
Oracle® Fusion Middleware
Oracle API Gateway Explorer User Guide
11g Release 2 (11.1.2.4.0)

March 2015

Oracle API Gateway Explorer User Guide, 11g Release 2 (11.1.2.4.0)

Copyright © 1999, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and dis-
closure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or al-
lowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, per-
form, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the ap-
plicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, dis-
closure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Gov-
ernment contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in
FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or in-
tended for use in any inherently dangerous applications, including applications which may create a risk of personal injury.
If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their re-
spective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services. This docu-
mentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to the
hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or
damages incurred due to the use of this documentation.

The information contained in this document is for informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to
deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The develop-
ment, release, and timing of any features or functionality described in this document remains at the sole discretion of Or-
acle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Soft-
ware License and Service Agreement, which has been executed and with which you agree to comply. This document
and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated in-
to any contractual agreement with Oracle or its subsidiaries or affiliates.

13 March 2015

Contents

1. Getting Started ...
1. Oracle API Gateway Explorer Overview ... 10

Overview .. 10
Stress Test Services ... 10
Traffic Simulation ... 10
Sample SOAP Messages ... 10
Application-level Networking ... 11
Test Federated Identity Deployments ... 11
Test XML, REST, and SOAP .. 11
SOAP Attachments ... 11
Simple Graphical Keystore ... 11
Add or Remove Security Tokens ... 11
Transfer Encoding .. 11
Testing Tool for Design-time Governance .. 11

2. System Requirements .. 12
Prerequisites ... 12
Requirements .. 12
Installation Instructions .. 12

3. API Gateway Explorer Release Notes ... 13
Overview .. 13
In this Version .. 13
Installation .. 13
Documentation .. 13
Acknowledgements ... 13

4. OpenSSL License Issues .. 14
Overview .. 14
OpenSSL License .. 14
Original SSLeay License .. 14

2. General Configuration ...
1. Introducing Oracle API Gateway Explorer .. 16

Overview .. 16
API Gateway Explorer Classic View ... 16
API Gateway Explorer Design View .. 16
Checking WSDL for WS-I Compliance .. 16
Using the Send Request Command ... 17

2. Using the API Gateway Explorer Classic Mode ... 18
Overview .. 18
Auto-Generating SOAP Messages from WSDL Files ... 18
SOAP Request and Response .. 18
Connection Settings .. 19
Sign Request ... 19
Encrypt Request .. 20
Decrypt Request .. 20
Insert SAML Token ... 20
Insert WS-Security UsernameToken ... 20

3. Generating and Running Test Cases ... 21
Overview .. 21
Using WSDL to Generate Test Cases ... 21
Running Test Cases ... 21
Viewing the Results .. 22
Configuring Individual Test Cases .. 22

4. Running Attack Vectors .. 24

iii

Overview .. 24
Configuring an Attack Vector .. 24
Inserting Attack Vectors into Sample Messages .. 24
Viewing the Results .. 25

5. Testing WSDL Files for WS-I Compliance .. 26
Overview .. 26
Running the WS-I Compliance Test .. 26

6. Manage certificates and keys .. 27
Overview .. 27
View certificates and keys .. 27

Certificate management options .. 28
Configure an X.509 certificate ... 28

Create a certificate ... 28
Import certificates ... 29

Configure a private key .. 29
Private key stored locally ... 30
Private key provided by OpenSSL engine .. 30
Private key stored on external HSM ... 31

Configure HSMs and certificate realms ... 31
Manage HSMs with keystoreadmin .. 31
Step 1—Register an HSM provider .. 32
Step 2—Create a certificate realm and associated keystore .. 32
Step 3—Start the API Gateway Explorer when using an HSM .. 33

Configure SSH key pairs .. 34
Add a key pair ... 34
Manage OpenSSH keys .. 35

Configure PGP key pairs .. 35
Add a PGP key pair .. 35
Manage PGP keys .. 36

Global import and export options ... 36
Import and export certificates and keys ... 36
Manage certificates in Java keystores ... 36

Further information ... 37
7. Configuring Connection Settings .. 38

Overview .. 38
URL ... 38
Proxy Settings ... 38
Trusted Certificates ... 38
Client SSL Authentication ... 39
HTTP Authentication ... 39

8. Stress test with send request (sr) ... 40
Overview .. 40
Basic sr examples .. 40
Advanced sr examples .. 40
sr arguments ... 41

Further information ... 42
9. Global Schema Cache ... 43

Overview .. 43
Adding Schemas to the Cache .. 43
Schema Validation .. 44

10. General Preferences .. 45
Overview .. 45
Auto Format Response .. 45
JMS ... 45
Kerberos .. 45
Proxy Settings ... 45
Runtime Dependencies ... 45
SMTP .. 46

Oracle® Fusion Middleware

iv

SSL Settings ... 46
TCP/IP Monitor .. 46
Test Case Colors ... 47
Trace Level ... 47
VM Arguments ... 47
Web and XML .. 47
Wildcards ... 47
WS-I Settings .. 47

3. Attributes ..
1. Retrieve attribute from HTTP header ... 49

Overview .. 49
Configuration ... 49

2. Insert SAML attribute assertion .. 50
Overview .. 50
General settings ... 50
Assertion Details .. 51
Assertion Location .. 51
Subject Confirmation Method .. 52
Advanced settings .. 54

3. Retrieve attribute from message ... 56
Overview .. 56
Configuration ... 56

4. Authentication ...
1. Insert SAML authentication assertion .. 57

Overview .. 57
General settings ... 57
Assertion details settings ... 58
Assertion location settings .. 58
Subject confirmation method settings ... 59
Advanced settings .. 61

2. Insert WS-Security UsernameToken ... 63
Overview .. 63
General settings ... 63

Credential details ... 63
Advanced options ... 64

3. Set User Name ... 65
Overview .. 65
Configuration ... 65

5. Authorization ...
1. Insert SAML authorization assertion .. 66

Overview .. 66
General settings ... 66
Assertion details settings ... 66
Assertion location settings .. 67
Subject confirmation method settings ... 68

Asymmetric Key ... 69
Symmetric Key .. 69
Key Info .. 70

Advanced settings .. 70
6. Content Filtering ..

1. Content type filtering .. 72
Overview .. 72
Allow or deny content types .. 72
Configure MIME/DIME types ... 72

2. Content validation ... 73
Overview .. 73

Oracle® Fusion Middleware

v

Manual XPath configuration .. 73
XPath wizard ... 74

3. HTTP Status .. 75
Overview .. 75
Configuration ... 75

4. Has SOAP Body? ... 76
Overview .. 76
Configuration ... 76

5. Is SOAP Fault? ... 77
Overview .. 77
Configuration ... 77

6. HTTP header validation .. 78
Overview .. 78
Configure HTTP header regular expressions .. 78
Configure threatening content regular expressions .. 79
Regular expression format ... 80

7. Schema validation ... 81
Overview .. 81
General settings ... 81
Selecting the schema .. 81
Selecting which part of the message to match .. 81
Advanced settings .. 81
Reporting schema validation errors .. 83

8. Validate selector expression .. 86
Overview .. 86
Configure selector-based regular expressions .. 86

Configure a Regular Expression .. 86
Threatening content regular expressions ... 87

7. Conversion ...
1. Add HTTP header ... 88

Overview .. 88
Configuration ... 88

2. Set HTTP verb ... 89
Overview .. 89
Configuration ... 89

3. Remove attachments ... 90
Overview .. 90
Configuration ... 90

4. Set message .. 91
Overview .. 91
Configuration ... 91
Example of using selectors in the message body .. 91

8. Encryption ..
1. XML decryption .. 93

Overview .. 93
Configuration ... 93
Auto-generation using the XML decryption wizard ... 93

2. XML decryption settings ... 94
Overview .. 94
XML encryption overview ... 94
Nodes to decrypt .. 96
Decryption key ... 97
Options .. 97
Auto-generation using the XML decryption wizard ... 98

3. XML encryption .. 99
Overview .. 99
Configuration ... 99

Oracle® Fusion Middleware

vi

Auto-generation using the XML encryption settings wizard .. 99
4. XML encryption settings ... 100

Overview .. 100
XML encryption overview ... 100
Encryption key settings .. 102
Key info settings ... 103
Recipient settings ... 106
What to encrypt settings .. 108
Advanced settings .. 108
Auto-generation using the XML encryption settings wizard .. 109

5. XML Encryption Wizard .. 110
Overview .. 110
Configuration ... 110

9. Integrity ..
1. XML signature generation ... 111

Overview .. 111
General settings ... 111
Signing key settings .. 111

Asymmetric Key ... 111
Symmetric Key .. 111
Key Info .. 113

What to sign settings ... 116
Where to place signature settings .. 121
Advanced settings .. 122

Additional ... 122
Algorithm Suite .. 124
Options .. 124

2. XML signature verification ... 127
Overview .. 127
General settings ... 127
Signature verification settings ... 127
What must be signed settings ... 128
Advanced settings .. 128

10. Kerberos ...
1. Kerberos configuration ... 129

Overview .. 129
Kerberos configuration file—krb5.conf .. 129
Advanced settings .. 129
Native GSS library .. 130

2. Kerberos client authentication .. 131
Overview .. 131
General settings ... 131
Kerberos client settings ... 131
Kerberos token profile settings .. 132

11. Routing ...
1. Connection .. 133

Overview .. 133
General settings ... 133
SSL settings .. 133
Authentication settings .. 133
Additional settings .. 133

2. Connect to URL .. 134
Overview .. 134
General settings ... 134
Request settings .. 134
SSL settings .. 135

Trusted certificates ... 135

Oracle® Fusion Middleware

vii

Client certificates .. 135
Authentication settings .. 135
Additional settings .. 135

Retry settings .. 136
Failure settings .. 136
Proxy settings .. 137
Redirect settings .. 137
Header settings .. 137

3. HTTP status code ... 139
Overview .. 139
Configuration ... 139

4. Insert WS-Addressing information .. 140
Overview .. 140
Configuration ... 140

5. Send to JMS .. 141
Overview .. 141
Request settings .. 141
Response settings .. 143

6. Rewrite URL .. 145
Overview .. 145
Configuration ... 145

7. Route to SMTP ... 146
Overview .. 146
General settings ... 146
Message settings ... 146

8. Static router ... 147
Overview .. 147
Configuration ... 147

12. Utility ...
1. False filter ... 148

Overview .. 148
Configuration ... 148

2. Find certificate .. 149
Overview .. 149
Configuration ... 149

3. Pause processing ... 150
Overview .. 150
Configuration ... 150

4. Scripting language filter .. 151
Overview .. 151
Write a script ... 151

Use local variables ... 151
Add your script JARs to the classpath ... 152

Add your script JARs to the API Gateway Explorer classpath .. 152
Add your script JARs to Policy Studio ... 152

Configure a script filter ... 152
Add a script to the library ... 152

5. Test Case Shortcut .. 154
Overview .. 154
Configuration ... 154

6. True filter ... 155
Overview .. 155
Configuration ... 155

13. Common Configuration ..
1. Retrieve WSDL files from a UDDI registry .. 156

Overview .. 156
UDDI concepts .. 156

Oracle® Fusion Middleware

viii

UDDI definitions ... 156
Example tModel mapping for WSDL portType .. 158

Configure a registry connection ... 158
WSDL search .. 158
Quick search ... 159
Name search ... 159

UDDI v3 name searches .. 160
Advanced search ... 160
Advanced options ... 161
Publish ... 163

Add a businessEntity ... 163
Add a tModel ... 163

2. Connect to a UDDI registry ... 165
Overview .. 165
Configure a registry connection ... 165
Secure a connection to a UDDI registry ... 166

Configure Policy Studio to trust a registry certificate ... 166
Configure mutual SSL authentication .. 167

3. Configure XPath expressions .. 168
Overview .. 168
Manual configuration ... 168

Return a nodeset .. 169
XPath wizard ... 169

4. Signature location ... 171
Overview .. 171
Configuration ... 171

Use WS-Security actors ... 171
Use SOAP header .. 171
Use XPath expression ... 172

5. What to sign ... 174
Overview .. 174
ID configuration .. 174
Node locations ... 176
XPath configuration .. 176
XPath predicates .. 176
Message attribute ... 177

6. Select configuration values at runtime ... 178
Overview .. 178
Selector syntax .. 178

Access fields ... 178
Special selector keys .. 179
Resolve selectors ... 179

Example selector expressions ... 179
Message attribute ... 179
Environment variable .. 180
Key Property Store ... 180
Examples using reflection .. 180

Extract message attributes ... 181

Oracle® Fusion Middleware

ix

Oracle API Gateway Explorer Overview
Overview

Oracle API Gateway Explorer enables developers to test the performance, scalability, and security of enterprise services.
Using API Gateway Explorer, developers can test how services perform under load, how they deal with unexpected in-
put, and what their traffic ceiling is.

API Gateway Explorer can automatically generate request messages from the service interfaces defined in WSDL files.
Requests can then be signed and encrypted using XML Signature and XML Encryption before being sent to a target sys-
tem. Traditional security technologies such as SSL and HTTP authentication are also supported, as well as next-
generation security paradigms such as WS-Security and SAML.

Using WSDL files in this manner, you can create test suites for each service defined in the WSDL, where each suite
comprises several test cases. Test cases can then be run in parallel to stress test a target service.

The following sections describe some of the high-level functionality available in Oracle API Gateway Explorer.

Stress Test Services

How do your services perform under stress? What are your Web Service's traffic ceilings? What happens when they re-
ceive more traffic than they can cope with? API Gateway Explorer answers these questions with comprehensive services
stress testing.

Traffic Simulation

Use API Gateway Explorer to create and run your own battery of tests against internal application servers and Enterprise
Service Bus (ESB) platforms.

Sample SOAP Messages

Get started quickly with pre-built SOAP messages provided as standard.

10

Application-level Networking

API Gateway Explorer can create signed and encrypted XML messages without any requirement for coding. It supports
SSL, WS-Security, XML Signature, XML Encryption, and SAML.

Test Federated Identity Deployments

API Gateway Explorer creates SAML authentication and authorization assertions to test them against federated identity
infrastructures. Creating SAML assertions using API Gateway Explorer is significantly more simple than using a program-
ming toolkit for the same purpose.

Test XML, REST, and SOAP

Non-SOAP services can also be tested using API Gateway Explorer. In addition, services that are only called directly by
browsers (for example, REST services) can also be tested using API Gateway Explorer.

SOAP Attachments

You can use API Gateway Explorer to attach SOAP attachments to SOAP messages, simply and easily.

Simple Graphical Keystore

Encryption key management is difficult using programming toolkits. API Gateway Explorer turns key management into a
point-and-click task using a graphical keystore. Users can load multiple keys and certificates without using command-line
tools. With the keystore, you can encrypt XML for multiple recipients in one simple step.

Add or Remove Security Tokens

Automatically remove WS-Security tokens from messages so that you can quickly and simply move on to your next test.

Transfer Encoding

API Gateway Explorer includes all the varieties of transfer encoding used by Web services platforms.

Testing Tool for Design-time Governance

In a SOA Governance environment, API Gateway Explorer enables policies to be tested and refined at design time, be-
fore they are deployed. This enables a virtual circle of service definition, policy definition, policy testing, and policy refine-
ment.

Oracle API Gateway Explorer Overview

11

System Requirements
Prerequisites

WS-I Toolkit:
Before running the WS-I compliance test on imported WSDL files, first ensure the WS-I testing toolkit is installed on the
same machine on which you are running API Gateway Explorer. You must specify the location of the toolkit on the WS-I
Settings screen on the global Preferences screen, available in the Window > Preferences menu option. You can
download the toolkit from www.ws-i.org [http://www.ws-i.org/].

Requirements

This section describes the system requirements for API Gateway Explorer:

Platform Supported Versions

Windows
• Windows 7
• Windows Server 2008
• Windows XP Professional

Solaris
• Solaris 10

Linux
• Centos 5.2
• Debian GNU/Linux 5.0 (Lenny)
• Oracle Linux 5.5
• Red Hat Enterprise Linux 5, 6.2
• SUSE Linux Enterprise Server 11
• Ubuntu 11.04, 12.04

Both i386 and x86_64 architectures are supported.

Important
API Gateway Explorer may not run on systems that do not meet these requirements. When new Linux and
distributions are released, Oracle modifies and tests its products for stability and reliability on these plat-
forms. Oracle makes every effort to add support for new kernels and distributions in a timely manner.
However, until a kernel or distribution is added to this list, its use with Oracle products is not supported. If
you are running any popular Linux distribution with a 2.6 kernel and libc version 6, Oracle endeavors to
support you if issues arise.

Installation Instructions

For details on how to install API Gateway Explorer, see the API Gateway Installation and Configuration Guide.

12

http://www.ws-i.org/
http://www.ws-i.org/

API Gateway Explorer Release Notes
Overview

The following release notes describe installation, running, and other known issues for API Gateway Explorer.

In this Version

The following features are available in this version of API Gateway Explorer:

• Auto-generation of SOAP messages from WSDL files.
• Support for generation of SOAP 1.2 messages from WSDL files.
• Check WSDL files for WS-I compliance.
• Support for different WSU, WSSE, and SOAP namespaces.
• Advanced stress testing functionality.
• Improved interface.
• Ability to create, save, and load test suites.
• Ability to create and send multiple requests to a Web service as part of a test suite.
• Extra general configuration options, including JVM arguments and trusted certificates for connecting to SSL servers.

Installation

Do not install into a directory that contains the following characters: ';?@=&$-_+! *'()'

Documentation

The documentation cannot be viewed from the CD when the CD-ROM driver adheres strictly to the ISO 9600 standard.
This is the international standard for CD-ROM file format, and does not allow filenames longer than 8 characters, or file-
names containing capital letters. As a result several of the document links are broken. This problem should only manifest
itself when reading the documentation from the CD on Solaris machines. The work around here is to copy the document-
ation on to the local drive when you wish to view the documentation.

Acknowledgements

This product includes software developed by the Apache Software Foundation [http://www.apache.org/]

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (ht-
tp://www.openssl.org/) [http://www.openssl.org/]. It also includes software written by Tim Hudson (tjh@cryptsoft.com).
For more information, please refer to the full license terms in OpenSSL License Issues.

This product includes software developed by James Cooper.

13

http://www.apache.org/
http://www.apache.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/

OpenSSL License Issues
Overview

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL License and the original SS-
Leay license apply to the toolkit.

See below for the actual license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license
issues related to OpenSSL please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following dis-
claimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.

• All advertising materials mentioning features or use of this software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
(http://www.openssl.org/)"

• The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived
from this software without prior written permission. For written permission, please contact openssl-
core@openssl.org.

• Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names
without prior written permission of the OpenSSL Project.

• Redistributions of any form whatsoever must retain the following acknowledgement:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
==

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software
written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).

14

The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the following conditions are adhered to. The fol-
lowing conditions apply to all code found in this distribution, be it the RC4, RSA, hash, DES, etc, code; not just the SSL
code. The SSL documentation included with this distribution is covered by the same copyright terms except that the hold-
er is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is
used in a product, Eric Young should be given attribution as the author of the parts of the library used.

This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the
package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

• Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following dis-

claimer in the documentation and/or other materials provided with the distribution.
• All advertising materials mentioning features or use of this software must display the following acknowledgement:

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"

The word 'cryptographic' can be left out if the routines from the library being used are not cryptographic related.
• If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you

must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)."

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this code cannot be changed. i.e. this
code cannot simply be copied and put under another distribution license (including the GNU Public License).

OpenSSL License Issues

15

Introducing Oracle API Gateway Explorer
Overview

You can use the Oracle API Gateway Explorer testing utility to test the security and performance of enterprise services.
API Gateway Explorer is a vital tool for administrators who want to test the policies acting on a service before moving the
service from a testing environment to a production environment.

API Gateway Explorer can generate SOAP messages automatically from WSDL files and display them. Application-level
security can then be applied to messages by adding XML Signatures, XML Encryption segments, SAML assertions, and
WS-Security tokens. Requests can then be sent to the target service to make sure it is processing the security tokens
appropriately. Traditional security technologies, such as SSL and HTTP authentication, are also supported.

Likewise, API Gateway Explorer can check the operational performance of the service through its comprehensive stress
testing capabilities. By sending multiple request messages to the service in parallel, API Gateway Explorer can simulate
the type of traffic the service will receive in the production environment.

Subsequent topics describe in detail exactly how to use API Gateway Explorer to perform security and performance test-
ing on services. However, before doing this, this topic introduces some concepts to help define how API Gateway Ex-
plorer performs various types of testing.

API Gateway Explorer Classic View

Users of previous versions of API Gateway Explorer will recognize the Classic view because it has very similar features
to previous incarnations of API Gateway Explorer.

You can use the Classic view to load SOAP messages, add security tokens into the messages, and send them to target
services to see how they handle them. Whereas older API Gateway Explorer versions required you to copy and paste
SOAP messages into the Request panel, API Gateway Explorer 11.1.2.4.0 enables you to auto-generate SOAP mes-
sages from the WSDL files that contain the service definitions.

For more details, see the topic on Using the API Gateway Explorer Classic Mode.

API Gateway Explorer Design View

The Design view enables you to auto-generate a SOAP message, or a Test Case, for each SOAP operation defined in
the WSDL file. You can then configure a series of message filters to act on each of these messages before they are sent
in batch mode to the service. For example, you can add security tokens, HTTP headers, and attachments, before send-
ing them to the target service.

Similarly, you can configure a number of message filters to act on the SOAP response message returned from the ser-
vice to ensure that the request was handled appropriately. For example, you may want to run an XML Schema against
the response, or use an XPath expression to check the value of a particular element in the response, or you may even
just want to check the HTTP status on the response.

You can also create a series of Attack Vector Messages that contain common attacks, such as SQL injection and XPath
injection attacks, and send them to the service to make sure that the security in place can handle such threats.

For more information on generating Test Cases and Attack Vector Messages in the Design view, see the following top-
ics:

• Generating and Running Test Cases
• Running Attack Vectors

Checking WSDL for WS-I Compliance

16

When using a WSDL file to auto-generate Test Cases, API Gateway Explorer can check the WSDL for compliance with
the WS-I Basic Profile. The Basic Profile was designed to smooth out interoperabilty issues between different SOAP
vendors. The assertions listed in the Profile are designed to ensure maximum interoperability between different imple-
mentations of SOAP and different services.

For more details, see the topic on Testing WSDL Files for WS-I Compliance.

Using the Send Request Command

You can use the Send Request utility to stress test services by sending large numbers of requests in parallel from the
command line. The Send Request (sr) tool ships with a large number of configuration options that enable you to perform
complicated tests on Web Services.

For more details, see the topic on Stress test with send request (sr).

Introducing Oracle API Gateway Explorer

17

Using the API Gateway Explorer Classic Mode
Overview

API Gateway Explorer Classic Mode shows a simplified view of a SOAP request and its corresponding response, to-
gether with any other relevant information, including HTTP headers, SOAP Action, certificates, and attachments. Classic
Mode is most suitable for sending single requests to a Web service or target system to see how it behaves. You can per-
form more complicated testing scenarios using the Design Mode.

The following sections describe the functionality available from the Classic tab on the right in the toolbar.

Auto-Generating SOAP Messages from WSDL Files

A WSDL file contains definitions of SOAP operations and describes the wire format of SOAP messages for those opera-
tions. API Gateway Explorer can use these definitions to auto-generate sample SOAP messages, which can then be
sent to the service URL specified in the WSDL file. Complete the following steps to do this:

1. Click the Load button next to the WSDL field at the top of the API Gateway Explorer interface. The Load WSDL dia-
log is displayed.

2. The WSDL file can be loaded from a file, URL, or UDDI registry. Select the appropriate option, and enter or browse
to the location of the URL. For more information on using the UDDI option, see the topic on Retrieve WSDL files
from a UDDI registry.

3. On the WSDL Operations screen, select the SOAP operation for which you wish to auto-generate a sample SOAP
message.

Note
Only one operation can be selected when in Classic Mode.

4. Click the Finish button to generate the SOAP message for the selected operation.
5. The auto-generated SOAP message is displayed in the SOAP Request panel of the API Gateway Explorer.

The auto-generated SOAP message contains comments above elements that have certain cardinality rules associated
with them to help you create more formally correct SOAP messages. Similarly, where an element's content model com-
prises a sequence or choice of elements or values, these options are listed in the comment.

SOAP Request and Response

The SOAP Request panel contains the currently loaded SOAP message. When a request has been loaded into the pan-
el, you can insert security tokens (for example, XML Signature and XML Encryption) into the message before sending it
to the Web service specified in the URL field at the top of the API Gateway Explorer screen. The options to modify the
message in this way are available to the left of the SOAP Request panel.

As discussed in the previous section, you can auto-generate a request for a SOAP operation exposed by a Web service
using the WSDL for that service. In this case, the SOAP Request panel is automatically populated with the SOAP mes-
sage. However, you can also load a SOAP message from a file using the File > Load Request menu option.

A number of sample SOAP messages for live sample Web services ship with the API Gateway Explorer. These samples
are available from the File > Samples menu. When a sample service is selected from this menu, the message for that
service is loaded into the SOAP Request panel. Furthermore, the URL, SOAP Action, and WSDL fields are all popu-
lated accordingly.

When a message has been loaded into the SOAP Request panel (or SOAP Response panel), there are several differ-

18

ent views of the message available, which can be selected by clicking one of the following tabs at the bottom of the pan-
el:

• Design:
Displays a tree-view of the SOAP message, which highlights the hierarchical nature of the message. Different node
types, including element, attributes, comments, and the XML declaration itself, and their corresponding values are
displayed in the Design Mode.

• Source:
This view displays a textual representation of the SOAP message.

• Headers:
Lists all HTTP headers associated with the message in a table. You can Add, Remove, and Remove All headers
using the links at the top of the table.

• Attachments:
Lists all attachments associated with the message. You can add and remove attachments using the links at the top
of the table. You can also save an attachment to disk by selecting the attachment in the table and clicking the Save
attachment to disk link at the bottom.

No matter how the message is loaded into the SOAP Request panel, it can always be sent using the Send Request but-
ton on the left of the screen.

When you press the Send Request button, the message in the SOAP Request panel is sent to the Web service running
at the address specified in the URL field.

The response from the Web service is displayed in the SOAP Response panel. You can view any HTTP headers or at-
tachments that were returned with the SOAP response by clicking the Headers and Attachments tabs, respectively.
Similarly the HTTP response status (for example, HTTP/1.1 200 OK is displayed at the top of the panel.

Connection Settings

When you click the Send Request button, and if this is the first message you have sent to the Web service running at
the address specified in the URL field, the Connection Settings dialog is displayed. You can configure the following set-
tings:

• Proxy settings for the target Web service.
• CA and server certificates that are considered trusted for SSL purposes.
• Client SSL certificate to use to authenticate to the target Web service.
• A username and password to use to authenticate to the Web service using HTTP basic or digest authentication.

For more details, see the topic on Configuring Connection Settings.

Sign Request

As discussed earlier, when a SOAP message has been loaded into the SOAP Request panel, you can insert one or
more different types of security token into the message. One such token is an XML Signature, which contains a digital
signature of (a part of) the SOAP message.

By signing the message, the integrity of the message is guaranteed. In other words, any changes to the message after it
has been signed can be detected by someone validating the XML Signature on the message.

You can use API Gateway Explorer to check the validating process on the server. Typically, you would achieve this by
loading a message into API Gateway Explorer, signing it, and sending it to the server where the signature is being valid-
ated. The next step would be to change some of the content covered by the Signature to make sure that the changes are
detected by the server.

To sign a message that has already been loaded into the SOAP Request panel, select the Security > Decrypt Request

Using the API Gateway Explorer Classic Mode

19

menu option. You can use the Sign Message screen to configure what part of the message is signed, where to place the
Signature, and what algorithms to use, along with other details about the signing process. For more details, see the topic
on XML signature generation.

Encrypt Request

You can also insert an XML Encryption block into the message. The encrypted block (usually) replaces the original XML
chunk that was encrypted. By encrypting the message, the sender can make sure that only the intended recipient of the
message can read it.

You can use the Encrypt Request wizard, which is available by selecting the Security > Decrypt Request menu option,
to encrypt a message that has been loaded into the SOAP Request panel.

The first step in configuring the XML Encryption Wizard is to select the certificate that contains the public key to use to
encrypt the data. When the data has been encrypted with this public key, it can only be decrypted using the correspond-
ing private key. Select the relevant certificate from the list of Certificates in the Trusted Certificate Store.

After clicking the Next button on the first screen of the wizard, the configuration options for the XML Encryption Set-
tings screen are displayed. For more details, see the topic on XML encryption settings.

Decrypt Request

When a SOAP message containing an XML Encryption block is loaded into the SOAP Request panel, you can decrypt
the encrypted block using the XML Decryption Settings screen. This is available by selecting the Security > Decrypt
Request menu option.

For more information on configuring the fields on this screen, see the topic on XML decryption settings.

Insert SAML Token

You can insert a SAML authentication or authorization assertion into a SOAP message by selecting the Security > In-
sert SAML Token menu option from the Classic Mode. There are further menu options to add a SAML authentication
and/or authorization assertion.

For more information on inserting SAML tokens into the message, see the topics on Insert SAML authentication asser-
tion and Insert SAML authentication assertion.

Insert WS-Security UsernameToken

Finally, you can use API Gateway Explorer to insert a WS-Security UsernameToken into a SOAP message. This option
is available by selecting the Security > Insert WS-Security Username menu option.

For more information on inserting a UsernameToken into a message, see the topic on Insert WS-Security UsernameT-
oken.

Using the API Gateway Explorer Classic Mode

20

Generating and Running Test Cases
Overview

You can use the Oracle API Gateway Explorer test tool to auto-generate SOAP messages, insert security tokens into
them, send them to their target Web services, and validate the responses from them. You can view the results for each
step of the overall transaction.

A Test Case is used to perform a single test run as described above. The Test Case sets the input message, and then a
Test Case policy modifies the message in any way necessary (for example, inserting a SAML authentication assertion)
before sending them on to the Web service. The response from the Web Service can then be validated using a series of
validation filters.

This topic describes the stages involved in creating and running Test Cases, from auto-generating SOAP messages to
validating the responses from the Web service.

Using WSDL to Generate Test Cases

A Web services Description Language (WSDL) file contains the interface definitions for a Web service. It lists the physic-
al address of the service, the operations exposed by the service, together with the rules that determine the formats of the
SOAP messages that should be sent to the service.

API Gateway Explorer can use this information to automatically generate a Test Case that can then be used to test every
operation exposed by the Web Service. A Test Case is created for each operation defined in the WSDL. A single Test
Case Input is created for each Test Case, which contains a sample request for the SOAP operation. The sample SOAP
message is automatically populated from the operation definition contained in the WSDL file.

The auto-generated Test Case hierarchy can be summarized as follows:

• A Test Suite is generated to group together the Test Cases for the operations defined in the WSDL. binding.
• A Test Case is generated for each operation that has a SOAP binding defined in the WSDL, and that was selected

in the WSDL Operations screen of the Load WSDL wizard.
• Each Test Case contains a single Test Case Input, which consists of an automatically generated sample SOAP

message for the operation and an HTTP header containing the corresponding SOAPAction.

Complete the following steps to auto-generate a Test Suite, together with its Test Cases:

Step 1: Load the WSDL
The first step in creating a Test Suite is to load a WSDL file. To do this, select the Load button next to the WSDL field at
the top of the API Gateway Explorer interface. The WSDL can be loaded from a file, URL, or a UDDI registry. For more
details, see the topic on Retrieve WSDL files from a UDDI registry. Click the Next button when you have specified the
WSDL.

Step 2: Select the Operations
On the WSDL Operations screen, select the SOAP operations that you wish to generate Test Cases for by selecting the
boxes next to the required operations. Click the Finish button when you have selected the operations. You can see your
newly generated Test Suite and its Test Cases in the Navigator panel.

Note
You can only generate Test Cases for those operations that have a SOAP binding.

Running Test Cases

21

Having generated some Test Cases using a WSDL file, you can now run them against the Web service.

Important
You may wish to modify the default parameters that were inserted automatically into the message parts in
the SOAP message. You can modify message parts by clicking Test Case Input in the Navigator, and
then editing the parts in the SOAP Message panel. You should modify any message parts, if necessary,
before running the corresponding Test Cases.

Before running Test Cases you must be in Design Mode. To switch to this mode, click the Design tab on the left in the
toolbar.

You can run Test Cases in the following ways:

• Run a Single Test Case:
You can run a single Test Case by right-clicking the Test Case in the Navigator and selecting the Run Test Case(s)
menu option.

• Run all Test Cases in a Test Suite:
You can run all Test Cases belonging to a Test Suite in batch mode by right-clicking the Suite in the Navigator, and
selecting the Run Test Case(s) menu. option.

• Run all Test Cases in the Workspace:
If you wish to run all Test Suites (and their Test Cases), you can right-click the top-level Workspace node in the
Navigator, and select the Run Test Case(s) menu option.

Viewing the Results

When any Test Cases are run (individually or in batch mode), the results are displayed in the Results Mode of the API
Gateway Explorer interface. You can review results for individual Test Cases by clicking the Tests tab at the bottom of
the Results tab.

The results are listed according to the name of their Test Suite. The Test Suite node can be expanded to display the res-
ults of each of the Test Cases. You can click the Test Case node to display the response from the Web service for the
corresponding SOAP operation.

Note
You can format the SOAP response into a more user-friendly format by selecting the Auto Format XML
Response box in the Auto Format Response section of the global Preferences dialog. This is available
from the Window > Preferences top-level menu.

When you expand each of the Test Cases you can see that a number of steps were performed. For a default auto-
generated Test Suite, these steps are called Rewrite URL, Static Router, and Connection. These steps are called fil-
ters, and can be configured for each Test Case by clicking the Test Case node in the Navigator view.

You can export all results currently on display in the table in the Results tab by selecting the Export Results option in
the drop-down menu beside the triangular green Run button in the toolbar. When this option is selected, the current res-
ults set is written out to an XML file. You can import this results set again by selecting the Import Results option, and
browsing to the XML file that you exported the results to.

You can also select Clear Results to clear the table completely. Make sure you have saved any results that you may
want to reuse before clearing the Stress Test Results table.

Configuring Individual Test Cases

Generating and Running Test Cases

22

To see the filters that comprise an individual Test Case, click the Test Case node in the Navigator tree. The policy of fil-
ters that make up the Test Case is displayed in the Design Mode in the main panel of the API Gateway Explorer inter-
face.

By default, any Test Case that was auto-generated from a WSDL file contains instances of the following filters:

• Rewrite URL
• Static Router
• Connection

These filters are automatically populated with the address of the Web service defined in the WSDL file. The auto-
generated message from the Test Case Input is passed into this policy, which is responsible for routing the message on
to the configured destination.

You can add several other filters to the policy to enable you to create powerful and complex tests. Several categories of
filters are located on the right-hand side of the API Gateway Explorer interface.

To add a filter to a policy, drag and drop the filter from the palette on to the policy. You can drag a filter on to a green ar-
row on a previously configured policy to insert the filter at that point in the policy.

Filters can be joined together using the Success Path (green) and Failure Path (red) arrows, which are located just
above the filter palette. If a filter fails (for example, schema validation fails), the failure path is followed. However, if a filter
runs successfully (for example, schema validates successfully), the success path is followed.

If you want to validate the response message from the Web service, you must place the validating filters after the Con-
nection filter in the policy. This filter is responsible for making the connection out to the Web service, sending the re-
quest, and receiving the response. Therefore, any filters that are placed after it in a policy are effectively acting on the re-
sponse message.

You can mark a filter as the starting point of the policy by right-clicking the filter in the policy, and selecting the Set as
Start menu option.

For more information on the filters available in API Gateway Explorer, see the Message Filters section in the product
documentation. You can find a links to the main categories of filters from the main index page of the documentation.

Generating and Running Test Cases

23

Running Attack Vectors
Overview

The Oracle API Gateway Explorer testing utility enables you to insert common security attack vectors into Test Case
messages. Attack vectors include SQL injection attacks where a SQL command is inserted as the value of a message
parameter in a SOAP message. If the code processing the parameter is carelessly written, it can unknowingly execute
the SQL command. For example, this SQL command could return all user data from a Users database, drop a table from
a database, or delete an entire database altogether. Because of this, the consequences of not checking for SQL syntax
(and other attack vectors) on the server-side can be very serious.

As discussed in the Generating and Running Test Cases tutorial, API Gateway Explorer can auto-generate a Test Case
for each SOAP operation defined in a WSDL file. A sample input message is associated with each Test Case. You can
then create an Attack Vector Message from the sample by inserting a pre-configured attack vector into the message.

This topic describes the various stages involved in creating and running Attack Vectors.

Configuring an Attack Vector

You can configure Attack Vectors in the Design Mode of the API Gateway Explorer interface. When a Test Case Input
has been loaded (usually by loading a WSDL), you can insert Attack Vectors into the message by clicking the Security
Vectors tab on the bottom of the screen.

All pre-configured attack vectors are listed by name in the table on the left of the screen. You can add a new attack vec-
tor by clicking the Edit List link at the bottom. You can use the Security Attack Vectors dialog to add a new Attack Vec-
tor to the library.

Click the Add Attack Vector button in the toolbar, and enter a name for the new vector in the field provided. On clicking
the OK button, the new Attack Vector name is displayed in the table. You can then enter the content of the Vector in the
text area. You can edit any of the existing Attack Vectors by clicking the Vector's name in the table, and entering the new
content in the text area. Similarly, you can remove an existing attack vector by clicking it in the table, and clicking the Re-
move Attack button in the toolbar.

Click the Close button when you have finished adding your attack vectors. In the next section, you can find out how to in-
sert these attack vectors into sample messages.

Inserting Attack Vectors into Sample Messages

Complete the following steps to insert Attack Vectors into sample SOAP messages and send them to a Web service.
This feature is only available in the Design Mode of API Gateway Explorer, so you must select the Design on the right in
the toolbar.

Step 1: Load the WSDL File
You must first auto-generate your Test Cases using a WSDL file. To do this, select the Import WSDL button at the top of
the API Gateway Explorer interface. The WSDL can be loaded from a file, URL, or a UDDI registry. For more details, see
topic on Retrieve WSDL files from a UDDI registry. Click the Next button when you have specified the WSDL.

Step 2: Select the Operations
On the WSDL Operations screen, select the SOAP operations that you wish to generate Test Cases for by selecting the
boxes next to the required operations. Click the Finish button when you have selected the operations. You can see your
newly generated Test Suite and its Test Cases in the Navigator panel.

Note
You can only generate Test Cases for those operations that have a SOAP binding.

24

Step 3: Open the Security Vectors Screen
Select the Test Case Input (node) in the Test Navigator, and click the Security Vectors tab at the bottom of the Design
Mode screen. You can see the list of Security Vectors in the table on the left and the Test Case Input message in the
texta area on the right. You can add any new Attack Vector at this time by clicking the Edit List button as described in
the previous section.

Step 4: Insert the Attack Vector into the Message
To insert an Attack Vector into the message, select the Attack Vector in the table on the left of the message. Then select
the node in the SOAP request where you want to insert the Attack Vector in the source view on the right of the screen.
Finally, to insert the Attack Vector, click the Insert button in the middle of the screen. The selected Attack Vector is inser-
ted as the content of the selected node in the message.

Step 6: Repeat for Multiple SOAP Operations
If you have generated Test Case Inputs for multiple SOAP operations from the WSDL, you can repeat the steps above to
insert Attack Vectors into each of the generated requests.

Step 7: Run the Attack Vector Messages
You can run attack vectors at the Workspace, Test Suite, or Test Case level. By right-clicking the Test Case node in the
Navigator tree, and selecting the Run menu option, you can just run the Attack Vector Messages associated with that
Test Case. Similarly, you can run all Attack Vector Messages associated with a Test Suite by selecting the Test Suite
node, and clicking the Run button at the top of the Navigator. (The right-click Run option is also available here.) Finally,
you can run all Attack Vector Messages for the Workspace by selecting the Workspace node in the tree and clicking the
Run button. The green Run button at the top of the API Gateway Explorer interface will run all tests in the Workspace.

Viewing the Results

When any Attack Vector Messages are run (individually or in batch mode), the results are displayed in the Results Mode
of the API Gateway Explorer interface. By default, when tests are run you are automatically presented with the results in
the Results Mode screen.

The results are listed according to the name of their Test Suite. You can expand the Test Suite node to display the res-
ults of each of the Test Cases. You can then click the Test Case node to display the response from the Web service for
the corresponding SOAP operation.

Note
You can format the SOAP response into a more user-friendly format by selecting the Auto Format XML
Response box in the Auto Format Response section of the global Preferences dialog. The global Prefer-
ences dialog is available from the Window > Preferences top-level menu.

When you expand each of the Test Cases you can see that a number of steps are performed. For a default auto-
generated Test Suite there are just a single Connect to URL step. Each of these steps corresponds to a message filter,
which can be configured by double clicking it in the Test Navigator tree.

The Clear Results option is available by right-clicking on any node in the Test Case Results tree and can be used to
clear the Results table completely.

Running Attack Vectors

25

Testing WSDL Files for WS-I Compliance
Overview

Before loading a WSDL file to create sample SOAP messages or Test Cases, you can test the WSDL file for compliance
with the WS-Interoperability (WS-I) Basic Profile (BP). The Basic Profile consists of a set of assertions or guidelines on
how to ensure maximum interoperability between different implementations of Web services. For example, there are re-
commendations on the SOAP style to use (document/literal), how schema information is included in WSDL files,
and how message parts are defined to avoid ambiguity for consumers of WSDL files.

API Gateway Explorer can test WSDL files for conformance against the recommendations described in the Basic Profile.
A report is generated showing which recommendations have passed and which have failed. While you can still load a
WSDL file that does not comply with the Basic Profile, there is no certainty that consumers of the Web Service can use it
without encountering problems.

Important
Before you run the WS-I compliance test, you must ensure that the Java version of the Interoperability
Testing Tools is installed on the machine on which the API Gateway Explorer is running. You can download
these tools from www.ws-i.org [http://www.ws-i.org].

To configure the location of the WS-I testing tools, select Window > Preferences from the API Gateway Explorer main
menu. In the Preferences dialog, select the WS-I Settings, and browse to the location of the WS-I testing tools. You
must specify the full path to these tools. For example:

C:\Program Files\WSI_Test_Java_Final_1.1\wsi-test-tools

For more details on configuring WS-I settings, see the General Preferences topic.

Running the WS-I Compliance Test

To run the WS-I compliance test on a WSDL file, perform the following steps:

1. Select Tools > Run WS-I Compliance Test from the API Gateway Explorer main menu.
2. In the Run WS-I Compliance Test dialog, browse to the WSDL File or specify the WSDL URL.
3. Click OK. The WS-I Analysis tools run in the background in API Gateway Explorer.

The results of the compliance test are displayed in your browser in a WS-I Profile Conformance Report. The overall
result of the compliance test is displayed in the Summary section. The results of the WS-I compliance tests are grouped
by type in the Artifact: description section. For example, you can access details for a specific port type, operation, or
message by clicking the appropriate link in the Entry List table. Each Entry displays the results for the relevant WS-I
Test Assertions.

26

http://www.ws-i.org
http://www.ws-i.org

Manage certificates and keys
Overview

For API Gateway Explorer to trust X.509 certificates issued by a specific Certificate Authority (CA), you must import that
CA's certificate into the API Gateway Explorer's trusted certificate store. For example, if API Gateway Explorer is to trust
secure communications (SSL connections or XML Signature) from an external SAML Policy Decision Point (PDP), you
must import the PDP's certificate, or the issuing CA's certificate into the API Gateway Explorer certificate store.

In addition to importing CA certificates, you can import and create server certificates and private keys in the certificate
store. These can be stored locally or on an external Hardware Security Module (HSM). You can also import and create
public-private key pairs. For example, these can be used with the Secure Shell (SSH) File Transfer Protocol (SFTP) or
with Pretty Good Privacy (PGP).

View certificates and keys

To view the certificates and keys stored in the certificate store, select Certificates and Keys > Certificates in the tree.
Certificates and keys are listed on the following tabs in the Certificates window:

• Certificates with Keys: Server certificates with associated private keys
• Certificates: Server certificates without any associated private keys
• CA: Certificate Authority certificates with associated public keys

You can search for a specific certificate or key by entering a search string in the text box at the top of each tab, which
automatically filters the tree.

27

Certificate management options

The following options are available at the bottom right of the window:

• Create/Import: Click to create or import a new certificate and private key. For details, see the section called
“Configure an X.509 certificate”.

• Edit: Select a certificate, and click to edit its existing settings.
• View: Select a certificate, and click to view more detailed information.
• Remove: Select a certificate, and click to remove the certificate from the certificate store.
• Keystore: Click this to export or import certificates to or from a Java keystore. For details, see the section called

“Manage certificates in Java keystores”.

Configure an X.509 certificate

To create a certificate and private key, click Create/Import. The Configure Certificate and Private Key dialog is dis-
played. This section explains how to use the X.509 Certificate tab on this dialog.

Create a certificate

Configure the following settings to create a certificate:

• Subject:
Click Edit to configure the Distinguished Name (DName) of the subject.

• Alias Name:
This mandatory field enables you to specify a friendly name (or alias) for the certificate. Alternatively, you can click

Manage certificates and keys

28

Use Subject to add the DName of the certificate in the text box instead of a certificate alias.
• Public Key:

Click Import to import the subject's public key (usually from a PEM or DER-encoded file).
• Version:

This read-only field displays the X.509 version of the certificate.
• Issuer:

This read-only field displays the distinguished name of the CA that issued the certificate.
• Choose Issuer Certificate:

Select to explicitly specify an issuer certificate for this certificate (for example, to avoid a potential clash or expiry is-
sue with another certificate using the same intermediary certificate). You can then click the browse button on the
right to select an issuer certificate. This setting is not selected by default.

• Not valid before:
Select a date to define the start of the validity period of the certificate.

• Not valid after:
Select a date to define the end of the validity period of the certificate.

• Sign Certificate:
You must click this button to sign the certificate. The certificate can be self-signed, or signed by the private key be-
longing to a trusted CA whose key pair is stored in the certificate store.

Import certificates

You can use the following buttons to import or export certificates into the certificate store:

• Import Certificate:
Click to import a certificate (for example, from a .pem or .der file).

• Export Certificate:
Click to export the certificate (for example, to a .pem or .der file).

Configure a private key

Use the Private Key tab to configure details of the private key. By default, private keys are stored locally (for example, in
the API Gateway Explorer certificate store). They can also be provided by an OpenSSL engine, or stored on a Hardware
Security Module (HSM) if required.

API Gateway Explorer supports PKCS#11-compatible HSM devices. For example, this includes Thales nShield Solo ,
SafeNet Luna SA, and so on.

Manage certificates and keys

29

Private key stored locally

If the private key is stored in the API Gateway Explorer certificate store, , select Private key stored locally. The follow-
ing options are available for keys stored locally:

• Private key stored locally:
This read-only field displays details of the private key.

• Import Private Key:
Click to import the subject's private key (usually from a PEM or DER-encoded file).

• Export Private Key:
Click to export the subject's private key to a PEM or DER-encoded file.

Private key provided by OpenSSL engine

If the private key that corresponds to the public key in the certificate is provided by an OpenSSL engine, select Private
key provided by OpenSSL Engine.

Configure the following fields to associate a key provided by the OpenSSL engine with the current certificate:

• Engine name:
Enter the name of the OpenSSL engine to use to interface to an HSM. All vendor implementations of the OpenSSL
Engine API are identified by a unique name. See your vendor's OpenSSL engine implementation or HSM document-
ation to find out the name of the engine.

Manage certificates and keys

30

• Key Id:
Enter the key ID used to uniquely identify a specific private key from all others stored on an HSM. When you com-
plete this dialog, the private key is associated with the certificate that you are currently editing. Private keys are iden-
tified by their key ID by default.

Private key stored on external HSM

If the private key that corresponds to the public key stored in the certificate resides on an external HSM, select Private
key stored on Hardware Security Module (HSM), and enter the name of the Certificate Realm.

Note
To use the API Gateway's PKCS#11 engine to access objects in an external HSM, the corresponding HSM
provider and certificate realms must also be configured. For more details, see the section called “Configure
HSMs and certificate realms”.

Configure HSMs and certificate realms

Certificate realms are abstractions of private keys and public key certificates, which mean that policy developers do not
need to enter HSM-specific configuration such as slots and key labels. Instead, if a private key exists on an HSM, the de-
veloper can configure the certificate to show that its private key uses a specific certificate realm, which is simply an alias
for a private key (for example, JMS Keys).

For example, on the host machine, an administrator could configure the JMS Keys certificate realm, and create a key-
store for the realm, which requires specific knowledge about the HSM (for example, PIN, slot, and private key label). The
certificate realm is the alias name, while the keystore is the actual private keystore for the realm.

Manage HSMs with keystoreadmin

The keystoreadmin script enables you to perform the following tasks:

• Register an HSM provider
• List registered HSM providers
• Create a certificate realm
• List certificate realms

For example, if a policy developer is using JMS, and wants to indicate that private keys exist on an HSM, they could in-
dicate that the certificate is using the JMS Keys certificate realm. On each instance using the configuration, it is the re-
sponsibility of the administrator to create the JMS Keys certificate realm.

For more details, enter keystoreadmin in the following directory, and perform the instructions at the command prompt:

Windows INSTALL_DIR\apigateway\Win32\bin

UNIX/Linux INSTALL_DIR/apigateway/posix/bin

Use keystoreadmin in interactive mode

When you enter keystoreadmin without arguments, this displays an interactive menu with the following options:

Option Description When to use

1 Change group or instance When registering HSMs or configuring certificate realms,

Manage certificates and keys

31

Option Description When to use

you must choose the local group and instance to configure.

2 List registered HSM pro-
viders

Display the HSMs that are currently registered.

3 Register an HSM provider Before creating certificate realms, you must first register
the HSM. This option guides you through the steps. The
HSM must be installed, configured, and active, and you
must know the full path to the HSM device driver
(PKCS#11). You give the HSM an alias (for example, Lun-
aSA), which you use later when registering certificate
realms.

4 List Certificate Realms List configured certificate realms and associated keystores.

5 Create a Certificate Realm Create a keystore and assign it to a certificate realm.

Step 1—Register an HSM provider

You must first register an HSM provider as follows:

1. Open a command prompt in the API Gateway Explorer bin directory (for example, apigateway\Win32\bin).
2. Enter the keystoreadmin command.
3. Select option 3) Register an HSM provider.
4. If prompted, select the appropriate API Gateway Explorer group or instance.
5. You are prompted for a provider alias name. The alias is local only. For example, if registering a LunaSA HSM, you

might enter the LunaSA alias.
6. For convenience, keystoreadmin searches for supported HSM drivers. If found, it shows the list of supported

drivers. If none are found, this does not mean the driver does not exist. You must see your HSM documentation for
the location of the drivers. For example:

Choose from one of the following:

1) C:\LunaSA\cryptoki.dll

o) Other
q) Quit

7. If successful, keystoreadmin loads the driver and displays its details. For example:

Registering HSM provider...
Initializing HSM...
Crypto Version: 2.20
Manufacter Id: SafeNet, Inc.
Library Description: Chrystoki
Library Version: 5.1
Device registered.

Step 2—Create a certificate realm and associated keystore

To create a certificate realm and associated keystore, perform the following steps:

1. Open a command prompt in the API Gateway Explorer bin directory (for example, apigateway\Win32\bin).

Manage certificates and keys

32

2. Enter the keystoreadmin command.
3. Select option 5) Create a Certificate Realm.
4. You are prompted to enter a certificate realm name. This certificate realm name will be used in Policy Studio when

configuring the private key of the corresponding X.509 certificate. The realm name is case sensitive (for example,
JMS Keys).

5. The registered HSMs are listed. For example, select option 1) HSM.
6. The command connects to the selected HSM, and a list of available slots is displayed. Select the slot containing the

private key to use for the certificate realm (for example, select slot 1).
7. You are prompted to input the PIN passphrase for the slot. The passphrase will not echo any output.
8. When you enter the correct PIN passphrase for the slot, this displays a list of private keys. Choose the key to use for

the certificate realm. For example:

Choose from one of the following:

1) server1_priv
2) jms_priv
q) Quit

Select option: 2

9. You are prompted for a file name for the keystore. For example:

Certificate realm filename [jms keys.ks]:
Successfully created the certificate realm: JMS Keys
Press any key to continue...

10. The keystore is output to the API Gateway Explorer instance directory. For example:

apigateway/groups/group-2/instance-1/conf/certrealms/jms keys.ks

Note
Each API Gateway instance must have its certificate realm configured. When finished creating certificate
realms, you must restart the API Gateway instance for the changes to take effect.

Step 3—Start the API Gateway Explorer when using an HSM

When the API Gateway is configured to use certificate realms, these realms are initialized on startup, and a connection
to the corresponding HSM is established. This requires the PIN passphrase for the specific HSM slots. At startup, you
can manually enter the required HSM slot PIN passphrase, or you can automate this instead.

Start API Gateway with manually entered PIN passphrase

When the API Gateway is configured to use an HSM, the API Gateway Explorer stops all processing, prompts for the
HSM slot PIN passphrase, and waits indefinitely for input. For example:

INFO 07/Jan/2015:16:31:54 Initializing certificate realm 'JMS Keys'...
Enter passphrase for Certificate Realm, "JMS Keys":

The API Gateway does not reprompt if the PIN passphrase is incorrect. It logs the error and continues, while any ser-
vices that use the certificate realm cannot use the HSM.

Start API Gateway with automatic PIN passphrase

You can configure the API Gateway to start and initialize the HSM by invoking a command script on the operating system
to obtain the HSM slot PIN passphrase. This enables the API Gateway for automatic startup without manually entering

Manage certificates and keys

33

the PIN passphrase.

To configure an automatic PIN passphrase, perform the following steps:

1. Edit the API Gateway instance’s vpkcs11.xml configuration file. For example:

apigateway/groups/group-2/instance-1/conf/vpkcs11.xml

2. Add a PASSPHRASE_EXEC command that contains the full path to the script that executes and obtains the pass-
phrase. The script should write the passphrase to stdout, and should have the necessary operating system file and
execute protection settings to prevent unauthorized access to the PIN passphrase. The following example shows a
vpkcs11.xml file that invokes the hsmpin.sh to echo the passphrase:

<?xml version="1.0" encoding="utf-8"?>
<ConfigurationFragment provider="cryptov">

<Engine name="vpkcs11" defaultFor="">
<EngineCommand when="preInit" name="REALMS_DIR"

value="$VINSTDIR/conf/certrealms" />
<EngineCommand when="preInit" name="PASSPHRASE_EXEC"

value=""$VDISTDIR/hsmpin.sh"" />
</Engine>

</ConfigurationFragment>

3. The API Gateway provides the certificate realm as an argument to the script, so you can use the same script to ini-
tialize multiple realms. The following examples show scripts that write a PIN of 1234 to stdout when initializing the
JMS Keys certificate realm:

Example hsmpin.bat file on Windows

@echo off
IF [%1]==[] GOTO _END

:: Strip out the double quotes around arg
SET REALM=%1
SET REALM=%REALM:"=%

IF "%REALM%"=="JMS Keys" ECHO 1234

Example hsmpin.sh file on Linux/UNIX

#!/bin/sh
case $1 in
"JMS Keys")

echo 1234
;;

esac

Configure SSH key pairs

To configure public-private key pairs in the certificate store, select Certificates and Keys > Key Pairs. The Key Pairs
window enables you to add, edit, or delete OpenSSH public-private key pairs, which are required for the Secure Shell
(SSH) File Transfer Protocol (SFTP).

Add a key pair

To add a public-private key pair, click Add on the right, and configure the following settings in the dialog:

• Alias:

Manage certificates and keys

34

Enter a unique name for the key pair.
• Algorithm:

Enter the algorithm used to generate the key pair. Defaults to RSA.
• Load:

Click to select the public key or private key files to use. The Fingerprint field is auto-populated when you load a
public key.

Note
The keys must be OpenSSH keys. RSA keys are supported, but DSA keys are not supported. The keys
must not be passphrase protected.

Manage OpenSSH keys

You can use the ssh-keygen command provided on UNIX to manage OpenSSH keys. For example:

• The following command creates an OpenSSH key:
ssh-keygen -t rsa

• The following command converts an ssh.com key to an OpenSSH key:
ssh-keygen -i -f ssh.com.key > open.ssh.key

• The following command removes a passphrase (enter the old passphrase, and enter nothing for the new pass-
phrase):
ssh-keygen -p

• The following command outputs the key fingerprint:
ssh-keygen -lf ssh_host_rsa_key.pub

Edit a key pair
To edit a public-private key pair, select a key pair alias in the table, and click Edit on the right. For example, you can load
a different public key and private key. Alternatively, double-click a key pair alias in the table to edit it.

Delete key pairs
You can delete a selected key pair from the certificate store by clicking Remove on the right. Alternatively, click Remove
All.

Configure PGP key pairs

To configure Pretty Good Privacy (PGP) key pairs in the certificate store, select Certificates and Keys > PGP Key
Pairs. The PGP Key Pairs window enables you to add, edit, or delete PGP public-private key pairs.

Add a PGP key pair

To add a PGP public-private key pair, click the Add on the right, and configure the following settings in the dialog:

• Alias:
Enter a unique name for the PGP key pair.

• Load:
Click Load to select the public key and private key files to use.

Note
The PGP keys added must not be passphrase protected.

Manage certificates and keys

35

Manage PGP keys

You can use the freely available GNU Privacy Guard (GnuPG) tool to manage PGP key files (available from ht-
tp://www.gnupg.org/). For example:

• The following command creates a PGP key:
gpg --gen-key
For more details, see http://www.seas.upenn.edu/cets/answers/pgp_keys.html [ht-
tp://www.seas.upenn.edu/cets/answers/pgp_keys.html]

• The following command enables you to view the PGP key:
gpg -a --export

• The following command exports a public key to a file:
gpg --export -u 'UserName' -a -o public.key

• The following command exports a private key to a file:
gpg --export-secret-keys -u 'UserName' -a -o private.key

• The following command lists the private keys:
gpg --list-secret-keys

Edit a PGP key pair
To edit a PGP key pair, select a key pair alias in the table, and click Edit on the right. For example, you can load a differ-
ent public key and private key. Alternatively, double-click a key pair alias in the table to edit it.

Delete PGP key pairs
You can delete a selected PGP key pair from the certificate store by clicking Remove on the right. Alternatively, click Re-
move All.

Global import and export options

This section desribes global import and export options available when managing certificates and keys.

Import and export certificates and keys

The following global configuration options apply to both the X.509 Certificate and Private Key tabs:

• Import Certificate + Key:
Use this option to import a certificate and a key (for example, from a .p12 file).

• Export Certificate + Key:
Use this option to export a certificate and a key (for example, to a .p12 file).

Click OK when you have finished configuring the certificate and private key.

Manage certificates in Java keystores

You can also export a certificate to a Java keystore. You can do this by clicking Keystore on the main Certificates win-
dow. Click the browse button at beside the Keystore field at the top right to open an existing keystore, or click New Key-
store to create a new keystore. Choose the name and location of the keystore file, and enter a passphrase for this key-
store when prompted. Click Export to Keystore, and select a certificate to export.

Similarly, you can import certificates and keys from a Java keystore into the certificate store. To do this, click Keystore
on the main Certificates window. On the Keystore window, browse to the location of the keystore by clicking the browse
button beside the Keystore field. The certificates/keys in the keystore are listed in the table. To import any of these keys
to the certificate store, select the box next to the certificate or key to import, and click Import to Trusted certificate
store. If the key is protected by a password, you are prompted for this password.

You can also use the Keystore window to view and remove existing entries in the keystore. You can also add keys to

Manage certificates and keys

36

http://www.gnupg.org/
http://www.gnupg.org/
http://www.seas.upenn.edu/cets/answers/pgp_keys.html
http://www.seas.upenn.edu/cets/answers/pgp_keys.html
http://www.seas.upenn.edu/cets/answers/pgp_keys.html

the keystore and to create a new keystore. Use the appropriate button to perform any of these tasks.

Further information

For more details on supported security features, see the API Gateway Explorer Security Guide.

Manage certificates and keys

37

Configuring Connection Settings
Overview

The Connection Settings dialog is available by selecting the Settings > Connection Settings option from the menu to
the left of the SOAP Request panel. The fields on this dialog can be used to configure the following aspects of the re-
quest:

• Proxy settings for the target Web service.
• CA and server certificates that are considered trusted for SSL purposes.
• Client SSL certificate to use to authenticate to the target Web service.
• A username and password to use to authenticate to the Web service using HTTP basic or digest authentication.

The following sections describe each of the tabs that are available on the Connection Settings dialog.

URL

Enter the complete URL of the target Web service in the URL field.

Proxy Settings

The fields on this tab should be configured if API Gateway Explorer must connect to the target Web service through an
HTTP proxy. In this case, API Gateway Explorer will include the full URL of the destination Web service in the request
line of the HTTP request.

For example, if the destination Web service is running at http://localhost:8080/services, the request line would
appear as follows if API Gateway Explorer is routing through a proxy:

POST http://localhost:8080/services HTTP/1.1

If API Gateway Explorer was not routing through a proxy, the request line would appear as follows:

POST /services HTTP/1.1

To configure API Gateway Explorer to send SOAP messages through a HTTP proxy, complete the following fields on the
Proxy Settings tab:

Proxy Host:
Enter the hostname or IP address of the HTTP proxy.

Proxy Port:
Specify the port on which the proxy server is listening.

SSL Port:
If the proxy server has SSL enabled and you want to connect to the SSL port, enter the SSL port here.

Trusted Certificates

When API Gateway Explorer connects to a server over SSL it must decide whether or not to trust the server's SSL certi-
ficate. It is possible to select a list of CA or server certificates from the Trusted Certificates tab that will be considered
trusted by API Gateway Explorer when connecting to the server specified in the URL field of this dialog.

The table displayed on the Trusted Certificates tab lists all certificates that have been imported into API Gateway Ex-

38

plorer's Certificate Store. To trust a certificate for this particular connection, simply check the box next to the certificate in
the table.

Client SSL Authentication

In cases where the destination server requires clients to authenticate to it using an SSL certificate, you must select a cli-
ent certificate on the Client SSL Authentication tab. Simply check the box next to the client certificate that you want to
use to authenticate to the server specified in the URL field.

HTTP Authentication

If the destination server requires clients to authenticate to it using HTTP basic or digest authentication, the fields on this
tab can be used.

None, HTTP Basic, or HTTP Digest:
Select the method that you want to use to authenticate to the server.

User Name:
Specify the user name you want to use to authenticate to the server.

Password:
Enter the password for this user.

Configuring Connection Settings

39

Stress test with send request (sr)
Overview

Oracle API Gateway Explorer ships with the send request stress testing tool (sr command), which is available in the API
Gateway Explorer root installation directory.

Important
On Linux, the LD_LIBRARY_PATH environment variable must be set to the directory from which you are
running the sr tool. On Linux and Solaris, you must use the vrun sr command. For example:

vrun sr http://testhost:8080/stockquote

Basic sr examples

The following are some basic examples of using the sr command:

HTTP GET:

sr http://testhost:8080/stockquote

POST file contents (content-type inferred from file extension):

sr -f StockQuoteRequest.xml http://testhost:8080/stockquote

Send XML file with SOAP Action 10 times:

sr -c 10 -f StockQuoteRequest.xml http://testhost:8080/stockquote

Send XML file with SOAP Action 10 times in 3 parallel clients:

sr -c 10 -p 3 -f StockQuoteRequest.xml http://testhost:8080/stockquote

Send the same request quietly:

sr -c 10 -p 3 -qq -f StockQuoteRequest.xml http://testhost:8080/stockquote

Run test for 10 seconds:

sr -d 10 -qq -f StockQuoteRequest.xml http://testhost:8080/stockquote

POST file contents with SOAP Action:

sr -f StockQuoteRequest.xml -A SOAPAction:getPrice http://testhost:8080/stockquote

Advanced sr examples

The following are some advanced examples of using the sr command:

40

Send form.xml to http://192.168.0.49:8080/healthcheck split at 171 character size, and trickle 200 millisecond
delay between each send with a 200 Content-Length header:

sr -h 192.168.0.49 -s 8080 -u /healthcheck -b 171 -t 200 -f form.xml
-a "Content-Type:application/x-www-form-urlenprogramlistingd" -a "Content-Length:200"

Send a multipart message to http://192.168.0.19:8080/test, 2 XML docs are attached to message:

sr -h 192.168.0.49 -s 8080 -u /test -{ -a Content-Type:text/xml -f soap.txt
-a Content-Type:text/xml -f attachment.xml -a Content-Type:text/xml -} -A c-timestamp:1234

Send only headers using a GET over one-way SSL running 10 parallel threads for 86400 seconds (1 day) using
super quiet mode:

sr -h 192.168.0.54 -C -s 8443 -u /nextgen -f test_req.xml -a givenName:SHViZXJ0
-a sn:RmFuc3dvcnRo -v GET -p10 -d86400 -qq

Send query string over mutual SSL presenting client certificate and key doing a GET running 10 parallel threads
for 86400 seconds (1 day) using super quiet mode:

sr -h 192.168.0.54 -C -s 8443 -X client.pem -K client.key
-u "https://localhost:8443/idp?TargetResource=http://oracle.test.com" -f test_req.xml
-v GET -p10 -d86400 -qq

Send zip file in users home directory to testhost on port 8080 with /zip URI, save the resulting response content
into the result.zip file, and do this silently:

sr -f ~/test.zip -h testhost -s 8080 -u /zip -a Content-Type:application/zip
-J result.zip -qq

sr arguments

The main arguments to the sr command include the following:

Argument Description

--help List all arguments

-a attribute:value Set the HTTP request header (for example, -a Content-Type:text/xml)

-c [request-count] Number of requests to send per process

-d [seconds] Duration to run test for

-f [content-filename] File to send as the request

-h [host] Name of destination host

-i [filename] Destination of statistics data

-l [file] Destination of diagnostic logging

-m Recycle SSL sessions (use multiple times)

-n Enable nagle algorithm for transmission

-o [output] Output statistics information every [milliseconds] (only with -d)

-p [connections] Number of parallel client connections (threads) to simulate

-q , -qq, -qqq Quiet modes (quiet, very quiet, very very quiet)

Stress test with send request (sr)

41

Argument Description

-r Do not send HTTP Request line

-s [service] Port or service name of destination (default is 8080)

-t [milliseconds] Trickle: delay between sending each character

-u [uri] Target URI to place in request

-v [verb] Set the HTTP verb to use in the request (default is POST)

-w [milliseconds] Wait for [milliseconds] between each request

-x [chunksize] Chunk-encode output

-y [cipherlist] SSL ciphers to use (see OpenSSL manpage ciphers(1))

-z Randomize chunk sizes up to limit set by -x

-A attribute:value Set the HTTP request header (for example, -a Content-Type:text/xml) in
the outermost attachment

-B Buckets for response-time samples

-C enCrypt (use SSL protocol)

-I [filename] File for Input (received) data (- = stdout)

-K RSA Private Key

-L Line-buffer stdout and stderr

-M Multiplier for response-time samples

-N origiN for response-time samples

-O [filename] File for Output (sent) data (- = stdout)

-S [part-id] Start-part for multipart message

-U [count] reUse each connection for count requests

-V [version] Sets the HTTP version (1.0, 1.1)

-X X.509 client certificate

-Y [cipherlist] Show expanded form of [cipherlist]

[-{/-} Create multipart body (nestable: use -f for leaves)

Further information

For a listing of all arguments, enter sr --help. For more information, and details on advanced use, see the srman-
page.pdf file in your sr installation directory.

Stress test with send request (sr)

42

Global Schema Cache
Overview

The Schema Cache contains XML Schemas that can then be used globally by Schema Validation filters. XML Schem-
as can be imported from either XML Schema files or WSDL files. WSDL files often contain XML Schemas that define the
elements that in SOAP messages. To facilitate this, API Gateway Explorer can import WSDL files from the file system,
from a URL, or from a UDDI registry.

When the XML Schema has been imported into the cache, and selected in a Schema Validation filter, API Gateway Ex-
plorer retrieves the schema from the cache instead of fetching it from its original location. This improves the runtime per-
formance of the filter, but also ensures that an administrator has complete control over the Schemas that are used to val-
idate messages.

From the main menu, select File > View Schema Cache. The list of schemas in the cache is listed in the Imported
Schemas table. You can also view the contents of any of these schemas by clicking the schema in the table. The
schema contents are displayed in the Contents text area.

At any stage, you can manually modify the contents of the schema in the text area. To save the modified contents to the
cache, click the Update button.

Adding Schemas to the Cache

To add an XML Schema to the cache, click the Add button at the bottom of the Schema Cache screen. The Load
Schema dialog offers two possible locations from which you can load a schema—from an XML Schema file directly, or
from a WSDL file.

Select the From XML Schema radio button to load the schema directly from a schema file, and then click Next. On the
next screen, enter or browse to the location of the schema file using the field provided. You can also enter a full URL
here to pull the schema from a web location. Click the Finish button to import the schema into the cache.

Alternatively, if you want to load the schema file from a WSDL file, select the From WSDL radio button on the Select
Schema Source screen, and then click the Next button.

The WSDL file can be located from the file system, from a URL, or from a UDDI registry. Select the appropriate option,
and enter or browse to the location of the WSDL file in the fields provided. If you wish to retrieve the WSDL file from a
UDDI registry, click the WSDL from UDDI radio button, and click the Browse UDDI button. The Browse UDDI Server
for WSDL dialog enables you to connect to a UDDI, and search it for a particular WSDL file. For detail, see the topic on
Retrieve WSDL files from a UDDI registry.

When importing the schema from the WSDL file, you can also check the WSDL file for compliance with the WS-I Basic
Profile. The Basic Profile consists of a set of assertions or guidelines on how to ensure maximum interoperability
between different implementations of Web services. For example, there are recommendations on what style of SOAP to
use (for example, document/literal), how schema information should and should not be included in WSDL files, and
how message parts should be defined to avoid ambiguity for consumers of WSDL files.

API Gateway Explorer can test WSDL files while extracting schemas from them for conformance against the recom-
mendations laid out in the Profile. A report is generated showing exactly which recommendations have passed and which
have failed. While a WSDL file that does not conform to the Profile can still be imported, there is no certainty that con-
sumers of the Web service can use it without encountering problems.

Important
To run the WS-I compliance test, the WS-I Test Assertions Document (TAD) file must be installed on the
machine on which the API Gateway Explorer is running. This file is available from www.ws-i.org [ht-
tp://www.ws-i.org]. The full path to the location of this file (for example, c:/WSI/SSBP10_BP11_TAD.xml

43

http://www.ws-i.org
http://www.ws-i.org
http://www.ws-i.org

must be specified in the API Gateway Explorer global preferences. To configure this setting, select the
Window > Preferences option from the main menu. For more details, see General Preferences.

To run the WS-I compliance test on a WSDL file, select Tools > Run WS-I Compliance Test in the main menu, and
specify the WSDL file to import the schema in this screen. Click OK to run the WS-I Analysis tools run in the background
in API Gateway Explorer.

The results of the compliance test are displayed in your browser in a WS-I Profile Conformance Report. The overall
result of the compliance test is displayed in the Summary section. The results of the WS-I compliance tests are grouped
by type in the Artifact: description section. For example, you can access details for a specific port type, operation, or
message by clicking the appropriate link in the Entry List table. Each Entry displays the results for the relevant WS-I
Test Assertions.

Schema Validation

The Schema Validation filter is used to validate XML messages against schemas stored in the cache or in the Web Ser-
vices Repository. The filter is in Validate Message category of filters, which is available in the Design Mode of the API
Gateway Explorer GUI. For more details, see the topic on Schema validation.

Global Schema Cache

44

General Preferences
Overview

The Preferences interface enables you to set several global configuration settings to optimize the behavior of the API
Gateway Explorer. You can configure the Preferences interface by selecting the Window > Preferences main menu op-
tion.

You can view each of the configuration sections described below by clicking the corresponding menu item on the left of
the Preferences dialog.

Auto Format Response

Select the Auto Format XML Response option if you want to pretty-print SOAP response messages when they are
rendered in the API Gateway Explorer response panel.

Note
Enabling this setting affects response messages with digital signatures.

JMS

This section enables you to configure custom JMS Service Providers.

Kerberos

Use this section to configure system-wide Kerberos settings. See the Kerberos configuration topic for more information
on configuring global Kerberos settings.

Proxy Settings

In cases where you have installed API Gateway Explorer on a machine that connects to other machines through a proxy,
you can configure details of the proxy on this screen. Complete the following fields:

Host:
Enter the host name or IP address of the HTTP proxy.

Port:
Specify the TCP port of the proxy server.

Username:
If the proxy requires clients to authenticate to it using HTTP authentication, you must enter a valid username here.

Password:
Enter the password for this user.

Runtime Dependencies

The Runtime Dependencies setting enables you to add JAR files to the API Gateway Explorer classpath. For example,
if you write a custom message filter, you must add its JAR file, and any third-party JAR files that it uses, to the Runtime
Dependencies list.

Click Add to select a JAR file to add to the list of dependencies, and click Apply when finished. A copy of the JAR file is
added to the plugins directory in your Policy Studio installation.

45

Important
You must restart API Gateway Explorer and the server for these changes to take effect.

SMTP

This section enables you to configure details of SMTP servers that the API Gateway Explorer can connect to and send
messages to.

SSL Settings

The SSL Settings enable you to specify what action is taken when an unrecognized server certificate is presented to the
client. This allows API Gateway Explorer to connect to SSL services without a requirement to add a certificate to its JVM
certificate store.

Configure one of the following options:

Prompt User When you try to connect to SSL services, you are promp-
ted with a dialog. If you choose to trust this particular serv-
er certificate displayed in the dialog, it is stored locally, and
you are not prompted again.

Trust All All server certificates are trusted.

Keystore Enter or browse to the location of the Keystore that con-
tains the authentication credentials sent to a remote host
for mutual SSL, and enter the appropriate Keystore Pass-
word.

TCP/IP Monitor

The TCP/IP Monitor settings enable you to configure TCP/IP Monitors on local and remote ports. A TCP/IP Monitor is a
simple server that monitors all the requests and responses between the API Gateway Explorer client and the server. You
can monitor TCP/IP activity using the TCP/IP Monitor view in API Gateway Explorer. This view contains a list of re-
quests sent to the server. It displays information about each request when it is forwarded to the server, and each re-
sponse when it is received from the server.

You can configure the following TCP/IP Monitor settings:

Show the TCP/IP Monitor View when there is activity
Specifies whether to display the TCP/IP Monitor view when there is activity through a TCP/IP monitoring server.

TCP/IP Monitors
Displays a list of TCP/IP monitoring servers. To add a TCP/IP monitoring server, click Add, and specify the following set-
tings in the New Monitor dialog:

Local monitoring port Specify a unique port number on your local machine. De-
faults to 80.

Host name Specify the host name or IP address of the machine where
the server is running.

Port Specify the port number of the remote server. Defaults to
80.

General Preferences

46

Type Specify whether the request type from the client is sent by
HTTP or TCP/IP. If the default HTTP option is selected, re-
quests from the client are modified so that the HTTP head-
er points to the remote machine, and separated if multiple
HTTP requests are received in the same connection. If the
TCP/IP option is selected, requests are sent byte for byte
and the TCP/IP Monitor does not translate or modify any
requests that it forwards.

Timeout (in milliseconds) Specify the connection timeout in milliseconds. Defaults to
0.

Start monitor automatically Specifies whether the TCP/IP monitoring server starts
automatically. This is selected by default.

Use the Start and Stop buttons to manage the TCP/IP monitoring servers. You can add, edit, remove, start or stop the
available TCP/IP monitoring servers in the TCP/IP Monitors table. The Status column shows if the TCP/IP monitor is
started or stopped.

Test Case Colors

Use this page to change the look-and-feel of the Test Case screen by modifying the colors used.

Trace Level

You can set the level at which API Gateway Explorer logs diagnostic output by selecting the appropriate level from the
Tracing Level drop-down list. Diagnostic output is written to a file in the /trace directory of your API Gateway Explorer
installation. You can also select Window > Show View > Console in the main menu to view the trace output in the Con-
sole window at the bottom of the screen. The default trace level is INFO.

VM Arguments

This page enables you to manually pass arguments to the JVM used by API Gateway Explorer.

Web and XML

Use these screens to alter the way that XML data is displayed in API Gateway Explorer.

Wildcards

This page enables you to set the values of various wildcards that can then be used at runtime by message filters in a
Test Suite.

WS-I Settings

Before loading a WSDL file that contains the definition of a Web service into the Web Services Repository, you can test
the WSDL file for compliance with the Web Service Interoperability (WS-I) Basic Profile. The WS-I Basic Profile contains
a number of Test Assertions that describe rules for writing WSDL files for maximum interoperability with other WSDL au-
thors, consumers, and other related tools.

The WS-I Settings are described as follows:

WS-I Setting Description

WS-I Tool Location Use the Browse button to specify the full path to the Java

General Preferences

47

WS-I Setting Description

version of the WS-Interoperability Testing tools (for ex-
ample, C:\Program
Files\WSI_Test_Java_Final_1.1\wsi-test-tool
s). The WS-I testing tools are used to check a WSDL file
for WS-I compliance. You can download them from
www.ws-i.org [http://www.ws-i.org].

Results Type Select the type of WS-I test results that you wish to view in
the generated report from the drop-down list. You can se-
lect from all, onlyFailed, notPassed, or notInfo.

Message Entry Specify whether message entries should be included in the
report using the checkbox (selected by default).

Failure Message Specify whether the failure message defined for each test
assertion should be included in the report using the check-
box (selected by default).

Assertion Description Specify whether the description of each test assertion
should be included in the report using the checkbox
(unselected by default).

Verbose Output Specify whether verbose output is displayed in the API
Gateway Explorer console window using the checkbox
(unselected by default). To view the console window, select
Window > Show Console from the API Gateway Explorer
main menu.

For details on running the WS-I Testing Tools, see the Testing WSDL Files for WS-I Compliance topic.

General Preferences

48

http://www.ws-i.org
http://www.ws-i.org

Retrieve attribute from HTTP header
Overview

The Retrieve from HTTP Header attribute retrieval filter can be used to retrieve the value of an HTTP header and set it
to a message attribute. For example, this filter can retrieve an X.509 certificate from a USER_CERT HTTP header, and set
it to the authentication.cert message attribute. This certificate can then be used by the filter's successors. The fol-
lowing HTTP request shows an example of such a header:

POST /services/getEmployee HTTP/1.1
Host: localhost:8095
Content-Length: 21
SOAPAction: HelloService
USER_CERT: MIIEZDCCA0 ...9aKD1fEQgJ

You can also retrieve a value from a named query string parameter and set this to the specified message attribute. The
following example shows a request URL that contains a query string:

http://hostname.com/services/getEmployee?first=john&last=smith

In the above example, the query string is first=john&last=smith. As is clear from the example, query strings con-
sist of attribute name-value pairs. Each name-value pair is separated by the & character.

Configuration

The following fields are available on the Retrieve from HTTP Header filter configuration screen:

Name:
Enter an appropriate name for this filter.

HTTP Header Name:
Enter the name of the HTTP header contains the value that we want to set to the message attribute.

Base64 Decode:
Check this box if the extracted value should be Base64 decoded before it is set to the message attribute.

Use Query String Parameters:
Select this setting if the API Gateway Explorer should attempt to extract the HTTP Header Name from the query string
parameters instead of from the HTTP headers.

Attribute ID:
Finally, select the attribute used to store the value extracted from the request.

49

Insert SAML attribute assertion
Overview

A Security Assertion Markup Language (SAML) attribute assertion contains information about a user in the form of a
series of attributes. Having collated a certain amount of information about a user, the API Gateway Explorer can gener-
ate a SAML attribute assertion, and insert it into the downstream message.

A SAML Attribute (see example below) is generated for each entry in the attribute.lookup.list attribute. Other fil-
ters from the Attributes filter group can be used to insert user attributes into the attribute.lookup.list attribute.

It might be useful to refer to the following example of a SAML attribute assertion when configuring this filter:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
<soap:Header>
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="Id-0000010a3c4ff12c-0000000000000002"
IssueInstant="2006-03-27T15:26:12Z" Version="2.0">

<saml:Issuer Format="urn:oasis ... WindowsDomainQualifiedName">
TestCA

</saml:Issuer>
<saml:Subject>
<saml:NameIdentifier Format="urn:oasis ... WindowsDomainQualifiedName">
TestUser

</saml:NameIdentifier>
</saml:Subject>
<saml:Conditions NotBefore="2005-03-27T15:20:40Z"

NotOnOrAfter="2028-03-27T17:20:40Z"/>
<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.oracle.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.oracle.com">
<saml:AttributeValue>joe@oracle.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="dept" NameFormat="">
<saml:AttributeValue>engineering</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wsse:Security>

</soap:Header>

<soap:Body>
<product>
<name>API Gateway Explorer</name>
<company>Oracle</company>
<description>Web Services Security</description>
</product>

</soap:Body>
</soap:Envelope>

General settings

Configure the following field:

Name:

50

Enter an appropriate name for the filter.

Assertion Details

Configure the following fields on the Assertion Details tab:

Issuer Name:
Select the certificate containing the Distinguished Name (DName) to be used as the Issuer of the SAML assertion. This
DName is included in the SAML assertion as the value of the Issuer attribute of the <saml:Assertion> element. For
an example, see the sample SAML assertion above.

Expire In:
Specify the lifetime of the assertion in this field. The lifetime of the assertion lasts from the time of insertion until the spe-
cified amount of time has elapsed.

Drift Time:
The Drift Time is used to account for differences in the clock times of the machine hosting the API Gateway Explorer
(that generate the assertion) and the machines that consume the assertion. The specified time is subtracted from the
time at which the API Gateway Explorer generates the assertion.

SAML Version:
You can create SAML 1.0, 1.1, and 2.0 attribute assertions. Select the appropriate version from the drop-down list.

Important
SAML 1.0 recommends the use of the http://www.w3.org/TR/2001/REC-xml-c14n-20010315
XML Signature Canonicalization algorithm. When inserting signed SAML 1.0 assertions into XML docu-
ments, it is quite likely that subsequent signature verification of these assertions will fail. This is due to the
side effect of the algorithm including inherited namespaces into canonical XML calculations of the inserted
SAML assertion that were not present when the assertion was generated.

For this reason, Oracle recommend that SAML 1.1 or 2.0 is used when signing assertions as they both uses the exclus-
ive canonical algorithm http://www.w3.org/2001/10/xml-exc-c14n#, which safeguards inserted assertions from
such changes of context in the XML document. Please see section 5.4.2 of the oasis-sstc-saml-core-1.0.pdf
and section 5.4.2 of sstc-saml-core-1.1.pdf documents, both of which are available at ht-
tp://www.oasis-open.org.

Assertion Location

The options on the Assertion Location tab specify where the SAML assertion is inserted in the message. By default, the
SAML assertion is added to the WS-Security block with the current SOAP actor/role. The following options are available:

Append to Root or SOAP Header:
Appends the SAML assertion to the message root for a non-SOAP XML message, or to the SOAP Header for a SOAP
message. For example, this option may be suitable for cases where this filter may process SOAP XML messages or non-
SOAP XML messages.

Add to WS-Security Block with SOAP Actor/Role:
Adds the SAML assertion to the WS-Security block with the specified SOAP actor (SOAP 1.0) or role (SOAP 1.1). By de-
fault, the assertion is added with the current SOAP actor/role only, which means the WS-Security block with no actor.
You can select a specific SOAP actor/role when available from the drop-down list.

XPath Location:
If you wish to insert the SAML assertion at an arbitrary location in the message, you can use an XPath expression to
specify the exact location in the message. You can select XPath expressions from the drop-down list. The default is the
First WSSE Security Element, which has an XPath expression of //wsse:Security. You can add, edit, or re-
move expressions by clicking the relevant button. For more details, see the Configure XPath expressions topic.

Insert SAML attribute assertion

51

You can specify exactly how the SAML assertion is inserted using the following options:

• Append to node returned by XPath expression (the default)
• Insert before node returned by XPath expression
• Replace node returned by XPath expression

Insert into Message Attribute:
Specify a message attribute to store the SAML assertion from the drop-down list (for example, saml.assertion). Al-
ternatively, you can also enter a custom message attribute in this field (for example, my.test.assertion). The SAML
assertion can then be accessed downstream in the policy.

Subject Confirmation Method

The settings on the Subject Confirmation Method tab determine how the <SubjectConfirmation> block of the
SAML assertion is generated. When the assertion is consumed by a downstream Web service, the information contained
in the <SubjectConfirmation> block can be used to authenticate either the end-user that authenticated to the API
Gateway Explorer, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

The following configuration fields are available on the Subject Confirmation Method tab:

Method:
The value selected here determines the value of the <ConfirmationMethod> element. The following table shows the
available methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key The API Gateway Explorer includes the key
used to prove that the API Gateway Explorer is
the holder of the key, or includes a reference to
the key.

urn:oasis:names:tc:SAML:1.0:cm:
holder-of-key

Bearer The subject of the assertion is the bearer of the
assertion.

urn:oasis:names:tc:SAML:1.0:cm:bea
rer

SAML Artifact The subject of the assertion is the user that
presented a SAML Artifact to the API Gateway
Explorer.

urn:oasis:names:tc:SAML:1.0:cm:
artifact

Sender Vouches Use this confirmation method to assert that the
API Gateway Explorer is acting on behalf of
the authenticated end-user. No other informa-
tion relating to the context of the assertion is

urn:oasis:names:tc:SAML:1.0:cm:bea
rer

Insert SAML attribute assertion

52

Method Meaning Value

sent. It is recommended that both the assertion
and the SOAP Body must be signed if this op-
tion is selected. These message parts can be
signed by using the XML signature generation
filter.

Note
You can also leave the Method field blank, in which case no <ConfirmationMethod> block is inserted
into the assertion.

Holder-of-Key Configuration:
When you select Holder-of-Key as the SAML subject confirmation in the Method field, you must configure how in-
formation about the key is to be included in the message. There are a number of configuration options available depend-
ing on whether the key is a symmetric or asymmetric key.

Asymmetric Key:
If you want to use an asymmetric key as proof that the API Gateway Explorer is the holder-of-key entity, you must select
the Asymmetric Key radio button, and then configure the following fields on the Asymmetric tab:

• Certificate from Store:
If you want to select a key that is stored in the Certificate Store, select this option and click the Signing Key button.
On the Select Certificate screen, select the box next to the certificate that is associated with the key that you want
to use.

• Certificate from Message Attribute:
Alternatively, the key may have already been used by a previous filter in the policy (for example, to sign a part of the
message). In this case, the key is stored in a message attribute. You can specify this message attribute in this field.

Symmetric Key:
If you want to use a symmetric key as proof that the API Gateway Explorer is the holder of key, select the Symmetric
Key radio button, and configure the fields on the Symmetric tab:

• Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway Explorer generates a symmetric key, which is included in the message be-
fore it is sent to the client. By default, the key is saved in the symmetric.key message attribute.

• Symmetric Key in Message Attribute:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can to reuse this key
as proof that the API Gateway Explorer is the holder-of-key entity. You must enter the name of the message attrib-
ute in the field provided, which defaults to symmetric.key.

• Encrypt using Certificate from Certificate Store:
When a symmetric key is used, you must assume that the recipient has no prior knowledge of this key. It must,
therefore, be included in the message so that the recipient can validate the key. To avoid meet-in-the-middle style
attacks, where a hacker could eavesdrop on the communication channel between the API Gateway Explorer and the
recipient and gain access to the symmetric key, the key must be encrypted so that only the recipient can decrypt the
key. One way of doing this is to select the recipient's certificate from the Certificate Store. By encrypting the symmet-
ric key with the public in the recipient's certificate, the key can only be decrypted by the recipient's private key, to
which only the recipient has access. Select the Signing Key button and then select the recipient's certificate on the
Select Certificate dialog.

• Encrypt using Certificate from Message Attribute:
Alternatively, if the recipient's certificate has already been used (perhaps to encrypt part of the message) this certific-

Insert SAML attribute assertion

53

ate is stored in a message attribute. You can enter the message attribute in this field.
• Symmetric Key Length:

Enter the length (in bits) of the symmetric key to use.
• Key Wrap Algorithm:

Select the algorithm to use to encrypt (wrap) the symmetric key.

Key Info:
The Key Info tab must be configured regardless of whether you have elected to use symmetric or asymmetric keys. It
determines how the key is included in the message. The following options are available:

• Do Not Include Key Info:
Select this option if you do not wish to include a <KeyInfo> section in the SAML assertion.

• Embed Public Key Information:
If this option is selected, details about the key are included in a <KeyInfo> block in the message. You can include
the full certificate, expand the public key, include the distinguished name, and include a key name in the <KeyInfo>
block by selecting the appropriate boxes. When selecting the Include Key Name field, you must enter a name in the
Value field, and select the Text Value or Distinguished Name Attribute radio button, depending on the source of
the key name.

• Put Certificate in Attachment:
Select this option to add the certificate as an attachment to the message. The certificate is then referenced from the
<KeyInfo> block.

• Security Token Reference:
The Security Token Reference (STR) provides a way to refer to a key contained in a SOAP message from another
part of the message. It is often used in cases where different security blocks in a message use the same key materi-
al, and it is considered an overhead to include the key more than once in the message.
When this option is selected, a <wsse:SecurityTokenReference> element is inserted into the <KeyInfo>
block. It references the key material using a URI to point to the key material and a ValueType attribute to indicate
the type of reference used. For example, if the STR refers to an encrypted key, you should select EncryptedKey
from the drop-down list, whereas if it refers to a BinarySecurityToken, select X509v3 from the dropdown. Other
options are available to enable more specific security requirements.

Advanced settings

The settings on the Advanced tab include the following fields.

Select Required Layout Type:
WS-Policy and SOAP Message Security define a set of rules that determine the layout of security elements that appear
in the WS-Security header in a SOAP message. The SAML assertion is inserted into the WS-Security header according
to the layout option selected here. The available options correspond to the WS-Policy Layout assertions of Strict, Lax,
LaxTimestampFirst, and LaxTimestampLast.

Indent:
Select this method to ensure that the generated signature is properly indented.

Security Token Reference:
The generated SAML attribute assertion can be encapsulated in a <SecurityTokenReference> block. The following
example demonstrates this:

<soap:Header>
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
soap:actor="oracle">

<wsse:SecurityTokenReference>
<wsse:Embedded>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="Id-0000010a3c4ff12c-0000000000000002"

Insert SAML attribute assertion

54

IssueInstant="2006-03-27T15:26:12Z" Version="2.0">
<saml:Issuer Format="urn:oasis ... WindowsDomainQualifiedName">

TestCA
</saml:Issuer>
<saml:Subject>
<saml:NameID Format="urn:oasis ... WindowsDomainQualifiedName">
TestUser

</saml:NameID>
</saml:Subject>
<saml:Conditions NotBefore="2005-03-27T15:20:40Z"

NotOnOrAfter="2028-03-27T17:20:40Z"/>
<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.oracle.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.oracle.com">
<saml:AttributeValue>joe@oracle.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="attrib1" NameFormat="">
<saml:AttributeValue xsi:nil="true"/>
<saml:AttributeValue>value1</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wsse:Embedded>
</wsse:SecurityTokenReference>

</wsse:Security>
</soap:Header>

To add the SAML assertion to a <SecurityTokenReference> block like in this example, select the Embed SAML as-
sertion within Security Token Reference option. Otherwise, select No Security Token Reference.

Insert SAML attribute assertion

55

Retrieve attribute from message
Overview

The Retrieve from Message filter uses XPath expressions to extract the value of an XML element or attribute from the
message and set it to an internal message attribute. The XPath expression can also return a NodeList, and the
NodeList can be set to the specified message attribute.

Configuration

The following fields are available on the Retrieve from Message filter configuration screen:

Name:
Enter an appropriate name for this filter.

Use the following XPath:
Configure an XPath expression to retrieve the desired content.

Click the Add button to add an XPath expression. You can add and remove existing expressions by clicking the Edit and
Remove buttons respectively.

Store the extracted content:
Select an option to specify how the extracted content is stored. The options are:

• of the node as text (java.lang.String)
This option saves the content of the node retrieved from the XPath expression to the specified message attribute as
a String.

• for all nodes found as text (java.lang.String)
This option saves all nodes retrieved from the XPath expression to the specified message attribute as a String (for
example, <node1>test</node1>). This option is useful for extracting <Signature>, <Security>, and
<UsernameToken> blocks, as well as proprietary blocks of XML from messages.

• for all nodes found as a list (java.util.List)
This option saves the nodes retrieved from the XPath expression to the specified message attribute as a Java List,
where each item is of type Node. For example, if the XPath returns <node1>test</node1>, there is one node in
the List (<node1>). The child text node (test) is accessible from that node, but is not saved as an entry in the
List at the top-level.

Extracted content will be stored in attribute named:
The API Gateway Explorer sets the value of the message attribute selected here to the value extracted from the mes-
sage. You can also enter a user-defined message attribute.

Optionally the message payload can be replaced by the extracted content:
Select this option to take the value being set into the attribute and add it to the content body of the response. This option
is not selected by default.

Use the following content type for new payload:
This field is only available if the preceding option is selected. This allows you to specify the content type for the response,
based on what will be added to the content body.

56

Insert SAML authentication assertion
Overview

After successfully authenticating a client, the API Gateway Explorer can insert a SAML (Security Assertion Markup Lan-
guage) authentication assertion into the SOAP message. Assuming all other security filters in the policy are successful,
the assertion is eventually consumed by a downstream web service.

You can refer to the following example of a signed SAML authentication assertion when configuring the Insert SAML
Authentication Assertion filter:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

AssertionID="oracle-1056477425082"
Id="oracle-1056477425082"
IssueInstant="2003-06-24T17:57:05Z"
Issuer="CN=Sample User,....,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthenticationStatement
AuthenticationInstant="2003-06-24T17:57:05Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
<saml:SubjectLocality IPAddress="192.168.0.32"/>
<saml:Subject>
<saml:NameIdentifier

Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthenticationStatement>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"

id="Sample User">
<dsig:SignedInfo>

.....
</dsig:SignedInfo>
<dsig:SignatureValue>

rpa/......0g==
</dsig:SignatureValue>
<dsig:KeyInfo>

.....
</dsig:KeyInfo>

</dsig:Signature>
</saml:Assertion>

</wsse:Security>
</soap-env:Header>
<soap-env:Body>

<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>
</soap-env:Body>
</soap-env:Envelope>

General settings

Configure the following field:

57

Name:
Enter an appropriate name for the filter.

Assertion details settings

Configure the following fields on the Assertion Details tab:

Issuer Name:
Select the certificate containing the Distinguished Name (DName) that you want to use as the Issuer of the SAML asser-
tion. This DName is included in the SAML assertion as the value of the Issuer attribute of the <saml:Assertion>
element. For an example, see the sample SAML assertion above.

Expire In:
Specify the lifetime of the assertion in this field. The lifetime of the assertion lasts from the time of insertion until the spe-
cified amount of time has elapsed.

Drift Time:
The Drift Time is used to account for differences in the clock times of the machine hosting the API Gateway Explorer
(that generate the assertion) and the machines that consume the assertion. The specified time is subtracted from the
time at which the API Gateway Explorer generates the assertion.

SAML Version:
You can create SAML 1.0, 1.1, and 2.0 attribute assertions. Select the appropriate version from the drop-down list.

Important
SAML 1.0 recommends the use of the http://www.w3.org/TR/2001/REC-xml-c14n-20010315
XML Signature Canonicalization algorithm. When inserting signed SAML 1.0 assertions into XML docu-
ments, it is quite likely that subsequent signature verification of these assertions will fail. This is due to the
side effect of the algorithm including inherited namespaces into canonical XML calculations of the inserted
SAML assertion that were not present when the assertion was generated.

For this reason, Oracle recommend that SAML 1.1 or 2.0 is used when signing assertions as they both
uses the exclusive canonical algorithm http://www.w3.org/2001/10/xml-exc-c14n#, which safe-
guards inserted assertions from such changes of context in the XML document. Please see section 5.4.2 of
the oasis-sstc-saml-core-1.0.pdf and section 5.4.2 of sstc-saml-core-1.1.pdf documents,
both of which are available at http://www.oasis-open.org.

Assertion location settings

The options on the Assertion Location tab specify where the SAML assertion is inserted in the message. By default, the
SAML assertion is added to the WS-Security block with the current SOAP actor/role. The following options are available:

Append to Root or SOAP Header:
Appends the SAML assertion to the message root for a non-SOAP XML message, or to the SOAP Header for a SOAP
message. For example, this option may be suitable for cases where this filter may process SOAP XML messages or non-
SOAP XML messages.

Add to WS-Security Block with SOAP Actor/Role:
Adds the SAML assertion to the WS-Security block with the specified SOAP actor (SOAP 1.0) or role (SOAP 1.1). By de-
fault, the assertion is added with the current SOAP actor/role only, which means the WS-Security block with no actor.
You can select a specific SOAP actor/role when available from the drop-down list.

XPath Location:
If you wish to insert the SAML assertion at an arbitrary location in the message, you can use an XPath expression to
specify the exact location in the message. You can select XPath expressions from the drop-down list. The default is the

Insert SAML authentication assertion

58

First WSSE Security Element, which has an XPath expression of //wsse:Security. You can add, edit, or re-
move expressions by clicking the relevant button. For more details, see the Configure XPath expressions topic.

You can also specify how exactly the SAML assertion is inserted using the following options:

• Append to node returned by XPath expression (the default)
• Insert before node returned by XPath expression
• Replace node returned by XPath expression

Insert into Message Attribute:
Specify a message attribute to store the SAML assertion from the drop-down list (for example, saml.assertion). Al-
ternatively, you can also enter a custom message attribute in this field (for example, my.test.assertion). The SAML
assertion can then be accessed downstream in the policy.

Subject confirmation method settings

The settings on the Subject Confirmation Method tab determine how the <SubjectConfirmation> block of the
SAML assertion is generated. When the assertion is consumed by a downstream Web service, the information contained
in the <SubjectConfirmation> block can be used to authenticate the end-user that authenticated to the API Gateway
Explorer, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

The following configuration fields are available on the Subject Confirmation Method tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key The API Gateway Explorer includes the key
used to prove that the API Gateway Explorer is
the holder of the key, or it includes a reference
to the key.

urn:oasis:names:tc:SAML:1.0:cm:
holder-of-key

Bearer The subject of the assertion is the bearer of the
assertion.

urn:oasis:names:tc:SAML:1.0:cm:
bearer

SAML Artifact The subject of the assertion is the user that
presented a SAML Artifact to the API Gateway
Explorer.

urn:oasis:names:tc:SAML:1.0:cm:
artifact

Insert SAML authentication assertion

59

Method Meaning Value

Sender Vouches Use this confirmation method to assert that the
API Gateway Explorer is acting on behalf of
the authenticated end-user. No other informa-
tion relating to the context of the assertion is
sent. It is recommended that both the assertion
and the SOAP Body must be signed if this op-
tion is selected. These message parts can be
signed by using the XML signature generation
filter.

urn:oasis:names:tc:SAML:1.0:cm:
bearer

Note
You can also leave the Method field blank, in which case no <ConfirmationMethod> block is inserted
into the assertion.

Holder-of-Key Configuration:
When you select Holder-of-Key as the SAML subject confirmation in the Method field, you must configure how in-
formation about the key is included in the message. There are a number of configuration options available depending on
whether the key is a symmetric or asymmetric key.

Asymmetric Key:
If you want to use an asymmetric key as proof that the API Gateway Explorer is the holder-of-key entity, you must select
the Asymmetric Key radio button and then configure the following fields on the Asymmetric tab:

• Certificate from Store:
If you want to select a key that is stored in the Certificate Store, select this option and click the Signing Key button.
On the Select Certificate screen, select the box next to the certificate that is associated with the key that you want
to use.

• Certificate from Selector Expression:
Alternatively, the key may have already been used by a previous filter in the policy (for example, to sign a part of the
message). In this case, the key can be retrieved using the selector expression entered in this field. Using a selector
enables settings to be evaluated and expanded at runtime based on metadata (for example, in a message attribute,
Key Property Store (KPS), or environment variable). For more details, see Select configuration values at runtime.

Symmetric Key:
If you want to use a symmetric key as proof that the API Gateway Explorer is the holder of key, select the Symmetric
Key radio button, and configure the fields on the Symmetric tab:

• Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway Explorer generates a symmetric key, which is included in the message be-
fore it is sent to the client. By default, the key is saved in the symmetric.key message attribute.

• Symmetric Key Selector Expression:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can reuse this key as
proof that the API Gateway Explorer is the holder-of-key entity. Enter the name of the selector expresion (for ex-
ample, message attribute) in the field provided, which defaults to ${symmetric.key}. Using a selector enables
settings to be evaluated and expanded at runtime based on metadata (for example, in a message attribute, Key
Property Store (KPS), or environment variable). For more details, see Select configuration values at runtime.

• Encrypt using Certificate from Certificate Store:
When a symmetric key is used, you must assume that the recipient has no prior knowledge of this key. It must,
therefore, be included in the message so that the recipient can validate the key. To avoid meet-in-the-middle style

Insert SAML authentication assertion

60

attacks, where a hacker could eavesdrop on the communication channel between the API Gateway Explorer and the
recipient and gain access to the symmetric key, the key must be encrypted so that only the recipient can decrypt the
key. One way of doing this is to select the recipient's certificate from the Certificate Store. By encrypting the symmet-
ric key with the public in the recipient's certificate, the key can only be decrypted by the recipient's private key, to
which only the recipient has access. Select the Signing Key button, and select the recipient's certificate on the Se-
lect Certificate dialog.

• Encrypt using Certificate from Message Attribute:
Alternatively, if the recipient's certificate has already been used (perhaps to encrypt part of the message) this certific-
ate is stored in a message attribute. You can enter this message attribute in this field.

• Symmetric Key Length:
Enter the length (in bits) of the symmetric key to use.

• Key Wrap Algorithm:
Select the algorithm to use to encrypt (wrap) the symmetric key.

Key Info:
The Key Info tab must be configured regardless of whether you have elected to use symmetric or asymmetric keys. It
determines how the key is included in the message. The following options are available:

• Do Not Include Key Info:
Select this option if you do not wish to include a <KeyInfo> section in the SAML assertion.

• Embed Public Key Information:
If this option is selected, details about the key are included in a <KeyInfo> block in the message. You can include
the full certificate, expand the public key, include the distinguished name, and include a key name in the <KeyInfo>
block by selecting the appropriate boxes. When selecting the Include Key Name field, you must enter a name in the
Value field, and then select the Text Value or Distinguished Name Attribute radio button, depending on the
source of the key name.

• Put Certificate in Attachment:
Select this option to add the certificate as an attachment to the message. The certificate is then referenced from the
<KeyInfo> block.

• Security Token Reference:
The Security Token Reference (STR) provides a way to refer to a key contained within a SOAP message from an-
other part of the message. It is often used in cases where different security blocks in a message use the same key
material and it is considered an overhead to include the key more than once in the message.
When this option is selected, a <wsse:SecurityTokenReference> element is inserted into the <KeyInfo>
block. It references the key material using a URI to point to the key material and a ValueType attribute to indicate
the type of reference used. For example, if the STR refers to an encrypted key, you should select EncryptedKey
from the dropdown, whereas if it refers to a BinarySecurityToken, you should select X509v3 from the drop-
down. Other options are available to enable more specific security requirements.

Advanced settings

Select Required Layout Type:
WS-Policy and SOAP Message Security define a set of rules that determine the layout of security elements that appear
in the WS-Security header within a SOAP message. The SAML assertion will be inserted into the WS-Security header
according to the layout option selected here. The available options correspond to the WS-Policy Layout assertions of
Strict, Lax, LaxTimestampFirst, and LaxTimestampLast.

Insert SAML Attribute Statement:
You can insert a SAML attribute statement into the generated SAML authentication assertion. If you select this option, a
SAML attribute assertion is generated using attributes stored in the attribute.lookup.list message attribute and
subsequently inserted into the assertion. The attribute.lookup.list attribute must have been populated previously
by an attribute lookup filter for the attribute statement to be generated successfully.

Indent:
Select this method to ensure that the generated signature is properly indented.

Insert SAML authentication assertion

61

Security Token Reference:
The generated SAML authentication assertion can be encapsulated within a <SecurityTokenReference> block. The
following example demonstrates this:

<soap:Header>
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
soap:actor="oracle">

<wsse:SecurityTokenReference>
<wsse:Embedded>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

AssertionID="Id-00000109fee52b06-0000000000000012"
IssueInstant="2006-03-15T17:12:45Z"
Issuer="oracle" MajorVersion="1" MinorVersion="0">

<saml:Conditions NotBefore="2006-03-15T17:12:39Z"
NotOnOrAfter="2006-03-25T17:12:39Z"/>

<saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2006-03-15T17:12:45Z">

<saml:Subject>
<saml:NameIdentifier Format="Oracle-Username-Password">

admin
</saml:NameIdentifier>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>

urn:oasis:names:tc:SAML:1.0:cm:artifact
</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>
</wsse:Embedded>
</wsse:SecurityTokenReference>

</wsse:Security>
</soap:Header>

To add the SAML assertion to a <SecurityTokenReference> block as in the example above, select the Embed
SAML assertion within Security Token Reference option. Otherwise, select No Security Token Reference.

Insert SAML authentication assertion

62

Insert WS-Security UsernameToken
Overview

When a client has been successfully authenticated, the API Gateway Explorer can insert a WS-Security UsernameToken
into the downstream message as proof of the authentication event. The <wsse:UsernameToken> token enables a
user's identity to be inserted into the XML message so that it can be propagated over a chain of web services.

A typical example would see a user authenticating to the API Gateway Explorer using HTTP digest authentication. After
successfully authenticating the user, the API Gateway Explorer inserts a WS-Security UsernameToken into the message
and digitally signs it to prevent anyone from tampering with the token.

The following example shows the format of the <wsse:UsernameToken> token:

<wsse:UsernameToken wsu:Id="oracle"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

<wsu:Created>2006.01.13T-10:42:43Z</wsu:Created>
<wsse:Username>oracle</wsse:Username>
<wsse:Nonce EncodingType="UTF-8">

KFIy9LgzhmDPNiqU/B9ZiWKXfEVNvFyn6KWYP+1zVt8=
</wsse:Nonce>
<wsse:Password Type="wsse:PasswordDigest">

CxWj1OMnYj7dddMnU/DrOhyY3j4=
</wsse:Password>

</wsse:UsernameToken>

This topic explains how to configure the API Gateway Explorer to insert a WS-Security UsernameToken after success-
fully authenticating a user.

General settings

To configure general settings, complete the following fields:

Name:
Enter an appropriate name for the filter.

Actor:
The UsernameToken is inserted into the WS-Security block identified by the specified SOAP Actor.

Credential details

To configure the credential details, complete the following fields:

Username:
Enter the name of the user included in the UsernameToken. By default, the authentication.subject.id message
attribute is stored, which contains the name of an authenticated user.

Include Nonce:
Select this option if you wish to include a nonce in the UsernameToken. A nonce a random number that is typically used
to help prevent replay attacks.

Include Password:
Select this option if you wish to include a password in the UsernameToken.

Password:
If the Include Password check box is selected, the API Gateway Explorer inserts the user's password into the generated
WS-Security UsernameToken. It can insert Clear or SHA1 Digest version of the password, depending on which radio

63

button you select. Oracle recommends the digest form of the password to avoid potential eavesdropping.

You can either explicitly enter the password for this user in the Password field, or use a message attribute by selecting
the Wildcard option, and entering the message attribute in the field provided. By default, the authentica-
tion.subject.password attribute is used, which contains the password used by the user to authenticate to the API
Gateway Explorer.

Advanced options

To configure advanced options, complete the following field:

Indent:
Select this option to add indentation to the generated UsernameToken and Signature blocks. This makes the security
tokens more human-readable.

Insert WS-Security UsernameToken

64

Set User Name
Overview

The Set User Name filter is used to configure the user name, password for this user, and user attributes that can be
used when generating SAML authentication, authorization, and attribute assertions.

Configuration

Complete the following fields on the Set User Name filter screen, which is available from the Insert Security Token cat-
egory of filters:

Name:
Enter a name for the filter.

User Name:
Enter the user name that will be used when generating security tokens, e.g. SAML authentication assertions, WS-
Security UsernameTokens, etc.

Password:
Enter a password for this user.

Credential Format:
Specify the format of the credential given in the User Name field above. The format can be either a User name or an
X.509 Distinguished Name.

User Attributes:
User attributes can be added by clicking on the Add button. Enter a Name, Value, and Namespace in the fields
provided. These attributes can then be added to a SAML attribute assertion using the Insert SAML Attribute Assertion
filter.

65

Insert SAML authorization assertion
Overview

After successfully authorizing a client, the API Gateway Explorer can insert a Security Assertion Markup Language
(SAML) authorization assertion into the SOAP message. Assuming all other security filters in the policy are successful,
the assertion will eventually be consumed by a downstream web service.

The following example of a signed SAML authorization assertion might be useful when configuring this filter.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://.../soap/envelope/">
<soap:Header xmlns:wsse="http://.../secext">
<wsse:Security>
<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="oracle-1056130475340"
Id="oracle-1056130475340"
IssueInstant="2003-06-20T17:34:35Z"
Issuer="CN=Sample User,...........,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthorizationDecisionStatement
Decision="Permit"
Resource="http://www.oracle.com/service">

<saml:Subject>
<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthorizationDecisionStatement>
<dsig:Signature xmlns:dsig="http://.../xmldsig#" id="Sample User">

<!-- XML SIGNATURE INSIDE ASSERTION -->
</dsig:Signature>

</saml:Assertion>
</wsse:Security>

</soap:Header>
<soap:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</soap:Body>
</soap:Envelope>

General settings

Configure the following field:

Name:
Enter an appropriate name for the filter.

Assertion details settings

Configure the following fields on the Assertion Details tab:

Issuer Name:

66

Select the certificate containing the Distinguished Name (DName) to use as the Issuer of the SAML assertion. This
DName is included in the SAML assertion as the value of the Issuer attribute of the <saml:Assertion> element. For
an example, see the sample SAML assertion above.

Expire In:
Specify the lifetime of the assertion in this field. The lifetime of the assertion lasts from the time of insertion until the spe-
cified amount of time has elapsed.

Drift Time:
The Drift Time is used to account for differences in the clock times of the machine hosting the API Gateway Explorer
(that generate the assertion) and the machines that consume the assertion. The specified time is subtracted from the
time at which the API Gateway Explorer generates the assertion.

SAML Version:
You can create SAML 1.0, 1.1, and 2.0 attribute assertions. Select the appropriate version from the list.

Important
SAML 1.0 recommends the use of the http://www.w3.org/TR/2001/REC-xml-c14n-20010315
XML Signature Canonicalization algorithm. When inserting signed SAML 1.0 assertions into XML docu-
ments, it is quite likely that subsequent signature verification of these assertions will fail. This is due to the
side effect of the algorithm including inherited namespaces into canonical XML calculations of the inserted
SAML assertion that were not present when the assertion was generated.

For this reason, Oracle recommend that SAML 1.1 or 2.0 is used when signing assertions as they both uses the exclus-
ive canonical algorithm http://www.w3.org/2001/10/xml-exc-c14n#, which safeguards inserted assertions from
such changes of context in the XML document. For more information, see the oasis-sstc-saml-core-1.0.pdf and
the sstc-saml-core-1.1.pdf documents, both of which are available at http://www.oasis-open.org.

Resource:
Enter the resource for which you want to obtain the authorization assertion. You should specify the resource as a URI
(for example, http://www.oracle.com/TestService). The name of the resource is then included in the assertion.

Action:
You can specify the operations that the user can perform on the resource using the Action field. This entry is a comma-
separated list of permissions. For example, the following is a valid entry: read,write,execute.

Assertion location settings

The options on the Assertion Location tab specify where the SAML assertion is inserted in the message. By default, the
SAML assertion is added to the WS-Security block with the current SOAP actor/role. The following options are available:

Append to Root or SOAP Header:
Appends the SAML assertion to the message root for a non-SOAP XML message, or to the SOAP Header for a SOAP
message. For example, this option may be suitable for cases where this filter may process SOAP XML messages or non-
SOAP XML messages.

Add to WS-Security Block with SOAP Actor/Role:
Adds the SAML assertion to the WS-Security block with the specified SOAP actor (SOAP 1.0) or role (SOAP 1.1). By de-
fault, the assertion is added with the current SOAP actor/role only, which means the WS-Security block with no actor.
You can select a specific SOAP actor/role when available from the list.

XPath Location:
To insert the SAML assertion at an arbitrary location in the message, you can use an XPath expression to specify the ex-
act location in the message. You can select XPath expressions from the list. The default is the First WSSE Security
Element, which has an XPath expression of //wsse:Security. You can add, edit, or remove expressions by clicking
the relevant button. For more details, see the Configure XPath expressions topic.

Insert SAML authorization assertion

67

http://www.oasis-open.org

You can also specify how exactly the SAML assertion is inserted using the following options:

• Append to node returned by XPath expression (the default)
• Insert before node returned by XPath expression
• Replace node returned by XPath expression

Insert into Message Attribute:
Specify a message attribute to store the SAML assertion from the list (for example, saml.assertion). Alternatively,
you can also enter a custom message attribute in this field (for example, my.test.assertion). The SAML assertion
can then be accessed downstream in the policy.

Subject confirmation method settings

The settings on the Subject Confirmation Method tab determine how the <SubjectConfirmation> block of the
SAML assertion is generated. When the assertion is consumed by a downstream Web service, the information contained
in the <SubjectConfirmation> block can be used to authenticate either the end-user that authenticated to the API
Gateway Explorer, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

The following configuration fields are available on the Subject Confirmation Method tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key The API Gateway Explorer includes
the key used to prove that the API
Gateway Explorer is the holder of the
key, or it includes a reference to the
key.

urn:oasis:names:tc:SAML:1.0:c
m:
holder-of-key

Bearer The subject of the assertion is the
bearer of the assertion.

urn:oasis:names:tc:SAML:1.0:c
m:
bearer

SAML Artifact The subject of the assertion is the user
that presented a SAML artifact to the
API Gateway Explorer.

urn:oasis:names:tc:SAML:1.0:c
m:
artifact

Insert SAML authorization assertion

68

Method Meaning Value

Sender Vouches Use this confirmation method to assert
that the API Gateway Explorer is act-
ing on behalf of the authenticated end-
user. No other information relating to
the context of the assertion is sent. It is
recommended that both the assertion
and the SOAP Body must be signed if
this option is selected. These message
parts can be signed by using the Sign
Message filter (see XML signature
generation).

urn:oasis:names:tc:SAML:1.0:c
m:
bearer

Note
You can also leave the Method field blank, in which case no <ConfirmationMethod> block is inserted
into the assertion.

Holder-of-Key Configuration:
When you select Holder-of-Key as the SAML subject confirmation in the Method field, you must configure how in-
formation about the key is included in the message. There are a number of configuration options available depending on
whether the key is a symmetric or asymmetric key.

Asymmetric Key

To use an asymmetric key as proof that the API Gateway Explorer is the holder-of-key entity, you must select the Asym-
metric Key radio button, and then configure the following fields on the Asymmetric tab:

• Certificate from Store:
To select a key that is stored in the certificate store, select this option and click the Signing Key button. On the Se-
lect Certificate screen, select the box next to the certificate that is associated with the key that you want to use.

• Certificate from Message Attribute:
Alternatively, the key may have already been used by a previous filter in the policy (for example, to sign a part of the
message). In this case, the key is stored in a message attribute. You can specify this message attribute in this field.

Symmetric Key

To use a symmetric key as proof that the API Gateway Explorer is the holder of key, select the Symmetric Key radio
button, and then configure the fields on the Symmetric tab:

• Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway Explorer generates a symmetric key, which is included in the message be-
fore it is sent to the client. By default, the key is saved in the symmetric.key message attribute.

• Symmetric Key in Message Attribute:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can to reuse this key
as proof that the API Gateway Explorer is the holder-of-key entity. You must enter the name of the message attrib-
ute in the field provided, which defaults to symmetric.key.

• Encrypt using Certificate from Certificate Store:
When a symmetric key is used, you must assume that the recipient has no prior knowledge of this key. It must be in-
cluded in the message so that the recipient can validate the key. To avoid meet-in-the-middle style attacks, where a

Insert SAML authorization assertion

69

hacker could eavesdrop on the communication channel between the API Gateway Explorer and the recipient and
gain access to the symmetric key, the key must be encrypted so that only the recipient can decrypt the key. One
way of doing this is to select the recipient's certificate from the certificate store. By encrypting the symmetric key with
the public in the recipient's certificate, the key can only be decrypted by the recipient's private key, to which only the
recipient has access. Select the Signing Key button and then select the recipient's certificate on the Select Certific-
ate dialog.

• Encrypt using Certificate from Message Attribute:
Alternatively, if the recipient's certificate has already been used (perhaps to encrypt part of the message) this certific-
ate is stored in a message attribute. You can enter the message attribute in this field.

• Symmetric Key Length:
Enter the length (in bits) of the symmetric key to use.

• Key Wrap Algorithm:
Select the algorithm to use to encrypt (wrap) the symmetric key.

Key Info

The Key Info tab must be configured regardless of whether you have elected to use symmetric or asymmetric keys. It
determines how the key is included in the message. The following options are available:

• Do Not Include Key Info:
Select this option to not include a <KeyInfo> section in the SAML assertion.

• Embed Public Key Information:
If this option is selected, details about the key are included in a <KeyInfo> block in the message. You can include
the full certificate, expand the public key, include the distinguished name, and include a key name in the <KeyInfo>
block by selecting the appropriate boxes. When selecting the Include Key Name field, you must enter a name in the
Value field, and then select the Text Value or Distinguished Name Attribute radio button, depending on the
source of the key name.

• Put Certificate in Attachment:
Select this option to add the certificate as an attachment to the message. The certificate is then referenced from the
<KeyInfo> block.

• Security Token Reference:
The Security Token Reference (STR) provides a way to refer to a key contained in a SOAP message from another
part of the message. It is often used in cases where different security blocks n a message use the same key material
and it is considered an overhead to include the key more than once in the message.
When this option is selected, a <wsse:SecurityTokenReference> element is inserted into the <KeyInfo>
block. It references the key material using a URI to point to the key material and a ValueType attribute to indicate
the type of reference used. For example, if the STR refers to an encrypted key, you should select EncryptedKey
from the list, whereas if it refers to a BinarySecurityToken, you should select X509v3 from the list. Other op-
tions are available to enable more specific security requirements.

Advanced settings

Configure the following fields on the Advanced tab:

Select Required Layout Type:
WS-Policy and SOAP Message Security define a set of rules that determine the layout of security elements that appear
in the WS-Security header within a SOAP message. The SAML assertion is inserted into the WS-Security header ac-
cording to the layout option selected here. The available options correspond to the WS-Policy Layout assertions of
Strict, Lax, LaxTimestampFirst, and LaxTimestampLast.

Insert SAML Attribute Statement:
You can specify to insert a SAML attribute statement into the generated SAML authorization assertion. If this option is
selected, a SAML attribute assertion is generated using attributes stored in the attribute.lookup.list message at-
tribute and subsequently inserted into the assertion. The attribute.lookup.list attribute must have been popu-
lated previously by an attribute lookup filter for the attribute statement to be generated successfully.

Insert SAML authorization assertion

70

Indent:
Select this method to ensure that the generated signature is properly indented.

Security Token Reference:
The generated SAML authorization assertion can be encapsulated within a <SecurityTokenReference> block. The
following example demonstrates this:

<soap:Header>
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
soap:actor="oracle">

<wsse:SecurityTokenReference>
<wsse:Embedded>
<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="oracle-1056130475340"
Id="oracle-1056130475340"
IssueInstant="2003-06-20T17:34:35Z"
Issuer="CN=Sample User,...........,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthorizationDecisionStatement
Decision="Permit"
Resource="http://www.oracle.com/service">

<saml:Subject>
<saml:NameIdentifier

Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthorizationDecisionStatement>
<dsig:Signature xmlns:dsig="http://.../xmldsig#" id="Sample User">

<!-- XML SIGNATURE INSIDE ASSERTION -->
</dsig:Signature>

</saml:Assertion>
</wsse:Embedded>
</wsse:SecurityTokenReference>

</wsse:Security>
</soap:Header>

To add the SAML assertion to a <SecurityTokenReference> block as in the example above, select the Embed
SAML assertion within Security Token Reference option. Otherwise, select No Security Token Reference.

Insert SAML authorization assertion

71

Content type filtering
Overview

The SOAP Messages with Attachments specification introduced a standard for transmitting arbitrary files along with
SOAP messages as part of a multipart MIME message. In this way, both XML and non-XML data, including binary data,
can be encapsulated in a SOAP message. The more recent Direct Internet Message Encapsulation (DIME) specification
describes another way of packaging attachments with SOAP messages.

API Gateway Explorer can accept or block multipart messages with certain MIME or DIME content types. For example,
you can configure a Content Type filter to block multipart messages with image/jpeg type parts.

Allow or deny content types

The Content Type Filtering screen lists the content types that are allowed or denied by this filter.

Allow Content Types:
Use this option if you wish to accept most content types, but only want to reject a few specific types. To allow or deny in-
coming messages based on their content types, complete the following steps:

1. Select the Allow content types radio button to allow multipart messages to be routed onwards. If you wish to allow
all content types, you do not need to select any of the MIME types in the list.

2. To deny multipart messages with certain MIME or DIME types as parts, select those types here. Multipart messages
containing the selected MIME or DIME type parts will be rejected.

Deny Content Types:
If you wish to block multipart messages containing most content types, but want to allow a small number of content
types, select this option. To reject multipart messages based on the content types of their parts, complete the following
steps:

1. Select the Deny content types radio button to reject multipart messages. If you wish to block all multipart mes-
sages, you do not need to select any of the MIME or DIME types in the list.

2. To allow messages with parts of a certain MIME or DIME type, select the checkbox next to those types. Multipart
messages with parts of the MIME or DIME types selected here will be allowed. All other MIME or DIME types will be
denied.

MIME and DIME types can be added by clicking the MIME/DIME Registered Types button. The next section describes
how to add, edit, and remove MIME/DIME types.

Configure MIME/DIME types

The MIME/DIME Settings dialog enables you to configure new and existing MIME types. When a type is added, you can
configure the API Gateway Explorer to accept or block multipart messages with parts of this type.

Click the Add button to add a new MIME/DIME type, or highlight a type in the table, and select the Edit button to edit an
existing type. To delete an existing type, select that type in the list, and click the Remove button. You can edit or add
types using the Configure MIME/DIME Type dialog.

Enter a name for the new type in the MIME or DIME Type field, and the corresponding file extension in the Extension
field.

72

Content validation
Overview

This tutorial describes how the API Gateway Explorer can examine the contents of an XML message to ensure that it
meets certain criteria. It uses boolean XPath expressions to evaluate whether or not a specific element or attribute con-
tains has a certain value.

For example, you can configure XPath expressions to make sure the value of an element matches a certain string, to
check the value of an attribute is greater (or less) than a specific number, or that an element occurs a fixed amount of
times within an XML body.

There are two ways to configure XPath expressions on this screen. Please click the appropriate link below:

• Manual XPath Configuration
• XPath Wizard

Manual XPath configuration

To manually configure a Content Validation rule using XPath:

1. Enter a meaningful name for this XPath content filter.
2. Click the Add button to add a new XPath expression. Alternatively, you can select a previously configured XPath ex-

pression from the drop-down list.
3. In order to resolve any prefixes within the XPath expression, the namespace mappings (i.e. Prefix, URI) should be

entered in the table.

As an example of how this screen should be configured, consider the following SOAP message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sig1">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<prod:product xmlns:prod="http://www.company.com">
<prod:name>SOA Product</prod:name>
<prod:company>Company</prod:company>
<prod:description>WebServices Security</prod:description>
</prod:product>

</soap:Body>
</soap:Envelope>

The following XPath expression evaluates to true if the <company> element contains the value Company:
XPath Expression: //prod:company[text()='Company']

In this case, you must define a mapping for the prod namespace as follows:

Prefix URI

prod http://www.company.com

73

In another example, the element to be examined by the XPath expression belongs to a default namespace. Consider the
following SOAP message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sig1">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<product xmlns="http://www.company.com">
<name>SOA Product</name>
<company>Company</company>
<description>Web Services Security</description>
</product>

</soap:Body>
</soap:Envelope>

The following XPath expression evaluates to true if the <company> element contains the value Company:
XPath Expression: //ns:company[text()='Company']

Because the <company> element belongs to the default (xmlns) namespace (http://www.company.com, you must
make up an arbitrary prefix (ns) for use in the XPath expression, and assign it to http://www.company.com. This is
necessary to distinguish between potentially several default namespaces which may exist throughout the XML message.
The following mapping illustrates this:

Prefix URI

ns http://www.company.com

XPath wizard

The XPath Wizard assists administrators in creating correct and accurate XPath expressions. The wizard enables ad-
ministrators to load an XML message and then run an XPath expression on it to determine what nodes are returned. To
launch the XPath Wizard, click the XPath Wizard Button on the XPath Expression dialog.

To use the XPath Wizard, enter (or browse to) the location of an XML file in the File field. The contents of the XML file
are displayed in the main window of the wizard. Enter an XPath expression in the XPath field, and click the Evaluate
button to run the XPath against the contents of the file. If the XPath expression returns any elements (or returns true),
those elements are highlighted in the main window.

If you are not sure how to write the XPath expression, you can select an element in the main window. An XPath expres-
sion to isolate this element is automatically generated and displayed in the Selected field. If you wish to use this expres-
sion, select the Use this path button, and click OK.

Content validation

74

HTTP Status
Overview

This filter is responsible for verifying the HTTP status code in a response message. This enables you to filter messages
based on their HTTP status code. For example, if the incoming message matches matches the specified HTTP status
code, you could route the message to a specified service, otherwise continue in the policy.

HTTP status codes are returned in the status-line of an HTTP response. The following are some typical examples:

HTTP/1.1 200 OK
HTTP/1.1 400 Bad Request
HTTP/1.1 500 Internal Server Error

For details on how to set an HTTP status code in a response message, see the HTTP status code topic.

Configuration

You can verify the HTTP status code using either of the following options:

Option Description

HTTP status in following range Select an HTTP status code range from the drop-down list
(for example, Success Code 2xx).

HTTP status equals Specify the status code in the field provided (for example,
500 for an internal server error).

For a complete list of status codes, see the
HTTP Specification [http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html].

75

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Has SOAP Body?
Overview

The Has SOAP Body? is a pre-configured instance of the Content Validation filter. For convenience purposes, it con-
tains a pre-configured XPath expression that simply checks for the <soap:Body> element. The XPath expression is:

/soap:Envelope/soap:Body

Configuration

This filter should not need to be configured since its sole purpose is to check for the presence of the <soap:Body> ele-
ment. However, you can change the XPath expression if necessary. For more information on configuring XPath expres-
sions, see the Content validation topic.

76

Is SOAP Fault?
Overview

The Is SOAP Fault? is a pre-configured instance of the Content Validation filter. For convenience purposes, it contains
a pre-configured XPath expression that simply checks for the <soap:Fault> element. The XPath expression is:

/soap:Envelope/soap:Body/soap:Fault

Configuration

This filter should not need to be configured since its sole purpose is to check to make sure if the message is a SOAP
Fault. However, you can change the XPath expression if necessary. For more information on configuring XPath expres-
sions, see the Content validation topic.

77

HTTP header validation
Overview

The API Gateway Explorer can check HTTP header values for threatening content. This ensures that only properly con-
figured name-value pairs appear in the HTTP request headers. Regular expressions are used to test HTTP header val-
ues. This enables you to make decisions on what to do with the message (for example, if the HTTP header value is X,
route to service X).

You can configure the following sections on the Validate HTTP Headers screen:

• Enter Regular Expression:
HTTP header values can be checked using regular expressions. You can select regular expressions from the global
White list or enter them manually. For example, if you know that an HTTP header must have a value of ABCD, a
regular expression of ^ABCD$ is an exact match test.

• Enter Threatening Content Regular Expression:
You can select threatening content regular expressions from the global Black list to run against all HTTP headers in
the message. These regular expressions identify common attack signatures (for example, SQL injection attacks).

You can configure the global White list and Black list libraries of regular expressions under the Libraries node in the
Policy Studio tree.

Configure HTTP header regular expressions

The Enter Regular Expression table displays the list of configured HTTP header names together with the White list of
regular expressions that restrict their values. For this filter to run successfully, all required headers must be present in the
request, and all must have values matching the configured regular expressions.

The Name column shows the name of the HTTP header. The Regular Expression column shows the name of the regu-
lar expression that the API Gateway Explorer uses to restrict the value of the named HTTP header. A number of com-
mon regular expressions are available from the global White list library.

Configure a regular expression
You can configure regular expressions by selecting the Add, Edit, and Delete buttons. The Configure Regular Expres-
sion dialog enables you to add or edit regular expressions to restrict the values of HTTP headers. To configure a regular
expression, perform the following steps:

1. Enter the name of the HTTP header in the Name field.
2. Select whether this header is Optional or Required using the appropriate radio button. If it is Required, the header

must be present in the request. If the header is not present, the filter fails. If it is Optional, the header does not need
to be present for the filter to pass.

3. You can enter the regular expression to restrict the value of the HTTP header manually or select it from the global
White list library of regular expressions in the Expression Name drop-down list. A number of common regular ex-
pressions are provided (for example, alphanumeric values, dates, and email addresses).
You can use selectors representing the values of message attributes to compare the value of an HTTP header with
the value contained in a message attribute. Enter the $ character in the Regular Expression field to view a list of
available attributes. At runtime, the selector is expanded to the corresponding attribute value, and compared to the
HTTP header value that you want to check. For more details on selectors, see Select configuration values at
runtime.

4. You can add a regular expression to the library by selecting the Add/Edit button. Enter a Name for the expression
followed by the Regular Expression.

Advanced settings

78

The Advanced section enables you to extract a portion of the header value which is run against the regular expression.
The extracted substring can be Base64 decoded if necessary. This section is specifically aimed towards HTTP Basic au-
thentication headers, which consist of the Basic prefix (with a trailing space), followed by the Base64-encoded user-
name and password. The following is an example of the HTTP Basic authentication header:

Authorization: Basic dXNlcjp1c2Vy

The Base64-encoded portion of the header value is what you are interested in running the regular expression against.
You can extract this by specifying the string that occurs directly before the substring you want to extract, together with
the string that occurs directly after the substring.

To extract the Base64-encoded section of the Authorization header above, enter Basic (with a trailing space) in the
Start substring field, and leave the End substring field blank to extract the entire remainder of the header value.

Important
You must select the start and end substrings to ensure that the exact substring is extracted. For example,
in the HTTP Basic example above, you should enter Basic (with a trailing space) in the Start substring
field, and not Basic (with no trailing space).

By specifying the correct substrings, you are left with the Base64-encoded header value (dXNlcjp1c2Vy). However,
you still need to Base64 decode it before you can run a regular expression on it. Make sure to select the Base64 decode
checkbox. The Base64-decoded header value is user:user, which conforms to the standard format of the Authoriz-
ation HTTP header. This is the value that you need to run the regular expression against.

The following example shows an example of an HTTP Digest authentication header:

Authorization: Digest username="user", realm="oracle.com", qop="auth",
algorithm="MD5", uri="/editor", nonce="Id-00000109924ff10b-0000000000000091",
nc="1", cnonce="ae122a8b549af2f0915de868abff55bacd7757ca",
response="29224d8f870a62ce4acc48033c9f6863"

You can extract single values from the header value. For example, to extract the realm field, enter realm=" (including
the " character), in the Start substring field and " in the End substring field. This leaves you with oracle.com to run
the regular expression against. In this case, there is no need to Base64 decode the extracted substring.

Note
If both Start substring and End substring fields are blank, the regular expression is run against the entire
header value. Furthermore, if both fields are blank and the Base64 decode checkbox is selected, the entire
header value is Base64 encoded before the regular expression is run against it.

While the above examples deal specifically with the HTTP authentication headers, the interface is generic enough to en-
able you to extract a substring from other header values.

Configure threatening content regular expressions

The regular expressions entered in this section guard against the possibility of an HTTP header containing malicious
content. The Enter Threatening Content Regular Expression table lists the Black list of regular expressions to run to
ensure that the header values do not contain threatening content.

For example, to guard against an SQL DELETE attack, you can write a regular expression to identify SQL syntax and add
it to this list. The Threatening Content Regular Expressions are listed in a table. All of these expressions are run
against all HTTP header values in an incoming request. If the expression matches any of the values, the filter fails.

HTTP header validation

79

Important
If any regular expressions are configured in the section called “Configure selector-based regular expres-
sions”, these expressions are run before the threatening content regular expressions. For example, if you
have already configured a regular expression to extract the Base64-decoded attribute value, the threaten-
ing content regular expression is run against this value instead of the attribute value stored in the message.

You can add threatening content regular expressions using the Add button. You can edit or remove existing expressions
by selecting them in the drop-down list, and clicking the Edit or Delete button.

You can enter the regular expressions manually or select them from the global Black list library of threatening content
regular expressions. This library is pre-populated with a number of regular expressions that scan for common attack sig-
natures. These include expressions to guard against common SQL injection-style attacks (for example, SQL INSERT,
SQL DELETE, and so on), buffer overflow attacks (content longer than 1024 characters), and the presence of control
characters in attribute values (ASCII control characters).

Enter or select an appropriate regular expression to restrict the value of the specified HTTP header. You can add a regu-
lar expression to the library by selecting the Add/Edit button. Enter a Name for the expression followed by the Regular
Expression.

Regular expression format

This filter uses the regular expression syntax specified by java.util.regex.Pattern. For more details, see ht-
tp://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

HTTP header validation

80

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Schema validation
Overview

API Gateway Explorer can check that XML messages conform to the structure or format expected by the Web service by
validating those requests against XML schemas. An XML schema precisely defines the elements and attributes that con-
stitute an instance of an XML document. It also specifies the data types of these elements to ensure that only appropriate
data is allowed through to the Web service.

For example, an XML schema might stipulate that all requests to a particular Web service must contain a <name> ele-
ment, which contains at most a ten character string. If the API Gateway Explorer receives a message with an improperly
formed <name> element, it rejects the message.

You can find the Schema Validation filter in the Content Filtering category of filters in Policy Studio. Drag and drop the
filter on to a policy to perform schema validation.

General settings

Configure the following general settings:

Name:
Enter an appropriate name for the filter.

Selecting the schema

To configure the XML schema to validate messages against, click the Schema to use tab. You can select to use either a
schema from the WSDL for the current Web service, or a specific schema from the global cache of WSDL and XML
schema documents.

Selecting which part of the message to match

To configure which part of the message to validate, click the Part of message to match tab.

A portion of the XML message can be extracted using an XPath expression. API Gateway Explorer can then validate this
portion against the specified XML schema. For example, you might need to validate only the SOAP Body element of a
SOAP message. In this case, enter or select an XPath expression that identifies the SOAP Body element of the mes-
sage. This portion should then be validated against an XML schema that defines the structure of the SOAP Body ele-
ment for that particular message.

Click the Add or Edit buttons to add or edit an XPath expression using the Enter XPath Expression dialog. To remove
an expression select the expression in the XPath Expression field and click the Delete button.

You can configure XPath expressions manually or using a wizard. For more details, see the Configure XPath expres-
sions topic.

Advanced settings

The following settings are available on the Advanced tab:

Allow RPC Schema Validation:
When the Allow RPC Schema Validation check box is selected, the filter makes a best attempt to validate an RPC-
encoded SOAP message. An RPC-encoded message is defined in the WSDL as having an operation with the following
characteristics:

• The style attribute of the <soap:operation> element is set to document.
• The use attribute of the <soap:body> element is set to rpc.

81

For details on the possible values for these attributes, see Section 3.5 [http://www.w3.org/TR/wsdl#_soap:body] of the
WSDL specification.

The problem with RPC-encoded SOAP messages in terms of schema validation is that the schema contained in the
WSDL file does not necessarily fully define the format of the SOAP message, unlike with document-literal style
messages. With an RPC-encoded operation, the format of the message can be defined by a combination of the SOAP
operation name, WSDL message parts, and schema-defined types. As a result, the schema extracted from a WSDL file
might not be able to validate a message.

Another problem with RPC-encoded messages is that type information is included in each element that appears in the
SOAP message. For such element definitions to be validated by a schema, the type declarations must be removed,
which is precisely what the Schema Validation filter does if the check box is selected on this tab. It removes the type de-
clarations and then makes a best attempt to validate the message.

However, as explained earlier, if some of the elements in the SOAP message are taken from the WSDL file instead of
the schema (for example, when the SOAP operation name in the WSDL file is used as the wrapper element beneath the
SOAP Body element instead of a schema-defined type), the schema is not able to validate the message.

Inline MTOM Attachments into Message:
Message Transmission Optimization Mechanism (MTOM) provides a way to send binary data to Web services in stand-
ard SOAP messages. MTOM leverages the include mechanism defined by XML Optimized Packaging (XOP), whereby
binary data can be sent as a MIME attachment (similar to SOAP with Attachments) to a SOAP message. The binary data
can then be referenced from within the SOAP message using the <xop:Include> element.

The following SOAP request contains a binary image that has been Base64-encoded so that it can be inserted as the
contents of the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

When this message is converted to an MTOM message by API Gateway the Base64-encoded content from the

</uploadGraphic>

</soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/myimage.gif>

// binary octets for image

--MIME_boundary

When attempting to validate the MTOM message with an XML schema, it is crucial that you are aware of the format of
the <image> element. Will it contain the Base64-encoded binary data, or will it contain the <xop:include> element
with a reference to a MIME part?

For example, the XML schema definition for an <image> element might look as follows:

<xsd:element name="image" maxOccurs="1" minOccurs="1"
type="xsd:base64Binary"
xmime:expectedContentTypes="*/*"
xsi:schemaLocation="http://www.w3.org/2005/05/xmlmime"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime"/>

In this case, the XML schema validator expects the contents of the <image> element to be base64Binary. However, if
the message has been formatted as an MTOM message, the <image> element contains a child element,
<xop:Include> that the schema knows nothing about. This causes the schema validator to report an error and schema
validation fails.

To resolve this issue, select the Inline MTOM Attachments into Message check box on the Advanced tab. At runtime,
the schema validator replaces the value of the <xop:Include> element with the Base64-encoded contents of the
MIME part to which it refers. This means that the message now adheres to the definition of the <image> element in the
XML schema (the element contains data of type base64Binary).

This standard procedure of interpreting XOP messages is described in Section 3.2 Interpreting XOP Packages [ht-
tp://www.w3.org/TR/2004/CR-xop10-20040826/#interpreting_xop_packages] of the XML-binary Optimized Packaging
(XOP) specification.

Reporting schema validation errors

When a schema validation check fails, the validation errors are stored in the xsd.errors API Gateway message attrib-
ute. You can return an appropriate SOAP Fault to the client by writing out the contents of this message attribute.

For example, you can do this by configuring a Set Message filter (for more information, see the Set message topic) to
write a custom response message back to the client. Place the Set Message filter on the failure path of the Schema Val-
idation filter. You can enter the following sample SOAP Fault message in the Set Message filter. Notice the use of the
${xsd.errors} message attribute selector in the <Reason> element:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Body>
<env:Fault>

<env:Code>
<env:Value>env:Receiver</env:Value>
<env:Subcode>

Schema validation

83

http://www.w3.org/TR/2004/CR-xop10-20040826/#interpreting_xop_packages
http://www.w3.org/TR/2004/CR-xop10-20040826/#interpreting_xop_packages
http://www.w3.org/TR/2004/CR-xop10-20040826/#interpreting_xop_packages

<env:Value xmlns:fault="http://www.Oracle.com/soapfaults">
fault:MessageBlocked

</env:Value>
</env:Subcode>

</env:Code>
<env:Reason>
<env:Text xml:lang="en">

${xsd.errors}
</env:Text>

</env:Reason>
<env:Detail xmlns:fault="http://www.Oracle.com/soapfaults"
fault:type="faultDetails">

</env:Detail>
</env:Fault>

</env:Body>>
</env:Envelope>

At runtime, the error reported by the schema validator is set in the message. The following example shows a SOAP Fault
containing a typical schema validation error:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Body>
<env:Fault>

<env:Code>
<env:Value>env:Receiver</env:Value>
<env:Subcode>

<env:Value xmlns:fault="http://www.Oracle.com/soapfaults">
fault:MessageBlocked

</env:Value>
</env:Subcode>

</env:Code>
<env:Reason>
<env:Text xml:lang="en">

[XSD Error: Unknown element 'id' (line: 2, column: 8)]
</env:Text>

</env:Reason>
<env:Detail xmlns:fault="http://www.Oracle.com/soapfaults"
fault:type="faultDetails">

</env:Detail>
</env:Fault>

</env:Body>>
</env:Envelope>

The following figure shows how to use the Set Message filter to return a customized SOAP Fault in a policy. If the
Schema Validation filter succeeds, the message is routed on to the target Web service. However, if the schema valida-
tion fails, the Set Message filter (named Set Custom Fault Message) is invoked. The filter sets the contents of the
xsd.errors message attribute (the schema validation errors) to the custom SOAP Fault message as shown in the ex-
ample error. The Reflect filter (named Return SOAP Fault) then writes the message back to the client.

Schema validation

84

Schema validation

85

Validate selector expression
Overview

The Validate Selector Expression filter can use regular expressions to check values specified in selectors (for example,
message attributes, Key Property Store (KPS), or environment variables). This enables you to make decisions on what to
do with the message at runtime. Filters configured in a policy before the Validate Selector Expression filter can gener-
ate message attributes and store them in the message. For example, you could use the the Validate Selector Expres-
sion filter to specify that if the attribute value is X, route the message to service X. For more details on selectors, see Se-
lect configuration values at runtime.

You can configure the following sections on the Validate Selector Expression screen:

• Enter Regular Expression:
You can configure selectors that are checked against a regular expression from the global White list library, or
against a manually configured expression. This check ensures that the value of the selector is acceptable. For ex-
ample, if you know that a message attribute-based selector named ${my.test.attribute} must have a value of
ABCD, a regular expression of ^ABCD$ is an exact match test.

• Enter Threatening Content Regular Expression:
You can select threatening content regular expressions from the global Black list to run against each configured se-
lector. These regular expressions identify common attack signatures (for example, SQL injection attacks, ASCII con-
trol characters, XML entity expansion attacks, and so on).

You can configure the global White list and Black list libraries of regular expressions under the Libraries node in the
Policy Studio tree.

Configure selector-based regular expressions

The Enter Regular Expression table displays the list of configured selectors, together with the White list of regular ex-
pressions that restrict their values. For this filter to run successfully, all configured selector checks must have values
matching the configured regular expressions.

The Selector column shows the name configured for the selector. The Regular Expression column shows the name of
the regular expression that the API Gateway Explorer uses to restrict the value of the named selector. A number of com-
mon regular expressions are available from the global White list library.

Configure a Regular Expression

You can configure regular expressions by clicking Add, Edit, or Delete. The Configure Regular Expression dialog en-
ables you to add or edit regular expressions to restrict the values of message attributes. To configure a regular expres-
sion, perform the following steps:

1. Enter the selector in the Selector Expression field (for example, ${my.test.attribute}).
2. Select whether this attribute is Optional or Required. If it is Required, the attribute must be present in the request.

If the attribute is not present, the filter fails. If it is Optional, the attribute does not need to be present for the filter to
pass.

3. You can enter the regular expression to restrict the value of the attribute manually or select it from the global White
list library of regular expressions in the Expression Name drop-down list. A number of common regular expres-
sions are provided (for example, alphanumeric values, dates, and email addresses).

4. You can add a regular expression to the library by selecting the Add/Edit button. Enter a Name for the expression
followed by the Regular Expression.

The Advanced section enables you to extract a portion of the attribute value that is run against the selector. The extrac-

86

ted substring can also be Base64 decoded if necessary.

Threatening content regular expressions

The regular expressions entered in this section guard against message attributes containing malicious content. The
Enter Threatening Content Regular Expression table lists the Black list of regular expressions that are run against all
message attributes.

For example, to guard against a SQL DELETE attack, you can write a regular expression to identify SQL syntax and add
to this list. The Threatening Content Regular Expressions are listed in a table. All of these expressions are run against
all message attributes configured in the Regular Expression table above. If the expression matches any attribute val-
ues, the filter fails.

Important
If any regular expressions are configured in the section called “Configure selector-based regular expres-
sions”, these expressions are run before the threatening content regular expressions. For example, if you
have already configured a regular expression to extract the Base64-decoded attribute value, the threaten-
ing content regular expression is run against this value instead of the attribute value stored in the message.

Click Add to add threatening content regular expressions. You can edit or remove existing expressions by selecting them
in the list, and clicking Edit or Delete. You can enter regular expressions manually or select them from the global Black
list library of threatening content regular expressions. This library is pre-populated with regular expressions that scan for
common attack signatures. These include expressions to guard against common SQL injection-style attacks (for ex-
ample, SQL INSERT, SQL DELETE, and so on), buffer overflow attacks (content longer than 1024 characters), and ASCII
control characters in attribute values.

Enter or select an appropriate regular expression to scan all message attributes for threatening content. You can add a
regular expression to the library by selecting Add or Edit. Enter a Name for the expression followed by the Regular Ex-
pression.

Validate selector expression

87

Add HTTP header
Overview

The API Gateway Explorer can add HTTP headers to a message as it passes through a policy. It can also set a
Base64-encoded value for the header. For example, you can use the Add HTTP Header filter to add a message ID to an
HTTP header. This message ID can then be forwarded to the destination web service, where messages can be indexed
and tracked by their IDs. In this way, you can create a complete audit trail of the message from the time it is received by
the API Gateway Explorer, until it is processed by the back-end system.

Each message being processed by the API Gateway Explorer is assigned a unique transaction ID, which is stored in the
id message attribute. You can use the ${id} selector to represent the value of the unique message ID. At runtime, this
selector is expanded to the value of the id message attribute. For more details on selectors, see Select configuration
values at runtime.

Configuration

To configure the Add HTTP Header filter, complete the following fields:

Name:
Enter an appropriate name for the filter.

HTTP Header Name:
Enter the name of the HTTP header to add to the message.

HTTP Header Value:
Enter the value of the new HTTP header. You can also enter selectors to represent message attributes. At runtime, the
API Gateway Explorer expands the selector to the current value of the corresponding message attribute. For example,
the ${id} selector is replaced by the value of the current message ID. Message attribute selectors have the following
syntax:
${messsage_attribute}

Override existing header:
Select this setting to override the existing header value. This setting is selected by default.

Note
When overriding an existing header, the header can be an HTTP body related header or a general HTTP
header. To override an HTTP body related header (for example, Content-Type), you must select the
Override existing header and Add header to body settings.

Base64 Encode:
Select this setting to Base64 encode the HTTP header value. For example, you should use this if the header value is an
X.509 certificate.

Add header to body:
Select this option to add the HTTP header to the message body.

Add header to HTTP headers attribute:
Select this option to add the HTTP header to the http.headers message attribute.

88

Set HTTP verb
Overview

You can use the Set HTTP Verb filter to explicitly set the HTTP verb in the message that is sent from the API Gateway
Explorer. By default, all messages are routed onwards using the HTTP verb that the API Gateway Explorer received in
the request from the client. If the message originated from a non-HTTP client (for example, JMS), the messages are
routed using the HTTP POST verb.

Configuration

Complete the following fields:

Name:
Enter a name for the filter.

HTTP Verb:
Specify the HTTP verb to use in the message that is routed onwards.

89

Remove attachments
Overview

You can use the Remove attachment filter to remove all attachments from either a request or a response message, de-
pending on where the filter is placed in the policy.

Configuration

Enter a name for this filter in the Name field.

90

Set message
Overview

The Set Message filter replaces the body of the message. The replacement data can be plain text, HTML, XML, or any
other text-based markup.

Configuration

Perform the following steps to configure the Set Message filter:

1. Enter a name for this filter in the Name field.
2. Specify the content type of the new message body in the Content-Type field. For example, if the new message

body is HTML markup, enter text/html in the Content-Type field.
3. Enter the new message body in the Message Body text area.

You can use selectors to ensure that current message attribute values are inserted into the message body at the ap-
propriate places. For more information, see the section called “Example of using selectors in the message body”.

Alternatively, click Populate on the right of the window, and select From file on disk to load the message contents
from a file, or select From web service operation to load the message contents from a web service (WSDL file)
that you have already imported into the web service repository.

You can also insert REST API parameters into the message body. Right-click within the message body at the point
where the parameter should be inserted and select Insert > REST API Parameter.

Example of using selectors in the message body

You can use selectors representing the values of message attributes in the replacement text to insert message-specific
data into the message body. For example, you can insert the authenticated user's ID into a <Username> element by us-
ing a ${authentication.subject.id} selector as follows:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<Username>${authentication.subject.id}</Username>

</soap:Header>
<soap:Body>
<getQuote xmlns="oracle.com">
<ticker>ORM.L</ticker>
</getQuote>

</soap:Body>
</soap:Envelope>

Assuming the user authenticated successfully to the API Gateway Explorer, the message body is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<Username>oracle</Username>

</soap:Header>
<soap:Body>
<getQuote xmlns="oracle.com">
<ticker>ORM.L</ticker>
</getQuote>

</soap:Body>

91

</soap:Envelope>

For more details on selectors, see Select configuration values at runtime.

Set message

92

XML decryption
Overview

The XML-Decryption filter is responsible for decrypting data in XML messages based on the settings configured in the
XML-Decryption Settings filter.

The XML-Decryption Settings filter generates the decryption.properties message attribute based on configura-
tion settings. The XML-Decryption filter uses these properties to perform the decryption of the data.

Configuration

Enter an appropriate name for the filter in the Name field.

Auto-generation using the XML decryption wizard

Because the XML-Decryption filter must always be paired with an XML-Decryption Settings filter, the Policy Studio
provides a wizard that can generate both of these filters at the same time. To use the wizard, right-click a policy node un-
der the Policies node in the Policy Studio tree, and select XML Decryption Settings.

Configure the fields on the XML Decryption Settings dialog as explained in the XML decryption settings topic. When fin-
ished, an XML-Decryption Settings filter is created along with an XML-Decryption filter.

93

XML decryption settings
Overview

The API Gateway Explorer can decrypt an XML encrypted message on behalf of its intended recipients. XML Encryption
is a W3C standard that enables data to be encrypted and decrypted at the application layer of the OSI stack, thus ensur-
ing complete end-to-end confidentiality of data.

You should use the XML-Decryption Settings in conjunction with the XML-Decryption filter, which performs the de-
cryption. The XML-Decryption Settings generates the decryption.properties message attribute, which is required
by the XML-Decryption filter.

Important
The output of a successfully executed decryption filter is the original unencrypted message. Depending on
whether the Remove EncryptedKey used in decryption has been enabled, all information relating to the
encryption key can be removed from the message. For more details, see Options section.

XML encryption overview

XML encryption facilitates the secure transmission of XML documents between two application endpoints. Whereas tradi-
tional transport-level encryption schemes, such as SSL and TLS, can only offer point-to-point security, XML encryption
guarantees complete end-to-end security. Encryption takes place at the application-layer and so the encrypted data can
be encapsulated in the message itself. The encrypted data can therefore remain encrypted as it travels along its path to
the target Web service. Furthermore, the data is encrypted such that only its intended recipients can decrypt it.

To understand how the API Gateway Explorer decrypts XML encrypted messages, you should first examine the format of
an XML encryption block. The following example shows a SOAP message containing information about Oracle:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<getCompanyInfo xmlns="www.oracle.com">
<name>Company</name>
<description>XML Security Company</description>
</getCompanyInfo>

</s:Body>
</s:Envelope>

After encrypting the SOAP Body, the message is as follows:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Security xmlns="http://schemas.xmlsoap.org/ws/2003/06/secext" s:actor="Enc">
<!-- Encapsulates the recipient's key details -->
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-7529AA14" MimeType="text/xml">
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#rsa-1_5">
<enc:KeySize>256</enc:KeySize>

</enc:EncryptionMethod>
<enc:CipherData>
<!-- The session key encrypted with the recipient's public key -->
<enc:CipherValue>

AAAAAJ/lK ... mrTF8Egg==
</enc:CipherValue>

</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>sample</dsig:KeyName>

94

<dsig:X509Data>
<!-- The recipient's X.509 certificate -->
<dsig:X509Certificate>

MIIEZzCCA0 ... fzmc/YR5gA
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>
<enc:ReferenceList>
<enc:DataReference URI="#00004190E5D1-5F889C11"/>

</enc:ReferenceList>
</enc:EncryptedKey>
</Security>

</s:Header>
<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-5F889C11" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#aes256-cbc">
<enc:KeySize>256</enc:KeySize>
</enc:EncryptionMethod>
<enc:CipherData>
<!-- The SOAP Body encrypted with the session key -->
<enc:CipherValue>

E2ioF8ib2r ... KJAnrX0GQV
</enc:CipherValue>
</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>Session key</dsig:KeyName>
</dsig:KeyInfo>

</enc:EncryptedData>
<s:Envelope>

The most important elements are as follows:

• EncryptedKey: The EncryptedKey element encapsulates all information relevant to the encryption key.
• EncryptionMethod: The Algorithm attribute specifies the algorithm that is used to encrypt the data. The mes-

sage data (EncryptedData) is encrypted using the Advanced Encryption Standard (AES) symmetric cipher, but
the session key (EncryptedKey) is encrypted with the RSA asymmetric algorithm.

• CipherValue: The value of the encrypted data. The contents of the CipherValue element are always Base64 en-
coded.

• KeyInfo: Contains information about the recipient and his encryption key, such as the key name, X.509 certificate,
and Common Name.

• ReferenceList: This element contains a list of references to encrypted elements in the message. The Refer-
enceList contains a DataReference element for each encrypted element, where the value of a URI attribute
points to the Id of the encrypted element. In the previous example, you can see that the DataReference URI at-
tribute contains the value #00004190E5D1-5F889C11, which corresponds with the Id of the EncryptedData ele-
ment.

• EncryptedData: The XML element(s) or content that has been encrypted. In this case, the SOAP Body element
has been encrypted, and so the EncryptedData block has replaced the SOAP Body element.

Now that you have seen how encrypted data can be encapsulated in an XML message, it is important to discuss how this
data gets encrypted in the first place. When you understand how data is encrypted, the fields that must be configured to
decrypt this data become easier to understand.

When a message is encrypted, only the intended recipient(s) of the message can decrypt it. By encrypting the message
with the recipient's public key, the sender can be guaranteed that only the intended recipient can decrypt the message
using his private key, to which he has sole access. This is the basic principle behind asymmetric cryptography.

XML decryption settings

95

In practice, however, encrypting and decrypting data with a public-private key pair is notoriously CPU-intensive and time
consuming. Because of this, asymmetric cryptography is seldom used to encrypt large amounts of data. The following
steps exemplify a more typical encryption process:

1. The sender generates a one-time symmetric (or session) key which is used to encrypt the data. Symmetric key en-
cryption is much faster than asymmetric encryption and is far more efficient with large amounts of data.

2. The sender encrypts the data with the symmetric key. This same key can then be used to decrypt the data. It is
therefore crucial that only the intended recipient can access the symmetric key and consequently decrypt the data.

3. To ensure that nobody else can decrypt the data, the symmetric key is encrypted with the recipient's public key.
4. The data (encrypted with the symmetric key) and session key (encrypted with the recipient's public key) are then

sent together to the intended recipient.
5. When the recipient receives the message he, decrypts the encrypted session key using his private key. Because the

recipient is the only one with access to the private key, he is the only one who can decrypt the encrypted session
key.

6. Armed with the decrypted session key, the recipient can decrypt the encrypted data into its original plaintext form.

Now that you understand how XML Encryption works, it is now time to learn how to configure the API Gateway Explorer
to decrypt XML encrypted messages. The following sections describe how to configure the XML Decryption Settings fil-
ter to decrypt encrypted XML data.

Nodes to decrypt

An XML message may contain several EncryptedData blocks. The Node(s) to Decrypt section enables you to specify
which encryption blocks are to be decrypted. There are two available options:

• Decrypt All Encrypted Nodes
• Use XPath to Select Encrypted Nodes

Decrypt All:
The API Gateway Explorer attempts to decrypt all EncryptedData blocks contained in the message.

Use XPath:
This option enables the administrator to explicitly choose the EncryptedData block that the API Gateway Explorer
should decrypt.

For example, the following skeleton SOAP message contains two EncryptedData blocks:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>

...
<s:Header>
<s:Body>
<!-- 1st EncryptedData block -->
<e:EncryptedData xmlns:e="http://www.w3.org/2001/04/xmlenc#"

Encoding="iso-8859-1" Id="ENC_1" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

...
</e:EncryptedData>
<!-- 2nd EncryptedData block -->
<e:EncryptedData xmlns:e="http://www.w3.org/2001/04/xmlenc#"

Encoding="iso-8859-1" Id="ENC_2" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

...
</e:EncryptedData>

</s:Body>
</s:Envelope>

XML decryption settings

96

The EncryptedData blocks are selected using XPath. You can use the following XPath expressions to select the re-
spective EncryptedData blocks:

EncryptedData Block XPath Expression

1st //enc:EncryptedData[@Id='ENC_1']

2nd //enc:EncryptedData[@Id='ENC_2']

Click the Add, Edit, or Delete buttons to add, edit, or remove an XPath expression.

Decryption key

The Decryption Key section enables you to specify the key to use to decrypt the encrypted nodes. As discussed in the
section called “XML encryption overview”, data encrypted with a public key can only be decrypted with the corresponding
private key. The Decryption Key settings enable you to specify the private (decryption) key from the <KeyInfo> ele-
ment of the XML Encryption block, or the certificate stored in the Oracle message attribute can be used to lookup the
private key of the intended recipient of the encrypted data in the Certificate Store.

Find via KeyInfo in Message:
Select this option if you wish to determine the decryption key to use from the KeyInfo section of the EncryptedKey
block. The KeyInfo section contains a reference to the public key used to encrypt the data. You can use this KeyInfo
section reference to find the relevant private key (from the Oracle Certificate Store) to use to decrypt the data.

Find via certificate from Selector Expression:
Select this option if you do not wish to use the KeyInfo section in the message. Enter a selector expression that con-
tains a certificate, (for example, ${certificate}) whose corresponding private key is stored in the Oracle Certificate
Store . Using a selector enables settings to be evaluated and expanded at runtime based on metadata (for example, in a
message attribute, a Key Property Store (KPS), or environment variable). For more details, see Select configuration val-
ues at runtime.

Extract nodes from Selector Expression:
Specify whether to extract nodes from a specified selector expression (for example, ${node.list}). This setting is not
selected by default.

Typically, a Find Certificate filter is used in a policy to locate an appropriate certificate and store it in the certificate
message attribute. When the certificate has been stored in this attribute, the XML Decryption Settings filter can use this
certificate to lookup the Certificate Store for a corresponding private key for the public key stored in the certificate. To do
this, select the certificate attribute from the drop-down list.

Options

The following configuration options are available in the Options section:

Fail if no encrypted data found:
If this option is selected, the filter fails if no <EncryptedData> elements are found within the message.

Remove the EncryptedKey used in decryption:
Select this option to remove information relating to the decryption key from the message. When this option is selected,
the <EncryptedKey> block is removed from the message.

Important
In cases where the <EncryptedKey> block has been included in the <EncryptedData> block, it is re-
moved regardless of whether this setting has been selected.

XML decryption settings

97

Default Derived Key Label:
If the API Gateway Explorer consumes a <DerivedKeyToken>, the default value entered is used to recreate the de-
rived key that is used to decrypt the encrypted data.

Algorithm Suite Required:
Select the WS-Security Policy Algorithm Suite that must have been used when encrypting the message. This check en-
sures that the appropriate algorithms were used to encrypt the message.

Auto-generation using the XML decryption wizard

Because the XML-Decryption Settings filter must always be paired with an XML-Decryption filter, it makes sense to
have a wizard that can generate both of these filters at the same time. To use the wizard, right-click the name of the
policy in the tree view of the Policy Studio, and select the XML Decryption Settings menu option.

Configure the fields on the XML Decryption Settings dialog as explained in the previous sections. When finished, an
XML-Decryption Settings filter is created along with an XML-Decryption filter.

XML decryption settings

98

XML encryption
Overview

The XML-Encryption filter is responsible for encrypting parts of XML messages based on the settings configured in the
XML-Encryption Settings filter.

The XML-Encryption Settings filter generates the encryption.properties message attribute based on configura-
tion settings. The XML-Encryption filter uses these properties to perform the encryption of the data.

Configuration

Enter a suitable name for the filter in the Name field.

Auto-generation using the XML encryption settings wizard

Because the XML-Encryption filter must always be used in conjunction with the XML-Encryption Settings and Find
Certificate filters, the Policy Studio provides a wizard that can generate these three filters at the same time. To use this
wizard, right-click a policy node under the Policies node in the Policy Studio tree, and select the XML Encryption Set-
tings menu option.

For more information on how to configure the XML Encryption Settings Wizard see the XML Encryption Wizard topic.

99

XML encryption settings
Overview

The API Gateway Explorer can XML encrypt an XML message so that only certain specified recipients can decrypt the
message. XML encryption is a W3C standard that enables data to be encrypted and decrypted at the application layer of
the OSI stack, thus ensuring complete end-to-end confidentiality of data.

The XML-Encryption Settings should be used in conjunction with the XML-Encryption filter, which performs the en-
cryption. The XML-Encryption Settings generates the encryption.properties message attribute, which is required
by the XML-Encryption filter.

XML encryption overview

XML encryption facilitates the secure transmission of XML documents between two application endpoints. Whereas tradi-
tional transport-level encryption schemes, such as SSL and TLS, can only offer point-to-point security, XML encryption
guarantees complete end-to-end security. Encryption takes place at the application-layer, and so the encrypted data can
be encapsulated in the message itself. The encrypted data can therefore remain encrypted as it travels along its path to
the target Web service.

Before explaining how to configure the API Gateway Explorer to encrypt XML messages, it is useful to examine an XML
encrypted message. The following example shows a SOAP message containing information about Oracle:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<getCompanyInfo xmlns="http://www.oracle.com">
<name>Company</name>
<description>XML Security Company</description>
</getCompanyInfo>

</s:Body>
</s:Envelope>

After encrypting the SOAP Body, the message is as follows:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Security xmlns="http://schemas.xmlsoap.org/ws/2003/06/secext" s:actor="Enc">
<!-- Encapsulates the recipient's key details -->
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-7529AA14" MimeType="text/xml">
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#rsa-1_5">
<enc:KeySize>256</enc:KeySize>

</enc:EncryptionMethod>
<enc:CipherData>
<!-- The session key encrypted with the recipient's public key -->
<enc:CipherValue>

AAAAAJ/lK ... mrTF8Egg==
</enc:CipherValue>

</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>sample</dsig:KeyName>
<dsig:X509Data>
<!-- The recipient's X.509 certificate -->
<dsig:X509Certificate>

MIIEZzCCA0 ... fzmc/YR5gA
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>

100

<enc:ReferenceList>
<enc:DataReference URI="#00004190E5D1-5F889C11"/>

</enc:ReferenceList>
</enc:EncryptedKey>
</Security>

</s:Header>
<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-5F889C11" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#aes256-cbc">
<enc:KeySize>256</enc:KeySize>
</enc:EncryptionMethod>
<enc:CipherData>
<!-- The SOAP Body encrypted with the session key -->
<enc:CipherValue>

E2ioF8ib2r ... KJAnrX0GQV
</enc:CipherValue>
</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>Session key</dsig:KeyName>
</dsig:KeyInfo>

</enc:EncryptedData>
<s:Envelope>

The most important elements are as follows:

• EncryptedKey:
The EncryptedKey element encapsulates all information relevant to the encryption key.

• EncryptionMethod:
The Algorithm attribute specifies the algorithm used to encrypt the data. The message data (EncryptedData) is
encrypted using the Advanced Encryption Standard (AES) symmetric cipher, but the session key (EncryptedKey)
is encrypted with the RSA asymmetric algorithm.

• CipherValue:
The value of the encrypted data. The contents of the CipherValue element are always Base64 encoded.

• DigestValue:
Contains the Base64-encoded message-digest.

• KeyInfo:
Contains information about the recipient and his encryption key, such as the key name, X.509 certificate, and Com-
mon Name.

• ReferenceList: This element contains a list of references to encrypted elements in the message. It contains a
DataReference element for each encrypted element, where the value of a URI attribute points to the Id of the en-
crypted element. In the previous example, the DataReference URI attribute contains the value
#00004190E5D1-5F889C11, which corresponds with the Id of the EncryptedData element.

• EncryptedData:
The XML elements or content that has been encrypted. In this case, the SOAP Body element has been encrypted,
and so the EncryptedData block has replaced the SOAP Body element.

Now that you have seen how encrypted data can be encapsulated in an XML message, it is important to discuss how the
data is encrypted. When a message is encrypted, it is encrypted in such a manner that only the intended recipients of the
message can decrypt it. By encrypting the message with the recipient public key, the sender can be guaranteed that only
the intended recipient can decrypt the message using his private key, to which he has sole access. This is the basic prin-
ciple behind asymmetric cryptography.

In practice, however, encrypting and decrypting data with a public-private key pair is a notoriously CPU-intensive and
time consuming affair. Because of this, asymmetric cryptography is seldom used to encrypt large amounts of data. The
following steps show a more typical encryption process:

XML encryption settings

101

1. The sender generates a one-time symmetric (or session) key which is used to encrypt the data. Symmetric key en-
cryption is much faster than asymmetric encryption, and is far more efficient with large amounts of data.

2. The sender encrypts the data with the symmetric key. This same key can then be used to decrypt the data. It is
therefore crucial that only the intended recipient can access the symmetric key and consequently decrypt the data.

3. To ensure that nobody else can decrypt the data, the symmetric key is encrypted with the recipient's public key.
4. The data (encrypted with the symmetric key), and session key (encrypted with the recipient's public key), are then

sent together to the intended recipient.
5. When the recipient receives the message, he decrypts the encrypted session key using his private key. Because the

recipient is the only one with access to the private key, only he can decrypt the encrypted session key.
6. Armed with the decrypted session key, the recipient can decrypt the encrypted data into its original plaintext form.

Now that you understand the structure and mechanics of XML Encryption, you can configure the API Gateway Explorer
to encrypt egress XML messages. The next section describes how to configure the tabs on the XML Encryption Set-
tings screen.

Encryption key settings

The settings on the Encryption Key tab determine the key to use to encrypt the message, and how this key is referred
to in the encrypted data. The following configuration options are available:

Important
A symmetric key is used to encrypt the data. This symmetric key is then encrypted (asymmetrically) with
the recipient's public key. In this way, only the recipient can decrypt the symmetric encryption key with its
private key. When the recipient has access to the unencrypted encryption key, it can decrypt the data.

Generate Encryption Key:
Select this option to generate a symmetric key to encrypt the data with.

Encryption Key from Selector Expression:
If you have already used a symmetric key in a previous filter (for example, a Sign Message filter), you can reuse that key
to encrypt data by selecting this option and specifying a selector expression to obtain the key (for example,
${symmetric.key}). Using a selector enables settings to be evaluated and expanded at runtime based on metadata
(for example, in a message attribute, a Key Property Store (KPS), or environment variable). For more details, see Select
configuration values at runtime.

Include Encryption Key in Message:
Select this option if you want to include the encryption key in the message. The encryption key is encrypted for the recipi-
ent so that only the recipient can access the encryption key. You may choose not to include the symmetric key in the
message if the API Gateway Explorer and recipient have agreed on the symmetric encryption key using some other
means.

Specify Method of Associating the Encryption Key with the Encrypted Data:
This section enables you to configure the method by which the encrypted data references the key used to encrypt it. The
following options are available:

• Point to Encryption Key with Security Token Reference:
This option creates a <SecruityTokenReference> in the <EncryptedData> that points to an
<EncryptedKey>.

• Embed Symmetric Key Inside Encrypted Data:
Place the <xenc:EncryptedKey> inside the <xenc:EncryptedData> element.

• Specify Encryption Key via Carried Keyname:
Place the encrypted key's carried keyname inside the <dsig:KeyInfo>/ <dsig:KeyName> of the
<xenc:EncryptedData>.

XML encryption settings

102

• Specify Encryption Key via Retrieval Method:
Refer to a symmetric key via a retrieval method reference from the <xenc:EncryptedData>.

• Symmetric Key Refers to Encrypted Data:
The symmetric key refers to <xenc:EncryptedData> using a reference list.

Use Derived Key:
Select this option if you want to derive a key from the symmetric key configured above to encrypt the data. The
<enc:EncryptedData> has a <wsse:SecurityTokenReference> to the <wssc:DerivedKeyToken>. The
<wssc:DerivedKeyToken> refers to the <enc:EncryptedKey>. Both <wssc:DerivedKeyToken> and
<enc:EncryptedKey> are placed inside a <wsse:Security> element.

Key info settings

The Key Info tab configures the content of the <KeyInfo> section of the generated <EncryptedData> block. Configure
the following fields on this tab:

Do Not Include KeyInfo Section:
This option enables you to omit all information about the certificate that contains the public key that was used to encrypt
the data from the <EncryptedData> block. In other words, the <KeyInfo> element is omitted from the
<EncryptedData> block. This is useful where a downstream Web service uses an alternative method to decide what
key to use to decrypt the message. In such cases, adding certificate information to the message may be regarded as an
unnecessary overhead.

Include Certificate:
This is the default option, which places the certificate that contains the encryption key inside the <EncryptedData>.
The following example, shows an example of a <KeyInfo> that has been produced using this option:

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</enc:EncryptedData>

Expand Public Key:
The details of the public key used to encrypt the data are inserted into a <KeyValue> block. The <KeyValue> block is
only inserted when this option is selected.

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIE EQgJ
</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>
<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>

XML encryption settings

103

<dsig:Exponent>AQAB</dsig:Exponent>
</dsig:RSAKeyValue>
</dsig:KeyValue>

</dsig:KeyInfo>
</enc:EncryptedData>

Include Distinguished Name:
If this checkbox is selected, the Distinguished Name of the certificate that contains the public key used to encrypt the
data is inserted in an <X509SubjectName> element as shown in the following example:

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample,C=IE...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</enc:EncryptedData>

Include Key Name:
This option enables you insert a key identifier, or <KeyName>, to allow the recipient to identify the key to use to decrypt
the data. Enter an appropriate value for the <KeyName> in the Value field. Typical values include Distinguished Names
(DName) from X.509 certificates, key IDs, or email addresses. Specify whether the specified value is a Text value of a
Distinguished name attribute by selecting the appropriate radio button.

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<dsig:KeyName>test@oracle.com</dsig:KeyName>

</dsig:KeyInfo>
</enc:EncryptedData>

Put Certificate in an Attachment:
The API Gateway Explorer supports SOAP messages with attachments. By selecting this option, you can save the certi-
ficate containing the encryption key to the file specified in the input field. This file can then be sent along with the SOAP
message as a SOAP attachment.

From previous examples, it is clear that the user's certificate is usually placed inside a <KeyInfo> element. However, in
this example, the certificate is contained in an attachment, and not in the <EncryptedData>. Clearly, you need a way
to reference the certificate from the <EncryptedData> block, so that the recipient can determine what key it should use
to decrypt the data. This is the role of the <SecurityTokenReference> block.

The <SecurityTokenReference> block provides a generic mechanism for applications to retrieve security tokens in
cases where these tokens are not contained in the SOAP message. The name of the security token is specified in the
URI attribute of the <Reference> element.

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<wsse:SecurityTokenReference xmlns:wsse="http://schemas.xmlsoap.org/ws/...">
<wsse:Reference URI="c:\myCertificate.txt"/>
</wsse:SecurityTokenReference>

</dsig:KeyInfo>
</enc:EncryptedData>

XML encryption settings

104

When the message is sent, the certificate attachment is given a Content-Id corresponding to the URI attribute of the
<Reference> element. The following example shows the wire format of the complete multipart MIME SOAP message.
It should help illustrate how the <Reference> element refers to the Content-ID of the attachment:

POST /adoWebSvc.asmx HTTP/1.0
Content-Length: 3790
User-Agent: API Gateway Explorer
Accept-Language: en
Content-Type: multipart/related; type="text/xml";

boundary="----=Multipart-SOAP-boundary"

------=Multipart-SOAP-boundary
Content-Id: soap-envelope
Content-Type: text/xml; charset="utf-8";
SOAPAction=getQuote

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
...

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<ws:SecurityTokenReference xmlns:ws="http://schemas.xmlsoap.org/ws/...">
<ws:Reference URI="c:\myCertificate.txt"/>

</ws:SecurityTokenReference>
</dsig:KeyInfo>

</enc:EncryptedData>
...

</s:Envelope>

------=Multipart-SOAP-boundary
Content-Id: c:\myCertificate.txt
Content-Type: text/plain; charset="US-ASCII"

MIIEZDCCA0ygAwIBAgIBAzANBgkqhki
....
7uFveG0eL0zBwZ5qwLRNp9aKD1fEQgJ
------=Multipart-SOAP-boundary-

Security Token Reference:
A <wsse:SecurityTokenReference> element can be used to point to the security token used to encrypt the data. If
you wish to use a <wsse:SecurityTokenReference>, enable this option, and select a Security Token Reference
type from Reference Type drop-down list.

The <wsse:SecurityTokenReference>, (in the <dsig:KeyInfo>), may contain a <wsse:Embedded> security
token. Alternatively, the <wsse:SecurityTokenReference>, (in the <dsig:KeyInfo>), may refer to a certificate us-
ing a <dsig:X509Data>. Select the appropriate button, Embed or Refer, depending on whether you want to use an
embedded security token or a referred one.

If you have configured the SecurityContextToken (sct) mechanism from the Security Token Reference drop-
down list, you can select to use an Attached SCT or an Unattached SCT. The default option is to use an Attached
SCT, which should be used in cases where the SCT refers to a security token inside the <wsse:Security> header. If
the SCT is located outside the <wsse:Security> header, you should select the Unattached SCT option.

You can make sure to include a <BinarySecurityToken> (BST) that contains the certificate (that contains the encryp-
tion key) in the message by selecting the Include BinarySecurityToken option. The BST is inserted into the WS-
Security header regardless of the type of Security Token Reference selected from the dropdown.

Select Include TokenType if you want to add the TokenType attribute to the SecurityTokenReference element.

XML encryption settings

105

Important
When using the Kerberos Token Profile standard, and the API Gateway Explorer is acting as the initiator of
a secure transaction, it can use Kerberos session keys to encrypt a message. The KeyInfo must be con-
figured to use a Security Token Reference with a ValueType of GSS_Kerberosv5_AP_REQ. In this case,
the Kerberos token is contained in a <BinarySecurityToken> in the message.

If the API Gateway Explorer is acting as the recipient of a secure transaction, it can also use the Kerberos session keys
to encrypt the message returned to the client. However, in this case, the KeyInfo must be configured to use a Security
Token Reference with ValueType of Kerberosv5_APREQSHA1. When this is selected, the Kerberos token is not con-
tained in the message. The Security Token Reference contains a SHA1 digest of the original Kerberos token received
from the client, which identifies the session keys to the client.

When using the WS-Trust for SPENGO standard, the Kerberos session keys are not used directly to encrypt messages
because a security context with an associated symmetric key is negotiated. This symmetric key is shared by both client
and service and can be used to encrypt messages on both sides.

Recipient settings

XML Messages can be encrypted for multiple recipients. In such cases, the symmetric encryption key is encrypted with
the public key of each intended recipient and added to the message. Each recipient can then decrypt the encryption key
with their private key and use it to decrypt the message.

The following SOAP message has been encrypted for 2 recipients (oracle_1 and oracle_2). The encryption key has
been encrypted twice: once for oracle_1 using its public key, and a second time for oracle_2 using its public key:

Important
The data itself is only encrypted once, while the encryption key must be encrypted for each recipient. For il-
lustration purposes, only those elements relevant to the above discussion have been included in the follow-
ing XML encrypted message.

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Security xmlns="http://schemas.xmlsoap.org/ws/2003/06/secext"

s:actor="Enc Keys">
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="0000418BBB61-A692675C" MimeType="text/xml">
...
<enc:CipherData>
<!-- Enc key encrypted with oracle_1's public key and base64-encoded -->
<enc:CipherValue>AAAAAExx1A ... vuAhCgMQ==</enc:CipherValue>

</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>oracle_1</dsig:KeyName>

</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>
<enc:ReferenceList>

<enc:DataReference URI="#0000418BBB61-D4495D9B"/>
</enc:ReferenceList>

</enc:EncryptedKey>
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="#0000418BBB61-D4495D9B" MimeType="text/xml">
...
<enc:CipherData>
<!-- Enc key encrypted with oracle_2's public key and base64-encoded -->
<enc:CipherValue>AAAAABZH+U ... MrMEEM/Ps=</enc:CipherValue>

</enc:CipherData>

XML encryption settings

106

<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>oracle_2</dsig:KeyName>

</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>
<enc:ReferenceList>

<enc:DataReference URI="#0000418BBB61-D4495D9B"/>
</enc:ReferenceList>

</enc:EncryptedKey>
</Security>

</s:Header>
<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="0000418BBB61-D4495D9B" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#aes256-cbc">
<enc:KeySize>256</enc:KeySize>
</enc:EncryptionMethod>
<enc:CipherData>
<!-- SOAP Body encrypted with symmetric enc key and base64-encoded -->
<enc:CipherValue>WD0TmuMk9 ... GzYFeq8SM=</enc:CipherValue>
</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>Session key</dsig:KeyName>
</dsig:KeyInfo>

</enc:EncryptedData>
</s:Envelope>

There are two <EncryptedKey> elements, one for each recipient. The <CipherValue> element contains the symmet-
ric encryption key encrypted with the recipient's public key. The encrypted symmetric key must be Base64-encoded so
that it can be represented as the textual contents of an XML element.

The <EncryptedData> element contains the encrypted data, along with information about the encryption process, in-
cluding the encryption algorithm used, the size of the encryption key, and the type of data that was encrypted (for ex-
ample, whether an element or the contents of an element was encrypted).

Click the Add button to add a new recipient for which the data will be encrypted. Configure the following fields on the
XML Encryption Recipient dialog:

Recipient Name:
Enter a name for the recipient. This name can then be selected on the main Recipients tab of the filter.

Actor:
The <EncryptedKey> for this recipient is inserted into the specified SOAP actor/role.

Use Key in Message Attribute:
Specify the message attribute that contains the recipient's public key that is used to encrypt the data. By default, the
certificate attribute is used. Typically, this attribute is populated by the Find Certificate filter, which retrieves a certi-
ficate from any one of a number of locations, including the Certificate Store, an LDAP directory, HTTP header, or from
the message itself.

If you want to encrypt the message for multiple recipients, you must configure multiple Find Certificate filters (or some
other filter that can retrieve certificates). Each Find Certificate filter retrieves a certificate for a single recipient and store
it in a unique message attribute.

For example, a Find Certificate filter called Find Certificate for Recipient1 filter could locate Recipient1's certificate
from the Certificate Store and store it in a certificate_recip1 message attribute. You would then configure a
second Find Certificate filter called Find Certificate for Recipient2, which could retrieve Recipient2's certificate from
the Certificate Store and store it in a certificate_recip2 message attribute.

On the Recipients tab of the XML Encryption Settings filter, you would then configure two recipients. For the first recip-
ient (Recipient1), you would enter certificate_recip1 as the location of the encryption key, while for the second re-

XML encryption settings

107

cipient (Recipient2), you would specify certificate_recip2 as the location of the encryption key.

Note
If the API Gateway Explorer fails to encrypt the message for any of the recipients configured on the Recipi-
ents tab, the filter will fail.

What to encrypt settings

The What to Encrypt tab is used to identify parts of the message that must be encrypted. Each encrypted part will be re-
placed by an <EncryptedData> block, which contains all information required to decrypt the block.

You can use any combination of Node Locations, XPaths, and the nodes contained in a Message Attribute to specify
the nodes that are required to be encrypted.

Important
Note the difference between encrypting the element and encrypting the element content. When encrypting
the element, the entire element is replaced by the <EncryptedData> block. This is not recommended, for
example, if you wish to encrypt the SOAP Body because if this element is removed from the SOAP mes-
sage, the message may no longer be considered a valid SOAP message.

Element encryption is more suitable when encrypting security blocks, (for example, WS-Security Username tokens and
SAML assertions) that may appear in a WS-Security header of a SOAP message. In such cases, replacing the element
content (for example, a <UsernameToken> element) with an <EncryptedData> block will not affect the semantics of
the WS-Security header.

If you wish to encrypt the SOAP Body, you should use element content encryption, where the children of the element are
replaced by the <EncryptedData> block. In this way, the message can still be validated against the SOAP schema.

When using Node Locations to identify nodes that are to be encrypted, you can configure whether to encrypt the ele-
ment or the element contents on the Locate XML Nodes dialog. To encrypt the element, select the Encrypt Node radio
button. Alternatively, to encrypt the element contents, select the Encrypt Node Content radio button.

If you are using XPath expressions to specify the nodes that are to be signed, be careful not to use an expression that
returns a node and all its contents. The Encrypt Node and Encrypt Node Content options are also available when con-
figuring XPath expressions on the Enter XPath Expression dialog.

Advanced settings

The Advanced tab on the main XML-Encryption Settings screen enables you to configure some of the more complic-
ated settings regarding XML-Encryption. The following settings are available:

Algorithm Suite Tab:
The following fields can be configured on this tab:

Algorithm Suite:
WS-Security Policy defines a number of algorithm suites that group together a number of cryptographic algorithms. For
example, a given algorithm suite uses specific algorithms for asymmetric encryption, symmetric encryption, asymmetric
key wrap, and so on. Therefore, by specifying an algorithm suite, you are effectively selecting a whole suite of crypto-
graphic algorithms to use.

If you want to use a particular WS-Security Policy algorithm suite, you can select it here. The Encryption Algorithm and
Key Wrap Algorithm fields are automatically populated with the corresponding algorithms for that suite.

Encryption Algorithm:

XML encryption settings

108

The encryption algorithm selected is used to encrypt the data. The following algorithms are available:

• AES-256
• AES-192
• AES-128
• Triple DES

Key Wrap Algorithm:
The key wrap algorithm selected here is used to wrap (encrypt) the symmetric encryption key with the recipient's public
key. The following key wrap algorithms are available:

• KwRsa15
• KwRsaOaep

Settings Tab:
The following advanced settings are available on this tab:

Generate a Reference List in WS-Security Block:
When this option is selected, a <xenc:ReferenceList> that holds a reference to all encrypted data elements is gen-
erated. The <xenc:ReferenceList> element is inserted into the WS-Security block indicated by the specified actor.

Insert Reference List into EncryptedKey:
When this option is selected, a <xenc:ReferenceList> that holds a reference to all encrypted data elements is gen-
erated. The <xenc:ReferenceList> element is inserted into the <xenc:EncryptedKey> element.

Layout Type:
Select the WS-SecurityPolicy layout type that you want the generated tokens to adhere to. This includes elements such
as the <EncryptedData>, <EncryptedKey>, <ReferenceList>, <BinarySecurityToken>, and
<DerivedKeyToken> tokens, among others.

Fail if no Nodes to Encrypt:
Select this option if you want the filter to fail if any of the nodes specified on the What to Encrypt tab are found in the
message.

Insert Timestamp:
This option enables you to insert a WS-Security Timestamp as an encryption property.

Indent:
This option enables you to format the inserted <EncryptedData> and <EncryptedKey> blocks by indenting the ele-
ments.

Insert CarriedKeyName for EncryptedKey:
Select this option to insert a <CarriedKeyName> element into the generated <EncryptedKey> block.

Auto-generation using the XML encryption settings wizard

Because the XML-Encryption Settings filter must always be used in conjunction with the XML-Encryption and Find
Certificate filters, the Policy Studio provides a wizard that can generate these three filters at the same time. Right-click a
policy under the Policies node in the Policy Studio, and select XML Encryption Settings.

For more information on how to configure the XML Encryption Settings Wizard see the XML Encryption Wizard topic.

XML encryption settings

109

XML Encryption Wizard
Overview

There are several filters involved in encrypting a message using XML Encryption. These filters are as follows:

Step Role

1. Select Public Key Specify the certificate that contains the public key to use in
the encryption. The data will be encrypted such that it can
only be decrypted with the corresponding private key.

2. XML Encryption Settings Specify the recipient of the encrypted data, what data to
encrypt, what algorithms to use, and other such options
that will affect the way the data is encrypted.

The XML Encryption Wizard is available by clicking the on the Encrypt Request link on the left-hand side of the Clas-
sic Mode of the API Gateway Explorer. The next section describes how to configure the wizard.

Configuration

The first step in configuring the XML Encryption Wizard is to select the certificate that contains the public key to use to
encrypt the data. Once the data has been encrypted with this public key it will only be able to be decrypted using the cor-
responding private key. Select the relevant certificate from the list of Certificates in the Trusted Certificate Store.

After clicking the Next button on the first screen of the wizard, the configuration options for the XML Encryption Set-
tings filter are displayed. For more information on configuring this filter, please refer to the XML encryption settings topic.

Click the Finish button to create the XML-Encryption block within the SOAP message.

110

XML signature generation
Overview

The API Gateway Explorer can sign both SOAP and non-SOAP XML messages. Attachments to the message can also
be signed. The resulting XML signature is inserted into the message for consumption by a downstream web service. At
the web service, the signature can be used to authenticate the message sender and verify the integrity of the message.

General settings

Configure the following general setting:

Name:
Enter an appropriate name for the filter.

Signing key settings

On the Signing Key tab, you can select either a symmetric or an asymmetric key to sign the message content. Select
the appropriate radio button and configure the fields on the corresponding tab.

Asymmetric Key

With an asymmetric signature, the signatory's private key (from a public-private key pair) is used to sign the message.
The corresponding public key is then used to verify the signature. The following fields are available for configuration on
this tab:

Private Key in Certificate Store:
To use a signing key from the certificate store, select Key in Store, and click Signing Key. Select a certificate that has
the required signing key associated with it. The signing key can also be stored on a Hardware Security Module (HSM).
For more details, see Manage certificates and keys. The Distinguished Name of the selected certificate appears in the
X509SubjectName element of the XML signature as follows:

<dsig:X509SubjectName>
CN=Sample,OU=R&D,O=Company Ltd.,L=Dublin 4,ST=Dublin,C=IE

</dsig:X509SubjectName>

Private Key from Selector Expression:
Alternatively, the signing key might have already have been used by another filter and stored in a message attribute. To
reuse this key, select Private Key from Selector Expression, and enter the selector expression (for example,
${asymmetric.key}). Using a selector enables settings to be evaluated and expanded at runtime based on metadata
(for example, in a message attribute, Key Property Store (KPS), or environment variable). For more details, see Select
configuration values at runtime.

Symmetric Key

With a symmetric signature, the same key is used to sign and verify the message. Typically the client generates the sym-
metric key and uses it to sign the message. The key must then be transmitted to the recipient so that they can verify the
signature. It would be unsafe to transmit an unprotected key along with the message so it is usually encrypted (or
wrapped) with the recipient's public key. The key can then be decrypted with the recipient's private key and can then be
used to verify the signature. The following configuration options are available on this window:

Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway Explorer generates a symmetric key, which is included in the message before it
is sent to the client. By default, the key is saved in the symmetric.key message attribute.

Symmetric Key from Selector Expression:

111

If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can to reuse this key as
proof that the API Gateway Explorer is the holder-of-key entity. Enter the name of the selector expression in the field
provided, which defaults to ${symmetric.key}. Using a selector enables settings to be evaluated and expanded at
runtime based on metadata (for example, in a message attribute, a Key Property Store (KPS), or environment variable).
For more details, see Select configuration values at runtime.

Include Encrypted Symmetric Key in Message:
As described earlier, the symmetric key is typically encrypted for the recipient and included in the message. However, it
is possible that the initiator and recipient of the transaction have agreed on a symmetric key using some out-of-bounds
mechanism. In this case, it is not necessary to include the key in the message. However, the default option is to include
the encrypted symmetric key in the message. The <KeyInfo> section of the signature points to the <EncryptedKey>.

Encrypt with Key in Store:
Select this option to encrypt the symmetric key with a public key from the certificate store. Click the Signing Key button
and then select the certificate that contains the public key of the recipient. By encrypting the symmetric key with this pub-
lic key, you are ensuring that only the recipient that has access to the corresponding private key will be able to decrypt
the encrypted symmetric key.

Encrypt with Key from Selector Expression:
You can also use a key stored in a message attribute to encrypt (or wrap) the symmetric key. Select this radio button and
enter the selector expression to obtain the public key you want to use to encrypt the symmetric key with. Using a selector
enables settings to be evaluated and expanded at runtime based on metadata (for example, in a message attribute, a
Key Property Store (KPS), or environment variable). For more details, see Select configuration values at runtime.

Use Derived Key:
A <wssc:DerivedKeyToken> token can be used to derive a symmetric key from the original symmetric key held in and
<enc:EncryptedKey>. The derived symmetric key is then used to actually sign the message, as opposed to the origin-
al symmetric key. It must be derived again during the verification process using the parameters in the
<wssc:DerivedKeyToken>. One of these parameters is the symmetric key held in <enc:EncryptedKey>. The fol-
lowing example shows the use of a derived key:

<enc:EncryptedKey Id="Id-0000010b8b0415dc-0000000000000000">
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<dsig:KeyInfo>

...
</dsig:KeyInfo>
<enc:CipherData>

</enc:EncryptedKey>

<wssc:DerivedKeyToken wsu:Id="Id-0000010bd2b8eca1-0000000000000017"
Algorithm="http://schemas.xmlsoap.org/ws/2005/02/sc/dk/p_sha1">

<wsse:SecurityTokenReference wsu:Id="Id-0000010bd2b8ed5d-0000000000000018">
<wsse:Reference URI="#Id Id-0000010b8b0415dc-0000000000000000"
ValueType="..../oasis-wss-soap-message-security-1.1#EncryptedKey"/>

</wsse:SecurityTokenReference>
<wssc:Generation>0</wssc:Generation>
<wssc:Length>32</wssc:Length>
<wssc:Label>WS-SecureConverstaionWS-SecureConverstaion</wssc:Label>
<wssc:Nonce>h9TTWKRylCOz87+mc1/7Pg==</wssc:Nonce>

</wssc:DerivedKeyToken>

<dsig:Signature Id="Id-0000010b8b0415dc-0000000000000004">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
<dsig:Reference>...</dsig:Reference>

</dsig:SignedInfo>
<dsig:SignatureValue>...dsig:SignatureValue>
<dsig:KeyInfo>
<wsse:SecurityTokenReference wsu:Id="Id-0000010b8b0415dc-0000000000000006">

XML signature generation

112

<wsse:Reference
URI="# Id-0000010bd2b8eca1-0000000000000017"
ValueType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"/>

</wsse:SecurityTokenReference>
</dsig:KeyInfo>

</dsig:Signature>

Symmetric Key Length:
This option enables the user to specify the length of the key to use when performing symmetric key signatures. It is im-
portant to realize that the longer the key, the stronger the encryption.

Key Info

This tab configures how the <KeyInfo> block of the generated XML signature is displayed. Configure the following
fields on this tab:

Do Not Include KeyInfo Section:
This option enables you to omit all information about the signatory's certificate from the signature. In other words, the
KeyInfo element is omitted from the signature. This is useful where a downstream web service uses an alternative
method of authenticating the signatory, uses the signature for the sole purpose of verifying the integrity of the message.
In such cases, adding certificate information to the message is an unnecessary overhead.

Include Certificate:
This is the default option which places the signatory's certificate inside the XML signature itself. The following example,
shows an example of an XML signature using this option:

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

Expand Public Key:
The details of the signatory's public key are inserted into a KeyValue block. The KeyValue block is only inserted when
this option is selected.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIE EQgJ
</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>
<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>

XML signature generation

113

<dsig:Exponent>AQAB</dsig:Exponent>
</dsig:RSAKeyValue>
</dsig:KeyValue>

</dsig:KeyInfo>
</dsig:Signature>

Include Distinguished Name:
If this check box is selected, the Distinguished Name of the signatory's X.509 certificate is inserted in an
<X509SubjectName> element as shown in the following example:

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample,C=IE...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

Include Key Name:
This option allows you insert a key identifier, or KeyName, to allow the recipient to identify the signatory. Enter an appro-
priate value for the KeyName in the Value field. Typical values include Distinguished Names (DName) from X.509 certi-
ficates, key IDs, or email addresses. Specify whether the specified value is a Text value of a Distinguished name at-
tribute by checking the appropriate radio button.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:KeyName>test@oracle.com</dsig:KeyName>

</dsig:KeyInfo>
</dsig:Signature>

Put Certificate in an Attachment:
The API Gateway Explorer supports SOAP messages with attachments. By selecting this option, you can save the sig-
natory's certificate to the file specified in the input field. This file can then be sent along with the SOAP message as a
SOAP attachment.

From previous examples, it is clear that the user's certificate is usually placed inside a KeyInfo element. However, in
this example, the certificate is actually contained within an attachment, and not within the XML signature itself. To refer-
ence the certificate from the XML signature, so that validating applications can process the signature correctly, is the role
of the SecuriyTokenReference block.

The SecurityTokenReference block provides a generic way for applications to retrieve security tokens in cases
where these tokens are not contained within the SOAP message. The name of the security token is specified in the URI
attribute of the Reference element.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<wsse:SecurityTokenReference xmlns:wsse="http://schemas.xmlsoap.org/ws/...">
<wsse:Reference URI="c:\myCertificate.txt"/>
</wsse:SecurityTokenReference>

XML signature generation

114

</dsig:KeyInfo>
</dsig:Signature>

When the message is actually sent, the certificate attachment will be given a "Content-Id" corresponding to the URI at-
tribute of the Reference element. The following example shows what the complete multipart MIME SOAP message
looks like as it is sent over the wire. This illustrates how the Reference element actually refers to the "Content-ID" of the
attachment:

POST /adoWebSvc.asmx HTTP/1.0
Content-Length: 3790
User-Agent: API Gateway Explorer
Accept-Language: en
Content-Type: multipart/related; type="text/xml";

boundary="----=Multipart-SOAP-boundary"

------=Multipart-SOAP-boundary
Content-Id: soap-envelope
Content-Type: text/xml; charset="utf-8";
SOAPAction=getQuote

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
...

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<ws:SecurityTokenReference xmlns:ws="http://schemas.xmlsoap.org/ws/...">
<ws:Reference URI="c:\myCertificate.txt"/>

</ws:SecurityTokenReference>
</dsig:KeyInfo>

</dsig:Signature>
...

</s:Envelope>

------=Multipart-SOAP-boundary
Content-Id: c:\myCertificate.txt
Content-Type: text/plain; charset="US-ASCII"

MIIEZDCCA0ygAwIBAgIBAzANBgkqhki
....
7uFveG0eL0zBwZ5qwLRNp9aKD1fEQgJ
------=Multipart-SOAP-boundary-

Security Token Reference:
A <wsse:SecurityTokenReference> element can be used to point to the security token used in the generation of
the signature. Select this option to use this element. The type of the reference must be selected from the Reference
Type field.

The <wsse:SecurityTokenReference>, (within the <dsig:KeyInfo>), can contain a <wsse:Embedded> security
token. Alternatively, the <wsse:SecurityTokenReference>, (within the <dsig:KeyInfo>), can refer to a certificate
via a <dsig:X509Data>. Select the appropriate button, Embed or Refer, depending on whether you want to use an
embedded security token or a referred one.

You can make sure to include a <BinarySecurityToken> (BST) that contains the certificate used to wrap the sym-
metric key in the message by selecting the Include BinarySecurityToken option. The BST is inserted into the WS-
Security header regardless of the type of Security Token Reference selected.

Important
When using the Kerberos Token Profile standard and the API Gateway Explorer is acting as the initiator of
a secure transaction, it can use Kerberos session keys to sign a message. The KeyInfo must be con-

XML signature generation

115

figured to use a Security Token Reference with a ValueType of GSS_Kerberosv5_AP_REQ. In this case,
the Kerberos token is contained in a <BinarySecurityToken> in the message.

If the API Gateway Explorer is acting as the recipient of a secure transaction, it can also use the Kerberos session keys
to sign the message returned to the client. However, in this case, the KeyInfo must be configured to use a Security
Token Reference with ValueType of Kerberosv5_APREQSHA1. When this ValueType is selected, the Kerberos token
is not contained in the message. The Security Token Reference contains a SHA1 digest of the original Kerberos token
received from the client, which identifies the session keys to the client.

Using the WS-Trust for SPENGO standard, the Kerberos session keys are not used directly to sign messages because a
security context with an associated symmetric key is negotiated. This symmetric key is shared by both client and service
and can be used to sign messages on both sides.

What to sign settings

The What to Sign tab is used to identify parts of the message that must be signed. Each signed part will be referenced
from within the generated XML signature. You can use any combination of Node Locations, XPaths, XPath Predicates,
and the nodes contained in a Message Attribute to specify what must be signed.

XML Signing Mechanisms
It is important to consider the mechanisms available for referencing signed elements from within an XML signature. For
example, With WSU Ids, an Id attribute is inserted into the root element of the nodeset that is to be signed. The XML sig-
nature then references this Id to indicate to verifiers of the signature the nodes that were signed. The use of WSU Ids is
the default option because these are WS-I compliant.

Alternatively, a generic Id attribute (not bound to the WSU namespace) can be used to dereference the data. The Id at-
tribute is inserted into the top-level element of the nodeset that is to be signed. The generated XML signature can then
reference this Id to indicate what nodes were signed. When XPath transforms are used, an XPath expression that points
to the root node of the nodeset that is signed will be inserted into the XML signature. When attempting to verify the signa-
ture, this XPath expression must be run on the message to retrieve the signed content.

Id Attribute:
Select the Id attribute used to dereference the signed element in the dsig:Signature. The available options are as fol-
lows:

• wsu:Id
The default option references the signed data using a wsu:Id attribute. A wsu:Id attribute is inserted into the root
node of the signed nodeset. This Id is then referenced in the generated XML signature as an indication of which
nodes were signed. For example:

<soap:Envelope xmlns:soap="...">
<soap:Header>
<wsse:Security xmlns:wsse="...">

<dsig:Signature xmlns:dsig="..." Id="Id-00000112e2c98df8-0000000000000004">
<dsig:SignedInfo>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<dsig:Reference URI="#Id-00000112e2c98df8-0000000000000003">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>xChPoiWJJrrPZkbXN8FPB8S4U7w=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>

XML signature generation

116

<dsig:SignatureValue>KG4N /9dw==</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-00000112e2c98df8-0000000000000005">

<dsig:X509Data>
<dsig:X509Certificate>

MIID ... ZiBQ==
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
</wsse:Security>

</soap:Header>
<soap:Body xmlns:wsu="..." wsu:Id="Id-00000112e2c98df8-0000000000000003">
<vs:getProductInfo xmlns:vs="http://ww.oracle.com">
<vs:Name>API Gateway Explorer</vs:Name>
<vs:Version>11.1.2.4.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

In the above example, a wsu:Id attribute has been inserted into the <soap:Body> element. This wsu:Id attribute
is then referenced by the URI attribute of the <dsig:Reference> element in the actual signature. When the signa-
ture is being verified, the value of the URI attribute can be used to locate the nodes that have been signed.

• Id
Select the Id option to use generic Ids (not bound to the WSU namespace) to dereference the signed data. Under
this schema, the URI attribute of the <Reference> points at an Id attribute, which is inserted into the top-level node
of the signed nodeset. In the following example, the Id specified in the signature matches the Id attribute inserted in-
to the <Body> element, indicating that the signature applies to the entire contents of the SOAP body:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<dsig:Signature xmlns:dsig="...."
Id="Id-0000011a101b167c-0000000000000013">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">

<dsig:X509Data>
<dsig:X509Certificate>......</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
</soap:Header>
<soap:Body Id="Id-0000011a101b167c-0000000000000012">
<product version="11.1.2.4.0">

<name>API Gateway Explorer</name>
<company>oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

XML signature generation

117

</soap:Envelope>

• ID
Select this option to use generic IDs (not bound to the WSU namespace) to dereference the signed data. Under this
schema, the URI attribute of the Reference points at an ID attribute, which is inserted into the top-level node of the
signed nodeset. In the following example, the URI specified in the Signature Reference node matches the ID attrib-
ute inserted into the Body element, indicating that the signature applies to the entire contents of the SOAP body:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<dsig:Signature xmlns:dsig="....">
<dsig:SignedInfo>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>

<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">
<dsig:X509Data>

<dsig:X509Certificate>......</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</soap:Header>
<soap:Body ID="Id-0000011a101b167c-0000000000000012">
<product version="11.1.2.4.0">

<name>API Gateway Explorer</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

• xml:id
Select this option to use an xml:id to dereference the signed data. Under this schema, the URI attribute of the
Reference points at an xml:id attribute, which is inserted into the top-level node of the signed nodeset. In the fol-
lowing example, the URI specified in the Signature Reference node matches the xml:id attribute inserted into the
Body element, indicating that the signature applies to the entire contents of the SOAP body:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<dsig:Signature xmlns:dsig="...."
Id="Id-0000011a101b167c-0000000000000013">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>

XML signature generation

118

<dsig:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>
</dsig:Reference>

</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">

<dsig:X509Data>
<dsig:X509Certificate>......</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
</soap:Header>
<soap:Body ID="Id-0000011a101b167c-0000000000000012">
<product version=11.1.2.4.0>

<name>API Gateway Explorer</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

• No id (use with enveloped signature and XPath 'The Entire Document')
Select this option to sign the entire document. In this case, the URI attribute on the Reference node of the signa-
ture is “”, which means that no id is used to refer to what is being signed. The “” URI means that the full document
is signed. A signature of this type must be an enveloped signature. On the Advanced > Options tab, select Create
enveloped signature. To sign the full document, on the What to Sign > XPaths tab, select the XPath named The
entire document.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="....">

<soap:Header>
<wsse:Security

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd">

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
Id="Id-0001346926985531-fffffffff28f6103-1">
<dsig:SignedInfo>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

<dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<dsig:Reference URI="">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://www.w3.org/2000/09/

xmldsig#enveloped-signature" />
<dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>

BAz3140AFAfBL/DIj9y+16TEJIU=
</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>........</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0001346926985531-fffffffff28f6103-2">

<dsig:X509Data>
<dsig:X509Certificate>........</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>

XML signature generation

119

</wsse:Security>
</soap:Header>
<soap:Body>

<product version=11.1.2.4.0>
<name>API Gateway Explorer</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

Use SAML Ids for SAML Elements:
This option is only relevant if a SAML assertion is required to be signed. If this option is selected, and the signature is to
cover a SAML assertion, an AssertionID attribute is inserted into a SAML version 1.1 assertion, or an ID attribute is
inserted into a SAML version 2.0 assertion. The value of this attribute is then referenced from within a <Reference> block
of the XML signature. This option is selected by default.

Add and Dereference Security Token Reference for SAML:
This option is only relevant if a SAML assertion is required to be signed. This setting signs the SAML assertion using a
Security Token Reference and an STR-Transform. The Signature points to the id of the
wsse:SecurityTokenReference, and applies the STR-Transform. When signing the SAML assertion, this means to
sign the XML that the wsse:SecurityTokenReference points to, and not the wsse:SecurityTokenReference.
This option is unselected by default. The following shows an example SOAP header:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<wsse:Security xmlns:wsse="...." xmlns:wsu="....";
<dsig:Signature xmlns:dsig=".....">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
<dsig:Reference

URI="#Id-0001347292983847-00000000530a9b1a-1">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#STR-Transform">
<wsse:TransformationParameters>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</wsse:TransformationParameters>
</dsig:Transform>

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>

6/aLwABWfS+9UiX7v39sLJw5MaQ=
</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>

......
</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0001347292983847-00000000530a9b1a-3">

<dsig:X509Data>
<dsig:X509Certificate>

.....
</dsig:X509Certificate>

</dsig:X509Data>

XML signature generation

120

</dsig:KeyInfo>
</dsig:Signature>
<wsse:SecurityTokenReference

wsu:Id="Id-0001347292983847-00000000530a9b1a-1">
<wsse:KeyIdentifier

ValueType="http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

Id-948d50f1504e0f3703e00000-1
</wsse:KeyIdentifier>

</wsse:SecurityTokenReference>
<saml:Assertion xmlns:saml="...."

IssueInstant="2012-09-10T16:03:03Z"
Issuer="CN=AAA Certificate Services, O=Comodo CA Limited,

L=Salford, ST=Greater Manchester, C=GB"
MajorVersion="1" MinorVersion="1">
<saml:Conditions NotBefore="2012-09-10T16:03:02Z"

NotOnOrAfter="2012-12-18T16:03:02Z" />
<saml:AuthenticationStatement

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2012-09-10T16:03:03Z">
<saml:Subject>

<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">
admin

</saml:NameIdentifier>
<saml:SubjectConfirmation>

<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:sender-vouches

</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>
</wsse:Security>

</soap:Header>
....

</soap:Envelope>

Where to place signature settings

Append Signature to Root or SOAP Header:
If the message is a SOAP message, the signature will be inserted into the SOAP Header element when this radio button
is selected. The XML signature will be inserted as an immediate child of the SOAP Header element. The following ex-
ample shows a skeleton SOAP message which has been signed using this option:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<ws:Security xmlns:ws="http://schemas.xmlsoap.org/..." s:actor="test">
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/..." id="Sample">

...
</dsig:Signature>
</ws:Security>

</s:Header>
<s:Body>
...

</s:Body>
</s:Envelope>

If the message is just plain XML, the signature is inserted as an immediate child of the root element of the XML mes-
sage. The following example shows a non-SOAP XML message signed using this option:

XML signature generation

121

<PurchaseOrder>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

</dsig:Signature>

<Items>
...
</Items>

</PurchaseOrder>

Place in WS-Security Element for SOAP Actor/Role:
By selecting this option, the XML signature will be inserted into the WS-Security element identified by the specified
SOAP actor or role. A SOAP actor/role is simply a way of distinguishing a particular WS-Security block from others which
might be present in the message.

Enter the name of the SOAP actor or role of the WS-Security block in the field. The following SOAP message contains
an XML signature within a WS-Security block identified by the "test" actor:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<ws:Security xmlns:ws="http://schemas.xmlsoap.org/..." s:actor="test">
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/..." id="Sample">

...
</dsig:Signature>
</ws:Security>

</s:Header>
<s:Body>
...

</s:Body>
</s:Envelope>

Use XPath Location:
This option is useful in cases where the signature must be inserted into a non-SOAP XML message. In such cases, it is
possible to insert the signature into a location pointed to by an XPath expression. Select or add an XPath expression in
the field provided, and then specify whether the API Gateway Explorer should insert the signature before the location to
which the XPath expression points, or append it to this location.

Advanced settings

The Advanced tab enables you to set the following:

• Additional elements from the message to be signed.
• Algorithms and ciphers used to sign the message parts.
• Various advanced options on the generated XML signature.

Additional

The Additional tab allows you to select additional elements from the message that are to be signed. It is also possible to
insert a WS-Security Timestamp into the XML signature, if necessary.

Additional Elements to Sign:
The options here allow you to select other parts of the message to sign.

• Sign KeyInfo Element of Signature:
The <KeyInfo> block of the XML signature can be signed to prevent people cut-and-pasting a different <KeyInfo>
block into the message, which might point to some other key material, for example.

XML signature generation

122

• Sign Timestamp:
As stated earlier, timestamps are used to prevent replay attacks. However, to guarantee the end-to-end integrity of
the timestamp, it is necessary to sign it.

Note
This option is only enabled when you have elected to insert a Timestamp into the message using the
relevant fields on the Timestamp Options section below.

• Sign Attachments:
In addition to signing some or all contents of the SOAP message, you can also sign attachments to the SOAP mes-
sage. To sign all attachments, select Include Attachments. A signed attachment is referenced in an XML signature
using the Content-Id or cid of the attachment. The URI attribute of the Reference element corresponds to this Con-
tent-Id. The following example shows how an XML signature refers to a sample attachment. It shows the wire format
of the message and its attachment as they are sent to the destination web service. Multiple attachments result in
successive Reference elements.

POST /myAttachments HTTP/1.0
Content-Length: 1000
User-Agent: API Gateway Explorer
Accept-Language: en
Content-Type: multipart/related; type="text/xml";

boundary="----=Multipart-SOAP-boundary"

------=Multipart-SOAP-boundary
Content-Id: soap-envelope
SOAPAction: none
Content-Type: text/xml; charset="utf-8"

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature id="Sample" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="cid:moredata.txt">...</dsig:Reference>

</dsig:SignedInfo>
</dsig:Signature>

</s:Header>
<s:Body>

...
</s:Body>

</s:Envelope>

------=Multipart-SOAP-boundary
Content-Id: moredata.txt
Content-Type: text/plain; charset="UTF-8"

Some more data.
------=Multipart-SOAP-boundary--

Transform:
This field is only available when you have selected the Sign Attachments box above. It determines the transform used
to reference the signed attachments.

Timestamp Options:
It is possible to insert a timestamp into the message to indicate when exactly the signature was generated. Consumers of
the signature can then validate the signature to ensure that it is not of date.

XML signature generation

123

The following options are available:

• No Timestamp:
No timestamp is inserted into the signature.

• Embed in WSSE Security:
The wsu:Timestamp is inserted into a wsse:Security block. The Security block is identified by the SOAP act-
or/role specified on the Signature tab.

• Embed in Signature Property:
The wsu:Timestamp is placed inside a signature property element in the dsig:Signature.

The Expires In fields enable the user to optionally specify the wsu:Expires for the wsu:Timestamp. If all fields are
left at 0, no wsu:Expires element is placed inside the wsu:Timestamp. The following example shows a
wsu:Timestamp that has been inserted into a wsse:Security block:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<wsse:Security>

<wsu:Timestamp wsu:Id="Id-0000011294a0311e-000000000000003d">
<wsu:Created>2007-05-16T11:22:45Z</wsu:Created>
<wsu:Expires>2007-05-23T11:22:45Z</wsu:Expires>

</wsu:Timestamp>
<dsig:Signature ...>
...
</dsig:Signature ...>

</wsse:Security>
</s:Header>
<s:Body>

...
</s:Body>

</s:Envelope>

Algorithm Suite

The fields on this tab determine the combination of cryptographic algorithms and ciphers that are used to sign the mes-
sage parts.

Algorithm suite:
WS-Security Policy defines a number of algorithm suites that group together a number of cryptographic algorithms. For
example, a given algorithm suite will use specific algorithms for asymmetric signing, symmetric signing, asymmetric key
wrap, and so on. Therefore, by specifying an algorithm suite, you are effectively selecting a whole suite of cryptographic
algorithms to use.

To use a particular WS-Security Policy algorithm suite, you can select it here. The Signature Method, Key Wrap Al-
gorithm, and Digest Method fields will then be automatically populated with the corresponding algorithms for that suite.

Signature Method:
The Signature Method field enables you to configure the method used to generate the signature. Various strengths of
the HMAC-SHA1 algorithms are available from the list.

Key Wrap Algorithm:
Select the algorithm to use to wrap (encrypt) the symmetric signing key. This option need only be configured when you
are using a symmetric key to sign the message.

Digest Algorithm:
Select the digest algorithm to you to produce a cryptographic hash of the signed data.

Options

XML signature generation

124

This tab enables you to configure various advanced options on the generated XML signature. The following fields can be
configured on this tab:

WS-Security Options:
WSSE 1.1 defines a <SignatureConfirmation> element that can be used as proof that a particular XML signature
was processed. A recipient and verifier of an XML signature must generate a <SignatureConfirmation> element for
each piece of data that was signed (for each <Reference> in the XML signature). A <SignatureConfirmation> ele-
ment contains the hash of the signed data and must be signed by the recipient before returning it in the response to the
initiator (the original signatory of the data).

When the initiator receives the <SignatureConfirmation> elements in the response, it compares the hash with the
hash of the data that it produced initially. If the hashes match, the initiator knows that the recipient has processed the
same signature. Select the Initiator option if the API Gateway Explorer is the initiator as outlined in the scenario above.
The API Gateway Explorer keeps a record of the signed data and compares it to the contents of the
<SignatureConfirmation> elements returned from the recipient in the response message.

Alternatively, if the API Gateway Explorer is acting as the recipient in this transaction, you can select the Responder ra-
dio button to instruct the API Gateway to generate the <SignatureConfirmation> elements and return them to the
initiator. The signature confirmations will be added to the WS-Security header.

Layout Type:
Select the WS-SecurityPolicy layout type that you want the XML signature and any generated tokens to adhere to. This
includes elements such as <Signature>, <BinarySecurityToken>, and <EncryptedKey>, which can all be gener-
ated as part of the signing process.

Fail if No Nodes to Sign:
Check this option if you want the filter to fail if it cannot find any nodes to sign as configured on the What to Sign tab.

Add Inclusive Namespaces for Exclusive Canonicalization:
You can include information about the namespaces (and their associated prefixes) of signed elements in the signature it-
self. This ensures that namespaces that are in the same scope as the signed element, but not directly or visibly used by
this element, are included in the signature. This ensures that the signature can be validated as a standalone entity out-
side of the context of the message from which it was extracted.

Note
The WS-I specification only permits the use of exclusive canonicalization in an XML signature. The
<InclusiveNamespaces> element is an attempt to take advantage of some of the behavior of inclusive
canonicalization, while maintaining the simplicity of exclusive canonicalization.

A PrefixList attribute is used to list the prefixes of in-scope, but not visibly used elements and attributes. The following ex-
ample shows how the PrefixList attribute is used in practice:

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope'>
<soap:Header>
<wsse:Security xmlns:wsse='http://docs.oasis-open.org/...'

xmlns:wsu='http://docs.oasis-open.org/...'>
<wsse:BinarySecurityToken wsu:Id='SomeCert'

ValueType="http://docs.oasis-open.org/...">
lui+Jy4WYKGJW5xM3aHnLxOpGVIpzSg4V486hHFe7sH
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
<ds:SignedInfo>
<ds:CanonicalizationMethod

Algorithm='http://www.w3.org/2001/10/xml-exc-c14n#'>
<c14n:InclusiveNamespaces

xmlns:c14n='http://www.w3.org/2001/10/xml-exc-c14n#'
PrefixList='wsse wsu soap' />

XML signature generation

125

</ds:CanonicalizationMethod>
<ds:SignatureMethod

Algorithm='http://www.w3.org/2000/09/xmldsig#rsa-sha1'/>
<ds:Reference URI=''>
<ds:Transforms>
<dsig:XPath xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:m='http://example.org/ws'>
//soap:Body/m:SomeElement
</dsig:XPath>
<ds:Transform Algorithm='http://www.w3.org/2001/10/xml-exc-c14n#'>
<c14n:InclusiveNamespaces

xmlns:c14n='http://www.w3.org/2001/10/xml-exc-c14n#'
PrefixList='soap wsu test' />

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm='http://www.w3.org/2000/09/xmldsig#sha1' />
<ds:DigestValue>VEPKwzfPGOxh2OUpoK0bcl58jtU=</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>+diIuEyDpV7qxVoUOkb5rj61+Zs=</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI='#SomeCert' />

</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>

</soap:Header>
<soap:Body xmlns:wsu='http://docs.oasis-open.org/...'

xmlns:test='http://www.test.com' wsu:Id='TheBody'>
<m:SomeElement xmlns:m='http://example.org/ws' attr1='test:fdwfde' />

</soap:Body>
</soap:Envelope>

Indent:
Select this method to ensure that the generated signature is properly indented.

Create Enveloped Signature:
By selecting this option, an enveloped XML signature is generated. The following skeleton signed SOAP message shows
the enveloped signature:

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#" id="Sample">
<ds:SignedInfo>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
</ds:Transforms>
</ds:Reference>

</ds:SignedInfo>
</ds:Signature>

This indicates to the application validating the signature that the signature itself should not be included in the signed
data. In other words, to validate the signature, the application must first strip out the signature. This is necessary in cases
where the entire SOAP envelope has been signed, and the resulting signature has been inserted into the SOAP header.
In this case, the signature is over a nodeset which has been altered (the signature has been inserted), and so the signa-
ture will break.

Insert CarriedKeyName for EncryptedKey:
Select this option to include a <CarriedKeyName> element in the <EncryptedKey> block that is generated when us-
ing a symmetric signing key.

XML signature generation

126

XML signature verification
Overview

In addition to validating XML signatures for authentication purposes, the API Gateway Explorer can also use XML signa-
tures to prove message integrity. By signing an XML message, a client can be sure that any changes made to the mes-
sage do not go unnoticed by the API Gateway Explorer. Therefore by validating the XML signature on a message, the
API Gateway Explorer can guarantee the integrity of the message.

General settings

Configure the following general setting:

Name:
Enter an appropriate name for the filter.

Signature verification settings

The following sections are available on the Signature Verification tab:

Signature Location:
Because there may be multiple signatures in the message, you must specify which signature API Gateway Explorer uses
to verify the integrity of the message. The signature can be extracted from one of the following:

• From the SOAP header
• Using WS-Security Actors
• Using XPath

Select the appropriate option from the list. For more details, see Signature location.

Find Signing Key
The public key used to verify the signature can be taken from the following locations:

• Via KeyInfo in Message:
Typically, a <KeyInfo> block is used in an XML signature to reference the key used to sign the message. For ex-
ample, it is common for a <KeyInfo> block to reference a <BinarySecurityToken> that contains the certificate
associated with the public key used to verify the signature.

• Via Selector Expression:
The certificate used to verify the signature can be extracted from a selector expression. For example, a previous fil-
ter (for example, Find Certificate) may have already located a certificate and populated the certificate mes-
sage attribute. To use this certificate to verify the signature, specify the selector expression in the field provided (for
example, ${certificate}). Using a selector enables settings to be evaluated and expanded at runtime based on
metadata (for example, in a message attribute, KPS, or environment variable). For more details, see Select configur-
ation values at runtime.

• Via Certificate in LDAP:
Clients may not always want to include their public keys in their signatures. In such cases, the public key can be re-
trieved from a specified LDAP directory. This setting enables you to select a previously configured LDAP directory
from a list. You can add LDAP connections under the External Connections node in the Policy Studio tree. Right-
click the LDAP Connection tree node, and select Add an LDAP Connection.

• Via Certificate in Store:
Similarly, you can retrieve a certificate from the certificate store by selecting this option, and clicking the Select but-
ton. Select the check box next to the certificate that contains the public key that you want to use to verify the signa-
ture, and click OK.

127

What must be signed settings

The What Must Be Signed tab defines the content that must be signed for a SOAP message to pass the filter. This en-
sures that the client has signed something meaningful (part of the SOAP message), instead of arbitrary data that would
pass a blind signature validation. This further strengthens the integrity verification process. The nodeset that must be
signed can be identified by a combination of XPath expressions, node locations, and the contents of a message attribute.
For more details, see What to sign.

Note
If all attachments are required to be signed, select All attachments to enforce this.

Advanced settings

The following advanced configuration options are available on the Advanced tab:

Signature Confirmation:
If this filter is configured as part of an initiator policy, where the API Gateway Explorer acts as the client in a web services
transaction, select the Initiator option. This means that the filter keeps a record of the signature that it has verified, and
checks the SignatureConfirmation returned by the recipient.

Alternatively, if the API Gateway Explorer acts as the recipient in the transaction, select the Recipient option. In this
case, the API Gateway Explorer returns the SignatureConfirmation elements in the response to the initiator.

Default Derived Key Label:
If the API Gateway Explorer consumes a DerivedKeyToken, use the default value to recreate the derived key.

Algorithm Suite:
Select the WS-Security Policy Algorithm Suite that must have been used when signing the message. This check ensures
that the appropriate algorithms were used to sign the message.

Fail if No Signatures to Verify:
Select this if you want to configure the filter to fail if no XML signatures are present in the incoming message.

Verify Signature for Authentication Purposes:
You can use the XML Signature Verification filter to authenticate an end user. If the message can be successfully valid-
ated, it proves that only the private key associated with the public key used to verify the signature was used to sign the
message. Because the private key is only accessible to its owner, a successful verification can be used to effectively au-
thenticate the message signer.

Retrieve DOM using Selector Expression:
You can configure this field to verify the response from a SAML PDP. When the API Gateway Explorer receives a re-
sponse from the SAML PDP, it stores the signature on the response in a message attribute. You can specify this attribute
using a selector expression to verify this signature. Using a selector enables settings to be evaluated and expanded at
runtime based on metadata (for example, in a message attribute, Key Property Store (KPS), or environment variable).
For more details, see Select configuration values at runtime.

Remove enclosing WS-Security element on successful verification:
Select this check box if you wish to remove the enclosing WS-Security block when the signature has been successfully
verified. This setting is not selected by default.

XML signature verification

128

Kerberos configuration
Overview

The Kerberos Configuration screen enables you to configure API Gateway Explorer instance-wide Kerberos settings.
The most important setting allows you to upload a Kerberos configuration file to the API Gateway Explorer, which con-
tains information about the location of the Kerberos Key Distribution Center (KDC), encryption algorithms and keys, and
domain realms to use.

You can also configure trace options for the various APIs used by the Kerberos system. For example, these include the
Generic Security Services (GSS) and Simple and Protected GSSAPI Negotiation (SPNEGO) APIs.

Linux and Solaris platforms ship with a native implementation of the GSS library, which can be leveraged by the API
Gateway Explorer. The location of the GSS library can be specified using settings on this screen.

Kerberos configuration file—krb5.conf

The Kerberos configuration file (krb5.conf) is required by the Kerberos system to configure the location of the Kerber-
os KDC, supported encryption algorithms, and default realms.

The file is required by both Kerberos Clients and Services that are configured for the API Gateway Explorer. Kerberos
Clients need to know the location of the KDC so that they can obtain a Ticket Granting Ticket (TGT). They also need to
know what encryption algorithms to use and to what realm they belong.

A Kerberos Client or Service knows what realm it belongs to because either the realm is appended to the principal name
after the @ symbol. Alternatively, if the realm is not specified in the principal name, it is assumed to be in the de-
fault_realm as specified in the krb5.conf file.

Kerberos Services do not need to talk to the KDC to request a TGT. However, they still require the information about
supported encryption algorithms and default realms contained in the krb5.conf file. There is only one de-
fault_realm specified in this file, but you can specify a number of additional named realms. The default_realm set-
ting is found in the [libdefaults] section of the krb5.conf file. It points to a realm in the [realms] section. This
setting is not required.

A default krb5.conf is displayed in the text area, which can be modified where appropriate and then uploaded to the
API Gateway Explorer's configuration by clicking the OK button. Alternatively, if you already have a krb5.conf file that
you want to use, browse to this file using the Load File button. The contents of the file are displayed in the text area, and
can subsequently be uploaded by clicking the OK button.

Note
You can also type directly into the text area to modify the krb5.conf contents. Please refer to your Ker-
beros documentation for more information on the settings that can be configured in the krb5.conf file.

Advanced settings

The check boxes on this screen enable you to configure various tracing options for the underlying Kerberos API. Trace
output is always written to the /trace directory of your API Gateway Explorer installation.

Kerberos Debug Trace:
Enables extra tracing from the Kerberos API layer.

SPNEGO Debug Trace:
Turns on extra tracing from the SPNEGO API layer.

129

Extra Debug at Login:
Provides extra tracing information during login to the Kerberos KDC.

Native GSS library

The Generic Security Services API (GSS-API) is an API for accessing security services, including Kerberos. Implementa-
tions of the GSS-API ship with the Linux and Solaris platforms and can be leveraged by the API Gateway Explorer when
it is installed on these platforms. The fields on this tab allow you to configure various aspects of the GSS-API implement-
ation for your target platform.

Note
These are instance-wide settings. If use of the native GSS API is selected, it will be used for all Kerberos
operations. All Kerberos Clients and Services must therefore be configured to load their credentials nat-
ively.

If the native API is used the following will not be supported:

• The SPNEGO mechanism.
• The WS-Trust for SPNEGO standard as it requires the SPNEGO mechanism.
• The SPNEGO over HTTP standard as it requires the SPNEGO mechanism. (It is possible to use the KERBEROS

mechanism with this protocol, but this would be non-standard.)
• Signing and encrypting using the Kerberos session keys.

Use Native GSS Library:
Check this checkbox to use the operating system's native GSS implementation. This option only applies to API Gateway
Explorer installations on the Linux and Solaris platforms.

Native GSS Library Location:
If you have opted to use the native GSS library, enter the location of the GSS library in the field provided, for example, /
usr/lib/libgssapi.so. On Linux, the library is called libgssapi.so. On Solaris, this library is called libgss.so.

Note
This setting is only required when this library is in a non-default location.

Native GSS Trace:
Use this option to enable debug tracing for the native GSS library.

Kerberos configuration

130

Kerberos client authentication
Overview

You can configure the API Gateway Explorer to act as a Kerberos client by obtaining a service ticket for a specific Ker-
beros service. The service ticket makes up part of the Kerberos client-side token that is injected into a SOAP message
and then sent to the service. If the service can validate the token, the client is authenticated successfully.

You can also configure a Connection filter (from the Routing category) to authenticate to a Kerberos service by inserting
a client-side Kerberos token into the Authorization HTTP header.

Therefore, you should use the Connection filter to send the client-side Kerberos token in an HTTP header to the Kerber-
os service. You should use the Kerberos Client Authentication filter to send the client-side Kerberos token in a Bin-
arySecurityToken block in the SOAP message. For more information on authenticating to a Kerberos service using a
client-side Kerberos token, see the topic on the Connection filter.

The Kerberos Client Authentication filter is available from the authentication category of filters. Drag and drop this filter
on to the policy canvas to configure the filter. The sections below describe how to configure the fields on this filter win-
dow.

General settings

Name:
Enter an appropriate name for the filter.

Kerberos client settings

The fields configured on the Kerberos Client tab determine how the Kerberos client obtains a service ticket for a specific
Kerberos service. The following fields must be configured:

Kerberos Client:
The role of the Kerberos client selected in this field is twofold. First, it must obtain a Kerberos Ticket Granting Ticket
(TGT) and second, it uses this TGT to obtain a service ticket for the Kerberos Service Principal selected below. The
TGT is acquired at server startup, refresh (for example, when a configuration update is deployed), and when the TGT ex-
pires.

Click the button on the right, and select a previously configured Kerberos client in the tree. To add a Kerberos client,
right-click the Kerberos Clients tree node, and select Add Kerberos Client.

Kerberos Service Principal:
The Kerberos client selected above must obtain a service ticket from the Kerberos Ticket Granting Server (TGS) for the
Kerberos service principal selected in this field. The service principal can be used to uniquely identify the service in the
Kerberos realm. The TGS grants a ticket for the selected principal, which the client can then send to the Kerberos ser-
vice. The principal in the ticket must match the Kerberos service's principal for the client to be successfully authenticated.

Click the button on the right, and select a previously configured Kerberos principal in the tree (for example, the default
HTTP/host Service Principal). To add a Kerberos principal, right-click the Kerberos Principals tree node, and
select Add Kerberos Principal.

Kerberos Standard:
When using the Kerberos Client Authentication filter to insert Kerberos tokens into SOAP messages in order to au-
thenticate to Kerberos services, it can do so according to two different standards:

• Web Services Security Kerberos Token Profile 1.1
• WS-Trust for Simple and Protected Negotiation Protocol (SPNEGO)

131

When using the Kerberos Token Profile, the client-side Kerberos token is inserted into a BinarySecurityToken block
within the SOAP message. The Kerberos session key may be used to sign and encrypt the SOAP message using the
signing and encrypting filters. When this option is selected, the fields on the Kerberos Token Profile tab must be con-
figured.

When the WS-Trust for SPNEGO standard is used, a series of requests and responses occur between the Kerberos cli-
ent and the Kerberos service in order to establish a secure context. Once the secure context has been established (using
WS-Trust and WS-SecureConversation), a further series of requests and responses are used to produce a shared secret
key that can be used to sign and encrypt "real" requests to the Kerberos service.

If the WS-Trust for SPNEGO option is selected it will not be necessary to configure the fields on the Kerberos Token
Profile tab. However, the Kerberos Client Authentication filter must be configured as part of a complicated policy that
is set up to handle the multiple request and response messages that are involved in setting up the secure context
between the Kerberos client and service.

Kerberos token profile settings

The fields on this tab need only be configured if the Kerberos Token Profile option has been selected on the Kerberos
Client tab. This tab allows you to configure where to insert the BinarySecurityToken within the SOAP message.

Where to Place BinarySecurityToken:
It is possible to insert the BinarySecurityToken inside a named WS-Security Actor/Role within the SOAP message
or else an XPath expression can be specified to indicate where the token should be inserted.

Select the WS-Security Element radio button to insert the token into a WS-Security element within the SOAP Header
element. You can either select the default Current actor/role only option or enter a named actor/role in the field
provided. The BinarySecurityToken will be inserted into a WS-Security block for the actor/role specified here.

Alternatively, you should select the XPath Location option to use an XPath expression to specify where the BinarySe-
curityToken is to be inserted. Click the Add button to add a new XPath expression or select an XPath and click the
Edit or Delete buttons to edit or delete an existing XPath expression. For more information, see the Configure XPath ex-
pressions topic.

Note
You can insert the BinarySecurityToken before or after the node pointed to by the XPath expression.
Select the Append or Before radio buttons depending on where you want to insert the token relative to the
node pointed to by the XPath expression.

BinarySecurityToken Value Type:
Currently, the only supported BinarySecurityToken type is the GSS_Kerberosv5_AP_REQ type. The selected type
will be specified in the generated BinarySecurityToken.

Kerberos client authentication

132

Connection
Overview

The Connection filter makes the connection to the remote Web service. It relies on connection details that are set by the
other filters in the Routing category. Because the Connection filter connects out to other services, it negotiates the SSL
handshake involved in setting up a mutually authenticated secure channel.

General settings

Enter an appropriate name for the filter in the Name field. Click the tabs to configure the various aspects of the Connec-
tion filter.

SSL settings

You can configure SSL settings, such as trusted certificates, client certificates, and ciphers on the SSL tab. For details
on the fields on this tab, see the section called “SSL settings” in the Connect to URL topic.

Authentication settings

You can select credential profiles to use for authentication on the Authentication tab. For details on the fields on this
tab, see the section called “Authentication settings” in the Connect to URL topic.

Additional settings

The Settings tab allows you to configure the following additional settings:

• Retry
• Failure
• Proxy
• Redirect
• Headers

By default, these sections are collapsed. Click a section to expand it.

For details on the fields on this tab, see the section called “Additional settings” in the Connect to URL topic.

133

Connect to URL
Overview

The Connect to URL filter is the simplest routing filter to use to connect to a target Web service. To configure this filter to
send messages to a Web service, you need only enter the URL of the service in the URL field. If the Web service is SSL
enabled or requires mutual authentication, you can use the other tabs on the Connect to URL filter to configure this.

Depending on how the API Gateway Explorer is perceived by the client, different combinations of routing filters can be
used. Using the Connect to URL filter is equivalent to using the following combination of routing filters:

• Static Router
• Rewrite URL
• Connection

General settings

Configure the following general settings:

Name:
Enter an appropriate name for the filter.

URL:
Enter the complete URL of the target Web service. You can specify this setting as a selector, which enables values to be
expanded at runtime. For more details, see Select configuration values at runtime. Defaults to ${http.request.uri}.

Tip
You can also enter any query string parameters associated with the incoming request message as a select-
or, for example, ${http.request.uri}?${http.raw.querystring}.

Request settings

On the Request tab, you can use the API Gateway Explorer selector syntax to evaluate and expand request details at
runtime. For more details, see Select configuration values at runtime. The values specified on this tab are used in the
outbound request to the URL.

Method:
Enter the HTTP verb used in the incoming request (for example, GET). Defaults to ${http.request.verb}.

Request Body:
Enter the content of the incoming request message body. Defaults to ${content.body}.

Important
You must enter the body headers and body content in the Request Body text area. For example, enter the
Content-Type followed by a return and then the required message payload:

Content-Type: text/html

<!DOCTYPE html>
<html>
<body>
<h1>Hello World</h1>
</body>

134

</html>

Request Protocol Headers:
Enter the HTTP headers associated with the incoming request message. Defaults to ${http.headers}.

SSL settings

Configure the SSL settings on the SSL tab. You can select the server certificates to trust on the Trusted Certificates
tab, and the client certificates on the Client Certificates tab.

You can also specify the ciphers that API Gateway Explorer supports in the Ciphers field. The API Gateway Explorer
sends this list of supported ciphers to the destination server, which selects the highest strength common cipher as part of
the SSL handshake. The selected cipher is then used to encrypt the data as it is sent over the secure channel.

Trusted certificates

When API Gateway Explorer connects to a server over SSL, it must decide whether to trust the server's SSL certificate.
You can select a list of CA or server certificates from the Trusted Certificates tab that are considered trusted by the API
Gateway Explorer when connecting to the server specified in the URL field on this dialog.

The table on the Trusted Certificates tab lists all certificates imported into the API Gateway Explorer Certificate Store.
To trust a certificate for this particular connection, select the box next to the certificate in the table.

To select all certificates for a particular CA, select the box next to the CA parent node in the table.

Alternatively, you can select the Trust all certificates in the Certificate Store option to trust all certificates in the store.
This is selected by default.

Client certificates

In cases where the destination server requires clients to authenticate to it using an SSL certificate, you must select a cli-
ent certificate on the Client Certificates tab.

To select a client certificate click the Signing Key button, and complete the following fields on the Select Certificate dia-
log:

Choose the certificate to present for mutual authentication (optional):
Select this option to choose a certificate from the Certificate Store. Select the client certificate to use to authenticate to
the server specified in the URL field.

Authentication settings

The Authentication tab enables you to select a client credential profile for authentication. You can use client credential
profiles to configure client credentials and provider settings for authentication using API keys, HTTP basic or digest au-
thentication, Kerberos, or OAuth.

Click the browse button next to the Choose a Credential Profile field to select a credential profile. You can configure cli-
ent credential profiles globally under the External Connections node in the Policy Studio tree. For more details on con-
figuring client credentials, see the ??? topic.

Additional settings

The Settings tab enables you to configure the following additional settings:

• Retry

Connect to URL

135

• Failure
• Proxy
• Redirect
• Headers

By default, these sections are collapsed. Click a section to expand it.

Retry settings

To specify the retry settings for this filter, complete the following fields:

Perform Retries:
Select whether the filter performs retries. By default, this setting is not selected, no retries are performed, and all Retry
settings are disabled. This means that the filter only attempts to perform the connection once.

Retry On:
Select the HTTP status ranges on which retries can be performed. If a host responds with an HTTP status code that
matches one of the selected ranges, this filter performs a retry. Select one or more ranges in the table (for example,
Client Error 400-499). For details on adding custom HTTP status ranges, see the next subsection.

Retry Count:
Enter the maximum number of retries to attempt. Defaults to 5.

Retry Interval (ms):
Enter the time to delay between retries in milliseconds. Defaults to 500 ms.

Add an HTTP status range
To add an HTTP status range to the default list displayed in the Retry On table, click the Add button. In the Configure
HTTP Status Code dialog, complete the following fields:

Name Enter a name for the HTTP status range.

Start status Enter the first HTTP status code in the range.

End status Enter the last HTTP status code in the range.

To add one specific status code only, enter the same code in the Start status and End status fields. Click OK to finish.
You can manage existing HTTP status ranges using Edit and Delete.

Failure settings

To specify the failure settings for this filter, complete the following fields:

Consider SLA Breach as Failure:
Select whether to attempt the connection if a configured SLA has been breached. This is not selected by default. If this
option is selected, and an SLA breach is encountered, the filter returns false.

Save Transaction on Failure (for replay):
Select whether to store the incoming message in the specified directory and file if a failure occurs during processing. This
is not selected by default.

File name:
Enter the name of the file that the message content is saved to. You can specify this using a selector, which is expanded
to the specified value at runtime. Defaults to ${id}.out. For more details on selectors, see Select configuration values
at runtime.

Directory:

Connect to URL

136

Enter the directory that the file is saved to. You can specify this using a selector, which is expanded to the specified
value at runtime. Defaults to ${environment.VINSTDIR}/message-archive, where VINSTDIR is the location of a
running API Gateway Explorer instance.

Maximum number of files in directory:
Enter the maximum number of files that can be saved in the directory. Defaults to 500.

Maximum file size:
Enter the maximum file size in MB. Defaults to 1000.

Include HTTP Headers:
Select whether to include HTTP headers in the file. HTTP headers are not included by default.

Include Request Line:
Select whether to include the HTTP request line from the client in the file. The request line is not included by default.

Call policy on Connection Failure:
Select whether to execute a policy in the event of a connection failure. This is not selected by default.

Connection Failure Policy:
Click the browse button on the right, and select the policy to run in the event of a connection failure in the dialog.

Proxy settings

To specify the proxy settings for this filter, complete the following fields:

Send via Proxy:
Select this option if the API Gateway Explorer must connect to the destination Web Service through an HTTP proxy. In
this case, the API Gateway Explorer includes the full URL of the destination Web service in the request line of the HTTP
request. For example, if the destination Web service resides at http://localhost:8080/services, the request line
is as follows:

POST http://localhost:8080/services HTTP/1.1

If the API Gateway Explorer was not routing through a proxy, the request line is as follows:

POST /services HTTP/1.1

Proxy Server:
When Send via Proxy is selected, you can configure a specific proxy server to use for the connection. Click the browse
button next to this field, and select an existing proxy server.

Transparent Proxy (present client's IP address to server):
Enables the API Gateway Explorer as a transparent proxy on Linux systems with the TPROXY kernel option set. When
selected, the IP address of the original client connection that caused the policy to be invoked is used as the local address
of the connection to the destination server.

Redirect settings

To specify the redirect settings for this filter, complete the following fields:

Follow Redirects:
Specifies whether the API Gateway Explorer follows HTTP redirects, and connects to the redirect URL specified in the
HTTP response. This setting is enabled by default.

Header settings

To specify the header settings for this filter, complete the following fields:

Connect to URL

137

Forward spurious received Content headers:
Specifies whether the API Gateway Explorer sends any content-related message headers when sending an HTTP re-
quest with no message body to the HTTP server. For example, select this setting if content-related headers are required
by an out-of-band agreement. If there is no body in the outbound request, any content-related headers from the original
inbound HTTP request are forwarded. These are extracted from the http.content.headers message attribute, gen-
erally populated by the API Gateway Explorer for the incoming call. This attribute can be manipulated in a policy using
the appropriate filters, if required. This field is not selected by default.

HTTP Host Header:
An HTTP 1.1 client must send a Host header in all HTTP 1.1 requests. The Host header identifies the host name and
port number of the requested resource as specified in the original URL given by the client.

When routing messages on to target Web services, the API Gateway Explorer can forward on the Host as received from
the client, or it can specify the address and port number of the destination Web Service in the Host header that it routes
onwards.

Select Use Host header specified by client to force the API Gateway Explorer to always forward on the original Host
header that it received from the client. Alternatively, to configure the API Gateway Explorer to include the address and
port number of the destination Web service in the Host header, select the Generate new Host header radio button.

Connect to URL

138

HTTP status code
Overview

This filter sets the HTTP status code on response messages. This enables an administrator to ensure that a more mean-
ingful response is sent to the client in the case of an error occurring in a configured policy.

For example, if a Relative Path filter fails, it might be useful to return a 503 Service Unavailable response. Simil-
arly, if a user does not present identity credentials when attempting to access a protected resource, you can configure
API Gateway Explorer to return a 401 Unauthorized response to the client.

HTTP status codes are returned in the status-line of an HTTP response. The following are some typical examples:

HTTP/1.1 200 OK
HTTP/1.1 400 Bad Request
HTTP/1.1 500 Internal Server Error

Configuration

Name:
Enter an appropriate name for this filter.

HTTP response code status:
Enter the status code returned to the client. For a complete list of status codes, see the HTTP Specification [ht-
tp://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html].

139

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Insert WS-Addressing information
Overview

The WS-Addressing specification defines a transport-independent standard for including addressing information in SOAP
messages. API Gateway Explorer can generate WS-Addressing information based on a configured endpoint in a policy,
and then insert this information into SOAP messages.

Configuration

Complete the following fields to configure API Gateway Explorer to insert WS-Addressing information into the SOAP
message header.

Name:
Enter an appropriate name for the filter.

To:
The message is delivered to the specified destination.

From:
Informs the destination server where the message originated from.

Reply To:
Indicates to the destination server where it should send response messages to.

Fault To:
Indicates to the destination server where it should send fault messages to.

MessageID:
A unique identifier to distinguish this message from others at the destination server. It also provides a mechanism for cor-
relating a specific request with its corresponding response message.

Action:
The specified action indicates what action the destination server should take on the message. Typically, the value of the
WS-Addressing Action element corresponds to the SOAPAction on the request message. For this reason, this field de-
faults to the soap.request.action message attribute.

Relates To:
If responses are to be received asynchronously, the specified value provides a method to associate an incoming reply to
its corresponding request.

Namespace:
The WS-Addressing namespace to use in the WS-Addressing block.

140

Send to JMS
Overview

The Send to JMS filter enables you to configure a JMS messaging system to which the API Gateway sends messages.
You can configure various settings for the message request and response (for example, destination and message type,
how the message system should respond, and so on).

API Gateway Explorer provides all the required third-party JAR files for IBM WebSphere MQ and Apache ActiveMQ (both
embedded and external).

Note
For other third-party JMS providers only, you must add the required third-party JAR files to the API Gate-
way Explorer classpath for messaging to function correctly. If the provider's implementation is platform-spe-
cific, copy the provider JAR files to INSTALL_DIR/ext/PLATFORM.

INSTALL_DIR is your API Gateway Explorer installation, and PLATFORM is the platform on which API
Gateway Explorer is installed (Win32, Linux.i386, or SunOS.sun4u-32). If the provider implementation
is platform-independent, copy the JAR files to INSTALL_DIR/ext/lib.

Request settings

The Request tab specifies the following properties of the request sent to the messaging system:

JMS Service:
Click the browse button on the right, and select an existing JMS service in the tree. To add a JMS Service, right-click the
JMS Services tree node, and select Add a JMS Service.

Destination type:
Select one of the following from the list:

• Queue
• Topic
• JNDI lookup

Defaults to Queue.

Destination:
Enter the name of the JMS queue, JMS topic, or JNDI lookup to specify where you want to drop the messages.

Delivery Mode:
Select one of the following delivery modes:

• Persistent:
Instructs the JMS provider to ensure that a message is not lost in transit if the JMS provider fails. A message sent
with this delivery mode is logged to persistent storage when it is sent. This is the default mode.

• Non-persistent:
Does not require the JMS provider to store the message. With this mode, the message may be lost if the JMS pro-
vider fails.

Priority Level:
You can use message priority levels to instruct the JMS provider to deliver urgent messages first. The ten levels of prior-
ity range from 0 (lowest) to 9 (highest). If you do not specify a priority level, the default level is 4. A JMS provider tries to

141

deliver higher priority messages before lower priority ones but does not have to deliver messages in exact order of prior-
ity.

Time to Live:
By default, a message never expires. However, if a message becomes obsolete after a certain period, you may want to
set an expiry time (in milliseconds). The default value is 0, which means the message never expires.

Message ID:
Enter an identifier to be used as the unique identifier for the message. By default, the unique identifier is the ID assigned
to the message by API Gateway Explorer (${id}). However, you can use a proprietary correlation system, perhaps us-
ing MIME message IDs instead of API Gateway Explorer message IDs.

Correlation ID:
Enter an identifier for the message that API Gateway Explorer uses to correlate response messages with the corres-
ponding request messages. Usually, if ${id} is specified in the Message ID field above, it is also used here to correlate
request messages with their correct response messages.

Message Type:
This drop-down list enables you to specify the type of data to be serialized and sent in the JMS message to the JMS pro-
vider. The option selected depends on what part of the message you want to send to the consumer. For example, to
send the message body, select the option to format the body according to the rules defined in the SOAP over JMS [ht-
tp://www.w3.org/TR/soapjms/] recommendation. Alternatively, to serialize a list of name-value pairs to the JMS message,
choose the option to create a MapMessage.

Select one of thd following serialization options:

• Use content.body attribute to create a message in the format specified in the SOAP over Java Message Ser-
vice recommendation:
If this option is selected, messages are formatted according to the SOAP over JMS [http://www.w3.org/TR/soapjms/]
recommendation. This is the default option because in most cases the message body is routed to the messaging
system. When this option is selected, a javax.jms.BytesMessage is created and a JMS property containing the
content type text/xml) is set on the message.

• Create a MapMessage from the java.lang.Map in the attribute named below:
Select this option to create a javax.jms.MapMessage from the API Gateway Explorer message attribute named
below that consists of name-value pairs.

• Create a BytesMessage from the attribute named below:
Select this option to create a javax.jms.BytesMessage from the API Gateway Explorer message attribute
named below.

• Create an ObjectMessage from the java.lang.Serializable in the attribute named below:
Select this option to create a javax.jms.ObjectMessage from the API Gateway Explorer message attribute
named below.

• Create a TextMessage from the attribute named below:
Select this option to create a javax.jms.TextMessage from the message attribute named below.

• Use the javax.jms.Message stored in the attribute named below:
If a javax.jms.Message has already been stored in a message attribute, select this option, and enter the name of
the attribute in the field below.

Attribute Name:
Enter the name of the API Gateway Explorer message attribute that holds the data that is to be serialized to a JMS mes-
sage and sent over the wire to the JMS provider. The type of the attribute named here must correspond to that selected
in the Message Type drop-down field above.

Custom Message Properties:
You can set custom properties for messages in addition to those provided by the header fields. Custom properties may
be required to provide compatibility with other messaging systems. You can use message attribute selectors as property
values. For example, you can create a property called AuthNUser, and set its value to
${authenticated.subject.id}. Other applications can then filter on this property (for example, only consume mes-

Send to JMS

142

http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/

sages where AuthNUser equals admin). To add a new property, click Add, and enter a name and value in the fields
provided on the Properties dialog.

Use the following policy to change JMS request message:
This setting enables you to customize the JMS message before it is published to a JMS queue or topic. Click the browse
button on the right, and select a configured policy in the dialog. The selected policy is then invoked before the JMS re-
quest is sent to the queuing system.

When the selected policy is invoked, the JMS request message is available on the white board in the
jms.outbound.message message attribute. You can therefore call JMS API methods to manipulate the JMS request
further. For example, you could configure a policy containing a Scripting Language filter that runs a script such as the
following against the JMS message:

function invoke(msg) {
var jmsMsg = msg.get("jms.outbound.message");
jmsMsg.setIntProperty("My_JMS_Report", 123);
return true;

}

Response settings

The Response tab specifies whether API Gateway Explorer uses asynchronous or synchronous communication when
talking to the messaging system. For example, to use asynchronous communication, you can select the Do not set re-
sponse option. If synchronous communication is required, you can select to read the response from a temporary queue
or from a named queue or topic.

You can also specify whether API Gateway Explorer waits on a response message from a queue or topic from the mes-
saging system. API Gateway Explorer sets the JMSReplyTo property on each message that it sends. The value of the
JMSReplyTo property is the temporary queue, queue, or topic selected in this dialog. It is the responsibility of the applic-
ation that consumes the message from the queue (JMS consumer) to send the message back to the destination spe-
cified in JMSReplyTo.

API Gateway Explorer sets the JMSCorrelationID property to the value of the Correlation ID field on the Request
tab to correlate requests messages to their corresponding response messages. If you select to use a temporary queue or
temporary topic, this is created when API Gateway Explorer starts up.

Configure how messaging system should respond:
Select where the response message is to be placed using one of the following options:

• Do not set response:
Select this option if you do not expect or do not care about receiving a response from the JMS provider.

• Use temporary queue:
Select this option to instruct the JMS provider to place the response message on a temporary queue. In this case,
the temporary queue is created when API Gateway Explorer starts up. Only API Gateway Explorer can read from
the temporary queue, but any application can write to it. API Gateway Explorer uses the value of the JMSReplyTo
header to indicate the location where it reads responses from.

• Use queue:
If you want the JMS provider to place response messages on a queue, select this option, and enter the queue name
in the text box. This is used in the JMSReplyTo field of the response message.

• Use topic:
If you want the JMS provider to place response messages on a topic, select this option, and enter the topic name in
the text box. This is used in the JMSReplyTo field of the response message.

• Use named queue or topic (JNDI):
If you want the JMS provider to place response messages on a named queue or topic using JNDI lookup, select this
option, and enter the JNDI name for the queue or topic in the text box. This is used in the JMSReplyTo field of the
response message.

Send to JMS

143

Wait for response:
If Do not set response is not selected, you can select whether API Gateway Explorer waits to receive a response:

• Wait with timeout (ms):
API Gateway Explorer waits a specific time period to receive a response before it times out. If API Gateway Explorer
times out waiting for a response, the Messaging System filter fails. Enter the timeout value in milliseconds. The de-
fault value of 10000 means that API Gateway Explorer waits for a response for 10 seconds. The accepted range of
values is 10000–20000 ms.

• Selector for response:
If Wait with timeout (ms) is selected, you can enter a selector expression that specifies a response message. The
expression entered specifies the messages that the consumer is interested in receiving. By using a selector, the task
of filtering the messages is performed by the JMS provider instead of by the consumer.

The selector is a string that specifies an expression whose syntax is based on the SQL92 conditional expression
syntax. The API Gateway Explorer instance only receives messages whose headers and properties match the se-
lector. For more details on selectors, see Select configuration values at runtime.

Important
The JMS consumer automatically returns the results of the invoked policy to the JMS destination specified
in the JMSReplyTo header in the request. This means that you do not need to send a reply using the Send
to JMS filter.

If the incoming JMS message contains a JMSReplyTo header, the queue or topic expects a response. So
when the JMS consumer policy completes, API Gateway Explorer sends a message to the JMSReplyTo
source in reverse. For example, the consumer reads the JMS message, and populates an attribute with a
value inferred from the message type to Java (for example, from TextMessage to String). When the
policy completes, the consumer looks up this attribute, an infers the JMS response message type based on
the object type stored in the message.

Send to JMS

144

Rewrite URL
Overview

You can use the Rewrite URL filter to specify the path on the remote machine to send the request to. This filter normally
used in conjunction with a Static Router filter, whose role is to supply the host and port of the remote service. For more
details, see the Static router topic.

Configuration

Configure the following fields on the Rewrite URL filter configuration window:

Name:
Enter an appropriate name for the filter in the Name field.

URL:
Enter the relative path of the web service in the URL field. API Gateway Explorer combines the specified path with the
host and port number specified in the Static Router filter to build up the complete URL to route to.

Alternatively, you can perform simple URL rewrites by specifying a fully qualified URL into the URL field. You can then
use a Dynamic Router to route the message to the specified URL.

145

Route to SMTP
Overview

You can use the SMTP filter to relay messages to an email recipient using a configured SMTP server.

General settings

Complete the following general settings:

Name:
Specify a descriptive name for this SMTP server.

SMTP Server Settings:
Click the browse button and select a preconfigured SMTP server in the tree.

Message settings

Complete the following fields in the Message settings section:

To:
Enter the email address of the recipients of the messages. You can enter multiple addresses by separating each one us-
ing a semicolon. For example:

joe.soap@example.com;joe.bloggs@example.com;john.doe@example.com

From:
Enter the email address of the senders of the messages. You can enter multiple addresses by separating each one using
a semicolon.

Subject:
Enter some text as the subject of the email messages.

Send content in body:
Select this option to send the message content in the body of the message. This is selected by default.

Send content as attachment:
Select this option to send the message content as an attachment.

Send content in body and as attachment:
Select this option to send the message content in the body of the message and as an attachment.

Attachment name:
If you selected Send content as attachment or Send content in body and as attachment, enter a name for the at-
tachment in this field. The default is ${id}.bin. For more details, see Select configuration values at runtime.

146

Static router
Overview

API Gateway Explorer uses the information configured in the Static Router filter to connect to a machine that is hosting
a web service. You should use the Static Router filter in conjunction with a Rewrite URL filter to specify the path to send
the message to on the remote machine. For more details, see the Rewrite URL topic.

Configuration

You must configure the following fields must be configured on the Static Router configuration window:

Name:
Enter a name for the filter.

Host:
Enter the host name or IP address of the remote machine that is hosting the destination Web service.

Port:
Enter the port on which the remote service is listening.

HTTP:
Select this option if API Gateway Explorer should send the message to the remote machine over plain HTTP.

HTTPS:
Select this option if API Gateway Explorer should send the message to the remote machine over a secure channel using
SSL. You can use a Connection filter to configure API Gateway Explorer to mutually authenticate to the remote system.

147

False filter
Overview

You can use the False filter to force a path in the policy to return false. This can be useful to create a false positive path
in a policy.

The following policy parses the HTTP request and then runs a Message Size filter on the message to make sure that the
message is no larger than 1000 bytes. To make sure that the message cannot be greater than this size, you can connect
a False filter to the success path of the Message Size filter. This means that an exception is raised if a message ex-
ceeds 1000 bytes in size.

Configuration

Enter a name for the filter in the Name field.

148

Find certificate
Overview

The Find Certificate filter locates a certificate and sets it in the message for use by other certificate-based filters. Certi-
ficates can be extracted from the user store, message attributes, HTTP headers, or attachments.

Configuration

By default, API Gateway Explorer stores the extracted certificate in the certificate message attribute. However, it
can store the certificate in any message attribute, including any arbitrary attribute (for example, user_certificate).
The certificate can be extracted from this attribute by a successor filter in the policy.

Name:
Enter an appropriate name for the filter.

Attribute Name:
Enter or select the name of the message attribute to store the extracted certificate in. When the target message attribute
has been selected, the next step is to specify the location of the certificate from one of the following options.

Certificate Store:
Click the Select button, and select a certificate from the certificate store.

User or Wildcard:
This field represents an alternative way to specify what user certificate is used. An explicitly named user certificate is
used, or you can specify a selector to locate a user name or DName, which can then be used to locate the certificate.

Selector Expression:
You can specify a selector by enclosing the message attribute that contains the user name or DName in curly brackets,
and prefixing this with $. For example:

${authentication.subject.id}

This selector means that API Gateway Explorer uses the certificate belonging to the subject of the authentication event in
subsequent certificate-related filters. The certificate is set to the certificate message attribute. Using selectors is a
more flexible way of locating certificates than specifying the user directly. For more details on selectors, see Select con-
figuration values at runtime.

HTTP Header Name:
Enter the name of the HTTP header that contains the certificate.

Attachment Name:
Enter the name of the attachment (Content-Id) that contains the certificate. Alternatively, you can enter a selector in
this field to represent the value of a message attribute.

Certificate Alias or Wildcard:
Enter the alias name of the certificate. Alternatively, you can enter a selector to represent the value of a message attrib-
ute. For more details on selectors, see Select configuration values at runtime.

149

Pause processing
Overview

The Pause filter is mainly used for testing purposes. A Pause filter causes a policy to sleep for a specified amount of
time.

Configuration

Enter an appropriate name for the filter in the Name field. When the filter is executed in a policy, it sleeps for the time
specified in the Pause for field. The sleep time is specified in milliseconds.

150

Scripting language filter
Overview

The Scripting Language filter uses the Java Specification Request (JSR) 223 [ht-
tp://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/] to embed a scripting environment in the API Gate-
way Explorer core engine. This enables you to write bespoke JavaScript or Groovy code to interact with the message as
it is processed by the API Gateway Explorer. You can get, set, and evaluate specific message attributes with this filter.

Some typical uses of the Scripting Language filter include the following:

• Check the value of a specific message attribute
• Set the value of a message attribute
• Remove a message attribute
• DOM processing on the XML request or response

Write a script

To write a script filter, you must implement the invoke() method. This method takes a
com.vordel.circuit.Message object as a parameter and returns a boolean result.

The API Gateway Explorer provides a Script Library that contains a number of prewritten invoke() methods to manip-
ulate specific message attributes. For example, there are invoke() methods to check the value of the SOAPAction
header, remove a specific message attribute, manipulate the message using the DOM, and assign a particular role to a
user.

You can access the script examples provided in the Script library by clicking the Show script library button on the fil-
ter's main configuration window.

Important
When writing the JavaScript or Groovy code, you should note the following:

• You must implement the invoke() method. This method takes a com.vordel.circuit.Message
object as a parameter, and returns a boolean.

• You can obtain the value of a message attribute using the getProperty method of the Message ob-
ject.

• Do not perform attribute substitution as follows:

msg.get("my.attribute.a") == msg.get("my.attribute.b")

This is not thread safe and can cause performance issues.

Use local variables

The API Gateway Explorer is a multi-threaded environment, therefore, at any one time multiple threads can be executing
code in a script. When writing JavaScript or Groovy code, always declare variables locally using var. Otherwise, the
variables are global, and global variables can be updated by multiple threads.

For example, always use the following approach:

var myString = new java.lang.String("hello word");
for (var i = 100; i < 100; i++) {

151

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/

java.lang.System.out.println(myString + java.lang.Integer.toString(i));
}

Do not use the following approach:

myString = new java.lang.String("hello word");
for (i = 100; i < 100; i++) {

java.lang.System.out.println(myString + java.lang.Integer.toString(i));
}

Using the second example under load, you cannot guarantee which value is output because both of the variables (myS-
tring and i) are global.

Add your script JARs to the classpath

You must add your custom JavaScript or Groovy JAR files to your API Gateway Explorer classpath and to the list of
runtime dependencies in Policy Studio.

Add your script JARs to the API Gateway Explorer classpath

Because the scripting environment is embedded in the API Gateway Explorer engine, it has access to all Java classes
on the API Gateway Explorer classpath, including all JRE classes. If you wish to invoke a Java object, you must place its
corresponding class file on the API Gateway Explorer classpath. The recommended way to add classes to the API Gate-
way Explorer classpath is to place them (or the JAR files that contain them) in the INSTALL_DIR/ext/lib folder. For
more details, see the readme.txt in this folder.

Add your script JARs to Policy Studio

Your custom JavaScript or Groovy script JARs must also be compiled and validated in Policy Studio. To add your JARs
files to the list of runtime dependencies in Policy Studio, perform the following steps:

1. In the Policy Studio main menu, select Window > Preferences > Runtime Dependencies.
2. Click Add to select your script JAR file(s) and any other required third-party JARs.
3. Click Apply when finished. Copies of these JAR files are added to the plugins directory in your Policy Studio in-

stallation.
4. You must restart Policy Studio and the server for these changes to take effect. You should restart Policy Studio us-

ing the policystudio -clean command.

Configure a script filter

You can write or edit the JavaScript or Groovy code in the text area on the Script tab. A JavaScript function skeleton is
displayed by default. Use this skeleton code as the basis for your JavaScript code. You can also load an existing JavaS-
cript or Groovy script from the Script library by clicking the Show script library button.

On the Script library dialog, click any of the Configured scripts in the table to display the script in the text area on the
right. You can edit a script directly in this text area. Make sure to click the Update button to store the updated script to
the Script library.

Add a script to the library

You can add a new script to the library by clicking the Add button, which displays the Script Details dialog. Enter a
Name and a Description for the new script in the fields provided. By default, the Language field is set to JavaScript, but
you can also select Groovy from the drop-down list. You can then write the script in the Script text area.

Scripting language filter

152

Note
Regular expressions specified in Scripting Language filters use the regular expression engine of the rel-
evant scripting language. For example, JavaScript-based filters use JavaScript regular expressions. This
includes regular expressions inside XSDs defined by the W3C XML Schema standard. Other API Gateway
Explorer filters that use regular expressions are based on java.util.regex.Pattern, unless stated
otherwise.

Scripting language filter

153

Test Case Shortcut
Overview

The Test Case Shortcut filter allows you to re-use the functionality of one Test Case from another. So, for example, it is
possible to create one Test Case called "Security Tokens" that inserts various security tokens into the message. Another
Test Case could be created called "Add HTTP Headers", which adds a series of HTTP headers to a message. It would
then be possible to create a third Test Case that calls the other 2 Test Cases using Test Case Shortcut filters.

Configuration

Complete the following fields to configure the Test Case Shortcut filter:

Name:
Enter a friendly name for the filter here.

Test Case Shortcut:
Select another Test Case that you want to re-use from the tree. The Test Case in which this Test Case Shortcut filter is
placed will call into the selected Test Case when it is run.

154

True filter
Overview

You can use the True filter to force a path in a policy to return true. For example, this can be useful to prevent a path
from ending on a false case and consequently throwing an exception. The following policy parses the HTTP request, and
then runs Attachment1 on the message. If Attachment1 passes, the message is echoed back to the client by the Re-
flect filter. However, if Attachment1 fails, the Attachment2 filter is run on the message. Because this is an end node, if
this filter fails, an exception is thrown.

By adding a True filter to the Attachment2 filter, this path always ends on a true case, and so does not throw an excep-
tion if Attachment2 fails.

Configuration

Enter an appropriate name for the filter in the Name field.

155

Retrieve WSDL files from a UDDI registry
Overview

You can use WSDL files to register web services in the Web Service Repository and to add WSDL documents and
XML schemas to the global cache. Policy Studio can retrieve a WSDL file from the file system, from a URL, or from a
UDDI registry. This topic explains how to retrieve a WSDL file from a UDDI registry.

You can also browse a UDDI registry in Policy Studio directly without registering a WSDL file. Under the Business Ser-
vices node in the tree, right-click the Web Service Repository node, and select Browse UDDI Registry.

UDDI concepts

Universal Description, Discovery and Integration (UDDI) is an OASIS-led initiative that enables businesses to publish and
discover Web services on the Internet. A business publishes services that it provides to a public XML-based registry so
that other businesses can dynamically look up the registry and discover these services. Enough information is published
to the registry to enable other businesses to find services and communicate with them. In addition, businesses can also
publish services to a private or semi-private registry for internal use.

A business registration in a UDDI registry includes the following components:

• Green Pages:
Contains technical information about the services exposed by the business

• Yellow Pages:
Categorizes the services according to standard taxonomies and categorization systems

• White Pages:
Gives general information about the business, such as name, address, and contact information

You can search the UDDI registry according to a whole range of search criteria, which is of key importance to Policy Stu-
dio. You can search the registry to retrieve the WSDL file for a particular service. Policy Studio can then use this WSDL
file to create a policy for the service, or to extract a schema from the WSDL to check the format of messages attempting
to use the operations exposed by the Web service.

For a more detailed description of UDDI, see the UDDI specification. In the meantime, the next section gives high-level
definitions of some of the terms displayed in the Policy Studio interface.

UDDI definitions

Because UDDI terminology is used in Policy Studio windows, such as the Import WSDL wizard, the following list of
definitions explains some common UDDI terms. For more detailed explanations, see the UDDI specification.

businessEntity
This represents all known information about a particular business (for example, name, description, and contact informa-
tion). A businessEntity can contain a number of businessService entities. A businessEntity may have an
identifierBag, which is a list of name-value pairs for identifiers, such as Data Universal Numbering System (DUNS)
numbers or taxonomy identifiers. A businessEntity may also have a categoryBag, which is a list of name-value
pairs used to tag the businessEntity with classification information such as industry, product, or geographic codes.
There is no mapping for a WSDL item to a businessEntity. When a WSDL file is published, you must specify a
businessEntity for the businessService.

businessService
A businessService represents a logical service classification, and is used to describe a Web service provided by a
business. It contains descriptive information in business terms outlining the type of technical services found in each
businessService element. A businessService may have a categoryBag, and may contain a number of bind-
ingTemplate entities. In the WSDL to UDDI mapping, a businessService represents a wsdl:service. A busi-

156

nessService has a businessEntity as its parent in the UDDI registry.

bindingTemplate
A bindingTemplate contains pointers to the technical descriptions and the access point URL of the Web service, but
does not contain the details of the service specification. A bindingTemplate may contain references to a number of
tModel entities, which do include details of the service specification. In the WSDL to UDDI mapping, a bindingTem-
plate represents a wsdl:port.

tModel
A tModel is a Web service type definition, which is used to categorize a service type. A tModel consists of a key, a
name, a description, and a URL. tModels are referred to by other entities in the registry. The primary role of the tModel
is to represent a technical specification (for example, WSDL file). A specification designer can establish a unique technic-
al identity in a UDDI registry by registering information about the specification in a tModel. Other parties can express
the availability of Web services that are compliant with a specification by including a reference to the tModel in their
bindingTemplate data.

This approach facilitates searching for registered Web services that are compatible with a particular specification. tMod-
els are also used in identifierBag and categoryBag structures to define organizational identity and various classi-
fications. In this way, a tModel reference represents a relationship between the keyed name-value pairs to the super-
name, or namespace in which the name-value pairs are meaningful. A tModel may have an identifierBag and a
categoryBag. In the WSDL to UDDI mapping, a tModel represents a wsdl:binding or wsdl:portType.

Identifier
The purpose of identifiers in a UDDI registry is to enable others to find the published information using more formal iden-
tifiers such as DUNS numbers, Global Location Numbers (GLN), tax identifiers, or any other kind of organizational identi-
fiers, regardless of whether these are private or shared.

The following are identification systems used commonly in UDDI registries:

Identification
System

Name tModel Key

Dun and Brad-
street D-U-N-S
Number

dnb-com:D-U-N-S uuid:8609C81E-EE1F-4D5A-B202-3EB13AD01823

Thomas Registry
Suppliers

thomasregister-
com:supplierID

uuid:B1B1BAF5-2329-43E6-AE13-BA8E97195039

Category
Entities in the registry may be categorized according to categorization system defined in a tModel (for example, geo-
graphical region). The businessEntity, businessService, and tModel types have an optional categoryBag.
This is a collection of categories, each of which has a name, value, and tModel key.

The following are categorization systems used commonly in UDDI registries:

Categorization
System

Name tModel Key

UDDI Type Tax-
onomy

uddi-org:types uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4

North American In-
dustry Classifica-
tion System
(NAICS) 1997 Re-
lease

ntis-gov:naics:1997 uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

Retrieve WSDL files from a UDDI registry

157

Example tModel mapping for WSDL portType

The following shows an example tModel mapped for a WSDL portType:

<tModel tModelKey="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3" >
<name>

StockQuotePortType
</name>
<overviewDoc>

<overviewURL>
http://location/sample.wsdl

<overviewURL>
<overviewDoc>

<categoryBag>
<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"
keyName="portType namespace"

keyValue="http://example.com/stockquote/" />
<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"
keyName="WSDL type"

keyValue="portType" />
</categoryBag>

</tModel>

In this example, the tModel name is the same as the local name of the WSDL portType (in this case, StockQuote-
PortType), and the overviewURL links to the WSDL file. The categoryBag specifies the WSDL namespace, and
shows that the tModel is for a portType.

Configure a registry connection

You first need to select the UDDI registry that you want to search for WSDL files. Complete the following fields to select
or add a UDDI registry:

Select Registry:
Select an existing UDDI registry to browse for WSDL files from the Registry drop-down list. To configure the location of
a new UDDI registry, click Add. Similarly, to edit an existing UDDI registry location, click Edit. Then configure the fields
in the Registry Connection Details dialog. For more details, see Connect to a UDDI registry.

Select Locale:
You can select an optional language locale from this list. The default is No Locale.

WSDL search

When you have configured a UDDI registry connection, you can search the registry using a variety of different search op-
tions on the Search tab. WSDL Search is the default option. This enables you to search for the UDDI entries that the
WSDL file is mapped to. You can also do this using the Advanced Search option. The following different types of WSDL
searches are available:

WSDL portType (UDDI tModel):
Searches for a uddi:tModel that corresponds to a wsdl:portType. You can enter optional search criteria for specific
categories in the uddi:tModel (for example, Namespace of portType).

WSDL binding (UDDI tModel):
Searches for a uddi:tModel that corresponds to a wsdl:binding. You can enter optional search criteria for specific
categories in the uddi:tModel (for example, Name of binding, or Binding Transport Type).

WSDL service (UDDI businessService):

Retrieve WSDL files from a UDDI registry

158

Searches for a uddi:businessService that corresponds to a wsdl:service. You can enter optional search criteria
for specific categories in the uddi:businessService (for example, Namespace of service).

WSDL port (UDDI bindingTemplate):
Searches for a uddi:bindingTemplate that corresponds to a wsdl:port. This search is more complex because a
serviceKey is required to find a uddi:bindingTemplate. This means that at least two queries are carried out, first
to find the uddi:businessService, and another to find the uddi:bindingTemplate.

For example, a bindingTemplate contains a reference to the tModel for the wsdl:portType. You can use the
tModel key to find all implementations (bindingTemplates) for that wsdl:portType. The search looks for busi-
nessServices that have bindingTemplates that refer to the tModel for the wsdl:portType. Then with the ser-
viceKey, you can find the bindingTemplate that refers to the tModel for the wsdl:portType.

In all cases, click Next to start the WSDL search. The Search Results tree shows the tModel URIs as top-level nodes.
These URIs are all WSDL URIs, and you can use these to generate policies on import by selecting the URI, and clicking
the Finish button.

You can click any of the nodes in the tree to display detailed properties about that node in the table below the Search
Results tree. The properties listed depend on the type of the node that is selected. You can also right-click a node to edit
it (for example, add a description, add a category or identifier node, or delete a duplicate node).

Quick search

The Quick Search option enables you to search the UDDI registry for a specific tModel name or category.

tModel Name:
You can enter a tModel Name for a fine-grained search. This is a partial or full name pattern with wildcard searching as
specified by the SQL-92 LIKE specification. The wildcard characters are percent %, and underscore _, where an under-
score matches any single character and a percent matches zero or more characters.

Categories:
You can select one of the following options to search by:

wsdlSpec Search for tModels classified as wsdlSpec (uddi-org:types category set
to wsdlSpec). This is the default.

Reusable WS-Policy Expressions Search for tModels classified as reusable WS-Policy Expressions.

All Search for all tModels.

Click Next to start the search. The Search Results tree shows the tModel URIs as top-level nodes. These URIs are all
WSDL URIs, and you can use these to generate policies on import by selecting the URI, and clicking the Finish button.

You can click any of the nodes in the tree to display detailed properties about that node in the table below the Search
Results tree. The properties listed depend on the type of the node that is selected. You can also right-click a node to edit
it (for example, add a description, add a category or identifier node, or delete a duplicate node).

Name search

The Name Search option enables you to search for a businessEntity, businessService or tModel by name. In
the Select Registry Data Type, select one of the following UDDI entity levels to search for:

• businessEntity
• businessService
• tModel

Retrieve WSDL files from a UDDI registry

159

You can enter a name in the Name field to narrow the search. You can also use wildcards in the name. The name ap-
plies to a businessEntity, businessService, or tModel, depending on which registry entity type has been selec-
ted. If no name is entered, all entities of the selected type are retrieved.

Click the Search button to start the search. The search results display the matching entities in the tree. For example, if
you enter MyTestBusiness for Name, and select businessEntity, this searches for a businessEntity with the
name MyTestBusiness. Child nodes of the matching businessEntity nodes are also shown. tModels are dis-
played in the results if any child nodes of the businessEntity refer to tModels. Only referred to tModels are dis-
played. The same applies if you search for a businessService. If you select tModel, and search for tModels, only
tModels are displayed.

Important
The tModel URIs shown in the resulting tree may not all be categorized as wsdlSpec according to the
uddi-org:types categorization system. You can choose to load any of these URIs as a WSDL file, but
you are warned if it is not categorized as wsdlSpec.

As before, you can click any node in the results tree to display properties about that node in the table. You can also right-
click a node to edit it (for example, add a description, add a category or identifier node, or delete a duplicate node).

UDDI v3 name searches

By default, a UDDI v3 name search is an exact match. To perform a search using wildcards (for example, %, _, and so
on), you must select the approximateMatch find qualifier in the Advanced Options tab. This applies to anywhere you
enter a name for search purposes (for example, Name Search, Quick Search, and Advanced Search).

Advanced search

The Advanced Search option enables you to search the UDDI registry using any combination of Names, Keys, tMod-
els, Discovery URLs, Categories, and Identifiers. You can also specify the entity level to search for in the tree. All of
these options combine to provide a very powerful search facility. You can specify search criteria for any of the categories
listed above by right-clicking the folder node in the Enter Search Criteria tree, and selecting the Add menu option. You
can enter more than one search criteria of the same type (for example, two Key search criteria).

Important
The tModel URIs shown in the resulting tree may not all be categorized as wsdlSpec according to the
uddi-org:types categorization system. You can choose to load any of these URIs as a WSDL file, but
you are warned if it is not categorized as wsdlSpec.

The following options enable you to add a search criteria for each of the types listed in the Enter Search Criteria tree.
All search criteria are configured by right-clicking the folder node, and selecting the Add menu option.

Names:
Enter a name to be used in the search in the Name field in the Name Search Criterion dialog. For example, the name
could be the businessEntity name. The name is a partial or full name pattern with wildcards allowed as specified by the
SQL-92 LIKE specification. The wildcard characters are percent %, and underscore _, where an underscore matches any
single character and a percent matches zero or more characters. A name search criterion can be used for busines-
sEntity, businessService, and tModel level searches.

Keys:
In the Key Search Criterion dialog, you can specify a key to search the registry for in the Key field. The key value is a
Universally Unique Identifier (UUID) value for a registry object. You can use the Key Search Criterion on all levels of
searches. If one or more keys are specified with no other search criteria, the keys are interpreted as the keys of the se-
lected type of registry object and used for a direct lookup, instead of a find/search operation. For example, if you enter

Retrieve WSDL files from a UDDI registry

160

key1 and key2, and select the businessService entity type, the search retrieves the businessService object with
key key1, and another businessService with key key2.

If you enter a key with other search criteria, a key criterion is interpreted as follows:

• For a businessService entity lookup, the key is the businessKey of the services.
• For a bindingTemplate entity lookup, the key is the serviceKey of the binding templates.
• Not applicable for any other object type.

tModels:
You can enter a key in the tModel Key field on the tModel Search Criterion window. The key entered should corres-
pond to the UUID of the tModel associated with the type of object you are searching for. A tModel search criterion may
be used for businessEntity, businessService, and bindingTemplate level searches.

Discovery URLs:
Enter a URL in the Discovery URL field on the Discovery URL Search Criterion dialog. The Use Type field is optional,
but can be used to further fine-grain the search by type. You can use a Discovery URL search criterion for busines-
sEntity level searches only.

Categories:
Select a previously configured categorization system from the Type drop-down list in the Category Search Criterion
dialog. This pre-populated with a list of common categorization systems. You can add a new categorization system using
the Add button.

In the Add/Edit Category dialog, enter a Name, Description, and UUID for the new category type in the fields provided.
When the categorization system has been selected or added, enter a value to search for in the Value field. The Name
field is optional.

Identifiers:
Select a previously configured identification system from the Type drop-down list in the Identifier Search Criterion dia-
log. This is pre-populated with well-known identification systems. To add a new identification system, click the Add but-
ton.

In the Add/Edit Identifier dialog, enter a Name, Description, and UUID for the new identifier in the fields provided.

Select Registry Data Type:
Select one of the following UDDI entity levels to search for:

• businessEntity
• businessService
• bindingTemplate
• tModel

The search also displays child nodes of the matching nodes. tModels are also returned if they are referred to.

Advanced options

This tab enables you to configure various aspects of the search conditions specified on the previous tabs. The following
options are available:

UDDI Find Qualifier: Description:

andAllKeys By default, identifier search criteria are ORed together. This setting ensures
that they are ANDed instead. This is already the default for categoryBag and
tModelBag.

approximateMatch (v3) This applies to a UDDI v3 registry only. Specifies wildcard searching as defined

Retrieve WSDL files from a UDDI registry

161

UDDI Find Qualifier: Description:

by the uddi-org:approximatematch:SQL99 tModel, which means ap-
proximate matching where percent sign (%) indicates any number of characters,
and underscore (_) indicates any single character. The backslash character (\)
is an escape character for the percent sign, underscore and backslash charac-
ters. This option adjusts the matching behavior for name, keyValue and key-
Name (where applicable).

binarySort (v3) This applies to a UDDI v3 registry only. Enables greater speed in sorting, and
causes a binary sort by name, as represented in Unicode codepoints.

bindingSubset (v3) This applies to a UDDI v3 registry only. Specifies that the search uses only
categoryBag elements from contained bindingTemplate elements in the
registered data, and ignores any entries found in the categoryBag that are
not direct descendents of registered businessEntity or businessService
elements.

caseInsensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that that the matching for
name, keyValue and keyName (where applicable) should be performed
without regard to case.

caseInsensitiveSort (v3) This applies to a UDDI v3 registry only. Specifies that the result set should be
sorted without regard to case. This overrides the default case sensitive sorting
behavior.

caseSensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that that the matching for
name, keyValue and keyName (where applicable) should be case sensitive.
This is the default behavior.

caseSensitiveSort (v3) This applies to a UDDI v3 registry only. Specifies that the result set should be
sorted with regard to case. This is the default behavior.

combineCategoryBags Makes the categoryBag entries of a businessEntity behave as if all cat-
egoryBags found at the businessEntity level and in all contained or refer-
enced businessServices are combined. Searching for a category yields a
positive match on a registered business if any of the categoryBags contained
in a businessEntity (including the categoryBags in contained or refer-
enced businessServices) contain the filter criteria.

diacriticInsensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that matching for name, key-
Value and keyName (where applicable) should be performed without regard to
diacritics. Support for this qualifier by nodes is optional.

diacriticSensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that matching for name, key-
Value and keyName (where applicable) should be performed with regard to
diacritics. This is the default behavior.

exactMatch (v3) This applies to a UDDI v3 registry only. Specifies that only entries with name,
keyValue and keyName (where applicable) that exactly match the name argu-
ment passed in, after normalization, are returned. This qualifier is sensitive to
case and diacritics where applicable. This is the default behavior.

exactNameMatch (v2) This applies to a UDDI v2 registry only. Specifies that the name entered as part
of the search criteria must exactly match the name specified in the UDDI re-
gistry.

orAllKeys By default, tModel and category search criteria are ANDed. This setting ORs
these criteria instead.

orLikeKeys When a bag container contains multiple keyedReference elements (cat-
egoryBag or identifierBag), any keyedReference filters from the same
namespace (for example, with the same tModelKey value) are ORed together
rather than ANDed. For example, this enables you to search for any of
these four values from this namespace, and any of these

Retrieve WSDL files from a UDDI registry

162

UDDI Find Qualifier: Description:

two values from this namespace.

serviceSubset Causes the component of the search that involves categorization to use only
the categoryBags from directly contained or referenced businessServices
in the registered data. The search results return only those businesses that
match based on this modified behavior, in conjunction with any other search ar-
guments provided.

signaturePresent (v3) This applies to a UDDI v3 registry only. This restricts the result to entities that
contain, or are contained in, an XML Digital Signature element. The Signa-
ture element should be verified by the client. This option, or the presence of a
Signature element, should only be used to refine a search result, and should
not be used as a verification mechanism by UDDI clients.

sortByDateAsc (v3) This applies to a UDDI v3 registry only. Sorts the results alphabetically in order
of ascending date.

sortByDateDsc (v3) This applies to a UDDI v3 registry only. Sorts the results alphabetically in order
of descending date.

sortByNameAsc Sorts the results alphabetically in order of ascending name.

sortByNameDsc Sorts the results alphabetically in order of descending name.

suppressProjectedServices (v3) This applies to a UDDI v3 registry only. Specifies that service projections must
not be returned when searching for services or businesses. This option is en-
abled by default when searching for a service without a businessKey.

UTS-10 (v3) This applies to a UDDI v3 registry only. Specifies sorting of results based on
the Unicode Collation Algorithm on elements normalized according to Unicode
Normalization Form C. A sort is performed according to the Unicode Collation
Element Table in conjunction with the Unicode Collation Algorithm on the name
field, and normalized using Unicode Normalization Form C. Support for this
qualifier by nodes is optional.

Publish

Click the Publish radio button to view the Published UDDI Entities Tree View. This enables you to manually publish
UDDI entities to the specified UDDI registry (for example, businessEntity, businessService, bindingTemplate,
and tModel entities). You must already have the appropriate permissions to write to the UDDI registry.

Add a businessEntity

To add a business, perform the following steps:

1. Right-click the tree view, and select Add businessEntity.
2. In the Business dialog, enter a Name and Description for the business.
3. Click OK.
4. You can right-click the new businessEntity node to add child UDDI entities in the tree (for example, busi-

nessService, Category, and Identifier entities).

Add a tModel

To add a tModel, perform the following steps:

Retrieve WSDL files from a UDDI registry

163

1. Right-click the tree view, and select Add tModel.
2. In the tModel dialog, enter a Name, Description, and Overview URL for the tModel. For example, you can use

the Overview URL to specify the location of a WSDL file.
3. Click OK.
4. You can right-click the new tModel node to add child UDDI entities in the tree (for example, Category and Iden-

tifier entities).

As before, you can click any node in the results tree to display properties about that node in the table. You can also right-
click a node to edit it (for example, add a description, add a category or identifier node, or delete a duplicate node). At
any stage, you can click the Clear button on the right to clear the entire contents of the tree. This does not delete the
contents of the registry.

For more details on UDDI entities such as businessEntity and tModel, see the section called “UDDI definitions”. For
details on how to publish web services automatically using a wizard, see ???.

Retrieve WSDL files from a UDDI registry

164

Connect to a UDDI registry
Overview

This topic explains how to configure a connection to a UDDI registry in the Registry Connection Details dialog. It ex-
plains how to configure connections to UDDI v2 and UDDI v3 registries, and how to secure a connection over SSL.

Configure a registry connection

Configure the following fields in the Registry Connection Details dialog:

Registry Name:
Enter the display name for the UDDI registry.

UDDI v2:
Select this option to use UDDI v2.

UDDI v3:
Select this option to use UDDI v3.

Inquiry URL:
Enter the URL on which to search the UDDI registry (for example, http://HOSTNAME:PORT/uddi/inquiry).

Publish URL:
Enter the URL on which to publish to the UDDI registry, if required (for example, ht-
tp://HOSTNAME:PORT/uddi/publishing).

Security URL (UDDI v3):
For UDDI v3 only, enter the URL for the security service, if required (for example, ht-
tp://HOSTNAME:PORT/uddi/security.wsdl).

Important
For UDDI v3, the Inquiry URL, Publish URL, and Security URL specify the URLs of the WSDL for the in-
quiry, publishing, and security Web services that the registry exposes. These fields can use the same URL
if the WSDL for each service is at the same URL.

For example, a WSDL file at http://HOSTNAME:PORT/uddi/uddi_v3_registry.wsdl can contain three URLs:

• http://HOSTNAME:PORT/uddi/inquiry

• http://HOSTNAME:PORT/uddi/publishing

• http://HOSTNAME:PORT/uddi/security

These are the service endpoint URLs that Policy Studio uses to browse and publish to the registry. These URLs are not
set in the connection dialog, but discovered using the WSDL. However, for UDDI v2, WSDL is not used to discover the
service endpoints, so you must enter these URLs directly in the connection dialog.

Max Rows:
Enter the maximum number of entries returned by a search. Defaults to 20.

Registry Authentication:
The registry authentication settings are as follows:

Type This optional field applies to UDDI v2 only. The only supported authentication

165

type is UDDI_GET_AUTHTOKEN.

Username Enter the user name required to authenticate to the registry, if required.

Password Enter the password for this user, if required.

The user name and password apply to UDDI v2 and v3. These are generally required for publishing, but depend on the
configuration on the registry side.

HTTP Proxy:
The HTTP proxy settings apply to UDDI v2 and v3:

Proxy Host If the UDDI registry location entered above requires a connection to be made
through an HTTP proxy, enter the host name of the proxy.

Proxy Port If a proxy is required, enter the port on which the proxy server is listening.

Username If the proxy has been configured to only accept authenticated requests, Policy
Studio sends this user name and password to the proxy using HTTP Basic au-
thentication.

Password Enter the password to use with the user name specified in the field above.

HTTPS Proxy:
The HTTPS proxy settings apply to UDDI v2 and v3:

SSL Proxy Host If the Inquiry URL or Publish URL uses the HTTPS protocol, the SSL proxy
host entered is used instead of the HTTP proxy entered above. In this case, the
HTTP proxy settings are not used.

Proxy Port Enter the port that the SSL proxy is listening on.

Secure a connection to a UDDI registry

You can communicate with the UDDI registry over SSL. All communication may not need to be over SSL (for example,
you may wish publish over SSL, and perform inquiry calls without SSL). For UDDI v2 and v3, you can use a mix of http
and https URLs for WSDL and service address locations.

You can specify some or all of the Inquiry URL, Publish URL, and Security URL settings as https URLs. For ex-
ample, with UDDI v3, you could use a single URL like the following:

https://HOSTNAME:PORT/uddi/wsdl/uddi_v3_registry.wsdl

If any URLs (WSDL or service address location) use https, you must configure the Policy Studio so that it trusts the re-
gistry SSL certificate.

Configure Policy Studio to trust a registry certificate

For an SSL connection, you must configure the registry server certificate as a trusted certificate. Assuming mutual au-
thentication is not required, the simplest way to configure an SSL connection between Policy Studio and UDDI registry is
to add the registry certificate to the Policy Studio default truststore (the cacerts file). You can do this by performing the

Connect to a UDDI registry

166

following steps in Policy Studio:

1. Select the Certificates and Keys > Certificates node in the Policy Studio tree.
2. Click Create/Import, and click Import Certificate.
3. Browse to the UDDI registry SSL certificate file, and click Open.
4. Click Use Subject on the right of the Alias Name field, and click OK. The registry SSL certificate is now imported in-

to the certificate store, and must be added to the Java keystore.
5. Click Keystore on the Certificate window.
6. Click Browse next to the Keystore field.
7. Browse to the following file:

INSTALL_DIR/policystudio/jre/lib/security/cacerts

8. Click Open, and enter the Keystore password. The default password is: changeit.
9. Click Add to Keystore.
10. Browse to the registry SSL certificate imported earlier, select it, and click OK.
11. Restart Policy Studio. You should now be able to connect to the registry over SSL.

Configure mutual SSL authentication

If mutual SSL authentication is required (if Policy Studio must authenticate to the registry), Policy Studio must have an
SSL private key and certificate. In this case, you should create a keystore containing the Policy Studio key and certific-
ate. You must configure Policy Studio to load this file. For example, edit the IN-
STALL_DIR/policystudio/policystudio.ini file, and add the following arguments:

-Djavax.net.ssl.keyStore=/home/oracle/osr-client.jks
-Djavax.net.ssl.keyStorePassword=changeit

This example shows an osr-client.jks keystore file used with Oracle Service Registry (OSR), which is the UDDI re-
gistry provided by Oracle.

Note
You can also use Policy Studio to create a new keystore (.jks) file. Click New keystore instead of brows-
ing to the cacerts file as described earlier.

Connect to a UDDI registry

167

Configure XPath expressions
Overview

The API Gateway Explorer uses XPath expressions in a number of ways, for example, to locate an XML signature in a
SOAP message, to determine what elements of an XML message to validate against an XML schema, to check the con-
tent of a particular element within an XML message, amongst many more uses.

There are two ways to configure XPath expressions:

• Manual configuration
• XPath wizard

Manual configuration

If you are already familiar with XPath and wish to configure the expression manually, complete the following fields, using
the examples below if necessary:

1. Enter or select a name for the XPath expression in the Name drop-down list.
2. Enter the XPath expression to use in the XPath Expression field.
3. In order to resolve any prefixes within the XPath expression, the namespace mappings (Prefix, URI) should be

entered in the table.

Consider the following example SOAP message: >

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sample">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<prod:product xmlns:prod="http://www.oracle.com">

<prod:name>SOA Product*</prod:name>
<prod:company>Company</prod:company>
<prod:description>WebServices Security</prod:description>

</prod:product>
</soap:Body>

</soap:Envelope>

The following XPath expression evaluates to true if the <name> element contains the value API Gateway Explorer:
XPath Expression: //prod:name[text()='API Gateway Explorer']

In this case, it is necessary to define a mapping for the prod namespace as follows:

Prefix URI

prod http://www.oracle.com

168

In another example, the element to be examined belongs to a default namespace. Consider the following SOAP mes-
sage:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sample">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<product xmlns="http://www.company.com">

<name>SOA Product</name>
<company>Company</company>
<description>WebServices Security</description>

</product>
</soap:Body>

</soap:Envelope>

The following XPath expression evaluates to true if the <company> element contains the value Company:
XPath Expression: //ns:company[text()='Company']

The <company> element actually belongs to the default (xmlns) namespace (http://www.company.com. This means
that it is necessary to make up an arbitrary prefix, ns, for use in the XPath expression and assign it to ht-
tp://www.company.com. This is necessary to distinguish between potentially several default namespaces, which may
exist throughout the XML message. The following mapping illustrates this:

Prefix URI

ns http://www.oracle.com

Return a nodeset

Both of the examples above dealt with cases where the XPath expression evaluated to a Boolean value. For example,
the expression in the above example asks does the <company> element in the http://www.oracle.com namespace
contain a text node with the value oracle?.

It is sometimes necessary to use the XPath expression to return a subset of the XML message. For example, when using
an XPath expression to determine what nodes should be signed in a signed XML message, or when retrieving the node-
set to validate against an XML Schema.

The API Gateway Explorer ships with such an XPath expression: one that returns All Elements inside SOAP
Body To view this expression, select it from the Name field. It appears as follows:
XPath Expression: /soap:Envelope/soap:Body//*

This XPath expression simply returns all child elements of the SOAP <Body> element. To construct and test more com-
plicated expressions, administrators are advised to use the XPath Wizard.

XPath wizard

The XPath wizard assists administrators in creating correct and accurate XPath expressions. The wizard allows adminis-

Configure XPath expressions

169

trators to load an XML message and then run an XPath expression on it to determine what nodes are returned. To
launch the XPath wizard, click the XPath Wizard button on the XPath Expression dialog.

To use the XPath wizard, simply enter (or browse to) the location of an XML file in the File field. The contents of the XML
file will appear in the main window of the wizard. Enter an XPath expression in the XPath field and click the Evaluate
button to run the XPath against the contents of the file. If the XPath expression returns any elements (or returns true),
those elements will be highlighted in the main window.

If you are not sure how to write the XPath expression, you can select an element in the main window. An XPath expres-
sion to isolate this element is automatically generated and displayed in the Selected field. To use this expression, select
the Use this path button, and click OK.

Configure XPath expressions

170

Signature location
Overview

A given XML message can contain several XML signatures. Consider an XML document (for example, a company policy
approval form) that must be digitally signed by a number of users (for example, department managers) before being sub-
mitted to the ultimate web service (for example, a company policy approval web service). Such a message will contain
several XML signatures by the time it is ready to be submitted to the web service.

In such cases, where multiple signatures will be present within a given XML message, it is necessary to specify which
signature the API Gateway Explorer should use in the validation process. For more information on validating XML signa-
tures, see XML signature verification.

Configuration

The API Gateway Explorer can extract the signature from an XML message using several different methods:

• WS-Security block
• SOAP message header
• Advanced (XPath)

Select the most appropriate method from the Signature Location field. Your selection will depend on the types of SOAP
messages that you expect to receive. For example, if incoming SOAP messages will contain an XML signature within a
WS-Security block, you should choose this option from the list.

Use WS-Security actors

If the signature is present in a WS-Security block:

1. Select WS-Security block from the Signature Location field.
2. Select a SOAP actor from the Select Actor/Role(s) field. Each actor uniquely identifies a separate WS-Security

block. By selecting Current actor/role only from the list, the WS-Security block with no actor is taken.
3. In cases where there might be multiple signatures within the WS-Security block, it is necessary to extract one using

the Signature Position field.

The following is a skeleton version of a message where the XML signature is contained in the sample WS-Security block,
(soap-env:actor="sample"):

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"

s:actor="sample">
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="s1">
....

</dsig:Signature>
</wsse:Security>

</s:Header>
<s:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</s:Body>
</s:Envelope>

Use SOAP header

171

If the signature is present in the SOAP header:

1. Select SOAP message header from the Signature Location field.
2. If there is more than one signature in the SOAP header, then it is necessary to specify which signature the API

Gateway Explorer should use. Specify the appropriate signature by setting the Signature Position field.

The following is an example of an XML message where the XML signature is contained within the SOAP header:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="s1">

....
</dsig:Signature>

</s:Header>
<s:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</s:Body>
</s:Envelope>

Use XPath expression

Finally, an XPath expression can be used to locate the signature.

1. Select Advanced (XPath) from the Signature Location field.
2. Select an existing XPath expression from the list, or add a new one by clicking on the Add button. XPath expres-

sions can also be edited or removed with the Edit and Remove buttons.

The default First Signature XPath expression takes the first signature from the SOAP header. The expression is as fol-
lows:

//s:Envelope/s:Header/dsig:Signature[1]

To edit this expression, click the Edit button to display the Enter XPath Expression dialog.

An example of a SOAP message containing an XML signature in the SOAP header is provided below. The following
XPath expression instructs the API Gateway Explorer to extract the first signature from the SOAP header:

//s:Envelope/s:Header/dsig:Signature[1

Because the elements referenced in the expression (Envelope and Signature) are prefixed elements, you must
define the namespace mappings for each of these elements as follows:

Prefix URI

s http://schemas.xmlsoap.org/soap/envelope/

dsig http://www.w3.org/2000/09/xmldsig#

<?xml version="1.0" encoding="UTF-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="s1">

Signature location

172

....
</dsig:Signature>

</s:Header>
<s:Body>
<product xmlns="http://www.oracle.com">
<name>SOA Product*</name>
<company>Company</company>
<description>Web Services Security</description>
</product>

</s:Body>
</s:Envelope>

When adding your own XPath expressions, you must be careful to define any namespace mappings in a manner similar
to that outlined above. This avoids any potential clashes that might occur where elements of the same name, but belong-
ing to different namespaces are present in an XML message.

Signature location

173

What to sign
Overview

The What To Sign section enables the administrator to define the exact content that must be signed for a SOAP mes-
sage to pass the corresponding filter. The purpose of this configuration section is to ensure that the client has signed
something meaningful (part of the SOAP message) instead of some arbitrary data that would pass a blind signature val-
idation.

This prevents clients from simply pasting technically correct, but unrelated signatures into messages in the hope that
they pass any blind signature verification. For example, the user may be able to generate a valid XML Signature over any
arbitrary XML document. Then by including the signature and XML portion into a malicious SOAP message, the signa-
ture passes a blind signature validation, and the harmful XML is allowed to reach the Web service.

The What To Sign section ensures that clients must sign a part of the SOAP message, and therefore prevents them
from pasting arbitrary XML Signatures into the message. This section enables you to use any combination of Node Loc-
ations, XPath Expressions, XPath Predicates, and/or Message Attribute to specify message content that must be
signed. This topic describes how to configure each of the corresponding tabs displayed in this section.

ID configuration

With WSU IDs, an ID attribute is inserted into the root element of the nodeset that is to be signed. The XML Signature
then references this ID to indicate to verifiers of the signature the nodes that were signed. The use of WSU IDs is the de-
fault option because they are WS-I compliant.

Alternatively, a generic ID attribute (that is not bound to the WSU namespace) can be used to dereference the data. The
ID attribute is inserted into the top-level element of the nodeset to be signed. The generated XML Signature can then ref-
erence this ID to indicate what nodes were signed.

You can also use AssertionID attributes when signing SAML assertions. The following options provide more details
and examples of the different styles of IDs that are available.

Use WSU IDs:
Select this option to reference the signed data using a wsu:Id attribute. In this case, a wsu:Id attribute is inserted into
the root node of the nodeset that is signed. This id is then referenced in the generated XML Signature as an indication of
what nodes were signed. The following example shows the correlation:

<s:Envelope xmlns:s="...">
<s:Header>
<wsse:Security xmlns:wsse="...">
<dsig:Signature xmlns:dsig="..." Id="Id-00000112e2c98df8-0000000000000004">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-00000112e2c98df8-0000000000000003">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>xChPoiWJJrrPZkbXN8FPB8S4U7w=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>KG4N /9dw==</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-00000112e2c98df8-0000000000000005">
<dsig:X509Data>

174

<dsig:X509Certificate>
MIID ... ZiBQ==

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</wsse:Security>
</s:Header>
<s:Body xmlns:wsu="..." wsu:Id="Id-00000112e2c98df8-0000000000000003">
<vs:getProductInfo xmlns:vs="http://ww.oracle.com">
<vs:Name>API Gateway Explorer</vs:Name>
<vs:Version>11.1.2.4.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

In the above example, a wsu:Id attribute has been inserted into the <s:Body> element. This wsu:Id attribute is then
referenced by the URI attribute of the <dsig:Reference> element in the actual Signature.

When the Signature is being verified, the value of the URI attribute can be used to locate the nodes that have been
signed.

Use IDs:
Select this option to use generic IDs (that are not bound to the WSU namespace) to dereference the signed data. Under
this schema, the URI attribute of the <Reference> points at an ID attribute, which is inserted into the top-level node of
the nodeset that is signed. Take a look at the following example, noting how the ID specified in the Signature matches
the ID attribute that has been inserted into the <Body> element, indicating that the Signature applies to the entire con-
tents of the SOAP Body.

lt;soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"

Id="Id-0000011a101b167c-0000000000000013">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">
<dsig:X509Data>

<dsig:X509Certificate>......</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</soap:Header>
<soap:Body Id="Id-0000011a101b167c-0000000000000012">
<product version="11.1.2.4.0">
<name>API Gateway Explorer</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>

What to sign

175

</soap:Body>
</soap:Envelope>

Use SAML IDs for SAML Elements:
This ID option is specifically intended for use where a SAML assertion is to be signed. When this option is selected, an
AssertionID attribute is inserted into a SAML 1.1 assertion, or a more generic ID attribute is used for a SAML 2.0 as-
sertion.

Node locations

Node locations are perhaps the simplest way to configure the message content that must be signed. The table on this
screen is pre-populated with a number of common SOAP security headers, including the SOAP Body, WS-Security
block, SAML assertion, WS-Security UsernameToken and Timestamp, and the WS-Addressing headers. For each of
these headers, there are several namespace options available. For example, you can sign both a SOAP 1.1 and/or a
SOAP 1.2 block by distinguishing between their namespaces.

On the Node Locations tab, you can select one or more nodesets to sign from the default list. You can also add more
default nodesets by clicking the Add button. Enter the Element Name, Namespace, and Index of the nodeset in the
fields provided. The Index field is used to distinguish between two elements of the same name that occur in the same
message.

XPath configuration

You can use an XPath expression to identify the nodeset (the series of elements) that must be signed. To specify that
nodeset, select an existing XPath expression from the table, which contains several XPath expressions that can be used
to locate nodesets representing common SOAP security headers, including SAML assertions. Alternatively, you can add
a new XPath expression using the Add button. XPath expressions can also be edited and removed with the Edit and Re-
move buttons.

An example of a SOAP message is provided below. The following XPath expression indicates that all the contents of the
SOAP body, including the Body element itself, should be signed:

/soap:Envelope/soap:Body/descendant-or-self::node()

You must also supply the namespace mapping for the soap prefix, for example:

Prefix URI

soap http://schemas.xmlsoap.org/soap/envelope/

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
</soap:Header>
<soap:Body>
<product xmlns="http://www.oracle.com">

<name>SOA Product</name>
<company>Company</company>
<description>Web services Security</description>

</product>
</soap:Body>

</soap:Envelope>

XPath predicates

What to sign

176

Select this option if you wish to use an XPath transform to reference the signed content. You must select an XPath pre-
dicate from the table to do this. The table is prepopulated with several XPath predicates that can be used to identify com-
mon security headers that occur in SOAP messages, including SAML assertions.

To illustrate the use of XPath predicates, the following example shows how the SOAP message is signed when the de-
fault Sign SOAP Body predicate is selected:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<vs:getProductInfo xmlns:vs="http://www.oracle.com">
<vs:Name>API Gateway Explorer</vs:Name>
<vs:Version>11.1.2.4.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

The default XPath expression (Sign SOAP Body) identifies the contents of the SOAP Body element, including the Body
element itself. The following is the XML Signature produced when this XPath predicate is used:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature id="Sample" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:SignedInfo>

...
<dsig:Reference URI="">
<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<dsig:XPath xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

ancestor-or-self::soap:Body
</dsig:XPath>

</dsig:Transform>
<dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>

</dsig:Transforms>
...

</dsig:Reference>
</dsig:SignedInfo>
...

</dsig:Signature>
</s:Header>
<s:Body>
<vs:getProductInfo xmlns:vs="http://ww.oracle.com">
<vs:Name>API Gateway Explorer</vs:Name>
<vs:Version>11.1.2.4.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

This XML Signature includes an extra Transform element, which has a child XPath element. This element specifies the
XPath predicate that validating applications must use to identify the signed content.

Message attribute

Finally, you can use the contents of a message attribute to determine what must be signed in the message. For example,
you can configure a ??? filter to extract certain content from the message and store it in a particular message attribute.
You can then specify this message attribute on the Message Attribute tab.

To do this, select the Extract nodes from message attribute check box, and enter the name of the attribute that con-
tains the nodes in the field provided.

What to sign

177

Select configuration values at runtime
Overview

A selector is a special syntax that enables API Gateway Explorer configuration settings to be evaluated and expanded at
runtime based on metadata values (for example, from message attributes, a Key Property Store (KPS), or environment
variables). The selector syntax uses the Java Unified Expression Language (JUEL) to evaluate and expand the specified
values. Selectors provide a powerful feature when integrating with other systems or when customizing and extending the
API Gateway Explorer.

Selector syntax

The API Gateway Explorer selector syntax uses JUEL to evaluate and expand the following types of values at runtime:

• Message attribute properties configured in message filters, for example:

${authentication.subject.id}

• Environment variables specified in envSettings.props and system.properties files, for example:

${env.PORT.MANAGEMENT}

• Values stored in a KPS table, for example:

${kps.CustomerProfiles[JoeBloggs].age}

Important
Do not use hyphens (-) in selector expressions. Hyphens are not supported by the Java-based selector
syntax. You can use underscores (_) instead.

Access fields

A message attribute selector can refer to a field of that message (for example certificate), and you can use . char-
acters to access subfields. For example, the following selector expands to the username field of the object stored in the
profile attribute in the message:

${profile.username}

You can also access fields indirectly using square brackets ([and]). For example, the following selector is equivalent to
the previous example:

${profile[field]}

You can specify literal strings as follows:

${profile["a field name with spaces"]}

For example, the following selector uses the kathy.adams@acme.com key value to look up the User table in the KPS,
and returns the value of the age property:

${kps.User["kathy.adams@acme.com"].age}

178

Note
For backwards compatibility with the . spacing characters used in previous versions of the API Gateway
Explorer, if a selector fails to resolve with the above rules, the flat, dotted name of a message attribute still
works. For example, ${content.body} returns the item stored with the content.body key in the mes-
sage.

Special selector keys

The following top-level keys have a special meaning:

Key Description

kps Subfields of the kps key reflect the alias names of KPS tables in the API Gateway Ex-
plorer group. Further indexes represent properties of an object in a table (for example,
${kps.User["kathy.adams@acme.com"].age}).

env, system In previous versions, fields from the envSettings.props and system.properties
files had restrictions on prefixes. The selector syntax does not require the env and sys-
tem prefixes in these files. For example, ${env. selects settings from envSet-
tings.props, and the rest of the selector chooses any properties in it. However, for
compatibility, if a setting in either file starts with this prefix, it is stripped away so the se-
lectors still behave correctly with previous versions.

Resolve selectors

Each ${...} selector string is resolved step-by-step, passing an initial context object (for example, Message). The top-
level key is offered to the context object, and if it resolves the field (for example, the message contains the named attrib-
ute), the resolved object is indexed with the next level of key. At each step, the following rules apply:

1. At the top level, test the key for the global values (for example, kps, system, and env) and resolve those specially.
2. If the object being indexed is a Dictionary, KPS, or Map, use the index as a key for the item’s normal indexing mech-

anism, and return the resulting lookup.
3. If all else fails, attempt Java reflection on the indexed object.

Note
Method calls are currently only supported using Java reflection. There are currently no supported functions
as specified by the Unified Expression Language (EL) standard. For more details on JUEL, see ht-
tp://juel.sourceforge.net/.

Example selector expressions

This section lists some example selectors that use expressions to evaluate and expand their values at runtime.

Message attribute

The following message attribute selector returns the HTTP User-Agent header:

${http.headers["User-Agent"]}

Select configuration values at runtime

179

http://juel.sourceforge.net/
http://juel.sourceforge.net/

For example, this might expand to the following value:

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.77
Safari/535.7

Environment variable

In a default configuration, the following environment variable selector returns port 8091:

${env.PORT.MANAGEMENT + 1}

Key Property Store

The following selector looks up a KPS table with an alias of User:

${kps.User[http.querystring.id].firstName}

This selector retrieves the object whose key value is specified by the id query parameter in the incoming HTTP request,
and returns the value of the firstName property in that object.

The following selector explicity provides the key value, and returns the value of the age property:

${kps.User["kathy.adams@acme.com"].age}

In this example, the ASCII " character is used to delimit the key string.

The following selector looks up a KPS table with a composite secondary key of firstName,lastName:

${kps.User[http.querystring.firstName][http.querystring.lastName].email}

In this example, the key values are received as query parameters in the incoming HTTP request. The selector returns the
value of the email property from the resulting object.

Examples using reflection

The following message attribute selector returns the CGI argument from an HTTP URL (for example, returns bar for ht-
tp://localhost/request.cgi?foo=bar):

${http.client.getCgiArgument("foo")}

This returns the name of the top-level element in an XML document:

${content.body.getDocument().getDocumentElement().getNodeName()}

This returns true if the HTTP response code lies between 200 and 299:

${http.response.status / 200 == 2}

Tip
You can use the Trace filter to determine the appropriate selector expressions to use for specific message
attributes. When configured after another filter, the Trace filter outputs the available message attributes and
their Java type (for example, Map or List). For details on com.vordel classes, see:

<install-dir>/apigateway/docs/javadoc/index.html

Select configuration values at runtime

180

For example, for the OAuth2AccessToken class, you can use selector expressions such as
${accesstoken.getAdditionalInformation()}.

Extract message attributes

There are a number of API Gateway Explorer filters that extract message attribute values (for example, Extract Certific-
ate Attributes and Retrieve from HTTP Header). Using selectors to extract message attributes offers a more flexible al-
ternative to using such filters. For more details on using selectors instead of these filters, contact Oracle Support.

Select configuration values at runtime

181

	Oracle® Fusion Middleware
	Contents
	Chapter 1. Getting Started
	Oracle API Gateway Explorer Overview
	Overview
	Stress Test Services
	Traffic Simulation
	Sample SOAP Messages
	Application-level Networking
	Test Federated Identity Deployments
	Test XML, REST, and SOAP
	SOAP Attachments
	Simple Graphical Keystore
	Add or Remove Security Tokens
	Transfer Encoding
	Testing Tool for Design-time Governance

	System Requirements
	Prerequisites
	Requirements
	Installation Instructions

	API Gateway Explorer Release Notes
	Overview
	In this Version
	Installation
	Documentation
	Acknowledgements

	OpenSSL License Issues
	Overview
	OpenSSL License
	Original SSLeay License

	Chapter 2. General Configuration
	Introducing Oracle API Gateway Explorer
	Overview
	API Gateway Explorer Classic View
	API Gateway Explorer Design View
	Checking WSDL for WS-I Compliance
	Using the Send Request Command

	Using the API Gateway Explorer Classic Mode
	Overview
	Auto-Generating SOAP Messages from WSDL Files
	SOAP Request and Response
	Connection Settings
	Sign Request
	Encrypt Request
	Decrypt Request
	Insert SAML Token
	Insert WS-Security UsernameToken

	Generating and Running Test Cases
	Overview
	Using WSDL to Generate Test Cases
	Running Test Cases
	Viewing the Results
	Configuring Individual Test Cases

	Running Attack Vectors
	Overview
	Configuring an Attack Vector
	Inserting Attack Vectors into Sample Messages
	Viewing the Results

	Testing WSDL Files for WS-I Compliance
	Overview
	Running the WS-I Compliance Test

	Manage certificates and keys
	Overview
	View certificates and keys
	Certificate management options

	Configure an X.509 certificate
	Create a certificate
	Import certificates

	Configure a private key
	Private key stored locally
	Private key provided by OpenSSL engine
	Private key stored on external HSM

	Configure HSMs and certificate realms
	Manage HSMs with keystoreadmin
	Use keystoreadmin in interactive mode

	Step 1—Register an HSM provider
	Step 2—Create a certificate realm and associated keystore
	Step 3—Start the API Gateway Explorer when using an HSM
	Start API Gateway with manually entered PIN passphrase
	Start API Gateway with automatic PIN passphrase

	Configure SSH key pairs
	Add a key pair
	Manage OpenSSH keys

	Configure PGP key pairs
	Add a PGP key pair
	Manage PGP keys

	Global import and export options
	Import and export certificates and keys
	Manage certificates in Java keystores

	Further information

	Configuring Connection Settings
	Overview
	URL
	Proxy Settings
	Trusted Certificates
	Client SSL Authentication
	HTTP Authentication

	Stress test with send request (sr)
	Overview
	Basic sr examples
	Advanced sr examples
	sr arguments
	Further information

	Global Schema Cache
	Overview
	Adding Schemas to the Cache
	Schema Validation

	General Preferences
	Overview
	Auto Format Response
	JMS
	Kerberos
	Proxy Settings
	Runtime Dependencies
	SMTP
	SSL Settings
	TCP/IP Monitor
	Test Case Colors
	Trace Level
	VM Arguments
	Web and XML
	Wildcards
	WS-I Settings

	Chapter 3. Attributes
	Retrieve attribute from HTTP header
	Overview
	Configuration

	Insert SAML attribute assertion
	Overview
	General settings
	Assertion Details
	Assertion Location
	Subject Confirmation Method
	Advanced settings

	Retrieve attribute from message
	Overview
	Configuration

	Chapter 4. Authentication
	Insert SAML authentication assertion
	Overview
	General settings
	Assertion details settings
	Assertion location settings
	Subject confirmation method settings
	Advanced settings

	Insert WS-Security UsernameToken
	Overview
	General settings
	Credential details
	Advanced options

	Set User Name
	Overview
	Configuration

	Chapter 5. Authorization
	Insert SAML authorization assertion
	Overview
	General settings
	Assertion details settings
	Assertion location settings
	Subject confirmation method settings
	Asymmetric Key
	Symmetric Key
	Key Info

	Advanced settings

	Chapter 6. Content Filtering
	Content type filtering
	Overview
	Allow or deny content types
	Configure MIME/DIME types

	Content validation
	Overview
	Manual XPath configuration
	XPath wizard

	HTTP Status
	Overview
	Configuration

	Has SOAP Body?
	Overview
	Configuration

	Is SOAP Fault?
	Overview
	Configuration

	HTTP header validation
	Overview
	Configure HTTP header regular expressions
	Configure threatening content regular expressions
	Regular expression format

	Schema validation
	Overview
	General settings
	Selecting the schema
	Selecting which part of the message to match
	Advanced settings
	Reporting schema validation errors

	Validate selector expression
	Overview
	Configure selector-based regular expressions
	Configure a Regular Expression

	Threatening content regular expressions

	Chapter 7. Conversion
	Add HTTP header
	Overview
	Configuration

	Set HTTP verb
	Overview
	Configuration

	Remove attachments
	Overview
	Configuration

	Set message
	Overview
	Configuration
	Example of using selectors in the message body

	Chapter 8. Encryption
	XML decryption
	Overview
	Configuration
	Auto-generation using the XML decryption wizard

	XML decryption settings
	Overview
	XML encryption overview
	Nodes to decrypt
	Decryption key
	Options
	Auto-generation using the XML decryption wizard

	XML encryption
	Overview
	Configuration
	Auto-generation using the XML encryption settings wizard

	XML encryption settings
	Overview
	XML encryption overview
	Encryption key settings
	Key info settings
	Recipient settings
	What to encrypt settings
	Advanced settings
	Auto-generation using the XML encryption settings wizard

	XML Encryption Wizard
	Overview
	Configuration

	Chapter 9. Integrity
	XML signature generation
	Overview
	General settings
	Signing key settings
	Asymmetric Key
	Symmetric Key
	Key Info

	What to sign settings
	Where to place signature settings
	Advanced settings
	Additional
	Algorithm Suite
	Options

	XML signature verification
	Overview
	General settings
	Signature verification settings
	What must be signed settings
	Advanced settings

	Chapter 10. Kerberos
	Kerberos configuration
	Overview
	Kerberos configuration file—krb5.conf
	Advanced settings
	Native GSS library

	Kerberos client authentication
	Overview
	General settings
	Kerberos client settings
	Kerberos token profile settings

	Chapter 11. Routing
	Connection
	Overview
	General settings
	SSL settings
	Authentication settings
	Additional settings

	Connect to URL
	Overview
	General settings
	Request settings
	SSL settings
	Trusted certificates
	Client certificates

	Authentication settings
	Additional settings
	Retry settings
	Failure settings
	Proxy settings
	Redirect settings
	Header settings

	HTTP status code
	Overview
	Configuration

	Insert WS-Addressing information
	Overview
	Configuration

	Send to JMS
	Overview
	Request settings
	Response settings

	Rewrite URL
	Overview
	Configuration

	Route to SMTP
	Overview
	General settings
	Message settings

	Static router
	Overview
	Configuration

	Chapter 12. Utility
	False filter
	Overview
	Configuration

	Find certificate
	Overview
	Configuration

	Pause processing
	Overview
	Configuration

	Scripting language filter
	Overview
	Write a script
	Use local variables

	Add your script JARs to the classpath
	Add your script JARs to the API Gateway Explorer classpath
	Add your script JARs to Policy Studio

	Configure a script filter
	Add a script to the library

	Test Case Shortcut
	Overview
	Configuration

	True filter
	Overview
	Configuration

	Chapter 13. Common Configuration
	Retrieve WSDL files from a UDDI registry
	Overview
	UDDI concepts
	UDDI definitions
	Example tModel mapping for WSDL portType

	Configure a registry connection
	WSDL search
	Quick search
	Name search
	UDDI v3 name searches

	Advanced search
	Advanced options
	Publish
	Add a businessEntity
	Add a tModel

	Connect to a UDDI registry
	Overview
	Configure a registry connection
	Secure a connection to a UDDI registry
	Configure Policy Studio to trust a registry certificate
	Configure mutual SSL authentication

	Configure XPath expressions
	Overview
	Manual configuration
	Return a nodeset

	XPath wizard

	Signature location
	Overview
	Configuration
	Use WS-Security actors
	Use SOAP header
	Use XPath expression

	What to sign
	Overview
	ID configuration
	Node locations
	XPath configuration
	XPath predicates
	Message attribute

	Select configuration values at runtime
	Overview
	Selector syntax
	Access fields
	Special selector keys
	Resolve selectors

	Example selector expressions
	Message attribute
	Environment variable
	Key Property Store
	Examples using reflection

	Extract message attributes

