Oracle® Tuxedo
CORBA Programming Reference

12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo CORBA Programming Reference, 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. OMG IDL Syntax and the C++ IDL Compiler

OMG IDL Compiler EXTENSIONS. . ..ottt et e ettt i 1-2
C++ IDL Compiler Constraints.o vvv vttt e e e 1-3

2. Implementation Configuration File (ICF)

ICF SYNEBX . vttt e 2-2
Sample lCF File . .o 2-3
Creatingthe ICF File. o e 2-4

S AlSD . . 2-4

3. TP Framework

A SimpleProgramming Model e 33
Control FIOW . . . oo 34
Object State Managementt 34
Transaction Integration i e 34
Object HOUSEKEEDING. . . . oo e 35
High-level Services 35

State Management.o e 35
Activation PoliCyo 35
Application-controlled Activation and Deactivation. 3-7
Servant Lifetime.o 3-10
Saving and Restoring Object State.ot 312

TranSaCtioNSot te 3-12

CORBA Programming Reference iii

Transaction PoliCIES oo o 3-13

Transaction Initiation i 314
Transaction Terminationottt 314
Transaction Suspend and ResUME.ot 314
Restrictionson TransactionS.o ot 3-16
SQL and Global Transactions.t e 3-16
Voting on Transaction OULCOME oottt et 3-17
Transaction TIMEOULSot v ettt e e e e e 3-18
[HOP Client Faillover. e e 3-18
Setting TheRetry Policyo 3-18
Initiating [IOP Client Failover 3-19
SEE Al .t e 3-20
WebL ogic CORBA Clustering and Load Balancing Support 3-20
Parallel ObJeCtS.o 320
TP Framework APl 3-22
Server Interface. 3-23
ServerBase Interface. 3-24
Server:create Servant(). 325
ServerBase::create servant_ with id()............... ... L 3-27
Serverzinitialize() 3-29
ServerBase::ithread_initialize() ... 331
Serverrelease() . ..o 3-33
ServerBase:ithread release() 3-35
Tobj_ServantBase Interface 3-36
Tobj_ServantBase:: activate object() L. 3-37
Tobj_ServantBase::_add_ref(). 3-39
Tobj_ServantBase::deactivate object() 3-40
Tobj_ServantBase::_is reentrant()ccooviiiiiiiii... 3-45

iv CORBA Programming Reference

Tobj_ServantBase::_remove ref() 3-46

TP Nt aCe. . oo 3-46
TP::application_responsibility(). 3-48
TRDOOLSrap() . - v v oo e 3-49
TRCIOSE X8 IM() .« vt e 3-50
TP::create active object reference(). 3-51
TP::create object reference() ... 3-54
TP::deactivateEnable(). 3-56
TPRget object id () ... 3-58
TP::get_object_reference(). ... 3-59
TROPEN_XA M) .« vttt e e 3-60
I e o 3-61
TRregister factory(). .. .ooov i 3-62
TP:unregister factory().ovovn e 3-63
TRUSEOg(). « oo v 3-65

CosTransactions:: Transactional Object Interface Not Enforced 3-66

Error Conditions, Exceptions, and Error MeSSageso oo i i i 3-66

Exceptions Raised by the TP Frameworkt 3-66

Exceptionsin the Server ApplicationCode. 3-66

Exceptionsand TransaCtionS.ovv i 3-67

Restriction of Nested Callson CORBA Objects.t 3-67

4. CORBA Bootstrapping Programming Reference

Why Bootstrapping ISNeeded 4-2
Supported Bootstrapping Mechanisms. 4-2
Oracle Bootstrapping Mechanism i 4-2
How Bootstrap ObjectsWOork 4-2
Types of Oracle Remote ClientsSupported, 4-7

CORBA Programming Reference

vi

Capabilitiesand Limitations. 4-8

Bootstrap Object APlo 4-8
Tobj Module 4-9

(O ol Y=o o 11 o 4-10
JAVAMADPDING .« . o e et 4-10
AUtOMEtion Mappingoou it 4-11
CHtMember FUNCLIONSo e 4-12
Tobj_BOOtStrap. 4-12
Tobj_Bootstrap::register_callback port............................. 4-17
Tobj_Bootstrap::resolve initial_references.......................... 4-18
Tobj_Bootstrap::destroy_current().o 4-19
JavaMethods. 4-20
Automation Methods. 4-20
Initialize. ... 4-21
CreateOBJECEottt e e e 4-22
DestroyCUITENL. . . . ot 4-24
Bootstrap Object Programming Examples., 4-24
Visual Basic Client Example: Using the Bootstrap Object. 4-24
Interoperable Naming Service Bootstrapping Mechanism 4-25
INErOdUCHION. . . o oo e e e 4-26
INSObject REfErenceso 4-26
INSCommand-lineOptionst 4-27
INS Initialization Operations« 4-27
INSObject URL SChemeso e 4-27
Getting a FactoryFinder Object ReferenceUsingINS. 4-33
Getting a Principal Authenticator Object ReferenceUsingINS.............. 4-34
Getting a TransactionFactory Object ReferenceUsingINS. 4-35

CORBA Programming Reference

5. FactoryFinder Interface

Capabilities, Limitations, and Requirements o ... 5-2
Functional DeSCription oo e 5-2
Locating aFactoryFinder. o 5-3
Registering aFactory. e 5-3
Locating aFactory.o. i 5-5
Creating Application Factory Keys. 5-10
C++ Member Functionsand JavaMethods oot 5-18
CosLifeCycle::FactoryFinder::find_factories 5-18
Tobj::FactoryFinder::find_one factory 5-20
Tobj::FactoryFinder::find_one factory by id........................ 5-22
Tobj::FactoryFinder::find_factories by id 5-24
Tobj::Factoryfinder::list_factories o i, 5-26
Automation Methodso 5-27
DITobj_FactoryFinder.find one factory 5-27
DITobj_FactoryFinder.find_one factory by id 5-28
DITobj_FactoryFinder.find factories by id......................... 5-30
DITobj_FactoryFinder.find_factories. oot 5-31
DITobj_FactoryFinder.list_factories oot 5-32
Programming EXamples 5-33
Using the FactoryFinder Object ot 5-34
Using Extensions to the FactoryFinder Object 5-36

CORBA Programming Reference vii

6. Security Service

/. Transactions Service

8. Notification Service

9. Request-Level Interceptors

10. CORBA Interface Repository Interfaces

Structure and USagEottt 10-2
Programming Information. 10-3
Performance Implications. i 10-4

Building Client Applicationst e 10-4

Getting Initial References to the InterfaceRepository Object 10-5

Interface Repository Interfaces o 10-5
Supporting Type Definitions. i 10-5
IRObject Interface. 10-6
Contained INterface.t 10-7
Container Interface 10-8
IDLTypelnterface. e e 10-10
Repository Interface 10-11
ModuleDef Interface. 10-11
ConstantDef Interface. e 10-12
TypedefDef Interface 10-13
STUCEDES . . o 10-13
UNiONDEf . . .o 10-14
EnumMDEf 10-15
AliasDeEf ... 10-15
PrimitiveDef 10-15

viii CORBA Programming Reference

SNGDEf . . 10-16

WSiNGDEf . 10-16
EXCEPtiONDEf . . . 10-17
AttributeDeEf . . . o 10-18
OpEratiONDEf . . .o 10-18
InterfaceDef 10-20
11. Joint Client/Servers

INEFOAUCLION. e e e e e 11-2
Main Program and Server Initialization 11-2

S VaANS . . oot e 11-3
Servant Inheritancefrom Skeletons. 11-3
Callback Object ModelsSupported.o 11-4
Configuring Serversto Call Remote Joint Client/Server Objects. 11-5
Preparing Callback Objects Using CORBA (C++ Joint Client/ServersOnly) . .. 11-6
Preparing Callback Objects Using OracleWrapper Callbacks 11-8
C++ OracleWrapper Callbacks Interface APIo i 11-11
Callbacks 11-11

Start tranSi et 11-12
start_persistent_systemid 11-13
restart_persistent_systemid 11-15
start_persistent_userid 11-17
StOP_ObJECt . . .o 11-19

stop_all Objects 11-19

get String 0id. . ..o 11-20
~CaAlbacks . . . 11-21

CORBA Programming Reference ix

12. Development Commands
13. Mapping of OMG IDL Statements to C++

M aDPIiNgS . . oot 131
DAl TYPES. . o vttt e e 13-2
NS . o v et 13-4
WO S .« ottt 13-5
WSS, o ettt et e e 135
CONSLANTS. .« . oot 13-6
ENUMS . . 13-7
SUCES . o 13-7
UNiONS. ottt 13-9
SBUENCES . . ottt it e 13-15
ATy S o it e 13-19
EXCEPtiONS. . . o 13-21
Mapping of Pseudo-objectsto C++ i 13-23
USB0B. oottt e 13-24
Mapping RUIES e 13-24
Relationtothe CPIDL Mappingcoviiei et 13-25
TypedeEfS . .. e 13-26
Implementing Interfaces. i 13-27
Implementing Operations ii i e e e e 13-29
PortableServer FUNCLIONS oo 13-31
MOOUIES. 13-31
eI aCES. . . et 13-32
Generated Static Member Functions. oo 13-33
Object Reference TYPES . .. oot e e e 13-34
AITDULES. . . . 13-34

X CORBA Programming Reference

ANY Ty B . o 13-37

VAlUE TYPE. . et 13-48
Fixed-length Versus Variable-length User-defined Types.t 13-51
USING VAl Classes . . o oottt e e e e e e e e 13-52

SEQUENCEVAIS . . o\ ottt e et e e e e 13-55

ATTAY VIS . o 13-55

NG VIS . et 13-56
USING OUL ClaSSES . . o o vttt et e e e e e e e e e 13-57

Object Referenceout Parametert 13-59

SEQUENCE OULS . . . v ottt e et e e e e e e e 13-60

ATTaY OULS . o 13-60

NG OULS .« . et eeee 13-61
Argument Passing Considerationsovuu it 13-62

Operation Parameters and SIgnatureso e e 13-65

14. CORBA AP
Global Classes. . . . oot 14-1
PSeUdO-0bJECESo 14-2
Any ClassMember FUNCLIONS. o e 14-2
CORBA::ANY I ANY() - ot 14-3
CORBA::Any::Any(const CORBA::Any & InitAny) 14-4
CORBA::Any::Any(TypeCaode ptr TC, void * Value, Boolean Release) . . . 14-5
CORBA:ANY:~ANY() . o et e e 14-5
CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny) 14-6
void CORBA::any::operator<<=()ouiiiriinnannannannann. 14-7
CORBA::Boolean CORBA::Any::operator>>=()................... 14-7
CORBA::ANY:: 0perator<<=(). . vttt 14-9
CORBA::Boolean CORBA::Any::operator>>=()................... 14-9

CORBA Programming Reference Xi

CORBA::TypeCode_ptr CORBA::Any::itype()const 14-10

void CORBA:ANYreplace() ..o oo v 14-11

Context Member FUNCLIONSo ot 14-11
Memory Management. 14-12
CORBA::Context::context_Namecuiirnennenneennen.. 14-12
CORBA::Context::create child.o iiin. 14-13
CORBA::Context::delete values. 14-14
CORBA::Context:iget ValueS.t 14-15
CORBA::Contextiparent.t 14-16
CORBA::Context:iset one value 14-17
CORBA::Context:iset valuesttt 14-18
ContextList Member Functions 14-18
CORBA::ContextList:: count.t 14-19
CORBA::ContextList:add. 14-20
CORBA::ContextList::add consume, 14-21
CORBA::ContextListitem. 14-21
CORBA ::ContextList::removet 14-22
NamedVaue Member FUNCLIONSo 14-23
Memory Management. 14-23
CORBA::NamedValue:flags. 14-24
CORBA::NamedValue:namet 14-24
CORBA::NamedValue:valuet 14-25

NVList Member FUNCLIONS. e 14-26
Memory Management. 14-26
CORBA:NVList:add 14-27
CORBA:NVList:add item e 14-28
CORBA:NVList:add value. 14-29
CORBA:NVLISICOUNt ...t 14-30

Xii CORBA Programming Reference

CORBA NV LIS IteM. . oot e e 14-31

CORBA:NVLIStIremMOVeot 14-32
Object Member FUNCLIONS o e 14-33
CORBA::Object::_create requestooiiiin i 14-34
CORBA::Object::_duplicatec.coviiiii i 14-35
CORBA::Object::_get interfaceo, 14-36
CORBA::ODECE: IS @ vt ettt e e 14-37
CORBA::Object::_is eguivalentcooviiiiiiiinenan. 14-38
CORBA::Object::_nil. 14-38
CORBA::Object::_non_existent.c.ieeniiinenneen, 14-39
CORBA::Object::_requestt 14-40
CORBA Member FUNCLIONS.ttt 14-40
CORBAIElEaSe. . .o 14-41
CORBA:S NIl ..o 14-42
CORBA:hash. 14-43
CORBA::resolve_initial_references., 14-44
ORB Member FUNCLIONS.ot e e e 14-44
CORBA::ORB:Clear CtX. ... v ittt 14-46
CORBA::ORB::create context list.............cooiiiiiiian, 14-47
CORBA::ORB::Ccregte environmentouuieiinneennnann. 14-47
CORBA::ORB::create_exception list...............cooiiiiian, 14-48
CORBA::ORB::create list. 14-48
CORBA::ORB::create named_value.coiiiiinnann. 14-49
CORBA::ORB::create operation listc.cccvviiiiinaa... 14-50
CORBA::ORB::create poliCyovvuiieii e 14-51
CORBA:ORB:AESIIOY . . v vttt e et 14-54
CORBA:IORB:IgEL CIX « v vttt e e et 14-55
CORBA::ORB::get_default_contextccoviieiennann. 14-55

Xiv

CORBA::ORB::get_Next responSe.cvv i 14-56
CORBA::ORB::inform_thread_exit 14-57
CORBA::ORB::list_initial_servicescoovviiiiiiiniinann 14-58
CORBA::ORB::object tO_String.coviiiiniinnann 14-58
CORBA::ORB::perform_work 14-59
CORBA::ORB::poll_next_responsecoovvineineennnaann 14-60
CORBA::ORB::resolve initial_references......................... 14-61
CORBA::ORB::send_multiple requests deferred 14-62
CORBA::ORB::send_multiple_reguests oneway. 14-63
CORBA:ORB:ISEL CIX .« v vttt et e 14-64
CORBA::ORB::string_to object. 14-65
CORBA::ORB::work_pendingccoiiiiiniiiiiiinan,. 14-66
ORB Initiaization Member Function. i 14-66
CORBA::ORB NIt ...ttt e 14-67
ORB . .. 14-69
Policy Member FUNCLIONSot e e e 14-74
CORBA:POIICY:ICOPY « e v et e e 14-75
CORBA::Policy::destroyot 14-76
PortableServer Member FUNCEIONS.ot e 14-76
PortableServer::POA::activate object. 14-77
PortableServer::POA::activate object with id...................... 14-78
PortableServer::POA::create id_assignment_policy.................. 14-79
PortableServer::POA::create lifespan policy....................... 14-80
PortableServer::POA::icreate POA it 14-82
PortableServer::POA::create reference. ...t 14-84
PortableServer::POA::create reference with_id. 14-85
PortableServer::POA::deactivate object................. 14-86
PortableServer::POAdestroyo oo 14-86

CORBA Programming Reference

PortableServer::POA::find_POA 14-87

PortableServer::POA::reference to id. ...t 14-88
PortableServer::POA::ithe POAManager., 14-89
PortableServer::ServantBase::_default POA. 14-90
POA Current Member FUNCLIONSot e 14-90
PortableServer::Current::get_object idot 14-91
PortableServer::Current::get_POA.o 14-91
POAManager Member FUNCLIONS.ot 14-92
PortableServer::POAManager::activate., 14-92
PortableServer::POAManager::deactivate.t 14-93
POA Policy Member Objects. 14-94
PortableServer::LifespanPolicy 14-94
PortableServer::ldAssignmentPolicyo L 14-95
Reguest Member FUNCLIONSo 14-96
CORBA::Request::argumentso.iiriei e 14-97
CORBA::Request::ctx(Context_ptr) 14-97
CORBA::Request:iget_reSPONSEottt e 14-98
CORBA::Request:iinvoKeo 14-98
CORBA::Request::operationt 14-99
CORBA::Request::poll_response.ovveiiii i 14-99
CORBA::Reguest:resulto 14-100
CORBA:IREQUESE: BNV . . .o 14-101
CORBA:IREQUESEICEX .« oot 14-101
CORBA::ReqUESL::ICONEXESot 14-102
CORBA::Request::eXxCeptionS oot 14-102
CORBA:Request:targeto 14-103
CORBA::Reguest::send deferred 14-103
CORBA::Request::send OnewWayo v e e eae e 14-104

CORBA Programming Reference XV

CORBA::String_aloC. . ..o 14-105
CORBA:SIING_AUP - .ottt 14-106
CORBA::String_freeo 14-107

WiIde SHNGS. . o oo 14-108
TypeCode Member FUNCLIONSt 14-109
Memory Management. i 14-110
CORBA::TypeCode:equalcouuiiiii i 14-110
CORBA:TypeCode:idottt 14-111
CORBA::TypeCode:Kind 14-111
CORBA::TypeCode:param_CouNtouuvee e 14-113
CORBA::TypeCode:parameter. vt 14-114
Exception Member Functions 14-114
Standard EXCEPLIONS.ot 14-116
Exception Definitions. 14-117
Object NONEXIStENCE o oottt e e 14-118
Transaction EXCEPLiONS.ot 14-119
ExceptionList Member Functions i 14-119
CORBA::ExceptionListicountoovuiiii i 14-120
CORBA::ExceptionList:zadd. ... 14-120
CORBA::ExceptionList::add consume. 14-121
CORBA::ExceptionList:zitem 14-122

15. Server-side Mapping

Implementing Interfaces. 15-1
Inheritance-based Interface Implementation, 15-2
Delegation-based Interface Implementation 154
Implementing Operations.ttt e 15-8

Xvi CORBA Programming Reference

CHAPTERo

OMG IDL Syntax and the C++ IDL
Compiler

The Object Management Group (OMG) Interface Definition Language (IDL) is used to describe
the interfaces that client objects call and that object implementations provide. An OMG IDL
interface definition fully specifies each operation’s parameters and provides the information
needed to develop client applications that use the interface’ s operations.

Client applications are written in languages for which mappingsfrom OMG IDL statements have
been defined. How an OMG IDL statement is mapped to a client language construct depends on
the facilities available in the client language. For example, an OMG IDL exception might be
mapped to a structure in alanguage that has no notion of exception, or to an exceptionina
language that does.

OMG IDL statements obey the samelexical rulesas C++ statements, although new keywords are
introduced to support distribution concepts. OMG IDL statements also provide full support for
standard C++ preprocessing features and OMG IDL-specific pragmas.

Note: When using a pragma version statement, be sure to locate it after the corresponding
interface definition. The following is an example of proper usage:

module A
{

interface B

{
#pragma version B "3.5"

void opl () ;
Y

CORBA Programming Reference 1-1

The OMG IDL grammar is a subset of ANSI C++ with additional constructs to support the
operation invocation mechanism. OMG IDL isadeclarative language; it supports C++ syntax for
constant, type, and operation declarations; it does not include any algorithmic structures or
variables.

For a description of OMG IDL grammar, see Chapter 3 of the Common Object Request Broker:
Architecture and Specification Revision 2.4 “OMG IDL Syntax and Semantics.”

All OMG IDL grammar is supported, with the exception of the following type declarations and
associated literals:

® native

Note: Because CORBA 2.4 statesthat thenative typedeclarationisintended for usein Object
Adapters, not user interfaces, thistypeisavailablein the portableserver module only
for clientsthat support callbacks, that is, joint client/servers.

® long double
e fixed

Do not use these datatypesin IDL definitions.

Note: Support forthe long long, unsigned long long, wchar, andwstring datatypeswas
added to Oracle Tuxedo CORBA in release 8.0.

OMG IDL Compiler Extensions

1-2

The IDL compiler defines preprocessor macros specific to the platform. All macros predefined
by the preprocessor that you are using can be used in the OMG IDL file, in addition to the
user-defined macros. Y ou can also define your own macros when you are compiling or loading
OMG IDL files.

Table 1-1 describes the predefined macros for each platform.

Table 1-1 Predefined Macros

Macro Identifier Platform on Which the Macro Is Defined
__unix__ Sun Solaris, HP-UX, and IBM AlX
__sun___ Sun Solaris

__hpux___ HP-UX

CORBA Programming Reference

C++ IDL Compiler Constraints

Table 1-1 Predefined Macros

Macro Identifier

Platform on Which the Macro Is Defined

IBM AIX

Microsoft Windows

C++ IDL Compiler Constraints

Table 1-2 describes constraints for the Oracle Tuxedo 9.1 C++ IDL compiler and provides
information about recommended workarounds.

Table 1-2 C++ IDL Compiler

Constraint Use of wildcardingin OMG IDL context strings produces war nings.

Description

A warning is generated by the C++ IDL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify a context string in an OMG IDL operation definition, the following
warning may be generated:
void op5() context("*");
LIBORBCMD_CAT:131: INFO: ‘*’ is a non-standard
context property.

Workaround

The OMG CORBA specification is ambiguous about whether the first
character of a context string must be a phabetic.

Thiswarning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires acomma-separated list of strings, in which the
first character is alphabetic.

Note: The example shown aboveis not OMG CORBA compliant, but it is
processed by the Oracle Tuxedo software as intended by the user.

Constraint Use of wildcardingin OMG IDL context strings produces war nings.

CORBA Programming Reference 1-3

Table 1-2 C++ IDL Compiler (Continued)

Description A warning is generated by the C++ IDL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify a context string in an OMG IDL operation definition, the following
warning may be generated:

void op5() context("*");
LIBORBCMD_CAT:131: INFO: ‘*’ is a non-standard
context property.

Workaround The OMG CORBA specification is ambiguous about whether the first
character of acontext string must be a phabetic.

Thiswarning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires acomma-separated list of strings, in which the
first character is alphabetic.

Note: The example shown aboveis not OMG CORBA compliant, but it is
processed by the Oracle Tuxedo software as intended by the user.

Constraint The C++ IDL compiler does not support some data types.

Description The C++ IDL compiler currently does not support the following data types,
which are defined in the CORBA specification version 2.4:

e native
« fixed

e long double

Workaround Avoid using these datatypesin IDL definitions.

Constraint Using certain substringsin identifiers may causeincorrect code generation by the C++
IDL compiler.

Description Using the following substrings in identifiers may cause code to be generated
incorrectly and result in errors when the generated code is compiled:

get
set_
Impl_
_ptr
_slice

Workaround Avoid the use of these substringsin identifiers.

1-4 CORBA Programming Reference

C++ IDL Compiler Constraints

Table 1-2 C++ IDL Compiler (Continued)

Constraint Inconsistent behavior in IDL compiler regarding case sensitivity.

Description

According to the CORBA standard, IDL identifiersthat differ only in case
should be considered colliding and yield acompilation error. Thereisacurrent
limitation of the Oracle Tuxedo IDL compiler for C++ bindingsin that it does
not always detect and report such name collisions except for valuetype. Value
type will follow CORBA standard regarding case sensitivity.

Workaround

Avoid using IDL identifiersthat differ only in case.

Constraint C++ |DL typedef problem.

Description The C++ IDL compiler generates code that does not compile when:
» Defining IDL variables of char or boolean type
¢ Andthetypeisaliased multiple times
For example, the generated C++ code from the following IDL code will not
compile:
module X
{

typedef boolean a;

typedef a b;

interface Y

{

attribute b Z;
}i
};
C++ compilersreport an error that an "operator <<"isambiguousand that
thereisno "operator>>" for type char. These errors are produced because
of themultiplelevelsof typedefs; the C++ compiler may not associate thetype
X: :bwith CORBA: : Boolean because of the intermediate type definition of
X::a.
Workaround Useasinglelevel of indirection when you define char or boolean types. In

the DL exampleabove, theattribute ‘X : : z' would be defined using either the
standard type ‘boolean’ or the user type ‘X : :a’, but not the user type
‘X::b'.

CORBA Programming Reference 1-5

1-6 CORBA Programming Reference

CHAPTERa

Implementation Configuration File
(ICF)

The Oracle Tuxedo CORBA TP Framework application programming interface (API) provides
callback methods for object activation and deactivation. These methods provide the ability for
application code to implement flexible state management schemes for CORBA objects.

State management is the way you control the saving and restoring of object state during object
deactivation and activation. State management also affects the duration of object activation,
which influencesthe performance of serversand their resource usage. The external API of the TP
Framework includesthe activate_object () and deactivate_object () methods, which
provide a possible location for state management code. Additionally, the TP Framework API
includes the deactivateEnable () method to enable the user to control the timing of object
deactivation. The default duration of object activation is controlled by policies assigned to
implementations at OMG IDL compile time.

While CORBA objects are active, their state is contained in a servant. This state must be
initialized when objects arefirst invoked (that is, thefirst time amethod isinvoked on a CORBA
object after its object referenceis created) and on subsequent invocations after objects have been
deactivated.

While a CORBA object is deactivated, its state must be saved outside the process in which the
servant was active. When an object is activated, its state must be restored. The object’ s state can
be saved in shared memory, in afile, in adatabase, and so forth. It is up to the programmer to
determine what constitutes an object’ s state, and what must be saved before an object is
deactivated and restored when an object is activated.

Y ou can use the Implementation Configuration File (1CF) to set activation policiesto control the
duration of object activations in each implementation. The ICF file manages object state by

CORBA Programming Reference 2-1

specifying the activation policy. The activation policy determines the in-memory activation
duration for a CORBA object. A CORBA object is active in a Portable Object Adapter (POA) if
the POA’ s active object map contains an entry that associates an object 1D with an existing
servant. Object deactivation removes the association of an object ID with its active servant.

IGF Syntax

ICF syntax is asfollows;

[#pragma activation_policy method|transaction|process]
[#pragma transaction_policy never|ignore|optional|always]
[#pragma concurrency_policy user_controlled|system_controlled]
[#pragma retry policy never|always]
[Module module-name {]
implementation [implementation-name]
{
implements (module-name::interface-name) ;
[activation_policy (method|transaction|process);]
[transaction_policy (never|ignore|optional|always);]
[concurrency_policy (user_controlled|system_controlled);]
[retry_policy (never|always)];
Yil}i
pragmas
The four optional pragmas allow you to set a specific policy as the default policy for the
entire ICF for al implementations that do not have an explicit activation_policy,
transaction_policy, concurrency policy, Of retry policy Statement. This
feature relieves the programmer from having to specify policies for each implementation
and/or allows overriding of the defaults.

Module module-name
Themodule-name variableisoptional if itisoptional inthe OMG IDL file. Thisvariable

isused for scoping and grouping. Its use must be consistent with the way it isused inside
the OMG IDL file.

implementation-name
Thisvariableis optional and is used asthe name of the servant or asthe class namein the
server. Itisconstructed using interface-name With an _i appended if it isnot specified
by the programmer.

implements (module-name::interface-name)
Thisvariableidentifiesthe modul e and theinterface to which the activation policy and the
transaction policy apply.

2-2 CORBA Programming Reference

Sample ICF File

activation_policy
For a description of the activation policies, see Activation Policy.

transaction_policy
For adescription of the transaction policies, see Transaction Poalicies.

concurrency_policy
For description of the concurrency policies, see Parallel Objects.

retry policy
For a description of the retry policy, see [IOP Client Failover.

Sample ICF File

Listing 2-1 shows a sample ICF file.

Listing 2-1 Sample ICF

module POA_Universityl
{
implementation CourseSynopsisEnumerator_i
{
activation_policy (process);
transaction_policy (optional);

implements (Universityl::CourseSynopsisEnumerator);

Y

Y

module POA_Universityl
{
implementation Registrar_i
{
activation_policy (method);
transaction_policy (optional);
implements (Universityl::Registrar);

}i

CORBA Programming Reference 2-3

module POA_Universityl

{

implementation RegistrarFactory_i
{
activation_policy (process);
transaction_policy (optional);
implements (Universityl::RegistrarFactory);
Y

Creating the ICF File

Y ou have the option of either coding the ICF file manually or using the genicf command to
generate it from the OMG IDL file. For a description of the syntax and options for the genict
command, see the Oracle Tuxedo Command Reference.

See Also

Steps for Creating a Oracle Tuxedo CORBA Server Application in Creating CORBA Server
Applications

2-4 CORBA Programming Reference

../cservers/maksrv.html

TP Framework

Thistopic includes the following sections:

e A Simple Programming Model. This section describes:
— Control Flow
— Object State Management
— Transaction Integration
— Object Housekeeping
— High-level Services
e State Management. This section describes:
— Activation Policy
— Application-controlled Activation and Deactivation
— Servant Lifetime
— Saving and Restoring Object State
e Transactions. This section describes:
— Transaction Policies
— Transaction Initiation
— Transaction Termination

— Transaction Suspend and Resume

CORBA Programming Reference

3-1

3-2

— Restrictions on Transactions
— SQL and Global Transactions
— Voting on Transaction Outcome

— Transaction Timeouts

I1OP Client Failover

e WebL ogic CORBA Clustering and L oad Balancing Support
e Parallel Objects
e TP Framework API

e Error Conditions, Exceptions, and Error M essages

TheOracle Tuxedo CORBA TP Framework providesaprogramming TP Framework that enables
users to create servers for high-performance TP applications. This chapter describesthe TP
Framework programming model and the TP Framework application programming interface
(API) in detail. Additional information about how to use this API can be found in Creating
CORBA Server Applications.

The TP Framework is required when devel oping Oracle Tuxedo CORBA servers. Later releases
will relax thisrequirement, though it is expected that most customerswill use the TP Framework
asan integral part of their applications.

Oracle Tuxedo provides the infrastructure for providing load balancing, transactional
capabilities, and administrative infrastructure. The base API used by the TP Framework is the
CORBA API with Oracle extensions. The TP Framework API is exposed to customers. The
Oracle Tuxedo ATMI isan optional API that can be mixed inwith TP Framework APIs, allowing
acustomer to deploy distributed applications using amix of CORBA serversand ATMI servers.

Before Oracle Tuxedo CORBA, ORB products did not approach Oracle Tuxedo’s performance
in large-scale environments. Oracle Tuxedo systems support applications that can process
hundreds of transactions per second. These applications are built using the Oracle Tuxedo
statel ess-service programming model that minimizes the amount of system resources used for
each request, and thus maximizes throughput and price performance.

Now, Oracle Tuxedo CORBA and its TP Framework give customers away to develop CORBA
applications with performance similar to Oracle Tuxedo ATMI applications. Oracle Tuxedo
CORBA servers provide throughput, response time, and price performance approaching the
Oracle Tuxedo statel ess-service programming model, while using the CORBA programming
model.

CORBA Programming Reference

A Simple Programming Model

A Simple Programming Model

The TP Framework providesasimple, useful subset of the wide range of possible CORBA object
implementation choices. You use it for the development of server-side object implementations
only. When using any client-side CORBA ORB, clients interact with CORBA objects whose
server-side implementations are managed by the TP Framework. Clients are unaware of the
existence of the TP Framework—a client written to access a CORBA object executing in a
non-Oracle Tuxedo server environment will be ableto accessthat same CORBA object executing
in an Oracle Tuxedo server environment without any changes or restrictions to the client
interface.

The TP Framework providesaserver environment and an API that iseasier to use and understand
than the CORBA Portable Object Adapter (POA) API, and is specifically geared towards
enterpriseapplications. It isasimple server programming model and an orthodox implementation
of the CORBA model, which will be familiar to programmers using ORBs such as ORBIX or
VisiBroker.

The TP Framework simplifies the programming of Oracle Tuxedo CORBA servers by reducing
the complexity of the server environment in the following ways:

e The TP Framework does all interactions with the POA and the Naming Service. The
application programmer requires no knowledge of POA or Naming Service interfaces.

e The TP Framework is single threaded—only one request on one CORBA object will be
processed at atime, obviating the need to write thread-safe implementations.

e A CORBA object may beinvolved in only one transaction at atime (consistent with the
association of one object 1D to one servant).

The TP Framework provides the following functionality:

e Control Flow

Object State Management

e Transaction Integration

Object Housekeeping

High-level Services

CORBA Programming Reference 3-3

Control Flow

The TP Framework, in conjunction with the ORB and the POA, controls the flow of the
application program by doing the following:

e Controlling the server mainline and invoking callback methods on TP Framework-defined
classes at appropriate times for server startup and shutdown. This relieves the application
programmer from complex interactions related to ORB and POA initialization and
coordination of transactions, resource managers, and object state on shutdown.

e Scheduling objects for activation and deactivation when client requests arrive and are
completed. This removes the complexity of management of object activation and
deactivation from the realm of the application programmer and enables the use of the TP
monitor infrastructure’s powerful load-balancing capabilities, crucia to performance of
mission-critical tasks.

Object State Management

The TP Framework API provides callback methods for application code to implement flexible
state management schemes for CORBA objects. State management involves the saving and
restoring of object state on object deactivation and activation. It aso concerns the duration of
activation of objects, which influences the performance of servers and their resource usage. The
default duration of object activation is controlled by policies assigned to implementations at IDL
compile time.

Transaction Integration
TP Framework transaction integration provides the following features:
e CORBA objects can participate in global transactions.

e Objects participating in transactions can be implemented as stateful objectsthat remain in
memory for the duration of atransaction (by using the transaction activation policy), to
decrease client response time.

o CORBA objects that participate in transactions can affect transaction outcome either during
their transactional work or just prior to the system’s execution of the two-phase commit
algorithm after al transactional work has been compl eted.

e Transactions can be automatically initiated on the server transparent to the client.

CORBA Programming Reference

State Management

Object Housekeeping

When a server is shut down, the TP Framework rolls back any transactions that the server is
involved in and deactivates any CORBA objects that are currently active.

High-level Services

The TPinterfaceinthe TP Framework APl provides methods for performing object registrations
and utility functions. The following services are provided:

e Object reference creation

e Factory-based routing support

e Accessors for system objects, such as the ORB

e Registration and unregistration of factories with the FactoryFinder
e Application-controlled activation and deactivation

e User logging

The purpose of these high-level service methods isto eliminate the need for devel opers to
understand the CORBA POA, CORBA Naming Service, and Oracle Tuxedo APIs, which they
use for their underlying implementations. By encapsulating the underlying API callswith a
high-level set of methods, programmers can focustheir efforts on providing businesslogic rather
than understanding and using the more complex underlying facilities.

State Management

State management involves the saving and restoring of object state on object deactivation and
activation. It aso concerns the duration of activation of objects, which influences the
performance of serversand their resource usage. The external API of the TP Framework provides
activate_object and deactivate_object methods, which are a possible location for state
management code.

Activation Policy

State management is provided in the TP Framework by the activation policy. Thispolicy controls
the activation and deactivation of servants for a particular IDL interface (as opposed to the
creation and destruction of the servants). This policy isapplicable only to CORBA objectsusing
the TP Framework.

CORBA Programming Reference 3-5

3-6

The activation policy determinesthe default in-memory activation duration for aCORBA object.
A CORBA object is activein a POA if the POA's active object map contains an entry that
associates an object ID with an existing servant. Object deactivation removes the association of
an object ID with its active servant. Y ou can choose from one of three activation policies:
method (the default), transaction, Of process.

Note: Theactivation policiesaresetinan ICFfilethat isconfigured at OMG IDL compiletime.
For a description of the ICF file, refer to the Implementation Configuration File (ICF)
section.

The activation policies are described below:

e nethod (Thisisthe default activation policy.)

The activation of the CORBA object (that is, the association between the object ID and the
servant) lasts until the end of the method. At the completion of a method, the object is
deactivated. When the next method is invoked on the object reference, the CORBA object
is activated (the object ID is associated with a new servant). This behavior issimilar to that
of an Oracle Tuxedo stateless service.

® transaction

The activation of the CORBA object (that is, the association between the object ID and the
servant) lasts until the end of the transaction. During the transaction, multiple object
methods can be invoked. The object is activated before the first method invocation on the
object and is deactivated in one of the following ways:

— If auser-initiated transaction is in effect when the object is activated, the object is
deactivated when the first of the following occurs: the transaction is committed or
rolled back, or the server is shut down in an orderly fashion. The latter is done using
either the tmshutdown Of tmadmin command. These commands are described in the
Oracle Tuxedo Command Reference online document.

— If auser-initiated transaction is not in effect when the TP object is activated, the TP
object is deactivated when the method compl etes.

The transaction activation policy provides a means for an object to vote on the outcome
of the transaction prior to the execution of the two-phase commit algorithm. An object
votesto roll back the transaction by calling current . rollback_only () inthe
Tobj_ServantBase: :deactivate_object method. It votes to commit the transaction by
not calling current . rollback_only () inthe method.

Note: Thisisamodel of resource alocation that is similar to that of an Oracle Tuxedo
conversational service. However, thismodel islessexpensivethan the Oracle Tuxedo
conversational servicein that it uses fewer system resources. Thisis because of the

CORBA Programming Reference

State Management

Oracle Tuxedo ORB’ s multicontexted dispatching model (that is, the presence of
many servantsin memory at the same time for one server), which makes it possible
for asingle server process to be shared by many concurrently active servants that
service many clients. In the Oracle Tuxedo system, the process would be dedicated
to asingleclient and to only one service for the duration of a conversation.

® process

The activation of the CORBA object begins when it isinvoked whilein an inactive state
and, by default, lasts until the end of the process.

Note: The TP Framework API provides an interface method (TP: : deactivateEnable)
that allowsthe application to control the timing of object deactivation for objectsthat
havetheactivation policy Setto process. For adescription of this method, see
the section TP::deactivateEnable().

Application-controlled Activation and Deactivation

Ordinarily, activation and deactivation decisions are made by the TP Framework, as discussed
earlier in this chapter. The techniquesin this section show how to use alternate mechanisms. The
application can control the timing of activation and deactivation explicitly for objects with
particular policies.

Explicit Activation

Application code can bypass the on-demand activation feature of the TP Framework for objects
that use the process activation policy. The application can “preactivate” an object (that is,
activate it before any invocation) using the Tp: : create_active_object_reference cal.

Preactivation worksasfollows. Before the application creates an object reference, the application
instantiates a servant and initializes that servant’s state. The application uses
TP::create_active_object_reference t0 put the object into the Active Object Map (that is,
associate the servant with an object1d). Then, when the first invocation is made, the TP
Framework immediately directs the request to the process that created the object reference and
then to the existing servant, bypassing the necessity to call server: : create_servant and then
the servant’ sactivate_object method (just asif thiswerethe second or later invocation on the
object). Notethat the object reference for such an object will not be directed to another server and
the object will never go through on-demand activation as long as the object remains activated.

Since the preactivated object hastheprocess activation policy, it will remain active until one of
two events occurs: (1) the ending of the processor (2) aTp: : deactivateEnable call.

CORBA Programming Reference 3-7

3-8

Usage Notes

Preactivation is especially useful if the application needs to establish the servant with an initial
state in the same process, perhaps using shared memory to initialize state. Waiting to initiaize
state until alater time and in a potentially different process may be very difficult if that state
includes pointers, object references, or complex data structures.
TP::create_active_object_reference guaranteesthat the preactivated object isinthesame
process as the code that is doing the preactivation. While thisis convenient, preactivation should
be used sparingly, as should all process objects, because it preall ocates precious resources.
However, when needed and used properly, preallocation is more efficient than alternatives.

Examples of such usage might be an object using the “iterator” pattern. For example, there might
apotentially long list of items that could be returned (in an unbound IDL sequence) from a
“database_query” method (for example, the contents of the telephone book). Returning all such
itemsin the sequence isimpractical because the message size and the memory requirements
would be too large.

Onaninitia call to get thelist, an object using the iterator pattern returns only alimited number
of items in the sequence and also returns areference to an “iterator” object that can be invoked
toreceivefurther elements. Thisiterator object isinitialized by theinitial object; that is, theinitial
object creates a servant and sets its state to keep track of wherein thelong list of itemsthe
iteration currently stands (the pointer to the database, the query parameters, the cursor, and so
forth).

Theinitial object preactivates this iterator object by using
TP::create_active_object_reference. It alSO createsan Obj ect reference to that Obj ect to
return to the client. The client then invokes repeatedly on the iterator object to receive, say, the
next 100 itemsin the list each time. The advantage of preactivation in this situation is that the
state might be complex. It is often easiest to set such state initially, from amethod that has all the
information in its context (call frame), when the initial object still has control.

When the client is finished with the iterator object, it invokes afinal method on the initial object
which deacativates the iterator object. The initial object deactivates the iterator object by
invoking a method on the iterator object that callsthe Tp: : deact ivateEnable method, that is,
the iterator object calls Tp: :deactivateEnable oOn itself.

Caution to Users

For objects to be preactivated in this fashion, the state usually cannot be recovered if acrash
occurs. (Thisisbecause the state was considered too complex or inconvenient to set upon initial,
delayed activation.) Thisis avalid object technique, essentially stating that the object isvalid
only for asingle activation period.

CORBA Programming Reference

State Management

However, a problem may arise because of the “one-time” usage. Since aclient still holds an
object reference that |eads to the process containing that state, and since the state cannot be
recreated after the crash, care must be taken that the client’ s next invocation does not
automatically provoke anew activation of the object, because that object would have inapplicable
state.

The solution isto refuse to allow the object to be activated automatically by the TP Framework.
If the user providesthe Tobjs: :ActivateObjectFailed exception to the TP Framework as a
result of theactivate_object cal, the TP Framework will not complete the activation and will
return an exception to the client, corBa: : 0BJECT_NOT_EXIST. The client has presumably been
warned about this possibility, since it knows about the iterator (or similar) pattern. The client
must be prepared to restart the iteration.

Note: Thisdefensive measure may not be necessary in the future; the TP Framework itself may
detect that the object referenceisno longer valid. In particular, you should not depend on
the possibility that theactivate_object method might be called. If the TP Framework
does in fact change, activate object will not be called and the framework itself will
generate the oBJECT_NOT_EXTIST exception.

Self Deactivation

Just asit is possible to preactivate an object with the process activation policy, it is possible to
request the deactivation of an object with the process activation policy. The ability to
preactivate and the ability to request deactivation are independent; regardless of how an object
was activated, it can be deactivated explicitly.

A method in the application can request (viaTp: : deactivateEnable€) that the object be
deactivated. When Tp: : deactivateEnable iscalled and the object is subsequently deactivated,
no guarantee is made that subsequent invocations on the CORBA object will result inreactivation
in the same process as a previous activation. The association between the object1d and the
servant exists from the activation of the CORBA object until one of the following events occurs:
(1) the shutdown of the server process or (2) the application calls Tp: : deactivateEnable.
After the association is broken, when the object isinvoked again, it can be reactivated anywhere
that is alowed by the Oracle Tuxedo configuration parameters.

There aretwo forms of Tp: : deactivateEnable. Inthefirst form (with no parameters), the
object currently executing will be deactivated after completion of the method in whichthecall is
made. The object itself makesthe decision that it should be deactivated. Thisisoften done during
amethod call that acts asa"signoff" signal.

The second form of Tp: :deactivateEnable alowsaserver to request deactivation of any
active object, whether it is the object that is executing or not; that is, any part of the server can

CORBA Programming Reference 3-9

3-10

ask that the object be deactivated. This form takes parameters identifying the object to be
deactivated. Explicit deactivation is not allowed for objects with an activation policy of
transaction, because such objects cannot be safely deactivated until the end of a transaction.

Inthe TP: :deactivateEnable call, the TP Framework calls the servant’s
deactivate_object method. Exactly when the TP Framework invokes deactivate_object
depends on the state of the object to be deactivated. If the object is not currently in execution, the
TP Framework deactivates it before returning to the caller. The object might be currently
executing a method; thisis alwaysthe casefor Tp: : deactivateEnable With no parameters
(sinceit refersto the currently executing object). Inthiscase, Tp: :deactivateEnable iSNot
told whether the object was deactivated immediately or not.

Note: TheTp::deactivateEnable (interface, object id, servant) method canbe
used to deactivate an object. However, if that object is currently in atransaction, the
object will be deactivated when the transaction commitsor rollsback. If aninvoke occurs
on the object before the transaction is committed or rolled back, the object will not be
deactivated.

To ensure the desired behavior, make sure that the object isnot in atransaction or ensure
that no invokes occur on the object after the Tp: : deactivateEnable () cal until the
transaction is complete.

Servant Lifetime

A servant isa C++ class that contains methods to implement an IDL interface’ s operations. The
user writes the servant code. The TP Framework invokes methods in the servant code to satisfy
requests. The servantiscreated by the C++ “new” statement and is destroyed by the C++ “ delete”
statement. Exactly who does the creation and who does the deletion, and the timing of creation

and deletion, is the subject of this section.

The Normal Case

In the normal case, the TP Framework completely controls the lifetime of a servant. The basic
model isthat, when arequest for an inactive object arrives, the TP Framework obtains a servant
and then activatesit (by calling its activate_object method). At deactivation time, the TP
Framework callsthe servant’s deactivate_object method and then disposes of the servant.

The phase “the TP Framework obtains a servant” means that when the TP Framework needs a
servant to be created, it calls auser-written Server method, either server: :create_servant Or
ServerBase: :create_servant_with_id. At that time, the application code must return a
pointer to the requested servant. The application amost always doesthis by using the C++ “new”

CORBA Programming Reference

State Management

statement to create a new instance of a servant. The phrase “ disposes of the servant” means that
the TP Framework removes the reference to the servant, which actually deletesiit.

The application must be aware that this current behavior of always creating and removing a
servant may change in future versions of this product. The application should not depend on the
current behavior, but should write servant code that allows reuse of a servant. Specificaly, the
servant code must work even if the servant has not been freshly created (by the C++ “new”
statement). The TP Framework reserves the right not to remove a servant after it has been
deactivated and then to reactivate it. This means that the servant must completely initialize itself
at the time of the callback on the servant’sactivate_object method, not at the time of servant
creation (not in the constructor).

Special Cases

There are two techniques an application can use to alter the normal TP Framework use of
servants. The first has to do with obtaining a servant and the second has to do with disposing of
the servant.

The application can alter the “ obtaining” mechanism by using explicit preactivation. In this case,
the application creates and initializes a servant before asking the TP Framework to declare it
activated. Once such a servant has been turned over to the TP Framework (by the
TP::create_active_object_reference cal), that servant istreated by the TP Framework
just like every other servant. The only differenceisin its method of creation and initialization.

The application can alter the“ disposing” mechanism by taking the responsibility for disposing of
aservant instead of leaving that responsibility with the TP Framework. Once a servant is known
to the TP Framework (through server: :create_servant,

ServerBase: :create_servant_with_id, Of TP: :create_active_obj ect_reference),
the TP Framework’ s default behavior isto remove that servant itself. In this case, the application
code must no longer use references to the servant after deactivation.

However, the application may tell the TP Framework not to dispose of the servant after the TP
Framework deactivatesit. Taking responsibility for a servant is done on an individual servant
basis, not for awhole class of servants, by calling Tobj_servantBase: : _add_ref Witha
parameter identifying the servant.

Note: In applications written using Oracle Tuxedo release 8.0 or later, use the
Tobj_ServantBase: :_add_ref method instead of the
TP: :application_responsibility () method. Unlikethe
TP::application_responsibility () method, the add_ref () method takes no
arguments.

CORBA Programming Reference 3-11

The advantage of the application taking responsibility for the servant isthat the servant does not
haveto be created anew. If obtaining the servant is an expensive proposition, the application may
choose to save the servant and reuse it later. Thisis especially likely to be true for servants for
preactivated objects, but istrue in general. For example, the next time the TP Framework makes
acdl on server: :create_servant Of ServerBase: :create_servant_with_id, the
application might return a previously saved servant.

Additionally, once an application hastaken responsibility for aservant, the application must take
care to remove the servant (Using Tobj_ServantBase: : _remove_ref) When the servant isno
longer needed, that is, when the reference count drops to zero, the same as for any other C++
instance. For more information about how the _remove_ref () method works, see
Tobj_ServantBase::_remove ref().

For more information on writing single-threaded and multithreaded server applications, see
Creating CORBA Server Applications.

Saving and Restoring Object State

While CORBA objectsare active, their stateis contained in aservant. Unless an application uses
TP::create_active_object_reference, State must beinitialized when the Obj ectisfirst
invoked (that is, thefirst time a method isinvoked on a CORBA object after its object reference
is created), and on subsequent invocations after they have been deactivated. While a CORBA
object is deactivated, its state must be saved outside the process in which the servant was active.
The object’ s state can be saved in shared memory, in afile, or in a database. Before a CORBA
object is deactivated, its state must be saved, and when it is activated, its state must be restored.

The programmer determines what constitutes an object’ s state and what must be saved before an
object is deactivated, and restored when an object is activated.

Note On Use of Constructors and Destructors for CORBA Objects

The state of CORBA objects must not be initialized, saved, or restored in the constructors or
destructorsfor the servant classes. Thisisbecause the TP Framework may reuse an instance of a
servant rather than deleting it at deactivation. No guarantee is made as to the timing of the
creation and deletion of servant instances.

Transactions

3-12

The following sections provide information about transaction policies and how to use
transactions.

CORBA Programming Reference

Transactions

Transaction Policies

Eligibility of CORBA objectsto participate in global transactionsis controlled by the transaction
policies assigned to implementations at compile time. The following policies can be assigned.

Note: Thetransaction policies are set in an ICF file that is configured at OMG IDL compile
time. For a description of the ICF file, refer to the Implementation Configuration File
(ICF) section.

® never

The implementation is not transactional . Objects created for thisinterface can never be
involved in atransaction. The system generates an exception (INVALID_TRANSACTION) if
an implementation with this policy isinvolved in atransaction. An AuToTraN policy
specified in the urBconF1c file for the interface isignored.

® ignore

The implementation is not transactional. This policy instructs the system to allow regquests
within atransaction to be made of thisimplementation. An auToTrAN policy specified in
the ussconr1c file for the interface isignored.

e optional (Thisisthedefault transaction_policy.)

The implementation may be transactional . Objects can be involved in atransaction if the
request is transactional. Servers containing transactional objects must be configured within
agroup associated with an XA-compliant resource manager. If the AuToTRAN parameter is
specified in the urBconr1c file for the interface, AuToTRAN iSON.

® always

Theimplementation is transactional. Objects are required to aways beinvolved in a
transaction. If arequest is made outside a transaction, the system automatically starts a
transaction before invoking the method. The transaction is committed when the method
ends. (Thisisthe same behavior that results from specifying auroTran for an object with
the option transaction policy, except that no administrative configuration is necessary to
achieve this behavior, and it cannot be overridden by administrative configuration.) Servers
containing transactional objects must be configured within a group that is associated with
an XA-compliant resource manager.

Note: Theoptional policy isthe only transaction policy that can be influenced by
administrative configuration. If the system administrator setsthe auToTran attribute for
theinterface by means of the ussconr1c file or by using administrative tools, the system
automatically starts a transaction upon invocation of the object, if it is not already
infected with atransaction (that is, the behavior isasif the always policy were
specified).

CORBA Programming Reference 3-13

3-14

Transaction Initiation

Transactions are initiated in one of two ways:

e By the application code via use of the cosTransactions: :Current: :begin () operation.
This can be done in either the client or the server. For a description of this operation, see
Using CORBA Transactions.

e By the system when an invocation is done on an object which has either:
— Transaction policy always
— Transaction policy optional and asetting of auroTran for the interface

For more information, see Using CORBA Transactions.

Transaction Termination

In general, the handling of the outcome of a transaction is the responsibility of theinitiator.
Therefore, the following are true:

o If the client or server application code initiates transactions, the TP Framework never
commits a transaction. The Oracle Tuxedo system may roll back the transaction if server
processing triesto return to the client while the transaction isin an illegal state.

o If the system initiates a transaction, the commit or rollback will always be handled by the
Oracle Tuxedo system.

The following behavior is enforced by the Oracle Tuxedo system:

e |f no transaction is active when a method on a CORBA object isinvoked and that method
begins a transaction, the transaction must be either committed, rolled back, or suspended
when the method invocation returns. If none of these actionsis taken, the transaction is
rolled back by the TP Framework, and the corBa: : 0OBJ_ADAPTER exception israised to
the client application. This exception is raised because the transaction was initiated in the
server application; therefore, the client application would not expect a transactional error
condition such as TRANSACTION_ROLLEDBACK.

Transaction Suspend and Resume

The CORBA object must follow strict rules with respect to suspending and resuming a
transaction within amethod invocation. These rules and the error conditionsthat result from their
violation are described below.

CORBA Programming Reference

Transactions

When a CORBA aobject method begins execution, it can be in one of the following three states
with respect to transactions:

e The client application began the transaction.

— Legal server application behavior: Suspend and resume the transaction within the
method execution.

— lllegal server application behavior: Return from the method with the transaction in the
suspended state (that is, return from the method without invoking resume if suspend
was invoked).

— Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA: : TRANSACTION_ROLLEDBACK exception to the client application and the
transaction isrolled back by the Oracle Tuxedo system.

e The system began a transaction to provide AuToTRAN oOr transaction policy always
behavior.

Note: For each CORBA interface, set AUTOTRAN t0 Yes if you want atransaction to start
automatically when an operation invocation isreceived. Setting AUTOTRAN O Yes hasno
effect if the interface is already in transaction mode. For more information about
AUTOTRAN, See Using CORBA Transactions.

— Legal server behavior: Suspend and resume the transaction within the method
execution.

Note: Not recommended. The transaction may be timed out and aborted before the method
causes the transaction to be resumed.

— Illegal server behavior: Return from the method with the transaction in the suspended
state (that is, return from the method without invoking resume if suspend was invoked).

— Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA: : OBJ_ADAPTER exception to the client, and the transaction is rolled back by the
system. The corBA: : 0BJ_ADAPTER exception is raised because the client application
did not initiate the transaction, and, therefore, does not expect transaction error
conditions to be raised.

e The CORBA object isnot involved in atransaction when it starts executing.
— Legal server behavior:
e Begin and commit a transaction within the method execution.
e Begin and roll back a transaction within the method execution.

e Begin and suspend a transaction within the method execution.

CORBA Programming Reference 3-15

3-16

— Illegal server behavior: Begin atransaction and return from the method with the
transaction active.

— Error Processing: If illega behavior occurs, the TP Framework raises the
CORBA: : OBJ_ADAPTER exception to the client application and the transaction is rolled
back by the Oracle Tuxedo system. The CorBA: : OBJ_ADAPTER exception is raised
because the client application did not initiate the transaction, and, therefore, does not
expect transaction error conditions to be raised.

Restrictions on Transactions

The following restrictions apply to Oracle Tuxedo CORBA transactions:

e A CORBA object in the Oracle Tuxedo system must have the same transaction context

when it returns from a method invocation that it had when the method was invoked.

A CORBA object can be infected by only one transaction at atime. If an invocation tries
to infect an already infected object, a cORBA: : INVALID_TRANSACTION €xception is
returned.

If a CORBA object isinfected with atransaction and a nontransactional request is made on
it, aCORBA: : OBJ_ADAPTER exception israised.

If the application begins atransaction in server: :initialize (), it must either commit
or roll back the transaction before returning from the method. If the application does not,
the TP Framework shuts down the server. Thisis because the application has no
predictable way of regaining control after completing the server: :initialize method.

If a CORBA object isinfected by atransaction and with an activation policy of
transaction, and if the reason code passed to the method is either
DR_TRANS_COMMITTING OF DR_TRANS_ABORTED, N0 invocation on any CORBA object can
be done from within the Tobj_ServantBase: :deactivate_object method. Such an
invocation resultsin a CORBA : : BAD_INV_ORDER exception.

SOL and Global Transactions

Adhere to the following guidelines when using SQL and Global Transactions:

e Care should be taken when executing SQL statements outside the scope of aglobal

transaction. The SQL standard specifies that alocal transaction should be started implicitly
by the database resource manager whenever an SQL statement that needs the context of a
transaction is executed and no transaction is active. The standard also saysthat a
transaction that isimplicitly started by the database resource manager must then be

CORBA Programming Reference

Transactions

explicitly terminated by executinga COMMIT or ROLLBACK SQL statement; the TP
Framework is not responsible for terminating transactions that are started by the resource
manager.

Note: Thisisnot an issue when an application usesthe XA library to connect to the Oracle
server because those applications can operate only on global transactions. The Oracle
server does not allow local transactions when it isusing XA.

e The SQL COMMIT and ROLLBACK statements cannot be used to terminate a global
transaction that has been either started explicitly using current .begin () or started
implicitly by the system. Check the database vendor documentation for each database
product for other possible restrictions when using global transactions.

e SQL cursors may be closed when transactions are terminated. Consult your database
product documentation for exact information about cursor handling rules. Application
programmers should be careful to use cursors only with CORBA objects with appropriate
activation policies and within appropriate transaction boundaries.

Voting on Transaction Outcome

CORBA objects can affect transaction outcome during two stages of transaction processing:

e During transactional work

The current.rollback_only method can be used to ensure that the only possible
outcome isto roll back the current transaction. current . rollback_only () canbe
invoked from any CORBA object method.

o After completion of transactional work

CORBA objects that have the transaction activation policy are given a chance to vote
whether the transaction should commit or roll back after transactional work is completed.
These objects are notified of the completion of transactional work prior to the start of the
two-phase commit algorithm when the TP Framework invokes their deactivate _object
method.

Note that this behavior does not apply to objects with process or method activation
policies. If the CORBA object wantsto roll back the transaction, it can call

Current: :rollback_only. If it wantsto vote to commit the transaction, it does not make
that call. Note, however, that a vote to commit does not guarantee that the transaction is
committed, since other objects may subsequently vote to roll back the transaction.

Note: Usersof SQL cursors must be careful when using an object with themethod ofr process
activation policy. A process opens an SQL cursor within a client-initiated transaction.
For typical SQL database products, once the client commits the transaction, all cursors

CORBA Programming Reference 3-17

that were opened within that transaction are automatically closed; however, the object
will not receive any notification that its cursor has been closed.

Transaction Timeouts

When a transaction timeout occurs, the transaction is marked so that the only possible outcome
isto roll back the transaction, and the corRBA : : TRANSACTION_ROLLEDBACK Standard exception
isreturned to the client. Any attempts to send new requests will also fail with the

CORBA: : TRANSACTION_ROLLEDBACK exception until the transaction has been aborted.

l10OP Client Failover

3-18

Itisnot always possible to determine when a server instance failed with respect to thework it was
doing at the time of failure. For example, if a server instance fails after handling a client request
but before returning the response, thereis no way to tell that the request was handled. A user that
does not get aresponse will most likely retry, resulting in an additional request.

Support for I1OP client failover has been added to Oracle Tuxedo CORBA as an availability
enhancement. I1OP client failover provides atransparent mechanism for a CORBA remote client
to automatically connect to an alternative ISL and then retry the request in case of failure.

[1OP client failover marks an interface implementation as idempotent. An idempotent
implementation is one that can be repeated without any negative side-effects. For example, seT
BALANCE.

Setting The Retry Policy

In order to mark an interface implementation as idempotent, you must set the retry policy in the
implementation configurationfile(ICF)usingtheretry policy option. For adescription
of the ICF, refer to the Implementation Configuration File (ICF) section.

The retry_policy option hastwo settings:

e never: The default setting. It indicates that the interface implementation is not
idempotent and that requests should never be automatically retried.

e always: Indicates that the interface implementation isidempotent and that requests should
always beretried in case of failure.

CORBA Programming Reference

[IOP Client Failover

MIB Support

Y ou can also check the retry policy using the Ta_rTroLICY attribute added to themIB (5)
T_IFQUEUE and T_INTERFACE classes. The Ta_RTPOLICY attribute valueis either never or

always.

Initiating II0P Client Failover

Toinitiate I1OP client failover support, ISL servers must be specified using the -c warn|none
option in the *servERS section of the usBconF1G file

This option alows ISL to accept unofficial connection directly from the client orb. ISL servers
that are not specified using the -c warn |none option will not be placed in candidate |1OP
gateway pools. Consequently, the client will not failover to those ISL servers.

Inthefollowing usconF1G file example shown in Listing 3-1, the ISL servers specifiedinlines
1 and 2 will support client failover. The ISL server in line 3 will not.

Listing 3-1 Example UBBCONFIG File II0P Client Failover Entry

*SERVERS
ISL SRVGRP=SYS_GRP1l SRVID=10 CLOPT="-A -- -C warn -n //myhostl:2468"
ISL SRVGRP=SYS_GRP2 SRVID=20 CLOPT="-A -- -C none -n //myhost2:2469"
ISL SRVGRP=SYS_GRP3 SRVID=30 CLOPT="-A -- -n //myhost3:2470"

110P Client Failover Limitations
I1OP Client Failover is not supported under the following three instances:

e Tuxedo system-supplied object failover
Only application-supplied object failover is supported.

e Transaction mode

e SSL link or authentication is required

See Also

® UBBCONFIG(5)

CORBA Programming Reference 3-19

../rf5/rf5.html

® MIB(5)
® T _TFQUEUE Class

® T TINTERFACE Class

WebLogic CORBA Clustering and Load Balancing Support

Tuxedo CORBA C++ client supports failover to WebL ogic clustering servers and a so supports
load balancing. For more information, see WebL ogic documentation - Failover and Replication
in aCluster and Load Balancing in a Cluster.

Parallel Objects

3-20

Support for parallel objectswas added to Oracle Tuxedo CORBA in release 8.0 asaperformance
enhancement. The parallel objects feature enables you to designate all business objectsin a
particular application as stateless objects. The effect is that, unlike stateful business objects,
which can only run on one server in a single domain, stateless business objects can run on al
serversin asingle domain. Thus, the benefits of parallel objects are as follows:

e Parallel objects can run on multiple serversin the same domain at the same time. Thus,
utilization of all serversto service concurrent multiple requests improves performance.

e When the Oracle Tuxedo system services requests to parallel business objects, it aways
looks for an available server to the local machinefirst. If al servers on the local machine
are busy processing the requested business object, the Oracle Tuxedo system looks for an
available server on other machinesin the local domain. Thus, if there are multiple servers
on the local machine, network traffic is reduced and performance isimproved.

For more information on parallel objects, see Scaling, Distributing, and Tuning CORBA
Applications.

To implement parallel objects, the concurrency policy option has been added to the ICF file. To
select parallel objects for a particular application, you set the concurrency policy option to
user-controlled. When you select user-controlled concurrency, the business object are not
registered with the Active Object Map (AOM) and, therefore, are stateless and can be active on
more than one server at atime. Thus, these objects are referred to as parallel objects.

If user-controlled concurrency is selected, the servant implementation must comply with one of
the following statements:

e The servant implementation must have no requirements for concurrent access to a shared
resource

CORBA Programming Reference

http://docs.oracle.com/cd/E11035_01/wls100/cluster/failover.html
http://docs.oracle.com/cd/E11035_01/wls100/cluster/failover.html
http://docs.oracle.com/cd/E13222_01/wls/docs81/cluster/load_balancing.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

Parallel Objects

e Or the servant implementation must utilize some other tool (for example, a database and

locking) to ensure the correct behavior during concurrent access to resources.

In release 8.0 of the Oracle Tuxedo software, the Implementation Configuration File (ICF) was
modified to support user-controlled concurrency. In Listing 3-2, the changes to add this support
are highlighted in bold type. For a description of the ICF syntax, see |CF Syntax.

Listing 3-2 ICF Syntax

[#pragma activation_policy method|transaction|process]
[#pragma transaction_policy never|ignore|optional |a1ways]
[#pragma concurrency policy user_controlled|system_controlled]
[Module module-name {]

implementation [implementation-name]

[}

implements (module-name::interface-name) ;
[activation_policy (method| transaction|process) ;]
[transaction_policy (never|ignore|optional|always) ;]
[concurrency policy (user_controlled| system controlled);]

User-controlled concurrency can be used with factory-based routing, all activation policies, and
all transaction policies. The interaction with these featuresis as follows:

e Factory-based routing

If the user specifies factory-based routing when creating the object, then the object will
route to a server in that group. The object key contains the group selected during
factory-based routing, but the client routing code will recognize that the interface has
user-controlled concurrency and specify the desired group. Thisis accomplished using
normal Oracle Tuxedo routing.

Activation policy

The TP Framework handles active user-controlled concurrency objects in the same manner
as system-controlled concurrency objects. The TP Framework stores information about
objectsin thelocal AOM, and callsthe activate_object and deactivate_object
methods at the appropriate times. However, the object will not have an entry in the AOM
and the TP Framework will not call any AOM routines. For example, on shutdown, since
an active object will not have an AOM handle, calls to remove the entry from the AOM
will not be invoked.

CORBA Programming Reference 3-21

e Transaction policy

The TP Framework handles active user-controlled concurrency objects in the same manner
as system-controlled concurrency objects. The TP Framework is called back for transaction
events and the TP Framework stores information about transactional user-controlled
objectsin the local AOM. The main differences when using parallel objects in transactions
as opposed to stateful objects are that the AOM is not used for GTRID information and the
AOM routines are not called to update or retrieve transactional information.

Note: Thereisone restriction with user-controlled concurrency.
TP: :create_active_object_reference throwsaTobjS::IllegalOperation
exception if it is passed an interface with user-controlled concurrency set. Since the
AOM is not used when user-controlled concurrency is set, there is no way for the TP
Framework to connect an active object to this server.

TP Framework API

This section describesthe TP Framework API. Additional information about how to usethis API
can be found in Creating CORBA Server Applications.

The TP Framework comprises the following components:

e The server C++ class, which has virtual methods for application-specific server
initialization and termination logic

e The serverBase C++ class, which has virtual methods for multithreaded server
applications.

e The Tobj_servantBase C++ class, which has virtual methods for object state
management

e The Tp C++ class, which provides methods to:

Create object references for CORBA objects

Register (and unregister) factories with the FactoryFinder object

Initiate user-controlled preactivation and deactivation of objects

Initiate user-controlled deactivation of the CORBA object currently being invoked

Obtain an object reference to the CORBA object currently being invoked
— Open and close XA resource managers

— Log messages to auser log (ur.og) file

3-22 CORBA Programming Reference

TP Framework API

— Obtain object references to the ORB and to Bootstrap objects (if not using the CORBA
Interoperable Naming Service (INS))

o Header files for these classes
e Librariesthat are used by server applications
The visible part of the TP Framework consists of two categories of operations:
e Service methods that can be called by user code. These arein the TP interface.

e Callback methods that are written by the user and that are invoked by the TP Framework.
Thisincludes methods in the Tobj_servantBase and server classes. These operations
are intended to be called by TP Framework code only. The application code should never
call the methods of these classes. If it does, unpredictable results may occur.

Server Interface

The Server interface provides callback methods that can be used for application-specific server
initialization and termination logic. Thisinterface also provides acallback method that isused to
create servants when servants are required for object activation.

The Server interface has the following characteristics:
e The Server classinherits from the ServerBase class.
e The server classisaC++ native class.

e The server.n file contains the declarations and definitions for the Server class.
For a description of the Server interface methods, see ServerBase Interface.

C++ Declarations
For the C++ mappings, seeServerBase Interface.

ServerBase Interface

The serverBase interface allows you to take full advantage of multithreading capabilities. Y ou
can create your own server classes that inherit from the serverBase class. This providesyou
with the following:

e Thecreate_servant_with_id () method to support implementations requiring
knowledge of the target object during the creation of a servant

CORBA Programming Reference 3-23

3-24

e Support for user-supplied thread initialization and release handlers

The serverBase class provides the same operations that were available in the server classin
earlier releases. The Server class inherits from the ServerBase class.

These methods can be used with single-threaded and multithreaded applications:
- Server::create_servant ()
- Server::initialize()
- Server::release()
- ServerBase: :create_servant_with_ id()

These methods can be used with multithreaded server applications only:
— ServerBase:: thread_initialize()

— ServerBase: :thread _release()

Note: Programmers must provide definitions of the Server class methods. The ServerBase class
methods have default implementations.

C++ Declarations (in Server.h)
The C++ mapping is as follows:
class OBBEXPDLLUSER ServerBase {
public:
virtual CORBA: :Boolean
initialize(int argc, char** argv) = 0;
virtual void

release() = 0;

virtual Tobj_Servant

create_servant (const char* interfaceName) = 0;

// Default Implementations Supplied
virtual Tobj_Servant
create_servant_with_id(const char* interfaceName,

const char* stroid);

virtual CORBA::Boolean

thread_initialize(int argc, char** argv);

virtual void

thread_release() ;

CORBA Programming Reference

TP Framework API

i

class Server : public ServerBase {

public:

CORBA: :Boolean initialize(int argc, char** argv);
void release();

Tobj_Servant create_servant (const char* interfaceName) ;

}i

Server::create_servant()

Synopsis
Creates a servant to instantiate a C++ object.

C++ Binding
class Server {
public:
Tobj_Servant create_servant (const char* interfaceName) ;

}i

Argument
interfaceName
Specifies acharacter string that contains the fully qualified interface name for the object.
Thiswill be the same interface name that was supplied when the object reference was
deﬂed(TP::create_object_reference()Or
TP: :create_active_object_reference()) for the object reference used for this
invocation. This name can be used to determine which servant needs to be constructed.

Exception
If an exception isthrown in server: :create_servant (), the TP Framework catches the
exception. Activation fails. A CORBA: : OBJECT _NOT_EXIST () exception israised back to the
client. In addition, an error message is written to the user log (uLog) file, asfollows, for each
exception type:
TobjS: :CreateServantFailed
"TPFW_CAT:23: ERROR: Activating object - application raised

TobjS::CreateServantFailed. Reason = reason. Interface :irnafacdﬂane,
OID = oid"

CORBA Programming Reference 3-25

Where reason isauser-supplied reason, and interfaceName and oid are the interface
ID and object ID, respectively, of the invoked CORBA object.

TobjS: :0utOfMemory
"TPFW_CAT:22: ERROR: Activating object - application raised
TobjS::0utOfMemory. Reason = reason. Interface = interfaceName, OID =
oid"

Where reason is auser-supplied reason, and interfacename and oid are the interface
ID and object ID, respectively, of the invoked CORBA object.

CORBA: : Exception
"TPFW_CAT:28: ERROR: Activating object - CORBA Exception not handled
by application. Exception ID = exceptionID. Interface = interfaceName,
OID = oid"

Where exceptionIpistheinterface ID of the exception, and interfacenName and oid
aretheinterface ID and object 1D, respectively, of the invoked CORBA object.

Other Exception
"TPFW_CAT:29: ERROR: Activating object - Unknown Exception not handled
by application. Exception ID = exceptionID. Interface = interfaceName,
OID = oid"

Where exceptionIpistheinterface ID of the exception, and interfacename and oid
aretheinterface ID and object 1D, respectively, of the invoked CORBA object.

Description

The create_servant method isinvoked by the TP Framework when arequest arrives at the
server and thereis no available servant to satisfy the request. The TP Framework calls the
create_servant method with the interface name for the servant to be created. The server
application instantiates an appropriate C++ object and returns a pointer to it. Typically, the
method contains a switch statement on the interface name and creates a new object, depending
on the interface name.

Caution: The server application must not depend on this method being invoked for every
activation of a CORBA object. The server application must not do any handling of
CORBA object state in the constructors or destructors of any servant classes for
CORBA objects. Thisis because the TP Framework may possibly reuse servants on
activation and may possibly not destroy servants on deactivation.

3-26 CORBA Programming Reference

TP Framework API

Return Value

Tobj_Servant
The pointer to the newly created servant (instance) for the specified interface. A NULL
value should be returned if create_servant () isinvoked with an interface namethat it
does not recognize or if the servant cannot be created for some reason.
If the create_servant method returnsa NULL pointer, activation fails. A
CORBA: : OBJECT_NOT_EXIST () exceptionisraised back to the client. Also, the
following message is written to the user log (ULoG):

"TPFW_CAT:23: ERROR: Activating object - application raised
TobjS::CreateServantFailed. Reason = Application's

Server: :create_servant returned NULL. Interface = interfaceName, OID
= oid"

Where interfacename istheinterface ID of the invoked interface and oidisthe
corresponding object ID.

Note: Therestriction on the length of the object1d has been removed in thisrelease.

ServerBase::create_servant_with_id()

Synopsis

Creates a servant for this target object. This method supports the development of single-headed
and multithreaded server applications.

C++ Binding
Tobj_Servant create_servant_with_id (const char* interfaceName,

const char* stroid);

Arguments

interfaceName
Specifies a character string containing the fully qualified interface name for the object.
This must be the same interface name that was supplied when the object reference was
created.

stroid
Specifies an object ID in string format. The object ID uniquely identifies the object
associated with the request to be processed. Thisisthe same object 1D that was specified
when the object reference was created.

CORBA Programming Reference 3-21

Description

The TP Framework invokesthe create_servant_with_id method when arequest arrives at
the server and there no servant is available to satisfy the request. The TP Framework passesin
the interface name for the servant to be created and the object | D associated with the object with
which the servant will be associated. The server application instantiates an appropriate C++
object and returns a pointer to it. Typically, the method contains a switch statement on the
interface name and creates a new object, depending on the interface name. Providing the object
ID allows a servant implementati on to make decisions during the creation of the servant instance
that require knowledge of the target object. Reentrancy support is one example of how a servant
implementation might employ knowledge of the target object.

The serverBase class providesadefault implementation of create_servant_with_idwhich
callsthe standard create_servant method passing the interface name. This default
implementation ignores the target object ID parameter.

Caution: The server application must not depend on the invocation of this method for every
activation of a CORBA aobject. The server application must not handle the CORBA
object state in the constructors or destructors of any servant classes for CORBA
objects. This is because the TP Framework might reuse servants on activation and
might not destroy servants on deactivation.

Return Value

Tobj_Servant
A pointer to the newly created servant (instance) for the specified interface. ReturnsNuLL
if either of these conditionsistrue:

e Interface name not recognized
e Unableto create a servant

Example

Tobj_Servant simple_per_request_server::create_servant_with_id(
const char* intf_ repos_id, const char* stroid)

TP::userlog("create_servant_with_id called in thread %1d",
(unsigned long)SIMPTHR_GETCURRENTTHREADID) ;

// Perform any necessary initialization based on
// this object ID

3-28 CORBA Programming Reference

TP Framework API

return create_servant (intf_repos_id) ;

Server::initialize()

Synopsis
Allows the application to perform application-specific initialization procedures, such aslogging
into adatabase, creating and regi stering well-known object factories, initializing global variables,
and so forth.

C++ Binding

class Server {

public:
CORBA: :Boolean initialize(int argc, char** argv);

i

Arguments
The argc and argv arguments are passed from the command line. The argc argument contains
the name of the server. The argv argument containsthe first command-line option that is specific
to the application, if there are any.

Command-line options are specified in the useconr1G file using the cLopT parameter in the
entry for the server in the serRvERS section. System-recognized options come first in the cL.opT
parameter, followed by adouble-hyphen (--), followed by the application-specific options. The
value of argc is one greater than the number of application-specific options. For details, see
ubbconfig(5) inthe File Formats, Data Descriptions, MIBs, and System Processes Reference.

Exceptions
If an exception israised in server: :initialize (), the TP Framework catches the exception.
The TP Framework behavior isthe same asif initialize () returned FALSE (that is, an
exception is considered to be afailure). In addition, an error message is written to the user log
(uroc) file, asfollows, for each exception type:
TobjS::InitializeFailed

"TPFW_CAT:1: ERROR: Exception in
Server::initialize () : IDL:beasys.com/TobjS/InitializeFailed:1.0.

Reason = reason"

Where reason isastring supplied by application code. For example:

CORBA Programming Reference 3-29

Throw TobjS::InitializeFailed(
"Couldn't register factory");

CORBA: : Exception
"TPFW_CAT:1: ERROR: Exception in Server::initialize(): excepﬂon.
Reason = unknown"

Where exception istheinterface ID of the CORBA exception that was raised.

Other Exceptions
TPFW_CAT:1: ERROR: Exception in Server::initialize(): unknown
exception. Reason = unknown"

Description

The initialize callback method, which isinvoked asthe last step in server initiaization,
alows the application to perform application-specific initialization.

Typicaly, aserver application doesthe following tasksin server: :initialize:

o Createsreferences for CORBA object factoriesimplemented in the server application and
registers them with the FactoryFinder using the Tp: : register_factory () operation.

e |nitializes global variables, if any are used.

e Opens XA resource managersif any are used by the server application.

Itistheresponsibility of the server application to open any required XA resource managers. This
is done by invoking either of the following methods:

® TP::open_xa_rm()
Thisisthe preferred technique for server applications, since it can be done on a static
function, without the need to obtain an object reference.

Note: Youmust usethe Tp: : open_xa_rm() method if you use the INS bootstrap mechanism
to obtain initial object references.

® Tobj::TransactionCurrent: :open_xa_rm()
A reference to the TransactionCurrent object can be obtained from the Bootstrap object.
For an explanation of how to obtain areference to the Bootstrap object, see the section
TP::bootstrap(). For more information about the TransactionCurrent object, see the
CORBA Bootstrapping Programming Reference section and Using CORBA Transactions.

e Transactions may be started in the initialize method after invoking the
Tobj: :TransactionCurrent: :open_xa_rm() Of TP: : open_xa_rm Method. However,
any transactions that are started in initialize () must beterminated by the server
application before initialize () returns. If the transactions are still active when control

3-30 CORBA Programming Reference

TP Framework API

is returned, the server application fails to boot, and it exits gracefully. This happens
because the server application has no logical way of either committing or rolling back the
transaction after server: :initialize () returns. Thisconditionisan error.

Return Value

Boolean TrRUE or FALSE. TRUE indicates success. rFarLsk indicates failure. If an error occursin
initialize(), the application code should return rarLse. The application code should not call
the system call exit (). Calling exit () does not give the TP Framework a chance to release
resources allocated during startup and may cause unpredictable results.

If the return value is FALSE:
® Server::release () iSnotinvoked.

e Any transactionsthat are started in the initialize () method and are not terminated will
eventually time out; they are not automatically rolled back.

ServerBase::thread_initialize()

Synopsis
Performs any necessary application-specific initialization for athread created using the Oracle
Tuxedo software. This method supports the development of a multithreaded server application.

C++ Binding

CORBA: :Boolean thread_initialize(int argc, char** argv)

Arguments

argc
The number of arguments provided to the application. Initialy, this count is passed to the
main function.

argv
The arguments provided to the application. Initially, these arguments are passed to the
main function.

Description

In managing the thread pool, the Oracle Tuxedo software creates and releases threads using the
operating system thread library services. Depending on application requirements, these threads
might need to be initialized before they are used to process requests.

CORBA Programming Reference 3-31

Thethread_initialize callback method isinvoked each time athread is created, to initialize
the thread. Note that the Oracle Tuxedo software manages a number of system-owned threads
that are used for dispatching requests; these system-owned threads arein addition to those threads
in the thread pool. Under some circumstances the servant methods you implement are also
executed in these system-owned threads; for this reason the Oracle Tuxedo software invokes the
thread_initialize method to initialize the system-owned threads.

The serverBase class provides a default implementation of the thread_initialize method
that opens the XA resource manager in theinitialized thread.

Return Value
CORBA: :Boolean
True if the initialization of the thread was successful.
Example
CORBA: :Boolean simple_per_request_server::thread_initialize(

int argc, char** argv)

TP::userlog("thread_initialize called in thread %1d4d",
(unsigned long) SIMPTHR_GETCURRENTTHREADID) ;
return CORBA_TRUE;

Server:release()

Synopsis
Allows the application to perform any application-specific cleanup, such aslogging off a
database, unregistering well-known factories, or deallocating resources.

C++ Binding

typedef Tobj_ServantBase* Tobj_Servant;

class Server {
public:
void release () ;

}i

Arguments
None.

3-32 CORBA Programming Reference

TP Framework API

Exceptions
If anexceptionisraisedinrelease (), the TP Framework catchesthe exception. Each exception
causes an error message to be written to the user log (ur.og) file, asfollows:;

TobjS::ReleaseFailed
"TPFW_CAT:2: WARN: Exception in Server::release():
IDL:beasys.com/TobjS/ReleaseFailed:1.0. Reason = reason"

Where reason isastring supplied by application code. For example:
Throw TobjS::ReleaseFailed(
"Couldn't unregister factory");

CORBA: : Exception
"TPFW_CAT:2: WARN: Exception in Server::release(): exception. Reason
= unknown"

Where exception istheinterface ID of the CORBA exception that was raised.

Other Exceptions
"TPFW_CAT:2: WARN: Exception in Server::release(): unknown exception.
Reason = unknown"

In al cases, the server continues to exit.

Description

The release callback method, whichisinvoked asthefirst stepin server shutdown, allowsthe
server application to perform any application-specific cleanup. The user must override thevirtual
function definition.

Typical tasks performed by the application in this method are as follows:
e Close XA resource managers.

e Unregister CORBA object factories that were registered with the FactoryFinder in
Server::initialize().
e Deadllocate any server resources not yet released.
Thismethod isnormally called in responseto a tmshutdown command from the administrator or
operator.

The TP Framework provides a default implementation of server: :release (). The default
implementation closes XA resource managers for the server. The implementation does this by
issuing atx_close () invocation, which usesthe default cLoseInrFo configured for the server's
group in the uBBCONFIG file.

CORBA Programming Reference 3-33

It isthe responsihility of the application to close any open XA resource managers. Thisis done
by issuing either of the following calls:

® TP::close_xa_rm()

Note: Youmust usetheTp: :close_xa_rm() methodif you usethe INS bootstrap mechanism
to obtain initial object references.

® Tobj::TransactionCurrent::close_xa_rm(). A referenceto the TransactionCurrent
object can be obtained from the Bootstrap object. For an explanation of how to obtain a
reference to the Bootstrap object, see the section TP::bootstrap(). For more information
about the TransactionCurrent object, see CORBA Bootstrapping Programming Reference
and Using CORBA Transactions.

Note: Onceaserver receivesareguest fromthe tmshutdown (1) command to shut down, it can
no longer receive requests from other remote objects. This may require serversto be shut
down in a specific order. For example, if the server: :release () methodin Server 1
needs to access a method of an object that residesin Server 2, Server 2 should be shut
down after Sever 1 is shut down. In particular, the Tp: :unregister_factory()
method accesses the FactoryFinder Registrar object that residesin a separate server. The
TP::unregister_factory () method istypically invoked fromthe release ()
method; therefore, the FactoryFinder server should be shut down after all serversthat call
TP::unregister_factory () iNnther Server::release () method.

Return Value
None.

ServerBase::thread_release()

Synopsis

Performs application-specific cleanup when athread that was created by the Oracle Tuxedo
softwareis released. This method supports the development of a multithreaded server
application.

C++ Binding

void thread_release()

Arguments
None.

3-34 CORBA Programming Reference

TP Framework API

Description

The thread_release calback method isinvoked each time athread isrel eased. Implement the
thread_release method as necessary to perform application-specific resource cleanup.

The serverBase class provides a default implementation of the thread_release method that
closes the XA resource manager in the released thread.

Return Value
None.

Example

void simple_per_request_server::thread_release()
{
TP::userlog("thread_release called in thread %1d",
(unsigned long)SIMPTHR_GETCURRENTTHREADID) ;
}

Tobj_ServantBase Interface

The Tobj_servantBase interface inherits from the

PortableServer: :RefCountServantBase Class and defines operations that allow a CORBA
object to assist in the management of its state in a thread-safe manner. Every implementation
skeleton generated by the IDL compiler automatically inherits from the Tobj_servantBase
class. The Tobj_servantBase class contains two virtual methods, activate object () and
deactivate_object (), that may be optionally implemented by the programmer.

Whenever arequest comesin for an inactive CORBA object, the object is activated and the
activate_object () methodisinvoked onthe servant. When the CORBA object isdeactivated,
the deactivate_object () method isinvoked on the servant. The timing of deactivation is
driven by the implementation’s activation policy. When the deactivate_object () method is
invoked, the TP Framework passesin areason code to indicate why the call was made.

These methods support the development of a multithreaded server application:
® TobjServantBase: :_add_ref ()
® TobjServantBase::_is_reentrant ()
® TobjServantBase: :_remove_ref ()

Note: Tobj_ServantBase::activate_object () and
Tobj_ServantBase: :deactivate_object () arethe onIy methods that the TP
Framework guarantees will be invoked for CORBA object activation and deactivation.

CORBA Programming Reference 3-35

The servant class constructor and destructor may or may not be invoked at activation or
deactivation time (through the server: : create_servant cal for C++). Therefore, the
server application code must not do any state handling for CORBA objectsin either the
constructor or destructor of the servant class.

Note: Theprogrammer doesnot need to use acast or referenceto Tobj_servantBase directly.
The Tobj_servantBase methods show up as part of the skeleton and, therefore, in the
implementation class for a servant. The programmer may provide definitions for the
activate_object and deactivate_object methods, but the programmer should
never make direct invocations on those methods; only the TP Framework should call
those methods.

C++ Declaration (in Tobj_ServantBase.h)
The C++ mapping for the Tobj_servantBase interfaceis asfollows:

class Tobj_ServantBase : public PortableServer::RefCountServantBase {
public:

Tobj_ServantBase& operator=(const Tobj_ServantBase&) ;

Tobj_ServantBase () {}

Tobj_ServantBase (const Tobj_ServantBase& s)
PortableServer: :RefCountServantBase(s) {}

virtual void activate_object (const char *) {}

virtual void deactivate_object (const char*,
TobjS: :DeactivateReasonValue) {}

virtual CORBA::Boolean _is_reentrant() { return CORBA_FALSE; }
}i

typedef Tobj_ServantBase * Tobj_Servant;

Tobj_ServantBase:: activate_object()

Synopsis
Associates an object 1D with a servant. This method gives the application an opportunity to
restore the object’ s state when the object is activated. The state may be restored from shared
memory, from an ordinary flat file, or from a databasefile.

C++ Binding

class Tobj_ServantBase : public PortableServer::ServantBase {
public:

3-36 CORBA Programming Reference

TP Framework API

virtual void activate_object (const char * stroid) {}
I

Argument

stroid
Specifiesthe object ID in string format. The object ID uniquely identifies thisinstance of
the class. Thisisthe same object ID that was specified when the object reference was
created (USing TP: create_object_reference()) Of inthe
TP::create_active_object_reference () for the object reference used for this
invocation.

Note: The restriction on the length of the object 1D has been removed in this release.

Description

Object activation istriggered by a client invoking a method on an inactive CORBA aobject. This
causes the Portable Object Adapter (POA) to assign a servant to the CORBA object. The
activate_object () method isinvoked before the method invoked by the client isinvoked. If
activate_object () returnssuccessfully, that is, without raising an exception, the requested
method is executed on the servant.

Theactivate_object () anddeactivate object () methodsand the method invoked by the
client can be used by the programmer to manage object state. The particular way these methods
are used to manage object state may vary according to the needs of the application. For a
discussion of how these methods might be used, see Creating CORBA Server Applications.

If the object iscurrently infected with aglobal transaction, activate_object () executeswithin
the scope of that same global transaction.

It isthe responsibility of the programmer of the object to check that the stored state of the object
isconsistent. In other words, it isup to the application code to save a persistent flag that indicates
whether or not deactivate_object () successfully saved the state of the object. That flag
should be checked in activate_object ().

Return Value
None.

Exceptions

If an error occurswhile executing activate_object (), the application code should raise either
a CORBA standard exception or aTobjs: :ActivateObjectFailed exception. When an
exception is raised, the TP Framework catches the exception, and the following events occur:

CORBA Programming Reference 3-37

3-38

e Theactivation fails.
e The method invoked by the client is not executed.

e If activate_object () isexecuting within atransaction and the client initiated the
transaction, the transaction is not rolled back.

e A CORBA: :OBJECT_NOT_EXIST exception israised back to the client.

Note: For each CORBA interface, set AUTOTRAN t0 Yes if you want atransaction to start
automatically when an operation invocation isreceived. Setting AUTOTRAN 0O Yes hasno
effect if the interface is aready in transaction mode. For more information about
AUTOTRAN, See Using CORBA Transactions.

e Based on the exception is raised, a message is written to the user log (urog) file, as
follows:

TobjS::ActivateObjectFailed
"TPFW_CAT:24: ERROR: Activating object - application raised
TobjS: :ActivateObjectFailed. Reason = reason. Interface =
interfaceName, OID = oid"

Where reason isauser-supplied reason, and interfaceName and oid arethe interface
ID and object ID, respectively, of the invoked CORBA object.

TobjS: :0utOfMemory
"TPFW_CAT:22: ERROR: Activating object - application raised
TobjS::0utOfMemory. Reason = reason. Interface = interfaceName, OID =
oid"

Where reason isauser-supplied reason, and interfaceName and oid are the interface
ID and object ID, respectively, of the invoked CORBA object.

CORBA: :Exception
"TPFW_CAT:25: ERROR: Activating object - CORBA Exception not handled
by application. Exception ID = exceptionID. Interface = interfaceName,
OID = oid"

Where exception1pistheinterface ID of the exception, and interfaceName and oid
aretheinterface ID and object ID, respectively, of the invoked CORBA object.

Other exception
"TPFW_CAT:26: ERROR: Activating object - Unknown Exception not handled

by application. Exception ID = exceptionID. Interface = interfaceName,
0ID = oid"

CORBA Programming Reference

TP Framework API

Where exception1pistheinterface ID of the exception, and interfaceName and oid
aretheinterface ID and object ID, respectively, of the invoked CORBA object.

Tobj_ServantBase::_add_ref()

Synopsis
Adds areference to a servant. This method supports the development of a multithreaded server
application.

Note: In applications written using Oracle Tuxedo release 8.0 or later, use this method instead
of the TP: :application_responsibility () method.

C++ Binding

void _add_ref ()

Arguments
None.

Description

Invoke this method when a reference to a servant is needed. Invoking this method causes the
reference count for the servant to increment by one.

Return Value

None.

Example
myServant * servant = new intf_i();
if (servant != NULL)

servant->_add_ref () ;

Tobj_ServantBase::deactivate_object()

Synopsis
Removes the association of an object ID with its servant. This method gives the application an
opportunity to save all or part of the object’ s state before the object is deactivated. The state may
be saved in shared memory, in an ordinary flat file, or in adatabasefile.

CORBA Programming Reference 3-39

C++ Binding

class Tobj_ServantBase : public PortableServer::ServantBase {

public:
virtual void deactivate_object (const char* stroid,
TobjS: :DeactivateReasonValue reason) {}
Y
Arguments
stroid
Specifiesthe object ID in string format. The object ID uniquely identifies thisinstance of
the class.

Note: The restriction on the length of the object 1D has been removed in thisrelease.

reason
Indicates the event that caused this method to be invoked. The reason code can be one of
the following:

DR_METHOD_END
Indicatesthat the object is being deactivated after the completion of amethod. Itis
used if the object’s deactivation policy is:
- method
- transaction (only if thereisno transaction in effect)

- process GfTP::deactivateEnable() cdled)

DR_SERVER__SHUTDOWN
Indicatesthat the object is being deactivated because the server isbeing shut down
in an orderly fashion. It is used if the object’s deactivation policy is:

- transaction (only if transaction is active)

- process

Note that when aserver is shut down in an orderly fashion, all transactionsthat the
server isinvolved in are marked for rollback.

DR_TRANS_ABORTED
This reason code isused only for objects that have the transaction activation
policy. It can occur when the transaction is started by either the client or
automatically by the system. Whenthe deactivate_object () methodis
invoked with this reason code, the transaction is marked for rollback only.

DR_TRANS_COMMITTING

3-40 CORBA Programming Reference

TP Framework API

This reason code is used only for objects that have the transaction activation
policy. It can occur when the transaction is started by either the client or the TP
Framework. It indicatesthat acurrent . commit () operation wasinvoked for the
transaction in which the object isinvolved. The deactivate_object () method
isinvoked just before the transaction manager’ s two-phase commit algorithm
begins; that is, before prepare is sent to the resource managers.

The CORBA object is allowed to vote on the outcome of the transaction when the
deactivate_object () method isinvoked with the bDR_TRANS_COMMITTING
reason code. By invoking current . rollback_only (), the method can force
the transaction to be rolled back; otherwise, the two-phase commit algorithm
continues. The transaction is not necessarily committed just because the
Current.rollback_only () isnotinvoked in this method. Any other CORBA
object or resource manager involved in the transaction could also vote to roll back
the transaction.

DR_EXPLICIT_DEACTIVATE
Indicates that the object is being deactivated because the application executed a
TP: :deactivateEnable (-, -, -) onthisobject. This can happen only for
objects that have the process activation policy.

Description
Object deactivation isinitiated either by the system or by the application, depending on the
activation policy of the implementation for the CORBA object. The deactivate_object ()
method isinvoked before the CORBA object isdeactivated. For details of these policiesand their
use, see the section ICF Syntax.

Deactivation may occur after an execution of amethod invoked by aclient if the activation policy
for the CORBA object implementation ismethod, or asaresult of the end of transactional work
if the activation policy istransaction. It may also occur astheresult of server shutdown if the
activation policy istransaction Of process.

In addition, the Oracle Tuxedo software supports the use of user-controlled deactivation of
CORBA objects having an activation policy of process Or method viathe use of the

TP: :deactivateEnable () and TP: :deactivateEnable (-, -, -) methods.

TP: :deactivateEnable can be called inside a method of an object to cause the object to be
deactivated at the end of the method. If Tp: : deactivateEnable iscalled in an object with the
transaction activation policy, an exception israised (Tobjs: : T11egalOperation) and the
TP Framework takes no action. Tp: : deactivateEnable (-, -, -) can becalled to deactivate
any object that has aprocess activation policy. For more information, see the section
TP::deactivateEnable().

CORBA Programming Reference 3-41

Note: Thedeactivate_object method will be called at server shutdown time for every
object remaining in the Active Object Map, whether it was entered thereimplicitly by the
TP Framework (the activation-on-demand technique: Tp: : create_servant and the
servant’sactivate_object method) or explicitly by the user with
TP::create_active_object_reference

The activate_object () and deactivate_object () methods and explicit methods invoked
by the client can be used by the programmer to manage object state. The manner in which these
methods are used to manage object state may vary according to the needs of the application. For
adiscussion of how these methods might be used, see Creating CORBA Server Applications.

The CORBA object with transaction activation policy gets to vote on the outcome of the
transaction when the deactivate_object () method isinvoked with the
DR_TRANS_COMMITTING reason code. By calling current.rollback_only () the method can
forcethetransaction to berolled back; otherwise, the two-phase commit algorithm continues. The
transaction will not necessarily be committed just because current . rollback_only () iSnot
called in this method. Any other CORBA abject or resource manager involved in the transaction
could also vote to roll back the transaction.

Restriction

3-42

Note that if the object isinvolved in atransaction when this method is invoked, there are
restrictions on what type of processing can be done based on the reason the object isinvoked. If
the object wasinvolved in atransaction, the activation policy iS transaction and the reason
code for the call is:

DR_TRANS_ABORTED
No invocations on any CORBA aobjects are allowed in the method. NO tpcall () is
alowed. Transactions cannot be suspended or begun.

DR_TRANS_COMMITTING
No invocations on any CORBA objects are allowed in the method. No tpcall () is
allowed. Transactions cannot be suspended or begun.

The reason for these restrictions is that the deactivation of objects with activation policy
transaction is controlled by a cal to the TP Framework from the transaction manager for the
transaction. When the call with reason code DR_TRANS_COMMITTING iSmade, the transaction
manager is executing phase 1 (prepare) of the two-phase commit. At this stage, it is not possible
toissue acall to suspend atransaction nor to initiate a new transaction. Since acall to a CORBA
object that was in another process would require that process to join the transaction, and the

transaction manager is already executing the prepare phase, this would cause an error®. Since a

CORBA Programming Reference

TP Framework API

call to a CORBA object that had no transactional properties would require that the current
transaction be suspended, this would also cause an error. The sameistrue of atpcall ().

Similarly, when the invocation with reason code DR_TRANS_ABORTED iS made, the transaction
manager isaready aborting. While the transaction manager isaborting, it isnot possibleto either
suspend a transaction or initiate a new transaction. The same restrictions apply as for
DR_TRANS_COMMITTING.

Return Value
None.

Exceptions
If the CORBA object method that isinvoked by the client raises an exception, that exception is

caught by the TP Framework and is eventually returned to the client. Thisistrue even if
deactivate_object () isinvoked and raises an exception.

The client will never be notified about exceptionsthat are raised in deactivate_object (). It

istheresponsibility of the application code to check that the stored state of the CORBA object is
consistent. For example, the application code could save a persistent flag that indicates whether
or not deactivate object () successfully saved the state. That flag can then be checked in

activate_object ().

If an error occurs while executing deactivate_object (), the application code should raise
either a CORBA standard exception or abpeactivateObjectFailed exception. If
deactivate_object () wasinvoked by the TP Framework, the TP Framework catches the
exception and the following events occur:

e The object is deactivated.
e If theclient initiated a transaction, the transaction is not rolled back.
e Theclient is not notified of the exception that israised in deactivate_object ().

e Based on which exception is raised, amessage is logged to the user log (uroc) file, as
follows:

1. In theory, thiswould mean that an invocation on atransactional CORBA object in the same
process would be valid since it would not require a new process to be registered with the trans-
action manager. However, it is not possible for the programmer to guarantee that an invocation
on a CORBA object will occur in-proc, therefore, this practice is discouraged.

CORBA Programming Reference 3-43

TobjS: :DeactivateObjectFailed
"TPFW_CAT:27: ERROR: De-activating object - application raised
TobjS: :DeactivateObjectFailed. Reason = reason. Interface =

interfaceName, oip = oid"

Where reason isauser-supplied reason, and interfaceName and oid are the interface
ID and object ID, respectively, of the invoked CORBA object.

CORBA: : Exception
"TPFW_CAT:28: ERROR: De-activating object - CORBA Exception not
handled by application. Exception ID = exceptionID. Interface =
interfaceName, OID = oid"

Where exceptionIpDistheinterface ID of the exception, and interfacename and oid
aretheinterface ID and object 1D, respectively, of the invoked CORBA object.

Other exception
"TPFW_CAT:29: ERROR: De-activating object - Unknown Exception not
handled by application. Exception ID = exceptionID. Interface =
interfaceName, OID = oid"

Where exceptionIDistheinterface ID of the exception, and interfacename and oid
aretheinterface ID and object 1D, respectively, of the invoked CORBA object.

Tobj_ServantBase::_is_reentrant()

Synopsis
Indicates that the object supports concurrent, reentrant invocations. This method supports the
development of a multithreaded server application.

C++ Binding

CORBA: :Boolean _1is_reentrant ()

Arguments
None.

Description

The Oracle Tuxedo server infrastructure calls this method to determine whether the servant
implementation supports a reentrant invocation. To support reentrancy, a servant must include
the necessary code to protect the integrity of its state while multiple threads interact with the
object.

3-44 CORBA Programming Reference

TP Framework API

The Tobj_servantBase class provides a default implementation of the _is_reentrant
method that returns FALSE.

Return Value

CORBA: :Boolean
Returns TRUE if the servant can support reentrancy.

Example
CORBA: :Boolean Simple_i::_1is_reentrant ()
{ TP::userlog("_is_reentrant called in thread %1d",

(unsigned long) SIMPTHR_GETCURRENTTHREADID) ;
return CORBA_TRUE;

Tobj_ServantBase::_remove_ref()

Synopsis
Releases a reference to a servant. This method supports the development of a multithreaded
server application.

Note: In applications written using Oracle Tuxedo release 8.0 or later, use this method instead
of the C++ “delete” statement that you used previoudy with the
TP::application_responsibility () method.

C++ Binding

void _remove_ref ()

Parameters
None.

Description

Invoke this method when a reference to a servant is no longer needed. Invoking this method
causes the reference count for the servant to be decremented by one. If the _remove_ref ()
method brings the reference count to zero, it also calls the C++ “delete” statement on its own
this pointer and deletes the servant.

Return Value
None.

CORBA Programming Reference 3-45

Example

3-46

if (servant != NULL)

servant->_remove_ref () ;

TP Interface

The TP interface supplies a set of service methods that can beinvoked by application code. This
isthe only interface in the TP Framework that can safely be invoked by application code. All
other interfaces have callback methods that are intended to be invoked only by system code.

The purpose of thisinterfaceisto provide high-level callsthat application code can call, instead
of callsto underlying APIs provided by the Portable Object Adapter (POA), the CORBA Naming
Service, and the Oracle Tuxedo system. By using these calls, programmers can learn asimpler
API and are spared the complexity of the underlying APIs. The TP interface implicitly usestwo
features of the Oracle Tuxedo software that extend the CORBA APIs:

e Factories and the FactoryFinder object

e Factory-based routing

For information about the FactoryFinder object, see the section FactoryFinder Interface. For
more information about factory-based routing, see Setting Up a Oracle Tuxedo Application.

Usage Notes

e During server application initialization, the application constructs the object reference for
an application factory. It then invokesthe register_factory () method, passing in the
factory's object reference together with afactory ia field. On server release (shutdown),
the application usesthe unregister_factory () method to unregister the factory.

e TheTp classis a C++ native class.
e The Tr.n file contains the declarations and definitions for the Te class.
C++ Declarations (in Tp.h)

The C++ mapping is as follows:

class TP {

public:
static CORBA::0Object_ptr create_object_reference(
const char* interfaceName,
const char* stroid,

CORBA Programming Reference

static

static

static

static

static

static

static
static
static
static
static
static

static

i

CORBA: :Object_ptr

CORBA: :Object_ptr

void

void

void

void

CORBA: :ORB_ptr
Tobj_Bootstrap*
void

void

int

char*

void

TP::application_responsibility()

Synopsis

TP Framework API

CORBA: :NVList_ptr criteria);

create_active_object_reference(

const char*

interfaceName,

const char* stroid,

Tobj_Servant servant) ;

get_object_reference() ;

register_factory(

CORBA: :Object_ptr factory_or,

const char*

factory_id) ;

unregister_factory(

CORBA: :Object_ptr factory_or,

const char*
deactivateEnable (
deactivateEnable (

const char*

factory_id);
)

interfaceName,

const char* stroid,

Tobj_Servant servant) ;

orb () ;
bootstrap () ;
open_xa_rm() ;
close_xa_rm() ;

userlog (char*,

get_object_id (CORBA: :Object_ptr obj);

)i

application_responsibility(

Tobj_Servant servant) ;

Tellsthe TP Framework that the application is taking responsibility for the servant’slifetime.

Note: Do not use this method in applications written using Oracle Tuxedo release 8.0 or later;
instead, usethe Tobj_servantBase: :_add_ref () method.

C++ Binding

static void application_responsibility (Tobj_Servant servant) ;

CORBA Programming Reference

3-41

Arguments
servant
A pointer to a servant that is already known to the TP Framework.
Exceptions
TobjS::InvalidServant
Indicates that the specified servant isNULL.
Description

Thismethod tellsthe TP Framework that the application istaking responsibility for the servant’s
lifetime. As aresult of thiscall, when the TP Framework has completed deactivating the object
(that is, after invoking the servant’s deactivate_object method), the TP Framework does
nothing more with the object.

Once an application hastaken responsibility for aservant, the application must take careto delete
servant when it is no longer needed, the same as for any other C++ instance.

If the servant is not known to the TP Framework (that is, it is not active), this call has no effect.

Return Values
None.

TP::bootstrap()

Synopsis
Returns a pointer to aTobj : : Tobj_Bootstrap Object. The Bootstrap object is used to access

initial object references for the FactoryFinder object, the Interface Repository, the
TransactionCurrent, and the SecurityCurrent objects.

C++ Binding

static Tobj_Bootstrap* TP::bootstrap();

Arguments
None.

Return Value

Upon successful completion, bootstrap () returns apointer to the Tobj : : Tobj_Bootstrap
object that is created by the TP Framework when the server application is started.

3-48 CORBA Programming Reference

TP Framework API

Exceptions
None.

Description

The TP Framework creates a Tobj : : Tobj_Bootstrap Object as part of initiaization; it is not
necessary for the application code to create any other Tobj : : Tobj_Bootstrap objectsin the
server.

Caution: Because the TP Framework ownsthe Tobj : : Tobj_Bootstrap Object, server
application code must not dispose of the Bootstrap object.

Note: If you are using the CORBA INS bootstrap mechanism and you are not using the
SecurityCurrent for security or TransactionCurrent for transactions, you do not
need to use the Bootstrap object.

TP::close_xa_rm()

Synopsis
Closes the XA resource manager to which the invoking process is linked.

C++ Binding

static void TP::close_xa_rm ();

Arguments
None.

Description

The close_xa_rm() method closesthe XA resource manager to which the invoking processis
linked. XA resource managers are provided by database vendors, such as Oracle and Informix.

Note: The functionality of thiscall isaso provided by
Tobj: :TransactionCurrent::close_xa_rm(). TheTp: :close_xa_rm() method
provides a more convenient way for a server application to close a resource manager
because there is no need to obtain an object reference to the TransactionCurrent object.
A reference to the TransactionCurrent object can be obtained from the Bootstrap object.
See TP::bootstrap() for an explanation of how to obtain areference to the Bootstrap
object. For more information about the TransactionCurrent object, see the CORBA
Bootstrapping Programming Reference section and Using CORBA Transactions.

CORBA Programming Reference 3-49

This method should beinvoked oncefrom the server: : release () method for each server that
isinvolved in global transactions. Thisincludes servers that are linked with an XA resource
manager, as well as serversthat are involved in global transactions, but are not actually linked
with an XA-compliant resource manager.

Theclose_xa_rm() method should beinvoked in place of aclose invocation that is specific to
the resource manager. Because resource managers differ in their initialization semantics, the
specific information needed to close a particular resource manager is placed in the cLoseINFO
parameter in the groups section of the Oracle Tuxedo system ussconrFic file.

The format of the cL.oseINFO string is dependent on the requirements of the database vendor
providing the underlying resource manager. For more information about the CLOSEINFO
parameter, see Setting Up a Oracle Tuxedo Application and the ubbconfig (5) reference page
in the File Formats, Data Descriptions, MIBs, and System Processes Reference. Also, refer to
database vendor documentation for information about how to develop and install applications
that use the XA libraries.

Return Values
None.

Exceptions

CORBA: : BAD_INV_ORDER
Thereisan active transaction. The resource manager cannot be closed while atransaction
isactive.

Tobj::RMFailed
The tx_close () call returned an error return code.

Note: Unlike other exceptionsreturned by the TP Framework, the Tob7 : : RMFailed exception
isdefined in tobj_c.h (which isderived from tobj.id1), hot Tobjs_c.h (whichis
derived from Tobjs. id1). Thisis because native clients can also open XA resource
managers. Therefore, the exception returned is consistent with the exception expected by
native client code and by server: :release () if it usesthe aternate mechanism,
TransactionCurrent::close_xa_rm, Which is shared with native clients.

TP::create_active_object_reference()

Synopsis
Creates an object reference and preactivates an object.

3-50 CORBA Programming Reference

TP Framework API

C++ Binding
static CORBA: :0Object_ptr

create_active_object_reference(

const char* interfaceName,
const char* stroid,
Tobj_Servant servant) ;
Arguments
interfaceName

Specifies a character string that contains the fully qualified interface name for the object.

stroid
Specifiesthe object1d in string format. The object1d uniquely identifies thisinstance
of the class. The programmer decides what information to place in the object1d. One
possibility would beto use it to hold a database key. Choosing the value of an object
identifier, and the degree of uniqueness, is part of the application design. The Oracle
Tuxedo software cannot guarantee any uniqueness in object references, since these may
belegitimately copied and shared outside the Oracle Tuxedo environment, for example by
stringifying the object reference.

servant

A pointer to a servant that the application has already created and initialized.

Exceptions:

TobjS::InvalidInterface
Indicates that the specified interfaceName is NULL.

TobjS::InvalidObjectId
Indicates the specified stroid is NULL.

TobjS::ServantAlreadyActive
The object could not be activated explicitly because the servant is already being used with
another object1d. A servant can be used only with asingle object1d. To preactivate
objects containing different object1ds, the application must create multiple servantsand
preactivate them separately, one per objectid.

TobjS: :0bjectAlreadyActive
The object could not be activated explicitly because the object1d isalready being used
in the Active Object Map. A given object1d can have only one servant associated with
it. To change to a different servant, the application must first deactivate the object and
activate it again.

CORBA Programming Reference 3-51

TobjS::IllegalOperation
The object could not be activated explicitly becauseit doesnot have the process activation

policy.

Description

Thismethod creates an object reference and preactivates an object. Theresulting object reference
may be passed to clients who will use it to access the object.

Ordinarily, the application will call this method in two places:

e Inserver::initialize () to preactivate process objects so that they do not need
activation on the first invocation.

e Inany method that creates object referencesto be returned to clients.

This method allows an application to activate an object explicitly beforeitsfirst invocation. (For
reasons you might want to do this, refer to the section Explicit Activation.) The user first creates
aservant and setsits state before calling create_active_object_reference. The TP
Framework then enters the servant and string object1d in the Active Object Map. Theresult is
exactly the same asif the TP Framework had previously invoked server: :create_servant,
received back the servant pointer, and then had invoked servant: :activate_object.

The object so activated must be for an interface that was declared with the process activation
policy; otherwise, an exception is raised.

If the object is deactivated, an object reference held by a client might cause the object to be
activated again in some other process. For adiscussion about situations in which thismight be a
problem, refer to the section Explicit Activation.

Note: Thereisone restriction on this method when the user-controlled concurrency policy
option is set in the ICF file (See Parallel Objects.). The
TP: :create_active_object_reference method throwsa
TobjS::I1legalOperation exception if it is passed an interface with user-controlled
concurrency set. Since the AOM is not used when user-controlled concurrency is set,
there is no way for the TP Framework to connect an active object to this server.

Caution

3-52

When you preactivate objects in an interface, you must specify an activation policy of process
inthe ICF file for that interface. However, when you specify the process activation policy for
an interface in the ICF file, this can lead to the following problem.

CORBA Programming Reference

TP Framework API

Problem Statement

1. You write SERVER1 such that all objects on interface A are preactivated. To prevent the
object from being activated on demand by the TP Framework, you write the interface's
activate_object method to alwaysthrow the ActivateobjectFailed exception.

2. SERVER?2 aso implements objects of interface A. However, instead of preactivating the
objects, SERVER? lets the TP Framework activate them on demand.

3. If theadministrator configures SERV ER1 and SERV ER2 in the same group, then aclient can
get an interface A object reference from SERVER2 and invoke on it. Then, due to load
balancing, SERVER1 could be asked to activate an object on interface A. However,
SERVERL1 is not able to activate an object on interface A on demand because its
activate_object method throwsthe activateobjectFailed exception.

Workaround

Y ou can avoid this problem by having the administrator configure SERVER1 and SERVER2 in
different groups. The administrator uses the serveRs section of the uBsconr1G fileto define
groups.

Return Value
The newly created object reference.

TP::create_object_reference()

Synopsis
Creates an object reference. The resulting object reference may be passed to clientswho useit to
access the object.

C++ Binding
static CORBA: :0bject_ptr TP::create_object_reference (
const char* interfaceName,
const char* stroid,
CORBA: :NVList_ptr criteria);
Arguments
interfaceName

Specifies a character string that contains the fully qualified interface name for the object.

CORBA Programming Reference 3-53

The interface name can be retrieved by making a call on the following interface typecode
ID function:

const char* _tc_<CORBA interface name>::id();

where <CORBA interface name> iSany object class name. For example:

char* idlname = _tc_Simple->id();

stroid

Specifiesthe object1d in string format. The object1d uniquely identifies thisinstance
of the class. It is up to the programmer to decide what information to place in the
ObjectId. One possibility would be to use the object1d to hold a database key.
Choosing the value of an object identifier, and the degree of uniqueness, is part of the
application design. The Oracle Tuxedo software cannot guarantee any uniquenessin
object references, since object references may be legitimately copied and shared outside
the Oracle Tuxedo domain (for example, by passing the object reference asastring). Itis
strongly recommended the you choose a unique object1d in order to allow parallel
execution of invokes on object references.

Note: Therestriction on the length of the object1d has been removed in thisrelease.

criteria

Exceptions

Specifies alist of named values that can be used to provide factory-based routing for the
object reference. Thelist isoptional and is of type corea: :NvList. The use of
factory-based routing is optional and is dependent on the use of this argument. If you do
not want to use factory-based routing, you can pass a value of 0 (zero) for this argument.
The Oracle Tuxedo system administrator configures factory-based routing by specifying
routing rules in the usBconF1G file. See Setting Up a Oracle Tuxedo Application online
document for details on this facility.

The following exceptions can be raised by the create_object_reference () method:

InvalidInterface

Indicates that the specified interfaceName iISNULL.

InvalidObjectId

Description

Indicates that the specified stroid isSNULL.

The server application isresponsible for invoking the create_object_reference () method.
This method creates an object reference. The resulting object reference may be passed to clients
who will useit to access the object.

3-54

CORBA Programming Reference

TP Framework API

Ordinarily, the server application calls this method in two places:
e Inserver::initialize() to create factoriesfor the server.

e Infactory methods to create object references to be returned to clients.

For examples of how and whento call thecreate_object_reference () method, see Creating
CORBA Server Applications.

Return Value
Object
The newly created object reference.
Example
The following example shows how to use the criteria argument:

CORBA: :NVList_ptr criteria;
CORBA: :Long branch_id = 7;
CORBA: :Long account_id = 10001;
CORBA: :Any any_val;

// Create the list and assign to _var to cleanup on exit
CORBA: :0RB::create_list (2, criteria);

CORBA: :NVList_var criteria_var (criteria);

// Add the BRANCH_ID
any_val <<= branch_id;

criteria->add_value ("BRANCH_ID", any val, 0);

// Add the ACCOUNT_ID
any_val <<= account_id;

criteria->add_value ("ACCOUNT_ID", any_val, 0);

// Create the object reference.
TP: :create_object_reference ("IDL:BankApp/Teller:1.0",
"Teller_ 01", criteria);

TP::deactivateEnable()

Synopsis
Enables application-controlled deactivation of CORBA objects.

CORBA Programming Reference 3-55

C++ Binding
Current-object format:

static void TP: :deactivateEnable () ;
Any-object format:

static void TP: :deactivateEnable (
const char* interfaceName,
const char* stroid,

Tobj_Servant servant) ;

Arguments

interfaceName
Specifies a character string that contains the fully qualified interface name for the object.

stroid
Specifiesthe object1d in string format for the object to be deactivated.

servant
A pointer to the servant associated with the stroid.

Exceptions
The following exceptions can be raised by the deactivateEnable () method:

IllegalOperation

Indicatesthat the Tp: : deactivateEnable method wasinvoked by an object with the
activation policy set to transaction.

TobjS: :0bjectNotActive
In the Any-object format, the object specified could not be deactivated because it was not
active (the stroid and servant parameters did not identify an object that wasin the
Active Object Map).

Description

This method can be used to cause deactivation of an object, either the object currently executing
(upon completion of the method in which it is called) or another object. It can only be used for
objects with the process activation policy. It provides additional flexibility for objects with the
process activation policy.

Note: For single-threaded servers, the Tp: :deactivateEnable (interface, object id,
servant) method can be used to deactivate an object. However, if that object is
currently in atransaction, the object will be deactivated when the transaction commits or

3-56 CORBA Programming Reference

TP Framework API

rollsback. If an invoke occurs on the object before the transaction is committed or rolled
back, the object will not be deactivated.

To ensure the desired behavior, make sure that the object isnot in atransaction or ensure
that no invokes occur on the object after the Tp: : deactivateEnable () cal until the
transaction is complete.

Note: For multithreaded servers, use of the TP: : deactivateEnable (interface, object
id, servant) method isnot supported for deactivation of objectsin per-object servers.
This method is supported for deactivation objects in per-request servers, however, the
deactivation may be delayed because others threads are acting on the object.

Depending on which of the overloaded functions are called, the actions are as follows.

Current-object format
When called from within a method of an object with process activation policy, the object
currently executing will be deactivated after completing the method being executed.
When called from within a method of an object with method activation, the effect is the
same as the normal behavior of such objects (effectively, a NOOP).
When the object is deactivated, the TP Framework first removes the object from the
Active Object Map. It then calls the associated servant’s deactivate_object method
with areason of DR_METHOD_END.

Any-object format
The application can request deactivation of an object by specifying its object1d and the
associated servant.
If the object is currently executing, the TP Framework marksit for deactivation and waits
until the object’ s method completes before deactivating the object (as with the
“current-object format”). If the object is not currently executing, the TP Framework may
deactivate it immediately. No indication is given to the caller as to the status of the
deactivation. When the object is deactivated, the TP Framework first removes the object
from the Active Object Map. It then calls the associated servant’s deactivate_object
method with areason of DR_EXPLICIT_DEACTIVATE.

If the object for which the deactivate is requested has a t ransaction activation policy, an
IllegalOperation exceptionisraised. Thisis because deactivation of such objects may
interfere with their correct notification of transaction completion by the Oracle Tuxedo
transaction manager.

Return Value
None.

CORBA Programming Reference 3-57

TP::get_object_id ()

Synopsis
Allows aserver to retrievethe string object1d contained in an object reference that was created
in the TP Framework.

C++ Binding

char* TP::get_object_id(Corba: :0Object_ptr obj);

Arguments
obj

The object reference from which to get the object1d.

Exception

TobjS::InvalidObject
The object is nil or was not created by the TP Framework

Description

Thismethod allows aserver to retrieve the string object 1d contained in an object reference that
was created in the TP Framework. If the object reference was not created in the TP Framework
(for example, it was created by a client ORB), an exception is raised.

Thecaller must call corBa: : string_free onthereturned value when the object referenceisno
longer needed.

Return Value

The string object1d passed to TP: : create_object_reference Of
TP::create_active_object_reference When the object reference was created.

TP::get_object_reference()

Synopsis
Returns a pointer to the current object.

C++ Binding

static CORBA: :0bject_ptr TP::get_object_reference ();

3-58 CORBA Programming Reference

TP Framework API

Arguments
None.

Notethat if get_object_reference () isinvoked fromwithineither server: :initialize ()
or server: :release (), itisconsidered to be invoked outside the scope of an application’s TP
object execution; therefore, the Tobjs: :Nilobject exception israised.

Exceptions
The following exception can be raised by the get_object_reference () method:

NilObject
Indicates that the method was invoked outside the scope of an application’s CORBA
object execution. The reason string contains outofscope.

Description

This method returns a pointer to the current object. The corBa: :Object_ptr pointer that is
returned can be passed to aclient.

Return Value

The get_object_reference () method returnsacorea: :object_ptr for the current object
when invoked within the scope of a CORBA object execution. Otherwise, the
TobjS: :Nilobject exception israised.

TP::open_xa_rm()

Synopsis
Opens the XA resource manager to which the invoking processis linked.

C++ Binding

static void TP::open_xa_rm() ;

Arguments
None.

Exceptions

Tobj::RMFailed
The tx_open () call returned an error return code.

CORBA Programming Reference 3-59

Note: Unlike other exceptions returned by the TP Framework, this exception is defined in
tobj_c.h (whichisderived from tobj.id1), hotin Tobjs_c.h (whichisderived
from Tobjs.id1). Thisis because native clients can also open XA resource
managers. Therefore, the exception returned is consi stent with the exception expected
by nativeclient codeand by server: :release() if it usesthe alternate mechanism,
TransactionCurrent: :close_xa_rm, Which is shared with native clients.

Description

The open_xa_rm () method opens the XA resource manager to which the invoking processis
linked. XA resource managers are provided by database vendors, such as Oracle and Informix.

Note: Thefunctionality of this method is also provided by
Tobj: :TransactionCurrent::close_xa_rm() . HOWG\/GI’, TP: :open_xa_rm()
provides a more convenient way for a server application to close a resource manager
because there is no need to obtain an object reference to the TransactionCurrent object.
A reference to the TransactionCurrent object can be obtained from the Bootstrap object.
See TP::bootstrap() for an explanation of how to obtain areference to the Bootstrap
object. For more information about the TransactionCurrent object, see the CORBA
Bootstrapping Programming Reference section and Using CORBA Transactions.

This method should be invoked oncefromthe server: :initialize () method for each server
that participatesin aglobal transaction. Thisincludes serversthat are linked with an XA resource
manager, aswell as serversthat participatein aglobal transaction, but are not actually linked with
an XA-compliant resource manager.

The open_xa_rm () method should be invoked in place of an open invocation that is specific to
aresource manager. Because resource managers differ in their initialization semantics, the
specific information needed to open a particular resource manager is placed in the oPENINFO
parameter in the croups section of the useconr1c file.

The format of the opENTINFO String is dependent on the requirements of the database vendor
providing the underlying resource manager. For more information about the cL.oseINFo
parameter, see Setting Up a Oracle Tuxedo Application and the ubbconfig (5) reference page
in the File Formats, Data Descriptions, MIBs, and System Processes Reference. Also, refer to
database vendor documentation for information about how to develop and install applications
that use the XA libraries.

Note: Only one resource manager can be linked to the invoking process.

Return Values

3-60

None.

CORBA Programming Reference

TP Framework API

TP::orh()

Synopsis
Returns a pointer to an ore object.

C++ Binding

static CORBA: :0RB_ptr TP::orb();

Arguments
None.

Exceptions
None.

Description

Access to the orB object allows the application to invoke ORB operations, such as
string_to_object () and object_to_string().

Note: Because the TP Framework owns the ors object, the application must not delete it.

Return Value

Upon successful completion, orb () returns a pointer to the ore object that is created by the TP
Framework when the server program is started.

TP::register_factory()

Synopsis
L ocates the Oracle Tuxedo FactoryFinder object and registers an Oracle Tuxedo factory.

C++ Binding

static void TP::register_factory(

CORBA: :0Object_ptr factory_or, const char* factory_id);

CORBA Programming Reference 3-61

Arguments

factory or
Specifies the object reference that was created for an application factory using the
TP::create_object_reference()rnﬁhod

factory_id
Specifies astring identifier that is used to identify the application factory. For some
suggestions asto the composition of thisstring, see Creating CORBA Server Applications.

Exceptions
The following exceptions can be raised by the register factory () method:

TobjS: :CannotProceed

Indicates that the FactoryFinder encountered an internal error during the search, with the
error being written to the user log (uLog). Notify the operations staff immediately if this
exception israised. Depending on the severity of theinternal error, the server running the
FactoryFinder or the NameM anager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has terminated, and
thereisanother NameM anager running, start anew one. If no NameManagersarerunning,
restart the application.

TobjS: :InvalidName
Indicates that the id string is empty. It isalso raised if the field contains blank spaces or
control characters.

TobjS::InvalidObject
Indicates that the factory valueisnil.

TobjS::RegistrarNotAvailable
Indicates that the FactoryFinder object cannot locate the NameManager. Notify the
operations staff immediately if this exception israised. If no naming services servers are
running, restart the application.

Note: Another possible reason that this exception might occur is that the FactoryFinder
cannot participate in atransaction. Therefore, you may need to suspend the current
transaction beforeissuing the Tp: : register_factory () and
TP: :unregister_factory () cals. For information on suspending and resuming
transactions, see Using CORBA Transactions in the online documentation.

TobjS: :0OverFlow
Indicates that the ia string islonger than 128 bytes (currently the maximum allowable
length).

3-62 CORBA Programming Reference

TP Framework API

Description

This method locates the Oracle Tuxedo FactoryFinder object and registers an Oracle Tuxedo
faCKHynymca“y,TP::register_factory()iSinvokedfrOH]Server::initialize()VVhen
the server createsits factories. The register_factory () method locates the Oracle Tuxedo
FactoryFinder object and registers the Oracle Tuxedo factory.

Caution: Callback objects (that is, those created by ajoint client/server directly through the
POA) should not be registered with a FactoryFinder.

Return Value
None.

TP::unregister_factory()

Synopsis
L ocates the Oracle Tuxedo FactoryFinder object and removes a factory.

C++ Binding

static void TP::unregister_factory (
CORBA: :Object_ptr factory_or, const char* factory_id);

Arguments

factory or
Specifies the object reference that was created for an application factory using the
TP::create_object_reference()rnﬁhod

factory_id
Specifies astring identifier that is used to identify the application factory. For some
suggestions asto the composition of thisstring, see Creating CORBA Server Applications.

Exceptions
The following exceptions can be raised by the unregister_factory () method:

CannotProceed
Indicates that the FactoryFinder encountered an internal error during the search, with the
error being written to the user log (uLog). Notify the operations staff immediately if this
exception israised. Depending on the severity of theinternal error, the server running the
FactoryFinder or the NameM anager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has terminated, and

CORBA Programming Reference 3-63

thereisanother NameManager running, start anew one. If no NameManagersarerunning,
restart the application.

InvalidName
Indicates that the ia string is empty. It isalso raised if the field contains blank spaces or
control characters.

RegistrarNotAvailable
Indicates that the FactoryFinder object cannot locate the NameManager. Notify the
operations staff immediately if this exception israised. If no naming services servers are
running, restart the application.

Note: Another possible reason that this exception might occur is that the FactoryFinder
cannot participate in atransaction. Therefore, you may need to suspend the current
transaction beforeissuing the Tp: : register_factory () and
TP: :unregister_factory () calls. For information on suspending and resuming
transactions, see Using CORBA Transactions in the online documentation.

TobjS: :0verFlow

Indicates that the 14 string islonger than 128 bytes (currently the maximum allowable
length).
Description

This method locates the Oracle Tuxedo FactoryFinder object and removes afactory. Typically
TP: :unregister_factory () isinvoked from server: :release () to unregister server
factories.

Return Value
None.

TP::userlog()

Synopsis

Writes a message to the user log (uLoc) file.
C++ Binding

static int TP::userlog(char*, ...);

3-64 CORBA Programming Reference

TP Framework API

Arguments

Thefirst argument isaprintf (3s) styleformat specification. Theprintf (3s) argument is
described in a C or C++ reference manual.

Exceptions
None.

Description

Theuserlog () method writes amessage to the user log (uroc) file. Messages are appended to
the uroc file with atag made up of the time (hhmmss), system name, process name, and
process-id of the invoking process. The tag is terminated with a colon.

We recommend that server applicationslimit their use of userlog () messagesto messagesthat
can be used to help debug application errors; flooding the ur.og file with incidental information
can make it difficult to spot actual errors.

Return Value

Theuserlog () method returnsthe number of characters that were output, or anegative valueif
an output error was encountered. Output errorsinclude theinability to open or writeto the current
log file.

Example
The following example shows how to usethe Tp: :userlog () method:

userlog (“System exception caught: %s”, e.get_id());

CosTransactions::TransactionalObject Interface Not
Enforced

Use of thisinterface is now deprecated. Therefore, the use of thisinterfaceis now optional and
no enforcement of descent from thisinterface is done for objects infected with transactions. The
programmer can specify that an object is not to be infected by transactions by specifying the
never Of ignore transaction policies. There is no interface enforcement for eligibility for
transactions. The only indicator is the transaction policy.

Note: The CORBAservices Object Transaction Service does not require that all requests be
performed within the scope of atransaction. It is up to each object to determineits
behavior when invoked outside the scope of atransaction; an object that requires a
transaction context can raise a standard exception.

CORBA Programming Reference 3-65

Error Conditions, Exceptions, and Error Messages

3-66

Exceptions Raised by the TP Framework

Thefollowing exceptions are raised by the TP Framework and are returned to clients when error
conditions occur in, or are detected by, the TP Framework:

CORBA: : INTERNAL

CORBA: : OBJECT_NOT_EXIST
CORBA: : OBJ_ADAPTER

CORBA: : INVALID_TRANSACTION
CORBA: : TRANSACTION_ROLLEDBACK

Since the reason for these exceptions may be ambiguous, each time one of these exceptionsis
raised, the TP Framework also writes a descriptive error message that explains the reason to the
user log file.

Exceptions in the Server Application Code

Exceptions rai sed within amethod invoked by aclient are alwaysraised back to the client exactly
asthey wereraised in the method invoked by the client.

Thefollowing TP Framework callback methods are initiated by events other than client requests
on the object:

Tobj_ServantBase: :activate_object ()
Tobj_ServantBase: :deactivate_object ()

Server: :create_servant ()

If exception conditions are raised in these methods, those exact exceptions are not reported back
to the client. However, each of these methods is defined to raise an exception that includes a
reason string. The TP Framework will catch the exception raised by the callback and log the
reason string to the user log file. The TP Framework may raise an exception back to the client.
Refer to the descriptions of theindividual TP Framework callback methodsfor moreinformation
about these exceptions.

Example

For Tobj_ServantBase: :deactivate_object (), thefollowing line of code throws a
DeactivateObjectFailed exception:

CORBA Programming Reference

Error Conditions, Exceptions, and Error Messages

throw TobjS::DeactivateObjectFailed(“deactivate failed to save

state!”);

This message is appended to the user log file with atag made up of the time (hhmmss), system
name, process hame, and process-id of the calling process. The tag is terminated with a colon.
The preceding throw statement causes the following line to appear in the user log file:

151104.T1!simpapps.247: APPEXC: deactivate failed to save state!

Where 151104 isthetime (3:11:04pm), T1 isthe system name, simpapps IS the process name,
247 isthe process-id, and appexc identifies the message as an application exception message.

Exceptions and Transactions

Exceptions that are raised in either CORBA object methods or in TP Framework callback
methods will not automatically cause atransaction to be rolled back unless the TP Framework
started the transaction. It is up to the application codeto call current . rollback_only () if the
condition that caused the exception to be raised should also cause the transaction to be rolled
back.

Restriction of Nested Calls on CORBA Objects

The TP Framework restricts nested calls on CORBA objects. Therestriction is as follows:
e During aclient invocation of a method of CORBA object A, CORBA object A cannot be
invoked by another CORBA object B that is acting as a client of CORBA object A.

The TP Framework will detect the fact that a second CORBA object is acting as aclient to an
object that is already processing a method invocation, and will return a corBa: : OBJ_ADAPTER
exception to the caller.

Note: Application code should not depend on this behavior; that is, users should not make any
processing dependent on this behavior. This restriction may be lifted in afuture release.

CORBA Programming Reference 3-67

3-68 CORBA Programming Reference

CHAPTERa

CORBA Bootstrapping Programming
Reference

Thistopic includes the following sections:

e \Why Bootstrapping |s Needed

Supported Bootstrapping Mechanisms

Oracle Bootstrapping Mechanism

Bootstrap Object API

Bootstrap Object Programming Examples

e Interoperable Naming Service Bootstrapping Mechanism

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All Oracle
Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

e to help implement/run third party Java ORB libraries, and
o for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

CORBA Programming Reference 4-1

Why Bootstrapping Is Needed

To communicate with Oracle Tuxedo objects, a client application must obtain object references.
Without an object reference, there can be no communication. To solve this problem, client
applications use a bootstrapping mechanism to obtain object references to objectsin an Oracle
Tuxedo domain.

Supported Bootstrapping Mechanisms

In the Tuxedo 8.0 release and | ater, two bootstrapping mechanisms are supported:

e Oracle Bootstrapping Mechanism

Use this mechanism if you using the Oracle client ORB.

o Interoperable Naming Service Bootstrapping Mechanism
Use this mechanism if you using a client ORB from another vendor.

Note: The CORBA C++ client provided with Oracle Tuxedo software may use the
Interoperable Naming Service bootstrapping mechanism, however, for performance
reasons, thisis not recommended.

Oracle Bootstrapping Mechanism

4-2

The Oracle bootstrapping mechanism uses the Bootstrap object. Bootstrap objects are local
programming objects, not remote CORBA objects, in both the client and the server. When
Bootstrap objects are created, their constructor requires the network address of an Oracle Tuxedo
I1OP Listener/Handler. Given thisinformation, the bootstrapping object can generate object
references for the key remote objectsin the Oracle Tuxedo domain. These object references can
then be used to access services available in the Oracle Tuxedo domain.

How Bootstrap Objects Work

Bootstrap objects are created by aclient or aserver application that must access object references
to the following Oracle Tuxedo CORBA interfaces:

e FactoryFinder
e Security

e Interface Repository

CORBA Programming Reference

Oracle Bootstrapping Mechanism

e Naming Service
o Notification Service
e Tobj SimpleEvents Service

e Transaction

Bootstrap objects may represent the first connection to a specific Oracle Tuxedo domain
depending on the format of the 110OP Listener/Handler address. If the NULL scheme Universal
Resource Locator (URL) format is used (the only address format supported in rel eases of Oracle
WebL ogic Enterprise prior to version 5.1 and Oracle Tuxedo release 8.0), the Bootstrap objects
represent the first connection. However, if the URL format is used, the connection will not occur
until after creation of the Bootstrap object. For more information on address formats and
connection times, refer to Tobj_Bootstrap.

For an Oracle Tuxedo CORBA remote client, Bootstrap objects are created with the host and the
port for the Oracle Tuxedo [1OP Listener/Handler. However, for Oracle Tuxedo native client and
server applications, there is no need to specify a host and port because they execute in a specific
Oracle Tuxedo domain. The llOP Listener/Handler host and the port I D areincluded in the Oracle
Tuxedo domain configuration information.

After they are created, Bootstrap objects satisfy requests for object references for objectsin a
particular Oracle Tuxedo domain. Different Bootstrap objects allow the application to use
multiple domains.

Using the Bootstrap object, you can obtain references to the following objects:

e SecurityCurrent

The SecurityCurrent object is used to establish a security context within an Oracle Tuxedo
domain. The client can then obtain the Principal Authenticator from the
principal_authenticator attribute of the SecurityCurrent object.

e TransactionCurrent

The TransactionCurrent object is used to participate in an Oracle Tuxedo transaction. The
basic operations are as follows:

— Begin
Begin atransaction. Future operations take place within the scope of this transaction.

— Commit

CORBA Programming Reference 4-3

44

End the transaction. All operations on this client application have completed
successfully.

— Roll back
Abort the transaction. Tell all other participants to roll back.
— Suspend

Suspend participation in the current transaction. This operation returns an object that
identifies the transaction and allows the client application to resume the transaction
later.

— Resume

Resume participation in the specified transaction.

e FactoryFinder

The FactoryFinder object is used to obtain afactory. In the Oracle Tuxedo system, factories
are used to create application objects. The FactoryFinder provides the following different
methods to find factories:

— Get alist of al available factories that match a factory object reference
(find_factories).

— Get the factory that matches a name component consisting of id and kind
(find_one_factory).

— Get the first available factory of a specific kind (£ind_one_factory by_id).
— Get alist of al available factories of a specific kind (find_factories_by id).
— Get alist of al registered factories (1ist_factories).

InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA objects that are
implemented within the Oracle Tuxedo domain. Clients using the Dynamic Invocation
Interface (DI1) need areference to the Interface Repository to be able to build CORBA
request structures.

NamingService

A NamingService object is used to obtain areference to the root namespace. When you use
this object, the ORB locates the root of the namespace.

o NotificationService

CORBA Programming Reference

Oracle Bootstrapping Mechanism

The NoatificationService object is used to obtain areference to the event channel factory
(CosNotifyChannel Admin::EventChannel Factory) in the CosNotification Service. In the
Oracle Tuxedo system, the EventChannel Factory is used to locate the Notification Service
channel.

e Tobj_ SimpleEventsService

The Tobj_SimpleEventsService object is used to obtain a reference to the event channel
factory (Tobj_SimpleEvents::Channel Factory) in the Oracle Simple Events Service. In the
Oracle Tuxedo system, the Channel Factory is used to locate the Oracle Simple Events
Service channel.

Using the bootstrapping mechanism, you can obtain six different references, as follows:

e SecurityCurrent

The SecurityCurrent object is used to establish a security context within an Oracle Tuxedo
domain. The client can then obtain the Principal Authenticator from the principal_authenticator
attribute of the SecurityCurrent object.

e TransactionCurrent

The TransactionCurrent object is used to participate in an Oracle Tuxedo transaction. The
basic operations are as follows:

— Begin
Begin a transaction. Future operations take place within the scope of this transaction.
— Commit

End the transaction. All operations on this client application have completed
successfully.

— Roall back
Abort the transaction. Tell all other participants to roll back.
— Suspend

Suspend participation in the current transaction. This operation returns an object that
identifies the transaction and allows the client application to resume the transaction
later.

— Resume

Resume participation in the specified transaction.

e FactoryFinder

CORBA Programming Reference 4-5

The FactoryFinder object is used to obtain afactory. In Oracle Tuxedo CORBA, factories
are used to create application objects. The FactoryFinder provides the following different
methods to find factories:

— Get alist of al available factories that match a factory object reference (find_factories).

— Get the factory that matches a name component consisting of id and kind
(find_one factory).

— Get the first available factory of a specific kind (find_one factory by id).
— Get alist of al available factories of a specific kind (find_factories by _id).
— Get alist of al registered factories (list_factories).

o InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA objects that are
implemented within the Oracle Tuxedo domain. Clients using the Dynamic Invocation
Interface (DI1) need areference to the Interface Repository to be able to build CORBA
request structures. The ActiveX Client is a special case of this. Internally, the
implementation of the COM/I1OP Bridge uses DI, so it must get the reference to the
Interface Repository, although thisis transparent to the desktop client.

e NotificationService

The NotificationService object is used to obtain a reference to the event channel factory
(CosNotifyChannel Admin::EventChannel Factory) in the CosNatification Service. In
Oracle Tuxedo CORBA, the EventChannel Factory is used to locate the Notification
Service channel.

e Tobj_SimpleEventsService

The Tobj_SimpleEventsService object is used to obtain a reference to the event channel
factory (Tobj_SimpleEvents::ChannelFactory) in the Oracle Simple Events Service. In
Oracle Tuxedo CORBA, the ChannelFactory is used to locate the Oracle Simple Events
Service channel.

The FactoryFinder and Interface Repository objects are not implemented in the environmental
objectslibrary. However, they are specific to an Oracle Tuxedo domain and are thus conceptually
similar to the SecurityCurrent and TransactionCurrent objectsin use.

The Bootstrap object implies an association or “session” between the client application and the
Oracle Tuxedo domain. Within the context of this association, the Bootstrap object imposes a
containment relationship with the other Current objects (or contained objects); that is, the

4-6 CORBA Programming Reference

Oracle Bootstrapping Mechanism

SecurityCurrent and TransactionCurrent. Current objects are valid only for thisdomain and only
while the Bootstrap object exists.

Note: Resolving the SecurityCurrent when using the new URL address format
(corbaloc://hostname: port_number) iSalocal operation; that is, no connection is
made by the client to the I1OP Listener/Handler.

In addition, a client can have only one instance of each of the Current objects at any time. If a
Current object already exists, an attempt to create another Current object does not fail. Instead,
another reference to the already existing object is handed out; that is, a client application may
have more than one reference to the single instance of the Current object.

To create anew instance of a Current object, the application must first invoke the
destroy_current () method onthe Bootstrap object. Thisinvalidatesall of the Current objects,
but does not destroy the session with the Oracle Tuxedo domain. After invoking
destroy_current (), new instances of the Current objects can be created within the Oracle
Tuxedo domain using the existing Bootstrap object.

To obtain Current objects for another domain, a different Bootstrap object must be constructed.
Although it is possible to have multiple Bootstrap objects at one time, only one Bootstrap object
may be “active;” that is, have Current objects associated with it. Thus, an application must first
invoke destroy_current () onthe“active” Bootstrap object before obtaining new Current
objects on another Bootstrap object, which then becomes the active Bootstrap object.

Note: If you want to access objectsin multiple domains, either import the object to the local
domain or administratively configure your application access multiple domains. For
more information on multi-domain configurations configurations, see “Configuring
Multiple CORBA Domains’ in Using the Oracle Tuxedo Domains Component.

Servers and native clients are inside of the Oracle Tuxedo domain; therefore, no “session” is
established. However, the same containment relationships are enforced. Servers and native
clients access the domain they are currently in by specifying an empty string, rather than
//host :port.

Note: When using the Bootstrap object, client and server applications must use the
Tobj_Bootstrap: :resolve_initial references () method, not the
ORB: :resolve_initial_references () method.

Types of Oracle Remote Clients Supported

Table 4-1 shows the types of remote clients that can use the Bootstrap object to access the other
environmental objects, such as FactoryFinder, SecurityCurrent, TransactionCurrent, and

CORBA Programming Reference 4-7

InterfaceRepository. These clients are provided with the Oracle Tuxedo CORBA software.
Third-party client ORBs should use the CORBA Interoperable Naming Service.

Table 4-1 Oracle Remote Clients Supported

Client Description

CORBA C++ CORBA C++ client applicationsusethe Oracle Tuxedo C++ environmental
objects to access the CORBA objectsin an Oracle Tuxedo domain, and the
Oracle Tuxedo Object Request Broker (ORB) to process from CORBA
objects. Use the Oracle Tuxedo system devel opment commands to build
these client applications (see the Oracle Tuxedo Command Reference).

Capabilities and Limitations

Bootstrap objects have the following capabilities and limitations:

e Multiple Bootstrap objects can coexist in a client application, although only one Bootstrap
object can own the Current objects (Transaction and Security) at onetime. Client
applications must invoke destroy_current () on the Bootstrap object associated with one
domain before obtaining the Current objects on another domain. Although it is possible to
have multiple Bootstrap objects that establish connections to different Oracle Tuxedo
domains, only one set of Current objectsis valid. Attempts to obtain other Current objects
without destroying the existing Current objectsfail.

e Method invocations to any Oracle Tuxedo domain that has security enabled other than the
domain that provides the valid SecurityCurrent object will fail and return a
CORBA: : NO_PERMISSION exception.

e Method invocations to any Oracle Tuxedo domain other than the domain that provides the
valid TransactionCurrent object do not execute within the scope of atransaction.

e The transaction and security objects returned by the Bootstrap objects are Oracle
implementations of the Current objects. If other (“native”) Current objects are present in
the environment, they are ignored.

Bootstrap Object API

4-8

The Bootstrap object application programming interface (API) is described first in terms of the
OMG Interface Definition Language (IDL) (for portability), and then in C++. The C++
descriptions add the necessary constructor to build a Bootstrap object for a particular Oracle
Tuxedo domain.

CORBA Programming Reference

Tobj Module

Bootstrap Object API

Table 4-2 shows the object reference that is returned for each type ID.

Table 4-2 Returned Object References

ID Returned Object Reference for C++ Clients
FactoryFinder FactoryFinder object (Tobj : : FactoryFinder)
InterfaceRepository InterfaceRepository object (CORBA: : Repository)
NameService CORBA Naming Service (Tobj : : NameService)

NotificationService

EventChannel Factory object

(CosNotifyChannelAdmin: :
EventChannelFactory)

SecurityCurrent

SecurityCurrent object
(SecuritylLevel2: :Current)

TransactionCurrent

OTS Current object (Tobj : : TransactionCurrent)

Tobj_SimpleEventsService

Oracle Simple Events

ChannelFactory object (Tobj_SimpleEvents: :
ChannelFactory)

Table 4-3 describes the Tobj module exceptions.

Tahle 4-3 Tobj Module Exceptions

C++ Exception

Java Exception

Description

Tobj: : com.beasys.Tobj. Raised if id isnot one of the names specified in Table 4-2. On

InvalidName InvalidName the server, resolve_initial_references also raises
InvalidName When SecurityCurrent is passed.

Tobj: : com.beasys.Tobj. On the server application, raised if the Oracle Tuxedo server

InvalidDomain InvalidDomain environment is not booted.

CORBA: : org.omg.CORBA. Raised if id iSTransactionCurrent or

NO_PERMISSION

NO_PERMISSION

SecurityCurrent and another Bootstrap objectintheclient
owns the Current objects.

CORBA Programming Reference 4-9

Table 4-3 Tobj Module Exceptions (Continued)

C++ Exception Java Exception Description

BAD_PARAM org.omg.CORBA. Raised if the object is nil or if the hostname contained in the
BAD_PARAM object does not match the connection.

IMP_LIMIT org.omg.CORBA. Raised if the register_callback_port methodis
IMP_LIMIT called more than once.

C++ Mapping

Listing 4-1 shows the C++ declarationsin the Tobj_bootstrap.h file.

Listing 4-1 Tobj_boostrap.h Declarations

#include <CORBA.h>

class Tobj_Bootstrap {
public:
Tobj_Bootstrap (CORBA: :ORB_ptr orb, const char* address);
CORBA: :Object_ptr resolve_initial_references (
const char* id);
void register_ callback_port (CORBA::0Object_ptr objref);
void destroy_current();

Java Mapping

Listing 4-2shows the Tobj_Bootstrap.java Mapping.

Listing 4-2 Tobj_Bootstrap.java Mapping

package com.beasys;
public class Tobj_Bootstrap {

public Tobj_Bootstrap (org.omg.CORBA.ORB orb,
String address)

4-10 CORBA Programming Reference

Bootstrap Object API

throws org.omg.CORBA.SystemException;
public class Tobj_Bootstrap {
public Tobj_Bootstrap (org.omg.CORBA.ORB orb, String address,
java.applet.Applet applet)
throws org.omg.CORBA.SystemException;

public void register_callback_port (orb.omg.CORBA.Object objref)
throws org.omg.CORBA.SystemException;
public org.omg.CORBA.Object
resolve_initial_references (String id)
throws Tobj.InvalidName,
org.omg.CORBA.SystemException;
public void destroy_current ()

throws org.omg.CORBA.SystemException;

Automation Mapping

Listing 4-3 shows Automation Bootstrap interface mapping.

Listing 4-3 Automation (Dual) Bootstrap Interface Mapping

interface DITobj_Bootstrap : IDispatch
{
HRESULT Initialize(
[in] BSTR address) ;

HRESULT CreateObject (
[in] BSTR progid,

[out, retval] IDispatch** rtrn);

HRESULT destroy_current () ;

CORBA Programming Reference 41

C++ Member Functions

This section describes the C++ member functions supported by the Oracle bootstrapping
mechanism.

Tobj_Bootstrap

Synopsis
The Bootstrap object constructor.

C++ Mapping

Tobj_Bootstrap (CORBA: :ORB_ptr orb, const char* address);
throws Tobj::BAD_PARAM
org.omg.CORBA. SystemException;

Parameters

orb

A pointer to the ORB object in the client. The Bootstrap object uses the
string_to_object method of orb internally.

address

The address of the Oracle Tuxedo domain |1OP Listener/Handler.
Note: Multiple Tobj_Bootstraps going to the same domain is not supported.

The address is specified differently depending on the type of client and the level of
security required. There can be three types of clients, asfollows:

— Remote client

For adescription of the remote clients supported by Oracle Tuxedo CORBA, see the
section Types of Oracle Remote Clients Supported.

For remote clients, address specifies the network address of an [1OP Listener/Handler

through which client applications gain access to an Oracle Tuxedo domain.

The address may be specified in either of the following formats:

“//hostname: port_number”

“//#.#.# . #:port_number”
“corbaloc://hostname: port_number”
“corbalocs://hostname: port_number”

4-12 CORBA Programming Reference

Bootstrap Object API

In the first format, the domain finds an address for hostname using the local name
resolution facilities (usually DNS). The hostname must be the remote machine, and the
local name resolution facilities must unambiguously resolve hostname to the address of
the remote machine.

Note: The hostname must begin with aletter character.

In the second format, the # . #. #.# isin dotted decimal format. In dotted decimal
format, each # should be a number from 0 to 255. This dotted decimal number
represents the | P address of the remote machine.

In both the first and second formats, port_number isthe TCP port number at which the
domain process listens for incoming requests. The port_number should be a number
between 0 and 65535.

You can specify one or more TCP/IP addresses. You specify multiple addresses using a
comma-separated list. For example:

//ml.acme:3050

//ml.acme:3050,//m2.acme:3050,//m3.acme:3051

If you specify multiple addresses, the Oracle Tuxedo software tries the addresses in
order, left to right, until a connection is established. If asyntax error is detected in any
of the addresses asit isbeing tried, aBap_param exception is returned to the caller
immediately and the Oracle Tuxedo software aborts the attempt to make a connection.
For example, if the first address in the comma-separated list shown above were
//ml.3050, asyntax error would be detected and the attempt to make a connection
would be aborted. If the Oracle Tuxedo software encounters the end of the address list
before it tries an address that is valid, that is, a connection cannot be made to any of the
addresses listed, the 1nvaLTID_DOMATN exception is returned to the caller. If an
exception other than INVALTID_DOMAIN iSraised, it isreturned to the caller immediately.

Oracle Tuxedo al so supports random address selection. To use random address

selection, you can specify any member of an address list as a grouping of

pipe-separated (|) network addresses enclosed in parentheses. For example:
(//ml.acme:3050]|//m2.acme:3050),//ml.acme:7000

When you use this format, the Oracle Tuxedo system randomly selects one of the
addresses enclosed in parentheses, either //m1.acme:3050 OF //m2.acme:3050. If an
exception other than INVALID_DOMAIN israised, it isreturned to the caller immediately.
If a connection cannot be made to the address selected, the next element that follows
the addresses enclosed in parentheses is attempted. If the end of the string is
encountered before a connection can be made, the INVALID_DOMAIN exception is
thrown to the caller.

CORBA Programming Reference 4-13

4-14

Note:

If you specify an address list in the following format:
(//ml.acme:3050]|//m2.acme:3050),//rl.acme:7000

the NULL addressin the pipe-separated list is considered invalid. If the Oracle Tuxedo
software randomly selects the invalid address, the Bap_param exception is returned to
the caller and the Oracle Tuxedo software aborts the connection attempt.

The address string can be specified either in the ToBsADDR environment variable or in
the address parameter of the Tobj_Bootstrap constructor.

For information about the ToBJADDR environment variable, see the section Managing
Remote Client Applications in the Setting Up an Oracle Tuxedo Application. However,
the address specified in Tobj_Bootstrap aways take precedence over the ToBIJADDR
environment variable. To use the ToBgapDR environment variable to specify an address
string, you must specify an empty string in the Tobj_Bootstrap address parameter.

Note: For C++ applications, TOBJADDR isan environment variable; for Javaapplications, it

isaproperty; for Java applets, itisan HTML parameter.

The third and fourth formats are called Uniform Resource Locator (URL) address
formats and were introduced in the Oracle WebL ogic Enterprise version 5.1 release. As
with the NULL scheme URL address format (/ /hostname : port_number), you use the
URL address formats to specify the location of the I1OP Listener/Handler. However,
when the corbaloc URL addressformat is used, the client application’s initial
connection to the I1OP Listener/Handler is deferred until authentication of the
principal’s, or client’s, identity or the first user initiated operation. Using the
corbalocs URL address format has the same effect on the deferred connection time as
corbaloc, but, additionally, the client application makesitsinitial connection to the
ISL/ISH using the Secure Sockets Layer (SSL) protocol. Table 4-4 highlights the
differences between the two URL address formats.

CORBA Programming Reference

Bootstrap Object API

Table 4-4 Differences Between corbaloc and corbalocs URL Address Formats

URL Address Formats Differences in Mode of Operation

corbaloc Invocations to the 11OP Listener/Handler are unprotected. Configuring the [1OP
Listener/Handler for the SSL protocol is optional.

Note: A principal can secure the bootstrapping process by using the
SecurityLevel2: :Current: :authenticate () operationto
specify that certificate-based authentication is to be used.

corbalocs Invocations to the I1OP Listener/Handler are protected and the I1OP
Listener/Handler or the server ORB must be configured to enable the use of the
SSL protocol.

These URL address formats are a subset of the definition of object URL s adopted by
the OMG as part of the Interoperable Naming Service submission. The Oracle Tuxedo
software also extends the URL format described in the OMG Interoperable Naming
Service submission to support a secure form that is modeled after the URL for secure
HTTPR aswell asto support the randomize functionality that was added in the Oracle
WebL ogic Enterprise version 4.2.

The corbaloc and corbalocs URL schemes provide locations that are easily
manipulated in both TCP/IP and DNS centric environments. These URL schemes
contain a DNS-style hostname or |P address and a port_number. The following are
some examples of the URL formats:

corbaloc://curly:1024,larry:1022,joe:1999
corbalocs://hostl:1024,{host2:1022|host3:1999}

As an enhancement to the URL syntax described in the OMG Interoperable Naming
Service submission, the Oracle WebL ogic Enterprise version 5.1 software extended the
syntax to support alist of multiple URLSs, each with adifferent scheme. Thefollowing are
some examples of the extension:

corbalocs://curly:1024,corbaloc://larry:1111,
corbalocs://ctxobj:3434,mthd:3434,corbaloc://force:1111

In the above example, if the parser reachesthe URL corbaloc://force:1111, it
resetsitsinternal state asif it had never attempted secure connections and then begins
attempting unprotected connections.

CORBA Programming Reference 4-15

Caution: Do not mix the use of NULL scheme URL addresses (/ /hostname : port_number)
With corbaloc and corbalocs URL addresses.

Note: The Bootstrap object supplied for use with the Netscape embedded Java ORB and
JavaSoft JDK ORB does hot support corbaloc and corbalocs URLS.

Note: For moreinformation on using the corbaloc and corbalocs URL addressformats,
see Using Security in CORBA Applications.

Note: The network address that is specified in the Bootstrap constructor or in TOBJADDR
must exactly match the network address in the server application's ussconric file,
both the address as well as the capitalization. If the addresses do not match, the
invocation to the Bootstrap constructor will fail with the following seemingly
unrelated error message:

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>

For example, if the network address is specified (using the NULL URL address
format) as //TRIXIE: 3500 in the ISL command-line option string in the server
application's ueBconFic file, specifying either //192.12.4.6:3500 or
//trixie:3500 inthe Bootstrap constructor or in TorgaDpDR Will cause the
connection attempt to fail. On UNIX systems, usethe uname -n command on the host
system to determine the capitalization used. On Windows systems, see the host
system's network settingsin the Control Panel to determine the correct capitalization.

Note: Theerror in the previous note is deferred when the URL address format is used, that
is, the error does not occur at the time of Bootstrap object construction because the
connection to the ISL/ISH is deferred until later.

— Native client

For anative client, the address parameter in the Tobj_Bootstrap constructor must
always be an empty string (not aNULL pointer). The native client connects to the
application that is specified in the TuxconF1G environment variable. The constructor
raises corpa: :BAD_PARAM if the addressis not empty.

— Server acting asaclient

When servers need access to the Bootstrap object, they should obtain areferenceto it
using the TP framework by invoking Tp.bootstrap (). Servers should not attempt to
create a new instance of the Bootstrap object.

4-16 CORBA Programming Reference

Bootstrap Object API

applet (Appliesto Java method only)
Thisisapointer to the client applet. If the client applet does not explicitly pass the ISH
host and port to the Bootstrap constructor, you can pass this argument, which causes the
Bootstrap object to search for the ToBsappr definition in the HTML file for the applet.

Exception

BAD_PARAM
Raised if the object isnil or if the host contained in the object does not match the
connection or the host address (/ /hostname : port_number) isnot in avalid format.

Description
A C++ member function (or Java method) that creates Bootstrap objects.

Return Values
A pointer to anewly created Bootstrap object.

Tobj_Bootstrap::register_callback_port

Synopsis
Registersthe joint client/server’slistening port in [ITOP Handler (1SH).
C++ Mapping
void register_callback_port (CORBA: :0bject_ptr objref);
Parameter
objref
The object reference created by the joint client/server.
Exceptions
BAD_PARAM
Raised if the object isnil or if the host contained in the object does not match the
connection.
IMP_LIMIT
Raised if the register_callback_port method is called more than once.
Description

This C++ member function (or Java method) is called to notify the ISH of alistening port in the
joint client/server. This method should only be used for joint client/server ORBs that do not

CORBA Programming Reference 4-11

support GIOP 1.2 bidirectional capabilities (that isGIOP 1.0 and 1.1 client ORBS). For GIOP 1.0
and 1.1, the | SH supports only one listening port per joint client/server; therefore, the
register callback_port method should only becalled once per connected joint client/server.

Usage Notes
The following information must be given consideration when using this method:

e If theregister_callback_port method isnot invoked by the joint client/server, the
callback port is not registered with the ISH and the server defaults to Asymmetric
Outbound I1OP. In this case, you must start the server’s [1OP Listener (ISL) with the -o
option. The -o option enables Asymmetric outbound 11OP; otherwise, server-to-client
invocations will not be allowed by the ISL/ISH.

e |If you are using the OracleWrapper Callbacks APl instead of the POA and you want to use
bidirectional behavior, you always need to invoke the register_callback_port method,
even when you are using a |SH that supports GIOP 1.2.

o |f you want to use bidirectional capability for a callback object, you must invoke the
register_callback_port method before you pass the callback object reference to the
server.

Return Values

None.

Tobj_Bootstrap::resolve_initial_references

Synopsis
Acquires CORBA object references.

C++ Mapping
CORBA: :Object_ptr resolve_initial_references(
const char* id);
throws Tobj::InvalidName,

org.omg.CORBA. SystemException;
Parameter

id
This parameter must be one of the following:

4-18 CORBA Programming Reference

Bootstrap Object API

“FactoryFinder”
“InterfaceRepository”
“NameService”
“NotificationService”
“SecurityCurrent”
“TransactionCurrent”
“Tobj_SimpleEventsService”

Exceptions

InvalidName
Raised if 1a isnot one of the names specified above. On the server,

resolve_initial_references aSoraises Tobj: :InvalidName when
SecurityCurrent is passed.

CORBA: :NO_PERMISSION
Raised if id is TransactionCurrent or SecurityCurrent and another Bootstrap object in the
client owns the Current objects.

Description

This C++ member function (or Java method) acquires CORBA object references for the
FactoryFinder, SecurityCurrent, TransactionCurrent, NotificationService,
Tobj_SimpleEventsService, and InterfaceRepository objects. For the specific object reference,
invoke the _narrow function. For example, for FactoryFinder, invoke

Tobj: :FactoryFinder: :_narrow.

Return Values

Table 4-2 shows the object reference that is returned for each type id.

Tobj_Bootstrap::destroy_current()

Synopsis
Destroys the Current objects for the domain represented by the Bootstrap object.

C++ Mapping

void destroy_current();

Exception
Raises corpa: :NO_PERMISSION if the Bootstrap object is not the owner of the Current objects.

CORBA Programming Reference 4-19

Description

This C++ member function invalidates the Current objects for the domain represented by the
Bootstrap object. After invoking the destroy_current () method, the Current objects are
marked asinvalid. Any subseguent attempt to usethe old Current objectswill throw the exception
CORBA: :BAD_INV_ORDER. Good programming practice isto release al Current objects before
invoking destroy_current ().

Note: The destroy_current () method must beinvoked on the Bootstrap object for the
domain that currently ownsthetwo Current objects (Transaction and Security). Thisalso
resultsin an implicit invocation to 1ogof £ for security and implicitly rolls back any
transaction that was begun by the client.

The application must invoke destroy_current () beforeinvoking
resolve_initial_references for TransactionCurrent or SecurityCurrent on another domain;
otherwise, resolve_initial_ references raiSES CORBA: :NO_PERMISSION.

Return Values

4-20

None.

Java Methods

The Java Oracle bootstrapping APl supports the following methods:
e Tobj Bootstrap
e Tobj_Bootstrap.register_callback port
e Tobj Bootstrap.resolve initial_references
e Tobj_ Bootstrap.destroy_current
e Tobj_Bootstrap.GetTransactions
e Tobj Bootstrap.getUserTransaction
e Tobj_Bootstrap.getNativeProperties

e Tobj_Bootstrap.getRemoteProperties

Automation Methods

This section describes the Automation methods supported by the Oracle bootstrapping
mechanism.

CORBA Programming Reference

Initialize

Synopsis

Bootstrap Object API

Initializes the Bootstrap object into an Oracle Tuxedo domain.

MIDL Mapping

HRESULT Initialize(

[in] BSTR host) ;

Automation Mapping

Sub Initialize(address As String)

Parameter

address

The host name and port of the Oracle Tuxedo domain [1OP Listener/Handler. One or more
TCP/IP addresses can be specified. Multiple addresses are specified using a
comma-separated list, asin the C++ mappings. If no addressis specified, the value of the
TOBJADDR environmental variable is used.

Note: The network address that is specified in the Bootstrap constructor or in TOBJADDR

Return Values
None.

must exactly match the network addressin the application'suseconr1c file, both the
format of the address as well as the capitalization. If the addresses do not match, the
invocation to the Bootstrap constructor will fail with the following seemingly
unrelated error message:

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>

For example, if the network addressis specified as / /TRIxXIE: 3500 inthe ISL
command-line option string, specifying either //192.12.4.6:3500 oOr
//trixie:3500 inthe Bootstrap constructor or in ToBJADDR Will cause the
connection attempt to fail. On UNIX systems, use the uname -n command on the host
system to determine the capitalization used. On Windows systems, see the host
system's network settingsin the Control Panel to determine the correct capitalization.

CORBA Programming Reference 41

Exceptions
Table 4-5 describes the exceptions.

Table 4-5 Initialize Exceptions

HRESULT Description Meaning
ITF_E_NO_PERMISSION_ Bootstrap already The Bootstrap object has aready
YES initialized been initialized. To connect to anew
Oracle Tuxedo domain, you must
create a new Bootstrap object.
E_INVALIDARG Invalid address The address supplied is not valid.
parameter

E_OUTOFMEMOY

Memory allocation
failed

The required memory could not be
allocated.

E_FAIL

Invalid domain

Unable to communicate with the

Oracle Tuxedo domain at the address
specified or TOBJADDR is not

defined.
<SYSTEM ERROR> Unable to obtain Unable to initialize the Bootstrap
initial object object. The system error causing the

failureisreturned in the "Number"
member of the error object.

CreateObject

Synopsis

Creates an instance of a Current environmental object.
MIDL Mapping

HRESULT CreateObject (
[in] BSTR progid,

[out, retval] IDispatch** rtrn);

Automation Mapping

Function CreateObject (progid As String) As Object

4-22 CORBA Programming Reference

Bootstrap Object API

Parameter

progid
The progid of the environmental object to create. Valid progids are:

Tobj.FactoryFinder
Tobj.SecurityCurrent
Tobj.TransactionCurrent

Return Value
A reference to the interface pointer of the created environmental object.

Exceptions
Table 4-6 describes the exceptions.

Table 4-6 CreateObject Exceptions

Exception Description Meaning

ITF_E_NO_PERMISSION Bootstrap object

_YES

must be
initialized

The Bootstrap object has not been
initialized.

ITF_E_NO_PERMISSION

_NO

No permission

If the progid specifies atransaction or
security current and another Bootstrap
object in the client owns the current
objects.

E_INVALIDARG

Invalidprogia

Theprogid specified is not valid.

parameter
E_INVALIDARG Invalid name The requested progid is not one of the
valid parameter values specified above.
E_INVALIDARG Unknown object Therequested progid isnot registered on
your system.
<SYSTEM ERROR> CoCreate The Bootstrap object could not create an
Instance () instance of the requested object. The
failed system error isreturned in the "Number”

member of the error object.

CORBA Programming Reference

4-23

DestroyCurrent

Synopsis
Logs out of the Oracle Tuxedo domain and invalidates the TransactionCurrent and
SecurityCurrent objects.

MIDL Mapping

HRESULT destroy_current () ;

Automation Mapping

Sub destroy_current ()

Parameters
None.

Return Value
None.

Exceptions
None.

Bootstrap Object Programming Examples

This section provides the following programming examples that use Bootstrap objects.

— Visual Basic Client Example: Using the Bootstrap Object

Visual Basic Client Example: Using the Bootstrap Object

Listing 4-4 shows how to program a Visual Basic client to use the Bootstrap object.

Listing 4-4 Programming a Client in Visual Basic

‘Declare the Bootstrap object
Public oBootstrap As DITobj_Bootstrap

‘Declare the FactoryFinder object

Public oBsFactoryFinder As DITobj_FactoryFinder

4-24 CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

‘Declare factory for Registrar object
Public oRegistrarFactory As DIUniversityB_RegistrarFactory

‘Declare actual Registrar object
Public oRegistrarFactory As DIUniversityB_RegistrarFactory

‘Create the Bootstrap object
Set oBootstrap = CreateObject (“Tobj.Bootstrap”)

‘Connect to the Oracle Tuxedo Domain

oBootstrap.Initialize “//host:port”

‘Get the FactoryFinder for the Oracle Tuxedo Domain

Set oBSFactoryFinder = oBootstrap.CreateObject (“Tobj.FactoryFinder”)

‘Get a factory for the Registrar object

‘using the FactoryFinder method find_one_factory by id

Set oRegistrarFactory =

oBSFactoryFinder.find_one_factory_by_ id(“RegistrarFactoryID”)

'Create a Registrar object
Set oRegistrar = oRegistrarFactory.find registrar (exc)

Interoperable Naming Service Bootstrapping Mechanism

This topic includes the following topics:

e Introduction

INS Object References

INS Command-line Options

INS Object URL Schemes
Getting a FactoryFinder Object Reference Using INS

Getting a Principal Authenticator Object Reference Using INS

Getting a TransactionFactory Object Reference Using INS

CORBA Programming Reference 4-25

Introduction

As of release 8.0, the Oracle Tuxedo ORB supports the CORBA Naming Service bootstrapping
mechanism (referred to in this document as the Interoperable Naming Service), as specified in
Chapters 4 and 13 of the CORBA Specification revision 2.4.2.

This support enables ORBs that implement the Interoperable Naming Service (INS)
bootstrapping mechanism to query the Oracle Tuxedo server-side ORB to get object references
to initial objects such as FactoryFinder and to Principal Authenticator to the Oracle Tuxedo
environment. This support along with client support for interoperableinitial object references
enables clients to use the INS bootstrapping mechanism instead of the Oracle bootstrapping
mechanism.

Note: The CORBA C++ client provided with Oracle Tuxedo software may use the INS
bootstrapping mechanism, however, for performance reasons, thisis not recommended.

INS Object References

Table 4-7 shows the object reference that is returned for each type ID.

Table 4-7 Returned Object References

ID Returned Object Reference

FactoryFinder FactoryFinder object (CORBA: : FactoryFinder)

InterfaceRepository InterfaceRepository object (CORBA: : Repository)

NameService CORBA Naming Service object (CORBA: : NameService)

NotificationService EventChannel Factory object
(CosNotifyChannelAdmin: : EventChannelFactory)

POACurrent POACurrent object (CORBA: : POACurrent)

Principal Authenticator Principal Authenticator object (SecurityLevel?2 : : Principal Authenticator)

RootPOA RootPOA object (CORBA : : Root POA)

Tobj_SimpleEventsService Oracle Simple Events Channel Factory object

(Tobj_SimpleEvents: :ChannelFactory)

4-26

CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

INS Command-line Options

As of release 8.0, Oracle Tuxedo CORBA supportsthe -orBInitRef and
-ORBDefaultInitRef command-line options. For a complete description of these options, see
“ORB Initialization Member Function” on page 14-85.

The following example assumes an Oracle Tuxedo CORBA [10P client istalking to an Oracle
Tuxedo CORBA |1OP server environment:

client_app -ORBid BEA_IIOP -ORBInitRef
FactoryFinder=corbaloc: :myhost:2468/FactoryFinder

Given thisexample, acall tO ORB: : resolve_initial_references for the FactoryFinder
will result in an interoperableinitia reference request being sent to the ISL/ISH on myhost at
port 2468. Note that the case of myhost must exactly match the case of the host specified for the
ISL/ISH in the tuxconfig file.

INS Initialization Operations

To use the INS bootstrapping mechanism, applications programmers must observe the following
requirements:

e Oracle Tuxedo CORBA IIOP clients that want to use the INS initial reference mechanism
must now call ORB: : resolve_initial references function, instead of the
Tobj_Bootstrap: :resolve_initial references function. For aa/ntactical
descri ption of OrRB: :resolve_initial_references, See
“CORBA::ORB::resolve initia_references’ on page 14-79.

Note: The Tobj_Bootstrap APl isstill supported and its behavior has not changed.

e Oracle Tuxedo CORBA IIOP clients using the INSinitia reference mechanism should use
theorB::1ist_initial_ services function instead of the
Tobj_Bootstrap::list_initial_services function. For asyntactical description of
ORB::list_initial_services, See“CORBA::ORB::list_initial_services’ on page
14-75.

INS Object URL Schemes

As of release 8.0, Oracle Tuxedo CORBA supports an additional Uniform Resource Locator
(URL) format to be used for the specification of the location for accessto an Oracle Tuxedo
CORBA server environment and from whereto retrieve referencesto initial object. The new URL
format both follows and extends the definition of object URL sadopted by the OM G as part of the

CORBA Programming Reference 4-21

4-28

INS specification. The URL format described in the INS specification has also been extended to
support a secure form modeled after the URL for secure HTTP, as well as the ability to support
the randomize functionality initially provided in Oracle WebL ogic Enterprise version 5.1.

The CORBA 2.4.2 specification requires that three object URL schemes must be supported by a
compliant ORB. These schemes are defined as |OR, corbaloc, and corbaname.

Note: Thenew URL string formats may also be passed to the orB: : string_to_object
function.

I0R URL Scheme

The IOR scheme takes the form of a string that isformatted as Tor: hex_octets. The scheme
nameis|OR and the text after the‘:’ is defined in the CORBA specification. The IOR URL
schemeisrobust and insulates the client from the encapsulated transport information and object
key used to reference the object.

corbaloc URL Scheme

Itisdifficult for humansto exchange |ORs through nonel ectronic means because of their lengths
and the text encoding of binary information. The corbaloc and corbalocs URL schemes provide
stringified object referencesin aformat that isfamiliar to people and similar to the popular URL
schemes of FTP and HTTP. The URL schemes defined for corbaloc and corbal ocs are easily
manipulated in both TCP/IP and DNS centric environments. The corbaloc and corbalocs URL
contains:

e DNS-style host name or |P address and port
e Theversion of the [IOP protocol to be used (optional)

e An object key (optional)

By default, corbal oc URL s denote objectsthat can be contacted over 11OP, while corbalocs URLS
denote objects that can be contacted using 110OP over SSL.

Table 4-8 lists the BNF syntax for each URL s element.

CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

Table 4-8 BNF Format for URL Elements

URL Element BNF Format

<corbaloc> “corbaloc::”<obj_addr_list>[“/"<key_ string>]
[, <corbaloc>|<corbalocs>]

<corbalocs> “corbalocs::”<obj_addr_list>[“/"<key_string>]

[, <corbaloc>|<corbalocs>]

<obj_addr_list>

[<obj_addr> “,”]* <obj_addr>

<obj_addr>

<iiop_prot_addr> | <future_ prot_addr>

<iiop_prot_addr

<iiop_id><iiop_addr>

<iiop_id> “//" | <iiop_prot_token>":"
<iiop_prot_token> “iiop”
<iiop_addr> [<version> <host> [“:” <port>]]

<host> DNS-style Host Name | ip_address
<version> <major> “.” <minor> “@” | empty_string
<port> number

<major> number

<minor> number

<key_string> <string> | empty_string

Table 4-9 describes each URL element.

CORBA Programming Reference 4-29

Table 4-9 Descriptions of URL Elements

URL Element

Description

obj_addr_1list

A comma-separated list of protocol 1D, version, and address information. Thislist is
used in an implementation-defined manner to address the object. An object may be
contacted by any of the addresses and protocols. If afailure occursusing the element, the
next element in the comma-separated list will be used.

obj_addr

A protocol identifier, version tag, and a protocol specific address. The right-brace “{*,
left-brace“}”, vertical bar “|", slash “/”, and comma*“,” characters are specificaly
prohibited in this component of the URL.

iiop_prot_addr

An 11OP protocol identifier, version tag, and address containing a DNS-style host name
or |P address.

iiop_id

Tokens recognized to indicate an 11OP protocol corbaloc.

iiop_prot_token

An 11OP protocol token, “iiop”.

iiop_addr

A single address element.

host

A DNS-style host name or IP address. If not present, the local host is assumed.

version

A major and minor version number, separated by “.” and followed by “ @". If the version
isabsent, 1.0 is assumed.

ip_address

A numeric | P address (dotted decimal notation).

port

The port number an 11OP Listener/Handler or an initialization agent is listening on. The
default is 9999.

4-30 CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

Tahle 4-9 Descriptions of URL Elements

URL Element Description

key_ string A stringified object key that isnot NULL-terminated. Thekey_string usestheescape
conventions described in RFC 2396 to map away from octet values that cannot directly
be part of aURL. US-ASCII aphanumeric characters are not escaped. Characters
outside this range are escaped, except for the following:
ll;" | H/H | H:ll H?l | “ @ll | H&H I M:H | H+H | u$u |

n oy |u “ |u ” |u ” |u|u |u___n Wk |un |n(u |n)n
y _ . :

Thekey_string correspondsto the octet sequencein the object_key member of a
GIOP Request or LocateRequest header as defined in the CORBA specification.

string_name A stringified name with URL escapes as defined in the Internet Engineering Task Force
(IETF) RFC 2396. These escape rulesinsure that URLs can be transferred viaa variety
of transports without undergoing changes. US-ASCII a phanumeric characters are not
escaped. Characters outside this range are escaped, except for the following:
S R@ e =] |
S R R R e R N b

The following are some examples of using the new URL format:

corbaloc: :555xyz.com:1024,555backup.com:1022,555]last.com:1999
corbalocs::555xyz.com:1024,{555backup.com:1022|5551ast.com:l999}
corbaloc::1.2@555%xyz.com:1111
corbalocs::1.1@24.128.122.32:1011,1.0@24.128.122.34
As an enhancement to the URL syntax described in the INS submission, Oracle Tuxedo 8.0 or
later has extended the syntax to support alist of multiple URLS, each with a different scheme.
The following are some examples of the extension:

corbalocs: :555xyz.com:1024, corbaloc::1.2@555xyz.com:1111
corbalocs: :ctxobj:3434,mthd:3434,corbaloc::force:1111

In the above example, if the parser reachesthe URL corbaloc: : force.com:1111, it will reset
itsinternal state asif it had never attempted secure connections and then begins attempting
unprotected connections.

corbaname URL Scheme

The corbaname URL scheme extends the capabilities of the corbaloc scheme to allow URL s to
denote entriesin a Naming Service. Resolving corbaname URL s does not require a Naming
Service implementation in the ORB core. An example of acorbaname URL is:

CORBA Programming Reference 4-31

corbaname:5550bjs.com#a/string/path/to/obj

This URL specifiesthat at host 5550b7s . com, an object of type NamingContext (with an object
key of NamingService) can be found, or aternatively, that an agent running at that location will
return areference to a NamingContext. The stringified name a/string/path/to/obj isthen
used as the argument to the resolve operation on that NamingContext.

A corbaname URL is similar to a corbaloc URL except that a corbaname URL also contains a
stringified name that identifies a binding in a naming context. The # character denotes the start
of the stringified name.

The BNF syntax for the URL islisted in Table 4-10.

Tahle 4-10 BNF Syntax for URL

URL Element Format Description
<corbaname> = “corbaname: ”<corbaloc_obj>| corbaloc_obj isaportion of a
“#7<string name>] corbaname URL that identifies the

naming context. The syntax is
identical toitsuseinacorbaloc URL.

<corbaloc_obj> <obj_addr_list>[“/"<key string>] For adescription of

obj_addr_list, see Table 4-9.

<obj_addr_list> Asdefinedinacorbaoc URL For a description of

obj_addr_list, see Table 4-9.

<key_string> Asdefined in a corbaloc URL For a description of key_string,
see Table 4-9.

<string_name> Stringified Name | empty string For adescription of string_name,
see Table 4-9.

4-32

Resolution of a corbaname URL isimplemented as a simple extension to corbaloc URL
processing. To illustrate the implementation, we will use the following corbaname URL :

corbaname:<corbaloc_obj>[“#”<string_name>]

The resolution processis as follows:

1. Construct a corbaloc URL of theform corbaloc: : <corbaloc_obj> from the corbaname
URL.

CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

2. Convert the corbaloc URL to a naming context object reference by calling
CORBA: :ORB: :string_to_object to Obtain acosNaming: : NamingContext Object.

3. Convert <string_name> 10 aCosNaming: : Name.

4. Invoke the resolve operation on the cosNaming : : NamingContext, passing the
CosNaming: :Name constructed.

5. The object reference returned from cosNaming: : NamingContext : : resolve should be
returned to the caller.

By following thisresol ution process, you eliminate the possibility of returning an object reference
for anaming context that does not exist in the Naming Service. One side effect of this approach
isthat it requires that stubs for the Naming Service be part of the ORB core or that there be an
internal mechanism for sending the request for the resolve operation. Because of the
complexity, it is recommended that stubs for the Naming Service be embedded within the ORB
core.

Getting a FactoryFinder Object Reference Using INS

Listing 4-6 shows an example of how aclient application, using INS, gets an object reference to
the FactoryFinder object. For a complete code example, see the client application in the
University Sample.

Listing 4-5 Code Example for Getting the FactoryFinder Object

// utility to get the registrar
static UniversityW::Registrar_ptr get_registrar(
CORBA: :ORB_ptr orb

// Get the factory finder from the ORB:
CORBA: :0Object_var v_fact_finder_oref =

orb->resolve_initial_references ("FactoryFinder") ;

// Narrow the factory finder :
Tobj: :FactoryFinder_var v_fact_finder_ref =

Tobj: :FactoryFinder: :_narrow(v_fact_finder_oref.in());

// Use the factory finder to find the

// university's registrar factory :

CORBA Programming Reference 4-33

4-34

CORBA: :Object_var v_reg_ fact_oref =
v_fact_finder_ref->find_one_factory_ by id(
UniversityW: :_tc_RegistrarFactory->id()
)

// Narrow the registrar factory
UniversityW: :RegistrarFactory_var v_reg_fact_ref =
UniversityW: :RegistrarFactory: :_narrow (
v_reg_fact_oref.in()
) ;

// Return the university's registrar

return v_reg_fact_ref->find_registrar();

Getting a PrincipalAuthenticator Object Reference Using
INS

Listing 4-6 shows an example of how a client application, using INS, gets an object reference to
the Principal Authenticator object. For a complete code example, see the client application in the
University Sample.

Listing 4-6 Code Example for Getting the PrincipalAuthenticator Object

// utility to log on to the security system

static SecurityLevel2::PrincipalAuthenticator_ptr logon (
CORBA: :ORB_ptr orb,
const char* program_name,

UniversityW: :StudentId stu_id

// Get a Principal Authenticator directly from the ORB:
CORBA: :Object_var v_pa_obj =

orb->resolve_initial_references ("PrincipalAuthenticator");

// Narrow the Principal Authenticator

SecurityLevel2: :PrincipalAuthenticator_var v_pa =

CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

SecurityLevel2: :PrincipalAuthenticator: :_narrow (

v_pa_obj.in());

Getting a TransactionFactory Object Reference Using INS

As of release 8.0, Oracle Tuxedo CORBA supports the use of the CORBA Transaction Service
Interface for beginning transactions. Using the

ORB: :resolve_initial_references (“FactoryFinder”) function, aclient getsan object
reference to a FactoryFinder. The client then uses the FactoryFinder to get areferenceto a
TransactionFactory, that it in turn uses to create (begin) a transaction.

Listing 4-7 shows an example of how aclient application, using INS, gets an object reference to
the TransactionFactory object. For a complete code example, see the client application in the
University Sample.

Listing 4-7 Code Example for a Client Application That Uses INS

// Get the factory finder from the ORB:
CORBA: :Object_var v_fact_finder_oref =

orb->resolve_initial_references ("FactoryFinder") ;

// Narrow the factory finder
Tobj: :FactoryFinder_var v_fact_finder_ref =

Tobj: :FactoryFinder: :_narrow(v_fact_finder_oref.in());

// Get the TransactionFactory from the FactoryFinder
CORBA: :Object_var v_txn_fac_oref =
v_fact_finder_ref->find_one_factory_by_id(

"IDL:omg.org/CosTransactions/TransactionFactory:1.0");

// Narrow the TransactionFactory object reference
CosTransactions: :TransactionFactory var v_txn_fac_ref =
CosTransactions: :TransactionFactory: :_narrow (

v_txn_fac_oref.in());

The sequence of events using the INS bootstrapping mechanism is as follows:

CORBA Programming Reference 4-35

4-36

A wobdp R

5.

USeORB: :resolve_initial_references t0 get a FactoryFinder.
Use the FactoryFinder to get a TransactionFactory.
Use the create operation on TransactionFactory to begin a transaction.

From the Control object returned from the create operation, usetheget_terminator method
to get the transaction terminator interface.

Use the commit or rollback operation on the terminator to end or abort the transaction.

The TransactionFactory returns objects that adhere to the standard CORBA Transaction Service
interfaces instead of the Oracle delegated interfaces. This means that a third party ORB can use
their ORB’Sresolve_initial_references function to get areferenceto a
TransactionFactory from an Oracle Tuxedo CORBA server and use stubs generated from
standard OMG IDL to act on the instances returned.

Restrictions

For the Oracle Tuxedo 8.0 release or later, the actions of the TransactionFactory and the client’s
Current are not coordinated. This means that clients should use one mechanism or the other to
control and get status about transactions, not both. Also, only the interfaces and operations listed
in Table 4-11 are supported. The other operations, as described in the OMG IDL, return the

C

ORBA: : NO_IMPLEMENT exception.

Table 4-11 Supported INS Interfaces and Operations

Interface Supported Operations

TransactionFactory create

Control get_terminator
get_coordinator

Terminator commit
rollback

Coordinator get_status
rollback_only

get_transaction_name

CORBA Programming Reference

FactoryFinder Interface

The FactoryFinder interface provides clients with one object reference that serves as the single
point of entry into the Oracle Tuxedo domain. The Oracle Tuxedo NameManager providesthe
mapping of factory names to object references for the FactoryFinder. Multiple FactoryFinders
and NameManagers together provide increased availability and reliability. In this release the
level of functionality has been extended to support multiple domains.

Note: The NameManager is not a naming service, such as CORBAservices Naming Service,
but is merely avehicle for storing registered factories.

In the Oracle Tuxedo environment, application factory objects are used to create objects that
clientsinteract with to perform their business operations (for example, TellerFactory and Teller).
Application factories are generally created during server initialization and are accessed by both
remote clients and clients located within the server application.

The FactoryFinder interface and the NameManager services are contained in separate
(nonapplication) servers. A set of application programming interfaces (APIs) is provided so that
both client and server applications can access and update the factory information.

The support for multiple domains in this rel ease benefits customers that need to scaleto alarge
number of machines or who want to partition their application environment. To support multiple
domains, the mechanism used to find factories in an Oracle Tuxedo environment has been
enhanced to allow factories in one domain to be visible in another. The visibility of factoriesin
other domainsis under the control of the system administrator.

CORBA Programming Reference 5-1

Capabilities, Limitations, and Requirements

During server application initialization, application factories need to be registered with the
NameManager. Clients can then be provided with the object reference of aFactoryFinder to allow
them to retrieve afactory object reference based on associated names that were created when the
factory was registered.

The following functional capabilities, limitations, and requirements apply to this release:

The FactoryFinder interfaceisin compliance with the cosLifeCycle: : FactoryFinder
interface.

Server applications can register and unregister application factories with the
CORBAservices Naming Service.

Clients can access objects using a single point of entry—the FactoryFinder.

Clients can construct names for objects using a simplified Oracle scheme made possible by
Oracle Tuxedo extensions to the CORBAservices interface or the more general CORBA
scheme.

Multiple FactoryFinders and NameManagers can be used to increase availability and
reliability in the event that one FactoryFinder or NameM anager should fail.

Support for multiple domains. Factories in one domain can be configured to be visiblein
another domain under administrative control.

Two NameManager services, at a minimum, must be configured, preferably on different
machines, to maintain the factory-to-object reference mapping across process failures. If
both NameM anagersfail, the master NameManager, which has been keeping a persistent
journal of the registered factories, recovers the previous state by processing the journal so
asto re-establish itsinternal state.

One NameManager must be designated as the Master and the Master NameManager must
be started before the Slave. If the master NameManager is started after one or more Slaves,
the Master assumes that it isin recovery mode instead of in initializing mode.

Functional Description

5-2

The Oracle Tuxedo CORBA environment promotes the use of the factory design pattern as the

primary means for a client to obtain areference to an object. Through the use of this design
pattern, client applications require a mechanism to obtain areference to an object that actsasa

factory for another object. Because the Oracle Tuxedo environment has chosen CORBA asits

CORBA Programming Reference

Functional Description

visible programming model, the mechanism used to locate factories is modeled after the
FactoryFinder asdescribed inthe CORBA services Specification, Chapter 6 “Life Cycle Service,”
December 1997, published by the Object Management Group.

In the CORBA FactoryFinder model, application servers register active factories with a
FactoryFinder. When an application server’'s factory becomesinactive, the application server
removes the corresponding registration from the FactoryFinder. Client applications locate
factories by querying a FactoryFinder. The client application can control the referencesto the
factory object returned by specifying criteriathat is used to select one or more references.

Locating a FactoryFinder

A client application must obtain areference to a FactoryFinder before it can begin locating an
appropriate factory. To obtain areference to a FactoryFinder in the domain to which a client
application is associated, the client application can use either of two bootstrapping mechanisms:

e Invokethe Tobj_Bootstrap::resolve_initial_ references operation with avalue of
“FactoryFinder”. Thisoperation returns areference to a FactoryFinder that isin the
domain to which the client application is currently attached. You should use this
mechanism if you are using the Oracle Tuxedo client software. For more information, see
the section Tobj_Bootstrap::resolve initial_references.

e InvokethecorBa: :ORB: :resolve_initial_ references operation with avalue of
“FactoryFinder”. Thisoperation returns areference to a FactoryFinder that isin the
domain to which the client application is currently attached. You should use this
mechanism if you are using a third-party client ORB. For more information, see the section
CORBA::ORB::resolve initial_references.

Note: The referencesto the FactoryFinder that are returned to the client application can be
references to factory objects that are registered on the same machine as the
FactoryFinder, on a different machine than the FactoryFinder, or possibly in a different
domain than the FactoryFinder.

Registering a Factory

For aclient application to be able to obtain areference to afactory, an application server must
register areference to any factory object for which it provides an implementation with the
FactoryFinder (see Figure 5-1). Using the Oracle Tuxedo CORBA TP Framework, the
registration of the reference for the factory object can be accomplished using the

TP: :register_factory Operation, once areference to a factory object has been created. The
reference to the factory object, along with avalue that identifies the factory, is passed to this

CORBA Programming Reference 5-3

5-4

operation. The registration of references to factory objectsistypically done as part of
initialization of the application (normally as part of the implementation of the operation

Server::initialize).

Figure 5-1 Registering a Factory Object

Name

Server TPFW
Manager

Register,
Unregister_factory

Register factory in
Namemanager

Post event to update other

Namemanagers

>

When the server application is shutting down, it must unregister any referencesto factory objects
that it has previously registered in the application server. Thisis done by passing the same
reference to the factory object, along with the corresponding value used to identify the factory, to
theTp: :unregister_factory operation. Once unregistered, the reference to the factory object
can then be destroyed. The process of unregistering afactory with the FactoryFinder istypically
done as part of the implementation of the server: : release operation. For more information
about these operations, see the section Server Interface.

C++ Mapping

Listing 5-1 showsthe C++ class (static) methods. For more information about these methods, see
the sections TP::register_factory() and TP::unregister_factory().

Listing 5-1 C++ Mappings for the Factory Registration Pseudo OMG IDL

#include <TP.h>

CORBA Programming Reference

Functional Description

static void TP::register_factory(

CORBA: :Object_ptr factory_or, const char* factory_id);

static void TP::unregister_factory (

CORBA: :Object_ptr factory_or, const char* factory_id);

The TP . h header file contains the two method declarations. Thisfile must to be included in any
server application that wants to use these methods.

A server application generally includes this header file within the application file that contains
the methods for application server initialization and release.

Locating a Factory

For a client application to request afactory to create areference to an object, it must first obtain
areference to the factory object. The reference to the factory object is obtained by querying a
FactoryFinder with specific selection criteria (see Figure 5-2). The criteriaare determined by the
format of the particular FactoryFinder interface and method used.

Figure 5-2 Locating a Factory Object

A Facto
Client Bootstrap e ry Name
inder Manager
resolve_initial_references
CORBA::Object
Tobj_FF::_narrow()
find_*_factor | find factory object in
g NameManager
i IOR string
CORBA::Object <
I factory::_narrow()

Oracle Tuxedo CORBA extendsthecosLifeCycle: : FactoryFinder interface by introducing
four methods in addition to the find_factories () method declared for the FactoryFinder.

CORBA Programming Reference 5-5

5-6

Therefore, using the Tobj extensions, a client can use either the find_factories () oOr

find factories_by_ id() methodsto obtain alist of application factories. A client can also
usethe find_one_factory () Of find_one_factory_by_ id() method to obtain asingle
application factory, and 1ist_factories () toobtainalist of al registered factories.

Note: You can used the Oracle Tuxedo CORBA extensionsto the
CosLifeCycle: :FactoryFinder interfaceif you use the Tobj Bootstrap object,
however, use of the Tobj_Bootstrap object is not required to locate a factory. If you use
CORBA INS, you can usethe find_factories () method provided by the
CosLifeCycle: :FactoryFinder interface.

ThecosLifeCycle: :FactoryFinder interfacedefinesafactory_key, whichisasequence of
id and kind strings conforming to the CosNaming Name shown below. The kind field of the
NameComponent for all application factoriesis set to the string FactoryInterface by the TP
Framework when an application factory isregistered. Applications supply their own vauefor the
id field.

Assuming that the CORBAservices Life Cycle Service modules are contained in their own file
(ns.idl and 1cs.idl, respectively), only the OMG IDL code for that subset of both files that
isrelevant for using the Oracle Tuxedo FactoryFinder is shown in the following listings.

CORBAservices Naming Service Module OMG IDL

Listing 5-2 shows the portions of thens . 141 file that are relevant to the FactoryFinder.

Listing 5-2 CORBAservices Naming OMG IDL

module CosNaming {
typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;
}i
typedef sequence <NameComponent> Name;

i

// This information is taken from CORBAservices: Common Object
// Services Specification, page 3-6. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by OMG.

CORBA Programming Reference

Functional Description

CORBAservices Life Cycle Service Module OMG IDL

Listing 5-3 shows the portions of the 1cs.id1 filethat are relevant to the FactoryFinder.

Listing 5-3 Life Cycle Service OMG IDL

/] —==== les.idl -----
#include “ns.idl”

module CosLifeCycle(
typedef CosNaming::Name Key;
typedef Object Factory;

typedef sequence<Factory> Factories;
exception NoFactory{ Key search_key; }

interface FactoryFinder ({
Factories find_ factories(in Key factory key)

raises (NoFactory) ;

}i

// This information is taken from CORBAservices: Common Object
// Services Specification, pages 6-10, 11. Revised Edition:

// March 31, 1995. Updated: November 1997. Used with permission by OMG.

Tobj Module OMG IDL
Listing 5-4 shows the Tobj Module OMG IDL.

Listing 5-4 Tobj Module OMG IDL

/] —===- Tobj.idl -----

module Tobj {

CORBA Programming Reference 5-1

5-8

// Constants
const string FACTORY_KIND = "FactoryInterface";
// Exceptions

exception CannotProceed { };
exception InvalidDomain {};
exception InvalidName { };

exception RegistrarNotAvailable { };
// Extension to LifeCycle Service

struct FactoryComponent {
CosLifeCycle: :Key factory_key;
CosLifeCycle: :Factory factory_ior;

Y
typedef sequence<FactoryComponent> FactoryListing;

interface FactoryFinder : CosLifeCycle::FactoryFinder {

CosLifeCycle: :Factory find_one_factory(in CosLifeCycle: :Key

factory key)
raises (CosLifeCycle: :NoFactory,
CannotProceed,
RegistrarNotAvailable) ;
CosLifeCycle: :Factory find_one_factory_by_ id(in string
factory_id)
raises (CosLifeCycle: :NoFactory,
CannotProceed,
RegistrarNotAvailable) ;
CosLifeCycle: :Factories find_ factories_by_ id(in string
factory_id)
raises (CosLifeCycle: :NoFactory,
CannotProceed,
RegistrarNotAvailable) ;
FactoryListing list_factories()
raises (CannotProceed,

RegistrarNotAvailable) ;

CORBA Programming Reference

Functional Description

Locating Factories in Another Domain

Typically, aFactoryFinder returnsreferencesto factory objectsthat arein the samedomain asthe
FactoryFinder itself. However, it is possible to return references to factory objectsin domains
other than the domain in which a FactoryFinder exists. Thiscan occur if aFactoryFinder contains
information about factoriesthat are resident in another domain (see Figure 5-3). A FactoryFinder
finds out about these interdomain factory objects through configuration information that
describes the location of these other factory objects.

When a FactoryFinder receives arequest to locate afactory object, it must first determineif a
reference to a factory object that meets the specified criteria exists. If thereis registration
information for afactory object that matches the criteria, the FactoryFinder must then determine
if the factory object islocal to the current domain or needs to be imported from another domain.
If the factory object is from the local domain, the FactoryFinder returns the reference to the
factory object to the client.

Figure 5-3 Inter-Domain FactoryFinder Interaction

Factory Factory Name

et Bootstrap Finder Finder Manager

resolve_initial_references

>

Intra-domain

CORBA::Object FactoryFinder
o de!egates request
:I Tobj_FF::_narrow() ‘;’a'c”lfr’ygmgn
find factory
find_*_factor* object in
— — . 1 * *
»| find_*_factor o] NameManager
IOR string

CORBA::Object CORBA::Object |«

jfactory: :_narrow()

If, on the other hand, the information indicates that the actual factory object is from another
domain, the FactoryFinder delegates the request to an interdomain FactoryFinder in the
appropriate domain. As aresult, only a FactoryFinder in the same domain as the factory object
will contain an actual reference to the factory object. The interdomain FactoryFinder is
responsible for returning the reference of the factory object to the local FactoryFinder, which
subsequently returnsit to the client.

CORBA Programming Reference 5-9

5-10

Why Use Oracle Tuxedo CORBA Extensions?

The Oracle Tuxedo software extends the interfaces defined in the CORBA services specification,
Chapter 6 “Life Cycle Service,” December 1997, published by the Object Management Group,
for the following reasons:

e Although the CORBA-defined approach is powerful and allows various selection criteria,
the interface used to query a FactoryFinder can be complicated to use.

e Additionally, if the selection criterion specified by the client application is not specific
enough, it is possible that more than one reference to afactory object may be returned. If
this occurs, it is not immediately obvious what a client application should do next.

e Finally, the CORBAservices specification did not specify a standardized mechanism
through which an application server isto register afactory object.

Therefore, Oracle Tuxedo extends the interfaces defined in the CORBA services specification to
make using a FactoryFinder easier. The extensions are manifested as refined interfaces to the
FactoryFinder that are derived from the interfaces specified in the CORBA services specification.

Creating Application Factory Keys

Two of thefive methods provided by the FactoryFinder interface accept cosLifeCycle: :Keys,
which corresponds to cosNaming: :Name. A client must be able to construct these keys.

The CosNaming Specification describes two interfacesthat constitute aNames Library interface
that can be used to create and manipulate cosLifeCycle: :Keys. The pseudo OMG IDL
statements for these interfacesis described in the following section.

Names Library Interface Pseudo OMG IDL

Note: Thisinformation istaken from the CORBAservices. Common Object Services
Specification, pp. 3-14 t018. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

To alow the representation of namesto evolve without affecting existing client applications, itis
desirable to hide the representation of names from the client application. Ideally, names
themselves would be objects; however, names must be lightweight entities that are efficient to
create, manipulate, and transmit. As such, names are presented to programs through the names
library.

The names library implements names as pseudo-objects. A client application makes callson a
pseudo-object in the same way it makes calls on an ordinary object. Library names are described

CORBA Programming Reference

Functional Description

in pseudo-IDL (to suggest the appropriate language binding). C++ client applications use the
same client language bindings for pseudo-IDL (PIDL) asthey usefor IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. Asdescribed in Chapter
3 of the CORBAservices: Common Object Services Specification, in the section “ The CosNaming
Module,” the CORBA services Naming Service supports the NamingContext OMG IDL
interface. The names library supports an operation to convert alibrary nameinto avalue that can
be passed to the name service through the NamingContext interface.

Note: Itisnot arequirement to use the names library in order to use the CORBAservices
Naming Service.

The names library consists of two pseudo-IDL interfaces, the LNameComponent interface and
the LName interface, as shown in Listing 5-5.

Listing 5-5 Names Library Interfaces in Pseudo-IDL

interface LNameComponent { // PIDL
const short MAX LNAME_STRLEN = 128;

exception NotSet{ };

exception OverFlow{ };

string get_id
raises (NotSet);
void set_id(in string 1)
raises (OverFlow) ;
string get_kind()
raises (NotSet) ;
void set_kind(in string k)
raises (OverFlow) ;
void destroy () ;

i

interface LName {// PIDL
exception NoComponent{ };
exception OverFlow{ };
exception InvalidName{ };
LName insert_component (in unsigned long i,
in LNameComponent n)

raises (NoComponent, OverFlow) ;

CORBA Programming Reference 5-11

5-12

LNameComponent get_component (in unsigned long i)
raises (NoComponent) ;

LNameComponent delete_component (in unsigned long i)
raises (NoComponent) ;

unsigned long num_components () ;

boolean equal (in LName 1n);

boolean less_than(in LName 1n);

Name to_idl_form()
raises (InvalidName) ;

void from_idl_form(in Name n) ;

void destroy () ;

Y

LName create_lname();// C/C++

LNameComponent create_lname_component();// C/C++

Creating a Library Name Component
To create alibrary name component pseudo-object, use the following C/C++ function:
LNameComponent create_lname_component () ; // C/C++

The returned pseudo-object can then be operated on using the operations shown in Listing 5-5.

Creating a Library Name
To create alibrary name pseudo-object, use the following C/C++ function:

LName create_lname(); // C/C++

The returned pseudo-object reference can then be operated on using the operations shown in
Listing 5-5.

The LNameComponent Interface

A name component consists of two attributes: identifier and kind. The LNameComponent
interface defines the operations associated with these attributes, as follows:

string get_id()
raises (NotSet) ;
void set_id(in string k);

string get_kind()

CORBA Programming Reference

Functional Description

raises (NotSet) ;

void set_kind(in string k) ;

get_id
The get_id operation returnsthe identifier attribute’ svalue. If the attribute has not
been set, the Not set exception israised.

set_id
The set_id operation setsthe identifier attribute to the string argument.

get_kind
The get_kind operation returns the kind attribute’ s value. If the attribute has not been
set, the Notset exception is raised.

set_kind
The set_kind operation setsthe kind attribute to the string argument.

The LName Interface
The following operations are described in this section:

Destroying alibrary name component pseudo-object

I nserting a name component

Getting the it name component

e Deleting a name component
e Number of name components
e Testing for equality
e Testing for order
e Producing an OMG IDL form
e Trandating an OMG IDL form
e Destroying alibrary name pseudo-object
Destroying a Library Name Component Pseudo-0bject
The destroy operation destroys library name component pseudo-objects.

void destroy () ;

CORBA Programming Reference 5-13

5-14

Inserting a Name Component

A name has one or more components. Each component except the last is used to identify names
of subcontexts. (The last component denotes the bound object.) The insert_component
operation inserts a component after position i.

LName insert_component (in unsigned long i, in LNameComponent lnc)
raises (NoComponent, OverFlow) ;

If component i-1 isundefined and component i is greater than 1 (one), the insert_component
operation raises the NoComponent exception.

If the library cannot allocate resources for the inserted component, the overrlow exceptionis
raised.

Getting the it Name Component

The get_component operation returns the it component. The first component is numbered 1
(one).

LNameComponent get_component (in unsigned long i)
raises (NoComponent) ;

If the component does not exist, the Nocomponent exception is raised.

Deleting a Name Component
The delete_component oOperation removes and returns the ith component.

LNameComponent delete_component (in unsigned long 1)
raises (NoComponent) ;

If the component does not exist, the Nocomponent exception is raised.

After adelete_component operation has been performed, the compound name has one fewer
component and components previously identified as i +1...n are now identified as i...n-1.

Number of Name Components
The num_components operation returns the number of componentsin alibrary name.

unsigned long num_components () ;

Testing for Equality
The equal operation tests for equality with library name 1n.

CORBA Programming Reference

Functional Description

boolean equal (in LName 1n) ;

Testing for Order
The less_than operation tests for the order of alibrary name in relation to library name 1n.

boolean less_than(in LName 1n);

This operation returns TrUE if the library nameisless than the library name 1n passed as an
argument. The library implementation defines the ordering on names.

Producing an OMG IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. Several operationsin the NamingContext interface have
arguments of an OMG IDL-defined structure, Name. The following PIDL operation on library
names produces a structure that can be passed across the OMG IDL request.

Name to_idl_form()
raises (InvalidName) ;

If the name is of length O (zero), the InvalidName exception isreturned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. The NamingContext interface defines operationsthat return an
IDL struct of typename. Thefollowing PIDL operation on library names setsthe componentsand
kind attribute for alibrary name from areturned OMG IDL defined structure, Name.

void from_idl_form(in Name n) ;

Destroying a Library Name Pseudo-0bject
The destroy operation destroys library name pseudo-objects.

void destroy () ;

C++ Mapping

The Names Library pseudo OMG IDL interface maps to the C++ classes shown in Listing 5-6,
which can be found in the NamesLib.h header file.

CORBA Programming Reference 5-15

5-16

Two Oracle Tuxedo extensions to CORBA are included to support scalability. Specificaly, the
LNameComponent: :set_id() and LNameComponent: :set_kind () methodsraise an
overFlow exception if the length of the input string exceeds Max_LNAME STRLEN. Thislength
coincides with the maximum length of the Oracle Tuxedo object ID (OID) and interface name.
For a detailed description of the Library Name class, see the section Names Library Interface
Pseudo OMG IDL.

Listing 5-6 Library Name Class

const short MAX LNAME_STRLEN = 128;

class LNameComponent {
public:
class NotSet{ };
class OverFlow{ };
static LNameComponent* create_lname_component () ;
void destroy () ;
const char* get_1id() const throw (NotSet);
void set_id(const char* i) throw (OverFlow) ;
const char* get_kind() const throw (NotSet);
void set_kind(const char* k) throw (OverFlow) ;

}i

class LName ({
public:
class NoComponent{ };
class OverFlow{ };
class InvalidName{ };
static LName* create_lname() ;
void destroy () ;
LName* insert_component (const unsigned long i,
LNameComponent* n)
throw (NoComponent, OverFlow) ;
const LNameComponent* get_component (
const unsigned long i) const
throw (NoComponent) ;
const LNameComponent* delete_component (

const unsigned long i)

CORBA Programming Reference

Functional Description

throw (NoComponent) ;
unsigned long num_components () const;
CORBA: :Boolean equal (const LName* 1ln) const;
CORBA: :Boolean less_than(

const LName* 1ln) const; // not implemented
CosNaming: :Name* to_idl_form()

throw (InvalidName) ;

void from_idl_form(const CosNaming: :Name& n) ;

Java Mapping

The Names Library pseudo OMG IDL interface maps to the Java classes contained in the
com.beasys.Tobj package, shown in Listing 5-7. All exceptions are contained in the same
package.

For a detailed description of the Library Name class, refer to Chapter 3 in the CORBAservices:
Common Object Services Specification.

Listing 5-7 Java Mapping for LNameComponent

public class LNameComponent {
public static LNameComponent create_lname_component () ;
public static final short MAX_LNAME_STRING = 128;
public void destroy () ;
public String get_id() throws NotSet;
public void set_id(String i) throws OverFlow;
public String get_kind() throws NotSet;
public void set_kind(String k) throws OverFlow;
Y
public class LName {
public static LName create_lname() ;
public void destroy () ;
public LName insert_component (long i, LNameComponent n)

throws NoComponent, OverFlow;

public LNameComponent get_component (long i)

CORBA Programming Reference 5-11

throws NoComponent;
public LNameComponent delete_component (long i)
throws NoComponent;
public long num_components () ;
public boolean equal (LName 1n);
public boolean less_than (LName 1n);// not implemented
public org.omg.CosNaming.NameComponent[] to_idl_form()
throws InvalidName;
public void from_idl_form(org.omg.CosNaming.NameComponent[] nr);

C++ Member Functions and Java Methods

This section describes the FactoryFinder C++ member functions and Java methods.

Note: All FactoryFinder member functions, except the 1ess_than member functionin
LName, are implemented in both C++ and Java.

The following methods are described in this section:

® CosLifeCycle: :FactoryFinder: :find_factories
® Tobj::Factoryfinder::find_ one_factory

® Tobj::Factoryfinder::find one_factory by id
® Tobj::Factoryfinder::find_factories_by_ id

® Tobj::Factoryfinder::1list_factories

Note: The CosLifeCycle::FactoryFinder::find_factories method isthe standard
CORBA CosLifeCycle method. The four Tobj methods are extensions to the
CosLifeCycleinterface and, therefore, inherit the attributes of the CosLifeCycle
interface.

CosLifeCycle::FactoryFinder::find_factories

Synopsis
Obtains a sequence of factory object references.

5-18 CORBA Programming Reference

C++ Member Functions and Java Methods

C++ Mapping
CosLifeCycle: :Factories *
CORBA: :Object_ptr CosLifeCycle::FactoryFinder: :find_factories(
const CosNaming: :Name& factory_key)
throw (CosLifeCycle::NoFactory) ;

Java Mapping

import org.omg.CosLifeCycle.*;

public org.omg.CORBA.Object[] find_factories(
org.omg.CosNaming.NameComponent [] factory_key)
throws org.omg.CosLifeCycle.NoFactory;

Parameter

factory_key
This parameter isan unbounded sequence of NameComponents (tuple of <id, kind> pairs)
that uniquely identifies afactory object reference.
A NameComponent is defined as a having two members: an 1d and akind, both of type
string. The ia field is used to represent the identity of factory object. The kind field is
used to indicate how the value of the 14 field should be interpreted.
Referencesto factory object registered using the operation Tp: : register_factory Will
have akind value of “FactoryInterface”.

Exception

CORBA: : BAD_ PARAM
Indicates that the value of an input parameter has an inappropriate value or isinvalid. Of
particular importance, the exception israised if no value or aNULL value for the
parameter factory_key is specified.

CosLifeCycle: :NoFactory
Indicates that there are no factories registered that match the information in the
factory_key parameter.

Description

The find_factories method is called by an application to obtain a sequence of factory object
references. The operation is passed akey used to identify the desired factory. The key isaname,
as defined by the CORBA services Naming service. More than one factory may match the key,
and, if that is the case, the FactoryFinder returns a sequence of factories.

CORBA Programming Reference 5-19

The scope of the key isthe FactoryFinder. The FactoryFinder assigns no semanticsto the key. It
simply matches keys. It makes no guarantees about the interface or implementation of the
returned factories or objects they create.

Key values are considered equal if they are of equal length (same number of elementsin the
sequence), and if every NameComponent value in the key matches the corresponding
NameComponent value at the exact same location in the key that was specified when the
reference to the factory object was registered.

Return Values

An unbounded sequence of references to factory objects that match the information specified as
the value of the factory_key parameter. In C++, the method returns a sequence of object
references of typecosLifeCycle: :Factory. InJava, the method returns an unbounded array of
object references of type org. omg.CORBA. Object.

If the operation raises an exception, the return valueis invalid and does not need to be released
by the caller.

Tobj::FactoryFinder::find_one_factory

Synopsis
Obtains a reference to asingle factory object.

C++ Mapping
virtual CosLifeCycle: :Factory_ptr

find_one_factory(const CosNaming::Name& factory_key) = 0;

Java Mapping
public org.omg.CORBA.Object
find_one_factory(org.omg.CosNaming.NameComponent[] factory key)
throws
org.omg.CosLifeCycle.NoFactory,
com.beasys.Tobj.CannotProceed,

com.beasys.Tobj.RegistrarNotAvailable;

5-20 CORBA Programming Reference

C++ Member Functions and Java Methods

Parameter

factory_ key
This parameter isan unbounded sequence of NameComponents (tuple of <id, kind> pairs)
that uniquely identifies afactory object reference.
A NameComponent is defined as a having two members: an 1d and akind, both of type
string. The ia field is used to represent the identity of factory object. The kind field is
used to indicate how the value of the 14 field should be interpreted.
Referencesto factory object registered using the operation Tp: : register_factory Will
have akind value of “FactoryInterface”.

Exceptions

CORBA: : BAD_PARAM
Indicates that the value of an input parameter has an inappropriate value or isinvalid. Of
particular importance, the exception israised if no value or aNULL value for the
parameter factory key is specified.

CosLifeCycle: :NoFactory
Indicates that there are no factories registered that match the information in the
factory_key parameter.

Tobj: :CannotProceed
Indicates that the FactoryFinder or NameM anager encountered an internal error while
attempting to locate a reference for afactory object.
Error information is written to the user log.

Tobj: :RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the NameManager.
Error information is written to the user log.

Description

The £ind_one_factory Mmethod is called by an application to obtain areference to asingle
factory object whose key matches the value of the key specified as input to the method. If more
than one factory object isregistered with the specified key, the FactoryFinder selects one factory
object based on the FactoryFinder’ s load balancing scheme. As aresult, invoking the
find_one_factory method multiple times using the same key may return different object
references.

The scope of the key isthe FactoryFinder. The FactoryFinder assigns no semantics to the key. It
simply matches keys. It makes no guarantees about the interface or implementation of the
returned factory or objects they create.

CORBA Programming Reference 5-21

Key values are considered equal if they are of equal length (same number of elementsin the
seguence), and if every NameComponent value in the key matches the corresponding
NameComponent value at the exact same location in the key that was specified when the
reference to the factory object was registered.

Return Values

An object reference for afactory object. In C++, the method returns an object reference of type
CosLifeCycle: :Factory. In Java, the method returns an object reference of type
org.omg.CORBA.Object

If the operation raises an exception, the return valueis invalid and does not need to be released
by the caller.

Tobj::FactoryFinder::find_one_factory by id

Synopsis
Obtains areference to asingle factory object.

C++ Mapping
virtual CosLifeCycle: :Factory_ptr

find_one_factory_by_id(const char * factory_id) = 0;

Java Mapping

public org.omg.CORBA.Object
find_one_factory_by id(java.lang.String factory_id)
throws
org.omg.CosLifeCycle.NoFactory,
com.beasys.Tobj.CannotProceed,

com.beasys.Tobj.RegistrarNotAvailable;

Parameter

factory_id
A NULL-terminated string that contains a value that is used to identify the registered
factory object to be found.
Thevalue of the factory_id parameter is used as the value of the id field of a
NameComponent that has akind field with the value *FactoryInterface” when
comparing against registered references for factory objects.

5-22 CORBA Programming Reference

C++ Member Functions and Java Methods

Exceptions
CORBA: : BAD_ PARAM
Indicates that the value of an input parameter has an inappropriate value or isinvalid. Of
particular importance, the exception israised if no value or aNULL value for the
parameter factory key is specified.

CosLifeCycle: :NoFactory
Indicates that there are no factories registered that match the information in the
factory_key parameter.

Tobj: :CannotProceed
Indicates that the FactoryFinder or NameM anager encountered an internal error while
attempting to locate a reference for afactory object.
Error information is written to the user log.

Tobj: :RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the NameManager.
Error information is written to the user log.

Description

The £ind_one_factory_by_id method iscalled by an application to obtain areferenceto a
single factory object whose registration |D matches the value of the ID specified as input to the
method. If more than one factory object is registered with the specified 1D, the FactoryFinder
selects one factory object based on the FactoryFinder’s load balancing scheme. As aresult,
invoking the find_one_factory_by_id operation multipletimesusing the samelD may return
different object references.

Thefind_one_factory_by_id method behavesthesameasthe find_one_factory operation
that was passed a key that contains a single NameComponent with an id field that contains the
same value asthe factory_id parameter and akind field that contains the value

“FactoryInterface”.

Theregistered identifier for afactory is considered equal to the value of the factory_id
parameter if the result of constructing acosLifeCycle: : Key Structure containing asingle
NameComponent that hasthe factory_id parameter as the value of the id field and the value
“FactoryInterface” asthevalue of the kind field. The values must match exactly in all
respects (case, location, etc.).

CORBA Programming Reference 5-23

Return Values

An object reference for afactory object. In C++, the method returns an object reference of type
CcosLifeCycle: :Factory. In Java, the method returns an object reference of type
org.omg.CORBA.Object

If the operation raises an exception, the return valueis invalid and does not need to be released
by the caller.

Tobj::FactoryFinder::find_factories_by_id

Synopsis
Obtains a sequence of one or more factory object references.

C++ Mapping
virtual CosLifeCycle: :Factories *

find_factories_by_id(const char * factory_id) = 0;

Java Mapping
public org.omg.CORBA.Object[]
find_factories_by_id(java.lang.String factory_id)
throws
org.omg.CosLifeCycle.NoFactory,
com.beasys.Tobj.CannotProceed,

com.beasys.Tobj.RegistrarNotAvailable;

Parameter

factory_id
A NULL-terminated string that contains a value that is used to identify the registered
factory object to be found.
Thevalue of the factory_id parameter is used as the value of the 14 field of a
NameComponent that has akind field with the value “FactoryInterface” when
comparing against registered references for factory objects.

Exceptions

CORBA: : BAD_ PARAM
Indicates that the value of an input parameter has an inappropriate value or isinvalid. Of
particular importance, the exception israised if no value or aNULL value for the
parameter factory_key is specified.

5-24 CORBA Programming Reference

C++ Member Functions and Java Methods

CosLifeCycle: :NoFactory
Indicates that there are no factories registered that match the information in the
factory_key parameter.

Tobj: :CannotProceed
Indicates that the FactoryFinder or NameM anager encountered an internal error while
attempting to locate areference for afactory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the NameManager.
Error information is written to the user log.

Description

The find_factories_by_id method is called by an application to obtain a sequence of one or
morefactory object references. The method is passed aNUL L-terminated string that containsthe
identifier of the factory to be located. If more than one factory object is registered with the
specified ID, the FactoryFinder will return alist of object references for the matching registered
factory objects.

The find_factories_by_id method behaves the same asthe find_factory operation that
was passed akey that contains a single NameComponent with an 14 field that contains the same
value asthe factory_id parameter and akind field that contains the value

“FactoryInterface”.

Theregistered identifier for afactory is considered equal to the value of the factory_id
parameter if the result of constructing acosLifeCycle: :Key Structure containing asingle
NameComponent that hasthe factory_id parameter asthe value of the id field and the value
“FactoryInterface” asthevaue of the kind field. The values must match exactly in all
respects (case, location, etc.).

Return Values

An unbounded sequence of references to factory objects that match the information specified as
the value of the factory key parameter. In C++, the method returns a sequence of object
references of typecosLifeCycle: :Factory. |InJava, the method returns an unbounded array of
object references of type org. omg.CORBA. Object.

If the operation raises an exception, the return value is invalid and does not need to be released
by the caller.

CORBA Programming Reference 5-25

Tobj::Factoryfinder::list_factories

Synopsis

Obtains alist of factory objects currently registered with the FactoryFinder.
C++ Mapping

virtual FactoryListing * list_factories() = 0;

Java Mapping

public com.beasys.Tobj.FactoryComponent[] list_factories()
throws
com.beasys.Tobj.CannotProceed,

com.beasys.Tobj.RegistrarNotAvailable;

Exception

Tobj: :CannotProceed
Indicates that the FactoryFinder or NameM anager encountered an internal error while
attempting to locate areference for afactory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the NameManager.
Error information is written to the user log.

Description

The1list_factories method iscalled by an application to obtain alist of the factory objects
currently registered with the FactoryFinder. The method returns both the key used to register the
factory, aswell as areference to the factory object.

The number of factoriesreturned by 1ist_factories will be one more than the onesregistered
by the user. For example, if the user registered four factoriesthen the number of factoriesreturned
by 1ist_factories will befive.

Note: Thischangein behavior is because the OMG Transaction Service specification version
1.1insection 2.1.2 specifies that the Transaction Factory islocated using the
FactoryFinder interface of the Life Cycle Service. Hence the Transaction factory is
registered internally by the product with the FactoryFinder.

5-26 CORBA Programming Reference

Automation Methods

Return Values

An unbounded sequence of Tobj : : FactoryComponent. Each occurrence of a
Tobj : : FactoryComponent inthe sequence contains areferenceto the registered factory object,
aswell asthe cosLifeCycle: :Key that was used to register that factory object.

If the operation raises an exception, the return valueis invalid and does not need to be released
by the caller.

Automation Methods

This section describes the DITobj_FactoryFinder Automation methods.

DITobj_FactoryFinder.find_one_factory

Synopsis
Obtains asingle application factory.

MIDL Mapping

HRESULT find_one_factory(
[in] VARIANT factory_key,
[in,out,optional] VARIANT* exceptionInfo,

[out,retval] IDispatch** returnValue) ;

Automation Mapping

Function find_one_factory(factory_key, [exceptionInfo]) As Object

Parameters

factory_key
This parameter contains a safe array of DICosNaming_NameComponent (<id, kind>
value pairs) that uniquely identifies afactory object reference.

exceptionInfo
An optional input argument that enablesthe application to get additional exception dataif
an error occurred.

CORBA Programming Reference 5-21

Exceptions

NoFactory
This exception israised if the FactoryFinder cannot find an application factory object
reference that correspondsto the input factory_key.

CannotProceed
This exception israised if the FactoryFinder or CORBAservices Naming Service
encounter an internal error during the search with the error being written to the user log
(unog). Notify the operations staff immediately if this exception israised. Depending on
the severity of theinternal error, the server running the FactoryFinder or CORBAservices
Naming Service may have terminated. If a FactoryFinder service has terminated, start a
new FactoryFinder service. If aCORBA services Naming Service hasterminated and there
isanother CORBA services Naming Servicerunning, start anew CORBA servicesNaming
Service. If no naming services servers are running, restart the application.

RegistrarNotAvailable
This exception israised if the FactoryFinder object cannot locate the CORBAservices
Naming Service object. Notify the operations staff immediately if thisexceptionisraised.
If no naming services servers are running, restart the application.

Description

This member function instructs the FactoryFinder to return one application factory object
reference whose key matchesthe input factory_key. To accomplish this, the member function
performs an egquality match; that is, every NameComponent <id, kind> pair in the input
factory_ key must exactly match each <id, kind> pair in the application factory’ s key. If
multiple factory keys contain theinput factory_key, the FactoryFinder selects one factory key,
based on an internally defined load balancing scheme. Invoking find_one_factory multiple
times using the same ida may return different object references.

Return Values
Returns areference to an interface pointer for the application factory.

DITobj_FactoryFinder.find_one_factory by id

Synopsis
Obtains a single application factory.

5-28 CORBA Programming Reference

Automation Methods

MIDL Mapping

HRESULT find_one_factory_by_id(
[in] BSTR factory_id,
[in,out,optional] VARIANT* exceptionInfo,

[out,retval] IDispatch** returnvValue) ;

Automation Mapping

Function find_one_factory by id(factory id As String,

[exceptionInfo]) As Object

Parameters

factory_id
This parameter represents a string identifier that is used to identify the kind or type of
application factory. For some suggestions as to the composition of this string, see
Creating CORBA Server Applications.

exceptionInfo
An optional input argument that enables the application to get additional exception dataif
an error occurred.

Exceptions

NoFactory
This exception israised if the FactoryFinder cannot find an application factory object
reference that correspondsto the input factory_id.

CannotProceed
This exception israised if the FactoryFinder or CORBAservices Naming Service
encounter an internal error during the search, with the error being written to the user log
(uroc). Notify the operations staff immediately if this exception israised. Depending on
the severity of the internal error, the server running the FactoryFinder or the
CORBA services Naming Service may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If a CORBAservices Naming Service has
terminated and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If there are no naming services running, restart the
application.

RegistrarNotAvailable
This exception israised if the FactoryFinder object cannot locate the CORBAservices
Naming Service object. Notify the operations staff immediately if thisexceptionisraised.
If no naming service servers are running, restart the application.

CORBA Programming Reference 5-29

Description

This member function instructs the FactoryFinder to return one application factory object
reference whose id in the key matches the method’ sinput factory_id. To accomplish this, the
member function performs an equality match (that is, theinput factory_id must exactly match
the id in the <id,kind> pair in the application factory’ skey). If multiple factory keys contain the
input factory_id, the FactoryFinder selectsonefactory key, based on an internally defined load
balancing scheme. Invoking find_one_factory_by_id multipletimesusing the same ida may
return different object references.

Return Values
Returns areference to an interface pointer for the application factory.

DITobj_FactoryFinder.find_factories_by id

Synopsis
Obtains alist of application factories.

MIDL Mapping

HRESULT find_factories_by id(
[in] BSTR factory_id,
[in,out,optional] VARIANT* exceptionInfo,
[out, retval] VARIANT* returnValue) ;

Automation Mapping
Function find_factories_by id(factory id As String,

[exceptionInfo])

Parameters

factory_id
This parameter represents a string identifier that will be used to identify the kind or type
of application factory. The Creating CORBA Client Applications online document
provides some suggestions as to the composition of this string.

exceptionInfo
An optional input argument that enablesthe application to get additional exception dataif
an error occurred.

5-30 CORBA Programming Reference

Automation Methods

Exceptions

NoFactory
This exception israised if the FactoryFinder cannot find an application factory object
reference that correspondsto the input factory_key Or factory_id.

CannotProceed
This exception israised if the FactoryFinder or CORBAservices Naming Service
encounter an internal error during the search with the error being written to the user log
(unog). Notify the operations staff immediately if this exception israised. Depending on
the severity of theinternal error, the server running the FactoryFinder or CORBAservices
Naming Service may have terminated. If a FactoryFinder service has terminated, start a
new FactoryFinder service. If aCORBA services Naming Service hasterminated and there
isanother CORBA services Naming Servicerunning, start anew CORBA servicesNaming
Service. If no naming services servers are running, restart the application.

RegistrarNotAvailable
This exception israised if the FactoryFinder object cannot locate the CORBAservices
Naming Service object. Notify the operations staff immediately if thisexceptionisraised.
If no naming services servers are running, restart the application.
Description

This member function instructs the FactoryFinder to return alist of application factory object
references whose id in the keys match the method' sinput factory_id. To accomplish this, the
member function performs an equality match (that is, theinput factory_id must exactly match
each id in the <id,kind> pair in the application factory’s keys).

Return Values
Returns avariant containing an array of interface pointers to application factories.

DITobj_FactoryFinder.find_factories

Synopsis
Obtains alist of application factories.

MIDL Mapping
HRESULT find_factories(
[in] VARIANT factory_key,
[in,out,optional] VARIANT* exceptionInfo,
[out,retval] VARIANT* returnValue) ;

CORBA Programming Reference 5-31

Automation Mapping

Function find_factories(factory key, [exceptionInfol])

Parameters

factory_key
This parameter contains a safe array of DICosNaming_NameComponents (<id, kind>
value pairs) that uniquely identifies a factory object reference.

exceptionlnfo
An optional input argument that enables the application to get additional exception dataif
an error occurred.

Exception

NoFactory
This exception israised if the FactoryFinder cannot find an application factory object
reference that correspondsto the input factory_key.

Description

The find_factories method instructs the FactoryFinder to return alist of server application
factory aobject references whose keys match the method's input key. The Oracle Tuxedo system
assumes that an equality match isto be performed. This means that for the two sequences of
<id,kind> pairs (those corresponding to theinput key and those in the application factory's keys),
each are of equal length; for every pair in one sequence, thereis an identical pair in the other.

Return Values
Returns avariant containing an array of interface pointers to application factories.

DITobj_FactoryFinder.list_factories

Synopsis
Lists all of the application factory names and object references.

MIDL Mapping

HRESULT list_ factories(
[in,out,optional] VARIANT* exceptionInfo,
[out,retval] VARIANT* returnValue) ;

5-32 CORBA Programming Reference

Programming Examples

Automation Mapping

Function list_factories([exceptionInfo])

Parameter

exceptionInfo
An optional input argument that enables the application to get additional exception dataif
an error occurred.

Exception

CannotProceed
This exception israised if the FactoryFinder or the CORBA services Naming Service
encounter an internal error during the search with the error being written to the user log
(unog). Notify the operations staff immediately if this exception israised. Depending on
the severity of the internal error, the server running the FactoryFinder or the
CORBAservices Naming Service may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If a CORBAservices Naming Service has
terminated and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If there are no naming service servers running, restart
the application.

RegistrarNotAvailable
This exception israised if the FactoryFinder object cannot locate the CORBAservices
Naming Service object. Notify the operations staff immediately if thisexceptionisraised.
It is possible that no naming service servers are running. Restart the application.

Description

This method instructs the FactoryFinder to return alist containing all of the factory keys and
associated object references for application factories registered with the CORBA services
Naming Service.

Return Values

Returns avariant containing an array of DITobj_FactoryComponent objects. The
FactoryComponent object consists of avariant containing an array of
DICosNaming_NameComponent objects and an interface pointer to the application factory.

Programming Examples

This section describes how to program using the FactoryFinder interface.

Note: Remember to check for exceptionsin your code.

CORBA Programming Reference 5-33

5-34

Using the FactoryFinder Object

A FactoryFinder object is used by programmers to locate a reference to afactory object. The
FactoryFinder object provides operations to obtain one or more references to factory objects
based on the criteria specified.

There can be more than one FactoryFinder object in a process address space. Multiple references
to a FactoryFinder object must be supported. A FactoryFinder object is semi-stateful in that it
maintains state about the association between FactoryFinder objects within adomain and a
particular 110OP Server Listener/Handler (ISL/ISH) through which to access the domain.

All FactoryFinder objects support the cosLifeCycle: :FactoryFinder interface asdefined in
CORBAservices Specification, Chapter 6 “Life Cycle Service,” December 1997, published by
the Object Management Group. The interface contains one operation that is used to obtain one or
more references to factory objects that meet the criteria specified.

Registering a Reference to a Factory Object

The following code fragment (Listing 5-8) shows how to use the TP Framework interface to
register areference to afactory object with a FactoryFinder.

Listing 5-8 Server Application: Registering a Factory

// Server Application: Registering a factory.

// C++ Example.

TP::register_ factory(factory obj.in(), “TellerFactory”);

Obtaining a Reference to a FactoryFinder Object Using the
CosLifeCycle::FactoryFinder Interface

Thefollowing code fragment (Listing 5-9) shows how to use of the CORBA-compliant interface
to obtain one or more references to factory objects.

Listing 5-9 Client Application: Getting a FactoryFinder Object Reference

// Client Application: Obtaining the object reference

// to factory objects.

CORBA Programming Reference

Programming Examples

CosLifeCycle: :Key_var factory key = new CosLifeCycle::Key();
factory_key ->length(1l);
factory key[0].id = string dupalloc(“strlen(“TellerFactory”) +1);
factory_key[0] .kind = string_dupalloc(

strlen(““FactoryInterface”) + 1);
strcpy (factory_key[0].id, “"TellerFactory”);
strcpy (facory_key[0].kind, “FactoryInterface”);
CosLifeCycle: :Factories_var * flp = ff_np ->

find_factories(factory_key.in());

Obtaining a Reference to a FactoryFinder Object Using the Extensions
Bootstrap object

The following code fragment (Listing 5-10) shows how to use of the Oracle Tuxedo extensions
Bootstrap object to obtain areference to a FactoryFinder object.

Listing 5-10 Client Application: Finding One Factory Using the Tobj Approach

// Client Application: Finding one factory using the Tobj
// approach.

Tobj_Bootstrap * bsp = new Tobj_Bootstrap (
orb_ptr.in(), host_port);
CORBA: :Object_varptr ff_op = bsp ->
resolve_initial_references(“FactoryFinder”);
Tobj::FactoryFinder_ptrvar ff np =

Tobj: :FactoryFinder: :_narrow(ff_op);

Note: You can used the Oracle Tuxedo CORBA extensionsto the
CosLifeCycle: :FactoryFinder interfaceif you use the Tobj Bootstrap object,
however, use of the Tobj_Bootstrap object is not required to locate a factory. If you use
CORBA INS, you can usethe find_factories () method provided by the
CosLifeCycle: :FactoryFinder interface.

CORBA Programming Reference 5-35

5-36

Using Extensions to the FactoryFinder Object

Oracle Tuxedo extends the FactoryFinder object with functionality to support similar capabilities
to those provided by the operations defined by CORBA, but with a much simpler and more
restrictive signature. The enhanced functionality is provided by defining the

Tobj: : FactoryFinder interface. The operations defined for the Tobj : : FactoryFinder
interface are intended to provide afocused, simplified form of the equivalent capability defined
by CORBA. An application developer can choose to use the CORBA-defined or Oracle Tuxedo
extensions when developing an application. The interface Tobj : : FactoryFinder isderived
fromthe cosLifeCycle: :FactoryFinder interface.

Oracle Tuxedo extensions to the FactoryFinder object adhere to allthe same rules as the
FactoryFinder object defined in the CORBA services Specification, Chapter 6 “Life Cycle
Service,” December 1997, published by the Object Management Group.

The implementation of the extended FactoryFinder object requires users to supply either a
CosLifeCycle: :Key, asin the CORBA-defined cosLifeCycle: : FactoryFinder interface,
or aNULL-terminated string containing the identifier of afactory object to be located.

Obtaining One Factory Using Tobj::FactoryFinder

The following code fragment (Listing 5-11) shows how to use the Oracle Tuxedo extensions
interface to obtain one reference to a factory object based on an identifier.

Listing 5-11 Client Application: Finding Factories Using the Oracle Tuxedo Extensions Approach

CosLifeCycle: :Factory_ptrvar fp_obj = ff_np ->
find_one_factory_by_id(“TellerFactory”);

Obtaining One or More Factories Using Tobj::FactoryFinder

The following code fragment (Listing 5-12) shows how to use the Oracle Tuxedo extensions to
obtain one or more references to factory objects based on an identifier.

CORBA Programming Reference

Programming Examples

Listing 5-12 Client Application: Finding One or More Factories Using the Oracle Tuxedo Extensions
Approach

CosLifeCycle: :Factories * _var flp = ff_np ->

find_factories_by_id(“TellerFactory”);

CORBA Programming Reference 5-37

5-38 CORBA Programming Reference

Security Service

For adetailed discussion of Security, see Using Security in CORBA Applications. Thisdocument
provides an introduction to crytography and other concepts associated with the Oracle Tuxedo
security features, a description of how to secure your Oracle Tuxedo applications using the
security features, and a guide to the use of the application programming interfaces (APIs) in the
Security Service.

A PDF file of Using Security in CORBA Applications is also provided in the online
documentation.

CORBA Programming Reference 6-1

6-2 CORBA Programming Reference

Transactions Service

For adetailed discussion of Transactions, see Using CORBA Transactions. This document
provides an introduction to transactions, adescription of the application programming interfaces
(APIs), and a guide to the use of the application programming interfaces (APIs) to develop
applications.

A PDFfile of Using CORBA Transactionsis also provided in the online documentation.

CORBA Programming Reference 1-1

1-2 CORBA Programming Reference

Notification Service

For adetailed discussion of the Notification Service, see Using the CORBA Notification Service.
This document provides an introduction to the Notification Service, a description of the
application programming interfaces (APIs), and a guide to the use of the APIsto develop

applications.
A PDFfile of Using the CORBA Notification Service is also provided in the online
documentation.

CORBA Programming Reference 8-1

8-2 CORBA Programming Reference

Request-Level Interceptors

For adetailed discussion of request-level interceptors, see Using CORBA Request-Level
Interceptors. This document provides an introduction to request-level interceptors, a description
of the application programming interfaces (APIs), and aguideto the use of the APIsto implement
request-level interceptors.

A PDFfile of Using CORBA Request-Level Interceptorsis also provided in the online
documentation.

CORBA Programming Reference 9-1

9-2 CORBA Programming Reference

cHAPTERﬂ

CORBA Interface Repository Interfaces

This chapter describes the Oracle Tuxedo CORBA Interface Repository interfaces.

Notes: Most of the information in this chapter istaken from Chapter 10 of the Common Object
Request Broker: Architecture and Specification, Revision 2.4.2, February 2001. The
OMG information has been modified asrequired to describe the Oracle Tuxedo CORBA
implementation of the Interface Repository interfaces. Used with permission of the
OMG.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All Oracle
Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

e to help implement/run third party Java ORB libraries, and
o for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The Oracle Tuxedo CORBA Interface Repository contains the interface descriptions of the
CORBA objects that are implemented within the Oracle Tuxedo domain.

The Interface Repository is based on the CORBA definition of an Interface Repository. It offers
aproper subset of the interfaces defined by CORBA; that is, the APIs that are exposed to
programmers are implemented as defined by the Common Object Request Broker: Architecture
and Specification Revision 2.4. However, not all interfaces are supported. In general, the

CORBA Programming Reference 10-1

interfacesrequired to read from the | nterface Repository are supported, but theinterfacesrequired
to write to the Interface Repository are not. Additionally, not all TypeCode interfaces are
supported.

Administration of the Interface Repository is done using tools specific to the Oracle Tuxedo
software. These tools allow the system administrator to create an Interface Repository, popul ate
it with definitions specified in Object Management Group Interface Definition Language (OMG
IDL), and then deleteinterfaces. Additionally, an administrator may need to configure the system
to include an Interface Repository server. For adescription of the Interface Repository
administration commands, see the Oracle Tuxedo Command Reference and Setting Up an Oracle
Tuxedo Application.

Several abstract interfaces are used as base interfaces for other objectsin the Interface
Repository. A common set of operationsis used to locate objectswithin the Interface Repository.
These operations are defined in the abstract interfaces IRObject, Container, and Contained
described in this chapter. All Interface Repository objects inherit from the IRObject interface,
which provides an operation for identifying the actual type of the object. Objects that are
containersinherit navigation operations from the Container interface. Objects that are contained
by other objects inherit navigation operations from the Contained interface. The IDLType
interfaceisinherited by all Interface Repository objectsthat represent OMG IDL types, including
interfaces, typedefs, and anonymous types. The TypedefDef interface isinherited by all named
noninterface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are not instantiable.
All string dataiin the Interface Repository are encoded as defined by the SO 8859-1 character set.

Note: The Write interface is not documented in this chapter because the Oracle Tuxedo
software supports only read access to the Interface Repository. Any attempt to use the
Write interface to the Interface Repository will raise the exception
CORBA: :NO_IMPLEMENT.

Structure and Usage

10-2

The Interface Repository consists of two distinct components: the database and the server. The
server performs operations on the database.

The Interface Repository database is created and populated using the 1d121r administrative
command. For a description of thiscommand, see the Oracle Tuxedo Command Reference and
Setting Up an Oracle Tuxedo Application. From the programmer’ s point of view, thereisnowrite
access to the Interface Repository. None of the write operations defined by CORBA are
supported, nor are set operations on nonread-only attributes.

CORBA Programming Reference

Structure and Usage

Read access to the Interface Repository database is always through the Interface Repository
server; that is, a client reads from the database by invoking methods that are performed by the
server. The read operations as defined by the CORBA Common Object Request Broker:
Architecture and Specification, Revision 2.4, are described in this chapter.

Programming Information

Theinterface to aserver isdefined in the OMG IDL file. How the OMG IDL fileis accessed
depends on the type of client being built. Three types of clients are considered: stub based,
Dynamic Invocation Interface (DII).

Client applications that use stub-style invocations need the OMG IDL file at build time. The
programmer can use the OMG IDL file to generate stubs, and so forth. (For more information,
see Creating CORBA Client Applications.) No other access to the Interface Repository is
required.

Client applications that use the Dynamic Invocation Interface (DI1) need to access the Interface
Repository programmatically. The interface to the Interface Repository is defined in this chapter
and isdiscussed in “Building Client Applications’ on page 10-4. The exact steps taken to access
the Interface Repository depend on whether the client is seeking information about a specific
object, or browsing the Interface Repository to find an interface. To obtain information about a
specific object, clients usethe corBa: :Object: :_get_interface method to obtain an
InterfaceDef object. (Refer to CORBA: :Object: :_get_interface for adescription of this
method.) Using the InterfaceDef object, the client can get complete information about the
interface.

BeforeaDI| client can browse the Interface Repository, it needsto obtain the object reference of
the Interface Repository to start the search.

DIl clients use the Bootstrap object to obtain the object reference. (For a description of this
method, see the section Tobj_Bootstrap::register_callback port.) Once the client has the object
reference, it can navigate the Interface Repository, starting at the root.

To obtain areference to a Interface Repository in the domain to which a client application is
associated, the client application can use either of two bootstrapping mechanisms:

e Invokethe Tobj_Bootstrap: :resolve_initial_references operation with avalue of
“CORBA: :Repository”. Thisoperation returns areference to a I nterfaceRepository object
that isin the domain to which the client application is currently attached. You should use
this mechanism if you are using the Oracle Tuxedo client software. For more information,
see the section Tobj_Bootstrap::resolve initial_references.

CORBA Programming Reference 10-3

e Invokethe CORBA: : ORB: : resolve_initial_references operation with avalue of
“CORBA: :Repository”. Thisoperation returns areference to a I nterfaceRepository object
that isin the domain to which the client application is currently attached. You should use
this mechanism if you are using athird-party client ORB. For more information, see the
section CORBA::ORB::resolve initial_references.

Note: To usethe DI, the OMG IDL file must be stored in the Interface Repository.

Performance Implications

All run-time access to the Interface Repository is viathe Interface Repository server. Because
thereis considerable overhead in making requests of aremote server application, designers need
to be aware of this. For example, consider the interaction required to use an object referenceto
obtain the necessary information to make a DIl invocation on the object reference. The stepsare
asfollows:

1. Theclient applicationinvokesthe get_interface operation onthecorBa: :0bject to get
the InterfaceDef object associated with the object in question. This causes a message to be
sent to the ORB that created the object reference.

2. The ORB returns the InterfaceDef object to the client.

3. Theclient invokes one or more _is_a operations on the object to determine what type of
interface is supported by the object.

4. After theclient hasidentified the interface, it invokesthe describe_interface operation
on the Interface object to get afull description of theinterface (for example, version number,
operations, attributes, and parameters). This causes a message to be sent to the Interface
Repository, and areply is returned.

5. Theclient is now ready to construct a DIl request.

Building Client Applications

10-4

Clients that use the Interface Repository need to link in Interface Repository stubs. How this
happens is specific to the vendor. If the client application is using the Oracle Tuxedo ORB, the
Oracle Tuxedo software provides the stubs in the form of alibrary. Therefore, programmers do
not need to use the Interface Repository OMG IDL file to build the stubs. The Interface
Repository definitions are contained within the corea . h file, but they are not included by
default.

CORBA Programming Reference

Getting Initial References to the InterfaceRepository Object

Note: To use the Interface Repository definitions, you must define the
ORB_INCLUDE_REPOSITORY macro beforeincluding corsa.hinyour client application
code (for example: #bDefine ORB_INCLUDE_REPOSITORY).

If the client application is using athird-party ORB (for example, ORBIX) the programmer must
use the mechanisms that are provided by that vendor. This might include generating stubs from
the OMG IDL fileusing the IDL compiler supplied by the vendor, simply linking against the
stubs provided by the vendor, or some other mechanism.

Some third-party ORBs provide alocal Interface Repository capability. In this case, the local
Interface Repository is provided by the vendor and is popul ated with the interface definitions that
are needed by that client.

Getting Initial References to the InterfaceRepository
Object

Y ou use the Bootstrap object to get an initial reference to the InterfaceRepository object. For a
description of the Bootstrap object method, see the command
Tobj_Bootstrap::resolve initial_references.

Interface Repository Interfaces

Client applications usethe interfaces defined by CORBA to accessthe I nterface Repository. This
section containsdescriptions of each interfacethat isimplemented in the Oracle Tuxedo software.

Note: The Oracle Tuxedo CORBA implementation of the Interface Repository only supports
the read operations on the interfaces. The write operations are not implemented.

Supporting Type Definitions
Severa types are used throughout the Interface Repository interface definitions.

module CORBA {

typedef string Identifier;
typedef string ScopedName ;
typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,

CORBA Programming Reference 10-5

10-6

dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native
Y

Y

Identifiers arethe simple names that identify modules, interfaces, value types, value
members, value boxes, constants, typedefs, exceptions, attributes, operations, and native types.
They correspond exactly to OMG IDL identifiers. An 1dentifier isnot necessarily unique
within an entire Interface Repository; it is unique only within a particular Repository,
ModuleDef, InterfaceDef, ValueDef, or OperationDef.

A scopedName iSaname made up of one or moreidentifiers separated by double colons(::). They
correspond to OMG IDL scoped names. An absolute scopedName iSone that beginswith double
colons (::) and unambiguously identifies a definition in a Repository. An absolute scopedName
in aRepository corresponds to aglobal namein an OMG IDL file. A relative scopedName does
not begin with double colons (::) and must be resolved relative to some context.

A RepositoryIdisanidentifier used touniquely and globally identify amodule, interface, value
type, value member, value box, native type, constant, typedef, exception, attribute, or operation.
Because Repositorylds are defined as strings, they can be manipulated (for example, copied and
compared) using alanguage binding’ s string manipul ation routines.

A pefinitionkind identifiesthe type of an Interface Repository object.

IRObject Interface

The base interface IRObject (shown below) represents the most generic interface from which al
other Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
interface IRObject {
readonly attribute DefinitionKind def_kind;

i

The def_kind attribute identifies the type of the definition.

CORBA Programming Reference

Interface Repository Interfaces

Contained Interface

The Contained interface (shown below) isinherited by all Interface Repository interfacesthat are
contained by other Interface Repository objects. All objects within the Interface Repository,
except the root object (Repository) and definitions of anonymous (ArrayDef, StringDef, and
SequenceDef), and primitive types are contained by other objects.

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {

readonly attribute RepositoryId id;

readonly attribute Identifier name;

readonly attribute VersionSpec version;

readonly attribute Container defined_in;

readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

i

Description describe ();
Y
Y

An object that is contained by another object has an 14 attribute that identifiesit globally, and a
name attribute that identifies it uniquely within the enclosing Container object. It also hasa
version attribute that distinguishes it from other versioned objects with the same name. The
Oracle Tuxedo CORBA Interface Repository does not support simultaneous containment or
multiple versions of the same named object.

Contained objects also have adefined_in attribute that identifies the Container within which
they are defined. Objects can be contained either because they are defined within the containing
object (for example, an interfaceis defined within amodul€e) or because they are inherited by the
containing object (for example, an operation may be contained by an interface because the
interface inherits the operation from another interface). If an object is contained through
inheritance, the defined_in attribute identifies the InterfaceDef or ValueDef from which the
object isinherited.

The absolute_name attribute is an absolute scopedname that identifies a Contained object
uniquely within its enclosing Repository. If thisobject’'sdefined_in attribute references a

CORBA Programming Reference 10-7

10-8

Repository, the absolute_name isformed by concatenating the string “ : :” and this object’s
name atribute. Otherwise, the absolute_name isformed by concatenating the absolute_name
attribute of the object referenced by thisobject’sdefined_in attribute, the string“: :”, and this
object’ s name attribute.

The containing_repository attribute identifies the Repository that is eventually reached by
recursively following the object’ sdefined_in attribute.

Thewithin operationreturnsthelist of objectsthat contain the object. If the object isaninterface
or module, it can be contained only by the object that defines it. Other objects can be contained
by the objects that define them and by the objects that inherit them.

The describe operation returns a structure containing information about the interface. The
description structure associated with each interface is provided below with the interface’s
definition. Thekind of definition described by the structurereturned is provided with the returned
structure. For example, if thedescribe operationisinvoked on an attribute object, thekind field
contains dk_attribute and the value field contains an any, which contains the
AttributeDescription Structure.

Container Interface

The baseinterface Container isused to form acontainment hierarchy in the Interface Repository.
A Container can contain any number of objects derived from the Contained interface. All
Containers, except for Repository, are also derived from Contained.

module CORBA {

typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {

Contained lookup (in ScopedName search_name) ;

ContainedSeqg contents (
in DefinitionKind limit_type,
in boolean exclude_inherited
)i

ContainedSeq lookup_name (

in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,

CORBA Programming Reference

Interface Repository Interfaces

in boolean exclude_inherited
)

struct Description {

Contained contained_object;
DefinitionKind kind;
any value;

}i

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

)i

i

The Lookup operation locates a definition relative to this container, given a scoped name using
the OMG IDL rules for name scoping. An absolute scoped name (beginning double colons (::))
locates the definition relative to the enclosing Repository. If no object isfound, a nil object
reference is returned.

The contents operation returnsthe list of objects directly contained by or inherited into the
object. The operation is used to navigate through the hierarchy of objects. Starting with the
Repository object, aclient usesthisoperationtolist al of the objects contained by the Repository,
all of the objects contained by the modules within the Repository, all of the interfaces and value
types within a specific module, and so on.

limit_type
If 1imit_type issettodk_all, objects of al types are returned. For example, if thisis
an InterfaceDef, the attribute, operation, and exception objects are al returned. If
limit_type iSset to a specific interface, only
objects of that type are returned. For example, only attribute objects are returned if
limit_type iSSetto dk_Attribute.

exclude_inherited
If set to TrRUE, inherited objects (if there are any) are not returned. If set to FALSE, all
contained objects (whether contained due to inheritance or because they were defined
within the object) are returned.

CORBA Programming Reference 10-9

10-10

The 1lookup_name oOperation isused to locate an object by name within aparticul ar object
or within the objects contained by that object. The describe_contents operation
combinesthe contents operation and the describe operation. For each object returned
by the contents operation, the description of the object is returned (that is, the object’s
describe operation isinvoked and the results are returned).

The 1ookup_name operation is used to locate an object by name within a particular object or
within the objects contained by that object.

search_name
Specifies which name isto be searched for.

levels_to_search
Controls whether the lookup is constrained to the object the operation is invoked on, or
whether the lookup should search through objects contained by the object aswell. Setting
levels_to_search t0 -1 searches the current object and al contained objects. Setting
levels_to_search to 1 searches only the current object. Use of values of
levels_to_search Of O or of negative numbers other than -1 is undefined.

The describe_contents operation combines the contents operation and the describe
operation. For each object returned by the contents operation, the description of the object is
returned (i.e., the object’ s describe operation is invoked and the results returned).

max_returned_objs
Limitsthe number of objectsthat can bereturned in aninvocation of the call to the number
provided. Setting the parameter to -1 indicates return all contained objects.

IDLType Interface

The base interface IDL Type (shown below) isinherited by all Interface Repository objects that
represent OMG IDL types. It provides access to the TypeCode describing thetype, and isused in
defining other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
interface IDLType : IRObject {
readonly attribute TypeCode type;
Y
Y

The type attribute describes the type defined by an object derived from IDLType.

CORBA Programming Reference

Interface Repository Interfaces

Repository Interface

Repository (shown below) isan interface that provides global accessto the Interface Repository.
The Repository object can contain constants, typedefs, exceptions, interfaces, value types, value
boxes, native types, and modules. Asit inherits from Container, it can be used to look up any
definition (whether globally defined or defined within a module or an interface) either by name
or by id.

Since the Repository derives only from Container and not from Contained, it does not have a
Repositoryld associated with it. By default, it is deemed to have the Repositoryld * ~(the empty
string) for purposes of assigning avalue to the defined in field of the description structure of
ModuleDef, InterfaceDef, VaueDef, VaueBoxDef, TypedefDef, ExceptionDef, and
ConstantDef that are contained immediately in the Repository object.

module CORBA {
interface Repository : Container {
Contained lookup_id (in RepositoryId search_id) ;
TypeCode get_canonical_typecode (in TypeCode tc);

PrimitiveDef get_primitive (in PrimitiveKind kind) ;

i

The lookup_id operation isused to look up an object in aRepository, given itSRepositoryId.
If the Repository does not contain adefinition for search_id, anil object referenceis returned.

The get_canonical_typecode operation looks up the TypeCode in the Interface Repository
and returns an equivalent TypeCodethat includesall repository | Ds, names, and member_names.
If the top level TypeCode does not contain a Repositoryld, such as array and sequence
TypeCodes, or TypeCodes from older ORBs, or if it contains a Repositoryld that is not found in
the target Repository, then anew TypeCode is constructed by recursively calling
get_canonical_typecode 0n each member TypeCode of the original TypeCode.

The get_primitive operation returns areference to a PrimitiveDef with the specified kind
attribute. All PrimitiveDefs are immutable and are owned by the Repository.

ModuleDef Interface

A ModuleDef (shown bel ow) can contain constants, typedefs, exceptions, interfaces, valuetypes,
value boxes, native types, and other modul e objects.

CORBA Programming Reference 10-11

module CORBA {
interface ModuleDef : Container, Contained {

I

struct ModuleDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

}:
The inherited describe operation for aModuleDef object returns a M oduleDescription.

ConstantDef Interface
A ConstantDef object (shown below) defines a named constant.

module CORBA {
interface ConstantDef : Contained {

readonly attribute TypeCode type;
readonly attribute IDLType type_def;
readonly attribute any value;

Y

struct ConstantDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

any value;

Y

type
Specifies the TypeCode describing the type of the constant. The type of a constant must
be one of the simple types (long, short, float, char, string, octet, and so on).

type_def
I dentifies the definition of the type of the constant.

10-12 CORBA Programming Reference

Interface Repository Interfaces

value
Containsthe value of the constant, not the computation of the value (for example, the fact
that it was defined as “ 1+2").

The describe operation for a ConstantDef object returnsa ConstantDescription.

TypedefDef Interface

A TypedefDef (shown below) is an abstract interface used as a base interface for al named
nonobject types (structures, unions, enumerations, and aliases). The TypedefDef interfaceis not
inherited by the definition objects for primitive or anonymous types.

module CORBA {
interface TypedefDef : Contained, IDLType {
}i

struct TypeDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

}i
i

The inherited describe operation for interfaces derived from TypedefDef returns a
TypeDescription.

StructDef

A StructDef (shown below) representsan OMG IDL structure definition. It containsthe members
of the struct.

module CORBA {
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

I
typedef sequence <StructMember> StructMemberSeq;

CORBA Programming Reference 10-13

interface StructDef : TypedefDef, Container(
readonly attribute StructMemberSeq members;

I
I

The members attribute contains a description of each structure member.

Theinherited type attributeisatk_struct TypeCode describing the structure.

UnionDef
A UnionDef (shown below) represents an OMG IDL union definition. It contains the members
of the union.

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

}i

typedef sequence <UnionMember> UnionMemberSedq;

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
readonly attribute IDLType discriminator_type_def;

readonly attribute UnionMemberSeq members;

i

discriminator_type and discriminator_type_def
Describes and identifies the union’ s discriminator type.

members
Contains a description of each union member. The label of each

UnionMemberDescription is a distinct value of the discriminator_type. Adjacent
members can have the same name. Members with the same name must al so have the same
type. A label with type octet and value O (zero) indicates the default union member.

Theinherited type attributeisa tk_union TypeCode describing the union.

10-14 CORBA Programming Reference

Interface Repository Interfaces

EnumDef

An EnumDef (shown below) represents an OMG IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSedq;

interface EnumDef : TypedefDef {
readonly attribute EnumMemberSeq members;
}i
Y

members
Contains adistinct name for each possible value of the enumeration.

Theinherited type attributeis a tk_enum TypeCode describing the enumeration.

AliasDef

An AliasDef (shown below) represents an OMG IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {
readonly attribute IDLType original_type_def;
}i
Y

original_type_def
Identifies the type being aliased.

The inherited type attributeisatk_alias TypeCode describing the alias.

PrimitiveDef

A PrimitiveDef (shown below) represents one of the OMG IDL primitive types. Because
primitive types are unnamed, thisinterface is not derived from TypedefDef OF Contained.

module CORBA {
enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring,

CORBA Programming Reference 10-15

10-16

pk_value_base

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

}i

kind
Indicates which primitive type the PrimitiveDef represents. There are no PrimitiveDefs
with kind pk_nu11. A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_objref represents the
OMG IDL type Object. A PrimitiveDef with kind pk_value_base representsthe IDL
type ValueBase.

The inherited type attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using

Repository::get_primitive.

StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is represented as
aPrimitiveDef. As string types are anonymous, thisinterfaceis not derived from TypedefDef or
Contained.

module CORBA {
interface StringDef : IDLType {
attribute unsigned long bound;
};
Y
The bound attribute specifies the maximum number of charactersin the string and must not be
zero.

Theinherited type attributeisa tk_string TypeCode describing the string.

WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string type is represented as
a PrimitiveDef. Aswide string types are anonymous, thisinterface is not derived from
TypedefDef or Contained.

CORBA Programming Reference

Interface Repository Interfaces

module CORBA {
interface WstringDef : IDLType {
attribute unsigned long bound;
}i
Y
Thebound attribute specifies the maximum number of wide charactersin awide string, and must
not be zero.

Theinherited type attributeisa tk_wstring TypeCode describing the wide string.

ExceptionDef

An ExceptionDef (shown below) represents an exception definition. It can contain structs,
unions, and enums.

module CORBA {
interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;

readonly attribute StructMemberSeqg members;

}i

struct ExceptionDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

i

type
tk_except TypeCode that describes the exception.

members
Describes any exception members.

The describe operation for a ExceptionDef object returns an ExceptionDescription.

CORBA Programming Reference 10-17

10-18

AttributeDef

An AttributeDef (shown below) represents the information that defines an attribute of an
interface.

module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {

readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

}i

struct AttributeDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

i

type
Provides the TypeCode describing the type of this attribute.

type_def
Identifies the object that defines the type of this attribute.

mode
Specifiesread only or read/write access for this attribute.

The describe operation for an AttributeDef object returns an AttributeDescription.

OperationDef

An OperationDef (shown below) represents the information needed to define an operation of an
interface.

module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

CORBA Programming Reference

Interface Repository Interfaces

enum ParameterMode {PARAM IN, PARAM_OUT, PARAM_ INOUT};

struct ParameterDescription {

Identifier
TypeCode
IDLType

ParameterMode

}i

name;
type;
type_def;

mode;

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;

typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;

typedef sequence <ExceptionDescription> ExcDescriptionSedq;

interface OperationDef

readonly
readonly
readonly
readonly
readonly
readonly

}i

attribute
attribute
attribute
attribute
attribute
attribute

Contained {

TypeCode result;
IDLType result_def;
ParDescriptionSeq params;
OperationMode mode;
ContextIdSeq contexts;
ExceptionDefSeq exceptions;

struct OperationDescription ({

Identifier

RepositoryId
RepositoryId

VersionSpec

TypeCode

OperationMode
ContextIdSeq

ParDescriptionSeq

ExcDescriptionSeq

name;

id;
defined_in;
version;
result;
mode;
contexts;
parameters;

exceptions;

CORBA Programming Reference

10-19

result

A TypeCode that describes the type of the value returned by the operation.

result_def
I dentifies the definition of the returned type.

params
Describes the parameters of the operation. It is a sequence of ParameterDescription
structures. The order of the ParameterDescriptions in the sequence is significant. The
name member of each structure provides the parameter name. The type member isa
TypeCode describing the type of the parameter. The type_def member identifies the
definition of thetype of the parameter. Themode member indicates whether the parameter
isanin, out, or inout parameter.

mode
The operation’ smode is either oneway (that is, no output is returned) or normal.

contexts

Specifiesthe list of context identifiers that apply to the operation.

exceptions

Specifiesthelist of exception types that can be raised by the operation.
Theinherited describe operation for an OperationDef object returns an OperationDescription.

Theinherited describe_contents operation provides acompl ete description of this operation,
including a description of each parameter defined for this operation.

InterfaceDef

An InterfaceDef object (shown below) representsan interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <RepositoryId> RepositoryIdSedq;
typedef sequence <OperationDescription> OpDescriptionSedq;

typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {

10-20 CORBA Programming Reference

Interface Repository Interfaces

readonly attribute InterfaceDefSeq base_interfaces;

readonly attribute boolean is_abstract;

boolean is_a (in RepositoryId interface_id) ;

struct FullInterfaceDescription {

Identifier name;
RepositoryId id;

RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeqg attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

boolean is_abstract;

I

FullInterfaceDescription describe_interface() ;

}i

struct InterfaceDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq base_interfaces;
boolean is_abstract;

i
i

Thebase_interfaces attribute lists all the interfaces from which this interface inherits.
The is_abstract attribute is TrRUE if the interface is an abstract interface type.

The is_a operation returns TRUE if the interface on which it isinvoked either isidentical to or
inherits, directly or indirectly, from the interface identified by its interface_id parameter.
Otherwise, it returns FALSE.

Thedescribe_interface operationreturnsaFulllnterfaceDescription describing theinterface,
including its operations and attributes. The operations and attributes fields of the

CORBA Programming Reference 10-21

10-22

FullInterfaceDescription structure include descriptions of al of the operations and attributesin
the transitive closure of the inheritance graph of the interface being described.

The inherited describe operation for an InterfaceDef returns an InterfaceDescription.

The inherited contents operation returnsthelist of constants, typedefs, and exceptions defined
in this InterfaceDef and the list of attributes and operations either defined or inherited in this
InterfaceDef. If the exclude_inherited parameter isset to TRUE, only attributes and operations
defined within thisinterface are returned. If the exclude_inherited parameter isset to FALSE,
all attributes and operations are returned.

CORBA Programming Reference

Joint Client/Servers

This chapter describes programming requirements for CORBA joint client/servers and the C++
OracleWrapper Callbacks API.

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All Oracle
Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

e to help implement/run third party Java ORB libraries, and
o for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

This topic includes the following sections:

e Introduction. This section describes:
— Main Program and Server Initialization
— Servants
— Servant Inheritance from Skeletons
— Cadllback Object Models Supported
— Configuring Serversto Call Remote Joint Client/Server Objects
— Preparing Callback Objects Using CORBA (C++ Joint Client/Servers Only)

CORBA Programming Reference 111

— Preparing Callback Objects Using OracleWrapper Callbacks
e C++ OracleWrapper Callbacks Interface AP

Introduction

11-2

For either an Oracle Tuxedo CORBA client or joint client/server (that is, aclient that can receive
and process object invocations), the programmer writesthe client main (). Themain () uses
Oracle Tuxedo CORBA environmental objectsto establish connections, set up security, and start
transactions.

Oracle Tuxedo clientsinvoke operations on objects. In the case of DI, client code createsthe DI
Request object and then invokes one of two operations on the DIl Request. In the case of static
invocation, client code performs the invocation by performing what looks like an ordinary
invocation (which ends up calling code in the generated client stub). Additionally, the client
programmer uses ORB interfaces defined by OMG, and Oracle Tuxedo CORBA environmental
objectsthat are supplied with the Oracle Tuxedo software, to perform functions uniqueto Oracle
Tuxedo.

For Oracle Tuxedo joint client/server applications, the client code must be structured so that it
can act asaserver for callback Oracle Tuxedo objects. Such clientsdo not use the TP Framework
and are not subject to Oracle Tuxedo system administration. Besides the programming
implications, this means that CORBA joint client/servers do not have the same scalability and
reliability as Oracle Tuxedo CORBA servers, nor do they have the state management and
transaction behavior availablein the TP Framework. If auser wantsto have those characteristics,
the application must be structured in such away that the object implementations arein an Oracle
Tuxedo CORBA server, rather than in aclient.

The following sections describe the mechanisms you use to add callback support to an Oracle
Tuxedo client. In some cases, the mechanisms are contrasted with the Oracle Tuxedo server
mechanisms that use the TP Framework.

Main Program and Server Initialization

In an Oracle Tuxedo server, you usethe buildobjserver command to create the main program
for the C++ server. (Java servers are not supported in release 8.0 and later of Oracle Tuxedo.)
Server main program takes care of al Oracle Tuxedo- and CORBA-related initialization of the
server functions. However, since you implement the Server object, you have an opportunity to
customize the way in which the server application isinitialized and shut down. The server main
program automatically invokes methods on the Server object at the appropriate times.

CORBA Programming Reference

Introduction

In contrast, for an Oracle Tuxedo CORBA joint client/server (as for an Oracle Tuxedo CORBA
client), you create the main program and are responsible for all initialization. Y ou do not need to
provide a Server object because you have complete control over the main program and you can
provide initialization and shutdown code in any way that is convenient.

The specific initialization needed for ajoint client/server is discussed in the section “ Servants”
on page 11-3.

Servants

Servants (method code) for joint client/servers are very similar to servants for servers. All
businesslogic iswritten the same way. The differences result from not using the TP Framework.
Therefore, the main difference is that you use CORBA functions directly instead of indirectly
through the TP Framework.

The server interface isused in Oracle Tuxedo CORBA serversto allow the TP Framework to
ask the user to create a servant for an object when the ORB receives arequest for that object.
However, injoint client/servers, the user program isresponsible for creating a servant before any
requestsarrive; thus, the server interfaceisnot needed. Typically, the program creates a servant
and then activates the object (using the servant and an object1d; the object1d is possibly
system generated) before handing a reference to the object. Such an object might be used to
handle callbacks. Thus, the servant already exists and the object is activated before a request for
the object arrives.

For C++ joint client/servers, instead of invoking the Tp interface to perform certain operations,
client servantsdirectly invoke the ORB and POA (whichiswhat the T interface doesinternally).
Alternately, since much of theinteraction with the ORB and POA isthe samefor all applications,
for ease of use, theclient library providesaconvenience wrapper object that doesthe samethings,
using a single operation. For a discussion of how to use the convenience wrapper object, see
Callback Object Models Supported and Preparing Callback Objects Using OracleWrapper
Callbacks.

Servant Inheritance from Skeletons

In aclient that supports callbacks, as well asin a server, you write aimplementation class that
inherits from the same skeleton class name generated by the IDL compiler (the ia1 command).

C++ Example of Inheritance from Skeletons
Thefollowing is a C++ example, given the IDL:

CORBA Programming Reference 11-3

11-4

interface Hospital{ .. };

The skeleton generated by the id1 command containsa* skeleton” class, poa_Hospital, that the
user-written class inherits from, asin:

class Hospital i : public POA_Hospital { ... };

In aserver, the skeleton classinherits from the TP Framework class Tobj_ServantBase, which
in turn inherits from the predefined PortableServer: : ServantBase.

Theinheritance tree for a callback object implementation in ajoint client/server is different than
that in aserver. The skeleton class does not inherit from the TP Framework class
Tobj_ServantBase, but instead inheritsdirectly from portableServer: : ServantBase. This
behavior is achieved by specifying the -» option in the ia1 command.

Not having the Tobj_servantBase classin the inheritance tree for a servant means that the
servant does not have activate_object and deactivate_object methods. In aserver, these
methods are called by the TP Framework to dynamically initialize and save a servant’s state
beforeinvoking amethod on the servant. For aclient that supports callbacks, you must write code
that explicitly creates a servant and initializes a servant’s state.

Callback Object Models Supported

Oracle Tuxedo CORBA supports four kinds of callback objects and provides wrappers for the
three that are most common. These objects correspond to three combinations of POA policies.
The POA policies control both the types of objects and the types of object references that are
possible.

The POA policiesthat are applicable are:
e The LifeSpanPolicy, which controls how long an object referenceisvalid.

e The IdAssignmentPolicy, which controls who assigns the object 1a—the user or the
system.

These objects are explained primarily in terms of their behavioral characteristics rather thanin
details about how the ORB and the POA handle them. Those details are discussed in the next
sections, using either direct ORB and POA calls (which requires a little extra knowledge of
CORBA servers) or using the OracleWrapper Callbacksinterface, which hidesthe ORB and POA
calls (for users who do not care about the details).

e Transient/Systemld—abject references are valid only for the life of the client process. The
ObjectId isnot assigned by the client application, but is a unique value assigned by the
system. This type of object is useful for invocations that a client wants to receive only until

CORBA Programming Reference

Introduction

the client terminates. (The corresponding POA LifeSpanPolicy value is TrRansTIENT and the
IdAssignmentPolicy is sysTEM_1D.)

e Persistent/Systeml d—object references are valid across multiple activations. The
objectId isnot assigned by the client application, but is aunique value assigned by the
system. Thistype of object and object reference is useful when the client goes up and
down over a period of time. When the client is up, it can receive callback objects on that
particular object reference.

Typically, the client will create the object reference once, saveit in its own permanent
storage area, and reactivate the servant for that object every time it comes up. If used with
an Oracle Tuxedo CORBA Notification Service application, for example, these are
callbacks that correspond to the concept of a persistent subscription; that is, the
Notification Service remembers the callback reference and delivers events any time the
client isup and declaresthat it is again ready to receive events. This allows notification
service subscriptions to survive client failures or offline-time. (The corresponding POA
policy values are PERSISTENT and SYSTEM_ID.)

o Persistent/Userld—thisis the same as Persistent/Systemld with the exception that the
objectId hasto be assigned by the client application. Such an object1da might be, for
exampl e, a database key meaningful only to the client. (The corresponding POA policy
values are PERSISTENT and USER_ID.)

Notes: The Transient/Userld policy combination is not considered particularly important. It is
possible for usersto provide for themselves by using the POA in amanner anal ogous to
either of the persistent cases, but the Oracle Tuxedo wrappers do not provide special help
to do so.

For Oracle Tuxedo CORBA native joint client/servers, neither of the Persistent policies
is supported, only the Transient policy.

Configuring Servers to Call Remote Joint Client/Server
Objects

In order for an Oracle Tuxedo server to call remote joint client/server objects, that is, joint
client/server objectslocated outside the Oracle Tuxedo domain, the server must be configured to
enable outbound I1OP. This capability isenabled by specifying the -o (uppercaseletter O) option
inthe [1OP Server Listener (ISL) server command. Setting the -o option enables outbound
invokes (outbound 110OP) on joint client/server objects that are not connected to an [1OP Listener
Handler (ISH).

CORBA Programming Reference 11-5

11-6

You set ISL command options in the sErRVERS section of the server’ suseconric file. Because
support for outbound 11OP requires a small amount of extra resources, the default is outbound
[1OP disabled. For more information, see “Using the ISL Command to Configure Outbound
[TOP” in Setting Up an Oracle Tuxedo Application and “1sL (1) " in the BEA Tuxedo Command
Reference.

Preparing Callback Objects Using CORBA (C++ Joint
Client/Servers Only)

To set up Oracle Tuxedo C++ callback objects using CORBA, the client must do the following:

1

Establish aconnection with aPOA with the appropriate policiesfor the callback object model.
(This can be the root POA, available by default, or it may require creating a new POA.)

Create a servant (that is, an instance of the C++ implementation class for the interface).

Inform the POA that the servant is ready to accept requests on the callback object.
Technically, this means the client act ivates the object in the POA (that is, puts the servant
and the object1d into the POA’s Active Object Map).

Tell the POA to start accepting requests from the network (that is, activate the POA itself).
Create an object reference for the callback object.

Give out the object reference. This usually happens by making an invocation on another
object with the callback object reference as a parameter (that is, the parameter is a callback
object). That other object will then invoke the callback object (perform acallback invocation)
at some later time.

Assuming that the client already has obtained a reference to the ORB, performing thistask takes
four interactions with the ORB and the POA.. It might look like the model show in Listing 11-1.
In this model, only the Root POA is needed.

Listing 11-1 Transient/Systemld Model

// Create a servant for the callback Object

Catcher_i* my_catcher_i = new Catcher_i();

// Get root POA reference and activate the POA

1

CORBA: :Object_var oref =

orb->resolve_initial_ references ("RootPOA") ;

CORBA Programming Reference

Introduction

2 PortableServer: : POA_var root_poa =
PortableServer: :POA: :_narrow(oref) ;
root_poa -> the_POAManager () -> activate();
PortableServer: :objectId_var temp_0id =
root_poa ->activate_object (my_catcher_i);
5 oref = root_poa->create_reference_with_id(
temp_0id, _tc_Catcher->id());

6 Catcher_var my_ catcher_ref = Catcher::_narrow(oref);

To use the Persistent/Userld model, there are some additional steps required when creating a
POA. Further, theobject1d isspecified by the client, and thisrequires more steps. It might look
like the model shownin Listing 11-2.

Listing 11-2 Persistent/Userld Model

Catcher_i* my_catcher_i = new Catcher_i();
const char* oid_str = "783";
1 PortableServer: :objectId_var oid =
PortableServer: :string_to_objectId(oid_str);
// Find root POA
2 CORBA: :0Object_var oref =
orb->resolve_initial_references ("RootPOA") ;
3 PortableServer: :POA_var root_poa =
PortableServer: :POA: :_narrow(oref) ;
// Create and activate a Persistent/UserId POA
4 CORBA: :PolicyList policies(2);
5 policies.length(2);
6 policies[0] = root_poa->create_lifespan_policy(
PortableServer: :PERSISTENT) ;
7 policies[1l] = root_poa->create_id_assignment_policy(
PortableServer: :USER_ID) ;
8 PortableServer: :POA_var my_poa_ref =
root_poa->create_POA (
"my_poa_ref", root_poa->the_POAManager (), policies);
9 root_poa->the_POAmanager () ->activate() ;

// Create object reference for callback Object

CORBA Programming Reference 1-7

11-8

10 oref = my_poa_ref -> create_reference_with_id(
oid, _tc_Catcher->id());
11 Catcher_var my catcher_ref = Catcher::_narrow(oref);
// activate object
12 my_poa_ref -> activate_object_with_id(oid, my_catcher_i);
// Make the call passing the callback ref

foo -> register_callback (my_catcher_ref);

All the interfaces and operations described here are standard CORBA interfaces and operations.

Preparing Callback Objects Using OracleWrapper
Callbacks

Y ou can use the OracleWrapper callbacks API with to write either C++ joint client/servers.

Using OracleWrapper Callbacks With C++

Because the code required for callback objectsis nearly identical for every client that supports
callbacks, you may find it convenient to use the OracleWrappers provided in thelibrary provided
for joint client/servers.

The OracleWrappers are described in IDL, as shown in Listing 11-3.

Listing 11-3 OracleWrapper IDL

// File: BEAWrapper
#ifndef _BEA_WRAPPER _IDIL_
#define _BEA_WRAPPER _IDL_
#include <orb.idl>

#include <PortableServer.idll>
#pragma prefix “beasys.com”

module BEAWrapper {
interface Callbacks
{
exception ServantAlreadyActive{ };

exception ObjectAlreadyActive { };

CORBA Programming Reference

Introduction

exception NotInRequest{ };

// set up transient callback Object
// —-- prepare POA, activate object, return objref
Object start_transient (
in PortableServer: :Servant Servant,
in CORBA: :RepositoryId rep_id)
raises (ServantAlreadyActive);

// set up persistent/systemid callback Object
Object start_persistent_systemid(

in PortableServer: :Servant servant,
in CORBA: :Repository rep_id,
out string stroid)

raises (ServantAlreadyActive) ;

// reinstate set up for persistent/systemid
// callback object

Object restart_persistent_systemid(

in PortableServer: :Servant servant,
in CORBA: :RepositoryId rep_id,
in string stroid)

raises (ServantAlreadyActive, ObjectAlreadyActive) ;

// set up persistent/userid callback Object
Object start_persistent_userid(

in PortableServer: :Servant servant,
in CORBA: :RepositoryId rep_id,
in string stroid)

raises (ServantAlreadyActive, ObjectAlreadyActive) ;

// stop servicing a particular callback Object
// with the given servant

void stop_object(in PortableServer::Servant servant) ;

//Stop all callback Object processing
void stop_all_objects();

// get oid string for the current request

string get_string o0id() raises (NotInRequest);

CORBA Programming Reference 11-9

}
#endif /* _BEA_WRAPPER _IDL_ */

The OracleWrappers are described in C++ as shown in Listing 11-4.

Listing 11-4 C++ Declarations (in heawrapper.h)

#ifndef _BEAWRAPPER_H_
#define _BEAWRAPPER_H_

#include <PortableServer.h>
class BEAWrapper{
class Callbacks{
public:
Callbacks (CORBA::ORB_ptr init_orb);

CORBA: :Object_ptr start_transient (
PortableServer: :Servant servant,

const char * rep_id) ;

CORBA: :Object_ptr start_persistent_systemid (
PortableServer: :Servant servant,
const char * rep_id,

char * & stroid);

CORBA: :Object_ptr restart_persistent_systemid (
PortableServer: :Servant servant,
const char * rep_id,

const char * stroid) ;

CORBA: :Object_ptr start_persistent_userid (
PortableServer: :Servant servant,
const char * rep_id,

const char * stroid) ;
void stop_object (PortableServer: :Servant servant) ;
char* get_string oid ();

void stop_all_objects();

11-10 CORBA Programming Reference

C++ OracleWrapper Callbacks Interface API

~Callbacks () ;

private:
static CORBA: :0RB_var orb_ptr;

static PortableServer::POA_var root_poa;
static PortableServer::POA_var trasys_poa;
static PortableServer: :POA_var persys_poa;
static PortableServer: :POA_var peruser_poa;
Y
Y
#endif // _BEAWRAPPER_H_

C++ OracleWrapper Callbacks Interface API

This C++ OracleWrapper Callbacks interface API is described in the following sections.

Callbacks

Synopsis
Returns areference to the Callbacks interface.

C++ Binding

BEAWrapper: :Callbacks (CORBA::0RB_ptr init_orb);

Argument

init_orb

The ORB to be used for all further operations.

Exception

CORBA: : IMP_LIMIT
The BEAWrapper: : Callbacks class has already be instantiated with an ORB pointer.
Only one instance of this class can be used in a process. Users who need additional
flexibility should use the POA directly.

CORBA Programming Reference 1-1

Description

The constructor returns a reference to the Callbacks interface. Only one such object should be
created for the process, even if multiple threads are used. Using more than one such object will
result in undefined behavior.

Return Value
A reference to the Callbacks object.

start_transient

Synopsis
Activates an object, setsthe ORB and the POA to the proper state, and returns an object reference
to the activated object.
IDL
Object start_transient(in PortableServer::Servant servant,
in CORBA: :RepositoryId rep_id)
raises (ServantAlreadyActive);
C++ Binding
CORBA: :Object_ptr start_transient(
PortableServer: :Servant servant,
const char* rep_id) ;

Arguments

servant
An instance of the C++ implementation class for the interface.

rep_id
The repository id of the interface.

Exceptions

ServantAlreadyActive
The servant isaready being used for acallback. A servant can be used only for a callback
withasingle object1d. Toreceive callbacks on objects containing different object1ds,
you must create different servants and activate them separately. The same servant can be

11-12 CORBA Programming Reference

C++ OracleWrapper Callbacks Interface API

reused only if astop_object operation tells the system to stop using the servant for its
original objectId.

CORBA: : BAD_ PARAM
Therepository ID wasaNULL string or the servant was a NULL pointer.

Description
This operation performs the following actions:

e Activates an object using the servant supplied to service objects of the type rep_id,
using an objectId generated by the system.

e Setsthe ORB and the POA into the state in which they will accept requests on that object.

e Returns an object reference to the activated object. The returned object reference will be
valid only until the termination of the client or until the callback servant is halted by the
user viathe stop_object operation; after that, invocations on that object reference are no
longer valid and can never be made valid.

Return Value

CORBA: :Object_ptr
A referenceto the object that was created with the object 1d generated by the system and
the rep_ida provided by the user. The object reference will need to be converted to a
specific object type by invoking the _narrow () operation defined for the specific object.
The caller isresponsible for releasing the object when the conversion is done.

start_persistent_systemid

Synopsis
Activates an object, sets the ORB and the POA to the proper state, sets the output parameter
stroid, and returns an object reference to the activated object.

IDL
Object start_persistent_systemid (
in PortableServer: :Servant servant,
in CORBA: :RepositoryId rep_id,
out string stroid)

raises (ServantAlreadyActive);

CORBA Programming Reference 11-13

C++ Binding

CORBA: :Object_ptr start_persistent_systemid (

PortableServer: :Servant servant,
const char* rep_id,
char*& stroid) ;

JArguments

servant

An instance of the C++ implementation class for the interface.
rep_id

The repository 1D of the interface.
stroid

Thisargument is set by the system and is opague to the user. The client will use it when
it reactivates the object at alater time (USiNg restart_persistent_systemid), most
likely after the client process has terminated and restarted.

Exceptions

ServantAlreadyActive

The servant isaready being used for acallback. A servant can be used only for a callback
withasingleobject1d. To receive callbacks on objects containing different object1ds,
you must create different servants and activate them separately. The same servant can be

reused only if a stop operation tells the system to stop using the servant for its original
ObjectId.

CORBA: : BAD_ PARAMETER
Therepository ID wasaNULL string or the servant wasa NULL pointer.

CORBA: : IMP_LIMIT

In addition to other system reasons for this exception, areason uniqueto this situation is

that the joint client/server was not initialized with a port number; therefore, a persistent
object reference cannot be created.

Description

This operation performs the following actions:

e Activates an object using the servant supplied to service objects of the type rep_id,
using an object1d generated by the system.

e Setsthe ORB and the POA into the state in which they will accept requests on that object.

11-14 CORBA Programming Reference

C++ OracleWrapper Callbacks Interface API

e Setsthe output parameter stroid to the stringified version of an object1d assigned by
the system.

e Returns an object reference to the activated object. The returned object reference will be
valid even after termination of the client. That is, if the client terminates, restarts again, and
then activates a servant with the same rep_id and for the same object1d, the servant will
accept requests made on that same object reference. Since the object1d was generated by
the system, the application has to save that object1d.

Return Value

CORBA: :Object_ptr

An object reference created with the object1d generated by the system and the rep_id
provided by the user. The object reference will need to be converted to a specific object
type by invoking the _narrow () operation defined for the specific object. The caller is

responsible for releasing the object when the conversion is done.

restart_persistent_systemid

Synopsis
Activates an object, setsthe ORB and the POA to the proper state, and returns an object reference
to the activated object.
IDL
Object restart_persistent_systemid(
in PortableServer::Servant servant,
in CORBA: :RepositoryId rep_id,
in string stroid)
raises (ServantAlreadyActive, ObjectAlreadyActive);
C++ Binding
CORBA: :Object_ptr restart_persistent_systemid(
PortableServer: :Servant servant,
const char* rep_id
const char* stroid) ;

CORBA Programming Reference

11-15

Arguments

servant
An instance of the C++ implementation class for the interface.

rep_id
Therepository ID of the interface.

stroid
The stringified version of the object1d provided by the user to be set in the object
reference being created. It must have been returned from a previous call on
start_persistent_systemid.

Exceptions

ServantAlreadyActive
The servant isaready being used for acallback. A servant can be used only for acallback
withasingleobject1d. Toreceive callbacks on objects containing different object1ds,
you must create different servants and activate them separately. The same servant can be
reused only if astop_object operation tells the system to stop using the servant for its
original objectId.

ObjectAlreadyActive
The stringified object1d isaready being used for acallback. A given object1d can
have only one servant associated with it. If you wish to change to a different servant, you
must first invoke stop_object with the servant currently in use.

CORBA: : BAD_PARAM
Therepository ID wasaNULL string or the servant wasaNULL pointer or theobject1d
supplied was not previously assigned by the system.

CORBA: : IMP_LIMIT
In addition to other system reasons for this exception, areason unique to this situation is
that the joint client/server was not initialized with a port number; therefore, a persistent
object reference cannot be created.

Description
This operation performs the following actions:

e Activates an object using the servant supplied to service objects of the type rep_id,
using the supplied stroid (astringified object1d), which must have been obtained by a
mEWOUSCd|Onstart_persistent_systemid

e Setsthe ORB and the POA into the state in which they will accept requests on that object.

e Returns an object reference to the object activated.

11-16 CORBA Programming Reference

C++ OracleWrapper Callbacks Interface API

e Thereactivation would be done using the restart_persistent_systemid method.

Return Value

CORBA: :Object_ptr

An object reference created with the stringified objectId stroid and the rep_id
provided by the user. The object reference will need to be converted to a specific object
type by invoking the _narrow () operation defined for the specific object. The caller is

responsible for releasing the object when done.

start_persistent_userid

Synopsis
Activatesan object, setsthe ORB and the POA to the proper state, and returns an object reference
to the activated object.
IDL
Object start_persistent_userid(
portableServer: :Servant a_servant,
in CORBA: :RepositoryId rep_id,
in string stroid)
raises (ServantAlreadyActive, ObjectAlreadyActive);
C++ Binding
CORBA: :Object_ptr start_persistent_userid (
PortableServer: :Servant servant,
const char* rep_id,
const char* stroid) ;
Arguments

servant
An instance of the C++ implementation class for the interface.

rep_id
The repository 1D of the interface.

CORBA Programming Reference

1-17

stroid
The stringified version of an object1d provided by the user to be set in the object
reference being created. The stroid holds application-specific data and is opaque to the
ORB.

Exceptions

ServantAlreadyActive
The servant isaready being used for acallback. A servant can be used only for a callback
withasingleobject1d. Toreceive callbacks on objects containing different object1ds,
you must create different servants and activate them separately. The same servant can be
reused only if astop_object operation tellsthe system to stop using the servant for its
original object1d.

ObjectAlreadyActive
The stringified object1d isaready being used for acallback. A given object1d can
have only one servant associated with it. If you wish to change to a different servant, you
must first invoke stop_object with the servant currently in use.

CORBA: : BAD_PARAM
The repository ID wasaNULL string or the servant wasaNULL pointer.

CORBA: : IMP_LIMIT
In addition to other system reasons for this exception, areason unique to this situation is
that the joint client/server was not initialized with a port number; therefore, a persistent
object reference cannot be created.

Description
This operation performs the following actions:

e Activates an object using the servant supplied to service objects of the type rep_id,
using the object Id stroid.

e Setsthe ORB and the POA into the state in which they will accept requests on that object.

e Returns an object reference to the activated object. The returned object reference will be
valid even after termination of the client. That is, if the client terminates, and restarts again,
and then activates a servant with the same rep_id and for the same object1d, the servant
will accept requests made on that same object reference.

Return Value

CORBA: :Object_ptr
An object reference created with the stringified object1d stroid and the rep_id
provided by the user. The object reference will need to be converted to a specific object

11-18 CORBA Programming Reference

C++ OracleWrapper Callbacks Interface API

type by invoking the _narrow () operation defined for the specific object. The caller is
responsible for releasing the object when the conversion is done.

stop_object

Synopsis
Tellsthe ORB to stop accepting requests on the object that is using the given servant.
IDL
void stop_object(in PortableServer::Servant servant);
C++ Binding
void stop_object (PortableServer: :Servant servant) ;
Argument
servant
An instance of the C++ implementation class for the interface. The association between
this servant and its object1d will be removed from the Active Object Map.
Exceptions
None.
Description

This operation tells the ORB to stop accepting requests on the given servant. It does not matter
what state the servant isin, activated or deactivated; no error is reported.

Note: If you do an invocation on a callback object after you call the stop_object operation,
the oBJECT NOT_EXIST exception isreturned to the caller. Thisis because the
stop_object operation, in effect, deletes the object.

Return Value
None.

stop_all_objects

Synopsis
Tells the ORB to stop accepting requests on all servants.

CORBA Programming Reference 11-19

IDL

void stop_all_objects ();

C++ Binding

void stop_all_objects ();

Exceptions
None.

Description

This operation tells the ORB to stop accepting requests on all servants that have been set up in
this process.

Usage Note

If aclient callsthe ors: : shutdown method, then it must not subsequently call
stop_all_objects.

Return Value
None.

get_string_oid

Synopsis

Requests the string version of the object1d of the current request.
IDL

string get_string oid() raises (NotInRequest) ;
C++ Binding

char* get_string_oid();

JExceptions

NotInRequest
The function was called when the ORB was not in the context of arequest (that is, not
while the ORB was servicing arequest in method code). Do not call this function from
client code. It islegal only during the execution of a method of the callback object (that
is, the servant).

11-20 CORBA Programming Reference

Description

C++ OracleWrapper Callbacks Interface API

This operation returns the string version of the object1d of the current request.

Return Value

char*

~Callback
Synopsis

The string version of the object1d of the current request. Thisis the string that was
supplied when the object reference was created. The string is meaningful to usersonly in
the case when the object reference was created by the start_persistent_userid
function. (That is, the object1d created by start_transient and
start_persistent_systemid were created by the ORB and has no relationship to the
user application.)

S

Destroys the callback object.

C++ Binding

BEAWrapper: :~Callbacks();

JArguments
None.

Exceptions
None.

Description

This destructor destroys the callback object.

Usage Note

If aclient wantsto get rid of the wrapper, but not shut down the ORB, then the client must call
the stop_all_objects method.

Return Value
None.

CORBA Programming Reference 1-21

11-22 CORBA Programming Reference

Development Commands

For adetailed discussion of Oracle Tuxedo development commands, see the Oracle Tuxedo
Command Reference. This document describes al Oracle Tuxedo commands and processes.

A PDF file of the Oracle Tuxedo Command Reference is also provided in the online
documentation.

CORBA Programming Reference 121

12-2 CORBA Programming Reference

cHAPTER@

Mapping of OMG IDL Statements to
C++

This chapter discusses the mappings from OMG IDL statementsto C++.

Note: Some of the information in this chapter is taken from the Common Object Request
Broker: C++ Language Mapping Specification, June 1999, published by the Object
Management Group (OMG). Used with permission of the OMG.

Mappings
OMG IDL-to-C++ mappings are described for the following:
e DataTypes
e Strings

e wchars

wstrings

Constants

Enums

e Structs
e Unions
e Sequences

e Arrays

CORBA Programming Reference 13-1

Exceptions

Mapping of Pseudo-objectsto C++
Usage

Mapping Rules

Relation to the C PIDL Mapping
Typedefs

Implementing Interfaces
Implementing Operations
PortableServer Functions
Modules

Interfaces

Generated Static Member Functions
Object Reference Types

Attributes

Any Type

e Value Type

In addition, the following topics are discussed:

Fixed-length Versus Variable-length User-defined Types
Using var Classes

Using out Classes

e Argument Passing Considerations

Data Types

Each OMG IDL datatypeis mapped to a C++ data type or class.

13-2

CORBA Programming Reference

Mappings

Basic Data Types

The basic datatypesin OMG IDL statements are mapped to C++ typedefs in the CORBA
module, as shown in Table 13-1.

Table 13-1 Basic OMG IDL and C++ Data Types

OMG IDL C++ C++ Out Type

short CORBA: : Short CORBA: : Short_out
long CORBA: :Long CORBA: : Long_out
unsigned CORBA: :UShort CORBA: :UShort_out
short

unsigned CORBA: : ULong CORBA: :ULong_out
long

float CORBA: :Float CORBA: :Float_out
double CORBA: :Double CORBA: :Double_out
char CORBA: :Char CORBA: :Char_out
boolean CORBA: :Boolean CORBA: :Boolean_out
octet CORBA: :Octet CORBA: :Octet_out
wchar CORBA: :WChar CORBA: :WChart_out

Note: On a64-hit machine where along integer is 64 hits, the definition of cora: : Long
would still refer to a 32-hit integer.

Complex Data Types
Object, pseudo-object, and user-defined types are mapped as shown in Table 13-2.

CORBA Programming Reference 13-3

13-4

Tahle 13-2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

OMG IDL C++

Object CORBA: :Object_ptr
struct C++ struct

union C++ class

enum C++ enum

string char *

wstring CORBA: :WChar *
sequence C++ class

array C++ array

The mapping for strings and UDTsis described in more detail in the following sections.

Strings

A string in OMG IDL ismapped to char * in C++. Both bounded and unbounded strings are
mapped to char *. CORBA stringsin C++ are NULL-terminated and can be used wherever a
char * type isused.

If astring is contained within another user-defined type, suchasa struct, itismapped to a
CORBA::String_var type. Thisensuresthat each member in the struct managesits own
memory.

Strings must be allocated and deallocated using the following member functions in the CORBA
class:

® string_alloc
® string_dup
® string_free

Note: Thestring_alloc function allocates 1en+1 characters so that the resulting string has
enough space to hold atrailing NULL character.

CORBA Programming Reference

Mappings

wchars

OMG IDL definesawchar datatypethat encodeswide charactersfrom any character set. Aswith
character data, an implementation is free to use any code set internally for encoding wide
characters, though, again, conversion to another form may be required for transmission. The size
of wchar isimplementation-dependent.

The syntax for defining awchar is:

<wide_char_type> ::= “wchar”

A code example for wchar is:
wchar_t wmixed[256];

Note: Thewchar andwstring datatypesenableuserstointeract with computersintheir native
written language. Some languages, such as Japanese and Chinese, have thousands of
unique characters. These character sets do not fit within abyte. A number of schemes
have been used to support multi-byte character sets, but they have proved to be unwieldy
to use. Wide characters and wide strings make it easier to interact with this kind of
complexity.

wstrings

Thewstring datatype represents a sequence of wchar, except the wide character NULL. The
typewstring issimilar to that of type string, except that its element type iswchar instead of
char. Theactual length of awstring isset at runtime and, if the bounded form is used, must be
less than or equal to the bound.

The syntax for defining awstring is:

<wide_string type> ::= “wstring” “<” <positive_int_const> “>”"
| “wstring

A code example for wstring is:

CORBA: :WString_var v_upper = CORBA::wstring_dup (wmixed) ;

wstring typesare built in typesjust like unsigned long, char, string, double, etc. They can be
used directly as parameters, typedef'd, used to construct structs, sequences, unions, arrays, and so
forth.

Note: Thewchar andwstring datatypesenableuserstointeract with computersintheir native
written language. Some languages, such as Japanese and Chinese, have thousands of
unique characters. These character sets do not fit within abyte. A number of schemes
have been used to support multi-byte character sets, but they have proved to be unwieldy

CORBA Programming Reference 13-5

to use. Wide characters and wide strings make it easier to interact with this kind of
complexity.

Constants

A constant in OMG IDL is mapped to a C++ const definition. For example, consider the
following OMG IDL definition:

// OMG IDL
const string CompanyName = “BEA Systems Incorporated”;

module INVENT

{
const string Name = “Inventory Modules”;

interface Order
{
const long MAX_ORDER_NUM = 10000;
Y

Y

This definition maps to C++ asfollows:
// C++

const char *const

CompanyName = “BEA Systems Incorporated”;

class INVENT
{

static const char *const Name;

class Order : public virtual CORBA::0bject
{
static const CORBA: :Long MAX_ORDER_NUM;

}i
i

Top-level constants areinitialized in the generated .h include file, but module and interface
constants are initialized in the generated client stub modules.

CORBA Programming Reference

Mappings

Thefollowing isan example of avalid referenceto the Mmax_orpER_NUM constant, asdefined in
the previous example:

CORBA: :Long accnt_id = INVENT: :0rder: :MAX_ORDER_NUM;

Enums

Anenumin OMG IDL ismapped to an enum in C++. For example, consider thefollowing OMG
IDL definition:

// OMG IDL

module INVENT
{
enum Reply {ACCEPT, REFUSE};
}

This definition maps to C++ as follows:
// C++

class INVENT
{

enum Reply {ACCEPT, REFUSE};
Y

The following is an example of avalid reference to the enum defined in the previous example.
Y ou refer to enum as follows:

INVENT: :Reply accept_reply;
accept_reply = INVENT: :ACCEPT;

Structs
A struct in OMG IDL is mapped to a C++ struct.

The generated code for a struct depends upon whether it is fixed-length or variable-length. For
more information about fixed-length versus variable-length types, see the section Fixed-length
Versus Variable-length User-defined Types.

CORBA Programming Reference 13-1

Fixed-length Versus Variable-length Structs

A variable-length struct contains an additional assignment operator member function to handle
assignments between two variable-length structs.

For example, consider the following OMG IDL definition:
// OMG IDL

module INVENT

{

// Fixed-length

struct Date
{
long vear;
long month;
long day;
}i

// Variable-length
struct Address
{
string aptNum;
string streetName;
string city;
string state;
string zipCode;
};
};

This definition maps to C++ as follows:
// C++

class INVENT

{

struct Date
{
CORBA: :Long year;
CORBA: :Long month;
CORBA: :Long day;

};

CORBA Programming Reference

Mappings

struct Address
{
CORBA: :String_var aptNum;
CORBA: :String_var streetName;
CORBA: :String_var city;
CORBA: :String_var state;
CORBA: :String var zipCode;
Address &operator=(const Address &_obj);
Y

}i

Member Mapping

Members of a struct are mapped to the appropriate C++ data type. For basic data types (long,
short, and so on), see Table 13-1. For object references, pseudo-object references, and strings, the
member is mapped to the appropriate var class:

® CORBA: :String_var
® CORBA: :0Object_var
All other data types are mapped as shown in Table 13-2.

No constructor for a generated struct exists, so hone of the membersareinitialized. Fixed-length
structs can be initialized using aggregate initialization. For example:

INVENT: :Date a_date = { 1995, 10, 12 };

Variable-length members map to self-managing types; these types have constructors that
initialize the member.

Var
A var classis generated for structs. For more information, see the section Using var Classes.

Out

An out classis generated for structs. For more information, see the section Using out Classes.

Unions

A unionin OMG IDL is mapped to a C++ class. The C++ class contains the following:

CORBA Programming Reference 13-9

Constructors

Destructors

Assignment operators
o Modifiersfor the union value
e Accessors for the union value

e Modifiers and accessors for the union discriminator
For example, consider the following OMG IDL definition:
// OMG IDL

union OrderItem switch (long)
{
case 1: itemStruct itemInfo;
case 2: orderStruct orderInfo;
default: ID idInfo;
Y

This definition maps to C++ as follows:
// C++

class OrderItem
{
public:
OrderItem() ;
OrderItem(const OrderItem &) ;
~OrderItem() ;

OrderItem &operator=(const OrderItem&) ;

void _d (CORBA::Long) ;
CORBA::Long _d () const;

void itemInfo (const itemStruct &);
const itemStruct & itemInfo () const;

itemStruct & itemInfo ();

void orderInfo (const orderStruct &) ;

13-10 CORBA Programming Reference

Mappings

const orderStruct & orderInfo () const;

orderStruct & orderInfo ();

void idInfo (ID);
ID idInfo () const;

i

The default union constructor does not set a default discriminator value for the union; therefore,
you cannot call any union accessor member function until you have set the value of the union.
The discriminator is an attribute that is mapped through the _a member function.

Union Member Accessor and Modifier Member Function Mapping
For each member in the union, accessor and modifier member functions are generated.

In the following code, taken from the previous example, two member functions are generated for
the ID member function:

void idInfo (ID);
ID idInfo () const;

In this example, the first function (the modifier) sets the discriminator to the default value and
sets the value of the union to the specified ID value. The second function, the accessor, returns
the value of the union.

Depending upon the data type of the union member, additional modifier functions are generated.
The member functions generated for each data type are asfollows:

e Basic data types—short, long, unsigned short, unsigned long, float, double, char, boolean,
and octet

The following example generates two member functions for a basic data type with
member name basictype:

void basictype (TYPE) ; // modifier
TYPE basictype () const; // accessor

For the mapping from an OMG IDL data type to the C++ data type TYPE, See Table 13-1.

e Object and pseudo-object

CORBA Programming Reference 13-11

13-12

For object and Typecode types with member name obj type, member functions are
generated as follows:

void objtype (TYPE); // modifier
TYPE objtype () const; // accessor

For the mapping from an OMG IDL data type to the C++ data type TvPpE, see Table 13-1.

The modifier member function does not assume ownership of the specified object reference
argument. Instead, the modifier duplicates the object reference or pseudo-object reference.
You are responsible for releasing the reference when it is no longer required.

Enum

For an enum TypE with member name enumtype, member functions are generated as
follows:

void enumtype (TYPE); // modifier
TYPE enumtype () const; // accessor
String

For strings, one accessor and three modifier functions are generated, as follows:

void stringInfo (char *); // modifier 1
void stringInfo (const char *); // modifier 2
void stringInfo (const CORBA::String var &); // modifier 3

const char * stringInfo () const; // accessor

The first modifier assumes ownership of the char * parameter passed to it and the union
isresponsible for calling the corBa: :string_free member function on this string when
the union value changes or when the union is destroyed.

The second and third modifiers make a copy of the specified string passed in the parameter
or contained in the string var.

The accessor function returns a pointer to internal memory of the union; do not attempt to

free this memory, and do not access this memory after the union value has been changed or
the union has been destroyed.

Struct, union, sequence, and any

For these data types, modifier and accessor functions are generated with references to the

CORBA Programming Reference

Mappings

type, asfollows:

void reftype (TYPE &) ; // modifier
const TYPE & reftype () const; // accessor
TYPE & reftype (); // accessor

The modifier function does not assume ownership of theinput type parameter; instead,
the function makes a copy of the data type.

o Array

For an array, the modifier member function accepts an array pointer while the accessor
returns a pointer to an array slice, asfollows:

void arraytype (TYPE); // modifier
TYPE_slice * arraytype () const; // accessor

The modifier function does not assume ownership of theinput type parameter; instead,
the function makes a copy of the array.

Var
A var classis generated for aunion. For more information, see the section Using var Classes .

Out

An out classis generated for aunion. For more information, see the section Using out Classes.

Member Functions

In addition to the accessor and modifiers, the following member functions are generated for an
OMG IDL union of type Type with switch (long) discriminator:

TYPE() ;
Thisisthe default constructor for aunion. No default discriminator is set by thisfunction,
SO you cannot access the union until you set the value of the union.

TYPE(const TYPE & From) ;
This copy constructor deep copies the specified union. Any datain the union parameter is
copied. The From argument specifies the union to be copied.

~TYPE() ;
This destructor frees the data associated with the union.

CORBA Programming Reference 13-13

TYPE &operator=(const TYPE & From) ;
This assignment operator copies the specified union. Any existing value in the current
union is freed. The From argument specifies the union to be copied.

void _d (CORBA::Long Discrim) ;
This modifier function sets the value of the union discriminant. The piscrim argument
specifiesthe new discriminant. The datatype of the argument is determined by the OMG
IDL data type specified in the switch statement of the union. For each OMG IDL data
type, see Table 13-1 for the C++ data type.

Only use this function to set the discriminant to a value within the same union member.
Y ou cannot use this function to implicitly switch between different union members.

These regtrictions areillustrated by the following code:

union U switch(long) {
case 1:
case 2:
short s;
case 3:
int 1it;

}i

short st;

U u;

u.s(1296); // member "s" selected

st = u.s(); // st == 1296

u._d(2); // OK: member "s" still selected

st = u.s(); // st == 1296

u._d(3); // BAD_PARAM: selecting a different member

Whenthe_a () modifier isinvoked on anew instance of aunion, Tuxedo C++ relaxesthe
"implicit switching" restriction. In this case, no exception is thrown, and the union is not

affected.

U u2;

u2._d(l); // no exception, union is unchanged

st = u2.s(); // error! accessing an uninitialized union

u2.1t(1296); // OK: member "it" now selected

CORBA::Long _d () const;
This function returns the current discriminant value. The data type of the return valueis
determined by the OMG IDL datatype specified in the switch statement of the union. For
each OMG IDL datatype, see Table 13-1 for the C++ data type.

13-14 CORBA Programming Reference

Mappings

Sequences

A sequencein OMG IDL is mapped to a C++ class. The C++ class contains the following:

e Constructors
Each sequence has the following:
— A default constructor
— A constructor that initializes each element

— A copy constructor

Destructors

Modifiersfor current length (and for maximum, if the sequence is unbounded)
e Accessors for current length
e operator [] functionsto access or modify sequence elements
o Allocation and deall ocation member functions

Y ou must set the length before accessing any elements.

For example, consider the following OMG IDL definition:

// OMG IDL

module INVENT
{

typedef sequence<LogItem> LogList;
}

This definition maps to C++ as follows:

// C++

class LogList
{
public:
// Default constructor
LogList();

// Maximum constructor

LogList (CORBA: :ULong _max) ;

CORBA Programming Reference 13-15

13-16

Y

// TYPE * data constructor
LogList
(
CORBA: :ULong _max,
CORBA: :ULong _length,
LogItem *_value,
CORBA: :Boolean _relse = CORBA_FALSE
) ;

// Copy constructor

LogList (const LogListé&) ;

// Destructor
~LogList () ;

LogList &operator=(const LogList&);
CORBA: :ULong maximum() const;

void length (CORBA: :ULong) ;
CORBA: :ULong length() const;

LogItem &operator[] (CORBA::ULong _index) ;
const LogItem &operator[] (CORBA::ULong _index) const;

static LogItem *allocbuf (CORBA::ULong _nelems) ;
static void freebuf (LogItem *);
I

Sequence Element Mapping

The operator (] functionsare used to access or modify the sequence element. These operators
return a reference to the sequence element. The OMG IDL sequence base type is mapped to the

appropriate C++ datatype.

For basic datatypes, see Table 13- 1. For object references, TypeCode references, and strings, the
base type is mapped to agenerated _rForseq _var class. The _Forseq_var class providesthe
capability to update a string or an object that is stored within the sequence. This generated class
has the same member functions and signatures as the corresponding var class. However, this
_ForSeq_var class honorsthe setting of the release parameter in the sequence constructor. The
distinctionisthat the _rForseq_var classlets users specify the release flag, thereby alowing

usersto control the freeing of memory.

CORBA Programming Reference

Mappings

All other data types are mapped as shown in Table 13-2.

Vars

A var classis generated for a sequence. For more information, see the section Using var Classes.

Out

Anout classisgenerated for asequence. For more information, see the section Using out Classes.

Member Functions

For agiven OMG IDL sequence SEQ with base type TypE, the member functions for the
generated sequence class are described as follows:

SEQ ();
Thisisthe default constructor for asequence. Thelengthisset to 0 (zero). If the sequence
is unbounded, the maximum is also set to 0 (zero). If the sequence is bounded, the
maximum is specified by the OMG IDL type and cannot be changed.

SEQ (CORBA: :ULong Max) ;
Thisconstructor is present only if the sequenceis unbounded. Thisfunction setsthelength
of the sequenceto 0 (zero) and sets the maximum of the buffer to the specified value. The
Max argument specifies the maximum length of the sequence.

SEQ (CORBA: :ULong Max, CORBA::ULong Length, TYPE * Value,
CORBA: :Boolean Release);
This constructor sets the maximum, length, and elements of the sequence. TheRelease
flag determines whether elements are released when the sequence is destroyed.
Explanations of the arguments are as follows:

Max
The maximum val ue of the sequence. This argument is not present in bounded
sequences.

Length
Thecurrent length of the sequence. For bounded sequences, thisvalue must beless
than the maximum specified in the OMG IDL type.

Value
A pointer to the buffer containing the elements of the sequence.

Release

Determineswhether elementsarereleased. If thisflag hasavalueof corBa_TRUE,
the sequence assumes ownership of the buffer pointed to by the vaiue argument.

CORBA Programming Reference 13-17

13-18

If therelease flagis corBa_ TRUE, this buffer must be allocated using the
allocbuf member function, becauseit will befreed usingthe freebuf member
function when the sequence is destroyed.

SEQ (const S& From) ;
This copy constructor deep copies the sequence from the specified argument. The From
argument specifies the sequence to be copied.

~SEQ();
This destructor frees the sequence and, depending upon the release flag, may free the
sequence elements.

SEQ& operator=(const SEQ& From) ;
Thisassignment operator deep copi esthe sequence from the specified sequence argument.
Any existing elements in the current sequence are released if the Release flagin the
current sequenceisset to corBa_TRUE. The From argument specifies the sequence to be
copied.

CORBA: :ULong maximum() const;
This function returns the maximum of the sequence. For a bounded sequence, thisisthe
value set inthe OMG IDL type. For an unbounded sequence, thisisthe current maximum
of the sequence.

void length (CORBA: :ULong Length) ;
This function sets the current length of the sequence. The Length argument specifiesthe
new length of the sequence. If the sequence is unbounded and the new length is greater
than the current maximum, the buffer isreallocated and the el ements are copied to the new
buffer. If the new length is greater than the maximum, the maximum is set to the new
length.

For a bounded sequence, the length cannot be set to a value greater than the maximum.

CORBA: :ULong length() const;
This function returns the current length of the sequence.

TYPE & operator[] (CORBA: :ULong Index) ;

const TYPE & operator[] (CORBA: :ULong Index) const;
These accessor functionsreturn areference to the sequence element at the specified index.
The Index argument specifies the index of the element to return. Thisindex cannot be
greater than the current sequence length. The length must have been set either using the
TYPE * constructor or the 1ength (CORBA: : ULong) modifier. If TypE isan object
reference, TypeCode reference, or string, the return type will be arorseq_var class.

CORBA Programming Reference

Mappings

static TYPE * allocbuf (CORBA::ULong NumElems) ;
This static function allocates a buffer to be used with the Tvpe * constructor. The
NumElems argument specifies the number of elementsin the buffer to allocate. If the
buffer cannot be allocated, NULL isreturned.

If this buffer is not passed to the Tvpe * constructor with release set to CORBA_TRUE, it
should be freed using the freebuf member function.

static void freebuf (TYPE * Value) ;
This static function freesa rype * sequence buffer allocated by the allocbuf function.
The value argument specifiesthe Tvre * buffer allocated by the allocbuf function.
A 0 (zero) pointer isignored.

Arrays

Anarray in OMG IDL ismapped to aC++ array definition. For example, consider the following
OMG IDL definition:

// OMG IDL

module INVENT
{

typedef LogItem LogArray[10];
Y

This definition maps to C++ asfollows:
// C++

module INVENT
{

typedef LogItem LogArray[10];
typedef Logltem LogArray_slice;
static LogArray_slice * LogArray_alloc (void) ;

static void LogArray_ free(LogArray_slice *data);

CORBA Programming Reference 13-19

13-20

Array Slice

A dlice of an array is an array with all the dimensions of the original array except the first
dimension. The member functionsfor the array-generated classes use apointer to aslicetoreturn
pointersto an array. A typedef for each diceis generated.

For example, consider the following OMG IDL definition:

// OMG IDL
typedef LogItem LogMultiArray[5][10];

This definition maps to C++ as follows:

// C++
typedef LogItem LogMultiArray[5][10];
typedef LogItem LogMultiArray slice[10];

If you have a one-dimensional array, an array dliceisjust atype. For example, if you had a
one-dimensional array of long, an array slice would result in acorBsa: : Long datatype.

Array Element Mapping

Thetype of the OMG IDL array is mapped to the C++ array element type in the same manner as
structs. For more information, see the section Member Mapping.

Vars
A var classis generated for an array. For more information, see the section Using var Classes.

Out

An out classis generated for an array. For more information, see the section Using out Classes.

Allocation Member Functions

For each array, there are two static functions for array allocation and deallocation. For agiven
OMG IDL type TvPE, the alocation and deallocation routines are as follows:

static TYPE slice * TYPE alloc (void);
Thisfunction allocates a TypE array, returning a pointer to the allocated rver array. If the
array cannot be dynamically allocated, O (zero) is returned.

static volid TYPE free(TYPE slice * Value);
Thisfunction freesadynamically alocated TvrE array. The value argument isapointer
to the dynamically allocated TvpE array to be freed.

CORBA Programming Reference

Mappings

Exceptions

An exception in OMG IDL is mapped to a C++ class. The C++ class contains the following:
e Constructors
e Destructors

e A static _narrow function, to determine the type of exception

The generated classis similar to avariable-length structure, but with an additional constructor to
simplify initialization, and with the static _narrow member function to determine the type of
UserException.

For example, consider the following OMG IDL definition:
// OMG IDL

module INVENT
{
exception NonExist
{
ID BadId;
Y
}i

This definition maps to C++ as follows:
// C++

class INVENT
{

class NonExist : public CORBA: :UserException

{

public:
static NonExist * _narrow(CORBA::Exception_ptr);
NonExist (ID _BRadId);
NonExist () ;
NonExist (const NonExist &) ;
~NonExist ();
NonExist & operator=(const NonExist &) ;

void _raise ();

CORBA Programming Reference 13-21

13-22

ID BadId;

I

Attributes (data members) of the Exception class are public, so you may access them directly.

Member Mapping

Members of an exception are mapped in the same manner as structs. For more information, see
Member Mapping.

All exception members are public datain the C++ class, and are accessed directly.

Var

A var classisgenerated for an exception. For moreinformation, seethe section Using var Classes.

Out

An out classis generated for an exception. For more information, see the sectionUsing out
Classes.

Member Functions
For agiven OMG IDL exception TvpE, the generated member functions are as follows:

static TYPE * _narrow (CORBA::Exception_ptr Except) ;
Thisfunction returns apointer to a TvrE exception classif the exception can be narrowed
to a TvpE exception. If the exception cannot be narrowed, 0 (zero) isreturned. The TyrE
pointer isnot apointer to anew class. Instead, itisatyped pointer to the original exception
pointer and isvalid only as long as the Except parameter isvalid.

TYPE ();
Thisisthedefault constructor for the exception. Noinitialization of membersisperformed
for fixed-length members. V ariable-length members map to self-managing types; these
types have constructors that initialize the member.

TYPE (member-parameters) ;
This constructor has an argument for each of the membersin the exception. The
constructor copies each argument and does not assume ownership of the memory for any
argument. Building on the previous example, the signature of the constructor is:
NonExist (ID _BadId);

CORBA Programming Reference

Mappings

Thereisone argument for each member of the exception. Thetype and parameter-passing
mechanism are identical to the Any insertion operator. For information about the Any
insertion operator, see the section Insertion into Any.

TYPE (const TYPE & From) ;
This copy constructor copies the data from the specified TvpE exception argument. The
From argument specifies the exception to be copied.

~TYPE () ;
This destructor frees the data associated with the exception.

TYPE & operator=(const TYPE & From) ;
This assignment operator copies the data from the specified TypE exception argument.
The rFrom argument specifies the exception to be copied.

void _raise ();
This function causes the exception instance to throw itself. A catch clause
can catch it by a more derived type.

Mapping of Pseudo-objects to C++

CORBA pseudo-objects may be implemented either as normal CORBA aobjects or as serverless
objects. In the CORBA specification, the fundamental differences between these strategies are:

e Serverless object types do not inherit from corBa: : Object.
e Individual serverless objects are not registered with any ORB.

e Serverless objects do not necessarily follow the same memory management rules as for
regular IDL types.

References to serverless objects are not necessarily valid across computational contexts; for
example, address spaces. Instead, references to serverless objects that are passed as parameters
may result in the construction of independent, functionally identical copies of objects used by
receivers of these references. To support this, the otherwise hidden representational properties
(such as data layout) of serverless objects are made known to the ORB. Specifications for
achieving this are not contained in this chapter; making serverless objects known to the ORB is
an implementation detail.

This chapter provides a standard mapping algorithm for al pseudo-object types. This avoidsthe
need for piecemeal mappings for each of the nine CORBA pseudo-object types, and
accommodates any pseudo-object types that may be proposed in future revisions of CORBA. It
also avoids representation dependence in the C mapping, while still allowing implementations
that rely on C-compatible representations.

CORBA Programming Reference 13-23

13-24

Usage

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to describe
serverless object types. Interfaces for pseudo-object typesfollow the same rules as normal OMG
IDL interfaces, with the following exceptions:

e They are prefaced by the keyword pseudo.

e Their declarations may refer to other! serverless object types that are not otherwise
necessarily allowed in OMG IDL.

The pseudo prefix meansthat the interface may be implemented in either anormal or serverless
fashion. That is, apply either the rules described in the following sections, or the normal mapping
rules described in this chapter.

Mapping Rules

Serverless objects are mapped in the same way as normal interfaces, except for the differences
outlined in this section.

Classes representing serverless object types are not subclasses of corBa: : 0bject, and are not
necessarily subclasses of any other C++ class. Thus, they do not necessarily support, for example,
the object: :create_request operation.

For each class representing a serverless object type T, overloaded versions of the following
functions are provided in the CORBA namespace:

// C++
void release(T_ptr);

Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users, athough
subclasses can be provided by implementations. |mplementations are allowed to make
assumptions about internal representations and transport formats that may not apply to
subclasses.

The member functions of classes representing serverless object types do not necessarily obey the
normal memory management rules. This is because some serverless objects, such as

CORBA: :NVList, are essentially just containers for several levels of other serverless objects.
Requiring callersto explicitly free the values returned from accessor functions for the contained

cansorlace nhiorte winiild ha cnnintar tn thair intandad 11icana

1. In particular, exception used as a data type and a function name.

CORBA Programming Reference

Mappings

All other elements of the mapping are the same. In particular:

e Thetypes of references to serverless objects, T_ptr, may or may not simply be atypedef
of T,

e Each mapped class supports the following static member functions:

// C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();

e Legal implementations of _duplicate include simply returning the argument or
constructing references to a new instance. Individual implementations may provide
stronger guarantees about behavior.

e The corresponding C++ classes may or may not be directly instantiable or have other
instantiation constraints. For portability, users should invoke the appropriate constructive
operations.

e Aswith normal interfaces, assignment operators are not supported.

e Although they can transparently employ “copy-style” rather than “reference-style”
mechanics, parameter passing signatures and rules as well as memory management rules
areidentical to those for normal objects, unless otherwise noted.

Relation to the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct analogsin the C
mapping. The mapped C++ classes can, but need not, be implemented using representations
compatible to those chosen for the C mapping. Differences between the pseudo-object
specifications for C-PIDL and C++ PIDL are as follows:

e C++ PIDL callsfor removal of representation dependencies through the use of interfaces
rather than structs and typedefs.

e C++ PIDL calsfor placement of operations on pseudo-objectsin their interfaces, including
afew cases of redesignated functionality as noted.

e InC++ PIDL, release performsthe role of the associated free and delete Operationsin
the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are provided in the
following sections. Further details, including definitions of types referenced but not defined
below, may be found in the relevant sections of this document.

CORBA Programming Reference 13-25

13-26

Typedefs

A typedef in OMG IDL ismapped to atypedef in C++. Depending uponthe OMG IDL datatype,
additional typedefsand member functions may be defined. The generated code for each datatype
isasfollows:

e Basic data types (short, long, unsigned short, unsigned long, float, double, char, boolean,
and octet)

Basic data types map to a simple typedef. For example:

// OMG IDL
typedef long ID;

// C++
typedef CORBA::Long ID;

e string
A string typedef is mapped to a simple typedef. For example:

// OMG IDL
typedef string IDStr;

// C++
typedef char * IDStr;
e object, interfaces, TypeCode
Object, interfaces, and TypeCode types are mapped to four typedefs. For example:

// OMG IDL
typedef Item Intf;

// C++

typedef Item Intf;

typedef Item ptr Intf ptr;
typedef Item_var Intf_ var;
typedef Item ptr & Intf _out;

e enum, struct, union, sequence

UDTs are mapped to three typedefs. For example:

// OMG IDL
typedef LogList ListRetType;

// C++

typedef LogList ListRetType;

typedef LogList_var ListRetType_var;
typedef LogList_out & ListRetType_out;

CORBA Programming Reference

Mappings

e array
Arrays are mapped to four typedefs and the static member functions to allocate and free
memory. For example:

// OMG IDL
typedef LogArray ArrayRetType;

// C++

typedef LogArray ArrayRetType;

typedef LogArray var ArrayRetType_var;
typedef LogArray_ forany ArrayRetType_forany;
typedef LogArray_ slice ArrayRetType_slice;
ArrayRetType_slice * ArrayRetType_alloc();
void ArrayRetType_free (ArrayRetType_slice *);

Implementing Interfaces
An operation in OMG IDL is mapped to a C++ member function.

The name of the member function is the name of the operation. The operation is defined as a
member function in both the interface class and the stub class. The interface classis virtual; the
stub class inherits from the virtual class and contains the member function code from the client
application stub. When an operation isinvoked on the object reference, the code contained in the
corresponding stub member function executes.

For example, consider the following OMG IDL definition:
// OMG IDL

module INVENT
{

interface Order
{

ItemList modifyOrder (in ItemList ModifyList);
}i
}i

This definition maps to C++ asfollows:
// C++

class INVENT
{

CORBA Programming Reference 13-27

13-28

class Order : public virtual CORBA::0bject
{

virtual ItemList * modifyOrder (
const ItemList & ModifyList) = 0;
}i
}i

class Stub_Order : public Order
{

ItemList * modifyOrder (
const ItemList & ModifyList);
}i

The generated client application stub then contains the following generated code for the stub
class:

// ROUTINE NAME: INVENT: : Stub_Order: :modifyOrder
//

// FUNCTIONAL DESCRIPTION:

//

// Client application stub routine for operation
// modifyOrder.
// (Interface : Order)

INVENT: :ItemList * INVENT::Stub_Order::modifyOrder (
const INVENT::ItemList & ModifyList)

Argument Mapping

Each of the arguments in an operation is mapped to the corresponding C++ type as described in
Table 13-1 and Table 13-2.

The parameter passing modes for arguments in an operation are described in Table 13-7 and
Table 13-8.

CORBA Programming Reference

Mappings

Implementing Operations

The signature of an implementation member function is the mapped signature of the OMG IDL
operation. Unlike the client side, the server-side mapping requires that the function header
include the appropriate exception (throw) specification. Thisrequirement allowsthe compiler to
detect when an invalid exception israised, which is necessary in the case of alocal C++-to-C++
library call (otherwise, the call would have to go through a wrapper that checks for avalid
exception). For example:

// IDL

interface A

{

exception B {};

void f() raises(B);

Y

// C++

class MyA : public virtual POA_A

{
public:
void f() throw(A::B, CORBA::SystemException) ;

Y
Since al operations and attributes may throw CORBA system exceptions,

CORBA: : SystemException Must appear in all exception specifications, even when an operation
hasno raises clause.

Within amember function, the“this’ pointer refersto theimplementation object’ sdataas defined
by the class. In addition to accessing the data, a member function may implicitly call another
member function defined by the same class. For example:

// IDL
interface A
{

void f();

void g();
Y

CORBA Programming Reference 13-29

13-30

// C++
class MyA : public virtual POA_A
{

public:

void f() throw(SystemException) ;

void g () throw(SystemException) ;
private:

long x_;

}:

void

MyA::f() throw(SystemException)
{

this->x_ = 3;

this->g();

}

However, when a servant member function isinvoked in thismanner, it isbeing called smply as
a C++ member function, not as the implementation of an operation on a CORBA object. In such
acontext, any information available viathe roa_current object refers to the CORBA request
invocation that performed the C++ member function invocation, not to the member function
invocation itself.

Skeleton Derivation from Object

In several existing ORB implementations, each skeleton class derives from the corresponding
interface class. For example, for interface mod: : a, the skeleton class poa_Mod: : A isderived
from classMod : : A. These systems, therefore, allow an object reference for a servant to be
implicitly obtained via normal C++ derived-to-base conversion rules:

// C++
MyImplOfA my_a; // declare impl of A
A_ptr a = &my_a; // obtain its object reference

// by C++ derived-to-base conversion

Such code can be supported by a conforming ORB implementation, but it is not required, and is
thus not portable. The equivalent portable code invokes _this () on theimplementation object
to implicitly register it if it has not yet been registered, and to get its object reference;

CORBA Programming Reference

Mappings

// C++
MyImplOfA my_a; // declare impl of A
A_ptr a = my_a._this(); // obtain its object reference

PortableServer Functions

Objects registered with POASs use sequences of octet, specifically the

PortableServer: : POA: : ObjectId type, as object identifiers. However, because C++
programmers often want to use strings as object identifiers, the C++ mapping provides several
conversion functions that convert stringsto object1d and vice versa

// C++
namespace PortableServer

{
char* ObjectId_to_string(const ObjectId&) ;

ObjectId* string_to_ObjectId(const char*);
}

These functions follow the normal C++ mapping rules for parameter passing and memory
management.

If conversion of an object1dtoastring would result inillegal charactersinthestring (suchasa
NULL), thefirst two functions throw the corBa : : BAD_PARAM exception.

Modules

A modulein OMG IDL is mapped to a C++ class. Objects contained in the module are defined
within this C++ class. Because interfaces and types are also mapped to classes, nested C++
classes result.

For example, consider the following OMG IDL definition:
// OMG IDL

module INVENT
{

interface Order

CORBA Programming Reference 13-31

13-32

This definition maps to C++ asfollows:
// C++

class INVENT
{

class Order : public virtual CORBA::0Object
{

}; // class Order
}; // class INVENT

Multiple nested modulesyield multiple nested classes. Anything inside the module will bein the
module class. Anything inside the interface will be in the interface class.

OMG IDL allows modules, interfaces, and types to have the same name. However, when
generating files for the C++ language, having the same name is not allowed. Thisrestriction is
necessary because the OMG IDL names are generated into nested C++ classes with the same
name; thisis not supported by C++ compilers.

Note: The Oracle Tuxedo OMG IDL compiler outputs an informational message if you
generate C++ code from OMG IDL with an interface or type with the same name as the
current module name. If you ignore this informational message and do not use unique
names to differentiate the interface or type from the module name, the compiler will
signal errors when compiling the generated files.

Interfaces

Aninterfacein OMG IDL is mapped to a C++ class. This class contains the definitions of the
operations, attributes, constants, and user-defined types (UDTs) contained in the OMG IDL
interface.

For an interface INTF, the generated interface code contains the following items:
e Object reference type (INTF_ptr)
o Object reference variable type (znTF_var)
e duplicate static member function
e narrow Static member function

e _nil static member function

CORBA Programming Reference

Mappings

e UDTs

o Member functions for attributes and operations
For example, consider the following OMG IDL definition:
// OMG IDL

module INVENT
{
interface Order
{
void cancelOrder () ;
}i
}s

This definition maps to C++ as follows:

// C++
class INVENT
{

class Order;

typedef Order * Order_ptr;

class Order : public virtual CORBA::0Object
{

static Order_ptr _duplicate(Order_ptr obj);
static Order_ptr _narrow (CORBA::0bject_ptr obj);
static Order_ptr _nil();

virtual void cancelOrder () = 0;
}i
}i

The object reference types and static member functions are described in the following sections,
asare UDTSs, operations, and attributes.

Generated Static Member Functions

This section describesin detail the generated static member functions: _duplicate, _narrow,
and _nil for aninterface INTF.

CORBA Programming Reference 13-33

13-34

static INTF ptr _duplicate (INTF ptr Obj)
This static member function duplicates an existing INTF object reference and returns a
new INTF object reference. The new INTF object reference must be released by calling
the corBa: :release member function. If an error occurs, areferenceto thenil INTF
object isreturned. The argument obj specifies the object reference to be duplicated.

static INTF ptr _narrow (CORBA::0bject_ptr Obj)
This static member function returns a new INTF object reference given an existing
CORBA: :Object_ptr Object reference. Theobject_ptr object reference may have been
created by acall tothecorBa: : ORB: : string_to_object member function or may have
been returned as a parameter from an operation.

The nTF_ptr object reference must correspond to an INTF object or to an object that
inheritsfrom the INTF object. The new INTF object reference must be released by calling
the CORBA: : release member function. The argument ob; specifiesthe object reference
to be narrowed to an INTF object reference. The obj parameter is not modified by this
member function and should be released by the user when it isno longer required. If obj
cannot be narrowed to an INTF object reference, the INTF nil object referenceisreturned.

static INTF ptr _nil ()
This static member function returns the new nil object reference for the INTF interface.
The new reference does not have to be released by calling the corsa: : release member
function.

Object Reference Types

Aninterface class (INTF) isavirtua class; the CORBA standard does not allow you to:
e Create or hold an instance of the interface class

e Use apointer or areference to the interface class

Instead, you use one of the object reference types, InTF_ ptr OF INTF_var class.
Y ou can obtain an object reference by using the _narrow static member function. Operations
are invoked on these classes using the arrow operator (->).

The InTF_var class simplifies memory management by automatically rel easing the object
reference when the Tnrr_var class goes out of scope or isreassigned. Variable types are
generated for many of the UDTs and are described in Using var Classes.

Attributes

A read-only attributein OMG IDL is mapped to a C++ function that returns the attribute value.
A read-write attribute maps to two overloaded C++ functions, one to return the attribute value

CORBA Programming Reference

Mappings

and one to set the attribute value. The name of the overloaded member function is the name of
the attribute.

Attributes are generated in the same way that operations are generated. They are defined in both
the virtual and the stub classes. For example, consider the following OMG IDL definition:

// OMG IDL

module INVENT
{

interface Order

{

attribute itemStruct itemInfo;
I
}i

This definition maps to C++ as follows:
// C++

class INVENT
{

class Item : public virtual CORBA: :0Object
{

virtual itemStruct * itemInfo () = 0;

virtual void itemInfo (
const itemStruct & itemInfo) = 0;
Yi
i
class Stub_TItem : public Item
{

itemStruct * itemInfo ();

void itemInfo (

const itemStruct & itemInfo);

}i

CORBA Programming Reference 13-35

The generated client application stub then contains the following generated code for the stub

class:

// ROUTINE NAME: INVENT: : Stub_TItem::itemInfo
//

// FUNCTIONAL DESCRIPTION:

//

// Client application stub routine for attribute

// INVENT: :Stub_Item::itemInfo. (Interface : Item)

INVENT: :itemStruct * INVENT::Stub_Item::itemInfo ()
{

}

//

// ROUTINE NAME: INVENT: : Stub_Item::itemInfo
//

// FUNCTIONAL DESCRIPTION:

//

// Client application stub routine for attribute
// INVENT: :Stub_Item::itemInfo. (Interface : Item)

void INVENT: :Stub_Item::itemInfo (
const INVENT::itemStruct & itemInfo)

Argument Mapping

An attributeis equivalent to two operations, one to return the attribute and one to set the attribute.
For example, the i temInfo attribute listed aboveis equivalent to:

void itemInfo (in itemStruct itemInfo) ;

itemStruct itemInfo ();

The argument mapping for the attribute is the same as the mapping for an operation argument.
The attribute is mapped to the corresponding C++ type as described in Table 13-1 and

Table 13-2. The parameter passing modes for arguments in an operation are described in
Table 13-7 and Table 13-8.

13-36 CORBA Programming Reference

Mappings

Any Type

An any in OMG IDL is mapped to the COrRBA: : any class. The CORBA: : any class handles C++
typesin atype-safe manner.

Handling Typed Values

To decrease the chances of creating an any with amismatched TypeCode and value, the C++
function overloading facility is utilized. Specifically, for each distinct type in an OMG IDL
specification, overloaded functions to insert and extract values of that type are provided.
Overloaded operators are used for these functionsto completely avoid any name space pollution.
The nature of these functions, which are described in detail below, is that the appropriate
TypeCodeisimplied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function overloading, it
requires C++ types generated from OMG IDL specifications to be distinct. However, there are
special casesin which this requirement is not met:

e The Boolean, octet, and char OMG IDL types are not required to map to distinct C++
types, which means that a separate means of distinguishing them from each other for the
purpose of function overloading is necessary. The means of distinguishing these types from
each other is described in Distinguishing Boolean, Octet, Char, and Bounded Strings.

e Sinceall strings are mapped to char* regardless of whether they are bounded or
unbounded, another means of creating or setting an any with abounded string value is
necessary. Thisis described in Distinguishing Boolean, Octet, Char, and Bounded Strings.

e In C++, arrays within afunction argument list decay into pointersto their first elements.
This means that function overloading cannot be used to distinguish between arrays of
different sizes. The meansfor creating or setting an any when dealing with arraysis
described below and in Arrays.

Insertion into Any

To dlow avalueto be set in an any in atype-safe fashion, the following overloaded operator
function is provided for each separate OMG IDL type T:

// C++
void operator<<=(Any&, T);

This function signature suffices for the following types, which are usually passed by value:

® Short, UShort, Long, ULong, Float, Double

CORBA Programming Reference 13-37

13-38

e Enumerations
e Unbounded strings (char* passed by value)

e Object references (T_ptr)

For valuesof type T that aretoo large to be passed by value efficiently, two forms of theinsertion
function are provided:

// C++
void operator<<=(Any&, const T&); // copying form
void operator<<=(Any&, T*); // non-copying form

Note that the copying form is largely equivaent to the first form shown, as far asthe caller is
concerned.

These “left-shift-assign” operators are used to insert atyped value into an any, asfollows:

// C++
Long value = 42;
Any a;

a <<= value;

In this case, the version of operator<<= overloaded for type Long sets both the value and the
TypeCode properly for the Any variable.

Setting avaluein an any using operator<<= meansthe following:

e For the copying version of operator<<=, thelifetime of the valuein the Any is
independent of the lifetime of the value passed to operator<<=. The implementation of
the Any does not store its value as areference or a pointer to the value passed to
operator<<=.

e For the noncopying version of operator<<=, theinserted T is consumed by the Any. The
caller may not use the T* to access the pointed-to data after insertion because the Any
assumes ownership of T*, and the Any may immediately copy the pointed-to dataand
destroy the original.

e With both the copying and noncopying versions of operator<<=, any previous vaue held
by the any is properly deallocated. For example, if the any (TypeCode_ptr,void*, TRUE)
constructor (described in Handling Untyped Values) were called to create the any, the any
isresponsible for deallocating the memory pointed to by thevoid* before copying the new
value.

Copying insertion of a string type causes the following function to be invoked:

CORBA Programming Reference

Mappings

// C++
void operator<<=(Any&, const char*);

Since al string types are mapped to char*, thisinsertion function assumes that the value being
inserted is an unbounded string. Distinguishing Boolean, Octet, Char, and Bounded Strings
describes how bounded strings may be correctly inserted into an any. Noncopying insertion of
both bounded and unbounded strings can be achieved using the any : : from_string helper type
described in Distinguishing Boolean, Octet, Char, and Bounded Strings.

Type-safe insertion of arrays usesthe array_forany types described in Arrays. The ORB
provides aversion of operator<<= overloaded for each array_forany type. For example:

// IDL
typedef long LongArray([4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slicel[5];

class LongArray forany { ... };

void operator<<=(Any &, const LongArray_forany &) ;

The array_forany types are always passed t0 operator<<= by referenceto const. The
nocopy flaginthe array forany constructor is used to control whether the inserted valueis
copied (nocopy == FALSE) Or consumed (nocopy == TRUE). Becausethenocopy flag defaults
to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and aT*, it is highly recommended that
portable code explicitly use the appropriate array_forany type when inserting an array into an
Any. For example:

// IDL
struct S {... };
typedef S SA[5];

// C++

struct S { ... };
typedef S SA[5];

typedef S SA_slice;
class SA_forany { ... };

SA s

CORBA Programming Reference 13-39

13-40

// ...initialize s...

Any a;
a <<= s; // line 1
a <<= SA_forany(s); // line 2

Line 1 resultsintheinvocation of the noncopying operator<<=(any&, s*) duetothedecay of
the sa array type into a pointer to itsfirst element, rather than the invocation of the copying
sa_forany insertion operator. Line 2 explicitly constructsthe sa_forany type and thus results
in the desired insertion operator being invoked.

The noncopying version of operator<<= for object references takes the address of the T_ptr
type, asfollows:

// IDL

interface T { ... };

// C++

void operator<<=(Any&, T _ptr); // copying
void operator<<=(Any&, T_ptr*); // mon-copying

The noncopying object reference insertion consumes the object reference pointed to by T_ptr*;
therefore, after insertion the caller may not access the object referred to by T_ptr because the
Any may have duplicated and then immediately released the original object reference. The caller
maintains ownership of the storage for the T_ptr itself.

The copying version of operator<<=isalso supported on the any_var type.

Extraction from Any

To adlow type-saferetrieval of avalue from an any, the ORB provides the following operators
for each OMG IDL typeT:

// C++

Boolean operator>>=(const Any&, T&);

This function signature suffices for primitive types that are usually passed by value. For values
of type T that are too large to be passed by value efficiently, the ORB provides a different
signature, asfollows:

// C++

Boolean operator>>=(const Any&, T*&);
Thefirst form of this function is used only for the following types:

® Boolean, Char, Octet, Short, UShort, Long, ULong, Float, Double

CORBA Programming Reference

Mappings

e Enumerations
e Unbounded strings (char* passed by reference, i.e., char+*s)

e Object references (T_ptr)
For al other types, the second form of the function is used.
This “right-shift-assign” operator is used to extract atyped value from an any, asfollows:

// C++
Long value;
Any a;
a <<= Long(42);
if (a >>= value) {
// ... use the value ...
}

In this case, the version of operator>>= for type Long determines whether the Any truly does
contain avalue of type Long and, if so, copiesits value into the reference variable provided by
the caller and returns Truk. If the Any does not contain a value of type Long, the value of the
caller’ sreference variable is not changed, and operator>>= returns FALSE.

For nonprimitive types, extraction isdone by pointer. For example, consider the following OMG
IDL struct:

// IDL

struct MyStruct {
long 1lmem;
short smem;

i

Such astruct could be extracted from an Any asfollows:

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...

MyStruct *struct_ptr;
if (a >>= struct_ptr) {
// ... use the value ...

}

If the extraction is successful, the caller’s pointer points to storage managed by the Any, and
operator>>= returns TRUE. The caller must not try to delete or otherwise release this storage.

CORBA Programming Reference 13-41

13-42

The caller aso should not use the storage after the contents of the Any variable are replaced via
assignment, insertion, or the replace function, or after the Any variableis destroyed. Care must
betaken to avoid using T_var typeswith these extraction operators, since they will try to assume
responsibility for deleting the storage owned by the Any.

If the extraction is not successful, the value of the caller’s pointer is set equal to the NULL
pointer, and operator>>= returns FALSE.

Correct extraction of array typesrelies on the array_forany types described in Arrays.
An example of the OMG IDL isasfollows:

// IDL
typedef long A[20];
typedef A B[30][40]([50];

// C++

typedef Long A[20];
typedef Long A_slice;
class A_forany { ... };
typedef A B[30][40][50];
typedef A B_slice[40][50];

class B_forany { ... };

Boolean operator>>=(const Any&, A_foranv&) ; // for
type A

Boolean operator>>=(const Anyé&, B_foranvé&) ; // for type
B

The array_forany types are always passed to operator>>= by reference.

For strings and arrays, applications are responsible for checking the TypeCode of the Any to be
sure that they do not overstep the bounds of the array or string object when using the extracted
value.

The operator>>= isalso supported on the any_var type.

Distinguishing Boolean, Octet, Char, and Bounded Strings

Since the Boolean, octet, and char OMG IDL typesare not required to map to distinct C++ types,
another means of distinguishing them from each other is necessary so that they can be used with
thetype-safe Any interface. Similarly, since both bounded and unbounded strings map to char*,

CORBA Programming Reference

Mappings

another means of distinguishing them must be provided. Thisisdone by introducing several new
helper types nested in the Any classinterface. For example, thisisaccomplished as shown below:

// C++
class Any

{

public:

// special helper types needed for boolean, octet,
// char, and bounded string insertion
struct from_boolean {
from_boolean(Boolean b) : val(b) {}
Boolean val;
};
struct from_octet {
from_octet (Octet o) : val(o) {}
Octet val;
}i
struct from_char {
from_char (Char c¢) : val(c) {}
Char val;
Y
struct from_string {
from_string(char* s, ULong b,
Boolean nocopy = FALSE)
val(s), bound(b) {}
char *val;
ULong bound;
}i

void operator<<=(from_boolean) ;

void operator<<=(from_char) ;

=(
void operator<<=(from_octet) ;
void operator<<=(from_string) ;
// special helper types needed for boolean, octet,
// char, and bounded string extraction
struct to_boolean {

to_boolean (Boolean &b) : ref(b) {1}

Boolean &ref;

}i

CORBA Programming Reference

13-43

struct to_char {
to_char (Char &c) : ref(c) {}
Char &ref;

};

struct to_octet {
to_octet (Octet &o) : ref (o) {}
Octet &ref;

}i

struct to_string {
to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;

Y

Boolean operator>>=(to_boolean) const;

Boolean operator>>=(to_char) const;

(
Boolean operator>>=(to_octet) const;
(

Boolean operator>>=(to_string) const;
// other public Any details omitted

private:
// these functions are private and not implemented
// hiding these causes compile-time errors for
// unsigned char
void operator<<=(unsigned char) ;
Boolean operator>>=(unsigned char &) const;

}i

The ORB provides the overloaded operator<<= and operator>>= functions for these special
helper types. These helper types are used as shown here;

// C++

Boolean b = TRUE;

Any any;

any <<= Any::from_boolean(b) ;

!/

if (any >>= Any::to_boolean(b)) {

// ...any contained a Boolean...

13-44 CORBA Programming Reference

Mappings

char* p = "bounded";
any <<= Any::from_ string(p, 8);
//
if (any >>= Any::to_string(p, 8)) {
// ...any contained a string<8>...

}
A bound value of 0 (zero) indicates an unbounded string.

For noncopying insertion of abounded or unbounded string into an Any, the nocopy flag on the
from_string constructor should be set to TRUE:

// C++
char* p = string_alloc(8);
// ...initialize string p...

any <<= Any::from_string(p, 8, 1); // any consumes p

Assuming that boolean, char, and octet all map the C++ type unsigned char, the private and
unimplemented operator<<= and operator>>= functionsfor unsigned char causea
compile-time error if straight insertion or extraction of any of the boolean, char, or octet typesis
attempted:

// C++

Octet oct = 040;

Any any;

any <<= oct; // this line will not compile
any <<= Any::from_octet (oct); // but this one will
Widening to Object

Sometimesit is desirableto extract an object reference from an Any as the base Object type. This
can be accomplished using a hel per type similar to those required for extracting boolean, char,
and octet:

// C++
class Any

{
public:

struct to_object {

to_object (Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;

CORBA Programming Reference 13-45

13-46

Boolean operator>>=(to_object) const;

}i

The to_object helper typeisused to extract an object reference from an Any asthe base Object
type. If the Any contains a value of an object reference type as indicated by its TypeCode, the
extraction function operator>>=(to_object) explicitly widensits contained object reference
to Object and returns TRUE; otherwise, it returns FALSE. Thisisthe only object reference
extraction function that performs widening on the extracted object reference. Aswith regular
object reference extraction, no duplication of the object referenceis performed by the
to_object extraction operator.

Handling Untyped Values

Under some circumstances the type-safe interface to Any is not sufficient. An exampleisa
situation in which data types are read from afile in binary form and are used to create val ues of
type Any. For these cases, the Any class provides a constructor with an explicit TypeCode and
generic pointer:

// C++
Any (TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor duplicates the given TypeCode pseudo-object reference. If the release
parameter is TRUE, the Any object assumes ownership of the storage pointed to by the value
parameter. A caller should make no assumptions about the continued lifetime of the value
parameter once it has been handed to an Any with release=TRUE, since the Any may copy the
value parameter and immediately free the original pointer. If the release parameter iSFALSE
(the default case), the Any object assumes that the caller manages the memory pointed to by
value. Thevalue parameter can be aNULL pointer.

The Any class a so defines three unsafe operations:

// C++
void replace (
TypeCode_ptr,
void *value,
Boolean release = FALSE
)
TypeCode_ptr type() const;

const void *value() const;

CORBA Programming Reference

Mappings

The replace function isintended to be used with types that cannot be used with the type-safe
insertion interface, and so is similar to the constructor described above. The existing TypeCode
isreleased and value storage is deallocated, if necessary. The TypeCode function parameter is
duplicated. If the release parameter is TRUE, the Any object assumes ownership for the storage
pointed to by the value parameter. The Any should make no assumptions about the continued
lifetime of the value parameter once it has been handed to the any : : replace function with
release=TRUE, sSincethe Any may copy the value parameter and immediately free the original
pointer. If the release parameter is FaLSE (the default case), the Any object assumes that the
caller managesthe memory occupied by thevalue. Thevalue parameter of thereplace function
can beaNULL pointer.

Note that neither the constructor shown above nor the replace function istype-safe. In
particular, no guarantees are made by the compiler at run time as to the consistency between the
TypeCode and the actual type of the void* argument. The behavior of an ORB implementation
when presented with an any that is constructed with a mismatched TypeCode and value is not
defined.

The type function returnsa Typecode_ptr pseudo-object referenceto the TypeCode associated
with the Any. Like all object reference return values, the caller must release the reference when
itisnolonger needed, or assign it to a TypeCode_var variable for automatic management.

The value function returns a pointer to the data stored in the Any. If the Any has no associated
value, the value function returnsaNULL pointer.

Any Constructors, Destructor, Assignment Operator

The default constructor creastesan Any with aTypeCode of type tk_nul1, and no value. The copy
constructor calls_duplicate onthe Typecode ptr Of its Any parameter and deep-copies the
parameter’ s value. The assignment operator releases its own Typecode_ptr and deallocates
storagefor the current valueif necessary, then duplicatesthe Typecode_ptr of itsAny parameter
and deep-copiesthe parameter’ svalue. The destructor callsrelease onthe Typecode_ptr and
deallocates storage for the value, if necessary.

Other constructors are described in the section Handling Untyped Values.

The Any Class

The full definition of the Any class can be found in the section Any Class Member Functions.

CORBA Programming Reference 13-47

13-48

Value Type

This section is based on information contained in Chapters 3, 5, and 6 of the Common Object
Request Broker: Architecture and Specification, Revision 2.4.2, February 2001, and the CORBA
C++ Language Mapping Specification, June 1999, published by the Object Management Group
(OMG). Used with permission of the OMG.

Overview

Objects, more specificaly, interface types that objects support, are defined in an IDL interface,
allowing arbitrary implementations. Thereisgreat valuein having adistributed object system that
places amost no constraints on implementation. However, there are many occasions in which it
is desirable to be able to pass an object by value, rather than by reference. This may be
particularly useful when an object’s primary “purpose” isto encapsulate data, or an application
explicitly wishes to make a*“copy” of an object.

The semantics of passing an object by value are similar to that of standard programming
languages. Thereceiving side of aparameter passed by value receives adescription of the“ state”
of the object. It then instantiates anew instance with that state but having a separate identity from
that of the sending side. Once the parameter passing operation is complete, no relationship is
assumed to exist between the two instances.

Because it is necessary for the receiving side to instantiate an instance, it must necessarily know
something about the object’ sstate and implementation. Thus, val uetype(s) provide semanticsthat
bridge between CORBA structs and CORBA interfaces, as follows:

e They support description of complex state (that is, arbitrary graphs, with recursion and
cycles).

e Their instances are always local to the context in which they are used (because they are
always copied when passed as a parameter to aremote call).

e They support both public and private (to the implementation) data members.

e They can be used to specify the state of an object implementation (that is, they can support
an interface).

e They support single inheritance (of valuetype) and can support an interface.

e They may be also be abstract.

CORBA Programming Reference

Mappings

Architecture

The basic notion of valuetypesis relatively simple. A valuetype s, in some sense, half way
between a“regular” IDL interface type and a struct. The use of valuetypeisasignal from the
application programmer that some additional properties (state) and implementation details be
specified beyond that of an interface type. Specification of thisinformation puts some additional
constraints on the implementation choices beyond that of interface types. Thisisreflected in both
the semantics specified herein, and in the language mappings.

Benefits

Prior to supporting valuetypes (objects passable by value), all CORBA objects had object
references. When multiple clientsinvoked on a particular object, they use the same object
reference. Theinstance(s) of the object remained on the server ORB and its state was maintained
by the server ORB, not the client ORB.

Va uetypes represent a significant addition to the CORBA architecture. As with objects passed
by reference, valuetypes have state and methods, but do not have object referencesand arealways
invoked locally as programming language objects. Upon request from the receiving side,
valuetypes package their state in the sending context, send their state “ over the wire” to the
receiving side, where aninstanceis created and popul ated with the transmitted state. The sending
side has no further control of the client-side instance. Thus, the receiving side can make
subsequent invocations of the instance locally. This model eliminates the delays involved when
communicating over the network. These delays can be significant in large networks. The addition
of valuetypes enables CORBA implementations to more easily scale to meet large data-handling
requirements.

Therefore, an essential property of valuetypesisthat their implementations are alwayslocal. That
is, the explicit use of valuetypesin aconcrete programming language is always guaranteed to use
alocal implementation, and will not require aremote call. They have no identity (their valueis

their identity) and they are not “registered” with the ORB.

Valuetype Example
For example, consider the following IDL valuetype taken from the CORBA C++ Language
Mapping Specification, June 1999, published by the Object Management Group (OMG):

// IDL
valuetype Example {
short opl();
long op2(in Example Xx) ;

CORBA Programming Reference 13-49

private short vall;
public long val2;

private string val3;
private float val4d;
private Example val5;

}i

The C++ mapping for this valuetype is:

// C++
class Example : public virtual ValueBase {
public:
virtual Short opl() = 0;
virtual Long op2 (Example*) = 0;

virtual Long val2() const = 0;

virtual void val2(Long) = 0;
static Example* _downcast (ValueBase*) ;

protected:
Example () ;

virtual ~Example() ;

virtual Short wvall() const = 0;

virtual void vall(Short) = 0;

virtual const char* val3() const = 0;
virtual void val3(char*) = 0;
virtual void wval3 (const char*) = 0;

virtual void wval3 (const String var&) = 0;

virtual Float wval4 () const = 0;

virtual void val4d (Float) = 0;

1l
o

virtual Example* val5() const

o

virtual void val5 (Example*) =

private:
// private and unimplemented

void operator=(const Example&) ;

13-50 CORBA Programming Reference

Fixed-length Versus Variable-length User-defined Types

class OBV_Example : public virtual Example {
public:
virtual Long val2() const;

virtual void val2 (Long) ;

protected:
OBV_Example () ;
OBV_Example (Short init_wvall, Long init_val2,
const char* init_val3, Float init_val4,
Example* init_valb);

virtual ~OBV_Example () ;

virtual Short vall() const;

virtual void wvall (Short) ;

virtual const char* val3 () const;
virtual void wval3 (char¥*);
virtual void val3 (const char¥*);

virtual void val3(const String var&) ;

virtual Float vald () const;

virtual void wvald (Float);

virtual Example* val5() const;

virtual void val5 (Example*) ;

//
}i

Fixed-length Versus Variable-length User-defined Types

The memory management rules and member function signatures for a user-defined type depend
upon whether the type is fixed-length or variable-length. A user-defined type is variable-length
if it isone of the following:

e A bounded or unbounded string

e A bounded or unbounded sequence

e A struct or union that contains a variable-length member
e An array with avariable-length element type

e A typedef to avariable-length type

CORBA Programming Reference 13-51

If atypeisnot on thislist, the type is fixed-length.

Using var Classes

13-52

Automatic variables (vars) are provided to simplify memory management. Vars are provided
through a var class that assumes ownership for the memory required for the type and frees the
memory when the instance of the var object is destroyed or when anew valueis assigned to the
var object.

The Oracle Tuxedo provides var classes for the following types:
e String (CORBA: : String_var)
e Object references (CORBA: : Object_var)

e User-defined OMG IDL types (struct, union, sequence, array, and interface)

Thevar classes have common member functions, but may support additional operators depending
upon the OMG IDL type. For an OMG IDL type TypE, the TYPE_var classcontains constructors,
destructors, assignment operators, and operatorsto accessthe underlying Type type. An example
var classisasfollows:

class TYPE_var

{

public:
// constructors
TYPE_var () ;
TYPE_var (TYPE *);
TYPE_var (const TYPE_var &) ;
// destructor
~TYPE_var () ;

// assignment operators
TYPE_var &operator=(TYPE *);
TYPE_var &operator=(const TYPE_var &) ;

// accessor operators

TYPE *operator->();

TYPE *operator->() const;

CORBA Programming Reference

Using var Classes

TYPE_var_ptr in() const;
TYPE_var_ptr& inout () ;
TYPE_var_ptr& out();

TYPE_var_ptr _retn();

operator const TYPE_ptr&() const;
operator TYPE_ptr&();

operator TYPE_ptr;

}i

The details of the member functions are as follows:

TYPE_var ()
Thisisthe default constructor for the TyPE_var class. The constructor initializesto 0
(zero) the rypE * owned by the var class. Y ou may not invoke the operator-> ona
TYPE_var Classunlessavalid Type * hasbeen assigned toit.

TYPE_var (TYPE * Value) ;
This constructor assumes ownership of the specified Type * parameter. When the
TYPE_var isdestroyed, the TypE isreleased. Thevalue argument isapointer to the Type
to be owned by thisvar class. This pointer must not be 0 (zero).

TYPE_var (const TYPE_var & From) ;
This copy constructor allocates anew Type and makes a deep copy of the data contained
in the TypE owned by the From parameter. When the Type_var isdestroyed, the copy of
the TvpE isreleased or deleted. The From parameter specifies the var class that points to
the TYPE to be copied.

~TYPE_var () ;
This destructor uses the appropriate mechanism to release the TypE owned by the var
class. For strings, thisisthe corBa: : string_free routine. For object references, thisis
the CorBa: :release routine. For other types, thismay be delete Or agenerated static
routine used to free allocated memory.

TYPE_var &operator=(TYPE * NewValue) ;
This assignment operator assumes ownership of the Type pointed to by the Newvalue
parameter. If the TYPE_var currently ownsaTypE, it isreleased before assuming
ownership of the Newvalue parameter. The Newvalue argument isapointer to the Typr
to be owned by thisvar class. This pointer must not be 0 (zero).

TYPE_var &operator=(const TYPE_var &From) ;
This assignment operator allocates a new TypE and makes a deep copy of the data
contained in the TypE owned by the From TYPE_var parameter. If TYPE_var currently

CORBA Programming Reference 13-53

ownsaTYPE, it isreleased. When the TyPE_var is destroyed, the copy of the TypE is
released. The rrom parameter specifies the var class that points to the data to be copied.

TYPE *operator->();

TYPE *operator->() const;
These operators return a pointer to the Type owned by the var class. The var class
continuesto own the Type and it isthe responsibility of the var classto release TypE. You
cannot use the operator-> until the var ownsavalid Type. Do not try to release this
return value or access this return value after the TvypE_var has been destroyed.

TYPE_var_ptr in() const;

TYPE_var_ptr& inout () ;

TYPE_var_ptr& out();

TYPE_var_ptr _retn();
Because implicit conversions can sometimes cause a problem with some C++ compilers
and with code readability, the TypE_var types aso support member functionsthat allow
them to be explicitly converted for purposes of parameter passing. To passa TYPE_var
and an in parameter, call the in () member function; for inout parameters, the inout ()
member function; for out parameters, the out () member function. To obtain areturn
value from the TYyPE_var, call the _return () function. For each TYPE_var type, the
return types of each of these functionswill match thetype shownin Table 13-7 for the in,
inout, out, and return modes for the underlying type TyrE, respectively.

Some differences occur in the operators supported for the user-defined data types. Table 13-3
describes the various operators supported by each OMG IDL datatype, in the generated C++
code. Because the assignment operators are supported for all of the data types described in
Table 13-3, they are not included in the comparison.

Table 13-3 Comparison of Operators Supported for User-defined Data Type var Classes

OMG IDL Data Type operator -> operator[]
struct Yes No

union Yes No

sequence Yes Y es, non-const only
array No Yes

The signatures are as shown in Table 13-4.

13-54 CORBA Programming Reference

Using var Classes

Table 13-4 Operator Signatures for _var Classes

OMG IDL Data Type Operator Member Functions

struct TYPE * operator-> ()

TYPE * operator-> () const
union TYPE * operator-> ()

TYPE * operator-> () const
sequence TYPE * operator-> ()

TYPE * operator-> () const

TYPE & operator[] (CORBA: :Long index)

array TYPE_slice & operator[] (CORBA::Long index)
TYPE_slice & operator[] (CORBA::Long index) const

Sequence vars

Sequence vars support the following additional operator [1 member function:

TYPE &operator[] (CORBA: :ULong Index) ;
This operator invokesthe operator[] of sequence owned by the var class. The
operator [] returns areference to the appropriate element of the sequence at the
specified index. The 1ndex argument specifies the index of the element to return. This
index cannot be greater than the current sequence length.

Array vars

Array vars do not support operator->, but do support the following additional operator[]
member functions to access the array elements:

TYPE_slice& operator[] (CORBA: :ULong Index) ;

const TYPE_slice & operator[] (CORBA: :ULong Index) const;
These operators return areference to the array slice at the specified index. An array dice
isan array with all the dimensions of the original array except the first dimension. The
member functionsfor the array-generated classes use a pointer to asliceto return pointers
to an array. The 1ndex argument specifies the index of the slice to return. Thisindex
cannot be greater than the array dimension.

CORBA Programming Reference 13-55

13-56

String vars

The String varsin the member functions described in this section and in the section Sequencevars
have aTypE of char *. String vars support additional member functions, as follows:

String_var (char * str)
This constructor makes a string_var from astring. The str argument specifies the
string that will be assumed. The user must not use the str pointer to access data.

String_var (const char * str)

String_var (const String_var & var)
This constructor makes a string_var fromaconst string. The str argument specifies
the const string that will be copied. The var argument specifies areference to the string
to be copied.

String_var & operator=(char * str)
Thisassignment operator first rel easesthe contained string USING CORBA: : string_free,
and then assumes ownership of the input string. The str argument specifies the string
whose ownership will be assumed by this string_var object.

String_var & operator=(const char * str)

String_var & operator=(const String var & var)
Thisassignment operator first rel easesthe contained string USINg CORBA: : string_free,
and then copiestheinput string. The bata argument specifies the string whose ownership
will be assumed by this string_var object.

char operator[] (Ulong Index)

char operator[] (Ulong Index) const
These array operators are superscripting operatorsthat provide accessto characterswithin
the string. The Index argument specifies the index of the array to usein accessing a
particular character within the array. Zero-based indexing is used. The returned value of
thechar operator[] (Ulong Index) function can be used asanlvalue. The returned
value of the
Char operator[] (Ulong Index) const function cannot be used asan lvaue.

out Classes

Structured types (struct, union, sequence), arrays, and interfaces have a corresponding generated
_out class. The out classis provided for simplifying the memory management of pointersto
variable-length and fixed-length types. For more information about out classes and the common
member functions, see the section Using out Classes.

Some differences occur in the operators supported for the user-defined data types. Table 13-5
describes the various operators supported by each OMG IDL datatype, in the generated C++

CORBA Programming Reference

Using out Classes

code. Because the assignment operators are supported for al of the data types described in
Table 13-5, they are not included in the comparison.

Tahle 13-5 Comparison of Operators Supported for User-defined Data Type Out Classes

OMG IDL Data Type operator -> operatorf]
struct Yes No

union Yes No

sequence Yes Y es, non-const only
array No Yes

The signatures are as shown in Table 13-6.

Table 13-6 Operator Signatures for _out Classes

OMG IDL Data Type Operator Member Functions

struct TYPE * operator-> ()

TYPE * operator-> () const
union TYPE * operator-> ()

TYPE * operator-> () const
sequence TYPE * operator-> ()

TYPE * operator-> () const

TYPE & operator[] (CORBA: :Long index)

array TYPE_slice & operator[] (CORBA::Long index)
TYPE_slice & operator[] (CORBA::Long index) const

Using out Classes

When a 7vpPE_var is passed as an out parameter, any previous value it referred to must be
implicitly deleted. To give the ORB enough hooksto meet thisrequirement, each T_var type has
acorresponding TypE_out typethat isused solely asthe out parameter type.

Note: The_out classesare not intended to beinstantiated directly by the programmer. Specify
an _out classonly in function signatures.

CORBA Programming Reference 13-57

13-58

The general form for TvpPE_out typesfor variable-length typesis as follows:

// C++
class TYPE_out
{

public:
TYPE_out (TYPE*& p) : ptr_(p) { ptr_ = 0; }
TYPE_out (TYPE_var& p) : ptr_(p.ptr_) { delete ptr_; ptr_ = 0;}
TYPE_out (TYPE_out& p) : ptr_(p.ptr_) {}
TYPE_out& operator=(TYPE_out& p) { ptr_ = p.ptr_;
return *this;
}
Type_out& operator=(Type* p) { ptr_ = p; return *this; }

operator Type*& () { return ptr_; }
Type*& ptr() { return ptr_; }

Type* operator->() { return ptr_; }

private:

Type*& ptr_;

// assignment from TYPE var not allowed
void operator=(const TYPE_varé&) :
}i

Thefirst constructor binds the reference data member with the T+ s argument and sets the pointer
to the zero (0) pointer value. The second constructor binds the reference data member with the
pointer held by the TvPE_var argument, and then calls delete on the pointer (or
string_free() inthecaseof thestring_out typeor TvPE_free () inthecaseof aTyrE_var
for an array type TvPE). The third constructor, the copy constructor, binds the reference data
member to the same pointer referenced by the data member of the constructor argument.

Assignment from another TvPE_out copiesthe Tyre* referenced by the TvrPE_out argument to
the data member. The overloaded assignment operator for Tvre* simply assigns the pointer
argument to the data member. Note that assignment does not cause any previously held pointer
to be deleted; in thisregard, the TvPE_out type behaves exactly as a rype*. The TypE*&
conversion operator returns the datamember. Theptr () member function, which can be used to
avoid having to rely on implicit conversion, also returns the data member. The overloaded arrow
operator (operator-> ()) alowsaccessto membersof the data structure pointed to by the Tvre*

CORBA Programming Reference

Using out Classes

data member. Compliant applications may not call the overloaded operator-> () unlessthe
TYPE_out hasbeeninitialized with avalid nonNULL 7vpE*.

Assignment to a TyPE_out from instances of the corresponding Tvre_var typeis disallowed
because there is no way to determine whether the application developer wants a copy to be
performed, or whether the TvrE_var should yield ownership of its managed pointer so it can be
assigned to the TvrPE_out. To perform acopy of a rypE_var t0 a TYPE_out, the application
should use new, asfollows:

// C++
TYPE _var t = ...;
my_out = new TYPE(t.in()); // heap-allocate a copy

The in () function called on t typically returnsaconst TvPESs, suitable for invoking the copy
constructor of the newly allocated T instance.

Alternatively, to makethe rvpE_var yield ownership of itsmanaged pointer soit can bereturned
inaT_out parameter, the application should use the TvrE var:: retn() function, asfollows:

// C++
TYPE var t = ...;
my_out = t._retn(); // t yields ownership, no copy

Note that the TyPE_out types are not intended to serve as general-purpose data types to be
created and destroyed by applications; they are used only as types within operation signaturesto
allow necessary memory management side-effects to occur properly.

Object Reference out Parameter

When a_var ispassed as an out parameter, any previous value it refersto must be implicitly
released. To give C++ mapping implementations enough hooks to meet this requirement, each
object reference type results in the generation of an _out typethat is used solely asthe out
parameter type. For example, interface TypE resultsin the object reference type TvprE_ptr, the
helper type TvpPE_var, and the out parameter type TvrE_out. The general form for object
reference _out typesisasfollows:

// C++
class TYPE_out
{

public:
TYPE_out (TYPE ptr& p) : ptr_(p) { ptr_ = TYPE:: nil(); }
TYPE out (TYPE_var& p) : ptr_(p.ptr_) {

CORBA Programming Reference 13-59

13-60

release(ptr_); ptr_ = TYPE::_nil();
}
TYPE out (TYPE_out& a) : ptr_(a.ptr_) {1}
TYPE_out& operator=(TYPE out& a) {
ptr_ = a.ptr_; return *this;
}
TYPE out& operator=(const TYPE var& a) {
ptr_ = TYPE::_duplicate(TYPE ptr(a)); return *this;
}
TYPE_out& operator=(TYPE_ptr p) { ptr_ = p; return *this; }
operator TYPE ptr&() { return ptr_; }
TYPE ptr& ptr() { return ptr_; }
TYPE ptr operator->() { return ptr_; }

private:
TYPE_ptr& ptr_;
Y

Sequence outs
Sequence outs support the following additional operator] member function:

TYPE &operator[] (CORBA: :ULong Index) ;
This operator invokesthe operator[] of the sequence owned by the out class. The
operator[] returnsareference to the appropriate element of the sequence at the
specified index. The Index argument specifies the index of the element to return. This
index cannot be greater than the current sequence length.

Array outs

Array outs do not support operator->, but do support the following additional operator|]
member functions to access the array elements:

TYPE_slice& operator[] (CORBA::ULong Index) ;

const TYPE_slice & operator[] (CORBA: :ULong Index) const;
These operators return areference to the array dlice at the specified index. An array dice
isan array with al the dimensions of the original array except the first dimension. The
member functionsfor the array-generated classes use a pointer to asiceto return pointers
to an array. The 1ndex argument specifies the index of the dlice to return. This index
cannot be greater than the array dimension.

CORBA Programming Reference

Using out Classes

String outs

When astring_var ispassed as an out parameter, any previous value it refers to must be
implicitly freed. To give C++ mapping implementations enough hooks to meet this requirement,
thestring type also resultsin the generation of astring_out typeinthe CORBA namespacethat
isused solely asthe string out parameter type. The general form for the string out typeisas
follows:

// C++
class String_out

{

public:
String_out (char*& p) : ptr_(p) { ptr_ = 0; }
String_out (String var& p) : ptr_(p.ptr_) {
string_ free(ptr_); ptr_ = 0;
}
String_out (String_out& s) : ptr_(s.ptr_) {}

String_out& operator=(String_ out& s) {
ptr_ = s.ptr_; return *this;
}
String_out& operator=(char* p) {
ptr_ = p; return *this;
}
String_out& operator=(const char* p) {
ptr_ = string dup(p); return *this;
}
operator char*&() { return ptr_; }

char*& ptr() { return ptr_; }

private:

char*& ptr_;

// assignment from String_var disallowed
void operator=(const String_varé&) ;
i

The first constructor binds the reference data member with the char*s argument. The second
constructor bindsthe reference data member with the char* held by the string_var argument,
andthen calls string free () on the string. Thethird constructor, the copy constructor, binds
the reference data member to the same char* bound to the data member of its argument.

CORBA Programming Reference 13-61

Assignment from another string_out copiesthe char* referenced by the argument

String_ out tothe char* referenced by the data member. The overloaded assignment operator
for char* simply assigns the char+* argument to the data member. The overloaded assignment
operator for const char* duplicates the argument and assigns the result to the data member.
Note that the assignment does not cause any previously held string to be freed; in thisregard, the
String_out type behaves exactly asachar*. The char*s conversion operator returns the data
member. The ptr () member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member.

Assignment from string_var to astring_out isdisallowed because of the memory
management ambiguitiesinvolved. Specificaly, it isnot possible to determine whether the string
owned by the string var should be taken over by the string out without copying, or if it
should be copied. Disallowing assignment from string_var forcesthe application devel oper to
make the choice explicitly, as follows:

// C++

void
A::0p(String_out arg)
{

String var s = string dup("some string");
out = s; // disallowed; either
out = string dup(s); // 1l: copy, or

out = s._retn(); // 2: adopt

}

On the line marked with the comment “1,” the caller is explicitly copying the string held by the
String var and assigning theresult to the out argument. Alternatively, the caller could use the
technique shown on the line marked with the comment “2” to force the string_var to give up
its ownership of the string it holds so that it may be returned in the out argument without
incurring memory management errors.

Argument Passing Considerations

13-62

The mapping of parameter passing modes attempts to balance the need for both efficiency and
simplicity. For primitive types, enumerations, and object references,

the modes are straightforward, passing the type p for primitives and enumerations and the type
a_ptr for aninterface type A.

CORBA Programming Reference

Argument Passing Considerations

Aggregatetypesare complicated by the question of when and how parameter memory isallocated
and deallocated. Mapping in parameters is straightforward because the parameter storage is
caller-allocated and read-only. The mapping for out and inout parametersismore problematic.
For variable-length types, the callee must allocate someif not all of the storage. For fixed-length
types, such as a Point type

represented as a struct containing three floating point members, caller allocation is preferable (to
alow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split allocation, and
eliminate confusion with respect to when copying occurs, the mapping is T« for afixed-length
aggregate T and T+ & for avariable-length 1. This approach has the unfortunate consequence that
usage for structs depends on whether the struct isfixed- or variable-length; however, the mapping
isconsistently T_vare if the caller uses the managed type T_var.

The mapping for out and inout parameters additionally requires support for deallocating any
previous variable-length datain the parameter when a T_var is passed. Even though their initial
values are not sent to the operation, the Oracle Tuxedo includes out parameters because the
parameter could contain the result from a previous call. The provision of the T_out typesis
intended to give implementations the hooks necessary to free the inaccessible storage while
converting from the T_var types. The following examples demonstrate the compliant behavior:

// IDL
struct S { string name; float age; };

void f(out S p);

// C++

S_var s;

f(s);

// use s

f(s); // first result will be freed

S *sp; // need not initialize before passing to out
t(sp);

// use sp

delete sp; // cannot assume next call will free old value

f(sp);

Notethat implicit deallocation of previousvaluesfor out and inout parametersworksonly with
T_var types, not with other types:

CORBA Programming Reference 13-63

13-64

// IDL

void g(out string s);

// C++

char *s;

for (int 1 = 0; 1 < 10; 1i++)
a(s); // memory leak!

Each call to the g function in the loop resultsin amemory leak because the caller is not invoking
string_free Onthe out result. There are two ways to fix this, as shown below:

// C++
char *s;

String_var svar;

for (int 1 = 0 ; i < 10; i++) {
a(s);
string free(s); // explicit deallocation
// OR:
d(svar) ; // implicit deallocation

}

Using aplain char* for the out parameter means that the caller must explicitly deallocate its
memory before each reuse of the variable asan out parameter, whileusingastring var means
that any deallocation is performed implicitly upon each use of the variable as an out parameter.

Variable-length data must be explicitly released before being overwritten. For example, before
assigning to an inout string parameter, theimplementor of an operation may first delete the old
character data. Similarly, an inout interface parameter should be released before being
reassigned. Oneway to ensurethat the parameter storageisreleasedistoassignittoaloca T_var
variable with an automatic release, asin the following example:

// IDL
interface A;

void f (inout string s, inout A obj);

// C++

void Aimpl::f(char *&s, A_ptr &obj) {
String_var s_tmp = s;
s = /* new data */;
A_var obj_tmp = obj;

obj = /* new reference */

CORBA Programming Reference

Argument Passing Considerations

For parameters that are passed or returned as a pointer (T*) or as areference to apointer (T+*s),
an applicationisnot allowed to pass or returnaNULL pointer; the result of doing so isundefined.
In particular, a caller may not passaNULL pointer under any of the following circumstances:

e in and inout String

e in and inout array (pointer to first element)

However, a caller may pass areference to a pointer with aNULL value for out parameters,
because the callee does not examine the value, but overwritesit. A callee may not returnaNULL
pointer under any of the following circumstances:

e out and return variable-length struct

e out and return variable-length union

e out and return string

e out and return sequence

e out and return variable-length array, return fixed-length array

e out and return any

Operation Parameters and Signatures

Table 13-7 displays the mapping for the basic OMG IDL parameter passing modes and return
type according to the type being passed or returned. Table 13-8 displaysthe sameinformation for
T_var types. Table 13-8 is merely for informational purposes; it is expected that operation
signatures for both clients and servers will be written in terms of the parameter-passing modes
shownin Table 13-7, with the exception that the T_out typeswill be used asthe actual parameter
typesfor all out parameters.

Itisalso expected that T_var typeswill support the necessary conversion operatorsto allow them
to be passed directly. Callers should always passinstances of either T_var typesor the basetypes
shownin Table 13-7, and callees should treat their T_out parametersasif they were actually the
corresponding underlying types shown in Table 13-7.

In Table 13-7, fixed-length arrays are the only case where the type of an out

parameter differsfrom areturn value, which is necessary because C++ does not alow afunction
to return an array. The mapping returns a pointer to a slice of the

array, where adliceisan array with all the dimensions of the original array

specified except the first dimension.

CORBA Programming Reference 13-65

Table 13-7 Basic Argument and Result Passing

Data Type In Inout Out Return
short Short Short& Short& Short
long Long Long& Long& Long
unsigned short UShort UShort& UShort& UShort
unsigned long ULong ULong& ULong& ULong
float Float Float& Float& Float
double Double Double& Double& Double
boolean Boolean Boolean& Boolean& Boolean
char Char Char& Char& Char
wchar WChar WChar& WChar Octet
octet Octet Octet& Octet& Octet
enum enum enum& enum& enum
object referenceptr (See objref_ptr objref_ptr& objref_ptr& objref_ptr
Note below.)

struct, fixed const struct& struct& struct& struct
struct, variable const struct& struct& struct* & struct*
union, fixed const union& union& union& union
union, variable const union& union& union* & union*
string const char* char*& char*& char*
wstring const WChar WChar*& Wchar* & WChar*
sequence const sequence& sequence& sequence*& sequence®
array, fixed const array array array array slice* (See Note

below.)

13-66 CORBA Programming Reference

Argument Passing Considerations

Table 13-7 Basic Argument and Result Passing (Continued)

Data Type In Inout Out Return
array, variable const array array array slice*& array dice*
any const any& any& any*& any*

Note: The Object reference ptr data type includes pseudo-object references. The array slice
return is an array with all the dimensions of the original array except the first dimension.

A caller isresponsible for providing storage for all arguments passed as in arguments.

Table 13-8 T_var Argument and Result Passing

Data Type In Inout Out Return

object reference var const objref_var& objref_var& objref_var& objref_var
(See Note below.)

struct_var const struct_var& struct_var& struct_var& struct_var
union_var const union_var& union_var& union var& union_var
string_var const string_var& string_var& string_var& string_var
sequence_var const sequence var& sequence var& sequence var& sequence var
array_var const array_var& array_var& aray_var& array_var
any_var const any_var& any_var& any_var& any_var

Note: Theobject reference var datatype includes pseudo-object references.

Table 13-9 and Table 13-10 describe the caller’ sresponsibility for storage associated with inout
and out parameters and for return results.

Tahle 13-9 Caller Argument Storage Responsibilities

Type Inout Param Out Param Return Result
short 1 1 1
long 1 1 1

CORBA Programming Reference 13-67

13-68

Tahle 13-9 Caller Argument Storage Responsibilities (Continued)

Type Inout Param Out Param Return Result
unsigned short 1 1 1
unsigned long 1 1 1
float 1 1 1
double 1 1 1
boolean 1 1 1
char 1 1 1
wchar 1 1 1
octet 1 1 1
enum 1 1 1
object reference ptr 2 2 2
struct, fixed 1 1 1
struct, variable 1 3 3
union, fixed 1 1 1
union, variable 1 3 3
string 4 3 3
wstring 4 3 3
seguence 5 3 3
array, fixed 1 1 6
array, variable 1 6 6
any 5 3 3

CORBA Programming Reference

Argument Passing Considerations

Table 13-10 Argument Passing Cases

Case

1

Caller alocates al necessary storage, except that which may be encapsulated and
managed within the parameter itself. For inout parameters, the caller provides
theinitial value, and the callee may change that value. For out parameters, the
caller allocates the storage but need not initialize it, and the call ee sets the value.
Function returns are by value.

Caller alocates storage for the object reference. For inout parameters, thecaller
provides an initial value; if the callee wants to reassign the inout parameter, it
will first call CORBA: : release on the origina input value. To continueto use
an object reference passed in as an inout, the caller must first duplicate the
reference. The caller isresponsible for the release of al out and return object
references. Release of all object references embedded in other structuresis
performed automatically by the structures themselves.

For out parameters, the caller allocates a pointer and passesit by referenceto the
callee. The callee sets the pointer to point to avalid instance of the parameter’s
type. For returns, the callee returns asimilar pointer. The calleeisnot allowed to
return aNULL pointer in either case.

In both cases, the caller is responsible for releasing the returned storage. To
maintain local/remote transparency, the caller must always rel ease the returned
storage, regardless of whether the calleeislocated in the same address space as
the caller or islocated in adifferent address space. Following the completion of a
request, the caller isnot allowed to modify any valuesin the returned storage—to
do so, the caller must first copy the returned instance into a new instance, and
modify the new instance.

For inout strings, the caller provides storage for both the input string and the
char* pointingtoit. Sincethe callee may deallocate the input string and reassign
the char* to point to new storage to hold the output value, the caller should
alocatetheinput stringusing string_alloc (). Thesizeof theout stringis,
therefore, not limited by the size of thein string. The caller isresponsible for
deleting the storage for the out using string_free (). The caleeisnot
allowed to return aNULL pointer for an inout, out, or return value.

CORBA Programming Reference

13-69

13-70

Tahle 13-10 Argument Passing Cases (Continued)

Case

5 For inout sequences and anys, assignment or modification of the sequence or
any may cause deallocation of owned storage before any reallocation occurs,
depending upon the state of the Boolean release parameter with which the
sequence or any was constructed.

6 For out parameters, the caler allocates a pointer to an array slice, which has all

the same dimensions of the original array except the first, and passes the pointer
by reference to the callee. The callee sets the pointer to point to avalid instance
of the array.

For returns, the callee returnsasimilar pointer. The calleeisnot allowed to return
aNULL pointer in either case. In both cases, the caller isresponsiblefor releasing
the returned storage.

To maintain local/remote transparency, the caller must always rel ease the
returned storage, regardless of whether the callee islocated in the same address
space asthe callee or islocated in adifferent address space. Following completion
of arequest, the caller is not allowed to modify any values in the returned
storage—to do so, the caller must first copy the returned array instanceinto anew
array instance, and modify the new instance.

CORBA Programming Reference

CORBA API

Thischapter describesthe Oracle Tuxedo implementation of the CORBA core member functions
in C++ and their extensions. It also describes pseudo-objects and their relationship to C++
classes. Pseudo-objects are object references that cannot be transmitted across the network.
Pseudo-objects are similar to other objects; however, because the ORB owns them, they cannot
be extended.

Notes: Some of the information in this chapter is taken from the Common Object Request
Broker: Architecture and Specification. Revision 2.4.2, February 2001, published by the
Object Management Group (OMG). Used with permission of the OMG.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Javaclient ORB
were deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All Oracle
Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

e to help implement/run third party Java ORB libraries, and
o for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBSs.

Globhal Classes

The following Oracle Tuxedo classes are global in scope:

o CORBA

CORBA Programming Reference 141

e Tobj

These classes contain the predefined types, classes, and functions used in Oracle Tuxedo
devel opment.

The CORBA class contains the classes, data types, and member functions essential to using an
Object Request Broker (ORB) as defined by CORBA. The Oracle Tuxedo extensionsto CORBA
are contained in the Tobj C++ class. The Tobj class contains data types, nested classes, and
member functions that Oracle Tuxedo provides as an extension to CORBA.

Using CORBA data types and member functionsin the Oracle Tuxedo product requires the
CcorBA: : prefix. For example, aLong iSa CORBA: : Long. Likewise, to use Tobj nested classes
and member functionsin the Oracle Tuxedo product, you need the Tob7 : : prefix. For example,
FactoryFinder isTobj : : FactoryFinder.

Pseudo-objects

Pseudo-objects are represented as local classes, which reside in the CORBA class. A
pseudo-object and its corresponding member functions are named using a nested class structure.
For example, an ORB object isa corea: :0rB and a Current object isa COrRBA: :Current.

Any Class Member Functions

14-2

This section describes the member functions of the any class.
The mapping of these member functionsto C++ isas follows:

class CORBA
{
class Any
{
public:

Any ();

Any (const Anyé&) ;

Any (TypeCode_ptr tc, void *value, Boolean release =
CORBA__ FALSE) ;

~Any ();

Any & operator=(const Any&) ;

void operator<<=(Short) ;

void operator<<=(UShort) ;

CORBA Programming Reference

void
void
void
void
void
void
void
void
void
void
void
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

Boolean

operator<<=
operator<<=
operator<<=
operator<<=
operator<<=
operator<<=
operator<<=
operator<<=
operator<<=
operator<<=

operator<<=

Any Class Member Functions

(Long) ;

7

(ULong
(Float
Double) ;

)
)

const Anvy&) ;

const char*);

(

(

(
(Object_ptr) ;
(from_boolean) ;
(from_char) ;
(from_octet) ;

(

from_string) ;

operator>>=(Shorté&) const;

operator>>=(UShort&) const;

operator>>=(Long&) const;

operator>>=(ULong&) const;

operator>>=(Float&) const;

operator>>=(Double&) const;
operator>>=(Any&) const;
operator>>=(char*&) const;

operator>>=(to_boolean) const;

operator>>=(to_char) const;
operator>>=(to_octet) const;
operator>>=(to_object) const;

(
(
(
(
operator>>=(Object_ptr&) const;
(
(
(
(
(

operator>>=(to_string) const;

TypeCode_ptr type()const;

void

void

replace

replace

(TypeCode_ptr, void *, Boolean);
(TypeCode_ptr, void *);

const void * value() const;

i
}; //CORBA

CDRBA::Any::Any()

Synopsis

Constructs the any object.

CORBA Programming Reference 14-3

C++ Binding

CORBA: :Any: :Any ()

Arguments
None.

Description

Thisisthe default constructor for the corpa: :any class. It creates an any object with a
TypeCode of type tc_null andavalue of O (zero).

Return Values

None.

CORBA::Any::Any(const CORBA::Any & InitAny)

Synopsis
Constructs the any object that is a copy of another any object.

C++ Binding
CORBA: :Any: :Any (const CORBA::Any & InitAny)
Argument
InitAny
Referstothe corea: :any to copy.
Description

Thisisthe copy constructor for the corea: : any class. This constructor duplicates the
TypeCode reference of the any that is passed in.

The type of copying to be performed is determined by the release flag of the any object to be
copied. If release evaluatesas CORBA_TRUE, the constructor deep-copiesthe parameter’ svalue;
if release evaluates as corBa_FALSE, the constructor shallow-copies the parameter’s value.
Using a shallow copy gives you more control to optimize memory allocation, but the caller must
ensure the any does not use memory that has been freed.

14-4 CORBA Programming Reference

Any Class Member Functions

Return Values

None.

CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)

Synopsis
Creates the any object using a TypeCode and a value.

C++ Binding

CORBA: :Any: :Any (TypeCode_ptr TC, void * Value, Boolean Release)

Arguments

TC
A pointer to a TypeCode pseudo-object reference, specifying the type to be created.

Value
A pointer to the data to be used to create the any object. The data type of this argument
must match the TypeCode specified.

Release
Determines whether the any assumes ownership of the memory specified by the vaiue
argument. If Release iSCORBA_TRUE, the any assumes ownership. If Release is
CORBA_FALSE, the any does not assume ownership; the data pointed to by the value
argument is not released upon assignment or destruction.

Description

Thisconstructor isused with the nontype-safe any interface. It duplicatesthe specified TypeCode
object reference and then inserts the data pointed to by value inside the
Any object.

Return Values

None.

CURBA::AHV::~AHV()

Synopsis
Destructor for the any.

CORBA Programming Reference 14-5

C++ Binding

CORBA: :Any: :~Any ()

Arguments
None.

Description

This destructor freesthe memory that the corea: : any holds (if the release flagisspecified as
CORBA_TRUE), and releases the TypeCode pseudo-object reference contained in the any.

Return Values

None.

CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)

Synopsis
Any assignment operator.

C++ Binding

CORBA: :Any & CORBA: :Any::operator=(const CORBA::Any & InitAny)

Arguments

InitAny
A reference to an any to use in the assignment. The any to use in the assignment
determines whether the any assumes ownership of the memory invalue. If Releaseis
CORBA_TRUE, the any assumes ownership and deep-copiesthe 1nitany argument’s
value; if ReleaseiscorBa_FALSE, the any shallow-copiesthe 1ni tany argument’ svalue.

Description

Thisisthe assignment operator for the any class. Memory management of this member function
is determined by the current value of the Release flag. The current value of the rRelease flag
determineswhether the current memory isreleased before the assignment. If thecurrent Release
flag is corBA_TRUE, the any releases any value previously held; if the current Release flag is
CORBA_FALSE, the any does not release any value previously held.

14-6 CORBA Programming Reference

Any Class Member Functions

Return Values

Returnsthe any, which holdsthe copy of the 1nitany.

void CORBA::any::operator<<=()

Synopsis
Type safe any insertion operators.

C++ Binding

void CORBA: :Any: :operator<<=(CORBA: :Short Value)
CORBA: :UShort Value)
CORBA: :Long Value)
CORBA: :Ulong Value)
CORBA: :Float Value)

void CORBA: :Any: :operator<<=(
(
(
(
(CORBA: :Double Value)
(
(
(

void CORBA: :Any: :operator<<
void CORBA: :Any: :operator<<

void CORBA: :Any: :operator<<

const CORBA::Any & Value)

void CORBA: :Any: :operator<<s=
void CORBA: :Any: :operator<<=

void CORBA: :Any: :operator<<=(const char * Value)

void CORBA: :Any: :operator<<=(Object_ptr Value)

Argument
Value
Type specific value to be inserted into the any.
Description

This insertion member function performs type-safe insertions. If the any had a previous value,
and therelease flag is corBa_TRUE, the memory is deallocated and the previous TypeCode
object referenceis freed. The new value isinserted into the any by copying the value passed in
using the value parameter. The appropriate TypeCode reference is duplicated.

Return Values
None.

CORBA::Boolean CORBA::Any::operator>>=()

Synopsis
Type safe any extraction operators.

CORBA Programming Reference 14-1

C++ Binding

CORBA: :Boolean CORBA: :Any: :operator>>=(
CORBA: : Short & Value) const
CORBA: :Boolean CORBA: :Any::operator>>=(
CORBA: :UShort & Value) const
CORBA: :Boolean CORBA: :Any: :operator>>=(
CORBA: :Long & Value) const
CORBA: :Boolean CORBA: :Any: :operator>>=(
CORBA: :Ulong & Value) const
CORBA: :Boolean CORBA: :Any::operator>>=(
CORBA: :Float & Value) const
CORBA: :Boolean CORBA: :Any: :operator>>=(
CORBA: :Double & Value
CORBA: :Boolean CORBA: :Any: :operator>>
CORBA: :Boolean CORBA: :Any: :operator>>

const
=(CORBA: :Any & Value) const

)
(
(char * & Value) const
CORBA: :Boolean CORBA: :Any::operator>>=(Object_ptr & Value) const

Argument

The value argument is areference to the relevant object that receives the output of the value
contained in the any object.

Description

This extraction member function performs type-safe extractions. If the any object contains the
specified type, this member function assigns the pointer of the any to the output reference value,
value, and cCORBA_TRUE isreturned. If the any does not contain the appropriate type,
CORBA_FALSE isreturned. The caller must not attempt to release or delete the storage because it
is owned and managed by the any object. The value argument is areference to the relevant
object that receives the output of the value contained in the any object. If the any object does not
contain the appropriate type, the value remains unchanged.

Return Values

14-8

corBA_TRUE if the any contained a value of the specific type. corBa_raLsE if the any did not
contain avalue of the specific type.

CORBA Programming Reference

Any Class Member Functions

CORBA::Any::operator<<=()

Synopsis
Type safe insertion operators for any.

C++ Binding

void CORBA: :Any: :operator<<=(from_boolean Value)

void CORBA: :Any: :operator<<=(from_char Value)

(
void CORBA: :Any: :operator<<=(from_octet Value)
(

void CORBA: :Any: :operator<<=(from_string Value)

Argument

Value
A relevant object that contains the value to insert into the any.

Description

These insertion member functions perform atype-safe insertion of a corBa: :Boolean, a
CORBA: :Char, OF @CORBA: : Octet reference into an any. If the any had a previous value, and
itsrRelease flagiscorBa_TRUE, the memory is deallocated and the previous TypeCode object
reference is freed. The new value isinserted into the any object by copying the value passed in
using the value parameter. The appropriate TypeCode reference is duplicated.

Return Values
None.

CORBA::Boolean CORBA::Any::operator>>=()

Synopsis
Type-safe extraction operators for any.

C++ Binding
CORBA: :Boolean CORBA: :Any::operator>>=(to_boolean Value) const
CORBA: :Boolean CORBA: :Any::operator>>=(to_char Value) const
CORBA: :Boolean CORBA: :Any::operator>>=(to_octet Value) const
CORBA: :Boolean CORBA::Any::operator>>=(to_object Value) const
(

CORBA: :Boolean CORBA::Any::operator>>=(to_string Value) const

CORBA Programming Reference 14-9

Argument

Value
A referenceto therel evant object that receivesthe output of the value contained in the any
object. If the any object does not contain the appropriate type, the value remains
unchanged.

Description

These extraction member functions perform a type-safe extraction of acorea: :Boolean, a

CORBA: :Char, ACORBA: : Octet, aCORBA: : Object, or aString referencefroman any. These
member functions are helpers nested in the any class. Their purpose isto distinguish extractions
of the OMG IDL types: Boolean, char, and octet (C++ does not require these to be distinct types).

Return Values

If the any contains the specified type, this member function assigns the value in the any object
reference to the output variable, value, and returns corBa_TRUE. If the any object does not
contain the appropriate type, CorRBA_FALSE iSreturned.

CORBA::TypeCode_ptr CORBA::Any::type() const

Synopsis
TypeCode accessor for any.

C++ Binding

CORBA: : TypeCode_ptr CORBA::Any::type();

Arguments
None.

Description

This function returns the Typecode_ptr pseudo-object reference of the TypeCode object
associated with the any. The Typecode_ptr pseudo-object reference must be released by the
CORBA: : release member function or must be assigned to aTypecode_var to be automatically
released.

Return Values
TypeCode_ptr contained in the any.

14-10 CORBA Programming Reference

Context Member Functions

void CORBA::Any::replace()

Synopsis
Nontype safe any “insertion.”

C++ Binding

void CORBA: :Any: :replace (TypeCode_ptr TC, void * Value,
Boolean Release = CORBA_FALSE) ;

Arguments

TC
A TypeCode pseudo-object reference specifying the TypeCode valuefor the replaced any
object. This argument is duplicated.

Value

A void pointer specifying the storage pointed to by the any object.

Release
Determines whether the any manages the specified value argument. If Release is
CORBA_TRUE, the any assumesownership. If Release iS CORBA_FALSE, the any does not
assume ownership and the data pointed to by the value parameter is not released upon
gnment or destruction.
Description

These member functionsreplace the dataand TypeCode val ue currently contained inthe any with
the value of the TC and value arguments passed in. The functions perform a nontype-safe
replacement, which means that the caller is responsible for consistency between the TypeCode
value and the data type of the storage pointed to by the value argument.

If the value of Release iS CORBA_TRUE, this function releases the existing TypeCode
pseudo-object in the any object and frees the storage pointed to be the any object reference.

Return Values
None.

Context Member Functions

A Context supplies optional context information associated with a method invocation.

The mapping of these member functionsto C++ is asfollows:

CORBA Programming Reference 14-11

class CORBA
{
class Context
{
public:
const char *context_name() const;

Context_ptr parent () const;
void create_child(const char *, Context_out);

void set_one_value (const char *, const Any &) ;
void set_values (NVList_ptr);
void delete_values (const char *);
void get_values (
const char *,
Flags,
const char *,
NVList_out
)
}; // Context
}// CORBA

Memory Management

Context has the following special memory management rule;

e Ownership of the return values of the context_name and parent functions is maintained
by the Context; these return values must not be freed by the caller.

This section describes Context member functions.

CORBA::Context::context_name

Synopsis
Returns the name of a given Context object.
C++ Binding
Const char * CORBA::Context::context_name () const;

14-12 CORBA Programming Reference

Context Member Functions

Arguments

None.

Description

This member function returns the name of a given Context object. The Context object reference
owns the memory for the returned char *. Users should not modify this memory.

Return Values

If the member function succeeds, it returns the name of the Context object. The value may be
empty if the Context object is not a child Context created by acall to
CORBA: :Context: :create_child

If the Context object has no name, thisis an empty string.

CORBA::Context::create_child

Synopsis
Creates a child of the Context object.
C++ Binding
void CORBA: :Context::create_child (
const char * CtxName,
CORBA: :Context_out CtxObject) ;
Arguments
CtxName

The name to be associated with the child of the Context reference.

CtxObject
The newly created Context object reference.

Exception
CORBA: :NO_MEMORY

Description

Thismember function creates achild of the Context object. That is, searches on the child Context
object will look for matching property namesin the parent context (and so on, up the context tree),
if necessary.

CORBA Programming Reference 14-13

Return Values
None.

See Also

CORBA: :ORB: :get_default_context
CORBA: :release

CORBA::Context::delete_values

Synopsis
Deletes the values for a specified attribute in the Context object.

C++ Binding

void CORBA: :Context::delete_values (

const char * AttrName) ;

Argument

AttrName
The name of the attribute whose values are to be deleted. If this argument has atrailing
wildcard character (*), al names that match the string preceding the wildcard character
are deleted.

Exceptions

CORBA: : BAD_PARAM if attribute is an empty string.
CORBA: : BAD_CONTEXT if no matching attributes to be deleted were found.

Description

This member function del etes named values for an attribute in the Context object. Note that it
does not recursively do the sameto its parents, if any.

Return Values
None.

See Also

CORBA: :Context: :create_child
CORBA: :0ORB: :get_default_context

14-14 CORBA Programming Reference

Context Member Functions

CORBA::Context::get_values

Synopsis
Retrieves the values for a given attribute in the Context object within the specified scope.
C++ Binding
void CORBA: :Context::get_values (
const char * StartScope,
CORBA: :Flags OpFlags,
const char * AttrName,
CORBA: :NVList_out AttrValues) ;
Arguments
StartScope

The Context object level at which to initiate the search for specified properties. The level
isthe name of the context, or parent, a which the searchisstarted. If thevalueisO (zero),
the search begins with the current Context object.

OpFlags
Theonly valid operation flagis corea: : cTX_RESTRICT_scopE. If you specify thisflag,
the object implementation restricts the property search to the current scope only (that is,
the property search is not executed recursively up the chain of the parent context);
otherwise, the search continues to awider scope until a match has been found or until all
wider levels have been searched.

AttrName
The name of the attribute whose values are to be returned. If this argument has atrailing
wildcard character (*), all names that match the string preceding the wildcard character
are returned.

AttrValues
Receives the values for the specified attributes (returnsan nviist object) where each

iteminthelistisa Namedvalue.

Exceptions

CORBA: : BAD_PARAM if attribute is an empty string.
CORBA: : BAD_CONTEXT if no matching attributes were found.
CORBA: : NO_MEMORY if dynamic memory allocation failed.

CORBA Programming Reference 14-15

Description

This member function retrieves the values for a specified attribute in the Context object. These
values are returned as an NV List object, which must be freed when no longer needed using the
CORBA: :release member function.

Return Values
None.

See Also

CORBA: :Context::create_child
CORBA: :ORB: :get_default_context

CORBA::Context::parent

Synopsis
Returns the parent context of the Context object.

C++ Binding

CORBA: :Context_ptr CORBA: :Context::parent () const;

Arguments
None.

Description

Thismember function returns the parent context of the Context object. The parent of the Context
object isan attribute owned by the Context and should not be modified or freed by the caller. This
parent isnil unlessthe Context object was created usingthe corBa: : Context : :create_child
member function.

Return Values

If the member function succeeds, the parent context of the Context object isreturned. The parent
context may be nil. Usethe corBa: :is_nil member function to test for anil object reference.

If the member function does not succeed, an exception isthrown. Usethe corea::is_nil
member function to test for anil object reference.

14-16 CORBA Programming Reference

Context Member Functions

CORBA::Context::set_one_value

Synopsis
Setsthe value for a given attribute in the Context object.
C++ Binding
vold CORBA: :Context::set_one_value (
const char * AttrName,
const CORBA::Any & AttrValue) ;
Arguments
AttrName

The name of the attribute to set.

AttrValue
The value of the attribute. Currently, the Oracle Tuxedo system supports only the string
type; therefore, this parameter must contain acorea: : any object with astring inside.

Exceptions

CORBA: : BAD_PARAM if At trName iSan empty string or Attrvalue doesnot contain astring type.
CORBA: : NO_MEMORY if dynamic memory alocation failed.

Description

This member function sets the value for a given attribute in the Context object. Currently, only
string values are supported by the Context object. If the Context object already has an attribute
with the given name, it is deleted first.

Return Values
None.

See Also

CORBA: :Context::get_values
CORBA: :Context: :set_values

CORBA Programming Reference 14-17

CORBA::Context::set_values

Synopsis
Setsthe values for given attributes in the Context object.
C++ Binding
vold CORBA: :Context::set_values (
CORBA: :NVList_ptr AttrValue) ;
Argument
AttrValues

The name and value of the attribute. Currently the Oracle Tuxedo system supports only
the string type; therefore, all NamedValue objectsin the list must have corBa: : any
objectswith astring inside.

Exceptions

CORBA: :BAD_PARAM if any of the attribute values has avalue that is not a string type.
CORBA: :NO_MEMORY if dynamic memory allocation failed.

Description

This member function sets the values for given attributes in the Context object. The
CORBA: :NVList member function contains the property name and value pairs to be set.

Return Values
None.

See Also

CORBA: :Context: :get_values
CORBA: :Context: :set_one_value

ContextList Member Functions

The ContextList allowsaclient or server application to provide alist of context strings that must
be supplied with Request invocation. For a description of the Request member functions, see the
section “Request Member Functions’ on page 14-96.

The ContextList differs from the Context in that the former supplies only the context strings
whose values are to be looked up and sent with the request invocation (if applicable), while the

14-18 CORBA Programming Reference

ContextList Member Functions

latter iswhere those values are obtained. For a description of the Context member functions, see
the section Context Member Functions.

The mapping of these member functionsto C++ is as follows:

class CORBA
{
class ContextList
{
public:
Ulong count () ;
void add(const char* ctxt);
void add_consume (char* ctxt);
const char* item(Ulong index) ;
Status remove (Ulong index) ;
}; // ContextList
}// CORBA

CORBA::ContextList:: count

Synopsis
Retrieves the current number of itemsin the list.

C++ Binding

Ulong count ();

Arguments
None.

Exception
If the function does not succeed, an exception is thrown.

Description
This member function retrieves the current number of itemsin the list.

CORBA Programming Reference 14-19

Return Values

If the function succeeds, the returned value is the number of itemsin thelist. If thelist has just
been created, and no ContextList objects have been added, this function returns O (zero).

See Also

CORBA: :ContextList::add

CORBA: :ContextList: :add_consume
CORBA: :ContextList::item

CORBA: :ContextList: :remove

CORBA::ContextList::add

Synopsis

Constructs a ContextList object with an unnamed item, setting only the f1ags attribute.
C++ Binding

void add(const char* ctxt);
Argument

ctxt

Defines the memory location referred to by char*.

Exception

If the member function does not succeed, a corRBA : : NO_MEMORY exception isthrown.

Description

This member function constructs a ContextList object with an unnamed item, setting only the
flags attribute.

The ContextList object grows dynamically; your application does not need to track its size.

Return Values
If the function succeeds, the return value is a pointer to the newly created ContextList object.

See Also

CORBA: :ContextList: :add_consume
CORBA: :ContextList: :count

14-20 CORBA Programming Reference

CORBA: :ContextList::item
CORBA: :ContextList: :remove

CORBA::ContextList::add_consume

Synopsis

Constructs a ContextList object.

C++ Binding

void add_consume (const char* ctxt);

Argument
ctxt

Exception

Defines the memory location referred to by char*.

ContextList Member Functions

If the member function does not succeed, an exception is raised.

Description

This member function constructs a ContextList object.

The ContextList object grows dynamically; your application does not need to track its size.

Return Values

If the function succeeds, the return value is a pointer to the newly created ContextList object.

See Also

CORBA:
CORBA:
CORBA:
CORBA:

CORBA::ContextList::item

Synopsis

:ContextList:
:ContextList:
:ContextList:
:ContextList:

:add
:count
:item
:remove

Retrieves a pointer to the ContextList object, based on the index passed in.

CORBA Programming Reference 14-21

C++ Binding

const char* item(ULong index) ;

Argument

index

Theindex into the ContextList object. The indexing is zero-based.

Exceptions
If this function does not succeed, the Bap_praram exception is thrown.

Description

This member function retrieves a pointer to a ContextList object, based on the index passed in.
The function uses zero-based indexing.

Return Values
If the function succeeds, the return value is a pointer to the ContextList object.

See Also

CORBA: :ContextList: :add

CORBA: :ContextList: :add_consume
CORBA: :ContextList: :count
CORBA: :ContextList: :remove

CORBA::ContextList::remove

Synopsis
Removes the item at the specified index, frees any associated memory, and reorders the
remaining items on the list.

C++ Binding

Status remove (ULong index) ;

Argument

Index
Theindex into the ContextList object. The indexing is zero-based.

14-22 CORBA Programming Reference

NamedValue Member Functions

Exceptions
If this function does not succeed, the Bap_raram exception is thrown.

Description

Thismember function removestheitem at the specified index, frees any associated memory, and
reorders the remaining items on the list.

Return Values
None.

See Also

CORBA: :ContextList::add

CORBA: :ContextList: :add_consume
CORBA: :ContextList: :count
CORBA: :ContextList::item

NamedValue Member Functions

NamedValueisused only asan element of NVList, especialy inthe DIl. NamedValue maintains
an (optional) name, an any value, and labelling flags. Legal flag values are corBa: : ARG_TN,
CORBA: : ARG_OUT, and CORBA: :ARG_TINOUT.

The value in a NamedValue may be manipulated via standard operationson any.
The mapping of these member functionsto C++ isasfollows:

// C++
class NamedValue
{

public:
Flags flags () const;
const char * name() const;
Any * value() const;
}i
Memory Management

NamedV alue has the following special memory management rule:

CORBA Programming Reference 14-23

e Ownership of the return values of the name () and value () functionsis maintained by the
NamedValue; these return values must not be freed by the caller.

The following sections describe NamedV al ue member functions.

CORBA::NamedValue::flags

Synopsis
Retrieves the flags attribute of the NamedV alue object.

C++ Binding

CORBA: :Flags CORBA: :NamedValue::flags () const;
Arguments
None.

Description
This member function retrieves the flags attribute of the NamedV a ue object.

Return Values
If the function succeeds, the return value is the flags attribute of the NamedV alue object.

If the function does not succeed, an exception is thrown.

CORBA::NamedValue::name

Synopsis

Retrieves the name attribute of the NamedV alue object.
C++ Binding

const char * CORBA::NamedValue::name () const;

14-24 CORBA Programming Reference

NamedValue Member Functions

Arguments

None.

Description

Thismember function retrieves the name attribute of the NamedV a ue object. The name returned
by this member function is owned by the NamedV alue object and should not be modified or
released.

Return Values

If the function succeeds, the value returned is a constant Identifier object representing the name
attribute of the NamedV alue object.

If the function does not succeed, an exception is thrown.

CORBA::NamedValue::value
Synopsis

Retrieves a pointer to the value attribute of the NamedV alue object.

C++ Binding

CORBA: :Any * CORBA::NamedValue::value () const;
Arguments
None.

Description

This member function retrieves a pointer to the any object that represents the value attribute of
the NamedV alue object. This attribute is owned by the NamedV alue object, and should not be
modified or released.

Return Values

If the function succeeds, the return value is a pointer to the any object contained in the
NamedV alue object.

If the function does not succeed, an exception is thrown.

CORBA Programming Reference 14-25

NVList Member Functions

14-26

NVListisalist of NamedValues. A new NVList isconstructed using the oRB: : create_list
operation (see CORBA::ORB::create_exception_list). New NamedV alues may be constructed as
part of an NVList, in any of following ways:

e add—creates an unnamed value, initializing only the flags
® add_item—initializes name and flags

e add_value—initializes name, value, and flags
Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add, add_item,
add_value,add_item_consume,andadd_value_consumefunCﬂOﬂS|€ngﬂEﬂtheNVListtO
hold the new element each time they are called. The i tem function can be used to access existing
elements.

// C++
class NVList
{
public:
ULong count () const;
NamedValue_ptr add(Flags) ;
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(const char*, const Any&, Flags);
NamedValue_ptr item(ULong) ;
void remove (ULong) ;

}i

Memory Management

NV List has the following special memory management rules:

e Ownership of the return values of the add, add_item, add_value, add_item_consume,
add_value_consume, and item functionsis maintained by the NV List; these return values
must not be freed by the caller.

e The char* parametersto the add_item_consume and add_value_consume functions
and the any* parameter to the add_value_consume function are consumed by the
NVList. The caller may not access these data after they have been passed to these

CORBA Programming Reference

NVList Member Functions

functions because the NV List may copy them and destroy the originals immediately. The
caller should use the Namedvalue: : value () operation to modify the vailue attribute of
the underlying NamedValue, if desired.

e The remove function also calls corBa: : release on the removed NamedValue.

The following sections describe NV List member functions.

CORBA::NVList::add

Synopsis
Constructs a NamedV alue object with an unnamed item, setting only the f1lags attribute.

C++ Binding
CORBA: :NamedValue_ptr CORBA::NVList::add (
CORBA: :Flags Flags) ;
Argument
Flags

Flags to determine argument passing. Valid values are:

CORBA: : ARG_IN
CORBA: : ARG_INOUT
CORBA: : ARG_OUT

Description

This member function constructs a NamedV alue object with an unnamed item, setting only the
flags attribute. The NamedV alue object is added to the NV List object that the call was invoked
upon.

The NVList object grows dynamically; your application does not need to track its size.

Return Values

If the function succeeds, the return value is a pointer to the newly created NamedV alue object.
The returned NamedV al ue object reference is owned by the NV List and should not be released.

If the member function does not succeed, a corBa : : NO_MEMORY exception isthrown.

CORBA Programming Reference 14-27

See Also

CORBA: :NVList: :add
CORBA: :NVList::add_item
CORBA: :NVList: :add_value
CORBA: :NVList::count
CORBA: :NVList: :remove

CORBA::NVList::add_item

Synopsis
Constructs aNamedV alue object, creating an empty value attribute and initializing the name and
flags attributes.

C++ Binding
CORBA: :NamedValue_ptr CORBA::NVList::add_item (
const char * Name,
CORBA: :Flags Flags) ;
Arguments
Name

The name of the list item.
Flags
Flags to determine argument passing. Valid values are;

CORBA: : ARG_IN
CORBA: : ARG_INOUT
CORBA: : ARG_OUT

Description

This member function constructs a NamedV alue object, creating an empty value attribute and
initializing the name and flags attributes that pass in as parameters. The NamedValue object is
added to the NV List object that the call was invoked upon.

The NVList object grows dynamically; your application does not need to track its size.

14-28 CORBA Programming Reference

NVList Member Functions

Return Values

If the function succeeds, the return value is a pointer to the newly created NamedV alue object.
The returned NamedV alue object reference is owned by the NV List and should not be rel eased.

If the member function does not succeed, an exception is thrown.

See Also

CORBA: :NVList: :add
CORBA: :NVList::add_value
CORBA: :NVList: :count
CORBA: :NVList::item
CORBA: :NVList: :remove

CORBA::NVList::add_value

Synopsis
Constructs a NamedV alue object, initializing the name, value, and flags attribute.
C++ Binding
CORBA: :NamedValue_ptr CORBA::NVList::add_value (
const char * Name,
const CORBA: :Any & Value,
CORBA: :Flags Flags) ;
Arguments
Name

The name of the list item.

Value

The value of thelist item.
Flags
Flags to determine argument passing. Valid values are:

CORBA: : ARG_IN
CORBA: : ARG_INOUT
CORBA: : ARG_OUT

CORBA Programming Reference

14-29

Description

This member function constructs a NamedV alue object, initializing the name, value, and flags
attributes. The NamedV alue object is added to the NV List object that the call wasinvoked upon.

The NVList object grows dynamically; your application does not need to track its size.

Return Values

If the function succeeds, the return value is a pointer to the newly created NamedV alue object.
The returned NamedV al ue object reference is owned by the NV List and should not be released.

If the member function does not succeed, an exception israised.

See Also

CORBA: :NVList: :add
CORBA: :NVList::add_item
CORBA: :NVList: :count
CORBA: :NVList::item
CORBA: :NVList: :remove

CORBA::NVList::count

Synopsis
Retrieves the current number of itemsin thelist.

C++ Binding

CORBA: :ULong CORBA::NVList::count () const;

Arguments
None.

Description
This member function retrieves the current number of itemsin thelist.

Return Values

If the function succeeds, the returned value is the number of itemsin thelist. If the list has just
been created, and no NamedV al ue objects have been added, this function returns O (zero).

If the function does not succeed, an exception is thrown.

14-30 CORBA Programming Reference

NVList Member Functions

See Also

CORBA: :NVList: :add
CORBA: :NVList::add_item
CORBA: :NVList::add_value
CORBA: :NVList::item
CORBA: :NVList: :remove

CORBA::NVList::item

Synopsis
Retrieves a pointer to the NamedV alue object, based on the index passed in.
C++ Binding
CORBA: :NamedValue_ptr CORBA::NVList::item (
CORBA: : ULong Index) ;
Argument
Index

Theindex into the NV List object. The indexing is zero-based.

Exception
If this function does not succeed, the BaD_raram exception is thrown.

Description

This member function retrieves a pointer to a NamedV alue object, based on the index passed in.
The function uses zero-based indexing.

Return Values

If the function succeeds, the return value is a pointer to the NamedV alue object. The returned
NamedV alue object reference is owned by the NVList and should not be released.

See Also

CORBA: :NVList: :add
CORBA: :NVList::add_item
CORBA: :NVList: :add_value
CORBA: :NVList::count
CORBA: :NVList: :remove

CORBA Programming Reference 14-31

CORBA::NVList::remove

Synopsis
Removes the item at the specified index, frees any associated memory, and reorders the
remaining items on the list.

C++ Binding

vold CORBA: :NVList::remove (
CORBA: : ULong Index) ;

Argument
Index
Theindex into the NV List object. The indexing is zero-based.
Exception
If this function does not succeed, the BAD_prarRaAM exception is thrown.

Description

Thismember function removesthe item at the specified index, frees any associated memory, and
reorders the remaining items on the list.

Return Values
None.

See Also

CORBA: :NVList: :add
CORBA: :NVList::add_item
CORBA: :NVList::add_value
CORBA: :NVList: :count
CORBA: :NVList::item

14-32 CORBA Programming Reference

Object Member Functions

Object Member Functions

Therulesin this section apply to the OMG IDL interface Object, which is the base of the OMG
IDL interface hierarchy. Interface Object defines a normal CORBA object, not a pseudo-object.
However, it isincluded here because it references other pseudo-objects.

In addition to other rules, all operation namesin interface Object have leading underscoresin the
mapped C++ class. Also, the mapping for create_request isdivided into three forms,
corresponding to the usage styles described in the section Request Member Functions. The
is_nil and release functionsare provided in the CORBA namespace, as described in Object
Member Functions.

The Oracle Tuxedo software uses object reference operations that are defined by CORBA
Revision 2.2. These operations depend only on type obiject, So they can be expressed as regular
functions within the CORBA namespace.

Note: Because the Oracle Tuxedo software uses the POA and not the BOA, the deprecated
get_implementation () member functionisnot visible; you will get acompileerror if
you attempt to referenceit.

The mapping of these member functionsto C++ isasfollows:

class CORBA
{
class Object
{
public:
CORBA: :Boolean _is_a(const char *)
CORBA: :Boolean _is_equivalent();

CORBA: :Boolean _nonexistent (Object_ptr);

static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
InterfaceDef_ptr _get_interface();
CORBA: :ULong _hass (CORBA: :ULong) ;
void _create_request (
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,

Request_out request,

CORBA Programming Reference 14-33

Flags reqg_ flags
)
Status _create_request(

Context_ptr ctx,

const char * operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr Except_list,
ContextList_ptr Context_list,
Request_out request,

Flags req_flags

) ;

Request_ptr _request (const char* operation) ;

}; //Object
}; // CORBA

The following sections describe the object member functions.

CORBA::0bject::_create_request

Synopsis
Creates a reguest with user-specified information.
C++ Binding
Void CORBA: :0Object::_create_request (
CORBA: :Context_ptr Ctx,
const char * Operation,
CORBA: :NVList_ptr Arg_list,
CORBA: :NamedValue_ptr Result,
CORBA: :ExceptionList_ptr Except_list,
CORBA: :ContextList_ptr Context_list,
CORBA: :Request_out Request,
CORBA: :Flags Reqg flags,);
Arguments
Ctx

The Context to be used for this request.

14-34 CORBA Programming Reference

Object Member Functions

Operation
The operation name for this request.

Arg_list
The argument list for this request.

Result
The NamedV alue reference where the return value of this request isto be stored after a
successful invocation.

Except_list
The exception list for this request.

Context_list
The context list for this request.

Request
The newly created request reference.

Reqg flags
Reserved for future use; the user must pass a value of zero.

Description

This member function creates a request that provides information on context, operation name,
and other values (long form). To create arequest with just the operation name supplied at thetime
of the call (short form), usethe corea: :Object: :_request member function. The remainder
of the information provided in the long form eventually needs to be supplied.

Return Values
None.

See Also

CORBA: :Object::_request

CORBA::0bject::_duplicate

Synopsis
Duplicates the Object object reference.

CORBA Programming Reference 14-35

C++ Binding
CORBA: :Object_ptr CORBA::0Object::_duplicate(
Object_ptr Obj);

Argument
obj
The object reference to be duplicated.
Description

This member function duplicates the specified Object object reference (ob3). If the given object
referenceisnil, the _duplicate function returns anil object reference. The object returned by
thiscall should befreedusing corBa: : release, Or should beassignedto CORBA: : Object_var
for automatic destruction.

This function can throw CORBA system exceptions.

Return Values

Returns the duplicate object reference. If the specified object referenceis nil, anil object
reference is returned.

Example
CORBA: :Object_ptr op = TP::create_object_reference(
"IDL:Teller:1.0", "MyTeller") ;
CORBA: :Object_ptr dop = CORBA::0Object::_duplicate (op);

CORBA::0Object::_get_interface

Synopsis
Returns an interface definition for the Repository object.

C++ Binding

CORBA: :InterfaceDef_ptr CORBA::0Object::_get_interface ();

Arguments
None.

14-36 CORBA Programming Reference

Object Member Functions

Description
Returns an interface definition for the Repository object.

Note: To usethe Repository Interface API, define a macro before corea.h isincluded. For
information about how to define a macro, see Creating CORBA Server Applications.
Return Values

InterfaceDef_ptr

CORBA::0Object::_is_a

Synopsis
Determines whether an object is of a certain interface.

C++ Binding

CORBA: :Boolean CORBA::0Object::_is_a(const char * interface_id);

Argument

interface_id

A string that denotes the interface repository 1D.

Description

This member function is used to determine if an object is an instance of the interface that you
specify inthe interface_id parameter. It facilitates maintaining type-safety for object
references over the scope of an ORB.

Return Values

Returns TrUE if the object isan instance of the specified type, or if the object isan ancestor of the
“most derived” type of that object.

Example

CORBA: :Object_ptr op = TP::create_object_reference
"IDL:Teller:1.0", "MyTeller");
CORBA: :Boolean b = op->_is_a("IDL:Teller:1.0");

CORBA Programming Reference 14-37

CORBA::0bject::_is_equivalent

Synopsis
Determinesif two object references are equivalent.

C++ Binding

CORBA: :Boolean CORBA::0Object::_is_equivalent (
CORBA: :Object_ptr other_obj);

Argument

other_obj
The object reference for the other object, which is used for comparison with the target
object.

Exceptions
Can throw a standard CORBA exception.

Description

This member function is used to determine if two object references are equivalent, so far asthe
ORB can easily determine. It returns TRUE if your object reference is equivalent to the object
reference you passas aparameter. If two object referencesareidentical, they are equivalent. Two
different object references that refer to the same object are also equivalent.

Return Values

Returns TrUE if the target object reference is known to be equivalent to the other object reference
passed as a parameter; otherwise, it returns FALSE.

Example

CORBA: :Object_ptr op = TP::create_object_reference
"IDL:Teller:1.0", "MyTeller");

CORBA: :Object_ptr dop = CORBA: :0bject::_duplicate(op);

CORBA: :Boolean b = op->_is_equivalent (dop) ;

CORBA::0bject::_nil

Synopsis
Returns areference to anil object.

14-38 CORBA Programming Reference

Object Member Functions

C++ Binding

CORBA: :Object_ptr CORBA: :0Object::_nil();

Arguments
None.

Description

This member function returns anil object reference. To test whether agiven object isnil, use the
appropriate CorRBA: : is_nil member function (see the section CORBA::release). Calling the
CORBA:is_nil routineonany _nil member function alwaysyields CORBA_TRUE.

Return Values
Returns anil object reference.

Example
CORBA: :Object_ptr op = CORBA::0bject::_nil();

CORBA::Object::_non_existent

Synopsis
May be used to determine if an object has been destroyed.

C++ Binding

CORBA: :Boolean CORBA::Object::_non_existent();

Arguments
None.

Description

This member function may be used to determine if an object has been destroyed. It does this
without invoking any application-level operation on the object, and so will never affect the object
itself.

Return Values

Returns corBa_TRUE (rather than raising CorRBA: : OBJECT_NOT_EXIST) if the ORB knows
authoritatively that the object does not exist; otherwise, it returns CORBA_FALSE.

CORBA Programming Reference 14-39

CORBA::0bject::_request

Synopsis
Creates a reguest specifying the operation name.
C++ Binding
CORBA: :Request_ptr CORBA::0bject::_request (
const char * Operation) ;
Argument
Operation
The name of the operation for this request.
Description

This member function creates a request specifying the operation name. All other information,
such as arguments and results, must be populated using CORBA: : Request member functions.

Return Values
If the member function succeeds, the return value is a pointer to the newly created request.

If the member function does not succeed, an exception is thrown.

See Also

CORBA: :Object::_create_request

CORBA Member Functions

This section describes the Object and Pseudo-Object Reference member functions.
The mapping of these member functionsto C++ isasfollows:

class CORBA {
void release (Object_ptr);
void release (Environment_ptr) ;

void release (NamedValue_ptr) ;

void release (Request_ptr) ;

(
(
(
void release(NVList_ptr);
(
void release(Context_ptr) ;
(

void release (TypeCode_ptr) ;

14-40 CORBA Programming Reference

void release (POA_ptr) ;

void release

ORB_ptr) ;

void release (ExceptionList_ptr);

(
(
(
(

void release(ContextList_ptr);

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

Boolean

is_nil (Object_ptr);
is_nil (Environment_ptr) ;
is_nil (NamedValue_ptr) ;
is_nil (NVList_ptr);
is_nil (Request_ptr) ;

(

(

(

(

(

is_nil (Context_ptr) ;

is_nil (TypeCode_ptr) ;

is_nil (POA_ptr);

is_nil (ORB_ptr) ;

is_nil (ExceptionList_ptr) ;
(

is_nil (ContextList_ptr);

hash (maximum) ;

resolve_

}i

CORBA::release
Synopsis

Allows allocated resources to be released for the specified object type.

C++ Binding

initial_references (identifier) ;

void CORBA: :release (spec_object_type obj);

Argument

obj

CORBA Member Functions

The object reference that the caller will no longer access. The specified object type must
be one of the types listed in the section CORBA Member Functions.

CORBA Programming Reference 14-41

Description

This member function indicates that the caller will no longer access the reference so that
associated resources may be deallocated. If the specified object reference is nil, the release
operation doesnothing. If the ORB instancerel easeisthelast reference to the ORB, then the ORB
will be shut down prior to its destruction. Thisisthe same as calling orRB_shutdown prior to
caling corBa: : release. Thisonly appliesto the re1ease member function called on the ORB.

This member function may not throw CORBA exceptions.

Return Values
None.

Example
CORBA: :Object_ptr op = TP::create_object_reference
"IDL:Teller:1.0", "MyTeller");
CORBA: :release(op) ;

CORBA::is_nil
Synopsis
Determinesif an object exists for the specified object type.
C++ Binding
CORBA: :Boolean CORBA::is_nil (spec_object_type obj);
Argument
obj
The object reference. The specified object type must be one of the types listed in the
section CORBA Member Functions.
Description

This member function is used to determine if a specified object referenceisnil. It returns TRUE
if the object reference containsthe special valuefor anil object reference as defined by the ORB.

This operation may not throw CORBA exceptions.

Return Values
Returns TrUE if the specified object is nil; otherwise, returns FALSE.

14-42 CORBA Programming Reference

CORBA Member Functions

Example

CORBA: :Object_ptr op = TP::create_object_reference
"IDL:Teller:1.0", "MyTeller");
CORBA: :Boolean b = CORBA::is_nil (op);

CORBA::hash

Synopsis

Provides indirect access to object references using identifiers internal to the ORB.

C++ Binding

CORBA: :hash (CORBA: : ULong maximum) ;

Argument

maximum

Specifies an upper bound on the hash value returned by the ORB.

Description

Object references are associated with ORB-internal identifiersthat may indirectly be accessed by
applications using the hash() operation. The value of thisidentifier does not change during the

lifetime of the object reference, and so neither will any hash function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object reference may
return the same hash value. However, if two object references hash differently, applications can

determine that the two object references are not identical.

The maximum parameter to the hash operation specifies an upper bound on the hash value

returned by the ORB. The lower bound of that valueis zero. Since atypical use of thisfeatureis
to construct and access a collision-chained hash table of object references, the more randomly
distributed the values are within that range, and the less expensive those values are to compuite,

the better.

Return Values
None.

CORBA Programming Reference

14-43

CORBA::resolve_initial _references

Synopsis
Returns an initial object reference corresponding to an identifier string.

C++ Binding

CORBA: :Object_ptr CORBA::resolve_initial_references (

const CORBA::char *identifier);

Argument

identifier

String identifying the object whose reference is required.

Exception

InvalidName

Description

Returns an initial object reference corresponding to an identifier string. Vaid identifiers are
“RootPOA” and “POACurrent”.

Note: Thisfunction is supported only for ajoint client/server.

Return Values

Returns acorBa: :Object_ptr.

Example
CORBA: :ORB_ptr orb = CORBA::0RB_init(argc, argv);
CORBA: :Object_ptr pfobj =
orb->resolve_initial_references ("RootPOA") ;
PortableServer: :POA_ptr rootPOA;
rootPOA = PortableServer: :POA: :narrow(pfobj) ;

ORB Member Functions

The ORB member functions constitute the programming interface to the Object Request Broker.

The mapping of the ORB member functionsto C++ isasfollows:

14-44 CORBA Programming Reference

ORB Member Functions

class CORBA

{

class ORB

{

Y

i

public:

char *object_to_string(Object_ptr);

Object_ptr string to_object(const char *);

void create_list (Long, NVList_out) ;

void create_operation_list (operationDef_ ptr, NVList_out) ;
void create_named_value (NamedValue_out) ;

void create_exception_list (ExceptionList_out) ;

void create_context_list (ContextList_out) ;

void get_default_context (Context_out) ;

void create_environment (Environment_out) ;

void send_multiple_requests_oneway (const requestSeq&) ;
void send_multiple_requests_deferred(const requestSeg&) ;
Boolean poll_next_response() ;

void get_next_response (Request_out) ;

Boolean work pending () ;

void perform_work() ;

void create_policy (in PolicyType type, in any val);

// Extension

void destroy () ;

// Extensions to support sharing context between threads
void Ctx get_ctx() = 0;

void set_ctx(Ctx) = 0;

void clear_ctx() = 0;

// Thread extensions

void inform_ thread exit (TID) = 0;

/ /ORB
// CORBA

Thread-related Operations:

To support single-threaded ORBs, as well as multithreaded ORBSs that run multithread-unaware
code, two operations (perform_work and work_pending) areincluded in the ORB interface.

These operations can be used by single-threaded and multithreaded applications. An application
that is a pure ORB client would not need to use these operations.

CORBA Programming Reference

14-45

To support multithreaded server applications, four operations (get_ctx, set_ctx, clear_ctx,
and inform_thread_exit) areincluded as extensionsto the ORB interface.

The following sections describe the ORB member functions.

CORBA::0RB::clear ctx

Synopsis
Indicates that a context is no longer required by this thread. This method supports the
development of a multithreaded server application.

C++ Binding

void clear_ctx()

Parameters
None.

Return Value
None.

Description
This method is called by an application-managed thread after the thread has finished using the
context. The method removes the association between that thread and a context.

Note: Do not call the cl1ear_ctx method from within athread that is managed by the Oracle
Tuxedo system. The Oracle Tuxedo system performsthe appropriate context propagation
and cleanup automatically for the threads it manages. If this method is called on athread
managed by the Oracle Tuxedo system, the Bap_param exception is thrown.

Example

TP::0rb()->clear_ctx();

See Also

CORBA: :ORB: :get_ctx
CORBA: :0ORB::set_ctx

14-46 CORBA Programming Reference

ORB Member Functions

CORBA::0RB::create_context_list

Synopsis
Creates and returns alist of contexts.

C++ Binding

vold CORBA: :0RB::create_context list(
CORBA: :ContextList_out List);

Argument
List
Receives areference to the newly created context list.

Description

This member function creates and returns alist of context strings that must be supplied with the
Request operation in aform that may be used in the Dynamic Invocation Interface (DII). When
no longer needed, this list must be freed using the corBa: :release member function.

Return Values
None.

CORBA::0RB::create_environment

Synopsis
Creates an environment.

C++ Binding

void CORBA: :0ORB: :create_environment (

CORBA: : Environment_out New_env) ;

Argument

New_env
Receives areference to the newly created environment.

Description
This member function creates an environment.

CORBA Programming Reference 14-47

Return Values
None.

See Also

CORBA: :NVList: :add
CORBA: :NVList::add_item
CORBA: :NVList: :add_value
CORBA: :release

CORBA::0RB::create_exception_list

Synopsis
Returns alist of exceptions.

C++ Binding
void CORBA: :0RB: :create_exception_list (
CORBA: :ExceptionList_out List);

Argument
List

Receives areference to the newly created exception list.

Description

This member function creates and returns alist of exceptionsin aform that may be used in the
Dynamic Invocation Interface (DI1). When no longer needed, this list must be freed using the
CORBA: :release Mmember function.

Return Values
None.

CORBA::0RB::create_list

Synopsis
Creates and returns an NVList object reference.

14-48 CORBA Programming Reference

ORB Member Functions

C++ Binding
vold CORBA: :0RB::create_list (
CORBA: :Long NumItem,
CORBA: :NVList_out List);
Arguments
NumItem

The number of elementsto preallocate in the newly created list.
List
Receives the newly created list.
Description

Thismember function createsalist, preallocating a specified number of items. List items may be
sequentially added to the list using the corBa: : NVList_add_item member function. When no
longer needed, this list must be freed using the cOrBaA: :release member function.

Return Values
None.

See Also

CORBA: :NVList: :add
CORBA: :NVList::add_item
CORBA: :NVList::add_value
CORBA: :release

CORBA::0RB::create_named_value

Synopsis
Creates a NamedV alue object reference.

C++ Binding
void CORBA: :0ORB: :create_named_value (

NameValue_out NewNamedVal) ;

CORBA Programming Reference 14-49

Argument

NewNamedVal
A reference to the newly created NamedV alue object.

Description

This member function creates a NamedValue object. Itsintended useis for the result argument
of arequest that needs a NamedV alue object. The extra steps of creating an NVList object are

avoided by calling this member function.

When no longer needed, the NamedV al ue object must be freed using the COrRBA: : release

member function.

Return Values
None.

See Also

CORBA: :NVList: :add
CORBA: :NVList::add_item
CORBA: :NVList::add_value
CORBA: :release

CORBA::0RB::create_operation_list

Synopsis
Creates and returns alist of the arguments of a specified operation.
C++ Binding
void CORBA: :0RB: :create_operation_list (
CORBA: :OperationDef_ptr Oper,
CORBA: :NVList_out List);
Arguments
Oper

The operation definition for which thelist is being created.

List
Receives areference to the newly created arguments list.

14-50 CORBA Programming Reference

ORB Member Functions

Description

This member function creates and returns a list of the arguments of a specified operation, in a
form that may be used with the Dynamic Invocation Interface (DI1). When no longer needed, this
list must be freed using the corea: :release member function.

Return Values
None.

See Also

CORBA: :0BB: :create_list
CORBA: :NVList: :add
CORBA: :NVList::add_item
CORBA: :NVList: :add_value
CORBA: :release

CORBA::0RB::create_policy

Synopsis
Creates new instances of policy objects of a specific type with specified initial state.

C++ Binding
void CORBA: :0RB: :create_policy (
in PolicyType type,

in any val);

Arguments

type
BiDirPolicy: :BIDIRECTIONAL_POLICY_TYPE iStheonly rolicyType value
supported for Oracle WebL ogic Enterprise version 4.2.

val
The only va1 value supported for Oracle WebL ogic Enterprise V4.2 is

BiDirPolicy: :BidirectionalPolicyValue.

CORBA Programming Reference 14-51

Exceptions

PolicyError
This exception is raised to indicate problems with the parameter values passed to the
ORB: :create_policy operation. The specific exception and reasons are as follows
shown in Table 14-1:

Table 14-1 Exception and Reasons

Exception Reason

BAD_POLICY The requested Policy is not understood by the ORB.

UNSUPPORTED_POLICY Therequested Policy isunderstood to be valid by the ORB,
but is not currently supported.

BAD_POLICY_ TYPE Thetype of the value requested for the Policy isnot valid for
that PolicyType.
BAD_POLICY_VALUE The value requested for the Policy is of avalid type, but is

not within the valid range for that type.

UNSUPPORTED_POLICY_ Thevalue requested for the Policy is of avalid type and
VALUE within thevalid rangefor that type, but thisvalid valueis not
currently supported.

Description

14-52

This operation can be invoked to create new instances of policy objects of a specific type with
specified initial state. If create_policy failsto instantiate a new Policy object dueto its
inability to interpret the requested type and content of the policy, it raises the Policy Error
exception with the appropriate reason. (See Exceptions below.)

TheBidirectionalPolicy argument isprovided for remote clients using callbacks because
remote clients use I1OP. It is not used for native clients using callbacks or for Oracle Tuxedo
servers because machines inside an Oracle Tuxedo domain communicate differently.

Before GIOP 1.2, bidirectional policy was not available asachoicein I10P (which uses TCF/IP).
Connectionsin GIOP 1.0 and 1.1 were one way (that is, arequest flowed from aclient to a
server); only responses flowed from the server back to the client. If the server wanted to make a
request back to the client machine (say for acallback), the server machine had to establish another
one-way connection. (Be advised that “connections’ in this sense mean operating system

CORBA Programming Reference

ORB Member Functions

resources, not physicaly different wires or communication paths. A connection uses resources,
SO minimizing connectionsis desirable.)

Sincethisrelease of the Oracle Tuxedo C++ software supports GIOP 1.2, it supports reuse of the
TCP/IP connection for both incoming and outgoing requests. Reusing connections saves
resources when aremote client sends callback references to an Oracle Tuxedo domain. Thejoint
client/server usesaconnection to send arequest to an Oracle Tuxedo domain; that connection can
be reused for the callback request. If the connection is not reused, the callback request must
establish another connection.

Allowing reuse of a connection is a choice of the ORB/POA that creates callback object
references. The server for those object references (usually the creator of the references, especially
in the callback case) might choose not to allow reuse for security considerations (that is, the
outgoing connection [aclient request from this machineto aremote server] may not need security
because the remote server does not require it, but the callback server on this machine might
require security). Since security is established partly on aconnection basis, theincoming security
can be established only if aseparate connectionisused. If the remote server requires security, and
if that security involves amutual authentication, the local server usually feels safe in allowing
reuse of the connection.

Since the choice of connection reuseis at the server end, whenever a process acts asa server—in
this case ajoint client/server—and creates object references, it must inform the ORB that it is
willing to reuse connections. The process does this by setting a policy on the POA that creates
the object references. Thedefault policy isto not allow reuse (that is, if you do not supply apolicy
object for reuse, the POA does not allow reuse).

This default allows for backward compatibility with code written before CORBA version 2.3.
Such code did not know that reuse was possible so it did not have to take into consideration the
security implications of reuse. Thus, that unchanged code should continue to disallow reuse until
the user considers security and explicitly makes a decision to the contrary.

Toallow reuse, you usethe create_policy operation to create apolicy object that allowsreuse,
and use that policy object as part of the list of policies for POA creation.

Return Values
None.

Example

#include <BiDirPolicy_ c.h>
BiDirPolicy: :BidirectionalPolicy_var bd_policy;
CORBA: :Any allow_reuse;

CORBA Programming Reference 14-53

allow_reuse <<= BiDirPolicy::BOTH;

CORBA: :Policy_var generic_policy =
orb->create_policy(BiDirPolicy: :BIDIRECTIONAL_POLICY_TYPE,
allow_reuse);
bd_policy = BiDirPolicy::BidirectionalPolicy: :_narrow (

generic_policy);

In the above example, the bd_po1icy would then be placed in the PolicyList passed to the
create_poa operation.

CORBA::0RB::destroy

Synopsis
Destroys the specified ORB.

C++ Binding

void destroy () ;

Parameter

None.

Return Value
None.

Description

Use this method to destroy an ORB so that the resources associated with that ORB can be
reclaimed. Once an ORB has been destroyed, another invocation on the ors_init method with
the same ORB ID returns areference to a newly constructed ORB. If an application invokes the
ORB: : destroy method from athread that is currently servicing aninvocation, the Oracle Tuxedo
system raises the BAD_INV_ORDER System exception with the OMG minor code 3, because
blocking would result in a deadl ock.

Example

pOrb->destroy () ;

14-54 CORBA Programming Reference

ORB Member Functions

CORBA::0RB::get_ctx

Synopsis
Retrieves the context associated with the current thread. This method supports the devel opment
of amultithreaded server application.

C++ Binding

CORBA: :0RB: :Ctx get_ctx()

Arguments
None.

Return Value
CORBA: :ORB: :Ctx
The context associated with this thread.

Description

Use this method to retrieve the context associated with the current thread. This context can then
be used to initialize other threads that the application creates and manages.

When an object creates a thread, the object invokes this operation on the ORB to obtain system
context information that the object can pass on to the thread. This operation must be called from
athread that already has a context. For example, the thread in which a method was dispatched
will aready have a content.

Example

thread.context = TP::orb()->get_ctx();

See Also

CORBA: :ORB: :set_ctx
CORBA: :0RB::clear_ctx

CORBA::0RB::get_default_context

Synopsis
Returns areference to the default context.

CORBA Programming Reference 14-55

C++ Binding

void CORBA: :0RB: :get_default_context (

CORBA: :Context_out ContextObj) ;
Argument
ContextObj
The reference to the default context.
Description

This member function returns a reference to the default context. When no longer needed, this
context reference must be freed using the corea: : release member function.

Return Values
None.

See Also

CORBA: :Context: :get_one_value
CORBA: :Context: :get_values

CORBA::0RB::get_next_response

Synopsis
Determines and reports the next deferred synchronous request that completes.
C++ Binding
void CORBA: :0RB: :get_next_response (
CORBA: :Request_out RequestObj) ;
Argument
RequestObj

The reference to the next completed request.

Description

This member function returns a reference to the next request that completes. If no requests have
completed, the function waits for a request to complete. This member function returns the next
request on the queue, in contrast to the CORBA: : Request : : get_response member function,

14-56 CORBA Programming Reference

ORB Member Functions

which waits for a particular request to complete. When no longer needed, this request must be
freed using the cCorBa: : release member function.

Return Values
None.

See Also

CORBA: :0ORB: :poll_next_response
CORBA: :Request: :get_reponse

CORBA::0RB::inform_thread_exit

Synopsis
Informsthe Oracle Tuxedo system that resources associated with an application-managed thread
can be released. This method supports the development of a multithreaded server application.

C++ Binding

void CORBA: :0RB::inform_thread_exit (CORBA::TID threadId)

Parameter

threadIld
Thelogical thread ID of the application-managed thread being del eted.

Return Value
None.

Description
This method informs the Oracle Tuxedo system about the following conditions:

e The specified application-managed thread is no longer used by a servant implementation.

e Any resources associated with the thread should be released.

Note: You should only call this operation on threads that the application creates and manages.
Do not invoke this method when specifying a dispatch thread that is managed by the
Oracle Tuxedo system.

Example
pOrb->inform_thread_exit (thread.threadId) ;

CORBA Programming Reference 14-57

CORBA::0RB::list_initial_services

Synopsis

Determines which objects have references available viathe initial references mechanism.

C++ Binding
typedef string ObjectId;
typedef sequence ObjectId ObjectIdList;
ObjectIdList list_initial_services ();
Argument

ObjectIid
The object ID.

list_initial_services ()

Defines the object type.

Description

This operation is used by applications to determine which objects have references available via
theinitial references mechanism. This operation returns an object1dList, which isasequence
of objectIds. ObjectIds aretyped as strings.

Each object, which may need to be made availableat initialization time, isallocated astring value
to represent it. In addition to defining the 1D, the type of object being returned must be defined,
that is, InterfaceRepository returnsan object of type Repository, and NameService
returns a CosNamingContext Object.

Return Values
Sequence of object1ds.

See Also

CORBA: :0RB::resolve_initial_ references

CORBA::0RB::object_to_string

Synopsis
Produces a string representation of an object reference.

14-58 CORBA Programming Reference

ORB Member Functions

C++ Binding
char * CORBA::0RB::object_to_string (
CORBA: :Object_ptr ObjRef) ;

Argument
ObjRef

The object reference to represent as a string.

Description

This member function produces a string representation of an object reference. The calling
program must usethe corea: :string_free member function to free the string memory after
it isno longer needed.

Return Values
The string representing the specified object reference.

Example

CORBA: :Object_ptr op = TP::create_object_reference
"IDL:Teller:1.0", "MyTeller");
char* objstr = TP::orb()->object_to_string(op) ;

See Also

CORBA: :0RB: :string_to_object
CORBA: :string_free

CORBA::0RB::perform_work

Synopsis
Allows the ORB to perform server-related work.

C++ Binding

void CORBA: :0RB: :perform_work () ;

Arguments

None.

CORBA Programming Reference 14-59

Exceptions

Once the ORB has shut down, acall to work_pending and perform_work () raisesthe
BAD_INV_ORDER exception. An application can detect this exception to determine when to
terminate a polling loop.

Description
If called by the main thread, this operation allows the ORB to perform server-related work.
Otherwise, it does nothing.

Thework_pending () and perform_work () operations can be used to write asimple polling
loop that multiplexes the main thread among the ORB and other activities. Such aloop would
most likely be needed in a single-threaded server. A multithreaded server would need a polling
loop only if there were both ORB and other code that required use of the main thread. See the
example below for such a polling loop.

Return Values
None.

See Also

CORBA: :ORB: :work_pending

Example
Thefollowing is an example of a polling loop:
// C++
for (;;) {
if (orb->work_pending()) {

orb->perform_work () ;
}
// do other things
// sleep?

CORBA::0RB::poll_next_response

Synopsis
Determines whether a completed request is outstanding.

14-60 CORBA Programming Reference

ORB Member Functions

C++ Binding

CORBA: :Boolean CORBA::0RB::poll_next_response ();

Arguments
None.

Description

Thismember function reports on whether there is an outstanding (pending) completed request; it

does not remove the request. If acompleted request is outstanding, the next call to the

CORBA: :ORB: :get_next_response member functionisguaranteed to return arequest without

waiting. If there are no completed requests outstanding, the

CORBA: :ORB: :poll_next_response member function returnswithout waiting (blocking).

Return Values
If acompleted request is outstanding, the function returns corBa_TRUE.

If no completed request is outstanding, the function returns corBa_FALSE.

See Also

CORBA: :ORB: :get_next_response

CORBA::0RB::resolve _initial references

Synopsis
Obtains object references for initial services.

C++ Binding

Object resolve_initial references (in ObjectId identifier)
raises (InvalidName) ;

exception InvalidName {};

Augument

identifier
String that identifies the object whose reference is required.

CORBA Programming Reference

14-61

Description

Thisoperationisused by applicationsto obtain object referencesfor initial services. Theinterface
differsfrom the Naming Service sresolveinthat object1d (astring) replacesthe more complex
Naming Service construct (asequence of structures containing string pairs for the components of
the name). This simplification reduces the namespace to one context.

ObjectIds arestrings that identify the object whose referenceis required. To maintain the
simplicity of the interface for obtaining initial references, only alimited set of objects are
expected to havetheir referencesfound viathismeans. Unlikethe ORB identifiers, theobject1d
name space requires careful management. To achieve this, the OMG may, in the future, define
which services are required by applications through this interface and specify names for those
services.

Currently, reserved objectIds ar€ RootPOA, POACurrent, InterfaceRepository,
NameService, TradingService, SecurityCurrent, TransactionCurrent, and

DynAnyFactory.

The application is responsible for narrowing the object reference returned from
resolve_initial_references t0thetypethat wasrequested in the object1d. For example,
for InterfacerRepository the object returned would be narrowed to Repository type.

Return Values
Object references for initial services.

See Also

CORBA::0RB::1list_initial_services

CORBA::0RB::send_multiple_requests_deferred

Synopsis
Sends a sequence of deferred synchronous requests.

C++ Binding

void CORBA: :0RB: :send_multiple_requests_deferred (
const CORBA: :0ORB::RequestSeq & Reqgs) ;

14-62 CORBA Programming Reference

ORB Member Functions

Argument

Regs
The segquence of requests to be sent. For more information about how to populate the
sequence with request references, see CORBA: :ORB: :RequestSeq iNn the section Usage.
Description

This member function sends out a sequence of requests and returns control to the caller without
waiting for the operation to complete. The caller uses CORBA: : ORB: :poll_ next_response,
CORBA: :ORB: :get_next_response, Of CORBA: :Rquest: :get_response Or adl threeto
determine if the operation has completed and if the output arguments have been updated.

Return Values
None.

See Also

CORBA: :Request: :get_response
CORBA: :ORB: :get_next_response
CORBA: :0ORB::send_multiple_requests_oneway

CORBA::0RB::send_multiple_requests_oneway

Synopsis
Sends a sequence of one-way, deferred synchronous requests.

C++ Binding

void CORBA: :0RB: :send_multiple_requests_oneway (
const CORBA: :RequestSeq & Reqgs) ;

Argument

Reqgs
The segquence of requests to be sent. For more information about how to populate the
sequence with request references, see CORBA: : ORB: :RequestSeq in the section Usage.

Description

This member function sends out a sequence of requests and returns control to the caller without
waiting for the operation to complete. The caller neither intendsto wait for aresponse nor expects
any output arguments to be updated.

CORBA Programming Reference 14-63

Return Values
None.

See Also

CORBA: :0RB::send_multiple_requests_deferred

CORBA::0RB::set_ctx

Synopsis
Setsthe context for the current thread. This method supports the devel opment of amultithreaded
server application.

C++ Binding

void set_ctx (CORBA: :0RB: :Ctx aContext)

Parameter
aContext
The context to be associated with this thread.
Return Value
None.

Description

This method sets the context for the current application-managed thread. The context parameter
provided must have been obtained in a previousy-executed thread that is managed by the Oracle
Tuxedo system or in an application-managed thread that has already been initialized.

Note: Do not call the set_ctx method in athread that is managed by the Oracle Tuxedo
system. The Oracle Tuxedo system performs the appropriate context propagation
automatically for thethreadsit manages. If your application callsthis method on athread
managed by the Oracle Tuxedo system, the Bap_praram exception is thrown.

Example

TP::0rb()->set_ctx(thread->context) ;

See Also

CORBA: :0RB: :get_ctx ()
CORBA: :0RB::clear_ctx()

14-64 CORBA Programming Reference

ORB Member Functions

CORBA::0RB::string_to_object

Synopsis
Converts astring produced by CORBA: : ORB: : object_to_string operation and returnsthe
corresponding object reference.

C++ Binding

Object string_to_object (in string str);

Argument

str
String produced by the CORBA: : ORB: : object_to_string operation.

Description
This operation is used by applications to convert a string produced by
CORBA: :ORB: :object_to_string operation and returns the corresponding object reference.

To guarantee that an ORB will understand the string form of an object reference, that ORB’s
object_to_string operation must be used to produce the string. The string_to_object
operation allows URLsin the IOR, corbaloc, corbalocs, and corbanames formatsto be converted
into object references. If aconversion fails, the string_to_object operation raisesthe
BAD_PARAM Standard exception with one of the following minor codes:

® BadSchemeName

® BadAddress

® BadSchemeSpecificPart

For all conforming ORBs, if ob3j isavalid reference to an object, then

string to_object (object_to_string(obj)) will return avalid reference to the same
object, if the two operations are performed on the same ORB. For al conforming ORB's
supporting |OP, this remains true even if the two operations are performed on different ORBs.

Return Value
Returns an object reference.

See Also

CORBA: :ORB: :0bject_to_string

CORBA Programming Reference 14-65

CORBA::0RB::work_pending

Synopsis
Returns an indication of whether the ORB needs the main thread to perform server-related work.

C++ Binding

CORBA: :boolean CORBA::0RB::work_pending () ;

Arguments
None.

Description

This operation returns an indication of whether the ORB needs the main thread to perform
server-related work.

Return Values

A result of TRUE indicates that the ORB needs the main thread to perform server-related work,
and aresult of FaLsE indicates that the ORB does not need the main thread.

See Also

CORBA: :ORB: :perform_work

ORB Initialization Member Function

The mapping of this member function to C++ isasfollows:

class CORBA {
static CORBA::0RB_ptr ORB_init (int& argc, char** argv,
const char* orb_identifier = 0,
const char* -ORBport nnn) ;
<appl-name> [-ORBid {BEA_IIOP | BEA_TOBJ} \
-ORBInitRef <ObjectID>=<ObjectURL> [*]]
-ORBDefaultInitRef <ObjectURL>]
-ORBport port-number] \

-ORBminCrypto {0 | 40 | 56 | 128}] \
~ORBmaxCrypto {0 | 40 | 56 | 128}] \

[
[
[
[-ORBsecurePort port-number] \
[
[
[-ORBmutualAuth] \

14-66 CORBA Programming Reference

ORB Initialization Member Function

[-ORBpeerValidate {detect | warn none}] \
[appl-options]

CORBA::0RB_init

Synopsis
Initializes operations for an ORB.

C++ Binding
static CORBA: :0RB_ptr ORB_init (int& argc, char** argv,

const char* orb_identifier = 0);

Arguments

argc
The number of stringsin argv.

argv
Thisargument is defined as an unbound array of strings (char **) and the number of
stringsin the array is passed in the arge parameter.

orb_identifier
If theorb_identifier parameter issupplied, *Bea_110p~ explicitly specifiesaremote
client and “Bea_ToBJ” explicitly specifies anative client, as defined in the section
Tobj_Bootstrap.

Description

This member function initializes operations for an ORB and returns a pointer to the ORB. When
your program is done with the ORB, use the corBa: : release member function to free the
resources allocated for the ORB pointer returned from CORBA: : ORB_ptr ORB_init.

The ORB returned has been initialized with two pieces of information to determine how it will
operate: client type (remote or native) and server port number. The client type can be specifiedin
theorb_identifier argument, in the argv argument, or in the system registry. The server port
number can be specified in the argv argument.

The arguments argc and argv are typically the same parameters that were passed to the main
program. As specified by C++, these parameters contain string tokens from the command line

CORBA Programming Reference 14-67

14-68

that started the client. The two ORB options can be specified on the command line, each using a
pair of tokens, as shown in examples below.

Client Type
Theore_init function determines the client type of the ORB by the following steps.

1. Iftheorb_identifier argument ispresent, orB_init determinesthe client type, either
native or remote, if the string is "BEA_1T0P" Or "BEA_TOBJ ", respectively. If an
orb_identifier stringispresent, all -orBid parametersinthe argv areignored (removed).

2. If orb_identifier isnot present or isexplicitly zero, ore_init looks at the entriesin
argc/argv. If argv containsan entry with "-orsid", the next entry should be either
"BEA_IIOP" OF "BEA_TOBJ", again specifying remote or native. Thispair of entriesoccursif
the command line contains either "-orRBid BEA_IIOP” OF "-ORBid BEA_TOBJ".

3. If noclient typeis specified in argc/argv, ORB_init UseSthe default client type from the
system registry (BEA_IIOP OF BEA_TOBJ). The system registry wasinitialized at the time
Oracle Tuxedo was installed.

Server Port

Inthe case of an Oracle Tuxedo remotejoint client/server, in order to support I1OP, by definition,
the object references created for the server part must contain a host and port. For transient object
references, any port is sufficient and can be obtained by the ORB dynamically, but thisis not
sufficient for persistent object references. Persistent references must be served on the same port
after the ORB restarts, that is, the ORB must be prepared to accept requests on the same port with
which it created the object reference. Thus, there must be some way to configure the ORB to use
aparticular port.

Typically, a system administrator assigns the port number for the client from the “user” range of
port numbers rather from the dynamic range. This keeps the joint client/servers from using
conflicting ports.

To determine port number, orB_init searchesthe argv parameter for the token "-orBport "
and a following numeric token. For example, if the client executable is named sherry, the
command line might specify that the server port should be 937 as follows:

sherry -ORBport 937
ARGV Parameter Considerations

For C++, the order of consumption of argv parameters may be significant to an application. To
ensure that applications are not required to handle argv parameters they do not recognize, the
ORSB initiaization function must be called before the remainder of the parameters are consumed.

CORBA Programming Reference

ORB Initialization Member Function

Therefore, after theors_init cal, theargv and arge parameters have been modified to remove
the ORB understood arguments. It isimportant to note that the or_init function can only
reorder or remove references to parameters from the argv list. This restriction is made to avoid
potential memory management problems caused by trying to free parts of the argv list or
extending the argv list of parameters. Thisiswhy argv ispassed asachar** and not asa

char**&.

Note: Usethecorra: : release member functionto freetheresourcesallocated for the pointer
returned from CorRBA: : ORB_init.

Return Value

A pointer t0O aCORBA: : ORB.

Exceptions

None.

ORB

Synopsis
Configures applications based on the Oracle Tuxedo CORBA C++ ORB to access or provide
Oracle Tuxedo CORBA objects.

Syntax
<appl-name> [-ORBid {BEA_IIOP | BEA_TOBJ} \

-ORBInitRef <ObjectID>=<0bjectURL> [*]]

-ORBDefaultInitRef <ObjectURL>]

-ORBport port-number] \

[
[
[
[
[-ORBsecurePort port-number] \
[-ORBminCrypto {0 | 40 | 56 | 128} \
[-ORBmaxCrypto {0 | 40 | 56 | 128} \
[-ORBmutualAuth] \

[-ORBpeerValidate {detect | warn | none}] \
[

appl-options]

CORBA Programming Reference 14-69

Description

The Oracle Tuxedo CORBA C++ ORB is an Oracle Tuxedo-supplied library that enables the
development of CORBA-based applications used to access or provide Oracle Tuxedo objects
using [OP or I1OP-SSL. The ORB command-line options allow for customization.

Parameters

[-ORBid {BEA_IIOP | BEA_TOBJ}]

The value Bea_110P explicitly specifies that the ORB be configured to support either a
client or a server environment that communicates over the [1OP or 11OP-SSL protocol.
ThevaueBea_tosJ explicitly specifiesthat the ORB be configured to support the native
client environment that can only communicate over the TGIOP protocol within an Oracle
Tuxedo domain.

If not specified, the ORB will detect the environment inwhichit isdeployed and configure
itself for usein that environment.

[-ORBInitRef ObjectId=0ObjectURL]

The ORB initial reference argument, -orBInitRref, allows specification of an arbitrary
object reference for aninitia service.

object1prepresentsthewell-known object ID for aservicethat isdefined inthe CORBA
specification. This mechanism allows an ORB to be configured with new initial service
Object IDs that were not defined when the ORB was installed.

objectURL can be any of the URL schemes supported by the

CORBA: :ORB: :string_to_object operation as defined in CORBA specification. If a
URL is syntactically malformed or can be determined to be invalid in an
implementation-defined manner, CorRBa: : ORB_init Will raise the CORBA: : BAD_PARAM
standard exception listed in Table 14-2.

Tahle 14-2 Minor Codes for CORBA::BAD_PARAM Standard Exception

Minor Code Description

BadSchemeName The specified scheme s recognized by the ORB implementation. Only the

schemes IOR, corbal oc, corbalocs, and corbaname are supported.

BadAddress The format of the address is not recognized by the ORB implementation.

Host names must be specified according to DNS or as class C IP addresses
in dot-separated form.

14-70

CORBA Programming Reference

ORB Initialization Member Function

Tahle 14-2 Minor Codes for CORBA::BAD_PARAM Standard Exception

Minor Code Description

BadSchemeSpecificPart The format of the address is not recognized by the ORB implementation.
Host names must be specified according to DNS or as class C | P addresses
in dot-separated form.

BadSchemeSpecificPart The scheme specific part of the URL isimproperly formatted for the

specified scheme.

[-ORBDefaultInitRef <ObjectURL>]

The ORB default initial reference argument, -orRBDefaultInitRef, assistsin the
resolution of initial references not explicitly specified with -orBInitRref. Thisargument
provides functionality similar to that of the list of 11OP Listeners addressthat is provided
to the current Tobj_Bootstrap Object.

Unlike the -orRBInitRef argument, -orRBDefaultInitRef requires a URL that, after
appending aslash ‘/” character and a stringified object key, forms a new URL to identify
aninitial object reference. For example, if thefollowing was specified asthe default initial
reference argument:

-ORBDefaultInitRef corbaloc:5550bjs.com

A call tOORB: :resolve_initial references (“NotificationService”) toobtain
theinitial reference for the service would result in the new URL:

corbaloc:5550bjs.com/NotificationService

Theimplementation of the orB: : resolve_initial_references operation would take
the newly constructed URL and call corBa: :ORB: : string_to_object to obtain the
initial reference for the service.

The URL specified asthe value of the -orBDefaultInitRef argument can contain more
than asingle location. Thisisthe similar to the functionality provided for the list of
locations to be used by the Tobj_Bootstrap object. In this situation, the ORB will
process the locations in the URL based on the syntax rules for the URL. For example, if
the following was specified as the default initial reference argument:

-ORBDefaultInitRef corbaloc:5550bjs.com, 555Backup.com

A call toORB: :resolve_initial references (“NameService”) toobtaintheinitia
reference for the service would result in one of the following new URLS:

CORBA Programming Reference 14-1

14-72

corbaloc:5550bjs.com/NameService
or:
corbaloc:555Backup.com/NameService

The resulting URL would then be passed to CORBA: : ORB: : string_to_object inorder
to obtain the initial reference for the service.

[-ORBminCrypto [0 | 40 | 56 | 128]]

When establishing a network link, thisisthe minimum level of encryption required. Zero
(0) means no encryption, while 40, 56, and 128 specify the length (in bits) of the
encryptionkey. If thisminimum level of encryption cannot be met, link establishment will
fail.

The default is 0.

[-ORBmaxCrypto [0 | 40 | 56 | 128]]

When establishing anetwork link, thisisthe maximum level of encryption allowed. Zero
(0) means no encryption, while 40, 56, and 128 specify the length (in bits) of the
encryption key. The default is whatever capability is specified by the license. The -
ORBmaxCrypto Of ~-ORBmaxCrypto Options are available only if either the International
or U.S_Canada Oracle Tuxedo Security Add-on Package isinstalled.

[-ORBmutualAuth]

Specifiesthat certificate-based authentication should be enabled when accepting an SSL
connection from a remote application.

The -orBmutualauth option isavailable only if either the International or U.S_Canada
Oracle Tuxedo Security Add-on Package is installed.

[-ORBpeerValidate {detect | warn | none}]

Determines how the Oracle Tuxedo CORBA ORB will behave when a digital certificate
for a peer of an outbound connection initiated by the Oracle Tuxedo ORB is received as
part of the Secure Socket Layer (SSL) protocol handshake. The validation is only
performed by the initiator of a secure connection and confirms that the peer server is
actually located at the same network address specified by the domain namein the server’s
digital certificate. Thisvalidation isnot technically part of the SSL protocol, but issimilar
to the same check done in web browsers.

A value of detect causes an Oracle Tuxedo CORBA ORB to verify that the host
specified in the object reference used to make the connection matches the domain name
specified in the peer’ s digital certificate. If the comparison fails, the ORB refusesto
authenticate the peer and drops the connection. This check protects against
man-in-the-middle attacks.

CORBA Programming Reference

ORB Initialization Member Function

A value of warn causes an Oracle Tuxedo CORBA ORB to verify that the host specified
in the object reference used to make the connection matches the domain name specified
inthe peer’ sdigital certificate. If the comparison fails, the ORB logs amessage to the user
log, but continues processing the connection.

A value of none causesan Oracle Tuxedo CORBA ORB not to perform the peer validation
and will continue the processing of the connection.

The -orRBpeervalidate optionisavailable only if either the International or

U.S Canada Oracle Tuxedo Security Add-on Package isinstalled.

If not specified, the default is detect.

[-ORBport port-number]
Specifies the network address to be used by the ORB to accept connections from remote
CORBA clients. Typically, a system administrator assigns the port number for the client
fromthe"user" range of port numbers rather from the dynamic range. Thiskeepsthejoint
client/servers from using conflicting ports.
This parameter is required in order for the Oracle Tuxedo CORBA ORB to create
persistent object references. Persistent objects references must be served on the same port
after that is contained in the object reference, even if the ORB has been restarted. For
transient object references, any port is sufficient and can be obtained by the ORB
dynamically.
The port-number isthe TCP port number at which the Oracle Tuxedo CORBA ORB
process listens for incoming requests. The port -number can be anumber between 0 and
65535.

[-ORBsecurePort port-number]
Specifies the port number that the I1OP Listener/Handler should use to listen for secure
connections using the Secure Socket Layer protocol. If the command-line option is
specified without a port number, then the OM G assigned port number 684 will be used for
SSL connections.
The port-number isthe TCP port number at which the Oracle Tuxedo CORBA ORB
process listens for incoming requests. The port -number can be anumber between 0 and
65535.

An administrator can configure to only allow secure connectionsinto the Oracle Tuxedo
CORBA ORB by setting port numbers specified by the

—ORBport and -ORBsecurePort to the same value.

The -orBsecurePort option isavailable only if either the International or U.S Canada
Oracle Tuxedo Security Add-on Packageisinstalled.

CORBA Programming Reference 14-13

Portability

The Oracle Tuxedo CORBA ORB is supported as an Oracle Tuxedo-supplied client or server on
UNIX and Microsoft Windows operating systems. It is also supported as an Oracle
Tuxedo-supplied client on the Windows XP operating systems.

Interoperability

The Oracle Tuxedo CORBA ORB will interoperate with any I110P compliant ORB that supports
the 1.0, 1.1, or 1.2 version of the GIOP pratocol over aTCP/IP connection. Inaddition, the Oracle
Tuxedo CORBA ORB will interoperate with any 110P-SSL compliant ORB that supportsthe use
of the Tac_ssL._sEC_TRaANS tagged component in object references and version 3 of the Secure
Socket Layer protocol.

Examples
C++ code example

ChatClient —-ORBid BEA_IIOP -ORBport 2100
-ORBDefaultInitRef corbaloc:piglet:1900
-ORBInitRef TraderService=corbaloc:owl:2530
-ORBsecurePort 2100
-ORBminCrypto 40
—-ORBmaxCrypto 128
TechTopics

Java code example

java -DORBDefaultInitRef=corbalocs:piglet:1900

..... -DORBInitRef=TraderService=corbaloc:owl:2530
-Dorg.omg.CORBA.ORBPort=1948
-classpath=%CLASSPATH% client

See Also

ISL

Policy Member Functions

A policy isan object used to communicate certain choicesto an ORB regarding itsoperation. This
information is accessed in a structured manner using interfaces derived from the Policy interface
defined in the CORBA module.

14-74 CORBA Programming Reference

Policy Member Functions

Note: ThesecorBsa: :pPolicy operationsand structures are not usually needed by
programmers. The derived interfaces usually contain the information relevant to
specifications. A policy object can be constructed by a specific factory or by using the
CORBA: :create_policy operation.

The mapping of this object to C++ isas follows:

class CORBA
{
class Policy
{
public:
copy () ;
void destroy () ;
}; //Policy
typedef sequence<Policy>PolicyList;
}:; // CORBA

PolicyList isused the same asany other C++ sequence mapping. For adiscussion of sequence
usage, see Sequences.

See Also:

POA Policy and CORBA: : ORB: :create_policy.

CORBA:Policy::copy
Synopsis

Copies the policy object.
C++ Binding

CORBA: :Policy::copy () ;

Argument
None.

Description

This operation copiesthe policy object. The copy does not retain any relationshipsthat the policy
had with any domain or object.

Note: Thisfunction is supported only for ajoint client/server.

CORBA Programming Reference 14-15

Return Values
None.

CORBA::Policy::destroy

Synopsis
Destroys the policy object.

C++ Binding

void CORBA: :Policy: :destroy () ;

Argument
None.

Exceptions
If the policy object determines that it cannot be destroyed, the corea: : NO_PERMISSION
exception israised.

Description
This operation destroys the policy object. It isthe responsibility of the policy object to determine
whether it can be destroyed.

Note: Thisfunction is supported only for ajoint client/server.

Return Values
None.

PortableServer Member Functions

The mapping of the PortableServer member functions to C++ isasfollows:

// C++
class PortableServer
{
public:
class LifespanPolicy;
class IdAssignmentPolicy;
class POA::find_ POA

14-76 CORBA Programming Reference

PortableServer Member Functions

class reference_to_id
class POAManager;
class POA;

class Current;

class virtual ObjectId
class ServantBase

i

ObjectId
A valuethat is used by the POA and by the user-supplied implementation to identify a
particular abstract CORBA object. object1d valuesmay be assigned and managed by the
POA, or they may be assigned and managed by theimplementation. object1d valuesare
hidden from clients, encapsul ated by references. object1ds have no standard form; they
are managed by the POA as uninterpreted octet sequences.

The following sections describe the remaining classes.

PortableServer::P0OA::activate_object

Synopsis
Explicitly activates an individual object.

C++ Binding

ObjectId * activate_object (
Servant p_servant) ;
Argument

p_servant
An instance of the C++ implementation class for the interface.

Exceptions

If the specified servant is already in the Active Object Map, the servantalreadyActive
exception is raised.

Note: Other exceptions can occur if the POA uses unsupported policies.

Description

This operation explicitly activates an individual object by generating an object1d and entering
the object1d and the specified servant in the Active Object Map.

CORBA Programming Reference 14-77

Note: Thisfunction is supported only for ajoint client/server.

Return Values

If the function succeeds, the object1d isreturned.

Example

In the following example, the first struct creates a servant by a user-defined constructor. The
second struct tellsthe POA that the servant can be used to handle requests on an object. The POA
returnsthe object1d it has created for the object. The third statement assumes that the POA has
the tMPLICIT AcTIVATION policy (the only supported policy in version 4.2 of the Oracle
Tuxedo software) and returns areference to the object. That reference can then be handed to a
client for invocations. When the client invokes on the reference, the request is returned to the
servant just created.

MyFooServant* afoo = new MyFooServant (poa,27) ;

PortableServer: :0bjectId_var oid =
poa->activate_object (afoo) ;

Foo_var foo = afoo->_this();

PortableServer::P0OA::activate_object_with_id

Synopsis

Activates an individual object with a specified object1d.

C++ Binding

void activate_object_with_id (
const ObjectId & id,

Servant p_servant) ;

Argument

14-78

id
ObjectId that identifies the object on which that operation was invoked.

p_servant
An instance of the C++ implementation class for the interface.

CORBA Programming Reference

PortableServer Member Functions

Exceptions
Theobjectalreadyactive exceptionisraised if the CORBA abject denoted by the object1d
valueis aready active in this POA.
The servantAlreadyActive exceptionisraised if the servant is already in the Active Object
Map.
Note: Other exceptions can occur if the POA uses unsupported policies.

The BAD_paraM System exception may be raised if the POA hasthe sysTeM_1D policy and it
detectsthat the object1d value was not generated by the system or for thisPOA. An ORB isnot
required to detect al such invalid object1d values. However, a portable application must not
invoke activate_object_with_id on aPOA if the POA hasthe systeM_1Dp policy with an
object1d value that was not previously generated by the system for that POA, or, if the POA
aso hasthe pErRsTSTENT policy, for aprevious instantiation of the same POA.

Description

This operation enters an associ ation between the specified object 1a and the specified servant in
the Active Object Map.

Note: Thisfunction is supported only for ajoint client/server.

Return Values
None.

Example

MyFooServant* afoo = new MyFooServant (poa, 27);

PortableServer: :0bjectId_var oid =
PortableServer: :string to_ObjectId("myLittleFoo");

poa->activate_object_with_id(oid.in(), afoo);

Foo_var foo = afoo->_this();

PortableServer::POA::create_id_assignment_policy
Synopsis

Obtains an object with the 1dassignmentPolicy interface so the user can passthe object to the
POA: : create_POA Operation.

CORBA Programming Reference 14-19

C++ Binding
IdAssignmentPolicy_ptr
PortableServer: :POA: :create_id_assignment_policy (

PortableServer: :IdAssignmentPolicyValue value)

Argument
value
A value of either portableserver: :USER_ID, indicating objectIds areassigned only
by the application, or portableServer: : SYSTEM_ID, indicating objectIds are
assigned only by the system.
Description

Theroa: :create_id_assignment_policy Operation obtains objects with the
IdassignmentPolicy interface. When passed to the poa: : create_roa operation, this policy
specifieswhether object1ds inthecreated POA aregenerated by the application or by the ORB.
The following values can be supplied:

e PortableServer: : USER_TID—O0bjects created with that POA are assigned object1ds
only by the application.

e PortableServer: :SYSTEM ID—objects created with that POA are assigned objectIds
only by the POA. If the POA also hasthe PERSISTENT LifespanPolicy, assigned
ObjectIds must be unique across all instantiations of the same POA.

If N0 TdassignmentPolicy isspecified at POA creation, the default is sysTeEmM_1D.

Note: Thisfunction is supported only for ajoint client/server.
Return Values

Returnsan 1d Assignment policy.
PortableServer::POA::create_lifespan_policy

Synopsis

Obtains an object with the L.i fespanPolicy interface so the user can pass the object to the
POA: :create_POA Operation.

14-80 CORBA Programming Reference

PortableServer Member Functions

C++ Binding

LifespanPolicy ptr
PortableServer: :POA: :create_lifespan_policy (

PortableServer: :LifespanPolicyPolicyValue value)

Argument

value
A value of either Portableserver: :USER_ID, indicating objectIds areassigned only
by the application, or portableServer: : SYSTEM_ID, indicating objectIds are
assigned only by the system.

Description

Objects with the L1 fespanPolicy interface are obtained using the

POA: :create_lifespan_policy operation and passed to the Poa: : create_POA Operation to
specify the lifespan of the objectsimplemented in the created POA. The following values can be
supplied.

e TRANSIENT—the objects implemented in the POA cannot outlive the process in which they
arefirst created. Once the POA is deactivated, use of any object references generated from
it will result in an oBJECT_NOT_EXIST exception.

e PERSISTENT—the objects implemented in the POA can outlive the process in which they
arefirst created.

— Persistent objects have a POA associated with them (the POA which created them).
When the ORB receives arequest on a persistent object, it first searches for the
matching POA, based on the names of the POA and all of its ancestors.

— Administrative action beyond the scope of this specification may be necessary to
inform the ORB's |ocation service of the creation and eventual termination of existence
of this POA, and optionally to arrange for on-demand activation of a process
implementing this POA.

— POA names must be unique within their enclosing scope (the parent POA). A portable
program can assume that POA names used in other processes will not conflict with its
own POA names. A conforming CORBA implementation will provide a method for
ensuring this property.

If N0 LifespanPolicy Object ispassed to Poa: : create_POA, the lifespan policy defaultsto
TRANSIENT.

Note: Thisfunction is supported only for ajoint client/server.

CORBA Programming Reference 14-81

Return Values
Returns a LifespanPolicy.

PortahleServer::POA::create_POA

Synopsis
Creates anew POA as a child of the target POA.

C++ Binding

POA_ptr PortableServer::create_POA (
const char * adapter_name,
POAManager_ptr a_POAManager,
const CORBA::PolicyList & policies)

Arguments

adapter_name

The name of the POA to be created.

a_POAManager
Either aNULL value, indicating that a new POAManager isto be created and associated
with the new POA, or a pointer to an existing POAManager.

policies
Policy objects to be associated with the new POA.

Exceptions

AdapterAlreadyExists
Raised if the target POA already has a child POA with the specified name.

InvalidPolicy
Raised if any of the policy objects specified are not valid for the ORB implementation, if
conflicting policy objects are specified, or if any of the specified policy objects require
prior administrative action that has not been performed. Thisexception containstheindex
in the policy parameter value of the first offending policy object.

IMP_LIMIT
Raised if the program triesto create a POA with a LifespanPolicy of PERSTSTENT Without
having set a port, as described in the operation CORBA::ORB _init.

14-82 CORBA Programming Reference

PortableServer Member Functions

Description

This operation creates anew POA asachild of the target POA. The specified name, which must
be unique, identifies the new POA with respect to other POAs with the same parent POA.

If the a_proaManager parameter iSNULL, anew portableServer: : POAManager Object is
created and associated with the new POA. Otherwise, the specified poaManager object is
associated with the new POA. The poaManager object can be obtained using the attribute name
the_POAManager

The specified policy objects are associated with the POA and are used to control itsbehavior. The

policy objects are effectively copied before this operation returns, so the application isfreeto
destroy them while the POA isin use. Policies are not inherited from the parent POA.

Note: Thisfunction is supported only for joint client/servers.

Return Values
Returns a pointer to the POA that was created.

Examples
Example 1

In this example, the child POA would use the same manager as the parent POA; the child POA
would then have the same state as the parent (that is, it would be active if the parent is active).

CORBA: :PolicyList policies(2);
policies.length (1);
policies[0] = rootPOA->create_lifespan_policy(
PortableServer: :LifespanPolicy: : TRANSIENT) ;
PortableServer: : POA_ptr poa =
rootPOA->create_POA("my_little_poa",
rootPOA->the_POAManager, policies);

Example 2
In this example, a new POA is created as a child of the root POA.

CORBA: :PolicyList policies(2);

policies.length (1);

policies[0] = rootPOA->create_lifespan_policy(
PortableServer: :LifespanPolicy: : TRANSIENT) ;

PortableServer: : POA_ptr poa =

CORBA Programming Reference 14-83

rootPOA->create_POA("my_little_poa",
PortableServer: : POAManager::_nil (), policies);

PortahleServer::P0OA::create _reference

Synopsis
Creates an object reference that encapsul ates a POA-generated object 1d value and the specified
interface repository ID.

C++ Binding

CORBA: :Object_ptr create_reference (
const char * intf)

Argument

intf
The interface repository 1D.

Exceptions
This operation requires the LifespanPolicy to have the value sysTem_1D; if not present, the
PortableServer::WrongPoliC§fexcepﬂ0niSFdSEd.

Description
Thiscreate_reference operation creates an object reference that encapsulates a
POA-generated object1d valueand the specified interface repository ID. Thisoperation collects
the necessary information to constitute the reference from information associated with the POA
and from parameters to the operation. This operation only creates a reference; it does not
associate the reference with an active servant. The resulting reference may be passed to clients,
so that subsequent requests on those referencesreturn to the POA using the object1d generated.
The generated object1d value may be obtained by invoking Poa: : reference_to_id withthe
created reference.

Note: Thisfunction is supported only for ajoint client/server.

Return Values
Returns a pointer to the object.

14-84 CORBA Programming Reference

PortableServer Member Functions

PortableServer::P0OA::create_reference with_id

Synopsis

Creates an object reference that encapsul ates the specified object1d and interface repository 1D
values.

C++ Binding

CORBA: :Object_ptr create_reference_with_id (
const ObjectId & oid,

const char * intf)

Arguments
oid
ObjectId that identifies the object on which that operation was invoked.
intf
The interface repository ID.
Exceptions

If the POA has a LifespanPolicy with value sysTeM_1D and it detects that the object1d value
was hot generated by the system or for this POA, the operation will raise the Bap_param system
exception.

Description

The create_reference Operation creates an object reference that encapsul ates the specified
objectId and interface repository 1D values. This operation collects the necessary information
to constitute the reference from information associated with the POA and from parametersto the
operation. This operation only creates areference; it does not associate the reference with an
active servant. The resulting reference may be passed to clients, so that subsequent requests on
those references cause the invocation to be returned to the same POA with object1d specified.

Note: Thisfunction is supported only for ajoint client/server.

Return Values

Returns object_ptr.

Example

PortableServer: :0bjectId_var oid =

PortableServer: :string_ to_ObjectId("myLittleFoo") ;

CORBA Programming Reference 14-85

CORBA: :Object_var obj = poa->create_reference_with_id(
oid.in(), "IDL:Foo:1.0");

Foo_var foo = Foo::_narrow(obj);

PortableServer::POA::deactivate_object

Synopsis
Removes the object1d from the Active Object Map.

C++ Binding

void deactivate_object (
const ObjectId & oid)

Argument
oid
ObjectId that identifies the object.

Exceptions

If there is no active object associated with the specified object1d, the operation raises an
ObjectNotActive exception.

Description

This operation causes the association of the object1d specified by the oia parameter and its
servant to be removed from the Active Object Map.

Note: Thisfunction is supported only for ajoint client/server.

Return Values
None.

PortableServer::POA::destroy

Synopsis
Destroys the POA and all descendant POAS.

14-86 CORBA Programming Reference

PortableServer Member Functions

C++ Binding
void destroy (

CORBA: :Boolean etherealize_objects,

CORBA: :Boolean wait_for_completion)

Arguments

etherealize_objects
This argument should be FaLsE for this release of Oracle Tuxedo.

wait_for_completion

This argument indicates whether or not the operation should return immediately.

Description

This operation destroys the POA and all descendant POAs. The POA with its name may be
recreated later in the same process. (Thisdiffersfrom the poaManager: : deactivate operation,
which does not alow arecreation of its associated POA in the same process.)

When a POA is destroyed, any requests that have started execution continue to completion. Any
requests that have not started execution are processed as if they were newly arrived and thereis
no POA; that is, they are rejected and the oBJECT_NON_EXIST exception is raised.

If thewait_for_completion parameter is TRUE, the destroy operation returns only after all
requests in process have completed and al invocations of etherealize have completed.
Otherwise, the destroy operation returns after destroying the POASs.

Note: Thisrelease of Oracle Tuxedo does not support multithreading. Hence,
wait_for_completion should not be TruE if the call ismadein the context of an object
invocation. That is, the POA cannot start destroying itself if it is currently executing.

Note: Thisfunction is supported only for ajoint client/server.

Return Values
None.

PortahleServer::POA::find_POA

Synopsis
Returns areference to a child POA with a given name.

CORBA Programming Reference 14-87

C++ Binding

void find_POA(in string adapter_name, in boolean activate_it);

Argument

adapter_name

A reference to the target POA.

active_it
In this version of Oracle Tuxedo, this parameter must be FALSE.

Exception

AdapterNonExistent
This exception israised if the POA does not exist.

Description

If the POA has a child POA with the specified name, that child POA isreturned. If achild POA
with the specified name does not exist and thevalue of theactivate_it parameter isFaLse, the
AdapterNonExistent exceptionisraised.

Return Values
None.

PortahleServer::P0OA::reference_to _id

Synopsis
Returns the object1d value encapsulated by the specified reference.

C++ Binding
ObjectId reference_to_id(in Object reference);
Argument

reference
Specifies the reference to the object.

Exceptions

WrongAdapter
This exception israised if the reference was not created by that POA.

14-88 CORBA Programming Reference

PortableServer Member Functions

Description

This operation returns the object1d value encapsulated by the specified reference. This
operation isvalid only if the reference was created by the POA on which the operation is being
performed. The object denoted by the reference does not have to be active for this operation to
succeed.

Note: Thisfunction is supported only for ajoint client/server.

Return Values
Returns the object1d value encapsulated by the specified reference.

PortableServer::POA::the_P0OAManager

Synopsis
I dentifies the POA manager associated with the POA.
C++ Binding

POAManager_ptr the_POAManager () ;
Argument
None.
Description
This read-only attribute identifies the POA manager associated with the POA.
Note: Thisfunction is supported only for ajoint client/server.

Return Values
None.

Example
poa->the_POAManager () ->activate () ;
This statement will set the state of the POAManager for the given POA to active, which is
required if the POA isto accept requests. Note that if the POA has a parent, that is, it is not the

root POA, all of its parent’s POAManagers must also be in the active state for this statement to
have any effect.

CORBA Programming Reference 14-89

PortahleServer::ServantBase:: default POA

Synopsis
Returns an object reference to the POA associated with the servant.

C++ Binding
class PortableServer

{

class ServantBase
{
public:
virtual POA_ptr _default_POA() ;
}
}

Argument

None.

Description

All C++ Servantsinherit from portableServer: : ServantBase, SO they all inherit the
_default_poa function. In this version of Oracle Tuxedo thereis usually no reason to use
_default_POA.

The default implementation of this function returns an object reference to the root POA of the
default ORB in this process—the same as the return value of an invocation of

ORB: :resolve_initial_ references ("RootPOA"). A C++ servant can override this
definition to return the POA of its choice, if desired.

Note: Thisfunction is supported only for joint client/servers.

Return Values
The default POA associated with the servant.

POA Current Member Functions

The PortableServer: :Current interface, derived from corsa: : current, provides method
implementations with access to the identity of the object on which the method was invoked.

14-90 CORBA Programming Reference

POA Current Member Functions

PortableServer::Current::get_object_id

Synopsis
Returnsthe object1d identifying the object in whose context it is called.

C++ Binding

ObjectId * get_object_id ();

Arguments

None.

Exception

If called outside the context of a POA-dispatched operation, a PortableServer: :NoContext
exception is raised.

Description

Thisoperation returnsthe portableserver: : Object1d identifying the object in whose context
itiscaled.

Note: Thisfunction is supported only for ajoint client/server.

Return Values
This operation returns the object1d identifying the object in whose context it is called.

PortableServer::Current::get_POA

Synopsis
Returns areference to the POA implementing the object in whose context it is called.

C++ Binding

POA_ptr get_POA ();

Argument

None.

Exceptions

If this operation is called outside the context of a POA-dispatched operation, a
PortableServer: :NoContext exception israised.

CORBA Programming Reference 14-91

Description

This operation returns a reference to the POA implementing the object in whose context it is
called.

Note: Thisfunction is supported only for ajoint client/server.

Return Values

This operation returns a reference to the POA implementing the object in whose context it is
caled.

P0OAManager Member Functions

Each POA object has an associated poaManager object. A POAManager may be associated with
one or more POA abjects. A POAManager encapsulates the processing state of the POAs with
which it is associated. Using operations on the POA manager, an application can cause requests
for those POASs to be queued or discarded, and can cause the POASs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POAManager object is
provided at POA creation time, a POAManager is created when a POA iscreated and is
automatically associated with that POA. A POAManager object isimplicitly destroyed when all
of its associated POASs have been destroyed.

A POAmanager hasfour possible processing states: active, inactive, holding, and discarding. The
processing state determines the capabilities of the associated POAs and the disposition of
requests received by those POAS.

A POAmanager is created in the holding state. In that state, any invocations on its POA are
gueued until the POA manager enters the active state. Thisversion of Oracle Tuxedo supports
only the ability to enter active and inactive states. That is, thisversion does not support the ability
to return to holding state or to enter discarding stete.

PortableServer::POAManager::activate

Synopsis

Changes the state of the POAManager to active.

C++ Binding

14-92

volid activate();

CORBA Programming Reference

POAManager Member Functions

Argument

None.

Exceptions

If this operation isissued while the POAmanager isin the inactive state, the
PortableServer::POAManager::AdapterInactiveEkcepﬁonisrdsed

Description

This operation changes the state of the POAManager to active. Entering the active state enables
the associated POAS to process requests.

Note: All parent POAsmust also have POAManagersin the active state for this POA to process
requests.

Note: Thisfunction is supported only for ajoint client/server.

Return Values
None.

PortableServer::POAManager::deactivate

Synopsis
Changes the state of the POA manager to inactive.

C++ Binding

volid deactivate (
CORBA: :Boolean etherealize_objects,

CORBA: :Boolean wait_for_completion);

Argument

etherealize_objects
For BEA WebL ogic Enterprise 4.2 software and | ater software and Oracle Tuxedo 8.0 and
later software, this argument should always be set to FALSE.

wait_for_completion
If this argument is TRUE, the deactivate operation returns only after all requestsin
process have completed. If this argument is FALSE, the deactivate operation returns
after changing the state of the associated POAS.

CORBA Programming Reference 14-93

Exceptions

If issued while the POA manager isin the inactive state, the
PortableServer: : POAManager: : AdapterInactive exception israised.

Description

This operation changes the state of the POAManager to inactive. Entering the inactive state
causes the associated POASs to reject requests that have not begun to be executed, as well as any
new requests.

Note: Thisrelease of Oracle Tuxedo does not support multithreading. Hence,
wait_for_completion should not be Truk if thecall ismadein the context of an object
invocation. That is, the POAManager cannot be set to inactive stateif it is currently
executing.

Note: Thisfunction is supported only for ajoint client/server.

Return Values
None.

POA Policy Member Objects

Interfaces derived from corBa: : Policy are used with the Poa: : create_roa operation to
specify policiesthat apply to a POA. Policy objects are created using factory operations on any
preexisting POA, such as the root POA.. Policy objects are specified when a POA is created.
Policies may not be changed on an existing POA. Policies are not inherited from the parent POA.

PortableServer::LifespanPolicy

Synopsis
Specifiesthe life span of objectsto the create poa operation.

Description

Objects with the L.i fespanPolicy interface are obtained using the
POA::create_lifespan_policy operationand are passedtotheroa: : create_Poa operation
to specify thelife span of the objectsimplemented in the created POA. The following values can
be supplied:

e TRANSIENT—the objects implemented in the POA cannot outlive the process in which they
arefirst created.

14-94 CORBA Programming Reference

POA Policy Member Objects

e PERSISTENT—the objects implemented in the POA can outlive the process in which they
arefirst created.

Persistent objects have a POA associated with them (the POA that created them). When the
ORB receives arequest on a persistent object, it searches for the matching POA, based on
the names of the POA and all of its ancestors.

POA names must be unique within their enclosing scope (the parent POA). A portable
program can assume that POA names used in other processes will not conflict with its own
POA names.

If Nno LifespanPolicy Object ispassed to create_proa, the lifespan policy defaultsto
TRANSIENT.

Note: Thisfunction is supported only for ajoint client/server.

Exceptions
None.

PortableServer::ldAssignmentPolicy

Synopsis
Specifieswhether object1ds inthe created POA are generated by the application or by the ORB.

Description

Objects with the 1dassignmentPolicy interface are obtained using the
POA::create_id_assignment_policy operation and are passed tothe Poa: : create_proa
operation to specify whether object1ds inthe created POA are generated by the application or
by the ORB. The following values can be supplied:

e USER_ID—O0bjects created with that POA are assigned objectIds only by the application.

e sysTEM_1D—O0bjects created with that POA are assigned object1ds only by the POA. If
the POA also has the pERsTSTENT policy, assigned objectIds must be unique across all
instantiations of the same POA.

If N0 TdAssignmentPolicy isspecified at POA creation, the default is sysTeM_1D.

Note: Thisfunction is supported only for ajoint client/server.

CORBA Programming Reference 14-95

Request Member Functions

The mapping of these member functionsto C++ isas follows:

// C++

class Request

{

public:

Object_ptr target() const;
const char *operation() const;
NamedValue_ptr result();
NVList_ptr arguments();
Environment_ptr env () ;
ExceptionList_ptr exceptions();
ContextList_ptr contexts();
void ctx(Context_ptr) ;

Context_ptr ctx() const

// argument manipulation helper functions
Any &add_in_arg() ;

Any &add_in_arg(const char* name) ;

Any &add_inout_arg() :

Any &add_inout_arg(const char* name) ;

Any &add_out_arg() :

Any &add_out_arg(const char* name) ;

void set_return_type (TypeCode_ptr tc);

Any &return_value() ;

void invoke() ;

void send_oneway () ;
void send_deferred() ;
void get_response() ;
Boolean poll_response() ;

}i

Note: Theadd_*_arg, set_return_type, and return_value member functions are added
as shortcuts for using the attribute-based accessors.

The following sections describe these member functions.

14-96 CORBA Programming Reference

Request Member Functions

CORBA::Request::arguments

Synopsis
Retrieves the argument list for the request.

C++ Binding

CORBA: :NVList_ptr CORBA::Request::arguments () const;
Arguments
None.

Description

This member function retrieves the argument list for the request. The arguments can be input,
output, oOr both.

Return Values

If the function succeeds, the value returned is a pointer to the list of arguments to the operation
for the request. The returned argument list is owned by the Request object reference and should
not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::ctx(Context_ptr)

Synopsis
Sets the Context object for the operation.
C++ Binding
void CORBA: :Request::ctx (
CORBA: :Context_ptr CtxObject) ;
Argument
CtxObject

The new value to which to set the Context object.

Description
This member function sets the Context object for the operation.

CORBA Programming Reference 14-97

Return Values
None.

See Also

CORBA: :Request::ctx ()

CORBA::Request::get_response

Synopsis
Retrieves the response of a specific deferred synchronous request.

C++ Binding

void CORBA: :Request::get_response ();

Arguments
None.

Description

This member function retrieves the response of a specific request; it is used after a call to the
CORBA: :Request: : send_deferred function or the

CORBA: :Request::send_multiple_requests function. If therequest hasnot completed, the
CORBA: :Request: :get_response function blocks until it does complete.

Return Values
None.

See Also
CORBA: :Request: :send_deferred

CORBA::Request::invoke

Synopsis
Performs an invoke on the operation specified in the request.

C++ Binding

void CORBA: :Request::invoke () ;

14-98 CORBA Programming Reference

Request Member Functions

Arguments
None.

Description

This member function calls the Object Request Broker (ORB) to send the request to the
appropriate server application.

Return Values
None.

CORBA::Request::operation

Synopsis
Retrieves the operation intended for the request.

C++ Binding

const char * CORBA::Request::operation () const;

Arguments
None.

Description
This member function retrieves the operation intended for the request.

Return Values

If the function succeeds, the value returned is a pointer to the operation intended for the object;
the value can be 0 (zero). The memory returned is owned by the Request object and should not
be freed.

If the function does not succeed, an exception is thrown.

CORBA::Request::poll_response

Synopsis
Determines whether a deferred synchronous request has completed.

CORBA Programming Reference 14-99

C++ Binding

CORBA: :Boolean CORBA: :Request::poll_response ();

Arguments
None.

Description

This member function determines whether the request has completed and returnsimmediately.
Y ou can use this call to check the state of the request. This member function can also be used to
determine whether acall to CORBA: :Request : :get_response Will block.

Return Values

If the function succeeds, the value returned is corBa_TRUE if the response has already
completed, and corBa_raLse if the response has not yet completed.

If the function does not succeed, an exception is thrown.

See Also

CORBA: :ORB: :get_next_response
CORBA: :0ORB: :poll_next_response
CORBA: :0RB::send_multiple_requests
CORBA: :Request: :get_response
CORBA: :Request: :send_deferred

CORBA::Request::result

Synopsis
Retrieves the result of the request.

C++ Binding

CORBA: :NamedValue_ptr CORBA::Request::result ();

Arguments
None.

Description
This member function retrieves the result of the request.

14-100 CORBA Programming Reference

Request Member Functions

Return Values

If the function succeeds, the value returned isapointer to the result of the operation. Thereturned
result is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::env

Synopsis
Retrieves the environment of the request.

C++ Binding

CORBA: :Environment_ptr CORBA::Request::env ();

Arguments
None.

Description
This member function retrieves the environment of the request.

Return Values

If the function succeeds, the value returned is a pointer to the environment of the operation. The
returned environment is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::ctx

Synopsis
Retrieves the context of the request.

C++ Binding

CORBA: :context_ptr CORBA::Request::ctx ();

Arguments
None.

CORBA Programming Reference 14-101

Description
This member function retrieves the context of the request.

Return Values

If the function succeeds, the value returned is a pointer to the context of the operation. The
returned context is owned by the Request object and should not be rel eased.

If the function does not succeed, an exception is thrown.

CORBA::Request::contexts

Synopsis
Retrieves the context lists for the request.

C++ Binding

CORBA: :ContextList_ptr CORBA::Request::contexts ();

Arguments
None.

Description
This member function retrieves the context lists for the request.

Return Values

If the function succeeds, the value returned is a pointer to the context lists for the operation. The
returned context list is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::exceptions

Synopsis
Retrieves the exception lists for the request.

C++ Binding

CORBA: :ExceptionList_ptr CORBA::Request::exceptions ();

14-102 CORBA Programming Reference

Request Member Functions

Arguments
None.

Description
This member function retrieves the exception lists for the request.

Return Values

If the function succeeds, the value returned is a pointer to the exception list for the request. The
returned exception list is owned by the Request object and should not be rel eased.

If the function does not succeed, an exception is thrown.

CORBA::Request::target

Synopsis
Retrieves the target object reference for the request.

C++ Binding

CORBA: :Object_ptr CORBA::Request::target () const;

Arguments
None.

Description
This member function retrieves the target object reference for the request.

Return Values

If the function succeeds, the value returned is a pointer to the target object of the operation. The
returned value is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::send_deferred

Synopsis
Initiates a deferred synchronous request.

CORBA Programming Reference 14-103

C++ Binding

void CORBA: :Request::send_deferred ();

Arguments
None.

Description

This member function initiates a deferred synchronous request. Y ou use this function when a
response is expected and in conjunction with the COrRBA: :Request : :get_response function.

Return Values
None.

See Also

CORBA: :ORB: :get_next_response
CORBA: :ORB: :poll_next_response
CORBA: :0RB::send_multiple_requests
CORBA: :Request: :get_response
CORBA: :Request: :poll_response
CORBA: :Request: : send_oneway

CORBA::Request::send_oneway

Synopsis
Initiates a one-way request.

C++ Binding

void CORBA: :Request: :send_oneway ();

Arguments
None.

Description
This member function initiates a one-way request; it does not expect a response.

Return Values
None.

14-104 CORBA Programming Reference

Strings

See Also

CORBA: :ORB::send_multiple_requests
CORBA: :Request: :send_deferred

Strings
The mapping of these functionsto C++ is asfollows:
// C++

namespace CORBA ({
static char * string alloc(ULong len);
static char * string dup (const char *);

static void string_free(char *);

}

Note: A static array of char in C++ decaysto a char+. Therefore, care must be taken when
assigning a static array to astring var, becausethe string var assumesthat the
pointer pointsto data allocated viastring alloc, and thus eventually attemptsto free
itusing string_free.

Thisbehavior haschanged in ANSI/ISO C++, wherestring literalsare const char*, not
char*. However, since most C++ compilers do not yet implement this change, portable
programs must heed the advice given here.

The following sections describe the functions that manage memory allocated to strings.

CORBA::string_alloc

Synopsis
Allocates memory for a string.

C++ Binding

char * CORBA::string_alloc (ULong len);

Argument

len
Thelength of the string for which to allocate memory.

CORBA Programming Reference 14-105

Description

This member function dynamically allocates memory for a string, or returns anil pointer if it
cannot perform the allocation. It allocates 1en+1 characters so that the resulting string has
enough space to hold atrailing NULL character. Free the memory allocated by this member
function by calling the cora: : string free member function.

This function does not throw CORBA exceptions.

Return Values

If the function succeeds, the return value is apointer to the newly allocated memory for the string
object; if the function fails, the return valueis anil pointer.

Example
char* s = CORBA::string alloc(10);

See Also

CORBA: :string_free
CORBA: :string_dup

CORBA::string_dup

Synopsis

Makes a copy of astring.
C++ Binding

char * CORBA::string_dup (const char * Str);
Argument

Str

The address of the string to be copied.

Description

This function dynamically allocates enough memory to hold a copy of its string argument,
including the NULL character, copiesthe string argument into that memory, and returns a pointer
to the new string.

This function does not throw CORBA exceptions.

14-106 CORBA Programming Reference

Strings

Return Values

If the function succeeds, the return value is a pointer to the new string; if the function fails, the
return valueisanil pointer.

Example
char* s = CORBA::string dup("hello world");

See Also

CORBA: :string_free
CORBA: :string alloc

CORBA::string_free

Synopsis
Frees memory allocated to a string.

C++ Binding

void CORBA::string_free(char * Str);

Argument
Str
The address of the memory to be deall ocated.
Description

This member function deallocates memory that was previously allocated to a string using the
CORBA: :string_alloc() or CORBA::string_dup() member functions. Passing anil
pointer to this function is acceptable and resultsin no action being performed.

This function may not throw CORBA exceptions.

Return Values
None.

Example
char* s = CORBA::string dup("hello world");
CORBA: :string free(s);

CORBA Programming Reference 14-107

See Also

CORBA: :string_alloc
CORBA: :string_dup

Wide Strings

14-108

Both bounded and unbounded wide string types are mapped to COrRBA: :WChar* in C++. In
addition, the CORBA module defineswstring_var and wstring out classes. Each of these
classes provides the same member functions with the same semantics astheir string counterparts,
except of course they deal with wide strings and wide characters.

Dynamic allocation and deall ocation of wide strings must be performed via the following
functions:

// C++

namespace CORBA ({
//
WChar *wstring_alloc (ULong len) ;
WChar *wstring dup (const WChar* ws) ;
void wstring_free (WChar*) ;

Y

These member functions have the same semantics asthe same functionsfor the string type, except
they operate on wide strings.

A compliant mapping implementation provides overloaded operator<< (insertion) and
operator>> (extraction) operatorsfor usingwstring_var andwstring_out directly with C++
iostreams.

For descriptions of these member functions, see the corresponding function for Strings.

Listing 14-1 shows a code exampl e that uses wide strings and wide characters.

Listing 14-1 Wide Strings Example

// Get a string from the user:

cout << "String?";

char mixed[256]; // this should be big enough!
char lower[256

char upper[256];

1
1;
wchar_t wmixed[256];

CORBA Programming Reference

TypeCode Member Functions

cin >> mixed;
// Convert the string to a wide char string,
// because this is what the server will expect.

mbstowcs (wmixed, mixed, 256);

// Convert the string to upper case:
CORBA: :WString_var v_upper = CORBA::wstring_dup (wmixed) ;
v_simple->to_upper (v_upper.inout()) ;
wcstombs (upper, v_upper.in(), 256);

cout << upper << endl;

// Convert the string to lower case:
CORBA: :WString_var v_lower = v_simple->to_lower (wmixed) ;
wcstombs (lower, v_lower.in(), 256);

cout << lower << endl;

// Everything succeeded:

return 0;

TypeCode Member Functions

A TypeCode represents OMG IDL type information.

No constructors for TypeCodes are defined. However, in addition to the mapped interface, for
each basic and defined OMG IDL type, an implementation provides access to a TypeCode
pseudo-object reference (Typecode_ptr) of theform _tc_<type> that may be used to set types
in any, asargumentsfor equal, and so on. In the names of these TypeCode reference constants,
<type> refersto the local name of the type within its defining scope. Each C++ _tc_<type>
constant is defined at the same scoping level asits matching type.

Like all other serverless objects, the C++ mapping for TypeCode providesa_nil () operation
that returns a nil object reference for a TypeCode. This operation can be used to initialize
TypeCode references embedded within constructed types. However, anil TypeCode reference
may never be passed as an argument to an operation, since Typecodes are effectively passed as
values, not as object references.

The mapping of these member functionsto C++ is as follows:

class CORBA
{
class TypeCode

CORBA Programming Reference 14-109

public:
class Bounds { ... };
class BadkKind { ... };

Boolean equal (TypeCode_ptr) const;
TCKind kind() const;
Long param_count () const;
Any *parameter (Long) const;
RepositoryId id () const;
Y; // TypeCode
}; // CORBA

Memory Management
TypeCode has the following special memory management rule:

— Ownership of the return values of the id function is maintained by the TypeCode; these
return values must not be freed by the caller.

The following sections describe these member functions.

CORBA::TypeCode::equal

Synopsis
Determines whether two TypeCode objects are equal.
C++ Binding
CORBA: :Boolean CORBA: :TypeCode::equal (
CORBA: : TypeCode_ptr TypeCodeObj) const;
Argument
TypeCodeObj

A pointer to a TypeCode object with which to make the comparison.

Description

This member function determines whether a TypeCode object is equal to the input parameter,
TypeCodeObj.

14-110 CORBA Programming Reference

TypeCode Member Functions

Return Values
If the TypeCode object is equal to the Typecodeobj parameter, CORBA_TRUE iS returned.

If the TypeCode object is not equal to the Typecodeobj parameter, CORBA_FALSE iS returned.

If the function does not succeed, an exception is thrown.

CORBA::TypeCode::id

Synopsis
Returnsthe ID for the TypeCode.

C++ Binding

CORBA: :RepositoryId CORBA::TypeCode::id () const;

Arguments
None.

Description
This member function returns the ID for the TypeCode.

Return Values
Repository ID for the TypeCode.

CORBA::TypeCode::kind

Synopsis
Retrieves the kind of data contained in the TypeCode object reference.

C++ Binding

CORBA: :TCKind CORBA: :TypeCode: :kind () const;

Arguments

None.

Description

This member function retrieves the kind attribute of the corBa: : Typecode class, which
specifies the kind of data contained in the TypeCode object reference.

CORBA Programming Reference 14-111

Return Values

If the member function succeeds, it returns the kind of data contained in the TypeCode object
reference. For alist of the TypeCode kinds and their parameters, see Table 14-3.

If the member function does not succeed, an exception is thrown.

Table 14-3 Legal Typecode Kinds and Parameters

TypeCode Kind Parameters List
CORBA: :tk_null *NONE*
CORBA: : tk_void *NONE*
CORBA: : tk_short *NONE*
CORBA: :tk_long *NONE*
CORBA: :tk_long *NONE*
CORBA: : tk_ushort *NONE*
CORBA: :tk_ulong *NONE*
CORBA: :tk_float *NONE*
CORBA: : tk_double *NONE*
CORBA: : tk_boolean *NONE*
CORBA: :tk_char *NONE*
CORBA: : tk_wchar *NONE*
CORBA: :tk_octet *NONE*
CORBA: : tk_Typecode *NONE*

CORBA: :tk_Principal *NONE*

CORBA: :tk_objref {interface_id}
CORBA: :tk_struct { struct-name, member-name, TypeCode, ... (repeat pairs)}
CORBA: :tk_union {union-name, switch-TypeCode, |abel-value,

member-name, enum-id, ...}

14-112 CORBA Programming Reference

TypeCode Member Functions

Tahble 14-3 Legal Typecode Kinds and Parameters (Continued)

TypeCode Kind Parameters List

CORBA: : tk_enum {enum-name, enum-id, ...}
CORBA: :tk_string { maxlen-integer}

CORBA: :tk_wstring { maxlen-integer}

CORBA: : tk_sequence { TypeCode, maxlen-integer}
CORBA: :tk_array {TypeCode, length-integer}

CORBA::TypeCode::param_count

Synopsis

Retrieves the number of parameters for the TypeCode object reference.

C++ Binding

CORBA: :Long CORBA: :TypeCode: :param_count () const;

Arguments
None.

Description

This member function retrieves the parameter attribute of the corea: : Typecode class, which
specifiesthe number of parametersfor the TypeCode object reference. For alist of parameters of

each kind, see Table 14-3.

Return Values

If the function succeeds, it returns the number of parameters contained in the TypeCode object

reference.

If the function does not succeed, an exception is thrown.

CORBA Programming Reference 14-113

CORBA::TypeCode::parameter

Synopsis
Retrieves a parameter specified by the index input argument.
C++ Binding
CORBA: :Any * CORBA: :TypeCode: :parameter (
CORBA: : Long Index) const;
Argument
Index

An index to the parameter list, used to determine which parameter to retrieve.

Description

This member function retrieves a parameter specified by the index input argument. For alist of
parameters of each kind, see Table 14-3.

Return Values

If the member function succeeds, the return value is a pointer to the parameter specified by the
index input argument.

If the member function does not succeed, an exception is thrown.

Exception Member Functions

The Oracle Tuxedo software supports the throwing and catching of exceptions.

Caution: Use of the wrong exception constructor causes noninitialization of a data member.
Exceptions that are defined to have a reason field need to be created using the
constructor that initializesthat datamember. If the default constructor isused instead,
that data member is not initialized and, during destruction of the exception, the
system may attempt to destroy nonexistent data.

When creating exceptions, be sure to use the constructor function that most fully
initializes the data fields. These exceptions can be most easily identified by looking
at the OMG IDL definition; they have additional data member definitions.

Descriptions of exception member functions follow:

14-114 CORBA Programming Reference

Exception Member Functions

CORBA: : SystemException: : SystemException ()
Thisisthe default constructor for the CORBA: : SystemException class. Minor codeis
initialized to O (zero) and the completion statusis set to COMPLETED_NO.

CORBA: : SystemException: : SystemException (
const CORBA::SystemException & Se)
Thisisthe copy constructor for the corBa: : SystemException class.

CORBA: : SystemException: : SystemException (
CORBA: :ULong Minor, CORBA::CompletionStatus Status)
This constructor for the corRBaA: : SystemException class setsthe minor code and
completion status.

Explanations of the arguments are as follows:

Minor
The minor code for the Exception object. The minor field isan
implementation-specific value used by the ORB to identify the exception. The
Oracle Tuxedo minor field definitions can be found in the file orbminor . h.

Status
The completion status for the Exception object. The values are as follows:
CORBA: : COMPLETED_YES
CORBA: : COMPLETED_NO
CORBA: : COMPLETED_MAYBE

CORBA: : SystemException: : ~SystemException ()
Thisisthedestructor for the corBa: : SystemException class. It freesany memory used
for the Exception object.

CORBA: : SystemException CORBA: :SystemException: :operator =
const CORBA: :SystemException Se)
Thisassignment operator copies exception information from the source exception. The se
argument specifies the SystemException object that isto be copied by this operator.

CORBA: :CompletionStatus CORBA: :SystemException: :completed()
This member function returns the completion status for this exception.

CORBA: : SystemException: :completed (
CORBA: :CompletionStatus Completed)
This member function sets the completion status for this exception. The completed
argument specifies the completion status for this exception.

CORBA: :ULong CORBA: :SystemException: :minor ()
This member function returns the minor code for this exception.

CORBA Programming Reference 14-115

Sta

14-116

CORBA: : SystemException: :minor (CORBA::ULong Minor)
This member function sets the minor code for this exception. The minor argument
specifies the new minor code for this exception. The minor field isan
implementation-specific value used by the application to identify the exception.

CORBA: : SystemException * CORBA::SystemException::_narrow (
CORBA: :Exception_ptr Exc)
This member function determines whether a specified exception can be narrowed to a
system exception. The Exc argument specifies the exception to be narrowed.

If the specified exception is a system exception, this member function returns a pointer to
the system exception. If the specified exception is not a system exception, the function
returns O (zero).

CORBA: :UserException * CORBA::UserException::_narrow (
CORBA: : Exception_ptr Exc)
Thismember function determineswhether a specified exception can be narrowed to auser
exception. The Exc argument specifies the exception to be narrowed.

If the specified exception isauser exception, thismember function returnsapointer to the
user exception. If the specified exception is not a user exception, the function returns 0
(zero).

ndard Exceptions

This section presents the standard exceptions defined for the ORB. These exception identifiers
may be returned as aresult of any operation invocation, regardless of the interface specification.
Standard exceptions are not listed in raises expressions.

To bound the complexity in handling the standard exceptions, the set of standard exceptionsis
kept to atractable size. This constraint forces the definition of equivalence classes of exceptions,
rather than enumerating many similar exceptions.

For example, an operation invocation can fail at many different points due to the inability to
allocate dynamic memory. Rather than enumerate several different exceptionsthat correspond to
the different ways that memory allocation failure causes the exception (during marshaling,
unmarshaling, in the client, in the object implementation, allocating network packets, and so
forth), a single exception corresponding to dynamic memory allocation failure is defined. Each
standard exception includes a minor code to designate the subcategory of the exception; the
assignment of values to the minor codes is left to each ORB implementation.

Each standard exception also includes a completion_status code, which takes one of the
following values:

CORBA Programming Reference

CORBA: : COMPLETED_YES

Standard Exceptions

The object implementation completed processing prior to the exception being raised.

CORBA: : COMPLETED_NO

The object implementation was not initiated prior to the exception being raised.

CORBA: : COMPLETED_MAYBE

The status of implementation completion is unknown.

Exception Definitions

The standard exceptions are defined below. Clients must be prepared to handle system exceptions
that are not on thislist, both because future versions of this specification may define additional

standard exceptions, and because ORB implementations may raise nonstandard system

exceptions. For more information about exceptions, see System Messages.

Table 14-4 defines the exceptions.

Table 14-4 Exception Definitions

Exception

Description

CORBA : : UNKNOWN

The unknown exception.

CORBA: : BAD_PARAM

Aninvalid parameter was passed.

CORBA: : NO_MEMORY

Dynamic memory allocation failure.

CORBA: :IMP_LIMIT

Violated implementation limit.

CORBA: : COMM_FAILURE

Communication failure.

CORBA: : INV_OBJREF

Invalid object reference.

CORBA: : NO_PERMISSION

No permission for attempted operation.

CORBA: : INTERNAL

ORB internal error.

CORBA: : MARSHAL

Error marshalling parameter/result.

CORBA: : INITIALIZE

ORB initialization failure.

CORBA: : NO_IMPLEMENT

Operation implementation unavailable.

CORBA: : BAD_TYPECODE

Bad typecode.

CORBA Programming Reference

14-117

Tahle 14-4 Exception Definitions (Continued)

Exception

Description

CORBA: : BAD_OPERATION

Invalid operation.

CORBA: : NO_RESOURCES

Insufficient resources for request.

CORBA: : NO_RESPONSE

Response to request not yet available.

CORBA: : PERSIST_STORE

Persistent storage failure.

CORBA: : BAD_INV_ORDER

Routine invocations out of order.

CORBA: : TRANSIENT

Transient failure; reissue request.

CORBA: : FREE_MEM

Cannot free memory.

CORBA: : INV_IDENT Invalid identifier syntax.
CORBA: : INV_FLAG Invalid flag was specified.
CORBA: : INTF_REPOS Error accessing interface repository.

CORBA: : BAD_CONTEXT

Error processing context object.

CORBA: : OBJ_ADAPTER

Failure detected by object adapter.

CORBA: : DATA_CONVERSION

Data conversion error.

CORBA: : OBJECT_NOT_EXIST

Nonexistent object; delete reference.

CORBA: : TRANSACTION_REQUIRED Transaction required.

CORBA: : TRANSACTION_ROLLEDBACK Transaction rolled back.

CORBA: : INVALID_TRANSACTION Invalid transaction.

Object Nonexistence

Thecorea: : OBJECT_NOT_EXIST exceptionisraised whenever an invocation on adel eted object
is performed. It is an authoritative “hard” fault report. Anyone receiving it is allowed (even
expected) to delete all copies of this object reference and to perform other appropriate “final
recovery” style procedures.

14-118 CORBA Programming Reference

ExceptionList Member Functions

Transaction Exceptions

The corBA: : TRANSACTION_REQUIRED exception indicates that the request carried aNULL
transaction context, but an active transaction is required.

The corBA: : TRANSACTION_ROLLEDBACK exception indicates that the transaction associated
with the request has already been rolled back or marked to roll back. Thus, the requested
operation either could not be performed or was not performed because further computation on
behalf of the transaction would be fruitless.

The corpa: : INVALTD_TRANSACTION indicates that the request carried an invalid transaction
context. For example, this exception could be raised if an error occurred when trying to register
aresource.

ExceptionList Member Functions

The ExceptionList member functions allow aclient or server application to provide alist of
TypeCodes for al user-defined exceptions that may result when the Request isinvoked. For a
description of the Request member functions, see the section Request Member Functions.

The mapping of these member functionsto C++ isasfollows:

class CORBA
{
class ExceptionList
{
public:
Ulong count ();
void add (TypeCode_ptr tc);
void add_consume (TypeCode_ptr tc);
TypeCode_ptr item(Ulong index) ;
Status remove (Ulong index) ;
}; // ExceptionList
}// CORBA

CORBA Programming Reference 14-119

CORBA::ExceptionList::count

Synopsis
Retrieves the current number of itemsin thelist.

C++ Binding

Ulong count ();
Arguments
None.

Exception
If the function does not succeed, an exception is thrown.

Description
This member function retrieves the current number of itemsin thelist.

Return Values

If the function succeeds, the returned value is the number of itemsin thelist. If the list has just
been created, and no ExceptionList objects have been added, this function returns O (zero).

CORBA::ExceptionList::add

Synopsis
Constructs a ExceptionList object with an unnamed item, setting only the f1ags attribute.

C++ Binding

void add(TypeCode_ptr tc);

Arguments

tc
Defines the memory location referred to by Typecode_ptr.

Exception
If the member function does not succeed, a corRBA: :NO_MEMORY exception isthrown.

14-120 CORBA Programming Reference

ExceptionList Member Functions

Description

Thismember function constructs an ExceptionList object with an unnamed item, setting only the
flags attribute.

The ExceptionList object grows dynamically; your application does not need to track its size.

Return Values
If the function succeeds, the return value is a pointer to the newly created ExceptionList object.

See Also

CORBA: :ExceptionList: :add_consume
CORBA: :ExceptionList: :count
CORBA: :ExceptionList::item

CORBA: :ExceptionList: :remove

CORBA::ExceptionList::add_consume

Synopsis
Constructs an ExceptionList object.

C++ Binding

void add_consume (TypeCode_ptr tc);

Arguments

tc
The memory location to be assumed.

Exceptions
If the member function does not succeed, an exception is raised.

Description
This member function constructs an ExceptionList object.

The ExceptionList object grows dynamically; your application does not need to track its size.

Return Values
If the function succeeds, the return value is a pointer to the newly created ExceptionList object.

CORBA Programming Reference 14-121

See Also

CORBA: :ExceptionList: :add
CORBA: :ExceptionList: :count
CORBA: :ExceptionList::item
CORBA: :ExceptionList: :remove

CORBA::ExceptionList::item

Synopsis
Retrieves a pointer to the ExceptionList object, based on the index passed in.

C++ Binding

TypeCode_ptr item(ULong index) ;

Argument

index

Theindex into the ExceptionList object. The indexing is zero-based.

Exceptions
If the function does not succeed, the BaD_paARAM exception is thrown.

Description

This member function retrieves a pointer to an ExceptionList object, based on the index passed
in. The function uses zero-based indexing.

Return Values
If the function succeeds, the return value is a pointer to the ExceptionList object.

See Also

CORBA: :ExceptionList: :add

CORBA: :ExceptionList: :add_consume
CORBA: :ExceptionList: :count
CORBA: : ExceptionList: :remove

CORBA::ExceptionList::remove

Synopsis
Removes the item at the specified index, frees any associated memory, and reorders the
remaining items on the list.

14-122 CORBA Programming Reference

C++ Binding

Status remove (ULong index) ;

Argument

Index

ExceptionList Member Functions

The index into the ContextList object. The indexing is zero-based.

Exceptions

If the function does not succeed, the BAD_paraM exception is thrown.

Description

Thismember function removestheitem at the specified index, frees any associated memory, and
reorders the remaining items on the list.

Return Values
None.

See Also

CORBA:
CORBA:
CORBA:
CORBA:

:ExceptionList:
:ExceptionList:
:ExceptionList::
:ExceptionList:

:add
:add_consume

count

:item

CORBA Programming Reference

14-123

14-124 CORBA Programming Reference

Server-side Mapping

Server-side mapping refers to the portability constraints for an object implementation written in
C++. Theterm server is not meant to restrict implementations to situations in which method
invocations cross-address space or machine boundaries. This mapping addresses any
implementation of an Object Management Group (OMG) Interface Definition Language (IDL)
interface.

Note: Theinformation in this chapter is based on the Common Object Request Broker:
Architecture and Specification, Revision 2.4.2, February 2001, published by the Object
Management Group (OMG). Used with permission of the OMG.

Implementing Interfaces

To define an implementation in C++, you define a C++ class with any valid C++ name. For each
operation in the interface, the class defines a nonstatic member function with the mapped name
of the operation (the mapped name is the same asthe OMG IDL identifier).

The server application mapping specifies two alternative relationships between the
implementation class supplied by the application and the generated class or classes for the
interface. Specifically, the mapping requires support for both inheritance-based rel ationships and
del egation-based rel ationships. Conforming applications may use either or both of these
alternatives. Oracle Tuxedo CORBA supports both inheritance-based and del egati on-based
relationships.

CORBA Programming Reference 15-1

Inheritance-based Interface Implementation

15-2

In the inheritance-based interface implementation approach, the implementation classes are
derived from a generated base class based on the OMG IDL interface definition. The generated
base classes are known as skeleton classes, and the derived classes are known as implementation
classes. Each operation of theinterface has a corresponding virtual member function declared in
the skeleton class. The generated skeleton classis partially opague to the programmer, though it
will contain a member function corresponding to each operation in the interface. The signature
of the member function isidentical to that of the generated client stub class.

Toimplement thisinterface using inheritance, aprogrammer must derive from this skeleton class
and implement each of the operationsin the OMG IDL interface. To allow portable
implementations to multiple inheritances from both skeleton classes and implementation classes
for other base interfaces without error or ambiguity, the Tobj_servantBase class must bea
virtual base class of the skeleton, and the PortableServer: : ServantBase class must be a
virtual base class of the Tobj_servantBase class. The inheritance among the implementation
class, the skeleton class, the Tobj_servantBase class, and the

PortableServer: : ServantBase class must al be public virtual.

The implementation class or servant must only derive directly from a single generated skeleton
class. Direct derivation from multiple skeleton classes could result in ambiguous errors due to
multiple definitions of the _this () operation. This should not be alimitation, however, since
CORBA objects have only a single most-derived interface. C++ servants that are intended to
support multiple interface types can utilize the del egation-based interface implementation
approach. See Listing 15-1 for an example of OMG IDL that uses interface inheritance.

Listing 15-1 OMG IDL That Uses Interface Inheritance

// IDL
interface A
{
short opl() ;

void op2(in long val)

CORBA Programming Reference

Inheritance-based Interface Implementation

Listing 15-2 Interface Class A

// C++
class A : public virtual CORBA: :0Object
{
public:
virtual CORBA::Short opl ();
virtual void op2 (CORBA::Long val) ;

Ontheserver side, askeleton classisgenerated. Thisclassispartially opagueto the programmer,
though it does contain a member function corresponding to each operation in the interface.

For the Portable Object Adapter (POA), the name of the skeleton classisformed by prepending
thestring “poa_" tothefully scoped name of the corresponding interface, and the classisdirectly
derived from the servant base class Tobj_servantBase. The C++ mapping for
Tobj_ServantBase IS asfollows;

// C++
class Tobj_ServantBase
{
public:
virtual void activate_object (const char* stroid);
virtual void deactivate_object (
const char* stroid,

TobjS: :DeactivateReasonValue reason

}

Theactivate_object () anddeactivate_object () member functionsaredescribedin detail
in the sections Tobj_ServantBase:: activate object() and Tobj_ServantBase::_add_ref().

The skeleton class for interface A shown above would appear as shown in Listing 15-3.

Listing 15-3 Skeleton Class for Interface A

// C++
class POA_A : public Tobj_ServantBase

CORBA Programming Reference 15-3

public:
// ... server-side ORB-implementation-specific

// goes here...

virtual CORBA::Short opl () = 0;
virtual void op2 (CORBA::Long val) = 0;
/...

If interface A were defined within amodule rather than at global scope (for example, Mod: : 2),
the name of its skeleton class would be poa_wmod : : A. This helps to separate server application
skeleton declarations and definitions from C++ code generated for the client.

To implement this interface using inheritance, you must derive from this skeleton class and
implement each of the operationsin the corresponding OMG IDL interface. An implementation
class declaration for interface A would take the form shown in Listing 15-4.

Listing 15-4 Interface A Implementation Class Declaration

// C++
class A_impl : public POA_A
{
public:
CORBA: : Short opl();
void op2 (CORBA: :Long val) ;

Delegation-based Interface Implementation

15-4

The del egation-based interface implementation approach is an alternative to using inheritance

when implementing CORBA objects. This approach is used when the overhead of inheritanceis
too high or cannot be used. For exampl e, due to theinvasive nature of inheritance, implementing
objects using existing legacy code might beimpossible if inheritance for some global classwere

CORBA Programming Reference

Delegation-based Interface Implementation

required. Instead, delegation can be used to solve these types of problems. Delegation is amore
natural fit doing object implementations when the Process-Entity design pattern is used. In this
pattern, the Process object would del egate operations onto one or more entity objects.

In the delegation-based approach, the implementation does not inherit from a skeleton class.
Instead, the implementation can be coded as required for the application, and a wrapper object
will delegate upcalls to that implementation. This “wrapper object,” called atie, is generated by
the IDL compiler, along with the same skeleton class used for the inheritance approach. The
generated tie classis partialy opague to the programmer, though, like the skeleton, it providesa
method corresponding to each OMG IDL operation for the associated interface. The name of the
generated tie class is the same as the generated skeleton class with the addition that the string
_tie isappended to the end of the class name.

Aninstance of the t i e classisthe servant, not the C++ object being delegated to by thetie object,
that is passed as the argument to the operations that require a servant argument. It should also
be noted that the tied object has no accesstothe _this () operation, nor should it access data
members directly.

A type-safetie classisimplemented using C++ templates. The code shown in Listing 15-5
illustrates atie class generated from the Derived interface in the previous OMG IDL example.

Listing 15-5 Tie Class Generated from the Derived Interface

// C++
template <class T>
class POA_A_tie : public POA_A {

public:

POA_A_tie(T& t)

: _ptr(&t), _poa(PortableServer::POA::_nil()), _rel(0) {}
POA_A_tie(T& t, PortableServer::POA_ptr poa)

: _ptr(&t), _poa(PortableServer::POA::_duplicate(poa)), _rel(0) {}
POA_A_tie(T* tp, CORBA::Boolean release = 1)

: _ptr(tp), _poa(PortableServer::POA::_nil()), _rel(release) {}
POA_A_tie(T* tp, PortableServer::POA_ptr poa, CORBA::Boolean release = 1)

: _ptr(tp), _poa(PortableServer::POA::_duplicate(poa)), _rel(release) {}
~POA_A_tie()

{ CORBA::release(_poa);
if (_rel) delete _ptr;
}

// tie-specific functions
T* _tied_object () {return _ptr;}
void _tied_object (T& obj)

CORBA Programming Reference 15-5

{ if (_rel) delete _ptr;
_ptr = &obj;

_rel = 0;

void _tied_object (T* obj, CORBA::Boolean release = 1)
{ 1f (_rel) delete _ptr;

_ptr = obj;

_rel = release;

}

CORBA: :Boolean _is_owner () { return _rel; }

void _is_owner (CORBA::Boolean b) { _rel = b; }

// IDL operations*************************************
CORBA: : Short opl ()
{

return _ptr->opl ();

void op2 (CORBA::Long val)
{

_ptr->op2 (val);
}

// Rk Ik kI S I R kI kI S

// override ServantBase operations
PortableServer: :POA_ptr _default_ POA()
{
if (!CORBA::is_nil(_poa))
{
return _poa;
}
else {
#ifdef WIN32
return ServantBase::_default_ POA() ;
#else
return PortableServer::ServantBase::_default_POA() ;
#endif

private:
T* _ptr;
PortableServer: : POA_ptr _poa;
CORBA: :Boolean _rel;

// copy and assignment not allowed

15-6 CORBA Programming Reference

Delegation-based Interface Implementation

POA_A_tie (const POA_A_tie<T> &);
void operator=(const POA_A_tie<T> &);

This class definition is a template generated by the IDL compiler. You typically useit by first
getting a pointer to the legacy class and then instantiating the tie class with that pointer. For
example:

0ld::Legacy * legacy = new 01ld::Legacy(oid);
POA_A_tie<0ld::Legacy> * A_servant_ptr =
new POA_A_tie<0ld::Legacy>(legacy);

Asyou can seg, the tie class contains definitions for the opl and op2 operations of the interface
that assume that the legacy class has operations with the same signatures as those given in the
IDL. If thisisthe case, you can use thetie classfile asis, letting it delegate exactly. It ismore
likely, however, that the legacy class will not have identical signatures or you may have to do
more than asingle function call. Inthat case, it isyour job to replace the code for opl and op2 in
this generated code. The code for each operation typically makesinvocations on the legacy class
using thetieclassvariable _ptr, which containsthe pointer to thelegacy class. For example, you
might change the following lines:

CORBA: :Short opl () {return _ptr->opl (); }
void op2 (CORBA::Long val) {_ptr->op2 (val); }

to the following:

CORBA: :Short opl ()
{
return _ptr->op37 ();

void op2 (CORBA::Long val)
{
CORBA: :Long temp;
temp = val + 15;
_ptr->lookup(val, temp, 43);
}

An instance of this template class performs the task of delegation. When the template is
instantiated with a class type that provides the operation of the perived interface, then the

CORBA Programming Reference 15-7

POA_Derived_tie classwill delegate all operationsto an instance of that implementation class.
A reference or pointer to the actual implementation object is passed to the appropriate tie
constructor when an instance of the poa_berived_tie classis created. When arequest is
invoked on it, the tie servant will just delegate the request by calling the corresponding method
on the implementation class.

Theuse of templatesfor tie classes allowsthe application devel oper to provide specializationsfor
some or all of thetemplate' s operations for agiven instantiation of the template. Thisallowsthe
application to use legacy classes for tied object types, where the operation signatures of the tied
object will differ from that of the tie class.

Implementing Operations

15-8

The signature of an implementation member function is the mapped signature of the OMG IDL
operation. Unlike the client-side mapping, the OMG specifies that the function header for the
server-side mapping include the appropriate exception specification. An example of thisisshown
in Listing 15-6.

Listing 15-6 Exception Specification

// IDL
interface A
{
exception B {};
void f() raises(B);
}i

// C++
class MyA : public virtual POA_A
{
public:
void f();

CORBA Programming Reference

Implementing Operations

Since all operations and attributes may raise CORBA system exceptions,
CORBA: : SystemException must appear in all exception specifications, even when an operation
hasno raises clause.

Note: Because of the differencesin C++ compilers, it is best to leave out the "throw
declaration" in the method signature. Some systems cause the application server to crash
if an undeclared exception isthrown in amethod that has declared the exceptionsit will
throw.

Withinamember function, the“this’ pointer refersto theimplementation object’ sdataas defined
by the class. In addition to accessing the data, a member function may implicitly call another
member function defined by the same class. An example of thisisshownin Listing 15-7.

Listing 15-7 Calling Another Member Function

// IDL
interface A
{
void f£();
void g();
}i

// C++
class MyA : public virtual POA_A
{

public:
void f();
void g();
private:
long x_;
}:
void
MyA::f();
{
x_ =3
g()

CORBA Programming Reference 15-9

When a servant member function isinvoked in this manner, it is being called simply asa C++
member function, not as the implementation of an operation on a CORBA object.

15-10 CORBA Programming Reference

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo CORBA Programming Reference, 12c Release 2 (12.2.2)
	Contents

	OMG IDL Syntax and the C++ IDL Compiler
	OMG IDL Compiler Extensions
	Table 1-1 Predefined Macros

	C++ IDL Compiler Constraints
	Table 1-2 C++ IDL Compiler

	Implementation Configuration File (ICF)
	ICF Syntax
	[#pragma activation_policy method|transaction|process] [#pragma transaction_policy never|ignore|optional|always] [#pragma concurrency_policy user_controlled|system_controlled] [#pragma retry_policy never|always] [Module module-name {] implementation ...

	Sample ICF File
	Listing 2-1 Sample ICF

	Creating the ICF File
	See Also

	TP Framework
	A Simple Programming Model
	Control Flow
	Object State Management
	Transaction Integration
	Object Housekeeping
	High-level Services

	State Management
	Activation Policy
	Application-controlled Activation and Deactivation
	Explicit Activation
	Usage Notes
	Caution to Users

	Self Deactivation

	Servant Lifetime
	The Normal Case
	Special Cases

	Saving and Restoring Object State
	Note On Use of Constructors and Destructors for CORBA Objects

	Transactions
	Transaction Policies
	Transaction Initiation
	Transaction Termination
	Transaction Suspend and Resume
	Restrictions on Transactions
	SQL and Global Transactions
	Voting on Transaction Outcome
	Transaction Timeouts

	IIOP Client Failover
	Setting The Retry Policy
	MIB Support

	Initiating IIOP Client Failover
	Listing 3-1 Example UBBCONFIG File IIOP Client Failover Entry
	IIOP Client Failover Limitations

	See Also

	WebLogic CORBA Clustering and Load Balancing Support
	Parallel Objects
	Listing 3-2 ICF Syntax
	[#pragma activation_policy method|transaction|process] [#pragma transaction_policy never|ignore|optional|always] [#pragma concurrency_policy user_controlled|system_controlled] [Module module-name {] implementation [implementation-name] { implements (...

	TP Framework API
	Server Interface
	C++ Declarations

	ServerBase Interface
	C++ Declarations (in Server.h)

	Server::create_servant()
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Value

	ServerBase::create_servant_with_id()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Server::initialize()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	ServerBase::thread_initialize()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Server::release()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	ServerBase::thread_release()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example
	Tobj_ServantBase Interface
	C++ Declaration (in Tobj_ServantBase.h)
	class Tobj_ServantBase : public PortableServer::RefCountServantBase { public:
	Tobj_ServantBase& operator=(const Tobj_ServantBase&); Tobj_ServantBase() {} Tobj_ServantBase(const Tobj_ServantBase& s) : PortableServer::RefCountServantBase(s) {}
	virtual void activate_object(const char *) {}
	virtual void deactivate_object(const char*, TobjS::DeactivateReasonValue) {}
	virtual CORBA::Boolean _is_reentrant() { return CORBA_FALSE; } };
	typedef Tobj_ServantBase * Tobj_Servant;

	Tobj_ServantBase:: activate_object()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Value
	Exceptions

	Tobj_ServantBase::_add_ref()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Tobj_ServantBase::deactivate_object()
	Synopsis
	C++ Binding
	Arguments
	Description
	Restriction
	Return Value
	Exceptions

	Tobj_ServantBase::_is_reentrant()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Tobj_ServantBase::_remove_ref()
	Synopsis
	C++ Binding
	Parameters
	Description
	Return Value
	Example
	TP Interface
	Usage Notes

	TP::application_responsibility()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values

	TP::bootstrap()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Exceptions
	Description

	TP::close_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Exceptions

	TP::create_active_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Exceptions:
	Description
	Caution
	Problem Statement
	1. You write SERVER1 such that all objects on interface A are preactivated. To prevent the object from being activated on demand by the TP Framework, you write the interface's activate_object method to always throw the ActivateObjectFailed exception.
	2. SERVER2 also implements objects of interface A. However, instead of preactivating the objects, SERVER2 lets the TP Framework activate them on demand.
	3. If the administrator configures SERVER1 and SERVER2 in the same group, then a client can get an interface A object reference from SERVER2 and invoke on it. Then, due to load balancing, SERVER1 could be asked to activate an object on interface A. H...

	Workaround

	Return Value

	TP::create_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value
	Example

	TP::deactivateEnable()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::get_object_id ()
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Value

	TP::get_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::open_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values

	TP::orb()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::register_factory()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::unregister_factory()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::userlog()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value
	Example
	CosTransactions::TransactionalObject Interface Not Enforced
	Error Conditions, Exceptions, and Error Messages
	Exceptions Raised by the TP Framework
	Exceptions in the Server Application Code
	Example

	Exceptions and Transactions
	Restriction of Nested Calls on CORBA Objects

	CORBA Bootstrapping Programming Reference
	Why Bootstrapping Is Needed
	Supported Bootstrapping Mechanisms
	Oracle Bootstrapping Mechanism
	How Bootstrap Objects Work
	Types of Oracle Remote Clients Supported
	Table 4-1 Oracle Remote Clients Supported

	Capabilities and Limitations

	Bootstrap Object API
	Tobj Module
	Table 4-2 Returned Object References
	Table 4-3 Tobj Module Exceptions

	C++ Mapping
	Listing 4-1 Tobj_boostrap.h Declarations

	Java Mapping
	Listing 4-2 Tobj_Bootstrap.java Mapping

	Automation Mapping
	Listing 4-3 Automation (Dual) Bootstrap Interface Mapping

	C++ Member Functions

	Tobj_Bootstrap
	Synopsis
	C++ Mapping
	Parameters
	Table 4-4 Differences Between corbaloc and corbalocs URL Address Formats

	Exception
	Description
	Return Values

	Tobj_Bootstrap::register_callback_port
	Synopsis
	C++ Mapping
	Parameter
	Exceptions
	Description
	Usage Notes
	Return Values

	Tobj_Bootstrap::resolve_initial_references
	Synopsis
	C++ Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj_Bootstrap::destroy_current()
	Synopsis
	C++ Mapping
	Exception
	Description
	Return Values
	Java Methods
	Automation Methods

	Initialize
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	Return Values
	Exceptions
	Table 4-5 Initialize Exceptions

	CreateObject
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	Return Value
	Exceptions
	Table 4-6 CreateObject Exceptions

	DestroyCurrent
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Return Value
	Exceptions
	Bootstrap Object Programming Examples
	Visual Basic Client Example: Using the Bootstrap Object
	Listing 4-4 Programming a Client in Visual Basic

	Interoperable Naming Service Bootstrapping Mechanism
	Introduction
	INS Object References
	Table 4-7 Returned Object References

	INS Command-line Options
	INS Initialization Operations
	INS Object URL Schemes
	IOR URL Scheme
	corbaloc URL Scheme
	Table 4-8 BNF Format for URL Elements
	Table 4-9 Descriptions of URL Elements
	corbaloc::555xyz.com:1024,555backup.com:1022,555last.com:1999 corbalocs::555xyz.com:1024,{555backup.com:1022|555last.com:1999} corbaloc::1.2@555xyz.com:1111 corbalocs::1.1@24.128.122.32:1011,1.0@24.128.122.34

	corbaname URL Scheme
	Table 4-10 BNF Syntax for URL
	1. Construct a corbaloc URL of the form corbaloc::<corbaloc_obj> from the corbaname URL.
	2. Convert the corbaloc URL to a naming context object reference by calling CORBA::ORB::string_to_object to obtain a CosNaming::NamingContext object.
	3. Convert <string_name> to a CosNaming::Name.
	4. Invoke the resolve operation on the CosNaming::NamingContext, passing the CosNaming::Name constructed.
	5. The object reference returned from CosNaming::NamingContext::resolve should be returned to the caller.

	Getting a FactoryFinder Object Reference Using INS
	Listing 4-5 Code Example for Getting the FactoryFinder Object

	Getting a PrincipalAuthenticator Object Reference Using INS
	Listing 4-6 Code Example for Getting the PrincipalAuthenticator Object

	Getting a TransactionFactory Object Reference Using INS
	Listing 4-7 Code Example for a Client Application That Uses INS
	1. Use ORB::resolve_initial_references to get a FactoryFinder.
	2. Use the FactoryFinder to get a TransactionFactory.
	3. Use the create operation on TransactionFactory to begin a transaction.
	4. From the Control object returned from the create operation, use the get_terminator method to get the transaction terminator interface.
	5. Use the commit or rollback operation on the terminator to end or abort the transaction.

	Restrictions
	Table 4-11 Supported INS Interfaces and Operations

	FactoryFinder Interface
	Capabilities, Limitations, and Requirements
	Functional Description
	Locating a FactoryFinder
	Registering a Factory
	Figure 5-1 Registering a Factory Object
	C++ Mapping
	Listing 5-1 C++ Mappings for the Factory Registration Pseudo OMG IDL

	Locating a Factory
	Figure 5-2 Locating a Factory Object
	CORBAservices Naming Service Module OMG IDL
	Listing 5-2 CORBAservices Naming OMG IDL

	CORBAservices Life Cycle Service Module OMG IDL
	Listing 5-3 Life Cycle Service OMG IDL

	Tobj Module OMG IDL
	Listing 5-4 Tobj Module OMG IDL

	Locating Factories in Another Domain
	Figure 5-3 Inter-Domain FactoryFinder Interaction

	Why Use Oracle Tuxedo CORBA Extensions?

	Creating Application Factory Keys
	Names Library Interface Pseudo OMG IDL
	Listing 5-5 Names Library Interfaces in Pseudo-IDL
	Creating a Library Name Component
	Creating a Library Name
	The LNameComponent Interface
	The LName Interface
	Destroying a Library Name Component Pseudo-Object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an OMG IDL Form
	Translating an IDL Form
	Destroying a Library Name Pseudo-Object

	C++ Mapping
	Listing 5-6 Library Name Class

	Java Mapping
	Listing 5-7 Java Mapping for LNameComponent

	C++ Member Functions and Java Methods
	CosLifeCycle::FactoryFinder::find_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exception
	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj::FactoryFinder::find_factories_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj::Factoryfinder::list_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Exception
	Description
	Return Values
	Automation Methods

	DITobj_FactoryFinder.find_one_factory
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exceptions
	Description
	Return Values

	DITobj_FactoryFinder.find_one_factory_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exceptions
	Description
	Return Values

	DITobj_FactoryFinder.find_factories_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exceptions
	Description
	Return Values

	DITobj_FactoryFinder.find_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exception
	Description
	Return Values

	DITobj_FactoryFinder.list_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	Exception
	Description
	Return Values
	Programming Examples
	Using the FactoryFinder Object
	Registering a Reference to a Factory Object
	Listing 5-8 Server Application: Registering a Factory

	Obtaining a Reference to a FactoryFinder Object Using the CosLifeCycle::FactoryFinder Interface
	Listing 5-9 Client Application: Getting a FactoryFinder Object Reference

	Obtaining a Reference to a FactoryFinder Object Using the Extensions Bootstrap object
	Listing 5-10 Client Application: Finding One Factory Using the Tobj Approach

	Using Extensions to the FactoryFinder Object
	Obtaining One Factory Using Tobj::FactoryFinder
	Listing 5-11 Client Application: Finding Factories Using the Oracle Tuxedo Extensions Approach

	Obtaining One or More Factories Using Tobj::FactoryFinder
	Listing 5-12 Client Application: Finding One or More Factories Using the Oracle Tuxedo Extensions Approach

	Security Service
	Transactions Service
	Notification Service
	Request-Level Interceptors
	CORBA Interface Repository Interfaces
	Notes: Most of the information in this chapter is taken from Chapter 10 of the Common Object Request Broker: Architecture and Specification, Revision 2.4.2, February 2001. The OMG information has been modified as required to describe the Oracle Tuxed...
	Structure and Usage
	Programming Information
	Performance Implications
	1. The client application invokes the _get_interface operation on the CORBA::Object to get the InterfaceDef object associated with the object in question. This causes a message to be sent to the ORB that created the object reference.
	2. The ORB returns the InterfaceDef object to the client.
	3. The client invokes one or more _is_a operations on the object to determine what type of interface is supported by the object.
	4. After the client has identified the interface, it invokes the describe_interface operation on the Interface object to get a full description of the interface (for example, version number, operations, attributes, and parameters). This causes a mess...
	5. The client is now ready to construct a DII request.

	Building Client Applications
	Getting Initial References to the InterfaceRepository Object
	Interface Repository Interfaces
	Supporting Type Definitions
	IRObject Interface
	Contained Interface
	Container Interface
	IDLType Interface
	Repository Interface
	ModuleDef Interface
	ConstantDef Interface
	TypedefDef Interface
	StructDef
	UnionDef
	EnumDef
	AliasDef
	PrimitiveDef
	StringDef
	WstringDef
	ExceptionDef
	AttributeDef
	OperationDef
	InterfaceDef

	Joint Client/Servers
	Introduction
	Main Program and Server Initialization
	Servants
	Servant Inheritance from Skeletons
	C++ Example of Inheritance from Skeletons

	Callback Object Models Supported
	Notes: The Transient/UserId policy combination is not considered particularly important. It is possible for users to provide for themselves by using the POA in a manner analogous to either of the persistent cases, but the Oracle Tuxedo wrappers do no...

	Configuring Servers to Call Remote Joint Client/Server Objects
	Preparing Callback Objects Using CORBA (C++ Joint Client/Servers Only)
	1. Establish a connection with a POA with the appropriate policies for the callback object model. (This can be the root POA, available by default, or it may require creating a new POA.)
	2. Create a servant (that is, an instance of the C++ implementation class for the interface).
	3. Inform the POA that the servant is ready to accept requests on the callback object. Technically, this means the client activates the object in the POA (that is, puts the servant and the ObjectId into the POA’s Active Object Map).
	4. Tell the POA to start accepting requests from the network (that is, activate the POA itself).
	5. Create an object reference for the callback object.
	6. Give out the object reference. This usually happens by making an invocation on another object with the callback object reference as a parameter (that is, the parameter is a callback object). That other object will then invoke the callback object (...
	Listing 11-1 Transient/SystemId Model
	Listing 11-2 Persistent/UserId Model

	Preparing Callback Objects Using OracleWrapper Callbacks
	Using OracleWrapper Callbacks With C++
	Listing 11-3 OracleWrapper IDL
	Listing 11-4 C++ Declarations (in beawrapper.h)

	C++ OracleWrapper Callbacks Interface API
	Callbacks
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Value

	start_transient
	Synopsis
	IDL
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	start_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	JArguments
	Exceptions
	Description
	Return Value

	restart_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	start_persistent_userid
	Synopsis
	IDL
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	stop_object
	Synopsis
	IDL
	C++ Binding
	Argument
	Exceptions
	Description
	Return Value

	stop_all_objects
	Synopsis
	IDL
	C++ Binding
	Exceptions
	Description
	Usage Note
	Return Value

	get_string_oid
	Synopsis
	IDL
	C++ Binding
	JExceptions
	Description
	Return Value

	~Callbacks
	Synopsis
	C++ Binding
	JArguments
	Exceptions
	Description
	Usage Note
	Return Value

	Development Commands
	Mapping of OMG IDL Statements to C++
	Mappings
	Data Types
	Basic Data Types
	Table 13-1 Basic OMG IDL and C++ Data Types

	Complex Data Types
	Table 13-2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

	Strings
	wchars
	wstrings
	Constants
	Enums
	Structs
	Fixed-length Versus Variable-length Structs
	Member Mapping
	Var
	Out

	Unions
	Union Member Accessor and Modifier Member Function Mapping
	Var
	Out
	Member Functions

	Sequences
	Sequence Element Mapping
	Vars
	Out
	Member Functions

	Arrays
	Array Slice
	Array Element Mapping
	Vars
	Out
	Allocation Member Functions

	Exceptions
	Member Mapping
	Var
	Out
	Member Functions

	Mapping of Pseudo-objects to C++
	Usage
	Mapping Rules
	Relation to the C PIDL Mapping
	Typedefs
	Implementing Interfaces
	Argument Mapping

	Implementing Operations
	Skeleton Derivation from Object

	PortableServer Functions
	Modules
	Interfaces
	Generated Static Member Functions
	Object Reference Types
	Attributes
	Argument Mapping

	Any Type
	Handling Typed Values
	Insertion into Any
	Extraction from Any
	Distinguishing Boolean, Octet, Char, and Bounded Strings
	Widening to Object
	Handling Untyped Values
	Any Constructors, Destructor, Assignment Operator
	The Any Class

	Value Type
	Overview
	Architecture
	Benefits
	Valuetype Example

	Fixed-length Versus Variable-length User-defined Types
	Using var Classes
	Table 13-3 Comparison of Operators Supported for User-defined Data Type var Classes
	Table 13-4 Operator Signatures for _var Classes
	Sequence vars
	Array vars
	String vars
	out Classes
	Table 13-5 Comparison of Operators Supported for User-defined Data Type Out Classes
	Table 13-6 Operator Signatures for _out Classes

	Using out Classes
	Object Reference out Parameter
	Sequence outs
	Array outs
	String outs

	Argument Passing Considerations
	Operation Parameters and Signatures
	Table 13-7 Basic Argument and Result Passing
	Table 13-8 T_var Argument and Result Passing
	Table 13-9 Caller Argument Storage Responsibilities
	Table 13-10 Argument Passing Cases

	CORBA API
	Notes: Some of the information in this chapter is taken from the Common Object Request Broker: Architecture and Specification. Revision 2.4.2, February 2001, published by the Object Management Group (OMG). Used with permission of the OMG.
	Global Classes
	Pseudo-objects
	Any Class Member Functions
	CORBA::Any::Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Any::Any(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Any::~Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	void CORBA::any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::TypeCode_ptr CORBA::Any::type() const
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	void CORBA::Any::replace()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Context Member Functions
	Memory Management

	CORBA::Context::context_name
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Context::create_child
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values
	See Also

	CORBA::Context::delete_values
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	CORBA::Context::get_values
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also

	CORBA::Context::parent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Context::set_one_value
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also

	CORBA::Context::set_values
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also
	ContextList Member Functions

	CORBA::ContextList:: count
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values
	See Also

	CORBA::ContextList::add
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also

	CORBA::ContextList::add_consume
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also

	CORBA::ContextList::item
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	CORBA::ContextList::remove
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also
	NamedValue Member Functions
	Memory Management

	CORBA::NamedValue::flags
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::NamedValue::name
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::NamedValue::value
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	NVList Member Functions
	Memory Management

	CORBA::NVList::add
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::NVList::add_item
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::add_value
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::item
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also

	CORBA::NVList::remove
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also
	Object Member Functions

	CORBA::Object::_create_request
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Object::_duplicate
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::Object::_get_interface
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_is_a
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::Object::_is_equivalent
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	Example

	CORBA::Object::_nil
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Example

	CORBA::Object::_non_existent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_request
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also
	CORBA Member Functions

	CORBA::release
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::is_nil
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::hash
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::resolve_initial_references
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	Example
	ORB Member Functions

	CORBA::ORB::clear_ctx
	Synopsis
	C++ Binding
	Parameters
	Return Value
	Description
	Example
	See Also

	CORBA::ORB::create_context_list
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::ORB::create_environment
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::create_exception_list
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::ORB::create_list
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::create_named_value
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::create_operation_list
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::create_policy
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Table 14-1 Exception and Reasons

	Description
	Return Values
	Example

	CORBA::ORB::destroy
	Synopsis
	C++ Binding
	Parameter
	Return Value
	Description
	Example

	CORBA::ORB::get_ctx
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Example
	See Also

	CORBA::ORB::get_default_context
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::get_next_response
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::inform_thread_exit
	Synopsis
	C++ Binding
	Parameter
	Return Value
	Description
	Example

	CORBA::ORB::list_initial_services
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::object_to_string
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also

	CORBA::ORB::perform_work
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also
	Example

	CORBA::ORB::poll_next_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::resolve_initial_references
	Synopsis
	C++ Binding
	Augument
	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_deferred
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_oneway
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::set_ctx
	Synopsis
	C++ Binding
	Parameter
	Return Value
	Description
	Example
	See Also

	CORBA::ORB::string_to_object
	Synopsis
	C++ Binding
	Argument
	Description
	Return Value
	See Also

	CORBA::ORB::work_pending
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also
	ORB Initialization Member Function

	CORBA::ORB_init
	Synopsis
	C++ Binding
	Arguments
	Description
	1. If the orb_identifier argument is present, ORB_init determines the client type, either native or remote, if the string is "BEA_IIOP" or "BEA_TOBJ", respectively. If an orb_identifier string is present, all -ORBid parameters in the argv are ignored...
	2. If orb_identifier is not present or is explicitly zero, ORB_init looks at the entries in argc/argv. If argv contains an entry with "-ORBid", the next entry should be either "BEA_IIOP" or "BEA_TOBJ", again specifying remote or native. This pair of ...
	3. If no client type is specified in argc/argv, ORB_init uses the default client type from the system registry (BEA_IIOP or BEA_TOBJ). The system registry was initialized at the time Oracle Tuxedo was installed.

	Return Value
	Exceptions

	ORB
	Synopsis
	Syntax
	Description
	Parameters
	Table 14-2 Minor Codes for CORBA::BAD_PARAM Standard Exception

	Portability
	Interoperability
	Examples
	See Also
	Policy Member Functions
	See Also:

	CORBA:Policy::copy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Policy::destroy
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	PortableServer Member Functions

	PortableServer::POA::activate_object
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	Example

	PortableServer::POA::activate_object_with_id
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	Example

	PortableServer::POA::create_id_assignment_policy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	PortableServer::POA::create_lifespan_policy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	PortableServer::POA::create_POA
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	Examples

	PortableServer::POA::create_reference
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POA::create_reference_with_id
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	Example

	PortableServer::POA::deactivate_object
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POA::destroy
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	PortableServer::POA::find_POA
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values

	PortableServer::POA::reference_to_id
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POA::the_POAManager
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	PortableServer::ServantBase::_default_POA
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	POA Current Member Functions

	PortableServer::Current::get_object_id
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values

	PortableServer::Current::get_POA
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	POAManager Member Functions

	PortableServer::POAManager::activate
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POAManager::deactivate
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	POA Policy Member Objects

	PortableServer::LifespanPolicy
	Synopsis
	Description
	Exceptions

	PortableServer::IdAssignmentPolicy
	Synopsis
	Description
	Request Member Functions

	CORBA::Request::arguments
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::ctx(Context_ptr)
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::Request::get_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::invoke
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::operation
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::poll_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::result
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::env
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::ctx
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::contexts
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::exceptions
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::target
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::send_deferred
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::send_oneway
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also
	Strings

	CORBA::string_alloc
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also

	CORBA::string_dup
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also

	CORBA::string_free
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also
	Wide Strings
	Listing 14-1 Wide Strings Example

	TypeCode Member Functions
	Memory Management

	CORBA::TypeCode::equal
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::TypeCode::id
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::kind
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Table 14-3 Legal Typecode Kinds and Parameters

	CORBA::TypeCode::param_count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::parameter
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Exception Member Functions
	Standard Exceptions
	Exception Definitions
	Table 14-4 Exception Definitions

	Object Nonexistence
	Transaction Exceptions

	ExceptionList Member Functions

	CORBA::ExceptionList::count
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values

	CORBA::ExceptionList::add
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values
	See Also

	CORBA::ExceptionList::add_consume
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also

	CORBA::ExceptionList::item
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	Server-side Mapping
	Implementing Interfaces
	Inheritance-based Interface Implementation
	Listing 15-1 OMG IDL That Uses Interface Inheritance
	Listing 15-2 Interface Class A
	Listing 15-3 Skeleton Class for Interface A
	Listing 15-4 Interface A Implementation Class Declaration

	Delegation-based Interface Implementation
	Listing 15-5 Tie Class Generated from the Derived Interface
	// C++ template <class T> class POA_A_tie : public POA_A { public: POA_A_tie(T& t) : _ptr(&t), _poa(PortableServer::POA::_nil()), _rel(0) {} POA_A_tie(T& t, PortableServer::POA_ptr poa) : _ptr(&t), _poa(PortableServer::POA::_duplicate(poa)), _rel(0) ...
	void op2 (CORBA::Long val) { _ptr->op2 (val); } // *** // override ServantBase operations PortableServer::POA_ptr _default_POA() { if (!CORBA::is_nil(_poa)) { return _poa; } else { #ifdef WIN32 return S...

	Implementing Operations
	Listing 15-6 Exception Specification
	Listing 15-7 Calling Another Member Function

