Service Architecture Leveraging Tuxedo (SALT)
Programming Guide
12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Service Architecture Leveraging Tuxedo (SALT) Programming Guide, 12c Release 2 (12.2.2)
Copyright © 2006, 2016 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Introduction to SALT Programming

SALT Web Services Programming oo oottt e 1-1
SALT ProXY SErVICE . oo e it et e e e 1-2
SALT MeSSage CONVEISION. . . o .ttt ettt e e e e e e et 1-2
SALT Programming TasksQuick Index 1-2
REpresentational State Transfer (REST) Message Conversion 1-3

Data Type Mapping and Message Conversion

Overview of Data Type Mapping and MessageConversion 2-1
Understanding SALT Message ConVerSioNo oot v i e i ee e eaeeea 2-2
Inbound Message ConVErSioNottt et e 2-2
Outbound Message CoNVErSION.ottt ettt e 2-2
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services................ 2-3
Oracle Tuxedo STRING Typed Bufferso, 2-16
Oracle Tuxedo CARRAY TypedBuffers 2-16
Oracle Tuxedo MBSTRING Typed Buffers 2-19
Oracle Tuxedo XML Typed Buffers........... 2-20
Oracle Tuxedo VIEW/VIEW32 Typed Buffers. 2-22
Oracle Tuxedo FML/FML32 Typed Buffers. 2-25
Oracle Tuxedo RECORD Typed Buffers 2-29
Oracle Tuxedo X_C TYPE Typed Buffers. 2-32
Oracle Tuxedo X_COMMON Typed Buffers. 2-32
Oracle Tuxedo X_OCTET Typed Buffers., 2-32
Custom Typed BUffers. i e 2-33
XML-to-Tuxedo Data Type Mapping for External Web Services. 2-33
XML SchemaBuilt-In Simple DataTypeMapping oo, 2-33
XML SchemaUser Defined Data TypeMapping.o vviviivnen.n.. 2-37
WSDL Message Mappingo oot e et 2-44

SALT Programming Guide

REST DataMapping. oottt e e e e e e 2-46
Inbound Message ConNVErSIONottt e 2-47
Outbound Message CONVErSION.ottt e e 2-61

Web Service Client Programming

O VIV, .« o ettt e e e e e e e e e e 31
REpresentational State Transfer (REST) Support. ..., 32
SALT Web Service Client Programming TipsS.o v v i e 35
Web Service Client Programming References.o o it 3-10
Online REFEIENCES oot 3-10

Oracle Tuxedo ATMI Programming for Web Services

VIV BV, . oottt e e e e e e 4-1
Converting WSDL Model Into Oracle TuxedoModel 4-2
WSDL-to-Tuxedo ObjeCt Mapping.o oottt it e i 4-2
INVOKING SALT ProXy SerViCES . ..ottt it it ettt eeens 4-3
SALT Supported CommunicationPatterns., 4-3
Oracle Tuxedo Outbound Call Programming: MainSteps. 4-4
Managing Error Code Returned fromGWWS 4-5
Handling Fault Messages in an Oracle Tuxedo Outbound Application 4-6
S AlSD . . 4-8
Using SALT Plug-Ins
Understanding SALT PlUG-INS.o 51
Plug-InElements. e 5-1
Programming Message Conversion PIug-inso 5-7
How Message Conversion Plug-insWork.t 5-7
When Do We Need Message Conversion Plug-in. 5-10
Developing aMessage Conversion Plug-ininstance 5-12

SALT Programming Guide

SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility
Programming Outbound Authentication Plug-Ins
How Outbound Authentication Plug-InsWork
Implementing a Credential Mapping Interface Plug-In.
Mapping the Oracle Tuxedo UID and HTTPUsername.

SALT Programming Guide

iv SALT Programming Guide

SALT Programming Guide

vi SALT Programming Guide

CHAPTERa

Introduction to SALT Programming

This chapter includes the following topics:

e SALT Web Services Programming

SALT Web Services Programming

SALT providesbi-directional connectivity between Oracle Tuxedo applicationsand Web service
applications. Existing Oracle Tuxedo services can be easily exposed as Web Services without
requiring additional programming tasks. SALT generatesa WSDL file that describes the Oracle
Tuxedo Web service contract so that any standard Web service client toolkit can be used to access
Oracle Tuxedo services.

Web service applications (described using aWSDL document), can be imported asif they are
standard Oracle Tuxedo services and invoked using Oracle Tuxedo ATMIsfrom various Oracle
Tuxedo applications (for example, Oracle Tuxedo ATMI clients, ATMI servers, Jolt clients,
COBOL clients, and .NET wrapper clients).

e SALT Proxy Service
e SALT Message Conversion
e SALT Programming Tasks Quick Index

REpresentational State Transfer (REST) Message Conversion

SALT Programming Guide 1-1

1-2

SALT Proxy Service

SALT proxy services are Oracle Tuxedo service entries advertised by the GWWS SALT
Gateway. The proxy services are converted from the Web service application WSDL file. Each
WSDL filewsdl : operation object ismapped asone SALT proxy service.

The SALT proxy service is defined using the Service Metadata Repository service definition
syntax. These service definitionsmust beloaded into the Service M etadata Repository. To invoke
proxy services from an Oracle Tuxedo application, you must refer to the Oracle Tuxedo Service
Metadata Repository to get the service contract description.

For more information, see ?$paratext>".

SALT Message Conversion

To support Oracle Tuxedo application and Web service application integration, the SALT
gateway converts SOA P messages into Oracle Tuxedo typed buffers, and Oracle Tuxedo typed
buffersinto SOAP messages. The message conversion between SOAP messages and Oracle
Tuxedo typed buffersis subject to a set of SALT pre-defined basic data type mapping rules.

When exposing Oracle Tuxedo services as Web services, a set of Tuxedo-to-XML datatype
mapping rules are defined. The message conversion process that conforms to Tuxedo-to-XML
data type mapping rulesis called “Inbound Message Conversion”.

When importing external Web services as SALT proxy services, aset of XML-to-Tuxedo data
type mapping rules are defined. The message conversion process that conformsto
XML-to-Tuxedo data type mapping rulesis called “ Outbound Message Conversion”.

For more information, see ?$paratext>".

SALT Programming Tasks Quick Index

Table 1-1 listsaquick index of SALT programming tasks. Y ou can locate programming tasks
first, and then click on the corresponding link for detailed description.

SALT Programming Guide

Table 1-1 SALT Programming Tasks Quick Index

SALT Web Services Programming

Tasks

Refer to ...

Invoking Oracle
Tuxedo services
(inbound) through
SALT

Develop Web service client programs for
Oracle Tuxedo services invocation.

SALT Web Service Client Programming
Tips.

Understand inbound message conversion
and data type mapping rules.

Understanding SALT Message Conversion.

Tuxedo-to-XML Data Type Mapping for
Oracle Tuxedo Services.

Develop inbound message conversion
plug-in.

Programming Message Conversion
Plug-ins.

Invoking external
Web services
(outbound) through
SALT

Understand the genera outbound service
programming concepts.

Oracle Tuxedo ATMI Programming for
Web Services.

Understand outbound message conversion
and data type mapping rules.

Understanding SALT Message Conversion.

XML-to-Tuxedo Data Type Mapping for
External Web Services.

Develop outbound message conversion
plug-in.

Programming Message Conversion
Plug-ins.

Develop your own plug-in to map Oracle
Tuxedo user name with user name for
outbound HTTP basic authentication.

Programming Outbound Authentication
Plug-Ins.

REpresentational State Transfer (REST) Message
Conversion

Thebasic REST design principle establishes a one-to-one mapping between create, read, update,
and delete (CRUD) operations and HT TP methods.

The REST principles around are as follows:

e Use HTTP methods explicitly.

o Be stateless.

e Expose directory structure-like URIs.

e Transfer XML, JavaScript Object Notation (JSON), or both.

SALT Programming Guide 1-3

For more information, see Data Type Mapping and Message conversion, and SALT
Configuration Tool in the SALT Configuration Guide.

1-4 SALT Programming Guide

../config/config.html

CHAPTERa

Data Type Mapping and Message
Conversion

This chapter contains the following sections:

Overview of Data Type Mapping and Message Conversion

Understanding SALT Message Conversion

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services
o XML-to-Tuxedo Data Type Mapping for External Web Services
e REST Data Mapping

Overview of Data Type Mapping and Message Conversion

SALT supports bi-directional data type mapping between WSDL messages and Oracle Tuxedo
typed buffers. For each service invocation, the GWWS server converts each message between
Oracle Tuxedo typed buffers and SOAP message payloads. A SOAP message payload isthe
XML effective data encapsulated within the <soap : body> €lement. For more information, see
Pparatext>?.

For native Oracle Tuxedo services, each Oracle Tuxedo buffer type is described using an XML
Schemain the SALT generated WSDL document. Oracle Tuxedo service request/response
buffers are represented in regular XML format. For more information, see ?$paratext>"?.

For external Web services, each WSDL message is mapped as an Oracle Tuxedo Fur32 buffer
structure. An Oracle Tuxedo application invokes SALT proxy service using FMr32 buffersas
input/output. For more information see, ?$paratext>?.

SALT Programming Guide 2-1

SALT also supports non-SOAP data type mapping (i.e., REST over HTTPin both XML and
JSON format. Thisisinitiated when services are exposed as HTTP/REST Sefvices. For more
information, see REST Data Mapping.

Understanding SALT Message Conversion

2-2

SALT message conversion isthe message transformation process between SOAP XML dataand
Oracle Tuxedo typed buffers. SALT introducestwo message conversion rules: Inbound Message
Conversion, and Outbound Message Conversion.

Inbound Message Conversion

Inbound message conversion isthe SOAP XML Payload and Oracle Tuxedo typed buffer
conversion process that conformsto “Tuxedo-to-XML data type mapping rules’. Inbound
message conversion happensin two phases:

o When GWWS accepts SOAP requests for legacy Oracle Tuxedo services;
o When GWWS accepts response typed buffers from legacy Oracle Tuxedo services.

SALT encloses Oracle Tuxedo buffer content using elements <inbuf>, <outbuf> and/or
<errbuf> in the SOAP message, the content included within elements <inbuf>, <outbuf>
and/or <errbuf> iscalled “Inbound XML Payload”.

Outbound Message Conversion

Outbound message conversion process is the SOAP XML Payload and Oracle Tuxedo typed
buffer conversion process that conforms to the “ Tuxedo-to-X ML data type mapping rules’.
Outbound message conversion happensin two phases:

o When GWWS accepts request typed buffers sent from an Oracle Tuxedo application;

o When GWWS accepts SOAP response messages from external Web services.
Table 2-1 compares inbound message conversion and outbound message conversion .

SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Table 2-1 Inbound Message Conversion vs. Outbound Message Conversion

Inbound Message Conversion Outbound Message Conversion

SOAP message payload is encapsulated with ~ SOAP message payload is the entire

<inbuf>, <outbuf> Or <errbuf>. <soap:body>
Transformation according to Transformation according to
“Tuxedo-to-XML datatype mapping rules’. “XML-to-Tuxedo data type mapping rules’.

All Oracle Tuxedo buffer typesareinvolved. Only Oracle Tuxedo FML32 buffer typeis
involved.

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo
Services

SALT provides a set of rulesfor describing Oracle Tuxedo typed buffersin an XML document
as shown in Table 2-2. These rules are exported as XML Schema definitionsin SALT WSDL
documents. Thissimplifiesbuffer conversion and does not require previous Oracle Tuxedo buffer
type knowledge.

e Oracle Tuxedo STRING Typed Buffers
e Oracle Tuxedo CARRAY Typed Buffers
e Oracle Tuxedo MBSTRING Typed Buffers

Oracle Tuxedo XML Typed Buffers

Oracle Tuxedo VIEW/VIEW32 Typed Buffers
Oracle Tuxedo FML/FML32 Typed Buffers

Oracle Tuxedo RECORD Typed Buffers

e Oracle Tuxedo X_C_TYPE Typed Buffers

e Oracle Tuxedo X_COMMON Typed Buffers
e Oracle Tuxedo X_OCTET Typed Buffers

e Custom Typed Buffers

SALT Programming Guide 2-3

2-4 SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo Description XML Schema Mapping for SOAP Message
Buffer Type
STRING Oracle Tuxedo STRING typedbuffers xsd:string

are used to store character stringsthat
terminate with aNULL character.
Oracle Tuxedo STRING typed buffers
are self-describing.

Inthe SOAP message, the XML element
that encapsulates the actual string data,
must be defined using xsd: string
directly.

Notes:

The STRING datatype can be
specified with amax datalengthiin
the Oracle Tuxedo Service Metadata
Repository. If defined in Oracle
Tuxedo, the corresponding SOAP
message also enforces this
maximum. The GWWS server
validates the actual message byte
length against the definition in
Oracle Tuxedo Service Metadata
Repository. A SOAP fault message
isreturned if the message byte
length exceeds supported
maximums.

If GWWS server receives a SOAP
message other than “UTF-8", the
corresponding string valueisin the
same encoding.

SALT Programming Guide 2-5

2-6

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo Description XML Schema Mapping for SOAP Message
Buffer Type

CARRAY Oracle Tuxedo CARRAY typed buffers The CARRAY buffer raw datais carried
(Mapping with store character arrays, any of which within aMIME multipart/related

SOAP Message can be NULL. CARRAY buffersare message, whichisdefined inthe“ SOAP
plus used to handle data opaquely and are Messages with Attachments’
Attachments) not self-describing. specification.

The two data formats supported for
MIME Content-Type attachments are:

e application/octet-stream
— For Apache Axis
e text/xml

— For Oracle WebL ogic
Server

The format depends on which Web
service client-side toolkit is used.

Note: The SOAP with Attachment
ruleis only interoperable with
Oracle WebL ogic Server and
Apache Axis.

Note: CARRAY datatypescan be
specified with a max byte
length. If defined in Oracle
Tuxedo, the corresponding
SOAP messageisenforced with
this limitation. The GWWS
server validates the actual
message byte length against the
definition in the Oracle Tuxedo
Service Metadata Repository.

SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description

XML Schema Mapping for SOAP Message

CARRAY
(Mapping with
base64Binary)

Oracle Tuxedo CARRAY typed buffers
store character arrays, any of which
can be NULL. CARRAY buffersare
used to handle data opaquely and are
not self-describing.

xsd:base64Binary

The CARRAY data bytes must be
encoded withbase64Binary beforeit
can be embedded in a SOAP message.
Using base64Binary encoding with
this opague data stream saves the
original data and makes the embedded
data well-formed and readable.

Inthe SOAP message, the XML element
that encapsulates the actual CARRAY
data, must be defined with
xsd:base64Binary directly.

Note: CARRAY datatypescan be
specified with amax byte
length. If defined in Oracle
Tuxedo, the corresponding
SOAP messageisenforced with
thislimitation. The GWWS
server validates the actual
message byte length against the
definition in the Oracle Tuxedo
Service Metadata Repository.

SALT Programming Guide 2-7

2-8

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo Description XML Schema Mapping for SOAP Message
Buffer Type
MBSTRING Oracle Tuxedo MBSTRING typed xsd:string

buffers are used for multibyte
character arrays. Oracle Tuxedo
MBSTRING buffers consist of the
following three elements:

» Code-set character encoding
» Datalength
* Character array of the encoding.

The XML Schema built-in type,
xsd:string, representsthe
corresponding type for buffer data
stored in a SOAP message.

The GWWS server only accepts
“UTF-8" encoded XML documents. If
the Web service client wants to access
Oracle Tuxedo serviceswithMBSTRING
buffer, the mbstring payload must be
represented as“UTF-8" encoding inthe
SOAP request message.

Note: The GWWS server
transparently passes the
“UTF-8" character set string to
the Oracle Tuxedo serviceusing
MBSTRING Typed buffer
format.The actual Oracle
Tuxedo services handles the
UTF-8 string.

For any Oracle Tuxedo response
MBSTRING typed buffer (with any
encoding character set), the GWWS
server automatically transforms the
stringinto “UTF-8" encoding and sends
it back to the Web service client.

SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo Description XML Schema Mapping for SOAP Message
Buffer Type

MBSTRING Limitation:

(cont.)

Oracle TuxedoMBSTRING datatypecan
be specified with amax byte length in
the Oracle Tuxedo Service Metadata
Repository. The GWWS server checks
the byte length of the converted
MBSTRING buffer value.

Note: Max bytelength valueis not
used to enforce the character
number contained in the SOAP
message.

SALT Programming Guide 2-9

2-10

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo Description XML Schema Mapping for SOAP Message
Buffer Type
XML Oracle Tuxedo XML typed buffers xsd:anyType

store XML documents.

The XML Schema built-in type,
xsd:anyType, isthe corresponding
type for XML documents stored in a
SOAP message. It allows you to
encapsulate any well-formed XML data
within the SOAP message.

Limitation:

The GWWS server validates that the
actual XML dataiswell-formed. It will
not do any other enforcement validation,
such as Schema validation.

Only asingleroot XML buffer is
allowed to be stored in the SOAP body;
the GWWS server checks for this.

The actual XML data must be encoded
using the “UTF-8" character set. Any
original XML document prolog
information cannot be carried within the
SOAP message.

XML data type can specify amax byte
datalength. If defined in Oracle Tuxedo,
the corresponding SOAP message must
also enforce this limitation.

Note: The SALT WSDL generator
will nothavexsd :maxLength
restrictions in the generated
WSDL document, but the
GWWS server will validate the
byte length according to the
Oracle Tuxedo Service
Metadata Repository definition.

SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo Description XML Schema Mapping for SOAP Message
Buffer Type
VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32 Each viEwW or VIEW32 datatypeis

typed buffers store C structures
defined by Oracle Tuxedo
applications.

VIEW structures are defined by using
vIEW definitionfiles. A VIEW buffer

type can define multiple fields.

viEw supportsthefollowing field

types:

¢ short
e int

e long

¢« float
¢ double
¢ char

e string

e carray

¢ Dbool

e unsigned char

e signed char

e« wchar_t* or wchar_t
¢ unsigned int

e unsigned long

« long long

« unsigned long long
e Jlong doubl

VIEW32 supportsall the view
field types, mbstring, and
embedded viEw32 type.

defined as an XML Schema complex
type. Each vIEW field should be one or
more sub-elements of the XML Schema
complex type. The name of the
sub-element isthevIew field name. The
occurrence of the sub-element depends
on the count attribute of the view field
definition. The value of the sub-element
should bein the view field datatype
corresponding XML Schematype.

Thethefield types and the
corresponding XML Schematype are
listed asfollows:

* short mapsto xsd:short

e int mapstoxsd:int

* long Mapstoxsd:long

* float mapstoxsd:float

* double mapstoxsd:double

e char (defined as bytein Oracle
Tuxedo Service Metadata
Repository definition), mapsto
xsd:byte

* char (defined as char in Oracle
Tuxedo Service Metadata
Repository definition) mapsto
xsd:string (with restrictions
maxlength=1).

* string mapstoxsd:string

* carray mapsto
xsd:base64Binary

* mbstring Mapstoxsd:string

SALT Programming Guide 2-11

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo Description XML Schema Mapping for SOAP Message
Buffer Type

VIEW/VIEW32 ¢ bool maps to xsd:Boolean
(cont.) ¢ unsigned char maps to

xsd:unsignedByte

e gsigned char maps to
xsd:byte

e wchar_t* or wchar_t array
maps to xsd:string

¢ unsigned int maps to
xsd:unsignedInt

e unsigned long maps to
xsd:unsignedLong

¢ long long maps to xsd:long

e unsigned long long maps to
xsd:unsignedLong

¢ long double maps to
xsd:double. Do not set the
value of C importer option
size of long double to 128
bit. This option does not
import successfully; use
the default 64 bit

e VIEW32 maps to
tuxtype:view <viewname>

For more information, see
VIEW/VIEW32 Considerations.

2-12 SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description

XML Schema Mapping for SOAP Message

FML/FML32

Oracle Tuxedo FML and FML3 2 type
buffers are proprietary Oracle Oracle
Tuxedo system self-describing
buffers. Each datafield carriesitsown
identifier, an occurrence number, and
possibly alength indicator.

FML supports the following field
types:

. FLD_CHAR

+ FLD_SHORT

+ FLD_LONG

+ FLD_FLOAT

+ FLD_DOUBLE

+ FLD_STRING

+ FLD_CARRAY

FML32 supports all the FML field
types and FLD_PTR,

FLD_MBSTRING, FLD_FML32, and
FLD_VIEW32.

FML/FML32 bufferscanonly havebasic
data-dictionary-like definitions for each
basic field data. A particular
FML/FML32 buffer definition should be
applied for each FML /FML32 buffer
with adifferent type name.

EachrFML/FML32 field should beoneor
more sub-elements within the
FML/FML32 buffer XML Schemartype.
The name of the sub-element isthe FML
field name. The occurrence of the
sub-element depends on the count and
required count attribute of the
FML/FML32 field definition.

The e field types and the corresponding
XML Schematype are listed below:

* short mapsto xsd:short

* int mapstoxsd:int

* long mMapstoxsd:long

e float mapstoxsd:float

* double mapstoxsd:double

* char (defined as byte in Oracle
Tuxedo Service Metadata
Repository definition) mapsto
xsd:byte

* char (defined as char in Oracle
Tuxedo Service Metadata
Repository definition) mapsto
xsd:string

* string mapstoxsd:string

* carray mapsto
xsd:baseb64Binary

* mbstring Mapstoxsd:string

SALT Programming Guide 2-13

2-14

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo Description
Buffer Type

XML Schema Mapping for SOAP Message

FML/FML32
(cont.)

e view32 Mapsto tuxtype:view
<viewname>

e fml32 mapsto tuxtype: fml32
<svcname>_p<SegNum>

Toavoid multipleembedded FML32
buffersinanFML.3 2 buffer, aunique
sequence number (<SegNum>) is
used to distinguish the embedded
FML32 buffers.

Note: ptr isnot supported.

For limitations and considerations
regarding mapping FML / FML32
buffers, refer to FML/FML32
Considerations.

SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo Description XML Schema Mapping for SOAP Message
Buffer Type
RECORD RECORD buffer type represents Each RECORD datatypeisdefined asan
copybook record. RECORD typesmust XML Schema complex type. Each
have subtypes that designate RECORD field should be one or more
individual record structures. sub-elements of the XML Schema
Generated COBOL types: complex type.
« RECORD The COBOL types and the
. COMP-1 gorremondi ng XML Schematype are
. COMP-2 listed asfollows:
. s9(18) * RECORD mapsto
9(18) xsd:complexType
. 59(9) * COMP-1mapstoxsd:float
. 9 (9) b COMP-2 mapStO xsd:double
e S9(4) * S9(18) mapstoxsd:long
¢ S9(10)V9(10) * 9(18) mapsto
e« X(1024) xsd:unsignedLong
¢ @binary=true * S9(9) mMapsto xsd:int
* 9(9) mapsto
xsd:unsignedInt
* S9(4) mapstoxsd:short
* S9(10)V9(10) COMP-3 mapsto
xsd:decimal
* X(1024) mapstoxsd:string
* @binary=true mapsto
xsd:base64Binary
X_C_TYPE X_C_TYPE buffer types are See VIEW/VIEW32
equivalent to VIEW buffer types.
X_COMMON X_COMMON buffer types are See VIEW/VIEW32
equivalent to vIEW buffer types, but
are used for compatibility between
COBOL and C programs. Field types
should be limited to short, long,
and string
X_OCTET X_OCTET buffer typesareequivalent See CARRAY xsd:base64Binary

to CARRAY buffer types

SALT Programming Guide 2-15

2-16

Oracle Tuxedo STRING Typed Buffers

Oracle Tuxedo sTrING typed buffers are used to store character strings that end with anuLL
character. Oracle Tuxedo sTrING typed buffers are self-describing.

Listing 2-1 shows a SOAP message for the TourprER Oracle Tuxedo service example that accepts
a sTRING typed buffer.

Listing 2-1 Soap Message for a String Typed Buffer in TOUPPER Service

<?xml .. encoding="UTF-8" ?>

<inbuf>abcdefg</inbuf>
</m:TOUPPER>
</SOAP :body>

The XML Schemafor <inbuf> iS:

<xsd:element name="inbuf” type="xsd:string” />

Oracle Tuxedo CARRAY Typed Buffers

Oracle Tuxedo carray typed buffersare used to store character arrays, any of which can benur.r.
They are used to handle data opaquely and are not self-describing. Oracle Tuxedo carray typed
buffers can map to xsd:base64Binary or MIME attachments. The default is
xsd:base6b4Binary.

Mapping Example Using base64Binary

Listing 2-2 shows the SOAP message for the TourpER Oracle Tuxedo service, which accepts a
CARRAY typed buffer using base64Binary mapping.

SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Listing 2-2 Soap Message for a CARRAY Typed Buffer Using base64Binary Mapping

<SOAP:body>

<inbuf>QWxhZGRpbjpvcGVuIHNl1c2FtZQ==</inbuf>
</m:TOUPPER>
</SOAP :body>

The XML Schemafor <inbuf> iS:

<xsd:element name="inbuf” type="xsd:base64Binary” />

Mapping Example Using MIME Attachment

Listing 2-3 shows the SOAP message for the TourpeR Oracle Tuxedo service, which accepts a
CARRAY typed buffer asa MIME attachment.

Listing 2-3 Soap Message for a CARRAY Typed Buffer Using MIME Attachment

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
start="<claim061400a.xml@example.com>"

Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit

Content-ID: <claim061400a.xml@ example.com>

<?xml version='1.0"' ?>

<SOAP-ENV:Envelope

xmlns : SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<m:TOUPPER xmlns:m="urn:..”>
<inbuf href="cid:claim061400a.carray@example.com" />

</m:TOUPPER>

SALT Programming Guide 2-17

2-18

</SOAP-ENV: Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: text/xml
Content-Transfer-Encoding: binary

Content-ID: <claim061400a. carray @example.com>

...binary carray data..

--MIME_boundary--

The WSDL for carray typed buffer will look like the following:

<wsdl:definitions ..>
<wsdl:types ..>

<xsd:schema ..>

<xsd:element name="inbuf” type="xsd:base64Binary” />

</xsd:schema>

</wsdl:types>

<wsdl :binding ..>
<wsdl:operation name=”"TOUPPER”>
<soap:operation ..>
<input>
<mime:multipartRelated>
<mime:part>
<soap:body parts=".."

</mime:part>

<mime:part>

<mime:content part="..

</mime:part>
</mime:multipartRelated>
</input
</wsdl :operation>

</wsdl:binding>

SALT Programming Guide

use=".."/>

"

type="text/xml” />

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

</wsdl:definitions>

Oracle Tuxedo MBSTRING Typed Buffers

Oracle Tuxedo MBsTRING typed buffers are used for multibyte character arrays. Oracle Tuxedo
MBSTRING typed buffers consist of the following three elements:

e code-set character encoding
e datalength

e character array encoding.

Note: You cannot embed multibyte characters with non “uTr-8" code setsin the SOAP
message directly.

Listing 2-4 shows the SOAP message for the MBsErvICE Oracle Tuxedo service, which accepts

an MBSTRING typed buffer.

Listing 2-4 SOAP Message for an MBSIRING Buffer

<?xml encoding="UFT-8"7?>
<SOAP:body>
<m:MBSERVICE xmlns:m="http://...... >
<inbuf> </infuf>

</m:MBSERVICE>

The XML Schemafor <inbuf> is:

<xsd:element name="inbuf” type="xsd:string” />

WARNING: SALT converts the Japanese character "—" (EUC-JP Oxalbd, Shift-JIS 0x815c)
into UTF-16 0x2015.

If you use another character set conversion engine, the EUC-JP or Shift-JS
multibyte output for this character may be different. For example, the Javail8n

SALT Programming Guide 2-19

character conversion engine, convertsthis symbol to UTF-16 0x2014. The result
is the also same when converting to UTF-8, which isthe SALT default.

If you use another character conversion engine and Japanese "—" isincluded in
MBSTRING, Oracle Tuxedo server-side MBSTRING auto-conversion cannot convert
it back into Shift-JIS or EUC-JP.

Oracle Tuxedo XML Typed Buffers

Oracle Tuxedo xmr typed buffers store XML documents.
Listing 2-5 shows the Stock Quote XML document.

Listing 2-6 showsthe SOAP message for the sTock1ng Oracle Tuxedo service, which acceptsan
xML typed buffer.

Listing 2-5 Stock Quote XML Document

<?xml version="1.0" encoding="UTF-8"?>
<!-- "Stock Quotes". -->
<stockquotes>
<stock_quote>
<symbol>BEAS</symbol>
<when>
<date>01/27/2001</date>
<time>3:40PM</time>
</when>
<change>+2.1875</change>
<volume>7050200</volume>
</stock_gquote>

</stockquotes>

Then part of the SOAP message will look like Listing 2-6:

2-20 SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Listing 2-6 SOAP Message for an XML Buffer

<SOAP:body>

<inbuf>
<stockguotes>
<stock_quote>
<symbol>BEAS</symbol>
<when>
<date>01/27/2001</date>
<time>3:40PM</time>
</when>
<change>+2.1875</change>
<volume>7050200</volume>
</stock_qguote>
</stockgquotes>
</inbuf>
</m: STOCKINQ >
</SOAP :body>

The XML Schemafor <inbuf> iS:

<xsd:element name="inbuf” type="xsd:anyType” />

Note: If adefault namespaceiscontained in an Oracle Tuxedo XML typed buffer and returned
to the GWWS server, the GWWS server converts the default namespace to aregular
name. Each element is then prefixed with this name.

For example, if an Oracle Tuxedo service returns abuffer having a default namespace to
the GWWS server as shown in Listing 2-7, the GWWS server converts the default
namespace to aregular name as shown in Listing 2-8.

Listing 2-7 Default Namespace Before Sending to GWWS Server

<Configuration xmlns="http://www.bea.com/Tuxedo/Salt/200606">
<Servicelist id="simpapp">
<Service name="toupper"/>

</Servicelist>

SALT Programming Guide 2-21

2-22

<Policy/>
<System/>
<WSGateway>
<GWInstance id="GWWS1l">
<HTTP address="//myhost:8080"/>
</GWInstance>
</WSGateway>

</Configuration>

Listing 2-8 GWWS Server Converts Default Namespace to Regular Name

<dom0:Configuration
xmlns:dom0O="http://www.bea.com/Tuxedo/Salt/200606">
<dom0:Servicelist dom0:id="simpapp">
<dom0: Service domO:name="toupper"/>
</dom0:Servicelist>
<dom0:Policy></<dom0:Policy>
<dom0: System></<dom0 : System>
<dom0 : WSGateway>
<dom0 :GWInstance domO:id="GWWS1">
<dom0 :HTTP dom0:address="//myhost:8080"/>
</dom0 :GWInstance>
</dom0 : WSGateway>

</dom0:Configuration>

Oracle Tuxedo VIEW/VIEW32 Typed Buffers

Oracle Tuxedo view and view32 typed buffers are used to store C structures defined by Oracle
Tuxedo applications. Y ou must definethe VIEW structure with the view definition files. A view
buffer type can define multiple fields.

Listing 2-9 shows the MyviEw view definition file.

Listing 2-10 shows the SOAP message for the myview Oracle Tuxedo service, which accepts a
view typed buffer.

SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Listing 2-9 VIEW Definition File for MYVIEW Service

VIEW MYVIEW

#type cname fbname count flag size null
float floatl - 1 - - 0.0
double doublel - 1 - - 0.0
long longl - 3 - - 0
string stringl - 2 - 20 '\0"
END

Listing 2-10 SOAP Message for a VIEW Typed Buffer

<SOAP :body>
<m: STOCKINQ xmlns:m="http://...... ">
<inbuf>
<floatl>12.5633</floatl>
<doublel>1.3522E+5</doublel>
<longl>1000</longl>
<longl>2000</longl>
<longl>3000</longl>
<stringl>abcd</stringl>
<stringl>ubook</stringl>
</inbuf>
</m: STOCKINQ >
</SOAP:body>

The XML Schemafor <inbuf> isshown in Listing 2-11.

Listing 2-11 XML Schema for a VIEW Typed Buffer

<xsd:complexType name=" view_MYVIEW”>
<xsd:sequence>
<xsd:element name="floatl” type="xsd:float” />

<xsd:xsd:element name="doublel” type="xsd:double” />

SALT Programming Guide 2-23

2-24

<xsd:element name="longl” type=”xsd:long” minOccurs="3" />

<xsd:element name="stringl” type="xsd:string minOccurs="3" />

</xsd:sequence>

</xsd: complexType >

<xsd:element name="inbuf” type="tuxtype:view MYVIEW” />

VIEW/VIEW32 Considerations

The following considerations apply when converting Oracle Tuxedo view/viEw32 buffersto
and from XML.

You must create an environment for converting XML to and from view/view32. This
includes setting up aview directory and system view definition files. These definitions are
automatically loaded by the GWWS server.

The GWWS server provides strong consistency checking between the Oracle Tuxedo
Service Metadata Repository view/view32 parameter definition and the view/view32
definition file at start up.

If an inconsistency is found, the GWWS server cannot start. Inconsistency messages are
printed in the uLoc file.

tmwsdlgen alS0 provides strong consistency checking between the Oracle Tuxedo Service
Metadata Repository view/viEw32 parameter definition and the view/view32 definition
file at start up. If aninconsistency is found, the GWWS server will not start. Inconsistency
messages are printed in the ur.og file.

If the view definition file cannot be loaded, tmwsdlgen attemptsto use the Oracle Tuxedo
Service Metadata Repository definitions to compose the WSDL document.

Because dec_t isnot supported, if you define view fields with type dec_t, the service
cannot be exported as a Web service and an error message is generated when the SALT
configuration file isloading.

Although the Oracle Tuxedo Service Metadata Repository may define a size attribute for
“string/ mbstring” typed parameters (which represents the maximum byte length that
isalowed in the Oracle Tuxedo typed buffer), SALT does not expose such restriction in
the generated WSDL document.

When aview32 embedded MBString buffer is requested and returned to the GWWS
server, the GWWS miscal cul ates the required mBst ring length and reports that the input
string exceeds the view3 2 maxlength. Thisis because the header isincluded in the transfer

SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

encoding information. You must include the header size when defining the views2 field
length.

e The Oracle Tuxedo primary datatype “1long” isindefinite between 32-bit and 64-bit scope,
depending on the platform. However, the corresponding xsd: long schematypeis used to
describe 64-bit numeric values.

If the GWWS server runsin 32-bit mode, and the Web service client sends xsd: 1ong
typed data that exceeds the 32-bit value range, you may get a SOAP fault.

Oracle Tuxedo FML/FML32 Typed Buffers

Oracle Tuxedo FuL and FyL32 typed buffer are proprietary Oracle Tuxedo system self-describing
buffers. Each datafield carries its own identifier, an occurrence number, and possibly alength
indicator.

FML Data Mapping Example

Listing 2-12 shows the SOAP message for the TRansFER Tuxedo service, which accepts an Fur
typed buffer.

Therequest fields for service LocIN are:

ACCOUNT_ID 1 long /* 2 occurrences, The withdrawal
account is 1lst, and the deposit account is 2nd */
AMOUNT 2 float /* The amount to transfer */

Part of the SOAP message is shown in Listing 2-12:

Listing 2-12 SOAP Message for an FML Typed Buffer

<SOAP:body>

<inbuf>
<ACCOUNT_ID>40069901</ACCOUNT_ID>
<ACCOUNT_ID>40069901</ACCOUNT_ID>
<AMOUNT>200.15</AMOUNT>
</inbuf>
</m:TRANSFER >
</SOAP:body>

SALT Programming Guide 2-25

2-26

The XML Schemafor <inbuf> isshownin Listing 2-13.

Listing 2-13 XML Schema for an FML Typed Buffer

<xsd:complexType name=" fml TRANSFER_In”>
<xsd:sequence>
<xsd:element name="ACCOUNT_ID” type="xsd:long” minOccurs="2"/>
<xsd:element name=" AMOUNT” type="xsd:float” />
</xsd:sequence>
</xsd: complexType >
<xsd:element name="inbuf” type="tuxtype: fml_ TRANSFER_ In” />

FML32 Data Mapping Example

Listing 2-14 shows the SOAP message for the TransFER Oracle Tuxedo service, which accepts
an FuL32 typed buffer.

Therequest fields for service LocIN are:

CUST_INFO 1 fml32 /* 2 occurrences, The withdrawal
customer is 1lst, and the deposit customer is 2nd */

ACCOUNT_INFO 2 fml32 /* 2 occurrences, The withdrawal
account is 1st, and the deposit account is 2nd */

AMOUNT 3 float /* The amount to transfer */

Each embedded cusT_1nrFo includes the following fields:

CUST_NAME 10 string
CUST_ADDRESS 11 carray
CUST_PHONE 12 long

Each embedded accounTt_1nFo includes the following fields:

ACCOUNT_ID 20 long
ACCOUNT_PW 21 carray

Part of the SOAP message isshown in Listing 2-14:

SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Listing 2-14 SOAP Message for Service with FML32 Buffer

<SOAP:body>

<inbuf>

<CUST_INFO>
<CUST_NAME>John</CUST_NAME>
<CUST_ADDRESS>Building 15</CUST_ADDRESS>
<CUST_PHONE>1321</CUST_PHONE>

</CUST_INFO>

<CUST_INFO>
<CUST_NAME>Tom</CUST_NAME>
<CUST_ADDRESS>Building 11</CUST_ADDRESS>
<CUST_PHONE>1521</CUST_PHONE>

</CUST_INFO>

<ACCOUNT_INFO>
<ACCOUNT_ID>40069901</ACCOUNT_ID>
<ACCOUNT_PW>abc</ACCOUNT_PW>

</ACCOUNT_INFO>

<ACCOUNT_INFO>
<ACCOUNT_ID>40069901</ACCOUNT_ID>
<ACCOUNT_PW>zyx</ACCOUNT_PW>

</ACCOUNT_INFO>

<AMOUNT>200.15</AMOUNT>
</inbuf>
</m: STOCKINQ >
</SOAP:body>

The XML Schemafor <inbuf> isshown in Listing 2-15.

Listing 2-15 XML Schema for an FML32 Buffer

<xsd:complexType name="fml32_TRANSFER_In”>

<xsd:sequence>

SALT Programming Guide 2-27

<xsd:element name="CUST_INFO” type="tuxtype:fml32_TRANSFER_pl”
minOccurs="2"/>
<xsd:element name="ACCOUNT_INFO” type="tuxtype:fml32_TRANSFER_p2”
minOccurs="2"/>
<xsd:element name="AMOUNT” type="xsd:float” />
/xsd:sequence>

</xsd:complexType >

<xsd:complexType name="fml32_ TRANSFER_pl”>
<xsd:element name="CUST_NAME” type="xsd:string” />
<xsd:element name="CUST_ADDRESS” type="xsd:base64Binary” />
<xsd:element name="CUST_PHONE” type="xsd:long” />

</xsd:complexType>

<xsd:complexType name="fml32_ TRANSFER_p2”>
<xsd:element name=”"ACCOUNT_ID” type="xsd:long” />
<xsd:element name="ACCOUNT_PW” type="xsd:base64Binary” />

</xsd:complexType>

<xsd:element name="inbuf” type="tuxtype: fml32_TRANSFER_In” />

FML/FML32 Considerations

Thefollowing considerations apply to converting Oracle Tuxedo rmr./FuL32 buffersto and from
XML.

e You must create an environment for converting XML to and from FuL/FML32. This
includes an ruL field table file directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. FML typed buffers can be handled
only if the environment is set up correctly.

e 132 field type FLD_PTR is not supported.

e The GWWS server provides strong consistency checking between the Oracle Tuxedo
Service Metadata Repository Fur/Fur32 parameter definition and rvr /Fmr32 definition
file during start up.

If an Fv/ 32 field isfound that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in

2-28 SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

the Oracle Tuxedo Service Metadata Repository, the GWWS cannot start. Inconsistency
messages are printed in the ur.og file.

e The tmwsdlgen command checks for consistency between the Oracle Tuxedo Service
Metadata Repository FuL/FML32 parameter definition and vz /FmL32 definition file. If
inconsistencies are found, it issues awarning and allows inconsistencies.

If an FvL/32 field isfound that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in
the Oracle Tuxedo Service Metadata Repository, tmwsdlgen attemptsto use Oracle
Tuxedo Service Metadata Repository definitions to compose the WSDL document.

e Although the Oracle Tuxedo Service Metadata Repository may define a size attribute for
“string/mbstring” typed parameters, which represents the maximum byte length that is
allowed in the Oracle Tuxedo typed buffer, SALT does not expose such restriction in the
generated WSDL document.

e Oracle Tuxedo primary datatype “1ong” isindefinite between 32-bit and 64-bit scope
according to different platforms. But the corresponding xsd: 1ong schematype is used to
describe 64-bit numeric value. The following scenario generates a SOAP fault:

The GWWS runsin 32-bit mode, and a Web service client sends axsd: 1ong typed data
which exceeds the 32-bit value range.

Oracle Tuxedo RECORD Typed Buffers
Oracle Tuxedo RECORD typed buffers can describe COBOL copybook information.
Listing 2-16 shows the myRecord COBOL copybook file.

Listing 2-16 COBOL copybook myRecord

01 myRecord.
05 name occurs 1 times PIC X(10).
05 num occurs 1 times PIC S9(9) COMP-5.
05 subgroup occurs 1 times.
10 longl PIC S9(9) COMP-5.

10 stringl PIC X(19).

SALT Programming Guide 2-29

Listing 2-17 SOAP Message for a RECORD Typed Buffer

<soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

xmlns:urn="urn:pack.TuxAll_typedef.saltll">
<soapenv:Header/>
<soapenv :Body>

<urn:QUERY
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<inbuf xsi:type="urn:record_ QUERY_ In_ myRecord">
<name>John</name>
<num xXsi:type="xsd:int">999</num>
<subgroup xsi:type="urn:record_QUERY_In_ p3">
<longl xsi:type="xsd:int">1000</longl>
<stringl>abcd</stringl>
</subgroup>
</inbuf>
</urn:QUERY>
</soapenv:Body>

</soapenv:Envelope>

The XML Schema for <inbuf> is shown in Listing 2-18.

Listing 2-18 Schema for a RECORD Typed Buffer

<xsd:complexType name="record QUERY_ In_ myRecord">
<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1" name="name">

2-30 SALT Programming Guide

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="10"></xsd:maxLength>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element maxOccurs="1" minOccurs="1" name="num"

type="xsd:int"></xsd:element>

<xsd:element maxOccurs="1" minOccurs="1" name="subgroup"

type="tuxtype:record_QUERY_In_ p3"></xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="record_ QUERY In_ p3">
<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1" name="longl"

type="xsd:int"></xsd:element>
<xsd:element maxOccurs="1" minOccurs="1" name="stringl">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="19"></xsd:maxLength>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>

</xsd:complexType

SALT Programming Guide 2-31

2-32

REDEFINES Handling

Redefines are handled using the core Recorp implementation, which takesacpy2record binary
output with bool ean expressionsto perform choi ce decisions. GWW Sl everagesthese capabilities
when processing records and used them to determine the redefine member to select in the
outgoing message (inbound reply and outbound request).

For incoming messages (inbound request and outbound reply) the choice should have been
performed by the other side.

In order to make use of cpy2record binaries, GWWS |loads the rReEcorp description files (for
example,VIEW/VIEW32 compiled definitions), and rely on the RECORDFILES/RECORDDIR
environment variables. By specifying keyword "union" in the MIF file, the items keep the
REDEFINE relationship.

Oracle Tuxedo X_C_TYPE Typed Buffers

Oracle Tuxedo x_c_T1YPE typed buffers are equivalent (and have a similar WSDL format to),
Oracle Tuxedo vIew typed buffers. They aretransparent for SOAP clients. However, even though
usageissimilar to the Oracle Tuxedo view buffer type, SALT administrators must configure the
Oracle Tuxedo Service Metadata Repository for any particular Oracle Tuxedo service that uses
this buffer type.

Note: All view related considerations also take effect for x_c_TvpE typed buffer.

Oracle Tuxedo X_COMMON Typed Buffers

Oracle Tuxedo x_common typed buffers are equivalent to Oracle Tuxedo vIiew typed buffers.
However, they are used for compatibility between COBOL and C programs. Field types should
be limited to short, long, and string.

Oracle Tuxedo X_OCTET Typed Buffers

Oracle Tuxedo x_ocTeT typed buffers are equivalent to carray.

Note: Oracle Tuxedo x_ocTeT typed bufferscan only mapto xsd:base64Binary type. SALT
1.1 does not support mIME attachment binding for Oracle Tuxedo x_ocTeT typed buffers.

SALT Programming Guide

XML-to-Tuxedo Data Type Mapping for External Web Services

Custom Typed Buffers

SALT provides a plug-in mechanism that supports custom typed buffers. Y ou can validate the
SOAP message against your own XML Schema definition, allocate custom typed buffers, and
parse data into the buffers and other operations.

XML Schemabuilt-in type xsd: anyType isthe corresponding type for XML documents stored
in a SOAP message. While using custom typed buffers, you should define and represent the
actual datainto an XML format and transfer between the Web service client and Oracle Tuxedo
Web service stack. Aswith XML typed buffers, only asingle root XML buffer can be stored in
the SOAP body. The GWWS checks this for consistency.

For more plug-in information, see Using SALT Plug-Ins.

XML-to-Tuxedo Data Type Mapping for External Web
Services

SALT maps each wsdl :message asan Oracle Tuxedo rmr32 buffer structure. SALT definesa
set of rules for representing the XML Schema definition using Fvr.32. To invoke external Web
Services, you need to understand the exact FM1.32 structure that converted from the external Web
Service XML Schema definition of the corresponding message.

The following sections describe detailed WSDL message to Oracle Tuxedo rML32 buffer
mapping rules:

e XML Schema Built-In Simple Data Type Mapping
e XML Schema User Defined Data Type Mapping

e \WSDL Message Mapping

XML Schema Built-In Simple Data Type Mapping

Table 2-3 shows the supported XML Schema Built-In Simple Data Type and the corresponding
Oracle Tuxedo FmL32 Field Data Type.

SALT Programming Guide 2-33

Table 2-3 Supported XML Schema Built-In Simple Data Type

XML Schema Built-In Oracle Tuxedo FML32 ~ C/C++ Primitive Type Note
Simple Type Field Data Type In Oracle Tuxedo
Program

xsd:byte FLD_CHAR char

xsd:unsignedByte FLD_UCHAR unsigned char

xsd:boolean FLD_BOOL char/bool Value Pattern
[v | R]

xsd:short FLD_SHORT short

xsd:unsignedShort FLD_USHORT unsigned short

xsd:int FLD_LONG long

xsd:unsignedInt FLD_UINT unsigned int

xsd:long FLD_LONG long In a32-bit Oracle
Tuxedo program, the C
primitive type long
cannot represent all
xsd: long vaid value.

xsd:long FLD_LLONG long long In a 32-bit Oracle
Tuxedo program, the C
primitive type long long
can represent all
xsd: long valid values.

xsd:unsignedLong FLD_LONG unsigned long In a32-bit Oracle
Tuxedo program, the C
primitive type
unsigned long
cannot represent all
xsd:long valid value.

2-34 SALT Programming Guide

XML-to-Tuxedo Data Type Mapping for External Web Services

Table 2-3 Supported XML Schema Built-In Simple Data Type

XML Schema Built-In Oracle Tuxedo FML32 ~ C/C++ Primitive Type Note

Simple Type Field Data Type In Oracle Tuxedo
Program

xsd:unsignedLong FLD_ULONG unsigned long In a32-hit Oracle
long Tuxedo program, the C

primitive type unsigned
long long can represent

al
xsd:unsignedLong
valid values.
xsd:float FLD_FLOAT float
xsd:double FLD_DOUBLE double
xsd:string FLD_STRING char [1] xsd:string can be
(and dl xsd:string FLD_MBSTRING wchar_t [] optionally mapped as
derived built-intype, suchas (Null-terminated string) - o> R ING O
xsd: token, xsd:Name, FLD_MBSTRING USing
etc.) wsdlcvt.
xsd:base64Binary FLD_CARRAY char []
xsd:hexBinary FLD_CARRAY char []
All other built-in datatypes FLD_STRING char [] Y ou should comply with
(Data/ Time related, the value pfattern of the
decimal / Integer related, corresponding XML
any URL, QName, bwlt-m_data type. _
NOTATION) OtherW|s_e, server-s de
Web service will reject
the request.

The following samples demonstrate how to prepare data in a Oracle Tuxedo program for XML
Schema Built-In Simple Types.

e XML SchemaBuilt-In Type Sample - xsd:string
e XML Schema Built-In Type Sample - xsd:hexBinary
o XML Schema Built-In Type Sample - xsd:date

SALT Programming Guide 2-35

../ref/comref.html#wp1112274

Table 2-4 XML Schema Built-In Type Sample - xsd:string

XML Schema Definition

<xsd:element name="message” type="xsd:string” />

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_ comments

message mbstring -

C Pseudo Code

FBFR32 * request;
FLDLEN32 len, mbsize = 1024;
char * msg, * mbmsg;

msg = calloc(...); mbmsg = malloc (mbsize);

strncpy (msg, “...”, len); /* The string is UTF-8 encoding */
Fmbpack32 (“*utf-8”, msg, len, mbmsg, &mbsize, 0); /* prepare mbstring*/
Fadd32 (request, message, mbmsg, mbsize);

Table 2-5 XML Schema Built-In Type Sample - xsd:hexBinary

XML Schema Definition

<xsd:element name="mem snapshot” type="xsd:hexBinary” />

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_ comments
mem_snapshot carray -

C Pseudo Code

FBFR32 * request;
FLDLEN32 len;
char * buf;

buf = calloc(...);

memcpy (buf, “...”, len); /* copy the original memory */

Fadd32 (request, mem snapshot, buf, len);

2-36 SALT Programming Guide

XML-to-Tuxedo Data Type Mapping for External Web Services

Table 2-6 XML Schema Built-In Type Sample - xsd:date
XML Schema Definition

<xsd:element name=”IssueDate” type="xsd:date” />

Corresponding FML32 Field Definition (FLD_STRING)

Field_name Field_type Field_flag Field_ comments

IssueDate string -

C Pseudo Code

FBFR32 * request;
char date[32];

strcpy (date, “2007-06-04+8:00"); /* Set the date value correctly */
Fadd32 (request, IssueDate, date, 0);

XML Schema User Defined Data Type Mapping

Table 2-7 lists the supported XML Schema User Defined Simple Data Type and the
corresponding Oracle Tuxedo rFML32 Field Data Type.

Table 2-7 Supported XML Schema User Defined Data Type

XML Schema User Defined ~ Oracle Tuxedo FML32 ~ C/C++ Primitive Type Note

Data Type Field Data Type In Oracle Tuxedo
Program
<xsd:anyType> FLD_MBSTRING char [] Y ou should prepare
entire XML document
enclosing with the
element tag.
<xsd:simpleType> Equivalent FML32 Equivalent C Primitive Facets defined with
derived from built-in Field Type of the Data Type of the <xsd:restriction>
primitive smple datatypes primitivesimpletype primitive simple type are not enforced in
(see Table 2-3) (see Table 2-3) Oracle Tuxedo.

SALT Programming Guide 2-37

Table 2-7 Supported XML Schema User Defined Data Type

XML Schema User Defined ~ Oracle Tuxedo FML32 ~ C/C++ Primitive Type Note
Data Type Field Data Type In Oracle Tuxedo
Program

<xsd:simpleType> FLD_MBSTRING char [] Same as

defined with <xsd:1ist> <xsd:anyType>. The
Schema compliancy is
not enforced in Oracle
Tuxedo..

<xsd:simpleType> FLD_MBSTRING char [] Same as

defined with <xsd:anyType>. The

<xsd:union> Schema compliancy is
not enforced in Oracle
Tuxedo..

<xsd:complexType> FLD_MBSTRING char [] Same as

defined with <xsd:anyType>. The

<xsd:simpleContent> Schema compliancy is
not enforcedin Oracle
Tuxedo..

<xsd:complexType> FLD_MBSTRING char [] Same as

defined with
<xsd:complexContent
>

<xsd:anyType>. The
Schema compliancy is
not enforcedin Oracle
Tuxedo..

<xsd:complexType>
defined with shorthand
<xsd:complexContent
>, sub-elements composited
with sequence or all

FLD_FML32

FBFR32 * embedded
fml32 buffer

Each sub-element of the
complex typeis defined
as an embedded FML32

field.

2-38

SALT Programming Guide

XML-to-Tuxedo Data Type Mapping for External Web Services

Table 2-7 Supported XML Schema User Defined Data Type

XML Schema User Defined ~ Oracle Tuxedo FML32 ~ C/C++ Primitive Type Note

Data Type Field Data Type In Oracle Tuxedo
Program
<xsd:complexType> FML_FML32 FBFR32 * embedded Each sub-element of the
defined with shorthand fml132 buffer complex typeis defined
<xsd:complexContent as an embedded FML32
>, sub-elements composited field.
with choice Y ou should only add one
sub field into the fml32
buffer.
<xsd:complexType> with FLD_FML32 FBFR32 * embedded Each sub-element of the
sub-elements composited fm132 buffer complex typeis defined
with sequence. The as an embedded FML32
complexType can contain field.

attribute and elements.

The following samples demonstrate how to prepare datain an Oracle Tuxedo program for XML
Schema User Defined Data Types:

e XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple
Type

e XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

e External Service Schema Attribute Use Example

Table 2-8 XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple Type
XML Schema Definition

<xsd:element name=”Grade” type="Alphabet” />
<xsd:simpleType name=”Alphabet”>
<xsd:restriction base="xsd:string”>
<xsd:maxLength value=”1" />
<xsd:pattern value=”[A-Z]" />
</xsd:restriction>

</xsd:simpleType>

Corresponding FML32 Field Definition (FLD_STRING)

SALT Programming Guide 2-39

Table 2-8 XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple Type

Field_name Field_type Field_flag Field comments

Grade string -

C Pseudo Code

char gradel[2];
FBFR32 * request;

grade([0] = ‘A’; grade[l] = *\0’;
Fadd32 (request, Grade, (char *)grade, 0);

Table 2-9 XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

XML Schema Definition (Target Namespace “urn:sample.org”)

<xsd:element name="Users” type="namelist” />
<xsd:simpleType name="namelist”>

<xsd:list itemType="xsd:NMTOKEN”>
</xsd:simpleType>

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_comments

Users mbstring -

2-40 SALT Programming Guide

XML-to-Tuxedo Data Type Mapping for External Web Services

Table 2-9 XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list
C Pseudo Code

char * user[5];

char users[...];

char * mbpacked;
FLDLEN32 mbsize = 1024;
FBFR32 * request;

sprintf (users, “<nl:Users xmlns:nl=\”urn:sample.org\”>");
for (1 =0 ; i <5 ; i++) {
strcat (users, user[i]):;
strcat (users, “ “);
}
strcat (users, “</nl:Users>"“);

mbpacked = malloc (mbsize);

/* prepare mbstring*/

Fmbpack32 (*utf-8”, users, strlen(users), mbpacked, &mbsize, 0);
Fadd32 (request, Users, mbpacked, mbsize);

Note: In Table 2-10, attributes are supported in External Web Services calls using the form
"<xs:attribute name="[name]" type:"[type]“/>"Omy.QUdiﬂGSSUd1aS
"fixed=" are currently not supported.”

SALT Programming Guide 2-41

Table 2-10 External Service Schema Attribute Use Example

XML Schema Definition

<xs:element name="add">
<xs:complexType>
<XS:sequence>
<xs:element name="param0" nillable="true" type="xs:int"/>
<xs:element name="paraml" nillable="true" type="xs:int"/>
</xXs:sequence>
<xs:attribute name="aType" type="xs:string"/>
</xs:complexType>

</xs:element>

Corresponding FML32 Field Definition

#name rel-number type flags comment

Bommm mmmmmmmm e mmmm mmmmmm e

add 1 fml32 - fullname=add, schema=axis2:add
aType 3 string - fullname=aType, schema=xs:string
param0 4 long - fullname=param0, schema=xs:int
paraml 5 long - fullname=paraml, schema=xs:int

Corresponding SALT Metadata Repository Definition

2-42 SALT Programming Guide

XML-to-Tuxedo Data Type Mapping for External Web Services

Table 2-10 External Service Schema Attribute Use Example

servicemode=webservice

inbuf=FML32

outbuf=FML32

errbuf=FML32

param=add

access=in

paramschema=XSD_E:add@http://calc.sample

type=£fml32

(

param=param0

access=in
paramschema=XSD_E:param0@http://calc.sample
type=long

primetype=int

param=paraml

access=in
paramschema=XSD_E:paraml@http://calc.sample
type=long

primetype=int

param=aType

access=in
paramschema=XSD_E:attribute:aType@http://calc.sample
type=string

primetype=string

SALT Programming Guide

2-43

Table 2-10 External Service Schema Attribute Use Example

Corresponding Sample Pseudo code

FBFR32 *f, *fin;

long len;

FLDLEN32 len2;

long inputnuml, inputnum?2;
char ret_val[25];

char ret_attr[25];

char *programName;

int counter;

char addTypel[25];

strcpy (addType,argv[1]) ;

Fadd32 (fin, aType, addType, 0);

inputnuml = atoi(argv[2]);

Fadd32 (fin, paramO, (char *)&inputnuml, 0);
inputnuml = atoi (argvI[2]);

Fadd32 (fin, paramO, (char *)&inputnuml, 0);
Fadd32(f, add, (char *)fin, 0)

tpcall("add", (char *)f, 0, (char **)&f, &len, TPSIGRSTRT)

WSDL Message Mapping

Oracle Tuxedo rML32 buffer type is aways used in mapping WSDL messages.
Table 2-11 lists the WSDL message mapping rules defined by SALT.

2-44 SALT Programming Guide

XML-to-Tuxedo Data Type Mapping for External Web Services

Table 2-11 WSDL Message Mapping Rules

WSDL Message Definition Oracle Tuxedo Buffer/Field Definition Note
<wsdl:input>message Oracle Tuxedo Request Buffer (Input buffer)
<wsdl:output> message Oracle Tuxedo Response Buffer with

TPSUCCESS (Output buffer)
<wsdl:fault>message Oracle Tuxedo Response Buffer with

TPFAIL (error buffer)
Each message part defined Mapped astop level field in the Oracle
in<wsdl:input> or Tuxedo FML32 buffer. Field typeisthe
<wsdl :output> equivalent FML32 field type of the message

part XML datatype. (See Table 2-3 and

Table 2-7)
<faultcode> in SOAP Mapped as afixed top level FLD_STRING Thismapping rule

1.1 fault message

field (Eaultcode) in the Oracle Tuxedo
error buffer:

faultcode string - -

appliesfor SOAP 1.1
only.

<faultstring>in SOAP
1.1 fault message

Mapped as afixed top level FLD_STRING
field (faultstring)intheOracle Tuxedo
error buffer:

faultstring string - -

This mapping rule
appliesfor SOAP 1.1
only.

<faultactor> in SOAP
1.1 fault message

Mapped as afixed top level FLD_STRING
field (faultactor) inthe Oracle Tuxedo
error buffer:

faultactor string - -

This mapping rule
appliesfor SOAP 1.1
only.

<Code> in SOAP 1.2 fault
message

Mapped as afixed top level FLD_FML32
field (Code) in the Oracle Tuxedo error
buffer, which containing two fixed sub
FLD_STRING fields (Value and
Subcode):

Code fml32 - -

Value string - -

Subcode string - -

This mapping rule
appliesfor SOAP 1.2
only.

SALT Programming Guide

2-45

REST Data Mapping

Table 2-11 WSDL Message Mapping Rules

WSDL Message Definition

Oracle Tuxedo Buffer/Field Definition

Note

<Reason> in SOAP 1.2
fault message

Mapped as afixed top level FLD_FML32
field (Reason) in the Oracle Tuxedo error
buffer, which containing zero or more fixed
sub FLD_STRING field (Text):

Reason fml32 - -

Text string - -

This mapping rule
appliesfor SOAP 1.2
only.

<Node> in SOAP 1.2 fault
message

Mapped as afixed top level FLD_STRING
field (Node) in the Oracle Tuxedo error
buffer:

Node string - -

This mapping rule
appliesfor SOAP 1.2
only.

<Role> in SOAP 1.2 fault
message

Mapped as afixed top level FLD_STRING
field (Role) in the Oracle Tuxedo error
buffer:

Role string - -

This mapping rule
appliesfor SOAP 1.2
only.

<detail> in SOAP fault Mapped as afixed top level FLD_FML32 This mapping rule
message field in the Oracle Tuxedo error buffer: applies for both SOAP
detail fml32 - - 11and SOAP1.2.
Each message part defined Mapped asasubfield of “detail” fieldin Thismapping rule
in<wsdl:fault> the Oracle Tuxedo FML3 2 buffer. Fieldtype appliesfor both SOAP
isthe equivalent FML32 field type of the 1.1and SOAP 1.2.

message part XML datatype. (See Table 2-3
and Table 2-7)

This section contains the following topics:

e |nbound Message Conversion

e Outbound Message Conversion

Note: If aview32 buffer isused asinput of an Oracle Tuxedo service exposed asa RESTful
service using GET Or DELETE, and that viEw32 containsan MBSTRING type, some
content must be specified in the calling query string asuesTrRING type fields cannot

be defaulted.

2-46 SALT Programming Guide

REST Data Mapping

If not, thecall resultsinan HTTP 500 error, with TPEINVAL being returned with the
following ur.oc message:

181356 .hostname! server.5535.451673280.0: GP_CAT:1582: ERROR:
Input codeset encoding argument not defined

Inbound Message Conversion
This section contains the following topics:
e Query String Mapping
e JSON Data Mapping
e XML Data Mapping
Query String Mapping
For ceT and pELETE methods, input datais passed asan HTTP query string.
Data passed as query string can be mapped within the limitations of query string representation:

e keyword=value model, when applicable. For simple buffer typesthe actual data may be
passed directly, e.g.: http://host:1234/myTOUPPER?inputstring

e No nesting possibly of keyword/value pairs.
e Encoding must be performed for some characters (space for instance).

e Limited amount of data. While GWWS does not impose any limit, the browser or client
toolkit may.

The mapping is described below for the different types of buffers supported by Oracle Tuxedo.

Table 2-12 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

STRING http://host: port/service?data Dataasis, possibly URL encoded,
GWWS performs the decoding.

CARRAY http://host: port/service?data Data represented as base64 encoded
string.

SALT Programming Guide 2-47

Table 2-12 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

MBSTRING http://host: port/service?data Data represented as URL encoded of
UTF-8 representation of the Oracle
Tuxedo MBSTRING.

XML http://host: port/service?data XML fragment asis, URL encoded.

X_C_TYPE Same asVIEW/VIEW32

X_COMMON Same asVIEW/VIEW32

X_OCTET Same as CARRAY

2-48 SALT Programming Guide

Table 2-12 Query String Mapping

REST Data Mapping

Tuxedo Buffer Type

Query String Mapping

Notes

VIEW/VIEW32

http://host:port/servicevaluel& valu
€2 or
http://host:port/service?ieldnamel=
valuelé& fieldname2=value2

Actual values are converted from
URL encoded string representations
to their native types.

GWWS attemptsto convert valuesto
the corresponding VIEW/VIEW32
member depending on thetarget type:
number types from their string
representation to their Oracle Tuxedo
ones:

e float notation for float and
double VIEW/VIEW32 types

* integer notation for int, long and
other integer based types

FLD_CHAR fieldsare trandated from
URL -encoded content(i.e.,
representable charactersor their '$xx'
representation string for all other
types)

The fieldname=value notationis
used with:

* FBNAME field name when
configured in the view
description.

* CNAME valuewhenno FBNAME is
present in the view description.

If neither FBNAME nor CNAME
matches for this subtype, a mapping
error isreturned.

SALT Programming Guide

2-49

Table 2-12 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

FML/FML32 http://host:port/service?fieldnamel= Actual vaues are converted from
valuel& fieldname2=value2 URL encoded string representations
or, for multiple occurrences: totheir native types.
http://host:port/serviceZieldnamel= GWWS altempisto convertvaluesto
valuel& fieldnamel=value2 the corresponding

VIEWFML/VIEWFML32 member

depending on the target type: number

types from their string representation
to their Oracle Tuxedo ones:

» float notation for £1oat and
double VIEWFML /VIEWFML32
types

e integer notation for int, long
and other integer-based types

e FLD_CHAR fields are translated
from URL-encoded content (i.e.,
representable characters or their
'$xx' representation

* string for al other types

RECORD http://host:port/servicevaluel&valu Actua values are converted from
e2 or URL encoded string representations
http://host:port/service?fieldnamel= to their native types.
valuel& fieldname2=value2 GWWS attemptsto convert valuesto
the corresponding RECORD buffer
member depending on the target type.
JSON Data Mapping

The different Oracle Tuxedo buffer types are converted into/from JSON as shownin Table 2-13.

2-50 SALT Programming Guide

Table 2-13 JSON Data Mapping

REST Data Mapping

Oracle TuxedoBuffer JSON equivalent/example Notes

Type

STRING <buffer content>

CARRAY <binary buffer content>

MBSTRING <Multi-byte string> In order to transmit encodings other than
UTF-8, the"enableMultiEncoding"
property must be set to "true” in the
SALTDEPLOY configuration.

XML <XML fragment as-is> In order to transmit encodings other than
UTF -8, the "enableMultiEncoding" property
must be set to "true" inthe SALTDEPLOY
configuration.

X_C_TYPE Same asVIEW/VIEW32

X_COMMON Same asVIEW/VIEW32

X_OCTET Same as CARRAY

VIEW/VIEW32 {'<fieldname>':'<fieldcont SeeVIEW/VIEW32 considerationsand

ent>",
'<fieldname>"':'<fieldcont
ent>'}

possibly nested
{'<fieldname>':{'<fieldnam
e>':'<fieldcontent>"'}}
JSON has the following primitive
types:

* boolean (true/false)

* Number (int or double float)

e String

VIEW/VIEW3?2 field typesare

mapped as follows (Oracle Tuxedo
type: JSON type):

examples for fieldname mapping details.

Some types may be truncated if represented in
their primitivetypes (long long, long
double), inthat case they are rendered as
JSON strings.

SALT Programming Guide 2-51

Table 2-13 JSON Data Mapping

Oracle Tuxedo Buffer
Type

JSON equivalent/example

Notes

short: Number

int: Number

long: Number

float: Number
double: Number
char: String

string: String
carray: String (base64
encoded)

bool: boolean

unsigned char: String
signed char: String
wchar_t* or wchar_t: String
unsigned int: Number
unsigned long: Number

long long: String (See notes
below table)

unsigned long long: String
(See notes)

long double: String (Seenotes
below table)

mbstring: String
view32: nested JSON record

2-52

SALT Programming Guide

Table 2-13 JSON Data Mapping

REST Data Mapping

Oracle Tuxedo Buffer

Type

JSON equivalent/example

Notes

FML/FML32

{'<fieldname>':'<fieldcont
ent>"',
'<fieldname>"':'<fieldcont
ent>'}

possibly nested, FML32 only:

{'<fieldname>"':{'<fieldnam
e>':'<fieldcontent>}l}

FML/FML32 field types are mapped
asfollows (Oracle Tuxedo type:
JSON type):

e FLD_SHORT: Number

* FLD_LONG: Number

* FLD_FLOAT: Number

e FLD_DOUBLE: Number

e FLD_CHAR: String or character
T' for JISON true or 'F' for JSON
false

e FLD_STRING: String

* FLD_CARRRAY: String (base64
encoded)

e FLD_MBSTRING: String

e FLD_VIEW32: JSON nested
record, see VIEW/VIEW32
mapping for individua types

e FLD_FML32: JSON object

Nested FLD_VIEW32: the name of the view
subtype must be the name of the embedded
VIEW32. For Example:

VIEW32 examplev definition file:
VIEW v32example
char flagl-1- - -

string str-1100 - -

JSON content (EVIEW32 iSaFLD_VIEW32
fml32 type):

{"EVIEW32"
{"v32example":
{uflaglll : I|Xl| ,

"str":"somestring"}

SALT Programming Guide 2-53

Table 2-13 JSON Data Mapping

Oracle TuxedoBuffer JSON equivalent/example Notes
Type
RECORD {'<fieldname>"':"'<fieldcon
tent>"',
'<fieldname>"':'<fieldcont
ent>"'}
possibly nested

{'<fieldname>"':{'<fieldna
me>':'<fieldcontent>"'}}

Generated COBOL field typeswill be
mapped as follows (Tuxedo type:
JSON type):

Generated COBOL types:

e RECORD: nested JSON
record

¢ COMP-1: Number
e COMP-2: Number
e S9(18): Number
e 9(18): Number
e S9(9): Number
e 9(9): Number

e S9(4): Number

e S9(10)V9(10)COMP-3L:
Number

e X(1024): String
e @binary=true: String

Notes. Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) Will not wrap
data as JSON objects, the datais transmitted asiis.

JSON internally handles al floating point types differently than XML. XML conversion
floating point conversion may incur some precision loss over similar JSON conversions.
Thisis currently alimitation.

2-54 SALT Programming Guide

REST Data Mapping

VIEW/VIEW32 Considerations

The following considerations apply when converting Oracle Tuxedo vIiew/viEw32 buffersto
and from XML:

e You must create an environment for converting XML to and from view/viEw32. This
includes setting up aview directory and system view definition files. These definitions are
automatically loaded by the GWWS server.

FML/FML32 Considerations

Thefollowing considerations apply to converting Oracle Tuxedo Fur./ FuM1.32 buffersto and from
XML:

e You must create an environment for converting XML to and from Fur/FMp32. This
includes an FML field tablefile directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. FML typed buffers can be handled
only if the environment is set up correctly.

Note: rmn32 Field type FLD_PTR is not supported.

XML Data Mapping
XML datamapping is performed using similar rules as the mapping used in SOAP mode.

The following differences are to be noted:

e Floating point numbers without decimal value get represented as integers, for example:
10.0isprinted as 10. Thisis currently alimitation.

o No namespaces are generated or processed, since REST mode does not use interfaces.

e Simple buffers (sTrING, CARRAY, MBSTRING and xmr) are sent and received asis, without
any XML processing. The behavior isidentical to JSON processing (i.e.,no mapping is
necessary)_.

e rML and FML32 requests are wrapped by aroot element (which nameisignored, aslong as
the XML isformed properly), and replies are wrapped in an element with the same name
as the subtype as specified in the REST/Service/Method/@inputbuffer attribute of the
SALTDEPLOY configuration file, or <root> element, since there is not necessarily one if
subtype is not configured. view, vIiEw32, x_coMMoN and x_c_TypE buffers are the subtype
name as root element name.

The different Oracle Tuxedo buffer types are converted into/from XML as shown in Table 2-14.

SALT Programming Guide 2-55

Table 2-14 XML Data Mapping

Tuxedo Buffer Description REST XML Mapping Example
Type
STRING Oracle Tuxedo STRING typed buffersareused HELLO WORLD!
to store character strings that terminate with a
NULL character. Oracle Tuxedo STRING typed
buffers are self-describing.
CARRAY Oracle Tuxedo CARRAY typed buffers store Binary content
character arrays, any of which can be NULL.
CARRAY buffers are used to handle data
opaguely and are not self-describing.
MBSTRING Oracle Tuxedo MBSTRING typed buffers are Multi-byte string encoded according

used for multibyte character arrays. Oracle
Tuxedo MBSTRING buffers consist of the
following three elements:

e Code-set character encoding
« Datalength
e Character array of the encoding.

In order to transmit encodings other than
UTF-8, the"enableMultiEncoding”
property must be set to "true" inthe
SALTDEPLOY configuration.

to Content-Type setting.

2-56 SALT Programming Guide

REST Data Mapping

Table 2-14 XML Data Mapping

Tuxedo Buffer
Type

Description REST XML Mapping Example

XML

Oracle Tuxedo XML typed buffers store XML XML fragment asis
documents.

The GWWS server validates that the actual
XML dataiswell-formed. It will not do any
other enforcement validation, such as Schema
validation.

Only asingleroot xML buffer is allowed to be
stored in the payload; the GWWS server checks
for this.

Any original XML document prologue
information cannot be carried within the
payload.

In order to transmit encodings other than
UTF-8, the"enableMultiEncoding”
property must be set to "true” in the
SALTDEPLQY configuration.

X_C_TYPE

Same asVIEW/VIEW32

X_COMMON

Same asVIEW/VIEW32

X_OCTET

Same as CARRAY

SALT Programming Guide

2-57

Table 2-14 XML Data Mapping

Tuxedo Buffer Description REST XML Mapping Example
Type
VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32 typed <VIEW>
buffers store C structures defined by Oracle <viewfieldname>
Tuxedo gpplications. fieldcontent
VIEW structures are defined by using VIEW </viewfieldnames
definition files. A VIEW buffer type can define
</VIEW>

multiple fields.
VIEW supports the following field types:

¢ short
¢ int

e long

¢ float
¢ double
¢ char

* string

e carray (represented as base64 encoded
content)

¢ bool

e unsigned char

* signed char

e wchar_t* or wchar_t
e unsigned int

¢ unsigned long

e long long

¢ unsigned long long
¢ long double

VIEW32 supportsall the vIEW field types,
mbstring, and embedded VIEW32 type.

The name of the sub-element isthe vIEwW field
name. The occurrence of the sub-element
depends on the count attribute of the vIEw field
definition. The value of the sub-element should
bein the view field datatype corresponding
XML Schematype.

2-58 SALT Programming Guide

Table 2-14 XML Data Mapping

REST Data Mapping

Tuxedo Buffer Description REST XML Mapping Example
Type
FML/FML32 Oracle Tuxedo FML and FML3 2 typebuffersare Nested FLD_vVIEW32: the name of

proprietary Oracle Oracle Tuxedo system
self-describing buffers. Each datafield carries
its own identifier, an occurrence number, and
possibly alength indicator.

FML supports the following field types:

FLD_CHAR
FLD_SHORT

FLD_LONG

FLD_FLOAT

FLD_DOUBLE

FLD_STRING

FLD_CARRAY (as base64 encoded content)

FML32 supports al the FML field types and
FLD_PTR,FLD_MBSTRING, FLD_FML32,and
FLD_VIEW32.

the view subtype must be the name of
the embedded VIEW32. For
Example:

VIEW32 example.v
definition file:

VIEW v32example
char flagl-1- - -

string str-1100 - -

XML content (EVIEW32isa
FLD_VIEW32 fml32 type):

<EVIEW32>
<v32example>
<flagl>x</flagl>
<str>somestring</str>
</v32example>

</EVIEW32>

SALT Programming Guide 2-59

Table 2-14 XML Data Mapping

Tuxedo Buffer Description REST XML Mapping Example

Type

RECORD RECORD buffer type represents copybook <myRecord>
record. RECORD types must have subtypes that <name>aaa</name>
designate individual record structures. <num>1000</num>
Generated COBOL types: <subgroup>

<longl> 3000 </longl>
<stringl> www
+ CoMP-1 </stringl>

¢ COMP-2 </subgroup>

e S9(18) </myRecord>

e 9(18)

* S9(9)

« 9(9)

* S9(4)

e S9(10)V9(10)

e X(1024)

e @binary=true

e RECORD

Note: Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) do not wrap
data as XML objects, the datais transmitted asis.

VIEW/VIEW32 Considerations:

The following considerations apply when converting Oracle Tuxedo view/viEw32 buffersto
and from XML:

e You must create an environment for converting XML to and from view/viEw32. This
includes setting up aview directory and system view definition files. These definitions are
automatically loaded by the GWWS server.

FML/FML32 Considerations

Thefollowing considerations apply to converting Oracle Tuxedo rmr./FuL32 buffersto and from
XML:

e You must create an environment for converting XML to and from FuL/FML32. This
includes an ruL field table file directory and system rur field definition files. These

2-60 SALT Programming Guide

REST Data Mapping

definitions are automatically loaded by the GWWS. ru1 typed buffers can be handled only
if the environment is set up correctly.

Note: FML32 Field type FLD_PTR is hot supported.

Outbound Message Conversion
This section contains the following topics:

e Query String Mapping

e JSON Data Mapping

e XML Data Mapping

Query String Mapping

Note: Attempting to use embedded Fur.32 and viEw32 fieldswill resultin aTPEPROTO error in
this mode.

For ceT and DELETE methods, requested data is passed as an HTTP query string. For
exampl e:http://host:1234/banking?account=1234

Data passed as query string can be mapped within the limitations of query string representation:

e keyword=value model, when applicable. For simple buffer types the actual data may be
passed directly(e.g., http://host: 1234/svc?inputstring).

e Nonesting of keyword/value pairs.
e Encoding must be performed for some characters (“ space” for instance).

e Limited amount of data. While GWWS does not impose any limit, the browser or client
toolkit may.

The mapping is as described inTable 2-15 for different types of buffers supported by
OracleTuxedo.

SALT Programming Guide 2-61

Table 2-15 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

STRING http://host:port/path?data Dataasis possibly URL encoded,
GWWS will perform the encoding.

CARRAY http://host: port/path?data Data represented as base64 encoded
string.

MBSTRING http://host: port/path?data Data represented as URL encoded of
UTF-8 representation of the Tuxedo
MBSTRING.

XML http://host: port/path?data XML fragment asis, URL encoded.

X_C_TYPE Same asVIEW/VIEW32

X_COMMON Same asVIEW/VIEW32

X_OCTET Same as CARRAY

2-62 SALT Programming Guide

Table 2-15 Query String Mapping

REST Data Mapping

Tuxedo Buffer Type

Query String Mapping

Notes

VIEW/VIEW32

http://host: port/path?val uel& value2
or
http://host:port/service?ieldnamel=
valuelé& fieldname2=value2

GWWS attemptsto convert valuesto
the corresponding VIEW/VIEW32
member depending on thetarget type:
number types from their string
representation to their Oracle Tuxedo
ones:

e float notation for £1oat and
double VIEW/VIEW32 types

e integer notation for int, long
and other integer based types

e FLD_CHAR fields are translated
from URL-encoded content, i.e.
representable characters or their
'$xx' representation

* string for al other types

The fieldname=value notationis
used with:

« rBNAME field name when oneis
configured in the view
description.

e CNAME valuewhenno FBNAME iS
present in the view description.

e If neither FBNAME nor CNAME
matches for this subtype a
mapping error is returned.

SALT Programming Guide 2-63

Table 2-15 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes
FML/FML32 http://host:port/path”fieldnamel=val Actual vaues are converted from
uel& fieldname2=vaue2 URL encoded string representations
or, for multiple occurrences: totheir native types.
http://host: port/service?fieldnamel= CWWS attemptsto convert valuesto
valuel& fieldnamel=val ue2 the corresponding FML / FML3 2
member depending on thetarget type:
number types from their string
representation to their Tuxedo ones:
» float notation for £1oat and
double FML /FML32 types
* integer notation for int, long
and other integer-based types
* FLD_CHAR fieldsaretrandated
from URL-encoded content (i.e.,
representable characters or their
'$xx' representation
e string for al other types
RECORD http://host:port/path?valuel&value2 ~ GWWS attemptsto convert valuesto
or the corresponding RECORD member
http://host: port/service?ieldnamel= depending on the target type.
valuel& fieldname2=value2
JSON Data Mapping

The different Tuxedo buffer types are converted into/from JSON as shown in Table 2-16.

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes
STRING <buffer content>
CARRAY <binary buffer content>

2-64 SALT Programming Guide

Table 2-16 JSON Data Mapping

REST Data Mapping

Oracle Tuxedo Buffer Type

JSON equivalent/example

Notes

MBSTRING <Multi-byte string> In order to transmit encodings other
than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in the
SALTDEPLQY configuration.

XML <XML fragment as-is> In order to transmit encodings other
than UTF-8, the
"enableMultiEncoding”
property must be set to "true" in the
SALTDEPLQY configuration.

X_C_TYPE Same asVIEW/VIEW32

X_COMMON Same asVIEW/VIEW32

X_OCTET Same as CARRAY

SALT Programming Guide

2-65

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type

JSON equivalent/example

Notes

VIEW/VIEW32

{'<fieldname>':'<fieldcont
ent>"',
'<fieldname>"':'<fieldcont
ent>"}

possibly nested:
{'<fieldname>':{'<fieldnam
e>':'<fieldcontent>"'}}
JSON has the following primitive
types:

boolean (true/false)

Number (int or double float)
String

VIEW/VIEW32 field types will be
mapped as follows (Tuxedo type:
JSON type):

e short: Number

e int: Number

¢ long: Number

e float: Number

e double: Number

e char: String

* string: String

e carray: String (base64
encoded)

* Dbool: boolean

* unsigned char: String

* signed char: String

e wchar_t* or wchar_t: String
e unsigned int:Number

* unsigned long: Number

2-66 SALT Programming Guide

Table 2-16 JSON Data Mapping

REST Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example

Notes

e long double: String (See
notes)

e mbstring: String
e view32: nested JSON record

See VIEW/VIEW32 considerations
and examples for fieldname mapping
details.

Some types may be truncated if
represented in their primitive types
(long long, long double),in
that case they will be rendered as
JSON strings.

SALT Programming Guide 2-67

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes
FML/FML32 {'<fieldname>':'<fieldcont Nested FLD_VIEW32: the name of
ent>"', the view subtype must be the name of
'<fieldname>':'<fieldcont theembedded vIiEwW32. For
ent>"'} Example:
possibly nested, FML32 only: VIEW32 example.v definition file:
{'<fieldname>':{'<fieldnam VIEW v32 example
e>':'<fieldcontent>'}} charflagl - 1 ---
FML/FML32 field typesaremapped string str - 1 100
asfollows (Tuxedotype: JSSON type): _ _
* FLD_SHORT: Number JSON content (EVIEW32 is a
e FLD_LONG: Number FLD_VIEW32 fml32 type):
e FLD_FLOAT: Number {"EVIEW32"
e FLD_DOUBLE: Number {"v32example":
e FLD_CHAR: String or character {"flagl":"x",
‘T' for JSON trueor 'F for JSON "str": "somestring"}
false }
e FLD_CARRRAY: String (base64 }
encoded)
e FLD_MBSTRING: String
e FLD_VIEW32: JSON nested
record, see VIEW/VIEW32
mapping for individua types
e FLD_FML32: JSON bject
2-68 SALT Programming Guide

Table 2-16 JSON Data Mapping

REST Data Mapping

Oracle Tuxedo Buffer Type

JSON equivalent/example Notes

RECORD

{'<fieldname>"':"'<fieldcon
tent>"',
'<fieldname>"':'<fieldcont
ent>"'}

possibly nested:
{'<fieldname>"':{'<fieldna
me>':'<fieldcontent>"'}}

RECORD buffer field types are
mapped as follows (Tuxedo type:
JSON type):

e RECORD: Number
e COMP-1: Number
e COMP-2: Number
e S9(18): Number
e 9(18): Number
e S9(9): Number
e 9(9): Number

e S9(4): Number

e S9(10)V9(10)COMP-3L:
Number

e X(1024): String

e @binary=true: String

Notes: Non-structured buffer types (sTRING, CARRAY, Xx_oCTET and MBSTRING) Will not wrap
data as JSON objects, the dataistransmitted asis. The content-type setting isignored for
those buffer types with respect to data mapping.

JSON internally handles all floating point types differently than XML. XML conversion
floating point conversion may incur some precision loss over similar JSON conversions.
Thisiscurrently alimitation.

VIEW/VIEW32 Considerations:

The following considerations apply when converting Oracle Tuxedo view,/viEw32 buffersto

and from XML:

SALT Programming Guide 2-69

e You must create an environment for converting XML to and from view/view32. This
includes setting up avIew directory and system view definition files. These definitions are
automatically loaded by the GWWS server.

FML/FML32 Considerations

Thefollowing considerations apply to converting Oracle Tuxedo FuL/FuML32 buffersto and from
XML:

e You must create an environment for converting XML to and from FuL/FML32. This
includes an FML field table file directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. ruL typed buffers can be handled only
if the environment is set up correctly.

Note: rmp32 Field type FLD_PTR iS hot supported.

Conversion Examples:

Listing 2-19 VIEW Description File

VIEW empname

#TYPE CNAME FBNAME COUNT FLAG SIZE NULL
char fname EMP_FNAME 1 - 25 -
char minit EMP_MINIT 1 - 1 -
char lname EMP LNAME 1 - 25 -
END

VIEW emp

struct empname ename 1 - - -
unsignedlong id EMP_ID 1 - - -
long ssn EMP_SSN 1 - - -
double salaryhist EMP_SAL 10 - - -
END

2-70 SALT Programming Guide

REST Data Mapping

Corresponding header file after compilation

Listing 2-20 Compilation

struct empname {
char fname[25];
char minit;
char lname[25];

i

struct emp {
struct empname ename;
unsigned long id;
long ssn;

double salaryhist[10];

JSON Content Example

Listing 2-21 JSON Content Example

"ename" :
{
"EMP_FNAME" : "John",
"EMP_MINIT":"R",

"EMP_LNAME":"Smith"

SALT Programming Guide 2-71

"EMP_ID":1234,

"EMP_SSN":123456789,

"EMP_SAL":

[10000.0,

11000.0,
12000.0,
13000.0,
14000.0,
15000.0,
16000.0,
17000.0,
18000.0,

19000.0]

Without FeNAME(Names specified in the view file), the content is represented using the cname
values. Since nesting cannot be expressed without field names because the field nameisaso the
subtype name for the nested view, only structures with 1 level are represented.

For example:

Listing 2-22 VIEW Description

VIEW empname

#TYPE CNAME FBNAME COUNT FLAG SIZE NULL
char fname - 1 - 25 -
char minit - 1 - 1 -
char lname - 1 - 25 -

2-72 SALT Programming Guide

END

REST Data Mapping

Corresponding header file after compilation

Listing 2-23 Compilation

struct empname {
char fname[25];
char minit;
char lname[25];

}i

Listing 2-24 JSON Content Example

"fname":"John",
"minit" . an ,
"lname":"Smith"

}

FML32 Example

Listing 2-25 Field Table

#name rel-numbertypeflags
BIKES 1 fml32 -
COLOR 2 string -

comment

SALT Programming Guide

2-73

CURSERIALNO3 string -

INSTOCK4 string -
NAME 5 string -
ORDERDATEG6 string -
PRICE 7 float -
SERIALNOS8 string -
SIZE 9 long -
SKU 10 string -
TYPE 11 string -

Listing 2-26 JSON Content Example

"BIKES" :
[

{"COLOR" : "BLUE",
"CURSERIALNO":"AZ123",
"INSTOCK":"Y",
"NAME" : "CUTTER",
"ORDERDATE":"11/03/2012",
"PRICE":1234.55,
"SERTIALNO":"123456",
"SIZE":52,
"SKU":"CU521234",
"TYPE" :"ROAD"},

{"COLOR": "RED",

"CURSERIALNO":"BZ123",

2-74 SALT Programming Guide

REST Data Mapping

"INSTOCK":"Y",
"NAME" : "ROCKGLIDER",
"ORDERDATE":"11/06/2012",
"PRICE":1455.55,
"SERTIALNO":"123457",
"SIZE":16,
"SKU":"RG161234",

"TYPE":"MTB"},

Record example.

Listing 2-27 COBOL copybook

01 myRecord.
05
05

05

name occurs 1 times PIC X(10).

num occurs 1 times PIC S9(9) COMP-5.
subgroup occurs 1 times.

10 longl PIC S9(9) COMP-5.

10 stringl PIC X(19).

Listing 2-28 Result

"name

" "gaa",

SALT Programming Guide

"num": 1000,

"subgroup" : {
"longl": 3000,
"stringl": "wwww "
}
}
XML Data Mapping

XML datamapping is performed using similar rules as the mapping used in SOAP mode.

Note the following:

e Floating point numbers without decimal value get represented as integers, for example:
10.0is printed as 10. Thisis currently alimitation.

e No namespaces is generated or processed, since HT TP mode does not use interfaces.

e Simple buffers (STRING, CARRAY, MBSTRING, and XML) are sent and received asis, without
any XML processing. The behavior isidentical to JSON processing (i.e.,no mapping is
necessary.

e rML and FML32 requests must be wrapped by aroot el ement (which nameisignored, as
long as the XML isformed properly), and replies are wrapped in an element with the same
name as the subtype as specified in the HTTP/Service/@outputbuffer attribute of the
saLTDEPLOY configuration file, or <root> element if subtypeis not configured. vIiew,
VIEW32, x_covmon, and x_c_TvPE buffers use the subtype name as the root element
name.

The different Oracle Tuxedo buffer types are converted into/from XML in the following manner
asshown in Table 2-17

2-76 SALT Programming Guide

Table 2-17 XML Data Mapping

REST Data Mapping

Oracle Tuxedo Buffer Type

Description HTTP XML Mapping Example

STRING

Oracle Tuxedo STRING typed HELLO WORLD!
buffers are used to store character

strings that terminate with aNULL

character. Oracle Tuxedo STRING

typed buffers are self-describing.

CARRAY

Oracle Tuxedo CARRAY typed Binary content
buffers store character arrays, any of

which can beNULL. CARRAY buffers

are used to handle data opagquely and

are not self-describing.

MBSTRING

Oracle Tuxedo MBSTRING typed Multi-byte string encoded according
buffers are used for multibyte to Content-Type setting.

character arrays. Oracle Tuxedo

MBSTRING buffers consist of the

following three elements:

- Code-set character encoding
- Datalength
- Character array of the encoding.

In order to transmit encodings other
than UTF-8, the
"enableMultiEncoding"
property must be set to "true" inthe
SALTDEPLOQY configuration.

SALT Programming Guide

2-77

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type

Description

HTTP XML Mapping Example

XML

Oracle Tuxedo xML typed buffers
store XML documents.

The GWWS server validates that the
actual XML dataiswell-formed. It
will not do any other enforcement
validation, such as Schema
validation.

Only asingleroot xML buffer is
allowed to be stored in the payload;
the GWWS server checks for this.

Any original XML document
prologue information cannot be
carried within the payload.

In order to transmit encodings other
than uTF-8, the
"enableMultiEncoding”
property must be set to "t rue" inthe
SALTDEPLOY configuration.

XML fragment as-is

X_C_TYPE

Same asVIEW/VIEW32

X_COMMON

Same asVIEW/VIEW32

X_OCTET

Same as CARRAY

2-78 SALT Programming Guide

Table 2-17 XML Data Mapping

REST Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example
VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32 <VIEW>

typed buffers store C structures <viewfieldname>

defined by Oracle Tuxedo)

applications. fieldcontent

VIEW structures are defined by using ~ </Viewfieldname>

VIEW definitionfiles. A vIEwW buffer </VIEW>

type can define multiple fields.
VIEW supports the following field

types:

« short
* int

e long

« float
 double
e char

e string

e carray (represented as base64
encoded content)

¢ Dbool

» unsigned char

e signed char

e wchar_t* Oorwchar_t

e unsigned int

e unsigned long

¢ long long

» unsigned long long

e Jlong double

SALT Programming Guide

2-79

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type

Description

HTTP XML Mapping Example

VIEW32 supportsal theview field
types, mbstring, and embedded
VIEW32 type.

The name of the sub-element isthe
vIEW field name. The occurrence of
the sub-element depends on the count
attribute of the viEw field definition.
The value of the sub-element should
beintheview field datatype
corresponding XML Schematype.

2-80 SALT Programming Guide

Table 2-17 XML Data Mapping

REST Data Mapping

Oracle Tuxedo Buffer Type

Description

HTTP XML Mapping Example

FML/FML32

Oracle Tuxedo FML and FML32 type

buffers are proprietary Oracle Oracle

Tuxedo system self-describing

buffers. Each datafield carriesits

own identifier, an occurrence

number, and possibly alength

indicator.

FML supports the following field

types:

e FLD_CHAR

e FLD_SHORT

e FLD_LONG

+ FLD_FLOAT

e FLD_DOUBLE

e FLD_STRING

e FLD_CARRAY (asbase64
encoded content)

FML32 supports all the FML field
typesand FLD_PTR,
FLD_MBSTRING, FLD_FML32, and
FLD_VIEW32.

Nested FLD_VIEW32: the name of
the view subtype must be the name of
the embedded vIEW32. For
Example:

VIEW32 example.v
definition file:

VIEW v32example
char flagl - 1 ---
string str - 1 - 100

XML content (EVIEW32 is a
FLD_VIEW32 fml32 type):

<EVIEW32>
<v32example>
<flagl>x</flagl>
<str>somestring</str>
</v32example>

</EVIEW32>

SALT Programming Guide

2-81

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example
RECORD RECORD buffer type represents <myRecord>
copybook record. RECORD types <name>aaa</name>
must have subtypes that designate <num>1000</num>
individual record structures. <subgroup>

Generated COBOL types:

<longl> 3000 </longl>

<stringl> www
¢ RECORD

</stringl>
¢ COMP-1 </subgroup>
¢ COMP-2 </myRecord>
e S9(18)
e 9(18)
* S9(9)
e 9(9)
e S9(4)
e S9(10)V9(10)
e X(1024)

e @binary=true

2-82

Note: Non-structured buffer types (sTRING, CARRAY, Xx_0oCTET and MBSTRING) Will not wrap
dataas XML objects, the datais transmitted asis.

VIEW/VIEW32 Considerations:

The following considerations apply when converting Oracle Tuxedo view/viEw32 buffersto
and from XML:

e You must create an environment for converting XML to and from view/view32. This
includes setting up avIew directory and system view definition files. These definitions are
automatically loaded by the GWWS server.

FML/FML32 Considerations

Thefollowing considerations apply to converting Oracle Tuxedo Fur/FuML32 buffersto and from
XML:

e You must create an environment for converting XML to and from FuL/FML32. This
includes an FML field table file directory and system FML field definition files. These

SALT Programming Guide

REST Data Mapping

definitions are automatically loaded by the GWWS. ru1 typed buffers can be handled only
if the environment is set up correctly.

Note: rmn32 Field type FLD_PTR is not supported

SALT Programming Guide 2-83

2-84 SALT Programming Guide

CHAPTERa

Web Service Client Programming

This chapter contains the following topics:
e Overview
e SALT Web Service Client Programming Tips

e Web Service Client Programming References

Overview

SALT isaconfiguration-driven product that publishes existing Oracle Tuxedo application
services as industry-standard Web services. From a Web services client-side programming
perspective, SALT (used in conjunction with the Oracle Tuxedo framework), is a standard Web
service provider. You only need to use the SALT WSDL file to develop a Web service client
program.

To develop aWeb service client program, do the following steps:
1. Generate or download the SALT WSDL file. For more information, see Configuring SALT.

2. UseaWeb serviceclient-sidetoolkit to parsethe SALT WSDL document, and generate client
stub code. For more information, see SALT Web Service Client Programming Tips.

3. Write client-side application code to invoke a SALT Web service using the functions defined
in the client-generated stub code.

4. Compile and run your client application.

SALT Programming Guide 3-1

../config/config.html

3-2

REpresentational State Transfer (REST) Support
With REST enabled, requests received on a REST port are processed as follows by GWWS.
URIs must comply with the following pattern:

<REST service name>
Where the Oracle Tuxedo service name is the name of the REST service invoked (for example,
TOUPPER).

Dataformat and input Oracle Tuxedo buffer types are specified using the following HTTP
header:

e content-type:

Set t0 application/json:indicates that JSON is used to transfer datato/from HTTP
client.

Set t0 application/xml :indicatesthat XML isused to transfer datato/from HTTP client.

Note: application/json andapplication/xml Will only apply to structured buffer
types (VIEW, VIEW32, FML, FML32, X_C_TYPE and x_coMMon. To use simple buffers
and posT or PUT, you must set Content-typeto appropriatevalues ("text /plain" for
STRING, "application/octet-stream" fOr CARRAY, €tC.).

Oneway (in and out)

If no dataisinput, the Oracle Tuxedo service isinvoked with anurL Oracle Tuxedo buffer.
Similarly, if the Oracle Tuxedo service does not return any data, the response also contains no
data (which isavalid use-case).

ATMI and SCA Support

There isno restriction in the type of Oracle Tuxedo service being exposed as REST (whether
ATMI or SCA). To use SCA components, you must conform to SCA data mapping conventions
asfound in SCA Data Type Mapping. Name mapping may apply, asoutlined in SCA and Oracle
Tuxedo Interoperability.

SALT Programming Guide

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/sca/sca.html#wp1085820
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/sca/sca.html#wp1112199
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/sca/sca.html#wp1112199

Overview

Examples

Example 1: .h interface

Listing 3-1 .hinterface

#include <string>
/**
* Tuxedo service business interface
x/
class TuxService
{
public:

virtual std::string TOUPPER (const std::string inputString) = 0;

Example 2: SCDL Descriptor

Listing 3-2 SCDL Descriptor

<composite xmlns="http://www.osoa.org/xmlns/sca/l.0" name="myComponent">
<service name="TuxService">
<interface.cpp header="TuxService.h" />
<binding.atmi/>
<inputBufferType>STRING</inputBufferType>
<outputBufferType>STRING</outputBufferType>
<reference>MYComponent</reference>

</service>

SALT Programming Guide 3-3

<component name="MYComponent">
<implementation.cpp library="TuxService" header="TuxServiceImpl.h"/>
</component>

</composite>

Example 3: SALTDEPLQY REST Service Definition

Listing 3-3 SALTDEPLOY REST Service Definition

<REST>
<Network http="myhost:1234"/>
<Service name="testSCA">
<Method name="GET"
reposservice=""
service="TuxService/TOUPPER"

inputbuffer="STRING" />

</Service>

</REST>

Example 4: URL used to invoke service
http://myhost:1234/testSCA?teststring

Example 5: Response

HTTP/1.1 200 OK
Content-Type: text/xmlTESTSTRING

3-4 SALT Programming Guide

SALT Web Service Client Programming Tips

SALT Web Service Client Programming Tips

This section provides some useful client-side programming tips for devel oping Web service
client programs using the following SAL T-tested programming toolkits:

e Oracle WebL ogic Web Service Client Programming Toolkit
e Apache Axisfor Java Web Service Client Programming Toolkit
e Microsoft .NET Web Service Client Programming Toolkit

For more information, see Interoperability Considerationsin the SALT Administration Guide.

Notes: You can use any SOAP toolkit to develop client software.

The sample directories for the listed toolkits can be found after SALT isinstalled.

Oracle WebLogic Web Service Client Programming Toolkit

WebL ogic Server providesthe clientgen utility which isabuilt-in application server
component used to develop Web service client-side java programs. The invocation can beissued
from standalone java programs and server instances. For more information, see Developing
JAX-WS Web Services for Oracle WebL ogic Server.

Besidestraditional synchronous message exchange mode, SALT also supports asynchronousand
reliable Web service invocation using WebL ogic Server. Asynchronous communication is
defined by the WS-Addressing specification. Reliable message exchange conforms to the
WS-ReliableM essaging specification.

Tip: Usethe WebL ogic specific WSDL document for HTTP MIME attachment support.

SALT can map Oracle Tuxedo carray datato SOAP request MIME attachments. Thisis
beneficial when the binary data stream is large since m1ME binding does not need
additional encoding wrapping. This can help save CPU cycles and network bandwidth.

Another consideration, in an enterprise service oriented environment is that binary data
might be used to guide high-level datarouting and transformation work. Encoded data
can be problematic. To enable the m1ME data binding for Oracle Tuxedo carrAY data, a
special flag must be specified in the WSDL document generation options (both for online
downloading and using the tmwsdlgen command utility).

Online Download:
http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=wls

SALT Programming Guide 35

http://docs.oracle.com/middleware/1212/wls/WSGET/index.html
http://docs.oracle.com/middleware/1212/wls/WSGET/index.html
../interop/interop.html

3-6

tmwsdlgen Utility
tmwsdlgen -c¢ WSDF_FILE -m raw -t wls

Apache Axis for Java Web Service Client Programming Toolkit

SALT supportsthe AXISwsdl2java utility which generates java stub code from the WSDL
document. The AX1S Web service programming model is similar to WebL ogic.

Tip: 1. Usethe AXIS specific WSDL document for HTTP MIME attachment support.

SALT supports HTTP MIME transportation for Oracle Tuxedo carray data. A specid
option must be specified for WSDL online downloading and the tmwsdlgen utility.

Online Download:
http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=axis

tmwsdlgen Utility
tmwsdlgen -c¢ WSDF_FILE -m raw -t axis

Tip: 2. Disable multiple-reference format in AXISwhen RPC/encoded styleis used.

AXIS may send a multi-reference format SOAP message when RPC/encoded styleis
specified for the WSDL document. SALT does not support multiple-reference format.
Y ou can disable AX1S multiple-reference format as shown in Listing 3-4:

Listing 3-4 Disabling AXIS Multiple-Reference Format

TuxedoWebServiceLocator service = new TuxedoWebServiceLocator();
service.getEngine () .setOption("sendMultiRefs", false); |

Tip: 3. Use Apache Sandensha project with SALT for WS-ReliableM essaging
communication.

Interoperability has been tested for WS-ReliableM essaging between SALT and the

Apache Sandensha project. The Sandensha asynchronous mode and send offer must
be set in the code.

SALT Programming Guide

SALT Web Service Client Programming Tips

A sample Apache Sandensha asynchronous mode and send offer code exampleis
shownin Listing 3-5:

Listing 3-5 Sample Apache Sandensha Asynchronous Mode and “send offer” Code Example

/* Call the service */

TuxedoWebService service = new TuxedoWebServicelLocator () ;

Call call = (Call) service.createCall();

SandeshaContext ctx = new SandeshaContext () ;

ctx.setAcksToURL ("http://127.0.0.1:" + defaultClientPort +
"/axis/services/RMService") ;
ctx.setReplyToURL ("http://127.0.0.1:" + defaultClientPort +
"/axis/services/RMService") ;
ctx.setSendOffer (true) ;
ctx.initCall(call, targetURL, "urn:wsrm:simpapp",
Constants.ClientProperties.IN_OUT) ;

call.setUseSOAPAction(true) ;
call.setSOAPActionURI ("ToUpperWs") ;
call.setOperationName (new
javax.xml .namespace.QName ("urn:pack.simpappsimpapp_typedef.saltll",
"ToUpperWs")) ;
call.addParameter ("inbuf", XMLType.XSD_STRING, ParameterMode.IN) ;
call.setReturnType (org.apache.axis.encoding.XMLType.XSD_STRING) ;

String input = new String();

String output = new String();
int 1i;

for (1 = 0; 1 < 3; i++) {

input = "request" + "_" + String.valueOf (i);

System.out.println("Request: "+input) ;

SALT Programming Guide 3-7

3-8

output = (String) call.invoke (new Object[]{input}) ;
System.out.println("Reply:" + output);

ctx.setLastMessage (call) ;
input = "request" + "_" + String.valueOf (i);
System.out.println("Request:"+input) ;

output = (String) call.invoke (new Object[]{input}) ;

Microsoft .NET Web Service Client Programming Toolkit

Microsoft .Net 1.1/2.0 provideswsd1l . exe in the .Net SDK package. It is a free development

Microsoft toolkit. In the SALT simpapp Sample, a.Net program is provided in the
simpapp/dnetclient directory.

.Net Web service programming is easy and straightforward. Use the wsd1 . exe utility and the
SALT WSDL document to generate the stub code, and then reference the .Net object contained

in the stub code/binary in business logic implementations.

Tip: 1. Donot use.Net program MIME attachment binding for CARRAY .

Microsoft does not support SOAP communication MIME binding. Avoid using the

WSDL document with MIME binding for carray in .Net development.

SALT supportsbase64Binary encoding for carray data (the default WSDL document

generation.)

Tip: 2. Some RPC/encoded style SOAP messages are not under stood by the GWWS

server.

When the SALT WSDL document is generated using RPC/encoded style, .Net sends out

SOAP messages containing soapenc: arrayType. SALT does not support

soapenc : arrayType USing RPC/encoded style. A sample RPC/encoded style-generated

WSDL document is shown in Listing 3-6.

SALT Programming Guide

SALT Web Service Client Programming Tips

Listing 3-6 Sample RPC/encoded Style-Generated WSDL Document

<wsdl:types>

<xsd:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="urn:pack.TuxAll_ typedef.saltll">
<xsd:complexType name="fml_ TFML_In">
<xsd:sequence>
<xsd:element maxOccurs="60"
minOccurs="60" name="tflong" type="xsd:long"></xsd:element>
<xsd:element maxOccurs="80"
minOccurs="80" name="tffloat" type="xsd:float"></xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="fml_ TFML_Out">

</xsd:complexType>
</xsd:schema>

</wsdl:types>

Workaround: Use Document/literal encoded stylefor .Net client asrecommended by Microsoft.

Tip: 3. Error message regarding xsd:baseé64Binary in RPC/encoded style.

If xsd:base64Binary isusedinthe SALT WSDL document using RPC/encoded style,
wsdl . exe Can generate stub code;however, the client program might report a runtime
error asfollows:

System.InvalidOperationException: 'base64Binary' isaninvalid vauefor the
SoapElementAttribute.DataType property. The property may only be specified for
primitive types.

Workaround: Thisisa.Net framework issue.
Use Document/literal encoded style for .Net client as recommended by Microsoft.

SALT Programming Guide 3-9

Web Service Client Programming References

Online References

e Oracle WebL ogic 10.0 Web Service Client Programming References
Oracle WebL ogic 10.0 Documentation

e Apache Axis 1.3 Web Service Client Programming References
Consuming Web Services with Axis
Using WSDL with Axis

e Microsoft .NET Web Service Programming References
Building Web Services

3-10 SALT Programming Guide

http://docs.oracle.com/cd/E13222_01/wls/docs100/intro/chap1.html
http://ws.apache.org/axis/java/user-guide.html#ConsumingWebServicesWithAxis
http://ws.apache.org/axis/java/user-guide.html#UsingWSDLWithAxis
http://msdn.microsoft.com/webservices/webservices/building/default.aspx

CHAPTERa

Oracle Tuxedo ATMI Programming for
Web Services

This chapter contains the following topics:
e Overview
e Converting WSDL Model Into Oracle Tuxedo Model

e Invoking SALT Proxy Services

Overview

41

SALT dlowsyou to import external Web Servicesinto Oracle Tuxedo Domains. To import
external Web servicesinto Oracle Tuxedo applications, awspr file must first be loaded and
converted. The SALT WSDL conversion utility, wsdlcvt, trandateseachwsdl : operationinto
aSALT proxy service. The translated SALT proxy service can be invoked directly through
standard Oracle Tuxedo ATMI functions.

SALT proxy service calls are sent to the GWWS server. The request is trandated from Oracle
Tuxedo typed buffersinto the SOAP message, and then sent to the corresponding external Web
Service. The response from an external Web Serviceis trandated into Oracle Tuxedo typed
buffers, and returned to the Oracle Tuxedo application. The GWWS acts as the proxy
intermediary.

If an error occurs during the service call, the GWWS server setsthe error status using tperrno
(which can be retrieved by Oracle Tuxedo applications). This enables you to detect and handle
the SALT proxy service call error status.

SALT Programming Guide

Converting WSDL Model Into Oracle Tuxedo Model

SALT providesaWSDL conversion utility, wsdlcvt, that converts external WSDL filesinto
Oracle Tuxedo specific definition files so that you can develop Oracle Tuxedo ATMI programs
to access services defined in the WSDL file.

WSDL-to-Tuxedo Object Mapping

SALT converts WSDL object models into Oracle Tuxedo models using the following rules:

e Only SOAP over HTTP hinding are supported. Each binding is defined and saved as a
WSBinding object in the WSDF file.

e Each operation in the SOAP binding is mapped as one Oracle Tuxedo-style service (which
isalso called a SALT proxy service). The operation name is used as the Oracle Tuxedo
service name and indexed in the Oracle Tuxedo Service Metadata Repository.

Note: If the operation name exceedsthe Oracle Tuxedo service name length limitation (255
characters), you must manually set a unique short Oracle Tuxedo service nameinthe
metadata respository and set the <service> tuxedoref atributein thewsor file.

For moreinformation, see SALT Web Service Definition File Referenceinthe SALT
Reference Guide.

e Other Web service external application protocol information is saved in the generated wspr
file (including SOAP protocol version, SOAP message encoding style, accessing
endpoints, etc.).

e XML Schema definitions embedded in the wspr file are copied and saved in separate . xsd
files.

e Each wsdl:operation object and its input/output message details are converted as
theOracle Tuxedo service definition conforms to the Oracle Tuxedo Service Metadata
Repository input syntax.

Table 4-1 lists detailed mapping relationships between the wsoL file and Oracle Tuxedo
definition files.

Oracle SALT Programming Guide

../ref/comref.html#wp1112274
../ref/wsdf.html

Table 4-1 WSDL Model / Oracle Tuxedo Model Mapping Rules

WSDL Object Oracle Tuxedo/SALT Definition File Oracle Tuxedo/SALT Definition
Object
/wsdl :binding SALT Web Service Definition File /WSBinding

/wsdl :portType

/wsdl :binding/soap:
binding

(WSDF)

/WSBinding/Servicegroup

/WSBinding/SOAP

/wsdl :portType/oper
ation

Metadata Input File (MIF)

/WSBinding/service

/wsdl:types/xsd:sch
ema

FML32 Field Defintion Table

Field name type

Invoking SALT Proxy Services

The following sectionsinclude information on how to invoke the converted SALT proxy service
from an Oracle Tuxedo application:

e SALT Supported Communication Patterns

e Oracle Tuxedo Outbound Call Programming: Main Steps

e Managing Error Code Returned from GWWS

e Handling Fault Messages in an Oracle Tuxedo Outbound Application

SALT Supported Communication Patterns

SALT only supportsthe Oracle Tuxedo Request/Response communication patterns for outbound
service calls. An Oracle Tuxedo application can request the SALT proxy service using the
following communication Oracle Tuxedo ATMIs:

® tpcall (3c) /tpacall(3c)/tpgetreply(3c)

These basic ATMI functions can be called with an Oracle Tuxedo typed buffer as the input
parameter. The return of the call also carries an Oracle Tuxedo typed buffer. All these

buffers conform to the converted outside Web service interface. tpacall/tpgetreply are
not related to SOAP async communication.

4-3

Oracle SALT Programming Guide

4-4

® tpgetcallinfo(3c)/tpsecallinfo(3c)

tpgetcallinfo () retrieves HTTP headers associated with an application buffer using the
GWWS gateway in FML32 format; tpsetcallinfo () performsthereverse (i.e., attach
FML32 formatted HTTP headers to an application buffer to be sent to aremote HTTP
(possibly SOAP) server).

tpforward(3c)

Oracle Tuxedo server applications can use this function to forward an Oracle Tuxedo
request to a specified SALT proxy service. The response buffer is sent directly to the client
application response queue asif it isatraditional native Oracle Tuxedo service.

TMQFORWARD enabled queue-based communication.

Oracle Tuxedo system server TMQFORWARD Can accept queued requests, and sends them to
SALT proxy services that have the same name as the queue.

For more information, see Oracle Tuxedo ATMI C Functions and File Formats, Data
Descriptions, MIBs, and System Processes Reference.

SALT does not support the following Oracle Tuxedo communication patterns:

e Conversational communication

e Event-based communication

Oracle Tuxedo Outbound Call Programming: Main Steps

When the GWWS is booted and SALT proxy services are advertised, you can create an Oracle
Tuxedo application to call them. To develop a program to access SALT proxy services, do the
following:

1

Check the Oracle Tuxedo Service M etadata Repository definition to seewhat the SALT proxy
serviceinterfaceis.

L ocate the generated FML 32 field table files. Modify the FML 32 field table to eliminate
conflicting field names and assign a valid base number for the index.

Note: Thewsdlcvt generated FML32 field table files are always used by GWWS. You
must make sure the field nameis unique at the system level. If two or morefields are
associated with the same field name, change the field name. Do not forget to change
Oracle Tuxedo Service Metadata Repository definition accordingly.

The base number field index in the generated FML32 field table must be changed

Oracle SALT Programming Guide

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf3c/rf3c.html
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html

from the invalid default value to a correct number to ensure all field indexesin the
table are unique at the entire system level.

3. Generate 32 header files with mkfldhdr32(1).
4. Boot the GWWS with correct FM1.32 environment variable settings.

5. Write askeleton C source file for the client to call the outbound service (refer to Oracle
Tuxedo documentation and the Oracle Tuxedo Service Metadata Repository generated
pseudo-code if necessary). You can use tpcall (1) Of tpacall (1) for synchronous or
asynchronous communication, depending on the requirement.

6. For rML32 buffers, you must add each FML 32 field (conforming to the corresponding SALT
proxy serviceinput buffer details), defined in the Oracle Tuxedo Service M etadata Repository
(including FML 32 field sequence and occurrence). The client source may include the
generated header file to facilitate referencing the field name.

7. Getinput buffer ready. You can handle the returned buffer, which should be of the type
defined in Metadata.

e Compile the source to generate executable.

e Test the executable.

Managing Error Code Returned from GWWS

If the GWWS server encounters an error accessing external Web services, tperrno is set
accordingly so the Oracle Tuxedo application can diagnose the failure. Table 4-2 lists possible
SALT proxy service tperrno values.

Table 4-2 Error Code Returned From GWWS/Tuxedo Framework

TPERRNO Possible Failure Reason
TPENOENT Requested SALT proxy service is not advertised by GWWS.
TPESVCERR The HTTP response message returned from external Web service

application is not valid.

The SOAP response message returned from external Web service
application is not well-formed.

TPEPERM Authentication failure.

45

Oracle SALT Programming Guide

../../../tuxedo/docs1222/rfcm/rfcmd.html

Table 4-2 Error Code Returned From GWWS/Tuxedo Framework

TPERRNO Possible Failure Reason

TPEITYPE Message conversion failure when converting Oracle Tuxedo request typed
buffer into XML payload of the SOAP request message.

TPEOTYPE Message conversion failure when converting XML payload of the SOAP
response message into Oracle Tuxedo response typed buffer.

TPEOS Request is rejected because of system resource limitation.

TPETIME Timeout occurred. Thistimeout can either beaBBL blocktime, or aSALT
outbound call timeout.

TPSVCFAIL External Web service returns SOAP fault message

TPESYSTEM GWWS internal errors. Check uLoG for more information.

Handling Fault Messages in an Oracle Tuxedo Outbound
Application

All ruleslisted inthe wspt file are used to map WSDL input/output message into Oracle Tuxedo
Metadata inbuf/outbuf definition. wspr file default message can also be mapped into Oracle
Tuxedo Metadata errbuf with some amendments to the rules:

Rules for fault mapping:

There are two modes for mapping Metadata errbuf into SOAP Fault messages. Tux Mode and
XSD Mode.

e Tux Modeis used to convert Oracle Tuxedo original error buffers returned with TpFATL.
The error buffers are converted intothe XML payload in the SOAP fault <detail>
element.

e XSD Mode is used to represent SOAP fault and wspt file fault messages defined with
Oracle Tuxedo buffers. The mapping rule includes:

— Each servicein XSD mode (servicemode=webservice), dwayshasan errbuf in
Metadata with type=FML.32.

— errbuf isarML32 buffer. It isacomplete description of the soar:Fault message
that may appear in correspondence (which is different for SOAP 1.1 and 1.2). The

4-6 Oracle SALT Programming Guide

errbuf definition content is determined by both the SOAP version and WSDL fault
message.

— Parameter detail/Detail (1.1/1.2) isan FML32 field that represents the wsdl : part
defined in awsdl : fault message (Whenwsdil: fault ispresent). Each part isdefined
asaparam(field) inthe FML32 field. The mapping rules are the same as for
input/output buffer. The difference isthat each param requiredcount isO (which
means it may not appear in the SOAP fault message).

— Other elements that appear in soap: fault message are aways defined asafilein
errbuf, With requiredcount equal to 1 or 0 (depending on whether the element is
required or optional).

— Each part definition in the metadata controls converting a<detail> element in the
soap fault message into afield in the error buffer.

Table 4-3 lists the outbound SOAP fault errbuf definitions.

Table 4-3 Outbound SOAP Fault Errbuf Definition

Meta Parameter ~ SOAP Version Type Required Memo
faultcode 1.1 string Yes

faultstring 1.1 string Yes

faultactor 1.1 string No

detail 11 fml32 No If no

wsdl: fault is
defined, thisfield
containsan XML
field.

Code 1.2 fml32 Yes Contains value
and optional
Subcode

Reason 1.2 fml32 Yes Contains
multiple text

Node 1.2 string No

Oracle SALT Programming Guide

Table 4-3 Outbound SOAP Fault Errbuf Definition

Meta Parameter ~ SOAP Version Type Required Memo
Role 1.2 string No
Detail 12 fml32 No same as detail
field
See Also

Oracle Tuxedo ATMI C Functions

File Formats, Data Descriptions, MIBs, and System Processes Reference

4-8 Oracle SALT Programming Guide

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf3c/rf3c.html
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html

Using SALT Plug-Ins

This chapter contains the following topics:
e Understanding SALT Plug-Ins
e Programming Message Conversion Plug-ins

e Programming Outbound Authentication Plug-1ns

Understanding SALT Plug-Ins

The SALT GWWS server is a configuration-driven process which, for most basic Web service
applications, does not require any programming tasks. However, SALT functionality can be
enhanced by devel oping plug-ininterfaceswhich utilize custom typed buffer dataand customized
shared libraries to extend the GWWS server.

A plug-ininterface is a set of functions exported by a shared library that can be loaded and
invoked by GWWS processes to achieve specia functionality. SALT provides a plug-in
framework as a common interface for defining and implementing a plug-in interface. Plug-in
implementationiscarried out by ashared library which containsthe actual functions. The plug-in
implementation library is configured in the SALT Deployment file and is loaded dynamically
during GWWS server startup.

Plug-In Elements

Four plug-in elements are required to define a plug-in interface:

e Plug-InID

SALT Programming Guide 5-1

../ref/comref.html#wp1111835
../ref/deploy.html

5-2

e Plug-In Name
e Plug-In Implementation Functions

e Plug-In Register Functions

Plug-In ID

Theplug-in ID element isastring used to identify aparticul ar plug-ininterfacefunction. Multiple
plug-in interfaces can be grouped with the same Plug-in ID for asimilar function. Plug-in ID
values are predefined by SALT. Arbitrary string values are not permitted.

SALT supportsthe p_custom_TypE and p_crepenmap plug-in ID, which is used to define
plug-in interfaces for custom typed buffer data handling, and map Oracle Tuxedo user ID and
group ID into username/password that HTTP Basic Authentication needs.

Plug-In Name
The plug-in Name differentiates one plug-in implementation from another within the same
Plug-in ID category.

For ther_cusTom_tyPE Plug-in ID, the plug-in nameis used to indicate the actual custom buffer
type name. When the GWWS server attempts to convert data between Oracle Tuxedo custom
typed buffers and an XML document, the plug-in name is the key element that searches for the
proper plug-in interface.

Plug-In Implementation Functions

Actual businesslogic should reflect the necessary functions defined in a plug-in vtable structure.
Necessary functions may be different for different plug-in ID categories.

For the »_crepenmar ID category, one function needs to be implemented:

e int (* gwws_pi_map_http_basic) (char * domain, char * realm, char *
t_userid, char * t_grpid, Cred_UserPass * credential);

For more information, see ?$paratext>".

Plug-In Register Functions

Plug-in Register functions are a set of common functions (or rules), that a plug-in interface must
implement so that the GWWS server can invoke the plug-in implementation. Each plug-in
interface must implement three register functions. These functions are:

SALT Programming Guide

Understanding SALT Plug-Ins

Information Providing Function

Initiating Function

Exiting Function

e vtable Setting Function

Information Providing Function

Thisfunctionisoptional. If itisused, it isfirst invoked after the plug-in shared library isloaded
during GWWS server startup. If you want to implement more than one interface in one plug-in

library, you must implement this function and return the counts, 1Ds, and names of the interfaces
inthelibrary.

Returning a o valueindicates the function has executed successfully. Returning aval ue other than
o indicatesfailure. If thisfunctionsfails, the plug-inisnot loaded, and the GWWS server will not
start.

The function uses the following syntax:
int _ws_pi_get_Id_and Names (int * count, char **ids, char **names);

Y ou must return the total count of implementation in the library in arguments count. The
arguments ids and names should contain all implemented interface ids and names, separated
by asemicolon “;”.

Initiating Function

Theinitiating functionisinvoked after all theimplemented interfacesin the plug-in shared library
aredetermined. Y ou can initialize data structures and set up global environmentsthat can be used
by the plug-ins.

Returning a o valueindicatesthe initiating function has executed successfully. Returning avalue
other than o indicates initiation hasfailed. If plug-in interface initiation fails, the GWWS server
will not start.

Theinitiating function uses the following syntax:
int _ws_pi_init_@ID@_@Name@ (char * params, void **priv_ptr);

erpe indicatesthe actua plug-in ID value. eName@ indicates the actual plug-in name value. For
example, theinitiating function of aplug-inwith p_custom_typE asaplug-in ID and MyType as
a pI ug—i nname is, _ws_pi_init P CUSTOM_TYPE MyType (char * params, void
**priv_ptr).

SALT Programming Guide 5-3

5-4

Exiting Function

The exiting function is called before closing the plug-in shared library when the GWWS server
shuts down. Y ou should release all reserved plug-in resources.

The exiting function uses the following syntax:
int _ws_pi_exit_@IDE@_@Name@ (void * priv);
e1pe indicatesthe actual plug-in ID value. eNamee indicatesthe actual plug-in name value. For

example, the initiating exiting function name of a plug-in with p_custoM_tvpE asaplug-in ID
and My Type asaplug-in nameis. _ws_pi_exit_P_CUSTOM_TYPE_MyType (void * priv).

vtable Setting Function

vtable isaparticular C structure that stores the necessary function pointers for the actual
businesss logic of a plug-in interface. In other words, avalid plug-in interface must implement
all the functions defined by the corresponding vtable.

The vtable setting function uses the following syntax:
int _ws_pi_set_vtbl_@IDE@_EName@ (void * priv);

erpe indicatesthe actual plug-in ID value. eName@ indicates the actual plug-in name value. For
example, the vtable setting function of a plug-in with p_custom_typE asaplug-in ID and
MyTypezasa*ﬂung]naﬂeis:_ws_pi_set_vtbl_P_CUSTOM_TYPE_MyType(void * priv).

The vtable structures may be different for different plug-in 1D categories. For this SALT
release, p_customM _TYPE and p_crepenmap aretheonly valid plug-in IDs.

The vtable structures for available plug-in interfaces are shown in Listing 5-1.

Listing 5-1 VTable Structure

struct credmap_vtable {

int (* gwws_pi_map_http_basic) (char * domain, char * realm, char *
t_userid, char * t_grpid, Cred_UserPass * credential); /* used for HTTP
Basic Authentication */

/* for future use */

void * unused_1;

void * unused_2;

void * unused_3;

SALT Programming Guide

Understanding SALT Plug-Ins

struct credmap_vtable indicatesthat one function must be implemented for a »_crepenmap
plug-in interface. For more information, see ?$paratext>".

Thefunctioninput parameter void * priv pointstoaconcretevtable instance. Y ou should set
the vtable structure with the actual functionsin the vtable setting function.

An example of setting the vtable structure with actual functionsin the vtable setting function
isshownin Listing 5-2.

Listing 5-2 Setting the vtable Structure with Actual Functions in the vtable Setting Function

int _DLLEXPORT_ _ws_pi_set_vtbl_P_CREDENMAP_TEST (void * vtbl)

{
struct credmap_vtable * vtable;
if (! vtbl)

return -1;

vtable = (struct credmap_vtable *) vtbl;

vtable->gwws_pi_map_http_basic = Credmap_HTTP_Basic;

return 0;

Developing a Plug-In Interface
To develop a comprehensive plug-in interface, do the following steps:

1. Develop ashared library to implement the plug-in interface.

2. Define the plug-in interface in the saLT configuration file.

Developing a Plug-In Shared Library
To develop a plug-in shared library, do the following steps:

SALT Programming Guide 5-5

5-6

1. Write C language plug-in implementation functions for the actual businesslogic. These
functions are not required to be exposed from the shared library. For more information, see
Pparatext>?.

2. Write C language plug-in register functions that include: the initiating function, the exiting
function, the vtable setting function, and the information providing function if necessary.
These register functions need to be exported so that they can be invoked from the GWWS
server. For more information, see ?$paratext>?.

3. Compileal the above functions into one shared library.

Defining a Plug-In Interface in the SALT Configuration File

To defineaplug-in shared library that isloaded by the GWWS server, the corresponding plug-in
library path must be configured inthe SALT deployment file. For moreinformation, see Creating
the SALT Deployment Filein the SALT Configuration Guide.

An example of how to define plug-in information in the SALT deployment file is shown in
Listing 5-3.

Listing 5-3 Defined Plug-In in the SALT Deployment File

<?xml version="1.0" encoding="UTF-8"?>

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<System>
<Plugin>
<Interface
id="P_CREDENMAP”
name="TEST"”
library="credmap_plugin.dll” />
</Plugin>
</System>
</Deployment>

SALT Programming Guide

../config/config.html
../config/config.html

Programming Message Conversion Plug-ins

Notes: To define multiple plug-in interfaces, multiple <Interface> elements must be
specified. Each <Interface> element indicates one plug-in interface.

Multiple plug-in interfaces can be built into one shared library file.

Programming Message Conversion Plug-ins

SALT defines acomplete set of default data type conversion rules to convert between Oracle
Tuxedo buffers and SOAP message payloads. However, the default data type conversion rules
may not meet all your needsin transforming SOAP messages into Oracle Tuxedo typed buffers
or vice versa. To accommodate special application requirements, SALT supports customized
message-level conversion plug-in development to extend the default message conversion.

Note: The SALT 12cR2 Message Conversion Plug-in is an enhanced successor to the SALT
1.1 Custom Buffer Type Conversion Plug-in.

The following topics are included in this section:
o How Message Conversion Plug-ins Work
e When Do We Need Message Conversion Plug-in
e Developing a Message Conversion Plug-in Instance

e SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility

How Message Conversion Plug-ins Work

Message Conversion Plug-inisa SALT supported Plug-in defined within the SALT plug-in
framework. All Message Conversion Plug-in instances have the same Plug-In ID

“p_cusTom_TYPE"). Each particular Message Conversion Plug-in instance may implement two
functions, oneisused to convert SOA P message payl oadsto Oracle Tuxedo buffers, and the other
is used to convert Oracle Tuxedo buffers to SOAP message payloads. These two function
prototypes are defined in Listing 5-4.

Listing 5-4 vtable Structure for SALT Plug-in “P_CUSTOM_TYPE” (C Language)

/* custtype_pi_ex.h */
struct custtype_vtable {
CustomerBuffer * (* soap_in_tuxedo_ CUSTBUF) (void * xercesDOMTree,

CustomerBuffer * tuxbuf, CustType_Ext * extinfo)

SALT Programming Guide 5-7

5-8

int (* soap_out_tuxedo__ CUSTBUF) (void ** xercesDOMTree,

CustomerBuffer * tuxbuf, CustType_Ext * extinfo)

The function pointer (* soap_in_tuxedo__CUSTBUF), points to the customized function that
converts the SOAP message payload to Oracle Tuxedo typed buffer.

Thefunction pointer (* soap_out_tuxedo__CUSTBUF), pointsto the customized function that
converts the Oracle Tuxedo typed buffer to SOAP message payload.

Y ou may implement both functions defined in the message conversion plug-in vtable structure
if needed. Y ou may also implement one function and set the other function with anurz pointer.

How Message Conversion Plug-in Works in an Inbound Call Scenario

Aninbound call scenario is an external Web service program that invokes an Oracle Tuxedo
servicethroughthe SALT gateway. Figure 5-1 depi cts message streaming between aWeb service
client and an Oracle Tuxedo domain.

Figure 5-1 Message Conversion Plug-in Works in an Inbound Call Scenario

GWWS (Inbound)
Tuxedo Request
SOAP Request
Plugin a Buffer :
soap_in_tuxeda_CUSTBUF
S0AP Response Tu:tdz;ﬂ;?ﬂu
soap_out_fuxedo CUSTBUF

When a SOAP request messageis delivered to the GWWS server, GWWStriesto find if thereis
amessage conversion plug-in instance associated with the input message conversion of the target

SALT Programming Guide

Programming Message Conversion Plug-ins

service. If thereis an associated instance, the GWWS invokes the customized
(*soap_in_tuxedo_ cusTBUF) function implemented in the plug-in instance.

When an Oracle Tuxedo response buffer is returned from the Oracle Tuxedo service, GWWS
triesto find if there is a message conversion plug-in instance associated with the output message
conversion of thetarget service. If thereisan associated instance, GWWSinvokesthe customized
function (*soap_out_tuxedo__CUSTBUF), implemented in the plug-in instance.

How Message Conversion Plug-in Works in an Outbound Call Scenario

An outbound call scenario is an Oracle Tuxedo program that invokes an external Web service

through the SALT gateway. Figure 5-2 depi cts message streaming between an Oracle Tuxedo
domain and a Web service application.

Figure 5-2 Message Conversion Plug-in Works in an Outbound Call Scenario

GWWS (Outbound)

Tuxedo Request
Bulior SOAP Request

: Plugin a
soap_in_tuxedo_CUSTEUF

v

Tuxeds Response
Buffer S0AP Responsa

Plugin b
(—| - (——
soap_out_tuxedo CUSTBUF

When an Oracle Tuxedo request buffer is delivered to the GWWS server, GWWStriesto find if
there is a message conversion plug-in instance associated with the input message conversion of
the target service. If there is an associated instance, GWWS invokes the customized

function (*soap_out_tuxedo__cUsTBUF), implemented in the plug-in instance.

When a SOAP response message is returned from the external Web service application, GWWS
triesto find if there is a message conversion plug-in instance associated with the output message
conversion of thetarget service. If thereisan associated instance, GWW Sinvokesthe customized
function (*soap_in_tuxedo__CUSTBUF), implemented in the plug-in instance.

SALT Programming Guide 5-9

When Do We Need Message Conversion Plug-in

Table 5-1 lists several message conversion plug-in use cases.

Table 5-1 Message Conversion Plug-in Use Cases

Scenario Description soap_in_tuxedo_CUSTBUF soap_out_tuxedo_CUSTBUF
Oracle A SOAP message payload is Required N/A
Tuxedo transformed into a custom typed
Originated buffer
Service
A custom typed buffer is N/A Required
transformed into a SOAP message
payload.

An Oracle Tuxedo service input Non XML typed buffer: N/A
and/or output buffer isassociated Required

with a customized XML schema

definition when a SOAP message

payload is being transformed into XML typed buffer:

this buffer. Optional
An Oracle Tuxedo service input N/A Non XML typed buffer:
and/or output buffer is associated Required

with a customized XML schema
definition when this buffer is

being transformed into a SOAP XML typed buffer:Optional
message payload.
All other general cases when a Optional N/A

SOAP message payload is being
transformed to an Oracle Tuxedo
buffer.

All other general cases when an N/A Optional
Oracle Tuxedo buffer isbeing
transformed into a SOAP message

payload.

5-10 SALT Programming Guide

Programming Message Conversion Plug-ins

Table 5-1 Message Conversion Plug-in Use Cases

Scenario Description soap_in_tuxedo_CUSTBUF soap_out tuxedo CUSTBUF

Web Service | All caseswhen an Oracle Tuxedo N/A Optional
Originated buffer istransformed into aSOAP
Service message payload.

All caseswhen a SOAP message Optional N/A
payload is being transformed into
an Oracle Tuxedo buffer.

From Table 5-1, the following message conversion plug-ins general rules are applied.

o |f an Oracle Tuxedo originated service consumes custom typed buffers, the message
conversion plug-in isrequired. The Oracle Tuxedo framework does not understand custom
typed buffer detailed data structure. Therefore SALT default data type conversion rules
cannot be applied.

o If theinput and/or output (no matter if returned with Tpsuccess or TpraIL) buffer of an
Oracle Tuxedo originated service is associated with an external XML Schema, you should
develop message conversion plug-ins to handle the transformation manually (unless you
are sure that the SALT default buffer type-based conversion rules can handle it correctly).

— For example, if you associate your own XML Schema with an Oracle Tuxedo service
FML32 typed buffer, you must provide a message conversion plug-in since SALT
default data mapping routines may not understand the SOAP message payload structure
when trying to convert into the FmL typed buffer. Contrarily, the SOAP message
payload structure converted from the rmr typed buffer may be tremendously different
from the XML shape defined viayour own XML Schema.

— If you associate your own XML Schemawith an Oracle Tuxedo service XML typed
buffer, most of time you do not have to provide a message conversion plug-in. Thisis
because SALT passes the XML data asisin both message conversion directions.

For more information, see Configuring a SALT Application.

e You can devel op message conversion plug-ins for any message-level conversion to replace
SALT default message conversion routines as needed.

SALT Programming Guide 5-11

../config/config.html

Developing a Message Conversion Plug-in Instance

Converting a SOAP Message Payload to an Oracle Tuxedo Buffer
The following function should be implemented in order to convert a SOAP XML payload to an
Oracle Tuxedo buffer:

CustomerBuffer * (* soap_in_tuxedo_ CUSTBUF) (void * xercesDOM,
CustomerBuffer *a, CustType_Ext * extinfo);

Synopsis
#include <custtype_pi_ex.h>
CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,

CustType_Ext * extinfo);

myxml2buffer isan arbitrary customized function name.

Description
The implemented function should have the capability to parse the given XML buffer and convert
concrete data items to an Oracle Tuxedo custom typed buffer instance.
Theinput parameter, char * xmlbuf, indicates anurr terminated string with the XML format
data stream.

Note: The XML dataisthe actual XML payload for the custom typed buffer, not the whole
SOAP envelop document or the whole SOAP body document.

Theinput parameter, char * type, indicates the custom type buffer type name, this parameter
isused to verify that the GWWS server expected custom typed buffer handler matchesthe current
plug-in function.

The output parameter, customerBuffer *a, isused to store the allocated custom typed buffer
instance. An Oracle Tuxedo custom typed buffer must be allocated by this plug-in function via
the tpalloc (). Plug-in codeisnot responsible to free the allocated custom typed buffer, itis
automatically destroyed by the GWWS server if it is not used.

Diagnostics
If successful, thisfunction must return the pointer value of input parameter customerBuffer *

a.

If it fails, this function returnsNuLL as shown in Listing 5-5.

5-12 SALT Programming Guide

Programming Message Conversion Plug-ins

Listing 5-5 Converting XML Effective Payload to Oracle Tuxedo Custom Typed Buffer Pseudo Code

CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,
CustType_Ext * extinfo)
{
// casting the input void * xercesDOM to class DOMDocument object
DOMDocument * DOMTree =

// allocate custom typed buffer via tpalloc
a->buf = tpalloc ("MYTYPE", "MYSUBTYPE", 1024);
a->len = 1024;

// fetch data from DOMTree and set it into custom typed buffer
DOMTree ==> a->buf;
if (error) {

release (DOMTree);

tpfree(a->buf) ;

a->buf = NULL;

a->len = 0;

return NULL;

release (DOMTree);

return a;

Tip: Oracle Tuxedo bundled Xerces library can be used for XML parsing. Tuxedo 12cR2
bundles Xerces 1.7 and Tuxedo 9.1 bundles Xerces 2.5

Converting an Oracle Tuxedo Buffer to a SOAP Message Payload

The following function should be implemented in order to convert a custom typed buffer to
SOAP XML payload:

SALT Programming Guide 5-13

int (*soap_out_tuxedo_ CUSTBUF) (char ** xmlbuf, CustomerBuffer * a, char *
type) ;
Synopsis
#include <custtype_pi_ex.h>
int * mybuffer2xml (char ** xmlbuf, CustomerBuffer *a, char * type);

"mybuffer2xml" isthe function name can be specified with any valid string upon your need.

Description

The implemented function has the capability to convert the given custom typed buffer instance
to the single root XML document used by the SOAP message.

The input parameter (customerBuffer *a),isused to store the custom typed buffer response
instance. Plug-in code is not responsible to free the allocated custom typed buffer, itis
automatically destroyed by the GWWS server if it is not used.

The input parameter (char * type), indicates the custom typed buffer type name. This
parameter can be used to verify if the SALT GWWS server expected custom typed buffer handler
matches the current plug-in function.

The output parameter (char ** xmlbuf), iSapointer that indicates the newly converted XML
payload. The XML payload buffer must be allocated by this function and uses malloc ().
Plug-in codeis not responsible to free the allocated XML payload buffer, it is automatically
destroyed by the GWWS server if it is not used.

Diagnostics
If successful, this function must return o.

If it fails, this function must return -1 as shownin Listing 5-6.

Listing 5-6 Converting Oracle Tuxedo Custom Typed Buffer to SOAP XML Pseudo Code

int mybuffer2xml (void ** xercesDom, CustomerBuffer *a, CustType_ Ext *
extinfo)
{

// Use DOM implementation to create the xml payload

DOMTree = CreateDOMTree();

if (error)

return -1;

5-14 SALT Programming Guide

Programming Message Conversion Plug-ins

// fetch data from custom typed buffer instance,
// and add data to DOMTree according to the client side needed
// XML format

a->buf ==> DOMTree;

// allocate xmlbuf buffer via malloc
* xmlbuf = malloc(expected_len (DOMTree)) ;
if (error) {

release (DOMTree) ;

return -1;

// casting the DOMDocument to void * pointer and returned
DOMTree >> (* xmlbuf) ;

if (error) {
release (DOMTree);
free ((* xmlbuf));

return -1;

return 0;

WARNING: The GWWS framework is responsible for releasing the poMbocument created
insidethe plug-infunction. To avoid doublerelease, you must pay attention to the
following Xerces API usage:

If the boMDocument is constructed from an XML string through
XercesDOMParser: :parse () API.YOU Mmust use

XercesDOMParser : :adoptDocument () t0 get the pointer of the poMbocument
object. Y oumust not usexercesDOMParser: : getDocument () t0 get the pointer
of the poMDocument object because the pomMbocument object ismaintained by the
XercesDOMParser object and is released when deleting the xercesboMParser
object if you do not de-couple the pompocument fromthe xercesbomparser via
the XxercesbOMParser: : getDocument () function.

SALT Programming Guide 5-15

5-16

SALT 1.1 Custom Buffer Type Conversion Plug-in

Compatibility

SALT 1.1 Custom Buffer Type Conversion Plug-in provides a customized message conversion
mechanism only for Oracle Tuxedo custom buffer types.

Table 5-2 compares the SALT Message Conversion Plug-in and the SALT 1.1 Custom Buffer

Type Conversion Plug-in.

Table 5-2 SALT 12cR2 Message Conversion Plug-in / SALT 1.1 Custom Buffer Type Conversion Plug-in

Comparison

SALT 1.1 Custom Buffer Type Plug-in

SALT 12cR2 Message Conversion Plug-in

Plug-in ID is“P_CUSTOM_TYPE”"

Plug-in ID is“P_CUSTOM_TYPE”"

Plug-in Name must be the same asthe supported
custom buffer type name.

Plug-in Name can be any meaningful value,
which is only used to distinguish from other
plug-in instances.

Only supports message conversion between
SOAP message payloads and Oracle Tuxedo
custom buffer types.

Supports message conversion between SOAP
message payloads and any kind of Oracle
Tuxedo buffer type.

Buffer type-level association.

Each plug-in instance must be named the same
asthe supported custom buffer type name. Each
custom buffer type can only have one plug-in
implementation.

One custom buffer type can associate with a
plug-in instance, and used by all the services.

Message-level association.

Each Oracle Tuxedo service can associate
plug-in instances with itsinput and/or output
buffersrespectively through theplug-ininstance
name.

SOAP message payload is saved as aNULL
terminated string for plug-in programming.

SOAP message payload is saved as a Xerces
DOM Document for plug-in programming.

Please notethat the SALT 1.1 Custom Buffer Type Plug-in shared library cannot be used directly
in SALT 12cR2. Y ou must perform the following tasksto upgrade it to a SALT 12cR2 message

conversion plug-in:

1. Re-implement function (*soap_in_tuxedo__ CUSTBUF) and
(*soap_out_tuxedo__ CUSTBUF) according to the SALT message conversion plug-in

SALT Programming Guide

Programming Outbound Authentication Plug-Ins

vtable function prototype API. The mgjor changeisthat the SOAP message payload is saved
as an Xerces class boMbocument object instead of the old string value.

2. Re-compile your functions as a shared library and configure this shared library in the saLt
Deployment file so that it can be loaded by GWWS servers.

Tip: Youdo not have to manually associate the upgraded message conversion plug-ins with
service buffers. If a custom typed buffer isinvolved in the message conversion at
runtime, GWWS can automatically search a message conversion plug-in that has the
same name as the buffer type nameif no explicit message conversion plug-ininterfaceis
configured.

Programming Outbound Authentication Plug-Ins

When an Oracle Tuxedo client accesses Web services via SOAP/HTTP, the client may be
required to send a username and password to the server to perform HTTP Basic Authentication.
The Oracle Tuxedo clientsuses tpinit () tosend ausername and password when registering to
the Oracle Tuxedo domain. However, thisusernameis used by Oracle Tuxedo and is not the same
as the one used by the Web service (the password may be different as well).

To map the usernames, SALT provides a plug-in interface (Credential-Mapping Interface), that
alows you to choose which username and password is sent to the Web service.

How Outbound Authentication Plug-Ins Work

When an Oracle Tuxedo client calls aWeb service, it actudly callsthe GWWS server that
declaresthe Web service asan Oracle Tuxedo service. Theuser id and group id (defined in tpusr
and tpgrp files) are sent to the GWWS. The GWWS then checks whether the Web service hasa
configuration item <rRealms. If it does, the GWWS:

e triesto invoke the vtable gwws_pi_map_http_basic function to map the Oracle Tuxedo
userid into the username and password for the HTTP Realm of the server.

o for successful calls, encodes the returned username and password with Base64 and sends
it to the HTTP header field “ Authorization: Basic”.

o for failed calls, returns afailure to the Oracle Tuxedo Client without invoking the Web
service.

SALT Programming Guide 5-17

Implementing a Credential Mapping Interface Plug-In

Using the following scenario:

e An existing Web service, myservice, sited on http://www.abc.com/webservice, requires
HTTP Basic Authentication. The usernameis“test”, the password is“1234,” and the
reAmis“myrealm”.

e After converting the Web service WSDL into the SALT configuration file (using
wsdlcvt), add the <Realm>myrealm</Ream> €lement to the endpoint definition in the
wsprF file.

Perform the following steps to implement a SALT plug-in interface:

1. Writethefunctionsto map the “myrealm” Oracle Tuxedo UID/GID tO username/password
on www.abc.com.

e Usecredmap_HTTP_Basic();

This function is used to return the HTTP username/password. The function prototype
defined in credmap_pi_ex.h

2. Writethe following three plug-in register functions. For more information, see ?$paratext>?.
® ws_pi_init_P_CREDENMAP_TEST (char * params, void ** priv_ptr);

This function isinvoked when the GWWS server attempts to load the plug-in shared
library during startup.

® ws_pi_exit_P_ CREDENMAP_TEST (void * priv);

This function isinvoked when the GWWS server unloads the plug-in shared library during
the shutdown phase.

® _ws_pi_set_vtbl_P_CREDENMAP_TEST (void * wvtbl);

Set the gwws_pi_map_http_basic entry invtable structure credmap_vtable with the
Credmap_HTTP_Basic () functionimplementedin step 1.

3. You can aso write the optional function:
® _ws_pi_get_Id_and_Names (int * params, char ** ids, char ** names) ;

This function isinvoked when the GWWS server attemptsto load the plug-in shared
library during startup to determine what library interfaces are implemented. For more
information, see ?$paratext>".

4. Compilethe previous four or five functions into one shared library, credmap_plugin.so.

5-18 SALT Programming Guide

Programming Outbound Authentication Plug-Ins

5. Configure the plug-in interface in the SALT deployment file.
Configure the plug-in interface as shown in Listing 5-7.

Listing 5-7 Custom Typed Buffer Plug-In Interface

<?xml version="1.0" encoding="UTF-8"?>

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<System>
<Plugin>
<Interface
id="P_CREDENMAP”
name="TEST”
library="credmap_plugin.dll” />
</Plugin>
</System>
</Deployment>

Mapping the Oracle Tuxedo UID and HTTP Username

The following function should be implemented in order to return username/password for HTTP
Basic Authentication:

typedef int (* GWWS_PI_CREDMAP_PASSTEXT) (char * domain, char * realm, char
* t_userid, char * t_grpid, Cred_UserPass * credential);

Synopsis

#include <credmap_pi_ex.h>

typedef struct Cred_UserPass_s {
char username [UP_USERNAME_LEN] ;
char password[UP_PASSWORD_LEN] ;

} Cred_UserPass;

int gwws_pi_map_http_basic (char * domain, char * realm, char * t_uid, char
* t_gid, Cred_UserPass * credential);

SALT Programming Guide 5-19

The "gwws_pi_map_http_basic" function name can be specified with any valid string as
needed.

Description

The implemented function has the capability to determine authorization credentials (usernames
and passwords) used for authorizing users with a given Oracle Tuxedo uid and gid for agiven
domain and realm.

Theinput parameters, char * domain and char * realm, represent the domain nameand
HTTP Realm that the Web service belongs to. The plug-in code must use them to determine the
scope to find appropriate credentials.

Theinput parameters, char * t_uidandchar * t_gid, arestringsthat contain Oracle Tuxedo
user ID and group | D number values respectively. These two parameters may be used to find the
username.

Theoutput parameter, cred_UserPass * credential, isapointer thatindicatesapre-allocated
buffer storing the returned username/password. The plug-in codeis not responsible for allocating
the buffer.

Notes: Oracle Tuxedo user ID isavailable only when *securITY isset asuser_auTh or higher
in the uBBconr1c file. Group ID is available when *securiTy isset as ACL or higher.
The defaultis“o”.

Diagnostics

5-20

If successful, this function returns o. If it fails, it returns -1 as shown in Listing 5-8.

Listing 5-8 Credential Mapping for HTTP Basic Authentication Pseudo Code

int Credmap_ HTTP_Basic (char * domain, char * realm, char * t_uid, char *
t_gid, Cred_UserPass * credential)
{

// Use domain and realm to determine scope

credentiallList = FindAllCredentialForDomainAndRealm(domain, realm) ;

if (error happens)

return -1;

// find appropriate credential in the scope

SALT Programming Guide

Programming Outbound Authentication Plug-Ins

foreach cred in credentialList {
if (t_uid and t_gid match) {
*credential = cred;

return O0;

}
if (not found and no default credential) {

return -1;

*credential = default_credential;

return 0;

Tip: Thecredentials can be stored in the database with domain and realm as the key or index.

SALT Programming Guide 5-21

5-22 SALT Programming Guide

	Service Architecture Leveraging Tuxedo (SALT)
	12c Release 2 (12.2.2)

	Oracle Service Architecture Leveraging Tuxedo (SALT) Programming Guide, 12c Release 2 (12.2.2)
	Introduction to SALT Programming
	SALT Web Services Programming
	SALT Proxy Service
	SALT Message Conversion
	SALT Programming Tasks Quick Index
	REpresentational State Transfer (REST) Message Conversion

	Data Type Mapping and Message Conversion
	Overview of Data Type Mapping and Message Conversion
	Understanding SALT Message Conversion
	Inbound Message Conversion
	Outbound Message Conversion

	Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services
	Oracle Tuxedo STRING Typed Buffers
	Oracle Tuxedo CARRAY Typed Buffers
	Mapping Example Using base64Binary
	Mapping Example Using MIME Attachment

	Oracle Tuxedo MBSTRING Typed Buffers
	Oracle Tuxedo XML Typed Buffers
	Oracle Tuxedo VIEW/VIEW32 Typed Buffers
	VIEW/VIEW32 Considerations

	Oracle Tuxedo FML/FML32 Typed Buffers
	FML Data Mapping Example
	FML32 Data Mapping Example
	FML/FML32 Considerations

	Oracle Tuxedo RECORD Typed Buffers
	REDEFINES Handling

	Oracle Tuxedo X_C_TYPE Typed Buffers
	Oracle Tuxedo X_COMMON Typed Buffers
	Oracle Tuxedo X_OCTET Typed Buffers
	Custom Typed Buffers

	XML-to-Tuxedo Data Type Mapping for External Web Services
	XML Schema Built-In Simple Data Type Mapping
	XML Schema User Defined Data Type Mapping
	WSDL Message Mapping

	REST Data Mapping
	Inbound Message Conversion
	Query String Mapping
	JSON Data Mapping
	XML Data Mapping

	Outbound Message Conversion
	Query String Mapping
	JSON Data Mapping
	XML Data Mapping

	Web Service Client Programming
	Overview
	REpresentational State Transfer (REST) Support
	Oneway (in and out)
	ATMI and SCA Support
	Examples

	SALT Web Service Client Programming Tips
	Oracle WebLogic Web Service Client Programming Toolkit
	Apache Axis for Java Web Service Client Programming Toolkit
	Microsoft .NET Web Service Client Programming Toolkit

	Web Service Client Programming References
	Online References

	Oracle Tuxedo ATMI Programming for Web Services
	Overview
	Converting WSDL Model Into Oracle Tuxedo Model
	WSDL-to-Tuxedo Object Mapping

	Invoking SALT Proxy Services
	SALT Supported Communication Patterns
	Oracle Tuxedo Outbound Call Programming: Main Steps
	Managing Error Code Returned from GWWS
	Handling Fault Messages in an Oracle Tuxedo Outbound Application

	See Also

	Using SALT Plug-Ins
	Understanding SALT Plug-Ins
	Plug-In Elements
	Plug-In ID
	Plug-In Name
	Plug-In Implementation Functions
	Plug-In Register Functions
	Developing a Plug-In Interface

	Programming Message Conversion Plug-ins
	How Message Conversion Plug-ins Work
	How Message Conversion Plug-in Works in an Inbound Call Scenario
	How Message Conversion Plug-in Works in an Outbound Call Scenario

	When Do We Need Message Conversion Plug-in
	Developing a Message Conversion Plug-in Instance
	Converting a SOAP Message Payload to an Oracle Tuxedo Buffer
	Converting an Oracle Tuxedo Buffer to a SOAP Message Payload

	SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility

	Programming Outbound Authentication Plug-Ins
	How Outbound Authentication Plug-Ins Work
	Implementing a Credential Mapping Interface Plug-In
	Mapping the Oracle Tuxedo UID and HTTP Username

