

[1] Oracle® Communications
Network Integrity
Incremental TMF814 Discovery Cartridge Guide

Release 7.3.2

E66041-01

May 2016

Oracle Communications Network Integrity Incremental TMF814 Discovery Cartridge Guide, Release 7.3.2

E66041-01

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Document Revision History .. vi

1 Overview

About the Incremental TMF814 Discovery Cartridge ... 1-1
NMS Notification Listener Sample Application.. 1-2

About Cartridge Dependencies ... 1-3
Run-Time Dependencies ... 1-3
Design Studio Dependencies.. 1-3

Opening the Cartridge Files in Design Studio... 1-3
Building and Deploying the Cartridge .. 1-4

2 About the Cartridge Components

Abstract Incremental Discovery Action ... 2-1
Incremental Discovery Initializer .. 2-1

Discover Incremental TMF814 Action.. 2-1
TMF814 Updated ME Discoverer .. 2-3
TMF814 SNC Discoverer .. 2-3
TMF814 SNC CC Discoverer .. 2-3
TMF814 Updated TL Discoverer.. 2-3

About Recording Mode... 2-3
Enabling and Disabling Recording Mode .. 2-4

3 Using the Cartridge

Creating a Discover TMF814 Scan .. 3-1
Extending the Incremental Discovery Cartridge to Support Different Protocols 3-3

4 About Collected Data

About Collected Data .. 4-1
Multi Technology Network Management Hierarchy ... 4-1
Layer Parameters.. 4-5
TMF814 APIs... 4-5

iv

CORBA APIs.. 4-5
APIs for Cross-Connect Collection... 4-6
APIs for Topological Link Collection... 4-6

Handling Vendor Variations ... 4-6
FTP Collection API Variations ... 4-7
Cross-Connect Collection API Variation .. 4-7
Topological Link Collection API Variation .. 4-7
Cross-Connect Protection Role... 4-7

5 About Cartridge Modeling

About Cartridge Modeling ... 5-1
About the Oracle Communications Information Model .. 5-1

About the Physical Tree .. 5-2
About the Logical Tree .. 5-2
Field Mapping .. 5-3
About Building the Information Model Tree ... 5-9

Containment Relationships ... 5-9
Adding an Equipment and an Equipment Holder to the Tree ... 5-10
Adding a Physical Port and an Interface to the Tree .. 5-11
Adding a Sub-Interface to the Tree ... 5-11

Cartridge Modeling for Cross-Connect Data .. 5-11
A and Z Channels .. 5-14

Cartridge Modeling for Topological Link Data.. 5-15
Result Groups .. 5-16

6 About Design Studio Construction

Model Collections .. 6-1
Actions .. 6-1

7 About Design Studio Extension

Initializing a Custom Object Request Broker .. 7-1
Extending the Discover Incremental TMF814 Action ... 7-2

8 NMS Notification Listener Sample Application Reference

Configuring the NMS Notification Listener Sample Application to Receive Notifications 8-1
Getting the ORB Object ... 8-1
Getting the EMS Session Object ... 8-1
Getting the Event Channel Object from the EMS Session Object.. 8-3
Getting the Consumer Admin Object from the Event Channel Object...................................... 8-3
Connecting to the StructuredProxyPullSupplier from the Consumer Admin Object 8-3
Pulling the Notification Events from StructuredProxyPullSupplier.. 8-3
Saving the Generated Notification Events in XML Files.. 8-4

Extending the NMS Notification Listener Sample Application to Filter Notifications............. 8-6
Obtaining a Reference to the Filter Factory.. 8-6
Creating a Filter .. 8-7
Adding the Filter to an Admin or Proxy .. 8-7

v

Preface

This guide explains the functionality and design of the Oracle Communications
Network Integrity Incremental TMF814 Discovery cartridge.

Audience
This guide is intended for Network Integrity administrators, developers, and
integrators.

This guide assumes that you are familiar with the following documents:

■ Network Integrity Developer’s Guide: for basic understanding of cartridges

■ Network Integrity Installation Guide: for information about deploying and
undeploying cartridges

■ Network Integrity CORBA Cartridge Guide: for an understanding of the functionality
and design of the Network Integrity Cartridge for CORBA (CORBA cartridge)

■ Network Integrity Optical TMF814 CORBA Cartridge Guide: for an understanding of
the functionality and design of the Optical TMF814 CORBA cartridge

This guide assumes that your are familiar with the following concepts:

■ TMF814 standards and terminology

■ Common object request broker architecture (CORBA) standards and terminology

■ Oracle Communications Design Studio

■ Oracle Communications Information Model

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

vi

Document Revision History
The following table lists the revision history for this guide:

Version Date Description

E66041-01 May 2016 Initial release.

1

Overview 1-1

1Overview

This chapter describes the Oracle Communications Network Integrity Incremental
TMF814 Discovery cartridge.

About the Incremental TMF814 Discovery Cartridge
The Incremental TMF814 Discovery cartridge is an extension to the existing Network
Integrity Optical TMF814 CORBA cartridge. See Network Integrity Optical TMF814
CORBA Cartridge Guide for more information.

The Incremental TMF814 Discovery cartridge is dependent on the Optical TMF814
CORBA cartridge. You must import the Optical TMF814 CORBA cartridge before
importing the Incremental TMF814 Discovery cartridge in Oracle Communications
Design Studio.

The Incremental TMF814 Discovery cartridge can perform a full scan (same as the
Optical TMF814 CORBA cartridge) or an incremental discovery scan. In an
incremental scan, the Incremental TMF814 Discovery cartridge discovers only the
network elements, such as managed elements (MEs), topological links (TLs), and
subnetwork connections (SNCs), that have changed in the network since the last
discovery scan; thus avoiding the need to discover the entire network. This cartridge
allows you to make faster inventory updates by reducing the time taken for network
discovery and reconciliation.

The incremental discovery scan retrieves information using an iterative query
approach. Address-based discovery retrieves the complete information in a single
communication; as a result, the incremental discovery scan is not applicable in such
scenarios.

The Incremental TMF814 Discovery cartridge solution explained in this guide
discovers and models physical and logical entities for the following vendors: Huawei
and ECI.

The Incremental TMF814 Discovery cartridge consists of the following components:

■ NMS Notification Listener Sample Application: This sample application is
connected to multiple element management system (EMS) servers or network
management system (NMS) servers to listen to event channels and capture the
NMS notifications that are generated when network elements are created,
updated, or deleted. See "NMS Notification Listener Sample Application" for more
information.

■ NetworkIntegritySDK cartridge: The NetworkIntegritySDK cartridge is enhanced
to support incremental discovery. See Network Integrity Developer’s Guide for more
information.

About the Incremental TMF814 Discovery Cartridge

1-2 Network Integrity Incremental TMF814 Discovery Cartridge Guide

The Incremental TMF814 Discovery cartridge uses the TMF814 CORBA interface as a
discovery protocol to connect to the EMS or NMS servers and retrieve information
about network elements from that system.

The Incremental TMF814 Discovery cartridge discovers network elements in the
network using a TMF814 common object request broker architecture (CORBA)
interface. This cartridge provides discovery actions capable of discovering both
physical (equipment) and logical (interface) hierarchy details of MEs.

The Incremental TMF814 Discovery cartridge can be used to discover the following
network systems:

■ Synchronous Optical Networking (SONET)

■ Synchronous Digital Hierarchy (SDH)

■ Dense Wavelength Division Multiplexing (DWDM)

■ Asynchronous Transfer Mode (ATM)

■ Ethernet

NMS Notification Listener Sample Application
The NMS Notification Listener Sample Application is connected to multiple EMS and
NMS servers to listen to event channels and capture the NMS notifications that are
generated when network elements are created, updated, or deleted. The NMS
Notification Listener Sample Application is a notification listener based on version
1.0.1 of the Object Management Group (OMG) Notification Service specification. The
NMS Notification Listener Sample Application supports all the EMS and NMS
notification services that are compliant with version 1.0.1 of the OMG Notification
Service specification.

You can extend the NMS Notification Listener Sample Application to support
vendor-specific EMS and NMS notification services that you may have implemented.

For information about the OMG Notification Service specification, see the OMG Web
site at:

http://www.omg.org/spec/NOT/

The Notification Service specification supports event types defined by the OMG Event
Service. The OMG Event Service does the following:

■ Supports asynchronous exchange of notification events between clients.

■ Introduces event channels that communicate notification events between suppliers
and consumers by issuing standard CORBA requests.

■ Defines two roles for objects:

– Suppliers: Event Service clients that produce notification events

– Consumers: Event Service clients that consume and process notification
events

The OMG Notification Service specification defines various types of suppliers and
consumers. The NMS Notification Listener Sample Application implements the
StructuredPushConsumer interface that listens for the notification events of the NMS
server and persists the relevant information (such as native EMS names and last
modified date and time of MEs, SNCs, and TLs) in standard file format. These text files
act as an input to the Discover Incremental TMF814 scan, which does the following:

Opening the Cartridge Files in Design Studio

Overview 1-3

■ Identifies and retrieves only those network elements (from NMS Server) that have
changed in the network since the last discovery scan and displays them in the scan
results

■ Copies the unmodified network elements from the previous successful scan and
displays them in the scan results

The NMS Notification Listener Sample Application uses OMG CORBA Notification
Service standard APIs to connect to the NMS. You must install and set up the
Notification Listener Sample Application to receive notification events from the NMS
and to communicate the events to Network Integrity. The Notification Listener Sample
Application is packaged separately and is available along with the
NetworkIntegritySDK cartridge project. You must change the Notification Listener
Sample Application configuration using a Java editor to connect to the NMS server
and receive its notification events.

See "NMS Notification Listener Sample Application Reference" for more information
about the example code for the NMS Notification Listener Sample Application.

About Cartridge Dependencies
This section provides information about dependencies that the Incremental TMF814
Discovery cartridge has on other entities.

Run-Time Dependencies
There are no run-time dependencies for this cartridge.

Design Studio Dependencies
To load the Incremental TMF814 Discovery cartridge into Oracle Communications
Design Studio, the following cartridge projects must be installed:

■ TMF814Discovery_Cartridge

■ Abstract_CORBA_Cartridge

■ NetworkIntegritySDK

■ Address_Handlers

■ ora_uim_model

Opening the Cartridge Files in Design Studio
To review and extend the Incremental TMF814 Discovery cartridge, download the
Incremental TMF814 Discovery cartridge ZIP file from the Oracle software delivery
Web site:

https://edelivery.oracle.com/

The Incremental TMF814 Discovery cartridge ZIP file has the following structure:

■ \UIM_Cartridge_Projects\TMF814_Model

■ \Network_Integrity_Cartridge_Projects\Incr_TMF814_Disc_Cartridge

The Incr_TMF814_Disc_Cartridge project contains the extendable Design Studio files.

You must open the files in Design Studio before you can review and extend the
cartridge.

Building and Deploying the Cartridge

1-4 Network Integrity Incremental TMF814 Discovery Cartridge Guide

See Network Integrity Concepts for guidelines and best practices for extending
cartridges. See Network Integrity Developer’s Guide for information about opening files
in Design Studio.

Building and Deploying the Cartridge
See the Design Studio Help for information about building and deploying cartridges.

2

About the Cartridge Components 2-1

2About the Cartridge Components

This chapter provides information about the components that make up the Oracle
Communications Network Integrity Incremental TMF814 Discovery cartridge.

The Incremental TMF814 Discovery cartridge is made up of the following components:

■ Abstract Incremental Discovery Action

■ Discover Incremental TMF814 Action

See "About Design Studio Construction" for information about how the actions are
built.

The Incremental TMF814 Discovery cartridge supports a recording mode for recording
TMF814 data. See "About Recording Mode" for more information.

Abstract Incremental Discovery Action
The Abstract Incremental Discovery action validates the scan parameters and verifies
whether incremental scan is enabled. This action outputs a parameter reference to the
last successful scan. If no previous scans exist, the complete scan is performed.

The Abstract Incremental Discovery action contains the following processor:

■ Incremental Discovery Initializer

Incremental Discovery Initializer
The Incremental Discovery Initializer processor performs the validation of scan
parameters and sets the scan to run incrementally.

Discover Incremental TMF814 Action
The Discover Incremental TMF814 action, which extends the Discover Abstract
TMF814 and Abstract Incremental Discovery actions, discovers only the network
elements, such as managed elements (MEs), topological links (TLs), and subnetwork
connections (SNCs), that have changed in the network since the last discovery scan.

This Discover Incremental TMF814 action inherits all the processors from the
following actions:

■ The Discover Abstract TMF814 action

For information about the inherited processors in this action, see Network Integrity
Optical TMF814 CORBA Cartridge Guide.

■ The Abstract Incremental Discovery action

Discover Incremental TMF814 Action

2-2 Network Integrity Incremental TMF814 Discovery Cartridge Guide

For information about the inherited processors in this action, see "Abstract
Incremental Discovery Action".

The Discover Incremental TMF814 action contains the following processors run in the
following order:

1. TMF814 Property Initializer (inherited)

2. TMF814 Session Manager (inherited)

3. TMF814 Device Recorder Initializer (inherited)

4. Incremental Discovery Initializer (Inherited)

5. TMF814 ME Collector (inherited)

6. TMF814 Updated ME Discoverer

7. TMF814 Device Modeler (inherited)

8. TMF814 Equipment Collector (inherited)

9. TMF814 Equipment Modeler (inherited)

10. TMF814 PTP Collector (inherited)

11. TMF814 PTP Modeler (inherited)

12. TMF814 CTP Discoverer for PTP (inherited)

13. TMF814 FTP Collector (inherited)

14. TMF814 FTP Modeler (inherited)

15. TMF814 CTP Discoverer for FTP (inherited)

16. TMF814 Device Persister (inherited)

17. TMF814 Device Recorder Persister (inherited)

18. TMF814 Cross-Connect Discoverer (inherited)

19. TMF814 SNC Discoverer

20. TMF814 SNC CC Discoverer

21. TMF814 Topological Link Collector (inherited)

22. TMF814 Updated TL Discoverer

23. TMF814 Topological Link Modeler (inherited)

24. TMF814 Pipe Persister (inherited)

Figure 2–1 illustrates the processor workflow of the Discover Incremental TMF814
action.

About Recording Mode

About the Cartridge Components 2-3

Figure 2–1 Discover Incremental TMF814 Action Processors

TMF814 Updated ME Discoverer
This processor accepts the complete list of discovered devices, identifies the modified
devices, and copies the previous successful scan results for unmodified devices.

TMF814 SNC Discoverer
This processor discovers the configured subnetwork connections under the network
management system (NMS).

TMF814 SNC CC Discoverer
This processor discovers the cross-connects under the specified subnetwork, models
the cross-connects, and persists the modeled cross-connects.

TMF814 Updated TL Discoverer
This processor does the following:

■ Queries all the TL names

■ Checks the updated TL names from the custom handler and identifies the TLs yet
to be discovered

■ Discovers the specific TLs using CORBA API

■ Copies the unmodified TL entities from the previous successful scan

About Recording Mode
You can configure the Incremental TMF814 Discovery cartridge to record all
discovered MEs, topological links, and cross-connects. When recording mode is
enabled, the recorded files (ME_Name.me for MEs, EMS_Name.ems for topological

About Recording Mode

2-4 Network Integrity Incremental TMF814 Discovery Cartridge Guide

links, and EMS_Name.cc for cross-connects) are saved to the Domain_
Home/corbaData/Scan_Name/EMS_Name directory, where:

■ ME_Name is the name of the managed element.

■ EMS_Name is the name of the EMS.

■ Domain_Home is the directory containing the configuration for the domain into
which Network Integrity is installed.

■ Scan_Name is the name of the scan.

See "Enabling and Disabling Recording Mode" for instructions on how to enable the
recording mode.

Enabling and Disabling Recording Mode
The recording mode can be enabled or disabled by an administrator without needing
to restart the server or application. The recording mode you set takes effect
immediately.

To enable or disable recording mode:

1. Open the Domain_Home/config/corbaConfig/tmf814.properties file.

2. Do one of the following:

■ To disable recording mode, locate the MODE entry and set its value to
NORMAL.

■ To enable recording mode, do the following:

– Locate the MODE entry and set its value to RECORD.

– Set the CHUNK SIZE entry to the number of cross-connects written to
EMS_Name.cc at a time.

3

Using the Cartridge 3-1

3Using the Cartridge

This chapter explains how to use the Oracle Communications Network Integrity
Incremental TMF814 Discovery cartridge.

Creating a Discover TMF814 Scan
The Incremental TMF814 Discovery cartridge allows you to create a Discover TMF814
scan.

To create an Incremental TMF814 Discovery scan:

1. Create a scan, as explained in the Network Integrity Help.

2. On the General tab, from the Scan Action list, select Discover Incremental
TMF814 to discover only the modified network elements (MEs, SNCs, and TLs)
from the network management system.

The Scan Type field displays Discovery.

3. Under the Scan Action Parameters area, from the Select Parameter Group list,
select the following:

■ Select TMF814Parameters and enter the following TMF14 scan action
parameters:

– In the Username field, enter the username for the target element or
network management system (EMS or NMS).

– In the Password field, enter the password for the target EMS or NMS.

– In the EMS Naming Service field, enter the EMS session factory CORBA
object name.

– From the EMS Naming Service Format list, specify whether the EMS
session factory CORBA object name uses the Plain, or the Stringified
format.

– From the Collect Equipment list, specify whether you want to collect
equipment holder objects.

– From the Collect Termination Points list, specify the type of termination
points (TPs) you want to collect. To not collect any TPs, select None.

– From the Collect Connection TP list, specify the type of connection TPs
you want to collect. To not collect any connection TPs, select None.

– (Optional) To set the number of equipment objects to retrieve with each
EMS call, enter a value in the Equipment Fetch Size field. Leave this field
blank to retrieve all equipment objects in a single EMS call.

Creating a Discover TMF814 Scan

3-2 Network Integrity Incremental TMF814 Discovery Cartridge Guide

– (Optional) To set the number of TPs to retrieve with each EMS call, enter a
value in the Termination Point Fetch Size field. Leave this field blank to
retrieve all TPs in a single EMS call.

– (Optional) To set the number of hierarchical child levels to which
contained TPs are collected, enter a value in the Contained TP Collection
Depth field. Leave this field blank to retrieve all contained TPs.

– (Optional) To pass custom object request broker (ORB) properties to the
Discover Abstract TMF814 action, enter name value pairs in the ORB
Properties field, separated by a semicolon, as in the following example:

Property_1=value_1;Property_2=value_2;Property_n=value_n

– (Optional) To pass custom ORB arguments to the Discover Abstract
TMF814 action, enter name value pairs in the ORB Arguments field,
separated by a semicolon, as in the following example:

Argument_1=value_1;Argument_2=value_2;Argument_n=value_n

– (Optional) To filter the discovered managed elements (MEs) by name,
enter a name in the Managed Element Name(s) field and set the Managed
Element Name Qualifier list.

– (Optional) To filter the discovered network elements (NEs) by name, enter
a name in the Network Element Name(s) field and set the Network
Element Name Qualifier list.

– In the Cross Connect Collection Type field, specify how cross-connect
objects are collected. Irrespective of whether you select SNC or ME list,
only the SNC option is considered for fetching cross-connects. To not
collect any cross-connect objects, select None.

– In the Topological Link Collection Type field, specify how topological
links are collected. To not collect any topological links, select None.

See Table 6–3, " TMF814 Scan Parameters Design Studio Construction" for
more information.

■ (Optional) Select AutoResolutionParameter and then select the Auto Resolve
Discrepancies check box to initiate automatic discrepancy resolution at the
end of the scan. Automatic discrepancy resolution works only if the Detect
Discrepancies option is also selected. See Network Integrity Developer's Guide
for more information.

■ (Optional) Select IncrementalScanParameter and then select the Incremental
Scan check box.

4. On the Scope tab, do one of the following:

■ Enter the EMS CORBA Loc URL.

■ Import the IOR file.

■ Enter the content of the IOR file.

5. On the Schedule tab, define a schedule for the scan.

Note: All entries on the Scope tab must be unique. All entries are
validated against the CorbaURLAddressHandler address handler.

Extending the Incremental Discovery Cartridge to Support Different Protocols

Using the Cartridge 3-3

See the Design Studio Modeling Network Integrity Help for more information on
defining a scan schedule.

6. Make any other required configurations.

7. Click Save and Close.

Extending the Incremental Discovery Cartridge to Support Different
Protocols

You may be required to extend the existing Incremental Discovery cartridge (sample
NMS listener application) to support different protocols used by vendor-specific EMS
and NMS notification services that you may have implemented.

To extend the Incremental Discovery Cartridge to support different protocols used by
an EMS or NMS:

1. Continuously monitor the changes made to the network devices by listening to the
notifications of the EMS or NMS.

2. Enhance the discovery cartridge by adding a new discovery processor that does
the following:

■ Checks the text file generated by the notification listener for the list of devices
that are modified after the previous scan by going through the device tracking
file

■ Fetches only the modified devices from the network

■ Copies the unmodified devices from the previous scan

■ Removes the unmodified devices from the list of devices to be discovered

Extending the Incremental Discovery Cartridge to Support Different Protocols

3-4 Network Integrity Incremental TMF814 Discovery Cartridge Guide

4

About Collected Data 4-1

4About Collected Data

This chapter explains how the Oracle Communications Network Integrity Incremental
TMF814 Discovery cartridge treats collected data.

About Collected Data
The Incremental TMF814 Discovery cartridge uses a standard TMF814 common object
request broker architecture (CORBA) interface, which models network elements using
the Multi Technology Network Management (MTNM) standard.

Table 4–1 lists MTNM objects and corresponding TMF814 IDL API class definitions.

A CTP can have a child CTP with any number of nesting levels. LayeredParameters
are not top-level MTNM objects. They are a property of a termination point (TP).

Multi Technology Network Management Hierarchy
The following example demonstrates the MTNM hierarchy:

Managed Element
Equipment Holder(rack 1)
Equipment Holder (shelf 1)
Equipment Holder (sub shelf 1)

Table 4–1 MTNM IDL Class Definitions

MTNM Object Name TMF814 IDL API Class Definition

Managed Element (ME) ManagedElement_T

Equipment Holder (Rack) EquipmentHolder_T

Equipment Holder (Shelf) EquipmentHolder_T

Equipment Holder (Slot) EquipmentHolder_T

Equipment Holder (Sub Slot) EquipmentHolder_T

Equipment (Card) Equipment_T

Physical Termination Point (PTP) TerminationPoint_T

Floating Termination Point (FTP) TerminationPoint_T

Connection Termination Point (CTP) TerminationPoint_T

Cross-connect CrossConnect_T

Topological Link TopologicalLink_T

LayeredParameters LayeredParameters_T

About Collected Data

4-2 Network Integrity Incremental TMF814 Discovery Cartridge Guide

Equipment Holder (slot 1)
Equipment Holder(sub slot 1)
Equipment(card 1)
Termination Point (PTP){0…*}
Termination Point (CTP){0…*}

Equipment Holder(sub slot 2)
Equipment(card 2)
Termination Point (PTP){0…*}
Termination Point (CTP){0…*}
Termination Point (CTP){0…*}

The following tables describe the properties of each MTNM object collected by the
Incremental TMF814 Discovery cartridge:

■ Table 4–2, " Managed Element Properties"

■ Table 4–3, " Equipment Properties"

■ Table 4–4, " Equipment Holder Properties"

■ Table 4–5, " PTP, FTP, and CTP Properties"

■ Table 4–6, " Cross-Connect Properties"

■ Table 4–7, " Topological Link Properties"

Table 4–2 Managed Element Properties

Property Name Description

name The name of the managed element (ME) that is assigned by the element management
system (EMS) upon creation.

userLabel Identifies the label assigned to the ME by the operator.

nativeEMSName Indicates how the ME is referred to on EMS displays.

owner Provided by the network management system (NMS).

location Indicates the geographical location of the ME.

version The active software version of the ME.

productName Identifies the ME product or type name.

communicationState Indicates the viability of EMS-ME messaging. Possible values are CS_AVAILABLE, CS_
UNAVAILABLE.

emsInSyncState Indicates if the EMS is able to keep the current EMS data synchronized with the current ME
data and generate all appropriate notifications. The EMS sets this attribute to FALSE to
indicate that it requires re-synchronization with ME data and that it is not able to generate
the appropriate notifications while doing so.

supportedRates This attribute is a list of potential cross-connection rates at which it is possible to have
cross-connections within the ME.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. This field is
common to all MTNM-managed objects. This field consists of a list of name and value pairs
that call additional information, which allow the EMS or NMS to give additional
information that is not explicitly modeled using the MTNM interface. Some parameter
names and values may be predefined.

About Collected Data

About Collected Data 4-3

Table 4–3 Equipment Properties

Property Name Description

name The name of the Equipment that is assigned by the EMS upon creation.

nativeEMSName Indicates how the Equipment is referred to on EMS displays.

userLabel A label assigned to the Equipment by the operator.

owner Provided by the NMS.

alarmReportingIndicator Indicates whether alarm reporting for this instance is active.

expectedEquipmentObjectType Defines the type of expected Equipment. Leave empty if there is no expected
Equipment. Example value: MBP_300.

installedEquipmentObjectType Defines the type of installed Equipment. Leave empty if there is no installed
Equipment.

installedPartNumber Indicates the part number of the installed Equipment.

installedSerialNumber Indicates the serial number of the installed Equipment.

installedVersion Indicates the firmware version of the installed Equipment.

serviceState Indicates the current state of the Equipment. Possible values are IN_SERVICE,
OUT_OF_SERVICE, OUT_OF_SERVICE_BY_MAINTENANCE, SERV_NA.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific.
This field is common to all MTNM-managed objects. This field consists of a list
of name and value pairs that call additional information and allow EMSs or
NMSs to give additional information that is not explicitly modeled at the MTNM
interface. Some parameter names and values may be predefined.

Table 4–4 Equipment Holder Properties

Property Name Description

name Equipment Holder unique name. The EMS is responsible for the uniqueness of
the name within the context of the ME.

nativeEMSName Indicates how the Equipment Holder is referred to on EMS displays.

userLabel Provided by the NMS.

owner Provided by the NMS.

alarmReportingIndicator Indicates whether alarm reporting is active for the instance.

holderType Indicates the type of Equipment Holder. Valid values are: rack, shelf, sub_shelf,
slot, sub_slot.

holderState Indicates the state of the Equipment Holder directly contained equipment.
Possible values are: EMPTY (0), INSTALLED_AND_EXPECTED (1),
EXPECTED_AND_NOT_INSTALLED (2), INSTALLED_AND_NOT_
EXPECTED (3), MISMATCH_OF_INSTALLED_AND_EXPECTED (4),
UNAVAILABLE (5), UNKNOWN (6).

expectedOrInstalledEquipment The Equipment object expected or installed in the Equipment Holder, if any. A
value of NULL indicates that the Equipment Holder is empty or that it contains
only other Equipment Holders.

acceptableEquipmentTypeList Represents the types of Equipment objects that can be directly supported by the
Equipment Holder.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific.
This field is common to all MTNM-managed objects. This field consists of a list
of name and value pairs that call additional information, which allow the EMS
or NMS to give additional information that is not explicitly modeled at the
MTNM interface. Some parameter names and values may be predefined.

About Collected Data

4-4 Network Integrity Incremental TMF814 Discovery Cartridge Guide

Table 4–5 PTP, FTP, and CTP Properties

Property Name Description

name Indicates the assigned TP name when created by the EMS. The EMS is responsible for
guaranteeing the uniqueness of the name within the context of the ME. The naming for
CTPs, PTPs, and FTPs is deterministic.

nativeEMSName Indicates how the TP is referred to on EMS displays.

userLabel The user label of the TP is set with NMS data (typically the end-to-end trail data).

owner Indicates the ownership of the TP so that adminstrativeState can be managed.

direction Indicates the direction of the TP. Possible values are: D_NA (0), D_BIDIRECTIONAL
(1), D_SOURCE (2), D_SINK (3).

tpProtectionAssociation Indicates the associated TP indication. The NMS is responsible for running the
multiLayerSubnetwork::MultiLayerSubnetworkMgr_I::getAssociatedTP() service to
obtain any related TP.

edgePoint Indicates if the TP is an edge point of one or more subnetworks.

ingressTransmissionDes
criptorName

Indicates whether a CTP references an ingress (incoming) Traffic Descriptor or
Transmission Descriptor.

egressTransmissionDesc
riptorName

Indicates whether a CTP references an egress (outgoing) Traffic Descriptor or
Transmission Descriptor.

connectionState Indicates the connection state of the source. A value of TPCS_BI_CONNECTED
indicates that the source is connected to one entity and the sink is connected to the
other. Possible values are: TPCS_NA, TPCS_SOURCE_CONNECTED, TPCS_SINK_
CONNECTED, TPCS_BI_CONNECTED, TPCS_NOT_CONNECTED.

tpMappingMode Indicates and controls the connection of the named connection point at a specified
LayerRate to the dedicated G.805 TCP and associated G.805 Termination Function at
the same LayerRate within the CTP or FTP. Possible values are: TM_NA (0), TM_
NEITHER_TERMINATED_NOR_AVAILABLE_FOR_MAPPING (1), TM_
TERMINATED_AND_AVAILABLE_FOR_MAPPING (2).

type Possible value are: TPT_PTP (0), TPT_CTP (1), TPT_TPPool (2).

transmissionParams A list of transmission parameters that can be set or retrieved on the TP at a specified
layer. This attribute must contain the complete set of layer rates represented by a PTP,
CTP, or FTP, even if they have no parameters associated with them. The Layer Rates are
listed in the order of their client-server relationship.

additionalInfo Represents a list of attributes that are EMS and NMS implementation specific. This
field is common to all MTNM-managed objects. This field consists of a list of name and
value pairs that call additional information, which allows the EMS or NMS to give
additional information that is not explicitly modeled at the MTNM interface. Some
parameter names and values may be predefined.

Table 4–6 Cross-Connect Properties

Property Name Description

active Indicates if the cross-connect is active in the ME.

ccType Indicates the cross-connect type. Possible values are: ST_SIMPLE, ST_ADD_DROP_A, ST_
ADD_DROP_Z, ST_INTERCONNECT, ST_DOUBLE_INTERCONNECT, ST_DOUBLE_ADD_
DROP, ST_OPEN_ADD_DROP, ST_EXPLICIT.

direction Directionality of the cross connection. Possible values are: CD_UNI, CD_BI.

About Collected Data

About Collected Data 4-5

Layer Parameters
The Incremental TMF814 Discovery cartridge collects layer parameters for TPs. In the
MTNM model, these layer parameters are encapsulated by TPs as transmission
parameters. For details on layered parameters see the TM Forum documentation.

TMF814 APIs
This section describes the APIs used by the Incremental TMF814 Discovery cartridge
to collect data.

CORBA APIs
Table 4–8 lists the APIs used by the Incremental TMF814 Discovery cartridge.

aEndNameList Names of CTPs, FTPs, and group termination points (GTPs) at the aEnd of the cross-connect.

zEndNameList Names of CTPs, FTPs, and GTPs at the zEnd of the cross-connect.

additionalInfo Represents a list of name value pairs that allow EMSs or NMSs to give additional information
that is not explicitly modeled at the MTNM interface. Some parameter names and values may
be predefined. Some predefined parameter names may include: ConnectionId, Fixed,
RouteActualState, RouteAdminState, RouteExclusive, RouteId, RouteIntended, RouteInUseBy.

Table 4–7 Topological Link Properties

Property Name Description

name Indicates the name of the Topological Link, assigned by the EMS upon creation.

userLabel Indicates the topological link user label (end-to-end trail data) in NMS data.

nativeEMSName Indicates how the topological link is referred to on EMS displays.

owner Provided by the NMS.

direction Indicates the direction of the topological link. A topological link can be unidirectional even if
both its ends are bidirectional TPs. Possible values are CD_UNI (unidirectional) and CD_BI
(bidirectional).

rate Indicates the layer rate (bandwidth) of the topological link.

aEndTP Indicates the name of the aEnd for the PTP, CTP, or FTP.

zEndTP Indicates the name of the zEnd for the PTP, CTP, or FTP.

additionalInfo Represents a list of name/value pairs that allow EMSs or NMSs to give additional information
that is not explicitly modeled at the MTNM interface. Some parameter names and values may
be predefined. Some predefined parameter names may include: AlarmReporting,
AllocatedNumber, ASAPpointer, FragmentServerLayer, NetworkAccessDomain.

Table 4–6 (Cont.) Cross-Connect Properties

Property Name Description

Handling Vendor Variations

4-6 Network Integrity Incremental TMF814 Discovery Cartridge Guide

APIs for Cross-Connect Collection
Table 4–9 lists the APIs used for cross-connect collection.

APIs for Topological Link Collection
There are two levels of Topological Links that can be retrieved using two different
APIs. Table 4–10 lists the APIs used for topological link collection.

The ElementManagementSystemMgr (EMSMgr) API is used when the entire network
is treated as a subnetwork. The MultiLayerSubnetworkMgr (MLSN) API is used when
each ME is treated as a subnetwork.

Handling Vendor Variations
This section explains how the Incremental TMF814 Discovery cartridge handles certain
data collected from some vendors.

Table 4–8 TMF814 Managed Element and Equipment CORBA APIs

API Used Operations

org.tmforum.mtnm.emsSessio
nFactory.EmsSessionFactory_I

■ getEmsSession(): used to obtain the EmsSession objects.

org.tmforum.mtnm.emsSessio
n.EmsSession_I

■ getManager(): used to obtain managers.

■ endSSession(): used to close the EMS session.

org.tmforum.mtnm.managed
ElementManager.ManagedEle
mentMgr_I

■ getAllFTPs(): used to obtain all FTPs, but does not obtain PTPs.

■ getAllPTPs(): used to obtain all PTPs.

■ getContainedInUseTPs(): used to obtain all contained in-use TPs.

■ getContainedPotentialInUseTPs(): used to obtain all contained potential
CTPs for a given TP.

org.tmforum.mtnm.nmsSessio
n.NmsSession_I

■ EmsSessionFactory_I.getEmsSession: required dummy session you must
provide to get the actual EMS session.

org.tmforum.mtnm.equipmen
t.EquipmentInventoryMgr_I

■ getAllEquipment(): used to obtain all Equipment.

■ getAllSupportedPTP(): used to obtain all the PTPs for a given Equipment.

Table 4–9 TMF814 Cross-Connect Collection APIs

API Used Operations

managedElementManager.Mana
gedElementMgr_I

■ getAllCrossConnections(MEName, layerRate, how_many, CClist, CCIter)

multiLayerSubnetwork.MultiLa
yerSubnetworkMgr_I

■ getAllTopLevelSubnetworks(how_many, holder, iter)

■ getAllSubnetworkConnections(SN_Name, layerRateList, how_many,
holder, iter)

■ getRoute(SNC_Name, includeHigherOrderCCs, route)

Table 4–10 TMF814 Topological Link Collection APIs

API Used Operations

emsMgr.EMSMgr_I ■ getAllTopLevelTopologicalLinks(how_many, topoList, topoIt)

multiLayerSubnetwork.MultiLa
yerSubnetworkMgr_I

■ getAllTopologicalLinks(SN_Name, how_many, topoList, topoIterator)

Handling Vendor Variations

About Collected Data 4-7

FTP Collection API Variations
The ManagedElementMgr_I.getAllFTP() operation, from MTNM version 3.0, is the
preferred API for getting all FTPs of an ME. For the vendors and devices that do not
support MTNM version 3.0, the getAllPTP() operation is used. The getAllPTP()
operation returns both PTPs and FTPs. While modeling FTPs, PTPs are filtered out.

Cross-Connect Collection API Variation
Cross-connects are collected using different APIs depending on the vendor. Use the
crossConnectCollectionType parameter to specify the collection method, based on
vendor device specifications. See "APIs for Cross-Connect Collection" for more
information.

Topological Link Collection API Variation
Topological links are collected using different APIs depending on the vendor. Use one
or both methods as required by the vendor or vendor device. Use the
topologicalLinkCollectionType parameter to specify the collection method. See "APIs
for Topological Link Collection" for more information.

Cross-Connect Protection Role
The Incremental TMF814 Discovery cartridge does not discover protection role
information on cross-connect segments because vendors and devices differ in the way
this information is accessed. You must extend the Incremental TMF814 Discovery
cartridge to collect and model protection role information. See Network Integrity Optical
TMF814 CORBA Cartridge Guide for more information.

Handling Vendor Variations

4-8 Network Integrity Incremental TMF814 Discovery Cartridge Guide

5

About Cartridge Modeling 5-1

5About Cartridge Modeling

This chapter explains how the Oracle Communications Network Integrity Incremental
TMF814 Discovery cartridge models collected data.

About Cartridge Modeling
The Oracle Communications Network Integrity Incremental TMF814 Discovery
cartridge models collected data according to the Oracle Communications Information
Model. Collected data is modeled into the following entities:

■ DeviceInterfaceConfiguration

■ DeviceInterfaceConfigurationItem

■ Equipment

■ EquipmentHolder

■ EquipmentEquipmentRel

■ EquipmentHolderEquipmentRel

■ InventoryGroup

■ LogicalDevice

■ MediaInterface

■ PhysicalDevice

■ PhysicalDeviceEquipmentRel

■ PhysicalPort

■ Pipe

■ PipeTerminationPoint

■ PipePipeTerminationPointRel

See Oracle Communications Information Model Reference for more information about the
Information Model.

About the Oracle Communications Information Model
The Information Model has Physical and Logical Tree models. Physical device
hierarchy is modeled in the Physical Tree. Logical device hierarchy is modeled in the
Logical Tree.

About the Oracle Communications Information Model

5-2 Network Integrity Incremental TMF814 Discovery Cartridge Guide

This section details how the Multi Technology Network Management (MTNM) model
is mapped to the Information Model.

About the Physical Tree
Table 5–1 shows how MTNM objects are mapped to Physical Tree entities.

About the Logical Tree
Logical devices are created as root objects. Root objects are placeholder objects for
top-level interfaces. PTPs and floating termination points (FTPs) are modeled as
Device Interfaces. Contained termination points (TPs) of a PTP or FTP are modeled as
sub-device-interfaces of a PTP or FTP device interface.

TPs that are discovered by the TMF814 API are modeled in the Logical Tree according
to the following structure:

Logical Device (container for top level device interfaces){1}

Device Interface (Device Interface corresponding to PTP/FTP) {0...*}

Sub Device Interface (CTPs of PTP/FTP) {0...*}

Sub Device Interface (child CTPs with any number of nesting levels) {0...*}

Table 5–1 MTNM-to-Information Model Mapping for Physical Tree

MTNM Object
Information Model
Entity Specification

Manage Element (ME) Physical Device tmf814MEGeneric

Equipment Holder (Rack) Equipment tmf814EquipmentGeneric

Equipment Holder (Shelf) Equipment tmf814EquipmentGeneric

A shelf is modeled as Equipment
because the Information Model does
not allow a holder within a holder.

Equipment Holder (sub Shelf) Equipment tmf814EquipmentGeneric

Equipment Holder (Slot) Equipment Holder tmf814EquipmentHolderGeneric

Equipment Holder (Sub Slot) Equipment Holder tmf814EquipmentHolderGeneric

Equipment (Card) Equipment tmf814EquipmentGeneric

Physical Termination Point
(PTP)

Physical Port tmf814PortGeneric

Topological Link Pipe tmf814TopologicalLinkGeneric

aEndTP, zEndTP (of a
topological link object)

PipeTerminationPoint tmf814PortTerminationPointGeneric

SNCCollection Inventory Group tmf814SNCGeneric

Cross-connect InventoryGroup tmf814XCGeneric

aEndName, zEndName (of a
cross-connect

Pipe tmf814XCSegmentGeneric

A pair of related aEndName and
zEndName objects are treated as a
cross-connect segment.

aEndName, zEndName (of a
cross-connect segment)

PipeTerminationPoint tmf814PortTerminationPointGeneric

About the Oracle Communications Information Model

About Cartridge Modeling 5-3

Layer parameters of a TP are modeled using the DeviceInterfaceConfigurationItem
interface and its child interface configuration items. This cartridge models only
Generally Applicable Parameters, which are defined and explained in the TMF814
documentation.

Each TP layer is represented by the DeviceInterfaceConfigurationItem interface. All TP
layers are contained in an artificial parent DeviceInterfaceConfigurationItem interface,
as shown in the following example:

Device Interface (represents a CTP/PTP/FTP)

DeviceInterfaceConfigurationItem (just a container configuration item){1}

DeviceInterfaceConfigurationItem (one configuration item per layer rate){0...*}

Table 5–2 shows how MTNM objects are mapped to Information Model entities in the
Logical Tree.

Field Mapping
The following tables explain the field mappings for each Information Model object.

■ Table 5–3, " Physical Device Field Mapping"

■ Table 5–4, " Equipment Field Mapping"

■ Table 5–5, " Equipment Holder Field Mapping"

■ Table 5–6, " Physical Port Field Mapping"

■ Table 5–7, " Logical Device Field Mapping"

■ Table 5–8, " Device Interface Field Mapping"

■ Table 5–9, " Device Interface Configuration Item Field Mapping"

Table 5–2 MTNM-to-Information Model Mapping for Logical Tree

MTNM Object
Information
Model Entity Specification

ME LogicalDevice
(artificial)

tmf814DeviceGeneric

A logical device acts as a container for the top level interfaces. Its name is
the same as the ME name.

PTP DeviceInterface tmf814TPInterfaceGeneric

PTP as Interface is a container for the child CTP.

FTP DeviceInterface tmf814TPInterfaceGeneric

FTP as Interface is a container for the child CTP.

Connection
Termination Point
(CTP)

DeviceInterface tmf814TPLayersGeneric

CTP is a channel and is modeled as a sub Device Interface.

LayeredParameters DeviceInterfaceC
onfigurationItem

Managed Element

Layered Parameters are modeled as configuration items of a Device
Interface.

About the Oracle Communications Information Model

5-4 Network Integrity Incremental TMF814 Discovery Cartridge Guide

Table 5–3 Physical Device Field Mapping

Information Model
Attribute

Information
Model
Support TMF Attribute Type and Values UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A PhysicalDeviceSpecification

Programmatically set to the
tmf814MEGeneric
specification.

TMF814 MEGeneric

discoveredVendorName Dynamic manufacturer Text

Comes from additional
information (not a TMF
attribute).

Discovered Vendor
Name

serialNumber Static N/A Text Serial Number

physicalLocation Static location Text Physical Location

softwareRev Dynamic version Text Software Version

modelName Dynamic productName Text Model Name

nativeEmsName Static nativeEmsName Text Native EMS Name

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

Table 5–4 Equipment Field Mapping

Information
Model
Attribute

Information
Model
Support TMF Attribute Type and Values UI Label

Id Static N/A N/A ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A EquipmentSpecification

Programmatically set to the
tmf814EquipmentGeneric specification.

TMF814 Equipment
Generic (displayed
as Entity Type)

discoveredVe
ndorName

Dynamic manufacturer Text

Comes from additional information
(not a TMF attribute).

Discovered Vendor
Name

serialNumber Static installedSerialNu
mber

Text Serial Number

physicalLocati
on

Static N/A Text Physical Location

discoveredPar
tNumber

Dynamic installedPartNu
mber

Text Discovered Part
Number

hardwareRev Dynamic installedVersion Text Hardware Rev

modelName Dynamic installedEquipm
entObjectType

Text Model Name

About the Oracle Communications Information Model

About Cartridge Modeling 5-5

nativeEmsNa
me

Static nativeEmsName Text Native EMS Name

expectedObjec
tType

Dynamic expectedEquipm
entObjectType

Text Expected Object
Type

serviceState Dynamic serviceState List: IN_SERVICE, OUT_OF_SERVICE,
IN_MAINTENANCE, UNKNOWN,
TESTING

Each value corresponds to a TMF814
value: IN_SERVICE, OUT_OF_
SERVICE, OUT_OF_SERVICE_BY_
MAINTENANCE, and SERV_NA
respectively. TMF814 does not have an
equivalent for TESTING.

Service State

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

Table 5–5 Equipment Holder Field Mapping

Information
Model Attribute

Information
Model
Support TMF Attribute Type and Values UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A EquipmentHolderSpecificat
ion

Programmatically set to the
tmf814EquipmentHolderG
eneric specification.

TMF814
Equipment
Holder Generic
(displayed as
Entity Type)

serialNumber Static N/A Text Serial Number

physicalLocation Static N/A Text Physical
Location

modelName Dynamic expectedOrInstalledEquipment Text Model Name

nativeEmsName Static nativeEmsName Text Native EMS
Name

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

Table 5–4 (Cont.) Equipment Field Mapping

Information
Model
Attribute

Information
Model
Support TMF Attribute Type and Values UI Label

About the Oracle Communications Information Model

5-6 Network Integrity Incremental TMF814 Discovery Cartridge Guide

Table 5–6 Physical Port Field Mapping

Information Model
Attribute

Information
Model
Support

TMF
Attribute Type and Values UI Label

Id Static N/A Text ID

name Static name Text

/rack=1/shelf=1/slot=3/domain=sdh/p
ort=1

Name

description Static N/A Text Description

specification Static N/A PhysicalPortSpecification

Programmatically set to
tmf814PortGeneric specification.

TMF814 Port
Generic
(displayed as
an Entity Type)

portNumber Static N/A Integer Port Number

customerPortName Static N/A Text Customer Port
Name

vendorPortName Static N/A Text Vendor Port
Name

serialNumber Static N/A Text Serial Number

physicalLocation Static N/A Text Physical
Location

nativeEmsName Static N/A Text Native EMS
Name

direction Dynamic direction List: NA, BIDIRECTIONAL, SOURCE,
SINK

Direction

tpProtectionAssociation Dynamic tpProtection
Association

List: TPPA_NA, TPPA_PSR_RELATED Protection
Association

edgePoint Dynamic edgePoint boolean Edge Point

physicalAddress Static String Text Physical
Address

Table 5–7 Logical Device Field Mapping

Information
Model Attribute

Information
Model Support

TMF
Attribute Type and Values UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A LogicalDeviceSpecification TMF814 Device
Generic (displayed as
Entity Type)

nativeEmsAdmin
ServiceState

Static N/A List: UNKNOWN, IN_SERVICE,
OUT_OF_SERVICE, TESTING,
IN_MAINTENANCE

Native EMS Admin
Service State

About the Oracle Communications Information Model

About Cartridge Modeling 5-7

nativeEmsService
State

Static N/A List: UNKNOWN, IN_SERVICE,
OUT_OF_SERVICE, TESTING,
IN_MAINTENANCE

Native EMS Service
State

nativeEmsName Static nativeEms
Name

Text Native EMS Name

physicalLocation Static N/A Text Physical Location

Table 5–8 Device Interface Field Mapping

Information Model
Attribute

Information
Model
Support TMF Attribute Type and Values UI Label

Id Static N/A Text ID

name Static name Text Name

description Static N/A Text Description

specification Static N/A DeviceInterfaceSpecification

Programmatically set to the
tmf814TPInterfaceGeneric
specification.

TMF 814
TPInterface
Generic
(displayed as
Entity Type)

ifType Static Tp_type List: CTP, PTP, FTP Interface Type

interfaceNumber Static N/A Text Interface
Number

customerInterfaceN
umber

Static N/A Text Customer
Interface
Number

vendorInterfaceNu
mber

Static N/A Text Vendor
Interface
Number

nativeEmsName Static N/A Text Native EMS
Name

nativeEmsAdminSe
rviceState

Static N/A List: UNKNOWN, IN_SERVICE,
OUT_OF_SERVICE, TESTING, IN_
MAINTENANCE

Native EMS
Admin Service
State

nativeEmsServiceSt
ate

Static N/A List: UNKNOWN, IN_SERVICE,
OUT_OF_SERVICE, TESTING, IN_
MAINTENANCE

Native EMS
Service State

mtuSupported Static N/A Float Supported
MTU

mtuCurrent Static N/A integer Current MTU

physicalAddress Static N/A Text Physical
Address

physicalLocation Static N/A Text Physical
Location

minSpeed Static N/A Float Minimum
Speed

Table 5–7 (Cont.) Logical Device Field Mapping

Information
Model Attribute

Information
Model Support

TMF
Attribute Type and Values UI Label

About the Oracle Communications Information Model

5-8 Network Integrity Incremental TMF814 Discovery Cartridge Guide

maxSpeed Static N/A Float Maximum
Speed

nominalSpeed Static N/A Float Nominal Speed

connectionState Dynamic connectionState List: TPCS_BI_CONNECTED, TPCS_
NA, TPCS_SOURCE_CONNECTED,
TPCS_SINK_CONNECTED, TPCS_
BI_CONNECTED, TPCS_NOT_
CONNECTED

Connection
State

tpMappingMode Dynamic tpMappingMode List: TM_NA (0), TM_NEITHER_
TERMINATED_NOR_AVAILABLE_
FOR_MAPPING (1), TM_
TERMINATED_AND_AVAILABLE_
FOR_MAPPING (2)

Termination
Mode

direction Dynamic direction List: NA, BIDIRECTIONAL, SOURCE,
SINK

Direction

tpProtectionAssocia
tion

Dynamic tpProtectionAss
ociation

List: TPPA_NA, TPPA_PSR_
RELATED

Protection
Association

edgePoint Dynamic edgePoint Boolean Edge Point

userLabel Dynamic userLabel Text Label

owner Dynamic owner Text Owner

nativeEmsConnecto
rPresent

Static N/A Text Native EMS
Connector
Present

Table 5–9 Device Interface Configuration Item Field Mapping

Information
Model Attribute

Information
Model
Support TMF Attribute Type and Values UI Label

name Static N/A Text

Name is always set to LayerName

Name

value Static Layer Text Value

specification Static InventoryConfig
urationSpec

Text

Programmatically set to the
tmf814TPLayersGeneric
specification.

TMF814 TPLayer
Generic (displayed
as Entity Type)

clientType Dynamic clientType Text Client Type

potentialFutureS
etupIndicator

Dynamic potentialFutureS
etupIndicator

List: RSU_POINT_TO_POINT, RSU_
BROADCAST, RSU_ANY_CONFIG

Potential Future
Setup Indicator

Table 5–8 (Cont.) Device Interface Field Mapping

Information Model
Attribute

Information
Model
Support TMF Attribute Type and Values UI Label

About the Oracle Communications Information Model

About Cartridge Modeling 5-9

About Building the Information Model Tree
Collected TMF814 objects contain raw hierarchical details, but not at the object level.
After the TMF814 objects are modeled as Information Model entities, they are added to
the Physical or Logical Tree. This section describes the algorithm used for building the
Trees.

Containment Relationships
To find containment relationship among discovered objects, the algorithm uses the
Name attribute of TMF814 objects. The structure of the name is hierarchical and
reflects the containment relationship between objects in a simple way. Table 5–10
describes the convention used for the field name.

serviceState Dynamic serviceState List: IN_SERVICE, OUT_OF_
SERVICE, IN_MAINTENANCE,
UNKNOWN, TESTING

Each value is mapped to TMF814
specific values: IN_SERVICE, OUT_
OF_SERVICE, OUT_OF_SERVICE_
BY_MAINTENANCE, and SERV_NA
respectively. TMF814 does not have
an equivalent for TESTING.

Service State

TCAParameterPr
ofilePointer

Dynamic TCAParameterPr
ofilePointer

Text TRA Parameter
Profile Pointer

trailTraceExpecte
dRx

Dynamic trailTraceExpecte
dRx

Text Trail Trace Expected
Rx

trailTraceMonitor Dynamic trailTraceMonitor Text Trail Trace Monitor

transmissionDesc
riptorPointer

Dynamic transmissionDesc
riptorPointer

Text Transmission
Descriptor Pointer

allocatedNumber Dynamic allocatedNumber Number Allocated Number

dynamicAllocati
onEnabled

Dynamic dynamicAllocati
onEnabled

Text Dynamic Allocation
Enabled

Table 5–10 Name and Attribute Format for Containment Relationships

TMF Object Name/Value Pairs

ME name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

PTP name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="PTP"; value="PTPName"

FTP name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="FTP"; value="FTPName"

Table 5–9 (Cont.) Device Interface Configuration Item Field Mapping

Information
Model Attribute

Information
Model
Support TMF Attribute Type and Values UI Label

About the Oracle Communications Information Model

5-10 Network Integrity Incremental TMF814 Discovery Cartridge Guide

The Equipment Holder tuple values are hierarchical and have the following structure:

[/remote_unit=<ru>][/rack=<r>][/shelf=<sh>[/sub_shelf=<ssh>][/slot=<sl>[/[remote_
]sub_slot=<ssl>]]]]

Adding an Equipment and an Equipment Holder to the Tree
The TMF814 Equipment Modeler processor is run for each EquipmentOrHolder
TMF814 object. After modeling, the Equipment or Equipment Holder object is added
to the Information Model Physical Tree.

It is possible that a child node can appear before its parent node is available. The
algorithm handles this by using a placeholder node, which takes the place of the real
node until the real node is available.

If the input object is a TMF814 Equipment Holder:

1. The EquipmentHolder tuple value is obtained from the name property. The tuple
value is the hierarchical name of the Equipment Holder.

2. The name is split into two substrings at the last index of the / delimiter. This gives
two placeholders:

■ The first placeholder gives the hierarchical name of the parent node, which is
most likely another Equipment Holder.

■ The second placeholder is the shorter name for the Equipment Holder.

index = lastIndexOf(name , "/");
first = substring(name, 0, index)//First token
second = substring(name, index +1, name.length)

3. If the first placeholder is empty, the Equipment Holder is a top-level object, and
thus a parent node. The parent node is the node representing the physical device
in the Tree.

4. If first placeholder is not empty, the Physical Tree is hierarchically searched from
the root until the node representing the full hierarchical name is found. A
placeholder is created for it while the Physical Tree is being searched.

For example, if a placeholder is created for /rack=1/shelf=2/slot=3, it is split into
/rack=1, /rack=1/shelf=2, and /rack=1/shelf=2/slot=3. The Physical Tree is

CTP, as child of a PTP or FTP name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="PTP"; value="PTPName"

name="CTP"; value="CTPName"

name="FTP"; value="FTPName"

EquipmentHolder name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="EquipmentHolder"; value="EquipmentHolderName"

Equipment name="EMS"; value="CompanyName/EMSname"

name="ManagedElement"; value="MEName"

name="EquipmentHolder"; value="EquipmentHolderName"

name="Equipment"; value="EquipmentName"

Table 5–10 (Cont.) Name and Attribute Format for Containment Relationships

TMF Object Name/Value Pairs

About the Oracle Communications Information Model

About Cartridge Modeling 5-11

searched for /rack=1. If it is found, the search continues for /rack=1/shelf=2. If it is
not found, a placeholder is created for it; /rack=1/shelf=2/slot=3 is also not
available, so a placeholder is created for it as well. The parent node is
/rack=1/shelf=2/slot=3.

5. Parent nodes are verified to determine if they have any child nodes with a
placeholder. If they do, the placeholder is released and is used for another node.

6. Nodes are created or replaced in the Physical Tree.

If the output object is TMF814 Equipment:

1. The EquipmentHolder tuple value is obtained from the name property.

2. The Physical Tree is hierarchically searched until the node representing the full
hierarchical name is found. If the name is not found, a placeholder node is created
for it.

For example, if a placeholder is created for /rack=1/shelf=2/slot=3, it is split into
/rack=1, /rack=1/shelf=2, and /rack=1/shelf=2/slot=3. The Physical Tree is
searched for /rack=1. If it is found, the search continues for /rack=1/shelf=2. If it is
not found, a placeholder is created for it; /rack=1/shelf=2/slot=3 is also not
available, so a placeholder is created for it as well. Parent node is
/rack=1/shelf=2/slot=3.

3. Parent nodes are verified to determine if they have any child nodes with a
placeholder. If they do, the placeholder is released and is used for another node.

4. Nodes are created or replaced in the Physical Tree.

After all nodes are modeled in the Physical Tree. Any remaining placeholder nodes are
modeled as artificial objects.

Adding a Physical Port and an Interface to the Tree
TPs are modeled as physical ports. An associated artificial device interface is created
for each physical port. A device interface is added as a direct child of a logical device.

The algorithm for adding equipment holders to the Tree can be applied to adding a
physical port to the Physical Tree. See "Adding an Equipment and an Equipment
Holder to the Tree" for more information.

Adding a Sub-Interface to the Tree
CTPs are modeled as Sub-Interfaces. They are added to the Logical Tree by the
TMF814 CTP Discoverer for PTP and TMF814 CTP Discoverer for FTP processors,
under the context of a PTP (top-level interface).

Cartridge Modeling for Cross-Connect Data
This section explains how the Incremental TMF814 Discovery cartridge models the
collected cross-connect data.

Only the cross-connect data required for assimilation is modeled. Of the data required
for assimilation, only the data meeting the following conditions is modeled:

■ At least one of the aEnd or zEnd TPs has a non-null or empty value.

■ Both aEnd and zEnd represent CTP or FTP names.

■ At least one of the aEnd or zEnd TPs has JKLM (VC12), JK (VC3), or J (VC4)
values.

About the Oracle Communications Information Model

5-12 Network Integrity Incremental TMF814 Discovery Cartridge Guide

The Incremental TMF814 Discovery cartridge models cross-connects as one of the
following types:

■ ST_SIMPLE: Cross-connects with only one segment, as shown in Figure 5–1.

Figure 5–1 ST_SIMPLE Type Cross-Connect Model Mapping

Some vendors represent a bidirectional cross-connect as two unidirectional
cross-connects, meaning one has A1-Z1 as its ends and other has Z1-A1 as its ends.
Such cross-connects are modeled as bidirectional.

■ ST_EXPLICIT: The cross-connect object is modeled as multiple pipe objects, as
shown in Figure 5–2.

Figure 5–2 ST_EXPLICIT Type Cross-Connect Model Mapping

The number of objects into which a single cross-connect is modeled depends on
aEndNameList and zEndNameList size. The explicit subnetwork connection
(SNC) type has an n-entry aEndNameList and zEndNameList pairing. The tuples
are pairs matched by index, for example (A1,Z1), (A2, Z2),...,(An,Zn). A pipe object
is modeled for each pair. These multiple pipes are grouped by a parent Inventory
Group object.

■ ST_ADD_DROP_A: The cross-connect object is modeled as two pipe segments
with aEndPoint repeating on both cross-connects segment, as shown in Figure 5–3.

About the Oracle Communications Information Model

About Cartridge Modeling 5-13

Figure 5–3 ST_ADD_DROP_A Type Cross-Connect Model Mapping

■ ST_ADD_DROP_Z: The cross-connect object is modeled as two pipe segments
with zEndPoint repeating on both cross-connects segment, as shown in Figure 5–4.

Figure 5–4 ST_ADD_DROP_Z Type Cross-Connect Model Mapping

Other cross-connects types, such as ST_INTERCONNECT, ST_DOUBLE_
INTERCONNECT, ST_DOUBLE_ADD_DROP, and ST_OPEN_ADD_DROP are not
modeled by this cartridge without extending the cartridge.

The following tables list the model mapping of cross-connect objects:

■ Table 5–11, " Model Mapping for the Inventory Group Object"

■ Table 5–12, " Model Mapping for the Pipe Object"

■ Table 5–13, " Model Mapping for the PipeTerminationPoint Object"

Table 5–11 Model Mapping for the Inventory Group Object

Information
Model Attribute

Information
Model Support TMF Attribute Type and Values UI Label

name Static N/A Text

The value is hard-coded as Cross Connect.

Name

layerRate Dynamic N/A Text Layer Rate

type Dynamic ccType Text Type

active Dynamic active Text Active

About the Oracle Communications Information Model

5-14 Network Integrity Incremental TMF814 Discovery Cartridge Guide

A and Z Channels
The following example SDH implementation shows how the channel is calculated for
each PipeTerminationPoint.

Example CTP Name JKLM tuples:

■ /sts3c_au4=4/vt2_tu12-k=1-l=3-m=2

■ /direction=src/sts3c_au4=4/vt2_tu12-k=1-l=3-m=2

■ /sts1_au3-j=2-k=2/vt15_tu11-l=1-m=2

JKLM values are collected from the CTPName tuple. Each CTP tuple can be split into a
number of tokens separated by a slash. Each token can be further split into a number
of subtokens separated by a hyphen.

If the CTPName tuple does not have any JKL or M value, it is treated as a dropdown
port.

Example 5–1 shows how the JKLM values are parsed. This example assumes that the
aEnd and zEnd of a cross-connect are a CTP with the formatting shown below:

Example 5–1 Parsed JKLM Values

Pattern pattern = Pattern.compile("/");
Matcher subTokenMatcher =
Pattern.compile("\\-j=\\d+|\\-k=\\d+|\\-l=\\d+|\\-m=\\d+").matcher("");
String STS3C_AU4 = "sts3c_au4=";

String[] jklm = new String[]{"0", "0", "0", "0"};
Scanner scaner = new Scanner(ctpName);
scaner.useDelimiter(pattern);

Table 5–12 Model Mapping for the Pipe Object

Information
Model Attribute

Information
Model Support TMF Attribute Type and Values UI Label

name Static N/A Text Name

gapPipe Static N/A Boolean, always set to True. Gap Pipe

protectionRole Dynamic N/A Text

The value is derived. Possible values
are PRIMARY, BACKUP.

Protection Role

Table 5–13 Model Mapping for the PipeTerminationPoint Object

Information
Model Attribute

Information
Model Support

TMF
Attribute Type and Values UI Label

name Static N/A Text

The name of the PTP (port) cross-connect end
point.

Name

device Dynamic N/A Text Device

directionality Dynamic N/A Text Directionality

rate Dynamic N/A Text Layer Rate

channel Dynamic N/A Text

Channel values are derived. See "A and Z
Channels" for more information.

Channel

About the Oracle Communications Information Model

About Cartridge Modeling 5-15

while(scaner.hasNext()){
 String token = scaner.next();
 subTokenMatcher.reset(token);
 while(subTokenMatcher.find()){
 String subToken = subTokenMatcher.group();
if(subToken.startsWith("-")){
 String val = token.substring(subTokenMatcher.start() +1,
subTokenMatcher.end());
 jklm[val.charAt(0) % 106] = val.substring(2, val.length());
 }else{
 jklm[subToken.charAt(0) % 106] = subToken.substring(2,
subToken.length());
 }
 }
 if(jklm[0].equalsIgnoreCase("0") && token.startsWith(STS3C_AU4)){
 jklm[0] = token.split("=")[1];;
 }
}
return jklm;

The Incremental TMF814 Discovery cartridge can be extended to populate JKLM
values that are implemented differently by some vendors. See Network Integrity Optical
TMF814 CORBA Cartridge Guide for more information.

Cartridge Modeling for Topological Link Data
This section explains how the Incremental TMF814 Discovery cartridge models
collected topological link data.

Topological links are modeled Information Model pipe entities. Topological Link
endpoints (aEndTP and zEndTP) are modeled as pipe termination point entities.

Some vendors represent bidirectional topological links as two unidirectional
topological links (two links sharing the same aEnd and zEnd ports). Such links are
merged and modeled as one bidirectional topological link.

The following tables list the model mapping of topological link objects:

■ Table 5–14, " Model Mapping for the Pipe Object for Topological Links"

■ Table 5–15, " Model Mapping for the PipeTerminationPoint Object for Topological
Links"

Table 5–14 Model Mapping for the Pipe Object for Topological Links

Information
Model Attribute

Information
Model Support

TMF
Attribute Type and Values UI Label

name Static N/A Text Name

gapPipe Static N/A Boolean

This value is always set to False for
topological link objects.

Gap Pipe

layerRate Dynamic rate Text Layer Rate

nativeEMSName Dynamic nativeEM
SName

Text Native EMS Name

owner Dynamic owner Text Owner

Result Groups

5-16 Network Integrity Incremental TMF814 Discovery Cartridge Guide

Result Groups
Topological link pipe entities are added to the device result group.

The cross-connect inventory group entities are added to the SNCCollection result
group.

The SNC Collection result group is placed at the top-level along with the device result
group and contains all SNCs. Each SNC contains the cross-connects belonging to that
SNC.

Topological links span multiple devices. When the aEnd and zEnd ports are managed
by MEs belonging to different EMSs, the topological link is modeled according to the
device name that appears first in a sorted list.

The Link result group models a root entity container with the name Links as the parent
for all topological links associated with a device. The topological link appears on the
lower device of the two endpoints, as shown in Figure 5–5.

The cross-connect result group models a root entity container with the name
Cross-connects as the parent for all cross-connects associated with the device, as
shown in Figure 5–5.

Table 5–15 Model Mapping for the PipeTerminationPoint Object for Topological Links

Information
Model Attribute

Information
Model Support TMF Attribute Type and Values UI Label

name Static name Text Name

device Dynamic N/A Text

The value is derived from the device.

Device

directionality Dynamic N/A Text Directionality

rate Dynamic N/A Text

This value is derived from the line
layer rate for the endPort represented
by the PortTerminationPoint.

Layer Rate

channel Dynamic N/A Text

This attribute is not used.

Channel

Result Groups

About Cartridge Modeling 5-17

Figure 5–5 Result Group Model Diagram

Figure 5–6 shows an example grouping for links and cross-connects with the following
particularities:

■ A populated result group for each device

■ The appropriate cross-connects under different SNCs for each Subnetwork
connection (SNC group)

■ The topological link is added only to the ME1 device group

Result Groups

5-18 Network Integrity Incremental TMF814 Discovery Cartridge Guide

Figure 5–6 Example Result Group Model and Configuration

6

About Design Studio Construction 6-1

6About Design Studio Construction

This chapter explains how the Oracle Communications Network Integrity Incremental
TMF814 Discovery cartridge is built from the Oracle Communications Design Studio
perspective.

Model Collections
Table 6–1 shows the Design Studio construction of the Generic TMF814 model
collection.

Actions
The following tables outline the Design Studio construction of the Incremental
TMF814 Discovery cartridge actions and associated components:

■ Table 6–2, " Actions Design Studio Construction"

■ Table 6–3, " TMF814 Scan Parameters Design Studio Construction"

■ Table 6–4, " Discovery Processor Design Studio Construction"

Table 6–1 Generic TMF814 Model Collection

Specification Name Dynamic Entity Type

tmf814MEGeneric Physical Device Specification

tmf814DeviceGeneric Logical Device Specification

tmf814EquipmentGeneric Equipment Specification

tmf814EquipmentHolderGeneric Equipment Holder Specification

tmf814PortGeneric Physical Port Specification

tmf814TPInterfaceGeneric Device Interface Specification

This specification applies for all types of termination points
(TPs).

tmf814TPLayersGeneric Device Interface Configuration Specification

Note: Parameter values are case-sensitive and must be entered in
capital letters when commands are run from a command line interface.

Actions

6-2 Network Integrity Incremental TMF814 Discovery Cartridge Guide

Table 6–2 Actions Design Studio Construction

Action Name
Result
Category

Address
Handler

Scan Parameter
Group Processors

Abstract
Incremental
Discovery action

Device N/A N/A Incremental Discovery Initializer

Discover
Incremental
TMF814 action

Device CorbaURLAdd
ressHandler

TMF814Parameters.
See Table 6–3.

AutoResolutionPara
meter. See Network
Integrity Developer’s
Guide.

IncrementalScanPara
meter.

■ TMF814 Property Initializer

■ TMF814 Session Manager

■ TMF814 Device Recorder
Initializer

■ Incremental Discovery Initializer

■ TMF814 ME Collector

■ TMF814 Updated ME Discoverer

■ TMF814 Device Modeler

■ TMF814 Equipment Collector

■ TMF814 Equipment Modeler

■ TMF814 PTP Collector

■ TMF814 PTP Modeler

■ TMF814 CTP Discoverer for PTP

■ TMF814 FTP Collector

■ TMF814 FTP Modeler

■ TMF814 CTP Discoverer for FTP

■ TMF814 Device Persister

■ TMF814 Device Recorder Persister

■ TMF814 Cross-Connect Discoverer

■ TMF814 SNC Discoverer

■ TMF814 SNC CC Discoverer

■ TMF814 Topological Link
Collector

■ TMF814 Updated TL Discoverer

■ TMF814 Topological Link Modeler

■ TMF814 Pipe Persister

Table 6–3 TMF814 Scan Parameters Design Studio Construction

Parameter Name
Parameter
Type Description UI Label

UserName Text box User name of the element management system (EMS)
or network management system (NMS) used for
getting details.

Username

Password Secret text Password of EMS or NMS system. Password

EMSNamingService Text box EMS Naming Service

The EMS session factory CORBA object name.

Ems Naming
Service

EMSNamingServiceFor
mat

Drop down List: PLAIN, STRINGIFIED

The EMS session factory CORBA object name format.

Ems Naming
Service Format

Actions

About Design Studio Construction 6-3

CollectEquipment Drop down List: TRUE, FALSE Collect
Equipment

CollectTP Drop down List: ALL, ONLY PTP, ONLY FTP, NONE Collect
Termination
Points

CollectCTP Drop down List: CURRENT, IN USE, POTENTIAL, NONE Collect
Connection TP

EquipmentFetchSize Text box Number of equipment objects to fetch at a time for
each EMS call.

Equipment Fetch
Size

TPFetchSize Text box Number of contained TP objects to fetch at a time for
each EMS call.

Termination
Point Fetch Size

CTPCollectionDepth Text box The depth (level of children objects) to which
contained TPs are collected.

Contained TP
Collection Depth

ORBProperties Text box Semicolon separated name value pairs for ORB
properties.

Orb Properties

ORBArguments Text box Semicolon separated name value pairs for ORB
arguments.

Orb Arguments

ManagedElementName Text box Name of the ME. This parameter works in
combination with Managed Element Name Qualifier.
This parameter helps to filter the scan.

Managed
Element Name

ManagedElementName
Qualifier

Drop down List: EQUALS, EQUALS_IGNORE_CASE,
CONTAINS, CONTAINS_IGNORE_CASE, STARTS_
WITH, STARTS_WITH_IGNORE_CASE, ENDS_
WITH, ENDS_WITH_IGNORE_CASE

This parameter works in combination with Managed
Element Name to filter the collected MEs by name and
qualifier.

Managed
Element Name
Qualifier

NetworkElementNames Text box Name of the NE. This parameter works in combination
with Network Element Names Qualifier. This
parameter helps to filter the scan.

Network
Element Names

NetworkElementName
Qualifier

Drop down List: EQUALS, EQUALS_IGNORE_CASE,
CONTAINS, CONTAINS_IGNORE_CASE, STARTS_
WITH, STARTS_WITH_IGNORE_CASE, ENDS_
WITH, ENDS_WITH_IGNORE_CASE COMMA_
DELIMITED_NAMES, COMMA_DELIMITED_
NAMES_IGNORE_CASE

This parameter works in combination with Network
Element Name to filter the collected NEs by name and
qualifier.

Network
Element Name
Qualifier

CrossConnectCollection
Type

Drop down List: USE_SNC, USE_ME_MANAGER, NONE

This parameter controls how cross-connects are
collected. Select None to disable cross-connect
collection.

Cross-connect
Collection Type

TopologicalLinkCollecti
onType

Drop down List: ALL, BETWEEN_SN, INSIDE_SN, NONE

This parameter controls how topological links are
collected. Select None to disable topological link
collection.

Topological Link
Collection Type

Table 6–3 (Cont.) TMF814 Scan Parameters Design Studio Construction

Parameter Name
Parameter
Type Description UI Label

Actions

6-4 Network Integrity Incremental TMF814 Discovery Cartridge Guide

Table 6–4 Discovery Processor Design Studio Construction

Discovery
Processor Variable

TMF814
Property
Initializer

Input: N/A

Output:

■ tmf814Properties(oracle.communications.integrity.tmf814discovery.beans.TMF814Properties)

A JavaBean that contains the set of TMF814 properties. See Network Integrity Optical
TMF814 CORBA Cartridge Guide for a list of TMF814 Property Initializer properties and
values.

■ tpDetailMap(oracle.communications.integrity.tmf814discovery.model.tp.TPNameMap)

A map listing properties and associated PTP names.

TMF814 Session
Manager

Input: tmf814Properties

Output:

■ sessionManager(oracle.communications.integrity.tmf814discovery.session.SessionManager)

A session manager instance responsible for creating emsMgr and multiLayerSubnetwork,
and for managing EMSSession and TMF814 Object managers.

TMF814 Device
Recorder
Initializer

Input: tmf814Properties, customProperties

Output:

■ recordMode(boolean)

A Boolean indicating whether Recording Mode is enabled.

Incremental
Discovery
Initializer

Input: N/A

Output: lastSuccessScanRun

TMF814 ME
Collector

Input: N/A

Output:

■ meIterable

Iterable object for each collected ME.

TMF814
Updated ME
Discoverer

Input: lastSuccessScanRun, meIterable

Output: sncCollectionResultGrp

TMF814 Device
Modeler

Input:

■ tmf814Properties

■ customProperties

■ managedElement(org.tmforum.mtnm.managedElement.ManagedElement_T)

One instance of the meIterable object. This processor is run once for each instance of
manamedElement.

Output:

■ physicalTree(oracle.communications.integrity.tmf814discovery.model.ocimtree.PhysicalTree)

A representation of the Information Model Physical Tree containing a physical device as
the root object, to which child objects can be added.

■ logicalTree(oracle.communications.integrity.tmf814discovery.model.ocimtree.LogicalTree)

A representation of the Information Model Logical Tree containing a logical device as the
root object, to which child objects can be added.

Actions

About Design Studio Construction 6-5

TMF814
Equipment
Collector

Input: tmf814Properties, customProperties, sessionManager, physicalTree, managedElement

Output:

■ equipmentOrHolderIterable(java.lang.Iterable<org.tmforum.mtnm.equipment.EquipmentOr
Holder_T>)

Iterable object that iterates for each collected Equipment object or Holder object.

TMF814
Equipment
Modeler

Input:

■ tmf814Properties

■ physicalTree

■ equipmentOrHolder(org.tmforum.mtnm.equipment.EquipmentOrHolder_T)

One instance of the equipmentOrHolderIterable object. This processor is run once for each
instance of equipmentOrHolder.

Output:

■ equipment(oracle.communications.inventory.api.entity.Equipment)

Returned value if the input is an equipment.

■ equipmentHolder(oracle.communications.inventory.api.entity.EquipmentHolder)

Returned value if the input is an equipment holder.

TMF814 PTP
Collector

Input:

■ tmf814Properties

■ customProperties

■ equipment(oracle.communications.inventory.api.entity.Equipment)

A modeled Information Model equipment object.

■ equipmentHolder(oracle.communications.inventory.api.entity.EquipmentHolder)

A modeled Information Model equipment holder object.

Output:

■ ptpIterable(java.lang.Iterable<org.tmforum.mtnm.terminationPoint.TerminationPoint_T>)

Iterable object for each collected PTP belonging to an Equipment object.

TMF814 PTP
Modeler

Input:

■ tmf814Properties

■ equipment

An Information Model object that is modeled as the parent for all ports.

■ physicalTree

■ logicalTree

■ tpDetailMap

■ ptp(org.tmforum.mtnm.terminationPoint.TerminationPoint_T)

A PTP object, modeled as a Physical Port in the Physical Tree, and as a Device Interface in
the Logical Tree.

Output:

■ deviceInterface(oracle.communications.inventory.api.entity.DeviceInterface)

A modeled Information Model interface object.

■ physicalPort(oracle.communications.inventory.api.entity.PhysicalPort)

A modeled Information Model port object.

Table 6–4 (Cont.) Discovery Processor Design Studio Construction

Discovery
Processor Variable

Actions

6-6 Network Integrity Incremental TMF814 Discovery Cartridge Guide

TMF814 CTP
Discoverer for
PTP

Input:

■ tmf814Properties

Provides the CTP flag, termination point (TP) fetch size, and CTP depth properties.

■ customProperties

■ deviceInterface

■ logicalTree

■ physicalPort

■ ptp

Parent PTP for which all CTPs are discovered.

Output: N/A

TMF814 FTP
Collector

Input:

■ tmf814Properties

Provides the CTP flag and TP fetch size properties.

■ customProperties

■ logicalTree

■ managedElement

The name of the ME is used to fetch the FTP.

Output:

■ terminationPointIterable(java.lang.Iterable<org.tmforum.mtnm.terminationPoint.Termination
Point_T>)

Iterable object for each collected FTP.

TMF814 FTP
Modeler

Input:

■ tmf814Properties

■ logicalTree

■ tpDetailMap

■ terminationPoint(org.tmforum.mtnm.terminationPoint.TerminationPoint_T)

Output:

■ deviceInterface

Modeled Information Model object for a TP. TPs are modeled and added to the Logical
Tree as direct child objects of a logical device.

TMF814 CTP
Discoverer for
FTP

Input:

■ tmf814Properties

■ customProperties

■ terminationPoint

TPs for which CTPs are fetched and modeled.

■ deviceInterface

Parent Information Model object for all top level CTPs.

■ logicalTree

Output: N/A

Table 6–4 (Cont.) Discovery Processor Design Studio Construction

Discovery
Processor Variable

Actions

About Design Studio Construction 6-7

TMF814 Device
Persister

Input:

■ tmf814Properties

■ physicalTree

■ logicalTree

■ managedElement

Output: N/A

TMF814 Device
Recorder
Persister

Input: tmf814Properties

Output: N/A

TMF814
Cross-Connect
Discoverer

Input: tmf814Properties, customProperties, tpDetailMap

Output: N/A

TMF814 SNC
Discoverer

Input: customProperties, lastSuccessScanRun, sncCollectionResultGrp, tmf814Properties

Output: emsName, sncList

TMF814 SNC
CC Discoverer

Input: customProperties, lastSuccessScanRun, snc, tpDetailsMap, tmfNameToDeviceNameMap
tmf814Properties

Output: N/A

TMF Topological
Link Collector

Input: tmf814Properties, customProperties, tpDetailMap

Output:

■ topologicalLinkIterable(java.util.Iterable)

Iterable object that iterates for each collected topological link object.

■ tlPipeMap(java.util.Map<java.lang.String,java.utilList<oracle.communications.inventory.api.e
ntity.Pipe>>)

A map listing all collected topological links by their container group.

TMF814
Updated TL
Discoverer

Input: emsName, tpDetailsMap, lastSuccessScanRun, tlPipeMap, tmf814Properties,
topologicalLinkIterable

Output: N/A

TMF814
Topological Link
Modeler

Input:

■ tmf814Properties

■ tpDetailMap

■ topologicalLink(org.tmforum.mtnm.topologicalLink.TopologicalLink_T)

■ tlPipeMap

Output:

■ linkPipe(oracle.communications.inventory.api.entity.Pipe)

A modeled topological link as a pipe entity.

TMF814 Pipe
Persister

Input: tmf814Properties, tpDetailMap, tlPipeMap

Output: N/A

Table 6–4 (Cont.) Discovery Processor Design Studio Construction

Discovery
Processor Variable

Actions

6-8 Network Integrity Incremental TMF814 Discovery Cartridge Guide

7

About Design Studio Extension 7-1

7About Design Studio Extension

This chapter contains examples and explanations of how to extend certain aspects of
the Oracle Communications Network Integrity Incremental TMF814 Discovery
cartridge by using Oracle Communications Design Studio. See Network Integrity
Developer’s Guide for more information. See Network Integrity Concepts for guidelines
and best practices for extending cartridges.

The following examples are explained in this section:

■ Initializing a Custom Object Request Broker

■ Extending the Discover Incremental TMF814 Action

Initializing a Custom Object Request Broker
This example explains how you can initialize a custom object request broker (ORB)
instead of using the default ORB provided by the Network Integrity Cartridge for
CORBA (CORBA cartridge).

To initialize a custom ORB:

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project.

3. Make the cartridge project dependent on the CORBA cartridge project.

4. Create a discovery action that uses the CORBA Abstract Discovery action as a
processor.

5. Create a discovery processor named Custom CORBA Property Initializer and add
it after the CORBA Property Initializer processor.

This processor overrides org.omg.CORBA.ORBClass,
org.omg.CORBA.ORBSingletonClass, and any additional parameters specific to
ORB implementation from the CORBAProperties JavaBean.

6. Create a discovery processor named Custom ORB Manager to perform custom
lookup.

7. (Optional) Disable NamingContextExt lookup.

When enabled, this operation may set the Naming Service Connection Flag to
false, causing custom lookup to fail.

Extending the Discover Incremental TMF814 Action

7-2 Network Integrity Incremental TMF814 Discovery Cartridge Guide

Extending the Discover Incremental TMF814 Action
This example explains how to extend the Discover Incremental TMF814 action to
collect vendor-specific information. No new common object request broker
architecture (CORBA) calls are required to the server because this data is already
collected. In this example, managementIP of a managed element (ME) is used as the
desired vendor-specific information.

1. Open Design Studio in the Design perspective.

2. Create a Network Integrity cartridge project named
TMF814SampleVendorExtension.

3. Make TMF814SampleVendorExtension dependent on the Incremental TMF814
Discovery cartridge project and the TMF814_Model cartridge.

4. Create a discovery action named TMF814 Sample Vendor Extension.

5. Add the Discover TMF814 action as a processor in the TMF814 Sample Vendor
Extension action.

6. Create a Physical Device specification named customTMF814MEGeneric and add
all the same characteristics as tmf814MEGeneric.

7. Add the managementIP characteristic to customTMF814MEGeneric.

8. Create a new discovery processor named Custom Device Modeler and insert it
after the TMF814 Device Modeler processor. Specify physical device and managed
element as input parameters to the processor.

9. In the Custom Device Modeler processor implementation, add code to populate
the physical device with managementIP, as shown in the following example:

//Get ME form request
ManagedElement_T me = request.getManagedElement();
PhysicalDevice dev = request.getPhysicalDevice();

//Create CustomTMF814MEGeneric spec isntance
CustomTMF814MEGeneric customDevice = new CustomTMF814MEGeneric(dev);

//TMFAdditionalInfoHelper is a helper class bundled with this cartridge

String managementIP = TMFAdditionalInfoHelper.getAdditionalInfo
(me.additionalInfo, "managementIP");

customDevice.setManagementIP(managementIP);

10. Build, deploy, and test your cartridge.

Your new Custom Device Modeler processor is run in the order shown in
Figure 7–1.

Extending the Discover Incremental TMF814 Action

About Design Studio Extension 7-3

Figure 7–1 Custom Device Modeler Processor Workflow

Extending the Discover Incremental TMF814 Action

7-4 Network Integrity Incremental TMF814 Discovery Cartridge Guide

8

NMS Notification Listener Sample Application Reference 8-1

8NMS Notification Listener Sample Application
Reference

This chapter provides information about the example code for the NMS Notification
Listener Sample Application.

Configuring the NMS Notification Listener Sample Application to Receive
Notifications

To enable the Notification Listener Sample Application to connect to the NMS Server
and receive notification events, configure the Sample Application by doing the
following:

1. Getting the ORB Object

2. Getting the EMS Session Object

3. Getting the Event Channel Object from the EMS Session Object

4. Getting the Consumer Admin Object from the Event Channel Object

5. Connecting to the StructuredProxyPullSupplier from the Consumer Admin Object

6. Pulling the Notification Events from StructuredProxyPullSupplier

7. Saving the Generated Notification Events in XML Files

The following subsections show example Java code for the notification listener, which
connects to the EMS or NMS servers and receives notifications. You can extend the
example Java code based on the EMS or NMS you are using. The EMS or NMS saves
its notification events in the StructuredProxyPullSupplier object.

Getting the ORB Object
String nameService = "NameService="+corbaUrl;
String[] orbArgs = new String[] {"-ORBInitRef", nameService};
ORB orb = ORB.init(orbArgs, null);

Getting the EMS Session Object
EmsSession_I emsSession = null;
NamingContextExt ncRef = null;
try {
 ncRef NamingContextExtHelper.narrow(orb.resolve_initial_
references("NameService"));
} catch (InvalidName e) {

Configuring the NMS Notification Listener Sample Application to Receive Notifications

8-2 Network Integrity Incremental TMF814 Discovery Cartridge Guide

 e.printStackTrace();
 throw e;
}
NameComponent tmfClass = new NameComponent(nmsDetails.getClazz(), "Class");
NameComponent tmfVendor = new NameComponent(nmsDetails.getVendor(), "Vendor");
NameComponent tmfEmsInstance = new
NameComponent(nmsDetails.getEmsInstance(),"EmsInstance");
NameComponent tmfVersion = new NameComponent(nmsDetails.getVersion(), "Version");
NameComponent tmfEntity = new
NameComponent(nmsDetails.getEmsSessionFactory(),"EmsSessionFactory_I");
NameComponent[] name = {tmfClass, tmfVendor, tmfEmsInstance, tmfVersion,
tmfEntity};
EmsSessionFactory_I sessionFactory = null;
try {
 sessionFactory = EmsSessionFactory_IHelper.narrow(ncRef.resolve(name));
} catch (NotFound e) {
 throw e;
} catch (CannotProceed e) {
 throw e;
} catch (org.omg.CosNaming.NamingContextPackage.InvalidName e) {
 throw e;
}
POA rootpoa = null;
try {
 rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
} catch (InvalidName e) {
 throw e;
}
try {
 rootpoa.the_POAManager().activate();
} catch (AdapterInactive e) {
 throw e;
}
NmsSessionImpl nmsSessionImpl = new NmsSessionImpl(orb);
org.omg.CORBA.Object corbaObj = null;
try {
 corbaObj = rootpoa.servant_to_reference(nmsSessionImpl);
} catch (ServantNotActive e) {
 throw e;
} catch (WrongPolicy e) {
 throw e;
}
NmsSession_I nmsSession = NmsSession_IHelper.narrow(corbaObj);
EmsSession_IHolder sessionHolder = new EmsSession_IHolder();
// Read the NMS User credentials from the console.
Console console = System.console();
String username = console.readLine(sub_nl +" ["+ nmsDetails.getEmsInstance() + "]
Login as: ");
char[] password = console.readPassword(sub_nl +" ["+ nmsDetails.getEmsInstance()
+"] password: ");
String passwd = new String(password);
try {
 sessionFactory.getEmsSession(username, passwd, nmsSession, sessionHolder);
} catch (ProcessingFailureException e) {
 throw e;
}
emsSession = sessionHolder.value;

Configuring the NMS Notification Listener Sample Application to Receive Notifications

NMS Notification Listener Sample Application Reference 8-3

Getting the Event Channel Object from the EMS Session Object
EventChannelHolder eventChannelHolder = new EventChannelHolder();
try {
emsSession.getEventChannel(eventChannelHolder);
} catch (ProcessingFailureException e) {
 throw e;
}
EventChannel eventChannel = eventChannelHolder.value;

Getting the Consumer Admin Object from the Event Channel Object
// In NMS Notification Service, if only one Customer Admin Object is configured,
// obtain the ConsumerAdmin Object by calling default_consumer_admin().
ConsumerAdmin consumerAdmin = eventChannel.default_consumer_admin();
// otherwise
// int consumerAdminId = 0; // Get the consumer Admin Id from NMS Notification
// configuration details.
 //try {
 // return eventChannel.get_consumeradmin(consumerAdminId);
 //} catch (AdminNotFound e) {
 // e.printStackTrace();
//}

Connecting to the StructuredProxyPullSupplier from the Consumer Admin Object
org.omg.CORBA.IntHolder proxyId = new org.omg.CORBA.IntHolder();
ProxySupplier proxySupplier = null;
try {
proxySupplier = consumerAdmin.obtain_notification_pull_
supplier(ClientType.STRUCTURED_EVENT, proxyId); // In cases where different
// ClientType is configured on NMS, change the ClientType to obtain
// appropriateProxyPullSupplier.
 }
catch (org.omg.CosNotifyChannelAdmin.AdminLimitExceeded ex) {
 ex.printStackTrace(System.err);
 System.exit(-1);
}
StructuredProxyPullSupplier s_proxy_pull_supplier = null;
try {
 s_proxy_pull_supplier =
StructuredProxyPullSupplierHelper.narrow(proxySupplier);
}
catch (org.omg.CORBA.BAD_PARAM ex) {
 ex.printStackTrace(System.err);
 System.exit(-1);
}
try {
 s_proxy_pull_supplier.connect_structured_pull_consumer(null);
}

Pulling the Notification Events from StructuredProxyPullSupplier
/**
 * This method pulls the Notification Events from NMS
StructuredProxyPullSupplier.
 */

Configuring the NMS Notification Listener Sample Application to Receive Notifications

8-4 Network Integrity Incremental TMF814 Discovery Cartridge Guide

 public void startPullEvents() {
 System.out.println("Pulling the events...");
 EventPersister persister = new EventPersister(eventQueue);
 persister.start();
 if(proxyPullSupplier != null) {
 while (true) {
 try {
 StructuredEvent event proxyPullSupplier.pull_structured_
event();
 if(event != null){
 eventQueue.add(event);
 }
 }
 catch (org.omg.CosEventComm.Disconnected ex) {
 ex.printStackTrace(System.err);
 return;
 }
 }
 }
 }

Saving the Generated Notification Events in XML Files
The NMS Notification Listener Sample Application creates the following XML files to
store details for each of the following types of entities:

1. Create the EMS_Name.me file (where EMS_Name is the name of the EMS) to
contain the list of details about managed elements (MEs) on the EMS or NMS.

2. Create the EMS_Name.tl file to contain the list of details about topological links
(TLs) on the EMS or NMS.

3. Create the EMS_Name.snc file to contain the list of details about subnetwork
connections (SNCs) on the EMS or NMS.

4. Create the EMS_Name.deted_tl file to contain the list of deleted TLs on the EMS or
NMS.

/**
* The persister saves the last modified information about the MEs, SNCs, and TLs
in XML files.
*/
class EventPersister extends Thread {
 private Queue<StructuredEvent> eventQueue;
 public EventPersister(Queue<StructuredEvent> eventQueue){
 this.eventQueue = eventQueue;
 }
 public void run(){
 while(true){
 if(!eventQueue.isEmpty()){
 while(!eventQueue.isEmpty()){
 // TODO: record the notifications into files based on ObjectType.
try {
 StructuredEvent event = eventQueue.poll();
Property[] properties = event.filterable_data;
// Get the Object Name on which the notification is generated.
NameAndStringValue_T[] objectName = NVSList_THelper.extract(properties[1].value);
// Get the Object Type on which the notification is generated.
ObjectType_T objectType = ObjectType_THelper.extract(properties[2].value);
// Get the EMS Time at which the notification is generated.

Configuring the NMS Notification Listener Sample Application to Receive Notifications

NMS Notification Listener Sample Application Reference 8-5

// Formatted in yyyyMMddHHmmss
String emsTime = properties[3].value.toString();
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyyMMddHHmmss");
String emsName = objectName[0].value;
String meName = null;
String sncName = null;
String topologicalLinkName = null;
System.out.println("EMS ["+emsName+"]");
if(objectType == ObjectType_T.OT_MANAGED_ELEMENT || objectType == ObjectType_T.OT_
EQUIPMENT ||
objectType == ObjectType_T.OT_EQUIPMENT_HOLDER || objectType == ObjectType_T.OT_
PHYSICAL_TERMINATION_POINT) {
meName = objectName[1].value;
System.out.println("ME ["+meName+"] LastModified:
["+dateFormat.parse(emsTime)+"]");
} else if(objectType == ObjectType_T.OT_TOPOLOGICAL_LINK){
 topologicalLinkName = objectName[1].value;
 System.out.println("TL ["+topologicalLinkName+"] LastModified:
["+dateFormat.parse(emsTime)+"]");
} else if(objectType == ObjectType_T.OT_SUBNETWORK_CONNECTION){
 sncName = objectName[2].value;
 System.out.println("SNC ["+sncName+"] LastModified:
["+dateFormat.parse(emsTime)+"]");
}
} catch(Exception ex){
ex.printStackTrace();
}
 }
 }
 }
}

/* Sample Notification Generated on Adding New EquipmentHolder.
 **
 START OF NT_OBJECT_CREATION

 name: notificationId value:29
 name: objectName value:
 name: EMS value:ECI/LightSoft_1
 name: ManagedElement value:LSN/EMS_XDM_121/1064
 name: EquipmentHolder value:/rack=1/shelf=1/slot=1/sub_
slot=4
 name: objectType value:OT_EQUIPMENT_HOLDER
 name: emsTime value:20140302141559.0
 name: neTime value:
 name: edgePointRelated value:FALSE
 name: remainder_of_body value:
 Name: attributeList value:
 name: EMS value:ECI/LightSoft_1

 name: ManagedElement value:LSN/EMS_XDM_121/1064
 name: EquipmentHolder value:/rack=1/shelf=1/slot=1/sub_
slot=4

 name: userLabel value:I1 OTR1 4
 name: nativeEMSName value:I1 OTR1 4
 name: owner value:
 name: alarmReportingIndicator value:TRUE
 name: holderType value:sub_slot

Extending the NMS Notification Listener Sample Application to Filter Notifications

8-6 Network Integrity Incremental TMF814 Discovery Cartridge Guide

 name: expectedOrInstalledEquipment value:
 name: EMS value:LSN/EMS_XDM_121

 name: ManagedElement value:1064
 name: EquipmentHolder value:/rack=1/shelf=1/slot=1/sub_
slot=4

 name: Equipment value:1
 name: EquipmentObjectTypeList value:
 NONE
 ETR1
 OTR1
 name: holderState value:EXPECTED_AND_NOT_INSTALLED
 name: additionalInfo value:
 name: LSNExt_TimestampSignature value:20140302141559.8

 END OF NT_OBJECT_CREATION

 */
 }

Extending the NMS Notification Listener Sample Application to Filter
Notifications

To receive notification messages, you must configure the EMS or NMS to generate
different types of notification events, such as SYSLOG, ALARMS, and so on. The NMS
Notification Listener Sample Application does not have any filters that restrict
notifications from the EMS or NMS and hence it receives all types of notification
messages. You can extend the Sample Application to filter notifications based on your
business requirements. You add notification filters by extending the
StructuredPushConsumer interface that is part of the Sample Application.

You can filter events on both the supplier and consumer side. In particular, filters may
be applied to the supplier and consumer admins and to supplier and consumer
proxies.

To apply a filter to the supplier admin or proxy, extend the StructuredPushConsumer
interface by doing the following:

1. Obtaining a Reference to the Filter Factory

2. Creating a Filter

3. Adding the Filter to an Admin or Proxy

The following subsections show example Java code, which you can extend to filter
different types of notifications events.

Obtaining a Reference to the Filter Factory
Applying a filter means obtaining a reference to the Default Filter Factory. Note that
every object of type CosNotifyChannelAdmin:: EventChannel includes a reference to
the DefaultFilterFactory.

FilterFactory filterFactory = eventChannel.default_filter_factory();

Extending the NMS Notification Listener Sample Application to Filter Notifications

NMS Notification Listener Sample Application Reference 8-7

Creating a Filter
Do the following to create a simple filter, as implemented by the FilteredConsumer
class:

Create Constraints

final int numberofConstraints = 4;
String[] constraintStrings =
{

“$domain_name == Telecom”,
“$type_name == CommunicationsAlarm”,
“$type_name == Notification”,
“$severity != 4”

};

ConstraintExp[] constraints = new ConstraintExp[numberofConstraints];

for(int i = 0 ; i < numberofConstraints ; ++i)
{
EventType eventType = new EventType();
eventType.domain_name = "*";
eventType.type_name = "*";

EventType[] eventTypes = new EventType[1];
eventTypes[0] = eventType;

ConstraintExp constraint = new ConstraintExp();
constraint.event_types = eventTypes;
constraint.constraint_expr = constraintStrings[i];

constraints[i] = constraint;
}

Create a Filter

Call the create_filter() method on the FilterFactory to create a filter.

filter = filterFactory.create_filter("EXTENDED_TCL");

where:

EXTENDED_TCL is the default grammar supported by all compliant notification
services.

Add Constraints to the Filter

Add the constraints you created to the filter by calling the add_constraints() method.

ConstraintInfo[] info = filter.add_constraints(constraints);

Adding the Filter to an Admin or Proxy
The following interfaces are inherited from the FilterAdmin interface and can have
filter objects added to them:

ProxyConsumer
ProxySupplier
ConsumerAdmin

Extending the NMS Notification Listener Sample Application to Filter Notifications

8-8 Network Integrity Incremental TMF814 Discovery Cartridge Guide

SupplierAdmin

For example, the following line adds a filter to a supplier proxy:

proxySupplier.add_filter(filter);

	Contents
	Preface
	Audience
	Documentation Accessibility
	Document Revision History

	1 Overview
	About the Incremental TMF814 Discovery Cartridge
	NMS Notification Listener Sample Application

	About Cartridge Dependencies
	Run-Time Dependencies
	Design Studio Dependencies

	Opening the Cartridge Files in Design Studio
	Building and Deploying the Cartridge

	2 About the Cartridge Components
	Abstract Incremental Discovery Action
	Incremental Discovery Initializer

	Discover Incremental TMF814 Action
	TMF814 Updated ME Discoverer
	TMF814 SNC Discoverer
	TMF814 SNC CC Discoverer
	TMF814 Updated TL Discoverer

	About Recording Mode
	Enabling and Disabling Recording Mode

	3 Using the Cartridge
	Creating a Discover TMF814 Scan
	Extending the Incremental Discovery Cartridge to Support Different Protocols

	4 About Collected Data
	About Collected Data
	Multi Technology Network Management Hierarchy
	Layer Parameters
	TMF814 APIs
	CORBA APIs
	APIs for Cross-Connect Collection
	APIs for Topological Link Collection

	Handling Vendor Variations
	FTP Collection API Variations
	Cross-Connect Collection API Variation
	Topological Link Collection API Variation
	Cross-Connect Protection Role

	5 About Cartridge Modeling
	About Cartridge Modeling
	About the Oracle Communications Information Model
	About the Physical Tree
	About the Logical Tree
	Field Mapping
	About Building the Information Model Tree
	Containment Relationships
	Adding an Equipment and an Equipment Holder to the Tree
	Adding a Physical Port and an Interface to the Tree
	Adding a Sub-Interface to the Tree

	Cartridge Modeling for Cross-Connect Data
	A and Z Channels

	Cartridge Modeling for Topological Link Data

	Result Groups

	6 About Design Studio Construction
	Model Collections
	Actions

	7 About Design Studio Extension
	Initializing a Custom Object Request Broker
	Extending the Discover Incremental TMF814 Action

	8 NMS Notification Listener Sample Application Reference
	Configuring the NMS Notification Listener Sample Application to Receive Notifications
	Getting the ORB Object
	Getting the EMS Session Object
	Getting the Event Channel Object from the EMS Session Object
	Getting the Consumer Admin Object from the Event Channel Object
	Connecting to the StructuredProxyPullSupplier from the Consumer Admin Object
	Pulling the Notification Events from StructuredProxyPullSupplier
	Saving the Generated Notification Events in XML Files

	Extending the NMS Notification Listener Sample Application to Filter Notifications
	Obtaining a Reference to the Filter Factory
	Creating a Filter
	Adding the Filter to an Admin or Proxy

