

[1] Oracle® Communications
Network Integrity
Developer’s Guide

Release 7.3.2

E66034-01

May 2016

Oracle Communications Network Integrity Developer's Guide, Release 7.3.2

E66034-01

Copyright © 2010, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Document Revision History .. xi

1 Using Design Studio to Extend Network Integrity

Installing Design Studio ... 1-1
Configuring Design Studio for Network Integrity.. 1-1

Configuring Network Integrity Preferences ... 1-2
Network Integrity Project Dependencies .. 1-2
Configuring Data Dictionary Preference Settings.. 1-2

About Design Studio Perspectives ... 1-2
About Design Studio Views .. 1-2

Studio Design Perspective Views .. 1-3
Java Perspective Views.. 1-3

About Projects ... 1-3
About the Project Architecture... 1-3

Working with Projects... 1-4
Building and Packaging Projects ... 1-4

About the Project Build Order .. 1-5
About Build Artifacts ... 1-5
Packaging Projects .. 1-6

Deploying and Undeploying Cartridges .. 1-6
Creating a Design Studio Environment Project.. 1-7
Creating a Design Studio Environment For Network Integrity .. 1-7
Deploying a Cartridge.. 1-7
Undeploying a Cartridge... 1-7
Redeploying a Cartridge.. 1-8

Debugging and Testing Cartridges ... 1-8
Starting the WebLogic Server in Test Mode ... 1-8
Configuring Remote Debugger in Design Studio .. 1-9

Sealing and Unsealing Projects .. 1-9
Exporting and Importing Cartridges ... 1-10

Exporting a Cartridge with Source Code ... 1-10
Exporting a Cartridge Without Source Code... 1-10

iv

About Specifications... 1-13
Working with Specifications .. 1-13

About Model Collections ... 1-14
About Specification Helpers.. 1-14

About Source Control ... 1-14
Working with Source Control for Network Integrity .. 1-14
Tips and Tricks .. 1-16

About Java Errors in the Generated Controller Class.. 1-16
Renaming or Deleting Actions and Processors... 1-16
Adding External Libraries to a Java Build Path.. 1-16
About “Missing Required Library” Errors for External Libraries ... 1-16
Error Marker on Cartridge but not on any Entities.. 1-17

2 Working with Actions

About Actions ... 2-1
About Actions and Processors ... 2-2
About Action within Actions ... 2-2
About the Generated Action MDB and Controller ... 2-3
About Scan Parameter Groups... 2-4

Extending the Create Scan Page ... 2-5
Extending the Scan Details Page... 2-6

About Conditions... 2-6
About Generated Classes and the Implementation Class... 2-6
Adding Dependent Actions with Conditions as Processors .. 2-7
Creating Condition Examples ... 2-7

About Model Collections in Actions ... 2-7
About For Each Processors ... 2-8
About Result Categories ... 2-8

About Import Actions.. 2-9
About Discovery Actions .. 2-9

About Discovery Action Address Handlers ... 2-10
About the Address_Handlers Cartridge.. 2-11
Implementing Address Handlers ... 2-11

About the AddressHandler Interface.. 2-11
About Dynamic Address Handlers... 2-12

About Discovery Action Result Categories... 2-15
About the Discovery Action in the Network Integrity UI .. 2-15
About Discovery Action Scan Parameter Groups.. 2-16

About Assimilation Actions.. 2-17
About Discrepancy Detection Actions .. 2-17

About Discrepancy Detection.. 2-18
About Result Sources.. 2-18
About Result Source and Scan Types... 2-19
Generated Action MDB and Controller ... 2-20

About Discrepancy Resolution Actions.. 2-20
About the Resolution Action Label .. 2-20
About Result Sources.. 2-21

v

Generated Action and MDB Controller ... 2-22

3 Working with Processors

About Processors .. 3-1
About Context Parameters.. 3-2

Specifying Context Parameters before Creating Implementation Class............................. 3-2
About Properties and Property Groups.. 3-2
About Generated Code.. 3-3

About the Location for Generated Code ... 3-3
About the Processor Interface ... 3-3
About the PropertyGroup and Properties Classes... 3-4

Implementing a Processor .. 3-4
About the Processor Finalizer .. 3-5

About the ProcessorFinalizer Interface.. 3-5
About Memory Considerations ... 3-6

Implementing an Import Processor .. 3-6
Implementing a Discovery Processor ... 3-7

Implementation Code Example ... 3-9
Implementing the SNMP Processor ... 3-9

About the Generated Implementation and XML Beans .. 3-10
Supporting New MIBs.. 3-10

Implementing an Assimilation Processor .. 3-11
About Discrepancy Detection Processors... 3-12

Discrepancy Detection Processor Patterns .. 3-13
Reusing the Base Detect Discrepancy Action .. 3-13
About the Base Detection Project and the Default Comparison Algorithm 3-13
Adding New Filters and Handlers.. 3-14
About Filters ... 3-15
About Handlers.. 3-15
Filters and CimType .. 3-16
Filter and Handler Examples ... 3-17
Adding Post-Processors .. 3-21

About Discrepancy Resolution Processors... 3-21
Creating a Discrepancy Resolution Processor .. 3-22
Implementing a Discrepancy Resolution Processor .. 3-22

About the Implementation Interface... 3-22
About Input Parameters for the Invoke Method... 3-22
Return Type of Invoke Method.. 3-23

About the General Flow of the Discrepancy Resolution Processor ... 3-23
Fetching Discrepancies... 3-23
Grouping Discrepancies... 3-23
Handling Discrepancies ... 3-24
Reporting the Resolution Result ... 3-24
Handling Discrepancies Asynchronously ... 3-25

vi

4 Working with Discrepancies

About Discrepancies.. 4-1
About the Compare and Reference Sides ... 4-1
About Discrepancy Types... 4-2

Attribute Value Mismatch ... 4-2
Extra Entity and Missing Entity.. 4-2
Extra Association and Missing Association .. 4-4
Ordering Error and Association Ordering Error.. 4-6

About Discrepancy Status... 4-7
About Discrepancy Detail ... 4-8

5 Working with the POMS SDK

About POMS ... 5-1
Working with POMS Entities .. 5-2
Working with POMS Relationships... 5-2

One-to-one Relationships.. 5-2
One-to-Many or Many-to-Many Relationships ... 5-3
Ordered and Unordered Relationships .. 5-3
Bi-directional Relationships.. 5-3
Relationship Entities .. 5-3

Working with Specifications and Characteristics.. 5-4
Working with the POMS Finder ... 5-4

Find by Entity ... 5-5
Find by JPQL... 5-5
Find with Paged Results.. 5-6
POMS SDK Interfaces .. 5-6

About Persist Results... 5-8

6 Working with the Extensibility SDK

About Extensibility Scenarios ... 6-1
Extending MIB II SNMP Discovery for Updated Vendor and Interface Type 6-2
Extending an Existing Cartridge to Discover and Reconcile New Characteristics...................... 6-4
Extending the MIB II SNMP Discovery to Change Interface Name Value 6-8
Multiple Vendor SNMP Discovery .. 6-10
Multiple Protocol Discoveries .. 6-14

7 Working with Automatic Discrepancy Resolution

About Automatic Discrepancy Resolution.. 7-1
About the Automatic Discrepancy Resolution Solution .. 7-1

Action and Processors ... 7-1
Scan Parameter Groups and the Network Integrity UI.. 7-2
Reference Implementations .. 7-2

Implementing Automatic Discrepancy Resolution ... 7-3
Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge Solution 7-3
Implementing Automatic Discrepancy Resolution in a Sealed Cartridge Solution................. 7-3

Completing the Automatic Discrepancy Resolution Implementation .. 7-4

vii

Completing Automatic Discrepancy Resolution Using a Properties File.................................. 7-5
Completing Automatic Discrepancy Resolution with a Custom Processor.............................. 7-6

8 Working with Incremental TMF814 Discovery

About Incremental TMF814 Discovery .. 8-1
About the Incremental TMF814 Discovery Solution .. 8-1

Action and Processors ... 8-1
Copying Information From Previous Scan Results... 8-1
Scan Parameter Groups and the Network Integrity UI.. 8-2
Reference Implementations .. 8-2

Implementing Incremental TMF814 Discovery ... 8-3
Implementing Incremental TMF814 Discovery in a Sealed Cartridge Solution 8-3

9 Working with CPU Utilization-enabled Discovery

About CPU Utilization-enabled Discovery... 9-1
About CPU Utilization-enabled Discovery Solution .. 9-1

Action and Processors ... 9-1
About the Mechanism of Comparing CPU Usage Values ... 9-2
Scan Parameter Groups and the Network Integrity UI.. 9-2
Reference Implementations .. 9-2

Implementing CPU Utilization-enabled Discovery .. 9-2
Implementing CPU Utilization-enabled Discovery in a Sealed Cartridge Solution 9-2

10 Working with the Network Integrity Web Service

About the Network Integrity Web Service... 10-1
Security ... 10-1
Model Based... 10-2
Concurrency with UI and other Web Service Clients.. 10-2
Listing of Network Integrity Web Service Operations .. 10-2

Network Integrity Web Service Operations .. 10-9
Create .. 10-9

Entity Type Support .. 10-10
Get ... 10-10

Entity Type Support .. 10-11
Get All ... 10-12

Entity Type Support .. 10-12
Delete .. 10-13

Entity Type Support .. 10-13
Update .. 10-14

Entity Type Support .. 10-15
Find.. 10-15

Entity Type Support .. 10-15
From and To Range ... 10-16
Ascending and Descending.. 10-16
Attribute Criteria.. 10-16
Multiple Attribute Criteria ... 10-17

viii

Extended Attribute Criteria.. 10-18
Criteria Operators .. 10-18
Between/Not Between Operator... 10-21
Data Criteria.. 10-21
Conjunction Criteria .. 10-21
Find Response... 10-23

Network Integrity Web Service Special Function Operations ... 10-23
Start Scan .. 10-23
Stop Scan .. 10-24
Get Latest Scan Status... 10-24
Submit Discrepancies For Resolution Processing .. 10-25

Network Integrity Web Service Scenarios ... 10-26
Creating a Scan .. 10-26
Starting, Stopping, and Monitoring a Scan ... 10-27
Retrieving Scan Results .. 10-27
Working with Discrepancies ... 10-28

Network Integrity Web Service Samples ... 10-28
Contents of the Network Integrity Web Service Samples ZIP File .. 10-28
Sample Java Client .. 10-29
Sample Soap UI Project ... 10-29

Submitting Request to the Server .. 10-30
Specifying User Name and Password in Request ... 10-30

11 Working with Scan Run Complete Notifications

About Clients for Monitoring Scan Run Complete Notification Messages.............................. 11-1
Implementing Custom Code to Stop a Scan .. 11-3

12 Working with JCA Resource Adapters

About Resource Adapters .. 12-1
Understanding JCA Resource Adapter Connectivity Options... 12-2
Understanding JCA Resource Adapters with Network Integrity.. 12-2

About Productized SNMP JCA Resource Adapter ... 12-3
Installing the SNMP JCA Resource Adapter... 12-3

Extending the SNMP JCA Resource Adapter.. 12-3
Record and Playback Mode.. 12-4
Invoking the SNMP JCA Resource Adapter in a Network Integrity Cartridge 12-5

About Third Party or Customized JCA Resource Adapters.. 12-5
Building a JCA Resource Adapter in WebLogic... 12-5
Invoking a Third Party or Customized JCA Resource Adapter... 12-6

13 Working with Reports Extensibility

About BI Publisher ... 13-1
About BI Publisher Desktop.. 13-2

Reports Provided with Network Integrity ... 13-2
Scan History Report .. 13-2
Discovery Scan Summary Report ... 13-2

ix

Device Discrepancy Detection Summary Report ... 13-2
Device Discrepancy Detection Detail Report.. 13-3
Discrepancy Corrective Action Report .. 13-3

Network Integrity Report Building Blocks.. 13-4
RTF Templates ... 13-4
Report Definition Files ... 13-4

Data Source Query Tools .. 13-4
Parameters... 13-4
List of Values .. 13-4
Rendering Options... 13-4
Report Properties ... 13-4

Developing BI Publisher Reports .. 13-5
Report Requirements .. 13-5

Configuring a Data Source Tutorial .. 13-5
Creating a Report Tutorial.. 13-6
Building an RTF Template Tutorial .. 13-7
Using Microsoft Word Native Features and XSL.. 13-9

Using BI Publisher Features.. 13-9
Scheduling Reports ... 13-9

Enabling BI Publisher Scheduler Tutorial .. 13-9
Using BI Publisher to Schedule Reports Tutorial.. 13-10

Localizing Reports .. 13-10
Localized Template Option .. 13-11
XLIFF File Option... 13-11

Installing and Integrating BI Publisher with Network Integrity .. 13-12
Installing BI Publisher in Standalone Mode.. 13-12
Deploying BI Publisher .. 13-12
Integrating BI Publisher with Network Integrity using WebLogic Enterprise Manager ... 13-13
Integrating BI Publisher with Network Integrity using JConsole ... 13-13
Integrating BI Publisher with the Network Integrity Installer... 13-14

Uploading and Exporting Reports ... 13-15
Exporting a Report .. 13-15
Uploading a Report... 13-15

14 Working with SOA Extensibility

About SOA Extensibility ... 14-1
Purpose of Documentation .. 14-1

Extensibility Tasks .. 14-2
Extensibility Tasks .. 14-2
Installing Oracle Weblogic Server .. 14-2
Installing Oracle JDeveloper.. 14-3
Installing Oracle Application Runtime .. 14-4
Installing Oracle SOA Suite ... 14-4
Creating SOA Metadata Service Schemas ... 14-5
Updating JDeveloper for Latest SOA Composite Editor .. 14-6
Creating WebLogic Domain with SOA Products... 14-7
Creating and Updating Sample SOA Application Using Network Integrity Web Service . 14-8

x

Starting and Stopping SOA Servers ... 14-9
Building and Deploying the SOA Application ... 14-10
Testing Sample SOA application .. 14-10

Testing Network Integrity SOA Application Using EM .. 14-11
Testing Network Integrity SOA Application Using soa-infra... 14-11
Testing Network Integrity SOA Application Using SOAP UI Tool 14-11

15 Localizing Network Integrity

Software Requirements.. 15-1
Setting the Language Preference in Internet Explorer ... 15-2
Determining the Locale ID .. 15-2
Localizing Network Integrity.. 15-3

About the Localization Pack.. 15-3
Creating the Localization Pack.. 15-3
Deploying the Cartridge Containing the Localized Files.. 15-6
Testing the Network Integrity Localization .. 15-6

Localizing Network Integrity Help ... 15-6
About Network Integrity Help .. 15-6

About the Help Files.. 15-7
Localizing the Network Integrity Help Files .. 15-7

Extracting the Help Files... 15-8
Translating the Help Files... 15-8
Regenerating the Search Index File ... 15-10
Creating the Localized Help JAR File ... 15-11
Configuring the Oracle Help File .. 15-11

Deploying the Localized Help System... 15-14
Testing the Network Integrity Help Localization .. 15-14

A Network Integrity Plug-in Validation Error Messages

Error Message Classifications and Conditions.. A-1
Design Studio Logging .. A-8

xi

Preface

This guide explains how to extend Oracle Communications Network Integrity through
standard Java practices using Oracle Communications Design Studio, which is an
Eclipse-based integrated development environment. This guide includes references to
both applications, and often directs the reader to see the Design Studio Help and the
Network Integrity Help for instructions on how to perform specific tasks.

This guide should be read after reading Oracle Communications Network Integrity
Concepts, because this guide assumes that the reader has a conceptual understanding
of Network Integrity. This guide should be read from start to finish because the
information presented in a chapter often builds upon information presented in a
preceding chapter.

This guide includes examples of typical development code used in given situations.
The guidelines and examples may not be applicable in every situation.

Audience
This guide is intended for developers who implement code to extend Network
Integrity. The developers should have a good working knowledge of XML and Java
development and, in particular, JDO, standard Java practices, and J2EE principles.

You should read Oracle Communications Network Integrity Concepts before reading this
guide.

You should have a good working knowledge of Design Studio.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Document Revision History
The following table lists the revision history for this guide:

xii

Version Date Description

E66034-01 May 2016 Initial release.

1

Using Design Studio to Extend Network Integrity 1-1

1Using Design Studio to Extend Network
Integrity

This chapter provides information on Oracle Communications Design Studio, an
Eclipse-based integration development environment. Design Studio comes with
features specific to Oracle Communications Network Integrity that enable you to
extend Network Integrity.

This chapter contains the following sections:

■ Installing Design Studio

■ About Design Studio Perspectives

■ About Design Studio Views

■ About Projects

■ Working with Projects

■ About Specifications

■ Working with Specifications

■ About Source Control

■ Working with Source Control for Network Integrity

■ Tips and Tricks

Installing Design Studio
Use Design Studio to extend Oracle products. Different features are available for the
different Oracle features, and each feature provides JAR files that are unique to the
product.

See Design Studio Installation Guide for information about installing Design Studio and
the Design Studio for Network Integrity feature.

Configuring Design Studio for Network Integrity
Configuring Design Studio for Network Integrity requires:

■ Configuring Network Integrity Preferences

■ Network Integrity Project Dependencies

■ Configuring Data Dictionary Preference Settings

About Design Studio Perspectives

1-2 Network Integrity Developer's Guide

Configuring Network Integrity Preferences
Configuring Network Integrity preferences in Design Studio includes specifying a
default cartridge package name for all created cartridge projects and specifying the
default MIB directory.

To configure Network Integrity preferences, see the Design Studio Modeling Network
Integrity Help.

Network Integrity Project Dependencies
All Network Integrity cartridge projects have dependencies on several other Network
Integrity cartridge projects. Before creating a new Network Integrity cartridge project
or importing productized Network Integrity cartridge projects, import the following
projects into Design Studio:

■ ora_uim_model

■ ora_uim_mds

■ ora_ni_uim_ocim

■ NetworkIntegritySDK: this cartridge project contains common software
components and libraries required for creating and extending Network Integrity
projects.

These projects are available in the Oracle Communications Network Integrity 7.3.2
Software Developer Kit (included with the Oracle Communications Network Integrity
7.3.2 software) on the Oracle software delivery website:

https://edelivery.oracle.com

See the Design Studio Help for information about importing projects into Design
Studio.

Configuring Data Dictionary Preference Settings
You configure data dictionary preference settings to specify the horizontal depth to
which any data dictionary tree can expand.

To configure data dictionary preferences, see the Design Studio Help.

About Design Studio Perspectives
Perspectives define your Workbench layout and provide different functionality for
working with different types of resources. Several perspectives are available within
Design Studio. The Java, Studio Design, and Studio Environment perspectives are
commonly used when extending Network Integrity.

For instructions on how to open a perspective, see the Design Studio Help.

About Design Studio Views
Within a given perspective, views further define the Workbench layout and provide
different presentations of resources. Several views are available within Design Studio,
and the available views are dependent upon the perspective.

For instructions on how to open a view in Design Studio, see the Design Studio Help.

About Projects

Using Design Studio to Extend Network Integrity 1-3

Studio Design Perspective Views
When extending Network Integrity in the Studio Design perspective, you commonly
use the Studio Projects view, Solutions view, and the Package Explorer view.

See the Design Studio Help for more information about perspective views.

Java Perspective Views
When extending Network Integrity in the Java perspective, you commonly use the
Navigator view, Package Explorer view, and Error Log view.

About Projects
Projects contain Network Integrity artifacts that you create and define in Design
Studio, such as custom actions and processors.

Everything you create in Design Studio resides in a project. The name you choose for
the project becomes the name of the integrity archive (IAR) file, and everything you
create within that project is automatically placed in the IAR file.

When extending Network Integrity, you can create one or many projects, depending
on how you choose to organize the extensions.

Network Integrity projects are packaged extensions to the core application. They
represent the necessary components needed for the following:

■ Discovering network elements, either from a Network Management System
(NMS) or through direct contact with the Network Element (NE)

■ Importing network elements from an inventory system

■ Assimilating network data using business logic

■ Detecting discrepancies between the network and the inventory system

■ Resolving discrepancies, either within the network, or in the inventory system

Network Integrity projects provide the ability to support new functionality as business
cases arise, such as:

■ New protocols, such as Command Line Interface (CLI) and Transport Layer
Security (TLS)

■ New standards, such as a new RFC

■ New vendor devices, such as Juniper, Huawei

■ New operational or business support systems

See the Design Studio Help for more information about creating projects.

About the Project Architecture
A Network Integrity cartridge project typically contains the following entities:

■ Zero or more actions:

– Zero or more discovery actions

* At least one discovery, file transfer, or file parser processor

– Zero or more assimilation actions

* At least one assimilation processor

Working with Projects

1-4 Network Integrity Developer's Guide

– Zero or more import actions

* At least one import, file transfer, or file parser processor

– Zero or more discrepancy detection actions

* At least one discrepancy detection processor

– Zero or more discrepancy resolution actions

* At least one discrepancy resolution processor

■ Zero or more model collections

■ Zero or more specifications

■ Zero or more scan parameter groups

Alternatively, your project can contain address handler entities. A project containing
address handler entities cannot contain any other entity types. This allows for a clear
segregation of responsibility. So, for example, you create a project called Address
Handlers where different address handler types exist (for example: IP Address, URL,
and so on) and simply reference those from within their discovery and import
cartridge projects.

Projects can also reuse actions from other projects to extend behavior. For example, a
Juniper-specific SNMP cartridge project (that is, containing Juniper MIBs) could
extend a generic SNMP cartridge project (MIB II only).

After all components are defined, projects are packaged into an IAR file and can be
deployed to a running Network Integrity system as a cartridge.

See "Building and Packaging Projects" and "Deploying and Undeploying Cartridges"
for more information.

After a cartridge is deployed, it is available to Network Integrity.

To determine whether a cartridge is deployed in Network Integrity:

1. From the Network Integrity main menu, click Help, and then select About.

The Network Integrity components dialog appears.

2. Select the Components tab.

The Network Integrity product version is displayed with the versions of all
cartridges deployed in Network Integrity.

Working with Projects
When working with projects, see the following:

■ Building and Packaging Projects

■ Deploying and Undeploying Cartridges

■ Debugging and Testing Cartridges

■ Sealing and Unsealing Projects

■ Exporting and Importing Cartridges

Building and Packaging Projects
Design Studio packages project information into cartridges that can be deployed into
Network Integrity.

Working with Projects

Using Design Studio to Extend Network Integrity 1-5

Projects can be developed by customers, systems integrators, Professional Services
staff, and third-party vendors.

About the Project Build Order
When Design Studio builds a Network Integrity project, the build process takes place
in the following order:

■ Generation of Java source code: Generators are invoked to generate Java source
codes from Network Integrity models, EJB descriptor files, XML schemas for the
SNMP processor, and the Meta Model XML file.

■ Java Source Compilation: Eclipse compiles the Java source (including generated
Java source and implemented Java source) into classes.

■ Building: Builders are invoked to build UI hints, the Data Dictionary, and
specifications.

■ Validation: Validators are invoked to validate Network Integrity model entities.
Validation errors are raised and an error marker displayed on the related entities
in Design Studio. If any validation errors are raised, the packaging stage does not
take place.

■ Packaging: Packagers are invoked to package the cartridge deployment model
XML file, the UI hints Metadata Archive (MAR) file, specification Data Access
Object (DAO) files, dependent JAR files, the manifest file for JAR files library for
EJB, and the final IAR file for the Network Integrity cartridge.

About Build Artifacts
Design Studio generates various build artifacts for a Network Integrity project after a
successful build. The generated directories are listed in the following order in the
directory structure:

■ Out: This directory contains all the compiled Java classes.

■ Generated: Contains the following build artifacts:

– Generated Java sources for actions and processors. If the project is sealed
without Java source, the JAR file is displayed instead.

– SNMP schema artifacts for the SNMP processor.

■ cartridgeBuild: contains various build artifacts for the Network Integrity
cartridge.

■ cartridgeBin: contains the final packaged Network Integrity cartridge as an IAR
file which can be deployed to the Network Integrity server through the cartridge
management web service (CMWS).

The following directories comprise the normal directory structure for a Network
Integrity project. Do not modify these directories:

■ dataDictionary: contains the Data dictionary

■ doc: contains documents

■ lib: Copy any third party JAR library into this directory.

Switch to the Packager Explorer view, and modify the Java class path to include
any JAR files that have been added to this directory.

Select the project, and click F5 to refresh the project in Design Studio to get the
modified Java class path affected.

Working with Projects

1-6 Network Integrity Developer's Guide

■ model: contains all Network Integrity models

■ out: output directory for compiled Java classes

■ resources: contains resources related to Network Integrity. This directory is empty
by default

■ src: the Java source directory.

Packaging Projects
Packaging a project is the last stage in building a cartridge. The cartridge is packaged
as an IAR file, which can be deployed to the Network Integrity server through the
CMWS.

The IAR file contains the following build artifacts:

IAR root/
 <cartridge-ejb-jar>.jar - This jar contains manifest.mf file to
refer to the jars under cartridgeLib/<cartridgeName>.
 oracle.communications.platform.entity.impl.SpecificationDAO

oracle.communications.platform.entity.impl.CharacteristicSpecUsageDAO

oracle.communications.platform.entity.impl.CharacteristicSpecificationDAO
 <cartridgeName_A>.mar
 <cartridgeName_B>.mar
 …
 <cartridgeName_N>.mar - Multiple MAR files if this cartridge is
reusing Actions from other cartridges.
 <Action_Name_A>_MetaModel.xml
 <Action_Name_B>_MetaModel.xml
 …
 <Action_Name_N>_MetaModel.xml - Meta Model XML file per Action.
 /META-INF/
 cartridge.xml
 manifest.xml
 /cartridgeLib/<cartridgeName>/*.jar (any dependent jar files used
by this cartridge, if available)

If a project contains only abstract entities, no IAR file is generated.

Deploying and Undeploying Cartridges
Network Integrity cartridges can be directly deployed or undeployed from Design
Studio.

Use the Oracle Cartridge Deployer to deploy or undeploy any productized Network
Integrity cartridge into a production system.

Note: Before deploying or undeploying cartridges, ensure that:

■ You are logged out of the WebLogic Server Administration
Console.

■ No one else is deploying or undeploying cartridges on the same
server.

■ Network Integrity is not running a scan that makes use of the
cartridge.

Working with Projects

Using Design Studio to Extend Network Integrity 1-7

Creating a Design Studio Environment Project
Design Studio projects are collections of folders and files that represent the content you
are working on. They are used for builds, version management, sharing, and resource
organization. Projects map to directories in the file system. When you create a project,
you specify a location for it in the file system. Design Studio uses the files and folders
in a project to build a cartridge that you can import into Network Integrity. See
"Building and Packaging Projects" for more information. To deploy or undeploy a
cartridge from Design Studio, you must first create a Studio Environment Project.
When you create a project, you specify its name and location for its corresponding file
structure.

See the Design Studio Help for more information on creating an environment project.

Creating a Design Studio Environment For Network Integrity
Having created a Studio Environment Project, you then create the environment. An
environment represents a connection to a particular server.

See the Design Studio Modeling Network Integrity Help for more information about
creating Design Studio environments.

When creating and working with your environment, consider the following:

■ When specifying the name of your environment, incorporate the name of the
server.

■ If you are using SSL, the CMWS URL must be specified with https. Also, you must
configure the Environment editor SSL tab with the location of the keystore file.

■ Configure the Environment editor Properties tab for the following properties:

– wladmin.host.name: The host name or IP address where the Oracle WebLogic
Administration Server is running.

– wladmin.host.port: The port number on which the Oracle WebLogic
Administration Server is running.

– wladmin.server.name: The Oracle WebLogic Administration Server name.

Deploying a Cartridge
The Design Studio Network Integrity feature provides the ability to deploy a cartridge
into Network Integrity. For instructions on how to deploy a cartridge, see the Design
Studio Help.

Undeploying a Cartridge
The Design Studio Network Integrity feature provides the ability to undeploy a
cartridge into Network Integrity. For instructions on how to undeploy a cartridge, see
the Design Studio Help.

When a cartridge is undeployed, Network Integrity removes all the scan
configurations and scan results associated with the cartridge and all the specifications
associated with the cartridge (except those specifications still in use by other
cartridges).

If a cartridge has a dependency on other deployed cartridges, the cartridge cannot be
undeployed. For example, you cannot undeploy the Address_Handlers cartridge if the
cartridges using Address_Handlers are still deployed in Network Integrity. You must
undeploy all dependent cartridges from Network Integrity before Address_Handlers
can be undeployed.

Working with Projects

1-8 Network Integrity Developer's Guide

The Network Integrity CMWS Adapter automatically performs dependency checks at
deployment or undeployment time and returns error messages if deployment or
undeployment cannot be performed.

Redeploying a Cartridge
The Design Studio Network Integrity feature provides the ability to deploy a cartridge
into Network Integrity, including previously deployed cartridges. For instructions on
how to deploy a cartridge, see the Design Studio Help.

You can redeploy a Network Integrity cartridge using Design Studio only if the
version of the redeployed cartridge (build number) is equal to, or greater than, the
version of the deployed cartridge. For example, my_cartridge is already deployed with
a build number of 28 (b28). If my_cartridge is up-versioned to b30, you can deploy it
without undeploying my_cartridge (b28) and deploying it again.

Redeployment removes the deployed cartridge and deploys the new cartridge instead.
Network Integrity does not allow more than one version of the same cartridge to be
deployed at the same time.

Debugging and Testing Cartridges
This section provides information about debugging and testing cartridges in Network
Integrity.

Starting the WebLogic Server in Test Mode
To debug a deployed Network Integrity cartridge, start the WebLogic Managed Server
in debug mode (not the Administration Server).

Use the following procedure to start the WebLogic Managed Server in debug mode:

1. Stop both the Administration Server and Managed Server if they are still running.

2. Go to directory <WEBLOGIC_HOME>/user_projects/domains/<DOMAIN>/bin.

3. Copy the existing startWebLogic.sh script to a new script file, startWebLogic_
Debug.sh.

4. Use a text editor to open startWebLogic_Debug.sh.

5. After the line ${JAVA_HOME}/bin/java ${JAVA_VM} –version, add the following
two lines:

echo "Launching Java with debug port: 10171"

JAVA_OPTIONS="-Xdebug -Djava.compiler=NONE -Xnoagent -Xrunjdwp:transport=dt_
socket,server=y,address=10171,suspend=n $JAVA_OPTIONS"

The debug port does not have to be 10171 if the port specified is available.

6. Save this change.

7. Copy the existing startManagedWebLogic.sh script to a new script file,
startManagedWebLogic_Debug.sh.

8. Use a text editor to open startManagedWebLogic_Debug.sh.

9. Find the two lines that are referring to startWebLogic.sh.

10. Replace startWebLogic.sh with startWeblogic_Debug.sh. This change is to start
the WebLogic Managed Server in debug mode by invoking the startWebLogic_
Debug.sh script.

Working with Projects

Using Design Studio to Extend Network Integrity 1-9

11. Save this change.

12. Start the Administration Server by running the usual start-up script,
startWebLogic.sh.

13. Start the Managed Server in debug mode by running the new script,
startManagedWebLogic_Debug.sh.

Configuring Remote Debugger in Design Studio
The Managed Server is now in debug mode. The next step is to configure the debugger
in Eclipse to start remote-debugging the Network Integrity cartridges.

1. From the Design Studio main menu, select Run then Debug Configurations, then
open the Debug Configurations dialog to switch Design Studio to the Java
perspective.

2. From the left panel, select Remote Java Application.

3. Click New to create a remote Java application debug configuration.

4. Enter a name for this new debug configuration.

5. In the Connect tab, click the Browse.

6. Select an available project that contains the cartridge that to debug.

7. Ensure that the default setting for Connection Type is Standard (Socket Attach).

8. Enter the host IP address where the Network Integrity system (WebLogic
Managed Server) is running.

9. Enter the debug port, which should match the debug port entered in "Starting the
WebLogic Server in Test Mode".

10. Keep the default settings for the rest of the tab.

11. Click Apply to save this new remote Java application debug configuration.

Now the developer can start to debug the Network Integrity cartridge (which should
be already deployed on the Network Integrity system) from Design Studio by picking
up the debug configuration just created. There is no difference from debugging a
normal local Java application in Eclipse. We can put a break point in the cartridge Java
source and start debugging from there. For instructions on how to debug a Java
program in Eclipse, see the Eclipse Help topics Java development user guide, Getting
Started, Basic tutorial, and Debugging your programs.

Sealing and Unsealing Projects
Some Network Integrity production cartridges are distributed as sealed projects.
Unsealing Network Integrity production cartridges violates the license, support, and
maintenance agreements with Oracle.

You may encounter build problems if you unseal a sealed cartridge in your workspace.
The error logs may indicate that some dependent JAR files are missing from the
workspace. The main cause for this is that the sealed cartridge may not have included
any source code, and that a Clean operation may delete the JAR file, and then is not
able to recreate it. The solution is to delete the unsealed cartridge, and re-import the
sealed cartridge.

See the Design Studio Help for more information about sealing and unsealing
cartridges.

Working with Projects

1-10 Network Integrity Developer's Guide

Exporting and Importing Cartridges
This section provides an overview of exporting and importing Network Integrity
cartridges.

Cartridge projects can be exported to archive files. This allows the cartridge projects to
be distributed as a single or a set of archive files, rather than as the many files of a
cartridge project. Once a project is exported to an archive file, the archive file can be
distributed and then imported into a different Design Studio or Eclipse workspace.

Before exporting a cartridge project, you should decide whether you want to include
your source code in the archive file. Cartridges can be extended without distributing
source code. However, if you want to allow the user to modify the actual distributed
cartridge, then you must distribute the source code.

Cartridges can also be exported in both sealed and unsealed states. If you are
distributing a cartridge without source code, Oracle recommends you seal the
cartridge before exporting it. This prevents the user from changing the cartridge model
and therefore breaking the cartridge.

See the Design Studio Help for more information about sealing and unsealing
cartridges.

Network Integrity production cartridges are distributed as sealed cartridges.
Unsealing Network Integrity production cartridges violates the license, support, and
maintenance agreements with Oracle.

See the following:

■ Exporting a Cartridge with Source Code

■ Exporting a Cartridge Without Source Code

Exporting a Cartridge with Source Code
To export a cartridge project containing source code:

1. From the Design Studio File menu, select Export.

The Export Select dialog appears.

2. From the list of export destinations, expand the General node and select Archive
File.

3. Click Next.

The Export Archive file dialog appears.

4. Enter a destination archive file:

a. Select the projects that you want to include in the archive.

b. Specify the name and location of the archive file.

c. In the Options section, accept the defaults.

d. Click Finish to create an archive file containing the exported projects at the
specified location.

Exporting a Cartridge Without Source Code
Before exporting a cartridge project without source code, the project's classpath must
be modified.

See the following:

■ Modifying the Classpath

Working with Projects

Using Design Studio to Extend Network Integrity 1-11

■ Exporting the Cartridge

Modifying the Classpath
To modify the classpath:

1. Open the Navigator view.

2. Use the Navigator view to rename the projects output directory out, to classes.

3. From the Design Studio Window menu, select Show View, and select the Package
Explorer view.

4. Right-click the project and select Properties.

The Properties dialog appears.

5. From the list of properties, select Java Build Path.

The Properties dialog box displays the Java Build Path information.

6. Select the Source tab.

The Source tab displays the folders on the build path for the selected project.

7. Remove the source directories that are part of the classpath:

a. Select the source folders on the build path.

b. Click Remove.

8. Select the Libraries tab, and click Add Class Folder to add the class folder classes
to the classpath.

Figure 1–1 shows how the class folder is added to the classpath.

Working with Projects

1-12 Network Integrity Developer's Guide

Figure 1–1 Adding the Class Folder

9. Select the Order and Export tab, and check the box corresponding to the classes
class folder.

10. Click OK to complete the modification of the project classpath.

After changing the classpath, if you wish to continue development on the
cartridge, you should restore the classpath to its original configuration.

Exporting the Cartridge
To export the cartridge project:

1. From the Design Studio File menu, select Export.

The Export Select dialog appears.

2. From the list of export destinations, expand the General node and select Archive
File.

3. Click Next.

The Export Archive file dialog appears.

4. Enter a destination archive file:

a. Select the projects that you want to include in the archive.

b. For the projects for which you are not including source code, expand the
project tree and deselect the source directories which you previously removed
from the classpath.

c. Specify the name and location of the archive file.

Working with Specifications

Using Design Studio to Extend Network Integrity 1-13

d. In the Options section, accept the defaults.

e. Click Finish to create an archive file containing the exported projects at the
specified location.

About Specifications
Network Integrity cartridges persist their results to persistent object modeling service
(POMS) in the Oracle Communications Information Model. The Information Model
defines a base set of entities and their relationships. Use specifications to extend the
Information Model. Most cartridges must extend the Information Model entities and
therefore must make use of specifications.

Scan parameter groups are a special type of specification. A specification used for
model extension is associated with a single Information Model entity type. Multiple
specification types can be defined for each Information Model entity type. The
elements that comprise the specification are called characteristics.

Specifications can be shared between cartridge projects. Specifications created in a
cartridge project are automatically related to all actions in the same cartridge project.
You cannot add specifications to a model collection in the same cartridge project, but
you can make the cartridge project containing the model collection dependent on
another project that contains the specifications you want to add. Network Integrity
ensures that when multiple cartridges are deployed together, their shared
specifications are compatible.

When cartridge code persist information to POMS, it creates Information Model
entities and usually a specific type of specification is attached to each Information
Model entity to hold additional attributes. Within the Network Integrity UI, an
Information Model entity and its specification are represented as a single object.

All action types must define which specification types (and by extension, which
Information Model entities) they use by creating specifications in the cartridge project
or adding specifications to the model collection. The Model tab defines the list of
model collections on the action. Design Studio generates special classes for
specifications, called specification helpers.

Characteristics on specifications appear in the Network Integrity UI as displayed
information. Specification characteristics are always read-only in the Network
Integrity UI. By configuring characteristics on specification, the following read-only
fields can appear in the Network Integrity UI:

■ Label: Specifies the label that displays in the UI

■ Tool Tip: Specifies a short message when the pointer hovers over the field

Working with Specifications
Working with specifications requires the following high-level steps:

1. Add specifications to your cartridge project:

a. Create or copy specifications and configure them to collect the information
you want.

b. Add existing specifications from dependent cartridge projects to the model
collection.

2. Configure characteristics on new and copied specifications to appear in the
Network Integrity UI.

About Source Control

1-14 Network Integrity Developer's Guide

To stop using a specification, remove it from the model collection or delete it from the
cartridge project.

See the Design Studio Modeling Network Integrity Help for more information about
specifications.

About Model Collections
Use model collections to add specifications that exist in other cartridge projects.
Specifications from other cartridge projects inherit any changes and configurations
you make to them in their original cartridge project.

See the Design Studio Modeling Network Integrity Help for more information about
creating and using model collections.

About Specification Helpers
Design Studio generates specification helper classes to the following package:

■ Cartridge Default Package.Model Collection Name.Model Collection Name

The names of the specification helpers are based on the names of the specifications. For
example if the name of the specification is deviceGeneric, then the name of the
specification helper is DeviceGeneric.

Specification helpers have getter and setter methods for each element in the
specification. The specification helper also has a constructor which takes a POMS
entity interface object. A code sample which illustrates the use of a specification helper
is shown below. In the example, the DeviceGeneric class is the specification helper.

// create a Logical Device entity which uses
// the Device Generic specification.
LogicalDevice logicalDevice = PersistenceHelper.makeEntity(LogicalDevice.class);
DeviceGeneric logicalDeviceExt = new DeviceGeneric(logicalDevice);

// Set static attribute values to LogicalDevice.
logicalDevice.setId(makeLDevID(scanResponse));
logicalDevice.setName(rfc1213Mib.getSysName());
logicalDevice.setDescription(rfc1213Mib.getSysDescr());

// Set dynamic attributes/characteristics.
logicalDeviceExt.setMgmtIPAddress(scanResponse.getManagementIP());
logicalDeviceExt.setSysObjectId(rfc1213Mib.getSysObjectID());

About Source Control
See Design Studio Developer’s Guide for information about source control.

Working with Source Control for Network Integrity
When developing cartridge projects for Network Integrity, you may store your work in
various source control systems. The eclipse platform, upon which Design Studio is
based, provides support for integrating with source control systems. Plug-ins are
available for most common source control systems. The exact behavior of Design
Studio when used in an environment where the files are backed by a source control
system depends on the source control system and the source control Team plug-in that
the developer is using.

Working with Source Control for Network Integrity

Using Design Studio to Extend Network Integrity 1-15

This section describes which files must be source controlled and which files must be
writable to continue working.

Table 1–1 describes the structure of the directories and the files in a Design Studio for
Network Integrity project and recommends how they should be handled with respect
to a source control system.

Table 1–1 Source Control Handling for Various Files and Directories

Directory or File Description Source Control Handling

ProjectDir/ Project’s top level directory. Under source control. All files directly under
this directory must be source controlled.

ProjectDir/cartridgeBin/ Cartridge bin directory is where the
deployable IAR files are located.

This directory should be source controlled
but the contents should not.

ProjectDir/cartridgeBuild/ Cartridge build directory contains
files which are outputs of the
cartridge build process.

This directory should be source controlled
but the contents should not.

ProjectDir/dataDictionary/ This directory contains the files where
the data dictionary information is
stored.

This directory and its contents should be
source controlled.

ProjectDir/doc/ This directory contains
documentation files.

This directory and its contents should be
source controlled.

ProjectDir/generated/ This directory contains generated
artifacts of the build process.

This directory should be source controlled.
Except for the src sub-directory, the contents
of this directory should not be source
controlled.

ProjectDir/generated/src/ This directory contains generated
artifacts of the build process.

This directory should be source controlled,
but it contents should not.

ProjectDir/integrityLib/ This directory contains jars that are
part of the Network Integrity server
Enterprise Archive (EAR). These jars
are in the project’s classpath.

This directory should be source controlled.
The files in this directory should not be
source controlled.

ProjectDir/integrityLib/
packaged

This directory contains jars that are
created by Design Studio for Network
Integrity and which are packaged into
the cartridge IAR file. The jars are
added to the Network Integrity EAR
when the cartridge is deployed. These
jars are in the project's classpath.

This directory should be source controlled.
The files in this directory should not be
source controlled.

ProjectDir/lib/ This directory contains jars and other
files that are not part of the Network
Integrity server EAR. Some of these
files are part of the project classpath.

This directory should be source controlled.
The mds.mar file is output to this directory.
The mds.mar file should not be source
controlled. The user may also want to source
control other files in this directory.

ProjectDir/mdsArtifacts/ This directory contains files that are
both input and outputs of the UI
Hints infrastructure.

This directory should be source controlled.
The following files under this directory
should also be source controlled:

■ MDSAvailablePagePanels.xml

■ MDSAvailablePagePanels.xsd

■ MDSMetaData.xml

The remaining files in this directory should
not be source controlled.

Tips and Tricks

1-16 Network Integrity Developer's Guide

Design Studio for Network Integrity assumes that all files and directories of a
cartridge project are writable. Some source control systems and team plug-ins
automatically manage the files and directories to make them writable as the software
needs to write to them. If this is not the case for your chosen source control/Team
plug-in combination, then you should manually ensure that this is the case before
working with a source controlled project.

Tips and Tricks
This section provides tips and tricks for working with processors in Design Studio and
compiling and building Network Integrity cartridges.

About Java Errors in the Generated Controller Class
Compile errors in the generated Controller class of an action usually mean that there
are errors in the configuration of the processor table of that action. Look for a Design
Studio Error on an action or processor involved in the processor chain. Correct the
error, then save all files and perform a clean operation to regenerate all generated files.

Renaming or Deleting Actions and Processors
When renaming an action or a processor, Design Studio only renames and refactors the
generated Java source code. Likewise, when deleting an action or a processor, Design
Studio only deletes the generated Java source code. These changes result in errors
remaining in the processor implementation code and they must be corrected manually.

Adding External Libraries to a Java Build Path
To add an external library to the project for use by a processor, you must first copy the
JAR file into the lib directory of the cartridge project. Then, you must add an entry for
this library into the project’s Java Build Path. This can only be done in the Package
Explorer or the Navigator view.

From either view, right-click the project and select Properties. In the Properties dialog,
select Java Build Path in the left side, and select the Libraries tab. Now you can select
Add External Jars to add your libraries.

About “Missing Required Library” Errors for External Libraries
You have copied the required library JAR files into the lib directory of your cartridge
project, and you have added these libraries into your project’s Java Build Path. If you

ProjectDir/model/ This directory contains files that are
used to persist the information about
cartridges, actions, processors, model
collections and address handlers.

This directory and its contents should be
source controlled.

ProjectDir/out/ This directory contains output classes. This directory should not be source
controlled.

ProjectDir/resources/ This directory is not used. This directory does not need to be source
controlled.

ProjectDir/src/ This directory contains the user
supplied code for the cartridge.

This directory and its contents should be
source controlled.

Table 1–1 (Cont.) Source Control Handling for Various Files and Directories

Directory or File Description Source Control Handling

Tips and Tricks

Using Design Studio to Extend Network Integrity 1-17

are still getting missing required library errors, refresh your cartridge project to cause
Design Studio to notice the added library.

To refresh your project, go to the menu Windows, then Show View, then open
Package Explorer, then right-click your project, and select Refresh. Follow this by
cleaning and building the project.

Error Marker on Cartridge but not on any Entities
If there is an error marker on the cartridge itself, but there are no error marker on any
cartridge entities (actions, processors, Model Collections, and so on), then try checking
the cartridge project using the Package Explorer view or the Navigator view.
Sometimes the error markers are on some generated artifacts instead.

If there are no error markers on anything else, then try a Refresh and Rebuild
operation. Go into Package Explorer or Navigator view, right-click the top-level
project, and select Refresh. Then, choose the menu Project, then Clean, and choose to
clean and rebuild all projects.

Tips and Tricks

1-18 Network Integrity Developer's Guide

2

Working with Actions 2-1

2Working with Actions

This chapter provides information about Oracle Communications Network Integrity
actions, result categories, and discrepancies.

This chapter contains the following sections:

■ About Actions

■ About Import Actions

■ About Discovery Actions

■ About Assimilation Actions

■ About Discrepancy Detection Actions

■ About Discrepancy Resolution Actions

About Actions
Actions are entities that represent a particular software function that a deployed
cartridge performs at run time. A cartridge project usually contains multiple actions.

At run time, when an action is deployed to Network Integrity (by deploying a
Network Integrity cartridge from Oracle Communications Design Studio, or by using
the Oracle Cartridge Deployer), an action is implemented as a J2EE Message Driven
Bean (MDB).

Actions are of different types:

■ Import action: Used for importing data, typically from an inventory system, and
persisting the inventory data in the Results Model using POMS entity managers.

■ Discovery action: Used for discovering data, typically from a network, and
persisting the discovered data in the Results Model using POMS entity managers.

■ Assimilation action: Used for post-processing previously discovered data, and
persisting the data in the Results Model using POMS entity managers. The
assimilation action cannot produce import results.

■ Discrepancy detection action: Used for finding discrepancies between discovered
entities and imported entities.

■ Discrepancy resolution action: Used for fixing discrepancies in an external
system, or a network.

See the Design Studio Modeling Network Integrity Help for more information about
creating actions.

About Actions

2-2 Network Integrity Developer's Guide

About Actions and Processors
An action performs a certain function that is supported by a Network Integrity project.
To implement this function, a processor is introduced to implement an atomic
sub-function, which is part of the functions performed by the action. For example, an
SNMP discovery action has at least one processor that performs SNMP polling on
network devices and another processor that models the discovered raw SNMP data
into the Results Model and persists it using POMS entity managers.

An action contains one or more processors. Each processor is responsible for an atomic
function. By chaining the processors inside an action, the action can perform a
complex function, such as discovering a network, importing an inventory system,
assimilating discovered data, or detecting and resolving discrepancies.

When an action is invoked, the processors are executed in the sequence they were
placed inside the action. The code-generated action controller controls execution.

See "Working with Processors" for more information about processors.

About Action within Actions
You can add an entire action as a processor in an action. If the action you want to add
belongs to another cartridge project, you must make your project dependent on the
one containing the action you want to add.

You cannot modify the order in which the processors from an imported action are run,
but you can place new processors in between its processors.

For example, Table 2–1 shows two actions.

The full representation of Action B in Table 2–1 is:

1. Processor B1

2. Action A:

a. Processor A1

b. Processor A2

c. Processor A3

3. Processor B2

In this example, action B actually contains five processors. The sequence of the
processors from action A cannot be changed in action B. However, new processors can
be inserted between the processors from action A.

For example, the Cisco SNMP cartridge contains a discovery action, which extends the
discovery action from the MIB-II SNMP cartridge.

Figure 2–1 shows the processors contained inside the Discover Generic Cisco SNMP
action (from the Cisco SNMP Cartridge).

Table 2–1 Example Action Used as a Processor in Another Action

Action A Action B

Action A consists of the following processors:

1. Processor A1

2. Processor A2

3. Processor A3

Action B consists of the following processors:

1. Processor B1

2. Action A

3. Processor B2

About Actions

Working with Actions 2-3

Figure 2–1 Discover Generic Cisco Action Processors

This discovery action contains Discover MIB II SNMP as the imported action. By
importing the Discover MIB II SNMP action, the Discover Generic Cisco action
automatically gets the MIB II discovery functions (logical device discovery) provided
by the productized MIB-II SNMP cartridge.

In addition, the Discover Generic Cisco action discovers physical devices (through
Cisco SNMP Physical Collector processor and Cisco SNMP Physical Modeler
processor), modeling the logical side (through the Cisco SNMP Logical Collector
processor and Cisco SNMP Logical Modeler processor).

About the Generated Action MDB and Controller
Every action becomes a J2EE Message Driven Bean (MDB) at run time. The controller
controls the execution sequence of the processors inside an action.

Both the Action MDB and controller classes are code-generated. No further Java
coding is necessary for either the MDB or the controller class. These two classes are
transparent to a Network Integrity cartridge developer using Design Studio. At design
time, the cartridge developer should not have to implement any Java code for an
action because all required Java implementations for actions are code-generated.

The generated Action MDB and controller classes can be found at the following
directory:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_Package\Action_
Type\Action_Implementation_Prefix

where the elements on the path are defined as follows:

■ Studio_Workspace: Eclipse Workspace root

■ NI_Project_Root: Network Integrity project root

■ Project_Default_Package: The default package configured in the Project editor

■ Action_Type: Select from the available action types:

– assimilationactions

– detectionactions

– discoveryactions

– importactions

– resolutionactions

■ Action_Implementation_Prefix: action implementation prefix in lowercase.

The generated MDB class is named: ActionNameMessageDrivenBean.java.

The generated controller class is named
ActionNameMessageDrivenBeanController.java.

About Actions

2-4 Network Integrity Developer's Guide

During design time, compilation errors or warnings against this Java class might
occur. These errors and warnings are cleared after properly implementing and
configuring the action (and its processors).

Figure 2–2 shows the directory that contains the generated MDB and controller classes.

Figure 2–2 Generated MDB and Controller Class Directory

About Scan Parameter Groups
Scan parameter groups are a special type of specification that adds fields to the
Network Integrity UI. You can add fields to the Create Scan page, allowing the
Network Integrity user to pass scan parameter values to run-time scans. You can add
fields to the Scan Details page, displaying the configured scan parameter values on
configured scans.

Add and configure characteristics on scan parameter groups to create input fields for
scan parameters in the Network Integrity UI.

You can add scan parameter groups to the following types of actions:

■ Assimilation actions

■ Discovery actions

■ Import actions

About Actions

Working with Actions 2-5

See the Design Studio Modeling Network Integrity Help for more information about
creating and configuring scan parameter groups.

Extending the Create Scan Page
In Design Studio, you can configure characteristics on scan parameter groups to
appear as input fields on the Create Scan page of the Network Integrity UI. These
input fields allow the Network Integrity user to pass scan parameters to run-time
scans.

For example, if a network device requires a login and password for Network Integrity
to establish a connection, you can add input fields for the user name and password to
the Create Scan page. Network Integrity users can enter the user name and password
and save the values to the scan. Each scan run passes the user name and password
parameter values to the network device to establish a connection.

See the Design Studio Modeling Network Integrity Help for more information about
adding and configuring characteristics on scan parameter groups.

Figure 2–3 shows the Create Scans page. The Scan Action Parameters section lists all
the input fields defined by characteristics on scan parameter groups in Design Studio.

Figure 2–3 The Create Scans Page

About Actions

2-6 Network Integrity Developer's Guide

Extending the Scan Details Page
In Design Studio, you can configure characteristics on scan parameter groups to
appear as read-only fields on the Scan Details page of the Network Integrity UI. These
fields display the saved scan parameter values on the scan.

See the Design Studio Modeling Network Integrity Help for more information about
adding and configuring characteristics on scan parameter groups.

Figure 2–4 shows the Scan Details page.

Figure 2–4 The Scan Details Page

About Conditions
Design Studio sets conditions for processors used in action executions in Network
Integrity.

An action can contain conditions. By creating and applying conditions to processors, at
run time you can dynamically control which processors should be executed inside an
action based on the condition (whether true or false).

Conditions are implemented as a Java class that implements the condition interface.
Design Studio generates the code for the condition interface. You then implements the
condition interface.

Conditions can be applied to one or more processors. Conditions can be set to be either
true or false. One processor can also have multiple conditions applied. In this case, the
processor are executed if all the conditions are true

See the Design Studio Modeling Network Integrity Help for more information about
creating conditions and applying them to processors.

About Generated Classes and the Implementation Class
When a condition is configured for an action, Design Studio generates two classes:

■ Condition interface, which takes the name ConditionName_Implementation_
PrefixCondition.java

■ Request, which takes the name ConditionName_Implementation_PrefixRequest.java

The generated classes are available at:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_Package\Action_
Type\Action_Implementation_Prefix

About Actions

Working with Actions 2-7

The following is a sample generated condition interface which defines one method,
checkCondition. In this sample, ValidDeviceRequest is the generated request class for
the condition:

public interface ValidDeviceCondition {

 /**
 * @param context
 * @param request
 * @return @see boolean
 * @throws ProcessorException
 */
 public boolean checkCondition(DiscoveryProcessorContext context,
 ValidDeviceRequest request) throws ProcessorException;
}

Design Studio also generates the skeleton implementation class for this condition
interface. To open the Java editor and start the Java implementation, click the
Implementation Class link.

Adding Dependent Actions with Conditions as Processors
When you add an action from a dependent cartridge project, the action comes with its
conditions. The conditions cannot be removed from any processors to which they are
applied in the dependent cartridge project.

You can add and remove additional conditions to processors belonging to actions from
dependent cartridge projects.

By adding new conditions to dependent action processors, you can change whether an
imported processor is executed.

Creating Condition Examples
See the following for examples of setting conditions in Network Integrity:

■ Multiple Vendor SNMP Discovery

■ Multiple Protocol Discoveries

About Model Collections in Actions
Use model collections to gather specifications from other, dependent cartridges and
make them available to actions in the current cartridge project.

Adding a model collection to an action enables the generation of the Specification
Helper classes for specifications from other cartridge projects. These classes are by the
action for modeling the discovered data into the Oracle Communications Information
Model and persisting it using POMS entity managers.

If an action is imported into another action in a different cartridge project, the Network
Integrity packager uses the model collections to determine how to build the
specification DAO files so that all specifications (from both the imported action and
the current action) are included.

See "About Model Collections" for more information about model collections.

Note: This directory also contains generated action MDB and
controller classes.

About Actions

2-8 Network Integrity Developer's Guide

About For Each Processors
An action can contain a For Each processor. The action controller sets the execution
sequence of the processors based on the order in which the processors are configured.
Usually a processor is invoked only once, and when it has executed, the controller
invokes the next processor, until all processors in an action are invoked.

However, one or more processors may be executed repeatedly. For example, when
importing an inventory system, it is typical to first get a list of devices from the
inventory system, then go through the list of devices and import each device singly
into Network Integrity. In this example, the processor importing a single device is
repeatedly executed for all the devices in the returned device list. You can use For Each
processors to create a loop, containing one or more processors, to repeatedly execute
the processors. Design Studio for Network Integrity supports nested For Each
processors.

A For Each processor expects a collection as the input parameter so that it can iterate
through the collection and, for each object in the collection, invoke the processors
inside the loop. There must be a preceding processor that outputs an array or a Java
object that implements java.lang.Iterable (for example, java.util.List) as an output
parameters to create a For Each processor.

See the Design Studio Modeling Network Integrity Help for more information about
creating For Each processors.

About Result Categories
Result category is a mandatory field for the following action types:

■ Discovery action

■ Import action

■ Assimilation action

Result category is the identifier for a result group. An action configured with a result
category persists the results to the corresponding result group after being deployed
and executed in Network Integrity. The result category is visible in the Network
Integrity UI when displaying the scan results.

Figure 2–5 shows the result category in the Network Integrity UI. The discovered
device is stored under the result category, Device.

Figure 2–5 Result Category in Network Integrity UI

Result categories identify a result group that an action adds the results to the result
group. The result category value configured for the action must match the result group
name in the Java implementation (the addToResult method) for the discovered data.
See Network Integrity Information Model Reference for information about using result
categories in modeling results.

Tip: Provide an appropriate result category when configuring an
action, because this value is displayed in the Network Integrity UI.

About Discovery Actions

Working with Actions 2-9

For more information about this Java implementation, see "Working with Processors".

Design Studio does not explicitly validate this result category name against the actual
result group name specified in the Java implementation.

The result category and action define a result source for the following action types:

■ Discrepancy detection action

■ Discrepancy resolution action

Both actions work on results (to perform discrepancy detection or resolution,
respectively) based on the result source.

For example, a discovery action persists discovered data in two result categories:

■ Device

■ Workstation

A discrepancy detection action works on discovered data stored in the result
categories that match the result groups in the Java implementation. If the result
category configured for the discovery action does not match the actual result group
name in the Java implementation, but the discovery detection action is configured
with the result source based on the result category configured in Design Studio, the
discrepancy detection action is not able to find the results to perform discrepancy
detection at run time. In other words the result group name does not match the result
category defined in result source.

About Import Actions
Import actions are used to import data from an inventory system into Network
Integrity. The data is stored in the Oracle Communications Information Model
representation and is flagged as having come from the inventory system. The Network
Integrity GUI displays and reports on the data discovered by an import action. The
data can also subsequently be processed by discrepancy actions that compare
network-discovered data to inventory-discovered data, and reports differences
between them.

Import actions are edited in Design Studio. As a result of the editing, Design Studio
generates most of the required deployment artifacts. However, you must supply some
Java implementation. After this is done, and all error problems are cleared, and if the
import action is not abstract, Design Studio automatically packages the action into a
cartridge Integrity ARtifact (IAR) file that can be easily deployed into the Network
Integrity server. Then, on the Network Integrity server, an import scan can be created
and executed, and the scan results viewed or reported on.

See the Design Studio Modeling Network Integrity Help for more information about
creating and configuring import actions and processors.

See "Implementing an Import Processor" for more information.

About Discovery Actions
The discovery action discovers data, typically from the network, and persists it to the
Oracle Communications Information Model. The discovery action accesses the
network using a variety of technologies and protocols, such as simple network
management protocol (SNMP).

Because SNMP is such an important protocol for network discovery, Network
Integrity provides specific features to allow streamlined development of SNMP

About Discovery Actions

2-10 Network Integrity Developer's Guide

network discovery cartridges within Design Studio for Network Integrity. See
"Implementing the SNMP Processor" for more information.

See "Implementing a Discovery Processor" for more information.

See the Design Studio Modeling Network Integrity Help for more information about
creating and configuring discovery actions and processors.

About Discovery Action Address Handlers
Discovery scans are often used to scan multiple devices in the network. A discovery
scan can use a variety of protocols to perform a scan. To facilitate scan processing,
Network Integrity supports an address expansion and validation software component
called an address handler. Address handlers perform two functions:

■ They validate that a user-supplied address string is syntactically correct for a
protocol.

■ They expand address strings which represent multiple addresses, into a collection
of individual addresses.

This allows the user to configure a scan of multiple addresses using a compact,
efficient notation; for example: the notation 10.156.67.1-254 expresses the range of
addresses from 10.156.67.1 to 10.156.67.254, which is 254 addresses.

Discovery actions can optionally specify an address handler to use. It is best practice to
create an address handler whenever address validation is desired. Addresses are
validated when a scan configuration for the discovery action is saved, and also when
the scan is run.

In addition, address strings representing multiple addresses are expanded into a
collection of addresses when the scan runs. When an address string is expanded into
multiple addresses, Network Integrity calls into the discovery action multiple times
until each individual address has been scanned. The scanning of multiple addresses is
done in parallel.

Address handlers are created in Design Studio for Network Integrity. Design Studio
for Network Integrity generates some artifacts for the address handlers. However, you
should supply implementation code to complete the address handler.

Address handlers become stateless session beans in the run-time environment.
Cartridge projects containing address handlers must be deployed before any cartridge
project that uses the address handlers are deployed.

You can download the and import the Address_Handler cartridge project which
contains several basic address handlers. See "About the Address_Handlers Cartridge"
for more information.

See the Design Studio Modeling Network Integrity Help for information about
creating address handlers.

Note: Address handlers cannot be created in the same cartridge
project as actions. To add address handlers to actions, you must make
the cartridge project that contains the actions dependent on the project
that contains the address handlers.

About Discovery Actions

Working with Actions 2-11

About the Address_Handlers Cartridge
Network Integrity provides the Address_Handlers cartridge which implements the
following address handlers:

■ IPAddressHandler validates and expands both IPv4 and IPv6 address.

It validates and expands the following IP address formats:

– Single IP addresses; for example: 10.156.67.123

– IP address ranges using “-”; for example: 10.156.67.10-125

– IP address ranges using “*”; for example: 10.156.67.*, equal to 10.156.67.0-255

– IP addresses using Classless Inter-Domain Routing (CIDR); for example:
10.156.67.0/24

■ URLAddressHandler validates URL syntax addresses.

■ File TransferAddressHandler validates addresses and paths used by the file transfer
processor, as follows.

– Allows the field to contain one or two tokens delimited by "/"

– Using a single token identifies:

* The absolute path to files that are local to the Network Integrity server, for
example: /tmp

– Using two tokens identifies:

* The remote location and absolute path

* Host_name/path, for example: someserver.us.com/tmp/test

* IPV4Address/path, for example: 10.156.58.63/tmp/test

* IPV6Address/path

– Validates the proper format of IPV4 and IPV6Address

■ Corba URLAddressHandler validates that the address entered in Network Integrity
is a properly formatted IPv4 or IPv6 CorbaLoc URL. For more information, see
Network Integrity CORBA Cartridge Guide.

Implementing Address Handlers
You must specify the implementation class for an address handler. See the Design
Studio Modeling Network Integrity Help for more information.

About the AddressHandler Interface
Address handlers must implement the AddressHandler interface which is shown and
described in the following section:

package oracle.communications.integrity.api;

import java.util.List;
import oracle.communications.integrity.common.AddressHandlerException;
import oracle.communications.integrity.common.AddressesStatus;

Note: The file transfer processor does not support address expansion
and relative paths.

About Discovery Actions

2-12 Network Integrity Developer's Guide

/**
 * AddressHandler is common interface which should be implemented by the
 * class implementing the Address expansion and validation of addresses.
 */
public interface AddressHandler {

 /**
 * This method expands the list of address or addressRange provided.
 * @param addressRangeList - a list of String representing either an address
or an address range
 * @return List - a list of Strings each of which represents an individual
address
 * @throws AddressHandlerException
 */
 public List<String> expandAddressRange(List<String> addressRangeList) throws
AddressHandlerException;

 /**
 * This method validates the list of address provided.
 * @param address
 * @return AddressesStatus
 * @throws AddressHandlerException
 */
 public AddressesStatus validate(List<String> address) throws
AddressHandlerException;

 /**
 * This method validates the single address provided.
 * @param address
 * @return boolean
 * @throws AddressHandlerException
 */
 public boolean validate(String address) throws AddressHandlerException;

 /**
 * This method counts the number of addresses after expansion of address
parameter passed.
 * Here maxCountLimit can be NULL. If maxCountLimit is NULL, method return the
total count of expanded address.
 * If maxCountLimit is specified, method does not count the expanded address
 * beyound that limit and returns the maxCountLimit + 1.
 * @param addressRangeList
 * @param maxCountLimit
 * @return int
 * @throws AddressHandlerException
 */
 public int countExpandedAddresses(List<String> addressRangeList, Integer
maxCountLimit) throws AddressHandlerException;
}

About Dynamic Address Handlers
When you configure a Network Integrity discovery scan, you specify one or more
addresses as the scope for the discovery scan.

The discovery scan scope can point to one or more addresses.

When the network changes, you likely need to modify the discovery scope to add or
remove addresses.

About Discovery Actions

Working with Actions 2-13

You can create an address handler that references a file at run time, dynamically
populating the discovery scan scope.

See the Design Studio Modeling Network Integrity Help for information about
creating an address handler.

The following sections explain how to implement a dynamic address handler.

Validating the Address Handler
Validation methods are invoked to validate user-entered addresses. In this sample, an
address is expected to be a path to a file (absolute, or relative to the WebLogic Server
Network Integrity domain). This validation method checks each address, and the
result indicates which addresses (if any) are not valid:

@Override
public boolean validate(String address) throws AddressHandlerException {
File file = new File(address);
if (!file.exists() || !file.isFile()) {
return false;

}
return true;

}

You must also implement a list variant of the validation method without additional
validation logic. The following sample shows the method for implementing a list
variant.

@Override
public AddressesStatus validate(List<String> addresses)

throws AddressHandlerException {
AddressesStatus result = new AddressesStatus();
for (String address : addresses) {
if (!validate(address)) {
result.getInvalidAddressList().add(address);

}
}
result.setAllAddressValid(result.getInvalidAddressList().isEmpty());
return result;

}

Expanding Address Handlers
When you run a scan, the address handler invokes address expansion methods to
derive individual address from ranges of addresses.

The expandAddressRange method takes the addresses (as entered on the Scope tab)
and returns a list of expanded addresses.

The file is read line by line and the following logic is applied:

■ Remove leading and trailing white space

■ Ignore empty lines

■ Ignore comments (starting with #)

■ When a line starts with $, it indicates a malformed address and the address
expansion fails.

The explicit validate method is not invoked for expanded addresses.

The use of a LinkedHashSet avoids issues with duplicate addresses in the file, while
still preserving the order. In this sample, each input address references a file.

About Discovery Actions

2-14 Network Integrity Developer's Guide

@Override
public List<String> expandAddressRange(List<String> addresses)

throws AddressHandlerException {
Set<String> expandedAddresses = new LinkedHashSet<String>();
for (String address : addresses) {
expandedAddresses.addAll(readAddressesFromFile(address));

}
return new ArrayList(expandedAddresses);

}
public List<String> readAddressesFromFile(String path)

throws AddressHandlerException {
try {
BufferedReader reader = new BufferedReader(new FileReader(path));
try {
List<String> addresses = new ArrayList<String>();
String address = null;
while ((address = reader.readLine()) != null) {
// ignore blank lines, and comment lines (starting with #)
address = address.trim();
if (! address.isEmpty() && ! address.startsWith("#")) {
// Address validation applies only to addresses entered as Scope for

scan. In this example, further validation may be of interest in case file content
is malformed. This illustrates how to reject an illegal dynamic address

if (address.startsWith("$")) {
throw new AddressHandlerException("Illegal address \"" + address + "\"

found in file \"" + path + "\"");
}
addresses.add(address);

}
}
return addresses;

} finally {
reader.close();
}

} catch (IOException ex) {
throw new AddressHandlerException("Unable to read addresses from file \"" + path

+ "\"", ex);
}

}

The following sample shows a method that returns the count of the expanded
addresses. For certain types of address handlers, counting is more efficient than
expansion. For example, a /24 IP address range is 256 addresses. In this sample,
addresses are expanded and counted.

@Override
public int countExpandedAddresses(List<String> addresses, Integer maxCount)

throws AddressHandlerException {
return expandAddressRange(addresses).size();

}

Testing the Dynamic Address Handler
To test a dynamic address handler, create a discovery action in Design Studio that uses
the dynamic address handler you implemented. See the Design Studio Modeling
Network Integrity Help for information about creating actions.

To test the dynamic address handler:

1. Deploy the cartridge containing the dynamic address handler and the discovery
action.

About Discovery Actions

Working with Actions 2-15

2. Create an address.txt address file that is accessible to the application server. The
file is created in the Weblogic domain home directory with the following content:

Some Address
Another Address
Address 3

3. In Network Integrity UI, create a scan and select the discovery action you created.

4. In the Scope tab, specify the addresses.txt file.

5. Run the scan.

6. On the Scan Results page, click Display Addresses to see the expanded addresses
that were read from the file.

7. Edit the addresses.txt file and change the last address:

Some Address
Another Address
New Address

8. Run the scan again and view the addresses to see the new addresses that were
read from the file.

About Discovery Action Result Categories
A discovery action must be configured with a valid result category. For example, a
discovery action that discovers devices should be configured with the Device result
category.

See "About Result Categories" for more information.

See the Design Studio Modeling Network Integrity Help for more information about
adding a result category to a discovery action.

About the Discovery Action in the Network Integrity UI
After successfully building a discovery action in Design Studio (see "Building and
Packaging Projects"), deploy the cartridge to Network Integrity (see "Deploying and
Undeploying Cartridges").

When the cartridge containing the discovery action is successfully deployed to
Network Integrity, log on to the Network Integrity UI and configure a scan using the
deployed discovery action.

The recently deployed discovery action is available in the Scan Action list when
creating a scan configuration. See the Network Integrity Help for more information
about creating a scan.

Figure 2–6 displays a discovery action called Discover Sample Device.

About Discovery Actions

2-16 Network Integrity Developer's Guide

Figure 2–6 Creating a New Scan Configuration

About Discovery Action Scan Parameter Groups
You can configure scan parameter groups for a discovery action. Add characteristics to
scan parameter groups to appear in the Network Integrity UI as scan parameters. For
example, consider the following scan parameters:

■ Port: The port number that a discovery command is sent to

■ Username: The user name to make the connection

■ Password: The password to make the connection

When a scan is created using Discover Sample Device (see "About the Discovery Action
in the Network Integrity UI"), the Scan Action Parameters section on the Create Scan
page is filled with SNMP scan parameters.

Figure 2–7 displays the Scan Action Parameters area with SNMP scan parameters
configured.

Figure 2–7 Configured SNMP Scan Parameters

About Discrepancy Detection Actions

Working with Actions 2-17

To make configuration items available in the Network Integrity UI, add and configure
characteristics on scan parameter groups. See the Design Studio Modeling Network
Integrity Help for more information.

See "About Scan Parameter Groups" for more information.

About Assimilation Actions
Assimilation actions perform additional processing on existing Network Integrity
network data to derive additional, often higher level, information from the data. For
example, an assimilation action might be used to derive connectivity relationships
between endpoints discovered by previous scans. Assimilation actions cannot
manipulate or edit scan results.

Assimilation scans are different from other types of scans in that they do not retrieve
their data from external sources. Instead, assimilation scans work on the scan results of
other discovery, import, or assimilation scans. When you run an assimilation scan, the
scan selects other scans as inputs to the assimilation scan in the Scope page of the
Network Integrity GUI. You can select discovery, import, or other assimilation scans as
input.

As with other scan types, the data from assimilation actions is stored in the Oracle
Communications Information Model representation. The data from assimilation scans
is flagged as having come from the network. The Network Integrity GUI displays and
reports on the data discovered by an assimilation action. The data can also
subsequently be processed by discrepancy actions, which compare network
discovered data to inventory discovered data and report where differences are found.

Assimilation actions are edited in Design Studio. As a result of the editing, Design
Studio generates most of the required deployment artifacts. However, you must
supply some Java implementation. After this is done, and all error problems are
cleared, and if the assimilation action is not abstract, Design Studio automatically
packages the action into a cartridge Integrity ARtifact (IAR) file, which can be easily
deployed into the Network Integrity server. Then, on the Network Integrity server, an
assimilation scan can be created and executed, and the scan results viewed or reported
on.

See "Implementing an Assimilation Processor" for more information.

See the Design Studio Help for more information on creating assimilation actions and
processors.

About Discrepancy Detection Actions
The discrepancy detection action is a Network Integrity operation that compares
discovery and import scan results, and reports on their differences by generating
discrepancies.

A discrepancy detection action can be run immediately following a discovery, import,
or assimilation scan. (Select the Detect Discrepancy check box in the scan
configuration to set the trigger.) The entity results from the triggering scan become the
Compare entities for the detection action. The action then uses a matching algorithm to
find from the other side, and precedes with the comparisons.

See "About the Compare and Reference Sides" for a fuller description of the two sides
of entities of discrepancy detection.

See "About the Base Detection Project and the Default Comparison Algorithm" for a
description of the comparison algorithm.

About Discrepancy Detection Actions

2-18 Network Integrity Developer's Guide

Create a discrepancy detection action whenever new discovery, import, or assimilation
actions are created, because every detection action is configured to receive results from
specific actions only. See "About Result Sources" for more information.

See "About Discrepancy Detection Processors" for more information.

See the Design Studio Modeling Network Integrity Help for more information about
creating discrepancy detection actions and processors.

About Discrepancy Detection
Discrepancy detection triggers immediately after a scan is finished. A scan is
configured to use a single type of action, and therefore only generates Discovery
results (representing network entities) or Import results (representing inventory
system entities). Therefore, when the discrepancy detection action triggers, it has
immediate access to one side of results: the compare entities.

For the other side of the results, the detection action searches the Network Integrity
database for results with the following criteria:

■ The results must come from the opposite system from the triggered scan. For
example, if the detection action triggers from a discovery scan, then the detection
action searches the database for Import result.

■ The results have a matching name and result category (as configured by result
source).

■ The results must come from the most recent scan result.

If no matching results are found, then EXTRA_ENTITY discrepancies are generated for
each root entity on that result.

About Result Sources
A result source specifies a list of scan actions that can trigger a discrepancy detection
action. The triggering action must be a discovery, import, or assimilation action. By
default, results from all categories are included in the discrepancy detection. It is
possible to choose a subset of the categories to apply the discrepancy detection.

For example, Figure 2–8 illustrates a Cisco router discovery action that produces
results in 2 categories: Device and VPN. Two separate detection actions are written to
compare the results. Each detection action specifies a result source with the same
action, but different result category. For example, the device discrepancy detection
action receives results of Device category only.

About Discrepancy Detection Actions

Working with Actions 2-19

Figure 2–8 Discrepancy Detection Actions (Example 1)

A result source that does not specify a result category matches every result category
generated by the scan action. Figure 2–9 illustrates a Cisco discrepancy detection
action that receives both device and VPN categories of results.

Figure 2–9 Discrepancy Detection Action (Example 2)

The result source is a mandatory field; there must be at least one entry in the table.
Design Studio marks the discrepancy detection action with an error during a project
build if the table has no entries.

About Result Source and Scan Types
Typically a result source configuration detection action has a single action as the result
source: usually the discovery action. This detection action triggers when a scan is
configured using that exact discovery action, and the Detect Discrepancy option is
checked. This detection action does not trigger by scans configured with any other
discovery or import action. Do not set the Detect Discrepancy option on the Import
scan, because this might not trigger a detection action at all.

Note: No two discrepancy detection actions can have the same result
source.

About Discrepancy Resolution Actions

2-20 Network Integrity Developer's Guide

Generated Action MDB and Controller
The detection action is implemented as an MDB. See "About the Generated Action
MDB and Controller" for more information.

About Discrepancy Resolution Actions
A discrepancy resolution action is an extendable Network Integrity operation which
acts on an external system to resolve a discrepancy. For example, a resolution action
updates a mismatch in an inventory system using information gathered from the
network or generates a trouble ticket to kick off a network configuration change
process.

A discrepancy resolution action operation is initiated by the Network Integrity user on
the Manage Discrepancy page, using the following steps:

1. The user identifies the desired resolution action on selected discrepancies. Each
discrepancy can have only one resolution action set.

2. The user submits the discrepancies with identified resolution actions to the
system.

On receiving the submitted discrepancies, Network Integrity groups them based on
their scan origin, result category, and resolution label, and then invokes the
appropriate discrepancy resolution action.

The action then examines each discrepancy in detail, using the contained information
to figure out the appropriate steps to resolve the problem.

As with other types of actions, a discrepancy resolution action is made up of a
sequence of discrepancy resolution processors. The processors are shown in the
Processor table in Design Studio. At the beginning of an action operation, these
processors are invoked serially from top of the table to bottom. The first processor is
given the list of submitted discrepancies marked. This processor determines a subset
of these discrepancies to handle (which can range from none to all), performs the
resolution operation, and sets their status to Processed or Failed. Then, the next
processor is given the remaining discrepancies for processing, and so on.

The action is complete when all the processors are invoked. If there are any
discrepancies which remain unhandled at the end, their status is automatically set to
Not Implemented.

The following sections in this chapter describe general information about
implementing a resolution action. For a detailed discussion of a working sample, see
the following documents included with the cartridges:

■ Network Integrity Cisco Router and Switch UIM Integration Cartridge Guide

■ Network Integrity MIB-II UIM Integration Cartridge Guide

See "About Discrepancy Resolution Processors" for more information.

See the Design Studio Modeling Network Integrity Help for more information about
creating discrepancy resolution actions and processors.

About the Resolution Action Label
The Resolution Action Label identifies the discrepancy resolution action in the
Network Integrity UI. It is displayed as a command in the Actions menu of the
Discrepancy Search Results table of the Review Discrepancies page.

Figure 2–10 displays the label corresponding to the command.

About Discrepancy Resolution Actions

Working with Actions 2-21

Figure 2–10 Resolution Action Label in Actions Menu of Network Integrity UI

This label is a mandatory field. Design Studio reports an error if this label has no
value. The use of a command phrase as the label string is recommended. Some
example labels are:

■ Correct in Inventory System

■ Open a Trouble Ticket

The label input field allows you to choose either a label from another discrepancy
resolution action defined within your workspace, or to type in a new label. A label can
be shared by multiple actions; this implies that multiple actions are sharing a single
menu item in the Actions menu of the Discrepancies page.

Network Integrity determines the correct action to invoke based on a combination of
the label and the result source.

About Result Sources
The result source is a list of discrepancy filtering criteria. Each criterion represents a
single source of discrepancy, and is specified by a combination of the originating scan
action and a result category. A resolution action only receives discrepancies from the
specified result categories which were created by scans using the specified actions.

Figure 2–11 shows an example of result sources being applied in Network Integrity.

Note: No two discrepancy resolution actions can have the same label
and the same result source.

About Discrepancy Resolution Actions

2-22 Network Integrity Developer's Guide

Figure 2–11 Result Source Example 1

A criterion that does not specify any result category matches all result categories
generated by the scan action in the criterion.

Figure 2–12 shows a representation of the discrepancy types.

Figure 2–12 Result Category Example

The result source is a mandatory field; there must be at least one entry in the table.
Design Studio marks a discrepancy resolution action with an error during a project
build if this table has no entries.

Generated Action and MDB Controller
The discrepancy resolution action is implemented as an MDB, just like any other
Network Integrity action.

See "About the Generated Action MDB and Controller" for more information.

Note: No two discrepancy resolution actions can have the same label
and the same result source.

3

Working with Processors 3-1

3Working with Processors

This chapter provides information about Oracle Communications Network Integrity
processors. This chapter contains the following sections:

This chapter contains the following sections:

■ About Processors

■ Implementing a Processor

■ Implementing an Import Processor

■ Implementing a Discovery Processor

■ Implementing the SNMP Processor

■ Implementing an Assimilation Processor

■ About Discrepancy Detection Processors

■ About Discrepancy Resolution Processors

About Processors
In Network Integrity, processor entities are the building-blocks for actions, as they
implement atomic sub-functions for actions.

For example, an SNMP processor is included in an action to poll network devices; a
modeler processor is included in an action to model raw SNMP data from a network
device and add it to a database. Combined, these two processors comprise a discovery
action that polls SNMP-enabled network devices and persists the modeled SNMP
data.

By adding multiple processors to an action, the action performs several complex
function by executing the processors according to the sequence in which they were
added to the action.

Processors are of different types:

■ Import processor: Part of an import action.

■ Discovery processor: Part of a discovery action that can discover anything.

■ SNMP processor: Part of a discovery action that is prebuilt to discover only
SNMP-enabled devices.

■ Assimilation processor: Part of an assimilation action.

■ File transfer processor: Used to retrieve files from local or remote directories. For
more information, see Network Integrity File Transfer and Parsing Guide.

About Processors

3-2 Network Integrity Developer's Guide

■ File parsing processor: Used to parse data retrieved by the File Transfer processor
so that the data is available to other processors. For more information, see Network
Integrity File Transfer and Parsing Guide.

■ Discrepancy detection processor: Part of a discrepancy detection processor action.

■ Discrepancy resolution processor: Part of a discrepancy resolution action.

Unlike actions, processors are not visible in Network Integrity.

About Context Parameters
Configure input and output parameters for processors.

Input and output parameters are optional for a processor.

After adding input and output parameters for the processor, Oracle Communications
Design Studio generates the request and response Java classes based on the input and
output parameters.

Specifying Context Parameters before Creating Implementation Class
When creating a processor, it is a good practice to properly configure the context
parameters before saving the processor. This way Design Studio properly generates
the skeleton implementation Java class for the processor with the correct input and
output parameters. If the input and output context parameters are modified later, the
generated Interface changes, but Design Studio does not automatically update the
implementation class. The user must manually update the implementation class to
comply with the changed interface.

About Properties and Property Groups
A property group is a logical container configured on a processor. A property group
can be added to multiple processors. Property group names must be unique within a
processor.

Properties are added to property groups and are assigned property values to pass to
the processor.

Property groups do not inherently pass any values to the processor other than the
values belonging to its properties.

Property groups and properties are configured on processors on the Properties tab of
the Processor editor.

Property groups can be configured as Managed groups, where the values for the
properties it contains can be set at run time using the MBean interface. See Network
Integrity System Administrator’s Guide for more information. Only managed groups can
contain sensitive properties.

Property groups can be configured as Map groups, where the property group
produces a simplified API for properties that are used as maps.

Design Studio generates a Java class for the property group so that you can extend a
cartridge to access the property values it contains using getter and setter methods.

A property consists of a name-value pair that is passed to the processor through the
property group. Property names must be unique within the property group.

The property value can be set in the following ways:

■ At design time, by setting the property with a static value.

About Processors

Working with Processors 3-3

■ At deployment time, by setting the property with a cartridge model variable.

■ At run time, using the MBean interface, by configuring its property group as a
managed group.

You can configure properties as sensitive. To be configured as sensitive, the properties
must be contained in managed property groups and their values must be encrypted.
See Network Integrity System Administrator's Guide for information about how to
encrypt property values.

You can set the encrypted value of a sensitive property with a model variable at
deployment time, or you can set it at run time using the MBean interface.

For more information about setting sensitive properties, see the Design Studio
Modeling Network Integrity Help.

For more information on adding property groups to a processor, adding properties to a
property group, and setting cartridge model variables, see the Design Studio Help.

About Generated Code
This section describes code generation for processors in Network Integrity:

■ About the Location for Generated Code

■ About the Processor Interface

■ About the PropertyGroup and Properties Classes

About the Location for Generated Code
Design Studio code-generates the relevant Java classes for the processor. The generated
code is located at:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_Package\Processor_
Type\Processor_Implementation_Prefix

where:

■ Studio_Workspace is the Eclipse Workspace root

■ NI_Project_Root is the Network Integrity project root

■ Project_Default_Package is the default package configured in the Project editor

■ Processor_Type is run time following action types:

– discoveryprocessors

– importprocessors

– assimilationprocessors

– detectionprocessors

– resolutionprocessors

■ Processor_Implementation_Prefix is the action implementation prefix in lowercase.

About the Processor Interface
Every processor has a generated interface. The generated processor interface class is
named Processor_NameProcessorInterface.java.

In general, the generated processor interface has the invoke method defined. The
interface has two forms of invoke methods, depending on whether there is an output
parameter defined for the processor.

Implementing a Processor

3-4 Network Integrity Developer's Guide

// Signature for processor which does not have output parameters
public void invoke(<Processor_Specific_Context> context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub

// Signature for processor which has output parameters
public ExampleProcessorResponse invoke(<Processor_Specific_Context> context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub
 return null;
}

The generated processor interface has a slightly different signature, depending on the
type of processor: for example, Processor_Specific_Context differs between processor
types. See individual chapters on specific processors for more information.

About the PropertyGroup and Properties Classes
A properties class is always code-generated for the processor, whether the processor
has property groups and properties configured or not. The properties class is used as
an input parameter for the constructor of the generated request class.

The generated properties class is named Processor_NameProcessorProperties.java.

The generated properties class has a public method, String[] getValidProperties().
This method returns a string array that contains a list of valid property group names
configured for this processor. If the processor has no property groups configured, this
method returns an empty array.

If the processor has property groups and properties configured, for each property
group a PropertyGroup class is code-generated.

The generated PropertyGroup class is named PropertyGroup_
NamePropertyGroup.java.

The generated PropertyGroup class represents the configured property group and all
of its properties. The generated properties class has the getter methods to get each
PropertyGroup directly, and has all the setter methods to modify the property values.

The generated PropertyGroup class has a public method, String[]
getValidProperties(). This method returns a string array that contains a list of valid
properties names configured for this property group. If the property group has no
property configured, this method returns an empty array.

If the property group is not configured as a Map group, the generated PropertyGroup
class provides getter methods for all the properties configured in this property group.

If the property group is configured as a Map group, the generated PropertyGroup
class does not provide getter methods for all the properties configured in this property
group. Instead, the API for the property group resembles a Java Map, where the
property values are retrieved and set using the property name passed as a value.

Implementing a Processor
Implementing a processor is done in the Processor editor Details tab. See the Design
Studio Help for specific configuration details.

You can click the Implementation Class link to open the Java editor for this
implementation Java class. Design Studio auto-generates the skeleton Java
implementation class, which implements the processor interface with an empty
implementation method.

Implementing a Processor

Working with Processors 3-5

You must decide whether to complete implementing the method. If you modify the
processor (for example, by adding output parameters or removing parameters), the
implementation class displays a compiling error. This is expected because the skeleton
implementation class is regenerated. You must modify the implementation class to
match the changed processor interface.

When you delete a processor, you must manually delete the implementation class of
the processor. Design Studio does not automatically delete an implementation class
when you delete a processor.

For information about how to implement a processor, see the individual processor
section.

About the Processor Finalizer
When a processor deals with resources (for example, sockets and files), it is necessary
to clean up the resources used or created while the processor executes. Using a
finalizer on the processor ensures that the used or created resources get cleaned up,
whether the action fails or is successful. When implemented, the finalizer cleans up the
resources used or created by the processor. It is not mandatory to implement the
finalizer if the processor does not deal with a resource, or if the resource is used only
within the processor (in which case the processor implementation should make sure
the local resource is closed properly). The processor must implement the finalizer if the
processor allocates a resource that is to be output for use by other processors.

Finalizers that are not inside a For Each loop are called by the action controller class
(code-generated) before it completes. Finalizers that are inside a For Each loop are
called by the action controller class at the end of the For Each loop. In all cases,
finalizers are called in the reverse order to which they are registered (finalizers
registered first are called last; finalizers registered last are called first).

About the ProcessorFinalizer Interface
The processor implementation class must implement the interface
oracle.communications.sce.integrity.sdk.processor.ProcessorFinalizer to have the
action controller clean up the resources that are used or created by the processor. If a
processor does not use or create a resource, it does not implement the
ProcessorFinalizer interface.

The processor defines only one method:

public void close(boolean failed);

The processor that implements the ProcessorFinalizer interface must implement this
method to close all the resources used or created during the execution of this
processor. This method takes an input parameter as Boolean. If there is an exception
during the execution of the processors, the action controller calls the finalizer by
passing True to this method; otherwise the action controller calls the finalizer by
passing False to the method, in the successful case. The processor might implement
the close logic differently for both successful and failed scenarios: for example, if it is a
failed scenario, the close method might log an error message before closing the
resources.

The following code shows how to implement the ProcessorFinalizer for a sample
processor:

public class SampleProcessorImpl implements SampleProcessorInterface,
ProcessorFinalizer {
 public SampleProcessorResponse invoke(SampleProcessorRequest request)
 throws ProcessorException {

Implementing an Import Processor

3-6 Network Integrity Developer's Guide

 // Implement the Processor here…
 }

 public void close(boolean failed) {
 if(failed) {
 // something is failed, log extra error message here.
 }
 // close the InputStream here.
 try {
 myInputStream.close()
 } catch(IOException ioe) {
 // log the IOException here…
 }
 }
}

About Memory Considerations
The action controller class calls the finalizers for both successful and failed scenarios.
The finalizers that are not inside a For Each loop do not begin until the end of the
action. The finalizers that are inside a For Each loop do not begin until the end of the
loop. When a processor that implements the ProcessorFinalizer completes the
execution, it is still in the scope of the action. The processor does not get purged by the
garbage collector to release the memory.

If a processor implements the ProcessorFinalizer, it is a good practice to limit the
number of member variables for that processor and ensure that the processor is not
using a large amount of memory. If the processor uses a lot of memory, it is a good
practice to release the memory as soon as it is no longer required. For example, if a
processor is using a large HashMap, and it also implements the ProcessorFinalizer, the
processor should clear the contents of the HashMap when it is done using it and
assign the null pointer to this HashMap.

Implementing an Import Processor
Many deployment artifacts for the import action and its processors are generated
automatically while editing. However, you must supply implementations for the
import processors using the invoke method.

Two forms of this method are shown in the following code fragments:

// Signature for processor which does not have output parameters
public void invoke(DiscoveryProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub

}
// Signature for processor which has output parameters
public ExampleProcessorResponse invoke(DiscoveryProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub
 return null;
}

The parameters and return type of the invoke method are:

■ Processor_NameProcessorResponse: This is the return type, for processors that have
output parameters. For processors that do not have output parameters, the return
type is void. This class is generated by Design Studio. It is a value object

Implementing a Discovery Processor

Working with Processors 3-7

containing values for each of the processor's output parameters. For processors
that have output parameters, the invoke method must create a ProcessorResponse
object, set its values and return the ProcessorResponse object.

■ Processor_NameProcessorRequest: This is a value object that has the following
getters:

– If scan parameter groups are specified for the import action, there is a getter
that returns a scan parameter groups value object.

– If properties are defined for the import processor, there is a getter that returns
a Processor_NameProcessorProperties value object.

– There is a getter for each input parameter that is defined for the processor.

– There is a getter method called getScopeAddress. This method is not useful
for import processor implementation. Instead, the inventory system address
and authentication information should be retrieved using the POMS API.

See "Working with the POMS SDK" for more information.

This class is generated by Design Studio.

■ DiscoveryProcessorContext context: This is an SDK type that has the following
methods:

– getActionName: Returns the name of the action that the processor is executing
under.

– getProcessorName: Returns the name of the processor.

– persistResults: Causes POMS objects to be flushed to the database. This helps
to reduce memory consumption. See "About Persist Results" for more
information.

– addToResult: Adds a graph of POMS objects to the database under a result
group. This method takes three parameters:

* String resultGroupName: this is the name of a result group under which
the results are persisted.

* String resultGroupType: this is the type of the result group under which
the results are persisted. This should match a category defined on the
action.

* DiscrepancyEnabled result: this is the root of result object graph to be
persisted.

– getResultGroup: Used to get an existing result group from your current scan
if you must access the graph of POMS objects previously added to a result
group. This method takes two parameters:

* String resultGroupName: This is the name of a result group under which
the results are persisted.

* String resultGroupType: This is the type of result group under which the
results are persisted. This should match a category defined on the action.

Implementing a Discovery Processor
Configuration of the discovery action and its discovery processors results in the
generation of many deployment artifacts. However, you must supply implementations
for the discovery processors.

Implementing a Discovery Processor

3-8 Network Integrity Developer's Guide

The implementation needs to implement the invoke method. Two forms of this
method are shown:

// Signature for processor which does not have output parameters
public void invoke(DiscoveryProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException
{
 // TODO Auto-generated method stub
}
// Signature for processor which has output parameters
public ExampleProcessorResponse invoke(DiscoveryProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException
{
 // TODO Auto-generated method stub
 return null;
}

The parameters and return type of the invoke method are:

■ Processor_NameProcessorResponse: This is the return type, for processors that have
output parameters. For processors that do not have output parameters, the return
type is void. This class is generated by Design Studio. It is a value object
containing values for each of the processor's output parameters. For processors
that have output parameters, the invoke method must create a ProcessorResponse
object, set it values and return the ProcessorResponse object.

■ Processor_NameProcessorRequest: This is a value object that has the following
getters:

– If scan parameter groups are specified for the discovery action, there is a getter
that returns a scan parameter groups value object.

– If properties have been defined for the discovery processor, there is a getter
that returns a Processor_NameProcessorProperties value object.

– There is a getter method for each input parameter that is defined for the
processor.

– There is a getter method named getScopeAddress(). This method returns the
scope address configured for this discovery action.

This class is generated by Design Studio.

■ DiscoveryProcessorContext context: This is an SDK type, which has the following
methods:

– getActionName: Returns the name of the action that the processor is executing
under.

– getProcessorName: Returns the name of the processor.

– persistResults: Causes POMS objects to be flushed to the database. This helps
to reduce memory consumption. See "About Persist Results" for more
information.

– addToResult: Adds a graph of POMS objects to the database under a result
group. This method takes three parameters:

* String resultGroupName: This is the name of a result group under which
the results are persisted.

* String resultGroupType: This is the type of the result group under which
the results are persisted. This should match a category defined on the
action.

Implementing the SNMP Processor

Working with Processors 3-9

* DiscrepancyEnabled result: This is the root of result object graph to be
persisted.

– getResultGroup: Used to get an existing result group from your current scan if
you must access the graph of POMS objects previously added to a result
group. This method takes two parameters:

* String resultGroupName: This is the name of a result group under which
the results are persisted.

* String resultGroupType: This is the type of result group under which the
results are persisted. This should match a category defined on the action.

Implementation Code Example
The following Java code snippet demonstrates how to implement the invoke method
for a discovery processor, and how to add results to the result group using the
addToResult() method.

public SampleProcessorResponse invoke(
 DiscoveryProcessorContext context,
 SampleProcessorRequest request) throws ProcessorException {
 SampleProcessorResponse modelerResponse = new SampleProcessorResponse();
 SampleDevice device;

 // Get the input Sample Response Document from the Request.
 // This input response document models the sample device.
 SampleResponseType response = request.getSampleResponseDocument();

 try {
 // Make the Sample Device
 device = makeSampleDevice(response);
 // Add the device to the result group "Device", which matches
 // the result category configured in the Discovery Action.
 context.addToResult(device.getName(), "Device", device);
 modelerResponse.setSampleDevice(device);

 } catch (Exception e) {
 // Handle exception here…
 }
 return modelerResponse;
}

Implementing the SNMP Processor
There is no coding required for the SNMP processor. The Processor Interface,
Request/Response, Properties, and the relevant helper classes of an SNMP processor
are all code -generated and fully implemented.

The only configuration required for the SNMP processor is to configure the list of
polled object IDs (OIDs). Before configuring the OIDs for the SNMP processor, the MIB
directory must be properly specified for the Network Integrity preference. If the MIB
directory is not properly specified in the preference, you cannot configure the SNMP
processor.

See the Design Studio Modeling Network Integrity Help for more information about
configuring SNMP processors.

Implementing the SNMP Processor

3-10 Network Integrity Developer's Guide

About the Generated Implementation and XML Beans
The SNMP processor is a completely code-generated discovery processor. Along with
the usual discovery processor implementations (see "Implementing a Discovery
Processor"), Design Studio also generates the strongly-typed SNMP XML response
document schema based on the OIDs configured for the SNMP processor.

The generated SNMP XML response document schemas are available at the following
directory:

Project_Root\generated\SNMP_Processor_Name_snmpdiscoveryprocessor.

Under this directory, the following sub-directories exist:

■ lib: Contains the compiled XML Beans JAR file for the strongly-typed SNMP XML
response document schemas

■ snmpClasses: Contains the XML Beans Java classes for the strongly-typed SNMP
XML response document schemas

■ snmpSchemas: Contains the generated strongly-typed SNMP XML response
document schemas

■ xmlSrc: Contains the compiled XML Beans Java source for the generated
strongly-typed SNMP XML response document schemas.

It is recommended to first look at the schemas generated in this directory to
understand how to access the compiled XML Beans object for the SNMP response
document.

The remaining implementations for the SNMP processor are at the following directory:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_
Package\snmpdiscoveryprocessors\SNMP_Processor_Implementation_Prefix

The SNMP processor always has an output parameter, which is the SNMP XML
response document (XML Beans object). This is available in the Response class for the
SNMP processor.

Supporting New MIBs
When the productized Network Integrity cartridges are imported into Design Studio
(see "Exporting and Importing Cartridges"), Network Integrity cartridges are bundled
with a set of MIB files, which is the same set of MIB files bundled with the SNMP
Resource Adapter (see "Working with JCA Resource Adapters").

If you must create a Network Integrity cartridge to poll certain MIB OIDs for certain
specific devices, which are not part of the bundled MIB files, you must get the MIB file
(or set of MIB files) that has the definitions of those MIB OIDs required to implement
the new cartridge.

The new MIB files must be manually copied to the MIB directory configured in the
Design Studio preference (see the Design Studio Modeling Network Integrity Help).
After the new MIB files are copied to the MIB directory, the new MIB files are available
to be loaded in Design Studio. There is no need to restart Design Studio.

Note: The MIB files in Design Studio and on the SNMP resource
adapter must match. See "Working with JCA Resource Adapters" for
information about supporting new MIBs for the SNMP resource
adapter.

Implementing an Assimilation Processor

Working with Processors 3-11

Implementing an Assimilation Processor
Many deployment artifacts for the assimilation action and its processors are generated
automatically while editing. However, you must supply implementations for the
assimilation processors using the invoke method.

Two forms of this method are shown in the following code fragments:

// Signature for processor which does not have output parameters
public void invoke(AssimilationProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub

}
// Signature for processor which has output parameters
public ExampleProcessorResponse invoke(AssimilationProcessorContext context,
 ExampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub
 return null;
}

The parameters and return type of the invoke method are:

■ Processor_NameProcessorResponse: This is the return type, for processors that have
output parameters. For processors that do not have output parameters, the return
type is void. This class is generated by Design Studio. It is a value object
containing values for each of the processor's output parameters. For processors
that have output parameters, the invoke method must create a ProcessorResponse
object, set its values and return the ProcessorResponse object.

■ Processor_NameProcessorRequest: This is a value object, which has the following
getters:

– If scan parameter groups are specified for the assimilation action, there is a
getter that returns a scan parameter groups value object.

– If properties are defined for the assimilation processor, there is a getter that
returns a Processor_NameProcessorProperties value object.

– There is a getter for each input parameter that is defined for the processor.

This class is generated by Design Studio.

■ AssimilationProcessorContext context: this is an SDK type, which has the
following methods:

– getActionName: Returns the name of the action under which the processor is
executing

– getProcessorName: Returns the name of the processor

– persistResults: Causes POMS objects to be flushed to the database. This helps
to reduce memory consumption. See "About Persist Results" for more
information.

– addToResult: Adds a graph of POMS objects to the database under a result
group. This method takes three parameters:

* String resultGroupName: This is the name of a result group under which
the results are persisted.

* String resultGroupType: This is the type of the result group under which
the results are persisted. This should match a category defined on the
action.

About Discrepancy Detection Processors

3-12 Network Integrity Developer's Guide

* DiscrepancyEnabled result: This is the root of result object graph to be
persisted.

– getLatestReultGroupsInScope: Returns an IteratorDisResultGroup, which is
the latest results in scope. This is essentially the discovery or assimilation scan
inputs to the assimilation action.

– getLatestScanRunsInScope: Returns an IteratorDisScanRun, which is the
latest scan runs in scope.

This is also essentially the discovery or assimilation scan inputs to the
assimilation action but includes several other objects from the Network
Integrity model.

These additional Network Integrity model objects might be useful in
performing out assimilation processing in some cases.

– getPreviousAssimilationScanRun: Returns the latest completed scan run for
the current assimilation scan. Use this to look at previous results, comparing
current scope with previous scope.

– haveAllLatestScansInScopeChanged: Returns true if any of the following
conditions are met; false otherwise:

* This is the first scan run for the assimilation scan.

* The latest scan run of every scan that is in the scope of both the previous
assimilation run and the current assimilation run is more recent than the
previous assimilation run.

– haveLatestScanInScopeChanged: Returns true if any of the following
conditions are met; false otherwise:

* This is the first scan run for the assimilation scan.

* At least one scan run in scope is more recent than latest assimilation scan
run.

* The scope of the assimilation scan has changed between this run and the
previous run.

This function avoids unnecessary assimilation processing.

– getResultGroup: Used to get an existing result group from your current scan
if you need to access the graph of POMS objects previously added to a result
group. This method takes two parameters:

* String resultGroupName: This is the name of a result group under which
the results are persisted.

* String resultGroupType: This is the type of result group under which the
results are persisted. This should match a category defined on the action.

About Discrepancy Detection Processors
The discrepancy detection processor is the atomic sub-function of a discrepancy
detection action. The typical tasks of a detection processor are different than the
scan-related processors (discovery, import, and assimilation) and include the
following:

■ Create and add filters to alter the default behavior of the base discrepancy
detection action.

About Discrepancy Detection Processors

Working with Processors 3-13

■ Perform post-processing on the set of discrepancies produced by the base
discrepancy detection action.

See "Discrepancy Detection Processor Patterns" for more information about the various
patterns for detection action-processor implementation.

Discrepancy Detection Processor Patterns
There are several patterns of processor used inside a discrepancy detection action.
Each successive pattern introduces a new level of flexibility, power, and complexity.
The patterns are listed below, in order from the simplest to the most complex:

1. Reusing the base detect discrepancy action.

2. Adding new filters and handlers.

3. Adding post-processors.

Reusing the Base Detect Discrepancy Action
This usage pattern provides a baseline comparison algorithm between the compare
and the reference sides. A discrepancy detection action using this pattern has the
ability to compare exact entity attributes and associations, and can generate five of the
seven types of discrepancy. (Ordering Errors and Association Ordering Errors are not
detected by the baseline comparison algorithm, because it assumes that there are no
ordered relationships.)

To use this pattern, use following steps:

1. Create a discrepancy detection action.

2. Add the Detect Discrepancies action as a processor. The Detect Discrepancies
action belongs to the NetworkIntegritySDK project, which all Network Integrity
cartridge project are dependent on by default.

3. Set the result source.

See the Design Studio Modeling Network Integrity Help for information about the
tasks above.

About the Base Detection Project and the Default Comparison Algorithm
The Base Detection project contains a reusable discrepancy detection action called
Detect Discrepancies. This discrepancy detection action is abstract and cannot be
deployed by itself. It is intended to be imported by virtually all other discrepancy
detection actions. The Detect Discrepancies action implements a general comparison
algorithm that can work with all entity types and specifications, and can detect and
report all seven types of discrepancy.

This ability enables a cartridge developer to build a working discrepancy detection
cartridge for arbitrary discovered data without writing code. Its behavior is
customizable, by using the techniques described in the following processor patterns.

The default comparison algorithm is outlined below.

1. The detector loops over the compare root entities.

2. The detector checks if each compare root entity should be considered for
discrepancy detection. If it should not, the root entity is ignored, and the detector
begins processing the next compare.

3. A rootEntityHandler finds the matching reference root entity for the compare root
entity. The default rootEntityLoader uses the Name field to find the matching

About Discrepancy Detection Processors

3-14 Network Integrity Developer's Guide

reference root entity. If no reference root entity is found, an EXTRA_ENTITY
discrepancy is generated.

4. The attributes of the matching entities are compared, and an ATTRIBUTE_
VALUE_MISMATCH discrepancy is generated for each attribute with different
values. If an attribute contains an ordered list of values, an ORDERING_ERROR
discrepancy is generated if the order of the values does not match.

5. The associations of the matching entities are compared, and an EXTRA_
ASSOCIATION or MISSING_ASSOCIATION discrepancy is generated for
unmatched target entities of an association. The default relationship handler uses
the Name field to match related entities of the compare and reference sides. If an
association is an ordered association, an ASSOCIATION_ORDERING_ERROR
discrepancy is generated if the order of the matching associated entities is
different.

6. The child relationship of the matching entities is compared, and an EXTRA_
ENTITY or MISSING_ENTITY discrepancy is generated for unmatched child
entities. The default relationship handler uses the Name field to match child
entities of the compare and reference sides. If a child relationship is an ordered
association, then an ORDERING_ERROR discrepancy is generated if the order of
the matching child entities is different.

7. The comparison continues by applying the above algorithm to all children entities
recursively, until all entities have been checked. The comparison also stops at a
given entity if one of the following is true: the entity is a compare root entity, or
the entity is flagged as a shadow entity.

The Detect Discrepancy action creates discrepancies with a default severity of
CRITICAL for EXTRA_ENTITY and MISSING_ENTITY, and WARNING for the other
types.

Adding New Filters and Handlers
This usage pattern builds on the Reuse pattern by adding filters and handlers to
customize the general comparison algorithm. The following changes can be achieved:

■ Which root discovery entities are of interest.

■ How to match discovery entities to import entities.

■ Which attributes are not significant for a particular entity type.

■ How to compare a particular attribute.

■ Which relationships to consider for a particular entity type.

■ What severity to apply to a discrepancy.

■ Define a relationship as ordered (to automatically add ORDERING checks).

■ Set a default/suggested resolution action (such as Ignore or Correct in UIM).

To use this pattern, follow the Reuse pattern to create your detection action, and then
create one new detection processor, and move it above the discrepancy detector
processor in the table. This new processor becomes the filter initializer processor for
the detection action. (For example, in Figure 3–1, a new action follows this pattern by
having its own Sample Filter Initializer processor placed above the imported
discrepancy detector processor.)

About Discrepancy Detection Processors

Working with Processors 3-15

Figure 3–1 Sample Filter Initializer

The main task of a filter initializer Processor is to register filters and handlers for use
by the subsequent discrepancy detector processor. Handlers are code that implements
various behaviors used during discrepancy detection. Filters are code that manipulates
the handlers to be used by discrepancy detection.

About Filters
There are four different types of filters that can be added by the processor:

■ AttributeFilter: This filter is called during the assignment of attribute handlers for
the given entity type. This filter can add, modify and remove handlers from the
given attributeHandlers.

■ RelationshipFilter: This filter is called during the assignment of relationship
handlers for a given entity type. This filter can add, modify and remove handlers
from the given relationshipHandlers.

■ DiscrepancyFilter: This filter is called during assignment of discrepancy handlers
for a given entity type. This filter can modify or remove the default
discrepancyHandler.

■ RootEntityFilter: This filter is called during the assignment of the root entity
handler for a given entity type. This filter can replace the default
rootEntityHandler with another one.

About Handlers
There are four types of handlers that can be manipulated by their associated filters:

■ AttributeHandler: This handler can change the mapping of attributes, or change
the behavior of the comparison operation. For example, a string comparison is
normally case-sensitive. An attributeHandler can be added to cause a
case-insensitive comparison to be used instead.

Network Integrity provides a DefaultAttributeHandler class which implements
the necessary AttributeHandler interface and the default case-sensitive string
comparison behavior. To override this behavior, create a class which subclasses
DefaultAttributeHandler, and then override the following method:

protected boolean equalsNonNull(Object a1, Object a2);

About Discrepancy Detection Processors

3-16 Network Integrity Developer's Guide

■ RelationshipHandler: This handler can change the mapping of relationships. For
example, a relationship comparison would normally check the identically-named
relationship on the reference entity. A relationshipHandler can be added which
causes a differently-named relationship to be used instead.

Network Integrity provides a DefaultRelationshipHandler class that implements
the necessary RelationshipHandler interface, and has knowledge of all
relationships for each supported Oracle Communications Information Model
entity type. The following method can be overridden by a new subclass to alter the
default behavior.

protected Object getKey(DiscrepancyEnabled entity)

This method gets a key value that distinguishes a single entity from a set of
entities within a single relationship. The DefaultRelationshipHandler
implementation returns the value of the Name attribute for the input entity.

■ DiscrepancyHandler: This handler can change the fields of a discrepancy
immediately after it is generated. It can also completely remove the discrepancy.
An example of its use is to adjust the severity value of a discrepancy of a
DeviceInterface entity based on its Speed value.

Network Integrity provides a non-accessible default DiscrepancyHandler
implementation which does nothing. To override this behavior, create a class
which implements the DefaultHandler interface, and implement the following
method.

DisDiscrepancy processDiscrepancy(DiscrepancyEnabled currentEntity,
 DisDiscrepancy generatedDiscrepancy)

The overridden method should alter the input generatedDiscrepancy, and then
return it.

■ RootEntityHandler: This handler changes the algorithm for finding a matching
reference entity for an input compare entity. An example of its use is to change the
default comparison criteria to using the ID field to find the match, instead of the
default of using Name field.

See "Using Root Entity Filter and Handler" for a full example of the proper setup
and usage of a root entity handler.

Filters and CimType
Filters register against one or more types of Information Model entities produced by a
Discovery, Import, or Assimilation scan. Filters can also register against one of more
specifications of an entity type, for more fine-grained control.

In Java code, the entity type and specification are designated by using the class
CimType. To register a filter against an entity type (for example, Equipment), use the
single parameter constructor for CimType:

CimType eqType = new CimType(Equipment.class);

To register a filter against a particular specification (for example, cevSensorClock, an
Equipment specification defined in the Cisco UIM cartridge), use the two-parameter
constructor for CimType:

CimType clockEqType = new CimType(Equipment.class, "cevSensorClock");

It is possible to take advantage of the inheritance model of the Information Model
entity classes to register quickly against several classes with one call. For example, all

About Discrepancy Detection Processors

Working with Processors 3-17

Information Model entities that support discrepancy detection inherit from the class
DiscrepancyEnabled. Therefore, the following code CimType can register a filter
against everything:

CimType allType = new CimType(DiscrepancyEnabled.class);

Filter and Handler Examples
The following examples demonstrate the types of filters and handlers. The prerequisite
tasks for all examples are to:

1. Create a discrepancy detection action.

2. Set the result source.

3. Add the detect discrepancy action as a processor.

4. Create a filter initializer processor.

5. Move the new processor above the discrepancy detector processor.

Using Attribute Filter and Handler (Static Attribute)
The following code fragments shows how to add an attribute filter to ignore the static
attribute description on LogicalDevices. The result of this code is that the new
detection action does not generate any description Attribute Value Change
discrepancies on LogicalDevices.

1. Define the filter class and remove the handler for the attribute description.

private class LogicalDeviceAttributeFilter implements AttributeFilter {
public void filterAttributes(CimType cimType, Map<String, AttributeHandler>

attributeHandlers) {
attributeHandlers.remove(“description”);

}
}

2. In the processor invoke method, get the generic discrepancy detector from the
context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();

3. In the invoke method, create the CIMType object to name the entity type, and add
the custom filter.

CimType ldType = new CimType(LogicalDevice.class);
detector.addFilter(ldType, new LogicalDeviceAttributeFilter());

Using Attribute Filter and Handler (Characteristic)
The following code fragments show how to add an attribute filter to ignore the
characteristic systemObjectId on LogicalDevice entities with the specification
DemoLogicalDevice. The main difference between this example and the previous
example is step 3, where the specification name must be included in the CimType
constructor.

1. Define the filter class and remove the handler for the attribute systemObjectId.

private class DemoLogicalDeviceAttributeFilter implements AttributeFilter {
 public void filterAttributes(
 CimType cimType,
 Map<String, AttributeHandler> attributeHandlers) {
 attributeHandlers.remove(“systemObjectId”);
 }
}

About Discrepancy Detection Processors

3-18 Network Integrity Developer's Guide

2. In the processor invoke method, get the generic discrepancy detector from the
context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();

3. In the invoke method, create the CIMType object to name the entity type and the
specification, and add the custom filter.

CimType ldType = new CimType(LogicalDevice.class, "DemoLogicalDevice");
detector.addFilter(ldType, new DemoLogicalDeviceAttributeFilter());

Using Relationship Filter and Handler
In this example, the discrepancy detection action skips the physicalPorts relationship
of all Equipment entities. By using the following code fragment, the new detection
action no longer examines any children ports of equipment.

1. Define the filter class and remove the relationship handler for the relationship
physicalPorts.

private class EquipmentRelationshipFilter implements RelationshipFilter {
 public void filterRelationships(
 CimType cimType,
 Map<String, RelationshipHandler> relationshipHandlers) {
 relationshipHandlers.remove("physicalPorts");
 }
}

2. In the processor invoke method, get the generic discrepancy detector from the
context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();

3. In the invoke method, create the CIMType object to name the entity type, and add
the custom filter.

CimType eqType = new CimType(Equipment.class);
detector.addFilter(eqType, new EquipmentRelationshipFilter());

Using Discrepancy Filter and Handler
This example sets the severity to Minor on every Missing Entity and Extra Entity
discrepancy generated by the new detection action. Use the following code fragment
for this task:

1. Define the filter class and add a new discrepancy handler. This handler performs a
discrepancy type check, and sets the severity accordingly.

private class CustomDiscrepancyFilter implements DiscrepancyFilter {
 public DiscrepancyHandler filterDiscrepancies(
 CimType cimType,
 DiscrepancyHandler handler) {
 return new DiscrepancyHandler() {
 public DisDiscrepancy processDiscrepancy(
 DiscrepancyEnabled cimBase,
 DisDiscrepancy disDiscrepancy) {
 if (DisDiscrepancyType.EXTRA_ENTITY ==
 disDiscrepancy.getType()
 ||
 DisDiscrepancyType.MISSING_ENTITY ==
 disDiscrepancy.getType()) {
 disDiscrepancy.setSeverity(DisDiscrepancySeverity.MINOR);

About Discrepancy Detection Processors

Working with Processors 3-19

 }
 return disDiscrepancy;
 }
 }; // end return new()
 }
}

2. In the processor invoke method, get the generic discrepancy detector from the
context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();

3. In the same invoke method, create the CIMType object to name the entity type,
and add the custom filter.

CimType allType = new CimType(DiscrepancyEnabled.class);
detector.addFilter(allType, new CustomDiscrepancyFilter());

Using Root Entity Filter and Handler
This advanced technique in this example changes the matching algorithm that finds
the matching reference entity for any compare entity. The default algorithm finds
matches based on a comparison of the value of the name attribute. This example
changes the comparison to use the nativeEmsName attribute instead.

The example is in two parts. The first part alters the root entity handler to match
compare root entities with reference root entities using the nativeEmsName attribute.
The second part use relationship handlers to make the discrepancy detector use
nativeEmsName attribute to distinguish the children.

First, the root entity filter and handler code fragments are as follows:

1. Define a method in the new processor to create the root entity filter. This filter
creates a new root entity handler and returns it.

private RootEntityFilter getRootEntityFilter() {
 return new RootEntityFilter() {
 @Override
 public RootEntityHandler filterRootEntities(
 CimType arg0, RootEntityHandler arg1) {
 return new MatchRootEntityByNativeEmsNameInsteadOfName();
 }
 };
}

2. Define a private class that extends from DefaultRootEntityHandler. This class is
the one created in step 1. Override the getReferenceRootEntity() method as
follows. Notice the use of a string array containing the string nativeEmsName to
specify the use of this attribute. Also notice the use of a RuntimeException to
report problems.

private class MatchRootEntityByNativeEmsNameInsteadOfName
 extends DefaultRootEntityHandler {
 @Override
 public DiscrepancyEnabled getReferenceRootEntity(DiscrepancyEnabled
compareRoot) {
 try {
 PomsManagerFactory factory = new PomsManagerFactory();

Note: This feature is used in the MIB II UIM cartridge.

About Discrepancy Detection Processors

3-20 Network Integrity Developer's Guide

 DisResultGroupManager DisResultGroupManager =
 factory.getDisResultGroupManager();
 DisResultGroup g = DisResultGroupManager.getDisResultGroup(
 (Persistent) compareRoot);
 return new ReferenceRootFinder(g).
 findReferenceRoot((Persistent) compareRoot,
 new String[] { "nativeEmsName" });
 } catch (Exception e) {
 logger.log(Level.SEVERE,
 "Error while getting reference root, compareRoot " +
 compareRoot, e);
 throw new RuntimeException(
 "Error while getting reference root, Aborting discrepancy
generation",
 e);
 }
 }
}

3. In the invoke method of the processor, create the CIMType object to cover all
entity types, and add the root entity filter defined in step 1.

CimType allType = new CimType(DiscrepancyEnabled.class);
context.getRootEntityLoader().addFilter(allType, getRootEntityFilter());

Part two adds a relationship filter to each entity type that the detection processor
expects to encounter. This code fragment example shows a change to a single entity
type. It changes the LogicalDevice to DeviceInterface child relationship to match using
nativeEmsName instead of name. Normally, this code pattern needs to be repeated
once for each entity type. (See the MIB II UIM and Cisco UIM cartridge packs for a full
example.)

1. Define the relationship handler as a class inside the processor’s class. This class
should inherit from DefaultRelationshipHandler, and override the getKey()
method to return

public class MatchDevIntfByNativeEmsName extends DefaultRelationshipHandler {
 @Override
 protected Object getKey(DiscrepancyEnabled entity) {
 return ((DeviceInterface) entity).getNativeEmsName();
 }
}

2. In the processor invoke method, get the generic discrepancy detector from the
context.

GenericDiscrepancyDetector detector = context.getDiscrepancyDetector();

3. In the same invoke method, create the CIMType object to name the entity type,
and add the custom filter.

CimType ldType = new CimType(LogicalDevice.class);
detector.addFilter(ldType, new RelationshipFilter() {
 @Override
 public void filterRelationships(
 CimType cimType,
 Map<String, RelationshipHandler> relationshipHandlers) {
 relationshipHandlers.put("deviceInterface",
 new MatchDevIntfByNativeEmsName());
 } // end filterRelationships
 } // end new RelationshipFilter

About Discrepancy Resolution Processors

Working with Processors 3-21

); // end addFilter

Adding Post-Processors
This usage pattern builds on the Reuse pattern and adds processors after the
discrepancy detector processor. These post-processors access the full set of detected
discrepancies using the getDiscrepancies() method of the
DiscrepancyDetectionProcessorContext object (context). Because they are not
persisted until all processors in the action have executed, the discrepancies can be
manipulated completely by the post-processors. They can be modified or removed.
Also, new discrepancies can be added.

Although all fields of a discrepancy can be modified by using setters, there are many
fields that should not be altered. The following discrepancy fields can be safely
changed by post-processors:

■ priority, notes, discrepancyOwner

■ severity, compareValue, referenceValue

■ operation + operationIdentifiedBy + status (status set to OPERATION_
IDENTIFIED) (Must be set together.)

Any other discrepancy fields should not be altered; otherwise, discrepancy resolution
actions may suffer errors and failures.

An example of the use of post-processors is to automatically assign all CRITICAL
severity discrepancies to a specific department (using the discrepancyOwner field).
The following code snippet from a post-processor shows how this is done.

@Override
public void invoke(DiscrepancyDetectionProcessorContext context,
 DiscrepancyPostProcessorProcessorRequest request)
 throws ProcessorException {

 for (DisDiscrepancy discrepancy : context.getDiscrepancies()) {
 if (discrepancy.getSeverity().equals(
 DisDiscrepancySeverity.CRITICAL)) {
 discrepancy.setDiscrepancyOwner("Sherlock Holmes");
 }
 }
}

About Discrepancy Resolution Processors
The only type of processor available to the discrepancy resolution action is the
discrepancy resolution processor.

As with other types of actions, the list of processors are invoked serially from top of
the table to bottom. The first processor is given the list of submitted discrepancies. This
processor determines a subset of these discrepancies to handle (which can range from
none to all), perform the resolution operation, and set their status to either Processed or
Failed.

Then, the next processor is given the remaining discrepancies for processing, and so
on. The action is complete when all the processors are invoked. If there are any
discrepancies which remain at the end, their status is set to Not Implemented.

The discrepancy resolution processor is the Java implementation of a discrepancy
resolution action. The processor performs the following tasks:

About Discrepancy Resolution Processors

3-22 Network Integrity Developer's Guide

■ Filter through its input list of discrepancies to process only those discrepancies it
can handle

■ Communicate with the discovery or import system to correct a discrepancy

■ Report the status of a correction operation

See "Implementing a Processor" for more information.

Creating a Discrepancy Resolution Processor
See the Design Studio Modeling Network Integrity Help for information about
creating a discrepancy resolution processor.

Implementing a Discrepancy Resolution Processor
This section provides details about the discrepancy resolution processor
implementation.

About the Implementation Interface
The processor implementation class derives from a Design Studio-generated interface
class. There is a single abstract method that the implementation class must implement.
The abstract method has the following interface:

public <Processor_Name>Response invoke(
 DiscoveryResolutionProcessorContext context,
 <Processor_Name>Request request)
 throws ProcessorException
{
}

About Input Parameters for the Invoke Method
Table 3–1 describes the methods provided to the developer by the first parameter,
context, outlined in "About the Implementation Interface".

The second parameter, request, contains getters for each item in the Input Parameters
table. It also contains a getter to retrieve the groups and items listed in the Properties
tabbed page.

Table 3–1 Methods from the context Parameter

Context method Return Object Class Description

getActionName() String Getter for the name of the action.

getProcessorName() String Getter for the name of this processor.

getUnhandledDiscrepancies() Collection DisDiscrepancy Getter for a list of unprocessed discrepancies for
this invocation.

getAllDiscrepancies() Collection DisDiscrepancy Getter for a list of processed and unprocessed
discrepancies for this invocation.

discrepancyProcessed(DisDiscre
pancy disc)

void Sets the status of the input discrepancy to
OPERATION_PROCESSED.

discrepancyFailed(DisDiscrepan
cy disc, String failureMessage)

void Sets the status of the input discrepancy to
OPERATION_FAILED, and also sets the failure
message.

discrepancyReceived(DisDiscrep
ancy disc)

void Sets the status of the input discrepancy to
OPERATION_RECEIVED.

About Discrepancy Resolution Processors

Working with Processors 3-23

Return Type of Invoke Method
The return type of the invoke method varies, depending on the output parameters
setting in the Context Parameters tabbed page.

If there is no output parameter, then the return type is void.

If there are one or more output parameters, then the return type is a generated class
with the name Processor_NameResponse. This Response class has getters and setters for
each item in the Output Parameters table.

About the General Flow of the Discrepancy Resolution Processor
The usual pattern for implementing a discrepancy resolution processor is as follows:

1. Fetch the list of unhandled discrepancies using
context.getUnhandledDiscrepancies()

2. Allocate discrepancies based on logical groupings; for example: all discrepancies
on a single card and on its children port.

Keep discrepancies that can be handled by this processor, and ignore or remove
other discrepancies.

3. For each group, perform operations to fix the discrepancies, Then, based on
operation results, set their status to Processed or Failed.

An error message can be saved in the Failure Reason field of the discrepancy,
which is displayed in the Network Integrity UI.

4. Set output parameters.

Fetching Discrepancies
The discrepancy resolution processor can use the context input parameter to fetch the
list of discrepancies to process. In the general flow, the processor uses the method
getUnhandledDiscrepancies() on context to retrieve a list of discrepancies that are not
yet handled by any previous processors.

It is also possible to retrieve the original full list of discrepancies by using the method
getAllDiscrepancies(), but this list includes discrepancies that are already handled by
a prior resolution processor.

It is possible to make updates to already handled discrepancies, such as updating the
Notes field to add more text.

See "About Discrepancies" for more information about the attributes of a Discrepancy
object.

Grouping Discrepancies
Usually, a single resolution processor is responsible for handling the discrepancies of a
single entity type; for example: logical device or device interface only, or more
frequently an explicit set of specifications of an entity type.

 Sometimes, a processor specializes in handling discrepancies of a very specific nature.
Therefore, the next logical task is to examine each unhandled discrepancy, to
determine how it should be handled by this processor.

A processor frequently uses one or more of the following discrepancy attributes as
criteria for handling. Of course, it may use all other attributes as criteria for
determining special handling, if necessary.

About Discrepancy Resolution Processors

3-24 Network Integrity Developer's Guide

See "About Discrepancies" for a detailed explanation of these attributes:

■ Type: Indicates the error being reported; for example: attribute mismatch, missing
entity, and so on.

■ externalEntityType, staticEntityType: Indicates the type and specification of the
target entity.

■ attributeOrRelationshipName: Indicates the attribute or the association that has
the discrepancy.

■ compareValue, referenceValue: Each attribute indicates the value of an attribute on
one side of the comparison.

■ compareEntity, referenceEntity: Each attribute is a reference to one entity being
compared; see "About the Compare and Reference Sides" and "About Discrepancy
Types" for important information on what entity each attribute is actually
referencing.

■ childTargetEntity: This is an additional entity reference used only for Association
or Entity discrepancy types; see "About Discrepancy Types" for more information.

Handling Discrepancies
Now that the target has been identified and grouped, the processor can decide
whether to proceed with the handling. If the processor can resolve this discrepancy,
then the processor can make appropriate API calls necessary to make the desired
resolution on the system, and report the result.

See "Reporting the Resolution Result".

Alternatively, the processor can decide to skip the discrepancy, and begin processing
the next one. The skipped discrepancy subsequently appears in the unhandled list of
discrepancies for the next processor.

Reporting the Resolution Result
When a discrepancy has resolved successfully, simply pass this discrepancy into the
context using the method discrepancyProcessed. This sets the discrepancy status to
Processed.

context.discrepancyProcessed(discrepancy);

If the processor fails to resolve a discrepancy, it should set the discrepancy status to
Failed using the method discrepancyFailed in the context.

This method takes an additional String argument, which the processor can set a short
message to be displayed in the UI. The string is stored in the reasonForFailure
attribute of the discrepancy.

context.discrepancyFailed(discrepancy, "Sample error message.");

If the processor needs to make a series of asynchronous invocations to handle a
discrepancy, it can set the discrepancy status to Received at the end of the first
invocation.

Note: This error message is limited to a maximum of 255 characters.

About Discrepancy Resolution Processors

Working with Processors 3-25

This indicates to Network Integrity and to Network Integrity users that the
discrepancy resolution is in progress. This is done using the method
discrepancyReceived in the context.

context.discrepancyReceived(discrepancy);

See "About Discrepancy Status" for an explanation of the transition rules for status
values.

Handling Discrepancies Asynchronously
There are situations in which a discrepancy resolution operation cannot be completed
within a single invocation. For example, the CORBA interface for an external system to
create a trouble ticket requires the caller to supply a callback object for the notification
of the final operation result and ticket ID.

In this example, the resolution processor code can prepare the callback object and
make the initial CORBA call to submit the trouble ticket, and then it must return from
the invoke method. The subsequent resolution handling code must reside in the
callback object, and receives the notification, updating the discrepancy status
accordingly.

In such cases, the processor should set the status of the discrepancy to RECEIVED
using context.discrepancyReceived() at the end of the handling code in the processor's
invoke method. This indicates to Network Integrity and to Network Integrity users
that resolution processing is in progress, and that additional status updates arrive
later.

You must also save the entityID of the discrepancy (using discrepancy.getEntityId())
during the processor's invoke method. When the subsequent resolution handing
operation reaches its conclusion, the status of the original discrepancy must be
updated to PROCESSED or FAILED. This is done through the Network Integrity web
service by first retrieving the discrepancy using the entityID, and then updating the
status of the discrepancy.

The topic of how to save the entityID and how to create the subsequent code
invocation is beyond the scope of this guide. You may use any techniques available in
J2EE to perform these tasks.

About Discrepancy Resolution Processors

3-26 Network Integrity Developer's Guide

4

Working with Discrepancies 4-1

4Working with Discrepancies

This chapter provides an overview of discrepancies in Oracle Communications
Network Integrity.

About Discrepancies
When Network Integrity detects a difference while comparing import and discovery
data, it generates a discrepancy. The discrepancy captures all vital information about
the difference, such as the entity and the name of the attribute or relationship
containing the difference, the type of difference, and the values on both sides (that is to
say, on the Compare, and the Reference sides).

These topics are further explored in:

■ About the Compare and Reference Sides

■ About Discrepancy Types

■ About Discrepancy Status

■ About Discrepancy Detail

About the Compare and Reference Sides
When dealing with discrepancies, the data from the two sides are named Compare and
Reference. The significance is that the Compare side is the side of the scan that triggered
the discrepancy comparison.

If a scan using a discovery action was also configured to detect discrepancies, the
discrepancies created by that scan have discovery data on the Compared side, and
import data on the Reference side.

On the other hand, if a scan uses an import action with detect discrepancies
configured, the Compared fields of a discrepancy contain import data, and the Reference
fields contain discovery data.

The discrepancy field CompareSource holds a value that indicates the origin of the
compare-side data. The value is NETWORK for a discovery or an Assimilation scan, or
INVENTORY for an import scan.

Table 4–1 shows CompareSource values for different discrepancy origins.

Table 4–1 Listing CompareSource Values for Different Discrepancy Origins

Discrepancy
Origin

Compared
Side CompareSource

Reference
Side ReferenceSource

Discovery Scan Discovery Data NETWORK Import Data INVENTORY

About Discrepancies

4-2 Network Integrity Developer's Guide

About Discrepancy Types
There are seven types of discrepancy; they can be divided into four groups of related
issues.

■ Attribute Value Mismatch. See "Attribute Value Mismatch".

■ Extra Entity, Missing Entity. See "Extra Entity and Missing Entity".

■ Extra Association, Missing Association. See "Extra Association and Missing
Association".

■ Ordering Error, Association Ordering Error. See "Ordering Error and Association
Ordering Error".

Network Integrity does not allow new discrepancy types to be defined.

Attribute Value Mismatch
This discrepancy indicates that an entity exists in both the Compare and Reference
results, but an attribute was found not to have the same value on both sides.

Each discrepancy reports a mismatch problem on a single attribute. An entity can have
multiple Attribute Value Mismatch discrepancies reported, if it has several
mismatched attributes on both sides.

Table 4–2 shows discrepancy attributes and descriptions.

Extra Entity and Missing Entity
This discrepancy indicates that an entity (and any dependent children) is present on
one side of the comparison, but is absent from the other side.

An Extra Entity discrepancy indicates that the entity is present in the Compared side,
but not in the Reference side.

In Figure 4–1, the example for the Extra Entity discrepancy shows an FDDI card in slot
7 present on the Compared side that is missing on the Reference side.

A Missing Entity discrepancy indicates the reverse: the entity is absent is the Compared
side, but present in the Reference side.

Import Scan Import Data INVENTORY Discovery Data NETWORK

Assimilation
Scan

Discovery Data NETWORK Import Data INVENTORY

Table 4–2 Attribute Value Mismatch: List of Discrepancy Attributes

DisDiscrepancy Attribute Description

compareEntity This is the target entity whose attribute has a mismatched value.

referenceEntity This is the matching entity on the other side of the discrepancy detection.

childTargetEntity Not used. This has no value.

attributeOrRelationshipName This holds the name of the attribute containing the mismatch.

compareValue The value of the attribute on the target entity.

referenceValue The value of the attribute on the matching entity on the other side.

Table 4–1 (Cont.) Listing CompareSource Values for Different Discrepancy Origins

Discrepancy
Origin

Compared
Side CompareSource

Reference
Side ReferenceSource

About Discrepancies

Working with Discrepancies 4-3

In Figure 4–1, the example for the Missing Entity discrepancy shows that slot 7 is
missing an FDDI card on the Compared side that is present on the Reference side.

Figure 4–1 Examples of Extra Entity and Missing Entity

Table 4–3 shows discrepancy attributes and descriptions.

When resolving an Extra/Missing Entity discrepancy, the processor is tasked with
either adding or removing an object from its target system. The processor must
consider the system that it is managing (Import/Inventory or Discovery/Network),
and examine the following discrepancy fields to determine the appropriate action:

■ DiscrepancyType

■ CompareSource

For example: A discrepancy resolution processor is created to make corrections to an
inventory system. When this processor receives an Extra Entity discrepancy, it must
check the value of CompareSource. If this value is NETWORK, the extra entity occurs
in the network, and therefore it must be missing from the inventory system. The
processor takes the corrective action of creating this entity in the inventory system.

However, if the discrepancy type is still Extra Entity, and CompareSource value is
INVENTORY, the extra entity occurs in inventory.

Table 4–4 shows the resolution operations for the example processor, given the actual
factors to be considered. The Present in columns indicate the system has the extra

Table 4–3 Discrepancy Attributes and Descriptions

DisDiscrepancy Attribute Description

compareEntity This is the parent entity on one side of the comparison.

referenceEntity This is the parent entity on the other side of the comparison.

childTargetEntity This is the extra child entity on one side.

The entity exists on the Compared entity tree when the discrepancy type is Extra
Entity.

The entity exists on the Reference entity tree when the discrepancy type is Missing
Entity.

attributeOrRelationshipName This holds the name of the association on the parent entity, which references the
childTargetEntity.

compareValue Not used. This has no value.

referenceValue Not used. This has no value.

About Discrepancies

4-4 Network Integrity Developer's Guide

entity. The Resolution Operation column lists the appropriate inventory operation to
resolve this discrepancy.

If the discrepancies are generated by a discrepancy detection action that listens for
results from Import scans, the compare source and reference source are reversed, and
subsequently, the appropriate inventory operations are reversed as well. (This
situation is not usual, but is certainly possible.) See Table 4–5 for this example.

Network Integrity does not report Missing Entity discrepancies on the circuit of a root
entity when the root entity is absent from either the Compared side or the Reference side.

For example, if a discovery scan finds Device1 with circuits A and B in the network,
and the same device exists in inventory, but with circuits A, B, and C, Network
Integrity reports a Missing Entity discrepancy on circuit C in the network.

In the above example, Network Integrity can fully compare the results for Device1
from the Compared side and the Reference side.

However, by default, when Device1 is not listed in the discovery results, Network
Integrity does not report Missing Entity discrepancies on the device.

You can build a discrepancy detection action or extend the base discrepancy detection
action to report missing Entity discrepancies on root entities. See "About Discrepancy
Detection Actions" for more information.

Extra Association and Missing Association
This discrepancy indicates that an association in one entity (source) referencing
another entity (target) is present on one side of the comparison, but is absent from the
other side.

An Extra Association discrepancy indicates that the association is present in the
Compared side, but not in the Reference side.

Table 4–4 Appropriate Resolution Operations for Sample Processor

Discrepancy
Type

Compare
Source

Referece
Source

Present in
Network

Present in
Inventory

Resolution
Operation

Extra Entity Network Inventory Yes No Add the network
entity into
Inventory.

Missing Entity Network Inventory No Yes Remove the
inventory entity.

Note: Table 4–4 assumes that the discrepancy detection action was
triggered from a Discovery scan.

Table 4–5 Appropriate Resolution Operations for Sample Processor (Import Scan)

Discrepancy
Type

Compare
Source

Referece
Source

Present in
Network

Present in
Inventory

Resolution
Operation

Extra Entity Inventory Network No Yes Remove the
inventory entity.

Missing Entity Inventory Network Yes No Add the network
entity into
Inventory.

About Discrepancies

Working with Discrepancies 4-5

In Figure 4–2, the example for the Extra Association discrepancy shows a Mapped
Device Interface association from Port 1 to Interface 2 present on the Compared side
that is missing on the Reference side.

A Missing Association discrepancy indicates the reverse: the association is absent in
the Compared side, but is present in the Reference side.

In Figure 4–2, the example for the Missing Association discrepancy shows that the
Mapped Device Interface association from Port 1 to Interface 2 is missing on the
Compared side but is present on the Reference side.

Each discrepancy indicates a problem with a single direction of association. If two
entities have a bidirectional association with each other, and this bidirectional
association is completely missing on one side, two discrepancies are generated by
Network Integrity.

Figure 4–2 Examples of Extra Association and Missing Association

Table 4–6 shows discrepancy attributes and descriptions.

The processor must examine the discrepancy to determine whether the appropriate
resolution operation is to add the association, or to remove it.

Table 4–7 shows the appropriate operation, given the values of discrepancy type,
compare source, and reference source within the discrepancy.

Table 4–6 Extra Association and Missing Association: List of Discrepancy Attributes

DisDiscrepancy Attribute Description

compareEntity This is the source entity on one side of the comparison.

referenceEntity This is the source entity on the other side of the comparison.

childTargetEntity This is the target entity of the association.

The entity exists on the Compared side when the discrepancy type is Extra
Association.

It exists on the Reference side when the discrepancy type is Missing Entity.

attributeOrRelationshipName This holds the name of the association on the source entity which references the
childTargetEntity.

compareValue Not used. This has no value.

referenceValue Not used. This has no value.

About Discrepancies

4-6 Network Integrity Developer's Guide

If the discrepancies are generated by a discrepancy detection action that listens for
results from Import scans, the compare source and reference source are reversed, and
subsequently, the appropriate inventory operation are reversed as well. (This situation
is not usual, but is certainly possible.)

Table 4–8 shows the appropriate operation for this particular situation.

Ordering Error and Association Ordering Error
In some cases, the ordering of child or associated entities is significant. This
discrepancy indicates that matched entities appear in different orders between the two
sides. The only difference between the two types of discrepancy is that an Ordering
Error indicates a problem with a parent/child association, while an Association
Ordering Error indicates a problem with some other association.

Table 4–9 shows discrepancy attributes and descriptions.

Table 4–7 Appropriate Resolution Operations for Sample Processor

Discrepancy
Type

Compare
Source

Reference
Source

Present in
Network

Present in
Inventory

Resolution
Operation

Extra Association Network Inventory Yes No Add the
association into
the inventory
entity.

Missing
Association

Network Inventory No Yes Remove the
association
from the
inventory
entity.

Table 4–8 Appropriate Resolution Operations for Sample Processor (Import Scan)

Discrepancy
Type

Compare
Source

Reference
Source

Present in
Network

Present in
Inventory

Resolution
Operation

Extra Association Inventory Network No Yes Remove the
association from
the inventory
entity.

Missing
Association

Inventory Network Yes No Add the
association into
the inventory
entity.

Table 4–9 Ordering Error and Association Ordering Error: List of Discrepancy Attributes

DisDiscrepancy Attribute Description

compareEntity This is the source/parent entity on one side of the comparison.

referenceEntity This is the source/parent entity on the other side of the comparison.

childTargetEntity Not used. This has no value.

attributeOrRelationshipName This holds the name of the association having the ordering problem.

compareValue Not used. This has no value.

referenceValue Not used. This has no value.

About Discrepancies

Working with Discrepancies 4-7

About Discrepancy Status
The discrepancy status field identifies the state of a discrepancy within its life cycle.
Table 4–10 lists the possible discrepancy statuses.

Figure 4–3 shows the discrepancy status lifecycle diagram.

Figure 4–3 Discrepancy Status Life Cycle

Every discrepancy begins with a status of OPENED when it is first detected. It can
then be moved to one of two states by a user using a web UI operation:

■ IDENTIFIED, by using a resolution action menu item

■ IGNORED, by using the Ignore menu item

When a discrepancy is in the IDENTIFIED state, a user can use the Submit operation
to move it to the SUBMITTED state. At this point, the discrepancy has moved out of
user control, and into the control of a resolution action.

The resolution action processes the submitted discrepancy, and reports the outcome by
setting the status to:

Table 4–10 Discrepancy Statuses

Status Status Change Trigger Valid Follow-On Statuses

Opened NA Ignored, Identified

Ignored UI command Opened, Identified

Identified UI command Submitted, Ignored, Opened

Submitted Programmatic operation Received, Failed, Processed, Not Implemented

Received Programmatic operation Failed, Processed

Failed UI command Ignored, Identified

Not Implemented NA NA

Processed NA NA

About Discrepancies

4-8 Network Integrity Developer's Guide

■ PROCESSED, or

■ FAILED

If the status is PROCESSED, the operation has succeeded, and the discrepancy can no
longer be acted upon. If the status is FAILED, it becomes available for the user to
specify an operation again, just like when it was first opened.

A resolution action may set a discrepancy status to RECEIVED immediately after the
submit operation. This status indicates that the resolution operation is in progress, and
reports its final operation status later.

About Discrepancy Detail
Table 4–11 lists all the attributes of a discrepancy. The Java type of a discrepancy is
DisDiscrepancy. Use Java getter and setter patterns to retrieve and set the attribute's
value. For example use the getPriority() method to get the value of priority, and
setPriority(String) method to change its value.

Although the setters for all attributes are public, most fields should not be directly set
by the processors. The following fields are safe to be used by processor Java
implementations:

■ priority

■ notes

■ discrepancyOwner

The status and failureReason fields should be set using the context methods when inside
a processor invoke method. Otherwise, they can also be set using setters.

Table 4–11 Discrepancy Attributes

DisDiscrepancy
Attribute Type Description

type DisDiscrepancyType
(Enum)

The discrepancy type.

Valid values are:

■ ATTRIBUTE_VALUE_MISMATCH

■ EXTRA_ENTITY

■ MISSING_ENTITY

■ EXTRA_ASSOCIATION

■ MISSING_ASSOCIATION

■ ORDERING_ERROR

■ ASSOCIATION_ORDERING_ERROR

severity DisDiscrepancySeveri
ty (Enum)

The severity of the discrepancy.

The values are (from most severe to least):

■ CRITICAL

■ MAJOR

■ MINOR

■ WARNING

entityName String The name of the entity for which this discrepancy is raised.

externalEntityType String The name of the specification, if the entity has a specification.
Otherwise, the same value as staticEntityType.

staticEntityType String The name of the base entity type of the entity.

About Discrepancies

Working with Discrepancies 4-9

attributeOrRelationshipN
ame

String This holds the name of the attribute or relationship having
the discrepancy.

compareEntity long (Weak
Reference)

This is the entityID of the entity for which this discrepancy is
raised.

compareSystem DisSource (Enum) Indicates whether the compare data comes from Network
(Discovery) or Inventory (Import) system. Valid values are
NETWORK and INVENTORY.

compareValue String This is used by attribute value mismatch discrepancies to
hold the value of the attribute on the compare side.

compareSource String The source value of the compareEntity. This value is copied
from the Source field of the Scan configuration used to
discover/import this entity into Network Integrity.

referenceEntity long (Weak
Reference)

This is the entityID of the entity of the discrepancy on the
opposite side to the compareEntity.

referenceSystem DisSource (Enum) This indicates whether the reference data comes from
Network (Discovery) or Inventory (Import) system. Valid
values are NETWORK and INVENTORY.

referenceValue String This is used by attribute value mismatch discrepancies to
hold the value of the attribute on the reference side.

referenceSource String This is the source value of the referenceEntity. This value is
copied from the Source field of the Scan configuration used
to discover/import this entity into Network Integrity.

childTargetEntity long (Weak
Reference)

Used by Extra/Missing discrepancies to indicate the
child/target entityID of the entity of an association.

ancestorEntityName String This is the name of the ancestor (parent) entity for the
discrepancy.

ancestorEntityType String This is the name of the specification, if the ancestor entity has
a specification. Otherwise, it takes the same value as
ancestorStaticEntityType.

ancestorStaticEntityType String This is the name of the base entity type of the ancestor entity.

parentResultGroup DisResultGroup This is a reference of the parent scan result detail (that is, the
result group) of the compareEntity.

path String This is the path to the entity for this discrepancy.

It is a comma-delimited list of entity IDs that describes the
path from the root entity.

For Missing Entity and Missing Association discrepancies, it
is the path to the compareEntity followed by the entityID of
the referenceEntity.

For other discrepancy types, it is the path to the
compareEntity.

priority String This is a user-editable field used to indicate the priority of
this discrepancy.

This would typically be used for customer-specific
categorization, enabling a finer control than using severity
alone.

notes String This is a user-editable field for comments.

Table 4–11 (Cont.) Discrepancy Attributes

DisDiscrepancy
Attribute Type Description

About Discrepancies

4-10 Network Integrity Developer's Guide

discrepancyOwner String This is a user-editable field used to indicate an external
owner of the discrepancy.

It may be used for other purposes if desired.

operation String This holds the name of the resolution action being invoked.

operationIdentifiedBy String This is the ID of the user who identified the resolution action
(the UI action to set the resolution operation, before the
submit operation).

operationSubmittedBy String This is the ID of the user who submitted the resolution
action.

submittedTime Date This is the timestamp when the status changed to
OPERATION_SUBMITTED.

status DisDiscrepancyStatus
(Enum)

This is the current status of this discrepancy.

Valid values are:

■ DISCREPANCY_OPENED

■ DISCREPANCY_IGNORED

■ OPERATION_IDENTIFIED

■ OPERATION_SUBMITTED

■ OPERATION_RECEIVED

■ OPERATION_NOT_IMPLEMENTED

■ OPERATION_PROCESSED

■ OPERATION_FAILED

lastStatusChangeTime Date This is the timestamp when the status attribute was last
updated.

reasonForFailure String This holds the error message set by the processor using
context.discrepancyFailed() method.

entityID long This is an Internal identifier.

Table 4–11 (Cont.) Discrepancy Attributes

DisDiscrepancy
Attribute Type Description

5

Working with the POMS SDK 5-1

5Working with the POMS SDK

This chapter provides information about how the persistent object modeling service
(POMS) manages persistent data in Oracle Communications Network Integrity.

This chapter contains the following sections:

■ About POMS

■ Working with POMS Entities

■ Working with POMS Relationships

■ Working with Specifications and Characteristics

■ Working with the POMS Finder

■ About Persist Results

About POMS
POMS manages all persisted data for Network Integrity. You use POMS for most
cartridge development, but you rarely need to deal explicitly with persistence details.

POMS includes the Java definition of the entities and relationships described in Oracle
Communications Information Model Reference.

While POMS includes both interface and implementation classes for the entities, you
work only with interfaces. These interfaces provide getters and setters for attributes
and relationships. Use the PersistenceHelper POMS SDK class to instantiate entities.

You can use the POMS SDK Finder class to find and retrieve existing persisted entities.

POMS is built on the EclipseLink Java persistence API (JPA) platform. You do not
usually need to know EclipseLink or JPA to use the POMS SDK. The exception is find
operations where you may have to know Java Persistence Query Language (JPQL). See
"Working with the POMS Finder" for more information about the find operations.

Table 5–1 describes the POMS SDK APIs.

Table 5–1 POMS SDK API Description

POMS SDK APIs Description

Entities The POMS SDK represents modelled entities as Java interfaces with
getters and setters for attributes and relationships. See "Working with
POMS Relationships".

Specifications and
characteristics

The POMS SDK includes APIs that allow you to operate on
specifications and characteristics. See "Working with Specifications and
Characteristics".

Working with POMS Entities

5-2 Network Integrity Developer's Guide

Working with POMS Entities
The POMS Java interface for an entity has the same name as the entity described in the
model document. For example, entity Equipment becomes:

public interface Equipment

Attributes are accessed with familiar Java getters and setters. For example. The
Equipment name attribute is defined by:

public java.lang.String getName();
public void setName(java.lang.String name);

An entity may contain enumerated values for certain attributes. POMS implements
these as Java enumerations. For example, the EMSServiceState from LogicalDevice
has the following:

public enum EMSServiceState {
 UNKNOWN("UNKNOWN"),
 IN_SERVICE("IN_SERVICE"),
 OUT_OF_SERVICE("OUT_OF_SERVICE"),
 TESTING("TESTING"),
 IN_MAINTENANCE("IN_MAINTENANCE");

public oracle.communications.inventory.api.entity.EMSServiceState
getNativeEmsServiceState();
public void setNativeEmsServiceState(
oracle.communications.inventory.api.entity.EMSServiceState nativeEmsServiceState
);

When creating results, for example in a discovery processor, you must instantiate
POMS entities. Use the PersistenceHelper class, passing the desired entity class to the
makeEntity method:

Equipment equipment = PersistenceHelper.makeEntity(Equipment.class);

Working with POMS Relationships
Related entities are also accessed with getters and setters.

One-to-one Relationships
When a relationship refers to a single entity, the entity is accessed directly. For
example, the mapped physical and logical devices:

public oracle.communications.inventory.api.entity.LogicalDevice
getMappedLogicalDevice();
public void setMappedLogicalDevice(
oracle.communications.inventory.api.entity.LogicalDevice mappedLogicalDevice);

PersistenceHelper The POMS SDK provides methods to instantiate a POMS entity or
POMS Finder. See "Working with POMS Entities" and "POMS SDK
Interfaces".

Finder The POMS SDK provides various methods to define a query and
retrieve matching persisted entities. See "Working with the POMS
Finder" and "POMS SDK Interfaces".

Table 5–1 (Cont.) POMS SDK API Description

POMS SDK APIs Description

Working with POMS Relationships

Working with the POMS SDK 5-3

One-to-Many or Many-to-Many Relationships
When a relationship refers to multiple entities, the entities are accessed through a
collection. For example, the equipment to physical port relationship:

public java.util.List<oracle.communications.inventory.api.entity.PhysicalPort>
getPhysicalPorts();
public void setPhysicalPorts(
java.util.List<oracle.communications.inventory.api.entity.PhysicalPort>
physicalPorts);

A getter never returns null for the collection. If there are no related entities, an empty
collection is returned. That means the developer can safely add entities without
creating a collection. For example:

equipment.getPhysicalPorts().add(physicalPort);

Ordered and Unordered Relationships
POMS uses a List for the collection because the Oracle Communications Information
Model defines an ordered relationship for physical ports on equipment. In other cases,
order does not matter and so POMS uses a Set for the collection. For example, the
parent relationship from Equipment to EquipmentHolder:

public
java.util.Set<oracle.communications.inventory.api.entity.EquipmentHolderEquipmentR
el> getParentEquipmentHolders();
public void
setParentEquipmentHolders(java.util.Set<oracle.communications.inventory.api.entity
.EquipmentHolderEquipmentRel> equipmentHolders);

Bi-directional Relationships
Certain relationships in the model are bi-directional. POMS includes accessors on
entities on both sides of a bi-directional relationship, and the relationship can be set
from either side. The physical device to logical device relationship described in the
"One-to-one Relationships" example is bi-directional. The other side of this
relationship, on the logical device, is defined as:

public java.util.List<oracle.communications.inventory.api.entity.PhysicalDevice>
getMappedPhysicalDevices();
public void setMappedPhysicalDevices(
java.util.List<oracle.communications.inventory.api.entity.PhysicalDevice>
mappedPhysicalDevices);

This is a many-to-one relationship, so there is a collection on the logical device side
and single entity on the physical device side. To relate a physical and logical device,
you can either set from the physical device:

physicalDevice.setMappedLogicalDevice(logicalDevice);

or set from the logical device:

logicalDevice.getMappedPhysicalDevices ().add(physicalDevice);

Relationship Entities
In some cases, the model defines an intermediate relationship entity instead of relating
two entities directly. For example, the Information Model defines
EquipmentEquipmentRel to relate two pieces of equipment. To create this type of

Working with Specifications and Characteristics

5-4 Network Integrity Developer's Guide

relationship, instantiate the relationship entity and set the related entities. For the
equipment to equipment example:

EquipmentEquipmentRel parentEquipmentRel =
PersistenceHelper.makeEntity(EquipmentEquipmentRel.class);
parentEquipmentRel.setChildEquipment(equipment);
parentEquipmentRel.setParentEquipment(parentEquipment);

Working with Specifications and Characteristics
You can use the generated specification helper classes to avoid directly dealing with
specifications and characteristics. See "About Specifications" and "Working with
Specifications" for a description of the underlying API and for more information on
when to directly manipulate specifications.

You can determine if an entity supports characteristics and specification by referencing
the model documentation, or by checking the POMS interface. Entities that support
characteristics and specifications extend the CharacteristicExtensible interface. For
example:

oracle.communications.inventory.api.CharacteristicExtensible
<oracle.communications.inventory.api.entity.EquipmentCharacteristic>;

The specification and characteristics are related entities like any other, characteristics
being multi-valued:

public oracle.communications.inventory.api.entity.EquipmentSpecification
getSpecification();
public void setSpecification(
oracle.communications.inventory.api.entity.EquipmentSpecification specification);

public
java.util.Set<oracle.communications.inventory.api.entity.EquipmentCharacteristic>
getCharacteristics();
public void setCharacteristics(
java.util.Set<oracle.communications.inventory.api.entity.EquipmentCharacteristic>
characteristics);

As a convenience, POMS also lets you access a characteristic by name through the map
returned by getCharacteristicMap:

public java.util.Map<String,
oracle.communications.inventory.api.entity.EquipmentCharacteristic>
getCharacteristicMap();

Working with the POMS Finder
You can use the POMS Finder to retrieve previously persisted data, however, you do
not typically need to use the Finder.

The most basic use of the Finders is "Find by Entity". More powerful and flexible
queries are possible with the Java Persistence Query Language (JPQL). You can also
control whether entities are returned completely or a with a subset of attributes. You
can also use paging to return data in manageable chunks where queries might return a
large volume of data.

Working with the POMS Finder

Working with the POMS SDK 5-5

Find by Entity
To find entities matching an example entity, instantiate an entity of the appropriate
type and set one or more attributes. Use the findByEntity method to return a
collection of matching entities. Here is an example that looks for the specification for a
Cisco 3640 physical device:

Finder finder = PersistenceHelper.makeFinder();
PhysicalDeviceSpecification example =
 PersistenceHelper.makeEntity(PhysicalDeviceSpecification.class);
example.setName("Cisco3640");

Collection<PhysicalDeviceSpecification> specifications =
 finder.findByEntity(example, "name");
if (specifications.size() == 1) {
 System.out.println("found specification");
}

Find by JPQL
Java Persistence Query Language (JPQL) is a powerful way to express queries. The
following examples can be understood without knowing JPQL, especially if the
developer is familiar with SQL; however, you must learn JPQL to build their own
queries.

For an introduction to JPQL, use the following link:

http://download.oracle.com/javaee/6/tutorial/doc/bnbtg.html.

To perform a JPQL query use the following workflow:

1. Instantiate a Finder.

2. Initialize any parameters (these parameters are bound to variables in the JPQL
expression).

3. Specify the desired result type.

4. Use the findByJPQL method to return matching results.

In following example queries, the first is equivalent to the example in the "Find by
Entity" section and returns a particular specification. The second uses a join in the
JPQL expression to return all physical devices that use this specification.

Finder finder = PersistenceHelper.makeFinder();
finder.addParameter("name", "Cisco3640");
finder.setRsultClass(PhysicalDeviceSpecification.class);
Collection< PhysicalDeviceSpecification> specifications = finder.findByJPQL(
 "SELECT o FROM PhysicalDeviceSpecification o " +
 "WHERE o.name = :name");

finder.setRsultClass(PhysicalDevice.class);
Collection< PhysicalDevice> cisco3640Devices = finder.findByJPQL(
 "SELECT o FROM PhysicalDevice o JOIN o.specification s " +
 "WHERE s.name = :name");

A JPQL query does not need to return complete entities. It can return one or more
attributes from matched entities. To return only name and ID from a physical device,
the developer would modify the previous example as follows:

Collection cisco3640Devices = finder.findByJPQL(
 "SELECT o.name,o.id FROM PhysicalDevice o JOIN o.specification s
WHERE s.name = :name");

Working with the POMS Finder

5-6 Network Integrity Developer's Guide

for (Oject device : cisco3640Devices) {
 Object[] attributes = (cisco3640DevicesObject[]) device;
 System.out.println("Found Cisco 3640 named " + attributes[0] + " with id " +
 attributes[1]);
}

The code snippet also shows how to iterate over the results. Since the returned type is
not a POMS entity, the attribute values are available as Object arrays. You would not
set the result class in this case.

While JPQL and the Finder support operations that modify persisted data (update,
delete, and so on), you should never modify POMS data with JPQL. The Finder is
intended only for read operations.

Find with Paged Results
When working with a large number of entities, process them in smaller batches to
reduce memory usage. The Finder supports paged results. Initialize the Finder
normally, then specify the range of value to retrieve. This modifies the original
physical device example to page through devices 20 at a time:

int pageSize = 20;
int start = 0;
while (true) {
 finder.setRange(start, start + pageSize - 1);
 Collection<Physicaldevice> cisco3640Devices = finder.findByJPQL(
 "SELECT o FROM PhysicalDevice o JOIN o.specification s WHERE s.name =
:name");
 for (PhysicalDevice device : cisco3640Devices) {
 System.out.println(device.getName());
 if (cisco3640Devices.size()) < pageSize) {
 break;
 }
 start += pageSize;
 }
}

POMS SDK Interfaces
The following are the PersistenceHelper API methods:

public static < E extends Object > E makeEntity(Class< E > entity);
public static oracle.communications.platform.persistence.Finder makeFinder() ;

The following are the Finder API methods:

/**
 * Set the result Class to query.
 *
 * @param resultClass
 * the interface of each result in the result set
 */
 public void setResultClass(Class resultClass);

/**
 * Set the range of the result set to return, starting of the zero-based
 * start index and ending at the end index, exclusive. For example,
 * setRange(0,5) returns 5 results indexed at 0 thru 4.
 *
 * <p>
 * Setting the range is meaningless if the order of the results is not

Working with the POMS Finder

Working with the POMS SDK 5-7

 * consistent. setOrdering is assumed.
 *
 * @param start
 * zero-based start index
 * @param end
 * ending index, exclusive
 * @see javax.jdo.Query#setRange
 */
 public void setRange(long start, long end);

 /**
 * Add the parameter name and value that are used to define the filter.
 *
 * <p>
 * Parameter names beginning with an underscore ('_') are illegal. They may
 * conflict with additional parameters used internally by this Finder.
 *
 * @param names
 * the parameter name to be declared
 * @param param
 * the parameter value to be bound to the query
 * @throws java.lang.IllegalArgumentException
 * if illegal parameters are passed
 */
 public void addParameter(String name, Object param);
/**
 * Find entities by example.
 * Any non-null attributes in the example entity is used as the search
criteria, however
 * the attribute names in the mustUseAttributes argument are used as criteria
if the
 * attribute is null.
 *
 * <p>
 * This is a convenience method that performs a simple query in one call.
 * Incremental query construction is not over-written by calling this
 * method.
 *
 * @param entity
 * the example entity which non-null attributes are used as the
search criteria.
 * @param attributes
 * list of attribute names which must be used as search criteria
even if their values
 * in the example entity are null.
 * @param <E>
 * a oracle.communications.platform.persistence.Persistent type
 * @return Collection of results of the matching entities
 */
 public < E extends Persistent > Collection< E > findByEntity(E entity, String
... mustUseAttributes);
/**
 * This method returns the result of executing a JPQL search using the passed
expression.
 * The caller can pass the query parameter with {@link #addParameter(Integer,
Object) addParameter} or
 * {@link #addParameter(String, Object) addParameter}.
 *
 * @param jpql The JPQL
 * @return Collection of search results

About Persist Results

5-8 Network Integrity Developer's Guide

 */
 public Collection findByJPQL(String jpql);

About Persist Results
The persistResults method is available in the context of discovery, import and
assimilation scan action types. This method persists in-memory result entities to the
database and invalidates the entities. You may or may not need to explicitly call this
method, depending on the sort of results that your action produces for a given
invocation.

If the result set is small (for example, one result group for a particular device), then
there is no need to call this method. Your result entities are automatically persisted
when the action completes.

If the result set is large (for example multiple devices imported from an inventory
system), call persistResults to write the information to the database, reducing memory
consumption. In the context of an import action, you would likely want to call the
persistResults after results for each device are modeled.

Since persistResults invalidates any in-memory entities, you should not hold a
reference to any result entity across a call to persist results.

6

Working with the Extensibility SDK 6-1

6Working with the Extensibility SDK

This chapter provides information about the extensibility SDK for Oracle
Communications Network Integrity.

This chapter contains the following sections:

■ About Extensibility Scenarios

■ Extending MIB II SNMP Discovery for Updated Vendor and Interface Type

■ Extending an Existing Cartridge to Discover and Reconcile New Characteristics

■ Extending the MIB II SNMP Discovery to Change Interface Name Value

■ Multiple Vendor SNMP Discovery

■ Multiple Protocol Discoveries

About Extensibility Scenarios
Cartridge projects and actions in Network Integrity are extensible using Oracle
Communications Design Studio for Network Integrity. The productized and sample
cartridges provided by Network Integrity are designed to be completely extensible
and re-usable.

When you make a cartridge project dependent on another, you allow the dependent
cartridge project access to the extensible elements from the base cartridge project.

The following sections are examples of some common extensibility scenarios.

Each of the scenarios follows a detailed example but is meant to demonstrate the many
extensibility features and methods within Network Integrity cartridge development.
The following concepts are demonstrated in the scenarios:

■ Re-using existing actions

■ Conditional execution using conditions

■ The use of specifications and characteristics to extend the model

■ The use of input and output parameters

■ The use of scan parameter groups and characteristics to extend the Network
Integrity UI

■ Using filters to modify default discrepancy detection behavior

■ What extension points are available in productized cartridges

The scenarios are made up of high-level steps. For more detailed steps, see the Design
Studio Help or the Design Studio Modeling Network Integrity Help.

Extending MIB II SNMP Discovery for Updated Vendor and Interface Type

6-2 Network Integrity Developer's Guide

See the following extensibility scenarios:

■ Extending MIB II SNMP Discovery for Updated Vendor and Interface Type

Describes how to update the vendor number and interface type mapping tables in
the MIB II SNMP Discovery cartridge.

■ Extending an Existing Cartridge to Discover and Reconcile New Characteristics

Describes how to extend an existing cartridge to discover new data from a device
and reconcile this data with an Inventory system.

■ Extending the MIB II SNMP Discovery to Change Interface Name Value

Describes how to extend the MIB II SNMP Discovery action to map the SNMP
variable ifName to the interface entity name rather than the entity interface
description.

■ Multiple Vendor SNMP Discovery

Describes how to extend an existing cartridge to discover device data from
multiple vendors.

■ Multiple Protocol Discoveries

Describes how to extend an existing cartridge to discover data using multiple
protocols.

Extending MIB II SNMP Discovery for Updated Vendor and Interface Type
This scenario describes the steps required to update the vendor number and interface
type mapping tables in the MIB II SNMP Discovery cartridge. The vendor number
table translates an enterprise object identifier number to a vendor name. The interface
type table translates an ifType value into a human readable name. These mapping
tables are created and output by the MIB II Properties Initializer processor.

The following tasks are performed in this example:

■ Adds a new interface type (#333, “tachyonEther”)

■ Adds a new vendor number (#90210, “West Beverly Hills School District”)

■ Changes an existing vendor name (#34416, from “Ottawa Area Intermediate
School District” to “Ottawa Area Middle School District”)

The following cartridges must be loaded in the Design Studio and not have any errors:

■ Address_Handlers

■ MIB_II_Model

■ MIB_II_SNMP_Cartridge

This scenario is made up of high-level steps that are explained in greater detail in the
Design Studio Modeling Network Integrity Help.

To extend the MIB II SNMP Discovery cartridge project for updated vendor and
interface type information:

1. Create a Network Integrity cartridge project called Vendor_Type_Update. Make
your cartridge project dependent on the MIB_II_SNMP_Cartridge cartridge
project.

2. Create a discovery action called Discover Updated MIB II SNMP.

Extending MIB II SNMP Discovery for Updated Vendor and Interface Type

Working with the Extensibility SDK 6-3

3. In Discover Updated MIB II SNMP, add the Discover MIB II SNMP action as a
processor.

4. Create a discovery processor called MIB II Properties Updater and place it after
the MIB II Properties Initializer processor. This processor will be used to update
the two mapping tables.

5. Open the Processor editor Context Parameters tab for MIB II Properties Updater
and add snmpIfTypeMap and snmpVendorNameMap as input parameters.
These parameters are the output from the MIB II Property Initializer processor.

6. Create the implementation class for this discovery processor. See "Implementing a
Processor" for instructions on how to add an implementation class to a processor.

7. Add the implementation code into the body of the invoke method of the discovery
processor implementation class, similar to the following:

// Rename 34416 from "Ottawa Area Intermediate School District"
// to "Ottawa Area Middle School District"
// Add a new vendor ID 90210 = West Beverly Hills School District
//
Map<String, String> vendorNameMap = request.getSnmpVendorNameMap();
vendorNameMap.put("34416", "Ottawa Area Middle School District");
vendorNameMap.put("90210", "West Beverly Hills School District");

// Add a new interface type 333 as tachyonEther.
//
Map<String, String> ifTypeMap = request.getSnmpIfTypeMap();
ifTypeMap.put("333", "tachyonEther");

8. Build, deploy, and test your cartridge.

Figure 6–1 shows the processor workflow of the Discover Updated MIB II SNMP
action and the placement of the MIB II Properties Updater processor.

This discovery action inherits all the processors from the Discover MIB II SNMP
action. See MIB-II SNMP Cartridge Guide for more information.

Figure 6–1 Discover Updated MIB II SNMP Action

Extending an Existing Cartridge to Discover and Reconcile New Characteristics

6-4 Network Integrity Developer's Guide

Extending an Existing Cartridge to Discover and Reconcile New
Characteristics

This scenario describes the steps required to extend an existing cartridge project to
discover new data from a device and reconcile this data with an inventory system.

For this scenario the following data is discovered and stored on the physical device:

■ Running Configuration Last Saved Date

■ Running Configuration Last Modified Date

■ Startup Configuration Last Modified Date

The following cartridges must be loaded in the Design Studio and not have any errors:

■ Address_Handlers

■ ora_ni_uim_cisco_device_sample

■ ora_ni_uim_devices

■ Cisco_Model

■ Cisco_SNMP_Cartridge

■ Cisco_UIM_Cartridge

■ Cisco_UIM_Model

■ MIB_II_Model

■ MIB_II_SNMP_Cartridge

■ MIB_II_UIM_Cartridge

This scenario is made up of high-level steps that are explained in greater detail in the
Design Studio Modeling Network Integrity Help.

To extend a cartridge project to discover and reconcile new characteristics:

1. Create a new UIM cartridge project called Disco_Recon_Specs.

2. From the ora_ni_uim_cisco_device_sample cartridge project, copy and rename the
following specifications to Disco_Recon_Specs:

■ cisco3640, rename it to cisco3640Custom

■ cat6509, rename it to cat6509Custom

■ cisco7206, rename it to cisco7206Custom

3. Open the Data Schema editor for Disco_Recon_Specs and create the following
characteristics:

■ runningConfigLastSavedDate

■ runningConfigLastChangedDate

■ startupConfigLastChangedDate

4. Add the new characteristics to the renamed specifications.

5. Create a new Network Integrity cartridge project called Disco_Recon_Char. Make
Disco_Recon_Char dependent on Disco_Recon_Specs and Cisco_UIM_Cartridge.

6. Add the renamed specifications to the model collection for Disco_Recon_Char.

7. Create a discovery action in Disco_Recon_Char and name it Discover Extended
Cisco.

Extending an Existing Cartridge to Discover and Reconcile New Characteristics

Working with the Extensibility SDK 6-5

8. In Discover Extended Cisco, add the Discover Enhanced Cisco SNMP action as a
processor.

9. In Discover Extended Cisco, create an SNMP processor called Custom Cisco
Collector.

10. Perform a web search and download a MIB file called
CISCO-CONFIG-MAN-MIB. Do the following:

a. Copy the MIB file to the MIB directory.

To find the MIB directory, in Design Studio, on the Windows menu, select
Preferences. In the Preferences dialog box, expand Oracle Communications
Design Studio, then select Network Integrity. The MIB directory is displayed
in the dialog box.

b. Copy the MIB file to the SNMP Adapter on the Network Integrity server. See
"Extending the SNMP JCA Resource Adapter" for more information.

c. On the Processor editor SNMP tab, load the CISCO-CONFIG-MAN-MIB file
and add the following MIB object IDs to Custom Cisco Collector from
CISCO-CONFIG-MAN-MIB.private.enterprises.cisco.ciscoMgmt.ciscoConfig
ManMIB.ciscoConfigManMIBObjects.ccmHistory:

– ccmHistoryRunningLastChanged

– ccmHistoryRunningLastSaved

– ccmHistoryStartupLastChanged

11. Create a discovery processor named Custom Cisco Modeler to map the new fields
to the specifications and characteristics:

a. On the Processor editor Context Parameters tab, add the following input
parameters:

– physicalDevice: output by the Cisco SNMP Physical Modeler processor

– the document output by Custom Cisco Collector processor

12. Create the implementation class for Custom Cisco Modeler. See "Implementing a
Processor" for more information.

13. Add the following implementation code into the invoke method that was
auto-generated:

// Get the running config and startup config values from the SNMP response
document
// Keep the values in local variables
CiscoConfigManMibMib configMib =
request.getCustomCiscoCollectorResponseDocument().getDiscoveryResult().getCisco
ConfigManMibResults();
String runningConfigChanged =
Long.toString(configMib.getCcmHistoryRunningLastChanged());
String runningConfigSaved =
Long.toString(configMib.getCcmHistoryRunningLastSaved());
String startupConfigChanged =
Long.toString(configMib.getCcmHistoryStartupLastChanged());

Note: Import statements are required to successfully compile the
following code, the imports should all be resolvable by Eclipse with
the existing classpath. No classpath changes are necessary.

Extending an Existing Cartridge to Discover and Reconcile New Characteristics

6-6 Network Integrity Developer's Guide

if (request.getPhysicalDevice() != null) {
 // Get the physical device.
 PhysicalDevice physicalDevice = request.getPhysicalDevice();

 // Get the specification name on the physical device
 String specName = physicalDevice.getSpecification().getName();
 if (specName != null) {

 // Change the specification to the custom specification type
 // and set the new fields
 if (specName.equals(Cisco3640.SPEC_NAME)) {
 Cisco3640Custom custom = new Cisco3640Custom(physicalDevice);
 custom.setRunningConfigLastChangedDate(runningConfigChanged);
 custom.setRunningConfigLastSavedDate(runningConfigSaved);
 custom.setStartupConfigLastChangedDate(startupConfigChanged);
 } else if (specName.equals(Cat6509.SPEC_NAME)) {
 Cat6509Custom custom = new Cat6509Custom(physicalDevice);
 custom.setRunningConfigLastChangedDate(runningConfigChanged);
 custom.setRunningConfigLastSavedDate(runningConfigSaved);
 custom.setStartupConfigLastChangedDate(startupConfigChanged);
 } else if (specName.equals(Cisco7206VXR.SPEC_NAME)) {
 Cisco7206VXRCustom custom = new Cisco7206VXRCustom(physicalDevice);
 custom.setRunningConfigLastChangedDate(runningConfigChanged);
 custom.setRunningConfigLastSavedDate(runningConfigSaved);
 custom.setStartupConfigLastChangedDate(startupConfigChanged);
 }
 }
}

Figure 6–2 shows the processor workflow of the Discover Extended Cisco action
and the placement of the Custom Cisco Collector and Custom Cisco Modeler
processors.

This discovery action inherits all the processors from the Discover Enhanced Cisco
SNMP action. See Cisco Router and Switch UIM Cartridge Guide for more
information.

Extending an Existing Cartridge to Discover and Reconcile New Characteristics

Working with the Extensibility SDK 6-7

Figure 6–2 Discover Extended Cisco Action

14. Create a discrepancy detection action named Detect Extended Cisco:

a. On the Action editor Result Source tab, add the Discover Extended Cisco
action as the result source. This indicates that the extended discrepancy
detection action applies to extended discovery results.

b. On the Action editor Processors tab, add the Detect Enhanced Cisco
Discrepancies action as a processor.

See Cisco Router and Switch UIM Cartridge Guide for more information about
the Detect Enhanced Cisco Discrepancies action.

15. Create a discrepancy resolution action named Resolve Extended Cisco in UIM:

a. On the Action editor Details tab, enter Correct in UIM in the Resolution
Action Label field.

b. On the Action editor Result Source tab, add the Discover Extended Cisco
action as the result source.

c. On the Action editor Processor tab, add the Resolve Cisco in UIM action as a
processor.

See Cisco Router and Switch UIM Cartridge Guide for more information about
the Resolve Cisco in UIM action.

16. (Optional) Create an import action.

The existing Import Cisco from UIM action available in the Cisco UIM cartridge
imports the extended devices types with new characteristics. Create this import
action if you want to deploy the Extensibility cartridge without also deploying the
Cisco UIM cartridge.

a. Create an import action called Import Extended Cisco from UIM. See the
Design Studio Modeling Network Integrity Help for information about how to
create an import action, and how to extend existing import actions.

Extending the MIB II SNMP Discovery to Change Interface Name Value

6-8 Network Integrity Developer's Guide

b. On the Action editor Processors tab add the Import Cisco from UIM action as
a processor.

See Cisco Router and Switch UIM Cartridge Guide for more information about
the Import Cisco from UIM action.

Extending the MIB II SNMP Discovery to Change Interface Name Value
This scenario describes the steps required to extend the MIB II SNMP discovery action
to map the ifName to the interface name rather than the interface description. In
addition, this scenario exposes a scan parameter that the end-user can use to control
the behavior of the interface name mapping.

The following high-level steps are involved in this scenario:

■ Create new Network Integrity cartridge project

■ Create new discovery action that re-uses an existing discovery action

■ Create new scan parameter groups with new characteristics

■ Add new processor to change mapping of interface name

The following cartridges must be loaded in the Design Studio and not have any errors:

■ Address_Handlers

■ MIB_II_Model

■ MIB_II_SNMP_Cartridge

This scenario is made up of high-level steps that are explained in greater detail in the
Design Studio Modeling Network Integrity Help.

To extend the MIB II SNMP cartridge to change the interface name value:

1. Create a Network Integrity cartridge project called InterfaceName. Make your
cartridge project dependent on the MIB_II_SNMP_Cartridge cartridge project.

2. Create a discovery action called Discover Custom MIB II SNMP.

3. In Discover Custom MIB II SNMP, add the Discover MIB II SNMP action as a
processor.

4. Create a scan parameter group called MIBIICustomParameters. Add the scan
parameter group to the Discover Custom MIB II SNMP action.

Note: Changing how the name field is mapped affects how generic
discrepancy detection looks up import entities because the lookup is
done using name field (this can be modified using discrepancy
detection filters, see "About Filters" for details). If the interface name
field is modified for discovery, but is not modified on the import data,
many ‘extra entity’ discrepancies are produced because discrepancy
detection is unable to find the interface of the import side.

Avoid this issue by ensuring that the name field for discovery and
import are identical, or by using a different field than name to look up
the interface on the import side. An example of using a different field
is in the Detect MIB II UIM Discrepancies action in the MIB_II_UIM_
Cartridge. This discrepancy detection action overrides the default
lookup to use the NativeEMSName instead of the name field.

Extending the MIB II SNMP Discovery to Change Interface Name Value

Working with the Extensibility SDK 6-9

5. For MIBIICustomParameters, create a characteristic called
mapIfDescToInterfaceName.

6. Add two enumeration values to mapIfDescToInterfaceName:

a. Open the Data Schema editor for mapIfDescToInterfaceName.

b. Click the Enumerations subtab.

c. Add an enumeration called True and another called False.

d. In the Default column, set True to be the default value.

7. On the Scan Parameter Group editor Layouts tab for MIBIICustomParameters, do
the following:

a. Select mapIfDescToInterfaceName.

The UI Settings area displays the scan parameter values for
mapIfDescToInterfaceName.

b. In the Display Name field, enter Map Description to Interface Name.

This is the name that will appear in the Network Integrity UI for the scan
parameter.

8. Save all changes.

9. In the Discover Custom MIB II SNMP action, create a discovery processor called
Custom Interface Name Modeler.

10. Open the Processor editor Context Parameters tab for Custom Interface Name
Modeler and add logicalDevice as an input parameter. This parameter is the
output from the MIB II SNMP Modeler processor.

11. On the Processor editor Details tab, create the implementation class for the
discovery processor.

12. Add the implementation code similar to the following:

@Override
public void invoke(DiscoveryProcessorContext context,
CustomInterfaceNameModelerProcessorRequest request)
throws ProcessorException {

// if the user specified they do not want the ifDesc as the name of the

interface then use the ifName instead

if
("false".equalsIgnoreCase(request.getMibiiCustomParameters().getMapIfDescToInte
rfaceName())) {

List<DeviceInterface> deviceInterfaces =
request.getLogicalDevice().getDeviceInterfaces();

changeInterfaceNameToIFName(deviceInterfaces);
}

}

private void changeInterfaceNameToIFName(List<DeviceInterface>
deviceInterfaces) {

Note: Import statements are required to successfully compile the
following code, the imports should all be resolvable by Eclipse with
the existing classpath, no classpath changes are necessary.

Multiple Vendor SNMP Discovery

6-10 Network Integrity Developer's Guide

// loop through every interface and change the mapping.
for (DeviceInterface deviceInterface : deviceInterfaces) {

// the Discover MIB II SNMP Discovery Action is inserting the ifName into the
VendorInterfaceNumber so the following code copies that to the name field

deviceInterface.setName(deviceInterface.getVendorInterfaceNumber());
// Change interface name on any sub-interfaces as well
changeInterfaceNameToIFName(deviceInterface.getSubInterfaces());

}
}

13. To register discrepancy detection and discrepancy resolution on the new Discover
Custom MIB II SNMP discovery action, add new result sources to the Detect MIB
II UIM Discrepancies and Resolve MIB II in UIM in the MIB_II_UIM_Cartridge
that register for results from the Discover Custom MIB II SNMP discovery action.
See "About Discrepancy Detection Actions" and "About Discrepancy Detection
Processors" for details. (Alternatively, the Detect MIB II UIM Discrepancies and
Resolve MIB II in UIM actions could be extended in the InterfaceName_Cartridge.
See "Extending an Existing Cartridge to Discover and Reconcile New
Characteristics" Extensibility Scenario for details on doing this).

Figure 6–3 shows the processor workflow of the Discover Custom MIB II SNMP
action and the placement of the Custom Interface Name Modeler processor.

This discovery action inherits all the processors from the Discover MIB II SNMP
action. See MIB-II SNMP Cartridge Guide for more information.

Figure 6–3 Discover Custom MIB II SNMP Action

Multiple Vendor SNMP Discovery
This scenario describes the steps required to extend an existing cartridge to discover
data from devices from multiple vendors.

The following cartridges must be loaded in the Design Studio and not have any errors:

Multiple Vendor SNMP Discovery

Working with the Extensibility SDK 6-11

■ Address_Handlers

■ ora_ni_uim_devices

■ MIB_II_Model

■ MIB_II_SNMP_Cartridge

■ MIB_II_UIM_Cartridge

■ Cisco_Model

■ Cisco_SNMP_Cartridge

■ Cisco_UIM_Cartridge

■ Cisco_UIM_Model

There are multiple scenarios, depending on your objectives.

One way is you want to discover devices from a single vendor. You should then
extend the MIBII SNMP cartridge by reusing the Discover MIB II SNMP action and
adding an SNMP Collector and an SNMP Modeler for the vendor. The SNMP
Collector polls vendor-specific MIBs and the SNMP Modeler models the devices based
on the collected SNMP OIDs.

Another way is you want to discover multiple vendor devices, for example, Cisco and
Juniper devices. You should extend the Enhanced Cisco SNMP action in the Cisco UIM
cartridge.

Use the sysObjectId from RFC1213MIB to determine a device vendor. For example,
Cisco devices have the sysObjectId value that starts with 1.3.6.1.4.1.9, and Juniper
device have the sysObjectId value starting with 1.3.6.1.4.1.2636. Set up a range of IP
addresses and scan those IP addresses by polling the sysObjectId. Based on the
sysObjectValue returned, configure two conditions: one returns true if the sysObjectId
value starting with 1.3.6.1.4.1.9 (meaning it is a Cisco device), or return false if
otherwise; the other return true if the sysObjectId value starting with 1.3.6.1.4.1.2636
(meaning it is a Juniper device), or return false if otherwise.

The Cisco UIM cartridge contains the Discover Enhanced Cisco SNMP action. Create a
discovery action by reusing this Discover Enhanced Cisco SNMP action, which gives
this new discovery action all the functions to discover the enhanced Cisco devices
(including the MIB II SNMP discovery). Extend this discovery action to support
Juniper devices by creating a Juniper SNMP collector and a Juniper modeler to this
discovery action. The two conditions determine when to execute the Cisco related
collectors and modelers and when to execute the Juniper collector and modeler based
on the device type.

This scenario is made up of high-level steps that are explained in greater detail in the
Design Studio Modeling Network Integrity Help.

To extend a cartridge to discover devices from multiple vendors:

1. Create a Network Integrity cartridge project called Multi-Vendor. Make your
cartridge project dependent on the Cisco_UIM_Cartridge cartridge project.

2. Create a discovery action called Discover Multi-Vendor.

3. In Discover Multi-Vendor, add the Discover Enhanced Cisco SNMP action as a
processor.

4. Manually copy the JUNIPER-MIB to the MIB directory and to the SNMP adapter
on the Network Integrity server. See "Supporting New MIBs" and "Extending the
SNMP JCA Resource Adapter" for more information.

Multiple Vendor SNMP Discovery

6-12 Network Integrity Developer's Guide

5. Create an SMMP processor called Juniper SNMP Collector and add it to Discover
Multi-Vendor as the last processor.

6. In Juniper SNMP Collector, add the OID jnxBoxDescr (from JUNIPER-MIB).

In a production environment, you would add more OIDs to poll and model more
information.In this example, only the description field is polled.

7. Create an SNMP processor called Juniper SNMP Modeler and add it to Discover
Multi-Vendor as the last processor. This processor takes the SNMP output
parameter from Juniper SNMP Collector as its input parameter. Implement this
processor by implementing the invoke method. In this example, only the
description field for the Juniper device is logged. In a realistic scenario, the
complete model of the Juniper device would exist in this invoke method.

The following is the Java snippet for the invoke method.

@Override
public void invoke(DiscoveryProcessorContext context,
JuniperProcessorProcessorRequest request) throws ProcessorException {
logger.log(Level.INFO, "Processing Juniper device " +
request.getScopeAddress());
JuniperSNMPCollectorResponseType responseDoc =

request.getJuniperSNMPCollectorResponseDocument();
DiscoveryResultType result = responseDoc.getDiscoveryResult();
JuniperMibMib juniperMibResults = result.getJuniperMibResults();
if(juniperMibResults != null) {
logger.log(Level.INFO, "Juniper Device Description: " +

juniperMibResults.getJnxBoxDescr());
}

}

8. Create a Cisco condition that checks the sysObjectId to determine whether a
device is a Cisco device or not. This condition takes the
mibiisnmpCollectorResponseDocument (an output parameter from MIB II
SNMP Collector) as the input parameter. The following is a Java snippet for this
Cisco condition:

public class CiscoConditionImpl implements CiscoCondition {
private static final String CISCO_PREFIX = "1.3.6.1.4.1.9.";

@Override
public boolean checkCondition(DiscoveryProcessorContext context,
CiscoRequest request) throws ProcessorException {
MIBIISNMPCollectorResponseType snmpResponse = request
.getMibiisnmpCollectorResponseDocument();
logger.log(Level.INFO, "CiscoConditionImpl"
+ context.getProcessorName());
if (snmpResponse != null
&& snmpResponse.getDiscoveryStatus() == DiscoveryStatus.SUCCESS) {
logger.log(Level.INFO, "CiscoConditionImpl discovery succeeded");
if (snmpResponse.getDiscoveryResult().getRfc1213MibResults() != null) {
String sysObjectId = snmpResponse.getDiscoveryResult()
.getRfc1213MibResults().getSysObjectID();
logger.log(Level.INFO, "CiscoConditionImpl raw sys object id:" +
sysObjectId);
if (sysObjectId != null) {
if (sysObjectId.startsWith(".")) {
sysObjectId = sysObjectId.substring(1);

}
return sysObjectId.startsWith(CISCO_PREFIX);

}

Multiple Vendor SNMP Discovery

Working with the Extensibility SDK 6-13

}
}
return false;

}
}

9. Create a Juniper condition, that checks the sysObjectId to determine whether a
device is a Juniper device. This condition takes the
mibiisnmpCollectorResponseDocument (an output parameter from MIB II
SNMP Collector) as the input parameter. This Juniper condition is similar to the
Cisco condition. The difference is that the sysObjectId for Juniper device starts
with 1.3.6.1.4.1.2636..

10. Apply the Cisco condition to the following processors and set Equals to true:

■ Cisco SNMP Logical Collector

■ Cisco SNMP Physical Collector

■ Cisco SNMP Logical Modeler

■ Cisco SNMP Physical Modeler

■ Cisco Enhanced Modeler

By applying the Cisco condition, the processors are invoked only if the device is a
Cisco device.

11. Apply the Juniper condition to the following Juniper processors and set Equals to
true:

a. Juniper SNMP Collector

b. Juniper SNMP Modeler

Figure 6–4 shows the processor workflow of the Discover Multi-Vendor action and the
placement of the Juniper SNMP Collector and Juniper Modeler processors.

This discovery action inherits all the processors from the Discover Enhanced Cisco
SNMP action. See Cisco Router and Switch UIM Integration Cartridge Guide for more
information.

Note: In this example, only a single Juniper OID is collected and the
value of the collected Juniper OID in the Juniper SNMP Modeler is
logged. In a realistic scenario, several Juniper OIDs are collected to
model a Juniper device. See "Extending an Existing Cartridge to
Discover and Reconcile New Characteristics" on how to map new
SNMP OIDs to new Characteristics and how to update UIM related
actions for importing, discrepancy detection and resolution with the
new Characteristics.

Multiple Protocol Discoveries

6-14 Network Integrity Developer's Guide

Figure 6–4 Discover Multi-Vendor Action

Multiple Protocol Discoveries
This scenario describes the steps required to extend an existing cartridge to discover
data using multiple protocols.

The following cartridges must be imported into the Design Studio and build without
errors:

■ Address_Handlers

■ Cisco_Model

■ Cisco_SNMP_Cartridge

■ Cisco_UIM_Cartridge

■ Cisco_UIM_Model

■ MIB_II_Model

■ MIB_II_SNMP_Cartridge

■ MIB_II_UIM_Cartridge

In this scenario, a range of devices can be discovered. Some devices are
SNMP-enabled; some devices support an alternate protocol (for example, TL1). With a
list of IP addresses for each of these devices, the discovery action can dynamically
discover a device using either SNMP or the alternate protocol.

The Cisco UIM Sample cartridge contains the sample Discover Enhanced Cisco SNMP
action. Create a discovery action that reuses the Discover Enhanced Cisco SNMP
action. This discovery action can be extended to support the alternate protocol by
creating a discovery processor that implements the alternate protocol to this discovery
action. To use a JCA resource adapter for this alternate protocol, see "Working with
JCA Resource Adapters".

Multiple Protocol Discoveries

Working with the Extensibility SDK 6-15

Create a condition that checks whether the SNMP polling to a device is successful or
not. If a device supports SNMP, this condition returns true; otherwise if the device
supports the alternate protocol, this condition returns false. By applying this condition
to the processors, the discovery action can dynamically discover a device using either
SNMP or the alternate protocol.

This scenario is made up of high-level steps that are explained in greater detail in the
Design Studio Modeling Network Integrity Help.

To extend a cartridge to discover devices using multiple protocols:

1. Create a discovery action called Discover MultiProtocol and make it dependent
on the Cisco_UIM_Cartridge cartridge project.

2. Create a discovery action called Discover Multi-Protocol.

3. In Discover Multi-Protocol, add the Discover Enhanced Cisco SNMP action as a
processor.

4. Create a discovery processor called Alternate Protocol Collector to implement the
alternate protocol to discover a device and add it to Discover Multi-Protocol as the
last processor.

5. Implement Alternate Protocol Collector by implementing the invoke method. In
this example, one line is logged indicating that this processor implements an
alternate protocol. In a realistic scenario, implement the alternate protocol to
discover a device in this invoke method. The following is the Java snippet for the
invoke method:

@Override
public void invoke(DiscoveryProcessorContext context,
AlternateProtocolCollectorProcessorRequest request)
throws ProcessorException {
logger.log(Level.INFO, "SNMP Failed - using alternate protocol to discover

device " + request.getScopeAddress());
}

6. Create a condition called SnmpSucceeds that checks the SNMP results from MIB
II Collector to determine whether the SNMP discovery on a device is successful or
not. This condition takes mibiisnmpCollectorResponseDocument (an output
parameter from MIB II SNMP Collector) as the input parameter. The following is a
Java snippet for this SnmpSucceeds condition:

public class SnmpSucceedsConditionImpl implements SnmpSucceedsCondition {
@Override
public boolean checkCondition(DiscoveryProcessorContext context,
SnmpSucceedsRequest request) throws ProcessorException {
MIBIISNMPCollectorResponseType snmpResponse =

request.getMibiisnmpCollectorResponseDocument();
return snmpResponse != null && snmpResponse.getDiscoveryStatus() ==

DiscoveryStatus.SUCCESS;
}

}

7. Apply the SnmpSucceeds condition to the following processors and set the Equals
to be true:

■ MIB II SNMP Modeler

■ Cisco SNMP Logical Collector

■ Cisco SNMP Physical Collector

Multiple Protocol Discoveries

6-16 Network Integrity Developer's Guide

■ Cisco SNMP Logical Modeler

■ Cisco SNMP Physical Modeler

■ Cisco Enhanced Modeler

By applying the SnmpSucceeds condition, these processors are invoked only if the
SnmpSucceeds condition returns true.

8. Apply the SnmpSucceeds condition to the Alternate Protocol Collector processor
and set the Equals to be false.

Figure 6–5 shows the processor workflow of the Discover MultiProtocol action and the
placement of the Alternate Protocol Collector processor.

This discovery action inherits all the processors from the Discover Enhanced Cisco
SNMP action. See Cisco Router and Switch UIM Integration Cartridge Guide for more
information.

Figure 6–5 Discover MultiProtocol Action

Note: In this example, only the message is logged to indicate that an
alternate protocol is used in the Alternate Protocol Collector processor.
In a realistic scenario, the alternate protocol would be implemented
and the network data collected using this protocol and model the
collected network data. See "Extending an Existing Cartridge to
Discover and Reconcile New Characteristics" section on how to map
the collected network data (in that section, the network data is SNMP
OID) to new Characteristics and how to update UIM related actions
for importing, discrepancy detection and resolution with the new
Characteristics.

7

Working with Automatic Discrepancy Resolution 7-1

7Working with Automatic Discrepancy
Resolution

This chapter explains how to design a discrepancy detection action that allows Oracle
Communications Network Integrity to automatically resolve specific types of
discrepancies.

About Automatic Discrepancy Resolution
Automatic discrepancy resolution enables Network Integrity to automatically resolve
specific discrepancies without the user having to interact with the UI. Discrepancies
are resolved as part of the discrepancy detection scan.

Network Integrity identifies automatically resolved discrepancies. In the scan results,
automatically resolved discrepancies have the value autoResolve in the Submitted By
and Resolved By columns.

The NetworkIntegritySDK cartridge project contains an abstract action that makes up
the framework for automatic discrepancy resolution.

Using the Design Studio for Integrity feature, extend cartridges that detect
discrepancies with the abstract automatic discrepancy resolution action. Oracle
Communications Design Studio creates the framework implementation for you to
complete.

You can complete the implementation by creating either a custom processor or with a
properties file.

After you deploy your cartridges with the new implementation into the run-time
application, users of Network Integrity can configure scans that automatically resolve
all the discrepancies matching the implementation you created.

About the Automatic Discrepancy Resolution Solution
This section describes the components that make up the automatic discrepancy
resolution framework. Also, this section identifies reference implementations that you
can use as examples to help create your own solution.

Action and Processors
The NetworkIntegritySDK cartridge project contains an abstract discrepancy detection
action called Auto Resolve Discrepancies. This abstract action contains the framework
for automatic discrepancy resolution.

The Auto Resolve Discrepancies action has the following processors:

About the Automatic Discrepancy Resolution Solution

7-2 Network Integrity Developer's Guide

■ Check Auto Resolution Selected: this processor verifies whether a scan is
configured with the Auto Resolve Discrepancies option enabled. If enabled, this
processor sets a flag to run the next processors.

■ Identify Auto Resolving Discrepancies: this processor identifies the discrepancies
that match the customized implementation.

■ Prepare Resolving Discrepancies: this processor puts all the identified
discrepancies in the DISCREPANCY_SUBMITTED state.

The automatic discrepancy resolution implementation can be completed with either a
custom processor or with a properties file. If you complete the implementation with a
custom processor, you must create a new discrepancy detection processor in the action
that extends the Auto Resolve Discrepancies action.

Figure 7–1 illustrates the processor workflow of the automatic discrepancy resolution
solution. The DD Processor for Java Implementation processor is not required for an
implementation that uses a properties file.

Figure 7–1 Auto Resolve Discrepancies Processor Workflow

Scan Parameter Groups and the Network Integrity UI
NetworkIntegritySDK contains a scan parameter group called
AutoResolutionParameter. This scan parameter group adds the Auto Resolve
Discrepancies check box to the Network Integrity UI Scan Configuration screen.

Reference Implementations
The Network Integrity MSS Integration cartridge demonstrates a complete reference
implementation of automatic discrepancy resolution using a custom processor and a
properties file.

Implementing Automatic Discrepancy Resolution

Working with Automatic Discrepancy Resolution 7-3

The Network Integrity Optical UIM Integration cartridge demonstrates a complete
reference implementation of automatic discrepancy resolution using a custom
processor.

The Network Integrity Optical TMF814 CORBA cartridge includes the
AutoResolutionParameter scan parameter group.

Implementing Automatic Discrepancy Resolution
This section assumes that you already have valid, deployable cartridges that perform
discovery, import, and discrepancy detection, to which you are adding automatic
discrepancy resolution.

If your existing cartridge solution is made up of unsealed cartridges, see
"Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge Solution".

If your existing cartridge solution contains one or more sealed cartridges, see
"Implementing Automatic Discrepancy Resolution in a Sealed Cartridge Solution".

Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge Solution
See the Design Studio for Network Integrity Help for information about any of the
steps in this section.

To implement automatic discrepancy resolution when working with unsealed
cartridges:

1. In your cartridge with a fully implemented discrepancy detection action:

■ Add the abstract Auto Resolve Discrepancies action from
NetworkIntegritySDK as a processor to a discrepancy detection action.

■ Move the processors belonging to Auto Resolve Discrepancies to the end of
the Action Processors list.

2. In your cartridge with a fully implemented import or discovery action, add the
AutoResolutionParameter scan parameter group.

Add the scan parameter group to the action that is the result source for
discrepancy detection action.

3. Complete and customize the implementation for automatic discrepancy
resolution. See "Completing the Automatic Discrepancy Resolution
Implementation" for more information.

4. Save and close all files.

5. Build, deploy, and test your cartridge.

Implementing Automatic Discrepancy Resolution in a Sealed Cartridge Solution
See the Design Studio for Network Integrity Help for information about any of the
steps in this section.

To implement automatic discrepancy resolution when working with a sealed cartridge:

1. Create a new cartridge.

2. Add the following dependencies to the new cartridge:

■ All sealed and unsealed cartridges being extended by the new cartridge

Completing the Automatic Discrepancy Resolution Implementation

7-4 Network Integrity Developer's Guide

■ ora_ni_uim_device

■ NetworkIntegritySDK

■ Address Handler

3. Create a new discovery action in the new cartridge.

4. For the new discovery action:

■ Specify IPAddressHandler as the address handler.

■ Specify Device as the result category.

■ Add discoveryAction as a processor.

Where discoveryAction is a discovery action from another cartridge.

■ Add the AutoResolutionParameter scan parameter group.

■ Add or create any additional scan parameter groups required to configure the
new discovery action.

5. Create a new discrepancy detection action in the new cartridge.

6. For the new discrepancy detection action:

■ Add ddAction as a processor.

Where ddAction is a discrepancy detection action from another cartridge that
uses the result source from discoveryAction.

■ Add the abstract Auto Resolve Discrepancies action as a processor.

■ Move the processors belonging to Auto Resolve Discrepancies to the end of
the Action Processors list.

■ Specify the new discovery action as the result source.

7. For the discrepancy resolution action whose result source is ddAction, add the new
discrepancy detection action as a result source.

8. Complete and customize the automatic discrepancy resolution implementation for
the new cartridge. See "Completing the Automatic Discrepancy Resolution
Implementation" for more information.

9. Save and close all files.

10. Build, deploy, and test your cartridge.

Completing the Automatic Discrepancy Resolution Implementation
You can complete the automatic discrepancy resolution implementation in the
following ways:

■ Completing Automatic Discrepancy Resolution Using a Properties File

■ Completing Automatic Discrepancy Resolution with a Custom Processor

Note: The new cartridge needs to extend a discovery action and a
discrepancy detection action. These actions may belong to one or more
cartridges. At least one of these cartridges is sealed.

Completing the Automatic Discrepancy Resolution Implementation

Working with Automatic Discrepancy Resolution 7-5

Completing Automatic Discrepancy Resolution Using a Properties File
Create a file called autoResolve.properties in the /src directory in the cartridge with
the automatic discrepancy resolution action. Use this properties file to configure the
discrepancies that can be automatically resolved.

The autoResolve.properties file is a list of property/value pairs. The accepted
properties are:

■ extraEntities, for resolving extra entity discrepancies.

■ missingEntities, for resolving missing entity discrepancies.

■ mismatches, for resolving attribute value mismatch discrepancies.

■ extraAssociation, for resolving extra association discrepancies.

■ missingAssociation, for resolving missing association discrepancies.

See "About Discrepancy Types" for more information about discrepancies.

The properties file uses the following syntax:

property=res_label1:entity_type1[spec_name1:attrib_list1|spec_name2:attrib_list2]{}...

where:

■ property is one of the accepted properties. Each property can appear once in the
properties file. Each property can specify multiple resolution labels, entity types,
specification names, and attribute lists.

■ res_label is the resolution label you want Network Integrity to use to resolve the
discrepancy. You can specify multiple resolution labels to resolve discrepancies to
different inventory systems.

■ entity_type is a type of entity (for example, an Equipment or a Physical Device
entity).

■ spec_name is the specification for the entity type. You can omit spec_name if the
same resolution label applies to all specifications for the entity type.

■ attrib_list is a comma-separated list of attributes on the entity or specification to be
resolved.

Example 7–1 demonstrates an automatic discrepancy resolution implementation
completed using a properties:

Example 7–1 Sample autoResolve.properties File

extraEntities=Correct in MSS:Equipment[tmf814EquipmentGeneric]{}Correct in
UIM:PhysicalDevice[cisco3640|cisco7206VXR]
missingEntities=Correct in MSS:Equipment{}Correct in UIM:PhysicalDevice[cisco3640]
mismatches=Correct in MSS:Equipment[:serialNumber]{}Correct in
UIM:PhysicalDevice[cisco3640:softwareVer,serialNumber|cisco7206VXR:hardwareRev]
extraAssociations=Correct in UIM:LogicalDevice

Example 7–1 demonstrates a properties file that does all of the following:

■ The line starting with extraEntities resolves in MSS all extra entity discrepancies
on equipment entities with the tmf814EquipmentGeneric specification, and
resolves in UIM all extra entity discrepancies on physical device entities with the
cisco3640 or cisco7206VXR specifications.

Completing the Automatic Discrepancy Resolution Implementation

7-6 Network Integrity Developer's Guide

■ The line starting with missingEntities resolves in MSS all missing entity
discrepancies on equipment, and resolves in UIM all missing entity discrepancies
on physical device entities with the cisco3640 specification.

■ The line starting with mismatches resolves in MSS all serial number attribute
value mismatch discrepancies on equipment entities, and resolves in UIM all
software version and serial number attribute value mismatch discrepancies on
physical device entities with the cisco3640 specification, and all hardware revision
attribute value mismatch discrepancies on physical device entities with the
cisco7206VXR specification.

■ The line starting with extraAssociation resolves in UIM all extra association
discrepancies on logical device entities.

See the reference implementation properties file in the MSS Integration cartridge to
use as a starting point. The reference properties file includes comments, examples,
syntax, and tips to help you complete your implementation.

Completing Automatic Discrepancy Resolution with a Custom Processor
See the Design Studio for Network Integrity Help for information about any of the
steps in this section.

To implement automatic discrepancy resolution with a custom processor:

1. In the action that contains the Auto Resolve Discrepancies action, create a new
discrepancy detection processor.

2. Move the new processor after the Check Auto Resolution Selected processor.

3. Add autoResolutionManager as an input parameter for the new discrepancy
detection processor.

4. Create and complete the implementation class for the new discrepancy detection
processor.

See the reference implementation class from the Optical UIM Integration cartridge
to use as a starting point. The reference implementation class includes comments,
examples, syntax, and tips to help you complete your own implementation.

8

Working with Incremental TMF814 Discovery 8-1

8Working with Incremental TMF814 Discovery

This chapter explains how to design a discovery action that allows Oracle
Communications Network Integrity to discover only the network elements that have
changed in the network since the last discovery scan.

About Incremental TMF814 Discovery
Incremental TMF814 discovery enables Network Integrity to discover only the
network elements, such as managed elements (MEs), topological kinks (TLs), and
subnetwork connections (SNCs), that have changed in the network since the last
discovery scan; thus, avoiding the need to discover the entire network.

The NetworkIntegritySDK cartridge project contains an abstract action that makes up
the framework for incremental TMF814 discovery.

Using the Design Studio for Integrity feature, extend cartridges to run incremental
discovery using the abstract incremental discovery action.

After you deploy your cartridges with the new implementation into the run-time
application, users of Network Integrity can configure scans that discover only the
network elements that have changed in the network since the previous discovery scan.

About the Incremental TMF814 Discovery Solution
This section describes the components and the framework that make up the
incremental TMF814 discovery. Also, this section identifies reference implementations
that you can use as examples to help create your own solution.

Action and Processors
The NetworkIntegritySDK cartridge project contains an abstract discovery action
called Abstract Incremental Discovery, which contains the framework for incremental
TMF814 discovery.

The Abstract Incremental Discovery action has the following processor:

■ Incremental Discovery Initializer: This processor validates the scan parameters
and verifies whether the scan is enabled for incremental scan.

Copying Information From Previous Scan Results
The NetworkIntegritySDK cartridge project contains the framework that copies the
information from previous scan results. The EntityCopier object provides the
extensible interface that the copier entities extend. The EntityCopierFactory object
generates the copier instances.

About the Incremental TMF814 Discovery Solution

8-2 Network Integrity Developer's Guide

Table 8–1 lists the copier objects used to copy information from the results of the
previous scan.

You must create your own copier objects for any custom entities in your custom
cartridge projects. Then you must modify the EntityCopier object to implement
custom copier objects. Then you must extend the EntityCopierFactory object to add the
new copiers.

The EntityCopier interface has the following methods:

■ copyEntity(T entity) - create a new T entity and copy all its attributes &
specification characteristics from T entity.

■ deepCopyEntity(T entity) - create a new T entity and copy all its attributes, calls the
deepCopyEntity() for its child entities to be created.

For example, deepCopyEntity() of LogicalDeviceCopier, return new LogicalDevice
with its complete hierarchy which includes MediaInterfaces, Device Interfaces,
LogicalDeviceConfigurationItems, children of MediaInterfaces, DeviceInterfaces
as similar to the givenLogicalDevice entity. CopyEntity() of LogicalDevice returns
the new LogicalDevice entity by copying all attributes and specification
characteristic from the given LogicalDevice entity.

Scan Parameter Groups and the Network Integrity UI
NetworkIntegritySDK contains a scan parameter group called
IncrementalScanParameter. This scan parameter group adds the Incremental Scan
check box to the Network Integrity UI Scan Configuration screen.

Reference Implementations
The Network Integrity Incremental TMF814 Discovery cartridge demonstrates a
complete reference implementation of incremental TMF814 discovery. The Incremental
TMF814 Discovery cartridge includes the IncrementalScanParameter scan parameter
group.

Table 8–1 Copier Objects From Previous Scan Results

Entity Name Entity Copier

DeviceInterfaceConfigurationItem DeviceInterfaceConfigItemCopier

DeviceInterface DeviceInterfaceCopier

Equipment EquipmentCopier

EquipmentHolder EquipmentHolderCopier

InventoryGroup InventoryGroup

LogicalDeviceConfigurationItem LogicalDeviceConfigItemCopier

LogicalDevice LogicalDeviceCopier

MediaInterface MediaInterfaceCopier

PhysicalDevice PhysicalDeviceCopier

PhysicalPort PhysicalPortCopier

Pipe PipeCopier

PipeTerminationPoint PipeTerminationPointCopier

TrailPath TrailPathCopier

Implementing Incremental TMF814 Discovery

Working with Incremental TMF814 Discovery 8-3

Implementing Incremental TMF814 Discovery
This section assumes that you already have valid, deployable cartridges that perform
discovery, import, and discrepancy detection, to which you are adding incremental
TMF814 discovery. You can implement incremental TMF814 discovery in a sealed
cartridge solution.

Implementing Incremental TMF814 Discovery in a Sealed Cartridge Solution
See the Design Studio for Network Integrity Help for information about any of the
steps in this section.

To implement incremental TMF814 discovery when working with a sealed cartridge:

1. Create a new cartridge.

2. Add the following dependencies to the new cartridge:

■ All sealed and unsealed cartridges being extended by the new cartridge

■ ora_ni_uim_device

■ NetworkIntegritySDK

■ Address Handler

3. Create a new discovery action in the new cartridge.

4. For the new discovery action:

■ Specify IPAddressHandler as the address handler.

■ Specify Device as the result category.

■ Add discoveryAction as a processor.

Where discoveryAction is a discovery action from another cartridge.

■ Add Abstract Incremental Discovery action as a processor.

■ Add the IncrementalScanParameter scan parameter group.

■ Add or create any additional scan parameter groups required to configure the
new discovery action.

5. Complete and customize the incremental discovery implementation for the new
cartridge.

6. Save and close all files.

7. Build, deploy, and test your cartridge.

Note: The new cartridge needs to extend a discovery action and a
discrepancy detection action. These actions may belong to one or more
cartridges. At least one of these cartridges is sealed.

Implementing Incremental TMF814 Discovery

8-4 Network Integrity Developer's Guide

9

Working with CPU Utilization-enabled Discovery 9-1

9Working with CPU Utilization-enabled
Discovery

This chapter explains how to design a discovery action that allows Oracle
Communications Network Integrity to discover devices based on their CPU
utilization.

About CPU Utilization-enabled Discovery
CPU utilization-enabled discovery provides the mechanism to manage the discovery
of devices based on their CPU utilization. This is an optional feature that enables you
to configure the CPU utilization threshold value in cartridges, which enables the scan
to skip the devices that are running above the specified CPU utilization threshold
value.

The NetworkIntegritySDK cartridge project contains an abstract action with two
processors and one scan parameter group that constitute the framework for CPU
utilization-enabled discovery. See "Action and Processors" and "Scan Parameter
Groups and the Network Integrity UI" for more information.

Using Design Studio for this feature, extend cartridges to run discovery using the
Abstract CPU Utilization Discovery action.

After you deploy your cartridges with the new implementation into the run-time
application, users of Network Integrity can configure scans that discover only those
devices that are running below the user-specified CPU utilization threshold value.

About CPU Utilization-enabled Discovery Solution
This section describes the components and the framework that make up the
incremental TMF814 discovery. Also, this section identifies reference implementations
that you can use as examples to help create your own solution.

Action and Processors
The NetworkIntegritySDK cartridge project contains an abstract discovery action
called Abstract CPU Utilization Discovery, which contains the framework for CPU
utilization-enabled discovery.

The Abstract CPU Utilization Discovery action has the following processors:

■ CPU Property Initializer: This processor initializes the cpuProperties file that
contains the deviceCPUValue variable, which is required to store the CPU
utilization value of the device obtained by the network.

Implementing CPU Utilization-enabled Discovery

9-2 Network Integrity Developer's Guide

■ CPU Utilization Compare Processor: This processor is responsible for comparing
the user-specified threshold value with the CPU utilization value of the device
obtained by the network.

About the Mechanism of Comparing CPU Usage Values
The NetworkIntegritySDK cartridge project contains the framework that compares the
CPU utilization threshold value specified by the user and the CPU utilization value
obtained from the network device. The user-specified CPU utilization threshold value
is obtained by the CPU Utilization Parameters scan parameter group. The Device
CPU Set Processor uses the cpuProperties file to set the CPU value of the device in the
deviceCPUValue variable. This value is used as an input for the CPU Utilization
Compare Processor to compare the CPU utilization value specified by the user and
that of the device.

Scan Parameter Groups and the Network Integrity UI
A new scan parameter group, CPU Utilization Parameters, has been added in the
NetworkIntegritySDK cartridge. The CPU Utilization Parameters scan parameter
group is available for selection in the Select Parameter Group list under the Scan
Action Parameters area.

In the Network Integrity UI Scan Configuration screen, selecting the CPU Utilization
Parameters scan parameter group displays the CPU Utilization % field, which enables
you to specify the CPU utilization threshold value between 1 to 99.

Reference Implementations
The Network Integrity Cisco Router and Switch SNMP cartridge demonstrates a
complete reference implementation of discovery based on CPU utilization. The Cisco
Router and Switch SNMP cartridge includes the CPU Utilization Parameters scan
parameter group from the NetworkIntegritySDK cartridge. See Network Integrity Cisco
Router and Switch SNMP Cartridge Guide for more information.

Implementing CPU Utilization-enabled Discovery
This section assumes that you already have valid, deployable cartridges that perform
discovery, import, and discrepancy detection, to which you are adding CPU
utilization-enabled discovery. You can implement CPU utilization-enabled discovery
in a sealed cartridge solution.

Implementing CPU Utilization-enabled Discovery in a Sealed Cartridge Solution
You can implement CPU utilization-enabled discovery for any device that supports
polling for CPU utilization.

See the Design Studio for Network Integrity Help for information about any of the
steps in this section.

To implement CPU utilization-enabled discovery when working with a sealed
cartridge:

1. Create a new cartridge.

2. Add the following dependencies to the new cartridge:

■ All sealed and unsealed cartridges being extended by the new cartridge

Implementing CPU Utilization-enabled Discovery

Working with CPU Utilization-enabled Discovery 9-3

■ ora_ni_uim_device

■ NetworkIntegritySDK

■ Address Handler

3. Create a new discovery action in the new cartridge.

4. For the new discovery action:

■ Specify IPAddressHandler as the address handler.

■ Specify Device as the result category.

■ Add discoveryAction as a processor.

Where discoveryAction is a discovery action from another cartridge.

■ Add Abstract CPU Utilization Discovery action as a processor.

■ Add the CPU Utilization Parameters scan parameter group.

■ Add or create any additional scan parameter groups required to configure the
new discovery action.

■ Add new processors to obtain the CPU usage value of the device from the
network. Set the deviceCPUValue variable in cpuProperties file for the Device
CPU Set Processor as follows:

request.getCpuProperties().setDeviceCPU(deviceCPUValue);

This sets the value of the deviceCPUValue variable, which is used by the CPU
Utilization Compare Processor (from NetworkIntegritySDK cartiridge) to
compare the user-specified CPU utilization threshold value with CPU
utilization value (set in deviceCPUValue variable) of the device.

5. Complete and customize the incremental discovery implementation for the new
cartridge.

6. Save and close all files.

7. Build, deploy, and test your cartridge.

Note: The new cartridge needs to extend a discovery action and a
discrepancy detection action. These actions may belong to one or more
cartridges. At least one of these cartridges is sealed.

Implementing CPU Utilization-enabled Discovery

9-4 Network Integrity Developer's Guide

10

Working with the Network Integrity Web Service 10-1

10Working with the Network Integrity Web
Service

This chapter provides information about the Oracle Communications Network
Integrity Web service.

This chapter contains the following sections:

■ About the Network Integrity Web Service

■ Network Integrity Web Service Operations

■ Network Integrity Web Service Special Function Operations

■ Network Integrity Web Service Scenarios

■ Network Integrity Web Service Samples

About the Network Integrity Web Service
The Network Integrity Web service enables Oracle Communications products and
third party applications to interact with Network Integrity and reduces integration
complexity by providing a standards-based interface. With the API, clients can
externally manage Network Integrity through Web services.

At a high-level the Network Integrity Web service supports:

■ Configuring all types of scans

■ Running discovery and reconciliation scans

■ Retrieving scan results including any found discrepancies

■ Initiating corrective actions such as reconciling discrepancies in Inventory systems.

Most operations that can be done in the Network Integrity UI can be done through the
Web service. One operation that is currently not possible is to create or update the
Import System configured in the Network Integrity UI. This is a one-time setup that
must be done in the Network Integrity UI and cannot be done through the Web
service.

The Network Integrity Web service is standards based using JAX-WS over HTTP.

Security
The Network Integrity Web service uses the same security as the Network Integrity UI.
Any user who is able to login into the Web UI can also use the Web service. This is
assigned using NetworkIntegrityRole.

About the Network Integrity Web Service

10-2 Network Integrity Developer's Guide

Model Based
The Network Integrity Web service operates on the Network Integrity Model.
Knowledge of the entities, attributes and relationships in the Network Integrity model
is essential for using the Web service.

For Network Integrity entity, attribute and relationship names, see Network Integrity
Information Model Reference.

For cartridge entity, parameter, and relationship names and descriptions, see your
cartridge documentation.

Concurrency with UI and other Web Service Clients
Web service operations take immediate effect in the system and therefore there is scope
for collisions with users working in the Network Integrity UI. If the Web service
operation collides with an update that another user has done in the Network Integrity
UI or another Web service client, then an error is returned to a client. For example, if a
Web service client deletes a DisConfig (scan) while a user is editing the same scan in
the Network Integrity UI, the user receives an error when that user attempt to save
changes. If two clients (Web service client or Network Integrity UI user) are trying to
update/delete the same entity, the last client to commit changes receives the error.

Listing of Network Integrity Web Service Operations
All Network Integrity Web service operations must include a time stamp to satisfy the
Web service security policy. See "Security" for more information.

Table 10–1 describes the DisConfig operations. See Network Integrity Information Model
Reference for more information on the DisConfig entity.

Note: All Network Integrity Web service requests (Soap UI requests
and automated Web service requests) must include a time stamp to
access Network Integrity Web service.

Table 10–1 DisConfig Operations

Operation Description

createDisConfig This operation creates a new scan in the system (DisConfig is equivalent to scan in the
Network Integrity UI).

deleteDisConfig This operation deletes a scan from the system. All results and discrepancies produced by this
scan are deleted as well. A fault is returned if the delete fails.

This delete operation returns a fault if the scan to be deleted has discrepancies in the Received
or the Submitted state. Add <v1:forceDelete>YES</v1:forceDelete> to the delete request to
force the scan to delete and bypass this particular fault.

findDisConfig This operation finds scans in the system based on search criteria provided in the request. Full
scan data is returned but client applications can limit the amount of data returned, or support
paging, by providing a fromRange and toRange in the request. A fault with a faultstring is
returned if the find fails.

getDisConfig This operation gets the details about a scan. It requires the DisConfig entity ID to be passed in
the request, and returns the full details of the scan including scan parameters, Scope
Addresses, and Schedule information in the response, if found. If not found, a fault is the
response.

updateDisConfig This operation updates a scan in the system. All the values for the scan are required in the
request. The client application should perform a get operation and update the required values
for the update operation. A fault with a faultstring is returned if the update fails.

About the Network Integrity Web Service

Working with the Network Integrity Web Service 10-3

Table 10–2 describes the DisScanRun operations. See Network Integrity Information
Model Reference for more information on the DisScanRun entity.

Table 10–3 describes the DisBlackoutSchedule operations. See Network Integrity
Information Model Reference for more information on the DisBlackoutSchedule entity.

Table 10–4 describes the DisTag operations. See Network Integrity Information Model
Reference for more information on the DisTag entity.

Table 10–2 DisScanRun Operations

Operation Description

findDisScanRun This operation finds scan results in the system based on search criteria provided in the
request (DisScanRun is equivalent to scan results in the Network Integrity UI). Full scan
result data is returned but client applications can limit the amount of data returned, or
support paging, by providing a fromRange and toRange in the request. A fault with a
faultstring is returned if the find fails.

deleteDisScanRun This operation deletes scan results from the system. All results and discrepancies attached to
the scan results are deleted as well. A fault with a faultstring is returned if the delete fails.

getDisScanRun This operation gets all the details about an instance of scan results. The operation requires the
Discrepancy entity id to be passed in the request, and returns the full details of the
Discrepancy including references to the compare and reference Oracle Communications
Information Model entities which the discrepancy was found on. If not found, a fault is the
response.

Table 10–3 DisBlackoutSchedule Operations

Operation Description

createDisBlackoutSchedule This operation creates a new blackout schedule in the system. A recurrence rule,
duration, and start time are required in the request. The blackout schedule can be
assigned to scan configurations on creation, or they can be associated later with an
update operation.

deleteDisBlackoutSchedule This operation deletes a blackout schedule in the system. If any scans are associated
with the blackout schedule then the associations are removed as well. A fault with a
faultstring is returned if the delete fails.

getAllDisBlackoutSchedule This operation returns the full details of all the blackout schedules in the system. An
empty response is returned if no blackout schedules exist in the system.

getDisBlackoutSchedule This operation requires the blackout schedule entity id to be passed in the request,
and returns the full details of the blackout schedule in the response if found. If not
found, a fault is the response.

updateDisBlackoutSchedule This operation updates a blackout schedule in the system. All the values for the
blackout schedule are required in the request, not just the values changing. A fault
with a faultstring is returned if the update fails.

Table 10–4 DisTag Operations

Operation Description

createDisTag This operation creates a new tag, a name for the tag is required. The parent tag entity id can
be provided in the creation or can be add after in an update request. A fault with a faultstring
is returned if the delete fails.

deleteDisTag This operation deletes the specified tag and all child tags. The entity id of the tag to be
deleted is required. If any scans are associated with the tag then the associations are removed
as well. A fault with a faultstring is returned if the delete fails.

About the Network Integrity Web Service

10-4 Network Integrity Developer's Guide

Table 10–5 describes the DisDiscrepancy operations. See Network Integrity Information
Model Reference for more information on the DisDiscrepancy entity.

Table 10–6 describes the DisPlugin operations. See Network Integrity Information Model
Reference for more information on the DisPlugin entity.

getDisTag This operation requires the tag entity id to be passed in the request, and returns the full
details of the tag including all child tags in the response, if found. If not found, a fault is the
response.

getAllRootDisTags This operation returns the full details of all the tags configured in the system. The root tags
returned also include the details of children tag entities. A fault with a faultstring is returned
if an error occurs.

updateDisTag This operation updates a tag, an entity id and name for the tag is required. All the values for
the blackout schedule are required in the request, not just the values that are changing.
Modifications to the hierarchy must be performed on the child tag, for example, to make a
child tag a root tag call the update operation with no parent tags specified. A fault with a
faultstring is returned if the update fails.

Table 10–5 DisDiscrepancy Operations

Operation Description

findDisDiscrepancy This operation finds Discrepancies in the system based on search criteria provided in the
request. The search criteria available in the Web service operation is the same as the
criteria available in the Network Integrity UI (DisScanRun is equivalent to scan results in
the Network Integrity UI). Full Discrepancy data is returned but client applications can
limit the amount of data returned, or support paging, by providing a fromRange and
toRange in the request. A fault with a faultstring is returned if the find fails.

getDisDiscrepancy This operation gets all the details about a Discrepancy. The operation requires the
Discrepancy entity id to be passed in the request, and returns the full details of the
Discrepancy including references to the compare and reference Information Model
entities which the discrepancy was found on. If not found, a fault is the response.

updateDisDiscrepancy This operation updates a discrepancy in the system. All the values for DisDiscrepancy are
required in the request, not just the values changing. The valid values of status are:

■ DISCREPANCY_OPENED

■ DISCREPANCY_IGNORED

■ OPERATION_IDENTIFIED

■ OPERATION_SUBMITTED

■ OPERATION_RECEIVED

■ OPERATION_NOT_IMPLEMENTED

■ OPERATION_PROCESSED

■ OPERATION_FAILED

The operation value is equivalent to resolution action value in the Network Integrity UI
and the valid values are dependent on what discrepancy resolution are currently
installed in the system. A fault with a faultstring is returned if the update fails.

Table 10–4 (Cont.) DisTag Operations

Operation Description

About the Network Integrity Web Service

Working with the Network Integrity Web Service 10-5

Table 10–7 describes the DefaultDisInvetoryConfig operations.

Table 10–6 DisPlugin Operation

Operation Description

getAllDisAssimilationPlugin This operation returns details about all assimilation plugins deployed in
the system (AssimilationPlugin is equivalent to assimilation/scan action
in the Network Integrity UI).

getAllDisInventoryImportPlugin This operation returns details about all import plugins deployed in the
system (InventoryImportPlugin is equivalent to import/scan action in
the Network Integrity UI).

getAllDisNetworkDiscoveryPlugin This operation returns details about all discovery plugins deployed in
the system (NetworkDiscoveryPlugin is equivalent to discovery/scan
action in the Network Integrity UI).

getAllDisDiscrepancyDetectionPlugin This operation returns details about all discrepancy detection plugins
deployed in the system (Discrepancy Detection Plugin is equivalent to a
discrepancy detection action)

getAllDisDiscrepancyResolutionPlugin This operation returns details about all discrepancy resolution plugins
deployed in the system (Discrepancy Resolution Plugin is equivalent to a
discrepancy resolution action)

getDisAssimilationPlugin This operation returns details about an assimilation plugin deployed in
the system (AssimilationPlugin is equivalent to assimilation/scan action
in the Network Integrity UI). The request requires an Assimilation
Plugin entity id to be passed, and returns the full details of the
Assimilation Plugin in the response if found. If not found, a fault is the
response.

getDisInventoryImportPlugin This operation returns details about an import plugin deployed in the
system (InventoryImportPlugin is equivalent to import/scan action in
the Network Integrity UI). The request requires an Import Plugin entity
id to be passed, and returns the full details of the Import Plugin in the
response if found. If not found, a fault is the response.

getDisNetworkDiscoveryPlugin This operation returns details about a discovery plugin deployed in the
system (NetworkDiscoveryPlugin is equivalent to discovery/scan action
in the Network Integrity UI). The request requires a Discovery Plugin
entity id to be passed, and returns the full details of the Discovery Plugin
in the response if found. If not found, a fault is the response.

getDisDiscrepancyDetectionPlugin This operation returns details about an discrepancy detection plugin
deployed in the system (Discrepancy Detection Plugin is equivalent to a
discrepancy detection action). The request requires an Discrepancy
Detection Plugin entity id to be passed, and returns the full details of the
Discrepancy Detection Plugin in the response if found. If not found, a
fault is the response.

getDisDiscrepancyResolutionPlugin This operation returns details about an discrepancy resolution plugin
deployed in the system (Discrepancy Resolution Plugin is equivalent to a
discrepancy resolution action). The request requires an Discrepancy
Resolution Plugin entity id to be passed, and returns the full details of
the Discrepancy Resolution Plugin in the response if found. If not found,
a fault is the response.

Table 10–7 DefaultDisInventoryConfig

Operation Description

getDefaultDisInventoryConfig This operation returns the inventory system configured in the Network Integrity
system. This is the inventory system configuration that is entered in the “Manage
Import System” task of the Network Integrity UI. The Import System cannot be
created or updated through the Web service; it must be done using the Network
Integrity UI.

About the Network Integrity Web Service

10-6 Network Integrity Developer's Guide

Table 10–8 describes the Special operations.

Table 10–9 describes the Information Model entity operations. Information Model
entities are described in Oracle Communications Information Model Reference and Network
Integrity Information Model Reference.

Table 10–8 Special Operations

Operation Description

startScan This operation starts a scan. The response returns a reference to the scan result entity so
that the client application can monitor the progress of the scan. (DisScanRun is equivalent
to the scan results in the Network Integrity UI). If the scan is already running or in the
process of stopping then the startScan operation fails. If the scan could not be started, a
fault with a reason is the response.

stopScan This operation stops a scan that is running. The scan is set to a STOPPING state
immediately and then transition to STOPPED when actually ended. If the scan is not
currently running, this call is a no-op. If the scan could not be set to Stopping, a fault with
a reason is the response.

submitDisDiscrepancy
ResolutionOperations

This operation submits the list of discrepancies provided in the request for resolution
processing. The status of the discrepancies must be 'OPERATION_IDENTIFIED' to
submit them, otherwise a fault is returned. A fault with a faultstring is returned if the
operation fails.

getLatestScanStatus This operation returns the scan status for the most recent execution of a scan. This
operation is more efficient than getDisScanRun and therefore is more appropriate for
client applications that are monitoring the status of a scan (DisConfig is equivalent to
scan in the Network Integrity UI). A fault with a faultstring is returned if the operation
fails.

Table 10–9 Information Model Entity Operations

Operation Description

getRootEntity This operation gets all the details about a discovered, imported, or assimilated root
Information Model entity. The root entity id for the request is obtained from either
a getDisScanRun operation response or findDisScanRun operation response. The
id is found in the 'rootEntityRefsRef' element in the result groups. Multiple ids can
be passed in the request. The response entity can be many different types
depending on what the cartridge persisted in the result group. An example root
entity type is Physical Device or Logical Device, but other Information Model
types are possible. If not found, a fault is the response.

getResultEntity A generic operation to get any type of Information Model entity given an entityId
and the entity type. Multiple entities can be retrieved in a single request. If not
found, a fault is the response.

getSpecification This operation gets all the details about specification deployed in the system. Most
Information Model entities support specifications which is blueprint for what
characteristics are supported, among other things. All the characteristics defined in
this specification are returned. Specifications are deployed to the system when
cartridges containing them are deployed. If not found, a fault is the response.

getLogicalDevice This operation requires the LogicalDevice entity id to be passed in the request, and
returns the full details of the LogicalDevice if found. If not found, a fault is the
response.

getDeviceInterface This operation requires the DeviceInterface entity id to be passed in the request,
and returns the full details of the DeviceInterface if found. If not found, a fault is
the response.

getMediaInterface This operation requires the MediaInterface entity id to be passed in the request,
and returns the full details of the MediaInterface if found. If not found, a fault is
the response.

About the Network Integrity Web Service

Working with the Network Integrity Web Service 10-7

getLogicalDeviceAccount This operation requires the LogicalDeviceAccount entity id to be passed in the
request, and returns the full details of the LogicalDeviceAccount if found. If not
found, a fault is the response.

getPhysicalDevice This operation requires the PhysicalDevice entity id to be passed in the request,
and returns the full details of the PhysicalDevice if found. If not found, a fault is
the response.

getEquipment This operation requires the Equipment entity id to be passed in the request, and
returns the full details of the Equipment if found. If not found, a fault is the
response.

getEquipmentHolder This operation requires the EquipmentHolder entity id to be passed in the request,
and returns the full details of the EquipmentHolder if found. If not found, a fault
is the response.

getPhysicalPort This operation requires the PhysicalPort entity id to be passed in the request, and
returns the full details of the PhysicalPort if found. If not found, a fault is the
response.

getPhysicalConnector This operation requires the PhysicalConnector entity id to be passed in the request,
and returns the full details of the PhysicalConnector if found. If not found, a fault
is the response.

getCustomObject This operation requires the CustomObject entity id to be passed in the request, and
returns the full details of the CustomObject if found. If not found, a fault is the
response.

getCustomNetworkAddress This operation requires the CustomNetworkAddress entity id to be passed in the
request, and returns the full details of the CustomNetworkAddress if found. If not
found, a fault is the response.

getTelephoneNumber This operation requires the TelephoneNumber entity id to be passed in the request,
and returns the full details of the TelephoneNumber if found. If not found, a fault
is the response.

getInventoryGroup This operation requires the InventoryGroup entity id to be passed in the request,
and returns the full details of the InventoryGroup if found. If not found, a fault is
the response.

getService This operation requires the Service entity id to be passed in the request, and
returns the full details of the Service if found. If not found, a fault is the response.

getNetwork This operation requires the Network entity id to be passed in the request, and
returns the full details of the Network if found. If not found, a fault is the response.

getNetworkNode This operation requires the NetworkNode entity id to be passed in the request,
and returns the full details of the NetworkNode if found. If not found, a fault is the
response.

getNetworkEdge This operation requires the NetworkEdge entity id to be passed in the request, and
returns the full details of the NetworkEdge if found. If not found, a fault is the
response.

getPipe This operation requires the Pipe entity id to be passed in the request, and returns
the full details of the Pipe if found. If not found, a fault is the response.

getPipeTerminationPoint This operation requires the PipeTerminationPoint entity id to be passed in the
request, and returns the full details of the PipeTerminationPoint if found. If not
found, a fault is the response.

getPipeDirectionality This operation requires the PipeDirectionality entity id to be passed in the request,
and returns the full details of the PipeDirectionality if found. If not found, a fault is
the response.

getTrailPath This operation requires the TrailPath entity id to be passed in the request, and
returns the full details of the TrailPath if found. If not found, a fault is the
response.

Table 10–9 (Cont.) Information Model Entity Operations

Operation Description

About the Network Integrity Web Service

10-8 Network Integrity Developer's Guide

getGeographicPlace This operation requires the GeographicPlace entity id to be passed in the request,
and returns the full details of the GeographicPlace if found. If not found, a fault is
the response.

getGeographicAddress This operation requires the GeographicAddress entity id to be passed in the
request, and returns the full details of the GeographicAddress if found. If not
found, a fault is the response.

getGeographicAddressRange This operation requires the GeographicAddressRange entity id to be passed in the
request, and returns the full details of the GeographicAddressRange if found. If
not found, a fault is the response.

getGeographicLocation This operation requires the GeographicLocation entity id to be passed in the
request, and returns the full details of the GeographicLocation if found. If not
found, a fault is the response.

getGeographicSite This operation requires the GeographicSite entity id to be passed in the request,
and returns the full details of the GeographicSite if found. If not found, a fault is
the response.

getNetworkNodeRole This operation requires the NetworkNodeRole entity id to be passed in the
request, and returns the full details of the NetworkNodeRole if found. If not
found, a fault is the response.

getPhysicalConnectorRole This operation requires the PhysicalConnectorRole entity id to be passed in the
request, and returns the full details of the PhysicalConnectorRole if found. If not
found, a fault is the response.

getPipeRole This operation requires the PipeRole entity id to be passed in the request, and
returns the full details of the PipeRole if found. If not found, a fault is the response.

getPhysicalPortRole This operation requires the PhysicalPortRole entity id to be passed in the request,
and returns the full details of the PhysicalPortRole if found. If not found, a fault is
the response.

getDeviceInterfaceRole This operation requires the DeviceInterfaceRole entity id to be passed in the
request, and returns the full details of the DeviceInterfaceRole if found. If not
found, a fault is the response.

getLogicalDeviceRole This operation requires the LogicalDeviceRole entity id to be passed in the request,
and returns the full details of the LogicalDeviceRole if found. If not found, a fault
is the response.

getCustomObjectRole This operation requires the CustomObjectRole entity id to be passed in the request,
and returns the full details of the CustomObjectRole if found. If not found, a fault
is the response.

getPhysicalDeviceRole This operation requires the PhysicalDeviceRole entity id to be passed in the
request, and returns the full details of the PhysicalDeviceRole if found. If not
found, a fault is the response.

getEquipmentRole This operation requires the EquipmentRole entity id to be passed in the request,
and returns the full details of the EquipmentRole if found. If not found, a fault is
the response.

getNetworkEdgeRole This operation requires the NetworkEdgeRole entity id to be passed in the request,
and returns the full details of the DeviNetworkEdgeRole ceInterface if found. If
not found, a fault is the response.

getPlaceRole This operation requires the PlaceRole entity id to be passed in the request, and
returns the full details of the PlaceRole if found. If not found, a fault is the
response.

getNetworkRole This operation requires the NetworkRole entity id to be passed in the request, and
returns the full details of the NetworkRole if found. If not found, a fault is the
response.

Table 10–9 (Cont.) Information Model Entity Operations

Operation Description

Network Integrity Web Service Operations

Working with the Network Integrity Web Service 10-9

Network Integrity Web Service Operations
Most of the operations defined in the Network Integrity Web service follow the
naming pattern of:

■ Create

■ Get

■ Get All

■ Delete

■ Update

■ Find

However, a few of the Web service operations do not follow this pattern. See "Network
Integrity Web Service Special Function Operations" for more information.

Create
Each create operation inserts a new entity into the system. For example, the
createDisBlackoutSchedule operation creates a new blackout schedule in the system.

If successful, the changes are immediately available in the system and can be viewed
in the Network Integrity UI.

The request for each create operation is named create<EntityType>Request. The
request contains the full details of the new entity to be created. Multiple entities cannot
be created in a single request, only a single entity is supported.

The following fields should not be supplied in the create request as they are populated
automatically by the system.

■ entityId

■ entityVersion

■ lastModifiedDate

■ lastModifiedUser

■ createdDate

■ createdUser

The response from each create operation is named create<EntityType>Response and
contains the entityId of the created entity if the operation was successful. The entityId
returned is used in subsequent get and delete operations.

If a create operation fails, the response contains a fault with a faultCode, faultString,
and extra CrudFault details.

Example 10–1 Create Request

<v1:createDisTagRequest>
 <v1:disTag>
 <v13:name>Sample Tag</v13:name>
 <v13:description>Created through Web Service</v13:description>
 </v1:disTag>
</v1:createDisTagRequest>

Example 10–2 Create Response

<ns118:createDisTagResponse>

Network Integrity Web Service Operations

10-10 Network Integrity Developer's Guide

 <ns118:disTagRef>
 <ns2:entityId>9584</ns2:entityId>
 </ns118:disTagRef>
</ns118:createDisTagResponse>

Example 10–3 Create Failure (a name was not specified for the tag)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>ILLEGAL_NAME</faultstring>
 <detail>
 <ns158:crudFault>
 <ns152:rootStackTrace/>
 </ns158:crudFault>
 </detail>
</ns2:Fault>

Entity Type Support
Each create operation supports the following entity types:

■ DisBlackoutSchedule

■ DisTag

■ DisConfig

Get
Each get operation retrieves an entity from the system. The get request requires a
unique entity id and the entity details are returned in the response. For example, the
getDisBlackoutSchedule operation returns all the details of a specific blackout
schedule in the system.

The request for each get operation is named get<EntityType>Request. The request
contains a single entityId of the entity to be retrieved. Only one entityId can be
specified in the request, multiples are ignored. The exception to this is the
getRootEntity and getResultEntity operations; these operations accept multiple entity
id values.

If the entityId provided is not found in the system a fault is returned, not an empty
response.

The response from each get operation is named get<EntityType>Response and
contains the details of the entity retrieved from the system.

If a get operation fails, the response contains a fault with a faultCode, faultString, and
extra CrudFault details.

Example 10–4 Get Request

<v1:getDisTagRequest>
 <v1:disTagRef>
 <v11:entityId>9586</v11:entityId>
 </v1:disTagRef>
</v1:getDisTagRequest>

Example 10–5 Get Response

<ns118:getDisTagResponse>
 <ns118:disTag>

Network Integrity Web Service Operations

Working with the Network Integrity Web Service 10-11

 <ns2:entityId>9586</ns2:entityId>
 <ns2:entityVersion>1</ns2:entityVersion>
 <ns12:parentRef>
 <ns2:entityId>9584</ns2:entityId>
 </ns12:parentRef>
 <ns12:name>Sample Child Tag</ns12:name>
 <ns12:description>Child Created through WS</ns12:description>
 </ns118:disTag>
</ns118:getDisTagResponse>

Example 10–6 Get Failure (entity id was not found)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>Cannot find Tag with entity Id 9586</faultstring>
 <detail>
 <ns158:crudFault>
 <ns151:rootStackTrace/>
 </ns158:crudFault>
 </detail>
</ns2:Fault>

Entity Type Support
Each get operation supports the following entity types:

■ DisBlackoutSchedule

■ DisTag

■ DisConfig

■ DisDiscrepancy

■ DisInventoryImportPlugin

■ DisNetworkDiscoveryPlugin

■ DisAssimilationPlugin

■ DisDiscrepancyResolutionPlugin

■ DisDiscrepancyDetectionPlugin

■ DisScanRun

■ RootEntity

■ ResultEntity

■ Specification

■ DefaultDisInventoryConfig

■ DeviceInterface

■ PhysicalDevice

■ EquipmentHolder

■ MediaInterface

■ Equipment

■ LogicalDevice

■ PhysicalPort

■ PhysicalConnector

Network Integrity Web Service Operations

10-12 Network Integrity Developer's Guide

■ CustomObject

Get All
Each get all operation retrieves all entities of a certain type from the system. For
example, the getAllDisBlackoutSchedule operation returns all the details of all the
blackout schedules currently in the system.

These operations are only available for entities that would not typically have many
entries in the system and that do not support a find operation.

The request for each get all operation is named getAll<EntityType>Request. The
request does not support any request parameters.

The response from each get all operation is named getAll<EntityType>Response and
contains the details of all the entities retrieved from the system.

If a get all operation fails, the response contains a fault with a faultCode, faultString,
and extra CrudFault details. Since the get all operations do not take any input
parameters, they should only fail due to environment or authentication issues.

Example 10–7 Get All Request

<v1:getAllRootDisTagsRequest/>

Example 10–8 Get All Response

<ns118:getAllRootDisTagsResponse>
 <ns118:rootDisTags>
 <ns2:entityId>9584</ns2:entityId>
 <ns2:entityVersion>3</ns2:entityVersion>
 …etc
 </ns118:rootDisTags>
 <ns118:rootDisTags>
 <ns2:entityId>9585</ns2:entityId>
 <ns2:entityVersion>3</ns2:entityVersion>
 …etc
 </ns118:rootDisTags>
</ns118:getAllRootDisTagsResponse>

Entity Type Support
Each get all operation supports the following entity types:

■ DisBlackoutSchedule

■ RootDisTag

■ DisInventoryImportPlugin

■ DisNetworkDiscoveryPlugin

■ DisAssimilationPlugin

■ DisDiscrepancyResolutionPlugin

■ DisDiscrepancyDetectionPlugin

Network Integrity Web Service Operations

Working with the Network Integrity Web Service 10-13

Delete
Each delete operation removes an entity from the system. For example, the
deleteDisBlackoutSchedule operation removes a particular blackout schedule from the
system.

If successful, the result of a delete operation is immediately viewable in the Network
Integrity UI.

The request for each delete operation is named delete<EntityType>Request. The
request contains a single entityId of the entity to be deleted. Only one entityId can be
specified in the request, multiples are ignored.

If the entityId provided is not found in the system, or if the entity cannot be deleted, a
fault is returned.

The response from each delete operation is named delete<EntityType>Response and
contains the entityId of the entity deleted, which matches the id in the request.

If a delete operation fails, the response contains a fault with a faultCode, faultString,
and extra CrudFault details.

Example 10–9 Delete Request

<v1:deleteDisTagRequest>
 <v1:disTagRef>
 <v11:entityId>9579</v11:entityId>
 </v1:disTagRef>
</v1:deleteDisTagRequest>

Example 10–10 Delete Response

<ns118:deleteDisTagResponse>
 <ns118:disTagRef>
 <ns2:entityId>9579</ns2:entityId>
 </ns118:disTagRef>
</ns118:deleteDisTagResponse>

Example 10–11 Delete Failure (entity id was not found)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>Cannot find Tag with Entity Id9579</faultstring>
 <detail>
 <ns158:crudFault>
 <ns151:rootStackTrace/>
 </ns158:crudFault>
 </detail>
</ns2:Fault>

Entity Type Support
Each delete operation supports the following entity types:

Note: The deleteDisConfig operation has an additional optional
parameter you can enter in the delete request to force a scan to be
deleted, even if it has associated discrepancies in the Running or
Submitted state. See Table 10–1, " DisConfig Operations" for more
information.

Network Integrity Web Service Operations

10-14 Network Integrity Developer's Guide

■ DisBlackoutSchedule

■ DisTag

■ DisConfig

■ DisScanRun

Update
Each update operation modifies an existing entity in the system. For example, the
updateDisBlackoutSchedule operation updates a blackout schedule currently in the
system.

If successful, the update is immediately available in the system and can be viewed in
the Network Integrity UI.

The request for each update operation is named update<EntityType>Request. The
request must contain the full details of the new entity to be created, not just the fields
that have changed. Multiple entities cannot be updated in a single request, only a
single entity is supported. Unlike the create operation, the entityId must be supplied in
the update operation to uniquely identity which entity to modify.

The entity version passed in the request must match the version that is held on the
server. The entity version is incremented by the system every time the entity is
modified. The entity version ensures that the entity has not been changed by some
other user between when the entity was last retrieved and when updated. If the entity
has been changed by some other user a fault is returned as follows: Entity Version
Mismatch: Input Version=1::Latest Version=2

Because the full details of the entity are required in the update request, the
recommended steps are to do a get, get all, or find operation to get the details of the
entity, and then copy these details into the update request, and modify the desired
fields.

The following fields should not be supplied in the update request as they are
populated automatically by the system or are not currently used.

■ lastModifiedDate

■ lastModifiedUser

■ createdDate

■ createdUser

Each response from the update operation is named update<EntityType>Response
and contains the entityId of the updated entity if the operation was successful.

If the update operation fails, the response contains a fault with a faultCode,
faultString, and extra CrudFault details.

Example 10–12 Update Request

<v1:updateDisTagRequest>
 <v1:disTag>
 <v11:entityId>9586</v11:entityId>
 <v11:entityVersion>1</v11:entityVersion>
 <v12:parentRef>
 <v2:entityId>9584</v2:entityId>
 </v12:parentRef>
 <v11:name>Sample Child Tag</v11:name>
 <v11:description>Modified through WS</v11:description>

Network Integrity Web Service Operations

Working with the Network Integrity Web Service 10-15

 </v1:disTag>
</v1:updateDisTagRequest>

Example 10–13 Update Response

<ns118:updateDisTagResponse>
 <ns118:disTagRef>
 <ns2:entityId>9586</ns2:entityId>
 </ns118:disTagRef>
</ns118:updateDisTagResponse>

Example 10–14 Update Failure (wrong entity version supplied)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>Entity Version Mismatch: Input Version=2::Latest
Version=3</faultstring>
 <detail>
 <ns158:crudFault>
 <ns151:rootStackTrace/>
 </ns158:crudFault>
 </detail>
</ns2:Fault>

Entity Type Support
Each update operation supports the following entity types:

■ DisBlackoutSchedule

■ DisTag

■ DisConfig

■ DisDiscrepancy

Find
Each find operation retrieves a list of entities that match filter search criteria. For
example, the findDisConfig operation retrieves a list DisConfig entities currently in the
system that match a given set of search criteria.

Each find operation is equivalent in capability to the Search screens in the Network
Integrity UI.

The request for each find operation is named find<EntityType>Request. The find
request can contain:

■ From and To Ranges

■ Sorting Fields (Ascending and Descending)

■ Attribute Criteria

■ Extended Attribute Criteria

■ Criteria Operator (Equals, Contains, etc.)

■ Conjunction Criteria (AND/OR)

Entity Type Support
Each find operation supports the following entity types:

■ DisConfig

Network Integrity Web Service Operations

10-16 Network Integrity Developer's Guide

■ DisScanRun

■ DisDiscrepancy

From and To Range
The fromRange and toRange are used to limit the number of rows returned to a client.
These fields support paging in UIs through the Web service. It is also useful to
improve performance and memory usage by retrieving many rows in smaller, more
manageable chunks.

If the fromRange is not provided the default value is 0 which means the find returns
the first row on. If the toRange is not provided in the request then the find operation is
unbounded and returns all rows to the end.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco</value>
 <operator> EQUALS</operator>
 </nameAttributeCriteria>
 <conjunction>AND</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Ascending and Descending
The ascending and descending fields control how the entity results are sorted in the
response. The ascending and descending fields hold the name of the attribute to be
sorted on. Multiple ascending and descending fields can be specified to add more than
one level of sorting. If both an ascending and descending sort field are not provided in
the request then the order of the entities returned is not sorted, and returned in the
order they are persisted.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <conjunction>AND</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Attribute Criteria
The attribute criteria specifies the field and value to match when performing the find
operation. In addition, an operator needs to be specified in the attribute criteria to
determine how the match is done (for example, EQUALS, NOT_EQUALS, etc.).

Network Integrity Web Service Operations

Working with the Network Integrity Web Service 10-17

Zero or more attribute criteria are contained within an entity’s
ConjunctionCriteriaItem.

The <EntityType>ConjunctionCriteriaItem element defines a list of valid
<attributeName>AttributeCriteria child elements. For example, the
disConfigConjunctionCriteriaItem has an attributeCriteria for every attribute that is
searchable, namely the nameAttributeCriteria, descriptionAttributeCriteria,
enabledAttributeCriteria, etc.

For each attribute criteria the value to match and the operator to use to perform the
match. The operators that are valid depend on the attribute type. For a list of valid
operators, see the operator section below.

You can use wildcards in the value field for attributes that are text types. The
supported wildcard characters are “*'”, “%”, and “_”. “*” and “%” both represent a
match of zero or more characters. “_”represents a match of any single character.
Wildcard characters can be escaped with a backslash “\”. To insert a backslash in the
query, insert two backslashes “\\”.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <conjunction>AND</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Multiple Attribute Criteria
Multiple criteria for the same attribute can be passed in a single find operation. In the
example below the find request is looking for scans that start with the name Cisco or
Juniper. It is necessary to specify the ‘OR’ conjunction in this scenario or no rows is
returned.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco*</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <nameAttributeCriteria>
 <value>Juniper*</value>
 <operator> EQUALS </operator>
 </nameAttributeCriteria>
 <conjunction>OR</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Network Integrity Web Service Operations

10-18 Network Integrity Developer's Guide

Extended Attribute Criteria
Extended Attribute Criteria allow the client application to find entities based on the
attribute values on related entities. For example, to find all scans with a certain Scope
Address would not be possible without extended criteria because the scope address is
not defined on the DisConfig entity. Multiple criteria for the same attribute can be
passed in a single find operation.

In the example below, the scope relationship on the DisConfig entity is followed, and
then the addresses relationship if followed on the DisScope, to specify the addresses to
match against. This search finds DisConfig entities that have either the address
10.156.68.136 or 10.156.68.140 in the scope. The schemas for the Web service define all
the relationships and attributes that can be specified in the find operation.

<v1:findDisConfigRequest>
 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <disConfigConjunctionCriteriaItem>
 <disConfigExtendedCriteriaItem>
 <scope>
 <disScopeConjunctionCriteriaItem>
 <disScopeExtendedCriteriaItem>
 <addresses>
 <disAddressConjunctionCriteriaItem>
 <addressAttributeCriteria>
 <value>10.156.68.136</value>
 <operator>EQUALS</operator>
 </addressAttributeCriteria>
 <addressAttributeCriteria>
 <value>10.156.68.140</value>
 <operator>EQUALS</operator>
 </addressAttributeCriteria>
 <conjunction>OR</conjunction>
 </disAddressConjunctionCriteriaItem>
 </addresses>
 </disScopeExtendedCriteriaItem>
 </disScopeConjunctionCriteriaItem>
 </scope>
 </disConfigExtendedCriteriaItem>
 <conjunction>OR</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

Criteria Operators
The following are the allowed search operators for each entity and attribute. If the Web
service clients sends the wrong operator for a search criteria the Web service search
request fails and the client gets a message, which shows the allowed operators for that
search criteria.

DisConfig
Table 10–10 shows the allowed search operators for DisConfig attributes.

Network Integrity Web Service Operations

Working with the Network Integrity Web Service 10-19

DisScanRun
Table 10–11, Table 10–12, and Table 10–13 show the allowed search operators for
DisScanRun.

Table 10–10 Allowed Search Operators for DisConfig Attributes

Attribute Name EQUALS NOT_EQUAL STARTS_WITH FALSE TRUE

Tag Y Y Y N/A N/A

Name Y Y N/A N/A N/A

ScanAction Y Y N/A N/A N/A

ScanType Y Y N/A N/A N/A

Description Y Y N/A N/A N/A

Source Y Y N/A N/A N/A

NetworkAddress Y N/A N/A N/A N/A

Enabled N/A N/A N/A Y Y

Run Reconciliation N/A N/A N/A Y Y

Table 10–11 Allowed Search Operators for DisScanRun Attributes

Attribute Name EQUALS NOT_EQUAL STARTS_WITH

Tag Y Y Y

Name Y Y N/A

Status Y Y N/A

ScanType Y Y N/A

Source Y Y N/A

ScanAction Y Y N/A

Table 10–12 Allowed Search Operators for DisScanRun Attributes

Attribute Name BEFORE AFTER
ON_OR_
AFTER

ON_OR_
BEFORE BETWEEN

NOT_
BETWEEN

ScanStartTime Y Y Y Y Y Y

ScanEndTime Y Y Y Y Y Y

DiscrepancyDetection
StartTime

Y Y Y Y Y Y

DiscrepancyDetection
EndTime

Y Y Y Y Y Y

Table 10–13 Allowed Search Operators for DisScanRun Attributes

Attribute Name EQUALS
NOT_
EQUAL

GREATER_
THAN

LESS_
THAN BETWEEN

NOT_
BETWEEN

MinorDiscrepancies Y Y Y Y Y Y

MajorDiscrepancies Y Y Y Y Y Y

CriticalDiscrepancies Y Y Y Y Y Y

WarningDiscrepancies Y Y Y Y Y Y

Network Integrity Web Service Operations

10-20 Network Integrity Developer's Guide

DisDiscrepancy
Table 10–14 and Table 10–15 show the allowed search operators for DisDiscrepancy.

Table 10–14 Allowed Search Operators for DisDiscrepancy Attributes

Attribute Name EQUALS
NOT_
EQUAL

STARTS_
WITH IS_BLANK

IS_NOT_
BLANK

Tag Y Y Y N/A N/A

Severity Y Y N/A N/A N/A

Status Y Y N/A N/A N/A

ResolutionAction Y Y N/A Y Y

Owner Y Y N/A Y Y

Priority Y Y N/A Y Y

EntityName Y Y N/A N/A N/A

ScanResultDetailName Y Y N/A N/A N/A

ScanType Y Y N/A N/A N/A

EntityName Y Y N/A N/A N/A

ScanResultDetailName Y Y N/A N/A N/A

ScanName Y Y N/A N/A N/A

EntityType Y Y N/A N/A N/A

CorrectedBy Y Y N/A N/A N/A

SubmittedBy Y Y N/A N/A N/A

ParentEntityNamw Y Y N/A N/A N/A

ParentEntityType Y Y N/A N/A N/A

Discovery/ImportValue Y Y N/A N/A N/A

Discovery/ImportSource Y Y N/A N/A N/A

ScanResultDetailCategory Y Y N/A N/A N/A

Type Y Y N/A N/A N/A

ScanType Y Y N/A N/A N/A

Table 10–15 Allowed Search Operators for DisDiscrepancy Attributes

Attribute Name BEFORE AFTER
ON_OR_
AFTER

ON_OR_
BEFORE BETWEEN

NOT_
BETWEEN

ScanStartTime Y Y Y Y Y Y

ScanEndTime Y Y Y Y Y Y

DiscrepancyDetection
StartTime

Y Y Y Y Y Y

DiscrepancyDetection
EndTime

Y Y Y Y Y Y

SubmittedTime Y Y Y Y Y Y

LastStatusChangeTime Y Y Y Y Y Y

Network Integrity Web Service Operations

Working with the Network Integrity Web Service 10-21

Between/Not Between Operator
When specifying the BETWEEN and NO_BETWEEN operators, two attribute criteria
must be supplied or a fault is returned. The error message returned is Incorrect
number of values or incorrect format specified for attribute criteria:
numberWarning.

The following example searches for scan results that found between 10 and 100
discrepancy warnings.

<v1:findDisScanRunRequest>
 <v1:disScanRunSearchCriteria>
 <v11:fromRange>0</v11:fromRange>
 <v11:toRange>20</v11:toRange>
 <v11:disScanRunConjunctionCriteriaItem>
 <v12:disScanRunExtendedCriteriaItem>
 <v14:counts>
 <v119:disDiscrepancyCountsConjunctionCriteriaItem>
 <v120:warningAttributeCriteria>
 <v121:value>10</v121:value>
 <v121:value>100</v121:value>
 <v121:operator>BETWEEN</v121:operator>
 </v120:warningAttributeCriteria>
 </v119:disDiscrepancyCountsConjunctionCriteriaItem>
 </v14:counts>
 </v12:disScanRunExtendedCriteriaItem>
 <v12:conjunction>AND</v12:conjunction>
 </v11:disScanRunConjunctionCriteriaItem>
 </v1:disScanRunSearchCriteria>
</v1:findDisScanRunRequest>

Data Criteria
Date fields must be in the format mm/dd/yyyy mm:dd:ss AM/PM. The server time is
always used for dates in Network Integrity. The following example searches for scan
runs that started after the August 11th, 2010 10:00 am. Because the AFTER operator is
used, scans that match this start time exactly are not included in the response. If
operator ON_OR_AFTER was used then exact match start time scans are included in
the response.

<v1:findDisScanRunRequest>
 <v1:disScanRunSearchCriteria>
 <v11:fromRange>0</v11:fromRange>
 <v11:toRange>20</v11:toRange>
 <v11:disScanRunConjunctionCriteriaItem>
 <v12:discoveryBeginTimeAttributeCriteria>
 <v13:value>08/11/2010 10:00:00 AM</v13:value>
 <v13:operator>AFTER</v13:operator>
 </v12:discoveryBeginTimeAttributeCriteria>
 <v12:conjunction>AND</v12:conjunction>
 </v11:disScanRunConjunctionCriteriaItem>
 </v1:disScanRunSearchCriteria>
</v1:findDisScanRunRequest>

Conjunction Criteria
The conjunction must be either AND or OR. Only the top level conjunction is used,
conjunctions on lower level elements are ignored.

<v1:findDisConfigRequest>

Network Integrity Web Service Operations

10-22 Network Integrity Developer's Guide

 <v1:disConfigSearchCriteria>
 <fromRange>0</fromRange>
 <toRange>20</toRange>
 <descending>name</descending>
 <disConfigConjunctionCriteriaItem>
 <nameAttributeCriteria>
 <value>Cisco*</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <nameAttributeCriteria>
 <value>Juniper*</value>
 <operator>EQUALS</operator>
 </nameAttributeCriteria>
 <conjunction>OR</conjunction>
 </disConfigConjunctionCriteriaItem>
 </v1:disConfigSearchCriteria>
</v1:findDisConfigRequest>

The conjunction appears at many levels in the find hierarchy. The conjunction at lower
levels controls how the criteria at lower levels are evaluated logically.

In the following example the inner conjunction is OR because this request is designed
to find any ScanRun that has discrepancy, regardless of severity. Notice the outer
conjunction that has the value AND, this has no effect on the extended attribute
criteria.

To change this find so it only finds scans that have a discrepancy of every severity, the
inner conjunction on the disDiscrepancyCountsConjunctionCriteriaItem element
would be changed to AND.

<v1:findDisScanRunRequest>
 <v1:disScanRunSearchCriteria>
 <v11:disScanRunConjunctionCriteriaItem>
 <v12:disScanRunExtendedCriteriaItem>
 <v14:counts>
 <v119:disDiscrepancyCountsConjunctionCriteriaItem>
 <v120:criticalAttributeCriteria>
 <v121:value>0</v121:value>
 <v121:operator>GREATER_THAN</v121:operator>
 </v120:criticalAttributeCriteria>
 <v120:majorAttributeCriteria>
 <v121:value>0</v121:value>
 <v121:operator>GREATER_THAN</v121:operator>
 </v120:majorAttributeCriteria>
 <v120:minorAttributeCriteria>
 <v121:value>0</v121:value>
 <v121:operator>GREATER_THAN</v121:operator>
 </v120:minorAttributeCriteria>
 <v120:warningAttributeCriteria>
 <v121:value>0</v121:value>
 <v121:operator>GREATER_THAN</v121:operator>
 </v120:warningAttributeCriteria>
 <v120:conjunction>OR</v120:conjunction>
 </v119:disDiscrepancyCountsConjunctionCriteriaItem>
 </v14:counts>
 </v12:disScanRunExtendedCriteriaItem>
 <v12:conjunction>AND</v12:conjunction>
 </v11:disScanRunConjunctionCriteriaItem>
 </v1:disScanRunSearchCriteria>

Network Integrity Web Service Special Function Operations

Working with the Network Integrity Web Service 10-23

Find Response
Each find response contains all the details of the entities that matched the attribute
criteria. The response only contains the number of entities defined by the from an to
range. Subsequent find operations may be called to get all the entities depending on
the number of rows matching the search criteria and the from and to range specified.

<ns118:findDisConfigResponse>
 <ns118:disConfigs>
 <ns2:entityId>9612</ns2:entityId>
 <ns2:entityVersion>1</ns2:entityVersion>
 <ns4:tagsRef>
 <ns2:entityId>9584</ns2:entityId>
 </ns4:tagsRef>
 <ns4:tagsRef>
 <ns2:entityId>9586</ns2:entityId>
 </ns4:tagsRef>
 <ns7:parameterGroups>
 <ns2:entityId>9606</ns2:entityId>

.

.

.
 <ns7:enabled>YES</ns7:enabled>
 <ns7:dataSource>TRUE</ns7:dataSource>
 <ns7:startScanReady>true</ns7:startScanReady>
 </ns118:disConfigs>
</ns118:findDisConfigResponse>

Network Integrity Web Service Special Function Operations
There are a few Network Integrity Web service operations that do not follow the
standard pattern and are designed for a special purpose.

The Network Integrity Web service special function operations are:

■ Start Scan

■ Stop Scan

■ Get Latest Scan Status

■ Submit Discrepancies For Resolution Processing

Start Scan
The startScan operation starts a scan for a given DisConfig entityId. This operation is
identical to the start scan operation in the Network Integrity UI. The request expects a
DisConfig entityId and the response contains the entityId of the DisScanRun that was
created for the scan.

Example 10–15 Request:

<v1:startScanRequest>
 <v1:disConfigRef>
 <v11:entityId>9612</v11:entityId>
 </v1:disConfigRef>
</v1:startScanRequest>

Example 10–16 Response:

<ns118:startScanResponse>
 <ns118:disScanRunRef>

Network Integrity Web Service Special Function Operations

10-24 Network Integrity Developer's Guide

 <ns2:entityId>14721</ns2:entityId>
 </ns118:disScanRunRef>
</ns118:startScanResponse>

Stop Scan
The stopScan operation stops a scan for a given DisConfig entityId. This operation is
identical to the stop scan operation in the Network Integrity UI. The request expects a
DisConfig entityId and the response contains the entityId of the DisScanRun that was
created for the scan.

Example 10–17 Request:

<v1:stopScanRequest>
 <v1:disConfigRef>
 <v11:entityId>9612</v11:entityId>
 </v1:disConfigRef>
</v1:stopScanRequest>

Example 10–18 Response:

<ns118:stopScanResponse>
 <ns118:disScanRunRef>
 <ns2:entityId>13846</ns2:entityId>
 </ns118:disScanRunRef>
</ns118:stopScanResponse>

Get Latest Scan Status
The getLatestScanStatus returns the status of the latest run of a scan. The operation is
equivalent to the information displayed in the Status section of the Manage Scans page
of the Network Integrity UI. In addition to the status of the scan the operation returns
information about the number of addresses being discovered, the number of
discrepancies found, and the start time and duration of the scan.

This method is more efficient to call to monitor the running of a scan rather than call
findDisScanRun many times.

Example 10–19 Request:

<v1:getLatestScanStatusRequest>
 <v1:disConfigRef>
 <v11:entityId>9612</v11:entityId>
 </v1:disConfigRef>
</v1:getLatestScanStatusRequest

Example 10–20 Response (Running Scan)

<ns118:getLatestScanStatusResponse>
 <ns118:scanStatus>
 <ns120:discrepancySeverityCounts>
 <ns2:entityId>0</ns2:entityId>
 <ns2:entityVersion>0</ns2:entityVersion>
 <ns56:numberWarning>0</ns56:numberWarning>
 <ns56:numberMinor>0</ns56:numberMinor>
 <ns56:numberMajor>0</ns56:numberMajor>
 <ns56:numberCritical>0</ns56:numberCritical>
 </ns120:discrepancySeverityCounts>
 <ns120:discoveryWorkCounts>
 <ns121:totalNoOfWorkItems>2</ns121:totalNoOfWorkItems>

Network Integrity Web Service Special Function Operations

Working with the Network Integrity Web Service 10-25

 <ns121:noOfCompletedWorkItems>0</ns121:noOfCompletedWorkItems>
 <ns121:noOfFailedWorkItems>0</ns121:noOfFailedWorkItems>
 <ns121:noOfInProgressWorkItems>2</ns121:noOfInProgressWorkItems>
 <ns121:startTime>07/16/2010 11:17:05</ns121:startTime>
 <ns121:duration/>
 </ns120:discoveryWorkCounts>
 <ns120:discrepancyWorkCounts>
 <ns121:totalNoOfWorkItems>0</ns121:totalNoOfWorkItems>
 <ns121:noOfCompletedWorkItems>0</ns121:noOfCompletedWorkItems>
 <ns121:noOfFailedWorkItems>0</ns121:noOfFailedWorkItems>
 <ns121:noOfInProgressWorkItems>0</ns121:noOfInProgressWorkItems>
 <ns121:duration/>
 </ns120:discrepancyWorkCounts>
 <ns120:jobStateString>Running</ns120:jobStateString>
 <ns120:discrepancyDetectionEnabled>true</ns120:discrepancyDetectionEnabled>
 </ns118:scanStatus>
</ns118:getLatestScanStatusResponse>

Example 10–21 Response (Completed Scan)

<ns118:getLatestScanStatusResponse>
 <ns118:scanStatus>
 <ns120:discrepancySeverityCounts>
 <ns2:entityId>15456</ns2:entityId>
 <ns2:entityVersion>1</ns2:entityVersion>
 <ns55:numberWarning>1</ns55:numberWarning>
 <ns55:numberMinor>0</ns55:numberMinor>
 <ns55:numberMajor>0</ns55:numberMajor>
 <ns55:numberCritical>0</ns55:numberCritical>
 </ns120:discrepancySeverityCounts>
 <ns120:discoveryWorkCounts>
 <ns121:totalNoOfWorkItems>2</ns121:totalNoOfWorkItems>
 <ns121:noOfCompletedWorkItems>2</ns121:noOfCompletedWorkItems>
 <ns121:noOfFailedWorkItems>0</ns121:noOfFailedWorkItems>
 <ns121:noOfInProgressWorkItems>0</ns121:noOfInProgressWorkItems>
 <ns121:startTime>07/16/2010 11:59:26</ns121:startTime>
 <ns121:endTime>07/16/2010 11:59:52</ns121:endTime>
 <ns121:duration>26s</ns121:duration>
 </ns120:discoveryWorkCounts>
 <ns120:discrepancyWorkCounts>
 <ns121:totalNoOfWorkItems>2</ns121:totalNoOfWorkItems>
 <ns121:noOfCompletedWorkItems>2</ns121:noOfCompletedWorkItems>
 <ns121:noOfFailedWorkItems>0</ns121:noOfFailedWorkItems>
 <ns121:noOfInProgressWorkItems>0</ns121:noOfInProgressWorkItems>
 <ns121:startTime>07/16/2010 11:59:52</ns121:startTime>
 <ns121:endTime>07/16/2010 11:59:55</ns121:endTime>
 <ns121:duration>3s</ns121:duration>
 </ns120:discrepancyWorkCounts>
 <ns120:jobStateString>Completed</ns120:jobStateString>

<ns120:discrepancyDetectionEnabled>true</ns120:discrepancyDetectionEnabled>
 </ns118:scanStatus>
 </ns118:getLatestScanStatusResponse>

Submit Discrepancies For Resolution Processing
The submitDisDiscrepancyResolutionProcessing operation takes a list of discrepancy
entityIds and submits these discrepancies to be processed by a resolution action. This
is the same as the Submit discrepancies operation in the Network Integrity UI.

Network Integrity Web Service Scenarios

10-26 Network Integrity Developer's Guide

The discrepancies submitted must have a discrepancy status of IDENTIFIED and have
an Operation populated or else a fault is returned. The status and operation of the
discrepancy can be updated using the updateDisDiscrepancy operation.

This operation is a two step operation in the Network Integrity UI to first add
discrepancies to the queue, and then submit them. In the Web service this is a single
operation.

If the operation is successful, the entityIds of the discrepancies submitted is returned
in the response.

After submitting the discrepancies the status of the discrepancies is set to
SUBMITTED.

Example 10–22 Request

<v1:submitDisDiscrepancyResolutionOperationsRequest>
 <!--1 or more discrepancies: -->
 <v1:disDiscrepancyRef>
 <v11:entityId>15448</v11:entityId>
 </v1:disDiscrepancyRef>
</v1:submitDisDiscrepancyResolutionOperationsRequest>

Example 10–23 Response

<ns118:submitDisDiscrepancyResolutionOperationsResponse>
 <ns118:disDiscrepancyRef>
 <ns2:entityId>15448</ns2:entityId>
 </ns118:disDiscrepancyRef>
</ns118:submitDisDiscrepancyResolutionOperationsResponse>

Example 10–24 Failure (one or more discrepancies not in IDENTIFIED status)

<ns2:Fault>
 <faultcode>ns2:Server</faultcode>
 <faultstring>DISCREPANCY_RESOLUTION_INVALID_STATUS</faultstring>
 <detail>
 <ns127:crudFault>
 <ns119:rootStackTrace/>
 </ns127:crudFault>
 </detail>
</ns2:Fault>

Network Integrity Web Service Scenarios
The following sections describe how to use the Web service in an end-to-end fashion.

Creating a Scan
A scan is created using the createDisConfig operation, but there may be data and
entities to be created or retrieved before calling the createDisConfig operation.

Prerequisites:

■ A plugin entity id is required to create a scan. The list of discovery, import, and
assimilation plugins that are deployed in the system can be determined by calling
getAllDisInventoryImportPlugin, getAllDisNetworkDiscoveryPlugin, and
getAllDisAssimilationPlugin.

■ The plug-in entity may define one or more plug-in parameters (for example,
SnmpParameters) that it expects to be passed. If it does then the plug-in returned

Network Integrity Web Service Scenarios

Working with the Network Integrity Web Service 10-27

in the previous step has one or more specificationsRef elements in the response.
The expected plug-in parameters can be determined by calling getSpecification to
determine the available plug-in parameters. Some plug-in parameters are optional
and some are mandatory.

For more information about the parameters returned by getSpecification, see your
plug-in or cartridge documentation.

■ If the scan is to be tagged on creation then the tag entity ids must be retrieved
using one of getAllRootDisTags, getDisTag, createDisTag.

■ If the scan is to have blackout schedules on creation then the blackout entity ids
must be retrieved using one of getAllDisBlackoutSchedule,
getDisBlackoutSchedule, createDisBlackoutSchedule.

The response from the createDisConfig operation, if successful, is an entity id for the
scan. The entity id is used for deleting, retrieving, starting, and stopping the scan.

Starting, Stopping, and Monitoring a Scan
The scan can be started using startScan operation and the DisConfig entity id that was
returned when it was created. (It is also possible to do a findDisConfig operation to get
the entity id).

The start scan operation returns the scan run entity id from that you can use to
monitor the status and results of the scan.

It is also possible to monitor the scan progress using the DisConfig entity id and the
getLatestScanStatus. This operation is more efficient and reports the current status of
the scan along with other details.

An in-progress scan can be stopped using the stopScan operation and the DisConfig
entity id. When the operation returns the scan is transitioned to STOPPING state, and
asynchronously transitions to STOPPED when all scan processes have ended.

Retrieving Scan Results
The starting point for retrieving scan results is the DisScanRun entity. The entity id of
the DisScanRun is returned when the scan was started, or can be determined by
performing the findDisScanRun operation.

If the scan successfully discovers data the DisScanRun has one or more resultGroups
that contain one or more rootEntityRefsRef. These ids are used in the getRootEntity
call to retrieve the root of the discovered data. The getRootEntity operation, unlike
other get calls, accepts multiple entity ids for retrieving all root entities in a single call.

The getRootEntity operation does not retrieve the complete tree of results for
performance reasons and to limit scope of entity traversal. The response from
getRootEntity often contains references to other entities. These entities can be retrieved
using the generic getResultEntity operation, or by type-specific get operations
(getLogicalDevice, getEquipment, getPhysicalDevice, getLogicalDevice,
getEquipmentHolder, and so on).

Most result data entities have specifications. To get details about the specification the
entity is using, the getSpecification operation can be called using the specificationRef
on the entity.

Network Integrity Web Service Samples

10-28 Network Integrity Developer's Guide

Working with Discrepancies
The starting point for working with discrepancies is the DisScanRun entity. The entity
id of the DisScanRun is returned when the scan was started, or can be determined by
performing the findDisScanRun operation.

The list of discrepancies created in discrepancy detection is in the DisScanRun entity as
discrepanciesRef ids. The DisDiscrepancy entity can be retrieved using the
getDisDiscrepancy operation passing the discrepanciesRef from the DisScanRun entity.
The discrepancies can also be found using the findDisDiscrepancy operation with
search criteria.

Several fields on the discrepancy, including the status, operation (resolution action),
owner, priority, reasonForFailure, and notes can be updated using the
updateDisDiscrepancy operation.

Discrepancies can be submitted for resolution by calling the
submitDisDiscrepancyResolutionOperations operation. The operation takes a list of
discrepancies to be submitted in the request. Discrepancies must be in the status of
IDENTIFIED and have an operation populated to be submitted.

Network Integrity Web Service Samples
Network Integrity includes example requests and responses of calling the Web service.
Find these examples in the Network Integrity Web Service Samples ZIP file.

Contents of the Network Integrity Web Service Samples ZIP File
Table 10–16 describes the directories, files, and file contents for the Network Integrity
Web Service Samples ZIP file.

Table 10–16 Network Integrity Web Service Samples ZIP File Contents

Directory/File Description

build.xml An example ANT build script that shows how to run the client
with an SSL keystore as a VM argument.

WSDL-Documentation.html Generated WSDL documentation that shows all the available
operations. A short description of each operation is provided.
Full WSDL source is included for reference.

IntegrityWebserviceSoapUIProject.xml SoapUI Project File

integrity-schema\wsdl\
NetworkIntegrityControlService.wsdl

Web Service Definition (WSDL)

integrity-schema\referenceSchema Supporting XML Schema files

integrity-schema\schema Supporting XML Schema files

integrity-ws-client.jar Jar file containing Java Client type generated from the WSDL

jaxb-bindings.xml JAXB Binding file to adjust generated package names when
generating client classes from WSDL. These bindings are
required if not using the provided integrity-ws-client.jar and
generating client class files using a Web service client generation
tool.

src\oracle\integrity\ws\client\NetworkIntegri
tyControlService.java

This is a client side proxy class to get port types. This is the class
where policy files and other authentication details are set.

src\oracle\integrity\ws\test\SampleNIClient.j
ava

An example client java class that makes a Web service call.

Network Integrity Web Service Samples

Working with the Network Integrity Web Service 10-29

Sample Java Client
Included in the Web Service Samples ZIP file is a sample java client. The sample java
code is included in the src directory and contains:

■ a sample client side proxy for getting a port type and setting the required policies
and authentication.

■ a client class that calls the getAllDisNetworkDiscoveryPlugin operation and prints
the result to standard out.

To compile the sample JAVA code, the following JAR files are necessary:

■ weblogic.jar: available in WL_Home/server/lib/

■ wseeclient.jar: available in WL_Home/server/lib/

■ jrf.jar: available in MW_Home/oracle_common/modules/oracle.jrf_11.1.1/

■ integrity-ws-client.jar: included the Network Integrity Web Service Samples ZIP
file.

To run the sample JAVA code, you must run it with a full installation of WebLogic
Server and ADF, because the JAR files referenced during compile require other JAR
files. Set your classpath to point to the above JAR files in their installed location on
your system. This can be done by installing WebLogic and ADF on your development
system or run the client on your Network Integrity server.

If you plan on running a Web service client to communicate with a Network Integrity
server that does not have a valid SSL certificate, you must download your server
certificate and save it to a file to be used by your client. Then use the following VM
argument when running your client. In this example, a file called jssecacerts has the
SSL key that was downloaded.

 -Djavax.net.ssl.trustStore=jssecacerts

Sample Soap UI Project
A SoapUI project is provided in the Cartridge Developer package to give examples of
all the Web service calls and examples of the responses. The SoapUI project tests
various Web service call scenarios.

To install the Soap UI, use the following procedure:

1. Download and Install SoapUI 3.5.1 (newer versions of SoapUI may work with the
bundled project file, but it has not been tested)

2. Start the SoapUI application.

3. From the File menu, select Import Project.

4. Select the IntegrityWebserviceSoapUIProject.xml file and click Open.

Also in the project is a NetworkIntegrityControlMockService that simulates the real
Web service. For each operation there is one or more example responses provided in
the mock service. The number of example requests in the binding does not always
match the number of responses because the responses would be the same structure
with a different id returned (for example, create blackout response).

Note: The required Web service policy,
Wssp1.2-2007-Https-UsernameToken-Plain.xml is included in the
wseeclient.jar.

Network Integrity Web Service Samples

10-30 Network Integrity Developer's Guide

You can use the provided example requests or create new requests right-clicking the
operation and selecting “New Request”. This creates a new request with all fields
populated with a question mark. Many of the example requests in the project require
modification to execute successfully because the entityIds in the example does not
match other systems.

The NetworkIntegrityControlMockService views examples of Web service responses
for different scenarios. The mock service can also be started to respond to Web service
calls with mock responses. See the SoapUI documentation for more information.

Submitting Request to the Server
To submit a request to the server you must do the following:

1. Ensure the request is valid and all mandatory attributes are set.

2. Ensure the username and password are set in the request. See the next section on
how to add the username and password to the request for how this is done.

3. Add a new endpoint by clicking on the drop down at the top of the request and
select add new endpoint.

4. Add a new endpoint with the following format:

https://Managed_
Server:Port/NetworkIntegrityApp-NetworkIntegrityControlWebService-context-root/
NetworkIntegrityControlServicePortType

5. Click Play to submit the request.

Specifying User Name and Password in Request
To add the user name and password to a request.

1. Click Aut tab at the bottom of the request.

2. Enter the user name and password that has access to login to the Network
Integrity UI.

3. Right click the request and select Add WSS Username Token.

4. Accept the default PasswordText and select OK.

The following structure is added to the request.

<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-u
tility-1.0.xsd">
 <wsse:Username>niuser</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-pr
ofile-1.0#PasswordText">niuser123</wsse:Password>
 <wsse:Nonce
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-mess
age-security-1.0#Base64Binary">ZS2K4yCoqOoQg6KL9DetBw==</wsse:Nonce>
 <wsu:Created>2010-09-13T01:21:17.578Z</wsu:Created>
 </wsse:UsernameToken>
</wsse:Security>

5. Delete the Nonce and Created elements in the above example (highlighted in
bold) to reduce errors on future calls.

11

Working with Scan Run Complete Notifications 11-1

11Working with Scan Run Complete Notifications

This chapter describes an Oracle Communications Network Integrity event
notification, Scan Complete Notification, which allows external components to receive
asynchronous event notification messages about the completion of scans.

You can develop a client to monitor event notifications, to and trigger follow-on
actions.

About Clients for Monitoring Scan Run Complete Notification Messages
You can develop a message-driven bean (MDB) or Java messaging system (JMS) client
that listens to the Network Integrity event notification JMS topic
(oracle/communications/integrity/EventNotificationTopic) for scan-complete
notification messages. For example, you can write post-processing logic that listens for
messages that trigger other scans or send emails or SMS messages using the
MDB/JMS client.

Develop the MDB/JMS client to listen to the Network Integrity application server for
the JMS topic. The client must belong to the NetworkIntegrityRole group to access the
JMS topic. See Network Integrity System Administrator’s Guide for more information on
the NetworkIntegrityRole group.

Table 11–1 lists the properties used by EventNotificationTopic for client filtering.

Table 11–1 EventNotificationTopic Properties for Client Filtering

Property Description

Status Indicates the final scan run state:

■ COMPLETED

■ STOPPED

■ FAILED

Scan Action Name Indicates the name of the scan action.

Scan Action Type Indicates the type of the scan action:

■ NETWORK_DISCOVERY

■ INVENTORY_IMPORT

■ ASSIMILATION

Discrepancy Detection A Boolean that indicates whether discrepancy detection was enabled
on the scan action:

■ 1: discrepancy detection enabled.

■ 0: discrepancy detection not disabled.

About Clients for Monitoring Scan Run Complete Notification Messages

11-2 Network Integrity Developer's Guide

Notification messages also contain other properties which may be useful to you. For
example, the ScanRunId can be obtained from the message body, which retrieves
additional information about the scan run.

The following example is a sample MDB/JMS client implementation model:

package model;

import javax.annotation.Resource;
import javax.annotation.security.RunAs;

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;

import javax.jms.JMSException;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

import weblogic.javaee.MessageDestinationConfiguration;

@MessageDriven(activationConfig =
 { @ActivationConfigProperty(propertyName = "connectionFactoryJndiName",
 propertyValue = "oracle/communications/integrity/NIXATCF"),
 @ActivationConfigProperty(propertyName = "destinationName", propertyValue
= "oracle/communications/integrity/EventNotificationTopic"),
 @ActivationConfigProperty(propertyName = "destinationType",
propertyValue = "javax.jms.Topic")
 } , mappedName = "oracle/communications/integrity/EventNotificationTopic")

@MessageDestinationConfiguration(connectionFactoryJNDIName =
"oracle/communications/integrity/NIXATCF")
@RunAs("NetworkIntegrityRole")
public class MyEjbTestBean implements MessageListener {
 @Resource
 javax.ejb.MessageDrivenContext context;
 public void onMessage(javax.jms.Message message) {
 TextMessage text = (TextMessage)message;
 try {
 // write post-processing logic here
 // like trigger other scans, or send e-mails or SMS messages
 System.out.println("entered mdb.... ");
 System.out.println("received the following message: ");
 System.out.println("Status : "+text.getStringProperty("Status"));
 System.out.println("Scan_Action_Name :
"+text.getStringProperty("Scan_Action_Name"));
 System.out.println("Scan_Action_Type :
"+text.getStringProperty("Scan_Action_Type"));
 System.out.println("Discrepancy_Detection :
"+text.getBooleanProperty("Discrepancy_Detection"));
 System.out.println("scan txt : "+text.getText());

 } catch (JMSException e) {
 //Add log statements here
 }
 }
}

Implementing Custom Code to Stop a Scan

Working with Scan Run Complete Notifications 11-3

Implementing Custom Code to Stop a Scan
A Network Integrity discovery cartridge typically comprises actions that include
processors, which run sequentially in an iterative manner based on conditions (True or
False).

The action controller sets the running sequence of the processors based on the order in
which the processors are configured. Usually a processor is invoked only once and
after its completion, the controller invokes the next processor, until all processors in an
action are invoked. However, one or more processors may be run repeatedly in an
iterative manner.

For example, when importing an inventory system, it is typical to first get a list of
devices from the inventory system, then go through the list of devices, and then
import each device individually into Network Integrity. In this example, the processor
importing a single device is repeatedly run for all the devices in the returned device
list.

A running scan does not stop immediately when you click Stop Scan. If a processor in
a scan had already started before you clicked Stop Scan, the processor continues to
run until its completion; the next processor in the sequence looks for the value of the
condition and the custom code in its invoke method to stop the processor; if the
condition is True, the scan is stopped before the next processor starts and all the results
of the scan are deleted.

You can add the custom code to any processor depending on its functionality and your
requirements. The amount of time that a scan will take to stop depends on how you
configure the processors and how you implement the custom code to stop the
processors.

To stop a scan when you click Stop Scan, Oracle recommends that you add the
following custom code to the beginning of the processor's invoke method and ensure
that this code resides outside the try/catch block:

if(((BaseDiscoveryController)context).isScanStopped()){
logger.info("Scan is stopped, interrupting data collection");
// Add custom code here to close any open resources, such as connections, sockets,
// sessions, and so on.
throw new ProcessorException("Scan is interrupted");
}

Implementing Custom Code to Stop a Scan

11-4 Network Integrity Developer's Guide

12

Working with JCA Resource Adapters 12-1

12Working with JCA Resource Adapters

This chapter provides overview information about the J2EE Connector Architecture
(JCA) simple network management protocol (SNMP) resource adapter included with
Oracle Communications Network Integrity and other third party or customized JCA
resource adapters that may be used with Network Integrity.

This chapter contains the following sections:

■ About Resource Adapters

■ About Productized SNMP JCA Resource Adapter

■ About Third Party or Customized JCA Resource Adapters

About Resource Adapters
A JCA resource adapter is a system-level software driver used by a Java application to
connect to an Enterprise Information System (EIS). The resource adapter can be
configured to use any protocol required by the EIS for connectivity. The resource
adapter plugs into an application server (for example Oracle Fusion Middleware) and
provides connectivity between an EIS (for example, a database system), the application
server, and the enterprise application (see Figure 12–1, "JCA Functional Blocks").

JCA defined a standard architecture for connecting a J2EE platform to heterogeneous
EISs. Examples of EISs include Enterprise Resource Planning (ERP) and mainframe
transaction processing (TP). The connector architecture defines a Common Client
Interface (CCI) for EIS access. The CCI defines a client API for interacting with
heterogeneous EISs and enables an EIS vendor to provide a standard resource adapter
for its EIS.

An application server that support JCA, like Fusion Middleware, can ensure seamless
connectivity to multiple EISs. In the same way, any EIS with a JCA resource adapter
can plug into an application server that supports JCA.

For details about the JCA 1.5 specification and additional JCA documentation, see:

http://java.sun.com/j2ee/connector/download.html

About Resource Adapters

12-2 Network Integrity Developer's Guide

Figure 12–1 JCA Functional Blocks

Understanding JCA Resource Adapter Connectivity Options
A resource adapter provides the following types of connectivity between an
application and an EIS.

■ Outbound communication: The resource adapter allows an application to connect
to an EIS system and perform work. The application initiates all communication.
The resource adapter serves as a passive library for connecting to an EIS, and
executes in the context of the application threads.

■ Inbound communication: The resource adapter allows an EIS to call application
components and perform work. The EIS initiates all communication. The resource
adapter can request threads from the application server or create its own threads.

■ Bi-directional communication: The resource adapter supports both outbound and
inbound communication.

Understanding JCA Resource Adapters with Network Integrity
This chapter describes productized SNMP JCA resource adapter and 3rd party or
customized JCA resource adapters, and their use within Network Integrity.

Network Integrity administrators can configure the productized SNMP JCA resource
adapter included with the Network Integrity software. Network Integrity system
integrators can extend this SNMP JCA resource adapter with additional MIB files at
run time to poll additional SNMP object identifiers (OIDs).

In addition to the productized JCA resource adapter for use with SNMP, Network
Integrity system integrators can also use any standard J2EE JCA resource adapters (3rd
party or customized) in their customized Network Integrity cartridge. They can
deploy these resource adapters wherever the Network Integrity application is
deployed. These adapters can be standalone, or clustered within a Weblogic server.

About Productized SNMP JCA Resource Adapter

Working with JCA Resource Adapters 12-3

Network Integrity cartridges can:

■ use a deployed resource adapter

■ communicate with various network devices

■ send commands

■ collect data through various protocols (for example, SNMP, TLI, or CORBA)

See Oracle Communications Design Studio Developer’s Guide for details on creating a
Network Integrity cartridge project. See Network Integrity Installation Guide for details
on deploying an SNMP JCA resource adapter.

About Productized SNMP JCA Resource Adapter
The SNMP discovery processor uses the SNMP JCA resource adapter, contained in the
Network Integrity software to poll the SNMP enabled network devices.

The SNMP JCA resource adapter implements the connector architecture to provide
SNMP functions for Network Integrity. Oracle Fusion Middleware (the application
server) is the container for the SNMP JCA resource adapter and provides connection
pool management. The SNMP JCA resource adapter provides outbound
communication only to Enterprise Information Systems (network devices) and
transaction management is not required.

The SNMP JCA resource adapter supports all SNMP-enabled network devices
provided a proper set of MIB files are installed.

SNMP JCA resource adapter has record and playback functions for user who want to
collect and view raw SNMP data and later reuse the data for testing purposes. For
details on how to configure the SNMP resource adapter to run in record and playback
mode, see "Record and Playback Mode".

Installing the SNMP JCA Resource Adapter
The SNMP resource adapter installs as part of the Network Integrity Installer. See
Network Integrity Installation Guide for more details.

Extending the SNMP JCA Resource Adapter
The SNMP resource adapter is installed with the following pre-bundled MIB files:

■ ATM-MIB

■ ATM-TC-MIB

■ CISCO-CONFIG-MAN-MIB

■ CISCO-ENTITY-VENDORTYPE-OID-MIB

■ CISCO-FRAME-RELAY-MIB

■ CISCO-PRODUCTS-MIB

■ CISCO-SMI

■ CISCO-TC

■ CISCO-VLAN-IFTABLE-RELATIONSHIP-MIB

■ CISCO-VTP-MIB

■ ENTITY-MIB

About Productized SNMP JCA Resource Adapter

12-4 Network Integrity Developer's Guide

■ IANAifType-MIB

■ IF-MIB

■ INET-ADDRESS-MIB

■ IP-MIB

■ RFC1155-SMI

■ RFC1213-MIB

■ RFC1315-MIB

■ RMON-MIB

■ SNMP-FRAMEWORK-MIB

■ SNMPv2-CONF

■ SNMPv2-MIB

■ SNMPv2-SMI

■ SNMPv2-TC

■ enterprise-numbers.txt

If a device is not supported by the MIB files included with the SNMP JCA resource
adapter, then the user must install additional MIB file(s) that support such a device.
These additional MIB files provide the corresponding MIB OIDs and definitions for
the device that the user wants to poll. Ensure that the same MIB file(s) are available in
Design Studio for the corresponding cartridge development. The MIB file(s) on both
Design Studio and the SNMP JCA resource adapter must match. Manually copy these
MIB files to the SNMP JCA resource adapter.

To copy new MIB files to the SNMP JCA resource adapter, use the following steps:

1. Log in to the server where Network Integrity is installed.

2. Go to directory NI_HOME/integrity/snmpAdapter/mibs, where NI_HOME is the
location chosen using the NI installer during the Network Integrity installation.

3. Copy the new MIB files to this directory.

4. Perform an update operation of 'snmpadapter' application in Admin console.

Record and Playback Mode
SNMP JCA resource adapter supports record and playback mode.

When the SNMP JCA resource adapter is configured to run in record mode, the
resource adapter polls a network device, and the device returns the polled data to the
resource adapter. The SNMP JCA adapter then returns the SNMP data to the discovery
cartridge and also writes the SNMP data to a file that it stores on a local hard drive.

When the SNMP JCA resource adapter is configured to run in playback mode, the
resource adapter does not require a connection to the network device. Instead the
resource adapter reads the SNMP data file (created in Record mode and stored on the
local hard drive) and sends the SNMP data back to discovery cartridge.

To switch the mode of SNMP resource adapter, use the following steps to create a
configuration file.:

Tip: There is no need to restart the server. The SNMP JCA resource
adapter automatically loads the new MIB files when needed.

About Third Party or Customized JCA Resource Adapters

Working with JCA Resource Adapters 12-5

1. Log in to the server where Network Integrity is installed.

2. Go to directory NI_DOMAIN_HOME/config.

3. Create a directory called snmpAdapterConfig.

4. Within the new directory, create a file called snmpAdapter.properties.

5. Add the following content to the file:

#MODE=normal
MODE=record
#MODE=playback

The SNMP JCA resource adapter creates the record files in NI_Domain/snmpData. The
exact directory and filename depends on the IP address. For example, device
10.156.66.191 is stored at NI_Domain/snmpData/10/156/66/191/10.156.66.191_
XXXXX.rec, where XXXX is the name of the request set by the scan element.

Playback mode loads recorded SNMP results and send them back to the Network
Integrity cartridge without actually polling the network devices.

There is no need to restart the Weblogic server after changing the SNMP resource
adapter properties file. SNMP JCA resource adapter dynamically switches the mode
based on the current configuration in the properties file.

For clustered environment, the user manually creates and modifies the properties file
for every SNMP JCA resource adapter installed on every node.

Invoking the SNMP JCA Resource Adapter in a Network Integrity Cartridge
Design Studio creates (code-generates) the complete implementation of the SNMP
processor for discovery action. This SNMP processor can perform SNMP discoveries
of SNMP enabled network devices.

After the SNMP processor discovers a device, the processor can use the SNMP JCA
resource adapter to perform SNMP polling on the discovered network devices.

There is no coding effort to use the SNMP resource adapter in a Network Integrity
cartridge.

About Third Party or Customized JCA Resource Adapters
The following sections provides information on building JCA resource adapters and
on invoking third party or custom Resource adapters.

Building a JCA Resource Adapter in WebLogic
To create a JCA resource adapter for use in a customized Network Integrity cartridge,
see:

http://download.oracle.com/docs/cd/E12839_01/web.1111/e13732/toc.htm

This Fusion Middleware document provides detailed instructions for creating a
resource adapter in Weblogic.

Tip: Enable a mode by removing the comment symbol (#) from the
beginning of the line. In the above example, record mode is enabled.

About Third Party or Customized JCA Resource Adapters

12-6 Network Integrity Developer's Guide

Invoking a Third Party or Customized JCA Resource Adapter
The following workflow describes the steps required to implement third party or
customized JCA resource adapters in Network Integrity.

1. Deploy third party or customized JCA resource adapters into the Network
Integrity system.

2. Implement a Design Studio discovery processor to invoke the third party or
customized JCA resource adapter.

a. Locate the following code auto-generated from the discovery processor.

@Override
public SampleProcessorResponse invoke(DiscoveryProcessorContext context
 SampleProcessorRequest request) throws ProcessorException {
 // TODO Auto-generated method stub
 return null;
}

b. Use the SampleProcessorRequest generated class to obtain the address scope,
property group, and other attributes.

c. Use the data provided by SampleProcessorRequest to implement the Java
code to invoke the JCA resource adapter.

Depending on the resource adapter, the way to invoke a resource adapter can different.
Typically the invoke process requires several JNDI name lookups to get some JCA
Connection Factory and Interaction Specification classes. From the JCA Connection
Factory, the user can create Interaction. Next is to do the execution from Interaction by
passing the Interaction Specification.

If user is using an existing 3rd party resource adapter, it should come with a developer
guide that provides the detailed instruction on how to implement the client code to
invoke this resource adapter. If a user creates a customized resource adapter from
scratch, the user should have all the knowledge on how to invoke this customized JCA
resource adapter.

The following code snippet demonstrates how to invoke a JCA resource adapter that
implements Common Client Interface (CCI):

…
context = new InitialContext();
SampleAdapterConnectionSpecImpl cspec =
 (SampleAdapterConnectionSpecImpl)context.lookup(JNDI_SAMPLE_CONN_
SPEC);
cxFactory = (ConnectionFactory) context.lookup(JNDI_SAMPLE_CONN_FACTORY);
connection = cxFactory.getConnection(cspec);
ispec = (SampleAdapterInteractionSpec)context.lookup(JNDI_SAMPLE_INTER_SPEC);

Tip: This class provides important elements used when invoking a
resource adapter. For example, to use a TL1 resource adapter to make
a TL1 request, the TL1 resource adapter needs to know which device it
should communication with. This information is obtained from the
SampleProcessorRequest in the following sources:

■ IP address: available from the address scope

■ port number: available from the property group

■ login information for the TL1 session including username and
password: available from the property group

About Third Party or Customized JCA Resource Adapters

Working with JCA Resource Adapters 12-7

interaction = connection.createInteraction();
RecordFactory recordFactory = cxFactory.getRecordFactory();
IndexedRecord input =
recordFactory.createIndexedRecord(SampleAdapterIndexedRecord.INPUT);
input.add(request);
IndexedRecord output =
recordFactory.createIndexedRecord(SampleAdapterIndexedRecord.OUTPUT);
interaction.execute(ispec, input, output);
out=(String)output.get(SampleAdapterIndexedRecord.MESSAGE_FIELD);
…

In this example, the “out” contains the collected results as an XML document as String.
However, different resource adapter have different output. To detail all possible kinds
of output is beyond the scope of this document.

The final output should be wrapped inside the SampleProcessorResponse class
(code-generated) and return as the returned value of this invoke method.

About Third Party or Customized JCA Resource Adapters

12-8 Network Integrity Developer's Guide

13

Working with Reports Extensibility 13-1

13Working with Reports Extensibility

This chapter provides overview information about the Oracle Business Intelligence
(BI) Publisher and reports extensibility for Oracle Communications Network Integrity.

This chapter contains the following sections:

■ About BI Publisher

■ Reports Provided with Network Integrity

■ Network Integrity Report Building Blocks

■ Developing BI Publisher Reports

■ Using BI Publisher Features

■ Installing and Integrating BI Publisher with Network Integrity

■ Uploading and Exporting Reports

About BI Publisher
Oracle BI Publisher (formerly XML Publisher) is an enterprise reporting solution to
design, use, author, manage, and deliver report documents in various formats. This
tool provides the following services:

■ Creating New Report

■ Uploading Existing Report

■ Organizing reports in folders

■ Viewing a report in various formats like RTF, HTTP, PDF, XLS

■ Scheduling a report for delivery to destination like Email id

■ Internationalization of report

■ Configuring various data sources like Oracle Business Intelligence Enterprise
Edition (OBIEE), Web service, and database

This chapter does not describe all Oracle BI Publisher features. Customized, or more
advanced reports can be created using BI Publisher. For more information about
Oracle BI Publisher, see the Oracle Business Intelligence Publisher Installation
documentation:

http://download.oracle.com/docs/cd/E12844_01/doc/bip.1013/e12690/toc.htm

Reports Provided with Network Integrity

13-2 Network Integrity Developer's Guide

About BI Publisher Desktop
BI Publisher Desktop is a plug-in for Microsoft Word that enables a user to create
report templates and represent data from data sources. This plug-in provides various
wizards to create tables, grouped tables, graphs, charts, and so on. It internally uses
Microsoft Word’s native features and the eXtensible Stylesheet Language (XSL) to
implement these wizards.

Reports Provided with Network Integrity
Network Integrity includes the following BI Publisher reports:

■ Scan History Report

■ Discovery Scan Summary Report

■ Device Discrepancy Detection Summary Report

■ Device Discrepancy Detection Detail Report

■ Discrepancy Corrective Action Report

Scan History Report
The Scan History Report shows the discovery and discrepancy summaries for each scan
for each scan configuration falling within the specified start and end dates. This report
is accompanied by the following graphs:

■ Discovery Scan History: a graph showing a history of the run discovery scans.

■ Discrepancy Scan History: a graph showing a history of the run discrepancy scans.

■ Discrepancy Severity History: a graph showing a history of the discrepancies by
severity.

The following fields are used to generate this report:

■ Start Time: the date stamp indicating when a scan started.

■ End Time: the date stamp indicating when a scan finished.

Discovery Scan Summary Report
The Discovery Scan Summary Report shows the summary of the latest scan for each scan
configuration, per vendor and per device type. This report generates a pie-chart,
illustrating the summary findings, for each scan configuration.

The following fields are used to generate this report:

■ Vendor: the name of the vendor for the discovered device.

■ Device Type: the type of device discovered.

Device Discrepancy Detection Summary Report
The Device Discrepancy Detection Summary Report shows the summary of the latest scan
for each scan configuration. This report generates a pie-chart that shows the accuracy
of the latest scans for each scan configuration.

The following fields are used to generate this report:

■ Vendor: the name of the vendor for the discovered device.

■ Device Type: the type of device discovered.

Reports Provided with Network Integrity

Working with Reports Extensibility 13-3

Device Discrepancy Detection Detail Report
The Device Discrepancy Detection Detail Report lists details of all discrepancies for the
latest scan for each scan configuration.

The following fields are used to generate this report:

■ Vendor: the name of the vendor for the discovered device.

■ Root device name: the name of the root device in the scan result tree.

■ Root device type: the type of the root device in the scan result tree.

■ Owner: the user name of the owner of the discrepancy.

■ Parent entity type: the type of the parent entity on which discrepancy occurred.

■ Parent entity name: the name of the parent entity on which discrepancy occurred.

■ Entity type: the type of the entity on which discrepancy occurred.

■ Inventory value: the value of the field on the inventory side on which discrepancy
occurred.

■ Network value: the value of the field on the network side on which discrepancy
occurred.

■ Severity: the severity of the discrepancy (for example, major, critical, minor,
warning).

■ Discrepancy type: the type discrepancy (for example, entity+, entity-, attribute).

■ Description: the description of the discrepancy.

■ Status: the status of the discrepancy (for example, processed, failed, ignored).

■ Scan name: the name of the scan in which the discrepancy is found.

Discrepancy Corrective Action Report
The Discrepancy Corrective Action Report shows corrective actions against specified
discrepancies for the latest scan for each scan configuration. Discrepancies that have
not been actioned are not considered in this report.

The following fields are used to generate this report:

■ Submitted By: the user who submitted the discrepancy for correction.

■ Action: the action taken against the discrepancy.

■ Discrepancy Status: Status of the discrepancy.

■ Owner: the user name of the owner of the discrepancy.

■ Priority: the priority of the discrepancy.

■ Failure Reason: the reason for failure for the corrected discrepancy.

■ Discrepancy Type: the type discrepancy (for example, entity+, entity-, attribute)

■ Entity Type: the type of the entity on which discrepancy occurred.

■ Inventory Value: the value of the field on the inventory side on which discrepancy
occurred.

■ Network Value: the value of the field on the network side on which discrepancy
occurred.

Network Integrity Report Building Blocks

13-4 Network Integrity Developer's Guide

Network Integrity Report Building Blocks
Network Integrity uses BI Publisher to generate reports. These reports use Rich Text
Format (RTF) templates and a report Definition Extensible Markup Language (XML)
file (.xdo) that tracks the various data sources, parameters, values, rendering options,
and report properties that BI publisher uses to populate the RTF reports.

RTF Templates
The RTF template defines the layout and display for report data. The BI Publisher
server uses the templates to format the data from various data sources. These formats
include tables, charts, graphs, and so on.

A user can use general word processing features and BI Publisher's simplified tags for
XSL expressions. The template parser inside the server processes the RTF document
and converts it to XLS formatting objects (XSL-FO), useful for rendering the final
formatted report in PDF, RTF, or HTML formats.

Report Definition Files
The reports Definition file (.xdo) contains all the configurations pertaining to a report
and all the layout definitions that refer to the various templates used by the report.

Data Source Query Tools
The data source tools use various protocols such as SQL, Web service, and XML files
that can get data from data sources for use in a report. Network Integrity typically uses
SQL queries pertaining to Network Integrity schemas and retrieves query results from
a Network Integrity database through Java database connectivity (JDBC).

See Network Integrity Information Model Reference for more information about how
entities and parameters relate to the Network Integrity database.

Parameters
Parameters capture values at run-time and use these values to filter or manipulate
data. Parameter definitions includes data type, default value, parameter type, display
label, and list of values.

List of Values
The Menu parameter type uses the list of values definitions that BI Publisher render as
a dropdown in a report. The dropdown menu is populated with values defined in the
list of values. This definition can be a pre-defined hard coded list or it can be the result
of an SQL query.

Rendering Options
You can render reports using formats like PDF, RTF, HTML, EXCEL, and so on. You
can choose the render option for the reports they create.

Report Properties
The following list provides details on various report property functions:

■ Run report online: Enable this property to view a report online. You can only
schedule and view reports in history after BI Publisher runs the scheduled report.

■ Show Controls: Enable this property to see the parameters and other View report
screen controls like View, Send, Schedule, Analyzer, and so on.

Developing BI Publisher Reports

Working with Reports Extensibility 13-5

■ Show Report Links: Enable this property to see a link menu in the view report
screen that contains different menu items that provide HTTP links for a report.
You can bookmark these links.

■ Auto Run: Enable this property to cause a report to run automatically when a user
attempts to view it. If this property is not enabled, the user must click View in the
view screen of the report.

■ Enable document cache: Enable this property to provide a cache in the report
document. This property is appropriate for reports that connect to live databases
that are frequently updated.

Developing BI Publisher Reports
This section explains how to develop a custom report by creating an example report
called Discrepancy Severity History Report.

Report Requirements
The Discrepancy Severity History Report requires the following

■ Display the following fields:

– Scan Name

– Discrepancy Scan Start & End time

– Counts of Critical, Major, Minor, Warning discrepancy types

■ Filter on discrepancy start date.

■ Group data by scan name.

■ Create a bar chart for all discrepancy severity types.

Knowledge of the Network Integrity data model is necessary to write the SQL queries
needed for the Discrepancy Severity History Report (see Network Integrity Models). This
information is provided in the following sections.

Configuring a Data Source Tutorial
The following steps provide a tutorial for configuring a data source:

1. Log on to BI Publisher as an Administrator.

2. Click the Admin tab.

3. Click JDBC Connection under the Data Sources section

4. Click demo to edit the connection details for this data source.

5. In the Update Data Source screen, enter the following details:

a. For Connection String, enter:

jdbc:oracle:thin:@Host_name:Port:SID

For example, a sample connection string may look like
jdbc:oracle:thin:@myhost:1521:orcl

b. For the User Name, enter:

oe

c. For the Password, enter:

Developing BI Publisher Reports

13-6 Network Integrity Developer's Guide

oe

d. For the Database Driver Class enter the default:

oracle.jdbc.driver.OracleDriver

6. Click Test Connection.

7. Click Apply to save the connection details after confirmation that the connection is
successfully established.

Creating a Report Tutorial
The following steps provide a tutorial for creating a report:

1. Log on to BI Publisher as an Administrator.

2. Click the Reports tab.

3. Click the MyFolders link.

4. Click Create a new folder link in the Folder and Report Tasks tab.

5. Enter the following folder name:

Test

6. Click Create to create the folder.

7. Click the new Test folder.

8. Click Create a new Report.

9. Enter the following report name:

Discrepancy Severity History Report

10. Click Create to create the report.

11. Click Edit link below the report name.

12. Select Parameter.

13. Click New button.

14. Enter the following values to create a parameter called p_StartDate.

a. For Identifier, enter:

p_StartDate@

b. For the Parameter Type, select Date.

c. For the Display Label, enter:

Discrepancy Begin Date Range Start

d. For the Date Format String enter:

MM-dd-yyyy

15. Repeat steps 12 to 14 to create a parameter called p_EndDate. Label the Identifier
as p_EndDate and the Display Label as Discrepancy Start Date Range End.

16. Select Data Model.

17. Click New.

18. Enter the following values to create a data set called MyDataSet.

a. For Name enter:

Developing BI Publisher Reports

Working with Reports Extensibility 13-7

MyDataSet

b. For Type, select SQL Query.

c. For Data Source select demo from the dropdown menu.

d. For the SQL Query text box enter the following SQL query as required by the
Network Integrity model to display the field described in "Report
Requirements":

select dc1.NAME as SCANCONFIGNAME,
 case when dsr.DISCREPDETECTBEGINTIME is null then null else to_
char(dsr.DISCREPDETECTBEGINTIME,'YYYY-MM-DD HH12:MI:SS TZR AM') end
STARTTIME,
 nvl(to_char(dsr.DISCREPDETECTENDTIME, 'YYYY-MM-DD HH12:MI:SS TZR
AM'),' ') as DISCREPDETECTENDTIME,
CASE WHEN DISCREPDETECTBEGINTIME IS NULL THEN NULL ELSE
nvl(ddc.NUMBERCRITICAL,0) END C,
 CASE WHEN DISCREPDETECTBEGINTIME IS NULL THEN NULL ELSE
nvl(ddc.NUMBERMAJOR,0) END M,
 CASE WHEN DISCREPDETECTBEGINTIME IS NULL THEN NULL ELSE
nvl(ddc.NUMBERMINOR,0) END mi,
 CASE WHEN DISCREPDETECTBEGINTIME IS NULL THEN NULL ELSE
nvl(ddc.NUMBERWARNING,0) END w,

from
 DISCONFIG dc left outer join DISCONFIG dc1 on dc.scanconfig=
dc1.entityid
 left outer join DISSCANRUN dsr on dc.ENTITYID=dsr.CONFIG
 left outer join DISDISCREPANCYCOUNTS ddc on
dsr.DISCREPANCYCOUNTS=ddc.ENTITYID

where
dc.scanconfig is not null and
(:p_StartDate is null or trunc(dsr.DISCREPDETECTBEGINTIME, 'DDD') >= :p_
StartDate) and
(:p_EndDate is null or trunc(dsr.DISCREPDETECTBEGINTIME, 'DDD') <= :p_
EndDate)

19. Save the data set. The XML source data can now be viewed in a report.

Building an RTF Template Tutorial
The following steps provide a tutorial for building an RTF template:

1. Using Microsoft Word, create an RTFF file called DiscrepancySeverityHistory.rtf.

2. Open the Microsoft Word file.

3. From the AddIns menu, select BI Publisher.

4. Log on to BI Publisher as an Administrator. The Login Wizard immediately opens
to a screen showing the DiscrepancySeverityHistory.rtf report selected.

5. Click the Open Report button.

6. Enter the following text as the title of the report (see Figure 13–1):

Discrepancy Severity History Report

7. Enter the following text as a description of the report (see Figure 13–1):

The report shows historical discrepancies severity summaries for scans.

Developing BI Publisher Reports

13-8 Network Integrity Developer's Guide

8. Enter the following code in the field after the description (see Figure 13–1). This
code is a declaration of the parameter strings already defined in "Creating a Report
Tutorial":

<?param@begin:p_Start;'None'?>
<?param@begin:p_End;'None'?>

9. Below the declaration, insert a table with two columns (see Figure 13–1).

10. Enter the table column titles as FilterName and FilterValue and enter StartDate
and EndDate in first column of both the rows (see Figure 13–1).

11. Insert the following code into the second and third rows of the second column
respectively (see Figure 13–1).

<?$p_Start?>
<?$p_End?>

Figure 13–1 Report Example

12. Select Oracle BI Publisher then Insert then Table wizard.

13. Select the Table option.

14. Click Next.

15. Select the data set that you defined in "Creating a Report Tutorial".

16. Select the field to display on the report and arrange them in an appropriate order.

17. Click Next.

18. Select Scanconfigname from the Group By dropdown menu and to be grouped by
horizontally.

19. Click Next.

20. Select any field from the Sort By dropdown menus. This step is optional.

21. Label each field as required.

22. Click Finish.

23. Place the cursor below the table within the groupby clause.

24. Select Oracle BI Publisher then Insert then Chart.

25. From the Data explorer tab, drag the STARTTIME field into the text box adjacent
to Labels.

Using BI Publisher Features

Working with Reports Extensibility 13-9

26. Drag the C, M, Mi, W fields into the text boxes adjacent to Values.

27. From the Type dropdown menu, select Line Graph.

28. From the Style dropdown menu, select Confetti.

29. Select the Group Data check mark.

30. Select the Chart is inside group check mark.

31. Change the items as required in the Properties list. The values are True or False.

32. Click OK to insert the chart into the Microsoft Word document.

33. Select Oracle BI Publisher menu then Upload Template As to upload the
template to the BI Publisher server.

34. Enter a name for the new template, for example, SevHistoryReportTemplate.

35. Click OK.

36. Navigate to the BI Publisher server where the template is now located.

37. Click View to see the reports.

Using Microsoft Word Native Features and XSL
RTF templates can use standard word processing features of Microsoft Word like
tables, formatting, styles, and so on. The BI Publisher Desktop plug-in also provides
additional wizards for use in Microsoft Word. These wizards internally generate XSL
equivalent code which is interpreted by BI Publisher server while rendering the
template.

Using BI Publisher Features
Oracle BI Publisher provides the following important features:

■ Scheduling Reports

■ Localizing Reports

Scheduling Reports
To schedule reports, use the following tasks:

■ Enabling BI Publisher Scheduler Tutorial

■ Using BI Publisher to Schedule Reports Tutorial

Enabling BI Publisher Scheduler Tutorial
BI Publisher requires a database to create a scheduling schema and a database user to
use the scheduling schema.

To create an database user for scheduler schema and grant required permissions to
that user, use the following steps:

1. Use the following SQL example to create a database user:

SQL> CREATE USER bipubsched
 2 IDENTIFIED BY welcome
 3 DEFAULT TABLESPACE USERS
 4 TEMPORARY TABLESPACE TEMP
 5 QUOTA 20G ON USERS
 6 QUOTA 1M ON TEMP;

Using BI Publisher Features

13-10 Network Integrity Developer's Guide

User created.

 SQL> GRANT CREATE SESSION TO bipuser; -- or "GRANT CONNECT TO bipuser;"

 Grant succeeded.

 SQL> grant create table to bipublisher;

 Grant succeeded.

2. Log on to BI Publisher as an Administrator.

3. Select Admin.

4. Under System Maintenance, select Scheduler Configuration.

5. Enter the following values:

a. For Database Connection Type dropdown menu, select jdbc.

b. For Database Type dropdown menu, select Oracle 10g.

c. For Connection String, enter jdbc:oracle:thin:@10.177.219.0:1521:ORCL.

d. For Username, enter bipudsched.

e. Enter a Password.

f. For Database Driver Class, enter oracle.jdbc.OracleDriver.

6. Click Text Connections to verify if the connection is successful.

7. If the connection was successful, click Install Schema to install the schema in the
database.

8. Restart BI Publisher to apply the change. You can schedule reports after the server
restarts.

Using BI Publisher to Schedule Reports Tutorial
To schedule reports, use the follow procedure:

1. In BI Publisher, navigate to the folder you stored your reports.

2. Click Schedule below the report you want to schedule.

3. In the Schedule Reports screen, enter values as required.

4. Click Submit to schedule the report. When the scheduled report has been run, the
report is stored in the History.

Localizing Reports
The localization of a report is achieved by translating the templates used for that
report and adding those templates to the report Definition in BI Publisher. There are
two options for adding translated templates to a report Definition.

Tip: Before you can configure Email destinations, ensure that the
mail server has been configured. This can be done from the Admin tab
on the main menu in the Delivery section.

Using BI Publisher Features

Working with Reports Extensibility 13-11

Localized Template Option
In this option, there is one RTF template for one locale supported for the report. There
are n RTF templates for n locales supported. Figure 13–2 illustrated that there is an RTF
template with French locale and the data is in an XML file. BI Publisher uses both and
renders the report in French text.

Figure 13–2 Localized Template

Naming convention for the report template is TemplateName_<language code>_
<TERRITORY CODE>.rtf.

This RTF template must be uploaded to BI Publisher to include this in the report
Definition.

XLIFF File Option
In this option, there is one RTF template for one locale supported for the report. There
are n RTF templates for n locales supported. illustrated that there is an RTF template
with French locale and the data is in an XML file. BI Publisher uses both and renders
the report in French text.

In this option, there one RTF template but n XML localization interchange file format
(XLIFF) files for n locales supported. Figure 13–3 illustrates that BI Publisher receives
data in XML, base template, and an XLF file with translated text strings to render the
report in French text.

Installing and Integrating BI Publisher with Network Integrity

13-12 Network Integrity Developer's Guide

Figure 13–3 XLIFF Localized Template

Naming convention for the report template is TemplateName_<language code>_
<TERRITORY CODE>.rtf.

Upload all supported n XLF files and corresponding n locales to the BI Publisher
report to include these into the report Definition.

Installing and Integrating BI Publisher with Network Integrity
BI Publisher can be installed as a standalone application or as a web application
deployed in the same application server where the Network Integrity is deployed.

BI Publisher is partially integrated with Network Integrity which supports various BI
Publisher application links in the Network Integrity Links tab. The BI Publisher
application can be launched from Network Integrity using the BI Publisher link.

Installing BI Publisher in Standalone Mode
The following link provides the steps to install BI Publisher in standalone mode:

http://download.oracle.com/docs/cd/E12844_
01/doc/bip.1013/e12690/T434820T487782.htm

Deploying BI Publisher
To deploy BI Publisher as an Enterprise ARchive (EAR) in a WebLogic application
server where Network Integrity is running, use the following steps:

1. Download the BI Publisher zip file.

2. Unzip the zip file.

3. Navigate to the RH_Linux/Oracle_Business_Intelligence_Publisher_
Standalone/manual/generic directory where the xmlpserver war and ear files are
located.

4. Explode the war file to create an xmlpserver directory with all the war files
present within using the following command:

Installing and Integrating BI Publisher with Network Integrity

Working with Reports Extensibility 13-13

jar -xvf xmlpserver.war

5. Deploy the xmlpserver folder onto WebLogic as an application.

6. Copy all the files under RH_Linux/Oracle_Business_Intelligence_Publisher_
Standalone/manual/generic directory into (for example) ~/BIP or
/home/<username>/BIP

7. Search the xmlp-server-config.xml file in the Network Integrity domain of
WebLogic.

8. Insert the following in the file:

 path="/home/<username>/BI

9. Save the file.

10. Copy font files from RH_Linux/Oracle_Business_Intelligence_Publisher_
Standalone/manual//fonts and put them in JAVA_HOME/jre/lib/fonts. This is the
JDK that the Network Integrity installer uses.

11. Restart the application server.

12. Launch BI publisher. For example:

http://localhost:7101/xmlpserver

13. Login as administrator.

Integrating BI Publisher with Network Integrity using WebLogic Enterprise Manager
Complete one of the following prerequisites before attempting this procedure:

■ Installing BI Publisher in Standalone Mode

■ Deploying BI Publisher

To integrate BI Publisher with Network Integrity using the WebLogic Enterprise
Manager, use the following steps:

1. Launch WebLogic enterprise manager. For example

http://10.177.219.11:7101/em

2. Log on to Enterprise Manager using the username and password used to log on to
WebLogic Admin Console

3. Click the WebLogic Domain folder link in the left side navigation panel.

4. Expand the Weblogic Domain folder to display the domains.

5. Select the domain where the Network Integrity application is installed.

6. Select System Mbean Browser from the dropdown menu. The System Mbean
Browser shows all the Mbeans deployed in WebLogic server.

7. Select the NIRegionLinksService Network Integrity Mbean to view its properties.

8. Enter BI Publisher link against any URL property (for example, URL06).

9. Enter the display string of the URL against URLName06. This link appears in the
Links tab of the Network Integrity UI the next time the UI refreshes.

Integrating BI Publisher with Network Integrity using JConsole
Complete one of the following prerequisites before attempting this procedure:

Installing and Integrating BI Publisher with Network Integrity

13-14 Network Integrity Developer's Guide

■ Installing BI Publisher in Standalone Mode

■ Deploying BI Publisher

To integrate BI Publisher with Network Integrity using the JConsole:

1. Use the following command to launch JConsole in Windows.

%JAVA_HOME%/bin/jconsole -J-Djava.class.path=%JAVA_
HOME%\lib\jconsole.jar;%JAVA_HOME%\lib\tools.jar;%WLS_
HOME%\server\lib\wljmxclient.jar
-J-Djmx.remote.protocol.provider.pkgs=wlserver.management.remote

2. Use the following command to launch JConsole in Linux.

jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_
HOME/lib/tools.jar:$WLS_HOME/server/lib/wlserver.jar
-J-Djmx.remote.protocol.provider.pkgs=wlserver.management.remote

3. In the JConsole New Connection screen, select the Remote Process option.

4. In the Remote Process text box, enter
service:jmx:t3://10.147.240.137:7007/jndi/wlserver.management.mbeanservers.run
time

The host name corresponds to the IP address of the host where Network Integrity
is installed.

The port number is the port on which the managed server is running. For
example, 7003.

5. Enter the same username and password used for accessing the WebLogic admin
console and click connect.

6. Navigate to oracle.communications.integrity then NIRegionalLinksService then
oracle.comminications.integrity then Attributes. NIRegionalLinkService is the
Mbean placeholder for BI Publisher link.

7. Set URL06 with the BI PublisherWebLogic URL.

8. Set URLName06 with the corresponding display title. Now the Network Integrity
shows BI Publisher link that points to the BI Publisher URL in the Links tab after
next page refresh.

Integrating BI Publisher with the Network Integrity Installer
Complete one of the following prerequisites before attempting this procedure:

■ Installing BI Publisher in Standalone Mode

■ Deploying BI Publisher

To integrate BI Publisher with Network Integrity using the Network Integrity Installer:

1. Log on to Network Integrity.

2. Navigate to the Network Integrity Installer screen.

3. Navigate to the System Wide Shortcut links (Optional) screen.

4. Enter a name for the link to BI Publisher in the Name text box (for example, BI
Publisher).

5. Enter the URL for the link to BI Publisher in the Link text box.

6. Click Next and follow the Wizard instructions.

Uploading and Exporting Reports

Working with Reports Extensibility 13-15

Uploading and Exporting Reports
Oracle BI Publisher provides the following methods to upload and export reports:

■ Exporting a Report

■ Uploading a Report

Exporting a Report
To export a BI Publisher report, use the following steps:

1. Log on to BI Publisher as administrator.

2. Click the Admin tab.

3. In the System Maintenance section, click Report Repository.

4. Change the Path if required.

5. Copy the path and paste it into the Explorer Address bar, or an equivalent
software.

6. Navigate to User folders.

7. Select the user name associated to the report you want to export. There are n
folders for n reports in that user folder. These reports can be zipped and stored in
any location for future use.

Uploading a Report
To upload a BI Publisher report, use the following steps:

1. Log on to BI Publisher as administrator.

2. Click the Reports tab.

3. Click My Folders.

4. Click Create a new folder.

5. Click Create.

6. Click the newly created folder link.

7. Click Upload a Report.

8. Save the reports downloaded from secondary memory or from location where
they were stored.

9. Unzip each of the zip files into individual folders.

10. Click browse and navigate to the unzipped folder.

11. Select the file with.xdo extension.

12. Click upload button. The report is created in you folder now.

13. Click the report – “Edit” link and click the “Layouts” link in the left side
navigation.

14. Click browse and upload all the RTF files in the unzipped folder.

15. Click Save link in the left navigation.

16. Repeat steps 10 to 15 for all additional unzipped report folders.

Uploading and Exporting Reports

13-16 Network Integrity Developer's Guide

14

Working with SOA Extensibility 14-1

14Working with SOA Extensibility

This chapter provides overview information about Service-Oriented Architecture
(SOA) extensibility for Oracle Communications Network Integrity.

This chapter contains the following sections:

■ About SOA Extensibility

■ Extensibility Tasks

About SOA Extensibility
SOA extensibility topics covered in this chapter include creating an SOA development
environment, setup, development, and testing of the Network Integrity SOA
application.

The Business Process Execution Language (BPEL) provides enterprises with an
industry standard for business-process orchestration and execution. Using BPEL, you
design a business process that integrates a series of discrete services into an end-to-end
process flow.

The Oracle BPEL Process Manager is a tool for designing and running business
processes. This product creates, deploys, and manages cross-application business
processes with both automated and human workflow steps in a service-oriented
architecture.

The Sample Network Integrity SOA application provides a BPEL process that contains
two parallel sequences. These sequences automate search and update Network
Integrity discrepancies.

The following shows how this automation occurs:

1. Search for Network Integrity discrepancies of type attribute mismatch for
nativeEmsServiceState and update their resolution to Correct in UIM, if those
discrepancies’ network value is In service and import value is Out of service.

2. Search for Network Integrity discrepancies of type attribute mismatch for
physicalAddress and update their priority to High and discrepancy owner to
given input value.

Purpose of Documentation
The developer should learn to install SOA, setup SOA Development environment, and
use it for Network Integrity SOA application extensibility.

Extensibility Tasks

14-2 Network Integrity Developer's Guide

Extensibility Tasks
The tasks involve setting up of developer environment to update and extend the
Network Integrity SOA application for future requirements.

Required software includes:

1. Oracle WebLogic Server

2. Oracle JDeveloper

3. Oracle Application Development Framework

4. Oracle Application Runtime Framework

5. Oracle Fusion Middleware Repository Creation Utility

6. SOA suite

7. Oracle Database

Extensibility Tasks
To implement SOA extensibility, use the following tasks:

■ Installing Oracle Weblogic Server

■ Installing Oracle JDeveloper

■ Installing Oracle Application Runtime

■ Installing Oracle SOA Suite

■ Creating SOA Metadata Service Schemas

■ Updating JDeveloper for Latest SOA Composite Editor

■ Creating WebLogic Domain with SOA Products

■ Creating and Updating Sample SOA Application Using Network Integrity Web
Service

■ Starting and Stopping SOA Servers

■ Building and Deploying the SOA Application

■ Testing Sample SOA application

■ Testing Network Integrity SOA Application Using EM

■ Testing Network Integrity SOA Application Using soa-infra

■ Testing Network Integrity SOA Application Using SOAP UI Tool

Installing Oracle Weblogic Server
To install Oracle Weblogic Server, use the following procedure:

1. Download Oracle WebLogic Server.

2. Run ./wls1036_linux32.bin

3. Click Next.

4. Enter the WL_Home directory location to create a home directory for Oracle Fusion
Middleware.

5. Click Next.

Extensibility Tasks

Working with SOA Extensibility 14-3

6. Select the I wish to receive security updates via Oracle Support check box and
click Next. (Optional)

7. Select Custom for the installation type.

8. Click Next.

9. Select the WebLogic Server check box to install all WebLogic Server components.

10. Click Next.

11. Select the Sun JDK check box.

12. Click Next.

13. Review the installation directories.

14. Click Next.

15. Review the installation summary of the products and JDKs to be installed.

16. Click Next. This step begins the installation.

17. When the installation is complete, deselect Run Quickstart.

18. Click Done.

19. Setup BEA_HOME, JAVA_HOME, WL_HOME environment variables and
update PATH with the Java executable location. For example,

export BEAHOME=/opt/beahome
export WL_HOME=$BEAHOME/wlserver_10.3
export JAVA_HOME=$BEAHOME/jdk160_33_R27.6.5-32

export PATH=$JAVA_HOME/bin:$PATH

Installing Oracle JDeveloper
To install Oracle JDeveloper, use the following procedure:

1. Download Oracle JDeveloper (Oracle_JDeveloper_11g_and_Oracle_Application_
Development_Framework_11g.zip) software from the Oracle software delivery
website:

https://edelivery.oracle.com/

2. Unzip the installer to any directory.

3. Open a console.

4. Change the console directory to the unzipped installer directory.

5. Run the installer using the following command:

java –jar jdevstudio11116install.jar

The Installer starts extracting the setup files and Installation wizard opens when it
reaches to 100%.

6. Click Next.

7. Select Use the existing Middleware Home to select the Middleware home you
created in "Installing Oracle Weblogic Server".

8. Select JDeveloper Studio and ADF too install all JDeveloper Studio and ADF
components.

Extensibility Tasks

14-4 Network Integrity Developer's Guide

9. Click Next.

10. Select the existing Sun SDK.

11. Click Next.

12. Confirm JDeveloper and WLS home directories and click Next.

13. Review the Installation summary and click Next. This step begins the installation.

14. Click Done when the installation is complete.

Installing Oracle Application Runtime
To install Oracle Application Runtime, use the following procedure:

1. Download Oracle Application Development Runtime software from the Oracle
software delivery website:

https://edelivery.oracle.com/

2. Unzip the installer to any directory.

3. Open a console.

4. Change the console directory to the unzipped installer directory.

5. Run the installer using the following command:

. Disk1/runInstaller

6. Enter the JAVA HOME location to launch installation wizard.

7. Click Next.

8. Click Next button after Prerequisite Checks are complete.

9. Click Browse and navigate to WL_Home.

10. Click Next.

11. Click Install.

12. Click Next after the installation is complete.

13. Click Finish.

Installing Oracle SOA Suite
To install Oracle SOA Suite, use the following procedure:

1. Download Oracle SOA Suite software from the Oracle software delivery website:

https://edelivery.oracle.com/

2. Unzip the installer to any directory.

3. Open the console and change to unzipped folder directory.

4. Run the installer using the following command:

. Disk1/runInstaller

5. Enter the JAVA HOME location to launch installation wizard.

6. Click Next.

Tip: Install the required system package if a check fails.

Extensibility Tasks

Working with SOA Extensibility 14-5

7. Click Next after Prerequisite Checks are complete.

8. Click Browse and navigate to WL_Home. Do not modify the Oracle Home
Directory name.

9. Click Next.

10. Click Install.

11. Click Next after the installation is complete.

12. Click Finish.

Creating SOA Metadata Service Schemas
To creates a metadate service (MDS) schema for the Business Activity Monitoring
(BAM) and SOA servers, use the following procedure:

1. Download Oracle Fusion Middleware Repository Creation Utility software from
the Oracle software delivery website:

https://edelivery.oracle.com/

2. Unzip the Repository Creation Utility (RCU) to any directory.

3. Open the console and change to unzipped folder directory.

4. Run the installer using the following command:

./rcuHome/bin/rcu

5. Click Next.

6. Select Create in the Create Repository screen

7. Click Next.

8. Enter database details as required.

9. Click Next.

10. Click OK.

11. Select Create a new Prefix in the Select Components screen and enter a prefix in
the text box.

12. Select the following from the Component list:

■ Metadata Service

■ SOA Infrastructure

■ Business Activity Monitoring

■ User Messaging Service

These components are required for the SOA and BAM servers.

13. Click Next.

14. Enter passwords for all components in the Schema Passwords screen.

Tip: Install the required system package if a check fails.

Tip: Remember the Schema Owners for subsequent procedures.

Tip: Remember the Schema Passwords for subsequent procedures.

Extensibility Tasks

14-6 Network Integrity Developer's Guide

15. Click Next.

16. Review the Schema Owner, Tablespace Type, and Tablespace Name for each
Component in the Summary screen.

17. Click Next to accept the settings.

18. Click OK to create the tablespaces.

19. Click OK when the prerequisites are complete.

20. Click Create in the Summary screen to create the tablespaces. This step can take up
to ten minutes.

21. Click Close after the tablespaces are created.

Updating JDeveloper for Latest SOA Composite Editor
SOA design time in JDeveloper requires a JDeveloper extension called SOA Composite
editor. While this is normally updated over the network when using release-level
software, you can also perform the update manually if you have the extension file.
JDeveloper periodically prompts you to accept an automatic network update. Since
this is released software, you have the option to click OK to update to a newer version.

To update JDeveloper for the latest SOA Composite editor, use the following
procedure:

1. Start JDeveloper Studio.

2. Select Default Role.

3. Deselect Show this dialog every time.

4. Click OK.

5. Click No for Migrate from previous release. After starting JDeveloper, wait for
the Integrated Weblogic Domain to be created. This domain is created the first
time you run JDeveloper after installation. It is not used by SOA. Watch for the
completion message for setting up the domain in the JDeveloper Messages log
window at the bottom of the JDeveloper IDE:

[12:37:11 PM] Creating Integrated Weblogic domain...
[12:38:05 PM] Extending Integrated Weblogic domain...
[12:38:14 PM] Integrated Weblogic domain processing
 completed successfully.

Now you can update the SOA Composite editor extension. These instructions
show you how to update the extension over the network.

6. Select Help | Check For Updates.

7. Click Next.

8. Select Search Update Centers.

9. Select Oracle Fusion Middleware Products.

10. Click Next. The system searches the update center for extensions.

11. From the list of extensions, select Oracle SOA Composite Editor.

12. Click Next to begin downloading. When the extension finishes downloading, it is
listed with the version number detail.

13. Click Finish.

14. Restart JDeveloper when prompted.

Extensibility Tasks

Working with SOA Extensibility 14-7

15. Click No for Migrate from previous release.

16. When JDeveloper is running again, select Help then About.

17. Select the Version tab and review the version.

Creating WebLogic Domain with SOA Products
To creates an Oracle WebLogic domain with the required products for SOA
applications, use the following procedure:

1. Open the console and change to unzipped folder directory.

2. Run the following command:

./<BEAHOME>/wlserver_10.3/common/bin/config.sh

3. When the Welcome screen appears, select Create a new WebLogic domain.

4. Click Next.

5. Select Generate a domain, SOA Suite, Enterprise Manager, and Business
Activity Monitoring. Dependent products are selected automatically.

6. Click Next.

7. Enter domain1 for the domain name.

8. Click Next.

9. Enter the user name weblogic and a password. The password welcome1 is
assumed in this document.

10. Click Next.

11. Select Sun SDK 1.6_33 and leave Development Mode checked.

12. Click Next.

13. Select the check boxes for the components that you want to change.

14. Enter Welcome1 for the Schema Password.

15. Change the Service, Host Name, and Port values as required.

16. Click Next.

17. Review the Schema Owners for the individual component schemas and confirm
that the owners match those selected in the "Creating SOA Metadata Service
Schemas" procedure.

18. Click Next to begin a data source connection test.

19. Click Next if all connection tests are successful. If the connection tests are not
successful, click Previous and correct any errors.

20. Click Next.

21. Click Create in the Configuration Summary screen.

Tip: To change the Schema Owner field, use the following steps:

1. Remove the check boxes for all Component Schema items.

2. Select the check box for the Component Schema that you want to change.

3. Change the Schema Owner field.

4. Remove the check box for the component schema item you changed.

Extensibility Tasks

14-8 Network Integrity Developer's Guide

22. Click Done when the domain has been created.

When a domain is created, the Configuration Wizard creates one admin server and
two managed servers with the following details:

■ Admin Server

Name: admin_server

Port: 7001

■ SOA Server

Name: soa_server1

Port: 8001

■ BAM Server

Name: bam_server1

Port: 9001

See the startManagedServer_readme.txt file in the domain folder to start the
servers.

Creating and Updating Sample SOA Application Using Network Integrity Web Service
To update an SOA application using the Network Integrity SOA application, use the
following procedure:

1. Download the Sample Network Integrity SOA application
(NetworkIntegrity-SOA_Sample_App-version.zip) software from the Oracle
software delivery website:

https://edelivery.oracle.com/

2. Unzip the application to any directory.

3. Start Oracle Jdeveloper.

4. From the Jdeveloper main menu, choose File then Open then browse to
NISOAApplication folder and select NISOAApplication.jws.

5. Click Open.

The NISOAApplication.jws contains the NIDiscrepancyService project. The
main components for this project are:

■ NetworkIntegrityControlService.wsdl: This is the Network Integrity Sample
Web Services WSDL file.

■ xds: This folder contains Network Integrity Sample Web Service schema files.

■ composite.xml: This file describes the entire composite assembly of services,
service components, references, and wires

In the project, composite.xml file is automatically created when the SOA
project was created. In this application only service components (including
Network Integrity Sample Web Service) are used.

■ NIBPELDiscrepancyProcess.bhel: This file contains a list of variables and the
main sequences in which he Network Integrity Web Service calls to update the
Network Integrity Discrepancies are defined. There are two parallel sequences
named as Sequence_1 and Sequence_2 to update Attribute mismatch
discrepancies for nativeEMSServiceState (go to step 6) and physicalAddress
(go to step 8) respectively.

Extensibility Tasks

Working with SOA Extensibility 14-9

It is necessary that both client side artifacts (wsdl and schema) and server side
artifacts are in sync and of same version.

6. To search for natieEMSServiceState attribute mismatch discrepancies (Sequence_
1), search for the following discrepancies:

■ TYPE = ATTRIBUTE_VALUE_MISMATCH

■ ATTRIBUTEORRELATIONSHIPNAME = nativeEmsServiceState

■ STATUS = DISCREPANCY_OPENED

■ COMPARESOURCE = INVENTORY

■ REFERENCESOURCE = NETWORK using findDiscrepancy webservice
operation.

7. Loop over each discrepancy and submit to updateDiscrepancy if
COMPAREVALUE = 'IN_SERVICE' and REFERENCEVALUE ='OUT_OF_
SERVICE’ to update OPERATION as 'Correct in UIM' and STATUS as
'OPERATION_IDENTIFIED'.

8. To search for physicalAddress attribute mismatch discrepancies, search for the
following discrepancies:

■ TYPE = ATTRIBUTE_VALUE_MISMATCH

■ ATTRIBUTEORRELATIONSHIPNAME = physicalAddress

■ STATUS = DISCREPANCY_OPENED using findDiscrepancy webservice
operation.

9. Loop over each discrepancy and submit to updateDiscrepancy by setting
PRIORITY to High and DISCREPANCYOWNER to given value.

10. Right-click composite.xml and select Configure WS Policies to add appropriate
security client policy to the Network Integrity Web Service component.

11. Update NetworkIntegrityControlService.wsdl’s SOAP address location with
Network Integrity Web Service URL. For example:

<soap:address location="https://<host_address>:<ssl_
port>/NetworkIntegrityApp-NetworkIntegrityControlWebService-context-root/Networ
kIntegrityControlServicePortType"/>

This should be done before building the SOA application or use deployment plan
while deploying the SOA application to update the SOAP address location with
the Network Integrity Web Service URL. This configuration is required for SOA
application to communicate with Network Integrity Web Services.

Starting and Stopping SOA Servers
To start and stop SOA servers, use the following procedure:

1. To start the Administration Server run to following command:
<domain>/startWeblogic.sh

2. To start the SOA managed server, run the following command (here soa_server1 is
name of SOA managed server): <domain>/bin/startManagedServer.sh soa_
server1

3. To enter the WebLogic console, use:

http://Host_Address:7001/console

Extensibility Tasks

14-10 Network Integrity Developer's Guide

4. To enter the Enterprise Manager console, use:

http://Host_Address:7001/em

5. To enter SOA Infra, use:

http://Host_Address:8001/soa-infra

6. Press Ctrl + C to stop the servers.

Building and Deploying the SOA Application
To build and deploy the SOA application, use the following procedure:

1. In Jdeveloper, go to Application Navigator then right-click NIDiscrepancyService
project.

2. Click Make NIDiscrepancyService.jpr in the menu to build the project. The
project should build successfully without any compilation errors or warnings.

3. Start the Administration and SOA servers that are created as part SOA domain
creation (see "Starting and Stopping SOA Servers" and "Creating WebLogic
Domain with SOA Products").

4. Create a standalone server connection for the SOA server.

5. Right-click NIDiscrepancyService and select 'Deploy' to Application server.

6. The SOA suite provides an ant script to deploy and undeploy the SOA archive
(SAR) file (deployable SOA application jar) in the BEA HOME. Use the following
to deploy and undeploy the SAR file:

■ To deploy, use the following:

ant -f <BEAHOME>/Oracle_SOA1/bin/ant-sca-deploy.xml
-DserverURL=<http://soa_server_host:soa_server_port>
-DsarLocation=<SOA archive file path>

For example,

ant -f /home/beahome/Oracle_SOA1/bin/ant-sca-deploy.xml
-DserverURL=http://<localhost>:8001
-DsarLocation=/home/example/beahome/mywork/NISOAApplication/NIDiscrepancySe
rvice/deploy/sca_NIDiscrepancyComposite_rev1.0.jar

■ To undeploy, use the following:

ant -f <BEAHOME>/Oracle_SOA1/bin/ant-sca-deploy.xml undeploy
-DserverURL= <http://soa_server_host:soa_server_port>
-DcompositeName=<SOA composite name>
-Drevision=<SOA composite version>

For example,

ant -f /home/beahome/Oracle_SOA1/bin/ant-sca-deploy.xml undeploy
-DserverURL=http://<localhost>:8001
-DcompositeName=NIDiscrepancyComposite
-Drevision=1.0

Testing Sample SOA application
To test a sample SOA application, use the following three tools:

Extensibility Tasks

Working with SOA Extensibility 14-11

■ Testing Network Integrity SOA Application Using EM

■ Testing Network Integrity SOA Application Using soa-infra

■ Testing Network Integrity SOA Application Using SOAP UI Tool

Testing Network Integrity SOA Application Using EM
To test a sample SOA application with EM, use the following procedure:

1. Log on to the Enterprise manager as admin.

2. Expand the SOA folder to the deployed composite (NIDiscrepancyComposite).

3. Click Test to test composite.

4. Enter any value for the input argument for SOA Web Service.

5. Click Test Webservice. Wait for a response.

6. Click Launch Message Flow Trace to see detailed output.

7. Click NIBPELDiscrepancyProcess to view the Audit Trail, Flow, and so on.

8. Expand the payloads to see detailed input and output of each Web Service
invoked.

Testing Network Integrity SOA Application Using soa-infra
To test a sample SOA application with soa-infra, use the following procedure:

1. Log on to soa-infra using the following URL:

http://Host_Address:8001/soa-infra

2. Enter any input required for the test.

3. Click Invoke.

Testing Network Integrity SOA Application Using SOAP UI Tool
To test a sample SOA application with the Simple Object Access Protocol (SOAP) UI
tool, use the following procedure:

1. Create a SOAP UI project at the following URL:

http://Host_
Address:8001/soa-infra/services/default/NIDiscrepancyComposite/nibpeldiscrepanc
yprocess_client_ep?WSDL

2. Enter any input required for the test.

3. Create a request run.

Note: Oracle Enterprise Manager (EM) can also helpful in debugging
and auditing of BPEL sequence exceptions.

Extensibility Tasks

14-12 Network Integrity Developer's Guide

15

Localizing Network Integrity 15-1

15Localizing Network Integrity

This chapter provides information on localizing the Oracle Communications Network
Integrity UI and Help. Localization is the process of translating a UI or Help system
from the original language in which it was written into a different language for use in
a specific country or region. For example, the Network Integrity UI and Network
Integrity Help are written in English. If your company is based in France and you
purchase Network Integrity, you may want to localize Network Integrity to display the
UI and Help in French.

Localizing Network Integrity involves modifying a specific set of files that Network
Integrity uses to display text in the UI and in the Help.

This chapter contains the following sections:

■ Software Requirements

■ Setting the Language Preference in Internet Explorer

■ Determining the Locale ID

■ Localizing Network Integrity

■ Localizing Network Integrity Help

Software Requirements
The following software is required to localize Network Integrity:

Design Studio
Localizing the Network Integrity UI involves working with the Network Integrity
localization pack that you import into Oracle Communications Design Studio, modify,
and deploy into Network Integrity. Design Studio also provides various editors, such
as an XML editor and an HTML editor, that you can use to translate files for
localization.

Note: The procedures in this chapter use Windows syntax for
directory paths and commands. If you are working on a Unix or Linux
platform, adapt the syntax accordingly.

Note: Before localizing your Network Integrity environment, you
must identify a strategy for maintaining future localizations. Oracle
does not provide a delta file in which you can readily see the details of
what changed between releases.

Setting the Language Preference in Internet Explorer

15-2 Network Integrity Developer's Guide

Help Indexer
Localizing the Network Integrity Help involves regenerating a search index file based
on translated HTML files. This is accomplished using Oracle Help Indexer.

To access Help Indexer, download the help-indexer.jar file from the following website
to a local directory such as tempDir:

http://www.oracle.com/technetwork/topics/utilsoft-085729.html

Java
Using Help Indexer requires that you have Java installed. The java command should
be in your path.

Setting the Language Preference in Internet Explorer
For a localized version of Network Integrity to display correctly in Internet Explorer,
users need to configure language preferences.

To configure language preferences in Internet Explorer:

1. From the Tools menu, select Internet Options.

The Internet Options window appears.

2. Click Languages.

The Language Preferences window appears.

3. The language you plan to use must display at the top of the list to have priority.

If the language you plan to use is listed:

a. Select the language.

b. Click Move Up or Move Down to place the language you plan to use at the
top of the list.

If the language you plan to use is not listed:

a. Click Add.

The Add Language window appears.

b. Select a language.

c. Click OK.

The Language Preference window returns.

d. Select the language you have added, and click Move Up to move it to the top
of the list.

4. Click OK.

Determining the Locale ID
A locale ID is a standardized ID that represents a language and region in which the
language is spoken. For example, fr_CA is the locale ID for French spoken in Canada,
and es_MX is the locale ID for Spanish spoken in Mexico.

Localizing Network Integrity involves copying and renaming existing files to include a
locale ID. The renamed files that include a locale ID become the translated version of
the original files.

To determine the locale ID:

Localizing Network Integrity

Localizing Network Integrity 15-3

1. From Internet Explorer, select Tools, then select Internet Options.

The Internet Options window appears.

2. Click Languages.

The Languages window appears.

3. Click Add.

The Add Language window appears.

Languages are listed alphabetically. Several languages are spoken in more than
just one country, so the locale ID reflects the language and the country in which
the language is spoken. For example, there multiple locale IDs for French:

■ fr-BE for French spoken in Belgium

■ fr-CA for French spoken in Canada

■ fr-FR for French spoken in France

■ fr-LU for French spoken in Luxembourg

■ fr-MC for French spoken in Monaco

■ fr-CH for French spoken in Switzerland

4. Locate the language to which you are localizing and determine the appropriate
locale ID.

5. Close the Add Language, Languages, and Internet Option windows.

Localizing Network Integrity
The following sections describe localizing Network Integrity:

■ About the Localization Pack

■ Creating the Localization Pack

■ Deploying the Cartridge Containing the Localized Files

■ Testing the Network Integrity Localization

About the Localization Pack
The Network Integrity UI makes use of the full depth of i18n support provided by the
Application Development Framework (ADF) stack. The application UI is fully
internationalized by making use of XML Localization Interchange File Format (XLF)
files to keep all display strings separate from other code artifacts. Various parts of the
ADF stack (ADF Faces, ADF Model, and ADF Data Control) are also built with full
i18n support. A localization pack is a collection of XLF files and other property files,
that together localize the UI to another language. A localization pack can be built into
a cartridge that can be deployed into Network Integrity.

The expected outcome is that the user can successfully create, build, and deploy a
localization pack.

Creating the Localization Pack
Use the following procedure to create a localization pack:

1. Download localization.iar from the localization pack in the Oracle
Communications Network Integrity 7.3.2 Software Developer Kit (included with

Localizing Network Integrity

15-4 Network Integrity Developer's Guide

the Oracle Communications Network Integrity 7.3.2 software) on the Oracle
software delivery website:

https://edelivery.oracle.com

2. Extract the META-INF/MANIFEST.MF file to a temporary location.

3. Open MANIFEST.MF and edit the value of Bundle-Name: Localization and
Bundle-Description: Localization as follows:

Bundle-Name: Localization : localization_pack_name
Bundle-Description: Localization : localization pack description

Where localization_pack_name is the name of the localization pack you are creating,
and where localization pack description describes the localization pack you are
creating.

4. Save MANIFEST.MF and return it to localization.iar/META-INF.

5. Extract META-INF/cartridge.xml to a temporary location.

6. Open cartridge.xml and edit the values of the name and languageCode tags:

<localizations>
 <localization>
 <name>Locale_Name</name>
 <languageCode>Locale_ID</languageCode>
 </localization>
</localizations>

Where Locale_Name is the locale of the localization pack you are creating; for
example, French, and where Locale_ID is the standardized locale ID that represents
a language and region in which the language is spoken. For example, fr-CA is the
locale ID for French spoken in Canada, and es-MX is the locale ID for Spanish
spoken in Mexico. A locale ID can also represent a language without specifying
the region in which the language is spoken. For example:

<localizations>
 <localization>
 <name>French</name>
 <languageCode>fr</languageCode>
 </localization>
</localizations>

7. Save cartridge.xml and return it to localization.iar/META-INF.

8. Extract localization.iar/localization.jar to a temporary location.

9. Extract localization.jar/oracle to a temporary location.

10. Edit all the XLF files found in localization.jar/oracle or any of its nested folders:

a. Edit the name of each XLF file to add an underscore and the locale ID before
the file extension, as shown in the following example:

DisAddressMsgBundle_fr.xlf

Note: The localization pack also contains a partial sample traditional
Chinese localization, for your reference, where parts of the Scan
Configuration Creation page are translated into traditional Chinese.

Localizing Network Integrity

Localizing Network Integrity 15-5

b. Open each XLF file and edit the file tag so that the source-language attribute
is set to the locale ID, as in the following example:

<file source-language="fr"
original="oracle.communications.inventory.api.entity.PhysicalPortMsgBundle"
datatype="xml">

c. Open each XLF file, locate each trans-unit tag and edit its child source tag
with the translated value for the desired localization.

11. Edit all the PROPERTIES files found in localization.jar/oracle or any of its nested
folders:

a. Edit the name of each PROPERTIES file to add an underscore and the locale ID
before the file extension, as shown in the following example:

IntegrityUIBundle_fr.properties

b. Open each PROPERTIES file and edit the value for each key with the
translated value for the desired localization. For example, edit the
INTEGRITY_MANAGE_SCAN_CONFIG key, as in the following example:

INTEGRITY_MANAGE_SCAN_CONFIG=new_value

Where new_value is the translated value for the key for the desired localization.

c. (Optional) To enter extended character values (such as Chinese characters),
you must use Unicode Escapes (only one character is allowed per escape
sequence). Save each PROPERTIES file with UTF-8 encoding, then convert
each PROPERTIES file to Unicode Escapes using the native2ascii tool provided
with your JDK by entering the following command:

native2ascii -encoding UTF-8 input_file_name output_file_name

Where input_file_name is the name of the PROPERTIES file being converted,
and where output_file_name is the name of the converted file.

Note: Compound locale IDs, such as fr-CA, should be added to the
XLF file name with an underscore in the place of the hyphen, as in the
following example:

DisAddressMsgBundle_fr_CA.xlf

Note: The source-language attribute for compound locale IDs, such
as fr-CA, should be set to the first two characters only, as in the
following example:

<file source-language="fr"
original="oracle.communications.inventory.api.entity.PhysicalPortMs
gBundle" datatype="xml">

Note: Compound locale IDs, such as fr-CA, should be added to the
XLF file name with an underscore in the place of the hyphen, as in the
following example:

IntegrityUIBundle_fr_CA.properties

Localizing Network Integrity Help

15-6 Network Integrity Developer's Guide

See the partial sample Chinese localization included in the localization pack
for an example.

12. Return all XLF and PROPERTIES files to localization.jar.

13. Return localization.jar to localization.iar.

14. Deploy localization.iar using the cartridge deploy tool.

15. (Optional) To localize link names in the Link panel in the Network Integrity UI,
you must edit the MBean with the translated values for the desired localization.
See Network Integrity System Administrator’s Guide for more information about
viewing and editing the MBean.

16. (Optional) To localize cartridge-specific scan parameters, see the Design Studio
Help. Cartridge-specific scan parameters can be localized within Design Studio,
where you can set multiple language preferences and then assign a language
preference to a scan parameter group.

Deploying the Cartridge Containing the Localized Files
After the translations are complete, build the localization pack to create a cartridge
that can be deployed into Network Integrity. Every cartridge should be cleaned and
rebuilt prior to deploying.

See the Design Studio Help and the Network Integrity Installation Guide for more
information about deploying cartridges.

Testing the Network Integrity Localization
When running the Network Integrity UI, the user chooses the appropriate language
from the web browser. This is usually done using the Character or Text Encoding
menu of the browser, or from a Language preference setting. The UI displays the
selected language after the corresponding localization pack is deployed. Otherwise,
the UI displays the default English language.

There may be parts of the UI that are supplied by third parties, which are not fully
internationalized. Those parts always display in English.

Localizing Network Integrity Help
The following sections describe localizing Network Integrity Help:

■ About Network Integrity Help

■ Localizing the Network Integrity Help Files

■ Deploying the Localized Help System

■ Testing the Network Integrity Help Localization

About Network Integrity Help
Network Integrity Help uses Oracle Help for the Web. Oracle Help is a browser-based
Help system that runs as a web application based on a Java servlet. You do not need

Note: When a cartridge containing localizable XLF files is deployed
into Network Integrity, the NetworkIntegrity.ear file automatically
redeploys, resulting in the localization changes being applied to the
UI.

Localizing Network Integrity Help

Localizing Network Integrity 15-7

specialized knowledge of Oracle Help to localize Network Integrity Help; you can use
the information in this chapter, supplemented by the Oracle Help documentation. See
Oracle Fusion Middleware Developer's Guide for Oracle Help for more information.

Network Integrity Help consists of a set of files, as described in the following sections.

About the Help Files
This section provides information about the Help files, including their location, a brief
description of their purpose, and whether or not they require configuring or
translating for localization. For details about configuring or translating the content of
the Help files, see "Localizing the Network Integrity Help Files".

Oracle Help File
An Oracle Help configuration file is located in the NI_Home/integrity/
NetworkIntegrity.ear/NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/
helpsets directory. The ohwconfig.xml configuration file contains references to each
Help system deployed into an application. Upon installation, the ohwconfig.xml file
references the default Network Integrity Help system (English) deployed into
Network Integrity. This file requires configuration for localization.

Network Integrity Help Files
The Network Integrity Help files are located in the NI_Home/integrity/
NetworkIntegrity.ear/NetworkIntegrityApp_NetworkIntegrityUI_
webapp1.war/WEB-INF/lib/Network_Integrity_Help.jar file, which contains the
following Help files:

■ *.htm files: Each HTML file is a separate Help topic. The text in all of the HTML
files requires translation.

■ Network_Integrity_Help.hs: This file describes the Help system. When Network
Integrity Help is initiated through the Network Integrity UI, Network_Integrity_
Help.hs is the starting point. This file does not require translation.

■ toc.xml: This file defines the Table of Contents (TOC) that appears in the left pane
of the Oracle Help window. The text in this file requires translation.

■ map.xml: This file associates Help IDs with the HTML file names. The TOC uses
the IDs to link entries to Help topics. This file does not require translation.

■ search.idx: This file is used when you perform a text search of the Help content.
The file defines a search index that searches the Help content in the HTML files.
After the HTML files are translated, the search index must be regenerated using
the Java-based Help Indexer. For more information, see "Software Requirements"
and "Regenerating the Search Index File".

■ target.db: This file contains cross-reference information used for navigating
between Help topic headings. This file does not require translation.

■ dcommon/html/cpyr.htm: This file defines the Help copyright page, and requires
translation. (The dcommon directory contains standard Oracle support files,
including a CSS file, several graphics files, and the Help copyright page, but only
the Help copyright page requires translation.)

Localizing the Network Integrity Help Files
To localize Network Integrity Help, perform the work described in the following
sections:

■ Extracting the Help Files

Localizing Network Integrity Help

15-8 Network Integrity Developer's Guide

■ Translating the Help Files

■ Regenerating the Search Index File

■ Creating the Localized Help JAR File

■ Configuring the Oracle Help File

Extracting the Help Files
Use the default Help system installed with Network Integrity as the starting point for
your localization.

To extract the Help files:

1. Copy the NI_Home/integrity/NetworkIntegrity.ear/NetworkIntegrityApp_
NetworkIntegrityUI_webapp1.war/WEB-INF/lib/Network_Integrity_Help.jar
file to a local directory, such as tempDir.

2. Open the tempDir/Network_Integrity_Help.jar file.

3. Select all objects in the Network_Integrity_Help.jar file and extract them into the
same directory in which the Network_Integrity_Help.jar file resides (tempDir).

4. Click the File column heading in the tempDir directory to sort the objects by file
type.

The following objects are present:

■ dcommmon directory

■ img directory

■ META-INF directory

■ target.db

■ Network_Integrity_Help.jar

■ Network_Integrity_Help.hs

■ numerous *.htm files

■ search.idx

■ map.xml

■ toc.xml

You do not need to do anything with the img or META-INF directories, or with the
target.db, Network_Integrity_Help.hs, or map.xml files.

Translating the Help Files
To translate the Help files, perform the translations described in the following sections:

■ Translating the Copyright Page

■ Translating the Help Topics

■ Translating the Table of Contents

Translating the Copyright Page
The copyright page text is defined in the tempDir/dcommon/html/cpyr.htm file.
Translate the content of the title, heading, and paragraph elements (<title>, <h1> -
<h6>, <p>) to the local language.

For example, translate the bolded content in Example 15–1:

Localizing Network Integrity Help

Localizing Network Integrity 15-9

Example 15–1 Excerpt from cpyr.htm

<title>Oracle Legal Notices</title>
<link rel="stylesheet" href="../css/blafdoc.css" type="text/css" />
</head>
<body>
<h1>Oracle Legal Notices</h1>

<h2>Copyright Notice</h2>
<p>Copyright © 1994-2012, Oracle and/or its affiliates. All rights
reserved.</p>

Translating the Help Topics
The Help topics text is defined in the numerous tempDir/*.htm files, and each file
requires translating.Translate the content of the title, heading, paragraph, and table
data elements (<title>, <h1> - <h6>, <p>, <td>) to the local language.

For example, translate the bolded content in Example 15–2. Elements that are not text,
such as the HTML tags themselves, should not be changed.

Example 15–2 Excerpt from olh_integ_scans002.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="OAC_IGNORE_SKIP_NAV" content="true" />
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta http-equiv="Content-Script-Type" content="text/javascript" />
<title>Creating a Scan</title>
<meta name="generator" content="Oracle DARB XHTML Converter (Mode = ohj/ohw) -
Version 5.1.2 Build 040" />
<meta name="date" content="2011-12-20T20:51:30Z" />
<meta name="robots" content="noarchive" />
<meta name="doctitle" content="Creating a Scan" />
<meta name="relnum" content="Release 7.1" />
<meta name="partnum" content="E23703-01" />
<meta name="topic-id" content="CreateScansMain" />
<link rel="copyright" href="./dcommon/html/cpyr.htm" title="Copyright"
type="text/html" />
<link rel="stylesheet" href="./dcommon/css/blafdoc.css" title="Oracle BLAFDoc"
type="text/css" />
<link rel="contents" href="toc.htm" title="Contents" type="text/html" />
</head>
<body>
<p><a id="CreateScansMain"
name="CreateScansMain"></p>
<div class="sect2">
<h1>Creating a Scan</h1>
<p>To create a scan:</p>

<p>From the Tasks panel, click Manage Scans.</p>
<p>The Manage Scans page appears.</p>

Translating the Table of Contents
The TOC text is defined in the tempDir/toc.xml file. Each item in the TOC is defined
by a <tocItem> element. Translate the content to the local language.

Localizing Network Integrity Help

15-10 Network Integrity Developer's Guide

For example, translate the bolded content of the text attribute in Example 15–3. Do not
change the content of the target attribute.

Example 15–3 Excerpt from toc.xml

<tocitem target="olh_integ_main001.htm-sthref3" text="Getting Started with Network
Integrity" />

Regenerating the Search Index File
After translating the Help files, regenerate the search index file to reflect the content of
the translated files.

To regenerate the search index file:

1. Download the help-indexer.jar file to a local directory, such as tempDir, and install
Java.

See "Software Requirements" for more information.

2. Open a Windows command prompt.

3. Change the directory to the directory containing the translated Help files by
entering the following command:

cd tempDir

4. Enter the following command, which creates a new search.idx file, and overwrites
the existing search.idx file.

java -mx64m -classpath pathToJarFile/help-indexer.jar
oracle.help.tools.index.Indexer -l=locale -e=charSet pathToHelpFiles search.idx

For example:

java -mx64m -classpath C:\tempDir\help-indexer.jar
oracle.help.tools.index.Indexer -l=fr_CA -e=8859_1 C:\tempDir search.idx

In the above command:

■ java is the java command in your path. If it is not in your path, specify the full
path to java.exe.

■ -mx64m increases the default heap size. This is optional, but the Oracle Help
documentation recommends that you specify it.

■ -classpath specifies the location of the help-indexer.jar file.

Note: Oracle Help automatically translates the Help window menu
options, field names, and informational, warning, and error messages.
The translation is based on the locale defined in the ohwconfig.xml
file.

For example, if the only language preference specified is English, and
the ohwconfig.xml file defines a single locale of French, Oracle Help
translates the Help window menu options, field names, and messages
to French.

That said, Oracle recommends that the language preference with the
highest priority be the same language defined as the locale in the
ohwconfig.xml file.

Localizing Network Integrity Help

Localizing Network Integrity 15-11

■ oracle.help.tools.index.Indexer is the Java class that is called to regenerate the
search index. This Java class file resides in the help-indexer.jar file.

■ -l specifies the locale, a standardized ID that represents a language and region
in which the language is spoken. For example, fr-CA is the locale ID for
French spoken in Canada, and es-MX is the locale ID for Spanish spoken in
Mexico. If you do not specify a locale, the system’s default locale is used.

See "Determining the Locale ID" for more information.

■ -e specifies the Java-supported character set encoding (charset). For example,
8859_1.

■ pathToHelpFiles is the full path to the translated Help files.

■ search.idx is the name of the search index file that Network Integrity Help
uses.

See Oracle Fusion Middleware Developer's Guide for Oracle Help for more information
about these parameters.

Creating the Localized Help JAR File
After translating the Help files and regenerating the search index, create a new JAR file
containing the localized Help files.

To create the new JAR file:

1. In Windows Explorer, navigate to the tempDir directory. This is the directory
containing the Network_Integrity_Help.jar file, the translated Help files, and the
regenerated search index file.

2. Copy the Network_Integrity_Help.jar file, and paste it in the same directory
(tempDir).

3. Select the copied version of the Network_Integrity_Help.jar file and rename it
Network_Integrity_Help.jar_locale.jar, where locale is the standardized ID that
represents a language and region in which the language is spoken. For example,
fr-CA is the locale for French spoken in Canada, and es-MX is the locale for
Spanish spoken in Mexico.

For more information, see "Determining the Locale ID".

4. Open the Network_Integrity_Help_locale.jar file.

5. Select and delete all of the objects in the JAR file.

6. Add the localized Help files to the Network_Integrity_Help_locale.jar file. (This
includes all of the directories and all of the files in tempDir, with the exception of
Network_Integrity_Help.jar and Network_Integrity_Help_locale.jar.

7. Save and close the Network_Integrity_Help_locale.jar file.

You can verify that you included all of the directories and files by checking the number
of objects in the Network_Integrity_Help.jar file and in the Network_Integrity_Help_
locale.jar file; the two JAR files should contain the same number of objects. To
determine the number of objects in each JAR file, select all of the objects in each JAR
file; this provides a count of all objects selected.

Configuring the Oracle Help File
After translating the Help files, regenerating the search index, and creating a localized
Help JAR file, configure the NI_Home/integrity/NetworkIntegrity.ear/

Localizing Network Integrity Help

15-12 Network Integrity Developer's Guide

NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/
helpsets/ohwconfig.xml file to reflect the localized Help JAR file.

To configure the ohwconfig.xml file:

1. Open the ohwconfig.xml file.

The file defines the default Help system (English):

<locales>
 <!-- English: -->
 <locale language="en">
 <books>
 <helpSet id="integrity"
 jar="../WEB-INF/lib/Network_Integrity_Help.jar"
 location="Network_Integrity_Help.hs"/>
 </books>
 </locale>
</locales>

2. Update the <locale> element to reflect the localized Help system:

<locales>
 <!-- French Canadian: -->
 <locale language="fr">
 <books>
 <helpSet id="integrity_fr_ca"
 jar="../WEB-INF/lib/Network_Integrity_Help_fr_ca.jar"
 location="Network_Integrity_Help.hs"/>
 </books>
 </locale>
</locales>

You do not need to change the location attribute value, which is the name of the file
that resides in the specified JAR file.

About Multiple Locales
Oracle Help can support multiple locales. For multiple locales, each localized Help
system is configured with a <locale> element in the ohwconfig.xml file. For example,
the following results in both French and Spanish Help systems being available in
Network Integrity upon redeployment:

<locales>
 <!-- French: -->
 <locale language="fr">
 <books>
 <helpSet id="integrity_fr_ca"
 jar="../WEB-INF/lib/Network_Integrity_Help_fr_ca.jar"
 location="Network_Integrity_Help.hs"/>
 </books>
 </locale>
</locales>
<locales>
 <!-- Spanish: -->
 <locale language="es">
 <books>
 <helpSet id="integrity_es_mx"
 jar="../WEB-INF/lib/Network_Integrity_Help_es_mx.jar"
 location="Network_Integrity_Help.hs"/>
 </books>
 </locale>

Localizing Network Integrity Help

Localizing Network Integrity 15-13

</locales>
<parameters>
 <combineBooks>false</combineBooks>
 <useLabelInfo>true</useLabelInfo>
 <cacheSize>3</cacheSize>
</parameters>

When multiple locales are defined, the language preference for all locales must be set.
If not set, only the first locale defined in the ohwconfig.xml file displays in Network
Integrity Help. See "Setting the Language Preference in Internet Explorer" for more
information.

When multiple locales are defined, the <parameters> element configuration values are
applied:

■ <combineBooks>

To merge Help systems, set <combineBooks> to true. The Help navigational views
behave as a single, integrated Help system.

To use separate Help systems, set <combineBooks> to false. The separate Help
navigational views are accessed based on the language preference with the higher
priority.

Regardless of the <combineBooks> value, each locale that is defined in the
ohwconfig.xml file must be specified as a language preference. See "Setting the
Language Preference in Internet Explorer" for more information.

■ <useLabelInfo>

If <useLabelInfo> is set to true, author-defined labels are used for the navigators
of merged Help systems.

If <useLabelInfo> is set to false, default labels such as Contents, Index, and Search
are used for the navigators of merged Help systems.

■ <cacheSize>

<cacheSize> indicates the number Help systems kept in memory at one time. The
default value is 3.

See Oracle Fusion Middleware Developer's Guide for Oracle Help for more information.

Note: Oracle Help automatically translates the Help window menu
options, field names, and informational, warning, and error messages.
The translation is based on the first locale defined in the
ohwconfig.xml file.

For example, if the only language preference specified is English, and
the ohwconfig.xml file defines the locales of French and Spanish,
Oracle Help translates the Help window menu options, field names,
and messages to French.

However, when multiple locales are defined, the language preference
for all locales must be specified. Otherwise, only the first locale
defined in the ohwconfig.xml file displays in Network Integrity Help.
So, when the language preferences are set, Oracle Help translates the
Help window menu options, field names, and messages to the
language preference with the highest priority.

Localizing Network Integrity Help

15-14 Network Integrity Developer's Guide

Deploying the Localized Help System
The original Help system, located in the NI_Home/integrity/NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/WEB-INF/lib/
Network_Integrity_Help.jar file, is deployed when you deploy the
NetworkIntegrity.ear file.

To deploy the localized Help system:

1. Repackage the NI_Home/integrity/NetworkIntegrity.ear file to include the
localized Help files. To do this:

a. Delete the NI_Home/integrity/NetworkIntegrity.ear/NetworkIntegrityApp_
NetworkIntegrityUI_webapp1.war/WEB-INF/lib/Network_Integrity_
Help.jar file.

b. Copy the tempDir/Network_Integrity_Help.jar_locale.jar file to the NI_Home/
integrity/NetworkIntegrity.ear/NetworkIntegrityApp_
NetworkIntegrityUI_webapp1.war/WEB-INF/lib directory.

2. Deploy the repackaged NetworkIntegrity.ear file.

For instructions on how to deploy the NetworkIntegrity.ear file, see Network
Integrity System Administrator’s Guide.

Testing the Network Integrity Help Localization
After you deploy the localized Help system, test your Network Integrity environment
to verify that the localized Help system is working correctly.

In Network Integrity, open the Help. Tests should include the following:

■ Navigate to several topics from links in the Table of Contents to ensure that the
correct topics appear and display correctly.

■ Test several links within Help topics to ensure they are working.

■ Search for several terms and verify that you get the expected results.

■ If testing multiple locales that function as a single Help system, verify translations
for all locales.

■ If testing multiple locales that function as separate Help systems, change the
language preference priority to verify translations for each locale.

Note: If your Network Integrity Help is supporting multiple locales,
each JAR file defined by each <locale> element in the ohwconfig.xml
file must be present in the NI_Home/integrity/NetworkIntegrity.ear/
NetworkIntegrityApp_NetworkIntegrityUI_webapp1.war/
WEB-INF/lib directory.

A

Network Integrity Plug-in Validation Error Messages A-1

ANetwork Integrity Plug-in Validation Error
Messages

This appendix provides information about the Oracle Communications Network
Integrity plug-in validation error messages.

This appendix contains the following sections:

■ Error Message Classifications and Conditions

■ Design Studio Logging

Error Message Classifications and Conditions
Table A–1 lists the error messages, error classifications, and error conditions for the
Network Integrity plug-in.

Note: Text inside {} represents a variable that is replaced based on
the current error condition.

Table A–1 Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Action names must start with a letter. Error Occurs when you create an action without a
letter as the first character in the name.

The character {character} is not valid in an
implementation prefix.

Error Occurs when the implementation prefix of an
action or processor contains characters that
cannot be part of a Java identifier.

Processor {processor name} already has more than
one parent action assigned.

Error Occurs if an attempt is made to associate a
processor to a second action. A processor can
have only one parent.

Processor Parameter: {parameter name} not found
in Parameter list for Processor {processor name}.

Informational Occurs if an attempt is made to rename an
input or output parameter of a processor,
which no longer exists in the Parameter list.

Processor property group: {property group name}
not found in property group list for Processor
{processor name}.

Informational Occurs if an attempt is made to rename a
property group of a processor, which no
longer exists in the property group list.

Action condition {condition name} not found in
condition list for action {action name}.

Informational Occurs if an attempt is made to rename a
condition of an action, which no longer exists
in the condition list.

Error Message Classifications and Conditions

A-2 Network Integrity Developer's Guide

The generated implementation prefix for this
entity conflicts with the implementation prefix of
entity \"{entity name}\". Choose a different
name.

Error Occurs when an implementation prefix of an
action or a processor conflicts with an
existing prefix.

Cannot get cartridge from action: {action name}. Error Occurs when Oracle Communications
Design Studio is unable to determine the
cartridge to which the current action belongs
as part of dependency checks before
building.

SNMP Parameters cannot be added to the
discovery action because the project does not
have a data dictionary.

Warning Occurs when an SNMP processor is created
and no data dictionary exists with the
project. To correct this, create a Data
Dictionary, and then create the SNMP
processor.

SNMP Parameters cannot be added to the
discovery action because a Data Dictionary
Element matching the name SnmpParameters
was found but it is not assigned the Scan
Parameter Group Specification type.

Warning Occurs when a SNMP processor is created
and the project’s Data Dictionary exists with
an SnmpParameters structure that is not of
Type scan parameter group. To correct, delete
the conflicting SnmpParameters or change its
Entity Type to scan parameter group.

SNMP Processor has not specified any OIDs Error Occurs if an SNMP processor has not
specified any OIDs.

Processor implementation has not been specified Error Occurs if the processor’s Implementation
Class is not specified on the processor’s
Details tab.

Processor implementation is missing Error Occurs if the processors implementation
class, which is specified on the processor’s
Details tab, is missing in Design Studio.

Processor implementation package does not
match Processor interface package

Error Occurs if the package defined in the
processor’s Implementation Class does not
match the package of the processor’s
generated interface.

MIB Directory has not been specified. See Oracle
Design Studio Network Integrity preferences.

Error Occurs if the MIB Directory is not specified
in the Oracle Design Studio Network
Integrity Preferences (Window -> Preferences
-> Oracle Design Studio -> Network
Integrity).

MIB directory mib directory does not exist. See
Oracle Design Studio Network Integrity
preferences

Error Occurs if the MIB Directory as specified in
the Oracle Design Studio Network Integrity
Preferences (Window -> Preferences ->
Oracle Design Studio -> Network Integrity)
does not exist.

MIB module mib module name does not exist Error Occurs if the MIBs specified as part of the
SNMP processor are not available in the MIB
Directory.

Processor is not used in an action Warning Occurs if the processor is not used by an
action.

Action has not specified a result category. At
least one result category must be specified

Error Occurs if the action has not defined at least
one result category.

Action has not specified a result source. At least
one result source must be specified

Error Occurs if the Discrepancy detection action
does not contain at least one result source.

Table A–1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Error Message Classifications and Conditions

Network Integrity Plug-in Validation Error Messages A-3

Result source action action name cannot be found Error Occurs if the discrepancy detection action’s
result source action cannot be found. For
example, the action has been deleted.

Result source action name result source name
cannot be found

Error Occurs if the discrepancy detection action’s
result source cannot be found. For example,
it has been deleted from the action.

Scan Parameter Group group_name does not exist Error Occurs if the Data Dictionary Structure
referenced by an action’s scan parameter
group has been deleted.

Data dictionary element for Scan Parameter
Group group_name is invalid

Error Occurs if the Data Dictionary Structure or its
Elements are invalid. For example, the Entity
Type is not a scan parameter group.

SNMP Processor requires "SnmpParameters"
Scan Parameter Group

Error Occurs if the SnmpParameters scan
parameter group is not available in the
workspace. To correct, ensure the MIB_II_
SNMP_Cartridge is imported in the
workspace. Next, remove and re-add the
SNMP processor to the discovery action.

Address handler implementation has not been
specified

Error Occurs if the Implementation Class for an
AddressHandler is not specified.

Address handler implementation is missing Error Occurs if the Implementation class itself is
not in Design Studio.

Address handler implementation package does
not match interface package

Error Occurs if the package defined in the
AddressHandler’s Implementation Class
does not match the package of the
AddressHandler’s generated interface.

Specification specification name does not exist Error Occurs if the Specification referenced by a
processor’s Model Collection does not exist.
For example, it has been deleted.

Data dictionary element for specification
specification name is invalid

Error Occurs if the Data Dictionary Element is
invalid. For example, POMS does not
support it.

Stale imported Action action name. The imported
Action's Processors have changed since they
were imported.

Error Occurs when imported action’s processors
have changed. For example, the ordering of
the processors in the owning action has
changed.

Action contains no Processors Warning Occurs when an action exists without any
processors.

Cartridge contains neither Actions nor address
handlers

Error Occurs when a new Integrity Project contains
no actions or address handlers.

Provider has not been specified Warning Occurs when the cartridge Provider has not
be specified on the Network Integrity
cartridge Properties tab.

Cartridge cannot contain both actions and
address handlers

Error Occurs when an Integrity project contains
both address handlers and actions, which is
invalid.

Condition implementation has not been
specified for condition condition name

Error Occurs when the Implementation Class has
not been provided for a condition within an
action.

Condition implementation is missing for
condition condition name

Error Occurs if the Implementation class itself is
not in Design Studio.

Table A–1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Error Message Classifications and Conditions

A-4 Network Integrity Developer's Guide

Model Collection is not associated with any
Actions. A model collection must be associated
with at least one Action.

Error Occurs when the Model Collection is not
associated to at least one action.

Resolution Action has not specified a Resolution
Action Label.

Error Occurs when the resolution action does not
have a Resolution Action Label, which is
used as the resolution string in the UI for
resolving discrepancies.

Error Retrieving Cartridge Model Error Occurs when a given action’s processors do
not have a Provider.

Action action name is not a valid Action and
cannot be added.

Error Occurs when selecting an invalid action
when adding processors to an action.

Action action name does not contain any
Processors. Actions must contain at least one
processor to be eligible for inclusion in another
Action.

Error Occurs when importing an action, which
contains no processors.

The are no output parameters on any of the
Processors that are of a type that can be iterated
over.

Error Occurs when adding a For Each to an action,
which has processors that do not have an
output parameter that allows iteration.

The order of Processors from Imported Actions
can not be changed.

Error Occurs when the order of processors from
imported actions is changed.

Processor processor name uses parameter
parameter name and Processor processor name
outputs this parameter, continuing may make
the Action invalid. Do you want to continue?

Confirmation Occurs when changing the order (Moving
Down) of processors within an action
resulting in invalidating the flow of
parameters thus making the action as a
whole invalid.

Processor processor name has a condition that
uses parameter parameter name and Processor
processor name outputs this parameter,
continuing may make the Action invalid. Do you
want to continue?

Confirmation Occurs when changing the order of
processors (Moving Down) within an action
resulting in invalidating one or more
conditions.

Processor processor name outputs parameter
parameter name and Processor processor name uses
this parameter, continuing may make the Action
invalid. Do you want to continue?

Confirmation Occurs when changing the order (Moving
Up) of processors within an action resulting
in invalidating the flow of parameters thus
making the action as a whole invalid.

Processor processor name outputs parameter
parameter name and Processor processor name has
a condition that uses this parameter, continuing
may make the Action invalid. Do you want to
continue?

Confirmation Occurs when changing the order of
processors (Moving Up) within an action
resulting in invalidating one or more
conditions.

Action should not be null Error Occurs when adding or removing elements
(processors, For Each blocks, and so on) from
an action, which is null.

The condition could not be added because the
following action name are read only

Error Occurs when attempting to add a condition
to an action, which is read only.

The condition could not be removed because the
following action name are read only

Error Occurs when attempting to remove a
condition from an action, which is read only.

The condition interface condition interface name
has not been generated. It is recommended to
save and build the Action before creating the
implementation so that the interface is
generated. Continue creating the
implementation class anyway?

Confirmation Occurs if the condition interface has not been
generated before the implementation class
being generated.

Table A–1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Error Message Classifications and Conditions

Network Integrity Plug-in Validation Error Messages A-5

Condition 'condition name} has relations. Are you
sure you want to delete it?

Warning Occurs when the condition to be deleted has
relationship to a processor.

A condition called condition name already exists
on this plug-in, specify a different name.

Error Occurs when attempting to create a condition
with a name that already exists within the
action.

The condition name must have a length greater
than 0 but not exceeding 50 characters

Error Occurs when the length of the target
condition name is not within the valid range
of 1 – 50 characters.

This output parameter type is used by a for each,
therefore the parameter type must be an iterable
type.

Error Occurs when the output parameter type used
as an input to a For Each is not iterable.

Processor processor name is not writable, so
references to this output parameter is not
updated.

Error Occurs when trying to modify a processor,
which is read only.

Input parameters are referencing this output
parameter. Changing the name or type may
generate compile errors. Do you want to
continue?

Warning Occurs when changing the name of an
output parameter, which has referencing
input parameters on processors whose java
classes are already generated.

Input parameters are referencing this output
parameter. Removing it generates compile and
validation errors. Do you want to continue?

Warning Occurs when removing an output parameter,
which has referencing input parameters on
processors whose java classes are already
generated.

There are no output parameters available from
preceding Processors to be selected

Informational Occurs when selecting a processor’s input
parameters and no preceding processor has
an output Parameters.

No uses of output parameter parameter name
were found.

Informational Occurs when viewing the usage of an output
parameter, which is not used as an input
parameter.

The provided name already exists. Enter a
different name.

Error Occurs when adding a condition using a
name that already exists.

The name cannot exceed 50 characters Error Occurs when adding a condition with a
name that exceeds 50 characters.

The name must start with a letter. Error Occurs when creating an Element (for
example, processor, address handler) with an
invalid name (i.e. starts with a digit) using
the Design Studio Model Entity Wizard.

Action names must start with a letter. Error Occurs when creating an action with an
invalid name.

A value for implementation prefix is required
when the use default option is not selected.

Error Occurs when creating an action and no
implementation prefix is specified when the
default option is not selected.

The implementation prefix must begin with a
letter.

Error Occurs when specifying an action’s or
processor’s Implementation Prefix starting
with a character other than a letter.

Error trying to lookup interface in project. Error Occurs when Design Studio is attempting to
create a class that implements an interface,
which does not exist in the Project.

An error occurred attempting to create a Java
class. Details...

Error Occurs when Design Studio is unable to
create a Java class likely due to a Java Model
problem or permissions.

Table A–1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Error Message Classifications and Conditions

A-6 Network Integrity Developer's Guide

The generated interface interface name could not
be found in your project. It is recommended to
save and build before creating the
implementation so that the interface is available.
Continue creating the implementation class
anyway?

Warning Occurs when generating the implementation
before the interface is available. For example,
when creating a new processor, it is
recommended to save and build before
creating the implementation class.

The required interface, interface name, could not
be found. Please clean and build the project.

Error Occurs when selecting the implementation
before the interface is available. For example,
when creating a new processor, it is
recommended to save and build before
selecting the implementation class.

The package rename cannot be performed
because the following entities are not writable:

Error Occurs when modified the default package
on the Project editor Properties tab and the
underlying classes are read only.

Project name should not contain spaces. Error Occurs when attempting to create a Integrity
Project with a name that contains spaces.

A Default Cartridge Package is required Error Occurs if there is no Default Cartridge
Package specified under the Oracle Design
Studio -> Network Integrity section in the
Design Studio Preferences located under
Window -> Preferences.

Spaces are not allowed in the package name Error Occurs if the Default Cartridge Package
value contains spaces.

This removes all generated UI hints artifacts. Do
you wish to continue?

Confirmation Occurs when clicking the Clean UI Hints
button located on the UI Hints tab of the
Network Integrity cartridge element.

The UI Hints could not be cleaned, please ensure
the mds.mar file is not read only

Error Occurs when attempting to clean the UI
Hints while the mds.mar file is read only. The
mds.mar is located in the cartridge lib
directory.

Spaces are not allowed in the package name Error Occurs when attempting to rename the
Default Package property on the Properties
tab of the Network Integrity cartridge
element.

Please fix fields with errors. Error Occurs when creating an output parameter
with an invalid Type.

The first character in a parameter name should
be lowercase

Warning Occurs when adding output parameters to a
processor and the parameter name begins
with an invalid character (i.e. uppercase).

A {field name} value must be entered. Error Occurs when adding output parameters,
property groups and properties to a
processor and no name value is specified.

Parameter parameter name could not be added
because a parameter with the same name
already exists. Remove the parameter with the
same name and retry the operation.

Error Occurs when adding an output or input
parameter using a name that already exists in
the Parameter list. Names must be unique in
the parameter list since the name generates
the getter methods.

The name parameter name already exists as a
parameter, enter a different name

Error Occurs when adding an output parameter
using a name that already exists.

The name cannot contain spaces Error Occurs when adding an output parameter or
property group to a processor and the name
contains spaces.

Table A–1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Error Message Classifications and Conditions

Network Integrity Plug-in Validation Error Messages A-7

The name cannot start with a number Error Occurs when adding an output parameter or
property group to a processor and the name
starts with a number.

Parameter Type parameter type may produce
warnings in generated code. Do you want to
continue?

Confirmation Occurs if the parameter type of an output or
input parameter may cause compile
warnings.

The parameter type parameter type produces the
following warning in generated code. Do you
want to continue?

Confirmation Occurs if the generated code contains
warnings based on the parameter type of an
output or input parameter.

The name must be a valid java identifier that
does not contain special characters

Error Occurs when adding an output parameter or
property group to a processor and the name
contains a special character (for example, %).

The name parameter name is a reserved word in
Java, enter a different name

Error Occurs when adding an output parameter or
property group to a processor and the name
is equivalent to a reserved word in Java and
therefore would cause compiling errors.

Type parameter type could not be found in the
project

Error Occurs if the parameter type of an output or
input parameter could not be found in the
Integrity Project.

A property group with the name property group
name already exists on this input

Error Occurs when adding a property group using
a name that already exists.

A Property with the name property name and
value property value already exists, please choose
a different name/value combination

Error Occurs when adding or modifying a
Property using a name and value that
already exists.

One or more errors exist with the fields Error Occurs when creating a property group with
an invalid name.

A property group with the name property group
name already exists, please choose a different
name

Error Occurs when modifying a property group
changing its name to a name that already
exists.

One or more errors exist with the fields Error Indicates a problem with result groups or
result source.

A field name value must be entered. Error Occurs when creating a result category or
condition with no name.

The result category name must have a length
greater than 0 but not exceeding 255 characters

Error Occurs when modifying a result category
changing its name to have a length of 0 or
greater than 255 characters.

Data dictionary named data dictionary name
could not be found.

Error Occurs when the data dictionary elements of
a model collection cannot be found.

The MIB File mib filename could not be loaded
because of the following error: Details...

Error Occurs when a file other than a MIB File is
selected when clicking the Load MIB button
within an SNMP processor.

A valid MIB Module called mib module name
could not be found in MIB File: mib filename

Error Occurs when the target MIB File attempting
to be loaded by a SNMP processor does not
contain any MIB Modules.

The MIB directory mib directory either does not
exist or is not accessible. Either create this
directory or change the configured MIB
Directory in the Network Integrity Preferences
Page (Preferences then Oracle Design Studio
then Network Integrity)

Error Occurs when the configured MIB Directory
as specified in the Network Integrity
Preferences Page is not accessible.

Table A–1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Design Studio Logging

A-8 Network Integrity Developer's Guide

Design Studio Logging
When developing cartridge projects within Design Studio for Network Integrity it is
likely that the developer requires logging for traceability during normal cartridge
operation and for debugging. This section outlines how to introduce logging into the
developer’s implementation. This section addresses logging that is visible inside the
WebLogic log files. It does not discuss introducing Design Studio logging (for
example, Design Studio Error Logs).

Network Integrity uses the java.util.logging package for logging messages. For an
overview of the Java logging framework, visit Oracle’s site on the subject at

http://download.oracle.com/javase/6/docs/api/index.html

To create an instance of the appropriate logger add a static variable to an
implementation class passing in the name of the current class. For example,

private static final Logger logger = Logger
 .getLogger(DiscrepancyDetectorImpl.class.getName());

When the above is defined, invoke logging according to the API specification. For
example,

logger.log(Level.SEVERE, "Error while detecting discrepancies.", e);

To redirect the Network Integrity logs produced by the above into a WebLogic log file
use the following procedure:

1. Insert the following 2 XML fragments into the file <DOMAIN_HOME>
/config/fmwconfig/servers/<TargetServer>/logging.xml.<TargetServer>.
<TargetServer> represents the name of the WebLogic Server where the Network
Integrity application is running.

a. The following fragment goes inside the <log_handlers> block and defines the
log handler and log file location. If required, change the log handler; however,
this value must match the value referenced in the fragment in step b. If
necessary, change the location where the log file is generated.

 <log_handler name='ni-handler'
class='oracle.core.ojdl.logging.ODLHandlerFactory'>
 <property name='path'
value='${domain.home}/servers/${weblogic.Name}/logs/ni-weblogic.log'/>
 <property name='maxFileSize' value='10485760'/>
 <property name='maxLogSize' value='104857600'/>
 </log_handler>

b. This fragment goes inside the <loggers> block (at the end) and defines the
logger name. This name refers to the Java package of a customer’s
implementation code, the log level and the handler. The handler must match
the value configured in step a (for example, ni-handler). If necessary, tailor the

The following error occurred loading MIB mib
filename: Details...

Error Occurs when the target MIB File is corrupt.

Selected node: oid, is not readable, only readable
nodes are supported.

Error Occurs when attempting to load an OID,
which is not readable.

Selected node: oid, is not supported (only scalar
and table column are supported).

Error Occurs when attempting to load an OID,
which is not scalar or a table column.

Table A–1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message Classification Error Condition

Design Studio Logging

Network Integrity Plug-in Validation Error Messages A-9

log level. Consult Table A–2 that maps the Java log levels to the ODL log levels
(for example, TRACE:32) used in the logging.xml file.

 <logger name="oracle.communications.integrity" level="TRACE:32">
 <handler name="ni-handler"/>
 </logger>
 <logger name="oracle.communications.activation" level="TRACE:32">
 <handler name="ni-handler"/>
 </logger>
 <logger name="oracle.communications.inventory" level="TRACE:32">
 <handler name="ni-handler"/>
 </logger>

2. Save logging.xml.

When determining what level to set in the logging.xml (step 1) use Table A–2 to map
the Java Log Levels to ODL Log Levels.

For more information on ODL visit

 http://download.oracle.com/docs/cd/B31017_01/web.1013/b28952/logging.htm

Table A–2 Java Log Level to ODL Log Level Mapping

Java Log Level
ODL Message
Type:Log Level ODL Description

SEVERE.intValue()+100 INTERNAL_ERROR:1 The program has experienced an error for
some internal or unexpected
non-recoverable exception.

SEVERE ERROR:1 A problem requiring attention from the
system administrator has occurred.

WARNING WARNING:1 An action occurred or a condition was
discovered that should be reviewed and
may require action before an error occurs.

INFO NOTIFICATION:1 A report of a normal action or event. This
could be a user operation, such as “login
completed” or an automatic operation such
as a log file rotation.

CONFIG NOTIFICATION:16 A configuration-related message or
problem.

FINE TRACE:1 A trace or debug message used for
debugging or performance monitoring.
Typically contains detailed event data.

FINER TRACE:16 A fairly detailed trace or debug message.

FINEST TRACE:32 A highly detailed trace or debug message.

Design Studio Logging

A-10 Network Integrity Developer's Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Document Revision History

	1 Using Design Studio to Extend Network Integrity
	Installing Design Studio
	Configuring Design Studio for Network Integrity
	Configuring Network Integrity Preferences
	Network Integrity Project Dependencies
	Configuring Data Dictionary Preference Settings

	About Design Studio Perspectives
	About Design Studio Views
	Studio Design Perspective Views
	Java Perspective Views

	About Projects
	About the Project Architecture

	Working with Projects
	Building and Packaging Projects
	About the Project Build Order
	About Build Artifacts
	Packaging Projects

	Deploying and Undeploying Cartridges
	Creating a Design Studio Environment Project
	Creating a Design Studio Environment For Network Integrity
	Deploying a Cartridge
	Undeploying a Cartridge
	Redeploying a Cartridge

	Debugging and Testing Cartridges
	Starting the WebLogic Server in Test Mode
	Configuring Remote Debugger in Design Studio

	Sealing and Unsealing Projects
	Exporting and Importing Cartridges
	Exporting a Cartridge with Source Code
	Exporting a Cartridge Without Source Code

	About Specifications
	Working with Specifications
	About Model Collections
	About Specification Helpers

	About Source Control
	Working with Source Control for Network Integrity
	Tips and Tricks
	About Java Errors in the Generated Controller Class
	Renaming or Deleting Actions and Processors
	Adding External Libraries to a Java Build Path
	About “Missing Required Library” Errors for External Libraries
	Error Marker on Cartridge but not on any Entities

	2 Working with Actions
	About Actions
	About Actions and Processors
	About Action within Actions
	About the Generated Action MDB and Controller
	About Scan Parameter Groups
	Extending the Create Scan Page
	Extending the Scan Details Page

	About Conditions
	About Generated Classes and the Implementation Class
	Adding Dependent Actions with Conditions as Processors
	Creating Condition Examples

	About Model Collections in Actions
	About For Each Processors
	About Result Categories

	About Import Actions
	About Discovery Actions
	About Discovery Action Address Handlers
	About the Address_Handlers Cartridge
	Implementing Address Handlers
	About the AddressHandler Interface
	About Dynamic Address Handlers

	About Discovery Action Result Categories
	About the Discovery Action in the Network Integrity UI
	About Discovery Action Scan Parameter Groups

	About Assimilation Actions
	About Discrepancy Detection Actions
	About Discrepancy Detection
	About Result Sources
	About Result Source and Scan Types
	Generated Action MDB and Controller

	About Discrepancy Resolution Actions
	About the Resolution Action Label
	About Result Sources
	Generated Action and MDB Controller

	3 Working with Processors
	About Processors
	About Context Parameters
	Specifying Context Parameters before Creating Implementation Class

	About Properties and Property Groups
	About Generated Code
	About the Location for Generated Code
	About the Processor Interface
	About the PropertyGroup and Properties Classes

	Implementing a Processor
	About the Processor Finalizer
	About the ProcessorFinalizer Interface

	About Memory Considerations

	Implementing an Import Processor
	Implementing a Discovery Processor
	Implementation Code Example

	Implementing the SNMP Processor
	About the Generated Implementation and XML Beans
	Supporting New MIBs

	Implementing an Assimilation Processor
	About Discrepancy Detection Processors
	Discrepancy Detection Processor Patterns
	Reusing the Base Detect Discrepancy Action
	About the Base Detection Project and the Default Comparison Algorithm
	Adding New Filters and Handlers
	About Filters
	About Handlers
	Filters and CimType
	Filter and Handler Examples
	Adding Post-Processors

	About Discrepancy Resolution Processors
	Creating a Discrepancy Resolution Processor
	Implementing a Discrepancy Resolution Processor
	About the Implementation Interface
	About Input Parameters for the Invoke Method
	Return Type of Invoke Method

	About the General Flow of the Discrepancy Resolution Processor
	Fetching Discrepancies
	Grouping Discrepancies
	Handling Discrepancies
	Reporting the Resolution Result
	Handling Discrepancies Asynchronously

	4 Working with Discrepancies
	About Discrepancies
	About the Compare and Reference Sides
	About Discrepancy Types
	Attribute Value Mismatch
	Extra Entity and Missing Entity
	Extra Association and Missing Association
	Ordering Error and Association Ordering Error

	About Discrepancy Status
	About Discrepancy Detail

	5 Working with the POMS SDK
	About POMS
	Working with POMS Entities
	Working with POMS Relationships
	One-to-one Relationships
	One-to-Many or Many-to-Many Relationships
	Ordered and Unordered Relationships
	Bi-directional Relationships
	Relationship Entities

	Working with Specifications and Characteristics
	Working with the POMS Finder
	Find by Entity
	Find by JPQL
	Find with Paged Results
	POMS SDK Interfaces

	About Persist Results

	6 Working with the Extensibility SDK
	About Extensibility Scenarios
	Extending MIB II SNMP Discovery for Updated Vendor and Interface Type
	Extending an Existing Cartridge to Discover and Reconcile New Characteristics
	Extending the MIB II SNMP Discovery to Change Interface Name Value
	Multiple Vendor SNMP Discovery
	Multiple Protocol Discoveries

	7 Working with Automatic Discrepancy Resolution
	About Automatic Discrepancy Resolution
	About the Automatic Discrepancy Resolution Solution
	Action and Processors
	Scan Parameter Groups and the Network Integrity UI
	Reference Implementations

	Implementing Automatic Discrepancy Resolution
	Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge Solution
	Implementing Automatic Discrepancy Resolution in a Sealed Cartridge Solution

	Completing the Automatic Discrepancy Resolution Implementation
	Completing Automatic Discrepancy Resolution Using a Properties File
	Completing Automatic Discrepancy Resolution with a Custom Processor

	8 Working with Incremental TMF814 Discovery
	About Incremental TMF814 Discovery
	About the Incremental TMF814 Discovery Solution
	Action and Processors
	Copying Information From Previous Scan Results
	Scan Parameter Groups and the Network Integrity UI
	Reference Implementations

	Implementing Incremental TMF814 Discovery
	Implementing Incremental TMF814 Discovery in a Sealed Cartridge Solution

	9 Working with CPU Utilization-enabled Discovery
	About CPU Utilization-enabled Discovery
	About CPU Utilization-enabled Discovery Solution
	Action and Processors
	About the Mechanism of Comparing CPU Usage Values
	Scan Parameter Groups and the Network Integrity UI
	Reference Implementations

	Implementing CPU Utilization-enabled Discovery
	Implementing CPU Utilization-enabled Discovery in a Sealed Cartridge Solution

	10 Working with the Network Integrity Web Service
	About the Network Integrity Web Service
	Security
	Model Based
	Concurrency with UI and other Web Service Clients
	Listing of Network Integrity Web Service Operations

	Network Integrity Web Service Operations
	Create
	Entity Type Support

	Get
	Entity Type Support

	Get All
	Entity Type Support

	Delete
	Entity Type Support

	Update
	Entity Type Support

	Find
	Entity Type Support
	From and To Range
	Ascending and Descending
	Attribute Criteria
	Multiple Attribute Criteria
	Extended Attribute Criteria
	Criteria Operators
	Between/Not Between Operator
	Data Criteria
	Conjunction Criteria
	Find Response

	Network Integrity Web Service Special Function Operations
	Start Scan
	Stop Scan
	Get Latest Scan Status
	Submit Discrepancies For Resolution Processing

	Network Integrity Web Service Scenarios
	Creating a Scan
	Starting, Stopping, and Monitoring a Scan
	Retrieving Scan Results
	Working with Discrepancies

	Network Integrity Web Service Samples
	Contents of the Network Integrity Web Service Samples ZIP File
	Sample Java Client
	Sample Soap UI Project
	Submitting Request to the Server
	Specifying User Name and Password in Request

	11 Working with Scan Run Complete Notifications
	About Clients for Monitoring Scan Run Complete Notification Messages
	Implementing Custom Code to Stop a Scan

	12 Working with JCA Resource Adapters
	About Resource Adapters
	Understanding JCA Resource Adapter Connectivity Options
	Understanding JCA Resource Adapters with Network Integrity

	About Productized SNMP JCA Resource Adapter
	Installing the SNMP JCA Resource Adapter
	Extending the SNMP JCA Resource Adapter
	Record and Playback Mode
	Invoking the SNMP JCA Resource Adapter in a Network Integrity Cartridge

	About Third Party or Customized JCA Resource Adapters
	Building a JCA Resource Adapter in WebLogic
	Invoking a Third Party or Customized JCA Resource Adapter

	13 Working with Reports Extensibility
	About BI Publisher
	About BI Publisher Desktop

	Reports Provided with Network Integrity
	Scan History Report
	Discovery Scan Summary Report
	Device Discrepancy Detection Summary Report
	Device Discrepancy Detection Detail Report
	Discrepancy Corrective Action Report

	Network Integrity Report Building Blocks
	RTF Templates
	Report Definition Files
	Data Source Query Tools
	Parameters
	List of Values
	Rendering Options
	Report Properties

	Developing BI Publisher Reports
	Report Requirements
	Configuring a Data Source Tutorial
	Creating a Report Tutorial
	Building an RTF Template Tutorial
	Using Microsoft Word Native Features and XSL

	Using BI Publisher Features
	Scheduling Reports
	Enabling BI Publisher Scheduler Tutorial
	Using BI Publisher to Schedule Reports Tutorial

	Localizing Reports
	Localized Template Option
	XLIFF File Option

	Installing and Integrating BI Publisher with Network Integrity
	Installing BI Publisher in Standalone Mode
	Deploying BI Publisher
	Integrating BI Publisher with Network Integrity using WebLogic Enterprise Manager
	Integrating BI Publisher with Network Integrity using JConsole
	Integrating BI Publisher with the Network Integrity Installer

	Uploading and Exporting Reports
	Exporting a Report
	Uploading a Report

	14 Working with SOA Extensibility
	About SOA Extensibility
	Purpose of Documentation

	Extensibility Tasks
	Extensibility Tasks
	Installing Oracle Weblogic Server
	Installing Oracle JDeveloper
	Installing Oracle Application Runtime
	Installing Oracle SOA Suite
	Creating SOA Metadata Service Schemas
	Updating JDeveloper for Latest SOA Composite Editor
	Creating WebLogic Domain with SOA Products
	Creating and Updating Sample SOA Application Using Network Integrity Web Service
	Starting and Stopping SOA Servers
	Building and Deploying the SOA Application
	Testing Sample SOA application
	Testing Network Integrity SOA Application Using EM
	Testing Network Integrity SOA Application Using soa-infra
	Testing Network Integrity SOA Application Using SOAP UI Tool

	15 Localizing Network Integrity
	Software Requirements
	Setting the Language Preference in Internet Explorer
	Determining the Locale ID
	Localizing Network Integrity
	About the Localization Pack
	Creating the Localization Pack
	Deploying the Cartridge Containing the Localized Files
	Testing the Network Integrity Localization

	Localizing Network Integrity Help
	About Network Integrity Help
	About the Help Files

	Localizing the Network Integrity Help Files
	Extracting the Help Files
	Translating the Help Files
	Regenerating the Search Index File
	Creating the Localized Help JAR File
	Configuring the Oracle Help File

	Deploying the Localized Help System
	Testing the Network Integrity Help Localization

	A Network Integrity Plug-in Validation Error Messages
	Error Message Classifications and Conditions
	Design Studio Logging

