Service Architecture Leveraging Tuxedo (SALT)
Configuration Guide
12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Service Architecture Leveraging Tuxedo (SALT) Configuration Guide, 12c Release 2 (12.2.2)
Copyright © 2006, 2016 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Configuring a SALT Application

Configuring Oracle Tuxedo Web Serviceso 1
Using Oracle Tuxedo Service Metadata Repository for SALT 2
Defining Service-Level Keywordsfor SALT ..., 2
Defining Service Parametersfor SALT.o 7
Configuring Native Oracle TuXedo Serviceso 10
CreatingaNative WSDF. 10
Definingthe SOAPHeader 11
Configuration Mode. 12
Defining WSBinding Object i 13
Defining Service Object.o 14
Configuring Message ConversionHandler 15
UsingWS-Policy Files e 15
Generating aWSDL FilefromaNativeWSDF 17
Using Oracle Tuxedo Version-Based Routing (Inbound) 18
Configuring External Web Services.o 18
Web Console SALT Configurationt 19
Manual SALT Configuration.ouuuuiit i e e 20
Converting aWSDL File into Oracle Tuxedo Definitions 20

Post Conversion Tasks.o vt 23

Using Oracle Tuxedo Version-Based Routing (Outbound). 25
Configuring Multiple Bindingst 26
SALT Inbound SErVICES . .. o 26
SALT Outhound SErVICESot 26
Creating the SALT Deployment File e 27
Importingthe WSDF Files o e 27
Configuring the GWWS Servers.o 27

Configuring a SALT Application

Configuring GWWS Server-Level Properties. 28

Configuring Multiple Encoding Support 30
Configuring System-Level ReSOUrCeS.o vt 32
Configuring Certificates. 32
Configuring Plug-inLibraries 33
Configuring Advanced Web Service Messaging Features. 34
WeD Service Addressing . . .« v e 35
Configuring the Addressing Endpoint for Outbound Services 35
Disabling WS-AdAressingo v et 36
Web ServiceReliableMessagingooo oo 37
Creating the Reliable Messaging Policy File. 37
Specifying the Reliable Messaging Policy Fileinthe WSDF File 38
Message Transmission Optimization Mechanism (MTOM) 39
Configuring Security Features oot e e 39
Configuring Transport-Level Security i, 40
Setting Up SSL Link-Level Security, 40
Configuring Inbound HTTP Basic Authentication 40
Configuring Outbound HTTP Basic Authentication. 41
Configuring Message-Level Web ServiceSecurity 42
Main Use Cases of Web ServiceSecurityout. 42
Using WS-Security Policy Files it 42
Configuring SAML SingleSign-On 44
Transport Protection. e 45
SAML Key File. ... 45
Configuring X.509-Based Authentication. 51
Certificale SOUICES. . . .ottt 53
PrOpertieS. .. oo 54

Configuring a SALT Application

Compiling SALT Configuration.t 61

Configuring the UBBCONFIG Filefor SALT. ...t 62
Configuring the TMMETADATA Server inthe* SERVERS Section 62
Configuring the GWWS Serversinthe*SERVERS Section. 63
Updating System Limitationsinthe UBBCONFIGFile 64
Configuring Certificate Password Phrase For the GWWS Servers 65
Configuring Oracle Tuxedo Authentication for Web Service Clients. 66
Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic

Authentication 66

Configuring SALT In Oracle TuxedoMPModet 67

Migrating from SALT L. . ..o e 68
Running GWWS serverswith SALT 1.1 ConfigurationFile 68
Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration

Bl 68
Configuring Service Contract DISCOVENY. . .. oottt it ee e 70
tpforward SUPPOIT. oot 71
ServiceContract Text FIleOutputot e e 72
EXampPIES. . oo e 74
Configuring SALT WS- TX SUPPOMottt e et et e e 75
Configuring TransactionLog Device. 75
Registration Protocol e 76
Configuring WS- TX TransactionSot e e 76
Configuring Incoming Transactions oot 77
Error Conditions.o vt 78
Configuring Outbound Transactions. it it 78
Error Conditions.o v e 79
Configuring Maximum Number of Transactions. 79

Configuring Policy ASSertions.t e 80

Configuring a SALT Application iii

iv

Policy. xml File. . ..o 80

Inbound TranSactions.ottt 80
Outbound TransactionSot 81
WSDL GeNEratioNottt e e e e e e e 81
WSDL CONVEISION. . o ottt e e e e e e et e et 81
Viewing and Modifying SALT Configurationco .. 81
SALT Mainframe Transaction Publisher i 81
OVEIVIBIV . ottt e e e 82
Configuration o 82
Command-Line 82
SOAP Inbound

(Mainframe Transactions Exposed AsA Web Service) 83
REST INbOUNdo 84

SOAP Outbound
(Mainframe Invoking An External Web Service) 86
REST OUtboUNd e e 87
S AlSD. . o 88

Configuring a SALT Application

Configuring a SALT Application

vi

Configuring a SALT Application

Configuring a SALT Application vii

viii Configuring a SALT Application

Configuring a SALT Application

This chapter contains the following topics:
e Configuring Oracle Tuxedo Web Services
e Configuring Service Contract Discovery
e Configuring SALT WS-TX Support
e Viewing and Modifying SALT Configuration
e SALT Mainframe Transaction Publisher

Configuring Oracle Tuxedo Web Services

e Using Oracle Tuxedo Service Metadata Repository for SALT
e Configuring Native Oracle Tuxedo Services

e Configuring External Web Services

e Configuring Multiple Bindings

e Creating the SALT Deployment File

e Configuring Advanced Web Service Messaging Features

e Configuring Security Features

e Compiling SALT Configuration

Configuring a SALT Application

Configuring a SALT Application

e Configuring the UBBCONFIG Filefor SALT
e Configuring SALT In Oracle Tuxedo MP Mode
e Migrating from SALT 1.1

Using Oracle Tuxedo Service Metadata Repository for SALT

SALT leverages the Oracle Tuxedo Service Metadata Repository to define service contract
information for both existing Oracle Tuxedo servicesand SALT proxy services. Service contract
information for all listed Oracle Tuxedo servicesis obtained by accessing the Oracle Tuxedo
Service Metadata Repository system service provided by the local Oracle Tuxedo domain.
Typically, SALT callsthe TmveTADATA System as follows:

e During cwws server run-time.

SALT callsthe Oracle Tuxedo Service Metadata Repository to retrieve necessary Oracle
Tuxedo service definitions at the appropriate time.

e When tmwsdlgen generates a WSDL file.

SALT callsthe Oracle Tuxedo Service Metadata Repository to retrieve necessary Oracle
Tuxedo service definitions and converts them to the WSDL description.

The following topics provide SALT-specific usage of Oracle Tuxedo Service Metadata
Repository keywords and parameters:

e Defining Service-Level Keywords for SALT
e Defining Service Parameters for SALT

Defining Service-Level Keywords for SALT

Table 1 lists Oracle Tuxedo Service Metadata Repository service-level keywords used and
interpreted by SALT.

Note: Metadata Repository service-level keywords that are not listed have no relevance to
SALT and areignored when SALT components |oad the Oracle Tuxedo Service
Metadata Repository.

2 Configuring a SALT Application

../metarepo.html
../metarepo.html
../metarepo.html
../../../tuxedo/docs1222/rf5/index.html
../ref/comref.html#wp1106727

Using Oracle Tuxedo Service Metadata Repository for SALT

Table 1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword SALT Usage

service Theunique key value of the service. Thisvalueisreferencedinthe SALT
WSDFfile.

For native Oracle Tuxedo services, this value can be the same asthe
Oracle Tuxedo advertised service name, or an aias name different from
the actual Oracle Tuxedo advertised service name.

For SALT proxy services, thisvauetypicaly isthe Web service
operation local name.

servicemode Determinesthe service mode (i.e., native Oracle Tuxedo serviceor SALT
proxy service).
Thevalid values are:
e tuxedo
Represents a native Oracle Tuxedo service
* webservice

Represents aSALT proxy service (i.e., a service definition converted
from awsdl:operation).

Do not use “webservice” to define a native Oracle Tuxedo service.
Thisvaueisawaysused to define services converted from external Web
services.

tuxservice The actual Oracle Tuxedo advertised service name. If no valueis
specified, then the value is the same asthe value in the service
keyword.

For native Oracle Tuxedo services, SALT invokes the Oracle Tuxedo
services defined using this keyword.

For SALT proxy service, GWWS server advertises the service name
using this keyword value.

Configuring a SALT Application 3

Configuring a SALT Application

Table 1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword

SALT Usage

servicetype Determinesthe service message exchange pattern for the specified Oracle

Tuxedo service.

The following values specify mapping rules between the Oracle Tuxedo

service types and the Web Service message exchange pattern (MEP):

» service

Corresponds to request-response MEP.
* oneway
Corresponds to oneway request MEP.
* Qgueue
» Corresponds to request-response MEP.
inbuf Specifies the input buffer (request buffer), type for the service.

For native Oracle Tuxedo services, the value can be any Oracle Tuxedo

typed buffers. The following values are Oracle Tuxedo reserved buffer

types:

STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,

FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer

is empty)

Note: Thevaueis case sensitive, if inbuf specifies any buffertype
other than the above mentioned buffer types, the buffer istreated
as a custom buffer type.

For SALT proxy services, the value is aways FML32.

outbuf Specifies the output buffer (response buffer with TPSUCCESS), type for

the service.

For native Oracle Tuxedo services, the value can be any Oracle Tuxedo
typed buffer. The following values are Oracle Tuxedo reserved buffer
types:

STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: Thevalueiscase sensitive, if outbuf specifies any buffer type
other than the above mentioned buffer types, the buffer istreated
as a custom buffer type.

For SALT proxy services, the value is aways FML32.

Configuring a SALT Application

Using Oracle Tuxedo Service Metadata Repository for SALT

Table 1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword

SALT Usage

errbuf

Specifies the error buffer type(response buffer with Tpra1L),for the
service.

For native Oracle Tuxedo services, the value can be any Oracle Tuxedo
typed buffer. The following values are Oracle Tuxedo reserved buffer
types:

STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty).

Note: Thevalueiscase sensitive, if errbuf specifiesany buffer type
other than the above mentioned buffer types, the buffer istreated
as a custom buffer type.

For SALT proxy services, the valueis aways FML32.

inview

Specifiestheview name used by the servicefor thefollowing input buffer
types:

VIEW, VIEW32, X _C_TYPE, X COMMON

SALT requires that you specify the view name rather than accept the
default inview setting.

Note: Thiskeyword isfor native Oracle Tuxedo services only.

outview

Specifies the view name used by the service for the following output
buffer types:

VIEW, VIEW32, X_C_TYPE, X_COMMON

SALT requires that you specify the view name rather than accept the
default outview setting.

Note: Thiskeyword isfor native Oracle Tuxedo services only.

errview

Specifiesthe view name used by the service for the following error buffer
types:

VIEW, VIEW32, X _C_TYPE, X_ COMMON

SALT requires that you specify the view name rather than accept the
default errview setting.

Note: Thiskeyword isfor native Oracle Tuxedo services only.

Configuring a SALT Application 5

Configuring a SALT Application

Table 1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword

SALT Usage

inbufschema Specifies external XML Schema el ements associated with the service
input buffer. If thisvalueis specified, SALT incorporates the external
schemain the generated WSDL to replace the default data type mapping
rule for the service input buffer.
Note: Thiskeyword isfor native Oracle Tuxedo services only.
outbufschema Specifies external XML Schema elements associated with the service
output buffer. If thisvalueis specified, SALT incorporates the external
schemain the generated WSDL to replace the default data type mapping
rule for the service output buffer.
Note: Thiskeyword isfor native Oracle Tuxedo services only.
errbufschema Specifies external XML Schema elements associated with the service
error buffer. If thisvalue is specified, SALT incorporates the external
schemain the generated WSDL to replace the default data type mapping
rule for the service error buffer.
Note: Thiskeyword isfor native Oracle Tuxedo services only.
RECORD Oracle Tuxedo RECORD typed buffers can describe COBOL copybook
information.
Generated COBOL types:
« RECORD
« COMP-1
e COMP-2
e S9(18)
e 9(18)
+ S9(9)
« 9(9)
+ S9(4)
e S9(10)V9(10)
e X(1024)
e @binary=true
inrecord Specifies the record name used by the service for the following input

buffer types: RECORD . Oracle SALT requiresthat you specify the record
name rather than accept the default inrecord setting. This keyword isfor
native Tuxedo servicesonly.

Configuring a SALT Application

../prog/datamap.html
../prog/datamap.html

Using Oracle Tuxedo Service Metadata Repository for SALT

Table 1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword SALT Usage

outrecord Specifies the record name used by the service for the following output
buffer types: RECORD. Oracle SALT requiresthat you specify therecord
name rather than accept the default outrecord setting. Thiskeywordisfor
native Tuxedo servicesonly.

errrecord Specifies the record name used by the service for the following error
buffer types. RECORD . Oracle SALT requiresthat you specify the record
name rather than accept the default errrecord setting.

This keyword is for native Tuxedo services only.

Defining Service Parameters for SALT

The Oracle Tuxedo Service Metadata Repository interprets parameters as sub-elements
encapsulated in an Oracle Tuxedo service typed buffer. Each parameter can have its own data
type, occurrences in the buffer, size restrictions, and other Oracle Tuxedo-specific restrictions.
Please note:

e VIEW, VIEW32, X_C_TYPE, OF Xx_coMMON typed buffers
Each parameter of the buffer should represent aview/view32 structure member.
e FML OF FML32 typed buffers

Each buffer parameter should represent an FmL/FML32 field element that may be present in
the buffer.

® STRING, CARRAY, XML, MBSTRING, and x_ocTeT typed buffers

Oracle Tuxedo treats these buffers uniformly. At most, one parameter is permitted for the
buffer to define restrictions (such as buffer size threshol d).

e Custom typed buffers
Parameters that facilitate describing details about the buffer type.

e rM132 typed buffersthat support embedded view32 and Fur32 buffers
Embedded parameters provide support.

e view32 typed buffersthat support embedded view32 buffers
Embedded parameters provide support.

Configuring a SALT Application 7

../prog/datamap.html
../prog/datamap.html

Configuring a SALT Application

Table 2 liststhe Oracle Tuxedo Service Metadata Repository parameter-level keywords used and
interpreted by SALT.

Note: Metadata Repository parameter-level keywords that are not listed have no relevance to
SALT and are ignored when SALT components load the Oracle Tuxedo Service
Metadata Repository.

Table 2 SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service Metadata Repository

Parameter-level Keyword ~ SALT Usage

param Specifies the parameter name.
e VIEW,VIEW32,X_C_TYPE, OF X_COMMON
Specifies the view structure member name in the param keyword.
e FML, FML32
Specifies the FML/FML32 field name in the param keyword.
* STRING, CARRAY, XML, MBSTRING, Of X_OCTET
SALT ignoresthe parameter definitions.

type Specifies the data type of the parameter.

Note: SALT does not support dec_t and ptr datatypes.

subtype Specifies the view structure name if the parameter typeisview32. For
any other typed parameter, SALT ignores this value.

Note: SALT requiresthisvalueif the parameter typeisview32.

This keyword isfor native Oracle Tuxedo service only.

access The general definition applies for this parameter. To support an Oracle
Tuxedo TPFAIL scenario, the access attribute value has been
enhanced.

Origina values: in, out, inout, noaccess.

New added values; err, inerr, outerr, inouterr.

count The general definition applies for this parameter. For SALT, the value
for the count parameter must be greater than or equal to
requiredcount.

requiredcount The general definition applies for this parameter. The default is 1. For

SALT, thevauefor the count parameter must be greater than or equal
t0 requiredcount.

8 Configuring a SALT Application

Using Oracle Tuxedo Service Metadata Repository for SALT

Table 2 SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service Metadata Repository

Parameter-level Keyword

SALT Usage

size

This optional keyword restricts the maximum byte length of the
parameter. It isonly valid for the following parameter types:

STRING, CARRAY, XML, and MBSTRING

If this keyword is not set, there is no maximum byte length restriction
for this parameter.

Thevaluerangeis [0, 2147483647]

paramschema

Specifies the corresponding XML Schema element name of the
parameter. It is generated by the SALT WSDL converter.

This keyword isfor SALT proxy service only. Do not specify this
keyword for native Oracle Tuxedo services.

primetype

Specifies the corresponding XML primitive data type of the parameter.
Itis generated by SALT WSDL converter according to SALT
pre-defined XML-to-Tuxedo data type mapping rules.

This keyword isfor SALT proxy service only. Do not specify this
keyword for native Oracle Tuxedo services.

RECORD

Oracle Tuxedo RECORD typed buffers can describe COBOL copybook
information.

Generated COBOL types:
e RECORD

. COMP-1

e COMP-2

+ 59(18)

+ 9(18)

« S9(9)

« 9(9)

. S9(4)

+ S9(10)V9(10)

e X(1024)

* @binary=true

inheader

Retrieved from the SOAP header portion of the SOAP envelope
message received. M essage can be arequest (native Tuxedo service) or
reply (external web service call).

Configuring a SALT Application 9

../prog/datamap.html

Configuring a SALT Application

Table 2 SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service Metadata Repository

Parameter-level Keyword ~ SALT Usage

outheader Added to the SOAP header portion of the SOAP envel ope message sent.
Message can beareply (native Tuxedo service) or request (external web
service call).

inoutheader Combination of inheader and outheader.This parameter is both
added to and retrieved from the SOAP header portion of the SOAP

message.

Configuring Native Oracle Tuxedo Services

This section describes the required and optional configuration tasks for exposing native Oracle
Tuxedo services as Web services:

e Creating a Native WSDF
e Using WS-Policy Files
e Generating aWSDL File from a Native WSDF

e Using Oracle Tuxedo Version-Based Routing (Inbound)

Creating a Native WSDF

To expose a set of Oracle Tuxedo services as Web services through one or more HTTP/S
endpoints, a native wspr must be defined.

Each native wspr must be defined with a unique wspr name. A wspr can define one or more
<wsBinding> elementsfor more Web service application details (such as SOAP protocol details,
the Oracle Tuxedo service list to be exposed as web service operations, and so on).

This section contains the following topics:
e Defining the SOAP Header
e Configuration Mode
e Defining WSBinding Object
e Defining Service Object

e Configuring Message Conversion Handler

10 Configuring a SALT Application

Configuring Native Oracle Tuxedo Services

Defining the SOAP Header

Themapsoapheader attributeisused to configure SOAP headers. It definesan FML 32 field that
represents the SOAP header. It isTa_ws_soar_HEADER STRING type.

Note: Themapsoapheader atribute It isdefined in wssoapfids.h file shipped with SALT.
Listing 1 shows a SOAP header definition example.

Listing 1 SOAP Header Definition

<Definition ...>
<WSBinding id="simpapp_binding">
<Servicegroup id="simpapp">
<Service name="toupper">
<Property name="mapsoapheader" value="true" />
</Service>

</Servicegroup>

</WSBinding>

</Definition>

The mapsoapheader attribute default valueis"false" which indicates the GWWS does not
execute mapping between the SOAP header and FML fields.

If mapsoapheader iSSet t0 true, the mapping behavior is as follows for inbound and outbound
Services:

e Inbound
For inbound services, the GWWS trand ates the SOAP header as shown in Listing 2.

Listing 2 GWWS Soap Header Translation

<cup:SoapHeader xmlns:cup='http://www.xxx.com/soa/esb/message/1_0"'>

Configuring a SALT Application 11

Configuring a SALT Application

<cup:Head>
<cup:Name>xxx</cup :Name>
<cup:Value>xxx</cup:Value>
</cup:Head>

</cup:SoapHeader>

The string buffer is assigned to the Ta_ws_soapr_uraper field and injects the target
FML32 buffer. If the target buffer type is not FML32, the translation will not take effect.

e Out Bound

For outbound services, the GWWS receives the Ta_ws_soapr_HEADER from the request
buffer and places it in the SOAP header when the SOAP package is composed.

Configuration Mode

Thismoderequiresthe property headerMapping beset to true inthe WSDF entry, at the service
level as shownin Listing 3.

Listing 3 Configuration Mode

<?xml version="1.0" encoding="UTF-8"?>

<wsdf:Definition xmlns:wsdf="http://www.bea.com/Tuxedo/WSDF/2007"
name="TuxAll" wsdlNamespace="urn:TuxAll.wsdl">

<wsdf :WSBinding id="TuxAll_Binding">
<wsdf:Servicegroup id="TuxAll_PortType">
<wsdf:Service name="strmap_val003"/>
<Property name="headerMapping" value="true"/>
</wsdf:Service>
</wsdf:Servicegroup>
<wsdf : SOAP>

<wsdf :AccessingPoints>

12 Configuring a SALT Application

Configuring Native Oracle Tuxedo Services

<wsdf : Endpoint
address="http://localhost:12438/TuxAll"
id="TuxAll_TuxAll_HTTPPort"></wsdf:Endpoint>

<wsdf : Endpoint
address="https://localhost:12448/TuxAll"
id="TuxAll_TuxAll_HTTPSPort"></wsdf:Endpoint>

</wsdf:AccessingPoints>
</wsdf:SOAP>
</wsdf :WSBinding>

</wsdf:Definition>

Defining WSBinding Object

Each WSBinding object is defined using the <wsBinding> element. Each WSBinding object
must be defined with a unique WSBinding id within the wspr. The WSBinding id isarequired
indicator for the sarnTpEPLOY file reference used by the guws.

Each WSBIinding object can be associated with SOAP protocol details by using the <soapr> sub-
element. By default, SOAP 1.1, document /1iteral Styled SOAP messages are applied to the
WSBinding object.

Listing 4 shows how SOAP protocol details are redefined using the <soar> sub-element.

Listing 4 Defining SOAP Protocol Details for a WSBinding

<Definition ...>
<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">
<Service name="toupper" />
<Service name="tolower" />

</Servicegroup>

<SOAP version=”1.2" style="rpc” use="encoded”>
<AccessingPoints>
</AccessingPoints>

</SOAP>

Configuring a SALT Application 13

Configuring a SALT Application

14

</WSBinding>

</Definition>

Within the <soapr> element, a set of access endpoints can be specified. The URL value of these
access endpoints are used by corresponding cwws serversto create the listen HTTP/S protocol
port. It is recommended to specify one HTTP and HTTPS endpoint (at most), for each cwws
server for an inbound WSBinding object.

Each WSBinding object must be defined with a group of Oracle Tuxedo services using the
<Servicegroup> sub-element. Each <service> element under <servicegroup> represents
an Oracle Tuxedo service that can be accessed from a Web service client.

Defining Service Object

Each service object isdefined using the <service> element. Each service must be specified with
the “name” attribute to indicate which Oracle Tuxedo service is exposed. Usualy, the “name”
valueisused asthe key value for obtaining Oracle Tuxedo service contract information from the
Oracle Tuxedo Service Metadata Repository.

Listing 5 shows how a group of services are defined for WSBinding.

Listing 5 Defining a Group of Services for a WSBinding

<Definition ...>
<WSBinding id="simpapp_binding">
<Servicegroup id="simpapp">
<Service name="toupper" />
<Service name="tolower" />

</Servicegroup>

</WSBinding>

</Definition>

Configuring a SALT Application

Configuring Native Oracle Tuxedo Services

Configuring Message Conversion Handler

Y ou can create your own plug-in functions to customize SOAP XML payloads and Oracle
Tuxedo typed buffer conversion routines. For more information, see Using SALT Plug-insin
SALT Programming Web Services and ?$paratext>? on page 33.

Once aplug-inis created and configured, it can be referenced using the <service> element to
specify user-defined data mapping rules for that service. The <Msghandler> element can be
defined at the messagelevel (<Input>, <Output> or <Fault>)tospecify whichimplementation
of “p_cusToM_TyPE" category plug-in should be used to do the message conversion. The
<Msghandler> €lement content is the Plug-in name.

Listing 6 showsaservicethat usesthe “mMBconv” custom plug-in to convert input and “xMr.conv”
custom plug-in to convert output.

Listing 6 Configuring Message Conversion Handler for a Service

<Definition ...>
<WSBinding id="simpapp_binding">
<Servicegroup id="simpapp">
<Service name="toupper" >
<Input>
<Msghandler>MBCONV</Msghandler>
</Input>
<Output>
<Msghandler>XMLCONV</Msghandler>
</Output>
</Service>

</Servicegroup>

</WSBinding>

</Definition>

Using WS-Policy Files
Advanced Web service features can be enabled by configuring WS-Policy files (for example,

Reliable Messaging and Web Service Message-Level Security). Y ou may need to create
WS-Palicy filesto use these features. The Web Service Policy Framework specifications

Configuring a SALT Application 15

../prog/plugin.html
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

Configuring a SALT Application

provides ageneral purpose model and syntax to describe and communicate the policies of aWeb
Service.

To use WS-Policy files, the <policy> element should be defined in the WSDF to incorporate
these separate WS-Policy files. The location attribute isused to specify the policy file path;
both abstract and relative file path are allowed. Theuse attributeis optionally used by
message-level assertion policy files to specify the applied messages, request (input) message,
response (output) message, fault message, or the combination of the three.

There are two different sub-elements in the wspr that reference WS-Palicy files:

® <Servicegroup>>

— If aWS-Policy file consists of Web Service Endpoint-level Assertions (for example,
Reliable Messaging Assertion), the WS-Palicy file appliesto all endpoints serving
the<servicegroup> element

— If aWS-Policy file consists of Web Service Operation-level Assertions (for example,
Security Identity Assertion), the WS-Policy file appliesto all serviceslisted in the
<Servicegroup> €lement.

— If aWS-Policy file consists of Web Service Message level Assertions (for example,
Security SignedParts Assertion), the WS-Policy file appliesto input, output and/or fault
messages of all serviceslisted in the <servicegroup> element.

e Note: SALT only supports request message-level assertions for the current release.
You must only specify use="input” for message=level assertion policy files.

® <Service>

— If aWS-Policy file consists of Web Service Operation-level Assertions (for example,
Security Identity Assertion), the WS-Policy file applies to this particular service.

— If aWS-Policy file consists of Web Service Message-level Assertions, (for example,
Security SignedParts Assertion), the WS-Palicy file applies to input, output and/or fault
messages of this particular service.

e Note: SALT only supports request message-level assertions for the current release.
You must specify use="1input” for message-level assertion policy files.

SALT provides some pre-packaged WS-Policy files for most frequently used cases. These
WS-Palicy filesarelocated under directory $TUXDIR/udataobi/salt/policy. Thesefilescan
be referenced usi Ng location="salt:<policy file_name>".

Listing 7 shows a sample of using WS-Policy Filesin the native wspr file.

16 Configuring a SALT Application

Configuring Native Oracle Tuxedo Services

Listing 7 A Sample of Defining WS-Policy Files in the WSDF File

<Definition ...>
<WSBinding id="simpapp_binding">
<Servicegroup id="simpapp">
<Policy location="./endpoint_policy.xml” />
<Policy location="/usr/resc/all_input_msg policy.xml” use="input” />
<Service name="toupper">
<Policy location="service_policy.xml” />
<Policy location=”/usr/resc/input_message_policy.xml”
use="input” />
</Service>
<Service name="tolower" />

</Servicegroup>

</WSBinding>

</Definition>

For more information, see ?$paratext>? and ?$paratext>".

Generating a WSDL File from a Native WSDF

Once an Oracle Tuxedo native WSDF is created, the corresponding WSDL file can be generated
using the SALT WSDL generation utility, tmwsdlgen. The following example command
generatesa WSDL file named “app1 .wsdl” from agiven wspr named “appl . wsdf”:

tmwsdlgen -c appl.wsdf -o appl.wsdl

Note: Beforeexecuting tmwsdlgen, the TuxcoNFIc environment variable must be set correctly
and the relevant Oracle Tuxedo application using TMMETADATA must be booted.

Y ou can optionally specify the output WSDL file name using the‘ -o’ option. Otherwise,
tmwsdlgen Creates adefault WSDL file named “ tuxedo . wsdl”.

If the native WSDF file contains Oracle Tuxedo servicesthat use carray buffers, you can specify
tmwsdlgen optionsto generate different styled WSDL files for carray buffer mapping. By
default, carray buffers are mapped as xsd :base64Binary XML datatypesin the SOAP
message. For more information, see Data Type Mapping and Conversionsin SALT
Programming Web Services and tmwsdlgen in the SALT Reference Guide.

Configuring a SALT Application 17

../prog/datamap.html
../ref/comref.html#wp1106727

Configuring a SALT Application

18

Using Oracle Tuxedo Version-Based Routing (Inbound)

Using Oracle Tuxedo version-based routing with Oracle Tuxedo services exposed as Web
services involves the following:

o GWWS gets REQUEST_VERSION and VERSION_RANGE from the uBeconF1G file.
e Calling service with request version

o If different settings are needed (such as specific traffic from specific gateway to be routed
to specific services), another gateway instance can be configured in a group with different
REQUEST_VERSION value and started for this.

Listing 8 shows an example where GWWS inherits arequest version 1" from itS UBBCONFIG
settings, and therefore exposes services that are advertised by Oracle Tuxedo application servers
whichinclude"1" intheir vERSTON_RANGE Settings (such as croup1 here). If a service exposed
by GWWSisactually performed by aserver in crour2, theresult isaTpENOENT error forwarded
to the remote Web Services client.

Listing 8 Using Tuxedo Version Based Routing with Tuxedo Services Exposed as Web Services

GROUP1
LMID=L1 GRPNO=2 VERSION_RANGE="1-2"

GROUP2

LMID=L1 GRPNO=2 VERSION_RANGE="3-4"
GWWS_GRP

LMID=L1 GRPNO=3 REQUEST_ VERSION=1

| mySERVER SRVGRP=GROUP2 SRVID=30

GWWS SRVGRP=GWWS_GRP SRVID=30

Configuring External Web Services

Y ou can configure external web service viaSALT web console or manually.

Configuring a SALT Application

Configuring External Web Services

e Web Console SALT Configuration
e Manual SALT Configuration
e Using Oracle Tuxedo Version-Based Routing (Outbound)

Web Console SALT Configuration

A web consoleisaGUI based SALT configuration tool. One of its featuresisto import external
web services by providing aWSDL file.

The WSDL fileis provided as input to the "Import External Web Services' inthe SALT web
console main web page. Theinput file can existslocally from where the web consoleislaunched
or on the server (remote) where the GWWS server is actively running.

The GWWS Server upon receiving the WSDL file usesthewsdlcvt tool to generate the following
files corresponding to their extensionsin the AppDIR directory:

wsdlcvt -y -f -i <input WSDL_file> -o <base_name>
xsD - XML schemafile.
MIF - Metadata repository file.
FML32 - FML32 field tablefile.
wsDF - Non-native WSDF file.

Please note that the user has to just input the WSDL file the above files are generated internally
by the GWWS server without the intervention of the user.
After thefiles are successful generated, the user has to then set the following environment
variablesin the apppIR directory

FLDTBLDIR32

FIELDTBLS32

XSDDIR

XSDFILES

The GWWS server rel oads the Service M etadata Repository and the SALT configuration file
(saLTconFIG) with the new services/operations and Bindings that were imported from the
WSDL file.

The web services that were imported are displayed in the SALT web console main page under
the "Imported Web Services" section. For more information, see.

Configuring a SALT Application 19

Configuring a SALT Application

20

Manual SALT Configuration
e Converting aWSDL File into Oracle Tuxedo Definitions
e Post Conversion Tasks

Converting a WSDL File into Oracle Tuxedo Definitions

SALT providesaWSDL conversion command utility to convert external WSDL filesinto Oracle
Tuxedo definitions. The WSDL fileis converted using Extensible Stylesheet Language
Transformations (XSLT) technology. Apache Xalan Java2.7.0 isbundled in the SALT
installation package and is used as the default XSLT toolkit.

The SALT WSDL converter is composed of two parts:
e Thexd files, which process the WSDL file.

e The command utility, wsdlcvt, invokesthe Xaan toolkit. Thiswrapper script provides a
user friendly WSDL Converter interface.

The following sample command converts an external WSDL file and generates Oracle Tuxedo
definition files.

wsdlcvt -i GoogleSearch.wsdl -o GSearch

Table 3 lists the Oracle Tuxedo definition files generated by SALT WSDL Converter.

Configuring a SALT Application

../ref/comref.html

Configuring External Web Services

Table 3 Tuxedo Definition Files generated by SALT WSDL Converter

Generated File

Description

Oracle Tuxedo Service
Metadata Repository
input file

SALT WSDL Converter converts each wsdl : operation to aOracle
Tuxedo service metadata syntax compliant service called SALT proxy
service. SALT proxy services are advertised by GWiws servers to accept
ATMI calls from Oracle Tuxedo applications.

FML32 field table
definition file

SALT maps each wsdl :message to an Oracle Tuxedo FML32 typed
buffer. The SALT WSDL Converter decomposes XML Schema of each
message and maps each basic XML snippet asan FML32 field. The
generated FML 32 fields are defined in a definition table file, and the field
name equals to the XML element local name by default.

To accessan SALT proxy service, Oracle Tuxedo applications must refer
to the generated FML 32 fields to handle the request and response message.
FML 32 environment variables must be set accordingly so that both Oracle
Tuxedo applications and GWW'S servers can map between field namesand
field identifier values.

Note: Y ou may want to re-define the generated field names due to field
name conflict or some other reason. In that case, both Oracle
Tuxedo Service Metadata Definition input file and FML32 field
table definition file must be changed accordantly. For more
information, see ?$paratext>?.

Non-native WSDF file

SALT WSDL Converter convertsthe WSDL fileinto aWSDF file, which
can be deployed to GWWS serversin the SALT deployment file for
outbound direction. The generated WSDF file is anon-native WSDF file.

Note: Please do not deploy non-native WSDF files for inbound
direction.

XML Schemafiles

WSDL embedded XML Schema and imported XML Schema (XML
Schema content referenced with <xsd : import>) are saved locally as
.xsd files. These files are used by GWWS servers and need to be saved
under the same directory.

Note: New XML Schema environment variables xSDDIR and
XSDFILES must be set accordingly so that GWWS servers can
load these . xsd files.

Configuring a SALT Application 21

Configuring a SALT Application

WSDL-to-Tuxedo Service Metadata Keyword Mapping
Table 4 lists WSDL Element-to-Tuxedo Service Metadata Definition Keyword mapping rules.

Table 4 WSDL Element-to-Tuxedo Service Metadata Definition Mapping

WSDL Element

Corresponding Oracle
Tuxedo Service Metadata

Note

/wsdl:definitions

/wsdl:portType
/wsdl :operation
@name

Definition Keyword

service SALT proxy service name.
Thekeyword value equalsto the operationlocal
name.

tuxservice SALT proxy service advertised namein Oracle

Tuxedo system.

If the wsdl operation local nameislessthan 15
characters, the keyword value equalsto the
operation local name, otherwise the keyword
valueisthefirst 15 characters of the operation
local name.

/wsdl:definitions

/wsdl :portType
/wsdl:operation
/wsdl :input

inbuf=FML32

/wsdl:definitions

/wsdl :portType
/wsdl:operation
/wsdl :output

outbuf=FML32

/wsdl:definitions

/wsdl :portType
/wsdl:operation
/wsdl: fault

errbuf=FML32

WSDL operation messages are always mapped
as Oracle Tuxedo FML 32 buffer types.

Please do not change the buffer type any way.

Note: For moreinformation about wsdl
message and FM L 32 buffer mapping,
see XML-to-Tuxedo Data Type
Mapping for External Web Servicesin
the SALT Programming Web
Services.

WSDL-to-WSDF Mapping
Table 5 lists WSDL Element-to-WSDF Element mapping rules.

22 Configuring a SALT Application

../prog/datamap.html#wp1050031
../prog/datamap.html#wp1050031

Table 5 WSDL Element-to-WSDF Element Mapping

Configuring External Web Services

WSDL Element WSDF Element Note
/wsdl:definitions /Definition Each wsdl:definition mapsto a WSDF
@targetNamespace @wsdlNamespace Definition.
/wsdl:definitions /Definition Eachwsdl : binding object mapsto aWSDF
/wsdl :binding /WSBinding WSBinding element.
/wsdl:definitions /Definition Each wsdl : binding referenced
/wsdl:binding /WSBinding wsdl : portType object mapsto the
@type /Servicegroup Servicegroup element of the corresponding
WSBinding element.
/wsdl:definitions /Definition If namespace prefix “soap” refersto URI
/wsdl :binding /WSBinding “http://schemas.xmlsoap.org/wsdl
/soap:binding /SOAP /soap/”, the SOAP version attribute value is
@version ‘1.1
If namespace prefix “soap” refersto URI
“http://schemas.xmlsoap.org/wsdl
/soapl2/"”, the SOAP version attribute value
is“1.2".
/wsdl:definitions /Definition The WSDF WSBinding SOAP message style
/wsdl:binding /WSBinding setting is equal to the corresponding WSDL
/soap:binding /SOAP soap binding message style setting (“rpc” or
@style @style “document”).
/wsdl:definitions /Definition Each wsdl : operation object mapsto a
/wsdl:binding /WSBinding Service element of the corresponding
/wsdl:operation /Servicegroup WSBinding element.
/Service
/wsdl:definitions /Definition Each soap:address endpoint defined for a
/wsdl :port /WSBinding wsdl :binding object mapsto a Endpoint
/soap:address /SOAP element of the corresponding wSBinding
/AccessingPoints element.
/Endpoint
Post Conversion Tasks

The following post conversion tasks must be performed for configuring outbound Web service

applications:

Configuring a SALT Application 23

Configuring a SALT Application

24

e Resolving Naming Conflict For the Generated SALT Proxy Service Definitions
e L oading the Generated SALT Proxy Service Metadata Definitions
e Setting Environment Variables for GWWS Runtime

Resolving Naming Conflict For the Generated SALT Proxy Service Definitions

When converting aWSDL file, unexpected naming conflicts may arise due to truncation or lost
context information. Before using the generated Service Metadata Definitions and FML32 field
tablefiles, the following potential naming conflicts must be eliminated first.

o Eliminating the duplicated service metadata keyword “ tuxservice” definitions

The keyword tuxservice inthe SALT proxy service metadata definition is the truncated
value of the original Web Service operation local name if the operation name is more than
15 characters.

The truncated tuxservice value may be duplicated for multiple SALT proxy service
entries. Since GWWS server uses tuxservice vValues as the advertised service names, you
must manually resolve the naming conflict among multiple SALT proxy servicesto avoid
uncertain service request delivery. To resolve the naming conflict, you should assign a
unique and meaningful nameto tuxservice.

e Eliminating the duplicated FML 32 field definitions

When converting an external WSDL file into Oracle Tuxedo definitions, each

wsdl :message IS parsed and mapped as an FML 32 buffer format which contains a set of
FML32 fields to represent the basic XML snippets of the wsdl :message. By default, The
generated FML 32 fields are named using the corresponding XML element local names.

The FML32 field definitions in the generated field table file are sorted by field name so
that duplicated names can be found easily. In order to achieve a certain SOAP/FML 32
mapping, the field name conflicts must be resolved. You should modify the generated
duplicated field name with other unique and meaningful FML 32 field name values. The
corresponding Service Metadata Keyword param valuesin the generated SALT proxy
service definition must be modified accordingly. The generated comments of the FML32
fields and Service Metadata Keyword “param” definitions are helpful in locating the
corresponding name and param.

Loading the Generated SALT Proxy Service Metadata Definitions

After potential naming conflicts are resolved, you should load the SALT proxy service metadata
definitions into the Oracle Tuxedo Service Metadata Repository through tmiloadrepos Uutility.
For more information, see tmloadrepos, in the Oracle Tuxedo Command Reference Guide.

Configuring a SALT Application

../../../tuxedo/docs1222/rfcm/index.html

Configuring External Web Services

Setting Environment Variables for GWWS Runtime

Before booting GWWS servers for outbound Web services, the following environment variable
settings must be performed.

e Update FLDTBLDIR32 and FIELDTBLS32 environment variables to add the generated
FML32 field tablefiles.

e Placeall excerpted XML Schemafilesinto one directory. and set the xspprr and
XSDFILES environment variables accordingly.

— The xspp1r and xspFILES environment variables, areintroduced inthe SALT 2.0
release. They are used by the cwws server to load al external XML Schemafiles at run
time. Multiple XML Schema file names should be delimited with comma*,’. For
instance, if you placed XML Schemafiles: a.xsd, b.xsd and c.xsd in directory
/home /user /myxsd, YOu must set environment variable xspprr and xspFILES as
follows before booting the cuws server:

XSDDIR=/home/user/myxsd
XSDFILES=a.xsd,b.xsd, c.xsd

Using Oracle Tuxedo Version-Based Routing (Outbound)

When using Oracle Tuxedo version-based routing with External Web services imported into
Tuxedo using SALT, please note:

*» Since one GWWS instance cannot advertise more than one service with same name, that same
service has to be in adifferent instance.

» Based on the above, the existing mechanism can simply be used; configure multiple GWWS
instances with VERSTON_RANGE in its *GrRouUP settings accordingly.

Listing showsan examplewhere Oracle Tuxedo programs (client or server) call an external Web
service exposed by both GWWS in groups crour2 and GroupP3. Programs using version 1 or 2
are routed to the service exposed by GWWS in croupr2 which may connect to endpoint 1, and
programs using version 3 or 4 arerouted to the service exposed by GWWSin crour3 which may
connect to a different endpoint than GWWS in group2.

Listing 9 Oracle Tuxedo Version-Based Routing with External Web Services

GROUP2
LMID=L1 GRPNO=2 VERSION_RANGE="1-2"

Configuring a SALT Application 25

Configuring a SALT Application

26

GROUP3
LMID=L1 GRPNO=3 REQUEST_VERSION=1 VERSION_RANGE="3-4"

GWWS SRVGRP=GROUP2 SRVID=30

GWWS SRVGRP=GROUP3 SRVID=30

Configuring Multiple Bindings

SALT Inbound Services

The users are allowed to create multiple bindings for the same service group and service
operation. However, it does not alow creating multiple bindings for different service groupsand
operation.

Multiple Bindings can be created for inbound services for the following:

e The users can add endpoint addresses for each of the binding created. Thisis useful when
thereis"http" and "https" needed per service.

e The users can add more than one SOAP attribute values.
— To specify different SOAP versions. For e.g.:. SOAP version 1.1, or 1.2,
— To specify Encoding styles. For e.g.: RPC/encoded or Doc/Literal.
Y ou must use the web console to add multiple bindings.

SALT Outbound Services

The web services that are imported using the WSDL file are outbound services, where a Tuxedo
client can send arequest and receive response from the external web service.

The users for the imported web service can change the value of the end point address viaweb
console and the Policy files. However, the users are not allowed to add any multiple bindings or
add SOAP attributes.

Configuring a SALT Application

Creating the SALT Deployment File

Creating the SALT Deployment File

The SALT Deployment file (sarTpEPLOY) definesa SALT Web service application. The
saLTDEPLOY fileisthe major input for Web service application in the binary sarrconr1c file.

To create a saLTDEPLOY file, do the following steps:
1. Importing the WSDF Files
2. Configuring the GWWS Servers

3. Configuring System-L evel Resources

For more information, see SALT Deployment File Reference in the Oracle SALT Reference
Guide.

Importing the WSDF Files

Y ou should import all your required WSDF filesto the SALT deployment file. Each imported
WSDF file must have a unique WSDF name which is used by the cwws servers to make
deployment associations. Each imported WSDF file must be accessible through the location
specified in the sar.TpEPLOY file.

Listing 10 shows how to import WSDF filesin the sar.TpEPLOY file.

Listing 10 Importing WSDF Files in the SALTDEPLOY File

<Deployment ..>
<WSDF>
<Import location="/home/user/simpapp_wsdf.xml" />
<Import location="/home/user/rmapp_wsdf.xml" />
<Import location="/home/user/google_search.wsdf" />

</WSDF>

</Deployment>

Configuring the GWWS Servers

Each cwws server can be deployed with a group of inbound WSBinding objects and a group of
outbound WSBinding objects defined in the imported WSDF files. Each WSBinding object is

Configuring a SALT Application 27

../ref/deploy.html

Configuring a SALT Application

referenced using attribute “ re f=<wsdf_name>: <WwSBinding id>". For inbound WSBinding
objects, each cwws server must specify at least one access endpoint as an inbound endpoint from
the endpoint list in the WSBinding object. For outbound WSBinding objects, each GWWS server
can specify zero or more access endpoints as outbound endpoints from the endpoint list in the
WSBIinding object.

Listing 11 shows how to configure GWWS servers with both inbound and outbound endpoints.

Listing 11 GWWS Server Defined In the SALTDEPLOY File

<Deployment ..>

<WSGateway>
<GWInstance id="GWWS1">
<Inbound>
<Binding ref="appl:appl_binding">
<Endpoint use="simpapp_ GWWS1l_HTTPPort" />
<Endpoint use="simpapp_ GWWS1l_HTTPSPort" />
</Binding>
</Inbound>
<Outbound>
<Binding ref="app2:app2_binding">
<Endpoint use=" simpapp_GWWS1l_HTTPPort" />
<Endpoint use=" simpapp_GWWS1l_HTTPSPort" />
</Binding>
<Binding ref="app3:app3_binding" />
</Outbound>
</GWInstance>

</WSGateway>

</ Deployment>

Configuring GWWS Server-Level Properties

The GWWS server can be configured with properties that can switch feature on/off or set an
argument to tune server performance.

28 Configuring a SALT Application

Creating the SALT Deployment File

Properties are configured in the <GwInstance> child element <Properties>. Each individual

property is defined by using the <property> element which containsa“name” attribute and a
“value” attribute). Different “name” attributesrepresent different property elementsthat contain
avaue. Table 6 lists GWWS server-level properties.

Table 6 GWWS Server-Level Properties

Property Name Description Value Range Default
enableMultiEncoding Switch on/off the SOAP message “true”|“false” “false”
multiple encoding support on/off.
max_backlog Specifies socket backlog control value. [1, 255] 20
max_content_length Specifiesthe maximum alowed [0, 1G] (byte) 0
incoming HTTP message content length. (can et (means no
suffix limit)
‘M’ ,'G’, e.g.
1.5M, 0.2G)
thread_pool_size Specifiesthe GWWS server thread pool [1, 1024] 16
size.
timeout Specifies the network timeout in [1, 65535] 300
seconds. (unit:sec)
wsrm_acktime Specifies the Reliable Messaging “"NETRECV” | “NETRECV”
Acknowledgement message reply “RPLYRECV”

policy. GWWS servers support replying
acknowledgement messages either after
receiving the SOAP request from
network immediately or after the Oracle
Tuxedo service returns the response

message.

Note: For more information, see ?$paratext>2.

For more information, see “ Tuning the GWWS Server” in Administering SALT at

Runtime.

Listing 12 shows an example of how GWWS properties are configured.

Configuring a SALT Application 29

../admin/admin.html

Configuring a SALT Application

Listing 12 Configuring GWWS Server Properties

<Deployment ..>

<WSGateway>
<GWInstance i1d="GWWS1">
<Properties>
<Property name="thread pool_size" value="20"/>
<Property name="enableMultiEncoding" value="true"/>
<Property name="timeout" value="600"/>
</Properties>
</GWInstance>
</WSGateway>

</ Deployment>

Configuring Multiple Encoding Support

SALT supports multiple encoding SOA P messages and the encoding mappings between SOAP
message and Oracle Tuxedo buffer. SALT supports the following character encoding:

ASCII, BIG5, CP1250, CP1251, CP1252, CP1253, CP1254, CP1255, CP1256,
CpP1257, CP1258, CP850, CP862, CP866, CP874, EUC-CN, EUC-JP, EUC-KR,
GB18030, GB2312, GBK, IS0-2022-JP, ISO-8859-1, IS0O-8859-13,
IS0-8859-15, IS0O-8859-2, IS0O-8859-3, IS0O-8859-4, IS0O-8859-5,
I50-8859-6, ISO-8859-7, ISO-8859-8, IS0-8859-9, JOHAB, KOIS8-R,
SHIFT_JIS, TIS-620, UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF-32BE,
UTF-32LE, UTF-7, UTF-8

To enable the GWWS multiple encoding support, GWWS server-level
“enableMultiEncoding” property should be set to “true” asshownin Listing 13.

Note: GWWSinternally converts non UTF-8 external messagesinto UTF-8. However,
encoding conversion hurtsserver performance. By default, encoding conversionisturned
off and messages that are not UTF-8 encoded are rejected.

30 Configuring a SALT Application

Creating the SALT Deployment File

Listing 13 Configuring GWWS Server Multiple Encoding Property

<Deployment ..>

<WSGateway>

<GWInstance id="GWWS1l">

<Properties>

<Property name="enableMultiEncoding" value="true"/>

</Properties>

</GWInstance>

</WSGateway>

</ Deployment>

Table 7 explains the detailed SOAP message and Oracle Tuxedo buffer encoding mapping rules
if the GWWS server level multiple encoding switch is turned on.

Table 7 SALT Message Encoding Mapping Rules

Mapping from ... Mapping to ... Encoding Mapping Rule
SOAP/XML Oracle Tuxedo Typed string/mbstring/xml buffer or field
Buffer character encoding equals to SOAP xml
encoding.

STRING Typed Buffer SOAP/XML GWWS setsthetarget SOAP messagein UTF-8
encoding, and assumes the original STRING
buffer contains only UTF-8 encoding
characters.

Note: Oracle Tuxedo Developers must
ensure the STRING characters are
UTF -8 encoded.
MBSTRING/XML Typed SOAP/XML SOAP xml encoding equalsto

Buffer

MBSTRING/XML encoding.

Configuring a SALT Application

31

Configuring a SALT Application

Table 7 SALT Message Encoding Mapping Rules

Mapping from ... Mapping to ... Encoding Mapping Rule

FML/32, VIEW/32 Typed SOAP/XML SOAP xml encoding is set to FLD_MBSTRING
Buffer that containing the encoding, the original Typed buffer field
same encoding setting for characters are not changed in the SOAP
multiple FLD_MBSTRING message.

fields

Note: Oracle Tuxedo Devel opers must
ensurethe FLD_STRING charactersin
the same buffer are consistent.

FML/32, VIEW/32 Typed SOAP/XML SOAP xml encoding is set to UTF-8, the
Buffer that containing the original Typed buffer FLD_MBSTRING field
different encoding for charactersin other encoding are converted into
multiple FLD_MBSTRING UTF-8 in the SOAP message.

fields

Note: Oracle Tuxedo Devel opers must
ensurethe FLD_STRING charactersin
the same buffer are UTF-8 encoded.

Configuring System-Level Resources
SALT defines aset of global resources shared by al cuwws serversinthe sarTpepLoy file. The
following system-level resources can be configured in the sarnTpEPLOY fil€:

o Certificates

e Plug-inload libraries

Configuring Certificates

Certificate information must be configured in order for the cwws server to create an SSL listen
endpoint, or to use X.509 certificates for authentication and/or message signature. All cuws
servers defined in the same deployment file shares the same certificate settings, including the
private key file, trusted certificate directory, and so on.

The private key fileis configured using the <certificate>/<PrivateKey> sub-element. The
private key file must be in PEM file format and stored locally. SSL clients can optionally be
verified if the <certificate>/<VerifyClient> Sub-element isset to true.

Note: By default, the cwws server does not verify SSL clients.

32 Configuring a SALT Application

Creating the SALT Deployment File

If SSL clients are to be verified, and/or the X.509 certificate authentication feature is enabled, a
set of trusted certificates must be stored locally and located by the cwws server. There are two
ways to define cwws server trusted certificates:

1. Includeal certificatesin one PEM format file and define the file path using the
<<Certificate>/<TrustedCert> Sub-element.

2. Saveseparatecertificate PEM format filesin one directory and definethe directory path using
the <<certificate>/<CertPath> sub-element.

Note: The"cn" attribute of adistinguished nameis used as a key for certificate lookup.
Wildcards used in a name are not supported. Empty subject fields are not allowed. This
limitation is aso found in Oracle Tuxedo.

Listing 14 showsa saLTpePLOY file segment configuring cwws server certificates.

Listing 14 Configuring Certificates In the SALTDEPLOY File

<Deployment ..>

<System>
<Certificates>
<PrivateKey>/home/user/gwws_cert.pem</PrivateKey>
<VerifyClient>true</VerifyClient>
<CertPath>/home/user/trusted_cert</CertPath>
</Certificates>
</System>
</Deployment

Configuring Plug-in Libraries

A plug-inisaset of functionsthat are called when the ewws server isrunning. SALT providesa
plug-in framework as a common interface for defining and implementing plug-ins. Plug-in
implementation is carried out through a dynamic library that contains the actual function code.
Theimplementation library can beloaded dynamically during cwws server start up. Thefunctions
are registered as the implementation of the plug-in interface.

In order for the cwws server to load the library, the library must be specified using the
<Plugin>/<Interface> element in the saLTDEPLOY file.

Configuring a SALT Application 33

Configuring a SALT Application

Listing 15 shows a saL.TpEPLOY file segment configuring multiple customized plug-in libraries
to be loaded by the cwws servers.

Listing 15 Configuring Plug-in Libraries In the SALTDEPLOY File

<Deployment ..>

<System>
<Plugin>
<Interface lib=”plugin l.so0o” />
<Interface lib="plugin 2.s0” />
</Plugin>
</System>
</Deployment

Note: If the plug-in library is developed using the SALT 2.0 plug-in interface, the“ia” and
“name” attributes for the interface do not need to be specified. These values can be
obtained through plug-in interfaces.

For moreinformation, see Using Plug-inswith SALT in Oracle SALT Programming with
Web Services.

Configuring Advanced Web Service Messaging Features
SALT currently supports the following advanced Web Service Messaging features:

e Web Service Addressing

Supports both inbound and outbound asynchronous Web service messaging.
e Web Service Reliable Messaging

Supports inbound Web Service reliable message delivery.

e Message Transmission Optimization Mechanism (MTOM)

Supports binary attachment in native and external web services.

34 Configuring a SALT Application

../prog/plugin.html

Configuring Advanced Web Service Messaging Features

Web Service Addressing

SALT supports Web service addressing for both inbound and outbound services. The Web
service addressing (WS-Addressing) messages used by the cwws server must comply with the
Web Service Addressing standard (W3C Member Submission 10 August 2004).

Inbound services do not require specific Web service addressing configuration. The cwws server
accepts and responds accordingly to both WS-Addressing request messages and non
WS-Addressing request messages.

Outbound services require Web service addressing configuration as described in the following
sections:
e Configuring the Addressing Endpoint for Outbound Services

e Disabling WS-Addressing

Configuring the Addressing Endpoint for Outbound Services

For outbound services, Web service addressing is configured at the Web service binding level. In
the sar.TpEPLOY file, each cwws server can specify a WS-Addressing endpoint by using the
<wsaddressing> element for any referenced outbound WSBinding object to enable
WS-Addressing.

Oncethe WS-Addressing endpoint is configured, the cwws server createsalisten endpoint at start
up. All services defined in the outbound WSBinding areinvoked with WS-Addressing messages.

Listing 16 showsasaLTDEPLOY file segment enabling WS-Addressing for areferenced outbound
Web service binding.

Listing 16 WS-Addressing Endpoint Defined for Outbound Web Service Binding

<Deployment ..>

<WSGateway>
<GWInstance id="GWWS1l">

<Outbound>
<Binding ref="appl:appl_binding">
<WSAddressing>
<Endpoint address="https://myhost:8801/appl_async_point”
tlsversion=TLSv1l.2>

Configuring a SALT Application 35

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

Configuring a SALT Application

</WSAddressing>

<Endpoint use=" simpapp_GWWS1l_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />
</Binding>
<Binding ref="app2:app2_binding">

<WSAddressing>

<Endpoint address="https://myhost:8802/app2_ async_point”
tlsversion=TLSv1l.2>

</WSAddressing>

<Endpoint use=" simpapp_GWWS1l_HTTPPort" />

<Endpoint use=" simpapp_GWWS1l_HTTPSPort" />
</Binding>

</Outbound>

</GWInstance>

</WSGateway>

</ Deployment>

Notes: Inacwws server, each outbound Web Service binding can be associated with a particul ar
WS-Addressing endpoint address. These endpoints can be defined with the same
hostname and port number, but the context path portion of the endpoint addresses must
be different.

If the external Web service binding does not support WS-Addressing messages,
configuring Addressing endpoints may result in run time failure.

Theattribute t1sversion specifiesthe TLS version used in an SSL network connection.
GWWS endpoint uses TLS 1.2 by default. When it connects to an edlier release Tuxedo
application which supports TLS 1.0 only, you need to configure the attribute to TLS 1.0.
For more information, refer to TLS Version Negotiation and Configuration.

Disabling WS-Addressing

If you create aWS-Addressing endpoint in the sar.TpEPLOY fileor not, you can explicitly disable
the Addressing capability for particular outbound servicesin the WSDF. To disable the
Addressing capability for a particular outbound service, you should use the property name
“disableWSAddressing” Withavaluesetto“true” inthecorresponding <services> definition
in the WSDF file. This property has no impact on any inbound services.

36 Configuring a SALT Application

../../../tuxedo/docs1222/sec/secovr.html#wp1302129

Configuring Advanced Web Service Messaging Features

Listing 17 shows WSDF file segment disabling Addressing capability.

Listing 17 Disabling Service-Level WS-Addressing

<Definition ...>
<WSBinding id="simpapp_binding">
<Servicegroup id="simpapp">
<Service name="toupper">
<Property name="disableWSAddressing" value="true” />
</Service>
<Service name="tolower" />

</Servicegroup>

</WSBinding>

</Definition>

Web Service Reliable Messaging

SALT currently supports Reliable Messaging for inbound services only. To enable Reliable
Messaging functionality, you must create a Web Service Reliable Messaging policy file and
include the policy filein the WSDF. The policy file must comply with the
WS-ReliableMessaging Policy Assertion Specification (February 2005).

Note: A WSDF containing a Reliable Messaging policy definition should be used by the cuws
server for inbound direction only.

Creating the Reliable Messaging Policy File

A Reliable Messaging Policy fileisageneral WS-Palicy file containing WS-ReliableM essaging
Assertions. The WS-ReliableM essaging Assertion isan XML segment that describes features
such as the version of the supported WS-ReliableM essage specification, the source endpoint’s
retransmission interval, the destination endpoint’s acknowledge interval, and so on.

For more information, see the SALT WS-ReliableMessaging Policy Assertion Reference in the
SALT Reference Guide.

Listing 18 shows a Reliable Messaging policy file example.

Configuring a SALT Application 37

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
../ref/rm_assert.html

Configuring a SALT Application

Listing 18 Reliable Messaging Policy File Example

<?xml version="1.0"?>
<wsp:Policy wsp:Name="ReliableSomeServicePolicy"
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy”
xmlns:beapolicy="http://www.bea.com/wsrm/policy">
<wsrm:RMAssertion>
<wsrm:InactivityTimeout Milliseconds="600000" />
<wsrm:AcknowledgementInterval Milliseconds="2000" />
<wsrm:BaseRetransmissionInterval Milliseconds="500"/>
<wsrm: ExponentialBackoff />
<beapolicy:Expires Expires="P1D" />
<beapolicy:Q0S QOS="ExactlyOnce InOrder" />
</wsrm:RMAssertion>

</wsp:Policy>

Specifying the Reliable Messaging Policy File in the WSDF File

Y ou must reference the WS-ReliableM essaging policy file at the <servicegroup> level in the
native WSDF file. Listing 19 shows how to reference the WS-ReliableMessaging policy file.

Listing 19 Reference the WS-ReliableMessaging Policy At the Endpoint Level

<Definition ...>
<WSBinding ...>
<Servicegroup ...>

<Policy location=”"RMPolicy.xml” />

<Service ... />
<Service ... />
</Servicegroup ...>
</WSBinding>
</Definition>

38 Configuring a SALT Application

Configuring Security Features

Note: Reliable Messaging in SALT does not support process/system failure scenarios, which
means SALT does not store the message in a persistent storage area. SALT worksin a
direct mode with the SOAP client. Usually, system failure recovery requires business
logic synchronization between the client and server.

Message Transmission Optimization Mechanism (MTOM)

SALT supports binary attachments for CARRAY typed buffers or CARRAY fieldsin fielded
buffers (VIEW, VIEW32, FML or FML32). By default binary buffers/fiel ds are base64 encoded.
Asshownin Listing 20, in order to enable MTOM the configuration must be added to a service
or service group in aWSDF file.

Listing 20 <Policy location="salt:ws-mtom.xml"/>

<Definition ...>
<WSBinding id="simpapp_binding">
<Servicegroup id="simpapp">
<Service name="toupper">
<Policy location="salt:ws-mtom.xml"/>
</Service>
<Service name="tolower" />

</Servicegroup>

</WSBinding>

</Definition>

Configuring Security Features

SALT provides security support at both the transport level and SOAP message level. The
following topics explains how to configure security features for each level:

e Configuring Transport-Level Security

Configuring a SALT Application 39

Configuring a SALT Application

40

e Configuring Message-L evel Web Service Security
e Configuring SAML Single Sign-On
e Configuring X.509-Based Authentication

Configuring Transport-Level Security

SALT provides point-to-point security using SSL link-level security and supports HTTP basic
authentication mechanisms for both inbound and outbound service authentication.

Setting Up SSL Link-Level Security

To set up link-level security using SSL at inbound endpoints, you can simply specify the endpoint
address with prefix “nttps://". The cuws server who uses this inbound endpoint creates SSL
listen port and make SSL secured connections with Web Service Clients. SSL features need to
specify certificates settings. For more information, see ?$paratext>?.

The GWWS server automatically creates SSL secured connection to outbound endpointsthat are
published with URLs that having prefix “https://”".

Configuring Inbound HTTP Basic Authentication

SALT depends on the Oracle Tuxedo security framework for Web Service client authentication.
Thereisno special SALT configuration required to enableinbound HTTP Basic Authentication.
If the Oracle Tuxedo system requires user credentials, HTTP Basic Authentication is an
alternative for Web Service client programs to carry user credentials.

The cwws gateway supports Oracle Tuxedo domain security configuration for the following two
authentication patterns:

e Application password (app_pw)

e User-level authentication (USER_AUTH)

The cuws server passes the following string from the HTTP header of the client SOAP request
for Oracle Tuxedo authentication.

Authorization: Basic <base64Binary of username:password>
Thefollowing is an example of a string from the HTTP header:
Authorization: Basic QWxhZGRpbjpvcGVUIHN1c2FtZQ==

In this example, the client sends the Oracle Tuxedo username “Aladdin” and the password
“open sesame”, and uses this paired value for Oracle Tuxedo authentication.

Configuring a SALT Application

Configuring Security Features

e Using Application Password (app_prw)

If Oracle Tuxedo uses arp_pw, then the HTTP username value isignored and the cuis
server only uses the password string as the Oracle Tuxedo application password to check
the authentication.

e Using User-level Authentication (USER_AUTH)

If Oracle Tuxedo uses User_auUTH, then both the HTTP username and password value are
used. In this case, the cwws server does not check the Oracle Tuxedo application password.

Configuring Outbound HTTP Basic Authentication

SALT supports authentication plug-in development to prepare user credentials for outbound
HTTP Basic Authentication. Outbound HTTP Basic Authentication is configured at
Endpoint-level. If an outbound Endpoint requires a user profile in the HTTP message, you must
specify the HTTP Realm for the HTTP endpoint in the WSDF file. The cwws server invokes the
authentication plug-in library to prepare usernames and passwords, and sendsthem using HTTP
Basic Authentication mechanism in the request message.

Listing 21 shows how to enable HTTP Basic Authentication for the outbound endpoints.

Listing 21 Enabling HTTP Basic Authentication For the Outbound Endpoint

<Definition ...>
<WSBinding id="simpapp_binding">
<SOAP>
<AccessingPoints>
<Endpoint id=”...” address="...">
<Realm>SIMP_REALM</Realm>
</Endpoint>
</AccessingPoints>
</SOAP>

<Servicegroup id="simpapp">
</Servicegroup>
</WSBinding>

</Definition>

Configuring a SALT Application 41

Configuring a SALT Application

42

Once a service request is sent to an outbound endpoint using <rea1m> element, the cwws server
passes the Oracle Tuxedo client uid and gid to the authentication plug-in function, so that the
plug-in can determine HT TP Basic Authentication username /password according to the Oracle
Tuxedo client information. To obtain Oracle Tuxedo client uid / gid for HTTP basic
authentication username/password mapping, Oracle Tuxedo security level may also need to be
configured in the useconr1c file. For more information, see ?$paratext>? and “ Programming
Outbound Authentication Plug-ins’ in the SALT Programming Web Services.

Configuring Message-Level Web Service Security

SALT supports Web Service Security 1.0 and 1.1 specification for message level security. You
can use message-level security in SALT to assure:

e Authentication, by requiring username or X.509 tokens
e |nbound request message integrity, by requiring the soap body signature

Main Use Cases of Web Service Security

SALT implementation of the Web Service Security: SOAP Message Security specification
supports the following use cases:

e Include atoken (username, or X.509) in the SOAP message for authentication.
e Include atoken (X.509) and the soap body signature in the SOAP message for integrity.
Using WS-Security Policy Files

SALT includes anumber of WS-Security Policy 1.0 and 1.2 files you can use for message level
Security use cases.

The WS-Policy files can be found at $TuxDIR/udataobi/salt/policy Onceyou have
successfully installed SALT.

Table 8 lists the default WS-Security Policy filesbundled by SALT.

Configuring a SALT Application

../prog/plugin.html

Configuring Security Features

Table 8 WS-Security Policy Files Provided By SALT

File Name

Purpose

wsspl.O-username-au
th.xml

WS-Security Policy 1.0. Plain Text Username Token for Service
Authentication

wsspl.0-x509v3-auth
.xml

WS-Security Policy 1.0. X.509 V3 Certificate Token for Service
Authentication

wsspl.O-signbody.xm
1

WS-Security Policy 1.0. Signature on SOAP : Body for verification of
X.509 Certificate Token

wsspl.2-Wssl.0-User
nameToken-plain-aut
h.xml

WS-Security Policy 1.2. Plain Text Username Token for Service
Authentication

wsspl.2-Wssl.1-X509
V3-auth.xml

WS-Security Policy 1.2. X.509 V3 Certificate Token for Service
Authentication

wsspl.2-signbody.xm
1

WS-Security Policy 1.2. Signature on SOAP : Body for verification of
X.509 Certificate Token

The above policy files (with the exception of the WS-Security Policy 1.2 userToken fil€), can
bereferenced using<servicegroup> Or <service> elementsin the nativewspr file. The WSSP
1.2 userToken file can only be referenced using<servicegroup>.

Listing 22 shows a combination of policy assignment making that the service *TouPPER”
requiresclient send ausernameToken (in plain text format) and an X509v3Token in request, and
also requires the soar : Body part of message to be signed with the X.509 token. The sample
“wsseapp” Shows how to clip the WSSP 1.2 userToken file used in the <service> element.

Listing 22 WS-Security Policy Usage

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Policy location="salt:wsspl.2-Wssl.1l-X509V3-auth.xml"/>

<Service name="TOUPPER" >

Configuring a SALT Application 43

Configuring a SALT Application

<Policy location="D:/wsseapp/wsspl.2-UsernameToken-Plain.xml"/>
<Policy location="salt:wsspl.2-signbody.xml" use="input"/>
</Service>

</Servicegroup>

</WSBinding>

</Definition>

Policy isreferred using the “1ocation” attribute of the <po1icy> element. A prefix “salt:”
means an SALT default bundled policy fileis used. User-defined policy file can be used by
directly specifying the file path.

Notes: If apolicy isreferred at the <servicegroup> level, it appliesto all servicesin this
service group.

The “signbody” policy must be used with the attribute “use” set as“input”, which
specifies the policy applied only for input message. Thisis necessary because the
SOAP: Body Of the output message is not signed.

Configuring SAML Single Sign-On

SALT supports SAML 1.1 and SAML 2.0 Single Sign-On (SSO). Y ou can use Single Sign-On
to process a secure incoming request by performing authentication on behalf of the end user,
without having to request their credentials.

The SALT implementation of SAML SSO supports the sender-vouches confirmation method.
With this method, SALT represents a back-end system, and a Web Service intermediary sits
between the back-end and the end user. In this case, the Web Serviceintermediary "vouches' for
the end user using SAML token mechanisms.

Note: Inorder to use SAML SSO, make sure you have correctly configured the
<Certificates> element inthe saLTDEPLOY file.

e Transport Protection

e SAML Key File

44 Configuring a SALT Application

Configuring Security Features

Transport Protection

Although it is not required to use TLS/SSL as atransport to carry an SAML security token to
access Oracle Tuxedo through GWWS, it isrecommended that the Web Serviceintermediary use
TLS/SSL to access Oracle Tuxedo through GWWS using an SAML security token. The use of
TLS/SSL ensuresthe SOA P message content from being disclosed or modified without detection
Thisis particularly important when accessing Oracle Tuxedo services through awide area
network outside of afirewall.

SAML Key File

The public key certificate of trusted SAML assertion issuers must be located in the SAPPDIR
directory. These certificates must be in PEM format. The name of the certificate must reflect the
issuer name. For instance, if theissuer id is "ws_1" then the certificate name should be

ws_1.pem.

However, for long issuer namesthekey file providesthe ability to correlate between thereal issue
name and its local reference name so that the peM file name can be much more concise but still
remain useful to the administrator.

For example, if the assertion issuer nameisweb. abc . com/saml/authenticator, thenthe pEM
file name for its public key certificate can be called "abc . pem"” instead of

"www .abc.com/saml/authenticator.pem".

Thisisespecialy useful wheninaUNIX environment wherethe "/" symbol also works as a path
separator. Thistranglation is required when confusion like this may arise.

Thekey filenameisfixedto "saml_key.meta". It should be located in the same file folder
specified by "certpath". Thisfile should be protected by thefile system and isin XML format.

This section contains the following topics:
e Key File Format

File Information

GWWS Key

Assertion Issuer Information

Key File Generation

Procedure to Manage Key File

WS-Policy Files

Configuring a SALT Application 45

Configuring a SALT Application

46

e Mapping SAML Elements with Oracle Tuxedo Security

Key File Format
Thekey fileisan XML file. There are three types of information stored in thisfile:

file information, GWWS key, and issuer information.

Note: Y ou should not modify this file manually since thiswill cause the file to fail integrity
checking.

File Information

Thefileinformation section contains the version number of thetool generated thisfile, arandom
key, administrative password, and digital signature.

GWWS Key

This GWWS key section contains one GWWS symmetric key. There can be only one symmetric
configured for GWWSto simplify the validation task. Thiskey isencrypted with obfuscated key.
This section is optional and is missing if no GWWS symmetric key is configured.

In MP configuration with multiple GWWS on different machine nodes, this file needsto be
replicated on each node; however, if adifferent GWWSkey isdesired, then asimilar key file but
with a different GWWS key record can be copied to a different node.

Assertion Issuer Information

This section contains multiple records, one for each trusted assertion issuer. It contains issuer
identifier, local issuer identifier, symmetric key, and whether a public key certificate also exists
or not.

Theissuer identifier isthe value presented in the "issuer" attribute of "<saml :Assertion>"
element in the WSSE security header.

Thelocal issuer identifier isthe abbreviated namefor the issuer. The purposeisto make any long
issuer identifier become shorter and easier to memorize, but still remain locally unique. Thisdata
isoptional; if it exists and a certificate also exists, then the certificate must take the name of this
local issuer identifier with 'pem asfile extension.

The symmetric key isthe shared secret that issuer used to sign the assertion. Thisdataisoptional.
The length of the key also dictates which algorithm can be used for signing.

The public key certificate existsfield tells whether a public key certificate exists. If it exists, the
certificate should be located in the folder specified by the "certprath" element. Thisfield can
be true while the symmetric key field also exists. At runtime, GWWS detects which key to useto
validate the signature.

Configuring a SALT Application

Configuring Security Features

Key File Generation

A new command is added to wsadmin to manage the key file. This new command is used to
generate new key file, add new record, delete existing record, and modify record. The name of
thefileit managed is "saml_key.meta" in the current working directory.

To create the key file issues the following wsadmin command:

saml create -p password

Wherethe"-p password" isfor the administrative password to access the newly created key
file. A key filewith name"saml_key.meta" is created in the current working directory.

To add atrusted issuer, input the following command:
saml add -i -n authority.abc.com -1 abc -c -p password

Where"-i" tellsit to add an issuer with name "authority.abc.com" with short local reference
name "abc" and the access password to access the key file. Thekey file saml_key.meta" must
exist in current working directory. Since "-c option is given, apublic key certificate named
"abc.pem" Must exist inthe "certpath".

For more information, see wsadmin the SALT Command Reference.

Procedure to Manage Key File

Thefollowing procedure describesa SALT administrator setting up GWWSto be ableto handle
SAML assertion for thefirst time.

Change directory to $appp1R and start wsadmin.
Use"saml create" command to create the key file.

Use"saml add -g" command to add GWWS record.

E N

Use"saml add -i" command to add trusted assertion issuer record for every trusted
assertion issuer.

5. Copy thefile "saml_key.meta" to the directory described in the SALT deployment
descriptor file "certpath" element under "Certificate".

6. Change directory to Oracle Tuxedo application domain, and use " tmboot -y" to boot the
Oracle Tuxedo application domain.

In MP mode configuration, it is possible to have a different GWWS record in the key file for a
different GWWSinstance. The following procedure createsthe key filefor aGWWSinstance on
adifferent node.

Configuring a SALT Application 47

../ref/comref.html

Configuring a SALT Application

Copy the original key file to different directory or machine.
Use "saml delete -g" to delete existing GWWS record.

Use "saml add -g" to add adifferent GWWS record.

A wobdp R

Boot Oracle Tuxedo.

WS-Policy Files
SALT includes anumber of WS-Policy filesthat you can use for configuring servicesfor SAML
SSO aslistedin Table 9

Table 9 SAML SSO Policy Files

File Name Purpose
Wsspl.2-2007-Saml1.1-SenderV ouches-Https.xml SAML 1.1 support (with SSL)
Wsspl.2-2007-Saml 2.0-SenderV ouches-Https.xml SAML 2.0 support (with SSL)
Wsspl.2-2007-Saml1.1-SenderV ouches.xml SAML 1.1 support (without SSL)
Wsspl.2-2007-Saml 2.0-SenderV ouches.xml SAML 2.0 support (without SSL)

The above files can be referenced at the <serviceGroup> Or <Service> level inthe native
WSDFfile.

Thispolicy may be combined with other WS-Security policies (such asinbound body signature).
For more information, see Configuring Message-Level Web Service Security.

For example, Listing 23 shows the SAML 1.1 policy file with supported capabilities outlined.

Listing 23 SAML 1.1 Policy File

<?xml version="1.0"?>

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:sp="http://docs.ocasis-open.org/ws-sx/ws-securitypolicy/200702">
<sp:AsymmetricBinding>

<wsp:Policy>

<sp:InitiatorToken>

48 Configuring a SALT Application

Configuring Security Features

<wsp:Policy>
<sp:X509Tokensp: IncludeToken="http://docs.ocasis-open.org/ws-
sx/ws-securitypolicy/200512/IncludeToken/Always">
<wsp:Policy>
<sp:WssX509V3Tokenl0/>
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:InitiatorToken>
<sp:RecipientToken>
<wsp:Policy>
<sp:X509Token
sp:IncludeToken="http://docs.ocasis-open.org/ws-sx/ws-securitypolicy/200512
/IncludeToken/Never">
<wsp:Policy>
<sp:WssX509V3Tokenl0/>
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:RecipientToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>
</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>
<sp:Lax/>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
<sp:ProtectTokens/>
</wsp:Policy>
</sp:AsymmetricBinding>
<sp:SignedSupportingTokens>
<wsp:Policy>
<sp:SamlToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

Configuring a SALT Application 49

Configuring a SALT Application

/IncludeToken/AlwaysToRecipient">
<wsp:Policy>
<sp:WssSamlV11lTokenl0/>
</wsp:Policy>
</sp:SamlToken>
</wsp:Policy>
</sp:SignedSupportingTokens>

</wsp:Policy>

Mapping SAML Elements with Oracle Tuxedo Security
Table 10 lists what optional SAML assertion elements must present.

Table 10 Optional SAML Assertion Elements

Oracle Tuxedo Security and SAML Assertion Correspondence

Oracle Tuxedo SECURITY Additional SAML Assertion Access Principal

Level Elements Required

NONE None Anonymous, Subject/NamelD
APP_PW None Anonymous, Subject/NamelD
USER_PW Subject Subject/NamelD

ACL Subject Subject/Namel D
MANDATORY_ACL Subject Subject/Namel D

InNoNE and App_pw cases, if the optional element "subject" exists, then "NameID" isusedto
access Oracle Tuxedo. If the optional element "subject" doesnot exist, then the client assumes
anonymous user identity to access Oracle Tuxedo. If the anonymous accessis not alowed (i.e.
no credential mapping for anonymous), then the request fails.

If the samL assertion does not contain a "subject" element and Tuxedo securITY level is
configured at USER_PW, ACL, OF MANDATORY_ACL, then the request is rejected.

50 Configuring a SALT Application

Configuring Security Features

Configuring X.509-Based Authentication

A X.509 V3 public key certificate isrequired for X.509 based authentication for an outbound
GWWS SOAP message. The public key certificate used for this purpose can be configured as
either one certificate for al the requests targeted for the same Web Service or per request
invocation if Tuxedo SECURITY isset at USER_AUTH or higher. Inthelater case, the
certificate must have the same name as the Tuxedo user identification or the mapped remote user
name if identity mapping plug-inisinstalled.

The configured X.509 public key certificate will be used for:
1. Mutual Authentication for Transport Layer security (i.e., SSL/TLS).

2. Message signing.

3. Part of the SOAP message that can be used to authenticate user at message-level (as oppose
to transport layer).

Whether all 3 taskswill be performed or only partial of the 3 tasks depends on the WS policy used
by the Web Service.

Since message encryption will not be supported asit is not required it is recommended to use
SSL/TLS asthe preferred transport mechanism to protect the integrity and privacy of the
message. The X.509 Public Key certificate used for SSL/TL S can be different from the one used
for signing depends on how user configureit.

When GWWS received arequest from client it will process the message, optionally it will sign
the message and attach the certificate as the binary security token to the SOAP request message
if WS policy requiresit; and then send the request to remote Web Service through SSL/TLS.
Depends on the WS policy this SSL/TL S connection can be either one-way or two-way SSL.

During the SSL/TLS connection establishing process the application server will validate the
client certificate if the connection istwo-way SSL; and forward the request to Web Service.

When Web Servicereceived therequest it will validate the certificate, verify the signatureif Web
Servicerequiresit. If the request isgood it will send reply back. The reply send back by Web
Service may be also signed depends on WS policy.

When GWWS received thereply it will forward reply back to actual SALT client. In the casethat
reply issigned GWWS will validate the certificate and verify the signature before forwarding the
reply back to SALT client.

Configuring a SALT Application 51

Configuring a SALT Application

Listing 24 SOAP message based on X.509 Authentication

<Sll:Envelope xmlns:S1l=".." >
<Sl1l1l:Header>
<wsse:Security xmlns:wsse=".." xmlns:wsu="..">
<wsse:BinarySecurityToken
wsu:id="binarytoken"
ValueType="wsse:X590v3"
EncodingType="wsse:Base64Binary">
MITIEzzCCA9CgAWIBAgIQEmMtJZcO..
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:Reference URI="#body">..</ds:Reference>
<ds:Reference URI="#binarytoken">..</ds:Reference>

</ds:SignedInfo>

</ds:Signature>
</wsse:Security>
</S11:Header>

<S11:Body wsu:Id="body" xmlns:wsu="..">

</S11:Body>

</S1ll:Envelope>

For user to successfully access Web Service through GWWS user must configure avalid client
certificate and private key that isaccessibleto GWWS at runtime. This certificate and private key

52 Configuring a SALT Application

Configuring Security Features

can be used by transport level security or message level security, or even both depend on Web
Service' requirement.

Currently Tuxedo SALT only support single certificate which is configured through the
"System" element in the depl oyment descriptor, with thislimitation all the requests going through

different instances of GWWS gateway will use same certificate to establish SSL/TLS
connection. Invariably, in the eyes of the Web Service they all come from the same user; thus
same access privilege. This new feature will remove this constraint and make it possible to use
different certificate to represent different client or gateway.

SALT configuration consists of a deployment descriptor (DEP) and multiple web service
definition files (WSDF). This new feature will use "Property" to configure default user identity
to be used for this purpose, or to instruct GWWS to how to use filtersmappers to map Tuxedo
user identity to a X.509 certificate. The "Property" which isused for configuration isan XML
element that is available as configurable child element to both "GWInstance" and "Service".
"GWiInstance" is configured in SALT deployment descriptor while " Service" is configured in
SALT web service definition file.

When a Web Service' WS-Security policy requires message level security, GWWS will use the
private key to perform message signing, and attach the certificate to the SOAP message as Binary
Security Token to be used by target Web Service to validate the message and authenticate the
user. Otherwise, it will only usethe certificate and private key to create a secured transport layer
connection, i.e. SSL/TLS.

Whether a service request will use "X.509" security token for user identity is determined by the
WS Security Policy associated with the Web Service.

Note: Thisfeature only supports X.509 V3 Public Key Certificate; other versions are not
supported

Certificate Sources

The X.509 V3 Public Key Certificate used for message level security can come from one of the
following sources:

1.The X.509 Certificate configured for the transport security.

2.The X.509 Certificate associates with a particular instance of GWWS gateway.
3.The X.509 Certificate associates with the preset principal of the Web Service.
4.The X.509 Certificates associate with SALT clients.

Configuring a SALT Application 53

Configuring a SALT Application

Properties

Therearethree new properties added to the configuration to aid different security configurations.
All 3 propertiesareavailablein "GWInstance" and "Service". The"Service" element isavailable
in WSDF, and the "GW!Instance" is availablein SALT deployment descriptor.

o defaultClientldentification
e useSingleClientldentification
e allowAnonymousA ccess

defaultClientl dentification

This property defines the default client name to be used for X.509 certificate lookup. The one
configured in the " Service" has precedence over the one configured in "GWInstance". Listing 25
shows the effective default client name will be "catalina" for service "GetData’".

Listing 25 Example defaultClientldentification

<?xml version="1.0" encoding="UTF-8" ?>
<!- Sample.wsdf
-—>
<Definition ..>
<WSBinding id="sample_Binding">
<SOAP>

<AccessingPoiints>

</AccessingPoint>
</SOAP>
<ServiceGroup id="SampleSrvGrp">
<Service name="GetData">
<Property name="defaultClientIdentification" value="catalina"/>
</Service>

</ServiceGroup>

54 Configuring a SALT Application

Configuring Security Features

</WSBinding>

</Definition>

Listing 26

<?xml version="1.0" encoding="UTF-8"?>
<!- sample.dep
-—>
<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
<Import location="c:/salt/x.509/Sample.wsdf"></Import>
</WSDF>
<WSGateway>
<GWInstance 1d="INSTANCEl">

<Outbound>

</Outbound>
<Properties>
<Property name="defaultClientIdentification" value="melbourne"/>
</Properties>
</GWInstance>
</WSGateway>
<System>

<Certificate>

</Certificate>

</System>

Configuring a SALT Application 55

Configuring a SALT Application

</Deployment>

For all other services provided by GWWS instance "INSTANCEL" without their own
"defaultClientld" configured then they will usethe default client id of the GWWSandin this case
it will be "melbourne”.

useSingleClientl dentification

"useSingleClientldentification" tells whether it is desirable for any Web Service use the same
client X.509 certificate. When the decision isto enablethisfilter then al the SALT client request
will use the identity configured in "defaultClientldentification”, if "defaultCleintldentification”
isnot configured then it is a configuration error and "wsloadcf” will issue an error. By default it
is disabled.

Thisfilter only affectsthe runtime client X.509 certificate sel ection when Tuxedo "SECURITY™
isconfigured at least at "USER_AUTH" level. If Tuxedo SECURITY isconfigured as"NONE"
or "APP_PW" then thisfilter will not be used for client certificate selection. The error condition
described in previous paragraph will still be true even if this attribute is disabled at runtime.

The following is the matrix table for decision to enable this single client identification filter.

Table 11 Single Client Identification Filter Matrix

Service GWInstance Decision

Unconfigured Unconfigured Disable

Unconfigured Configured Enabled
TRUE

Unconfigured Configured Disabled
FALSE

Configure Unconfigured Enabled

TRUE

Configure Configured Enabled

TRUE TRUE

Configure Configured Enabled

TRUE FALSE

Configuring a SALT Application

Configuring Security Features

Table 11 Single Client Identification Filter Matrix

Service GWInstance Decision
Configure Unconfigured Disable
FALSE

Configure Configured Disable
FALSE TRUE

Configure Configured Disable
FALSE FALSE

The example in the previous section has this filter "disabled" since both places omitted this
property. The following example will have thisfilter "enabled".

Listing 27 Filter Enabled

<?xml version="1.0" encoding="UTF-8" ?>
<!- Sample.wsdf
-——>
<Definition ..>
<WSBinding id="sample_Binding">
<SOAP>

<AccessingPoints>

</AccessingPoints>
</SOAP>
<ServiceGroup id="SampleSrvGrp">
<Service name="GetData">
<Property name="defaultClientIdentification" value="catalina"/>
<Property name="useSingleClientIdentification" wvalue="true" />

</Service>

Configuring a SALT Application 57

Configuring a SALT Application

</ServiceGroup>
</WSBinding>

</Definition>

Listing 28

<?xml version="1.0" encoding="UTF-8"?>
<!- sample.dep
-—>
<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
<Import location="c:/salt/x.509/Sample.wsdf"></Import>
</WSDF>
<WSGateway>
<GWInstance 1d="INSTANCEl">

<Outbound>

</Outbound>
<Properties>
<Property name="defaultClientIdentification" value="melbourne"/>
</Properties>
</GWInstance>
</WSGateway>
<System>

<Certificate>

</Certificate>

58 Configuring a SALT Application

</System>

</Deployment>

Configuring Security Features

allowAnonymousAccess

Thisproperty only affectsthe X.509 certificate selection when Tuxedo SECURITY isconfigured
at least at "USER_AUTH" level. This property allows users without their own X.509 certificate

to use a default client identification when access aWeb Service. By default it is disabled.

The following is the matrix table for decision to enable this anonymous client access filter.

Table 12 Anonymous Client Access Filter Matrix

Service GWInstance Decision
Unconfigured Unconfigured Disabled
Unconfigured Configured TRUE Enabled
Unconfigured Configured Disabled
FALSE
Configure TRUE Unconfigured Enabled
Configure TRUE Configured TRUE Enabled
Configure TRUE ~ Configured Enabled
FALSE
Configure FALSE Unconfigured Disabled
Configure FALSE ~ Configured TRUE Disabled
Configure FALSE Configured Disabled
FALSE

If the decision isto enable thisfilter then "defaultClientl dentification” must be configured; if
"defaultClientldentification” is not configured then "wsloadcf" will fail and return an error.

The following is the sample configuration.

Configuring a SALT Application

59

Configuring a SALT Application

Listing 29

<?xml version="1.0" encoding="UTF-8" ?>
<!- Sample.wsdf
-—>
<Definition ..>
<WSBinding id="sample_Binding">
<SOAP>

<AccessingPoints>

</AccessingPoints>
</SOAP>
<Servicegroup id="SampleSrvGrp">
<Service name="GetData">
<Property name="defaultClientIdentification" value="catalina"/>
<Property name="allowAnonymousAccess" value="true" />
</Service>
</Servicegroup>
</WSBinding>

</Definition>

Listing 30

<?xml version="1.0" encoding="UTF-8"?>

<!- sample.dep

-——>

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<WSDF'>

60 Configuring a SALT Application

Compiling SALT Configuration

<Import location="c:/salt/x.509/Sample.wsdf"></Import>
</WSDF>
<WSGateway>

<GWInstance i1d="INSTANCEl">

<Outbound>

</Outbound>
<Properties>
<Property name="defaultClientIdentification" value="melbourne"/>
<Property name="allowAnonymousAccess" value="false" />
</Properties>
</GWInstance>
</WSGateway>
<System>

<Certificate>

</Certificate>
</System>

</Deployment>

Compiling SALT Configuration

CompilingaSALT configuration file meansgenerating abinary version of thefile (saLTcoNFIG)
from the XML version saLTpePLOY file. To compile a configuration file, run the ws1oadcf
command. wsloadcf parses adeployment file and loads the binary file.

wsloadcf readsadeployment file and all imported WSDF files and WS-Policy files referenced
in the deployment file, checks the syntax according to the XML schema of each file format, and
optionally loads a binary configuration file called sarTconFIG. The saLTconFIc and

Configuring a SALT Application 61

Configuring a SALT Application

62

(optionally) sarLTorFsET environment variables point to the sar.Tconr1c file and (optional)
offset where the information should be stored.

wsloadct validatesthe given SALT configuration files according to the predefined XML
Schemafiles. XML Schema files needed by SALT can be found at directory:
STUXDIR/udataobj/salt.

wsloadcf can execute for validating purpose only without generating the binary version
SALTCONFIG Once option “-n" is specified.

For more information, see wsloadcf reference in the SALT Reference Guide.

Configuring the UBBCONFIG File for SALT

After configuring and compiling the SALT configuration, the Oracle Tuxedo uesconrFic file
needs to be updated to apply SALT componentsin the Oracle Tuxedo application. Table 13 lists
the urBconF1c file configuration tasks for SALT.

Table 13 UBBCONFIG File Configuration Tasks for SALT

Configuration Tasks Required Optional
Configuring the TMMETADATA Server in the * SERVERS Section X

Configuring the GWWS Serversin the * SERVERS Section X

Updating System Limitations in the UBBCONFIG File X

Configuring Certificate Password Phrase For the GWWS Servers X
Configuring Oracle Tuxedo Authentication for Web Service Clients X
Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic X

Authentication

Configuring the TMMETADATA Server in the *SERVERS Section

SALT requires at |least one TMveETADATA Server defined in the useconr1c file. Multiple
TMMETADATA Servers are also allowed to increase the throughput of accessing the Oracle Tuxedo
service definitions.

Listing 31 lists a segment of the ussconr1c file that shows how to define TMMETADATA Servers
in an Oracle Tuxedo application.

Configuring a SALT Application

../ref/comref.html#wp1110855

Configuring the UBBCONFIG File for SALT

Listing 31 TMMETADATA Servers Defined In the UBBCONFIG File *SERVERS Section

*SERVERS
TMMETADATA SRVGRP=GROUP1 SRVID=1

CLOPT="-A -- —-f domain_repository file -r"
TMMETADATA SRVGRP=GROUP1 SRVID=2

CLOPT="-A -- —-f domain_repository_file"

Note: Maintaining only one Service Metadata Repository file for the entire Oracle Tuxedo
domain is highly recommended. To ensure this, multiple TMMETADATA Servers running
in the Oracle Tuxedo domain must point to the same repository file.

For more information, see “Managing The Tuxedo Service Metadata Repository” in the Oracle
Tuxedo documentation.

Configuring the GWWS Servers in the *SERVERS Section

To boot GWWS instances defined in the sartoEPLOY file, the ewws servers must be defined in
the * sErRVERS section of the usBconF1G file. Y ou can define one or more cwws server instances
concurrently intheussconric file. Each cwws server must be assigned with auniqueinstanceid
with the option “-1i” within the Oracle Tuxedo domain. The instance id must be present in the
XML version saLTDEPLOY file and the generated binary version saLtconric file.

Listing 32 lists a segment of the usBconF 1 file that shows how to define cwws serversin an
Oracle Tuxedo application.

Listing 32 GWWS Servers Defined In the UBBCONFIG File *SERVERS Section

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10
CLOPT="-A -- -i GWl1"

GWWS SRVGRP=GROUP1 SRVID=11
CLOPT="-A -- -1 GW2"

GWWS SRVGRP=GROUP2 SRVID=20

Configuring a SALT Application 63

../../../tuxedo/docs1222/ads/admrp.html

Configuring a SALT Application

CLOPT="-A -- -c saltconf_2.xml -i GW3"

For more information, see “GWWS’ in the Oracle SALT Reference Guide.

Notes: Besurethat the TmvETADATA System server isset upintheussconric fileto start before
the cwws server boots. Because the cwws server calls services provided by TMMETADATA,
it must boot after TMMETADATA.

To ensure TMMETADATA is started prior to being called by the cwws server, put
TMMETADATA before gwws in the uBBconF1G file or use SEQUENCE parametersin
*sERVERS definition in the uBeconr1G file.

SALT configuration information is pre-compiled with ws1oadcf to generate
thesarrconrIc file binary. cwws server reads the sarrconric file at start up.The
SALTCONFIG environment variable must be set correctly with the sarrconric file
entity before booting cwws servers.

Option*“-c" isdeprecated inthe current version SALT. InSALT 1.1 release, option“ -c”
isused to specify SALT 1.1 configuration file for the cwws server. In SALT 2.0, gwws
server reads sanTCcoNFIG file at start up. cwws server specified with this option can be
booted with awarning message to indicate this deprecation. The specified file can be
arbitrary and is not read by the cwws server.

Updating System Limitations in the UBBCONFIG File

When configuring the Oracle Tuxedo domain with SALT cwws servers, you must plan and update
Oracle Tuxedo system limitations defined in the ussconrF1c file according to your SALT
application requirements.

Tip: Define an adequate MAXSERVERS humber in the *RESOURCES section

SALT requires the following system serversto be started in an Oracle Tuxedo domain:
TMMETADATA and cwws. The number of TMMETADATA and cwws server must be accounted for in
the MAXSERVERS value.

Tip: Define an adequate MvaxSERVICES number in the *RESOURCES section

64 Configuring a SALT Application

../ref/comref.html#wp1111835

Configuring the UBBCONFIG File for SALT

When the cwws server working in the outbound direction, external wsdl operations are mapped
with Oracle Tuxedo services and advertised viathe cwws servers. The number of the advertised
services by all cwws servers must be accounted for in the MAXSERVICES value.

Tip: Define an adequate MAXACCESSERS humber in the * RESOURCES Section

Themaxaccessers vaueisused to specify the default maximum number of clients and servers
that can be simultaneously connected to the Oracle Tuxedo bulletin board on any particular
machine in this application. The number of TMMETADATA and cwws Server, maximum concurrent
Web Service client requests must be accounted for in the MaxaccEsseRs value.

Tip: Define an adequate MAxwSCLIENTS humber in the *MACHINES section

When the cwws server operating in the inbound direction, each Web Service client is deemed a
workstation client in the Oracle Tuxedo system; therefore, MaxwscLIENTS must be configured

with avalid number in the useconr1é file for the machine where the cwws server is deployed.

The number is shared.

Configuring Certificate Password Phrase For the GWWS Servers

Configuring a security password phrase is required when setting up certificatesfor SALT. The
certificates setting isdesired when the cwws serversenable SSL link-level encryption and/or Web
Service Security X.509 Token and signature features. The certificate private key file must be
created and encrypted with a password phrase.

When cuws servers are specified with certificate-related features, they are required to read the
private key fileand decrypt it using the password phrase. To configure apassword phrasefor each
cwws server, the keywords sec_pPrRINCIPAI_NAME and SEC_PRINCIPAI_PASSVAR must be
specified under each desired cws server entry in the * serveRs section. During compiling the
UBBCONFIG file with tmloadcf, the administrator must type the password phrase, which can be
used to decrypt the private key file correctly.

Note: Only one private key file can be specified in the SALT deployment file. All the GWWS
serversdefined inthe SALT deployment file must be provided the same password phrase
for the private key file decryption.

Listing 33 shows asegment of the ueeconF1G file that defines asecurity password phrase for the
GWWS SErvers.

Configuring a SALT Application 65

Configuring a SALT Application

66

Listing 33 Security Password Phrase Defined in the UBBCONFIG File For the GWWS Servers

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10
SEC_PRINCIPAL_NAME="gwws_certkey"
SEC_PRINCIPAL_VAR="gwws_certkey"
CLOPT="-A -- -1 GW1"

GWWS SRVGRP=GROUP1 SRVID=11
SEC_PRINCIPAL_NAME="gwws_certkey"
SEC_PRINCIPAL_PASSVAR="gwws_certkey"
CLOPT="-A -- -1 GW2"

For more information, see uBBCONFIG (5) in the Oracle Tuxedo documentation.

Configuring Oracle Tuxedo Authentication for Web Service Clients

SALT cwws serversrely on Oracle Tuxedo authentication framework to check the validity of the
Web Service clients. If your existing Oracle Tuxedo application is already applied, Web Service
clients must send user credentials using one of the following:

e HTTP Basic Authentication in the HT TP message header
e Web Service Security Username Token in the SOAP message header

Contrarily, if you want to authenticate Web Service clientsfor SALT, you must configure Oracle
Tuxedo authentication in the Oracle Tuxedo domain.

For more information, see Administering Authentication in the Oracle Tuxedo 12cR2
Documentation.

Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication

To obtain Oracle Tuxedo client uid/gid for outbound HTTP Basic Authentication username
/password mapping, you must configure the Oracle Tuxedo Security level as UsErR_aAUTH, ACL
Or MANDATORY_ACL in the uBBcoNFIG file.

Configuring a SALT Application

../../../tuxedo/docs1222/rf5/rf5.html
../../../tuxedo/docs1222/sec/secadm.html

Configuring SALT In Oracle Tuxedo MP Mode

Listing 34 shows a segment of the useconF1a file that defines security-level ACL in the
UBBCONFIG file.

Listing 34 Security-Level ACL Defined in the UBBCONFIG File For Outbound HTTP Basic Authentication

*RESOURCES
IPCKEY ...

Configuring SALT In Oracle Tuxedo MP Mode

To set up ewws serversrunning on multiple machineswithin an MP mode Oracle Tuxedo domain,
each Oracle Tuxedo machine must be defined with a separate saLTpePLOY file and a set of
separate other components.

Y ou must propagate the following global resources across different machines:

o Certificates.

Private key file and the trusted certificate files must be accessible from each machine
according to the settings defined in the saLTDEPLOY file.

e Plug-inload libraries.

Plug-in shared libraries must be compiled on each machine and must be accessible
according to the settings defined in the sauToEPLOY file.

Y ou may define two cwws servers running on different machine with the same functionality by
associating the same WSDF files. But it requires manual propagation of the following artifacts:

e The WSDFfiles
e The WS-Palicy files

e FML32 field table definition filesif Oracle Tuxedo Services consume FML 32 typed
buffers

e XML Schemafiles excerpted by wsdlcvt.

Configuring a SALT Application 67

Configuring a SALT Application

68

Migrating from SALT 1.1

This section describes the following two possible migrating approachesfor SALT 1.1 customers
who plan to upgrade to SALT 2.0 release:

e Running GWWS serverswith SALT 1.1 Configuration File

e Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

Running GWWS servers with SALT 1.1 Configuration File

After upgrading from SALT 1.1to SALT 2.0 release, you may still want to run your existing
SALT applicationswith the original SALT 1.1 configuration file. Thisis supported in SALT 2.0.

The SALT configuration compiler utility, wsloadc£, supports loading the binary version
SALTCONFIG from one SALT 1.1 format configuration file.

Torun SALT 2.0 cwws serverswith SALT 1.1 configuration file, you must perform the following
steps:

1. Load the binary version sar.Tconr1c from the SALT 1.1 format configuration file via
wsloadcft.

2. Setthe sarrconrzc environment variable before booting the cwws servers.

3. Boot the ewws servers associated with this SALT 1.1 configuration file.

Note: If you have more than one SALT 1.1 configuration files defined in an Oracle Tuxedo
domain, you must follow steps 1 - 3 to generate more binary sarTconrIc filesand boot
corresponding cwws servers.

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration
File

Whenwsloadcf loadsabinary sarrconrIcfromaSALT 1.1 configurationfile, it also converts
this SALT 1.1 configuration file into one wsor file and one sarLTpEPLOY file.

It is highly recommended to start using the SALT 2.0 styled configuration once you get
the converted files from SALT 1.1 configuration. If you want to incorporate more than

one SALT 1.1 configuration fileinto one SALT 2.0 deployment, you must manually edit
the saTLDEPLOY file for importing the other WSDF files.

Listing 35 shows the converted saLTpepPLOY file and wspr file from agiven SALT 1.1
configuration file.

Configuring a SALT Application

Migrating from SALT 1.1

Listing 35 A Sample of SALT 1.1 Configuration File (simpapp.xml)

<Configuration xmlns=" http://www.bea.com/Tuxedo/Salt/200606">
<Servicelist id="simpapp">
<Service name="toupper" />
<Service name="tolower" />
</Servicelist>
<Policy />
<System />
<WSGateway>
<GWInstance i1d="GWWS1">
<HTTP address="//127.0.0.1:7805" />
<HTTPS address="127.0.0.1:7806" />
<Property name="timeout" value="300" />
</GWInstance>
</WSGateway>

</Configuration>

The converted SALT 2.0 WSDF file and deployment file are shown in Listing 36 and Listing 37

respectively.

Listing 36 Converted WSDF File for SALT 1.1 Configuration File (simpapp.xml.wsdf)

<Definition name="simpapp" wsdlNamespace="urn:simpapp.wsdl"
xmlns=" http://www.bea.com/Tuxedo/WSDF/2007">
<WSBinding id="simpapp_binding">
<Servicegroup id="simpapp">
<Service name="toupper" />
<Service name="tolower" />
</Servicegroup>
<SOAP>
<AccessingPoints>
<Endpoint id="simpapp_ GWWS1l_HTTPPort"
address=http://127.0.0.1:7805/simpapp />
<Endpoint id=" simpapp_GWWS1l_HTTPSPort"

Configuring a SALT Application

69

Configuring a SALT Application

address=https://127.0.0.1:7806/simpapp

tlsversion=TLSv1.2/>
</AccessingPoints>
</SOAP>
</WSBinding>

</Definition>

Listing 37 Converted SALTDEPLOY File for SALT 1.1 Configuration File (simpapp.xml.dep)

<Deployment xmlns=" http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<WSDF>
<Import location="/home/myapp/simpapp.wsdf" />
</ WSDF>
<WSGateway>
<GWInstance i1d="GWWS1">
<Inbound>
<Binding ref="simpapp:simpapp_binding">
<Endpoint use=" simpapp_GWWS1l_HTTPPort" />
<Endpoint use=" simpapp_GWWS1l_HTTPSPort" />
</Binding>
</Inbound>
<Properties>
<Property name="timeout" value="300" />
</Properties>
</GWInstance>
</WSGateway>
</ Deployment>

Configuring Service Contract Discovery

When discovery is activated for a service, the server that provides the service collects service
contract information and sends the information to an internal service implemented by
TMMETADATA (5) . The same service contract is only sent once to reduce communication

overhead.

70 Configuring a SALT Application

../../../tuxedo/docs1222/rf5/index.html

tpforward Support

The TMMETADATA Server summarizes the collected data and generates a service contract. The
contract information can either can be stored in the metadata repository, or output to atext file
(which isthen loaded to the metadata repository using tmloadrepos). SALT usesthe tmscd
command to control the service contract runtime collection. For more information, see tmscd in
the SALT Command Reference Guide.

Generated service contract information contains the service name, request buffer information,
response buffer information, and error buffer information if there is afailure. The collected
service contract information isdiscarded if it failsto send information to the TMMETADATA Server.
The buffer information includes buffer type and subtype, and field information for FML/FML32
(name, type, subtype).

Discovery is supported for any embedded buffer in FML 32 buffer. For FML/FML32 field
occurrences, the discovery automatically updates the pattern for the count/requiredcount in
metadata repository. Field occurrence does not impact the pattern, but the minimum occurrence
isthe"requiredcount".The maximum occurrence isthe "count" of the entire contract
discovery period.

For VIEW/VIEW32/X_C_TYPE/X_COMMON, only the view name is discovered. SALT can
generate a detailed description by view name when using metadata repository.

Note: Patterns flagged with autodiscovery (See Table 14) are compared.

If the same autodiscovery pattern aready exists in the metatdata repository, then the
newer pattern isignored.

Only application ATMI services (local, or imported via/TDOMAIN gateway) are supported.
Service contract discovery does not support the following services:

e system services (name startswith . or '..")
e conversational services
o CORBA services

e /Qand SALT proxy services

Note: Services without areply are mapped as "oneway" services in the metadata repository.

tpforward Support

If aserviceissues tpforward () instead of tpreturn (), itsreply buffer information isthe same
asthe reply buffer of the service which it forwards to. For example:

e client calls SVCA with a STRING typed buffer

Configuring a SALT Application 71

../ref/comref.html

Configuring a SALT Application

e SVCA processes the request, and then creates a new FML 32 typed buffer asthe request is
forwarded to SVCB

e SVCB handles the request and returns a STRING buffer to the client. The SV CA contract
iS STRING+STRING. The SVCB contract iS FML32+STRING

Service Contract Text File Output

If you want collected service contract discovery information logged to afileinstead of directly to
the metadata repository, you must use the TMMETADATA (5) -o<filename> Option and then use
tmloadrepos to manually load the file to the metadata repository. For more information, see
tmloadrepos in the Oracle Tuxedo Command Reference Guide.

The output complieswith the format imposed by tm1oadrepos if afileisused as storage instead
of the metadatarepository. Thefile contains a service header section and a parameter section for
each parameter. Service header containsitemslisted in Table 14. The"service" field format is
<TuxedoServiceName>+'_'+<SequenceNo>. Thesuffix <SequenceNo> isusedtoavoid name
conflict when multiple patterns are recognized for an Oracle Tuxedo service.

Note: <SequenceNo> starts from the last <sequenceNo> number already stored in the
metadata repository.

Service parameter contains informationislisted in Table 15.

Table 14 Service Level Attributes

Keyword (abbreviation) Sample Value Description

service (sv) TOUPPER_1 <RealServiceName>_<Seq
uenceNo>.

tuxservice (tsv) TOUPPER The service name.

servicetype (st) service|oneway oneway if TPNOREPLY iS Set.

inbuf (bt) STRING FML, FML32, VIEW, VIEW32,

STRING, CARRAY, XML,
X_OCTET, X_COMMON,
X_C_TYPE, MBSTRING or
other arbitrary string
representing an application
defined custom buffer type.

72 Configuring a SALT Application

../../../tuxedo/docs1222/rf5/index.html

../../../tuxedo/docs1222/rfcm/index.html

Table 14 Service Level Attributes

Service Contract Text File Output

Keyword (abbreviation) Sample Value Description

outbuf (BT) FML32 set to "NULL" if itisan error
reply.

errbuf (ebt) STRING present only when it is an error
reply.

inview View name. Present only when
inbuf is of type VEW or
VIEW32.

outview View name. Present only when
outbuf is of type VIEW or
VIEW32.

errview View name. Present only when
errbuf is of type VIEW or
VIEW32.

autodiscovery true Set to "true".

Table 15 Parameter Level Attributes
Keyword (abbreviation) Sample Description
param (pn) USER_INFO

paramdescription (pd)

service parameter

access (pa)

in

A combination of

{in}{out}{err}.

type (pt)

fml132

byte, short, integer, float,
double, string, carray, dec t,
xml, ptr, fml32, view32,
mbstring.

subtype (pst)

A view name for aview or
view32 typed parameter.

Configuring a SALT Application 73

Configuring a SALT Application

74

Table 15 Parameter Level Attributes

Keyword (abbreviation) Sample Description

count 100 The maximum occurrence of
FML/FML32 field watched
during the collection period

requiredcount 1 The minimum occurrence of
FML/FML32 field watched
during the collection period.

Examples

Example 1:
Input service=SVC, request=STRING, reply = TPSUCCESS + STRING

Output Pattern: service=svC_1, tuxservice=SVC, inbuf=STRING, outbuf=STRING

Example 2:

Input: service=SVC, request=STRING, reply = TPFAIL+ STRING
Output Pattern (partial): service=svc_1,
tuxservice=SVC, inbuf=STRING, outbuf=NULL, errbuf=STRING
Example 3:

Input:

service=SVC, request=STRING, reply = TPSUCCESS + STRING
service=SVC, request=STRING, reply = TPFAIL+ STRING

Output Pattern:

service=SVC_1, tuxservice=SVC, inbuf=STRING, outbuf=STRING
Service=SVC_2, tuxservice=SVC, inbuf=STRING, outbuf=NULL, errbuf=STRING
Example 4.

Input service=FMLS, request=FML32 (name, pwd) , reply=TPSUCCESS+FML32 (id)
Output Pattern:

service=FMLS_1, tuxservice=FMLS, inbuf=FML32, outbuf=FML32

param: input (name, pwd), output (id)

Configuring a SALT Application

Configuring SALT WS-TX Support

Example5:

Input:

service=FMLS, request=FML32 (name, pwd) , reply=TPSUCCESS+FML32 (id)
service=FMLS, request=FML32 (name, pwd, token) , reply=TPSUCCESS+FML32 (id)
Output Pattern:

service=FMLS_1, tuxservice=FMLS, inbuf=FML32, outbuf=FML32

param: input (name, pwd), output (id)

service=FMLS_2, tuxservice=FMLS, inbuf=FML32, outbuf=FML32

param: input (name, pwd, token), output (id)

Configuring SALT WS-TX Support

This section contains the following topics:
e Configuring Transaction Log Device
e Registration Protocol
e Configuring WS-TX Transactions
e Configuring Maximum Number of Transactions
e Configuring Policy Assertions
e WSDL Generation
e WSDL Conversion

Notes: These configuration changes are summarized in the sarTpEPLOY additions
pseudo-schema and WSDF additi ons pseudo-schema Appendix.

For additional information, see the SALT Interoperability Guide.

Configuring Transaction Log Device

The GWWS system server must be configured using the transaction log (TLogDevice) element
(similar to the Oracle Tuxedo or /Domains TLog files). The Tr.oGpDevice element isadded to the
SALTCONFIG source file (saLTpEPLOY) as shown in Listing 38.

A TLoGName element is also added to allow sharing the same TLog device across GWWS
instances.

Configuring a SALT Application 75

../interop/index.html

Configuring a SALT Application

Only one TLog device per Web services Gateway instance is permitted (that is, the transaction
log element is a child element of /Deployment/\WSGateway/GW I nstance).

Listing 38 TLOG Element Added to SALTDEPLOY File

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<WSDF>

</WSDF>
<WSGateway>
<GWInstance id="GW1">
<TLogDevice location="/app/GWTLOG"/>

<TLogName id="GW1TLOG"/>

</GWInstance>

</WSGateway>

</Deployment>

Registration Protocol
Oracle Tuxedo-based services are registered with a Durable 2PC protocol with coordinators.

When Oracle Tuxedo is the coordinator (outbound direction), the GWWS system server allows
either Volatile 2PC or Durable 2PC registration requests and handles them accordingly.

Configuring WS-TX Transactions

Figure 2 illustrates the application and protocol flows of atypical WS-AT context service
invocation.

76 Configuring a SALT Application

Configuring WS-TX Transactions

Figure 2 WS-AT Service Invocation

Server A Server B
Infiztor App | | CoordinatorProtocolService Partic ipantProtocal3ervice Paﬁicipantﬂpp‘
§ insRequest)
: wscoorRegisterRequest]
wet0orRegisterRe sponsef) Application
:] Flowy
ths:Response)
4 :
i_ waat Profocald
, Pratocal
: ' Flow

The configuration steps and runtime behavior of the SALT GWWS gateway are outlined in the
following sections (depending on the role of the Oracle Tuxedo domain as shown in Figure 2):

e Configuring Incoming Transactions

e Configuring Outbound Transactions

Configuring Incoming Transactions

Oracle Tuxedo services exposed as Web services do not require any specific configuration other
than creating atransaction log file and adding it to the GWWS deploy configuration filein order
toinitiate alocal transaction associated with an incoming WS-AT transaction request.

To ensure atransaction can be propagated into an Oracle Tuxedo domain, do the following steps.

1. Ensure that the Oracle Tuxedo service called supports transactions.

Configuring a SALT Application 77

Configuring a SALT Application

78

2. Configure atransaction log g file in the GWWS deployment file. For more information, see
Configuring Transaction Log Device.

3. Configure apolicy file containing aWS-AT Assertion corresponding to the desired behavior
with respect to the external Web Service called. For moreinformation, see Configuring Policy
Assertions.

4. Incoming calls containing acoordinationContext element creates an Oracle Tuxedo
global transaction.

Error Conditions
Error conditions are handled as follows:

e No log fileisconfigured for the gateway. A wscoor: Invalidstate fault issent back to
the caller. Thepetail field contains a corresponding message.

e Thetarget Oracle Tuxedo service does not support transactions. An application fault with a
TPETRAN efror code is returned to the caller.

o For al other applications, configuration (such as TPENOENT) or System errors are handled
the same way that normal (non-transactional) requests are handled.

Configuring Outbound Transactions

In order for Oracle Tuxedo clients to propagate an Oracle Tuxedo global transaction to external
Web services, do the following steps:

1. Configure atransaction log g file in the GWWS deployment file. For more information, see
Configuring Transaction Log Device.

2. Configureapolicy file containing aWS-AT Assertion corresponding to the desired behavior
with respect to the external Web Service called. For moreinformation, see Configuring Policy
Assertions.

3. Depending on the assertion setting and presence of an Oracle Tuxedo transaction context, a
CoordinationContext elementis created and sent in the SOAP header along with the
application regquest.

4. An endpoint reference is automatically generated and sent along with the
CoordinationContext element for theremoterRegistrationService elementtoenlistin
the transaction. This step, along with the protocol exchanges (Prepare/Commit or Rollback
etc.) istransparent on both sides.

Configuring a SALT Application

Configuring Maximum Number of Transactions

Error Conditions
Error conditions are handled as follows:

o |f the remote system does not support transactions and the WS-AT Assertion/transaction
context call has must create transaction semantics, a TPESYSTEM €rror is returned to the
client.

e Errors generated remotely are returned to the Oracle Tuxedo client in the same manner as
regular, non-transactional calls. The fault Reason and petail fields returned describe the
nature of the failure (which is environment dependent).

Configuring Maximum Number of Transactions

ThemaxTran element allows you to configure the size of the internal transaction table as shown
inListing 1. The default isMaxaTT.

Note: ThewmaxTran valueisoptional. If the configured value is greater than MaxcerT, itis
ignored and MaxcTT is used instead

Listing 1 MAxTran Element

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<WSDF'>

</WSDF>

<WSGateway>

<GWInstance id="GW1l">

<MaxTran value="500"/>

</GWInstance>

</WSGateway>

</Deployment>

Configuring a SALT Application 79

Configuring a SALT Application

80

Configuring Policy Assertions

WS-AT definesapolicy assertion that allows requests to indicate whether an operation call must
or may be made as part of an Atomic Transaction.

Policy. xml File

Thepolicy.xml fileincludesWS-AT policy elements. WS-AT definesthe ATassertion
element, with an optional attribute, asfollows:
/wsat :ATAssertion/@wsp:Optional="true" ashownin Listing 2.

Listing 2 Policy .XML ATAssertion Element

<?xml version="1.0"?>

<wsp:Policy wsp:Name="TransactionalServicePolicy"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsat="http://docs.ocasis-open.org/ws-tx/wsat/2006/06">
<wsat:ATAssertion wsp:0ptional="true"/>

</wsp:Policy>

Note: Inorder to correctly import external WSDL files, the wsdlcvt command is modified to
generatea policy.xml filecontainingtheaTassertion element when oneis present
in the WSDL. For outbound requests, apolicy.xml file containing an ATassertion
element must be created and properly pointed to in the saLTDEPLOY Source.

Inbound Transactions

For inbound transactions, no particular behavior change takes place at runtime. The client
consuming the WSDL takes the decision based on the configured value and runtime behavior is
the same for the normal cases.

Configuring a SALT Application

WSDL Generation

Outbound Transactions

e When an aATassertion With no "optional=true" isconfigured, the call must be madein
atransaction. If no corresponding XA transaction exists, the WS-TX transaction isinitiated
but not associated with any Oracle Tuxedo XA transaction. If an XA transaction exists,
there is no change in behavior.

e When an aTassertion With "optional=true" isconfigured, an outbound transaction
context is requested only if a corresponding Oracle Tuxedo XA transaction existsin the
context of the call.

e When no atassertion isconfigured for this service, the corresponding service cal is
made outside of any transaction. If acall is made to an external Web service in the context
of an Oracle Tuxedo XA transaction, the Web service call will not propagate the
transaction.

This allows excluding certain Web service calls from aglobal transaction, and represents
the default for most existing Web services calls (that do not support WS-TX).

WSDL Generation

WSDL generation is enhanced to generate an aTassertion element corresponding to the
assertion configured in the policy file for the corresponding service.

WSDL Conversion

For outbound requests, the WSDL conversion tool, wsdlcvt, generates apolicy.xml file
containing the ATAssertion element when oneis present in the processed WSDL.Y ou must
properly configure the location of the policy.xmi filein the sar.TpEPLOY SOUrce.

Viewing and Modifying SALT Configuration

Y ou can use Oracle Tuxedo Services Console to view and modify your configuration. See Using
Oracle Tuxedo Services Console for more information.

Note: Theoriginal SALT configuration tool is deprecated.

SALT Mainframe Transaction Publisher

e Overview

e Configuration

Configuring a SALT Application 81

../../../tuxedo/docs1222/ada/addcon.html
../../../tuxedo/docs1222/ada/addcon.html

Configuring a SALT Application

82

e SOAP Inbound (Mainframe Transactions Exposed As A Web Service)
e REST Inbound

e SOAP Outbound (Mainframe Invoking An External Web Service)

e REST Outbound

Overview

This feature will provide support for generation of SALT configuration artifacts based on
COBOL copybook in the inbound direction, and generate configuration artifacts and COBOL
copybook in the outbound direction. A new command-line tool (wscobolcvt) isprovided to
convert COBOL copybook into SALT artifacts. In addition to runtime support, the configuration
tool is enhanced as follows

e Providesthe same level of functionality as command-line tools with a graphical users
interface.

e Allowsyou to restrict input/output fields so these are not part of the interface. Defaulting
rules apply in this case as you are not permitted to set/retrieve the values.

Configuration
e Command-Line

e SALT Configuration Tool

Command-Line
wscobolcvt

A new command-line tool that converts COBOL copybook into SALT artifacts.
wsdlcvt

Thewsdalcvt command adds the capability of generating a COBOL copybook based on
the structure of the schema contained in the imported WSDL.

In this mode, wsdlcvt also generate servicetype=sna (a@s opposed to webservice), so
that the corresponding Tuxedo service can be invoked by GWSNAX. The service mapsto
an external web service and functions the same as servicetype=webservice.

Y ou can automate the COBOL copybook import process, generate aweb service based on it, and
import an external Web Service by using the Tuxedo Services Console.

Configuring a SALT Application

../ref/comref.html
../ref/comref.html

SALT Mainframe Transaction Publisher

SOAP Inbound
(Mainframe Transactions Exposed As A Web Service)

The wscobolcvt command converts COBOL copybook to service metadata (MIF) with record
type buffers. It parses COBOL and generates service metadata in the MIF format as shown in
Figure 3.

For more information, see Using Oracle Tuxedo Service Metadata Repository for SALT, and
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services.

Figure 3 SOAP Inbound (Mainframe Transactions Exposed As A Web Service)

e —t - = = & v
Trmasaniie Clar) ApE
l.- -

TR, srishisiinm
AT i i b iisi s

uaimiET P

Aty
[TR Lban

AT Cr

Siew 2

Wher A Brripaiy rartartal s sk LRI
S 20 WP atebest su BALEDA R then srdnatul el be-comyds A 1
[8 irbs st in frenh (mee deshmsdul sean (0 vergiis BN 6

The following steps are performed:

1. wscobolcvt takesthe COBOL source and the following additional information as
arguments:

— service name advertised by TMA corresponding to the mainframe transaction.
— service metadata repository where the MIF definition is added.

— wscobolcvt support targeting the same MIF service in order to expose multiple
transactions in the same WSDL service.

2. wscobolcvt generates service metadata and wsor file.

3. Optionally, wscobolevt automatically configures pmconr1c file entries with domain IDs
and CRM address as shown in Listing 1

Configuring a SALT Application 83

http://docs.oracle.com/cd/E53645_01/salt/docs12cr2/config/config.html#wp1093867
http://docs.oracle.com/cd/E53645_01/salt/docs12cr2/prog/datamap.html#wp1035647

Configuring a SALT Application

4. You can add generated files and references to the configuration and deploy them.

Listing 1 DMCONFIG File Entries With Domain IDs and CRM Address

*DM_LOCAL_DOMAINS

CRMDOM
GWGRP=CRMGRP
TYPE=SNAX
DOMAINID="CRMDOM"

*DM_REMOTE_DOMAINS

CICSDOM
TYPE=SNAX
DOMAINID="CICSDOM"

*DM_ SNACRM

CRMDOM
SNACRMADDR="//wasa:1234"
NWDEVICE="/dev/tcp"
LDOM="CRMDOM"

REST Inbound

The steps to expose a mainframe transaction as a REST inbound service are similar to SOAP
(using wscobolcvt) as shown in Figure 4. Note the following differences:

e thewsdar fileis not required.

e services are only be added to sar.TpEP as shown in Listing 1.

84 Configuring a SALT Application

SALT Mainframe Transaction Publisher

Figure 4 REST Inbound

[P — i - [
Step g T
(T A -
e 1 MTTREEST taweins iy s il B3 ks WAL D%
o 0 e B 01 A et e, K. gt 11ba 1 (et AL 000

Listing 1 SALTDEP

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
<Import location="GWWS_conf.xml.wsdf"></Import>
</WSDF>
<WSGateway>
<GWInstance id="TuxAll">
<Inbound>
<Binding ref="TuxAll:TuxAll_Binding">
<Endpoint use="TuxAll_ TuxAll_ HTTPPort"></Endpoint>
</Binding>
<HTTP>
<Network http="localhost:2211" https=""/>

<Service name="MF_BANK">

Configuring a SALT Application

85

Configuring a SALT Application

86

<Method name="GET" reposservice="BALANCE" service="BALANCE"
inputbuffer="RECORD" />

<Method name="POST" reposservice="DEPOSIT" service="DEPOSIT"
inputbuffer="RECORD" />

</Service>

SOAP Outbound
(Mainframe Invoking An External Web Service)

Thewsdlcvt command is used to generate COBOL copybook from WSDL/schema. Outbound
services are invoked using RECORD payloads and are automatically detected and converted using
GWWS.

You caninvokewsdlcvt using the -c argument to generate MIF with REcorD type definitions,
WSDF, xSD, RECORD filesand COBOL copybook source files.

wsdlcvt hasthe -p option to specify astring length to use when xsd: string types are not
constrained by size. Otherwise the default for stringsis 256 (pIc x(256)).

The generated MIF entry servicetype iSset to "sna".

Configuring a SALT Application

SALT Mainframe Transaction Publisher

Figure 5 SOAP Quthound (Mainframe Invoking An External Web Service)

hfgabare Tussdw Coruais

unnu

II“-"]I--\.
a lw’!
MY O
—_—
* ®
o
SALTOCRA

BN Y belere? (L s 18 gEREr e eger San i

Swp i oebgue plion pibipts pe v o cieets 5 peaes” e P U sl e Siwe Secordaty Srps g

Saep 11 tmissdrepes o rrtadets wpol W] 1 servite preersied. ome for DWAHAR sed are ter WS

faspll WADF sfchius SALTOUA the wubotid wisd 10 s WAL CReliG
Shap 21 dranli b sekded 10 Srcrefig, 1hen debessl v 13 comgas BARORTD

el (il g ated § RN gttt Cive e vl Bry Wb el (v Fr bl e, b (1] v
Bam

REST Outbound

REST outbound services do not have the equivalent of wsdicvt as shownin Figure 6. You
simply add service endpoints to be accessed in the /Outbound/HT TP section as shown in

Listing 1:

Figure 6 REST Outbhound

Munlnsme Tupmphdy Digemia i [haisd

HTTP
Chee |1 ¢ S R — —— Wb
e Sarvice

[REST}

BOMCONAG "
ﬁ’ =
Mmlazs-m
* " i
o
SALTCOMFIG

Condipuraton pldach dre e o freabe b "o dory ™ serade Ao Thae sctudd BRST Service. Miod e

e L endaoentlvirt s oomgdiad, sdded b SALTTRR then wibosil idd o dompdle SELTDDNE G
Stepd: deveanlig Bity are compeied, sdded 10 dmcanSy, then dmiosdd wied 1o compile ADMCOM G

Configuring a SALT Application

87

Configuring a SALT Application

Listing 1 /Outbound/HTTP Section

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<WSDF>

</WSDF>
<WSGateway>

<GWInstance id="GW1l">

<Outbound>
<Binding ref="bankapp:bankapp_binding">
<Endpoint use="httpl"/>
<Endpoint use="httpsl" />
</Binding>
<HTTP>
<Service name="BANK_GET"
method="GET"
address="http://some.org/bankAccount"
content-type="JSON"

outputbuffer="RECORD" />

See Also

® tmadmin
® tmloadrepos
® ubbconfig

WSDF documentation

SALT Programming Guide

88 Configuring a SALT Application

../../../tuxedo/docs1222/rfcm/index.html
../../../tuxedo/docs1222/rfcm/index.html
../../../tuxedo/docs1222/rf5/index.html
../ref/comref.html
../prog/index.html

e SALT Reference Guide
e SALT Interoperability Guide

Configuring a SALT Application

See Also

89

../ref/index.html
../interop/index.html

Configuring a SALT Application

90 Configuring a SALT Application

	Service Architecture Leveraging Tuxedo (SALT)
	12c Release 2 (12.2.2)

	Oracle Service Architecture Leveraging Tuxedo (SALT) Configuration Guide, 12c Release 2 (12.2.2)
	Configuring Oracle Tuxedo Web Services
	Using Oracle Tuxedo Service Metadata Repository for SALT
	Defining Service-Level Keywords for SALT
	Defining Service Parameters for SALT

	Configuring Native Oracle Tuxedo Services
	Creating a Native WSDF
	Using WS-Policy Files
	Generating a WSDL File from a Native WSDF
	Using Oracle Tuxedo Version-Based Routing (Inbound)

	Configuring External Web Services
	Web Console SALT Configuration
	Manual SALT Configuration
	Using Oracle Tuxedo Version-Based Routing (Outbound)

	Configuring Multiple Bindings
	SALT Inbound Services
	SALT Outbound Services

	Creating the SALT Deployment File
	Importing the WSDF Files
	Configuring the GWWS Servers
	Configuring System-Level Resources

	Configuring Advanced Web Service Messaging Features
	Web Service Addressing
	Web Service Reliable Messaging
	Message Transmission Optimization Mechanism (MTOM)

	Configuring Security Features
	Configuring Transport-Level Security
	Configuring Message-Level Web Service Security
	Configuring SAML Single Sign-On
	Configuring X.509-Based Authentication

	Compiling SALT Configuration
	Configuring the UBBCONFIG File for SALT
	Configuring the TMMETADATA Server in the *SERVERS Section
	Configuring the GWWS Servers in the *SERVERS Section
	Updating System Limitations in the UBBCONFIG File
	Configuring Certificate Password Phrase For the GWWS Servers
	Configuring Oracle Tuxedo Authentication for Web Service Clients
	Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic Authentication

	Configuring SALT In Oracle Tuxedo MP Mode
	Migrating from SALT 1.1
	Running GWWS servers with SALT 1.1 Configuration File
	Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

	Configuring Service Contract Discovery
	tpforward Support
	Service Contract Text File Output
	Examples

	Configuring SALT WS-TX Support
	Configuring Transaction Log Device
	Registration Protocol
	Configuring WS-TX Transactions
	Configuring Incoming Transactions
	Configuring Outbound Transactions

	Configuring Maximum Number of Transactions
	Configuring Policy Assertions
	Policy. xml File

	WSDL Generation
	WSDL Conversion

	Viewing and Modifying SALT Configuration
	SALT Mainframe Transaction Publisher
	Overview
	Configuration
	SOAP Inbound (Mainframe Transactions Exposed As A Web Service)
	REST Inbound
	SOAP Outbound (Mainframe Invoking An External Web Service)
	REST Outbound

	See Also

