Oracle® Tuxedo
Accessing Mainframe from Java

12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo Accessing Mainframe from Java, 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

Generating a Java Application with the eGen Application
Generator

Generating a Java Application with the eGen Application Generator. 1
OVEIVIBIV. o ettt e e e e e e e e e 2
Understanding @Gen oottt 2
Working with COBOL Copybooks. e 3

Obtaining a COBOL CopybooKot e 4
Limitationsof theeGen Utility i 5
Writing an €Gen SCrPt . . . oot 6
Writing the DataView Section of aneGen Script ...t 6
Processing eGen Scriptswith theeGen Utility. oL, 8
Creating an Environment for Generating and Compiling the JavaCode 8
Generating the JavaDataView Code.oovii i 9
Specia Considerations for Compiling theJavaCode. 11

Performing Your Own DataTranslation i 11
Why Perform Your Own Data Translation?. 1
Trandating Buffers from Javato Mainframe Representation. 12

MainframeWriter Public Interface.o 12
Using MainframeWriter to Create DataBuffers. 17
Tranglating Buffers from Mainframe FormattoJava. 19
MainframeReader Public Interface i 19
Using MainframeReader to Trandate DataBuffers 22

Accessing Mainframe from Java i

DataView Programming Referencet e 24

FieldNameMapping RUleS. e 25
Field TYpe MappingsSottt e 25
Group Field ACCESSONS. . .\ ittt e e e et e e 26
Elementary Field ACCESSOIS. . . .o i et e 27
Array FIeld ACCESSOIS . . . ottt e e 27
Fieldswith REDEFINES Clauseso v ot 28
COBOL Data TYPES. - o v vttt et et et ettt e 29
Other Access Methods for Generated DataView Classes 31
Mainframe Accessto DataView Classeso 31

XML Accessto DataView Classes.o v 34
Hashtable Accessto DataView Classes, 36

Known Limitations of eGen working with COBOL Copybooks 39
Program Development.o 39
IMPOrtant Ar€aS 42

A JOLT EXamMpPIe . . oo 44

Tuxedo Mainframe Transaction Publisher

OV IV BV . ottt e e e e e 1
Using Tuxedo Mainframe Transaction Publisher 2
Tuxedo Mainframe Transaction Generatorouiveirineeninennn... 3
Select COBOL CopybooK e 4

Define Code Generation Details. 4
Configure Transaction Input and Output, 5

Enter Transaction Details 6

Tuxedo Mainframe Transaction Publisher. 8
Pack ArtifactSo 8
PUBIISNTO OSBttt e 9

i Accessing Mainframe from Java

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher
PrerEgUISITE. . . ot e
Installing Tuxedo Mainframe Transaction Publisher
Checking Installation Status.o

Using graphical userinterface. i
Usingcommand lineS
Uninstalling Tuxedo Mainframe Transaction Publisher.
Installation NOLES oo

Setting Up JDevEl OpeEr PrOJECtot

Setting up Oracle Service BUS(OSB) . .. oo v vt
Installing EGen Librariesfor OSB. oottt
Importing Shared Resourcesto OSBt

Accessing Mainframe from Java

iv

Accessing Mainframe from Java

Generating a Java Application with the
eGen Application Generator

This document includes the following topics:
e Generating a Java Application with the eGen Application Generator
e Performing Your Own Data Translation
e DataView Programming Reference
e Program Development

e A JOLT Example

Generating a Java Application with the eGen Application
Generator

e Overview

e Understanding eGen

e Working with COBOL Copybooks

e Writing an eGen Script

e Processing eGen Scripts with the eGen Utility

Accessing Mainframe from Java

Overview

Oracle Tuxedo supports seamless integration of CICS Transaction Gateway (CTG) application
running on J2EE application servers and JCA based.

With this feature, Oracle Tuxedo provides atool to
e parse COBOL copybooks used to describe CICS transactions/programs interfaces

e generate Java bean style classes to popul ate data

Therefore, users can pass those classes to a CCl (or ECI-wrapped) interface to perform
ART-hosted CICS invocations.

Understanding eGen

eGen Application Generator, also known as the eGen utility, generates Java applications from a
COBOL copybook and a user-defined script file.

The eGen utility generates a Java application by processing a script you create, called an eGen
script. A Javapataview isdefined by thefirst section of the script. Thispataview isused by the
application code to provide data access and conversions, as well as to perform other
miscellaneous functions. The actual application code is defined by the second section of the
script.

Figure 1 illustrates how the eGen utility works. Thisillustration shows the eGen script and
COBOL copybook file being used as input to the eGen utility, and the output that is generated is
the pataview.

Accessing Mainframe from Java

Generating a Java Application with the eGen Application Generator

Figure 1 Understanding the eGen utility

03 EMP-REC.
eGen script COBOL Capybook 05 EMP-33M PIC 3(3)
CONP-3.
05 EMP-ALDDE.

07 EMP-A-3TREET PIC XZ(30).
07 EMP-A-CITY PIC X{zO).

07 EMP-L-3T PIC ZiZ).
07 EMP-L-ZIP PIC X(9).
05 EMP-NAME

07 EMP-N-LAST PIC X(15).
07 EMP-N-FIR3ST PIC X(15).
07 EMP-N-HI PIC Xi1).

eGen utility

Generated
Dataview

Working with COBOL Copybooks

A COBOL CICS or IMS mainframe application typically uses a copybook source file to define
its datalayout. Thisfileis specified in a COPY directive within the L.TNkaGE seEcTTON Of the
source program for a CICS application, or in the WoRKING-STORAGE SECTION Of an IMS
program. If the CICS or IMS application does not use a copybook file, you will have to create
one from the data definition contained in the program source.

Each copybook's contents are parsed by the eGen utility, producing pataview sub-classes that
provide facilities to:

e Convert COBOL datatypes to and from Java data types. Thisincludes conversions for
mainframe data formats and code pages.

Accessing Mainframe from Java 3

e Convert COBOL data structures to and from Java data structures.

e Convert the provided data structures into other arbitrary formats.

Obtaining a COBOL Copybook

The eGen utility must have a COBOL Copybook to use asinput. There are two methods you can
use to obtain this Copybook:

e Creating a New COBOL Copybook
e Using an Existing COBOL Copybook

Creating a New COBOL Copyhook

If you are producing anew application on the mainframe or modifying one, then one or more new
copybooks may be required. Y ou should keep in mind the COBOL features and data types
supported by eGen as you create these copybooks. See “ DataView Programming Reference” for
more information.

Using an Existing COBOL Copybook

When amainframe application has an existing DPL or APPC interface, the datafor that interface
isusually described in aCOBOL copybook. Before using an existing COBOL Copybook, verify
that the interface does not use any COBOL features or datatypesthat eGen does not support (see
“Limitations of the eGen Utility”).

See Figure 2 for an example COBOL copybook source file.

Accessing Mainframe from Java

Generating a Java Application with the eGen Application Generator

Figure 2 Sample emprec.cpy COBOL Copybook

Declaration of a
1 0z emp-record#——— record (group)
2 data itern.
3 04 emp-ssn pic (9 comp-3.

An elementary item. This is the base
level of the data structure.

4
=] 04 Emp-name.
& (I emp-name-last pie =x(15).
7 (I emp-name-first pie =x(15).
=] (I emp-name-mi pie x.
g
An aggregate iterm. This is

‘f/_,/- the intermediate level of
10 04 emp-add the data structure.
11 (I emp-addr-street pilic =i{30).
1z (I emp-addr-st pie x(2).
13 (I emp-addr-zip pie =x(9).
14
15 * End

Limitations of the eGen Utility

TheeGen utility isableto translate most COBOL copybook datatypes and data clausesinto their
Java equivalents, however, it is unable to translate some obsol ete constructs and floating point
data types. For information on COBOL data types that can be translated by the eGen utility, see
DataView Programming Reference. If the eGen utility is unable to fully support constructs or
datatypes, it:

e Treats them as alphanumeric data types (if reasonable)
e Ignoresthem

e Reportsthem as errors

If the eGen utility reports constructs or data types as errors, you must modify them, so they can
be trandlated.

Accessing Mainframe from Java 5

Writing an eGen Script

After you have obtained a COBOL Copybook for the mainframe applications, you are ready to
write an eGen script. This eGen script and the COBOL copybook that describes your data
structure will be processed by the eGen utility to generate a bataview which will serve asthe
basis for your custom Java application.

An eGen script has this section:
e Dataview. The DataView section of the script generates Javapataview code from a
COBOL copybook. The class file compiled from the generated code extends the Java

DataView class. Generating pataviews isdiscussed in detail in the remainder of this
section. See “Writing the DataView Section of an eGen Script” for more information.

Writing the DataView Section of an eGen Script

TheeGen utility parsesaCOBOL copybook and generates Javapataview codethat encapsul ates
the data record declared in the copybook. It does this by parsing an eGen script file containing a
Dataview definition similar to the example shown in Listing 1 (keywords are in bold).

Listing 1 Sample DataView Section of eGen Script

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

Analyzing the parts of thisline of code, we see that generate view tells the eGen utility to
generate a Java DataView codefile. examples.CICS.outbound.gateway.EmployeeRecord
tells the eGen utility to call the DataView file EmployeeRecord. java. The packageis called
examples.CICS.outbound.gateway. The EmployeeRecord class defined in
EmployeeRecord. java isasubclass of the DataView class. The phrase from emprec . cpy tells
the eGen utility to form the EmployeeRecord DataView file from the COBOL copybook

emprec.cpy.

Additional generate view statements may be added to an eGen script in order to produce al the
DataViews required by your application. Also, additional options may be specified in the eGen
script to change details of the DataView generation. For example, the following script will
generate a DataView class that uses codepage cp500 for conversions to and from mainframe
format. If the codepage clause is not specified, the default codepage of cp037 is used.

Accessing Mainframe from Java

Generating a Java Application with the eGen Application Generator

Listing 2 Sample DataView Section with Codepage Specified

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

codepage cp500

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

codepage ASCII

Listing 3 Sample DataView Section with endian Specified

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

endian little

Note: By default the endian iSbig.

If ajolt client callsaCOBOL servicein Tuxedo onaLinux X86-64 machine, thejolt client should
be compiled with the java code generated by eGen with parameter codepage ASCII and endian
littleinListing 4.

See“A JOLT Example’ for more information.

Listing 4 Sample DataView Section with Parameter Codepage and endian Specified

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

codepage ASCII endian little

Thefollowing script will generate additional output intended to support use of the DataView class
with XML data:

Accessing Mainframe from Java 1

Listing 5 Sample DataView Section Supporting XML

generate view sample.EmployeeRecord from emprec.cpy support xml

Additional files generated for XML support are listed in Table 1.

Table 1 Additional Files for DataView XML Support

File Name File Purpose
classname.dtd XML DTD for XML messages accepted and produced by this Dataview.
classname.xsd XML schemafor XML messages accepted and produced by thisDataview.

Processing eGen Scripts with the eGen Utility

After you have written your eGen script, you must processit to generate the DataView. The same
eGen script usually contains the definitions of the DataView, and these definitions are produced
with asingle processing of the script. However, in this document, the script is explained in two
steps, so the actual code generated can be analyzed in greater detail.

e Creating an Environment for Generating and Compiling the Java Code

e Generating the Java DataView Code

Creating an Environment for Generating and Compiling the Java Code

When you process the eGen scripts and compile Java code, you must have access to the Java
classes and applications used in the code generation and compilation processes. Adding the
correct elements to your cLASSPATH and PATH environment variables provides this access.

e For the eGen utility:
— Add <TUXDIR>\udataobj\egen.jar t0 yOUr CLASSPATH.

— Add <TUXDIR>\bin tO yOUr PATH.

e For compilation:

— Add <TUXDIR >\udataobj\egen.jar t0 yOUr CLASSPATH.

Accessing Mainframe from Java

Generating a Java Application with the eGen Application Generator

— Add the path of your DataView class files to your cL.asspaTH. You need the access to
these classes when you compile your Java application code.

Note: UNIX usersmust use” /" instead of "\" when adding directory paths as specified above.

Generating the Java DataView Code

For the eGen script shown in Listing 1, the following shell command parses the copybook file
(see Figure 2) and generates EmployeeRecord. java Source filein the current directory:

Listing 6 Sample Copybook Parse Command

java com.bea.jam.egen.EgenCobol emprec.egen

If no error or warning messages are issued, the copybook is compatible with eGen and the source
files are created. Note that no application source files are generated by processing the
emprec . egen SCript. Thisisbecause there are no application generating commandsin this script.

The following example illustrates the generated Java source file, EmployeeRecord. java, with
some comments and implementation details removed for clarity.

Accessing Mainframe from Java 9

10

FfEmployeeRecord.java

FiDataview class generated by egencobol emprec.cpy

package examples,CICS.outhound.gateway: 4———

// Imports

import bea.dwd.DataView.DataWiew;

F**DataView class for EmployeeRecord buffers*f

public final class EmployeeRecord -+

The package name is defined
in the eGen script

The data record is
encapsulated in a

extends DataView

Code for field ™ -ssn’’
i emp

k}/\reriahle corresponds to a
private BigDecimal m_empSsn field in the data record

public BigDecimal getEmpSsni) {...}

*—\—\ Each data field has

J** DataView subclass for emp-name Broup *f accessar functions

class that extends the
Dataview class

Each class mermber

public final class EmpHame3V
extends DataView \ Each aggregate data field has a
1

ff Code for field “emp-name-last’
private 3tring m empNamelast;

corresponding nested inner class
that extends the DataView class

public void setEmpHamelast{String value) {...}

public 3tring getEmpNameLast{) {...

+

Each data field within an
aggregate data field has
accessor functions

ff Code for field “emp-name’’

private EmpName3V m_empnameﬂ“_ﬂ_—_fp

Each COBOL data field name is
converted into a Java identifier

. public EmpnamesV getEmpname{) {...}

//End EmployeeRecord. java

Accessing Mainframe from Java

Performing Your Own Data Translation

Special Considerations for Compiling the Java Code

Y ou must compile the Java code generated by the eGen utility. However, there are some special
circumstancesto consider. Because the application codeis dependent on the DataView code, you
must compilethe DataView code and make surethat theresulting DataView classfilesareinyour
environment's cr.asspath before compiling your application code. Y ou must make sure that all
of the DataView class files can be referenced by the application code compilation.

For example, the compilation of EmployeeRecord.javaresultsin four classfiles:
® EmployeeRecord.class
® EmployeeRecord$SEmpRecordlV.class
® EmployeeRecord$SEmpRecordlVSEmpName3V.class
® EmployeeRecord$SEmpRecordlVSEmpAddr7V.class

All of these class files are used when compiling your application code.

Performing Your Own Data Translation

e Why Perform Your Own Data Translation?
e Translating Buffers from Javato Mainframe Representation

e Trandating Buffers from Mainframe Format to Java

Why Perform Your Own Data Translation?

The automatic data tranglation provided by DataViews can usualy fill your needs. The
eGen-generated DataViewsrelieve your application of the burden of trand ating data between the
mainframe EBCDI C environment and the Java runtime environment. In addition, native
mainframe data types that are not supported in Java (such as packed, zoned decimal, etc.) are
automatically mapped to appropriate Java data types. However, occasionally you may want to
bypass these features and create your own data translation. Following are some advantages of
bypassing the eGen/DataView infrastructure;

e Unnecessary data trandlation may be avoided

If the data has been acquired in the appropriate format, it can simply be transmitted to the
mainframe bypassing the DataView translation overhead.

e Contents of data buffer may be dynamically determined at runtime

Accessing Mainframe from Java "

In some cases, this may be preferable to a DataView generated from a copybook
containing numerous REDEFINES representing various record types.

Simple interfaces are provided for trandating data both from and to the mainframe. In addition,
asimple callservice () method isavailable for making mainframe service requests.

Translating Buffers from Java to Mainframe Representation

Support for creating buffers for input to amainframe service is provided by the
com.bea.base.io.MainframeWriter class. This class functions similar to a Java
java.io.DataOutputStream Object. It trand ates Javadatatypesand all mainframe-native data
types. For numeric data types, this trandation service provides a conversion from Java native
numeric types to those available on the mainframe. For string data types, atranslation is
performed from UNICODE to EBCDIC by default, although the output codepage used is
configurable.

MainframeWriter Public Interface
Listing 7 shows the public methods that Mainframewriter class provides.

Listing 7 MainframeWriter Class Public Methods

package com.bea.base.io;
public class MainframeWriter
{
public MainframeWriter () ;
public MainframeWriter (String codepage) ;
public void setDefaultCodepage (String cp)
public byte[] toByteArray () ;
public void writeRaw(byte[] bytes
throws IOException;
public void writeFloat (float value)
throws IOException;

public void writeDouble (double value)

Accessing Mainframe from Java

public

public

public

public

public

public

public

public

public

public

public

public

public

Performing Your Own Data Translation

throws IOException;

void write(char c)

throws IOException;

void writePadded(String s, char padChar, int length)
throws IOException;

void writelébit (int value)

throws IOException;

void writel6bitUnsigned(int value)

throws IOException;

void writelé6bit(long value, int scale)

throws IOException, ArithmeticException;

void writel6bitUnsigned(long value, int scale)
throws IOException, ArithmeticException;

void write32bit (int value)

throws IOException;

void write32bitUnsigned(long value)

throws IOException;

void write32bit(long value, int scale)

throws IOException, ArithmeticException;

void write32bitUnsigned(long value, int scale)
throws IOException, ArithmeticException;

void write64bit (long value)

throws IOException;

void write64bitUnsigned(long value)

throws IOException;

void write64bitBigUnsigned (BigDecimal value)

Accessing Mainframe from Java

13

14

public

public

public

public

public

int scale)

public

throws IOException;

void write64bit (long value, int scale)

throws IOException, ArithmeticException;

void write64bit (BigDecimal value, int scale)

throws IOException, ArithmeticException;

void write64bitUnsigned(long value, int scale)
throws IOException, ArithmeticException;

void write64bitUnsigned(BigDecimal value, int scale)
throws IOException, ArithmeticException;

void writePacked (BigDecimal value, int digits, int precision,

throws ArithmeticException, IOException;

void writePackedUnsigned(BigDecimal value, int digits, int

precision, int scale)

throws ArithmeticException, IOException;

Table 2 MainframeWriter Class Public Method Definitions

Method Description

MainframeWriter () Default constructor. Constructs aMainframeWriter using the
default code page of cp037 (EBCDIC).

MainframeWriter (cp) Constructs aMainframeliriter using the specified codepage
for character field trandation.

setDefaultCodepage (cp) Sets the codepage to be used for dl future data translations.

toByteArray () Returns the translated buffer constructed by writing data to the
MainframeWriter classasabyte array.

writeRaw (bytes) Writes araw byte array to the output buffer.

Accessing Mainframe from Java

Performing Your Own Data Translation

Tahle 2 MainframeWriter Class Public Method Definitions

Method

Description

writeFloat (num)

Convertsafloating point number from | EEE Javafloat datatypeto
IBM 4 byte floating point format. The equivalent COBOL picture
clauseisPIC S9v9 COMP-1.

writeDouble (num)

Convertsafloating point number from IEEE Javadouble datatype
to IBM 8 byte floating point format. The equivalent COBOL
pictureclauseis PIC S9V9 COMP-2.

write(c)

Tranglates and writes a single character to output buffer. The
equivalent COBOL picture clauseis PIC X.

writePadded (str,
len)

pad,

Tranglate and write a string to afixed length character field. The
passed pad character isused if thelength of the passed stringisless
than len. If the length of the passed string is greater than 1en, it
will be truncated to 1en characters. The equivalent COBOL
pictureclauseis PIC X(len).

writelé6bit (num)

Writes a signed 16 bit binary integer to output buffer. The
equivalent COBOL picture clauseis PIC S9(4) COMP.

writelébitUnsigned (num)

Writes an unsigned 16 bit binary integer to output buffer. The
equivalent COBOL picture clauseisPIC 9 (4) COMP.

writel6bit (num, scale)

Writesasigned 16 bit integer to the output buffer after moving the
implied decimal point left by scale digits. For example, the call
writel6bit (100, 1) would resultinthevalue 10 being
written. The equivalent COBOL picture clauseis PIC S9 (4)
COMP.

writel6bitUnsigned (num,
scale)

Writes an unsigned 16 bit integer to the output buffer after moving
theimplied decimal point left by scale digits. For example, the
calwritel6bitUnsigned (100, 1) wouldresultinthevalue
10 being written. The equivalent COBOL picture clauseisPIC
9(4) COMP.

write32bit (num)

Writes a signed 32 bit binary integer to output buffer. The
equivalent COBOL picture clauseisPIC S9(8) COMP.

write32bitUnsigned (num)

Writes an unsigned 32 hit binary integer to output buffer. The
equivalent COBOL picture clauseis PIC 9 (8) COMP.

Accessing Mainframe from Java 15

16

Tahle 2 MainframeWriter Class Public Method Definitions

Method

Description

write32bit (num, scale)

Writesasigned 32 bit integer to the output buffer after moving the
implied decimal point left by scale digits. For example, the call
write32bit (100L, 1) would resultin thevalue 10 being
written. The equivalent COBOL picture clauseis PIC S9(8)
COMP.

write32bitUnsigned (num,
scale)

Writes an unsigned 32 bit integer to the output buffer after moving
the implied decimal point |eft by scale digits. For example, the
cal write32bitUnsigned (100L, 1) would resultinthe
value 10 being written. The equivalent COBOL picture clauseis
PIC 9(8) COMP.

write64bit (num)

Writes a signed 64 bit binary integer to output buffer. The
equivalent COBOL picture clauseis PIC S9 (15) COMP.

write64bitUnsigned (num)

Writes an unsigned 64 bit binary integer to output buffer. The
equivalent COBOL picture clauseis PIC 9(15) COMP.

write64bit (num, scale)

Writes asigned 64 bit integer to the output buffer after moving the
implied decimal point left by scale digits. For example, the call
write64bit (100L, 1) would resultin the value 10 being
written. The equivalent COBOL picture clauseisPIC S9 (15)
COMP.

write64bitUnsigned (num,
scale)

Writes an unsigned 64 bit integer to the output buffer after moving
theimplied decimal point left by scale digits. For example, the
cal write64bitUnsigned (100L, 1) would resultinthe
value 10 being written. The equivalent COBOL picture clauseis
PIC 9(15) COMP.

writePacked (num,
digits, rec, scale)

Writes adecimal number as an IBM signed packed datatype with
digits decimd digitstota and prec digitsto the right of the
decimal point. Prior to conversion, the number is scaled to the | eft
scale digits. The equivalent COBOL picture clauseis PIC

S9 (digits-prec)V9 (prec) COMP-3.

writePackedUnsigned (num

, digits, prec, scale)

Writes a decimal number as an IBM unsigned packed data type
with digits decimal digitstotal and prec digitsto theright of
the decimal point. Prior to conversion the number is scaled to the
left scale digits. The equivalent COBOL picture clauseis PIC
9 (digits-prec)V9 (prec) COMP-3.

Accessing Mainframe from Java

Performing Your Own Data Translation

Using MainframeWriter to Create Data Buffers

Asan example of using the MainframeWriter classto create a mainframe data buffer, assume
we have a mainframe service which accepts the data record shown as below.

Listing 8 Data Record

01 INPUT-DATA-REC.

05 FIRST-NAME PIC X(10).
05 LAST-NAME PIC X(10).
05 AGE PIC S9(4) COMP.

05 HOURLY-RATE PIC S9(3)V9(2) COMP-3.

Listing 9 shows a Javatest program that creates a buffer matching this record layout using
MainframeWriter trandation class:

Listing 9 Java Test Program

import java.math.BigDecimal;

import com.bea.base.io.MainframeWriter;

public class MakeBuffer

{

public static void main(String[] args) throws Exception

{

MainframeWriter mf = new MainframeWriter () ;

mf

mf

mf

mf

.writePadded("Edgar", ' ', 10);//first name

.writePadded ("Jones", ' ', 10);//last name

.writel6bit (22);//age

.writePacked (new BigDecimal (22.50), 5, 2, 0);//hourly rate

Accessing Mainframe from Java 17

18

}

byte[] buffer = mf.toByteArray():;

System.out.println(getHexString (buffer)) ;

private static String getHexString(byte[] buffer)

{

}

StringBuffer hexStr

= new StringBuffer (buffer.length * 2);

for (int 1 = 0; 1 < buffer.length; ++1)

{

int n = buffer[i] & Oxff;

hexStr.append (hex[n >> 4]);

hexStr.append (hex[n & 0x0f]);

}

return (hexStr.toString()) ;

private static char[] hex

The output of running this sample program is:

C5848781994040404040D1969585A24040404040001602250C

This buffer breaks down as follows:

FIRST-NAME
LAST-NAME
AGE

C5848781994040404040"Edgar" + 5 spaces in EBCDIC

D1969585A24040404040"Jones" + 5 spaces in EBCDIC

001622 as 16 bit integer

Accessing Mainframe from Java

HOURLY-RATE

Performing Your Own Data Translation

02250C22.50 positive packed number

(decimal point is assumed)

Translating Buffers from Mainframe Format to Java

Support for trandlating data received from the mainframe to Java data typesis provided by the
com.bea.base.io.MainframeReader class. This class operatesin a manner similar to a Java
jam.io.DataInputStream, and performstranslationsfrom mainframe datatypesto equivalent
types usable by a Java program. Like the MainframeWriter class, the codepage used for string
tranglations may be configured and defaultsto EBCDIC.

MainframeReader Public Interface
Listing 10 shows the public methods that MainframeReader Class provides.

Listing 10 MainframeReader Class Public Methods

package com.bea.base.io;

public class MainframeReader

{
public
public
public
public
public
public
public

public

public
public

public

MainframeReader (byte[] buffer);
MainframeReader (byte[] buffer, String codepage) ;
void setDefaultCodepage (String cp) ;

byte[] readRaw(int count) throws IOException;
float readFloat() throws IOException;

double readDouble() throws IOException;

char readChar() throws IOException;

String readPadded (char padChar, int length)
throws IOException;

short readlébit () throws IOException;

int readl6bitUnsigned() throws IOException;

long readlébit (int scale) throws IOException;

Accessing Mainframe from Java

19

20

public

public

public

public

public

public

public

public

public

int read32bit() throws IOException;

long read32bit (int scale)

throws IOException;

long read32bitUnsigned() throws IOException;
long read32bitUnsigned(int scale) throws IOException;
long read64bit () throws IOException;

long read64bitUnsigned()

throws IOException;

long read64bit (int scale)

throws IOException;

BigDecimal read64bitBigUnsigned()

throws IOException;

BigDecimal read64bitBig(int scale)

throws IOException

public BigDecimal readPackedUnsigned(int digits, int precision, int

scale)

public

throws ArithmeticException, IOException;
BigDecimal readPacked(int digits, int precision, int scale)

throws ArithmeticException, IOException;

Following are the definitions of these methods:

Accessing Mainframe from Java

Performing Your Own Data Translation

Table 3 MainframeReader Class Public Method Definitions

Method

Description

MainframeReader (buffer)

Constructs aMainframeReader for the passed buffer using
the default code page of cp037 (EBCDIC).

MainframeReader (buffer,
cp)

Constructs aMainframeReader for the passed buffer using
the specified codepage for character field trandlation.

setDefaultCodepage (cp)

Sets the codepage to be used for all future character translations.

readRaw (count)

Reads count characters from the buffer without any translation
and returns them as a byte array.

readFloat () Reads afour byte IBM floating point number and returnsit asa
Javafloat datatype.

readDouble () Reads an eight byte IBM floating point number and returnsit as
aJava double data type.

readChar () Reads and trand ates a single character.

readPadded (pad, len)

Reads and translates a fixed length character field and returns it
asaJava String. The length of thefield is passed as 1 en and the
field pad character is passed aspad. Trailing instances of the
pad character are removed before the datais returned.

readlébit ()

Reads a 16 bit binary integer and returnsit as a Java short.

readl6bitUnsigned ()

Reads an unsigned 16 bit integer and returnsit as a Javaint.

readlébit (scale)

Reads a 16 bit binary integer and scales the value by 10"scale.
For example, if value 10 isread viareadl6bit (1), the
returned value would be 100.

read32bit ()

Reads a 32 hit binary integer and returnsit asaJavaint.

read32bit (scale)

Reads a 32 bit binary integer and scales the value by 10scale.
For example, if value 10 isread viaread32bit (1), the
returned value would be 100.

read32bitUnsigned ()

Reads an unsigned 32 bit integer and returnsit as a Javalong.

Accessing Mainframe from Java 21

22

Tahle 3 MainframeReader Class Public Method Definitions

Method

Description

read32bitUnsigned(scale)

Reads an unsigned 32 bit binary integer and scales the value by
10"scale. For example, if value 10 isread viaread32bit (1),
the returned value would be 100.

read64bit ()

Reads a 64 hit binary integer and returnsit as a Javalong.

read64bitUnsigned ()

Reads an unsigned 64 bit integer and returnsit as a Javalong.

read64bitUnsigned(scale)

Reads an unsigned 64 bit binary integer and scales the value by
10"scale. For example, if value 10 isread viaread32bit (1),
the returned value would be 100.

read64bitBigUnsigned ()

Reads an unsigned 64 bit integer and returnsit as a Java

BigDecimal.

read64bitBig(scale)

Reads a signed 64 bit integer and scales the value by 10"scale.
Thevaueisreturned asa JavaBigDecimal.

readPackedUnsigned (digits

, prec, scale)

Reads an unsigned packed number consisting of digits numeric
digitswith prec digitsto the right of the decimal. The valueis
scaled by 10"scale and isreturned as a JavaBigDecimal.

readPacked (digits,
scale)

prec,

Reads a signed packed number consisting of digits numeric
digitswith prec digitsto the right of the decimal. The valueis
scaled by 10"scale and is returned as a JavaBigDecimal.

Using MainframeReader to Translate Data Buffers

As an example of using the MainframeReader, classfollowing isaprogram that translates and
displaysthe fieldsin the mainframe buffer created above. Our input buffer consists of the binary

data

C5848781994040404040D1969585A24040404040001602250C

Listing 11 shows the sample program used to process this buffer.

Listing 11 Sample Program

import java.math.BigDecimal;

import com.bea.base.io.MainframeReader;

Accessing Mainframe from Java

Performing Your Own Data Translation

public class ShowBuffer

{
public static void main(String[] args) throws Exception
{
String data
="C5848781994040404040D1969585A24040404040001602250C" ;
byte[] buffer = buildBinary (data) ;
MainframeReader mf = new MainframeReader (buffer) ;
System.out.println(" First Name: " + mf.readPadded(' ', 10));
System.out.println(" Last Name: " + mf.readPadded(' ', 10));
System.out.println("Age: " + mf.readlébit());
System.out.println("Hourly Rate: " + mf.readPacked(5, 2, 0));
}
private static bytel[] buildBinary (String data)
{
byte[] buffer = new byte[data.length() / 21;
for (int i = 0; 1 < buffer.length; ++1)
{
int msb = hex.indexOf (data.charAt(i * 2));
int 1lsb = hex.indexOf (data.charAt(i * 2 + 1));
buffer[i] = (byte) (msb << 4 | 1sb);
}
return (buffer) ;
}
private static final String hex = "0123456789ABCDEF";
}

Accessing Mainframe from Java 23

When running, the program produces the following output:
First Name: Edgar
Last Name: Jones

Age: 22

DataView Programming Reference

24

This section provides the rules that allow you to identify what form a generated Java class takes
fromagiven COBOL copybook processed by the eGen Application Generator (eGen utility). An
understanding of the rules facilitates a programmer's ability to correctly code any custom
programs that make use of the generated classes.

The eGen utility maps a COBOL copybook into a Java class. The COBOL copybook contains a
data record description. The eGen utility derives the generated Java class from the
com.bea.dmd.dataview.Dataview class (later referred to aspataview).

This section discusses data mapping rulesin the following topics:
e Field Name Mapping Rules
e Field Type Mappings
e Group Field Accessors
e Elementary Field Accessors
e Array Field Accessors

Fields with REDEFINES Clauses

e COBOL Data Types
e Other Access Methods for Generated DataView Classes

e Known Limitations of eGen working with COBOL Copybooks

Y ou should find the COBOL termsin this section easy to understand; however, you may need to
use a COBOL reference book or discuss the terms with a COBOL programmer. Also, you can
process a copybook with the eGen utility and examine the generated Java code in order to
understand the mapping.

Accessing Mainframe from Java

DataView Programming Reference

Field Name Mapping Rules

When you process a COBOL copybook containing field names, they are mapped to Java names
by the eGen utility. All alphabetic characters are mapped to lower case, except in the following
two cases.

All dashes are removed and the character following the dash is mapped to upper case.

When a prefix is added to the name (as when creating afield accessor function name), the first
character of the base name is mapped to upper case.

Table 4 lists some mapping examples.

Table 4 Example Field Name Mapping from COBOL to Java and Accessor

COBOL Field Name Java Base Name Sample Accessor Name
EMP-REC empRec setEmpRec
500-REC-CNT 500RecCnt set500RecCnt

Field Type Mappings

When you process a COBOL copybook, the data types of fields are mapped to Java data types.
The mapping is performed by the eGen utility according to the following rules:

1. Groups map to pataview Subclasses.

2. All aphanumeric fields are mapped to type string.
3. All edited numeric fields are mapped to type string.
4

. All SIGN SEPARATE, BLANK WHEN ZERO Of JUSTIFIED RIGHT fields are mapped to type
String.

ol

SIGN IS LEADING iSnot supported.

6. Thetypescomp-1, cOMP-2, COMP-5, COMP-X, and PROCEDURE-POINTER fields are not
supported (an error message is generated).

7. All npEx fields are mapped to Javatypeint.

8. POINTER mapsto Javatype int.

Accessing Mainframe from Java 25

26

9. All numeric fields with any digits to the right of the decimal point are mapped to type

BigDecimal.
10. All comp-3 (packed) fields are mapped to type BigDecimal.

11. All other numeric fields are mapped as shown in Table 5.

Table 5 Numeric Field Mapping

Number of Digits Java Type
<=4 short
>4and<=9 int
>9and<=18 long

>18 BigDecimal

Group Field Accessors

Each nested group in aCOBOL copybook is mapped to acorresponding pataview subclass. The
generated subclasses are nested exactly as the COBOL groups in the copybook. In addition, the
eGen utility generates a private instance variable of this classtype and aget accessor.

For example, the following copybook:

Listing 12 Sample Copybook

10 MY-RECORD.
20 MY-GRP.
30 ALNUM-FIELD PIC X(20).
Produces code similar to the following:
public MyGrp2V getMyGrp() ;
public static class MyGrp2V extends DataView
{

// Class definition

Accessing Mainframe from Java

DataView Programming Reference

Elementary Field Accessors

Each elementary field is mapped to a private instance variable within the generated pataview
subclass. Accessto this variable is accomplished by two accessors that are generated (set and

get).
These accessors have the following forms:

public void setFieldName (FieldType value);

public FieldType getFieldName () ;
Where:
FieldType isdescribed in the Field Type Mappings section.
FieldName is described in the Field Name Mapping Rules section.
For example, the following copybook:

10 MY-RECORD.

20 NUMERIC-FIELD PIC S9(5).
20 ALNUM-FIELD PIC X(20).
Produces the accessors:

public void setNumericField(int value) ;
public int getNumericField() ;
public void setAlnumField(String value) ;

public String getAlnumField();

Array Field Accessors

Array fields are handled according to thefield accessor rules described in Group Field Accessors
and Elementary Field Accessors, with the addition that each accessor takes an additional int
argument that specifies which array entry is to be accessed, for example:

public void setFieldName (int index, FieldType value) ;

public FieldType getFieldName (int index) ;

Accessing Mainframe from Java 21

28

Array fields specified with the bEpENDING oN clause are handled the same as fixed-size arrays
with the following special rules:

e The accessors may be used to get or set any instance up to the maximum array index.

e The controlling (DEPENDING ON) variableis evaluated when the pataview is converted to
or from an external format, such as a mainframe format. The eGen utility converts only the
array elements with subscripts less than the controlling value.

Fields with REDEFINES Clauses

Fieldsthat participatein areDEFINES Set are handled asa unit. A private byte[] variableis

declared to hold the underlying mainframe data, aswell asa private Dataview variable. Each of
the redefined fields has an accessor or accessors. These accessors take more CPU overhead than
the normal accessors because they perform conversionsto and from the underlying byte [1 data.

For example the copybook:

Listing 13 Sample Copyhook

10 MY-RECORD.

20 INPUT-DATA.

30 INPUT-A PIC X(4).
30 INPUT-B PIC X(4).
20 OUTPUT-DATA REDEFINES INPUT-DATA PIC X(8).

Produces Java code similar to the following:

private byte[] m_redef23;

private DataView m_redef23DV;

public InputDataVv getInputDatal() ;
public String getOutputDatal() ;

public void setOutputData (String value) ;

public static class InputDataV extends DataView

Accessing Mainframe from Java

{

// Class definition.

}

COBOL Data Types

DataView Programming Reference

This section summarizes the COBOL data types supported by Tuxedo. Table 6 liststhe COBOL
dataitem definitions recognized by the eGen utility. Table 7 liststhe syntactical featuresand data

types recognized by the eGen utility. If a COBOL feature is unsupported and it is not listed as

ignored in the table, an error message is generated.

Table 6 Major COBOL Features

COBOL Feature Support
IDENTIFICATION DIVISION Unsupported
ENVIRONMENT DIVISION Unsupported

DATA DIVISION

Partially Supported

WORKING-STORAGE SECTION

Partially Supported

Data record definition Supported

PROCEDURE DIVISION Unsupported

COPY Unsupported

COPY REPLACING Unsupported

EJECT, SKIP1, SKIP2, SKIP3 Supported
Tahle 7 COBOL Data Types

COBOL Type Java Type

COMP, COMP-4, BINARY (integer)

Short/Int/Long

COMP, COMP-4, BINARY (fixed)

BigDecimal

COMP-3, PACKED-DECIMAL

BigDecimal

Accessing Mainframe from Java

29

30

Tahle 7 COBOL Data Types

COBOL Type Java Type

COMP-5 Unsupported
COMP-X Unsupported
DISPLAY numeric (zoned) BigDecimal

BLANK WHEN ZERO (zoned) String

SIGN ISLEADING (zoned) Unsupported

SIGN ISLEADING SEPARATE (zoned) String

SIGN ISTRAILING (zoned) String

SIGN ISTRAILING SEPARATE (zoned) String

edited numeric String

COMP-1, COMP-2 (float) Unsupported

edited float numeric String

DISPLAY (alphanumeric) String

edited alphanumeric String

INDEX Int

POINTER Int
PROCEDURE-POINTER Unsupported
JUSTIFIED RIGHT Unsupported (ignored)
SYNCHRONIZED Unsupported (ignored)
REDEFINES Supported

66 RENAMES Unsupported

66 RENAMES THRU Unsupported

77 level Supported

88 level (condition) Unsupported (ignored)

Accessing Mainframe from Java

DataView Programming Reference

Tahle 7 COBOL Data Types

COBOL Type Java Type
group record Inner Class
OCCURS (fixed array) Array

OCCURS DEPENDING (variable-length array) Array

OCCURS INDEXED BY Unsupported (ignored)

OCCURSKEY IS Unsupported (ignored)

Other Access Methods for Generated DataView Classes

eGen allows you to access pataview classes through several methods as described in the
following sections:

o Mainframe Access to DataView Classes
e XML Accessto DataView Classes

e Hashtable Access to DataView Classes

Mainframe Access to DataView Classes

This section describes how mainframe format data may be moved into and out of DataView
classes. The eGen Application Generator writesthis code for you, so thisinformation is provided
as reference.

Mainframe format data may be extracted from a DataView class through the use of the
MainframeWriter class. Listing 14 shows a sample of code that may be used to perform the
extraction.

Listing 14 Sample Code for Extracting Mainframe Format Data from a DataView Class

import com.bea.base.io.MainframeWriter;

import com.bea.dmd.dataview.DataView;

/**

Accessing Mainframe from Java 31

32

* Get mainframe format data from a DataView into a bytel[].
*/

byte[] getMainframeData (DataView dv)

{

try

MainframeWriter mw = new MainframeWriter();
// To override the DataView's codepage, change the
// above constructor call to something like:

// ...new MainframeWriter ("cpl234");

return dv.toByteArray (mw) ;
}
catch (java.io.IOException e)
{
// Some conversion failure occurred.
}
return null;

}

If you want to override the codepage provided when the DataView was generated, you may
provide another codepage asastring argument to theMainframewriter constructor, asshown
in the comment in Listing 15.

Loading mainframe datainto aDataView isasimilar process, in this case requiring the use of the

MainframeReader class. Listing 15 shows a sample of code that may be used to perform the
load.

Accessing Mainframe from Java

DataView Programming Reference

Listing 15 Sample Code for Loading Mainframe Data into a DataView Class

import com.bea.base.io.MainframeReader;

import com.bea.dmd.dataview.DataView;

/**
* Put a byte[] containing mainframe format data into a DataView.
*/

MyDataViewputMainframeData (byte[] buffer)

{
MainframeReader mr = new MainframeReader (buffer) ;
// To override the DataView's codepage, change the above
// constructor call to something like:

// .new MainframeReader ("cpl234", buffer);

MyDataView dv;

try
{
// Construct a new DataView with the mainframe data.
dv = new MyDataView (mr) ;
// Or, to load a pre-existing DataView with mainframe data.
// dv.mainframeLoad (mr) ;

}

Accessing Mainframe from Java 33

34

catch (java.io.IOException e)
{

// Some conversion failure occurred.
}

return dv;

XML Access to DataView Classes

Facilitiesare provided to move XML datainto and out of DataView classes. These operationsare
performed through the use of the xmllL.oader and xm1Unloader classes.

e XmlLoader isused to load XML datainto a DataView.
o XmlUnloader is used to unload datafrom a DataView into XML.

o |f the eGen script used to produce the DataView specifies the "support xml" option, then
both aDTD and an XML/Schemathat describe the XML format for this DataView are
produced.

The following list shows an example of the code used to load XML datainto aDataView.

Listing 16 Sample Code for Loading XML Data into a DataView

import com.bea.dmd.dataview.DataView;

import com.bea.dmd.dataview.XmlLoader;

void loadXmlData (String xml, DataView dv)
{
XmlLoader x1 = new XmlLoader () ;
try

{

Accessing Mainframe from Java

DataView Programming Reference

// Load the xml. Note that the xml argument may be
either

// a String or a org.w3c.dom.Element object.
x1l.load(xml, dv);

}

catch (Exception e)

{

// Some conversion error occurred.

The following list shows an example of the code used to unload apataview into XML.

Listing 17 Sample Code for Unloading a DataView into XML

import com.bea.dmd.dataview.DataView;

import com.bea.dmd.dataview.XmlUnloader;

String unloadXmlData (DataView dv)
{
XmlUnloader xu = new XmlUnloader () ;

try

String xml = xu.unload(dv) ;
return xml;

}

catch (Exception e)

{

Accessing Mainframe from Java 35

36

// Some conversion error occurred.

}

return null;

Hashtahle Access to DataView Classes

Oracle Tuxedo aso provides facilities to load and unload DataView objects using Hashtable
objects. Hashtable objects are most often used to move data from one DataView to another
similar DataView.

When DataView fields are moved into Hashtables, each field is given akey that isastring
reflecting the location of the field within the original copybook data structure.

Listing 18 shows a sample of a COBOL copybook.

Listing 18 Sample emprec.cpy COBOL Copyhook

10

11

12

13

* emprec.cpy

pic

pic

pic

9(9) comp-3.

x(15).

x(15).

* An employee record.
K o o
02 emp-record.
04 emp-ssn
04 emp-name.
06 emp-name-last
06 emp-name-first
06 emp-name-mi

Accessing Mainframe from Java

pic

14

15

16

17

18

19

04

20 * End

emp-addr.

06 emp-addr-street
06 emp-addr-st

06 emp-addr-zip

DataView Programming Reference

pic x(30).
pic x(2).

pic x(9).

The fields for the COBOL copybook in Listing 18 are stored into a Hashtable as shown in

Table 8.

Tahle 8 COBOL Copyhook Hashtahle

Key String Content Type
empRecord.empSsn BigDecimal
empRecord.empName . empNameLast String
empRecord. empName . empNameFirst String
empRecord. empName . empNameMi String
empRecord.empAddr . empAddrStreet String
empRecord. empAddr . empAddrSt String
empRecord. empAddr . empAddrZip String

Code for Unloading and Loading Hashtables
Following is an example of the code used to unload a DataView into a Hashtable.

Hashtable ht = new HashtableUnloader () .unload(dv) ;

Following is an example of the code used to load a Hashtable into an existing DataView.

new HashtableLoader () .load(dv) ;

Accessing Mainframe from Java 37

38

Rules for Unloading and Loading Hashtables
The basic rules of Hashtable unloading are;

e All data elementsin the DataView are placed into the Hashtable.

e Each dataitem is stored as an object of its Javatype. Elements of int/short/long type
are converted to Integer/Short/Long.

e Arrays are mentioned at the appropriate level in the key as an index enclosed in “[", "]"
pairs. For instance, if empAddr was an array, then one key into the Hashtable might be
empRecord.empAddr[2] .empAddrStreet.

The basic rules of Hashtable loading are:

e All data elementsin the DataView attempt to acquire a value from the Hashtable. If no
matching key exists, the element retainsits origina value.

e Hashtable members of the wrong typeresult in aclasscastException being thrown.

Name Translator Interface Facility

A name trand ator interface facility is available to provide Hashtable name mappings. Both
HashtablelLoader and HashtableUnloader Provide aconstructor that accepts an argument of
type com.bea.dmd.dataview.NameTranslator. Table 9 lists the descriptions of the public
interface methods that must be implemented.

Table 9 Name Translator Interface

Method Description

translate (String input) Thismethod received astring object asan input
parameter and returnsa String object.

Y ou can write classes that implement thisinterface for your application. These implementations
are used to trand ate the key strings before the Hashtable is accessed.

Following are some useful implementations that are included in the egen. jar:

Accessing Mainframe from Java

Program Development

Table 10 Name Translator Interface

Class Constructor Purpose

NameFlattener () Reducesthe key to the portion following
the final period character.

PrefixChanger (String old, String add) Removesan old prefix & addsanew one.

PrefixChanger (String old) Removes a prefix.

The HashtableLoader, HashtableUnloader, and the various name translator classes are
included in the "com.bea.dmd.dataview" package.

Known Limitations of eGen working with COBOL Copybooks

Following are some of the known limitations of this version of eGen.

e Continuation lines are not recognized in COBOL copybooks. Thisis only a problem for
long character literals occurring within vaLugs clauses. Comment out the relevant clause
to fix the problem.

e COBOL copybooks with array (table) data items having an ocCURS DEPENDING ON clause
must be structured so that the depending-on counter dataitem is not contained within the
same group data item as the one containing the array.

e USAGE Clauses on group dataitemsin COBOL copybooks are not properly propagated to
their subordinated member data items.

Program Development

Program devel opment will be accomplished according to program snippet listedin Listing 19 and
according to class naming rules outlined here, although this can be adjusted depending on
customer requirements.

Listing 19 Program Snippet

try

Accessing Mainframe from Java 39

InitialContext context = new InitialContext () ;

ECIConnectionSpec connSpec = new ECIConnectionSpec () ;
connSpec.setUserName ("TESOPO1") ;
connSpec.setPassword("") ;

Connection connection = connectionFactory.getConnection (connSpec) ;

Interaction interaction = connection.createInteraction() ;

// Create inputBean
K294Bean inRec = new K294Bean() ;
inRec.setI_ Entete_ TranId("K294");
inRec.setI_ Entete_ Vers("0101");
inRec.setI_ Entete_ Statut("99");
inRec.setI_ Entete_ Nb__ Enreg((short)40);
inRec.setI_ Entete_ User ("TESOPO01") ;

inRec.setI_ Entete_ Date("2012-01-16");

// Data

inRec.setI_ restea_ nupy(l);

inRec.setI__restea__cdea(2);

inRec.setI__restea__cdeal(l);

K294Bean outRec = new K294Bean() ;

// Create InteractionSpec

InteractionSpec interactionSpec = new ECIInteractionSpec() ;

40 Accessing Mainframe from Java

Program Development

((ECIInteractionSpec)interactionSpec) .setFunctionName ("COMPT294") ;
((ECIInteractionSpec)interactionSpec) .setTranName ("K294") ;

((ECIInteractionSpec)interactionSpec) .setCommareaLength(7132) ;

((ECIInteractionSpec) interactionSpec) .setInteractionVerb (ECIInteractionSpe
c.SYNC_SEND_RECEIVE) ;

// execute transaction

interaction.execute ((ECIInteractionSpec)interactionSpec, inRec,

outRec) ;

// Close all
interaction.close() ;

connection.close() ;

// List Data

K294bean_output__message_t__ _o_ data_ data datal] =
outRec.getT__o_ data__data();

// Load List
for (int i=0; i<data.length;i++)
{

if (data[i].getT _o_ data__data_ o_ restea_ cdea() !=0)

out.println(datal[il]);

Accessing Mainframe from Java 4

42

catch (Exception e)
{
System.out.println("Error : " + e.getMessage());

e.printStackTrace() ;

Important Areas

Thefollowing listings show theimportant areas for program development. Field name mappings
may vary.

e Listing 20, “ Setup Connection
e Listing 21, “Input Bean Usage
e Listing 22, “ Service Invocation

e Listing 23, “Output Bean Usage

Listing 20 Setup Connection

ECIConnectionSpec connSpec = new ECIConnectionSpec/() ;
connSpec.setUserName ("TESOPO1") ;
connSpec.setPassword("") ;

Connection connection = connectionFactory.getConnection (connSpec) ;

Interaction interaction = connection.createInteraction();

// Create InteractionSpec
InteractionSpec interactionSpec = new ECIInteractionSpec();
((ECIInteractionSpec)interactionSpec) .setFunctionName ("COMPT294") ;
((ECIInteractionSpec)interactionSpec) .setTranName ("K294") ;

((ECIInteractionSpec)interactionSpec) .setCommarealength(7132) ;

Accessing Mainframe from Java

Program Development

((ECIInteractionSpec)interactionSpec) .setInteractionVerb (ECIInteractionSpe
c.SYNC_SEND_RECEIVE) ;

Listing 21 Input Bean Usage

// Create inputBean
K294Bean inRec = new K294Bean() ;
inRec.getDfhcommarea () .
getInputMessage() .
getIEntete () .setIEnteteTranId ("K294") ;
inRec.getDfhcommarea () .
getInputMessage() .
getIEntete () .setIEntetevVers("0101") ;
inRec.getDfhcommarea () .
getInputMessage() .
getIEntete () .setIEnteteStatut ("99") ;
inRec.getDfhcommarea () .
getInputMessage() .
getIEntete () .setIEnteteNbEnreg((short)40) ;
// reserve outputBean

K294Bean outRec = new K294Bean () ;

Listing 22 Service Invocation

// execute transaction

interaction.execute ((ECIInteractionSpec)interactionSpec, inRec,

outRec) ;

Accessing Mainframe from Java 43

Listing 23 Output Bean Usage

K294bean_output_ _message_t_ o__data_ data datal] =
outRec.getDfhcommarea () .getOutputMessage () .getTODataData () ;

A JOLT Example

Below isthe COBOL copybook emprec . cpy.

Listing 24 Sample COBOL copybook emprec.cpy

01 emp-record.
04 emp-ssn pic 9(9) comp-3.

04 emp-name.

06 emp-name-last pic x(15).
06 emp-name-first pic x(15).
06 emp-name-mi pic x.

04 emp-addr.

06 emp-addr-street pic x(30).
06 emp-addr-st pic x(2).
06 emp-addr-zip pic x(9).

e On Linux machine, you could define eGen script emprec.egen as below.

generate view test.EmployeeRecord from emprec.cpy codepage ASCII endian
little

e Next, you could process eGen script emprec . egen as below, and then javafile
EmployeeRecord. java IS generated.

java com.bea.jam.egen.EgenCobol emprec.egen

44 Accessing Mainframe from Java

A JOLT Example

e Next, after compiling EmployeeRecord. java, you will get four java classfiles.

EmployeeRecord$SEmpRecordlVSEmpAddr7V.class

EmployeeRecord$EmpRecordlVS$EmpName3V.class

EmployeeRecord$EmpRecordlV.class

EmployeeRecord.class

e Next, you can writejolt client java code with EmployeeRecord. java

simple example.

Listing 25 Sample Java Code

. See below for a

import
import
import
import
import
import

import

public

bea.jolt.*;
java.math.BigDecimal;
com.bea.base.io.MainframeWriter;
com.bea.base.io.MainframeReader;
java.io.IOException;
com.bea.sna.jcrmgw. snaException;

test.*;

class jc {
public static void main (String[] args) {

JoltSession jses;

try {
JoltSessionAttributes jattr;
JoltRemoteService toupper, addsvc;
JoltTransaction trans;

String name=null;

Accessing Mainframe from Java

45

String pass=null;

String apass=null;

String urole="myapp";

String outstr,addr;
test.EmployeeRecord egenclass;

BigDecimal value;

jattr = new JoltSessionAttributes() ;

//jattr.setString(jattr.APPADDRESS, "//lcdux2:5555");
jattr.setString(jattr.APPADDRESS, "//"+args[0]);
jattr.setInt (jattr.IDLETIMEOUT, 300);

jattr.setString(jattr.TRUSTSTORE,
"wallet/trust.jks");

jattr.setString(jattr.TSPASSPHRASE, "abcdl234");

jses = new JoltSession(jattr, name, urole, pass,

apass) ;

String testString = new String("john") ;

egenclass = new test.EmployeeRecord() ;
value = new BigDecimal ("123456789");

egenclass.getEmpRecord () .setEmpSsn (value) ;

egenclass.getEmpRecord () .getEmpName () . setEmpNameFirst (testString) ;

byte[] inputBuffer = egenclass.toByteArray (new

MainframeWriter());

46 Accessing Mainframe from Java

A JOLT Example

toupper = new JoltRemoteService ("CSIMPSRV", Jjses);

toupper.setBytes ("DATAFLOW", inputBuffer,
inputBuffer.length) ;

toupper.call (null) ;
byte[] rawResult= null;
rawResult = toupper.getBytesDef ("DATAFLOW", null);

test.EmployeeRecord result = new

test.EmployeeRecord (new MainframeReader (rawResult)) ;
value = result.getEmpRecord().getEmpSsn() ;

System.out.println("after call emp-ssn is " +

value.toString());
jses.endSession() ;
System.exit (0) ;
} // end of try block
catch (SessionException e)
{
System.err.println(e) ;
System.exit (1) ;
} // catch of try block
catch (IOException ioe)
{
System.err.println(ioe) ;
System.exit (1) ;
}
} // of main

} // public class jc

Accessing Mainframe from Java 41

e One Tuxedo server site, you can write a Tuxedo COBOL server that uses the same
copybook emprec . cpy. See below for asimple example.

Listing 26 Sample on Tuxedo Server Site

IDENTIFICATION DIVISION.
PROGRAM-ID. CSIMPSRV.
AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES. CONSOLE IS CRT.

DATA DIVISION.
WORKING-STORAGE SECTION.
copy 'emprec'.

R S S S R R R R R Sk I kR R R R

* Tuxedo definitions

R S S S R R R R R R ik R R R O

01 TPSVCRET-REC.

COPY TPSVCRET.

01 TPTYPE-REC.

COPY TPTYPE.

01 TPSTATUS-REC.

COPY TPSTATUS.

48 Accessing Mainframe from Java

A JOLT Example

01 TPSVCDEF-REC.
COPY TPSVCDEF.

R S S R R R R R Rk Rk R I R R Rk

* Log messages definitions
ER R S I I I R S I S R I I S I
01 LOGMSG.
05 FILLER PIC X(10) VALUE "CSIMPSRV :".
05 LOGMSG-TEXT PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.

R S S S R R R R Sk I I I R I R R Rk i

* User defined data records

R S S R R R R R R I I kR S R R R R

01 RECV-STRING PIC X(100).

01 SEND-STRING PIC X(100).

LINKAGE SECTION.

PROCEDURE DIVISION.

START-FUNDUPSR.

MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

MOVE "Started" TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

R S S S R R R R R I Ik kR R I R R R

* Get the data that was sent by the client

Accessing Mainframe from Java

49

R S S S R R R R R R Ik R R I R R

MOVE LENGTH OF RECV-STRING TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
emp-record

TPSTATUS-REC.

IF NOT TPOK
MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM

END-TIF.

IF TPTRUNCATE
MOVE "Data was truncated" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM

END-TIF.

MOVE emp-ssn TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

MOVE 987654321 to emp-ssn.

MOVE emp-name-first TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

50 Accessing Mainframe from Java

A JOLT Example

MOVE "Success" TO LOGMSG-TEXT.
PERFORM DO-USERLOG.

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACING

DATA-REC BY emp-record.

R S S S R R R R R Rk Rk R R I R
* Write out a log err messages
R S R R R R R Rk Rk R I R R
DO-USERLOG.
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.
R S S R R R R R Ik R I I R R R R
* EXIT PROGRAM
R S S R R R R R R Rk R I R R R R
EXIT-PROGRAM.
MOVE "Failed" TO LOGMSG-TEXT.
PERFORM DO-USERLOG.
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACING

DATA-REC BY emp-record.

e Next, set the correct COBOL compile environment. For example:
export COBDIR=/opt/cobol-it-64

export TM_COBOLIT_VERSION=3.7

Accessing Mainframe from Java 51

export COBOLIT_LICENSE=$SCOBDIR/citlicense.xml
export PATH=S$COBDIR/bin:$PATH

export LD_LIBRARY PATH=$LD_LIBRARY_ PATH:$COBDIR/lib
export COBCPY=$TUXDIR/cobinclude

e Last, the COBOL server is compiled as below.

buildserver -C -o CSIMPSRV -f CSIMPSRV.cbl -f TPSVRINIT.cbl -s CSIMPSRV

52 Accessing Mainframe from Java

Tuxedo Mainframe Transaction
Publisher

This document includes the following topics:

o Overview

Using Tuxedo Mainframe Transaction Publisher

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher

Setting up JDeveloper Project

Setting up Oracle Service Bus (OSB)

Overview

Tuxedo Mainframe Transaction Publisher simplifies the process of exposing mainframe
transaction in Oracle Service Bus (OSB) by providing a graphical user interface.

Let us consider this scenario, where users want to expose their mainframe transaction in OSB.
The proxy service uses WSDL and the business service uses WTC.

Accessing Mainframe from Java

Service
Client

Thetool generates POJO code based on the input COBOL copybook. These generated codes can
be used by users to access mainframe transaction.

&

» Java Callout Java Callout
“xml_2_pojo” “pojo_2_bytearray”

@
=
e
]
(7]
=
»
e
1=
o

Business Service

@ e - o
‘ Java Callout Java Callout
“pojo_2_xml” “bytearray_2_pojo”

Using Tuxedo Mainframe Transaction Publisher

Tuxedo Mainframe Transaction Publisher includestwo parts: Generator and Publisher. They are
implemented as JDeveloper extensions and reside in asingle JAR file.

e Tuxedo Mainframe Transaction Generator

e Tuxedo Mainframe Transaction Publisher

Tuxedo Mainframe Transaction Publisher is a project based tool. Users select the project and
right click to bring up context menu.

2 Accessing Mainframe from Java

Using Tuxedo Mainframe Transaction Publisher

{0 Oracle JDeveloper 12¢ - Application.jws : Client.jor \E@
FEile Edit View Application Refactor Search Navigate Build Run Team Toolks Window Help

G 0@ 9¢ 6-0- & aB4 b & Q- sea

Applcations @ startPage

7= Applications v |
Q®-V-E- o JDEVELOPER ORACLE

New b

Edit Project Source Paths.. Lean &Explore Get Started Community
¥ Delete Project

@ Tuxedo MF Transaction Generator What's New

Featured Tutorials Featured Documentation
4% Turedo MF Transaction Publisher

@8 Find Project Files Release fiotes Getting Started with the JDeveloper IDE Developing Appicatons with Oracee JDeveloper
Show Classpath

4] Applicatio
#RecentFie Show Overview

Developing Rich Web Applications with Cracle ADF Developing Fusion Web Appications with Orade ADF
Samples & Demos

Deploy ! Buiding and Using Web Services Developing Web User Interfaces with Orade ADF

Clentipr -5
st Faces

@ Make Client,jpr CiriFg
&3 Rebuild Client jpr AlFs

[Run

& Debug Developing Extensions for Orace TDeveloper

Mobie Browser Developer's Guide for Orade ADF

Compare With y
Replace With »

Al Online Tutorials
[@) Project Properties...

Al Orline Documentation

[¥] show on Startup

Note: Usersinstal this extension using JDeveloper's update center mechanism. For more
information, see Installing Tuxedo Mainframe Transaction Publisher.

Tuxedo Mainframe Transaction Generator

Tuxedo Mainframe Transaction Generator is implemented through the JDevel oper hook. Users
access this function by clicking the "Tuxedo Mainframe Transaction Generator" menu item.

By selecting this function, a graphical user interface base wizard window will be brought up to
guide users to do the following things.

1. Select COBOL Copybook
2. Define Code Generation Details
3. Configure Transaction Input and Output

4. Enter Transaction Details

Eventually, Tuxedo Mainframe Transaction Generator generates seven artifacts that are
organized in two parts.

Accessing Mainframe from Java 3

e Generated Java code based on the COBOL copybook

e OSB related configuration data which includes WSDL, configuration for OSB Business

Service, and configuration information for OSB Proxy Service

Select COBOL Copyhook

The following picture shows the wizard page for selecting COBOL copybook.

Select COBOL Copybook

| £2| Tuxedo Mainframe Transaction Generator - Step 2 of 5

Welcome

Copybook File:

|D: ‘data'copybookyui_f_pereiralwa45_fixed.cpy

Select COBOL Copybs

Define Code Generation,

C—€—@€

Browse...
01 DOCO045-AREA.

05 MUCIM PIC 59(09) COMP-3.
05 TIPOIM PIC 59(03) COMP-3.
05 ORDEMIM PIC 59(03) COMP-3.
05 ORGAOIN PIC 52(05) COMP-3.
05 DTINI PIC 59(09) COMP-3.
05 DTFIM PIC 52(09) COMP-3.
05 TIPOCOMNTA PIC X(01).
05 TIPOMOWY FIC %(02).
05 MMOVPED PIC 9(D3).
05 INDSALDO PIC %(D1).

05 MONTANTE-IMF
05 MONTANTE-SUP

PIC 59(15)V3(2) COMP-3,
PIC 59(15)V9(2) COMP-3.

Help

05 DTMOVULT PIC 52(09) COMP-3.
05 MUMSEQULT PIC 59(09) COMP-3.
05 SALDOULT PIC 59(15)Va(2) COMP-3,
05 INDCURSOR. PIC X{01).
05 CAMPO-ALUX PIC X{10).
< Back Mext = Finish Cancel

Define Code Generation Details
The following screenshot shows the wizard page for defining code generation details.

The following fields are used.

Transaction ID

Name of the mainframe transaction. Thisis used in code and artifacts generation to name
the OSB project, artifacts, and data mapping classes.

POJOs Package

Thisis used as Java package name for the mapping classes.

Namespace

Thisisused as WSDL and schema namespace in the WSDL and XSD OSB artifacts.

Accessing Mainframe from Java

Using Tuxedo Mainframe Transaction Publisher

|£| Tuxedo Mainframe Transaction Generator - Step 3 of 5 @
Define Code Generation Details
l Select COBOL Copybool
1
@ Define Code General
+ Choose Transaction Inp
Transaction ID: |'|":'A45 |
POI0s Package: |bpi.trx |
MNamespace: ttp: /fwww. bpi. pt] |
Help < Back Mext = Einish Cancel

Configure Transaction Input and Output
Thefollowing screenshot shows the wizard page for configuring the input and output fields from

the COBOL copybook.

Accessing Mainframe from Java

| £:| Tuxedo Mainfrarme Transaction Generator - Step 4 of 5 @
Choose Transaction Input and Output
Element Type Input Output
1 o e —
I) nucin wsd:integer O O
¥ Define Code Generation [tipoin xsd:integer L} O
) Choose Transaction 1 ordemin wsdiinteger = O
| [orgaoin xsd:iinteger O O
@ Enter Transaction Detail [dtini xsd:integer O O
[dtfim xsd:integer L} O
[tipoconta xsd:string = O
[tipomaw xsd:string = 3
[nmovped xsd:integer O O
[indsaldo xusd:string O O
[montanteInf xsd:decimal = O
[montantesup wsd:decimal = O
[dtmovult xsd:iinteger O O
[numseqult xsd:integer O O
[saldoult xsd:decimal L} O
[indeursor xsd:string = O
[1_campoAux xed:istring 1
Help < Back Mext = Finish Cancel

Enter Transaction Details

The following screenshot shows wizard page for entering information needed by mainframe
transaction.

Thefollowing fields are used.

Tuxedo transaction resour ce name
Name of the generated Tuxedo transport/WTC import that will be generated.

Tuxedo transaction remote name
Name of the Tuxedo service on the remote Tuxedo domain as exported from there.

Tuxedo remote domain
ID of the remote Tuxedo/TMA domain.

Tuxedo network address
Network address for the Tuxedo/TMA remote domain.

OSB local domain
ID of the OSB domain.

Accessing Mainframe from Java

Using Tuxedo Mainframe Transaction Publisher

OSB network address
Network address of the OSB domain.

WebL ogic target server
Name of the WLS server.

|£:| Tuxedo Mainframe Transaction Generator - Step 5 of 5 @

Enter Transaction Details

Choose Transaction Inp

I
1
)

T Tuxedo transaction resource name: |\“.|’.-'-\45
Enter Ti ction D
= Emter Transachion B9 1ixedo transaction remate name: [wads
Tuxedo remote domain: |TU.X'DOM

Tuxedo network address (ff <host=: <port=): |.|".|"jad<al: 1234

058 local domain: [oseoom
0SB network address {f/<host=: <port=): |,|".|"gunite: 56?B|
WebLogic target server: |server 1
Help = Back Finish Cancel

Usersare allowed to set the defaults value for the mainframe transaction detail s according to user
needs through the JDevel oper's " Preference” menu item from the "Tools" drop down menu.

Accessing Mainframe from Java 1

© Preferences @

Tuxedo MF Publisher Properties

Tuxedo remote domain: |TU?(DOM

----- Oracle BPEL 1.1 Designer
----- Oracle BPEL 2.0 Designer |
----- Cracle Business Rule Desigr 058 local domain: |OSBDOM |

Tuxedo network address (ff <host>: <port=): |,|"ﬂ105t:port

----- Orade Cloud
- Profiler

..... Resource Bundle Weblogic target server: |server1

[#-- Run

----- Shortcut Keys

- SOA

[#- Swing GUI Builder

----- Task Tags

[#-- TopLink

- UML

----- Usage Reporting

[#-- Versioning

----- Web Browser and Proxy

----- W5 Policy Store

----- ¥ML Schemas

----- XQuery Editor

[#- X5L Maps

0SB network address (ff <host>: <port:): |fﬂ105t:port

Help OK Cancel

Tuxedo Mainframe Transaction Publisher

Tuxedo Mainframe Transaction Publisher isimplemented through the Ul hook. Usersaccessthis
function by selecting the Tuxedo Mainframe Transaction Publisher menu item.

By selecting this function, awelcome wizard page will be displayed to do the following things.
1. Pack Artifacts
2. Publishto OSB

Pack Artifacts

Inthisstep, the artifacts generated by Tuxedo Mainframe Transaction Generator are packed. The
following wizard page tells users the name of the packaged JAR file, and where it will be
generated.

Accessing Mainframe from Java

Using Tuxedo Mainframe Transaction Publisher

| £ Tuxede Mainframe Transaction Publisher - Step 2 of 3 @
Pack Artifacts
Welcome The file wa45_osb.jar will be generated in directory
T Dt \test\mtp\Client/artifacts.
v Pack Artifacts
$ b 05 This file can be imported into Orade Service Bus 12c.
Help < Back Next = Finish Cancel

The following wizard page helps users to publish the generated artifacts to OSB. This Tuxedo
Mainframe Transaction Publisher function allows usersto specify the OSBsURL, administrator's
name, and administrator's password.

Note: Tuxedo Mainframe Transaction Publisher allows users to manually install the OSB
project by not selecting "Publish to Oracle Service Bus (OSB)?".

Accessing Mainframe from Java 9

|2 Tuxedo Mainframe Transaction Publisher - Step 3 of 3 @

Publish to OSB

|
s Pack Artifacts

I
! Publish to 0SB

Publish to Orade Service Bus (058)?
OSBURL: |http:/localhost: 7001 |

Username: |web|0gic |

Password: |l |

Help < Back Finish Cancel

Installing/Uninstalling Tuxedo Mainframe Transaction
Publisher

10

Prerequisite

To ensure successful installation of the Tuxedo Mainframe Transaction Publisher, a pristine
JDeveloper should be used. Users should install the pristine JDeveloper at a new location; they
should neither import any preference from other installations nor use JDeveloper to start from

installer.
After installation, users use the following commands to start the JDevel oper.

® cd SORACLE_HOME
® jdeveloper/jdev/bin/jdev -clean -console

Note: JDeveloper Studio is available for download from Oracle Technology Network.

Accessing Mainframe from Java

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher

Installing Tuxedo Mainframe Transaction Publisher

The Tuxedo Mainframe Transaction Publisher is distributed in asingle zip file named
"tuxedo.mtp.update.<version>.zip". ItScurrent versionis 12.1.2.0.

Do the following steps to complete the Tuxedo Mainframe Transaction Publisher installation.
1. Select "Install From Local File" and enter the zip file location in "File Name:" text field.
2. Click the"Next" button (and the "Summary" page shows up).

3. Click the"Finish" button to complete the installation.

After completing the installation, jar fileswill beinstalled in
MW_HOME/JDeveloper/jdev/extension/tuxedo directory.

Note: Thezipfileislocated in $TUXDIR/udataobij. To find out
"tuxedo.mtp.update.12.1.2.0.zip", open the JDeveloper and click the "Help”
menu item in the menu bar, and select "Check for Updates" from the drop down menu
that is brought up.

© Check for Updates - Step1 of 4
Select update source
. Search for updates published to Update Centers, or install an update from a bundle you have already downloaded.
& Source
T Automatically check for updates at startup
2 Updates
() Search Update Centers: Proxy Settings...
Oracle Fusion Middleware Products Add..
hitp:ifer wwe oracle.comfocom/groups/public/@otn/documents/webcontent/1 56082.xm
Official Oracle Extensions and Updates
hitp:/fapex oracle.com/pls/apex/f?p=updatecenter:uc
|:| Open Source and Partners Extensions
hitp:ifer v oracle. comfocom/groups/public/@otn/documents/webcontent/130355.xm
["] Internal Automatic Updates (12.1.2)
hitp:/fide us oracle. com/center2 xml
() Install From Local File
Help Mext = Cancel

Accessing Mainframe from Java "

Checking Installation Status

After the installation, when the updater asks to restart JDevel oper, choose not to. Then users go
to the command line and re-enter jdeveloper/jdev/bin/jdev -clean -console to verify
whether the installation is successful.

Users can check the installation status using any of the following ways.
e Using graphical user interface
e Using command lines

Using graphical user interface
Click "Help"- "About" - "Extension".

0 About Oracle JDeveloper 12¢ @

Export =

About Version Properties = Extensions

Q %
Name Identifier v
Tuxedo MF Transaction Publisher com.oracle, tuxedo. mtp

Ok

Using command lines

Listing 1 Using Command Lines to Check Installation Status

D:\oracle\jdeveloper\12.1.2_2>jdeveloper\jdev\bin\jdev -su -clean -console

Accessing Mainframe from Java

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher

osgi>

osgi> ss tuxedo

Framework is launched.

id State Bundle

927 RESOLVED com.oracle.tuxedo.mtp_12.1.2

Uninstalling Tuxedo Mainframe Transaction Publisher

Do the following steps to uninstall the Tuxedo Mainframe Transaction Publisher from
JDeveloper's menu bar.

Click the "Tools" menu item (and a drop down menu shows up).

Select the "Features' (and the "Manage Features and Updates' page shows up.
Select the "Installed Updates®.

Select "Tuxedo MF Transaction Publisher".

ag > w D

Click "Uningtall" button to complete the uninstallation.

Accessing Mainframe from Java 13

@) Manage Features and Updates @

Current Role: |Studio Developer (All Features) i Check for Updates ~

Features Installed Updates
To remove one or more installed updates, select the bundles and click Uninstall
2l Other

= Update does not have a category specified
[] &% Tuxedo MF Transaction Publisher

Collapse All

Help Close

Installation Notes

Tuxedo Mainframe Transaction Publisher requires

e Oracle JDeveloper 12.1.2 extension
e Oracle Service Bus (OSB) 11.1.1.7

e JDK 1.7 or above on both Oracle JDeveloper and Oracle Service Bus (OSB)

Note: When usersinstall Tuxedo Mainframe Transaction Publisher on Oracle JDeveloper
12.1.2 extension, a matisse related exception will be reported. This exception has no
impact on the use of Tuxedo Mainframe Transaction Publisher.

Setting up JDeveloper Project

Users must set up the "Library and Classpath™ for every project before using Tuxedo Mainframe
Transaction Publisher; otherwise, the compilation of the generated class fails.

To do the setup, right click the project to bring up context menu and select "Project Properties”.
Then select "Add JAR/Directory" and add the eGen libraries.

14 Accessing Mainframe from Java

Setting up JDeveloper Project

@) Project Properties - Di\test\mtphmysimpapp\mysimpapp.jpr

Q, Search Libraries and Classpath

[E- Project Source Paths (7) Use Custom Settings
- ADF Business Components (3) Use Project Settings
- ADF Model
- ADF View Java SE Version:

- Ant Change...
- Compiler

Classpath Entries:

----- Dependencies

----- Deployment Export Description Add Library...

""" E28 Modle Add JAR/Directory. ..
----- Extension

----- Facelets Tag Libraries
----- Features

[Javadoc

Java EE Application

----- JSP Tag Libraries

----- 15P Visual Editor

I ¢ = 2l

Help Ok Cancel

@) Project Properties - D:\test\mitp\mysimpapp\mysimpapp.jpr

Q Libraries and Classpath
- Project Source Paths () Use Custom Settings
[#-- ADF Business Components (3) Use Project Settings
[+ ADF Model
..... ADF View Jawva SE Version:
[Ant Change...
[+ Compiler)
----- Dependencies Classpath Entries:
----- Deployment Export Description Add Library...
EJB Module [Com.bea.core.xml.xmbeans_2.2.0.0.jar Add JAR Directory
----- Extension (2 Egen.jar =
----- Facelets Tag Libraries 8 Weblogic_apache jar
..... Features ¥mitoolkit.jar
[Javadoc L2} Ant.far)) &
----- Java EE Application 8 Eommon:;o—.z. Ljar ﬁ
""" A @ P:Eir:!l:rlxmrldf r1 11ar
----- 15P Tag Libraries - i &
] [swingx-all-1.6. 3.jar
- Editor 3
- Maven
----- Resource Bundle
----- Run/Debug
Help OK Cancel

Accessing Mainframe from Java 15

Setting up Oracle Service Bus (0SB)
Installing EGen Libraries for 0SB

Itisrequired for usersto add eGen librariesto OSB's classpath by doing the following steps.
1. Create or use an existing Oracle Service Bus Domain.
2. Edit <domain_path>/bin/setDomainEnv.sh and eGen libraries to the classpath.

3. Restart OSB to reflect these changes in the classpath.
The eGen libraries can be extracted from the updated zip file.

Users should add the followingsto set DomainEnv. sh.

Listing 2 Adding Information to setDomainEnv.sh

#

EGen Classpath for MTP

#

BASE_EGEN_LIBS_PATH=<location of the libraries>

EGEN_CLASSPATH=${BASE_EGEN_LIBS_PATH}/com.bea.core.xml.xmlbeans_2.2.0.0.ja
r${CLASSPATHSEP}S${BASE_EGEN_LIBS_PATH} /weblogic_apache.jar${CLASSPATHSEP}S
{BASE_EGEN_LIBS_PATH}/xmltoolkit.jar${CLASSPATHSEP}S{BASE_EGEN_LIBS_PATH}/

egen.jar
CLASSPATH="${CLASSPATH}S$ {CLASSPATHSEP}S${EGEN_CLASSPATH}"

export CLASSPATH

Importing Shared Resources to 0SB

An OSB project with some shared resourcesis used by Tuxedo Mainframe Transaction Publisher
generated OSB resources. The file with complete OSB project isin
STUXDIR/udataobj/mtp_shared_sbconfig.jar.

1. Use OSB's consoleto import this JAR.

16 Accessing Mainframe from Java

Setting up Oracle Service Bus (0SB)

System Administration > Import Resources

G0 [e m— scsOvnde:

o B S Yiew Fpeete ook Help

g Favorites Ug @ eipeessSE @ Web Shce Gallery v
=] Orsele Service Bus : bmport Fesources [

gresidFeacesst =] B | 49| 24 | Gosgie o=

B B -3 v Pagew fafeyr Toosv @+ B

ORACLE' Service Bus 11gR1 T
R B | v cicome, weblogic Connected to : osb_domain | fyHome | Orack WIS Console | Logout | Melp | Oracke Suppart | About Serdoe Bus]

| weblogic sesswon | Crésted 44/14 18 FM | No Confcts | hio Changes | 1 Actve Seanls) | |

Tmprt from UBOT
Auto-Impart Status
Publish to LDDI

L Local intsaret | Protected Mede: OFF v Rims v

2. Enter themtp_shared_sbconfig.jar location.

Accessing Mainframe from Java 17

18

_ridpbasnuel_windowlabel:

FEile gt View Fpeorites Jook Help
x -

| Feeites n @] OprestR @) Wek Sice Gallery =
. [0 Onache Service - Impoet Rescurces:]

BB - & - Baes ey Tok- @

ORACLE Service Bus 11gR1

mm:w[GrHome | Orsde WLS Console | Logout | Melp | Orace Support | Abeut Senvce Bus |

| weblogkc session | Created 4/4/14 4:16 PM | o Conficts | Ho Changes | 1 Actwe Sessin(s)

Impart from LIDOT
Aut-Inport Stabus.
Publish to UGOT

AuterPublish Status

Exmoute Customization File

shcon|_Bwse.. |

WL Loeal intranet | Presected Mode: O3 v Rex -

3. Click "Next>>" button.

Accessing Mainframe from Java

Setting up Oracle Service Bus (0SB)

mvfﬁ 7 partall_nfpbstrued windowlabelzImportConh soConfiguralion, = 0 e % 0 G =
Ble [t Yiew Fpeorites Tocks Help

© o Favortes s] eprenSR] Web Sice Gallery =
= L Resouce. Cf v B - - Bagem eleye Tock- @ B

ORACLE' Service Bus 11gR1)
|| oo, webiogic Connected to : osh_domain | Griome | Oracle W1s Coneole | Logous | Welp | oracle Support | about Service fus

“:#-h- weblogic sesston | Created 4/4/14 4:18 PM | No Conficts | Mo Changes | 1 Actie Session(s) |
= o Conflkts:

= View Changes iag Imposrt Resodircas- Project IAR Fils
° el S " incude Dependences

T[T f——

o
=

e Tyve Overations | eferences |
’Lm B 4| shared Fropect L = | = e

Export Resaurces

ool
UDDI Regisiies QTop
Imgort from VDD
AuterImport Stats
Publich to UODT

AutorPublish Status

filobal Resources
DI Providers
SMTP Servers.
Preny Senatrs

Customization
Find & Replace
Criate Customization Fie
Exituts Customization File

S Local intranet | Prosected Modes Off o W% -

4. Select "Import".

Accessing Mainframe from Java 19

20

G- =

| Fle ESt Yoew Faewites Took b

quistion_actic = %3 depk + [52 [42] |1 oo P |

- x T -
| o Favornes i) etpremSh 2] Web S Gatery >
| oncesew Inpens B B e b s Tk @

mmw;ﬁm| % Home | Cracle WLS Conscle | Logeut | Help | Oracle Support | Abeut Service Dus |

weblogic session | Created 4/4/14 4:18 P | 1o Conficts | 1 Changa(s) | 1 Acowe Sessonls) | |

| |84 The impont was completed successhully.

23 Tmport Resources

Status = Hame
Imgrt Resources B

i import Another

o Top

Impert from UDDE
s Impert, Slalus
FPubilish ta UOOT

Auto-Publsh Stabus.

|) o genarc_took | sharadassats

Mems1-1ofl (4|4 |1 F |k

memns 1-10f2) 4| 4 |2 |k [

B Local intranet | Protected Mode: OIf v RN -

5. Click "Activate" button.
6. Click "Submit" button.

7. Check for any error or conflict and resolve them.

Accessing Mainframe from Java

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Accessing Mainframe from Java, 12c Release 2 (12.2.2)
	Generating a Java Application with the eGen Application Generator
	Generating a Java Application with the eGen Application Generator
	Overview
	Understanding eGen
	Working with COBOL Copybooks
	Obtaining a COBOL Copybook
	Limitations of the eGen Utility

	Writing an eGen Script
	Writing the DataView Section of an eGen Script

	Processing eGen Scripts with the eGen Utility
	Creating an Environment for Generating and Compiling the Java Code
	Generating the Java DataView Code
	Special Considerations for Compiling the Java Code

	Performing Your Own Data Translation
	Why Perform Your Own Data Translation?
	Translating Buffers from Java to Mainframe Representation
	MainframeWriter Public Interface
	Using MainframeWriter to Create Data Buffers

	Translating Buffers from Mainframe Format to Java
	MainframeReader Public Interface
	Using MainframeReader to Translate Data Buffers

	DataView Programming Reference
	Field Name Mapping Rules
	Field Type Mappings
	Group Field Accessors
	Elementary Field Accessors
	Array Field Accessors
	Fields with REDEFINES Clauses
	COBOL Data Types
	Other Access Methods for Generated DataView Classes
	Mainframe Access to DataView Classes
	XML Access to DataView Classes
	Hashtable Access to DataView Classes

	Known Limitations of eGen working with COBOL Copybooks

	Program Development
	Important Areas

	A JOLT Example

	Tuxedo Mainframe Transaction Publisher
	Overview
	Using Tuxedo Mainframe Transaction Publisher
	Tuxedo Mainframe Transaction Generator
	Select COBOL Copybook
	Define Code Generation Details
	Configure Transaction Input and Output
	Enter Transaction Details

	Tuxedo Mainframe Transaction Publisher
	Pack Artifacts
	Publish to OSB

	Installing/Uninstalling Tuxedo Mainframe Transaction Publisher
	Prerequisite
	Installing Tuxedo Mainframe Transaction Publisher
	Checking Installation Status
	Using graphical user interface
	Using command lines

	Uninstalling Tuxedo Mainframe Transaction Publisher
	Installation Notes

	Setting up JDeveloper Project
	Setting up Oracle Service Bus (OSB)
	Installing EGen Libraries for OSB
	Importing Shared Resources to OSB

