
 

[1] Oracle® Communications  
Network Integrity
Optical TMF814 CORBA Cartridge Guide 

Release 7.3.2 

E66046-01

May 2016



Oracle Communications Network Integrity Optical TMF814 CORBA Cartridge Guide, Release 7.3.2

E66046-01

Copyright © 2010, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its 
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services, except as set forth in an applicable agreement between you and 
Oracle.



iii 

Contents

Preface ................................................................................................................................................................   vii

Audience......................................................................................................................................................    vii
Documentation Accessibility ....................................................................................................................    vii
Document Revision History .....................................................................................................................    vii

1 Overview

About the Optical TMF814 CORBA Cartridge ...................................................................................   1-1
About Cartridge Dependencies .............................................................................................................   1-1

Run-Time Dependencies ...................................................................................................................   1-2
Design Studio Dependencies............................................................................................................   1-2

Opening the Cartridge Files in Design Studio...................................................................................   1-2
Building and Deploying the Cartridge ................................................................................................   1-2

2 About the Cartridge Components

Discover Abstract TMF814 Action ........................................................................................................   2-1
TMF814 Property Initializer .............................................................................................................   2-2
TMF814 Session Manager .................................................................................................................   2-4
TMF814 Device Recorder Initializer................................................................................................   2-4
TMF814 ME Collector........................................................................................................................   2-5
TMF814 Device Modeler ...................................................................................................................   2-5
TMF814 Equipment Collector ..........................................................................................................   2-5
TMF814 Equipment Modeler ...........................................................................................................   2-5
TMF814 PTP Collector.......................................................................................................................   2-5
TMF814 PTP Modeler ........................................................................................................................   2-5
TMF814 CTP Discoverer for PTP.....................................................................................................   2-5
TMF814 FTP Collector .......................................................................................................................   2-6
TMF814 FTP Modeler ........................................................................................................................   2-6
TMF814 CTP Discoverer for FTP .....................................................................................................   2-6
TMF814 Device Persister...................................................................................................................   2-6
TMF814 Device Recorder Persister..................................................................................................   2-6
TMF814 Cross-Connect Discoverer .................................................................................................   2-6
TMF814 Topological Link Collector ................................................................................................   2-7
TMF814 Topological Link Modeler .................................................................................................   2-7
TMF814 Pipe Persister .......................................................................................................................   2-7

Discover TMF814 Action.........................................................................................................................   2-7



iv

TMF814 CORBA Property Initializer ..............................................................................................   2-9
TMF814 Property Customizer ..........................................................................................................   2-9

Discover Huawei U2000 Action .............................................................................................................   2-9
Huawei Customizer........................................................................................................................    2-11
Huawei MSTP EndPoint Collector ...............................................................................................    2-11
Huawei MSTP EndPoint Modeler ................................................................................................    2-11

About Recording Mode........................................................................................................................    2-11
Enabling Recording Mode .............................................................................................................    2-12

3 Using the Cartridge

Creating a Discover TMF814 Scan ........................................................................................................   3-1

4 About Collected Data

About Collected Data ..............................................................................................................................   4-1
Multi Technology Network Management Hierarchy ...................................................................   4-1
Layer Parameters................................................................................................................................   4-5
TMF814 APIs.......................................................................................................................................   4-5

CORBA APIs................................................................................................................................   4-5
APIs for Cross-Connect Collection...........................................................................................   4-6
APIs for Topological Link Collection.......................................................................................   4-6

Handling Vendor Variations .................................................................................................................   4-6
FTP Collection API Variations .........................................................................................................   4-7
Cross-Connect Collection API Variation ........................................................................................   4-7
Topological Link Collection API Variation ....................................................................................   4-7
Cross-Connect Protection Role.........................................................................................................   4-7

5 About Cartridge Modeling

About Cartridge Modeling .....................................................................................................................   5-1
About the Oracle Communications Information Model ..................................................................   5-1

About the Physical Tree ....................................................................................................................   5-2
About the Logical Tree ......................................................................................................................   5-2
Field Mapping ....................................................................................................................................   5-3
About Building the Information Model Tree .................................................................................   5-9

Containment Relationships .......................................................................................................   5-9
Adding an Equipment and an Equipment Holder to the Tree .........................................    5-10
Adding a Physical Port and an Interface to the Tree ..........................................................    5-11
Adding a Sub-Interface to the Tree .......................................................................................    5-11

Cartridge Modeling for Cross-Connect Data ..............................................................................    5-11
A and Z Channels ....................................................................................................................    5-14

Cartridge Modeling for Topological Link Data..........................................................................    5-15
Result Groups ........................................................................................................................................    5-16

6 About Model Correction

Equipment Holder as a Child of a Physical Device...........................................................................   6-1
Sub-Slots of Slots .....................................................................................................................................   6-1
Huawei U2000 MSTP End Port ..............................................................................................................   6-1



v 

7 About Design Studio Construction

Model Collections ....................................................................................................................................   7-1
Actions ........................................................................................................................................................   7-1

8 About Design Studio Extension

Initializing a Custom Object Request Broker ....................................................................................   8-1
Extending the Discover TMF814 Action to Collect Vendor-Specific Information......................   8-2
Collecting Vendor-Specific Details for CTPs .....................................................................................   8-3
Adding New Managers ...........................................................................................................................   8-5
Creating a Custom Equipment Reconciliation Cartridge.................................................................   8-6
Creating a Custom Circuit Reconciliation Cartridge ........................................................................   8-6
Customizing the JKLM Value Calculation .........................................................................................   8-7
Adding New CORBA API Calls ............................................................................................................   8-8
Collecting and Modeling Protection Role Information.................................................................    8-13
Discovering Custom Device or Result Group Names....................................................................    8-14



vi



vii

Preface

This guide explains the functionality and design of the Oracle Communications 
Network Integrity Optical TMF814 CORBA cartridge.

Audience
This guide is intended for Network Integrity administrators, developers, and 
integrators.

This guide assumes that you are familiar with the following documents:

■ Network Integrity Developer’s Guide: for basic understanding of cartridges

■ Network Integrity Installation Guide: for information about deploying and 
undeploying cartridges

■ Network Integrity CORBA Cartridge Guide: for an understanding of the functionality 
and design of the Network Integrity Cartridge for CORBA (CORBA cartridge)

This guide assumes that your are familiar with the following concepts:

■ TMF814 standards and terminology

■ Common object request broker architecture (CORBA) standards and terminology

■ Oracle Communications Design Studio

■ Oracle Communications Information Model

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support 
through My Oracle Support. For information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.

Document Revision History
The following table lists the revision history for this guide:



viii

Version Date Description

E66046-01 May 2016 Initial release.



1

Overview 1-1

1Overview

This chapter describes the Oracle Communications Network Integrity Optical TMF814 
CORBA cartridge.

About the Optical TMF814 CORBA Cartridge
The Optical TMF814 CORBA cartridge is used to discover your network using a 
TMF814 common object request broker architecture (CORBA) interface. This cartridge 
provides discovery actions capable of discovering both physical (equipment) and 
logical (interface) hierarchy details of managed elements (MEs). It uses the TMF814 
CORBA interface as a discovery protocol to connect and retrieve details from network 
management systems (NMSs) or element management systems (EMSs).

Using this cartridge, you can configure Network Integrity to capture and retrieve data 
about a network system from equipment and system vendors that have adopted the 
TMF814 standard.

The Optical TMF814 CORBA cartridge can be used to discover the following network 
systems:

■ Synchronous optical networking (SONET)

■ Synchronous digital hierarchy (SDH)

■ Dense wavelength-division multiplexing (DWDM)

■ Asynchronous transfer mode (ATM)

■ Ethernet

This cartridge supports versions 2.0, 2.1, 3.0, and 3.2 of the TMF814 implementation 
for the ManagedElementMgr and EquipmentInventoryMgr managers.

This cartridge translates MTNM objects obtained during discovery into the Oracle 
Communications Information Model and then writes the objects to the Network 
Integrity database.

To ensure scalability, this cartridge processes MEs individually. The duration of the 
discovery actions is proportional to the number and size of MEs to be discovered. It is 
not possible to pause and resume a scan, though a scan can be stopped.

About Cartridge Dependencies
This section provides information on dependencies that the Oracle Communications 
Network Integrity Optical TMF814 CORBA cartridge has on other entities.



Opening the Cartridge Files in Design Studio

1-2 Network Integrity Optical TMF814 CORBA Cartridge Guide

Run-Time Dependencies
There are no run-time dependencies for this cartridge.

Design Studio Dependencies
To load the Optical TMF814 CORBA cartridge into Oracle Communications Design 
Studio, the following cartridge must be installed:

■ Network Integrity cartridge for CORBA (CORBA cartridge), including all of its 
dependencies

Opening the Cartridge Files in Design Studio
To review and extend the Optical TMF814 CORBA cartridge, download a ZIP file from 
the Oracle software delivery web site:

https://edelivery.oracle.com/

Download the Optical TMF814 CORBA cartridge ZIP file for Network Integrity, which 
contains the Design Studio cartridge files.

The Optical TMF814 CORBA cartridge ZIP file has the following structure:

■ \UIM_Cartridge_Projects\ora_ni_uim_ocim

■ \UIM_Cartridge_Projects\TMF814_Model

■ \Network_Integrity_Cartridge_Projects\TMF814Discovery_Cartridge

■ \Network_Integrity_Cartridge_Projects\Abstract_CORBA_Cartridge

The TMF814Discovery_Cartridge project contains the extendable Design Studio files.

You must open the files in Design Studio before you can review and extend the 
cartridge. 

See Network Integrity Concepts for guidelines and best practices for extending 
cartridges. See Network Integrity Developer’s Guide for information about opening files 
in Design Studio.

Building and Deploying the Cartridge
See the Design Studio Help for information about building and deploying cartridges.



2

About the Cartridge Components 2-1

2About the Cartridge Components

This chapter provides information about the components that make up the Oracle 
Communications Network Integrity Optical TMF814 CORBA cartridge.

The Optical TMF814 CORBA cartridge contains the following actions:

■ Discover Abstract TMF814 Action

■ Discover TMF814 Action

■ Discover Huawei U2000 Action

See "About Design Studio Construction" for information about how the actions are 
built.

The Optical TMF814 CORBA cartridge supports a recording mode for recording 
TMF814 data. See "About Recording Mode" for more information.

Discover Abstract TMF814 Action
This is an abstract action that can be extended in Oracle Communications Design 
Studio to discover specified network and connectivity objects, using specified ORB 
Properties and ORB Arguments. This action does not contain scan parameter groups. 
The definition of scan parameters and how they appear is the responsibility of the 
extending action.

The Discover Abstract TMF814 action contains the following processors run in the 
following order:

1. TMF814 Property Initializer

2. TMF814 Session Manager

3. TMF814 Device Recorder Initializer

4. TMF814 ME Collector

5. TMF814 Device Modeler

6. TMF814 Equipment Collector

7. TMF814 Equipment Modeler

8. TMF814 PTP Collector

9. TMF814 PTP Modeler

10. TMF814 CTP Discoverer for PTP

11. TMF814 FTP Collector

12. TMF814 FTP Modeler



Discover Abstract TMF814 Action

2-2 Network Integrity Optical TMF814 CORBA Cartridge Guide

13. TMF814 CTP Discoverer for FTP

14. TMF814 Device Persister

15. TMF814 Device Recorder Persister

16. TMF814 Cross-Connect Discoverer

17. TMF814 Topological Link Collector

18. TMF814 Topological Link Modeler

19. TMF814 Pipe Persister

Figure 2–1 illustrates the processors workflow of the Discover Abstract TMF814 action.

Figure 2–1 Discover Abstract TMF814 Action Processors

TMF814 Property Initializer
This processor initializes properties required by other processors in the Discover 
Abstract TMF814 action. All properties are populated into a JavaBean class named 
tmf814Properties. These properties can be customized by other processors. Table 2–1 
lists the available properties.



Discover Abstract TMF814 Action

About the Cartridge Components 2-3

Table 2–1  TMF814 Property Initializer Properties and Values

Property Name Description Value

Username Indicates the EMS user name, used while getting the EMS 
session from the session factory.

Extending cartridges may 
supply a default value.

Password Indicates the EMS password, used while getting the EMS 
session from the session factory. 

Extending cartridges may 
supply a default value.

collectCTP Indicates the type of CTPs to collect:

■ A current TP is a CTP that is, or can be cross-connected in 
the current mapping configuration.

■ An in-use TP is a CTP that is used by an subnetwork 
connection (SNC) in any state, or a CTP that is 
terminated and mapped.

■ A potential contained TP (contained in a PTP or CTP) is a 
CTP that is capable of supporting all possible mapping 
configurations at the specified layer rates and is 
contained by the specified termination.

Valid values: NONE, 
CURRENT, IN_USE, 
POTENTIAL

collectEquipment Indicates whether to collect Equipment and Equipment 
Holder details. If this value is FALSE, only MEs and 
connection termination points (CTPs) associated with floating 
termination points (FTPs) are collected and modeled.

Valid values: TRUE, 
FALSE

collectTP Indicates whether to collect physical termination points 
(PTPs) or floating termination points (FTPs), or both.

Valid values: ALL, 
NONE, ONLY_PTP, 
ONLY_FTP

crossConnectCollectio
nType

Indicates the method used to collect cross-connects: 

■ A value of USE_SNC collects cross-connects using multi 
layer subnetwork (MLSN) Manager APIs.

■ A value of USE_ME_MANAGER collects cross-connects 
using ME Manager APIs.

Cross-connects are not collected if the value is set to NONE.

Ensure the correct value is used, according to your vendor 
specifications.

Valid values: USE_SNC, 
USE_ME_MANAGER, 
NONE

crossConnectModelC
ustomizerImplClass

Allows you to customize cross-connect modeling. N/A

ctpCollectionDepth Indicates the hierarchical depth to which CTPs are collected 
(because TPs can contain several levels of child TPs), 
depending on the API used by the vendor to call CTPs.

Valid values: positive 
integers

ctpModelCustomizerI
mplClass

A class implementing the 
oracle.communications.integrity.tmf814discovery.model.ctp.C
TPModelCustomizer interface.

To discover additional attributes for CTPs, add a similar 
implementation interface to the system.

N/A

discovererFactoryImp
lClass

A default implementation of the Discoverer Factory class, 
used to provide a custom collection mechanism. 

N/A

emsManagerName Name of the EMSMgr_I manager used to obtain the manager 
from EmsSession_I.getManager.

N/A

equipmentFetchSize Indicates the number of Equipment or Holders to fetch at a 
time.

Valid values: positive 
integer

equipmentInventory
ManagerName

Indicates the name of the Equipment inventory manager. N/A

includeHigherOrderC
Cs

Specifies whether higher-order cross-connects of other SNCs 
are collected.

Valid values: TRUE, 
FALSE



Discover Abstract TMF814 Action

2-4 Network Integrity Optical TMF814 CORBA Cartridge Guide

TMF814 Session Manager
This processor creates a session manager instance (of type 
oracle.communications.integrity.tmf814discovery.session.SessionManager) that is 
responsible for managing the EmsSession and TMF814Object managers, as well as 
creating and managing the emsMgr.EMSMgr_I and 
multiLayerSubnetwork.MultiLayerSubnetworkMgr_I managers.

This processor also populates the discovered EMS version and updates the TMF814 
properties Java bean object.

TMF814 Device Recorder Initializer
This processor initializes Recording Mode (if it has been enabled). See "About 
Recording Mode" for more information.

layerRateList Filters TPs based on layer rates while collecting in-use and 
potential CTPs. An empty list indicates to the element 
management system (EMS) to report all CTPs of all rates.

Valid values: Comma 
separated list of layer 
rates as numerical values.

managedElementMan
agerName

Indicates the name of the ME manager. N/A

meFetchSize Indicates number of MEs to fetch at a time, as opposed to 
obtaining them all at once.

N/A

mlsnManagerName Name of the MultiLayerSubnetworkMgr_I manager used to 
obtain the manager from EmsSession_I.getManager.

N/A

modelCollectionType Indicates whether to model logical or physical devices, or 
both.

Valid values: logical, 
physical, both (=null) 

namingService EMS naming service. N/A

namingServiceFormat The EMS naming service format. A value of STRINGIFIED 
indicates that the namingService property value is a CORBA 
stringified object reference. A value of PLAIN indicates that 
the namingService property value is in a specific format.

Valid values: PLAIN, 
STRINGIFIED

rootPOA Indicates the name of the root Portable Object Adapter (POA) N/A

topologicalLinkCollec
tionType

Indicates the method used to collect topological links:

■ A value of BETWEEN_SN collects topological links 
between subnetworks only.

■ A value of INSIDE_SN collects topological links inside 
subnetworks only.

■ A value of ALL collects all topological links.

Topological links are not collected if value is set to NONE.

Ensure the correct value is used, according to your vendor 
specifications.

Possible values: ALL, 
BETWEEN_SN, INSIDE_
SN, NONE

tpFetchSize Indicates the number of TPs to fetch at a time, as opposed to 
obtaining them all at once.

N/A

XCPipeFlushSize Cross-connect Information Model objects are flushed to the 
database in batches. This value indicates number of modeled 
objects flushed to DB in each batch.

Valid value: integer

Table 2–1 (Cont.) TMF814 Property Initializer Properties and Values

Property Name Description Value



Discover Abstract TMF814 Action

About the Cartridge Components 2-5

TMF814 ME Collector
This processor retrieves a list of MEs using the TMF814 ME Manager. It outputs an 
Iterable for each ME. To deal with the large number of objects, these iterators can 
retrieve MEs in chunks (pagination) instead of all at one time.

Pagination is internal to the produced Iterable. The meFetchSize property set in 
tmf814Properties indicates the number of MEs to be retrieved at a time.

This processor can filter MEs based on name-matching criteria provided through scan 
parameters. Only those MEs that are matched by specified criteria are considered for 
further processing. 

TMF814 Device Modeler
This processor is run for each Iterable produced by the TMF814 ME Collector 
processor. It creates the logical and physical device entities. Device entities are not 
added to the result by this processor.

This processor can be configured to model either physical or logical objects by setting 
the modelCollectionType property. By default, both types of objects are modeled.

TMF814 Equipment Collector
This processor retrieves a list of Equipment and EquipmentHolders objects for the 
MEs using the Equipment Inventory Manager. It outputs an Iterable for each 
EquipmentOrHolder object. 

TMF814 Equipment Modeler
This processor is run for each Iterable produced by the TMF814 Equipment Collector 
processor. It creates the equipment and equipment holder entities and adds them to 
the Physical Tree. This processor returns either Information Model Equipment or 
Equipment Holder, depending on which is modeled. See "About Cartridge Modeling" 
for more information.

TMF814 PTP Collector
This processor is run for each Iterable from the TMF814 Equipment Collector 
processor. This processor collects all the PTPs for each equipment object. It outputs an 
Iterable for each PTP. 

TMF814 PTP Modeler
This processor is run for each Iterable from the TMF814 PTP Collector processor. This 
processor models each PTP as a Physical Port or Device Interface object and adds them 
to either the Physical or Logical Tree.

TMF814 CTP Discoverer for PTP
This processor recursively retrieves and models CTPs for each input PTP obtained 
from the Iterable produced by the TMF814 PTP Collector processor. The following 
operation is run for each PTP:

1. Using an input PTP, a TMF814 operation is run to obtain all its contained CTPs.

2. Each CTP is modeled as a Device Interface object.

3. (Optional) The CTP customizer is run.



Discover Abstract TMF814 Action

2-6 Network Integrity Optical TMF814 CORBA Cartridge Guide

4. The CTP is added to the Logical Tree.

Depending on the ctpCollectionDepth parameter value, a TMF814 operation is run for 
each collected CTP to obtain and process its child CTPs.

TMF814 FTP Collector
This processor retrieves a list of all FTPs and outputs an Iterable for each FTP object. A 
property set in tmf814Properties specifies whether to collect FTP details. The produced 
Iterable is similar to the one explained for the TMF814 ME Collector processor.

TMF814 FTP Modeler
This processor is run for each Iterable produced by the TMF814 FTP Collector 
processor. This processor creates Device Interface objects for the input FTPs and adds 
them to the Logical Tree.

TMF814 CTP Discoverer for FTP
This processor recursively retrieves and models CTPs for each input FTP obtained 
from the Iterable produced by the TMF814 FTP Collector processor. The following 
operation is run for each FTP:

1. Using an input FTP, a TMF814 operation is run to obtain all its contained CTPs.

2. Each CTP is modeled as a Device Interface object.

3. (Optional) The CTP customizer is run.

4. The CTP is added to the Logical Tree.

Depending on the ctpCollectionDepth parameter value, the above TMF814 operation 
is run for each collected CTP to obtain and process its child CTPs.

TMF814 Device Persister
This processor adds the logical and physical devices to the result and persists it. This 
processor closes and discards any CORBA iterators used. 

TMF814 Device Recorder Persister
This processor persists the recorded data to a file, if the Recording Mode is enabled. 
See "About Recording Mode" for more information.

TMF814 Cross-Connect Discoverer
This processor collects and models cross-connects according to the following 
operation:

1. Run TMF814 operation to collect cross-connects.

Note: The ctpModelCustomizerImplClass class is used to configure the CTP 
customizer. This class is set by the TMF814 Property Initializer processor.

Note: The ctpModelCustomizerImplClass class is used to configure the CTP 
customizer. This class is set by the TMF814 Property Initializer processor.



Discover TMF814 Action

About the Cartridge Components 2-7

2. For each collected cross-connect:

a. Model the cross-connect according to the Optical Model for Network Integrity. 
See Network Integrity Developer’s Guide for more information.

b. (Optional) Run the Cross-connect Customizer processor.

c. Add modeled entity to the result group.

d. Send last result group, or any result group equal to the configured flush size to 
the Network Integrity database.

Cross-connect collection is controlled by the crossConnectCollectionType parameter.

Cross-connects are modeled as pipe entities and sent to the Network Integrity 
database in batches. Batch sizes are configurable using the XCPipeFlushSize property.

Cross-connect modeling can be extended by creating a Cross-connect Customizer 
processor. See "About Design Studio Extension" for more information.

TMF814 Topological Link Collector
This processor collects all the EMS STM links and returns an Iterable that collects 
Topological Link objects. The produced Iterable is similar to the one explained for the 
TMF814 ME Collector processor.

TMF814 Topological Link Modeler
This processor is run for each Iterable produced by the TMF814 Topological Link 
Collector processor. This processor models each input topological link object according 
to the Optical Model for Network Integrity, and adds it to the result group. See 
Network Integrity Developer’s Guide for more information.

TMF814 Pipe Persister
This processor persists all the cross-connect and topological link pipes and writes the 
recorded data to corresponding files. See "About Recording Mode" for more 
information about the recorded data files.

Discover TMF814 Action
This action, which extends the Discover Abstract TMF814 actions, is a complete and 
deployable action, configured using scan parameters, so you have full control over 
what is and is not discovered. This action can be extended to add new scan 
parameters, but the original scan parameters must remain. This action can also be 
extended to discover additional types of network and connectivity objects.

This discovery action inherits all the processors from the following actions:

■ The Discover Abstract CORBA action

For information about the inherited processors in this action, see Network Integrity 
CORBA Cartridge Guide.

■ The Discover Abstract TMF814 action

Note: The crossConnectModelCustomizerImplClass is used to 
configure the Cross-connect Customizer processor.



Discover TMF814 Action

2-8 Network Integrity Optical TMF814 CORBA Cartridge Guide

For information about the inherited processors in this action, see "Discover 
Abstract TMF814 Action".

The Discover TMF814 action contains the following processors run in the following 
order:

1. CORBA Property Initializer (inherited)

2. TMF814 CORBA Property Initializer

3. CORBA Connection Manager (inherited)

4. TMF814 Property Initializer (inherited)

5. TMF814 Property Customizer

6. TMF814 Session Manager (inherited)

7. TMF814 Device Recorder Initializer (inherited)

8. TMF814 ME Collector (inherited)

9. TMF814 Device Modeler (inherited)

10. TMF814 Equipment Collector (inherited)

11. TMF814 Equipment Modeler (inherited)

12. TMF814 PTP Collector (inherited)

13. TMF814 PTP Modeler (inherited)

14. TMF814 CTP Discoverer for PTP (inherited)

15. TMF814 FTP Collector (inherited)

16. TMF814 FTP Modeler (inherited)

17. TMF814 CTP Discoverer for FTP (inherited)

18. TMF814 Device Persister (inherited)

19. TMF814 Device Recorder Persister (inherited)

20. TMF814 Cross-Connect Discoverer (inherited)

21. TMF814 Topological Link Collector (inherited)

22. TMF814 Topological Link Modeler (inherited)

23. TMF814 Pipe Persister (inherited)

Figure 2–2 illustrates the processors workflow of the Discover Abstract TMF814 action.



Discover Huawei U2000 Action

About the Cartridge Components 2-9

Figure 2–2 Discover TMF814 Action Processors

TMF814 CORBA Property Initializer
This processor reads the ORBProperties and ORBArguments parameters from the UI 
and passes them to the CORBA Connection Manager processor through the corbaSeed. 
ORBProperties and ORBArguments are used during ORB initialization.

See Network Integrity CORBA Cartridge Guide for information about ORBProperties and 
ORBArguments.

TMF814 Property Customizer
This processor takes scan parameters for a specific scan and assigns them to properties 
in the TMF814 Property Initializer processor. See Table 7–3, " TMF814 Scan Parameters 
Design Studio Construction" for a list of available scan parameters.

Discover Huawei U2000 Action
This action, which extends the Discover TMF814 action, is used to discover 
Huawei-specific multiple spanning tree protocol (MSTP) endpoints. This action is 
configured using scan parameters, so you have full control over what is and is not 
discovered. This action is complete and deployable and can be extended to discover 
other types of Huawei devices.

This discovery action inherits all the processors from the Discover TMF814 action. For 
information about the inherited processors in this action, see "Discover TMF814 
Action".

The Discover Huawei U2000 action contains the following processors run in the 
following order:

1. CORBA Property Initializer (inherited)

2. TMF814 CORBA Property Initializer (inherited)

3. CORBA Connection Manager (inherited)

4. TMF814 Property Initializer (inherited)



Discover Huawei U2000 Action

2-10 Network Integrity Optical TMF814 CORBA Cartridge Guide

5. TMF814 Property Customizer (inherited)

6. Huawei Customizer

7. TMF814 Session Manager (inherited)

8. TMF814 Device Recorder Initializer (inherited)

9. TMF814 ME Collector (inherited)

10. TMF814 Device Modeler (inherited)

11. TMF814 Equipment Collector (inherited)

12. TMF814 Equipment Modeler (inherited)

13. TMF814 PTP Collector (inherited)

14. TMF814 PTP Modeler (inherited)

15. TMF814 CTP Discoverer for PTP (inherited)

16. Huawei MSTP EndPoint Collector

17. Huawei MSTP EndPoint Modeler

18. TMF814 FTP Collector (inherited)

19. TMF814 FTP Modeler (inherited)

20. TMF814 CTP Discoverer for FTP (inherited)

21. TMF814 Device Persister (inherited)

22. TMF814 Device Recorder Persister (inherited)

23. TMF814 Cross-Connect Discoverer (inherited)

24. TMF814 Topological Link Collector (inherited)

25. TMF814 Topological Link Modeler (inherited)

26. TMF814 Pipe Persister (inherited)

Figure 2–3 illustrates the processors workflow of the Discover Huawei U2000 action.



About Recording Mode

About the Cartridge Components 2-11

Figure 2–3 Discover Huawei U2000 Action Processors

Huawei Customizer
This processor initializes a map that is used to get the name/native EMS name from 
the Huawei ME if the ME is named in numbers.

Huawei MSTP EndPoint Collector
This processor collects multi-service transmission platform (MSTP) endpoints (ATM 
and Ethernet ports) using Huawei-specific APIs and outputs an Iterable for each 
endpoint collected. The produced Iterable is similar to the one explained for the 
TMF814 ME Collector processor.

Huawei MSTP EndPoint Modeler
This processor is run for each Iterable produced by the Huawei MSTP EndPoint 
Collector processor. It models each input endpoint as a physical port and mapping 
device interface and adds it to its parent equipment in the Information Model Tree. 

About Recording Mode
The Optical TMF814 CORBA cartridge can be configured to record all discovered MEs, 
topological links, and cross-connects. The recorded files (ME_Name.me for MEs, EMS_
Name.ems for topological links, and EMS_Name.cc for cross-connects) are saved to the 
WL_Domain_Home/corbaData/Scan_Name/EMS_Name directory, where:

■ ME_Name is the name of the managed element.

■ EMS_Name is the name of the EMS.

■ Domain_Home is the directory where your WebLogic domain is configured.

■ Scan_Name is the name of the scan.

If the TMF814 scan action type has been configured to not discover MEs, topological 
links, or cross-connects, the corresponding file is not generated.



About Recording Mode

2-12 Network Integrity Optical TMF814 CORBA Cartridge Guide

Recording Mode is controlled with the tmf814.properties file in the WeLogic_Domain_
Home/config/corbaConfig/ directory. Recording Mode can be enabled or disabled by 
an administrator without needing any server or application restart. The recording 
processor reads this file each time it is run.

Enabling Recording Mode
To enable recording mode:

1. Open the WebLogic_Home/config.corbaConfig/tmf814.properties file.

2. Search for the line: MODE=NORMAL

3. Change NORMAL to RECORD.

4. Set the CHUNK SIZE entry to the number of cross-connects written to EMS_
Name.cc at a time. 



3

Using the Cartridge 3-1

3Using the Cartridge

This chapter explains how to use the Oracle Communications Network Integrity 
Optical TMF814 CORBA cartridge.

Creating a Discover TMF814 Scan
The Optical TMF814 CORBA cartridge allows you to create a Discover TMF814 scan.

To create a Discover TMF814 scan:

1. Create a scan, as explained in the Network Integrity Help. 

2. On the General tab, do the following:

■ From the Scan Action list, select one of the following:

– To discover entities from a generic TMF814 element or network 
management system, select Discover TMF814.

– To discover entities from a Huawei U2000, select Discover Huawei U2000.

The Scan Type field displays Discovery.

■ Enter the following TMF814 scan action parameters:

– In the Username field, enter the username for the target element or 
network management system (EMS or NMS).

– In the Password field, enter the password for the target EMS or NMS.

– In the EMS Naming Service field, enter the EMS session factory CORBA 
object name.

– From the EMS Naming Service Format list, specify whether the EMS 
session factory CORBA object name uses the Plain, or the Stringified 
format.

– From the Collect Equipment list, specify whether you want to collect 
equipment holder objects. 

– From the Collect Termination Points list, specify the type of termination 
points (TPs) you want to collect. To not collect any TPs, select None.

– From the Collect Connection TP list, specify the type of connection TPs 
you want to collect. To not collect any connection TPs, select None.

– (Optional) To set the number of equipment objects to retrieve with each 
EMS call, enter a value in the Equipment Fetch Size field. Leave this field 
blank to retrieve all equipment objects in a single EMS call.



Creating a Discover TMF814 Scan

3-2 Network Integrity Optical TMF814 CORBA Cartridge Guide

– (Optional) To set the number of TPs to retrieve with each EMS call, enter a 
value in the Termination Point Fetch Size field. Leave this field blank to 
retrieve all TPs in a single EMS call.

– (Optional) To set the depth to which contained TPs are collected, enter a 
value in the Contained TP Collection Depth field. Leave this field blank 
to retrieve all contained TPs.

– (Optional) To pass custom object request broker (ORB) properties to the 
Discover Abstract TMF814 action, enter name value pairs in the ORB 
Properties field, separated by a semicolon, as in the following example: 

Property_1=value_1;Property_2=value_2;Property_n=value_n

– (Optional) To pass custom ORB arguments to the Discover Abstract 
TMF814 action, enter name value pairs in the ORB Arguments field, 
separated by a semicolon, as in the following example:

Argument_1=value_1;Argument_2=value_2;Argument_n=value_n

– (Optional) To filter the discovered managed elements (MEs) by name, 
enter a name in the Managed Element Name(s) field and set the Managed 
Element Name Qualifier list.

– (Optional) To filter the discovered network elements (NEs) by name, enter 
a name in the Network Element Name(s) field and set the Network 
Element Name Qualifier list.

– In the Cross Connect Collection Type field, specify how cross-connect 
objects are collected. To not collect any cross-connect objects, select None.

– In the Topological Link Collection Type field, specify how topological 
links are collected. To not collect any topological links, select None.

See Table 7–3, " TMF814 Scan Parameters Design Studio Construction" for 
more information.

3. On the Scope tab, do one of the following:

■ Enter the EMS CORBA Loc URL

■ Import the IOR file

■ Enter the content of the IOR file

4. Make any other required configurations.

Note: All entries on the Scope tab must be unique. All entries are 
validated against the CorbaURLAddressHandler address handler.



4

About Collected Data 4-1

4About Collected Data

This chapter explains how the Oracle Communications Network Integrity Optical 
TMF814 CORBA cartridge treats collected data.

About Collected Data
The Oracle Communications Network Integrity Optical TMF814 CORBA cartridge 
uses a standard TMF814 common object request broker architecture (CORBA) 
interface, which models network elements using the Multi Technology Network 
Management (MTNM) standard.

Table 4–1 lists MTNM objects and corresponding TMF814 IDL API class definitions.

A CTP can have a child CTP with infinite nesting levels. LayeredParameters are not 
top-level MTNM objects. They are a property of a termination point (TP).

Multi Technology Network Management Hierarchy
The following example demonstrates the MTNM hierarchy:

Managed Element
  Equipment Holder(rack 1)
    Equipment Holder (shelf 1)

Table 4–1  MTNM IDL Class Definitions

MTNM Object Name TMF814 IDL API Class Definition

Managed Element (ME) ManagedElement_T

Equipment Holder (Rack) EquipmentHolder_T

Equipment Holder (Shelf) EquipmentHolder_T

Equipment Holder (Slot) EquipmentHolder_T

Equipment Holder (Sub Slot) EquipmentHolder_T

Equipment (Card) Equipment_T

Physical Termination Point (PTP) TerminationPoint_T

Floating Termination Point (FTP) TerminationPoint_T

Connection Termination Point (CTP) TerminationPoint_T

Cross-connect CrossConnect_T

Topological Link TopologicalLink_T

LayeredParameters LayeredParameters_T



About Collected Data

4-2 Network Integrity Optical TMF814 CORBA Cartridge Guide

      Equipment Holder (sub shelf 1)
        Equipment Holder (slot 1)
          Equipment Holder(sub slot 1)
            Equipment(card 1)
              Termination Point (PTP){0…*}
                Termination Point (CTP){0…*}
          Equipment Holder(sub slot 2)
            Equipment(card 2)
              Termination Point (PTP){0…*}
                Termination Point (CTP){0…*}
                  Termination Point (CTP){0…*}

The following tables describe the properties of each MTNM object collected by the 
Optical TMF814 CORBA cartridge:

■ Table 4–2, " Managed Elements Properties"

■ Table 4–3, " Equipment Properties"

■ Table 4–4, " Equipment Holder Properties"

■ Table 4–5, " PTP, FTP, and CTP Properties"

■ Table 4–6, " Cross-Connect Properties"

■ Table 4–7, " Topological Link Properties"

Table 4–2  Managed Elements Properties 

Property Name Description

name The name of the managed element (ME) that is assigned by the element management 
system (EMS) upon creation.

userLabel Identifies the label assigned to the ME by the operator.

nativeEMSName Indicates how the ME is referred to on EMS displays.

owner Provided by the network management system (NMS). 

location Indicates the geographical location of the ME.

version The active software version of the ME.

productName Identifies the ME product or type name.

communicationState Indicates the viability of EMS-ME messaging. Possible values are CS_AVAILABLE, CS_
UNAVAILABLE.

emsInSyncState Indicates if the EMS is able to keep the current EMS data synchronized with the current ME 
data and generate all appropriate notifications. The EMS sets this attribute to FALSE to 
indicate that it requires re-synchronization with ME data and that it is not able to generate 
the appropriate notifications while doing so.

supportedRates This attribute is a list of potential cross-connection rates at which it is possible to have 
cross-connections within the ME.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. This field is 
common to all MTNM-managed objects. This field consists of a list of name and value pairs 
that call additional information, which allow EMS or NMS to give additional information 
that is not explicitly modeled at the MTNM interface. Some parameter names and values 
may be predefined.



About Collected Data

About Collected Data 4-3

Table 4–3  Equipment Properties

Property Name Description

name The name of the Equipment that is assigned by the EMS upon creation.

nativeEMSName Indicates how the Equipment is referred to on EMS displays.

userLabel A label assigned to the Equipment by the operator.

owner Provided by the NMS.

alarmReportingIndicator Indicates whether alarm reporting for this instance is active.

expectedEquipmentObjectType Defines the type of expected Equipment. Leave empty if there is no expected 
Equipment. Example value: MBP_300.

installedEquipmentObjectType Defines the type of installed Equipment. Leave empty if there is no installed 
Equipment.

installedPartNumber Indicates the part number of the installed Equipment.

installedSerialNumber Indicates the serial number of the installed Equipment.

installedVersion Indicates the firmware version of the installed Equipment.

serviceState Indicates the current state of the Equipment. Possible values are IN_SERVICE, 
OUT_OF_SERVICE, OUT_OF_SERVICE_BY_MAINTENANCE, SERV_NA.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. 
This field is common to all MTNM-managed objects. This field consists of a list 
of name and value pairs calling additional information and allowing EMSs or 
NMSs to give additional information that is not explicitly modeled at the MTNM 
interface. Some parameter names and values may be predefined.

Table 4–4  Equipment Holder Properties

Property Name Description

name Equipment Holder unique name. The EMS is responsible for the uniqueness of 
the name within the context of the ME.

nativeEMSName Indicates how the Equipment Holder is referred to on EMS displays.

userLabel Provided by the NMS.

owner Provided by the NMS.

alarmReportingIndicator Indicates whether alarm reporting is active for the instance.

holderType Indicates the type of Equipment Holder. Valid values are: rack, shelf, sub_shelf, 
slot, sub_slot.

holderState Indicates the state of the Equipment Holder directly contained equipment. 
Possible values are: EMPTY (0), INSTALLED_AND_EXPECTED (1), 
EXPECTED_AND_NOT_INSTALLED (2), INSTALLED_AND_NOT_
EXPECTED (3), MISMATCH_OF_INSTALLED_AND_EXPECTED (4), 
UNAVAILABLE (5), UNKNOWN (6).

expectedOrInstalledEquipment The Equipment object expected or installed in the Equipment Holder, if any. A 
value of NULL indicates that the Equipment Holder is empty or that it contains 
only other Equipment Holders.

acceptableEquipmentTypeList Represents the types of Equipment objects that can be directly supported by the 
Equipment Holder.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. 
This field is common to all MTNM-managed objects. This field consists of a list 
of name and value pairs that call additional information, which allow EMS or 
NMS to give additional information that is not explicitly modeled at the MTNM 
interface. Some parameter names and values may be predefined.



About Collected Data

4-4 Network Integrity Optical TMF814 CORBA Cartridge Guide

Table 4–5  PTP, FTP, and CTP Properties

Property Name Description

name Indicates the assigned TP name when created by the EMS. The EMS is responsible for 
guaranteeing the uniqueness of the name within the context of the ME. The naming for 
CTPs, PTPs, and FTPs is deterministic.

nativeEMSName Indicates how the TP is referred to on EMS displays.

userLabel The user label of the TP is set with NMS data (typically the end-to-end trail data).

owner Indicates the ownership of the TP so that adminstrativeState can be managed.

direction Indicates the direction of the TP. Possible values are: D_NA (0), D_BIDIRECTIONAL 
(1), D_SOURCE (2), D_SINK (3).

tpProtectionAssociation Indicates the associated TP indication. The NMS is responsible for running the 
multiLayerSubnetwork::MultiLayerSubnetworkMgr_I::getAssociatedTP() service to 
obtain any related TP.

edgePoint Indicates if the TP is an edge point of one or more subnetworks.

ingressTransmissionDes
criptorName

Indicates whether a CTP references an ingress (incoming) Traffic Descriptor or 
Transmission Descriptor.

egressTransmissionDesc
riptorName

Indicates whether a CTP references an egress (outgoing) Traffic Descriptor or 
Transmission Descriptor.

connectionState Indicates the connection state of the source. A value of TPCS_BI_CONNECTED 
indicates that the source is connected to one entity and the sink is connected to the 
other. Possible values are: TPCS_NA, TPCS_SOURCE_CONNECTED, TPCS_SINK_
CONNECTED, TPCS_BI_CONNECTED, TPCS_NOT_CONNECTED.

tpMappingMode Indicates and controls the connection of the named connection point at a specified 
LayerRate to the dedicated G.805 TCP and associated G.805 Termination Function at 
the same LayerRate within the CTP or FTP. Possible values are: TM_NA(0), TM_
NEITHER_TERMINATED_NOR_AVAILABLE_FOR_MAPPING (1), TM_
TERMINATED_AND_AVAILABLE_FOR_MAPPING (2).

type Possible value are: TPT_PTP (0), TPT_CTP (1), TPT_TPPool (2).

transmissionParams A list of transmission parameters that can be set or retrieved on the TP at a specified 
layer. This attribute must contain the complete set of layer rates represented by a PTP, 
CTP, or FTP, even if they have no parameters associated with them. The Layer Rates are 
listed in the order of their client-server relationship.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. This 
field is common to all MTNM-managed objects. This field consists of a list of name and 
value pairs that call additional information, which allows the EMS or NMS to give 
additional information that is not explicitly modeled at the MTNM interface. Some 
parameter names and values may be predefined.

Table 4–6  Cross-Connect Properties

Property Name Description

active Indicates if the cross-connect is active in the ME.

ccType Indicates the cross-connect type. Possible values are: ST_SIMPLE, ST_ADD_DROP_A, ST_
ADD_DROP_Z, ST_INTERCONNECT, ST_DOUBLE_INTERCONNECT, ST_DOUBLE_ADD_
DROP, ST_OPEN_ADD_DROP, ST_EXPLICIT

direction Directionality of the cross connection. Possible values are: CD_UNI, CD_BI 



About Collected Data

About Collected Data 4-5

Layer Parameters
The Optical TMF814 CORBA cartridge collects layer parameters for TPs. In the MTNM 
model, these layer parameters are encapsulated by TPs as transmission parameters. 
For details on layered parameters see the TMF814 documentation.

TMF814 APIs
This section describes the APIs used by the Optical TMF814 CORBA cartridge to 
collect data.

CORBA APIs
Table 4–8 lists the APIs used by the Optical TMF814 CORBA cartridge.

aEndNameList Names of CTPs, FTPs, and group termination points (GTPs) at the aEnd of the cross-connect.

zEndNameList Names of CTPs, FTPs, and GTPs at the zEnd of the cross-connect.

additionalInfo Represents a list of name value pairs that allow EMSs or NMSs to give additional information 
that is not explicitly modeled at the MTNM interface, but some parameter names and values 
may be predefined. Some predefined parameter names may include: ConnectionId, Fixed, 
RouteActualState, RouteAdminState, RouteExclusive, RouteId, RouteIntended, RouteInUseBy.

Table 4–7  Topological Link Properties

Property Name Description

name Indicates the name of the Topological Link, assigned by the EMS upon creation.

userLabel Indicates the topological link user label (end-to-end trail data) in NMS data.

nativeEMSName Indicates how the topological link is referred to on EMS displays.

owner Provided by the NMS.

direction Indicates the direction of the topological link. A topological link can be unidirectional even if 
both its ends are bidirectional TPs. Possible values are CD_UNI (unidirectional) and CD_BI 
(bidirectional).

rate Indicates the layer rate (bandwidth) of the topological link. 

aEndTP Indicates the name of the aEnd for the PTP, CTP, or FTP.

zEndTP Indicates the name of the zEnd for the PTP, CTP, or FTP.

additionalInfo Represents a list of name/value pairs that allow EMSs or NMSs to give additional information 
that is not explicitly modeled at the MTNM interface, but some parameter names and values 
may be predefined. Some predefined parameter names may include: AlarmReporting, 
AllocatedNumber, ASAPpointer, FragmentServerLayer, NetworkAccessDomain.

Table 4–6 (Cont.) Cross-Connect Properties

Property Name Description



Handling Vendor Variations

4-6 Network Integrity Optical TMF814 CORBA Cartridge Guide

APIs for Cross-Connect Collection
Table 4–9 lists the APIs used for cross-connect collection.

APIs for Topological Link Collection
There are two levels of Topological Links that can be retrieved using two different 
APIs. Table 4–10 lists the APIs used for cross-connect collection.

The EMSMgs API is used when the entire network is treated as a subnetwork. The 
MLSN API is used when each ME is treated as a subnetwork.

Handling Vendor Variations
This section explains how the Optical TMF814 CORBA cartridge handles some of the 
particular data collected from some vendors.

Table 4–8  TMF814 ManagedElement and Equipment CORBA APIs

API Used Operations

org.tmforum.mtnm.emsSessio
nFactory.EmsSessionFactory_I

■ getEmsSession(): used to obtain the EmsSession objects.

org.tmforum.mtnm.emsSessio
n.EmsSession_I

■ getManager(): used to obtain managers.

■ endSSession(): used to close the EMS session.

org.tmforum.mtnm.managed
ElementManager.ManagedEle
mentMgr_I

■ getAllFTPs(): used to obtain all FTPs, but not obtain any PTPs.

■ getAllPTPs(): used to obtain all PTPs.

■ getContainedInUseTPs(): used to obtain all contained in-use TPs.

■ getContainedPotentialInUseTPs(): used to obtain all contained potential 
CTPs for a given TP.

org.tmforum.mtnm.nmsSessio
n.NmsSession_I

■ EmsSessionFactory_I.getEmsSession: required nmsSesion while getting a 
Ems session so a dummy implementation is provided.

org.tmforum.mtnm.equipmen
t.EquipmentInventoryMgr_I

■ getAllEquipment(): used to obtain all Equipment.

■ getAllSupportedPTP(): used to obtain all the PTPs for a given Equipment.

Table 4–9  TMF814 Cross-Connect Collection APIs

API Used Operations

managedElementManager.Mana
gedElementMgr_I

■ getAllCrossConnections(MEName, layerRate, how_many, CClist, CCIter)

multiLayerSubnetwork.MultiLa
yerSubnetworkMgr_I

■ getAllTopLevelSubnetworks(how_many, holder, iter)

■ getAllSubnetworkConnections(SN_Name, layerRateList, how_many, 
holder, iter)

■ getRoute(SNC_Name, includeHigherOrderCCs, route)

Table 4–10  TMF814 Topological Link Collection APIs

APIs Used Operations

emsMgr.EMSMgr_I ■ getAllTopLevelTopologicalLinks(how_many, topoList, topoIt)

multiLayerSubnetwork.MultiLa
yerSubnetworkMgr_I

■ getAllTopologicalLinks(SN_Name, how_many, topoList, topoIterator)



Handling Vendor Variations

About Collected Data 4-7

FTP Collection API Variations
The ManagedElementMgr_I.getAllFTP() operation, from MTNM version 3.0, is the 
preferred API to get all FTPs of a ME. For the vendors and devices that do not support 
MTNM version 3.0, the getAllPTP() operation is used. The getAllPTP() operation 
returns both PTPs and FTPs. While modeling FTPs, PTPs are filtered out.

Cross-Connect Collection API Variation
Cross-connects are collected using different APIs depending on the vendor. Use the 
crossConnectCollectionType parameter to specify the collection method, based on 
vendor device specifications. See "APIs for Cross-Connect Collection" for more 
information.

Topological Link Collection API Variation
Topological links are collected using different APIs depending on the vendor. Use one 
or both methods as required by the vendor or vendor device. Use the 
topologicalLinkCollectionType parameter to specify the collection method. See "APIs 
for Topological Link Collection" for more information.

Cross-Connect Protection Role
The productized Optical TMF814 CORBA cartridge does not discover protection role 
information on cross-connect segments because vendors and devices differ in the way 
this information is accessed. You must extend the Optical TMF814 CORBA cartridge to 
collect and model protection role information. See "Collecting and Modeling 
Protection Role Information" for more information.



Handling Vendor Variations

4-8 Network Integrity Optical TMF814 CORBA Cartridge Guide



5

About Cartridge Modeling 5-1

5About Cartridge Modeling

This chapter explains how the Oracle Communications Network Integrity Optical 
TMF814 CORBA cartridge models collected data.

About Cartridge Modeling
The Oracle Communications Network Integrity Optical TMF814 CORBA cartridge 
models collected data according to the Oracle Communications Information Model. 
Collected data is modeled into the following entities:

■ DeviceInterfaceConfiguration

■ DeviceInterfaceConfigurationItem

■ Equipment

■ EquipmentHolder

■ EquipmentEquipmentRel

■ EquipmentHolderEquipmentRel

■ InventoryGroup

■ LogicalDevice

■ MediaInterface

■ PhysicalDevice

■ PhysicalDeviceEquipmentRel

■ PhysicalPort

■ Pipe

■ PipeTerminationPoint

■ PipePipeTerminationPointRel

See Oracle Communications Information Model Reference for more information about the 
Information Model.

About the Oracle Communications Information Model
The Information Model has Physical and Logical Tree models. Physical device 
hierarchy is modeled in the Physical Tree. Logical device hierarchy is modeled in the 
Logical Tree.



About the Oracle Communications Information Model

5-2 Network Integrity Optical TMF814 CORBA Cartridge Guide

This section details how the Multi Technology Network Management (MTNM) model 
is mapped to the Information Model.

About the Physical Tree
Table 5–1 shows how MTNM objects are mapped to Physical Tree entities.

About the Logical Tree
Logical devices are created as root objects. Root objects are placeholder objects for 
top-level interfaces. PTPs and floating termination points (FTPs) are modeled as 
Device Interfaces. Contained termination points (TPs) of a PTP or FTP are modeled as 
sub-device-interfaces of a PTP or FTP device interface.

TPs that are discovered by the TMF814 API are modeled in the Logical Tree according 
to the following structure:

Logical Device (container for top level device interfaces){1}

  Device Interface (Device Interface corresponding to PTP/FTP) {0...*}

    Sub Device Interface (CTPs of PTP/FTP) {0...*}

      Sub Device Interface (child CTPs with infinite nesting) {0...*}

Layer parameters of a TP are modeled using the DeviceInterfaceConfigurationItem 
interface and its child interface configuration items. This cartridge models only 

Table 5–1  MTNM to Information Model Mapping for Physical Tree

MTNM Object
Information Model 
Entity Specification

Manage Element (ME) Physical Device tmf814MEGeneric

Equipment Holder (Rack) Equipment tmf814EquipmentGeneric

Equipment Holder (Shelf) Equipment tmf814EquipmentGeneric

A shelf is modeled as Equipment 
since the Information Model does not 
allow a holder within a holder.

Equipment Holder (sub Shelf) Equipment tmf814EquipmentGeneric

Equipment Holder (Slot) Equipment Holder tmf814EquipmentHolderGeneric

Equipment Holder (Sub Slot) Equipment Holder tmf814EquipmentHolderGeneric

Equipment (Card) Equipment tmf814EquipmentGeneric

Physical Termination Point 
(PTP)

Physical Port tmf814PortGeneric

Topological Link Pipe tmf814TopologicalLinkGeneric

aEndTP, zEndTP (of a 
topological link object)

PipeTerminationPoint tmf814PortTerminationPointGeneric

Cross-connect InventoryGroup tmf814XCGeneric

aEndName, zEndName (of a 
cross-connect

Pipe tmf814XCSegmentGeneric

A pair of related aEndName and 
zEndName objects are treated as a 
cross-connect segment.

aEndName, zEndName (of a 
cross-connect segment)

PipeTerminationPoint tmf814PortTerminationPointGeneric



About the Oracle Communications Information Model

About Cartridge Modeling 5-3

Generally Applicable Parameters, which are defined and explained in the TMF814 
documentation.

Each TP layer is represented by the DeviceInterfaceConfigurationItem interface. All TP 
layers are contained in an artificial parent DeviceInterfaceConfigurationItem interface, 
as shown in the following example:

Device Interface (represents a CTP/PTP/FTP)

  DeviceInterfaceConfigurationItem (just a container configuration item){1}

    DeviceInterfaceConfigurationItem (one configuration item per layer rate){0..*}

Table 5–2 shows how MTNM objects are mapped to Information Model entities in the 
Logical Tree.

Field Mapping
The following tables explain the field mappings for each Information Model object.

■ Table 5–3, " Physical Device Field Mapping"

■ Table 5–4, " Equipment Field Mapping"

■ Table 5–5, " EquipmentHolder Field Mapping"

■ Table 5–6, " Physical Port Field Mapping"

■ Table 5–7, " Logical Device Field Mapping"

■ Table 5–8, " Device Interface Field Mapping"

■ Table 5–9, " DeviceInterfaceConfigurationItem Field Mapping"

Table 5–2  MTNM-to-Information Model Mapping for Logical Tree

MTNM Object
Information 
Model Entity Specification

ME LogicalDevice 
(artificial)

tmf814DeviceGeneric

Logical device acts as a container for top level interfaces. Its name is same 
as ME name.

PTP DeviceInterface tmf814TPInterfaceGeneric

PTP as Interface is a container for child CTP.

FTP DeviceInterface tmf814TPInterfaceGeneric

FTP as Interface is a container for child CTP.

Connection 
Termination Point 
(CTP)

DeviceInterface tmf814TPLayersGeneric

CTP is a channel and is modeled as a sub Device Interface. 

LayeredParameters DeviceInterfaceC
onfigurationItem

Managed Element

Layered Parameters are modeled as configuration items of a Device 
Interface.



About the Oracle Communications Information Model

5-4 Network Integrity Optical TMF814 CORBA Cartridge Guide

Table 5–3  Physical Device Field Mapping

Information Model 
Attribute

Information 
Model 
Support TMF Attribute Type UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A PhysicalDeviceSpecification

Programmatically set to 
tmf814MEGeneric 
specification.

TMF814 MEGeneric

discoveredVendorName Dynamic manufacturer Text

Comes from additional 
information (not a TMF 
attribute).

Discovered Vendor 
Name

serialNumber Static N/A Text Serial Number

physicalLocation Static location Text Physical Location

softwareRev Dynamic version Text  Software Version

modelName Dynamic productName Text Model Name

nativeEmsName Static nativeEmsName Text Native EMS Name

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

Table 5–4  Equipment Field Mapping

Information 
Model 
Attribute

Information 
Model 
Support TMF Attribute Type and Values UI Label

Id Static N/A N/A ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A EquipmentSpecification

Programmatically set to 
tmf814EquipmentGeneric specification.

TMF814 Equipment 
Generic (displayed 
as Entity Type)

discoveredVe
ndorName

Dynamic manufacturer Text

Comes from additional information 
(not a TMF attribute).

Discovered Vendor 
Name

serialNumber Static installedSerialNu
mber

Text Serial Number

physicalLocati
on

Static N/A Text Physical Location

discoveredPar
tNumber

Dynamic installedPartNu
mber

Text Discovered Part 
Number

hardwareRev Dynamic installedVersion Text Hardware Rev

modelName Dynamic installedEquipm
entObjectType

Text Model Name



About the Oracle Communications Information Model

About Cartridge Modeling 5-5

nativeEmsNa
me

Static nativeEmsName Text Native EMS Name

expectedObjec
tType

Dynamic expectedEquipm
entObjectType

Text Expected Object 
Type

serviceState Dynamic serviceState List: IN_SERVICE, OUT_OF_SERVICE, 
IN_MAINTENANCE, UNKNOWN, 
TESTING

Each value corresponds to a TMF814 
value: IN_SERVICE, OUT_OF_
SERVICE, OUT_OF_SERVICE_BY_
MAINTENANCE, SERV_NA. TMF814 
does not have equivalent for TESTING.

Service State

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

Table 5–5  EquipmentHolder Field Mapping

Information 
Model Attribute

Information 
Model 
Support TMF Attribute Type UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A EquipmentHolderSpecificat
ion

Programmatically set to 
tmf814EquipmentHolderG
eneric specification.

TMF814 
Equipment 
Holder Generic 
(displayed as 
Entity Type)

serialNumber Static N/A Text Serial Number

physicalLocation Static N/A Text Physical 
Location

modelName Dynamic expectedOrInstalledEquipment Text Model Name

nativeEmsName Static nativeEmsName Text Native EMS 
Name

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

Table 5–4 (Cont.) Equipment Field Mapping

Information 
Model 
Attribute

Information 
Model 
Support TMF Attribute Type and Values UI Label



About the Oracle Communications Information Model

5-6 Network Integrity Optical TMF814 CORBA Cartridge Guide

Table 5–6  Physical Port Field Mapping

Information Model 
Attribute

Information 
Model 
Support

TMF 
Attribute Type UI Label

Id Static N/A Text ID

name Static name Text

/rack=1/shelf=1/slot=3/domain=sdh/p
ort=1

Name

description Static N/A Text Description

specification Static N/A PhysicalPortSpecification

Programmatically set to 
tmf814PortGeneric specification.

TMF814 Port 
Generic 
(displayed as 
an Entity Type)

portNumber Static N/A Integer Port Number

customerPortName Static N/A Text Customer Port 
Name

vendorPortName Static N/A Text Vendor Port 
Name

serialNumber Static N/A Text Serial Number

physicalLocation Static N/A Text Physical 
Location

nativeEmsName Static N/A Text Native EMS 
Name

direction Dynamic direction List: NA, BIDIRECTIONAL, SOURCE, 
SINK

Direction

tpProtectionAssociation Dynamic tpProtection
Association

List: TPPA_NA, TPPA_PSR_RELATED Protection 
Association

edgePoint Dynamic edgePoint boolean Edge Point

physicalAddress Static String Text Physical 
Address

Table 5–7  Logical Device Field Mapping

Information 
Model Attribute

Information 
Model Support

TMF 
Attribute Type and Values UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A LogicalDeviceSpecification TMF814 Device 
Generic (displayed as 
Entity Type)

nativeEmsAdmin
ServiceState

Static N/A List: UNKNOWN, IN_SERVICE, 
OUT_OF_SERVICE, TESTING, 
IN_MAINTENANCE

Native EMS Admin 
Service State



About the Oracle Communications Information Model

About Cartridge Modeling 5-7

nativeEmsService
State

Static N/A List: UNKNOWN, IN_SERVICE, 
OUT_OF_SERVICE, TESTING, 
IN_MAINTENANCE

Native EMS Service 
State

nativeEmsName Static nativeEms
Name

Text Native EMS Name

physicalLocation Static N/A Text Physical Location

Table 5–8  Device Interface Field Mapping

Information Model 
Attribute

Information 
Model 
Support TMF Attribute Type and Values UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A DeviceInterfaceSpecification

Programmatically set to 
tmf814TPInterfaceGeneric 
specification.

TMF 814 
TPInterface 
Generic 
(displayed as 
Entity Type)

ifType Static Tp_type List: CTP, PTP, FTP Interface Type

interfaceNumber Static N/A Text Interface 
Number

customerInterfaceN
umber

Static N/A Text Customer 
Interface 
Number

vendorInterfaceNu
mber

Static N/A Text Vendor 
Interface 
Number

nativeEmsName Static N/A Text Native EMS 
Name

nativeEmsAdminSe
rviceState

Static N/A List: UNKNOWN, IN_SERVICE, 
OUT_OF_SERVICE, TESTING, IN_
MAINTENANCE

Native EMS 
Admin Service 
State

nativeEmsServiceSt
ate

Static N/A List: UNKNOWN, IN_SERVICE, 
OUT_OF_SERVICE, TESTING, IN_
MAINTENANCE

Native EMS 
Service State

mtuSupported Static N/A Float Supported 
MTU

mtuCurrent Static N/A integer Current MTU

physicalAddress Static N/A Text Physical 
Address

physicalLocation Static N/A Text Physical 
Location

minSpeed Static N/A Float Minimum 
Speed

Table 5–7 (Cont.) Logical Device Field Mapping

Information 
Model Attribute

Information 
Model Support

TMF 
Attribute Type and Values UI Label



About the Oracle Communications Information Model

5-8 Network Integrity Optical TMF814 CORBA Cartridge Guide

maxSpeed Static N/A Float Maximum 
Speed

nominalSpeed Static N/A Float Nominal Speed

connectionState Dynamic connectionState List: TPCS_BI_CONNECTED, TPCS_
NA, TPCS_SOURCE_CONNECTED, 
TPCS_SINK_CONNECTED, TPCS_
BI_CONNECTED, TPCS_NOT_
CONNECTED

Connection 
State

tpMappingMode Dynamic tpMappingMode List: TM_NA (0), TM_NEITHER_
TERMINATED_NOR_AVAILABLE_
FOR_MAPPING (1), TM_
TERMINATED_AND_AVAILABLE_
FOR_MAPPING (2)

Termination 
Mode

direction Dynamic direction List: NA, BIDIRECTIONAL, SOURCE, 
SINK

Direction

tpProtectionAssocia
tion

Dynamic tpProtectionAss
ociation

List: TPPA_NA, TPPA_PSR_
RELATED

Protection 
Association

edgePoint Dynamic edgePoint Boolean Edge Point

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

nativeEmsConnecto
rPresent

Static N/A Text Native EMS 
Connector 
Present

Table 5–9  DeviceInterfaceConfigurationItem Field Mapping

Information 
Model Attribute

Information 
Model 
Support TMF Attribute Type and Values UI Label

name Static N/A Text

Name is always set to LayerName

Name

value Static Layer Text Value

specification Static InventoryConfig
urationSpec

Text

Programmatically set to 
tmf814TPLayersGeneric 
specification.

TMF814 TPLayer 
Generic (displayed 
as Entity Type)

clientType Dynamic clientType Text Client Type

potentialFutureS
etupIndicator

Dynamic potentialFutureS
etupIndicator

List: RSU_POINT_TO_POINT, RSU_
BROADCAST, RSU_ANY_CONFIG

Potential Future 
Setup Indicator

Table 5–8 (Cont.) Device Interface Field Mapping

Information Model 
Attribute

Information 
Model 
Support TMF Attribute Type and Values UI Label



About the Oracle Communications Information Model

About Cartridge Modeling 5-9

About Building the Information Model Tree
Collected TMF814 objects contain raw hierarchical details, but not at the object level. 
After the TMF814 objects are modeled as Information Model entities, they are added to 
the Physical or Logical Tree. This section describes the algorithm used for building the 
Trees.

Containment Relationships
To find containment relationship among discovered objects, the algorithm uses the 
Name attribute of TMF814 objects. The structure of the name is hierarchical and 
reflects the containment relationship between objects in a simple way. Table 5–10 
describes the convention used for the field name.

serviceState Dynamic serviceState List: IN_SERVICE, OUT_OF_
SERVICE, IN_MAINTENANCE, 
UNKNOWN, TESTING

Each value is mapped to TMF814 
specific values: IN_SERVICE, OUT_
OF_SERVICE, OUT_OF_SERVICE_
BY_MAINTENANCE, SERV_NA. 
TMF814 does not have equivalent for 
TESTING.

Service State

TCAParameterPr
ofilePointer

Dynamic TCAParameterPr
ofilePointer

Text TRA Parameter 
Profile Pointer

trailTraceExpecte
dRx

Dynamic trailTraceExpecte
dRx

Text Trail Trace Expected 
Rx

trailTraceMonitor Dynamic trailTraceMonitor Text Trail Trace Monitor

transmissionDesc
riptorPointer

Dynamic transmissionDesc
riptorPointer

Text Transmission 
Descriptor Pointer

allocatedNumber Dynamic allocatedNumber Number Allocated Number

dynamicAllocati
onEnabled

Dynamic dynamicAllocati
onEnabled

Text Dynamic Allocation 
Enabled

Table 5–10  Name and Attribute Format for Containment Relationships

TMF Object Name/Value Pairs

ME name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

PTP name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="PTP"; value="PTPName"

FTP name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="FTP"; value="FTPName"

Table 5–9 (Cont.) DeviceInterfaceConfigurationItem Field Mapping

Information 
Model Attribute

Information 
Model 
Support TMF Attribute Type and Values UI Label



About the Oracle Communications Information Model

5-10 Network Integrity Optical TMF814 CORBA Cartridge Guide

The Equipment Holder tuple values are hierarchical and have the following structure:

[/remote_unit=<ru>][/rack=<r>][/shelf=<sh>[/sub_shelf=<ssh>][/slot=<sl>[/[remote_
]sub_slot=<ssl>]]]]

Adding an Equipment and an Equipment Holder to the Tree
The TMF814 Equipment Modeler processor is run for each EquipmentOrHolder 
TMF814 object. After modeling, the Equipment or Equipment Holder object is added 
to the Information Model Physical Tree.

It is possible that a child node can appear before its parent node is available. The 
algorithm handles this by using a placeholder node, which takes the place of the real 
node until the real node is available.

If the input object is a TMF814 Equipment Holder:

1. The EquipmentHolder tuple value is obtained from the name property. The tuple 
value is the hierarchical name of the Equipment Holder. 

2. The name is split into two substrings at the last index of the / delimiter. This gives 
two placeholders:

■ The first placeholder gives the hierarchical name of the parent node, which is 
most likely another Equipment Holder.

■ The second placeholder is the shorter name for the Equipment Holder.

index = lastIndexOf(name , "/");
first = substring(name, 0, index)//First token
second = substring(name, index +1, name.length)
 

3. If the first placeholder is empty, the Equipment Holder is a top-level object, and 
thus a parent node. The parent node is the node representing the physical device 
in the Tree.

4. If first placeholder is not empty, the Physical Tree is hierarchically searched from 
the root until the node representing the full hierarchical name is found. A 
placeholder is created for it while the Physical Tree is being searched.

For example, if a placeholder is created for /rack=1/shelf=2/slot=3, it is split into 
/rack=1, /rack=1/shelf=2, and /rack=1/shelf=2/slot=3. The Physical Tree is 

CTP, as child of a PTP or FTP name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="PTP"; value="PTPName"

name="CTP"; value="CTPName"

name="FTP"; value="FTPName"

EquipmentHolder name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="EquipmentHolder"; value="EquipmentHolderName"

Equipment name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="EquipmentHolder"; value="EquipmentHolderName"

name="Equipment"; value="EquipmentName"

Table 5–10 (Cont.) Name and Attribute Format for Containment Relationships

TMF Object Name/Value Pairs



About the Oracle Communications Information Model

About Cartridge Modeling 5-11

searched for /rack=1. If it is found, the search continues for /rack=1/shelf=2. If it is 
not found, a placeholder is created for it. /rack=1/shelf=2/slot=3 is also not 
available, so a placeholder is created for it as well. The parent node is 
/rack=1/shelf=2/slot=3.

5. Parent nodes are verified to determine if they have any child nodes with a 
placeholder. If they do, the placeholder is released and is used for another node.

6. Nodes are created or replaced in the Physical Tree.

If the output object is TMF814 Equipment:

1. The EquipmentHolder tuple value is obtained from the name property. 

2. The Physical Tree is hierarchically searched until the node representing the full 
hierarchical name is found. If the name is not found, a placeholder node is created 
for it.

For example, if a placeholder is created for /rack=1/shelf=2/slot=3, it is split into 
/rack=1, /rack=1/shelf=2, and /rack=1/shelf=2/slot=3. The Physical Tree is 
searched for /rack=1. If it is found, the search continues for /rack=1/shelf=2. If it is 
not found, a placeholder is created for it. /rack=1/shelf=2/slot=3 is also not 
available, so a placeholder is created for it as well. Parent node is 
/rack=1/shelf=2/slot=3.

3. Parent nodes are verified to determine if they have any child nodes with a 
placeholder. If they do, the placeholder is released and is used for another node.

4. Nodes are created or replaced in the Physical Tree.

After all nodes are modeled in the Physical Tree. Any remaining placeholder nodes are 
modeled as artificial objects.

Adding a Physical Port and an Interface to the Tree
TPs are modeled as physical ports. An associated artificial device interface is created 
for each physical port. A device interface is added as a direct child of a logical device.

The algorithm for adding equipment holders to the Tree can be applied to adding a 
physical port to the Physical Tree. See "Adding an Equipment and an Equipment 
Holder to the Tree" for more information.

Adding a Sub-Interface to the Tree
CTPs are modeled as Sub-Interfaces. They are added to the Logical Tree by the 
TMF814 CTP Discoverer for PTP and TMF814 CTP Discoverer for FTP processors, 
under the context of a PTP (top-level interface).

Cartridge Modeling for Cross-Connect Data
This section explains how the Optical TMF814 CORBA cartridge models the collected 
cross-connect data.

Only the cross-connect data required for assimilation is modeled. Of the data required 
for assimilation, only the data meeting the following conditions is modeled:

■ At least one of aEnd or zEnd should have a non-null/empty value.

■ Both aEnd and zEnd should represent CTP or FTP names.

■ At least one of aEnd or zEnd should have JKLM (VC12), JK (VC3), or J (VC4) 
values. 



About the Oracle Communications Information Model

5-12 Network Integrity Optical TMF814 CORBA Cartridge Guide

The Optical TMF814 CORBA cartridge models cross-connects as one of the following 
types:

■ ST_SIMPLE: Cross-connects with only one segment, as shown in Figure 5–1.

Figure 5–1 ST_SIMPLE Type Cross-Connect Model Mapping

Some vendors represent a bidirectional cross-connect as two unidirectional 
cross-connects, meaning one has A1-Z1 as its ends and other has Z1-A1 as its ends. 
Such cross-connects are modeled as bidirectional.

■ ST_EXPLICIT: The cross-connect object is modeled as multiple pipe objects, as 
shown in Figure 5–2. 

Figure 5–2 ST_EXPLICIT Type Cross-Connect Model Mapping

The number of objects into which a single cross-connect is modeled depends on 
aEndNameList and zEndNameList size. The explicit subnetwork connection 
(SNC) type has an n-entry aEndNameList and zEndNameList pairing. The tuples 
are pairs matched by index, for example (A1,Z1), (A2, Z2), ...,(An,Zn). A pipe 
object is modeled for each pair. These multiple pipes are grouped by a parent 
Inventory Group object. 

■ ST_ADD_DROP_A: The cross-connect object is modeled as two pipe segments 
with aEndPoint repeating on both cross-connects segment, as shown in Figure 5–3.



About the Oracle Communications Information Model

About Cartridge Modeling 5-13

Figure 5–3 ST_ADD_DROP_A Type Cross-Connect Model Mapping

■ ST_ADD_DROP_Z: The cross-connect object is modeled as two pipe segments 
with zEndPoint repeating on both cross-connects segment, as shown in Figure 5–4.

Figure 5–4 ST_ADD_DROP_Z Type Cross-Connect Model Mapping

Other cross-connects types, such as ST_INTERCONNECT, ST_DOUBLE_
INTERCONNECT, ST_DOUBLE_ADD_DROP, and ST_OPEN_ADD_DROP are not 
modeled by this cartridge without extending the cartridge.

The following tables list the model mapping of cross-connect objects:

■ Table 5–11, " Model Mapping for the Inventory Group Object"

■ Table 5–12, " Model Mapping for the Pipe Object"

■ Table 5–13, " Model Mapping for the PipeTerminationPoint Object"

Table 5–11  Model Mapping for the Inventory Group Object

Information 
Model Attribute

Information 
Model Support TMF Attribute Type UI Label

name Static N/A Text

Value is hard-coded to Cross Connect

Name

layerRate Dynamic N/A Text Layer Rate

type Dynamic ccType Text Type

active Dynamic active Text Active



About the Oracle Communications Information Model

5-14 Network Integrity Optical TMF814 CORBA Cartridge Guide

A and Z Channels
The following example SDH implementation shows how the channel is calculated for 
each PipeTerminationPoint.

Example CTP Name JKLM tuples:

■ /sts3c_au4=4/vt2_tu12-k=1-l=3-m=2

■ /direction=src/sts3c_au4=4/vt2_tu12-k=1-l=3-m=2

■ /sts1_au3-j=2-k=2/vt15_tu11-l=1-m=2

JKLM values are collected from the CTPName tuple. Each CTP tuple can be split into a 
number of tokens separated by a slash. Each token can be further split into a number 
of subtokens separated by a hyphen. 

If the CTPName tuple does not have any JKL or M value it is treated as a dropdown 
port.

Example 5–1 shows how the JKLM values are parsed. This example assumes that the 
aEnd and zEnd of a cross-connect are a CTP with the formatting shown below:

Example 5–1 Parsed JKLM Values

Pattern pattern = Pattern.compile("/");
Matcher subTokenMatcher = 
Pattern.compile("\\-j=\\d+|\\-k=\\d+|\\-l=\\d+|\\-m=\\d+").matcher("");
String STS3C_AU4 = "sts3c_au4=";
 
String[] jklm = new String[]{"0", "0", "0", "0"};
Scanner scaner = new Scanner(ctpName);
scaner.useDelimiter(pattern);

Table 5–12  Model Mapping for the Pipe Object

Information 
Model Attribute

Information 
Model Support TMF Attribute Type UI Label

name Static N/A Text Name

gapPipe Static N/A Boolean, always set to True. Gap Pipe

protectionRole Dynamic N/A Text

The value is derived. Possible values 
are PRIMARY, BACKUP.

Protection Role

Table 5–13  Model Mapping for the PipeTerminationPoint Object

Information 
Model Attribute

Information 
Model Support

TMF 
Attribute Type UI Label

name Static N/A Text

The name of the PTP (port) cross-connect end 
point.

Name

device Dynamic N/A Text Device

directionality Dynamic N/A Text Directionality

rate Dynamic N/A Text Layer Rate

channel Dynamic N/A Text

Channel values are derived. See "A and Z 
Channels" for more information.

Channel



About the Oracle Communications Information Model

About Cartridge Modeling 5-15

while(scaner.hasNext()){
    String token = scaner.next();
    subTokenMatcher.reset(token);
    while(subTokenMatcher.find()){
        String subToken = subTokenMatcher.group();
if(subToken.startsWith("-")){
            String val = token.substring(subTokenMatcher.start() +1, 
subTokenMatcher.end());
            jklm[val.charAt(0) % 106] = val.substring(2, val.length());
        }else{
            jklm[subToken.charAt(0) % 106] = subToken.substring(2, 
subToken.length());
        }
    }
    if(jklm[0].equalsIgnoreCase("0") && token.startsWith(STS3C_AU4)){
        jklm[0] = token.split("=")[1];;
    }
}
return jklm; 
 
The Optical TMF814 CORBA cartridge can be extended to populate JKLM values that 
are implemented differently by some vendors. See "Customizing the JKLM Value 
Calculation" for more information. 

Cartridge Modeling for Topological Link Data
This section explains how the Optical TMF814 CORBA cartridge models collected 
topological link data.

Topological links are modeled Information Model pipe entities. Topological Link 
endpoints (aEndTP and zEndTP) are modeled as pipe termination point entities.

Some vendors represent bidirectional topological links as two unidirectional 
topological links (two links sharing the same aEnd and zEnd ports). Such links are 
merged and modeled as one bidirectional topological link.

The following tables list the model mapping of topological link objects:

■ Table 5–14, " Model Mapping for the Pipe Object for Topological Links"

■ Table 5–15, " Model Mapping for the PipeTerminationPoint Object for Topological 
Links"

Table 5–14  Model Mapping for the Pipe Object for Topological Links

Information 
Model Attribute

Information 
Model Support

TMF 
Attribute Type UI Label

name Static N/A Text Name

gapPipe Static N/A Boolean

This value is always set to False for 
topological link objects.

Gap Pipe

layerRate Dynamic rate Text Layer Rate

nativeEMSName Dynamic nativeEM
SName

Text Native EMS Name

owner Dynamic owner Text Owner



Result Groups

5-16 Network Integrity Optical TMF814 CORBA Cartridge Guide

Result Groups
Topological link pipe entities and cross-connect inventory group entities are both 
added to the same device result group, but in separate group containers. 

Topological links span multiple devices. When the aEnd and zEnd ports are managed 
by MEs belonging to different EMSs, the topological link is modeled according to the 
device name that appears first in a sorted list.

The Link result group models a root entity container with the name Links as the parent 
for all topological links associated with a device. The topological link appears on the 
lower device of the two endpoints, as shown in Figure 5–5.

The cross-connect result group models a root entity container with the name 
Cross-connects as the parent for all cross-connects associated with the device, as 
shown in Figure 5–5.

Figure 5–5 Result Group Model Diagram

Figure 5–6 shows an example grouping for links and cross-connects with the following 
particularities:

Table 5–15  Model Mapping for the PipeTerminationPoint Object for Topological Links

Information 
Model Attribute

Information 
Model Support TMF Attribute Type UI Label

name Static name Text Name

device Dynamic N/A Text

The value is derived from the device.

Device

directionality Dynamic N/A Text Directionality

rate Dynamic N/A Text

This value is derived from the line 
layer rate for the endPort represented 
by the PortTerminationPoint.

Layer Rate

channel Dynamic N/A Text

This attribute is not used.

Channel



Result Groups

About Cartridge Modeling 5-17

■ A populated result group for each device

■ The appropriate cross-connects added to each device group

■ The topological link is added only to the ME1 device group

Figure 5–6 Example Result Group Model and Configuration



Result Groups

5-18 Network Integrity Optical TMF814 CORBA Cartridge Guide



6

About Model Correction 6-1

6About Model Correction

This chapter explains how some Multi Technology Network Management (MTNM) 
data is corrected to conform to Oracle Communications Information Model. Model 
correction occurs when the data received by the discovery action types does not 
conform to the Information Model. The Oracle Communications Network Integrity 
Optical TMF814 CORBA cartridge performs model corrections for the following:

■ Equipment Holder as a Child of a Physical Device

■ Sub-Slots of Slots

■ Huawei U2000 MSTP End Port

Equipment Holder as a Child of a Physical Device
The MTNM model supports an Equipment Holder (rack) as a child of a physical 
device (managed element [ME]). The Information Model supports only Equipment as 
a child of physical device. Model correction is used to map a rack, shelf and sub-shelf 
as equipment.

Sub-Slots of Slots
When a slot has sub-slots, the sub-slots usually contain a card. The MTNM model and 
TMF814 consider the card as a sibling of the sub-slots. In a network, this card is the 
parent of sub-slots and the child of the slot. In cases where MTNM does return this 
sibling, model correction is used to add artificial equipment.

Huawei U2000 MSTP End Port
For Huawei U2000 MSTP devices, the physical port name of end ports is populated 
with the TMF name. Model correction is used to change the name to contain the native 
EMS name.



Huawei U2000 MSTP End Port

6-2 Network Integrity Optical TMF814 CORBA Cartridge Guide



7

About Design Studio Construction 7-1

7About Design Studio Construction

This chapter explains how the Oracle Communications Network Integrity Optical 
TMF814 CORBA cartridge is built from the Oracle Communications Design Studio 
perspective.

Model Collections
Table 7–1 shows the Design Studio construction of the Generic TMF814 model 
collection.

Actions
The following tables outline the Design Studio construction of the Optical TMF814 
CORBA cartridge actions and associated components:

■ Table 7–2, " Actions Design Studio Construction"

■ Table 7–3, " TMF814 Scan Parameters Design Studio Construction"

■ Table 7–4, " Discovery Processor Design Studio Construction"

Table 7–1  Generic TMF814 Model Collection

Specification Name Dynamic Entity Type

tmf814MEGeneric Physical Device Specification

tmf814DeviceGeneric Logical Device Specification

tmf814EquipmentGeneric Equipment Specification

tmf814EquipmentHolderGeneric Equipment Holder Specification

tmf814PortGeneric Physical Port Specification

tmf814TPInterfaceGeneric Device Interface Specification

This specification applies for all types of termination points 
(TPs).

tmf814TPLayersGeneric Device Interface Configuration Specification

Note: Parameter values are case-sensitive and must be entered in 
capital letters when commands are run from a command line interface.



Actions

7-2 Network Integrity Optical TMF814 CORBA Cartridge Guide

Table 7–2  Actions Design Studio Construction

Action Name
Result 
Category

Address 
Handler Scan Parameter Group Processors

Discover Abstract 
TMF814 action

Device N/A N/A ■ TMF814 Property Initializer

■ TMF814 Session Manager

■ TMF814 Device Recorder Initializer

■ TMF814 ME Collector

■ TMF814 Device Modeler

■ TMF814 Equipment Collector

■ TMF814 Equipment Modeler

■ TMF814 PTP Collector

■ TMF814 PTP Modeler

■ TMF814 CTP Discoverer for PTP

■ TMF814 FTP Collector

■ TMF814 FTP Modeler

■ TMF814 CTP Discoverer for FTP

■ TMF814 Device Persister

■ TMF814 Device Recorder Persister

■ TMF814 Cross-Connect Discoverer

■ TMF814 Topological Link Collector

■ TMF814 Topological Link Modeler

■ Pipe Persister

Discover TMF814 
action

Device CORBA 
Address 
Handler

TMF814Parameters. See 
Table 7–3

AutoResolutionParameter. 
See Network Integrity 
Developer’s Guide.

■ TMF814 CORBA Property Initializer

■ TMF814 Property Customizer

Discover Huawei 
U2000 action

Device N/A N/A ■ Huawei Customizer

■ Huawei MSTP EndPoint Collector

■ Huawei MSTP EndPoint Modeler

Table 7–3  TMF814 Scan Parameters Design Studio Construction

Parameter Name
Parameter 
Type Description UI Label

UserName Text box User name of the element management system (EMS) 
or network management system (NMS) used for 
getting details.

Username

Password Secret text Password of EMS or NMS system. Password

EMSNamingService Text box EMS Naming Service

The EMS session factory CORBA object name.

Ems Naming 
Service

EMSNamingServiceFor
mat

Drop down List: PLAIN, STRINGIFIED

The EMS session factory CORBA object name format.

Ems Naming 
Service Format

CollectEquipment Drop down List: TRUE, FALSE Collect 
Equipment



Actions

About Design Studio Construction 7-3

CollectTP Drop down List: ALL, ONLY PTP, ONLY FTP, NONE Collect 
Termination 
Points

CollectCTP Drop down List: CURRENT, IN USE, POTENTIAL, NONE Collect 
Connection TP

EquipmentFetchSize Text box Number of equipment objects to fetch at a time for 
each EMS call.

Equipment Fetch 
Size

TPFetchSize Text box Number of contained TP objects to fetch at a time for 
each EMS call.

Termination 
Point Fetch Size

CTPCollectionDepth Text box The depth (level of children objects) to which 
contained TPs are collected.

Contained TP 
Collection Depth

ORBProperties Text box Semicolon separated name value pairs for ORB 
Properties.

Orb Properties

ORBArguments Text box Semicolon separated name value pairs for ORB 
Arguments.

Orb Arguments

ManagedElementName Text box Name of ME. This parameter works in combination 
with Managed Element Name Qualifier. This 
parameter helps to filter the scan.

Managed 
Element Name

ManagedElementName
Qualifier

Drop down List: EQUALS, EQUALS_IGNORE_CASE, 
CONTAINS, CONTAINS_IGNORE_CASE, STARTS_
WITH, STARTS_WITH_IGNORE_CASE, ENDS_
WITH, ENDS_WITH_IGNORE_CASE

This parameter works in combination with Managed 
Element Name to filter the collected MEs by name and 
qualifier.

Managed 
Element Name 
Qualifier

NetworkElementNames Text Box Name of NE. This parameter works in combination 
with Network Element Names Qualifier. This 
parameter helps to filter the scan.

Network 
Element Names

NetworkElementName
Qualifier

Drop down List: EQUALS, EQUALS_IGNORE_CASE, 
CONTAINS, CONTAINS_IGNORE_CASE, STARTS_
WITH, STARTS_WITH_IGNORE_CASE, ENDS_
WITH, ENDS_WITH_IGNORE_CASE COMMA_
DELIMITED_NAMES, COMMA_DELIMITED_
NAMES_IGNORE_CASE

This parameter works in combination with Network 
Element Name to filter the collected NEs by name and 
qualifier.

Network 
Element Name 
Qualifier

CrossConnectCollection
Type

Drop down List: USE_SNC, USE_ME_MANAGER, NONE

This parameter controls how cross-connects are 
collected. Select None to disable cross-connect 
collection.

Cross-connect 
Collection Type

TopologicalLinkCollecti
onType

Drop down List: ALL, BETWEEN_SN, INSIDE_SN, NONE

This parameter controls how topological links are 
collected. Select None to disable topological link 
collection.

Topological Link 
Collection Type

Table 7–3 (Cont.) TMF814 Scan Parameters Design Studio Construction

Parameter Name
Parameter 
Type Description UI Label



Actions

7-4 Network Integrity Optical TMF814 CORBA Cartridge Guide

Table 7–4  Discovery Processor Design Studio Construction

Discovery 
Processors Variable

CORBA 
Property 
Initializer

Input: N/A

Output: 

■ corbaSeed(oracle.communications.integrity.abstractcorbacartridge.CorbaSeed)

A JavaBean that holds properties related to the CORBA cartridge. See Network Integrity 
CORBA Cartridge Guide for more information.

TMF814 CORBA 
Property 
Initializer

Input: corbaSeed

Output: corbaSeed

CORBA 
Connection 
Manager

Input: corbaSeed

Output: 

■ namingServer(org.omg.CosNaming.NamingContextExt)

■ orb(org.omg.CORBA.ORB)

See Network Integrity CORBA Cartridge Guide for more information.

TMF814 
Property 
Initializer

Input: N/A

Output: 

■ tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814Properties)

A JavaBean that contains the set of TMF814 properties. See Table 2–1, " TMF814 Property 
Initializer Properties and Values" for a list of properties.

■ tpDetailMap(oracle.communications.integrity.tmf814discovery.model.tp.TPNameMap)

A map listing properties to PTP names.

TMF814 
Property 
Customizer

Input: 

■ tmf814Properties

■ orb

■ namingServer

Output: tmf814Properties

Huawei 
Customizer

Input: 

■ customProperties

■ tmfNameToDeviceNameMap

(oracle.communications.integrity.tmf814discovery.model.DeviceNameMapping)

Output: 

■ tmfNameToDeviceNameMap

(oracle.communications.integrity.tmf814discovery.model.DeviceNameMapping)

TMF814 Session 
Manager

Input: tmf814Properties

Output:

■ sessionManager(oracle.communications.integrity.tmf814discovery.session.SessionManager)

A session manager instance responsible for creating emsMgr and multiLayerSubnetwork, 
and for managing EMSSession and TMF814 Object managers.

TMF814 Device 
Recorder 
Initializer

Input: tmf814Properties, customProperties

Output: 

■ recordMode(boolean)

A Boolean indicating whether Recording Mode is enabled.



Actions

About Design Studio Construction 7-5

TMF814 ME 
Collector

Input: N/A

Output: 

■ meIterable

Iterable object for each collected ME.

TMF814 Device 
Modeler

Input:

■ tmf814Properties

■ customProperties

■ managedElement(org.tmforum.mtnm.managedElement.ManagedElement_T)

One instance of the meIterable. This processor is run once for each instance of 
manamedElement.

Output:

■ physicalTree(oracle.communications.integrity.tmf814discovery.model.ocimtree.PhysicalTree)

A representation of the Information Model Physical Tree containing a physical device as 
the root object, to which child objects can be added.

■ logicalTree(oracle.communications.integrity.tmf814discovery.model.ocimtree.LogicalTree)

A representation of the Information Model Logical Tree containing a logical device as the 
root object, to which child objects can be added.

TMF814 
Equipment 
Collector

Input: tmf814Properties, customProperties, sessionManager, physicalTree, managedElement

Output: 

■ equipmentOrHolderIterable(java.lang.Iterable<org.tmforum.mtnm.equipment.EquipmentOr
Holder_T>)

Iterable object that iterates for each collected Equipment object or Holder object.

TMF814 
Equipment 
Modeler

Input:

■ tmf814Properties

■ physicalTree

■ equipmentOrHolder(org.tmforum.mtnm.equipment.EquipmentOrHolder_T)

One instance of the equipmentOrHolderIterable. This processor is run once for each 
instance of equipmentOrHolder.

Output: 

■ equipment(oracle.communications.inventory.api.entity.Equipment)

Returned value if input is equipment.

■ equipmentHolder(oracle.communications.inventory.api.entity.EquipmentHolder)

Returned value if input is equipment holder.

Table 7–4 (Cont.) Discovery Processor Design Studio Construction

Discovery 
Processors Variable



Actions

7-6 Network Integrity Optical TMF814 CORBA Cartridge Guide

TMF814 PTP 
Collector

Input:

■ tmf814Properties

■ customProperties

■ equipment(oracle.communications.inventory.api.entity.Equipment)

A modeled Information Model equipment object.

■ equipmentHolder(oracle.communications.inventory.api.entity.EquipmentHolder)

A modeled Information Model equipment holder object.

Output:

■ ptpIterable(java.lang.Iterable<org.tmforum.mtnm.terminationPoint.TerminationPoint_T>)

Iterable object for each collected PTP belonging to an Equipment object.

TMF814 PTP 
Modeler

Input:

■ tmf814Properties

■ equipment

An Information Model object that is modeled as the parent for all ports.

■ physicalTree

■ logicalTree

■ tpDetailMap

■ ptp(org.tmforum.mtnm.terminationPoint.TerminationPoint_T)

A PTP object, modeled as a Physical Port in the Physical Tree, and as a Device Interface in 
the Logical Tree.

Output:

■ deviceInterface(oracle.communications.inventory.api.entity.DeviceInterface)

A modeled Information Model interface object.

■ physicalPort(oracle.communications.inventory.api.entity.PhysicalPort)

A modeled Information Model port object.

TMF814 CTP 
Discoverer for 
PTP

Input:

■ tmf814Properties

Provides the CTP flag, termination point (TP) fetch size, and CTP depth properties.

■ customProperties

■ deviceInterface

■ logicalTree

■ physicalPort

■ ptp

Parent PTP for which all CTPs are discovered.

Output: n/a

Table 7–4 (Cont.) Discovery Processor Design Studio Construction

Discovery 
Processors Variable



Actions

About Design Studio Construction 7-7

TMF814 FTP 
Collector

Input:

■ tmf814Properties

Provides the CTP flag and TP fetch size properties.

■ customProperties

■ logicalTree

■ managedElement

The name of the ME is used to fetch the FTP.

Output:

■ terminationPointIterable(java.lang.Iterable<org.tmforum.mtnm.terminationPoint.Termination
Point_T>)

Iterable object for each collected FTP.

TMF814 FTP 
Modeler

Input:

■ tmf814Properties

■ logicalTree

■ tpDetailMap

■ terminationPoint(org.tmforum.mtnm.terminationPoint.TerminationPoint_T)

Output:

■ deviceInterface

Modeled Information Model object for a TP. TPs are modeled and added to the Logical 
Tree as direct child objects of a logical device.

TMF814 CTP 
Discoverer for 
FTP

Input:

■ tmf814Properties

■ customProperties

■ terminationPoint

TPs for which CTPs are fetched and modeled.

■ deviceInterface

Parent Information Model object for all top level CTPs.

■ logicalTree

Output: n/a

TMF814 Device 
Persister

Input:

■ tmf814Properties

■ physicalTree

■ logicalTree

■ managedElement

Output: n/a

TMF814 Device 
Recorder 
Persister

Input: tmf814Properties

Output: n/a

TMF814 
Cross-Connect 
Discoverer

Input: tmf814Properties, customProperties, tpDetailMap

Output: n/a

Table 7–4 (Cont.) Discovery Processor Design Studio Construction

Discovery 
Processors Variable



Actions

7-8 Network Integrity Optical TMF814 CORBA Cartridge Guide

TMF Topological 
Link Collector

Input: tmf814Properties, customProperties, tpDetailMap

Output: 

■ topologicalLinkIterable(java.util.Iterable)

Iterable object that iterates for each collected topological link object.

■ tlPipeMap(java.util.Map<java.lang.String,java.utilList<oracle.communications.inventory.api.e
ntity.Pipe>>)

A map listing all collected topological links by their container group.

TMF814 
Topological Link 
Modeler

Input:

■ tmf814Properties

■ tpDetailMap

■ topologicalLink(org.tmforum.mtnm.topologicalLink.TopologicalLink_T)

■ tlPipeMap

Output: 

■ linkPipe(oracle.communications.inventory.api.entity.Pipe)

A modeled topological link as a pipe entity.

TMF814 Pipe 
Persister

Input: tmf814Properties, tpDetailMap, tlPipeMap

Output: n/a

Table 7–4 (Cont.) Discovery Processor Design Studio Construction

Discovery 
Processors Variable



8

About Design Studio Extension 8-1

8About Design Studio Extension

This chapter contains examples and explanations on how to extend certain aspects of 
the Oracle Communications Network Integrity Optical TMF814 CORBA cartridge 
using Oracle Communications Design Studio. See Network Integrity Developer’s Guide 
for more information. See Network Integrity Concepts for guidelines and best practices 
for extending cartridges.

The following examples are explained in this section:

■ Initializing a Custom Object Request Broker

■ Extending the Discover TMF814 Action to Collect Vendor-Specific Information

■ Collecting Vendor-Specific Details for CTPs

■ Adding New Managers

■ Creating a Custom Equipment Reconciliation Cartridge

■ Creating a Custom Circuit Reconciliation Cartridge

■ Customizing the JKLM Value Calculation

■ Adding New CORBA API Calls

■ Collecting and Modeling Protection Role Information

■ Discovering Custom Device or Result Group Names

Initializing a Custom Object Request Broker
This example explains how you can initialize a custom object request broker (ORB) 
instead of using the default ORB provided by the Network Integrity Cartridge for 
CORBA (CORBA cartridge).

To initialize a custom ORB:

1. Open Oracle Communications Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the CORBA cartridge project.

4. Create a discovery action that uses the CORBA Abstract Discovery action as a 
processor.

5. Create a discovery processor named Custom CORBA Property Initializer and add 
it after the CORBA Property Initializer processor.



Extending the Discover TMF814 Action to Collect Vendor-Specific Information

8-2 Network Integrity Optical TMF814 CORBA Cartridge Guide

This processor overrides org.omg.CORBA.ORBClass, 
org.omg.CORBA.ORBSingletonClass, and any additional parameters specific to 
ORB implementation from the CORBAProperties JavaBean.

6. Create a discovery processor named Custom ORB Manager to perform custom 
lookup. 

7. (Optional) Disable NamingContextExt lookup.

This operation may set the Naming Service Connection Flag to false, causing 
custom lookup to fail.

Extending the Discover TMF814 Action to Collect Vendor-Specific 
Information

This example explains how to model vendor-specific information. No new common 
object request broker architecture (CORBA) calls are required to the server because this 
data is already collected. In this example, managementIP of a managed element (ME) 
is used as the desired vendor-specific information.

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project named 
TMF814SampleVendorExtension.

3. Make TMF814SampleVendorExtension dependent on the Optical TMF814 CORBA 
cartridge project and the TMF814_Model cartridge.

4. Create a discovery action named TMF814 Sample Vendor Extension.

5. Add the Discover TMF814 action as a processor in the TMF814 Sample Vendor 
Extension action.

6. Create a Physical Device specification named customTMF814MEGeneric and add 
all the same characteristics as tmf814MEGeneric.

7. Add the managementIP characteristic to customTMF814MEGeneric.

8. Create a new discovery processor named Custom Device Modeler and insert it 
after the TMF814 Device Modeler processor. Specify physical device and managed 
element as input parameters to the processor. 

9. In the Custom Device Modeler processor implementation, add code to populate 
physical device with managementIP, as shown in the following example:

//Get ME form request
ManagedElement_T me = request.getManagedElement();
PhysicalDevice dev = request.getPhysicalDevice();
 
//Create CustomTMF814MEGeneric spec isntance
CustomTMF814MEGeneric customDevice = new CustomTMF814MEGeneric(dev);
 
//TMFAdditionalInfoHelper is helper calls bundled with this cartridge

String managementIP = TMFAdditionalInfoHelper.getAdditionalInfo 
(me.additionalInfo, "managementIP");

customDevice.setManagementIP(managementIP);

10. Build, deploy, and test your cartridge.

Your new Custom Device Modeler processor is run in the order shown in 
Figure 8–1.



Collecting Vendor-Specific Details for CTPs

About Design Studio Extension 8-3

Figure 8–1 Custom Device Modeler Processor Workflow

Collecting Vendor-Specific Details for CTPs
This example explains how to model vendor-specific details about connection 
termination points (CTPs). CTP collection is handled differently from other objects 
because both the collecting and the modeling are handled by the same processor. In 
this example, vendorState of a CTP is used as the sought vendor-specific information.

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project named 
TMF814SampleVendorExtension.

3. Make TMF814SampleVendorExtension dependent on the Optical TMF814 CORBA 
cartridge project and the TMF814 Model cartridge.

4. Create a discovery action named TMF814 Sample Vendor Extension.

5. Add the Discover TMF814 action as a processor in the TMF814 Sample Vendor 
Extension action.

6. In the Studio Projects view, expand the TMF814_Model project.

7. Expand the Device Interface specifications and copy the tmf814TPInterfaceGeneric 
specification.

8. Copy the Device Interface into your project and call it 
customTMF814TPInterfaceGeneric.

9. Add a characteristic named vendorState to the customTMF814TPInterfaceGeneric 
specification.

10. Change to the Java perspective.

11. In the TMF814SampleVendorExtension project, add a class that implements the 
oracle.communications.integrity.tmf814discovery.model.ctp.CTPModelCustomizer 
interface, as shown in the following example:

/**
* This is a CTP model customizer.



Collecting Vendor-Specific Details for CTPs

8-4 Network Integrity Optical TMF814 CORBA Cartridge Guide

*/
 
package com.vendor.ctp;
import 
oracle.communications.integrity.tmf814discovery.model.ctp.CTPModelCustomizer;
import 
oracle.communications.integrity.tmf814discovery.model.ocimtree.LogicalTree;
import oracle.communications.inventory.api.entity.DeviceInterface;
import org.tmforum.mtnm.terminationPoint.TerminationPoint_T;
 
public class CTPModelCustomizerImpl implements CTPModelCustomizer {
 
  /**
  * Overriding customize method.
  * @param inter, modeled DeviceInterface
  * @param tp, TerminationPoint_T tmf object
  * @param tree
  */
 
  public void customize(DeviceInterface inter, TerminationPoint_T tp,  
LogicalTree<Object> tree) {
    //1. Get vendor data from termination point.
    //2. Create new specification
    //3. Set vendor specific data to Information Model data.
  }
}
 

12. Switch back to the Design Studio perspective.

13. Register the CTPModelCustomizerImpl class:

a. Add a new discovery processor to the TMF814 Sample Vendor Extension 
action. This processor should be added after TMF814 Property Customizer. 
Name the processor Vendor Property Customizer.

b. For the Vendor Property Customizer processor, set the following context 
parameters:

– Input: 
tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.
TMF814Properties)

– Output: 
tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.
TMF814Properties)

c. Create a Java implementation for the Vendor Property Customizer processor 
by adding code similar to the following example to the processor 
implementation:

import 
oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import 
oracle.communications.integrity.scanCartridges.sdk.context.DiscoveryProcess
orContext;
import 
oracle.communications.integrity.tmf814discovery.beans.TMF814Properties;
 
public class VendorPropertyCustomizerProcessorImpl implements 
VendorPropertyCustomizerProcessorInterface {
 
  @Override



Adding New Managers

About Design Studio Extension 8-5

  public VendorPropertyCustomizerProcessorResponse invoke(
  DiscoveryProcessorContext context,
  VendorPropertyCustomizerProcessorRequest request) throws 
ProcessorException {
    //Get properties from request
    TMF814Properties prop = request.getTmf814Properties();
    //Set fully qualified name of above CTP customizer implementation 
class.
    prop.setCtpModelCustomizerImplClass("com.vendor.ctp.CT 
PModelCustomizerImpl");
    //Create processor response and set the prop to the response
    VendorPropertyCustomizerProcessorResponse response = new        
VendorPropertyCustomizerProcessorResponse();
    response.setTmf814Properties(prop);
    return response;
  }
}
 

14. Save and close all files.

15. Build, deploy, and test your cartridge.

Adding New Managers
To add a new manager:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge 
project.

4. Create a discovery action named TMF814 New Manager Extension.

5. Add the Discover TMF814 action as a processor in the TMF814 New Manager 
Extension action.

6. Create a new processor named My Manager Initializer and insert it after the 
TMF814 Session Manager processor.

7. For the My Manager Initializer processor, set the following context parameters:

■ input: 
sessionManager(oracle.communications.integrity.tmf814discovery.session.Sess
ionManager)

■ output: all managers initialized by the processor

8. Add the necessary logic to initialize the managers in the generated 
MyManagerInitilizerImpl class invoke() method.

The following example shows the logic to initialize a new manager named My 
Manager:

oracle.communications.integrity.tmf814discovery.session.SessionManager 
sessionManager = request.getSessionManager();
 
//This method in sessionManager tries to create a manager identified by 
//specified manager name using currently active Ems Session.
 
org.omg.CORBA.Object obj = sessionManager.getManager("My_Manager_Name");
 
//Narrow the generic CORBA object to specific type. 



Creating a Custom Equipment Reconciliation Cartridge

8-6 Network Integrity Optical TMF814 CORBA Cartridge Guide

My_Manager myManaer = My_Manager_IHelper.narrow(obj);
 

9. Add all the managers to the response object of the invoke() method.

All the processors following the TMF814 Manager Initializer processor can make 
use of the newly initialized managers.

Creating a Custom Equipment Reconciliation Cartridge
You can create a custom equipment reconciliation cartridge that discovers your 
TMF814 equipment and reconciles it with your inventory system.

To create a custom equipment reconciliation cartridge:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge 
project.

4. Create a discovery action named TMF814 Equipment Reconciliation.

5. Add either the Discover TMF814 action Discover Abstract TMF814 action as a 
processor in the TMF814 Equipment Reconciliation action.

6. Create an import action to import your inventory data into Network Integrity.

7. Create a discrepancy detection action to compare your discovered TMF814 
equipment data with your imported inventory equipment data.

8. Create a discrepancy resolution action to correct discrepancies between your 
discovered TMF814 equipment data and your imported inventory equipment 
data.

9. Build, deploy, and test your cartridge.

See Network Integrity Optical UIM Integration Cartridge Guide for more information if 
you use Oracle Communications Unified Inventory Management (UIM) as your 
inventory system.

Creating a Custom Circuit Reconciliation Cartridge
You can create a custom circuit reconciliation cartridge that discovers your TMF814 
circuit data and reconciles it with your inventory system.

Some element management systems (EMSs) and network management systems 
(NMSs) use a device model where the connection termination point (CTP) circuit name 
is assigned to the userLabel attribute. The following example requires that the EMS or 
NMS device model use the userLabel attribute of a CTP to hold the circuit name.

To create a custom circuit reconciliation cartridge:

1. Open Design Studio in the Design perspective.

Note: If the new managers are used to collect new objects, you should design 
corresponding collector, discoverer, and modeler processors.

If you wish to record the results, the discoverer processor needs to extend the 
TMF814 Device Recorded Initializer and TMF814 Device Recorder Persister 
processors. The postProcess() method needs to be run after each object is 
fetched. Update the writeRecord() method Java class for any new objects.



Customizing the JKLM Value Calculation

About Design Studio Extension 8-7

2. Create a Network Integrity cartridge project.

3. Create an import action that does the following:

■ Retrieves physical devices

■ Retrieves logical devices

■ Maps circuit channel assignments by setting the userLabel attribute of the 
channel subinterface to the circuit name

4. Create a discrepancy detection action.

5. (Optional) Extend the discrepancy detection action to allow Network Integrity to 
search and group the discrepancy results by doing the following:

a. Extend the initializer processor to register a filter against the device interface.

b. Extend the action to run the filter when a discrepancy is detected against an 
interface. Populate either the Priority or Owner field with the corresponding 
circuit name.

This action obtains the circuit name and adds it to either the Owner or Priority 
field in the Network Integrity UI, allowing you to search for and sort by the circuit 
name.

6. Create a discrepancy resolution action to handle circuit discrepancies.

7. Build, deploy, and test your cartridge.

Customizing the JKLM Value Calculation
You can customize the JKLM value calculation used to model collected cross-connect 
data.

To customize the JKLM value calculation:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge 
project.

4. Create a discovery action that uses the Discovery TMF814 action as a processor.

Tip: In the event of an attribute mismatch discrepancy, obtain the 
circuit name from the compareEntity entity.

In the event of a missing or extra entity, obtain the circuit name from 
the childTargetEntity entity.

Note: A channel assignment discrepancy may exist due to an 
incorrect userLabel attribute on the subinterface, or an extra or 
missing entity on the subinterface.

If the circuit exists in the network but is missing from the inventory 
system, the discrepancy detection action returns multiple 
discrepancies. The reconciliation action may need to perform 
additional operations to correct a missing circuit.



Adding New CORBA API Calls

8-8 Network Integrity Optical TMF814 CORBA Cartridge Guide

5. Create a new processor called XCModelCustomizer and insert it after the TMF814 
Property Customizer processor.

6. For the XCModelCustomizer processor, set the following context parameters:

■ input: 
tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF
814Properties)

7. Develop a new MyXCCustomizer.java Java class by implementing the 
oracle.communications.integrity.tmf814discovery.model.xc.XCModelCustomizer 
class with the customize() method.

8. Develop the customize() method of the MyXCCustomizer.java class to customize 
the JKLM values for each cross-connect type.

9. Develop the invoke() method of the MyXCCustomizer.java class to set the new 
class in the setXCModelCustomizerImplClass class, as shown in the following 
example:

request.getTmf814Properties().setXCModelCustomizerImplClass("MyXCCustomizer")
 

10. Build, deploy and test your cartridge.

The XCModelCustomizer processor is run in the order shown by Figure 8–2. All 
the processors following the XCModelCustomizer processor can make use of the 
newly initialized managers.

Figure 8–2 Customized JKLM Value Calculation Processors Workflow

Adding New CORBA API Calls
This example explains how arbitrary TMF814 objects that are not collected by default 
by the Optical TMF814 CORBA cartridge can be collection and modeled.

This example shows the collection and modeling of the GTP_T object, though this is 
the general approach for any object.

To add new CORBA API calls:



Adding New CORBA API Calls

About Design Studio Extension 8-9

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge 
project.

4. Create a discovery action with name Discover Custom TMF814 Objects.

5. Add the Discover TMF814 action as a processor in the Discover Custom TMF814 
Objects action.

6. Create a new discovery processor named TMF814 GTP Collector and insert it 
before the TMF814 Device Persister processor.

7. Configure the TMF814 GTP Collector processor to have the following input 
parameters:

■ managedElement(org.tmforum.mtnm.managedElement.ManagedElement_T)

■ sessionManager(oracle.communications.integrity.tmf814discovery.session.Session
Manager)

■ tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814
Properties)

8. Configure the TMF814 GTP Collector processor to have the following output 
parameters:

■ gtpIterable(oracle.communications.integrity.tmf814discovery.collection.

TMF814DiscoveryIterable< org.tmforum.mtnm.terminationPoint.GTP_T >)

9. Create the TMF814GTPCollectorProcessorImpl Java class to resemble the 
following example:

import oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import 
oracle.communications.integrity.scanCartridges.sdk.context.DiscoveryProcessorCo
ntext;
import oracle.communications.integrity.tmf814discovery.beans.CustomProperties;
import oracle.communications.integrity.tmf814discovery.beans.TMF814Properties;
import 
oracle.communications.integrity.tmf814discovery.collection.TMF814DiscoveryItera
ble;
import 
oracle.communications.integrity.tmf814discovery.discoverers.DiscovererRequest;
import 
oracle.communications.integrity.tmf814discovery.discoverers.factory.Type;
import oracle.communications.integrity.tmf814discovery.session.SessionManager;
import oracle.communications.sce.integrity.sdk.processor.ProcessorFinalizer;
 
import org.tmforum.mtnm.globaldefs.NameAndStringValue_T;
import org.tmforum.mtnm.terminationPoint.GTP_T;
 
import com.oracle.tmf814discovery.discoverers.GTPDiscoverer;
 
public class TMF814GTPCollectorProcessorImpl implements
TMF814GTPCollectorProcessorInterface, ProcessorFinalizer {
  private GTPDiscoverer discoverer;
 
  @Override
  public TMF814GTPCollectorProcessorResponse invoke(DiscoveryProcessorContext 
context, TMF814GTPCollectorProcessorRequest request) throws ProcessorException 
{



Adding New CORBA API Calls

8-10 Network Integrity Optical TMF814 CORBA Cartridge Guide

 
    //Get SessionManager from request
    SessionManager mgr = request.getSessionManager();
    NameAndStringValue_T[] meName = request.getManagedElement().name;
    TMF814Properties prop = request.getTmf814Properties();
 
    //Create GTPDiscoverer, this has the API calls to get GTP objects from Ems 
sytem.  
    discoverer =  new GTPDiscoverer(meName, prop, mgr);
 
    DiscovererRequest req= new DiscovererRequest(request.getTmf814Properties(), 
new CustomProperties());
    TMF814DiscoveryIterable<GTP_T> gtpIterable = new 
TMF814DiscoveryIterable<GTP_T>(Type.OTHER,req,  discoverer);
 
    //Create iterable for GTP and set to resposne
    TMF814GTPCollectorProcessorResponse res = new 
TMF814GTPCollectorProcessorResponse();
    res.setGtpIterable(gtpIterable);
    return res;
  }
  @Override
  public void close(boolean arg0) {
    if(discoverer != null){
      discoverer.destroy();
    }
  }
}
 
package com.oracle.tmf814discovery.discoverers;
 
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
 
import oracle.communications.integrity.scanCartridges.sdk.ProcessorException;
import oracle.communications.integrity.tmf814discovery.beans.TMF814Properties;
import 
oracle.communications.integrity.tmf814discovery.discoverers.TMF814Discoverer;
import oracle.communications.integrity.tmf814discovery.session.SessionManager;
 
import org.tmforum.mtnm.globaldefs.NameAndStringValue_T;
import org.tmforum.mtnm.globaldefs.ProcessingFailureException;
import org.tmforum.mtnm.managedElementManager.ManagedElementMgr_I;
import org.tmforum.mtnm.terminationPoint.GTP_T;
import org.tmforum.mtnm.terminationPoint.GTPiterator_I;
import org.tmforum.mtnm.terminationPoint.GTPiterator_IHolder;
import org.tmforum.mtnm.terminationPoint.GTPlist_THolder;
 
public class GTPDiscoverer implements TMF814Discoverer<GTP_T>{
  protected static final Logger logger = 
Logger.getLogger(GTPDiscoverer.class.getName());
 
  private int fetchSize;
  private boolean isInitialTMFOperInvoked = false;
  private TMF814Properties tmf814Properties;
  private boolean isEOD = false; //Is End Of Discovery reached.
 



Adding New CORBA API Calls

About Design Studio Extension 8-11

  private NameAndStringValue_T[] meName = null; //parent ME name
  private GTPiterator_I gtpIter = null;
  private ManagedElementMgr_I meMgr;
 
  public GTPDiscoverer(NameAndStringValue_T[] meName, TMF814Properties prop, 
SessionManager sessionMgr) throws ProcessorException {
    this.tmf814Properties = prop;
    this.meName = meName; 
    this.meMgr = sessionMgr.getManagedElementMgr();
    this.fetchSize = 1000;
  }
 
  /**
  *Every time the discover() method is called, certain number of objects
  *are called. Number of object to return is up the implementation. 
  *Empty iterator is returned indicating that there are no objects
  *to discover/retrieve further.
  */
 
  @Override
  public java.util.Iterator<GTP_T> discover(){
    if(isEOD){
      return Collections.<GTP_T>emptyList().iterator();   
    }
 
    List<GTP_T> result;
    if(! isInitialTMFOperInvoked ) {
      //Initialize GTP iteraror  
      result = fetchInitialElements();
      isInitialTMFOperInvoked = true;
    }else{
      //Once GTP iteraror is initialized, fetchMoreElements is called by the 
iterable. 
      result = fetchMoreElements();
    }
    if(result.isEmpty() || (getFetchSize() >  result.size()) ){
      isEOD= true;
      destroy();
    }
    return result.iterator();
  }
 
  private int getFetchSize() {
    return fetchSize;
  }
 
  public List<GTP_T> fetchInitialElements() {
    GTPlist_THolder gtpListHolder = new GTPlist_THolder();
    GTPiterator_IHolder gtpIterHolder = new GTPiterator_IHolder();
    try {
      meMgr.getAllGTPs(meName, new short[]{}, 2000, gtpListHolder, 
gtpIterHolder);
      gtpIter = gtpIterHolder.value;
      if ( gtpListHolder.value != null) {
        return Arrays.<GTP_T>asList(gtpListHolder.value);
      }
    } catch (Exception e) {
      logger.log(Level.SEVERE, "getAllGTP: Error while getting initial gtps", 
e);
    }



Adding New CORBA API Calls

8-12 Network Integrity Optical TMF814 CORBA Cartridge Guide

    return Collections.<GTP_T>emptyList();
  }
 
  public List<GTP_T> fetchMoreElements() {
    if(gtpIter != null){
      GTPlist_THolder gtpListHolder = new GTPlist_THolder();
      try {
        gtpIter.next_n(2000, gtpListHolder);
      } catch (ProcessingFailureException e) {
        logger.log(Level.SEVERE, "getAllGTP(next_n): Error while getting more 
gtps", e);
      }
      if(gtpListHolder.value != null && gtpListHolder.value.length > 0){
        return Arrays.<GTP_T>asList(gtpListHolder.value);
      }
    }
    return Collections.<GTP_T>emptyList();
  }
 
  @Override
  public void destroy() {
    if (gtpIter != null) {
      try{
        gtpIter.destroy();
      }catch (ProcessingFailureException e) {
        logger.log(Level.INFO, "exception while closing gtp iterator", e);
      }
      gtpIter = null;
    }
  }
}

10. Create a For Each processor after the TMF814 GTP Collector processor.

11. Specify the following values for the For Each processor:

■ In the Select Collection Name field, enter gtpIterable.

■ In the Variable Name field, enter gtp.

12. Within the For Each processor, create a processor named TMF814 GTP Modeler. 
The TMF814 GTP Modeler processor is responsible for modeling each input GTP_
T as an Oracle Communications Information Model object and adding it to the 
result.

13. Configure the TMF814 GTP Modeler processor to have the following input 
parameters:

■ gtp(org.tmforum.mtnm.terminationPoint.GTP_T)

14. Configure the TMF814 GTP Modeler processor to have the following output 
parameters:

■ Modeled Information Model representation of gtp.

15. Design the TMF814 GTP Modeler processor to find the correct Information Model 
mapping object for the TMF814 GTP object and add to the result.

16. Build, deploy, and test your cartridge.

The TMF814 GTP Collector and TMF814 GTP Modeler processors are run in the 
order shown by Figure 8–3.



Collecting and Modeling Protection Role Information

About Design Studio Extension 8-13

Figure 8–3 New CORBA API Calls Processor Workflow

Collecting and Modeling Protection Role Information
You can extend the Optical TMF814 CORBA cartridge to collect protection role 
information on cross-connect segments. The protection role status can be made 
available to other cartridges and follow-on actions.

Because there are no known APIs to obtain protection data from devices, this scenario 
assumes that the protection role information is available from another source of data, 
such as in a CVS file.

To collect protection role data on cross-connect segments:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge 
project.

4. Create a discovery action that uses the Discover TMF814 action as a processor.

5. Create a discovery processor called XCModelCustomizer and insert it after the 
TMF814 Property Customizer processor.

6. Configure the new processor to have the following input parameter:

■ tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814
Properties) 

7. Develop a new MyXCCustomizer.java Java class by implementing the 
oracle.communications.integrity.tmf814discovery.model.xc.XCModelCustomizer 
class with the customize() method.

8. Develop the customize() method of the MyXCCustomizer.java class to populate 
the protection role for each cross-connect segment, as shown in the example 
below:

import 
oracle.communications.integrity.tmf814discovery.model.xc.XCModelCustomizer;



Discovering Custom Device or Result Group Names

8-14 Network Integrity Optical TMF814 CORBA Cartridge Guide

import oracle.communications.inventory.api.entity.InvGroupRef;
import oracle.communications.inventory.api.entity.InventoryGroup;
import oracle.communications.inventory.api.entity.Pipe;
 
import org.tmforum.mtnm.subnetworkConnection.CrossConnect_T;
 
public class MyXCCustomizer implements XCModelCustomizer {
  public static final String PROTECTIONROLE = "protectionRole";
  @Override
  public InventoryGroup customize(CrossConnect_T xc, InventoryGroup ccGroup) {
    Set<InvGroupRef>  segmentRelSet = ccGroup.getMembers();
    for(InvGroupRef ref : segmentRelSet){
      Pipe pipe = ref.getPipe();
    //Get protection information for this segment from a data source. 
      String prorectionRole = /*Get it from external source*/
      pipe.getCharacteristicMap().get(PROTECTIONROLE).setValue(prorectionRole);
    }
    return ccGroup;
  }
}
 

9. Develop the invoke() method of the MyXCCustomizer.java class to set the new 
class in the setXCModelCustomizerImplClass class, as in the following example:

request.getTmf814Properties().setXCModelCustomizerImplClass("MyXCCustomizer")
 

10. Build, deploy and test your cartridge.

All the processors following the XCModelCustomizer processor can make use of 
the information.

Discovering Custom Device or Result Group Names
You can customize the way discovered devices and result groups are named to match 
how they are named in your inventory system.

To customize how discovered devices and result groups are named:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the Optical TMF814 CORBA cartridge 
project.

4. Create a new discovery action that uses the Discover TMF814 action as a 
processor.

5. Create a discovery processor and insert it after the TMF814 Property Initializer 
processor.

6. Set the new processor to use tmfNameToDeviceMap, the output from the TMF814 
Property Initializer processor, as its input.

7. Map each device or result group to tmfNameToDeviceMap, as in the following 
example:

nameToNativeEmsMap1.addMapping(tmf814_Name, custom_Name)
 
Where tmf814_Name is the ManagedElement tuple value of ManagedElement_
T.name and custom_Name is the custom name of the device.

8. Build, deploy and test your cartridge.


	Contents
	Preface
	Audience
	Documentation Accessibility
	Document Revision History

	1 Overview
	About the Optical TMF814 CORBA Cartridge
	About Cartridge Dependencies
	Run-Time Dependencies
	Design Studio Dependencies

	Opening the Cartridge Files in Design Studio
	Building and Deploying the Cartridge

	2 About the Cartridge Components
	Discover Abstract TMF814 Action
	TMF814 Property Initializer
	TMF814 Session Manager
	TMF814 Device Recorder Initializer
	TMF814 ME Collector
	TMF814 Device Modeler
	TMF814 Equipment Collector
	TMF814 Equipment Modeler
	TMF814 PTP Collector
	TMF814 PTP Modeler
	TMF814 CTP Discoverer for PTP
	TMF814 FTP Collector
	TMF814 FTP Modeler
	TMF814 CTP Discoverer for FTP
	TMF814 Device Persister
	TMF814 Device Recorder Persister
	TMF814 Cross-Connect Discoverer
	TMF814 Topological Link Collector
	TMF814 Topological Link Modeler
	TMF814 Pipe Persister

	Discover TMF814 Action
	TMF814 CORBA Property Initializer
	TMF814 Property Customizer

	Discover Huawei U2000 Action
	Huawei Customizer
	Huawei MSTP EndPoint Collector
	Huawei MSTP EndPoint Modeler

	About Recording Mode
	Enabling Recording Mode


	3 Using the Cartridge
	Creating a Discover TMF814 Scan

	4 About Collected Data
	About Collected Data
	Multi Technology Network Management Hierarchy
	Layer Parameters
	TMF814 APIs
	CORBA APIs
	APIs for Cross-Connect Collection
	APIs for Topological Link Collection


	Handling Vendor Variations
	FTP Collection API Variations
	Cross-Connect Collection API Variation
	Topological Link Collection API Variation
	Cross-Connect Protection Role


	5 About Cartridge Modeling
	About Cartridge Modeling
	About the Oracle Communications Information Model
	About the Physical Tree
	About the Logical Tree
	Field Mapping
	About Building the Information Model Tree
	Containment Relationships
	Adding an Equipment and an Equipment Holder to the Tree
	Adding a Physical Port and an Interface to the Tree
	Adding a Sub-Interface to the Tree

	Cartridge Modeling for Cross-Connect Data
	A and Z Channels

	Cartridge Modeling for Topological Link Data

	Result Groups

	6 About Model Correction
	Equipment Holder as a Child of a Physical Device
	Sub-Slots of Slots
	Huawei U2000 MSTP End Port

	7 About Design Studio Construction
	Model Collections
	Actions

	8 About Design Studio Extension
	Initializing a Custom Object Request Broker
	Extending the Discover TMF814 Action to Collect Vendor-Specific Information
	Collecting Vendor-Specific Details for CTPs
	Adding New Managers
	Creating a Custom Equipment Reconciliation Cartridge
	Creating a Custom Circuit Reconciliation Cartridge
	Customizing the JKLM Value Calculation
	Adding New CORBA API Calls
	Collecting and Modeling Protection Role Information
	Discovering Custom Device or Result Group Names


