being established,

this option allows encryption up to the specified level. Theinitial 0 means
no DH nodes, no RC4. The numbers 56, 128, and 256 specify the length (in
hits) of the encryption key. Either SSL or the DH key exchangeis needed to
generate keys. Session keys are not transmitted over the network. The
default valueisO.

Note: A 0-bit maximum encryption level is not compatible with the -s
SSL connection option.

Security and Encryption

When LLE isused for Jolt security and encryption, authentication and key exchange data are
transmitted beween Jolt clients and the JSL/JSH using the Diffie-Hellman key echange. All
subsequent exchanges are encrypted using RC4 encryption. International packages use a DES
key exchange and a 128 bit key, with 40 bits encrypted and 88 hits exposed.

When SSL is used for Jolt security and encryption, the SSL protocol is used for authentication,
key exchange, and data exchange.

Jolt Relay

3-12

The combination of the Jolt Relay (JRLY') and its associated Jolt Relay Adapter (JRAD) is
typically referred to as the Internet Relay. Jolt Relay routes messages from a Jolt client to a JSL
or JSH. This eliminates the need for the JSH and Oracle Tuxedo to run on the same machine as
the Web server (which is generally considered insecure). The Jolt Relay consists of the two
components illustrated in the figure “ Jolt Internet Relay Path” on page 3-13.

Using Oracle Jolt

Jolt Relay

e Jolt Relay (JRLY)—the JRLY isthe Jolt Relay front-end. It is not an Oracle Tuxedo client
or server and is not dependent on the Oracle Tuxedo version. It is a stand-alone software
component. It requires only minimal configuration to allow it to work with Jolt clients.

e Jolt Relay Adapter (JRAD)—the JRAD isthe Jolt Relay back-end. It isan Oracle
Tuxedo system server, but does not include any Oracle Tuxedo services. It requires
command-line arguments to allow it to work with the JSL and the Oracle Tuxedo system.

Notes. The Jolt Relay is transparent to Jolt clients and Jolt servers. A Jolt server can

simultaneously connect to intranet clients directly, or through the Jolt Relay to Internet
clients.

Tuxedo 10 supports SSL for Jolt clients and the JSL/JSH; however, SSL support has not
been implemented for the JRAD and JRLY . Therefore, Tuxedo 10 Jolt configurations
using SSL cannot make use of the JRAD and JRLY processes.

Figure 3-1 Jolt Internet Relay Path

Firewall

Browser — Web server

software

Oracle Tuxedp

JRLY ———» JRAD

Insecure Secure
environment || environment

Using Oracle Jolt 3-13

3-14

Thisfigure illustrates how a browser connects to the Web server software and downloads the
Oracle Jolt applets. The Jolt applet or client connects to the JRLY on the Web server machine.
The JRLY forwards the Jolt messages across the firewall to the JRAD. The JRAD selectively
forwards messages to the JSL or appropriate JSH.

Jolt Relay Failover

There are two points of failover associated with JRLY:
e Jolt Client to JRLY connection failover

e JRLY to JRAD connection failover

Jolt Client to JRLY Connection Failover

If one server address does not result in a successful session, the failover function allows the Jolt
Client API to connect to the next free (unconnected) JRLY specified in the argument list of the
API. To enable this failover in a Windows 2003 environment, multiple Windows 2003 JRLY
services can be executed. In a non-Windows 2003 environment, multiple JRLY processes are
executed. Each JRLY (service or process) hasits own configuration file. Thistype of failover is
handled by the client API features in Oracle Jolt, which allow you to specify alist of Jolt server
addresses (JSL or JRLY).

JRLY to JRAD Adapter Connection Failover

Each JRLY configuration file hasalist of JRAD addresses. When aJJRAD isunavailable, JRLY
tries to connect to the next free (unconnected) JRAD, in around-robin fashion. Two JRLY's
cannot connect to the same JRAD. Given these facts, you can make the connection efficient by
giving different JRAD addressorders. That is, if you make one extraJRAD available on standby,
thefirst JRLY that losesits JRAD connects to the extra JRAD. Thistype of failover is handled
by JRLY alone.

If any of the listed JRADs are not executing when JRLY is started, theinitial connection fails.
When a Jolt client tries to connect to JRLY, the JRLY again tries to connect to the JRAD.

To accommodate the failover functionality, you have to boot multiple JRADs by configuring
them in the usBconF1G file.

Jolt Relay Process

The JRLY (front-end relay) process can be started before or after the JRAD is started. If the
JRAD isnot availablewhenthe JRLY isstarted, the JRLY attemptsto connect to the JRAD when

Using Oracle Jolt

Jolt Relay

it receivesaclient request. If JRLY isstill unable to connect to the JRAD, the client is denied
access and awarning iswritten to the JRLY error log file.

Starting the JRLY on UNIX
Start the JRLY process by typing the command name at a system prompt.

jrly -f config file path
If the configuration file does not exist or cannot be opened, the JRLY prints an error message.

If the JRLY isunableto start, it writes amessage to standard error and attemptsto log the startup
failurein the error log, then exits.

JRLY Command-line Options for Windows 2003

This section describes command-line options that are available from the Windows 2003 version
of JRLY. exe. Note the following:

e JRLY asaWindows serviceis available only for Windows 2003.

e When the display suffix isoptional (when [display suffix] isshown), all operations
are performed on the default JRLY Windows 2003 service instance.

e For manually installed, additional JRLY services, asuffix (any string) is required. Also,
you can install the default service manually by omitting the optional string suffix.

e Eachinstance of JRLY Windows 2003 service uses the same binary executablefile.
e A new processis started for each instance of JRLY Windows 2003 service.

e The syntax for these optionsis. jrly -command.

o Text specified within brackets ([]) is optional.

e All commandsin the following list of command options except -start and -stop require
that you have write access to Windows 2003 Registry.

e The -start and -stop commands require that you have Windows 2003 Service control
access. These requirements are based on Windows 2003 user restrictions.

Using Oracle Jolt 3-15

3-16

The JRLY command-line options are detailed in Table 3-2:

Table 3-2 JRLY Command-line Options for Windows 2003

Option Description

jrly -install Install 5r1y asa Windows 2003 service.

[display. suffix] Example 1:

jrly -install

In thisexample, the default JRLY isinstalled as aWindows 2003
Serviceandisdisplayedin the Service Control Manager (SCM) as

Jolt Relay.

Example 2:
jrly -install MASTER

Inthis case, an instance of JRLY isinstalled as a Windows 2003
Service and is displayed in the SCM as Jolt Relay MASTER.
The suffix, MASTER, does not have any significance; it isonly
used to uniquely identify various instances of JRLY's.

At thispoaint, thisinstance of JRLY isnot ready to start. It must be
assigned the configurationfile (seetheset command discussion)
that specifies the listening TCP/IP port, JSH connection TCP/IP
port, log files, and socket timeout. Thisfile should not be
shared between various instances of JRLY .

jrly -remove Remove one or all instances of JRLY from Windows 2003
[display_suffix] | service
-all

specified JRLY service.

If [display_suffix] isnot specified, thiscommand removes
the default JRLY from being a Windows 2003 Service.
Ifthe-all optionisspecified, all JRLY Windows 2003 Services
are removed. Related Windows 2003 registry entries under

HKEY_LOCAL_MACHINE\System\
CurrentControlSet\Services\Oracle JoltRelay

and

HKEY_ LOCAL_MACHINE\Software\
Oracle Systems\Jolt\x.x

are removed.

If [display_suffix] isspecified, thiscommand removesthe

Using Oracle Jolt

Jolt Relay

Table 3-2 JRLY Command-line Options for Windows 2003 (Continued)

jrly -set
[-d display suffix] -f
config file

Update the registry with the full path of a new configuration file.

Example 1:
jrly -set -f c:\tux7l1l\udataobj\jolt\jrly.con
In this example, the default JRLY Windows 2003 Service (Jolt

Relay) is assigned a configuration filecalled jrly.con that is
located in: ¢ : \tuxdir\udataobj\jolt directory.

Example 2:
jrly -set -d MASTER -f
c:\tuxdir\udataobj\jolt\master.con

Here, the JRLY Windows 2003 Service instance, called Jolt
Relay MASTER isassigned a configuration file called
jrly master.con thatislocated in
c:\tuxdir\udataobj\jolt directory.

jrly -manual
[display suffix]

Set the start/stop to manual.

This command sets the specified JRLY instance to be manually
controlled, using either the command-line options or the SCM.

jrly -auto
[display. suffix]

Set the start/stop to automatic.

This command sets al the operations for a specified Windows
2003 Service to be automatically started when the OS boots and
stopped when the OS shuts down.

jrly -start
[display. suffix]

Start the specified JRLY .

jrly -stop
[display. suffix]

Stop the specified JRLY .

jryl -version

Print the current version of JRLY binary.

jrly -help

Print command-line options with brief descriptions.

Using Oracle Jolt 3-17

3-18

JRLY Command-line Option for UNIX

Thereisonly one JRLY command-line option for UNIX as shown in Table 3-3:

Table 3-3 JRLY Command-line Option for UNIX

Option Description

jrly -f Start the JRLY process.

config file path Thisoption startsthe JRLY process. If the configuration file

does not exist or cannot be opened, the JRLY prints an error
message. If the JRLY cannot start, it writes a message to
standard error, attemptsto log the startup failure in the error
log, then exits.

JRLY Configuration File

Theformat of the configuration fileisa TAG=VALUE format. Blank lines or lines starting with
a“#” areignored. Listing 3-3 contains an exampl e of the formal specifications of the
configuration file.

Listing 3-3 Specification of Configuration File

LOGDIR=<LOG_DIRECTORY_PATH>

ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>

LISTEN=<IP:Port combination where JRLY will accept connections>
CONNECT=<IP:Port combination associated with JRAD>

SOCKETTIMEOUT=<Seconds for socket accept()function>

Note: sockeTTIMEOUT iSthe duration (in seconds) of which the relay Windows 2003 service
blocks the establishment of new socket connections to allow network activity (new
connections, data to be read, closed connections). It is valid only on Windows 2003
machines. sockETTIMEOUT also affects the SCM. When the SCM requests that the
service stop, the SCM needs to wait at least sockeTTIMEOUT Seconds before doing so.

Using Oracle Jolt

Jolt Relay

Listing 3-4 shows an example of the JRLY configuration file. The connecT line specifiesthe IP
address and port number of JRAD machine.

Listing 3-4 Example of JRLY Configuration File

LOGDIR=/usr/log/relay
ACCESS_LOG=access_log
ERROR_LOG=errorlog

jrly will listen on port 4444
LISTEN=200.100.10.100:4444
CONNECT=machinel:portl
CONNECT=machine?2:port?2

SOCKETTIMEOUT=30 //See text under listing

Theformat for directory and filenamesis determined by the operating system. UNIX systemsuse
the forward slash (/). Windows 2003 systems use the backslash (\). If any file specified in
LOGDIR, ACCESS_LOG Of ERROR_LOG cannot be opened for writing, the JRLY prints an error
message on stderr and exits.

The formats for host names and port numbers are shown in Table 3-4.

Note: JRLY supports | Pv6.

Table 3-4 Host Name and Port Number Formats
IPv4 IPv6

//IP:port //[IPv6 address] :port

IP isadotted notation IP
address, port isadecimal
number

Using Oracle Jolt 3-19

Table 3-4 Host Name and Port Number Formats
IPv4 IPv6

//hostname:port_number //hostname:port_number
1P isadotted notation IP

address, port isadecimal
number

//#.#.#.#:port_number Hex format is not
supported

Jolt Relay Adapter

3-20

The Jolt Relay Adapter (back-end relay) is an Oracle Tuxedo system server. The Jolt Relay
Adapter (JRAD) server may or may not be located on the same Oracle Tuxedo host machinein
single host mode (SHM) and server group to which the JSL server is connected.

The JRAD can be started independently of its associated JRLY . JRAD tracksits startup and
shutdown activity in the Oracle Tuxedo log file.

JRAD Configuration

A single JRAD process can only be connected to asingle JRLY . A JRAD can be configured to
communicate with only one JSL and its associated JSHs. However, multiple JRADs can be
configured to communicate with one JSL. The cLopT parameter for the Oracle Tuxedo servers
must be included in the uBeconr1G file. A sample of the fileis shown in the listing “ Sample
JRAD Entry in UBBCONFIG File’ on page 3-22.

Table 3-5 contains additional information about the cLopT parameters.

Using Oracle Jolt

Jolt Relay Adapter

Table 3-5 JRAD CLOPT Parameter Descriptions

CLOPT Parameter

Description

-1 netaddr

Port to listen for the JRLY to connect on behalf of the
client.

IPv4

//IP:port
//hostname:port_number
//#.#.#.#:port_number

The domain finds an addressfor hostname by using
the local name resolution facilities (usually DNS).
hostname must be the local machine, and the local
name resol ution facilities must unambiguously

resolve hostname to the address of the local machine.

In the second example, the “###.4#" isin dotted
decimal format. In dotted decimal format, each #
should be a number from 0 to 255. This dotted
decima number represents the | P address of the local
machine. In both of the above formats,
port_number isthe TCP port number at which the
domain process listens for incoming requests.
port_number can ether be anumber between 0 and
65535 or aname.

IPv6

/[[1Pv6 address]:port

//hostname: port_number

Note: IPv6 does not support hexadecimal format.

Using Oracle Jolt

3-21

3-22

Table 3-5 JRAD CLOPT Parameter Descriptions (Continued)

CLOPT Parameter Description
-c netaddr The address of the corresponding JSL to which JRAD
connects.

Ipv4 and IPv6 address format sameas-1 netaddr.

-H netaddr The listening address for an external proxy. An external
proxy isonethat runson aclient host. This proxy handles
HTTP and other protocols. The other end of the proxy
connectsto JRLY, which connects to JSL/JSH.

In order for the proxy to work for Jolt clients (specifically
applets that connect to JRLY'), the JRAD passes the -H
argument to an applet, instructing it to connect to the
proxy address instead of the JRLY address.

Note: Unlikethe JSL -H option, the JRAD -H optionis
not used as a network address translator, nor isit
used as an address mask. |Pv6 does not support
the JRAD -H option.

The addressfor the JRAD CLOPT parameters can be specified in either of the following formats:
//hostname:port

0x0002pppphhhhhhhh
(where pppp is the port number and hhhhhhhh isthe hexadecimal 1P address)

Listing 3-5 shows the sample JRAD entry in UBBCONFIG file.

Listing 3-5 Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL port 8000

on the same host

JRAD SRVGRP=JSLGRP SRVID=60
CLOPT="-A -- -1 0x000207D0C864640A -c 0x00021£40C864640A"

Using Oracle Jolt

Oracle Tuxedo Service Metadata Repository

Network Address Configurations

A Jolt Internet Relay configuration requires that several networked components work together.
Prior to configuration, review the criteriain Table 3-6 and record the information to minimize the
possibility of misconfiguration.

Tahle 3-6 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: Location -1: Location where -n: Location of JSL.
where the clients the listener Must match -c parameter of
connect. connects to the JRAD.

CONNECT: Location JRLY.

of your JRAD.Must -c: Location of JSL.

match the -1 parameter of ~ Must match -n parameter of

JRAD. JSL.

Oracle Tuxedo Service Metadata Repository

The Oracle Tuxedo Service M etadata Repository contains Oracle Tuxedo service definitionsthat
allow Jalt clients to access Oracle Tuxedo services. See Managing The Oracle Tuxedo Service
Metadata Repository for the instructions.

Initializing Services By Using Oracle Tuxedo and the
Repository Editor

Define the Oracle Tuxedo services by using Oracle Tuxedo and Oracle Tuxedo Service M etadata
Repository Editor in order to make the Jolt services available to the client.

1. Buildthe Oracle Tuxedo server containing the service. See Administering an Oracle Tuxedo
Application at Run Time or Programming Oracle Tuxedo ATMI Applications Using C for
additional information on the following:

Building the Oracle Tuxedo application server

Editing the uBsconr1c file

Updating the Tuxconr1c file

Administering the tmboot command

Using Oracle Jolt 3-23

../ads/admrp.html
../ads/admrp.html

2. Access the Metadata Repository Editor.

Event Subscription

Jolt Event Subscription receives event notifications from either Oracle Tuxedo services or other
Oracle Tuxedo clients:

e Unsolicited Event Notifications—a Jolt client receives these notifications as a result of a
Oracle Tuxedo client or service subscribing to unsolicited events, and an Oracle Tuxedo
client issuing a broadcast (using either a tpbroadcast () or adirectly targeted message
viaatpnotify () ATMI call). Unsolicited event notifications do not need the TMUSREVT
server.

e Brokered Event Notifications—a Jolt client receives these notifications through the
Oracle Tuxedo Event Broker. The notifications are only received when both Jolt clients
subscribe to an event and any Oracle Tuxedo client or server posts an event using
tppost () . Brokered event notifications require the TMUSREVT Server.

Configuring for Event Subscription

Configure the Oracle Tuxedo TMUSREVT server and modify the application useconr1c file.
Listing 3-6 shows the relevant sections of TMUusrevT parameters in the uBeconr1c file. See
Programming Oracle Tuxedo ATMI Applications Using C for information about the syntax of the
entries for thefile.

Listing 3-6 UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600
ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"
CLOPT="-e tmusrevt.out -o tmusrevt.out -A --
-f /usr/tuxedo/bankapp/tmusrevt.dat"
SEQUENCE=11

In the sErVERS section of the useconr1c file, modify the srverp and srvID parameters as
needed.

3-24 Using Oracle Jolt

Event Subscription

Filtering Oracle Tuxedo FML or VIEW Buffers

Filtering is a process that allows you to customize a subscription. If you require additional
information about the Oracle Tuxedo Event Broker, subscribing to events, or filtering, refer to
Programming Oracle Tuxedo ATMI Applications Using C.

In order to filter Oracle Tuxedo FML or VIEW buffers, thefield definition file must be available
to Oracle Tuxedo at run time.

Note: There are no special requirements for filtering STRING buffers.

Buffer Types
Table 3-7 shows the Oracle Tuxedo types.

Table 3-7 Oracle Tuxedo Buffer Types

Buffer Type Description

FML Attribute, value pair. Explicit.

VIEW C structure. Very precise offsetting. Implicit.

STRING Length and offset are different values. All readable.

CARRAY Character array. BLOB of binary data. Only client
and server know - JSL doesn't.

X_C_TYPE Equivalent to VIEW.

X_COMMON Equivalent to VIEW, but used for both COBOL and
C.

X_OCTET Equivalent to CARRAY.

XML Well-formed XML documents. Similar to
CARRAY.

FML Buffer Example

Thelisting “FIELDTBLS Variablein the TMUSREVT.ENV File” on page 3-26 shows an
example that uses the FML buffer. The FML field definition table is made available to Oracle
Tuxedo by setting the FTELDTBLS and FLDTBLDIR variables.

To filter afield found in themy . £14as file:

Using Oracle Jolt 3-25

1. Copythemy.f1ds fileto /usr/me/bankapp directory.

2. Addmy.f1dstothe FIELDTBLS variableinthe tmusrevT . ENv fileasshown in thefollowing
listing:

Listing 3-7 FIELDTBLS Variable in the TMUSREVT.ENV File

FIELDTBLS=Usysflds,bank.flds,credit.flds,event.flds, my.flds
FLDTBLDIR=/usr/tuxedo/me/T6.2/udataocbj:/usr/me/bankapp

If ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" iSincluded in the definition of the
UBBCONFIG file (shown in the listing “UBBCONFIG File” on page 3-24), the F1ELDTBLS and
FLDTBLDIR definitions are taken from the TmusrevT. Env file and not from your environment
variable settings.

If you remove the ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" definition, the FTELDTBLS
and FL.DTBLDIR definitions are taken from your environment variable settings. The FTELDTBLS
and rLDTBLDIR definitions must be set to the appropriate value prior to booting the Oracle
Tuxedo system.

For additional information on event subscriptions and the Oracle Jolt Class Library, refer to
Chapter 4, “Using the Jolt Class Library.”.

Oracle Tuxedo Background Information

3-26

Thefollowing sections provide detailed configuration information. Even if you are familiar with
Oracle Tuxedo, you should refer to this section for information concerning Jolt Service Handler
(JSL) configuration.

Configuration File

The Oracle Tuxedo configuration file for your application exists in two forms, the ASCI| file,
UBBCONFIG, and acompiled version called TuxconF1c. Once you create a TUXCONF IG, consider
your UBBCONFIG as abackup.

Y ou can make changes to the useconr1G file with your preferred text editor. Then, at atime
when your application is not running, and when you are logged in to your MASTER machine,
you can recompile your TUXCONFIG by running tmloadcf (1) . System/T prompts you to make

Using Oracle Jolt

Oracle Tuxedo Background Information

sure you really want to overwrite your existing Tuxconric file. (If you enter the command with
the -y option, the prompt is suppressed.)

Creating the UBBCONFIG File

A binary configuration file called the Tuxconr1c file contains information used by tmboot (1)
to start the servers and initialize the bulletin board of an Oracle Tuxedo system in an orderly
sequence. The binary Tuxconrzc file cannot be created directly. Initially, you must create a
uBBCONF1G file. That file is parsed and loaded into the TuxcoNFIG USINg tmloadcf (1). Then
tmadmin (1) usestheconfiguration fileor acopy of itinitsmonitoring activity. tmshutdown (1)
references the configuration file for information needed to shut down the application.

Configuration File Format

The uBrconr1G file can consist of up to nine specification sections. Lines beginning with an
asterisk (*) indicate the beginning of a specification section. Each such line contains the name of
the section immediately following the*. Allowabl e section namesare: RESOURCES, MACHINES,
GROUPS, NETGROUPS, NETWORK, SERVERS, SERVICES, INTERFACES, and ROUTING.

Note: Theresources (if used) and MacHINES sections must be the first two sections, in that
order; the croups section must be ahead of SERVERS, SERVICES, and ROUTING.

To configure the JSL, you must modify the uBsconrF1G file. For further information about
oracle Tuxedo configuration, refer to Administering an Oracle Tuxedo Application at Run
Time.

Listing 3-8 shows relevant portions of the ussconFIc file.

Listing 3-8 UBBCONFIG File

*MACHINES
MACH1 LMID=SITEl
MAXWSCLIENTS=40

*GROUPS

JSLGRP GRPNO=95 LMID=SITEL

*SERVERS

JSL SRVGRP=JSLGRP SRVID=30 CLOPT= “ -- -n 0x0002PPPPNNNNNNNN -d

/dev/tcp -m2 -M4 -x10”

Using Oracle Jolt 3-21

3-28

The parameters shown in the following table are the only parameters that must be designated for
the Jolt Server groups and Jolt Servers. Y ou are not required to specify any other parameters.

Change the sections of the usBconF1c file as shown in Table 3-8.

Tahle 3-8 UBBCONFIG File Sections

Section Parameters to be specified

MACHINES MAXWSCLIENTS

GROUPS GRPNO, LMID

SERVERS SRVGRP, SRVID, CLOPT
MACHINES Section

ThemacuINES section specifiesthelogical namesfor physical machinesfor the configuration. It
also specifies parameters specific to a given machine. The MACHINES section must contain an
entry for each physical processor used by the application. Entries have the form:

ADDRESS or NAME required parameters [optional parameters]

where apprRESS is the physical name of the processor, for example, the value produced by the
UNIX system uname -n command.

LMID=string value

This parameter specifiesthat the string_value isto be used in other sections as the symbolic
name for ApbrRESS. This name cannot contain a comma, and must be 30 characters or less. This
parameter isrequired. There must be an L.m1D line for every machine used in a configuration.

MAXWSCLIENTS=number

The MAXWSCLIENTS parameter isrequired in themacHINES section of the configuration file. It
specifiesthe number of accesser entries on this processor to be reserved for Jolt and Workstation
clients only. The value of this parameter must be between 0 and 32,768, inclusive.

The Jolt Server and Workstation use maxwscLIENTS in the same way. For example, if 200 slots
are configured for maxwscr.TENTS, thisnumber configures Oracle Tuxedo for the total number of
remote clients used by Jolt and Workstation.

Be sure to specify maxwscLIENTS in the configuration file. If it is not specified, the default is 0.

Note: If MaxwsScLIENTS isnot set, the JSL does not boot.

Using Oracle Jolt

Oracle Tuxedo Background Information

GROUPS Section

This section provides information about server groups, and must have at least one server group
defined init. A server group entry provides alogical name for a collection of servers and/or
services on amachine. Thelogical name is used as the value of the srvGrp parameter in the
SERVERS Section to identify a server as part of this group. srvere isalso used in the SERVICES
section to identify a particular instance of a service with its occurrencesin the group. Other
GROUPS parameters associate this group with a specific resource manager instance (for example,
the employee database). Lines within the croups section have the form:

GROUPNAME required parameters [optional parameters]

where croupNaME specifies the logical name (string_value) of the group. The group name must
be unique within al group namesin the croups section and LmID valuesin the MACHINES
section. The group name cannot contain an asterisk(*), comma, or colon, and must be 30
characters or less.

A Groups entry isrequired for the group that includes the Jolt Server Listener (JSL). Make the
Groups entry asfollows:

1. Thegroup nameis selected by the application, for example: JsLGrRP and JREPGRP.

2. Specify the same identifiers given as the value of the LM1D parameter in the MACHINES
section.

3. Specify the value of the crpro between 1 and 30,000 in the *croups section.

Note: Make sure that Resource Managers are not assigned as a default value for al groupsin
the crouPps section of your useconr1G file. Making Resource Managers the default
value assigns a Resource Manager to the JSL and you receive an error during tmboot. In
the sErVERS section, default values for RESTART, MAXGEN, €tC., are acceptable defaults
for the JSL.

SERVERS Section

This section provides information on theinitial conditions for servers started in the system. The
notion of aserver asaprocessthat continually runsand waitsfor aserver group’ s servicerequests
to process may or may not apply to a particular remote environment. For many environments, the
operating system, or perhaps aremote gateway, isthe sole dispatcher of services. When either of
these is the case, you need only specify servIcE entry pointsfor remote program entry points,
and not serVER table entries. Oracle Tuxedo system gateway servers would advertise and queue
remote domain service requests. Host-specific reference pages must indicate whether or not

Using Oracle Jolt 3-29

3-30

UBBCONFIG server table entries apply in their particular environments, and if so, the
corresponding semantics. Lines within the serveRs section have the form:

AOUT required parameters [optional parameters]

where aout specifiesthefile (string_value) to be executed by tmboot(1). tmboot executes
aouT on the machine specified for the server group to which the server belongs. tmboot searches
for theaout file onitstarget machine, thus, aout must exist in afile system on that machine. (Of
course, the path to aouT can include RFS connections to file systems on other machines.) If a
relative pathname for a server is given, the search for aout is done sequentialy in AppDIR,
TUXDIR/bin, /bin, andtheninpath, where <path> isthe value of the last paTH= line
appearing in the machine environment file, if one exists. The valuesfor AppDIR and TUXDIR are
taken from the appropriate machine entry in the Tuxconr1c file.

Clients connect to Oracle Jolt applications through the Jolt Server Listener (JSL). Services are
accessed through the Jolt Server Handler (JSH). The JSL supports multiple clients and actsas a
single point of contact for all the clientsto connect to the application at the network address that
is specified on the JSL command line. The JSL schedules work for handler processes. A handler
process acts as a substitute for clients on remote workstations within the administrative domain
of the application. The handler usesamultiplexing schemeto support multiple clients on one port
concurrently.

The network address specified for the JSL designates a TCP/IP address for both the JSL and any
JSH processes associated with that JSL. The port number identified by the network address
specifiesthe port number on which the JSL accepts new client connections. Each JSH associated
with the JSL uses consecutive port numbers at the same TCP/IP address. For example, if the
initial JSL port number is 8000 and there are a maximum of three JSH processes, the JSH
processes use ports 8001, 8002, and 8003.

Note: Misconfiguration of the subsequent JSL resultsin a port number collision.

Parameters Usahle with JSL

In addition to the parameters specified in the previous sections, the following parameters can be
used with the JSL, although you need to understand how doing so would affect your application.

SVRGRP=string value

This parameter specifies the group name for the group in which the server isto run.
string_value must bethelogical name associated with a server group in the *Groups section,
and must be 30 characters or less. This association with an entry in the *crouprs section means
that aour is executed on the machine with the Lm1D specified for the server group. This
association also specifies the creno for the server group and parameters to pass when the

Using Oracle Jolt

Oracle Tuxedo Background Information

associated resource manager is opened. All server entries must have a server group parameter
specified.
SRVID=number

This parameter specifies an identifier, an integer between 1 and 30,000, inclusive, that identifies
this server within its group. This parameter is required on every server entry, even if the group
has only one server. If multiple occurrences of servers are desired, do not use consecutive
numbers for srvips; leave enough room for the system to assign additional srvIps up to MAx.

Optional Parameters

The optional parameters of the servERS section are divided into boot parameters and run-time
parameters.

Boot Parameters

Boot parameters are used by tmboot When it executes a server. Once running, a server readsits
entry from the configuration file to determine its run-time options. The unique server
identification number is used to find the right entry. The following are boot parameters.

CLOPT=string value

The cropT parameter specifies a string of command-line options to be passed to aocuTt when
booted.The servopts (5) pagein the File Formats, Data Descriptions, MIBs, and System
Processes Reference lists the valid parameters.

Some of the available options apply primarily to servers under development. For example, the
-r option directsthe server to write arecord to its standard error file each time a service request
begins or ends.

Other command-line options can be used to direct the server’s standard out (stdout) and
standard error (stderr) to specific files, or to start the server so that it initially advertises a
limited set of its available services.

The default value for the cLopt parameter is -a, which means that the server is started with all
available services advertised.

The maximum length of the cLopT parameter value is 256 characters; it must be enclosed in
double quotes.

SEQUENCE=number

This parameter specifies when to shut down or boot relative to other servers. If SEQUENCE is not
specified, servers are booted in the order found in the servERs section (and shut down in the

Using Oracle Jolt 3-31

3-32

reverse order). If some servers have sequence numbers specified and others do not, all servers
with sequence numbers are booted first from low to high sequence number, then all servers
without sequence numbers are booted in the order in which they appear in the configuration file.
Sequence numbers range between 1 and 9999. If the same sequence number is assigned to more
than one server, tmboot may boot those serversin parallel.

MIN=number

The mrn parameter specifies the minimum number of occurrences of the server to boot by
tmboot. If an RQADDR is specified, and mIN is greater than 1, the servers form amultiple servers
single queue (MSSQ) set. Theidentifiersfor the serversare srvip up to (srRvID + (Max -1)). All
occurrences of the server have the same sequence numbersaswell asany other server parameters.
The value range for m1n is 0 to 1000. If mIN is not specified, the default valueis 1.

MAX=number

Thewmax parameter setsthe maximum number of occurrences of the server to be booted. Initially,
tmboot bootsMIN servers, and additional servers can be booted up to max occurrences using the
-1 option of tmboot to specify the associated server identifier. The value range for max is0 to
1000. If no value is specified for max, the default is the same as for m1n, or 1.

e tmboot StartsMIN occurrences unlessyou explicitly call for more with the -1 srviD
option of tmboot .

If RoADDR is specified and MIN is greater than one, an MSSQ set is formed

If MmN is not specified, the default is 1.

If Max is not specified, the default ismIn.

e Max isespecially important for conversational servers because they are spawned
automatically as needed.

Run-time Parameters

The server uses run-time parameters after it is started by tmboot. Asindicated previously,

tmboot Usesthevaluesfoundinthe TuxpIr, APPDIR and ENVFILE parametersfor theMacHINES

section when booting the server. It also setsthe paTh for the server to:
“APPDIR:TUXDIR/bin: /bin:path”

where path isthe value of the last paTH= line appearing in the EnvrILE file. The following
parameters are run-time parameters.

ENVFILE=string value

Using Oracle Jolt

Oracle Tuxedo Background Information

Y ou can use the ENVFILE parameter for aserver to add valuesto the environment established by
tmboot during initialization of the server. Y ou can optionally set variables specified in the file
named in the SERVERS ENVFILE parameter after you set thosein the MACHINES ENVFILE used
by tmboot. Thesefilescannot be used to override TUXDIR, APDIR, TUXCONFIG, Of TUSOFFSET.
The best policy istoincludein the server's exvrILE only those variable assignments known to
be needed to ensure proper running of the application.

On the server, the EnvrILE fileis processed after the server starts. Therefore, it cannot be used
to set the pathnames used to find executable or dynamically loaded files needed to execute the
server. If you need to perform these tasks, use the machine eNvrILE instead.

Within EnvrILE only linesof the form
VARIABLE =string

areallowed. varIABLE must start with an underscore or al phabetic character and can contain only
underscore or alphanumeric characters. If the server is associated with a server group that can be
migrated to a second machine, the EnvrFILE must be in the same location on both machines.

CONV={Y | N}

conv specifies whether the server is a conversational server. conv takesav valueif a
conversational server is being defined. Connections can only be made to conversational servers.
For arequest/response server, you can either set conv=N, which is the default, or omit the
parameter.

RQADDR=string value

RQADDR assigns a symbolic name to the request queue of this server. M SSQ sets are established
by using the same symbolic name for more than one server (or by specifying mIn greater than 1).
All membersof an M SSQ set must offer an identical set of servicesand must beinthe same server
group.

If RoADDR is not specified, the system assigns a unique key to serve as the queue address for this
server. However, tmadmin commandsthat take a queue address as an argument are easier to use
if queues are given symbolic names.

RQPERM=number

Usethe ropERM parameter to assign UNIX-style permissionsto the request queue for this server.
The value of number can be between 0001 and 0777, inclusive. If no parameter is specified, the
permissions value of the bulletin board, as specified by pErM in the RESOURCES section, is used.
If novalueis specified there, the default of 0666 is used (the default exposes your application to
possible use by any login on the system, so consider this carefully).

REPLYQ={ Y | N }

Using Oracle Jolt 3-33

3-34

The reEPLYQ parameter specifies whether areply queue, separate from the request queue, should
be established for aour. If N isspecified, thereply queueiscreated onthesamerLmIip astheaour.
If only one server is using the request queue, replies can be retrieved from the request queue
without causing problems. However, if the server is amember of an MSSQ set and contains
services programmed to receive reply messages, REpLYQ should be set to v so that an individual
reply queueis created for this server. If set to n, thereply is sent to the request queue shared by
al serversfor the M SSQ set, and you cannot ensure that the reply will be picked up by the server
that iswaiting for it.

It should be standard practice for all member servers of an MSSQ set to specify REPLYQ=Y if
replies are anticipated. Serversin an MSSQ set are required to have identical offerings of
services, so it isreasonable to expect that if one server in the set expectsreplies, any server inthe
set can also expect replies.

RPPERM=number

Use the RPPERM parameter to assign permissions to the reply queue. number is specified in the
usual UNIX fashion (for example, 0600); the value can be between 0001 and 0777, inclusive. If
RPPERM iS not specified, the default value 0666 is used. This parameter is useful only when
REPLYQ=Y. |f requests and replies are read from the same queue, only roPERM iS needed; RPPERM
isignored.

RESTART={ Y | N }

The RESTART parameter takesay or N to indicate whether aout isrestartable. The default isw.
If the server isin agroup that can be migrated, REsTART must be v. A server started with a
SIGTERM Signal cannot be restarted; it must be rebooted.

An application’s policy on restarting servers might vary according to whether the server isin
production or not. During the test phase of application development it is reasonabl e to expect that
aserver might fail repeatedly, but server failures should be rare events once the application has
been put into production. Y ou might want to set more stringent parametersfor restarting servers
once the application isin production.

Parameters Associated with RESTART

RCMD=string value

If aouT isrestartable, this parameter specifies the command that should be executed when aouT
abnormally terminates. The string, up to the first space or tab, must be the name of an executable
UNIX file, either afull pathname or relativeto apppIr. (Do not attempt to set ashell variable at
the beginning of the command.) Optionally, the command name can be followed by
command-line arguments. Two additional arguments are appended to the command line: the

Using Oracle Jolt

Oracle Tuxedo Background Information

erPNO and srvID associated with the restarting server. string_value isexecuted in parallel
with restarting the server.

Y ou can use the rcMD parameter to specify a command to be executed in parallel with the
restarting of the server. The command must be an executable UNIX system fileresiding in a
directory onthe server’ s para. An exampleisacommand that sends a customized messageto the
userlog to mark the restarting of the server.

MAXGEN=number

If aouT isrestartable, thisparameter specifiesthat it can berestarted at most (number - 1) times
within the period specified by Grace. The value must be greater than 0 and less than 256. If not
specified, the default is 1 (which means that the server can be started once, but not restarted). If

the server isto be restartable, MaxGcEN must be equal to or greater than 2. RESTART must be v or
MAXGEN isignored.

GRACE=number

If RESTART iSY, the GRACE parameter specifies the time period (in seconds) during which this
server can berestarted, (MaxGeN - 1) times. The number assigned must be equal to or greater than
0, and less than 2,147,483,648 seconds (or alittle more than 68 years). If cracE is not specified

the default is 86,400 seconds (24 hours). Setting Grack to 0 removes all limitations; the server
can be restarted an unlimited number of times.

Entering Parameters

Y ou can use Oracle Tuxedo parameters, including RESTART, RQADDR, and REPLYQ, With the
JSL. (See Administering an Oracle Tuxedo Application at Run Time for additional information
regarding run-time parameters.) Enter the following parameters:

1. Toidentify the srverp parameter, type the previously defined group name value from the
GROUPS Section.

2. Toindicate the srviD, type a number between 1 and 30,000 that identifies the server within
its group.

3. Verify that the syntax for the cLopT parameter is as follows:

CLOPT= “-- -n O0x0002PPPPNNNNNNNN -d /dev/tcp -m2 -M4 -x10”

Note: ThecropT parameters may vary. Refer to thetable“JSL Command-line Options’ on
page 3-8 for pertinent command-line information.

4. If necessary, type the optional parameters:

Using Oracle Jolt 3-35

— Typethe sEQUENCE parameter to determine the order that the servers are booted.
— Specify v to permit release of the RESTART parameter.

— Type o to permit an infinite number of server restarts using the GRACE parameter.

Sample Applications in Oracle Jolt Online Resources

Y ou can access sampl e code that can be modified for use with Oracle Jolt through the Oracle Jolt
product Web page at:

http://www.bea.com/products/jolt/index.htm
These samples demonstrate and utilize Oracle Jolt features and functionality.
Other Web sites with Java-related information include:

e Javasoft Home page (http: / /www.java.sun.com/)

e Newsgroups in the comp.lang.java hierarchy. These groups contain lists of past articles and
communications regarding Java, and are a valuable source of archival material.

3-36 Using Oracle Jolt

Using the Jolt Class Library

The Oracle Jolt Class Library provides devel opers with a set of object-oriented Javalanguage
classes for accessing Oracle Tuxedo services. The classlibrary contains the class files that
implement the Jolt API. Using these classes, you can extend applicationsfor Internet and intranet
transaction processing. Y ou can use the Jolt Class Library to customize accessto Oracle Tuxedo
services from Java applets.

This topic includes the following sections:
e ClassLibrary Functionality Overview
e Jolt Object Relationships
e Jolt Class Library Walkthrough
e Using Oracle Tuxedo Buffer Types with Jolt
e Multithreaded Applications
e Event Subscription and Notifications
e Clearing Parameter Values
e Reusing Objects
e Deploying and Localizing Jolt Applets
e Using SSL

Using Oracle Jolt 4-1

To use theinformation in the following sections, you need to be generally familiar with the Java
programming language and object-oriented programming concepts. All the programming
examples are in Java code.

Note: All program examplesare only fragments used to illustrate Jolt capabilities. They are not

intended to be compiled and run as provided. These program examplesrequire additional
code to be fully executable.

Class Library Functionality Overview

42

The Jolt Class Library gives the Oracle Tuxedo application developer the tools to develop
client-side applications or applets that run as independent Java applications or in a Java-enabled
Web browser. Thebea.jolt package contains the Jolt Class Library. To use the Jolt Class
Library, the client program or applet must import this package. For an example of how to import
thebea.jolt package, refer to the listing “ Jolt Transfer of Funds Example (SimXfer.java)” on
page 4-11.

Java Applications Versus Java Applets

Javaprogramsthat runin abrowser are called applets. Appletsare small, easily downloaded parts
of an overall application that perform specific functions. Many popular browsers impose
limitations on the capabilities of Java appletsin order to provide a high degree of security for the
users of the browser. Applets have the following restrictions:

e An applet ordinarily cannot read or write files on any host system.
e An applet cannot start any program on the host (client) that is executing the applet.

e An applet can make a network connection only to the host from which the applet
originated; it cannot make other network connections, not even to the client machine.

Programming workarounds exist for most restrictions on Java applets. Check your browser’s
Web site (for example, www.netscape.com or www.microsoft.com) or developer documentation
for specific information about the applet capabilities that the browser supports or restricts. Y ou
can also use Jolt Relay to work around some of the network connection restrictions.

A Javaapplication, however, isnot runinthe context of abrowser and isnot restricted in the same
ways. For example, a Java application can start another application on the host machine whereit
is executing. While an applet relies on the windowing environment of abrowser or appletviewer
for much of its user interface, a Java application requiresthat you create your own user interface.
An applet isdesigned to be small and highly portable. A Java application, on the other hand, can

Using Oracle Jolt

Class Library Functionality Overview

operate much like any other non-Java program. The security restrictions for applets imposed by
various browsers and the scope of the two program types are the most important differences
between a Java application and a Java applet.

Jolt Class Library Features
The Jolt Class Library has the following characteristics:
e Features fully thread-safe classes.

e Encapsulates typical transaction functions such as logon, synchronous calling, transaction
begin, commit, rollback, and logoffs as Java objects.

e Contains methods that allow you to set idle timeouts for continuous and intermittent client
network connections.

e Features methods that allow a Jolt client to subscribe to and receive event-based
notifications.

Error and Exception Handling

The Jolt Class Library returns both Jolt interpreter and Oracle Tuxedo errors as exceptions. The
Jolt Class Library Reference contains the Jolt classes and lists the errors or exceptions thrown for
each class. The Oracle Jolt API Reference contains the Error and Exception Class Reference.

Using Oracle Jolt 4-3

44

Jolt Client/Server Relationship

Oracle Jolt works in adistributed client/server environment and connects Java clients to Oracle
Tuxedo-based applications.

Figure 4-1 illustrates the client/server relationship between a Jolt program and the Jolt Server.

Figure 4-1 Jolt Client/Server Relationship

Client Jolt Server
Application Protocol
GUI Application - - O'chglltiec;l{l;(nedo
) Jolt Transaction Protocol ATMI
Jolt Class Librar

Y - P protocol Translator

Connection Jolt Network Protocol Connection

Manager - | M anager

TCP/IP

Asillustrated in the figure, the Jolt Server acts as a proxy for a native Oracle Tuxedo client,
implementing functionality available through the native Oracle Tuxedo client. The Oracle Jolt
Server accepts requests from Oracle Jolt clients and maps those requests into Oracle Tuxedo
servicerequeststhrough the Oracle Tuxedo ATMI interface. Requests and associ ated parameters
are packaged into amessage buffer and delivered over the network to the Oracle Jolt Server. The
Oracle Jolt Connection Manager handles all communication between the Oracle Jolt Server and
the Oracle Jolt applet using the Oracle Jolt Transaction Protocol. The Oracle Jolt Server unpacks
the data from the message, performs any necessary data conversions, such as numeric format
conversions or character set conversions, and makes the appropriate service request to Oracle
Tuxedo as specified by the message.

Onceaservicerequest entersthe Oracle Tuxedo system, it isexecuted in exactly the same manner
as any other Oracle Tuxedo request. The results are returned through the ATMI interface to the
Oracle Jolt Server, which packages the results and any error information into a message that is
sent to the Oracle Jolt client applet. The Oracle Jolt client then maps the contents of the message
into the various Oracle Jolt client interface objects, completing the request.

Using Oracle Jolt

Class Library Functionality Overview

On the client side, the user program contains the client application code. The Jolt Class Library
packages a JoltSession and JoltTransaction, which in turn handle service requests.

Table 4-1 describes the client-side requests and Jolt Server-side actions in a simple example
program.

Table 4-1 Jolt Client/Server Interaction

Jolt Client

1

attr=new JoltSessionAttributes|() ;

attr.setString(attr.APPADDRESS,
“//myhost:8000") ;

session=new JoltSession(attr, username,

userRole, userPassword, appPassword) ;

withdrawal=new JoltRemoteService (
servname, session);

withdrawal .addString (“accountnumber”,
\\123”);

withdrawal.addFloat (“amount”, (float)
100.00) ;

trans=new JoltTransaction(time-out,
session) ;

withdrawal.call (trans) ;

trans.commit () or trans.rollback() ;

balance=withdrawal .getFloatDef (“*balance, ”

(float) 0.0);

session.endSession() ;

Jolt Server

BindstheclienttotheOracle
Tuxedo environment

Logs the client onto Oracle
Tuxedo

Looks up the service
attributes in the Repository

Populates variablesin the
client (no Jolt Server
activity)

Begins a new Tuxedo
transaction

Executesthe Oracle Tuxedo
service

Completes or rolls back
transaction

Retrievestheresults (no Jolt
Server activity)

Logstheclient off of Oracle
Tuxedo

The following tasks summarize the interaction shown in the previous table, “ Jolt Client/Server
Interaction.”

1. Bindtheclient to the Oracle Tuxedo environment using the JoltSessionAttributes Class.

Using Oracle Jolt 4-5

2. Establish asession.

3. Setvariables.

4. Perform the necessary transaction processing.
5

. Log the client off of the Oracle Tuxedo system.

Each of these activitiesis handled through the use of the Jolt Class Library classes. These classes
include methods for setting and clearing data and for handling remote service actions. “ Jolt
Object Relationships’ on page 4-7 describes the Jolt Class Library classesin more detail.

4-6 Using Oracle Jolt

Jolt Object Relationships

Jolt Object Relationships

Figure 4-2 illustrates the rel ationship between the instantiated objects of the Jolt Class Library
classes.

Figure 4-2 Jolt Object Relationships

JoltRemoteService contains-a I JoltUserEvent
uses-a

call (transaction) JoltSession contains-a

tai >
JoltTransaction contains=a Uses—a+
uses-a
JoltReply

JoltSessionAttributes

contains-a

I JoltMessage

Asobjects, the Jolt classesinteract in variousrel ationshipswith each other. In the previousfigure,
the relationships are divided into three basic categories:

e Contains-arelationship—at the class level an object can contain other objects. For
example, a JoltTransaction stores (or contains) a JoltSession object.

e |s-arelationship—the is-arelationship usually occurs at the class instance or sub-object
level and denotes that the object is an instance of a particular object.

e Uses-arelationship—an object can use another object without containing it. For example, a
JoltSession can use the JoltSessionAttributes object to obtain the host and port information.

Using Oracle Jolt 4-7

Jolt Class Library Walkthrough

4-8

Use Jolt classes to perform the basic functions of transaction processing: logon/logoff;
synchronous service calling; transaction begin, commit, and rollback. The following sections
describe how Jolt classes are used to perform these functions.

e Logon and Logoff
e Synchronous Service Calling

e Transaction Begin, Commit, and Rollback

Y ou can a'so use the Jolt class library to develop multithreaded applications, define Tuxedo
buffer types, and subscribe to events and unsolicited messages. These functions are discussed in
later sections.

Logon and Logoff

The client application must log on to the Oracle Tuxedo environment prior to initiating any
transaction activity. The Jolt Class Library provides the JoltSessionAttributes class and
JoltSession class to establish a connection to an Oracle Tuxedo system.

The JoltSessionAttributes class will contain the connection properties of Jolt and Oracle Tuxedo
systems as well as various other properties of the two systems. To establish a connection, the
client application must create an instance of the JoltSession class. Thisinstanceisthe JoltSession
object. After the developer instantiates a Jolt Session and Oracle Tuxedo object, the Jolt and
Oracle Tuxedo logon capability is enabled. Calling the endSession method ends the session and
alows the user to log off.

Synchronous Service Calling

Transaction activities such as requests and replies are handled through a JoltRemoteService
object (an instance of the JoltRemoteService class). Each JoltRemoteService object refersto an
exported Oracle Tuxedo request/reply service. Y ou must provide a service name and a
JoltSession object to instantiate a JoltRemoteService object before it can be used.

To use a JoltRemoteService object:
1. Set theinput parameters.
2. Invokethe service.

3. Examinethe output parameters.

Using Oracle Jolt

Jolt Class Library Walkthrough

For efficiency, Jolt does not make a copy of any input parameter object; only the references to
the abject (for example, string and byte array) are saved. Because JoltRemoteService object isa
stateful object, itsinput parameters and the request attributes are retained throughout the life of
the object. You can usethe c1ear () method to reset the attributes and input parameters before
reusing the JoltRemoteService object.

Because Jolt is designed for a multithreaded environment, you can invoke multiple
JoltRemoteService objects simultaneously by using the Java multithreading capability. Refer to
“Multithreaded Applications’ on page 4-35 for additional information.

Transaction Begin, Commit, and Rollback

In Jolt, atransaction is represented as an object of the class JoltTransaction. The transaction
beginswhen the transaction object isinstantiated. The transaction object is created with atimeout
and JoltSession object parameter:

trans = new JoltTransaction(timeout, session)

Jolt uses an explicit transaction model for any servicesinvolved in atransaction. The transaction
service invocation requires a Jolt Transaction object as a parameter. Jolt also requires that the
service and the transaction belong to the same session. Jolt does not allow you to use services and
transactions that are not bound to the same session.

The sample code in the listing “ Jolt Transfer of Funds Example (SimXfer.java)” on page 4-11
describes how to use the Jolt Class Library and includes the use of the JoltSessionAttributes,
JoltSession, JoltRemoteService, and JoltTransaction classes.

The same sample combines two user-defined Oracle Tuxedo services (WITHDRAWAL and
DEPOSIT) to perform asimulated TRANSFER transaction. If the WITHDRAWAL operation
fails, arollback is performed. Otherwise, a DEPOSIT is performed and a commit completes the
transaction.

The following programming steps describe the transaction process shown in the sample code
listing “ Jolt Transfer of Funds Example (SimXfer.java)” on page 4-11:

1. Set the connection attributes like hostname and portnumber in the JoltSessionAttribute
object.

Refer to thisline in the following code listing:
sattr = new JoltSessionAttributes() ;

2. Thesattr.checkauthenticationLevel () allowstheapplicationto determinethelevel of
security required to log on to the server.

Using Oracle Jolt 4-9

4-10

Refer to thisline in the following code listing:

switch (sattr.checkAuthenticationLevel ())

. Thelogon is accomplished by instantiating a JoltSession object.

Refer to these lines in the following code listing:

session = new JoltSession (sattr, userName, userRole,
userPassword, appPassword) ;

This example does not explicitly catch sessionException €ITOrs.

. All JoltRemoteService calls require a service to be specified and the session key returned

from JgoltSession().
Refer to these lines in the following code listing:
withdrawal = new JoltRemoteService (“WITHDRAWAL”, session);

deposit = new JoltRemoteService (“DEPOSIT”, session);

These calls bind the service definition of both the WITHDRAWAL and DEPOSIT services,
which are stored in the Oracle Tuxedo Service Metadata Repository, to the withdrawal and
deposit objects, respectively. The services WITHDRAWAL and DEPOSIT must be defined
in the Metadata Repository; otherwise a ServiceException is thrown. This example does
not explicitly catch ServiceException errors.

. Once the service definitions are returned, the application-specific fields such as account

number ACCOUNT _ID and withdrawa amount SAMOUNT are automatically popul ated.
Refer to these lines in the following code listing:

withdrawal.addInt (“ACCOUNT_ID”, 100000);

withdrawal.addString (“SAMOUNT”, “100.00”);

The ada* () methods can throw 111egalaccessError Of NoSuchFieldError €XCeptions.

. The JoltTransaction call alows atimeout to be specified if the transaction does not complete

within the specified time.
Refer to thisline in the following code listing:

trans = new JoltTransaction(5,session);

. Once the withdrawal service definition is automatically populated, the withdrawal serviceis

invoked by calling thewithdrawal.call (trans) method.
Refer to thisline in the following code listing:

withdrawal.call (trans) ;

Using Oracle Jolt

Jolt Class Library Walkthrough

8. A failled WITHDRAWAL can be rolled back.
Refer to thisline in the following code listing:

trans.rollback() ;

9. Otherwise, oncethe DEPOSIT isperformed, all thetransactions are committed. Refer to these
lines in the following code listing:

deposit.call (trans) ;
trans.commit () ;

Listing 4-1 shows an example of asimple application for the transfer of funds using the Jolt
classes.

Listing 4-1 Jolt Transfer of Funds Example (SimXfer.java)

/* Copyright 1999 Oracle Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class SimXfer
{
public static void main (String[] args)
{
JoltSession session;
JoltSessionAttributes sattr;
JoltRemoteService withdrawal;
JoltRemoteService deposit;
JoltTransaction trans;
String userName=null;
String userPassword=null;
String appPassword=null;

String userRole="myapp”;

sattr = new JoltSessionAttributes() ;

sattr.setString(sattr.APPADDRESS, “//bluefish:8501");

switch (sattr.checkAuthenticationLevel())

{

case JoltSessionAttributes.NOAUTH:
System.out.println (“NOAUTH\n") ;

break;

Using Oracle Jolt 4-1

4-12

case JoltSessionAttributes.APPASSWORD:

appPassword = “appPassword”;
break;

case JoltSessionAttributes.USRPASSWORD:
userName = “myname”;
userPassword = “mysecret”;
appPassword = “appPassword”;
break;

}

sattr.setInt (sattr.IDLETIMEOUT, 300);

session = new JoltSession(sattr, userName, userRole,
userPassword, appPassword) ;

// Simulate a transfer

withdrawal = new JoltRemoteService (“WITHDRAWAL”, session);

deposit = new JoltRemoteService (“DEPOSIT”, session);

withdrawal.addInt (“ACCOUNT_ID”, 100000) ;
withdrawal .addString (“SAMOUNT”, “100.00");

// Begin the transaction w/ a 5 sec timeout
trans = new JoltTransaction (5, session);
try
{

withdrawal.call (trans) ;
}

catch (ApplicationException e)

{
e.printStackTrace() ;
// This service uses the STATLIN field to report errors
// back to the client application.
System.err.println(withdrawal.getStringDef (“STATLIN”, "NO
STATLIN")) ;
System.exit (1) ;

}

String wbal = withdrawal.getStringDef (“SBALANCE”, “$-1.0");

// remove leading “$” before converting string to float
float w = Float.valueOf (wbal.substring(l)).floatValue() ;
if (w < 0.0)

Using Oracle Jolt

Jolt Class Library Walkthrough

{
System.err.println(“Insufficient funds”);
trans.rollback() ;
System.exit (1) ;
}
else // now attempt to deposit/transfer the funds
{
deposit.addInt (“ACCOUNT_ID”, 100001);
deposit.addString (“SAMOUNT”, “100.00");
deposit.call (trans) ;
String dbal = deposit.getStringDef (“SBALANCE”, “-1.0");
trans.commit () ;
System.out.println(“Successful withdrawal”) ;
System.out.println(“New balance is: “ + wbal);
System.out.println(“Successful deposit”);
System.out.println(“*New balance is: “ + dbal);
}

session.endSession() ;
System.exit (0) ;
} // end main

} // end SimXfer

Using Oracle Jolt 4-13

Using Oracle Tuxedo Buffer Types with Jolt
Jolt supports the following built-in Oracle Tuxedo buffer types:
e FML, FML32
o VIEW, VIEW32
¢ X_COMMON
e X C TYPE
o CARRAY
e X_OCTET
e STRING
o XML

¢ MBSTRING

Note: X_OCTET isused identically to CARRAY .
X_COMMON and X_C_TYPE are used identically to VIEW.

Of the Oracle Tuxedo built-in buffer types, the Jolt programmer should be particularly aware of
how Jolt handles the CARRAY (character array) and STRING buffer types:

e The CARRAY typeisused to handle data opaquely (that is, the characters of a CARRAY
datatype are not interpreted in any way). Therefore, no data conversion is performed
between a Jolt client and Oracle Tuxedo service.

e The STRING datatypeis character and, unlike CARRAY, you can determine its
transmission length by counting the number of characters in the buffer until reaching the
null character. Therefore, datais automatically converted when data is exchanged by
machines with different character sets.

For more information about all the Oracle Tuxedo typed buffers, data types, and buffer types,
refer to the following documents:

e Programming Oracle Tuxedo ATMI Applications Using C
e Oracle Tuxedo ATMI C Function Reference
e Oracle Tuxedo ATMI FML Function Reference

e File Formats, Data Descriptions, MIBs, and System Processes Reference

4-14 Using Oracle Jolt

Using Oracle Tuxedo Buffer Types with Jolt

Using the STRING Buffer Type

The STRING buffer typeisan array of non-null characters that terminates with anull character.
Unlike CARRAY , you can determine its transmission length by counting the number of
characters in the buffer until reaching the null character. Since the STRING buffer is
self-describing, the Oracle Tuxedo System can convert data automatically when datais
exchanged by machines with different character sets.

Note: During the data conversion from Jolt to STRING, the null terminator is automatically
appended to the end of the STRING buffers because a Java string is not null-terminated.

Using the STRING buffer type requires two main steps.

1. Definethe Tuxedo service that you will be using with the buffer type.
2. Write the code that uses the STRING buffer type.

The next two sections provide examples that demonstrate these steps.

The Toupper code fragment shown in thelisting “Use of the STRING Buffer Type
(ToUpper.java)” on page 4-18 illustrates how Jolt works with a service whose buffer typeis
STRING. The Toupper Oracle Tuxedo Serviceis available in the Oracle Tuxedo simpapp
example.

Define TOUPPER in the Repository Editor

Before running the Toupper . java example, you need to define the TourpER service through the
Metadata Repository Editor.

Using Oracle Jolt 4-15

ORACLE Tuxedo 12.2.2.0.0 Services Consale # owws .

Tuxedo Services Metadata
Services
‘Service Details
Service nam SOAF REST
Save Create New Service
GETY_CTYPE
* Service TOUPPER
GETX_COMMON
" Tuxedo Service TOUPPER Sorvice Descripion
CAR_X_COMUGN
FMLIZ_CAR
VIEW_STR
HX_COMMON_STR
CAR_FML3Z
CARRAY Export ¥
X_OCTET_MBSTRING Sorvice Type request-respanse -
MESTRING_VEW Input Butfer STRING .
mz 345 .7 N Culput Bufler - STRING v
Error Buffer -
[Delete Selected Service
Sorvice Parameters
Moaity L
Remoe Before

4-16 Using Oracle Jolt

Using Oracle Tuxedo Buffer Types with Jolt

Using Oracle Jolt 4-17

ORACLE Tuxedo 12.2.2.0.0 Services Cansole # owws -

Tuxedo Services Metadata

Services

Service Delais

SOAP REST
Save Create New Service

" Servica TOUPPER

" Tuxedo Serice TOUPPER Sernce Descnphon

Export Y

Service Type requestresponse

Input Buffer STRING

Output Bulfer STRING
Error Buffer

Sandca Paramatars

Manage Parametirs «

B STRING /inout/ sting

ToUpper.java Client Code

The Toupper . java Java code fragment in Listing 4-2 illustrates how Jolt works with a service
with a buffer type of STRING. The example shows a Jolt client using a STRING buffer to pass
datato a server. The Oracle Tuxedo server would take the buffer, convert the string to all
uppercase letters, and pass the string back to the client. The following example assumes that a
session object was already instantiated.

Listing 4-2 Use of the STRING Buffer Type (ToUpper.java)

/* Copyright 1996 Oracle Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ToUpper
{
public static void main (String[] args)
{
JoltSession session;

JoltSessionAttributes sattr;

4-18 Using Oracle Jolt

Using Oracle Tuxedo Buffer Types with Jolt

JoltRemoteService toupper;
JoltTransaction trans;
String userName=null;

String userPassword=null;
String appPassword=null;

String userRole="myapp”;

String outstr;

sattr = new JoltSessionAttributes() ;
sattr.setString(sattr.APPADDRESS, “//myhost:8501");

switch (sattr.checkAuthenticationLevel ())

{

case JoltSessionAttributes.NOAUTH:
break;

case JoltSessionAttributes.APPASSWORD:
appPassword = “appPassword”;
break;

case JoltSessionAttributes.USRPASSWORD:
userName = “myname”;
userPassword = “mysecret”;
appPassword = “appPassword”;
break;

}

sattr.setInt (sattr.IDLETIMEOUT, 300);

session = new JoltSession(sattr, userName, userRole,
userPassword, appPassword) ;

toupper = new JoltRemoteService (“TOUPPER”, session);
toupper.setString (*STRING”, “hello world”);
toupper.call (null) ;

outstr = toupper.getStringDef (“STRING”, null);

if (outstr != null)

System.out.println (outstr) ;

session.endSession() ;
System.exit (0) ;
} // end main

} // end ToUpper

Using Oracle Jolt 4-19

4-20

Using the CARRAY Buffer Type

The CARRAY buffer type isasimple character array buffer type that is built into the Oracle
Tuxedo system. Because the system does not interpret the data (although the data type is known)
when you use the CARRAY buffer type, you must specify a data length in the Jolt client
application. The Jolt client must specify a datalength when passing this buffer type.

For example, if an Oracle Tuxedo service usesa CARRAY buffer type and the user sets a 32-bit
integer (in Javathe integer isin big-endian byte order), then the data is sent unmodified to the
Oracle Tuxedo service.

To usethe CARRAY buffer type, you first define the Tuxedo service that you will be using with
the buffer type. Then, write the code that uses the buffer type. The next two sections demonstrate
these steps.

Note: X_OCTET isused identically to CARRAY .

Define the Tuxedo Service in the Repository Editor

Before running the ECHO example, you must write and boot a Tuxedo ECHO service. The
ECHO service takes a buffer and passes it back to the Jolt client. Y ou need to define the ECHO
servicein the Metadata Repository Editor (see Define TOUPPER in the Repository Editor for an
example).

tryOnCARRAY.java Client Code

The code in the following listing illustrates how Jolt works with a service with a buffer type of
CARRAY . Because Jolt does not ook into the CARRAY data stream, it is the programmer's
responsibility to ensure that the data formats between the Jolt client and the CARRAY service
match. The example in Listing 4-3 assumes that a session object was already instantiated.

Listing 4-3 CARRAY Buffer Type Example

/* Copyright 1996 Oracle Systems, Inc. All Rights Reserved */

/* This code fragment illustrates how Jolt works with a service
* whose buffer type is CARRAY.
*/

import java.io.*;

import bea.jolt.*;

class ...

Using Oracle Jolt

Using Oracle Tuxedo Buffer Types with Jolt

public void tryOnCARRAY ()
{

byte datall];

JoltRemoteService csvc;

DataInputStream din;

DataOutputStream dout;

ByteArrayInputStream bin;

ByteArrayOutputStream bout;

/*
* Use java.lio.DataOutputStream to put data into a byte array
*/

bout = new ByteArrayOutputStream(512);

dout = new DataOutputStream(bout) ;

dout.writeInt (100);

dout.writeFloat((float) 300.00);

dout .writeUTF ("Hello World") ;

dout.writeShort ((short) 88);

/~k
* Copy the byte array into a new byte array "data". Then
* issue the Jolt remote service call.
*/

data = bout.toByteArray () ;

csve = new JoltRemoteService("ECHO", session);

csvc.setBytes ("CARRAY", data, data.length);

csvc.call (null);

/*
* Get the result from JoltRemoteService object and use
* java.io.DataInputStream to extract each individual value

* from the byte array.

*/
data = csvc.getBytesDef ("CARRAY", null);
if (data != null)
{
bin = new ByteArrayInputStream(data) ;

din = new DatalInputStream(bin) ;

System.out.println(din.readInt()) ;

Using Oracle Jolt 4-1

4-22

System.out.println(din.readFloat());
System.out.println(din.readUTF()) ;
System.out.println(din.readShort()) ;

Using the FML Buffer Type

FML (Field Manipulation Language) isaflexible datastructurethat can be used asatyped buffer.
The FML data structure stores tagged values that are typed, variable in length, and may have
multiple occurrences. The typed buffer istreated as an abstract datatypein FML.

FML givesyou the ability to access and update data val ues without having to know how the data
is structured and stored. In your application program, you simply access or update afield in the
fielded buffer by referencing its identifier. To perform the operation, the FML run time

determines the field location and data type.

FML isespecialy suited for use with Jolt clients because the client and server code can bein two
languages (for example, Java and C); the client/server platforms can have different data type
specifications; or the interface between the client and the server can change frequently.

Thefollowing tryonFm1 examplesillustrate the use of the FML buffer type. The examples show
aJolt client using FML buffersto pass datato a server. The server takesthe buffer, creates anew
FML buffer to store the data, and passes that buffer back to the Jolt client. The examples consist
of the following components.

e The “tryOnFml.java Code Example” on page 4-23 is a Jolt client that contains a PASSFML
service.

e The“tryOnFml.f16 Field Definitions’ on page 4-24 is an Oracle Tuxedo FML field
definitions table used by the PASSFML service.

e The “tryOnFml.c Code Example” on page 4-24 is a server code fragment that contains the
server side C code for handling the data sent by the Jolt client.

Using Oracle Jolt

Using Oracle Tuxedo Buffer Types with Jolt

tryOnFml.java Client Code

The tryonFml . java Javacode fragment in Listing 4-4 illustrates how Jolt works with a service
whose buffer typeis FML. In this example, it is assumed that a session object was already
instantiated.

Listing 4-4 tryOnFml.java Code Example

/* Copyright 1997 Oracle Systems, Inc. All Rights Reserved */

import bea.jolt.*;

class

{

public void tryOnFml ()

{

JoltRemoteService passFml;
String outputString;

int outputInt;

float outputFloat;

passFml = new JoltRemoteService ("PASSFML", session) ;

passFml.setString ("INPUTSTRING", "John");
passFml.setInt ("INPUTINT", 67);
passFml.setFloat ("INPUTFLOAT", (float)12.0);

passFml.call (null);

outputString = passFml.getStringDef ("OUTPUTSTRING", null);
outputInt = passFml.getIntDef ("OUTPUTINT", -1);

outputFloat = passFml.getFloatDef ("OUTPUTFLOAT", (float)-1.0);
System.out.print ("String =" + outputString);
System.out.print (" Int =" + outputlnt);

System.out.println(" Float =" + outputFloat) ;

}

FML Field Definitions

The entriesin the following listing,"“tryOnFml.f16 Field Definitions,” show the FML field
definitions for the previous listing, “tryOnFml.java Code Example.”

Using Oracle Jolt 4-23

Listing 4-5 tryOnFml.f16 Field Definitions

#

FML field definition table
#

*base 4100

INPUTSTRING 1 string
INPUTINT 2 long
INPUTFLOAT 3 float
OUTPUTSTRING 4 string
OUTPUTINT 5 long
OUTPUTFLOAT 6 float

Define PASSFML in the Repository Editor

TheBULKPKG package containsthe passruL service, whichisused with the t ryonFml . java and
tryonFml . c code. Before running the tryonFml . java example, you need to modify the
PASSFML Service through the Metadata Repository Editor (see Define TOUPPER in the
Repository Editor for an example).

tryOnFml.c Server Code

Listing 4-6 illustratesthe server side code for using the FML buffer type. The PASSFML service
readsin an input FML buffer and outputs a FML buffer.

Listing 4-6 tryOnFml.c Code Example

/*

* tryOnFml.c

*

* Copyright (c) 1997 Oracle Systems, Inc. All rights reserved
*

* Contains the PASSFML Oracle Tuxedo server.

*

*

/

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

4-24 Using Oracle Jolt

Using Oracle Tuxedo Buffer Types with Jolt

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "tryOnFml.fl6.h"

/*
* PASSFML service reads in a input fml buffer and outputs a fml buffer.

void

PASSFML (TPSVCINFO *rgst)

{

FLDLEN len;

FBFR *svcinfo = (FBFR *) rgst->data;

char inputString[256];

long inputInt;

float inputFloat;

FBFR *fml_ptr;

int rt;

if (Fget(svcinfo, INPUTSTRING, 0, inputString, &len) < 0) {
(void)userlog ("Fget of INPUTSTRING failed %s",

Fstrerror (Ferror));

tpreturn (TPFAIL, 0, rgst->data, 0L, 0);

if (Fget(svcinfo, INPUTINT, 0, (char *) &inputInt, &len) < 0) {
(void)userlog ("Fget of INPUTINT failed %s",Fstrerror (Ferror)) ;
tpreturn (TPFAIL, 0, rgst->data, OL, O0);

if (Fget(svcinfo, INPUTFLOAT, 0, (char *) &inputFloat, &len) < 0) {
(void)userlog ("Fget of INPUTFLOAT failed %s",
Fstrerror (Ferror)) ;
tpreturn (TPFAIL, 0, rgst->data, 0L, 0);

/* We could just pass the FML buffer back as is, put lets*/

/* store it into another FML buffer and pass it back.*/

if ((fml_ptr = (FBFR *)tpalloc("FML",NULL,rgst->len))==(FBFR *)NULL) {
(void)userlog("tpalloc failed in PASSFML %s",

tpstrerror (tperrno)) ;

tpreturn (TPFAIL, 0, rgst->data, OL, O0);

}

if (Fadd (fml_ptr, OUTPUTSTRING, inputString, (FLDLEN)O0) == -1) {
userlog("Fadd failed with error: %s", Fstrerror (Ferror));

Using Oracle Jolt 4-25

4-26

tpfree((char *)fml_ptr);
tpreturn (TPFAIL, 0, NULL, 0L, O0);
}
if (Fadd (fml_ptr, OUTPUTINT, (char *)&inputInt, (FLDLEN)O0) == -1) {
userlog("Fadd failed with error: %s", Fstrerror (Ferror)) ;
tpfree((char *)fml_ptr);
tpreturn (TPFAIL, 0, NULL, 0L, O0);
}
if (Fadd(fml_ptr, OUTPUTFLOAT, (char *)&inputFloat, (FLDLEN)O0O) == -1) {
userlog("Fadd failed with error: %d\n", Fstrerror (Ferror));
tpfree((char *)fml_ptr);
tpreturn (TPFAIL, 0, NULL, 0L, O0);
}
tpreturn (TPSUCCESS, 0, (char *)fml_ptr, 0L, 0);

Using the VIEW Buffer Type

VIEW isabuilt-in Oracle Tuxedo typed buffer. The VIEW buffer provides away to use C
structures and COBOL records with the Oracle Tuxedo system. The VIEW typed buffer enables
the Oracle Tuxedo run-time system to understand the format of C structures and COBOL records
based on the view description that is read at run time.

When alocating a VIEW, your application specifies a VIEW buffer type and a subtype that
matches the name of the view (the name that appearsin the view description file). The parameter
name must match the field name in that view. Because the Oracle Tuxedo run-time system can
determine the space needed based on the structure size, your application need not provide abuffer
length. The run-time system can also automatically handle such things as computing how much
datato send in arequest or response, and handle encoding and decoding when the message
transfers between different machine types.

The following examples show the use of the VIEW buffer type with a Jolt client and its
server-side application.

e The “simpview.java Code Example’ on page 4-27 isthe Jolt client that contains the code
used to connect to Oracle Tuxedo and uses the VIEW buffer type.

e Thelisting “simpview.v16 Field Definitions’ on page 4-28 contains the Oracle Tuxedo
VIEW field definitions.

e The“simpview.c Code Example” on page 4-29 contains the server side C code for
handling the input from the Jolt client.

Using Oracle Jolt

Using Oracle Tuxedo Buffer Types with Jolt

The Jolt client treats anull character in a VIEW buffer string format as an end-of-line character
and truncates any part of the string that follows the null.

Define VIEW in the Repository Editor

Before running the simpview. java and simpview.c examples, you need to define the
SIMPVIEW service through the Metadata Repository Editor (see Define TOUPPER in the
Repository Editor for an example).

simpview.java Client Code

Thelisting “simpview.javaCode Example” on page 4-27 illustrates how Jolt workswith aservice
whose buffer typeis VIEW. The client code isidentical to the code used for accessing an FML
service.

Note: The codein the following listing does not catch any exceptions. Because all Jolt
exceptionsarederived from java . lang . RunTimeException, the JavaVirtual Machine
(JVM) catches these exceptions if the application does not. (A well-written application
will catch these exceptions and take appropriate actions.)

Before running the example in the following listing, you need to add the VIEW service to the
SIMPAPP package using the Metadata Repository Editor and write the simpview.c Oracle
Tuxedo application. This servicetakesthe datafrom the client VIEW buffer, createsanew buffer
and passesit back to the client asanew VIEW buffer. The following example assumes that a
session object has already been instantiated.

Listing 4-7 simpview.java Code Example

/* Copyright 1997 Oracle Systems, Inc. All Rights Reserved */

/*
* This code fragment illustrates how Jolt works with a service whose buffer
* type is VIEW.
*/

import bea.jolt.*;

class ...

{

public void simpview ()
{
JoltRemoteService ViewSvc;
String outString;
int outInt;
float outFloat;

Using Oracle Jolt 4-21

4-28

// Create a Jolt Service for the Oracle Tuxedo service

ViewSve = new JoltRemoteService ("SIMPVIEW", session) ;
// Set the input parameters required for SIMPVIEW
ViewSvc.setString ("inString", "John");

ViewSvce.setInt ("inInt", 10);

ViewSvc.setFloat ("inFloat", (float)10.0);

// Call the service. No transaction required, so pass
// a "null" parameter

ViewSvc.call (null);

// Process the results

outString = ViewSvc.getStringDef ("outString", null);
outInt = ViewSvc.getIntDef ("outInt", -1);

outFloat = ViewSvc.getFloatDef ("outFloat", (float)-1.0)

// And
System.
System.
System.

display them...

out.print ("outString="
out.print ("outInt="
out.println("outFloat="

+ outString + ",");
+ outInt + ",");

+ outFloat) ;

"SIMPVIEW"

i

VIEW Field Definitions

The “simpview.v16 Field Definitions’ listing shows the Oracle Tuxedo VIEW field definitions
for the simpview. java example that were shown in the previous listing.

Listing 4-8 simpview.v16 Field Definitions

#

VIEW for SIMPVIEW.
service could also

The first 3 params

#
VIEW SimpView
$

#type cname
string inString
long inInt
float inFloat
string outString
long outInt

Using Oracle Jolt

have used separate input and output views.

are input params, the second 3 are outputs.

fbname count flag size null
- 1 - 32 -
_ 1 _ _ _
_ 1 _ _ _
- 1 - 32 -
- 1 - - -

This view is used for both input and output.

The

Using Oracle Tuxedo Buffer Types with Jolt

float outFloat - 1 - - -
END

simpview.c Server Code

In Listing 4-9, theinput and output buffersare VIEW. The code acceptsthe VIEW buffer dataas
input and outputs the same data as VIEW.

Listing 4-9 simpview.c Code Example

/*

* SIMPVIEW.cC

*

* Copyright (c) 1997 Oracle Systems, Inc. All rights reserved
*

* Contains the SIMPVIEW Oracle Tuxedo server.

*

*

/
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "simpview.h"
/*

* Contents of simpview.h.

*

*struct SimpView {

*

char inString[32];
long inInt;

float inFloat;

char outString[32];

EE

Using Oracle Jolt 4-29

*

*

*};

*/
/*

*

*/

void

long outInt;
float outFloat;

service reads in a input view buffer and outputs a view buffer.

SIMPVIEW(TPSVCINFO *rgst)

{

4-30

/*
* get the structure (VIEWSVC) from the TPSVCINFO structure
*/
struct SimpView*svcinfo = (struct SimpView *) rgst->data;
/*
* print the input params to the UserLog. Note there is
* no error checking here. Normally a SERVER would perform
* some validation of input and return TPFAIL if the input
* is not correct.
*x/
(void)userlog ("SIMPVIEW: InString=%s,InInt=%d, InFloat=%f",
svcinfo->inString, svcinfo->inInt, svcinfo->inFloat);
/*
* Populate the output fields and send them back to the caller
*/

strcpy (svcecinfo->outString, "Return from SIMPVIEW") ;
svcinfo->outInt = 100;

svcinfo->outFloat = (float) 100.00;

/‘k

* If there was an error, return TPFAIL

* tpreturn (TPFAIL, ErrorCode, (char *)svcinfo, sizeof (*svcinfo), 0);
*/

tpreturn (TPSUCCESS, 0, (char *)svcinfo, sizeof (*svcinfo), 0);

Using the XML Buffer Type

The XML buffer type enables Oracle Tuxedo applicationsto use XML documentsfor exchanging
data within and between applications. Oracle Tuxedo applications can send and receive XML
buffers, and route those buffers to the appropriate servers. All logic for dealing with XML
documents, including parsing, resides in the application.

A well-formed XML document consists of :

e Text in the form of a sequence of encoded characters, including proper headings, opening

and closing tags, etc.

Using Oracle Jolt

Using Oracle Tuxedo Buffer Types with Jolt

e A description of thelogical structure of the document and information about that structure.

To use the XML buffer type, you first define the Tuxedo service that you will be using with the
buffer type, and then write the code that uses the buffer type. The next two sections demonstrate
these steps.

Note: Similar to CARRAY, the XML buffer type is treated as a byte arrary, not a STRING.

Therefore, no data conversion takes place between a Jolt client and an Oracle Tuxedo
service.

Define the Tuxedo Service in the Repository Editor

Before running the XML example, you must write and boot a Tuxedo XML service. The XML
service takes abuffer and passesit back to the Jolt client. Y ou need to definethe XML servicein
the Metadata Repository Editor (see Define TOUPPER in the Repository Editor for an example).

simpxml.java Client Code

The code in the following listing illustrates how Jolt works with a service with an XML type
buffer. Because Jolt does not look into the XML datastream, it isthe programmer's responsibility
to ensure that the data formats between the Jolt client and the XML service match. The example
in Listing 4-10 assumes that a session object was already instantiated.

Listing 4-10 XML Buffer Type Example

/* Copyright 2001 Oracle Systems, Inc. All Rights Reserved */

/'k

* This code fragment illustrates how Jolt works with a service whose buffer
* type is XML.

*/
import java.io.*;
import java.lang.*;
import bea.jolt.*;

public class xmldoc {

public static void main (String[] args) {
JoltSessionAttributes sattr;

JoltSession session;
JoltRemoteService echo_xml;
String inString = "<?xml version=\"1.0\"

encoding=\"UTF-8\"?><ORDER><HEADER DATE=\"05/13/1999\"
ORDERNO=\"22345\"/><COMPANY>ACME</COMPANY><LINE><ITEM MODEL=\"Pabc\"

Using Oracle Jolt 4-31

QUANTITY=\"5\">LAPTOP</ITEM></LINE><LINE><ITEM MODEL=\"P500\"
QUANTITY=\"15\">LAPTOP</ITEM></LINE></ORDER>";

byte datall;
DataInputStream din;
DataOutputStream dout;
ByteArrayInputStream bin;
ByteArrayOutputStream bout;

byte odatall;
String outString = null;
String appAddress = null;

//...Create Jolt Session

try {
/*
* Use java.io.DataOutputStream to put data
* into a byte array
*/
bout = new ByteArrayOutputStream(inString.length()) ;
dout = new DataOutputStream (bout) ;
dout.writeBytes (inString) ;

/*
* Copy the byte array into a new byte array "data".
* Then issue the Jolt remote service call.
*/
data = bout.toByteArray () ;
} catch (Exception e) {
System.out.println("toByteArray error");
return;

}

try {

echo_xml = new JoltRemoteService ("ECHO_XML", session);

System.out.println("JoltRemoteService Created") ;
echo_xml.setBytes ("XML", data, data.length);

} catch (Exception e) {
System.out.println("RemoteService call error" + e);
return;

}

echo_xml.call (null) ;
System.out.println("Service Call Returned");
odata = echo_xml.getBytesDef ("XML", null);

try {

System.out.println("Return String is:" + new
String(odata)) ;

4-32 Using Oracle Jolt

Using Oracle Tuxedo Buffer Types with Jolt

} catch (Exception e) {
System.err.println("getByteDef Error");
}

}

// end of class

Using the MBSTRING Buffer Type

Starting with Tuxedo 9.0, Jolt supports the MBSTRING buffer type which is already supported
by Tuxedo ATMI as of Tuxedo 8.1.

Since Java uses Unicode as the standard for multi byte character encoding and provides String
class for handling Unicode string data, Jolt MBSTRING support will use the String class as the
MBSTRING container on the Java client side. Jolt automatically converts the Unicode
MBSTRING datain a String object between byte array MBSTRING data, which isthe ATMI’s
MBSTRING representation, when the data is transferred between a Jolt client and a Tuxedo
server.

The following methods are added to bea . jolt .Message interface and to
bea.jolt.JoltMessage and bea.jolt.JoltRemoteService Classes.

addMBString
setMBString
setMBStringItem
getMBStringDef
getMBStringItemDef

The usage of the MBSTRING buffer typeisvery similar to the STRING buffer type except that

the buffer type specified in the Metadata Repository Editor is“MBSTRING” and the Java
methods used for setting and getting the MBSTRING data are listed above.

In addition, thefollowing Javasystem properties are used to specify the character encoding name
for MBSTRING data sent to Tuxedo servers.

bea.jolt.mbencoding
The Tuxedo encoding name used for converting Unicode MBSTRING data to the
corresponding byte array MBSTRING data while sending MBSTRING datato a Tuxedo
server. If this property is not specified, the Java default character encoding name is used
and mapped to the corresponding Tuxedo encoding name. For example, the default
Japanese Windows encoding name “MS932” should be mapped to the corresponding
Tuxedo encoding name “ CP932" and specified in this property.

Using Oracle Jolt 4-33

bea.jolt .mbencodingmap
Thefull path namefor the file which specifies character encoding name mapping between
Jolt clientsand Tuxedo servers. Thismapping is necessary because the character encoding
name for the same character encoding is sometimes different between Java and Tuxedo.
For example, the default Japanese Windows encoding name is MS932 in Java, but in
Tuxedo it is CP932. If this property is not specified, mapping is not done.

This means that the Java character encoding name is directly set in the MBSTRING data
sent to the Tuxedo server, and the encoding namewhichissetinthereceived MBSTRING
data from the Tuxedo server is used as the Java encoding name. This may cause a
conversion error if the encoding name is not supported by Java or Tuxedo.

To specify the bea.jolt. mbencoding or bea.jolt.mbencodingmap, jol1tii8n.jar must be
included in the cLasspaTH. If joltil8n.jar isnot included in the cLasspaTy, the
encoding name s set to “1S0-8859-1" and no encoding name is done between Java and
Tuxedo even if these properties are specified in the Java command line.

4-34 Using Oracle Jolt

Multithreaded Applications

Multithreaded Applications

AsaJava-based set of classes, Jolt supports multithreaded applications; however, various
implementations of the Javalanguage differ with respect to certain language and environment
features. Jolt programmers need to be aware of the following:

e The use of preemptive and non-preemptive threads when creating applications or applets
with the Jolt Class Library.

e The use of threads to get asynchronous behavior similar to the tpacall () functionin
Oracle Tuxedo.

“Threads of Control” describes the issues arising from using threads with different Java
implementations and is followed by an example of the use of threads in a Jolt program.

Note: Most Javaimplementations provide preemptive rather than non-preemptive threads. The
difference between these two models can lead to very different performance and
programming requirements.

Threads of Control

Each concurrently operating task in the Java virtual machineisathread. Threads exist in various
states, the important ones being RUNNING, RUNNABLE, or BLOCKED.

o A RUNNING thread is a currently executing thread.

¢ A RUNNABLE thread can be run once the current thread has relinquished control of the
CPU. There can be many threads in the RUNNABLE state, but only one can be in the
RUNNING state. Running a thread means changing the state of athread from
RUNNABLE to RUNNING, and causing the thread to have control of the Java Virtual
Machine (VM).

o A BLOCKED thread is athread that is waiting on the availability of some event or
resource.

Note: The JavaVM schedules threads of the same priority to run in a round-robin mode.

Preemptive Threading

The main performance difference between the two threading models arises in telling a running
thread to relinquish control of the Java VM. In a preemptive threading environment, the usual
procedure isto set a hardware timer that goes off periodically. When the timer goes off, the

Using Oracle Jolt 4-35

4-36

current thread is moved from the RUNNING to the RUNNABLE state, and another thread is
chosen to run.

Non-Preemptive Threading

In anon-preemptive threading environment, a thread must volunteer to give up control of the
CPU and move to the RUNNABLE state. Many methods in the Java language classes contain
code that volunteers to give up control, and are typically associated with actions that might take
along time. For example, reading from the network generally causes athread to wait for apacket
to arrive. A thread that is waiting on the availability of some event or resourceisin the
BLOCKED state. When the event occurs or the resource becomes available, the thread becomes
RUNNABLE.

Using Jolt with Non-Preemptive Threading

If your Jolt-based Java program is running on anon-preemptive threading Virtual Machine (such
as Sun Solaris), the program must either:

e Occasionaly call amethod that blocks the thread, or

e Explicitly give up control of the CPU using the Thread.yield() method

Thetypica usage isto make the following call in al long-running code segments or potentially
time-consuming loops:

Thread.currentThread.yield() ;

Without sending this message, the threads used by the Jolt Library may never get scheduled and,
as such, the Jolt operation isimpaired.

The only virtual machine known to use non-preemptive threading is the Java Devel oper’ s Kit
(JDK) machine running on a Sun platform. If you want your applet to work on JDK 1.3, you must
make sure to send the yield messages. As mentioned earlier, some methods contain yields. An
important exception isthe system. in . read method. This method does not cause a thread
switch. Rather than rely on these messages, we suggest using yields explicitly.

Using Threads for Asynchronous Behavior

Y ou can use threads in Jolt to get asynchronous behavior that is analogousto the tpacall ()
function in Oracle Tuxedo. With this capability, you do not need an asynchronous service request
function. Y ou can get this functionality because Jolt is thread-safe. For example, the Jolt client
application can start onethread that sends arequest to an Oracle Tuxedo servicefunction and then

Using Oracle Jolt

Multithreaded Applications

immediately start another thread that sends another request to an Oracle Tuxedo service function.
So even though the Jolt tpacall () issynchronous, the application is asynchronous because the
two threads are running at the same time.

Using Threads with Jolt

A Jolt client-side program or appl et isfully thread-safe. Jolt support of multithreaded applications
includes the following client characteristics:

e Multiple sessions per client
o Multithreaded within a session
e Client application manages threads, not asynchronous calls

e Performs synchronous calls
Listing 4-11 illustrates the use of two threads in a Jolt application.

Listing 4-11 Using Multiple Threads with Jolt (ThreadBank.java)

/* Copyright 1996 Oracle Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ThreadBank
{
public static void main (String [] args)
{
JoltSession session;
try
{
JoltSessionAttributes dattr;
String userName = null;
String userPasswd = null;
String appPasswd = null;

String userRole = null;

// £ill in attributes required
dattr = new JoltSessionAttributes() ;
dattr.setString (dattr.APPADDRESS, ”//bluefish:8501") ;

Using Oracle Jolt 4-31

// instantiate domain

// check authentication level

switch (dattr.checkAuthenticationLevel ())
{

case JoltSessionAttributes.NOAUTH:
System.out.println (“NOAUTH\n") ;
break;

case JoltSessionAttributes.APPASSWORD:
appPasswd = “myAppPasswd”;
break;

case JoltSessionAttributes.USRPASSWORD:

userName = “myName”;
userPasswd = “mySecret”;
appPasswd = “myAppPasswd”;
break;

dattr.setInt (dattr.IDLETIMEOUT, 60);

session = new JoltSession (dattr, userName, userRole,
userPasswd, appPasswd) ;

T1 t1

new Tl (session);

T2 t2 = new T2 (session);

tl.start();
t2.start();

Thread.currentThread () .yield() ;
try
{
while (tl.isAlive() && t2.isAlive())
{
Thread.currentThread () .sleep(1000) ;

}

catch (InterruptedException e)
{

System.err.println(e) ;

if (t2.isAlive())

{

4-38 Using Oracle Jolt

Multithreaded Applications

System.out.println(“job 2 is still alive”);

try
{
Thread.currentThread () .sleep(1000) ;
}
catch (InterruptedException el)
{
System.err.println(el) ;
}

}
else if (tl.isAlive())
{ System.out.println(“jobl is still alive”);

try
{
Thread.currentThread () .sleep(1000) ;
}
catch (InterruptedException el)
{
System.err.println(el) ;
}
}
}
session.endSession () ;
}
catch (SessionException e)
{
System.err.println(e) ;
}
finally
{
System.out.println(“*normal ThreadBank term”) ;
}

class Tl extends Thread
{

Using Oracle Jolt 4-39

JoltSession j_session;

JoltRemoteService j_withdrawal;

public Tl (JoltSession session)
{

j_session=session;

j_withdrawal= new JoltRemoteService (“WITHDRAWAL”,j_session) ;
}

public void runf()

{
j_withdrawal.addInt (*ACCOUNT_ID”,10001) ;
j_withdrawal .addString (“*SAMOUNT”, ”100.00") ;
try
{
System.out.println(“*Initiating Withdrawal from account 10001”);
j_withdrawal.call (null) ;
String W = j_withdrawal.getStringDef (“SBALANCE”,"”-1.0");
System.out.println(“-->Withdrawal Balance: “ + W);
}
catch (ApplicationException e)
{
e.printStackTrace() ;
System.err.println(e) ;
}
}

}

class T2 extends Thread
{
JoltSession j_session;

JoltRemoteService j_deposit;

public T2 (JoltSession session)
{
j_session=session;
j_deposit= new JoltRemoteService (“DEPOSIT”,j_session) ;
}
public void run()
{
j_deposit.addInt (*ACCOUNT_ID”,10000) ;

4-40 Using Oracle Jolt

Event Subscription and Notifications

j_deposit.addString (“SAMOUNT”, ”100.00") ;

try

{
System.out.println(“Initiating Deposit from account 10000”);
j_deposit.call (null);
String D = j_deposit.getStringDef (“SBALANCE”,”-1.0");
System.out.println(“-->Deposit Balance: “ + D);

}

catch (ApplicationException e)

{
e.printStackTrace () ;

System.err.println(e) ;

Event Subscription and Notifications

Programmers devel oping client applications with Jolt can receive event notifications from either
Oracle Tuxedo Services or other Oracle Tuxedo clients. The Jolt Class Library contains classes
that support the following types of Oracle Tuxedo notifications for handling event-based
communication:

e Unsolicited Event Notifications—these are notifications that a Jolt client receivesas a
result of an Oracle Tuxedo client or service issuing a broadcast using either a
tpbroadcast () or adirectly targeted message viaa tpnotify () ATMI call.

e Brokered Event Notifications—these notifications are received by a Jolt client through
the Oracle Tuxedo Event Broker. The notifications are only received when the Jolt client
subscribes to an event and any Oracle Tuxedo client or server issues a system-posted event
or tppost () cal.

Event Subscription Classes

The Jolt Class Library provides four classes that implement the asynchronous notification
mechanism for Jolt client applications:

Using Oracle Jolt 4-4

4-42

e JoltSession—the JoltSession class includes an onReply () method for receiving
notifications and notification messages.

o JoltReply—the JoltReply class gives the client application access to any messages received
with an event or notification.

o JoltMessage—the JoltMessage class provides get () methods for obtaining information
about the notification or event.

o JoltUserEvent—the JoltUserEvent class supports subscription to both unsolicited and event
notification types.

For additional information about these classes refer to the Oracle Jolt APl Reference.

Notification Event Handler

For both unsolicited notifications and a brokered event notification, the Jolt client application
requires an event handler routine that isinvoked upon receipt of anotification. Jolt only supports
asingle handler per session. In Oracle Tuxedo versions, you cannot determine which event
generated a notification. Therefore, you cannot invoke an event-specific handler based on a
particular event.

The client application must provide asingle handler (by overriding the onrep1y () method) per
session that will beinvoked for all notificationsreceived by that client for that session. Thesingle
handler call-back function is used for both unsolicited and event notification types. It isup to the
(user-supplied) handler routine to determinewhat event caused the handler invocation and to take
appropriate action. If the user does not override the session handler, then notification messages
are silently discarded by the default handler.

The Jolt client providesthe call back function by subclassing the JoltSession classand overriding
the onreply () method with a user-defined onreply () method.

InOracle Tuxedo/ATMI clients, processing inthe handler call-back functionislimited to asubset
of ATMI calls. Thisrestriction does not apply to Jolt clients. Separate threads are used to monitor
notifications and run the event handler method. A Jolt client can perform all Jolt-supported
functionality from within the handler. All the rules that apply to anormal Jolt client program
apply to the handler, such as a single transaction per session at any time.

Each invocation of the handler method takes placein aseparate thread. The application devel oper
should ensure that the onrep1y () method iseither synchronized or written thread-safe, because
separate threads could be executing the method simultaneously.

Using Oracle Jolt

Event Subscription and Notifications

Jolt usesanimplicit model for enabling the handler routine. When aclient subscribesto an event,
Jolt internally enables the handler for that client, thus enabling unsolicited notifications as well.
A Jolt client cannot subscribe to event notifications without also receiving unsolicited

notifications. In addition, asingle onreply () method isinvoked for both types of notifications.

Connection Modes

Jolt supports notification receipts for clients working in either connection-retained or
connection-less modes of operation. Connection-retained clients receive all notifications. Jolt
clientsworking in connection-less mode receive notifications while they have an active network
connection to the Jolt Session Handler (JSH). When the network connection is closed, the JSH
logs and drops notifications destined for the client. Jolt clients operating in a connection-less
mode do not receive unsolicited messages or notifications while they do not have an active
network connection. All messages received during thistime arelogged and discarded by the JSH.

Connection mode notification handling includes acknowledged notifications for Jolt clientsin
the Oracle Tuxedo environment. If a JSH receives an acknowledged notification for aclient and
the client does not have an active network connection, the JSH logs an error and returns afailure
acknowledgment to the notification.

Notification Data Buffers

When aclient receives notification, it is accompanied by adata buffer. The data buffer can be of
any Oracle Tuxedo data buffer type. Jolt clients (for example, the handler) receive these buffers
asaJoltMessage Object and should usethe appropriate JoltMessage Classget* () methodsto
retrieve the data from this object.

The Oracle Tuxedo Service Metadata Repository does not need to have the definition of the
buffers used for notification. However, the Jolt client application programmer needs to know
field names.

The Jolt system does not provide functionality equivalent to tptypes () in Oracle Tuxedo. For
FML and VIEW buffers, the dataisaccessed using theget * () methodswith the appropriatefield
name, for example:

getIntDef ("ACCOUNT_ID", -1);
For STRING and CARRAY buffers, the datais accessed by the same name as the buffer type:

getStringDef ("STRING", null);
getBytesDef ("CARRAY", null);

Using Oracle Jolt 4-43

4-44

STRING and CARRAY buffers contain only asingle data element. This complete element is
returned by the preceding get* () methods.

Oracle Tuxedo Event Subscription

Oracle Tuxedo brokered event notification allows Oracle Tuxedo programs to post events
without knowing what other programs are supposed to receive notification of an event’s
occurrence. The Jolt event notification allows Jolt client applications to subscribe to Oracle
Tuxedo events that are broadcast or posted using the Oracle Tuxedo tpnotify () Or
tpbroadcast () cals.

Jolt clients can only subscribe to events and notificationsthat are generated by other components
in Oracle Tuxedo (such asan Oracle Tuxedo service or client). Jolt clients can not send events or
notifications.

Supported Subscription Types

Jolt only supports notification types of subscriptions. The Jolt onreply () methodiscalled when
asubscription isfulfilled. The Jolt API does not support dispatching a service routine or
engueueing a message to an application queue when a notification is received.

Subscribing to Notifications

If a Jolt client subscribes to a single event notification, the client receives both unsolicited
messages and event notification. Subscribing to an event implicitly enables unsolicited
notification. This meansthat if the application creates a JoltUserEvent object for Event "X", the
client automatically receives notifications directed to it as aresult of tpnotify () or
tpbroadcast ().

Note: Subscribing to single event notification is not the recommended method for enabling
unsolicited notification. If you want unsolicited notification, the application should
explicitly subscribe to unsolicited notifications (as described in the JoltUserEvent class).
The next section is about unsubscribing from notifications.

Unsubscribing from Notifications

To stop subscribing to event notifications and/or unsolicited messages, you need to use the
JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notifications with an
unsubscribe method does not turn off all subscription notifications. This differs from Oracle
Tuxedo. In Oracle Tuxedo the use of tpsetunsol () withaNULL handler turns off all
subscription notifications.

Using Oracle Jolt

Event Subscription and Notifications

When unsubscribing, the following considerations apply:

e If aclient is subscribed to a single event, unsubscribing from notification disables both
event notification and unsolicited messages.

o If aclient has multiple subscriptions, then unsubscribing from any single subscription
disables only that single subscription. Unsolicited notifications continue. Only the last
subscription to be unsubscribed causes unsolicited notification to stop.

o If aclient subscribes to both unsolicited and event notifications, then unsubscribing to only
the unsolicited notification will not stop either type of notification from continuing. In
addition, this unsubscribe does not throw an exception. However, the Jolt API notes that an
unsubscribe has taken place, and a subsequent unsubscribe to the remaining event disables
both event notification and unsolicited messages.

If you want to stop unsolicited messagesin your client application, you need to make sure that
you have unsubscribed to all events.

Using the Jolt API to Receive Oracle Tuxedo Notifications

The “ Asynchronous Notification” listing shows how to use the Jolt Class Library for receiving
notifications and includes the use of the Joltsession, JoltReply, JoltMessage and
JoltUserEvent Classes.

Listing 4-12 Asynchronous Notification

class EventSession extends JoltSession

{

public EventSession(JoltSessionAttributes attr, String user,

String role, String upass, String apass)

super (attr, user, role, upass, apass);
}
/**
* Override the default unsolicited message handler.
* @param reply a place holder for the unsolicited message
* @see bea.jolt.JoltReply
*/
public void onReply(JoltReply reply)
{

Using Oracle Jolt 4-45

// Print out the STRING buffer type message which contains
// only one field; the field name must be "STRING". If the
// message uses CARRAY buffer type, the field name must be
// "CARRAY". Otherwise, the field names must conform to the
// elements in FML or VIEW.

JoltMessage msg = (JoltMessage) reply.getMessage() ;
System.out.println(msg.getStringDef ("STRING", "No Msg"));
}
public static void main(Strings argsl[])
{
JoltUserEvent unsolEvent;
JoltUserEvent helloEvent;

EventSession session;

// Instantiate my session object which can print out the
// unsolicited messages. Then subscribe to HELLO event
// and Unsolicited Notification which both use STRING

// buffer type for the unsolicited messages.

session = new EventSession(...);

helloEvent = new JoltUserEvent ("HELLO", null, session);
unsolEvent = new JoltUserEvent (JoltUserEvent.UNSOLMSG, null,

session) ;

// Unsubscribe the HELLO event and unsolicited notification.
helloEvent .unsubscribe () ;

unsolEvent.unsubscribe () ;

Clearing Parameter Values

The Jolt Class Library containsthe c1ear () method, which allows you to remove existing
attributes from an object and, in effect, provides for the reuse of the object. The “ Jolt Object
Reuse (reuseSample.java)” listing illustrates how to usethe clear () method to clear parameter

4-46 Using Oracle Jolt

Clearing Parameter Values

values and how to reuse the JoltRemoteService parameter values; you do not have to destroy the
serviceto reuseit. Instead, the svc. clear () ; statement is used to discard the existing input
parameters before reusing the addstring () method.

Listing 4-13 Jolt Object Reuse (reuseSample.java)

/* Copyright 1999 Oracle Systems, Inc. All Rights Reserved */
import java.net.*;
import java.io.*;
import bea.jolt.*;
/'k
* This is a Jolt sample program that illustrates how to reuse the
* JoltRemoteService after each invocation.
*/
class reuseSample
{
private static JoltSession s_session;
static void init(String host, short port)
{
/* Prepare to connect to the Tuxedo domain. */
JoltSessionAttributes attr = new JoltSessionAttributes() ;

attr.setString(attr.APPADDRESS,”//"”+ host+”:” + port);

String username = null;
String userrole = “sw-developer”;
String applpasswd = null;

String userpasswd = null;

/* Check what authentication level has been set. */
switch (attr.checkAuthenticationLevel())
{
case JoltSessionAttributes.NOAUTH:
break;
case JoltSessionAttributes.APPASSWORD:
applpasswd = “secret8”;
break;
case JoltSessionAttributes.USRPASSWORD:

username = “myName”;

Using Oracle Jolt 4-41

4-48

}

userpasswd = “BEA#1”;

applpasswd = “secret8”;
break;
}
/* Logon now without any idle timeout (0). */

/* The network connection is retained until logoff. */
attr.setInt (attr.IDLETIMEOUT, O0);
s_session = new JoltSession(attr, username, userrole,

userpasswd, applpasswd) ;

public static void main(String argsl[])
{

String host;
short port;

JoltRemoteService svc;

if (args.length != 2)

{
System.err.println(“Usage: reuseSample host port”);
System.exit (1) ;

}

/* Get the host name and port number for initialization. */
host
port = (short)Integer.parselnt (argsl[l]);

args[0];

init (host, port);

/* Get the object reference to the DELREC service. This

* gervice has no output parameters, but has only one input

* parameter.

*/

svc = new JoltRemoteService (“DELREC”, s_session);

try

{
/* Set input parameter REPNAME. */
svc.addString (“REPNAME”, “Recordl”) ;
svc.call (null);

/* Change the input parameter before reusing it */

Using Oracle Jolt

Reusing Objects

svc.setString (“REPNAME”, “Record2”);

svc.call (null);

/* Simply discard all input parameters */
svc.clear () ;
svc.addString (“REPNAME”, “Record3”);
svc.call (null);
}
catch (ApplicationException e)
{
System.err.println(“Service DELREC failed: “+
e.getMessage()+” “+ svc.getStringDef (“MESSAGE”, null));
}

/* Logoff now and get rid of the object. */

s_session.endSession() ;

Reusing Objects

Thefollowing listing, “ Extending Jolt Remote Service (extendSample.java),” illustrates one way
to subclass the JoltRemoteService class. In this case, a TransferService class is created by
subclassing the JoltRemoteService class. The TransferService class extends the
JoltRemoteService class, adding a Transfer feature that makes use of the Oracle Tuxedo
BANKAPP funds TRANSFER service.

Listing 4-14 uses the extends keyword from the Java language. The extends keyword is used
in Javato subclass a base (parent) class. The following code shows one of many ways to extend
from JoltRemoteService.

Listing 4-14 Extending Jolt Remote Service (extendSample.java)

/* Copyright 1999 Oracle Systems, Inc. All Rights Reserved */

import java.net.*;
import java.io.*;

import bea.jolt.*;

Using Oracle Jolt 4-49

4-50

/'k

* This Jolt sample code fragment illustrates how to customize

* JoltRemoteService.

*/

It uses the Java language

class TransferService extends JoltRemoteService

{

public String
public String

fromBal;
toBal;

public TransferService(JoltSession session)

{

super (“TRANSFER”,

}

public String doxfer (

{

session) ;

int fromAcctNum,

/* Clear any previous input parameters */

this.clear();

/* Set the input parameters */
this.setIntItem(“ACCOUNT_ID”, O,

this.setIntItem(“ACCOUNT_ID”,

1,

fromAcctNum) ;
toAcctNum) ;

“extends”

int toAcctNum,

this.setString (“SAMOUNT”,

try
{

}

catch

{

amount

)

/* Invoke the transfer service.
this.call (null) ;

/* Get the output parameters */

*/

mechanism

String amount

fromBal = this.getStringItemDef (“*SBALANCE”, 0, null);
if (fromBal == null)

return “No balance from Account “ +

fromAcctNum;
toBal = this.getStringItemDef (“SBALANCE”, 1, null);
if (toBal == null)

return “No balance from Account “ + toAcctNum;

return null;

Using Oracle Jolt

(ApplicationException e)

)

}

Reusing Objects

/* The transaction failed, return the reason */

return this.getStringDef (*STATLIN”, “Unknown reason”) ;

class extendSample

{

public static void main(String argsl(])

{

JoltSession s_session;
String host;
short port;
TransferService xfer;

String failure;

if (args.length != 2)
{
System.err.println(“Usage: reuseSample host port”);
System.exit (1) ;
}

/* Get the host name and port number for initialization. */
host

args[0];
port = (short)Integer.parselnt (argsl[l]);

/* Prepare to connect to the Tuxedo domain. */
JoltSessionAttributes attr = new JoltSessionAttributes();
attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

String username = null;
String userrole = “sw-developer”;
String applpasswd = null;

String userpasswd = null;

/* Check what authentication level has been set. */
switch (attr.checkAuthenticationLevel ())
{
case JoltSessionAttributes.NOAUTH:
break;

case JoltSessionAttributes.APPASSWORD:

Using Oracle Jolt 4-51

applpasswd = “secret8”;
break;
case JoltSessionAttributes.USRPASSWORD:

username = “myName”;
userpasswd = “BEA#1”;
applpasswd = “secret8”;
break;
}
/* Logon now without any idle timeout (0). */

/* The network connection is retained until logoff. */
attr.setInt (attr.IDLETIMEOUT, O0);
s_session = new JoltSession(attr, username, userrole,
userpasswd, applpasswd) ;
/*
* TransferService extends from JoltRemoteService and uses the
* standard Oracle Tuxedo BankApp TRANSFER service. We invoke this
* gervice twice with different parameters. Note, we assume
* that “s_session” is initialized somewhere before.

*/

xfer = new TransferService(s_session);

if ((failure = xfer.doxfer (10000, 10001, “500.00”7)) != null)
System.err.println(“Tranasaction failed: “ + failure);

else

{
System.out.println(“Transaction is done.”);
System.out.println(“From Acct Balance: “+xfer.fromBal) ;
System.out.println(“ To Acct Balance: “+xfer.toBal);

}

if ((failure = xfer.doxfer (51334, 40343, “$123.25”)) != null)
System.err.println(“Tranasaction failed: “ + failure);

else

{
System.out.println(“Transaction is done.”);
System.out.println(“From Acct Balance: “+xfer.fromBal) ;

System.out.println(“ To Acct Balance: “+xfer.toBal);

4-52 Using Oracle Jolt

Reusing Objects

Using Oracle Jolt 4-53

Deploying and Localizing Jolt Applets

4-54

Using the Jolt Class Library, you can build Java applications that execute from within a client
Web browser. For these types of applications, perform the following application devel opment
tasks:

e Deploy your Jolt applet inan HTML page.

e Localize your Jolt applets for different languages and character sets.

The following sections describe these application development considerations.

Deploying a Jolt Applet

When you deploy a Jolt applet, consider the following:
e Installation and configuration requirements for the Oracle Tuxedo server and Jolt Server
e Client-side execution of the applet

e Requirements for the Web server that downloads the Java applet
Information for configuring the Oracle Tuxedo server and Jolt server to work with Jolt is

availablein Installing the Oracle Tuxedo System. The following sections describe common client
and Web server considerations for deploying Jolt applets.

Client Considerations

When you write a Java applet that incorporates Jolt classes, the applet works just as any other
Javaappletinan HTML page. A Jolt applet can be embedded inan HTML page usingthe HTML
applet tag:

<applet code=“applet_name.class”> </applet>

If the Jolt applet isembedded in an HTML page, the appl et is downloaded when the HTML page
loads. Y ou can code the appl et to runimmediately after it is downloaded, or you can include code
that setsthe appl et to run based upon auser action, atimeout, or aset interval. Y ou can also create
an appl et that downloadsinthe HTML page, but opensin another window or, for instance, simply
plays a series of sounds or musical tunes at intervals. The programmer has alarge degree of
freedom in coding the applet initialization procedure.

Note: If the user loads anew HTML page into the browser, the applet execution is stopped.

Using Oracle Jolt

Deploying and Localizing Jolt Applets

Web Server Considerations

When you use the Jolt classes in a Java applet, the Jolt Server must run on the same machine as
the Web server that downloads the Java applet unless you install Jolt Relay on the Web server.

When awebmaster sets up a Web server, adirectory is specified to store all the HTML files.
Within that directory, a subdirectory named “classes’ must be created to contain all Java class
files and packages. For example:

<html-dir>/classes/bea/jolt
Or, you can set the ct.asspaTh to include the jo1t . jar file that contains all the Jolt classes.

Note: You can place the Jolt classes subdirectory anywhere. For convenient access, you may
want to placeit in the same directory asthe HTML files. The only reguirement for the
Jolt classes subdirectory is that the classes must be made available to the Web server.

The HTML filefor the Jolt applet should refer the codebasetothe jo1t . jar fileortheclasses
directory. For example:

/export/html/
| classes/
| | bea/
| | | Jolt/
| | | JoltSessionAttributes.class
| | | JoltRemoteServices.class
| | |
| | mycompany/
| | app.class
| exl.html
| ex2.html

The webmaster may specify the “app” applet in ex1.html as:

<applet codebase=“classes” code=mycompany.app.class width=400 height=200>

Localizing a Jolt Applet

If your Jolt application isintended for international use, you must address certain localization
issues. Localization considerations apply to applications that execute from a client Web browser
and applicationsthat are designed to run outside a Web browser environment. L ocalization tasks
can be divided into two categories:

e Adapting an application from its original language to atarget language.

Using Oracle Jolt 4-55

e Trandating strings from one language to another. This sometimes requires specifying a
different alphabet or a character set from the one used in the original language.

For localization, the Jolt Class Library package relies on the conventions of the Javalanguage
and the Oracle Tuxedo system. Jolt transfers Java 16-bit Unicode charactersto the JSH. The JSH
provides a mechanism to convert Unicode to the local character set.

For information about the Javaimplementation for Unicode and character escapes, refer to your
Java Development Kit (JDK) documentation.

Using SSL

Jolt can use SSL as the preferred secure transport mechanism instead of default Link Level
Encryption. To enable Jolt to use SSL, the 3s1. must be configured with'-s secure_port'inthe
TUXEDO uBBconFIG file.

Jolt client library automatically chooses SSL if the Jst. connection portisthe SSL port. The SSL
requires Jolt client to provide information about the location of the X.509 certificate, the private
key, and passphrase that is used to encrypt the passphrase.

There are five attributes added to the JoltSessionAttributes classto handle these
requirement:

e xEvsTORE—Tile path for client private key and X.509 certificate
e KSPASSPHRASE—Key store passphrase
e TRUSTSTORE—trust store file path for trusted X.509 certificates
® TSPASSPHRASE—trust store passphrase

® KEYPASSPHRASE—[rivate key passphrase

Jolt client library uses the third-party Java Secure Socket Extension (JSSE) implementation for
SSL communication. The following JSSE implementations have been tested:

e Sun JSSE implementation bundled in Sun JRE 8.0
e Sun JSSE implementation bundled in HP JRE 8.0

e |IBM JSSE implementation bundled in IBM JRE 8.0

Note: Starting with JDK release 8u31, the sst.v3 protocol isdeactivated and is not available by
default. If ssnv3 isrequired, the protocol can be reactivated by removing "ssz.v3" from
thejdk.tls.disabledAlgorithms property inthe

4-56 Using Oracle Jolt

Using SSL

<JRE_HOME>/lib/security/java.security file, or by dynamicaly setting this
Security property to "true" before JSSE isinitialized.

Listing 4-15 shows a Jolt client code example that makes it possible to use SSL when

communicating with Jsr./JsH.

Listing 4-15 Using SSL in Jolt Client Code

import java.

util.*;

import bea.jolt.*;

public class simpcl extends Object {

private
private
private
private
private
private
private

private

String userName
String userRole
String appPassword
String userPassword
JoltSessionAttributes attr

JoltSession session
JoltRemoteService toupper
JoltTransaction trans

// JSL is configured with '-s 5555°

null;
null;
null;
null;
null;
null;
null;

null;

// the communication between jolt client and JSH will use SSL

private String address

public static void main(String argsl[])

simpcl ¢ = new simpcl () ;

c.doTest () ;

Using Oracle Jolt

new String('//cerebrum:5555"') ;

4-51

public void doTest () {

attr = new JoltSessionAttributes();

// adding these session attribute
attr.setString(attr.APPADDRESS, address) ;
attr.setString(attr.TRUSTSTORE, 'c:\\samples\\samplecacerts"') ;

attr.setString(attr.KEYSTORE, 'c:\\samples\\client\\testkeys');

// Only key store and key will be protected by passphrase in this

sample.
// But optionly the trust store can also be protected by a passphrase
// although it is not in this sample.
attr.setString(attr.KSPASSPHRASE, 'passphrase');
attr.setString(attr.KEYPASSPHRASE, 'passphrase');

attr.setInt (attr.IDLETIMEOUT, 300);

userName = 'juser';
userRole = 'JUSER';
userPassword = 'abcd';

appPassword = 'abcd';

session = new JoltSession(attr, userName, userRole, userPassword,

appPassword) ;

// access a Tuxedo TOUPPER service
toupper = new JoltRemoteService ('TOUPPER', session);
toupper .addString ('STRING', 'string');

trans = new JoltTransaction (60, session);

4-58 Using Oracle Jolt

try {
toupper.call (trans) ;

} catch (ApplicationException ae) {
ae.printStackTrace () ;

System.exit (1) ;

String retString = toupper.getStringDef ('STRING',
trans.commit () ;

System.out.println(' returned: ' + retString);
session.endSession() ;

return;

null) ;

Using SSL

Using Oracle Jolt

4-59

4-60 Using Oracle Jolt

Using JoltBeans

Formerly available as an add on, JoltBeans are included in Oracle Jolt and are as easy to use as
JavaBeans. They are JavaBeans components you use in Java development environments to
construct Jolt clients.

Y ou can use popular Java-enabled development tools such as Symantec Visual Caféto
graphically construct client applications. JoltBeans provide a JavaBeans-compliant interface to
Oracle Jolt. Y ou can develop afully functional Oracle Jolt client without writing any code.

This topic includes the following sections:
e Overview of Jolt Beans
e Basic Stepsfor Using JoltBeans
e JavaBeans Events and Oracle Tuxedo Events

How JoltBeans Use JavaBeans Events

The JoltBeans Tool kit

e Jolt-Aware GUI Beans

Using the Property List and the Property Editor to Modify the JoltBeans Properties

JoltBeans Class Library Walkthrough

Using the Oracle Tuxedo Service Metadata Repository and Setting the Property Values

e JoltBeans Programming Tasks

Using Oracle Jolt 5-1

Overview of Jolt Beans

5-2

JoltBeans consists of two sets of Java Beans. Thefirst set, the JoltBeans Toolkit, is a beans
version of the Jolt API. The second set consists of GUI beans, which include Jolt-aware AWT
beans and Jolt-aware Swing beans. These GUI components are a“ Jolt-enabled” version of some
of the standard Java AWT and Swing components, and help you build a Jolt client GUI with
minimal or no coding.

Y ou can drag and drop JoltBeans from the component pal ette of a devel opment tool and position
them on the Javaform (or forms) of the Jolt client application you are creating. Y ou can populate
the properties of the beans and graphically establish event source-listener relationships between
various beans of the application or applet. Typically, the devel opment tool isused to generate the
event hook-up code, or you can code the hook-up manually. Client devel opment using JoltBeans
isintegrated with the Oracle Tuxedo Service Metadata Repository, providing easy access to
available Oracle Tuxedo services.

Note: Currently, Symantec Visual Café 3.0 isthe only IDE that is certified by Oracle for use
with JoltBeans. However, JoltBeans are also compatible with other Java devel opment
environments such as Visual Age.

To use the JoltBeans Toolkit, it is recommended that you be familiar with JavaBeans-enabled,
integrated devel opment environments (IDEs). The walkthrough in this chapter is based on
Symantec’'s Visual Café 3.0 IDE and illustrates the basic steps of building a sample applet.

Using Oracle Jolt

Overview of Jolt Beans

JoltBeans Terms

Y ou will encounter the following terms as you work with JoltBeans:

JavaBeans
Portable, platform-independent, reusable software components that are graphically
displayed in a development environment.

JoltBeans
Two sets of Java Beans: JoltBeans toolkit and Jolt aware GUI beans.

Custom GUI element
A Java GUI class that communicates with JoltBeans. The means of communication can
be JavaBeans events, methods, or properties offered by JoltBeans.

Jolt-Aware Bean
A bean that is the source of JoltInputEvents, listener of JoltOutputEvents, or both.
Jolt-aware beans are a subset of Custom GUI elements that follow beans guidelines.

Jolt-Aware GUI Beans
Two packages of GUI components Abstract Window Toolkit (AWT) and Swing, both
containing the JoltList, JoltCheckBox, JoltTextField, JoltLabel, and JoltChoice
components.

JoltBeans Toolkit
A JavaBeans-compliant interface to Oracle Jolt, which includes the JoltServiceBean,
JoltSessionBean, and JoltUserEventBean.

Wiring
The process of connecting beans together so that one bean is registered as alistener of
events from another bean.

Using Oracle Jolt 5-3

5-4

Adding JoltBeans to Your Java Development Environment

Before you can use JoltBeans, set up your Java devel opment environment to include JoltBeans:
e Set the cLasspaTH in your development environment to include all Jolt classes.

e Add JoltBeans to the Component Library of your development environment.

The method of setting the cLasspaTu can vary, depending on the devel opment environment you
use.

JoltBeansincludes aset of . jar files containing all of the JoltBeans. You can add these . jar
filesto your preferred Java devel opment environment so that JoltBeans are available in the
component library of your Javatool. For example, using Symantec Visual Café, you can set the
CLASSPATH S0 that the . jar filesare visible in the Component Library window of Visual Café.
Y ou only need to set the cLasspaTh of these . jar filesin your development environment once.
After you place these . jar filesin the cLasspaTh of your development environment, you can
then add JoltBeans to the Component Library. Then you can simply drag and drop any JoltBean
directly onto the Java form on which you are developing your Jolt client application.

To set the cLasspaTh in your Java development environment, follow the instructions in the
product documentation for your development environment. Navigate from the IDE of your
development tool to thedirectory wherethe jolt . jar fileresides. Thejolt. jar fileistypicaly
found in the directory called $TUuxDIR%\udatadoj\jolt. The jolt. jar file containsthe main
Jolt classes. Set the cLasspaTh to include these classes. The JoltBean . jar files do not need to
be added to the c.asspaTs. To use them, you only need to add them as componentsin your IDE.

After you have set the cLasspaTh to include the Jolt classes, you can add JoltBeans to the
Component Library of your devel opment environment. See the documentation for your particul ar
development environment for instructions on populating the Component Library.

When you are ready to add JoltBeans to the Component Library of your devel opment
environment, add only the devel opment version of JoltBeans. Refer to “Using Development and
Run-time JoltBeans” for complete details.

Using Development and Run-time JoltBeans

The . jar files containing JoltBeans contain two versions of each JoltBean, a development
version and a run-time version. The development version of each JoltBean name ends with the
suffix pev. The run-time version of each class name ends with the suffix rt. For example, the
development version of the class, JoltBean, is Jo1tBeanDev, While the run-time version of the
sameclassisJoltBeanRt.

Using Oracle Jolt

Basic Steps for Using JoltBeans

Use the development version of JoltBeans during the development process. The development
JoltBeans have additional properties that enhance development in agraphic IDE. For example,
the JoltBeans have graphic properties (“bean information”) that allow you to work with them as
graphic iconsin your development environment.

The run-time version of JoltBeans does not have these additional properties. Y ou do not need the
additional development propertiesof the beansat run time. Therun-timebeansaresimply apared
down version of the development JoltBeans.

When you compile your application in your development environment, it is compiled using the
devel opment beans. However, if you want to run it from a command line outside of your
development environment, it is recommended that you set the cLasspaTH SO that the run-time
beans are used when compiling your application.

Basic Steps for Using JoltBeans

The basic steps for using JoltBeans are as follows:

1. Add the development version of JoltBeansto the Component Library of your Java
development environment, as described in “ Adding JoltBeansto Your Java Development
Environment.”

2. Drag the beans from the JoltBeans component pal ette of your development environment to
the Java form-designer for a Jolt client application or applet.

3. Populatethe properties of the beans and set up the event-source listener rel ationships between
the beans of the application or applet (“wire” the beans together). The development tool
generates the event hook-up code.

4. Add the application logic to the event callbacks.

These steps are explained in more detail in later sections. The JoltBeans walkthrough
demonstrates each of these steps with an example.

JavaBeans Events and Oracle Tuxedo Events

JavaBeans communicate through events. An event in an Oracle Tuxedo system is different from
an event in a JavaBeans environment. In an Oracle Tuxedo application, an event is raised from
one part of an application to another part of the same application. JoltBeans events are
communicated between beans.

Using Oracle Jolt 5-5

5-6

Using Oracle Tuxedo Event Subscription and Notification
with JoltBeans

Oracle Tuxedo supports brokered and unsolicited event notification. Jolt provides a mechanism
for Jolt clients to receive Oracle Tuxedo events. JoltBeans a so include this capability.

Note: Oracle Tuxedo event subscription and notification is different from JavaBeans events.
The following procedure illustrates how the Oracle Tuxedo asynchronous notification
mechanism is used in JoltBeans applications.

1. Usethe setEventName () and setFilter () methods of the JoltUserEventBean to specify
the Oracle Tuxedo event to which you want to subscribe.

2. The component that receivesthe event notifications registersitself as a JoltOutputListener to
the JoltSessionBean.

3. The subscribe () method is called on JoltUserEventBean.

4. When the actual Oracle Tuxedo event notification arrives, JoltSessionBean sends a
JoltOutputEvent to its listeners by calling serviceReturned () onthem. The
JoltOutputEvent object contains the data of the Oracle Tuxedo event.

When the client no longer needs to receive the event, it callSunsubscribe () onthe
JoltUserEventBean.

Note: If the client will only subscribe to unsolicited events, use setEventName
("\\.UNSoLMSG"), which can be set using the property sheet. EventName and Filter
are properties of the JoltUserEventBean.

Using Oracle Jolt

How JoltBeans Use JavaBeans Events

How JoltBeans Use JavaBeans Events

A Jolt client applet or application that is built using JoltBeans typically consists of Jolt-aware
GUI beans, such as JoltTextField or JoltList, and JoltBeans, such as JoltServiceBean and
JoltSessionBean. The main mode of communication between Beansis by JavaBeans events.

Jolt-aware beans are sources of JoltInputEvents or listeners of JoltOutputEvents or both.
JoltServiceBeans are sources of JoltOutputEvents and listeners of JoltlnputEvents.

The Jolt-aware GUI Beans expose properties and methods so you can link the beans directly to
the parameters of an Oracle Tuxedo service (represented by a JoltServiceBean). Jolt-aware beans
notify the JoltServiceBean viaaJoltInputEvent when their content changes. The JoltServiceBean
sends a JoltOutputEvent to all registered Jolt-aware beans when the reply datais available after
the service call. The Jolt-aware GUI Beans contain logic that updates their contents with the
corresponding output parameter of the service.

Figure 5-1 represents the possible relationships among the JoltBeans.

Figure 5-1 Possible Interrelationships Among JoltBeans

Custom GUI element Custom GUI element

Jolt aware AWT bean JominpuEvent

Java AWT hean
Event

JoltOutputEwent

Joltinputl

PropertyChangeEvent

JoltoutputEvent

Jolt &ware AWT bean

Java AWT tean

Using Oracle Jolt 5-1

The JoltBeans Toolkit

5-8

The JoltBeans Toolkit includes the following beans:
o JoltSessionBean
e JoltServiceBean

e JoltUserEventBean

These components transform the complete Jolt Class Library into beans components, with all of
the features of any typical JavaBean, including easy reuse and graphic development.

Refer to the online Oracle Jolt APl Reference for specific descriptions of the JoltBeans classes,
constructors, and methods.

The following sections provide information about the properties of each bean.

JoltSessionBean

The JoltSessionBean, which represents the Oracle Tuxedo session, encapsul atesthe functionality
of the JoltSession, JoltSessionAttributes, and JoltTransaction classes. The JoltSessionBean has
properties that you use to set session and security attributes, such as sending atimeout or an
Oracle Tuxedo username, as well as methods to open and close an Oracle Tuxedo session.

The JoltSessionBean sends a PropertyChange event when the Oracle Tuxedo session is
established or closed. PropertyChange is a standard bean event defined in the java .beans
package. The purpose of this event isto signal other beans about a change of the value of a
property in the source bean. In this case, the source is the JoltSessionBean; the targets are
JoltServiceBeans or JoltUserEventBeans; and the property changing is the LoggedOn property
of the JoltSessionBean. When alogon is successful and asession is established, LoggedOn is set
to true. After thelogoff is successful and the session is closed, the LoggedOn property is set to

false.

The JoltSessionBean provides methods to control transactions, including

beginTransaction (), commitTransaction (), and rollbackTransaction ().

Table 5-1 shows the JoltSessionBean properties and descriptions.

Using Oracle Jolt

The JoltBeans Toolkit

Table 5-1 JoltSessionBean Properties and Descriptions

Property Description

AppAddress Set the | P address (host name) and port number of the JSL or the Jolt
Relay. Theformat is / /host :port number
(for example, myhost:7000).

AppPassword Set the Oracle Tuxedo application password used at logon, if
required.

IdleTimeOut Set the IDLETIMEOUT value.

inTransaction Indicate true or false depending if atransaction has been started
and not committed or aborted.

LoggedOn Indicate true or false if an Oracle Tuxedo session does or does

not exist.

ReceiveTimeOut

Set the RECVTIMEOUT value.

SendTimeOut Set the SENDTIMEOUT value.

SessionTimeOut Set the SESSIONTIMEOUT value.

UserName Indicate the Oracle Tuxedo username, if required.

UserPassword Indicate the Oracle Tuxedo user password, if required.

UserRole Indicate the Oracle Tuxedo user role, if required.
JoltServiceBean

The JoltServiceBean represents aremote Oracle Tuxedo service. The name of the serviceis set
as aproperty of the JoltServiceBean. The JoltServiceBean listens to JoltlnputEvents from other
beans to populate itsinput buffer. JoltServiceBean offersthe cal1service () method to invoke
the service. JoltServiceBean isan event source for JoltOutputEventsthat carry information about
the output of the service. After asuccessful callservice (), listener beansare notified viaa
JoltOutputEvent that carries the reply message.

Although the primary way of changing and querying the underlying message buffer of the
JoltServiceBean is via events, the JoltServiceBean also provides methods to access the
underlying message buffer directly (setInputvalue(..), getOutputvalue (..)).

Using Oracle Jolt 5-9

Table 5-2 shows the JoltServiceBean properties and descriptions.

Table 5-2 JoltServiceBean Properties and Descriptions

Property Description

ServiceName The name of the Oracle Tuxedo service represented by this
JoltServiceBean.

Session The JoltSessionBean associated with the bean that allows access to

the Oracle Tuxedo client session.

Transactional Set to true if this JoltServiceBean isto be included in the
transaction that was started by its JoltSessionBean.

JoltUserEventBean

The JoltUserEventBean provides access to Oracle Tuxedo events. Y ou define the Oracle Tuxedo
event to which you subscribe or unsubscribe by setting the appropriate properties of this bean
(event name and event filter). The actual event notification is delivered in the form of a
JoltOutputEvent from the JoltSessionBean.

Table 5-3 shows the JoltUserEventBean properties and descriptions.

Table 5-3 JoltUserEventBean Properties and Descriptions

Property Description

EventName Set the name of the user event represented by the bean.

Filter Set the event filter.

Session The JoltSessionBean associated with the bean that allows access to

the Oracle Tuxedo client session.

Jolt-Aware GUI Beans

The Jolt-aware GUI Beans consist of Java AWTbeans and Swing beans, and are inherited from
the Java Abstract Windowing Toolkit. They include:

® JoltTextField

® JoltLabel

5-10 Using Oracle Jolt

Jolt-Aware GUI Beans

® JoltList
® JoltCheckbox
® JoltChoice

Note: To avoid errors when compiling, it is recommended that you use only the AWT beans
together, or the Swing beanstogether, rather than mixing beans from these two packages.

JoltTextField

ThisisaJolt-aware extension of java.awt . TextField and Swing JTextfield. JoltTextField
contains parts of the input for aservice. A JoltServiceBean can listen to eventsraised by a
JoltTextField. JoltTextField sends JoltlnputEvents to its listeners (typically JoltServiceBeans)
when its contents changes.

JoltTextField displays output from a service. In this case, JoltTextField listens to
JoltOutputEvents from JoltServiceBeans and updates its contents according to the occurrence of
thefield to which it islinked.

JoltLahel

ThisisaJolt-aware extension of java.awt . Label and Swing Jrabel that islinked to aspecific
field in the Jolt output buffer by its JoltFieldName property. If the field occurs multipletimes, the
occurrence to which thistextfield islinked is specified by the occurrencelndex property of this
bean. JoltLabel can be connected with JoltServiceBeans to display output from a service. A
JoltLabel listens to JoltOutputEvents from JoltServiceBeans and updates its contents according
to the occurrence of the field to which it islinked.

JoltList

Thisisa Jolt-aware extension of java.awt.List and Swing J1ist that islinked to a specific
Jolt field in the Jolt input or output buffer by its JoltFieldName property. If the field occurs
multiple timesin the Jolt input buffer, the occurrence thislist is linked to is specified by the
occurrencel ndex property of this bean. JoltList can be connected with JoltServiceBeans in two

ways:
e JoltList contains parts of the input for aservice. A JoltServiceBean listens to events raised
by a JoltList. JoltList sends JoltInputEvents to its listeners when the selection in the listbox

changes. The JoltInputEvent, in this case, is populated with the single value of the selected
item.

Using Oracle Jolt 5-11

e JoltList displays output from a service. When used to display the output of a service,
JoltList listens to JoltOutputEvents from JoltServiceBeans and updates its contents
accordingly with all occurrences of the field to which it islinked.

JoltCheckbox

JoltCheckbox is a Jolt-aware extension of java.awt .Checkbox and Swing JcheckBox that is
linked to aspecific field in the Jolt input buffer by its JoltFieldName property. If the field occurs
multiple times, the occurrence to which this checkbox is linked is specified by the
occurrencelndex property of this bean.

JoltCheckbox can be connected with JoltServiceBeans to contain parts of the input for a service.
A JoltServiceBean listens to events raised by a JoltCheckbox. JoltCheckbox sends
JoltinputEventsto its listeners (typically JoltServiceBeans) when the selection in the checkbox
changes. The JoltInputEvent in this caseis populated with the Truevalue property of datatype
String (if the box is selected) or Falsevalue (if the box is unselected).

JoltChoice

JoltChoice provides a Jolt-aware extension of java.awt .Choice and Swing Jchoice that is
linked to a specific field in the Jolt input buffer by its JoltFieldName property. If thefield occurs
multiple times, the occurrence to which this choiceislinked is specified by the occurrencel ndex
property of this bean.

JoltChoice can be connected to JoltServiceBeans to contain parts of the input for aservice. A
JoltServiceBean can listen to events raised by a JoltChoice. JoltChoice sends JoltInputEventsto
its listeners (typically JoltServiceBeans) when the selection in the choicebox changes. The
JoltInputEvent in this case is populated with the single value of the selected item.

Note: For adetailed description of these classes, see the Oracle Jolt API Reference.

Using the Property List and the Property Editor to Modify
the JoltBeans Properties

5-12

The values of most JoltBeans properties can be modified by editing the right column of the
Property List in your integrated development environment (IDE), such as Visua Café, as shown
in the following figure “ Property List: Ellipsis Button.”

Custom property editors are provided for some properties of JoltBeans.

Using Oracle Jolt

Using the Property List and the Property Editor to Modify the JoltBeans Properties

The custom property editors, accessed from the Property List, include dialog boxes that you use
to modify the property values. Y ou can invoke the custom property editorsfrom the Property List
by clicking the button with the ellipsis (“...”) that is next to the value of the corresponding
property value.

Figure 5-2 Property List: Ellipsis Button

&7 Property List - JoitBeanDev [H[=]F3

JolSericeBean -
Class beajolt bheans. JoltServiceBean
Mame JoltServiceBean
Session null T
Transactional |false

When you click the élipsis button, the Property Editor shown in Figure 5-3 is displayed.

Figure 5-3 Custom Property Editor Dialog Box

Custom Property Ed... B4

Senices:

Laogon | |

The Custom Property Editor of JoltBeans reads cached information. Initially, no cached
information is available, so when the Property Editor isused for the first time, the dialog box is
empty. Log on to the Oracle Tuxedo Service Metadata Repository and load the property editor
cache from the repository.

Using Oracle Jolt 5-13

For details about thelogon and using the Property List and Property Editor, see“ Using the Oracle
Tuxedo Service Metadata Repository and Setting the Property Values’ on page 5-41.

5-14 Using Oracle Jolt

JoltBeans Class Library Walkthrough

JoltBeans Class Library Walkthrough
This walkthrough describes how to build an applet that you use to:
o Enter an account ID
e Click on the Inquiry button

e Display the balance of the account (shown in the following figure)

Figure 5-4 shows an example of a completed Java form containing JoltBeans. The applet
implements the client functionality for the INQUIRY service of the BANKAPP sample that is
included with Oracle Tuxedo. To run this sample, the Oracle Tuxedo server must be running.

Figure 5-4 Sample Inquiry Applet

E%Applet Viewer: Appletl_class - [0] x|
Applet

Account D

Balance

Inguiry |

Refer to the figure “Visual Café 3.0 Form Designer” on page 5-18 for an example of each item
required by the Javaform. Each item in that figureis described in the following table “ Required
Form Elements’.

Using Oracle Jolt 5-15

Table 5-4 Required Form Elements

Element Purpose

Applet (or JApplet, if JFC A form used to paint the beans in your development

applet is chosen) environment.

JoltSessionBean Logs on to an Oracle Tuxedo session.

JoltTextField Gets input from the user (in this case, ACCOUNT_ID).

JoltTextField Displays the result (in this case, SBALANCE).

JoltServiceBean Accessesan Oracle Tuxedo service. (Inthiscase, INQUIRY
from BANKAPP).

Button Initiates an action.

Label Describes the field on the applet.

Building the Sample Form

The sampleformiscreated using an integrated devel opment environment (IDE), in thisexample,
Visual Café 3.0. The example demonstrates how to build an applet that allows you to enter an
account 1D and use an Oracle Tuxedo service to get and show the account balance.

Follow the basic steps below to create this sample.

1. InVisual Café, choose File—New Project and select either JFC Applet or AWT application.
This step provides you with the basic form designer on which you drop the JoltBeans.

2. Draganddropall of the JoltBeansyou want to usein your applet from the Component Library
onto the form designer.

3. Modify or customize each bean using the property list or the custom property editor.
4. Wire the beans together using the Interaction Wizard.

5. Compile the applet.
These steps are described in detail in the following sections.

Note: The graphic interface of previous versions of Visual Café differ from the look of Visual
Café 3.0. Y ou can complete this sample applet in a previous version of Visual Café;
however, the steps executed in the Interaction Wizard differ dightly from this example.

5-16 Using Oracle Jolt

JoltBeans Class Library Walkthrough

Placing JoltBeans onto the Form Designer
1. Choose File—~New Project, and choose JFC Applet.

2. Drag and drop the beans from the Component Library (shown in Figure 5-5) onto the palette
of the form designer.

Figure 5-5 JoltBeans and the Form Designer in Visual Café

Form D ezigner - JApplet1

Standard IHER
LUitility

G- 3 Multimedia

&3 Farms

Froject Templates
tdenus & Menu ltems
dhaWARE
- [0 Additianal
--[:| Fanels
--[:l Shapes
-2 Predef

d TextFields

- loltSessionBean
- 2 JolilserEventBean
;-8 JohServiceBean
253 JoltBeanDewduwt

-F2f] JolList

-~ JoltCheckbox

- JolChoice

~Fg JoltTextField

-[E JoltLakel

Thefollowing figure “Visua Café 3.0 Form Designer” illustrates how JoltBeans appear when

they are placed on the palette of the Form Designer.

Using Oracle Jolt

5-17

Figure 5-6 Visual Café 3.0 Form Designer

JoltTextFiald JoltSessionBean

Label <% ... o :

3~ JoltServiceBean

Button 3:::kmny: il T Aol

3. Set the properties of each bean. To modify or customize the buttons, labels or fields, use the
property list. Some JoltBeans use a Custom Property Editor.

The following figure,” Example of JoltTextField Property List and Custom Property
Editor,” shows how selecting the JoltFieldName of the button property list displaysthe
Custom Property Editor.

4. Set the properties of the beans (for example, set the JoltFieldName property of the
JoltTextField to ACCOUNT _ID).

Note: For complete information on setting and modifying the properties of the JoltBeans, refer
to “Using the Oracle Tuxedo Service Metadata Repository and Setting the Property
Values’ on page 5-41.

Table 5-5 specifies the property values that should be set. Values specified in bold and
italic text are required, and those in plain text are recommended.

Table 5-5 Required and Recommended Property Values

Bean Property Value
label1 Text Account ID
label2 Text Balance
JoltTextFieldl Name accountld

5-18 Using Oracle Jolt

JoltBeans Class Library Walkthrough

Table 5-5 Required and Recommended Property Values (Continued)

Bean Property Value
JoltTextFieldl JoltFieldName ACCOUNT_ID
JoltTextField2 Name balance
JoltTextField2 JoltFieldName SBALANCE
JoltSessionBeanl AppAddress [ltuxserv: 2010
JoltServiceBeanl Name inquiry
JoltServiceBeanl ServiceName INQUIRY
buttonl Label Inquiry

Note: Inthiswalkthrough, the default occurrencelndex of 0 works for both JoltTextFields.

Refer to the following figure “ Example of JoltTextField Property List and Custom Property
Editor”and “Using the Oracle Tuxedo Service Metadata Repository and Setting the
Property Values’ on page 5-41 for general guidelines about JoltBean properties.

Using Oracle Jolt 5-19

Figure 5-7 Example of JoltTextField Property List and Custom Property Editor

Property List - JoltBeanDev._._ [_ [x| mote: The Customn Property

@ D Editor is populated only if
accaunt] e the Jolt Repository Server

Backaroind 1 whie OREE) is running.
=- Bounds

s i}

-]

- itk Z0

- He ght 40
Closs seojothears ot Jolt TexdFisld
Lolumas 1
Cirsor TEXT_CLIREOR
Edilabile Tue SCRMMAK
Erahled Tug EEEE&;JNCTE

o Fent = ;TATLIP-I

- MNamne Zlialog

- Eizz 12
=} Ehde

- Bald ‘alse
L oltelic ‘also
Feregound W biek Mzfresh I ACCOINT_ID
Inhmif iﬁnkr_jrnu TR
Inherit "cnt rue
Inherit =cregqrourrus J
Mote: Select frormn the abdve

Marre account T list, or type it mannally.
Nrrurrercalnrda) 1
Tent
Yisihle e

5. To change the value of the JoltFieldName property, click on the ellipsis button of the
JoltFieldName in the Property List.

The Custom Property Editor is displayed.

6. Select or type the new field name (in this example, “ACCOUNT _ID") and click OK.

The change is reflected in the Property List shown in the following figure “ Revised
JoltFieldName in the JoltTextField Property List”and on the text field shown on the figure
“Example of JoltBeans on the Form Designer with Property Changes’ on page 5-21.

Note: The propertiesthat are visible in the Custom Property Editor are cached locally;
therefore, if the source database is modified you must use the Refresh button to see the
current, available properties.

5-20 Using Oracle Jolt

JoltBeans Class Library Walkthrough

Figure 5-8 Revised JoltFieldName in the JoltTextField Property List

i Property List - JoltBeanDev... !Ell!l

g accountD -
Background [1 white
£l Bounds
e, 0
i 0
- Wificth 20
- Height 40
Class bea jolt beans.awt. JolTexdField
Columns]
Cursor TEXT_CURSOR
Editahle true
Enakled true
£l Font
- Mame Dialog
=1ri! 12
B} Style
. Bold false
o talic false
Foreground Il black
Inherit Backgraou|true
Inherit Font true
Inherit Faregrougtrue
g ACCOUNT D
accountlD
Occurrencelnde) 0
Text
Yisible true

The following figure “ Exampl e of JoltBeans on the Form Designer with Property Changes’
illustrates how the text on the button and the textfield changes after the text is added to the
property list fields for these beans.

Figure 5-9 Example of JoltBeans on the Form Designer with Property Changes

Using Oracle Jolt 5-21

Form Designer - JAppletl _ O] x|

[Jispplet]

Mad[[[4

7. After you set the propertiesto theright values (refer to the table“ Required and Recommended
Property Values’ on page 5-18 for additional information), define how the beanswill interact

by wiring them together using the Visual Café Interaction Wizard. Refer to “Wiring the
JoltBeans Together” for details.

5-22 Using Oracle Jolt

JoltBeans Class Library Walkthrough

Wiring the JoltBeans Together

After all the beans are positioned on your form and the properties are set, you must wire the beans
and their events together. The following figure “ Sequence in Which JoltBeans Are Wired”
illustrates an example of the flow to help you determine the correct order in which to wire the
beans.

Wiring the beans allows you to establish event source-listener relationships between various
beanson theform. For example, the JoltServiceBean isalistener of ActionEventsfrom the button
andinvokescallservice () whentheeventisreceived. Usethe Visual CaféInteraction Wizard
to wire the beans together.

Figure 5-10 shows the sequence in which you will wire the beans together to create this sample
applet. The numbersin this figure correspond to the numbered steps that follow.

Figure 5-10 Sequence in Which JoltBeans Are Wired

Form Designer - JAppletl M =] B I

6

[J&pplet [Mod | 4

The steps below correspond to the callouts shown in the figure “ Sequence in Which JoltBeans
Are Wired” on page 5-23. Each of the steps below is detailed in the sections that follow.

Step 1: Wire the JoltSessionBean Logon
Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange
Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using JoltlnputEvent

Using Oracle Jolt 5-23

5-24

Step 4: Wire Button to JoltServiceBean Using JoltAction

Step 5: Wire JoltServiceBean to the Balance JoltTextField Using JoltOutputEvent
Step 6: Wire the JoltSessionBean L ogoff

Step 7: Compile the Applet (not shown as a callout)

Step 1: Wire the JoltSessionBean Logon
1. Inthe Form Designer window, click the Interaction Wizard button.

2. Click in the applet window and drag aline to the JoltSessionBean as shown in Figure 5-11.

Figure 5-11 Wire the Applet to the Jolt Session Bean

Form Deszigner - JAppletl _ O] x| I

oo R Drag
................................... here

[Japplet] [Mod | i

The Interaction Wizard window is displayed as shown in the figure “ Select
ComponentShown Event” on page 5-25, with the prompt:

What event in JAppletl do you want to start theinteraction?

3. Select componentShown in the Interaction Wizard window as the event with which you want
to start the interaction, as shown in Figure 5-12.

Using Oracle Jolt

JoltBeans Class Library Walkthrough

Figure 5-12 Select ComponentShown Event

Interaction Wizard
What event in JApplet1 oo you want to star the interaction?

Events:
- componentHidden ﬁ
armponernthioyved
omponentResized

iponertShawn)
[=]- cortainer

- keyPressed
eyvReleased
ey Typed
[=1-mouse
e mouseclicked j

Ic-:-mp-:-nentShown

[Group everts

= Back | Mext = | R | Cancel | Help |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Select L ogon to the
Tuxedo System Action” on page 5-26, with the prompt:

What do you want to happen when Jappletl fires componentShown event?

5. With the Perform an action radio button enabled, select the action L ogon to the TUXEDO
system, as shown in Figure 5-13.

Using Oracle Jolt 5-25

Figure 5-13 Select Logon to the Tuxedo System Action

Interaction Wizard

Wihiat choyou wwant to happen when JApplet fires componemtShown event?

{% Perform an action " Call a methad " Set a property
Availakle ohjscts: Actions:
,ff Japplet! Beoin & newy transaction...

Cotmimit the current transaction

Logoff from the TUXEDO =ystem
ogon to the TUXE {stem

Follback the current transaction

| % inguiry
I accountid
I halance
(B jottLaken
(B jottLakel2
3 buttan

ILDgDn 1o the TUXEDC system

= Back | et = | Finizh | Cancel | Hedlp |

6. Click Finish.

Completing “Step 1: Wire the JoltSessionBean Logon” enables the 1o0gon () method of the
JoltSessionBean to be triggered by an applet (for example, ComponentShown) that is sent when
the applet is opened for the first time.

Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange

1. Click the Interaction Tool icon in the toolbar of the Visual Café Form Designer window to
display the bean components.

2. Click on the JoltSessionBean and drag aline to the JoltServiceBean, as shown in Figure 5-14.

5-26 Using Oracle Jolt

JoltBeans Class Library Walkthrough

Figure 5-14 Wire the JoltSessionBean to the JoltServiceBean

Form Designer - JApplet1 M=l B

[Jspplett Mod| | A

The Interaction Wizard window is displayed as shown in the figure “ Select
propertyChange Event” on page 5-28, with the prompt:

What event in joltSessionBeanl1 do you want to start the interaction?

3. Select propertyChange as the event that starts the interaction, as shown in Figure 5-15.

Using Oracle Jolt 5-21

Figure 5-15 Select propertyChange Event

Interaction Wizard

What event in joSessionBeant do you want to star the intersction?

Events:

IpropertyChange

[v Group events

ot | omets | orrien | concel | ee |

4, Click Next.

The Interaction Wizard window is displayed as shown in the figure “ Select Handle a Jolt
property change event...” on page 5-29, with the prompt:

What do you want to happen when joltSessionBean1 fires propertyChange event?

5. Select Handle a Jolt property change event as the method, as shown in Figure 5-16.

5-28 Using Oracle Jolt

JoltBeans Class Library Walkthrough

Figure 5-16 Select Handle a Jolt property change event...

Interaction Wizard E

What do youw want to happen when jotSessionBeani fires propertyChange event?

& Perfarm an action " Call & methad " Set & property
Available objects: Actions:
&f JApplett Clear the Joit message buffer
'@ joltSessionBeant Handle & Jolt input event...

L inguiry

F accountld o o)

Set 5 specific occurrence of & field inthe input butfer as
F@ LI Set a specific occurrence of a field inthe input buffer in
(B jotiLaelt Set all occurrences of a figld inthe input buffer as text ...
@joltLabeQ Set all oocurrences of & field inthe input buffer in native
= buttond Set the value of a field in the input butfer as texd...

Set the value of a field in the input butfer in native formal

4 N

[Handle a Joft property change event

= Back | Mext = | Finisty | Cancel | Help |

6. Click Next.

The Interaction Wizard window is displayed as shown in the figure “ Select
joltSesssionBeanl” on page 5-30, with the prompt:

How do you want to supply the parameter to this method?

and alist of available objects and actions from which to choose.

7. Select joltSessionBeanl as the object that supplies the action, as shown in the following
figure.

8. Select Get thecurrent Property Change Event object as the action, also as shown in
Figure 5-17.

Using Oracle Jolt 5-29

Figure 5-17 Select joltSesssionBean1

Interaction Wizard

Iinquiry.propertyChange(PropertyChangeEvent J;
Howe do you wwant to supply the parameter tothis method?
o Get it from an ohject . Let me enter the expression myself

Available ohjects: Actions:

ff JApplet Get the currert Property Change Evert ohject

ﬂ inguiry
T sccountid
I balance
(B jottLakel
(B joftLakel2
3 buttan

Show: [v Actions [Methods [Wariables

IGet the current Property Change Event ohject

= Back | Mext = | Finizh | Cancel | Hedlp |

9. Click Finish.

Completing “ Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange’ enables
the JoltSessionBean to send a propertyChange event when 1ogon () completes. The
JoltServiceBean listensto this event and associates its service with this session.

Step 3: Wire the accountlD JoltTextField as Input to the JoltServiceBean
Using JoltInputEvent

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.
2. Select the accountI D JoltTextField bean and drag aline to the JoltServiceBean.

The Interaction Wizard window is displayed, as shown in the following figure, with the
prompt:

What event in accountld do you want to start theinteraction?

5-30 Using Oracle Jolt

JoltBeans Class Library Walkthrough

3. Select dataChanged as the event, as shown in Figure 5-18.

Figure 5-18 Select dataChanged Event

Interaction Wizard E3

What evert in aceountld do you want to start the interaction?

Everts:

= Input
gclataChanged
[=-actian
: i....actionPerfarmed

Ié!---ancestor

-ancestorAdded

--ancestorhoved

--ancestorRemaoyed

[=-boundProperty Change

--property Change - Border

~propertyChange - Caret

~-property Change - CaretColar

- propertyChange - DisabledTexdColar

~-propertyChange - Document

-propertyChange - Editable j

data changed -

IdataChanged

¥ Group events

CE met> | Fren | concal | hew |

4. Click Next.

The Interaction Wizard window is displayed as shown in the figure “ Select inquiry Object
and Handle a Jolt input event Action” on page 5-32, with the prompt:

What do you want to happen when accountld fires dataChanged event?

5. Select the joltServiceBean inquiry as the object supplying the parameter, as shown in the
following figure.

6. SelectHandle a jolt input event astheaction, also as shownin Figure 5-19.

Using Oracle Jolt 5-31

5-32

Figure 5-19 Select inquiry Object and Handle a Jolt input event Action

Interaction Wizard

Wihat clo you weant 1o happen when accountld fires dataChanged event?

(% Perform an action € Call & method € Set a property

Available ohjects:

Actions:

B Jappiett
'@ jotSessionBean

F sccountld
i balance
[E jottLabell
(B jottLabel2
3 buttar

Clear the Jolt mezsage buffer

anclle & Jolt input event. ..
Handle 2 Jolt property change evert...
Imvoke the TUXEDC service representad by this Bean
Set a specific occurrence of a field in the input butfer as
Set 5 specific occurrence of & field inthe input buffer in
Set all occurrences of a field inthe input buffer as text..
Set sl ocourrences of a field inthe input buffer in native
Set the value of a field in the input butfer as text...
Set the value of a field in the input butfer in native formal

4] |

IHandIe a Jolt input event

= Back | Mext = | Rl | Cancel | Help |

7. Click Next.

The Interaction Wizard window is displayed as shown in “ Select accountld Object and Get

the current Jolt Input Event Action” on page 5-33, with the prompt:

How do you want to supply the parameter to this method?

and alist of available objects and actions from which to choose.

8. Select accountld asthe object, as shown in the following figure.

9. Select get the current Jolt Input Event asthe action, also as shown in Figure 5-20.

Using Oracle Jolt

JoltBeans Class Library Walkthrough

Figure 5-20 Select accountld Object and Get the current Jolt Input Event Action

Interaction Wizard E

Iinquir\,f.data(:hanged(JoltinputEvent

Howy do you weant to supply the parameter to this method?
o Get it from an ohject e Let me enter the expression my=self

Available ohjects: Actions:

ﬁf JApplet et the current Joft Input Event
4 '@ jolt SezsionBean

ﬁ inguiry

I balance
[E jottLabel
[B jottLabel2
3 buttont

Show: [v Actions [Methods [Wariables

IGet the current Jok Input Event

= Back | Mext = | Finizh | Cancel | Help |

10. Click Finish.

Completing “ Step 3: Wire the accountl D JoltTextField as Input to the JoltServiceBean Using
JoltInputEvent” enablesyou to type the account number in thefirst text field. The JoltFieldName
property of this JoltTextField is set to “ACCOUNT _ID”. Whenever the text inside this text box
changes, it sends a JoltInputEvent to the JoltServiceBean. (The JoltServiceBean listensto
JoltInputEvents from this text box.) The JoltInputEvent object contains the name, value, and
occurrence index of thefield.

Step 4: Wire Button to JoltServiceBean Using JoltAction
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click the Inquiry Button and drag aline to the JoltServiceBean.

The Interaction Wizard window is displayed as shown in the following figure, with the
prompt:

Using Oracle Jolt 5-33

What event in buttonl do you want to start the interaction?

3. Select actionPerformed as the event, as shown in Figure 5-21.

Figure 5-21 Select action Performed Event

Interaction Wizard

What event in buttond do you weant to start the interaction?

Ewverts:

[=--action
dactionPerformed

- component

----- componentHidden

- companenthoved

----- componentResized

- componentShawn

[=-focus

----- focusGained

focusLost o

| »

-keyPressed

- heyReleazed

(. keyTyped

[E-mause j

Iacti-:-nPerf-:rmed

[v Group events

ot | omets | orrien | concel | ee |

4, Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Select inquiry Object
and Invoke the TUXEDO Service... Action” on page 5-35, with the prompt:

What do you want to happen when buttonl fires actionPerformed event?
5. Select inquiry asthe object, as shown in the following figure.

6. Select Invokethe TUXEDO Servicerepresented by this Bean asthe action, also as shown
in Figure 5-22.

5-34 Using Oracle Jolt

JoltBeans Class Library Walkthrough

Figure 5-22 Select inquiry Object and Invoke the TUXEDO Service... Action

Interaction Wizard

WWhat co you want 1o happen when buttond - fires actionPerformed evert?

(% Perform an action € Call a method " Set a property
Available ohjects: Actions:
tf JAppletl Clear the Jolt message huifer
l@ jotSessionBeant Handle 5 Jott input evert...

Handle 3 Jolt property change evert...
rvoke the TUXEDO service represented by this Bean

F sccountld - ekl .

Set a specific occurrence of a field inthe input butfer as
F@ et Set 5 specific occurrence of & field inthe input buffer in
(B jotLabelt Set all occurrences of & field inthe input buffer as text.
(B jottLabel2 Set all occurrences of a field inthe input buffer in native
O button Set the value of a field in the input butfer as text...

Set the value of a field in the input butfer in native formal

4] |

Ilnvoke the TUXEDD service represented by this Bean

= Back | Mext = | Finish | Cancel | Help |

7. Click Finish.

Completing “ Step 4: Wire Button to JoltServiceBean Using JoltAction” enables the
callservice () method of the JoltServiceBean to be triggered by an ActionEvent from the
Inquiry button.

Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select the JoltServiceBean and drag aline to the AmountJoltTextField bean.
The Interaction Wizard is displayed, as shown in the following figure, with the prompt:

What event in inquiry do you want to start the interaction?

3. Select serviceReturned as the event, as shown in Figure 5-23.

Using Oracle Jolt 5-35

5-36

Figure 5-23 Select ServiceReturned Event
Interaction Wizard

What event in inquiry do you weant to stan the intersction?

Ewvents:
- jotOutput

[serviceReturned

[v Group everts

coeet | oweds | oAt | conedt | b |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Select balance Object
and Handle a service returned event Action” on page 5-37, with the prompt:

What do you want to happen when inquiry fires serviceReturned event?
5. Select balance as the object, as shown in the following figure.

6. Select Handleaservicereturned event... astheaction, also asshowninthefollowing figure.

Using Oracle Jolt

JoltBeans Class Library Walkthrough

Figure 5-24 Select balance Object and Handle a service returned event Action

Interaction Wizard

Wihat eo you want 1o happen when inguiry fires serviceReturned event?

(% Perform an action

Available ohjects:

€ Set a property

ﬁ" Japplet Dizahle the Jolt TextField 1=
'@ joltSessionBeant Dizable the JotTextField on condtion. ..
233 inguiry Enable the Jolt TextField
Enahle the JokTextField on condtion...
accountld ice returned event...
B3 baiance Hitde the Joi TextFilc
[E jottLabell
(B jottLabel2
3 buttoni Set the Background Colar ..
Set the Foreground Calar...
Set the Jolt field name. .
Set the JottTextField's Fort... |
Set the JoltTextField's texd..
Set the bounds rectangle. ..
Set the cursor type. .
Set the occurence index... j
IHandIe a zervice returned event
= Back | Mext = | Rl | Cancel | Help |

7. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Select inquiry Object
and Get the JoltOutputEvent object Action” on page 5-38, with the prompt:

How do you want to supply the parameter to this method?

8. Select inquiry asthe object, as shown in the following figure.

9. Select Get the JoltOutputEvent object as the action, also as shown in Figure 5-25.

Using Oracle Jolt 5-37

Figure 5-25 Select inquiry Object and Get the JoltOutputEvent object Action

Interaction Wizard

Ibalance.serviceReturned(Aot OutputEvent
Howw do you want to supply the parameter to this method?

o Get it from an object n Let me enter the expression myself

Available ohjects: Actions:

ﬁ JAgplet] et the Jok CutputEvent object
4 '@ jotSessionBean

g sccountld
g balance
[E jottLabell
[E jottLabel2
3 buttar

Show: [V Actions [Methods [T Yerisbles

IGet the JottCutputEvent object

= Back | Mext = | Finizh | Cancel | Help |

10. Click Finish.

Completing “ Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent” allows the JoltServiceBean to send a JoltOutputEvent when it receives reply
datafrom the remote service. The JoltOutputEvent object contains methodsto accessfieldsin the
output buffer. The JoltTextField displays the result of the INQUIRY service.

Step 6: Wire the JoltSessionBean Logoff
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click in the applet window (not on another bean) and drag aline to the JoltSessionBean.
The Interaction Wizard is displayed, as shown in the following figure, with the prompt:

What event in JAppletl do you want to start theinteraction?

3. Select componentHidden as the event, as shown in Figure 5-26.

5-38 Using Oracle Jolt

Figure 5-26 Select componentHidden Event

Interaction Wizard

Whist event in JApplet1 o you want to star the interaction?

Ewverts:

JoltBeans Class Library Walkthrough

[component
omponentHidden|

- componenthioved
E-----componentResized
E.....C.;.mponentShown
[container
E-----cnmponent.i\dded
5-----comp0nentRem0ved
[=-focus

E-----focusGained
focusLast

[=-key

E-----keyPressed
E-----keyReIeased
E""'kEYTYFEd

| »

[componentHidden

[Group everts

SEECE |

Mext = | et | Cancel | Help |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Select
joltSessionBeanl Object and Logoff from the Tuxedo System Action” on page 5-40, with

the prompt:

What do you want to happen when JAppletl fires componentHidden event?

5. Select joltSessionBean1 as the object, as shown in the following figure.

6. Select Logoff from the TUXEDO system as the action, also as shown in Figure 5-27.

Using Oracle Jolt 5-39

5-40

Figure 5-27 Select joltSessionBean1 Object and Logoff from the Tuxedo System Action

Interaction Wizard

WWhist do you wart to happen when JApplet] fires componentHidden evert?
{% Perform an action € Call & method " Seta property

Available objects: Actions:

Begin a new transaction...
Cormimit the current transaction
ogoff from the TLX] rstem
Laogon to the TUXEDC system
Follback the current transaction

3 I sccourtld

I balance
[E joftLakel
[E5 jotLabei2
3 buttont

ILogoff from the TUXEDO system

= Back | Mext = | Finish | Cancel | Help |

7. Click Finish.

Completing “ Step 6: Wire the JoltSessionBean Logoff” enablesthe 10goff () method of the
JoltSessionBean to be triggered by an applet (for example, componentHidden) that is sent when
the applet gets hidden.

Step 7: Compile the Applet

After wiring the JoltBeans together, compile the applet. It is also recommended that you fill in
the empty catch blocksfor exceptions. Check the message window for any compilation errorsand
exceptions.

For additional information see the following section “Using the Oracle Tuxedo Service Metadata
Repository and Setting the Property Values.” Also refer to the table “ JoltBean Specific
Properties’ on page 5-41 and the figure “ JoltServiceBean Property Editor” on page 5-42.

Using Oracle Jolt

Using the Oracle Tuxedo Service Metadata Repository and Setting the Property Values

Running the Sample Application

To run the sample application, you must have the Oracle Tuxedo server running. Then enter an
account number in the Account 1D textfield. Y ou can use any of the account numbersincludedin
the BANKAPP database. Following are two examples of account numbersyou can useto test the

sample application:
e 80001
e 50050

Using the Oracle Tuxedo Service Metadata Repository
and Setting the Property Values

Custom Property Editors are provided for the following properties:

o JoltFieldName (Jolt-aware AWT beans)

e serviceName (JoltServiceBean)

The Property Editor, accessed from the Property List, includes dialog boxes that are used to add
or modify the properties. Y ou caninvoke the boxes from the Property List by selecting the button
with the elipsis(...) that is next to the value of the corresponding property value.

Some JoltBeans require input to the Property List field. The beans are listed in Table 5-6.

Tahle 5-6 JoltBean Specific Properties

JoltBean Property Input Description
JoltSessionBean appAddress eg., //host:port
userName, Password or Type your Oracle Tuxedo username
AppPassword and passwords.
JoltServiceBean serviceName INQUIRY, for example.
isTransactional Set to true if the service needsto be
executed within atransaction. Set
isTransactiona to false if the
service does not require atransaction.
JoltUserEventBean eventName Refer to the Oracle Tuxedo
filter tpsubscribe calls.

Using Oracle Jolt 5-41

5-42

Tahle 5-6 JoltBean Specific Properties (Continued)

JoltBean Property Input Description

All Jolt-aware GUI joltFieldName ACCOUNT_ID, for example

beans occurrencel ndex Multiple fields of the same name.
Index starts at 0.

JoltCheckbox TrueValue and FalseValue Thefield value corresponding to the

state of the checkbox.

The property editor reads cached information from the repository and returns names of the
available servicesand dataelementsin alist box. An example of the ServiceName property editor
is shown in the following figure “ JoltServiceBean Property Editor.”

To add or modify a property bean, follow these steps:

1. Select the service name by clicking on the ellipsisin the ServiceName field shown in

Figure 5-28.

Figure 5-28 JoltServiceBean Property Editor

& Property List - JoliBeanDev !Em

8| JoltServiceBean -

Class

beajolt beans JohtServiceBean

Marme

Session

JoltServiceBean

null

Transactional

falze

The Custom Property Editor for ServiceName shown in Figure 5-29 is displayed.

Figure 5-29 Custom Property Editor for ServiceName

Using Oracle Jolt

Using the Oracle Tuxedo Service Metadata Repository and Setting the Property Values

Custom Property Ed... B3

Services:

ﬂl [NaUiRy

Note: If you cannot or do not want to connect to the Repository database, type the service name
in the text box and skip to Step 7.

2. If you are not logged on, make sure the Jolt Server is running and select L ogon.
The JoltBeans Repository Logon shown in Figure 5-30 is displayed.

Figure 5-30 JoltBeans Repository Logon

E:‘E’,JultBeans Repository... B3

Servar: I

Fort number: I

Anplication password:

Uzername:

11

User password:

Laogan | Cancel |

3. Typethe Oracle Tuxedo or Jolt Relay Machine name in the Server field and the JSL or Jolt
Relay in the Port number field.

4. Type the password and username information (if required) and click L ogon.

Using Oracle Jolt 5-43

The Custom Property Editor loads its cache from the repository and is displayed, as shown
in the following figure “ Property Editor with Selected Service.”

5. Select the appropriate service name from the list box, as shown in the following figure.

6. Enter the property value (service or field name) directly.

A text box is provided.
7. Click OK inthe Custom Property Editor dialog.

The bean property is set with the contents of the text box.

Figure 5-31 Property Editor with Selected Service

Custom Property Editor B3

Senices:

Refresh | | INQUIRY

8. Click OK in the Custom Property Editor dialog box again.

JoltBeans Programming Tasks

Additional programming tasks include:
e Using Transactions with JoltBeans

e Using Custom GUI Elements with the JoltService Bean

5-44 Using Oracle Jolt

JoltBeans Programming Tasks

Using Transactions with JoltBeans

Y our Oracle Tuxedo application services may have functionality that updates your database. If
S0, you can use transactionswith JoltBeans (for example, in the sample, BANKAPP, the services
TRANSFER and WITHDRAWAL update the database of BANKAPP). If your application
service is read-only (such as INQUIRY), you do not need to use transactions.

The following example shows how to use transactions with JoltBeans.

1. ThesetTransactional (true) methodiscalled on the JoltServiceBean. (isTransactiona
isaBoolean property of the JoltServiceBean.)

2. ThebeginTransaction () method iscalled on the JoltSessionBean.
3. Thecallservice () method iscalled on the JoltServiceBean.

4. Depending on the outcome of the service call, the commitTransaction () or
rollbackTransaction () method is called on the JoltSessionBean.

Using Oracle Jolt 5-45

5-46

Using Custom GUI Elements with the JoltService Bean

JoltBeans provides alimited set of Jolt-enabled GUI components. Y ou can a so use controls that
are not Jolt-enabled together with the JoltServiceBean. Y ou can link controlsto the
JoltServiceBean that display output information of the service represented by the
JoltServiceBean. Y ou can also link controls that display input information.

For example, a GUI element that uses an adapter class to implement the JoltOutputListener
interface can listen to JoltOutputEvents. The JoltServiceBean as the event source for
JoltOutputEvents calls the serviceReturned () method of the adapter class when it sends a
JoltOutputEvent. Inside serviceReturned (), the control’ sinternal datais updated using
information from the event object.

The development tool generates the adapter classwhen the JoltServiceBean and the GUI element
are wired together.

As another example, a GUI element can call the set TnputTextvalue () method on the
JoltServiceBean. The GUI element containsinput datafor the Oracle Tuxedo service represented
by the JoltServiceBean.

As athird example, a GUI element can implement the required methods
(adagoltInputListener () and removeJoltInputListener ()) to act asevent sources for
JoltlnputEvents. The JoltServiceBean acts asan event listener for these events. The control sends
a JoltInputEvent when its own state changes to keep the JoltServiceBean updated with the input
information.

Using Oracle Jolt

CHAPTERa

Using Servlet Connectivity for Oracle
Tuxedo

With Oracle Jolt servlet connectivity, you can use HTTP servlets to perform server-side Java
tasks in response to HTTP requests. Jolt certifies servlet connectivity with the Java Web Server
versions 1.1.3 and up, and supports most other standard servlet engines. Using the Jolt session
pool classes, asimple HTML client can connect to any Web server that supports generic servlets.
Thus, al Jolt transactions are handled by a servlet on the Web server rather than being handled
by a client applet or application.

This capability enables HTML clients to invoke Oracle Tuxedo services without directly
connecting to Oracle Tuxedo. HTML clients can instead connect to aWeb server, throughHTTP,
where the Oracle Tuxedo service request is executed by a generic servlet. Using a Jolt session,
the servlet on the Web server administersthe Oracle Tuxedo service request by connecting to the
Oracle Tuxedo Server through the Jolt Server Handler (JSH) or the Jolt Server Listener (JSL),
which then makes the Oracle Tuxedo service request.

This capability allows many types of HTML clients to make remote Oracle Tuxedo service
requests. All Jolt transactions are handled on the server side without requiring any change to the
original HTML client. Thus, HTML clients are allowed to be very smple and require little

mai ntenance.

This topic includes the following sections:
e What Isa Servlet?
e How Servlets Work with Jolt

e \Writing and Registering HTTP Servlets

Using Oracle Jolt 6-1

e Jolt Servlet Connectivity Sample

e Additional Information on Servlets

What Is a Servlet?

A servlet is any Java class that can be invoked and executed on a server, usually on behalf of a
client. A servlet works on the server, while an applet works on the client. An HTTP servlet isa
Java class that handles an HTTP request and deliversan HTTP response. HTTP servlets reside
onan HT TP server and must extend the JavaSoft javax.servlet.http.Http Servlet Class so that they
can run in ageneric servlet engine framework.

Some advantages of using HTTP servlets are:

e They are written in awell-formed, and compiled language (Java), so are more robust than
“interpreted” scripts.

e They are an integral part of the HTTP server that supports them.

e They can be protected by the robust security of the server, unlike some CGlI scripts that are
hazardous.

e They interact with the HTTP request through a well-devel oped programmatic interface,
and so are easier to write and less prone to errors.

How Servlets Work with Jolt

With Jolt servlet connectivity, any generic HT TP servlet allows you to take advantage of the Jolt
features. Jolt servlets handle HTTP requests using the following Jolt classes:

e ServletDataSet

e ServletPoolManagerConfig
e ServletResult

o ServletSessionPool

e ServletSessionPool Manager

The Jolt Servlet Connectivity Classes

Following are descriptions of the Jolt servlet connectivity classes.

6-2 Using Oracle Jolt

Writing and Registering HTTP Servlets

ServletDataSet

This class contains data el ements that represent the input and output parameters of an Oracle
Tuxedo service. It provides a method to import the HTML field names and values from a
javax .servlet.http.HttpServletRequest Obj ect.

ServletPoolM anager Config

This class is the startup class for a Jolt Session Pool Manager and one or more associated Jolt
session pools. It creates the session pool manager if needed and starts a session pool with a
minimum number of sessions. Jolt Session Pool Manager internally keeps track of one or more
named session pools.

Thisclassisderived from bea . jolt.pool.PoolManagerConfig and allowsthe caller to pass
aProperties or Hashtable object to the static startup () method to create a session pool and the
static getSessionPoolManager () method to get the session pool manager of

bea.jolt.pool.servlet.ServletSessionPoolManager Class.

ServletResult

This class provides methods to retrieve each field in a ServletResult object as a String.
ServletSessionPool

Thisclass providesasession pool for usein aJavaserviet. A session pool represents one or more
connections (sessions) to an Oracle Tuxedo system. This class provides call methods that accept
input parameters for an Oracle Tuxedo service asa
javax.servlet.http.HttpServletRequest Obj ect.

Ser vletSessionPoolM anager

This classis a servlet-specific session pool manager. It manages a collection of one or more
session poolsof class servletSessionPool. Thisclass provides methodsthat are used to create
both the ServletSessionPoolManager itself and the session poolsthat it contains. These methods
are part of the administrative API for a session pool.

Writing and Registering HTTP Servlets

Beforewriting and registering HT TP servlets, you must first import the packagesthat support Jolt
servlet connectivity (5olt.jar, joltjse.jar, servliet.jar). HTTP servlets must extend
javax.servlet.http.HttpServlet. After you write your HTTP servlets, you register them with aWeb
server that supports generic servlets. Your custom servlets are treated exactly like the standard
HTTP servletsthat provide the HTTP capabilities.

Using Oracle Jolt 6-3

Each HTTP servlet isregistered against a specific URL pattern, so that when amatching URL is
requested, the corresponding servlet is called upon to handle the request.

Refer to the documentation for your particular Web server for instructions on how to register
servlets.

6-4 Using Oracle Jolt

Jolt Servlet Connectivity Sample

Jolt Serviet Connectivity Sample

The Jolt software includes three sample applications that demonstrate servlet connectivity using
the Jolt servlet classes. The three samples are:

e SimpApp Sample
e BankApp Sample
e Admin Sample

Refer to these samples to see code examples of how to use the Jolt servlet classesin your own
servlets.

Viewing the Sample Servlet Applications

To view the code for the Jolt sample applications, you need to install the Jolt API client classes
(usually chosen asan option when installing Jolt). Oncethe classesareinstalled in your directory
of choice, navigate to the following directory to see the sample application files:

<Installation directory>\udataobj\jolt\examples\servlet

To view the sample code, use atext editor such as Microsoft Notepad to open the Javafiles for
each sample application.

SimpApp Sample

A sample application named simpapp isincluded with Jolt. The simpapp application illustrates
how the servlet uses Servlet Connectivity for Oracle Tuxedo. The following servlet tasks are
illustrated by the SimpApp sample:

e Using aproperty file to create a session pool
e Getting the session pool manager

e Retrieving the session pool by name

e Invoking an Oracle Tuxedo service

e Processing the result set

This example demonstrates how a servlet can connect to Oracle Tuxedo and call upon one of its
services; it should be invoked from the simpapp . htmi file. The servlet creates a session pool
manager at initialization, which is used to obtain a session when the dopost () method is

Using Oracle Jolt 6-5

invoked. This session is used to connect to a servicein Oracle Tuxedo with a name described by
the posted “ svenaMe” argument. In this example the serviceis called "TouppeR", which
transposes the posted “ sTRING” argument text into uppercase, and returns the result to the client
browser within some generated HTML.

Note: TheWebLogic Server isused in this example.

Requirements for Running the SimpApp Sample
The requirements for running the SimpApp sample are;

e Any Web application server with Servlet JSDK 1.1 or above
e Oracle Tuxedo 8.0 or later with SimpApp sample running
e Oracle Jolt

Installing the SimpApp Sample

1. Install the Jolt classlibrary (Fo1t.jar) and Servlet Connectivity for Oracle Tuxedo class
library (jo1tjse.jar) onthe Web application server. Extract the classfilesif it isrequired
by your Web application server.

2. Compilethe simpappservilet.java. Make surethat you include the standard gpk 1.1 .x
classes.zip, JSDK 1.1 classes, Jolt class library, and Servlet Connectivity for Oracle
Tuxedo class library in the classpath.

javac -classpath $(JAVA_HOME)/lib/classes.zip:$(JSDK)/lib/servlet.jar:
$ (JOLTHOME) /jolt.jar:$ (JOLTHOME) /joltjse.jar:./classes
-d ./classes SimpAppServlet.java
Note: The package name of the SimpAppServiet is examples.jolt.servlet.simpapp.
3. Putthe simpapp.html and simpapp.properties filesinthe public HTML directory.

4.|W0d”ythesimpapp.propertiesf“e.Chaﬂgethe"appaddrlist"and“failoverlisf’
with the proper Jolt server hosts and ports. Specify the proper Oracle Tuxedo authentication
information if the SimpApp has security turned on. For example:

#simpapp
#Fri Apr 16 00:43:30 PDT 1999
poolname=simpapp

appaddrlist=//host:7000, //host:8000

Using Oracle Jolt

Jolt Servlet Connectivity Sample

failoverlist=//backup:9000
minpoolsize=1
maxpoolsize=3
userrole=tester
apppassword=appPass
username=guest

userpassword=myPass

5. Register “Simpapp” for the SimpAppServlet. Consult your Web application server for details.
If you are using Oracle WebL ogic Server, add the following section of the config.xm1 file:

<Application
Deployed="true"
Name="simpapp"
Path=".\config\mydomain\applications"

<WebAppComponent
Name="simpapp"
Targets="myserver"
URI="simpapp"
/>
</Application>

6. To accessthe SimpApp initial page “simpapp . html,” type:

http://mywebserver:8080/simpapp.html

Using Oracle Jolt 6-7

BankApp Sample

The bankapp application illustrates how the servlet is written with PageCompiledServlet with
Servlet Connectivity for Oracle Tuxedo. bankapp illustrates how to:

Use a property fileto create a session pool
o Get the session pool manager

e Retrieve asession pool by name

e Invoke an Oracle Tuxedo service

e Processthe result set

Requirements for Running the BankApp Sample
Following are the requirements for running the BankApp sample:

e Any Web application server with Servlet JSDK 1.1 or above
e Oracle Tuxedo 8.0 or later with BankApp sample running
e Oracle Jolt

Installation Instructions

1. Install the Jolt classlibrary (Fo1t.jar) and Servlet Connectivity for Oracle Tuxedo class
library (5o01tjse.jar) to the Web application server. Extract the classfilesif it isrequired
by your Web application server.

2. Copy al HTML, JHTML and bankapp . properties filesto the public HTML directory of
the Web application server (for example, $WEBLOGIC/myserver/public_html for
WebL ogic):

bankapp.properties
tellerForm.html
inquiryForm.html
depositForm.html
withdrawalForm.html
transferForm.html

InquiryServlet.jhtml

6-8 Using Oracle Jolt

Jolt Servlet Connectivity Sample

DepositServlet.jhtml
WithdrawalServlet.jhtml

TransferServlet.jhtml

3. Modify the bankapp.properties file. Changethe “appaddriist” and “failoverlist”
with the proper Jolt server hosts and ports. Specify the proper Oracle Tuxedo authentication
information if the BankApp has security turned on. For example:

#bankapp

#Fri Apr 16 00:43:30 PDT 1999
poolname=bankapp
appaddrlist=//host:8000, //host:7000
failoverlist=//backup:9000
minpoolsize=2

maxpoolsize=10

userrole=teller
apppassword=appPass
username=JaneDoe

userpassword=myPass

4. |If applicable, turn on the automatic page compilation for JHTML from your servlet engine.
Consult the user manual of your Web application server for details.

5. To access BankApp through Servlet Connectivity for Oracle Tuxedo, use the following URL
in your favorite browser:

http://mywebserver:8080/tellerForm.html

Using Oracle Jolt 6-9

Admin Sample
The Admin sample application illustrates the following servlet tasks:
e Using the administrative API to control the session pools
° Retr(i;;vi ng the statistics through PageCompiledServlet in Servlet Connectivity for Oracle
Tuxedo

Requirements for Running the Admin Sample
Following are the requirements for running the Admin sample;

e Any Web application server with Servlet JSDK 1.1 or above
e Oracle Jolt

Installation Instructions

1. Install the Jolt class library and Servlet Connectivity for Oracle Tuxedo class library on the
Web application server.

2. Copy all HTML filesto the public HTML directory (for example,
SWEBLOGIC/myserver/public_html for WebLogic)

PoolList.jhtml

PoolAdmin.jhtml

3. Togetalist of session pools, use the following URL in your favorite browser:

http://mywebserver:8080/PoolList.jhtml

6-10 Using Oracle Jolt

Additional Information on Servlets

Additional Information on Servlets

For more information on writing and using servlets, refer to the following sites:
Oracle WebL ogic Servlet Documentation
http://e-docs.bea.com/wls/docs8l/adminguide/index.html
http://e-docs.bea.com/wls/docs8l/servlet/index.html
http://e-docs.bea.com/wls/docs8l/javadocs/index.html

Java Servlets

http://jserv.java.sun.com/products/java-server/documentation/
webserverl.1l/index_developer.html

Servlet Interest Group

http://servlet-interest@java.sun.com

Using Oracle Jolt 6-11

6-12 Using Oracle Jolt

CHAPTERo

Migrating from Jolt Repository to Oracle
Tuxedo Service Metadata Repository

Jolt Repository is deprecated in this release. All service definitions stored in Jolt repository can
be loaded in the Tuxedo metadata repository using the bulk [oader tool.

The original Jolt repository server JREPSVR iS also deprecated, and all services that JREPSVR
provided are now provided by TvveTADATA. If tmloadcf detects presence of JREPSR in
ubbconfig, it automatically removes srRepsvr and adds TMETADATA if not already configured.

Using one repository (Tuxedo metadata repository) and one server (TMMETADATA) improve
operational effectiveness and reduces the risk of service definitions getting out of sync.

This topic includes the following sections:
e Replacing JREPSVR with TMMETADATA in UBBCONFIG
e Loading Jolt Repository to Oracle Tuxedo Service Metadata Repository
e Sample: joltapp Migration
Notes:
e TMMETADATA must run on Oracle Tuxedo 12¢ Release 2 (12.2.2) or later.
e Oracle Tuxedo Service Metadata Repository does not support package function.

e Bulk Loader is still supported but some behaviors are changed.

— Do not support for deleting service definitions. You should use tmloadrepos -d
servicel...] or the Metadata Editor to delete services.

Using Oracle Jolt 1-1

Replacing JREPSVR with TMMETADATA in UBBCONFIG

— service (that represents the service entry stored in the Metadata Repository) and
tuxservice (that represents the actual Oracle Tuxedo service name) must be same;
otherwise you cannot update this service definition and JSH in Oracle Tuxedo 12c
Release 1 (12.1.3) or earlier cannot work.

— The servicetype must be"service"; otherwise you cannot update this service
definition.

Replacing JREPSVR with TMMETADATA in UBBCONFIG

Oracle Tuxedo command tmloadcf browses your uBBCONFIG and creates a new one (you can
compare these two uBBCONFIG files to see the difference after invoking tmloadc£).

In your UBBCONFIG,

e |f JREPSVR is configured, tmloadcf automatically replaces JREPSVR with TMMETADATA
when creating the new UBBCONFIG.

In this scenario, tmloadct printsaprompt like this:

CMDTUX_CAT:8401: WARNING: The JoltRepository Server has been deprecated
and replaced with the Tuxedo Servicata Server

o If both JREPSVR and TMMETADATA are configured, tmloadcf just ignores JREPSVR wWhen
creating the new UBBCONFIG.

In this scenario, tmloadcf prints aprompt like this:

CMDTUX_CAT:8401: WARNING: The JoltRepository Server has been deprecated
and replaced with the Tuxedo Service Metadata Server

Y ou can use tmloadrepos/tmunloadrepos t0load Jolt Repository file to M etadata Repository
file; thisloading is necessary because you can access to Jolt Repository only after it isloaded to
Metadata Repository. If you want to update the loaded M etadata Repository, you should remove
-r option from TMMETADATA in UBBCONFIG. FOr more information, see tmloadcf (1).

Loading Jolt Repository to Oracle Tuxedo Service
Metadata Repository

Y ou should use Oracle Tuxedo command tmunloadrepos to display Jolt Repository in plain
text, which tmloadrepos Can parse. See tmloadrepos (1) and tmunloadrepos (1) for more
information.

Using Oracle Jolt 1-2

../rfcm/rfcmd.html#wp1330826
../rfcm/rfcmd.html#wp1789066
../rfcm/rfcmd.html#wp1791154

Sample: joltapp Migration

Two parameter-level keywords, fieldname and fieldindex, are added to the Oracle Tuxedo
Service Metadata Repository for thisloading (and for FML/FML32 only). See Creating The
Oracle Tuxedo Service Metadata Repository for more information.

Sample: joltapp Migration

Thisisasample for migrating joltapp from Jolt Repository to Oracle Tuxedo Service Metadata
Repository.

1. Usetmloadcf to compile uBBcoNFIG Which handles JREPSVR automatically. See
Listing 1-1 for an example.

2. Use tmunloadrepos to load Jolt Repository file named jrep (see Listing 1-2) to Oracle
Tuxedo Service Metadata Repository file named jolt .metarepos (seeListing 1-3).

3. Usetmloadrepos toinsert the above jolt.metarepos fileinto the origina Metadata
Repository file. See Listing 1-4 for an example.

Listing 1-1 Example for Compiling UBBCONFIG

$ tmloadcf -y ubb

$ tmunloadcf #to check whether JREPSVR still existed.

Listing 1-2 Example for jrep

$ cat jrep

!JOLT1.0

add SVC/.NUMRECS:vs=1l:ex=0:bt=FML32:\
bp:pn=NRECS:pt=integer:pf=33554435:pa=rd:ep:\
bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:

add SVC/.GETREC:vs=1l:ex=0:bt=FML32:\
bp :pn=REPNAME:pt=string:pf=167772161:pa=wr:ep:\
bp :pn=REPVALUE:pt=string:pf=167772162:pa=rd:ep:\

bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:

Using Oracle Jolt 1-3

../ads/admrp.html#wp1022618
../ads/admrp.html#wp1022618

add

add

add

add

add

add

add

add

Sample: joltapp Migration

SVC/.GETSVC:vs=1:ex=0:bt=FML32:\
bp:pn=REPNAME:pt=string:pf=167772161:pa=wr:ep:\
bp :pn=REPVALUE:pt=string:pf=167772162:pa=rd:ep:\
bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:

SVC/ .ADDREC:vs=1:ex=0:bt=FML32:\
bp:pn=REPVALUE:pt=string:pf=167772162:pa=wr:ep:\
bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:

SVC/.DELREC:vs=1:ex=0:bt=FML32:\
bp:pn=REPNAME:pt=string:pf=167772161:pa=wr:ep:\
bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:

SVC/.GETKEYS:vs=1:ex=1:bt=FML32:\
bp:pn=PATTERN:pt=string:pf=167772164:pa=wr:ep:\
bp:pn=NRECS:pt=integer:pf=33554435:pa=rd:ep:\
bp : pn=REPNAME:pt=string:pf=167772161:po=0:pa=rd:ep:

SVC/.GETALL:vs=1:ex=0:bt=FML32:\
bp:pn=PATTERN:pt=string:pf=167772164:pa=wr:ep:\
bp:pn=NRECS:pt=integer:pf=33554435:pa=rd:ep:\
bp :pn=REPVALUE:pt=string:pf=167772162:po=0:pa=rd:ep:

SVC/ .FLUSHCACHE:vs=1:ex=0:bt=FML32:\
bp :pn=REPNAME:pt=string:pf=167772161:p0o=200:pa=wr:ep:

SVC/ .GARBAGECOLLECT:vs=1:ex=0:bt=FML32:\
bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:

SVC/INQUIRY:vs=1:ex=1:bt=FML:\
bp :pn=ACCOUNT_ID:pt=integer:pf=33554436:pa=wr:ep:\
bp :pn=SBALANCE:pt=string:pf=167772164:pa=rd:ep:\
bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:\

bp:pn=FORMNAM:pt=string:pf=167772165:pa=rd:ep:

Using Oracle Jolt 1-4

Sample: joltapp Migration

add SVC/WITHDRAWAL:vs=1:ex=1:bt=FML:\
bp :pn=ACCOUNT_ID:pt=integer:pf=33554436:pa=wr:ep:\
bp : pn=SAMOUNT :pt=string:pf=167772166:pa=wr:ep:\
bp :pn=SBALANCE:pt=string:pf=167772164:pa=rd:ep:\
bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:\
bp : pn=FORMNAM:pt=string:pf=167772165:pa=rd:ep:

add SVC/DEPOSIT:vs=l:ex=1:bt=FML:\
bp : pn=ACCOUNT_ID:pt=integer:pf=33554436:pa=wr:ep:\
bp : pn=SAMOUNT :pt=string:pf=167772166:pa=wr:ep:\
bp :pn=SBALANCE:pt=string:pf=167772164:pa=rd:ep:\
bp : pn=BALANCE:pt=float:pf=100663303:pa=rd:ep:\

bp:pn=STATLIN:pt=string:pf=167772163 :pa=rd:ep:\

bp :pn=BALANCE:pt=float:pf=100663303:pa=rd:ep:\
bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:\
bp : pn=FORMNAM: pt=string:pf=167772165:pa=rd:ep:

add SVC/TRANSFER:vs=1l:ex=1:bt=FML:\

bp :pn=ACCOUNT_ID:pt=integer:pf=33554436:po=2:pa=wr:ep: \

bp : pn=SAMOUNT :pt=string:pf=167772166:pa=wr:ep:\

bp :pn=SBALANCE:pt=string:pf=167772164:po=2:pa=rd:ep:\

bp:pn=STATLIN:pt=string:pf=167772163 :pa=rd:ep:\

bp :pn=FORMNAM: pt=string:pf=167772165:pa=rd:ep:

add PKG/BANKAPP:INQUIRY:DEPOSIT:WITHDRAWAL: TRANSFER:

add SVC/TOUPPER:vs=1:ex=1:bt=STRING:\

bp:pn=STRING:pt=string:pf=167772161:pa=rw:ep:

add PKG/SIMPSERV:TOUPPER:

Using Oracle Jolt 1-5

Listing 1-3 Example for jolt.metarepos

Sample: joltapp Migration

S tmunloadrepos jrep >jolt.metarepos

#Generated from Repository file

/u0l/common/patches/huchchen/TUX13c64/LC/bld/ga/sanity_tests/apps/joltapp/

jrep

#

FHEFH AR
service : .GETALL
FHEFH AR
service=.GETALL
export=N

inbuf=FML32
outbuf=FML32
version=1
param=PATTERN
type=string
access=in
param=NRECS
type=integer
access=out
param=REPVALUE
count=0

type=string

access=out

HHAHHHHHRHH AR AR HRS

Using Oracle Jolt

1-6

service : .GETKEYS
HHH# 4R AR
service=.GETKEYS
export=Y

inbuf=FML32
outbuf=FML32

version=1
param=PATTERN
type=string

access=in

param=NRECS
type=integer
access=out
param=REPNAME

count=0

type=string

access=out

FHEFH AR
service : .ADDREC
FHEFH AR
service=.ADDREC
export=N

inbuf=FML32
outbuf=FML32
version=1

param=REPVALUE

Sample: joltapp Migration

Using Oracle Jolt

1-1

Sample: joltapp Migration

type=string
access=in
param=STATLIN
type=string

access=out

FHEFHSHH A F A H SRR
service : TRANSFER
FHEFHSHH A F A H SRR
service=TRANSFER
export=Y

inbuf=FML

outbuf=FML

version=1
param=ACCOUNT_ID
count=2

type=integer
access=in
param=SAMOUNT
type=string

access=in
param=SBALANCE

count=2

type=string

access=out
param=STATLIN

type=string

Using Oracle Jolt 1-8

access=out
param=FORMNAM
type=string

access=out

FHEFH AR SRR S HS
service : WITHDRAWAL
FHEFH AR SRR S HS
service=WITHDRAWAL
export=Y

inbuf=FML

outbuf=FML

version=1
param=ACCOUNT_ID
type=integer

access=in

param=SAMOUNT
type=string

access=in
param=SBALANCE
type=string

access=out
param=STATLIN
type=string

access=out
param=FORMNAM

type=string

Sample: joltapp Migration

Using Oracle Jolt

1-9

access=out

HEHHHHHRF R AR R
service : .GARBAGECOLLECT
HEHHHHHRF R AR R

service=.GARBAGECOLLECT

export=N
inbuf=FML32
outbuf=FML32
version=1
param=STATLIN
type=string

access=out

FHEHH AR
service : TOUPPER
FHEFH AR
service=TOUPPER
export=Y

inbuf=STRING
outbuf=STRING
version=1
param=STRING
type=string

access=inout

HHSHHHHH AR AR AR RS HS

Sample: joltapp Migration

Using Oracle Jolt 1-10

service : .DELREC
FHEHH AR
service=.DELREC
export=N

export=N

inbuf=FML32
outbuf=FML32
version=1
param=REPNAME
type=string
access=in
param=STATLIN
type=string

access=out

HEHSHHHRH RS
service : .FLUSHCACHE

HHSHHHHHSHH R H AR R SRS

service=.FLUSHCACHE
export=N
inbuf=FML32
outbuf=FML32
version=1
param=REPNAME
count=200
type=string

access=in

Sample: joltapp Migration

Using Oracle Jolt 1-11

FHEFHSHH A F A H SRR
service : .NUMRECS
FHEFHSHH A F A H SRR
service=.NUMRECS
export=N

inbuf=FML32
outbuf=FML32

version=1

param=NRECS
type=integer
access=out
param=STATLIN
type=string

access=out

FHEFH AR
service : INQUIRY
FHEFH AR
service=INQUIRY
export=Y

inbuf=FML

outbuf=FML

version=1
param=ACCOUNT_ID
type=integer

access=in

Sample: joltapp Migration

Using Oracle Jolt

1-12

Sample: joltapp Migration

param=SBALANCE
type=string
access=out
param=STATLIN
type=string
access=out
param=FORMNAM
type=string

access=out

FHEHH AR
service : DEPOSIT
FHEHH AR
service=DEPOSIT
export=Y

inbuf=FML

outbuf=FML

version=1
param=ACCOUNT_ID
type=integer
access=in
param=SAMOUNT
type=string

access=in
param=SBALANCE
type=string

access=out

Using Oracle Jolt 1-13

param=BALANCE
type=float
access=out
param=STATLIN
type=string
access=out
param=FORMNAM
type=string

access=out

HEHHHH R
service : .GETSVC

HHSHHSHH AR AR AR RS HS

service=.GETSVC
export=N
inbuf=FML32
outbuf=FML32
version=1
param=REPNAME
type=string
access=in
param=REPVALUE
type=string
access=out
param=STATLIN
type=string

access=out

Sample: joltapp Migration

Using Oracle Jolt

1-14

FHEHH AR
service : .GETREC
FHEHH AR
service=.GETREC
export=N

inbuf=FML32
outbuf=FML32
version=1
param=REPNAME
type=string
access=in
param=REPVALUE
type=string
access=out
param=STATLIN
type=string

access=out

Sample: joltapp Migration

Listing 1-4 Example for Inserting jolt.metarepos to the Original Metadata Repository File

tmloadrepos -i meta.data jolt.metarepos

Using Oracle Jolt 1-15

Oracle Jolt Exceptions

Thisappendix describes al the Oracle Jolt exceptionsthat you may encounter. Keep in mind that
the Jolt Class Library returns both Oracle Jolt and Oracle Tuxedo exceptions.

For details about Oracle Tuxedo exceptions, refer to the appropriate document in the following
list:

e Oracle Tuxedo Command Reference
e Oracle Tuxedo ATMI C Function Reference
Oracle Tuxedo ATMI COBOL Function Reference

e Oracle Tuxedo ATMI FML Function Reference

e File Formats, Data Descriptions, MIBs, and System Processes Reference
The Jolt Class Library exceptions are listed for each class, constructor, and method listed in the
Oracle Jolt API Reference.

The following table lists the Oracle Jolt and Oracle Tuxedo exceptions that you may encounter
while running Oracle Jolt. Each exception includes a possible cause (or causes) and a

recommended action (wherever possible) to help resolve the situation

Using Oracle Jolt A-1

1. TPEABORT A transaction could not commit.

Cause This exception occurs because atransaction could not commit on
the server side. This exception may also occur if the JSH
performs a message resend for a commit that has timed out due
to a previous blocking condition. In Oracle Tuxedo, you can get
thisexceptionif tpcommit () iscalled with outstanding replies
Or open conversation connections.

Action Check transaction failures on the server side. Oracle Jolt clients
should resend the request after the transaction problem has been
fixed on the server side.

2. TPEBADDESC This exception should not occur in Oracle Jolt.

Cause In Oracle Tuxedo, this exception usually occurswhen an invalid
caller descriptor isgivento tpgetrply () Or tpsend ().

Action None.

3. TPEBLOCK A blocking condition hasoccurred and the TPNOBLOCK flag is specified in Oracle

Tuxedo.

Cause This exception occurs because the server is backed up.

Action Y ou may need to re-examine and re-architect the application to
handle extreme load cases.

4. TPEINVAL Invalid arguments were given by the application.
A-2 Using Oracle Jolt

Cause

This exception occursif anew JoltSession classis processed
before performing the security protocol. In Jolt's URL handler
routine, this exception occurs when ainvalid challenge response
isreceived by the openConnection () method. The
TPEINVAL exception can also occur if you specified a
hexadecimal address for the JSL -1 option without aleading
“0x" , or if you entered awrong addressin UBBCONFIG file. In
addition, theGETREC (), DELREC () andGETSVC () servicesin
JREPSVR Can return TPEINVAL if the REPNAME iS missing.
Also, the ADDREC () servicein JREPSVR can return TPEINVAL
if the REPVAL is not specified.

Action

This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

5.

TPELIMIT

The maximum number of outstanding requests or subscriptions has been

reached.

Cause

The maximum number of outstanding requests has been reached.
This exception could also mean that the Oracle Tuxedo System

Event Broker's maximum number of subscriptions (50 internally
defined for now) has been reached.

Action

Y ou may need to re-examine and re-architect the application to
handle load extreme cases.

6.

TPENOENT

Therequested serviceisnot available.

Cause

Usually, the requested service is not booted or advertised on the
Oracle Tuxedo server side. It is also possible that the requested
serviceis not defined in the Oracle Tuxedo Service Metadata
Repository. Thisexception could also indicate that you could not
access the Oracle Tuxedo System Event Broker.

Action

Y ou need to check the server side to seeif the service is booted
or advertised. Otherwise, check to see if the requested serviceis
defined in the Oracle Tuxedo Service M etadata Repository. After
the service is available on the server side, Jolt clients should
resend the request.

7.

TPEOS

An operating system exception has occurred.

Using Oracle Jolt A-3

Cause The exact nature of the problem is described in the ULOG file.
Typically, you can get this exception due to the memory
allocation failures, wrong network address, or failure to attach to
the Bulletin Board for the JSL.

Action Try fixing the problem as described in the ULOG file. Jolt clients
might need to reconnect or resend the request after the problem
has been fixed.

8. TPEPERM Thereisa permission problem when attempting to join a session.
Cause In the JoltSession class, this exception occurs because the Jolt

client does not have the permission to join the application.
Permission may be denied based on an invalid application
password, failure to pass application specific authentication, or
the use of restricted client names. In the Jolt URL handler
routing, this exception occurs when a bad challenge responseis
received on the openConnection () method. If the Oracle
Tuxedo Service Metadata Repository is set to read-only, the
ADDREC () and DELREC () services, or the
GARBAGECOLLECT () Sservicein JREPSVR, also return the
TPEPERM exception.

Action This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

9. TPEPROTO A function was called in an improper context.

Cause For this exception, an improper context could include a
rollback () or commit () method called by a participant, an
unsubscribe event that is called while “ unsubscribe al” isin
progress, or when the caller is not aclient.

Action This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

10. TPESVCERR A serviceroutine has encountered an exception during tpreturn() or
tpforward () in Oracle Tuxedo.

A-4 Using Oracle Jolt

Cause The service routineis returning application-level failures, which
may include any of the following: an application calls
tpreturn () or tpforward () withinvalid flags, the caller
descriptor is no longer valid, or there are invalid return values.

Action This type of exception should have been handled during the

application development cycle. Y ou should not receive this
exception in a production environment.

11. TPESVCFAIL

The serviceroutine sending the caller'sreply called tpreturn () with TPFAIL.

Cause

The service routine is returning application-level failures.

Action

This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

12. TPESYSTEM

An Oracle Tuxedo system exception has occur red.

Cause

The exact nature of the exceptioniswrittentothe ULOG file. For
example, when performing the Diffie-Hellman encryption, this
exception occurs if the JSH is unable to send negotiation
parameters. The JSL fails to send the reply challenge call to the
Jolt client. The Jolt client sends an incorrect timestamp value, an
incorrect number of encrypted bits value, an incorrect ticket
value, or timestamp mismatches in reconnect protocol. The JSL
failsto initialize network protocol information, or could not
establish alistening address on a network. The JSH receives a
network message with an unknown context or receivesamessage
with a different connection.

Action

In most cases, you need to find out the exact nature of the
exception from the ULOG file on the server side. In case of
hardware or network failures, you can try to reconnect if a
hardware or network failover is available.

13. TPETIME

A transaction timeout has occurred.

Cause

Thereis atransaction timeout on the server side.

Action

This type of exception should be addressed on the application
server side. Jolt clients should resend the request after the server
side problem has been resolved.

14. TPETRAN

Therequested service belongsto a server that does not support transactions and
TPNOTRAN iS not set.

Using Oracle Jolt A-5

Cause A transaction is not supported for the requested service.

Action This type of exception should be addressed on the application
server side. Jolt clients should resend the request after the server
side problem has been resolved.

15. TPGOTSIG An unexpected signal was received.
Cause A signal was received and the TPSIGSTRT flag was not
specified.
Action None.
16. TPERMERR A resource manager failed to open or close correctly on the server side.
Cause The resource manager might not be available; or all the resource
might not be released or committed before close.
Action Check the ULOG file for reasons why the resource manager
failed to open or close on the server side.
17. TPEITYPE For the JoltRemoteService class, the requested Oracle Tuxedo service does not
recognize the type and subtype of the input data.
Cause The type and subtype of input datais not defined in the Oracle
Tuxedo Service Metadata Repository.
Action The type and subtype of input data should be defined in the
Oracle Tuxedo Service Metadata Repository. This type of
exception should have been handled during the application
development cycle. Y ou should not receive this exception in a
production environment.
18. TPEOTYPE For the JoltRemoteService class, the Oracle Tuxedo caller does not recognizethe
type and the subtype of thereply data.
Cause The type and subtype of output datais not defined in the Oracle
Tuxedo Service Metadata Repository.
Action The type and subtype of output data should be defined in the
Oracle Tuxedo Service Metadata Repository. Thistype of
exception should have been handled during the application
development cycle. Y ou should not receive this exception in a
production environment.
19. TPERELEASE This exception should not occur in Oracle Jolt.
A-6 Using Oracle Jolt

Cause Usually, this exception occurs when an unsolicited notification
message is sent from a server with the TPACK flag set, and the
targetisaJolt client from an older rel ease of Oracle Jolt that does
not support the acknowledgment protocol.

Action Verify that the correct version of Oracle Jolt isinstalled on your
machine. Thistype of exception should have been handled during
the application development cycle. Y ou should not receive this
exception in an production environment.

20. TPEHAZARD Dueto somefailure, the work done on behalf of the transaction may have been
heuristically completed.
Cause Check the ULOG file on the server side for details.
Action None.
21. TPEHEURISTIC Dueto a heuristic decision, the wor k done on behalf of the transaction was
partially committed and partially aborted.
Cause Check the ULOG file on the server side for details.
Action None.
22. TPEEVENT This exception should not occur in Oracle Jolt.
Cause Usually, this exception means that an event has occurred when
sending or receiving amessage in aconversational connectionin
Oracle Tuxedo. However, conversational server connections are
not available in Oracle Jolt.
Action None.
23. TPEMATCH The JoltUser Event class hasimplemented a subscription to an asynchronous

notification event, but the subscription hasfailed because it matches an existing
subscription.

Cause The subscription failed because it matched one aready listed
with the Oracle Tuxedo System Event Broker.

Action None.

24. TPEDIAGNOSTIC

This exception should not occur in Oracle Jolt.

Using Oracle Jolt A-7

Cause Usually, this exception occurs when enqueuing or dequeuing a
message from the specified queue fails in Oracle Tuxedo.
However, enqueing and dequeing of messagesisnot availablein
Oracle Jolt.

Action None.

25.

TPEMIB

This exception should not occur in Oracle Jolt.

Cause Usually, thisexception occurswhen an administrativerequest via
tpadmcall () hasfaled in Oracle Tuxedo. However, TMIB
calsare not availablein Oracle Jolt.

Action None.

26.

TPEJOLT

This exception indicatesthereisa problem in Oracle Jolt.

Cause The TPEJOLT exception could occur for any of the following
reasons.

¢ JoltSession class—the send (), recv () oOr cancel ()
methodsthrow TPEJOLT if the session object or message D
isinvalid.

¢ JoltSession class—throws TPEJOLT when TPINIT data
conversion fails.

* beajolt.pool.connection class—throws TPEJOLT when a
run-time exception occurs.

¢ JoltRemoteService—the call () method throws TPEJOLT
when the buffer conversion between Oracle Jolt and Oracle
Tuxedo fails, the requested serviceis not defined in the
Oracle Tuxedo Service Metadata Repository, the requested
service does not the right version, or the reply data
conversion fails.

¢ JoltUserEvent class—throws TPEJOLT when event name
conversion fails, an invalid message ID is encountered, or
unsolicited message data conversion fails.

Action This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

A-8

Using Oracle Jolt

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Using Oracle Jolt, 12c Release 2 (12.2.2)
	Contents
	Introducing Oracle Jolt
	Oracle Jolt Components
	Key Features
	How Oracle Jolt Works
	Jolt Servers and Repository Servers
	Jolt Servers
	Repository Servers

	Jolt Class Library
	JoltBeans
	Jolt Server and Jolt Client Communication
	Oracle Tuxedo Service Metadata Repository
	Jolt Internet Relay

	Creating a Jolt Client to Access Oracle Tuxedo Applications

	Bulk Loading Oracle Tuxedo Services
	Using the Bulk Loader
	Activating the Bulk Loader
	Command-line Options

	The Bulk Load File

	Syntax of the Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values

	Troubleshooting
	Sample Bulk Load Data

	Configuring the Oracle Jolt System
	Quick Configuration
	Editing the UBBCONFIG File
	Configuring the Tuxedo Service Metadata Repository
	Initializing Services That Use Oracle Tuxedo and the Repository Editor
	Configuring the Oracle Tuxedo TMUSREVT Server for Event Subscription
	Configuring Jolt Relay
	On UNIX
	On UNIX and Windows 2003

	Jolt Background Information
	Jolt Server
	Starting the JSL
	Shutting Down the JSL
	Restarting the JSL
	Configuring the JSL
	JSL Command-line Options
	Security and Encryption

	Jolt Relay
	Jolt Relay Failover
	Jolt Client to JRLY Connection Failover
	JRLY to JRAD Adapter Connection Failover

	Jolt Relay Process
	Starting the JRLY on UNIX

	JRLY Command-line Options for Windows 2003
	JRLY Command-line Option for UNIX
	JRLY Configuration File

	Jolt Relay Adapter
	JRAD Configuration
	Network Address Configurations

	Oracle Tuxedo Service Metadata Repository
	Initializing Services By Using Oracle Tuxedo and the Repository Editor

	Event Subscription
	Configuring for Event Subscription
	Filtering Oracle Tuxedo FML or VIEW Buffers
	Buffer Types
	FML Buffer Example

	Oracle Tuxedo Background Information
	Configuration File
	Creating the UBBCONFIG File
	Configuration File Format
	MACHINES Section
	GROUPS Section
	SERVERS Section
	Parameters Usable with JSL
	Optional Parameters
	Run-time Parameters
	Parameters Associated with RESTART
	Entering Parameters

	Sample Applications in Oracle Jolt Online Resources

	Using the Jolt Class Library
	Class Library Functionality Overview
	Java Applications Versus Java Applets
	Jolt Class Library Features
	Error and Exception Handling
	Jolt Client/Server Relationship

	Jolt Object Relationships
	Jolt Class Library Walkthrough
	Logon and Logoff
	Synchronous Service Calling
	Transaction Begin, Commit, and Rollback

	Using Oracle Tuxedo Buffer Types with Jolt
	Using the STRING Buffer Type
	Define TOUPPER in the Repository Editor
	ToUpper.java Client Code

	Using the CARRAY Buffer Type
	Define the Tuxedo Service in the Repository Editor
	tryOnCARRAY.java Client Code

	Using the FML Buffer Type
	tryOnFml.java Client Code
	FML Field Definitions
	Define PASSFML in the Repository Editor
	tryOnFml.c Server Code

	Using the VIEW Buffer Type
	Define VIEW in the Repository Editor
	simpview.java Client Code
	VIEW Field Definitions
	simpview.c Server Code

	Using the XML Buffer Type
	Define the Tuxedo Service in the Repository Editor
	simpxml.java Client Code

	Using the MBSTRING Buffer Type

	Multithreaded Applications
	Threads of Control
	Preemptive Threading
	Non-Preemptive Threading

	Using Jolt with Non-Preemptive Threading
	Using Threads for Asynchronous Behavior
	Using Threads with Jolt

	Event Subscription and Notifications
	Event Subscription Classes
	Notification Event Handler
	Connection Modes
	Notification Data Buffers
	Oracle Tuxedo Event Subscription
	Supported Subscription Types
	Subscribing to Notifications
	Unsubscribing from Notifications

	Using the Jolt API to Receive Oracle Tuxedo Notifications

	Clearing Parameter Values
	Reusing Objects
	Deploying and Localizing Jolt Applets
	Deploying a Jolt Applet
	Client Considerations
	Web Server Considerations
	Localizing a Jolt Applet

	Using SSL

	Using JoltBeans
	Overview of Jolt Beans
	JoltBeans Terms
	Adding JoltBeans to Your Java Development Environment
	Using Development and Run-time JoltBeans

	Basic Steps for Using JoltBeans
	JavaBeans Events and Oracle Tuxedo Events
	Using Oracle Tuxedo Event Subscription and Notification with JoltBeans

	How JoltBeans Use JavaBeans Events
	The JoltBeans Toolkit
	JoltSessionBean
	JoltServiceBean
	JoltUserEventBean

	Jolt-Aware GUI Beans
	JoltTextField
	JoltLabel
	JoltList
	JoltCheckbox
	JoltChoice

	Using the Property List and the Property Editor to Modify the JoltBeans Properties
	JoltBeans Class Library Walkthrough
	Building the Sample Form
	Placing JoltBeans onto the Form Designer

	Wiring the JoltBeans Together
	Step 1: Wire the JoltSessionBean Logon
	Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange
	Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using JoltInputEvent
	Step 4: Wire Button to JoltServiceBean Using JoltAction
	Step 5: Wire JoltServiceBean to the Balance JoltTextField Using JoltOutputEvent
	Step 6: Wire the JoltSessionBean Logoff
	Step 7: Compile the Applet
	Running the Sample Application

	Using the Oracle Tuxedo Service Metadata Repository and Setting the Property Values
	JoltBeans Programming Tasks
	Using Transactions with JoltBeans
	Using Custom GUI Elements with the JoltService Bean

	Using Servlet Connectivity for Oracle Tuxedo
	What Is a Servlet?
	How Servlets Work with Jolt
	The Jolt Servlet Connectivity Classes

	Writing and Registering HTTP Servlets
	Jolt Servlet Connectivity Sample
	Viewing the Sample Servlet Applications
	SimpApp Sample
	Requirements for Running the SimpApp Sample
	Installing the SimpApp Sample

	BankApp Sample
	Requirements for Running the BankApp Sample
	Installation Instructions

	Admin Sample
	Requirements for Running the Admin Sample
	Installation Instructions

	Additional Information on Servlets

	Migrating from Jolt Repository to Oracle Tuxedo Service Metadata Repository
	Replacing JREPSVR with TMMETADATA in UBBCONFIG
	Loading Jolt Repository to Oracle Tuxedo Service Metadata Repository
	Sample: joltapp Migration

	Oracle Jolt Exceptions

