
 

[1] Oracle® Database Mobile Server
Troubleshooting and Tuning Guide 

Release 12.1.0 

E58643-01

January 2015



Oracle Database Mobile Server Troubleshooting and Tuning Guide Release 12.1.0   

E58643-01

Copyright © 2014, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its 
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services, except as set forth in an applicable agreement between you and 
Oracle.



iii 

Contents

Preface ................................................................................................................................................................   vii

1 Improving Performance

1.1 Improving Connection Performance........................................................................................   1-1
1.1.1 Using Connection Pooling for Applications ....................................................................   1-1
1.1.2 Limit Application Connection Requests to the Database ..............................................   1-1
1.2 Increasing Synchronization Performance................................................................................   1-2
1.2.1 Analyzing Performance of Publications With the Consperf Utility.............................   1-2
1.2.1.1 Configuration for Data Synchronization...................................................................   1-3
1.2.1.2 Deciphering the Performance Evaluation Files........................................................   1-4
1.2.2 Monitoring Synchronization Using SQL Scripts.............................................................   1-7
1.2.2.1 Synchronization Times for All Clients ......................................................................   1-7
1.2.2.2 Failed Transactions for all Clients..............................................................................   1-7
1.2.2.3 Completely Refreshed Publication Items for all Clients.........................................   1-8
1.2.2.4 Publications Flagged for Complete Refresh for All Clients ...................................   1-8
1.2.2.5 Clients and Publication where Subscription Parameters are Not Set...................   1-8
1.2.2.6 Record Counts for Map-based Publication Item by Client ....................................   1-8
1.2.2.7 Record Count for Map-based Publication Items by Store ......................................   1-8
1.2.2.8 All Client Sequence Partitions and Sequence Values..............................................   1-8
1.2.2.9 All Publication Item Indexes.......................................................................................   1-9
1.2.3 Create SQL Scripts With All Dependencies.....................................................................   1-9
1.2.4 Configuration Parameters in the MOBILE.ORA that Affect Synchronization 

Performance   ............................................................................................................. 1-9
1.2.5 Tuning Queries to Manage Synchronization Performance ........................................    1-10
1.2.5.1 Avoid Using Non-Mergable Views ........................................................................    1-10
1.2.5.2 Tune Queries With Consperf Utility.......................................................................    1-10
1.2.5.3 Manage the Query Optimizer..................................................................................    1-10
1.2.6 Synchronization Tablespace Layout ..............................................................................    1-11
1.2.7 Shared Maps ......................................................................................................................    1-11
1.2.7.1 Performance Attributes ............................................................................................    1-12
1.2.7.2 Shared Map Usage.....................................................................................................    1-12
1.2.7.3 Compatibility and Migration for Shared Maps.....................................................    1-13
1.2.8 Use Map Table Partitions to Streamline Users Who Subscribe to a Large Amount of 

Data   ........................................................................................................................ 1-13
1.2.8.1 Create a Map Table Partition ...................................................................................    1-14
1.2.8.2 Add Map Table Partitions ........................................................................................    1-14



iv

1.2.8.3 Drop a Map Table Partition .....................................................................................    1-15
1.2.8.4 Drop All Map Table Partitions ................................................................................    1-15
1.2.8.5 Merge Map Table Partitions.....................................................................................    1-16
1.2.9 Configuring Back-End Oracle Database to Enhance Synchronization Performance  1-16
1.2.9.1 Physically Separate Map Tables and Map Indexes ..............................................    1-16
1.2.9.2 Database Parameter Tuning.....................................................................................    1-17
1.2.10 Priority-Based Replication...............................................................................................    1-17
1.2.10.1 Create Restricting Predicate in Publication Item ..................................................    1-17
1.2.10.2 Set Priority Flag in Mobile Sync API Before Initiating Synchronization...........    1-18
1.2.11 Caching Publication Item Queries..................................................................................    1-18
1.2.11.1 Enabling Publication Item Query Caching ...........................................................    1-19
1.2.11.2 Disabling Publication Item Query Caching ..........................................................    1-19
1.2.12 Architecture Design of Mobile Server and Oracle Database for Synchronization 

Performance   ........................................................................................................... 1-19
1.2.13 Designing Application Tables and Indexes for Synchronization Performance.......    1-19
1.3 Integrating Oracle Database Mobile Server With the Oracle Real Application Clusters  1-20
1.4 Maximizing JVM Performance By Managing Java Memory .............................................    1-21

2  Troubleshooting

2.1 Troubleshooting Synchronization ............................................................................................   2-1
2.1.1 Synchronization Errors and Conflicts...............................................................................   2-1
2.1.1.1 General Synchronization Errors and Conflicts ........................................................   2-2
2.1.1.2 Synchronization Error if Client Device Clock is Inaccurate...................................   2-2
2.1.1.3 Synchronization Error After Modifying Client Password......................................   2-2
2.1.1.4 Synchronization Error if Synchronized with a Large Number of Tables.............   2-2
2.1.2 Situations Where the Client is Out of Sync that Triggers a Complete Refresh ..........   2-2
2.1.3 The "Inconsistent Datatypes" SQLException Received If Order is Not Correct in Query    

.................................................................................................................................... 2-3
2.1.4 MGP Compose Postponed Due to Transaction in the In-Queue..................................   2-4
2.1.5 Avoiding the Server Busy Warning ..................................................................................   2-4
2.2 Troubleshooting the Mobile Server..........................................................................................   2-4
2.2.1 Running the Mobile Server With Tracing Enabled.........................................................   2-4
2.3 Troubleshooting the Mobile Server Repository .....................................................................   2-4
2.3.1 Troubleshooting the Mobile Server Repository with the Mobile Server Repository 

Diagnostic Tool   ........................................................................................................ 2-5
2.3.1.1 Use the Mobile Server Repository Diagnostic Tool to Validate Your Environment 

and the Repository   ............................................................................................ 2-5
2.3.1.2 Execute the Repository Diagnostics Tool..................................................................   2-7
2.3.2 Inspecting Files in the Mobile Repository With the WSH Tool ....................................   2-8
2.3.3 Modifying IP Address of Machine Where Mobile Repository Exists ..........................   2-8
2.4 Troubleshooting JVM Errors .....................................................................................................   2-8
2.4.1 Troubleshooting An Out of Memory Error......................................................................   2-8
2.4.1.1 JVM Memory Settings..................................................................................................   2-9
2.4.1.2 Why is Memory Not Released? ...............................................................................    2-11
2.4.1.3 Thread Memory Consumption and Concurrency ................................................    2-11
2.5 Troubleshooting Security........................................................................................................    2-11
2.5.1 SSL Certificate Rejection for Client Authentication.....................................................    2-11
2.6 Troubleshooting Device Manager .........................................................................................    2-12



v 

3  Tracing and Logging

3.1 General Tracing for the Mobile Server.....................................................................................   3-1
3.2 Data Synchronization Tracing...................................................................................................   3-2
3.2.1 Description of the Five Data Synchronization Components .........................................   3-5
3.2.1.1 MGP................................................................................................................................   3-5
3.2.1.2 MGPAPPLY...................................................................................................................   3-5
3.2.1.3 MGPCOMPOSE............................................................................................................   3-5
3.2.1.4 SYNC ..............................................................................................................................   3-6
3.2.1.5 GLOBAL ........................................................................................................................   3-6

4  Backup and Recovery

4.1 How Does Oracle Database Mobile Server Store its Information?......................................   4-1
4.2 Backing Up Oracle Database Mobile Server ...........................................................................   4-1
4.3 Oracle Database Mobile Server Backup Coordination Between Client and Server ..........   4-2
4.4 Oracle Database Mobile Server Recovery Issues....................................................................   4-4

Index



vi



vii

Preface

This preface introduces you to the Oracle Database Mobile Server Troubleshooting and 
Tuning Guide, discussing the intended audience, documentation accessibility, and 
structure of this document.

Audience
This manual is intended for application developers as the primary audience and for 
database administrators who are interested in application development as the 
secondary audience.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support 
through My Oracle Support. For information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.

Related Documents
Use the following manual as reference when installing and configuring a WebLogic 
application server:

■ Oracle® Fusion Middleware Installation Guide for Oracle WebLogic Server

Conventions
The following conventions are also used in this manual:

Convention Meaning

    . 
    . 
    .

Vertical ellipsis points in an example mean that information not directly 
related to the example has been omitted.



viii

. . . Horizontal ellipsis points in statements or commands mean that parts 
of the statement or command not directly related to the example have 
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary, 
or in both locations.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.

italic monospace Italic monospace type indicates a variable in a code example that you 
must replace. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation 
directory.

< >  Angle brackets enclose user-supplied names.

[ ] Brackets enclose optional clauses from which you can choose one or 
none.

Convention Meaning



1

Improving Performance 1-1

1Improving Performance

Mobile devices do not have the processing power and memory that standard 
enterprise systems maintain. If the mobile applications and infrastructure are not 
tuned appropriately they really are of little benefit to the organization. 

The most important performance concepts for a mobile infrastructure are as follows:

■ The time it takes to enter and retrieve data. 

■ The time it takes to synchronize data with the enterprise data store.  

The following sections describe the methods you can manage the performance of 
Oracle Database Mobile Server:

■ Section 1.1, "Improving Connection Performance"

■ Section 1.2, "Increasing Synchronization Performance"

■ Section 1.3, "Integrating Oracle Database Mobile Server With the Oracle Real 
Application Clusters"

■ Section 1.4, "Maximizing JVM Performance By Managing Java Memory"

1.1 Improving Connection Performance
The following methods enable you to streamline the connections between the 
client/server and the mobile server and back-end database:

■ Section 1.1.1, "Using Connection Pooling for Applications"

■ Section 1.1.2, "Limit Application Connection Requests to the Database"

1.1.1 Using Connection Pooling for Applications
Connection pooling enables you to eliminate the time delay in creating and destroying 
connections for incoming application requests. Instead, enable connection pooling, as 
shown in Section 3.4, "Managing Application and Connection Properties" in the Oracle 
Database Mobile Server Administration and Deployment Guide, so that each incoming 
connection request uses an existing connection from the pool.

1.1.2 Limit Application Connection Requests to the Database
You can limit the number of connections that access the database from each 
application, as shown in Section 3.4, "Managing Application and Connection 
Properties" in the Oracle Database Mobile Server Administration and Deployment Guide. 
Set the maximum database connection limit. Any request for a database connection 
beyond the limit is refused. 



Increasing Synchronization Performance

1-2 Oracle Database Mobile Server Troubleshooting and Tuning Guide

1.2 Increasing Synchronization Performance
The following sections describe how you can manipulate the synchronization 
performance:

■ Section 1.2.1, "Analyzing Performance of Publications With the Consperf Utility"

■ Section 1.2.2, "Monitoring Synchronization Using SQL Scripts"

■ Section 1.2.3, "Create SQL Scripts With All Dependencies"

■ Section 1.2.4, "Configuration Parameters in the MOBILE.ORA that Affect 
Synchronization Performance"

■ Section 1.2.5, "Tuning Queries to Manage Synchronization Performance"

■ Section 1.2.6, "Synchronization Tablespace Layout"

■ Section 1.2.7, "Shared Maps"

■ Section 1.2.8, "Use Map Table Partitions to Streamline Users Who Subscribe to a 
Large Amount of Data"

■ Section 1.2.9, "Configuring Back-End Oracle Database to Enhance Synchronization 
Performance"

■ Section 1.2.10, "Priority-Based Replication"

■ Section 1.2.11, "Caching Publication Item Queries"

■ Section 1.2.12, "Architecture Design of Mobile Server and Oracle Database for 
Synchronization Performance"

■ Section 1.2.13, "Designing Application Tables and Indexes for Synchronization 
Performance"

1.2.1 Analyzing Performance of Publications With the Consperf Utility
The Consperf utility profiles your subscriptions and may modify how the publication 
item is executed if the utility determines that there is a more performant option. The 
Consperf tool evaluates how the SQL within the publication item interacts with our 
data synchronization query templates. The first synchronization is always a complete 
refresh, which is a direct invocation of the query. On subsequent synchronizations, the 
query templates determine incremental refreshes. This improves your performance 
from not having to perform a complete refresh each time you synchronize. However, 
the interaction of our query templates and your SQL may not be optimal, which is 
discovered by the Consperf tool. We either modify the query template or type of 
logical delete or insert for you or you can adjust your SQL to be more performant in 
regards to our templates. 

In addition, application developers and administrators use this utility to analyze the 
performance of subscriptions and identify potential bottlenecks during 
synchronization. 

This tool generates the following two primary analysis reports:

1. Timing statistics for publication items

2. Explain plans for publications

The Consperf tool automatically tunes subscription properties, if the default templates 
do not supply the highest performing option. You can select a client and choose the 
desired subscription for performance analysis. Users can change parameter values 
before analyzing performance. The analysis results, which are timing and execution 



Increasing Synchronization Performance

Improving Performance 1-3

plan reports, are stored on the server and can be accessed by viewing the same user 
and subscription.

You can execute the Consperf utility through one of the following locations:

■ Click the Users link under the Consperf section on the Performance tab.

■ Click the Users link from the Repository screen.

Then, perform the following:

1. Select the User that you want to execute the Consperf tool against and click 
"Subscriptions". 

2. From the subscriptions screen, choose the publication and click "Consperf 
Performance Analysis". This starts the Consperf analysis.

3. Click "Set Consperf Parameters and Launch the Consperf Thread", which brings 
you to a screen where you can configure parameters that effect how the 
performance analysis is executed. See Section 1.2.1.2, "Deciphering the 
Performance Evaluation Files" for more information on these parameters and how 
they effect the performance evaluation output.

4. Once you have set the configuration for how you want your performance analysis 
to occur, click OK. The Consperf tool executes and prepares the reports for you, 
based on your configuration. You are returned to the first "Consperf "page with the 
reports listed as hyperlinks under the Last Consperf Run Results section as "View 
Timing File" or "View Execution Plan File".

See the sections below:

■ Section 1.2.1.1, "Configuration for Data Synchronization"

■ Section 1.2.1.2, "Deciphering the Performance Evaluation Files"

1.2.1.1 Configuration for Data Synchronization

Table 1–1  Consperf Parameters for Both Synchronization and MGP Processing

Parameter Default 
Value Allowed Values

Description 

PUBITEMLIST <ALL> Pub1, Pub2, and so on. Specifies comma-separated list 
of publication items to process. 
The default is all publication 
items in the publication.

SKIPPUBITEMLIST <NONE> Pub1, Pub2, and so on. Specifies comma-separated list 
of publication items to skip.

OPTIMIZER <DB> Can set to RULE or CHOOSE; 
otherwise sets to what 
database is set to.

Specifies the optimizer mode to 
use within Oracle. The default 
is the current database setting. 

ORDERBYPUBITEM NO Yes or No Orders all output by 
publication item name. 

Table 1–2  Consperf Parameters for Synchronization Timing Performance

Parameter
Default 
Value Allowed Values Description

TIMEOUT 10 seconds Integer for seconds Specifies the query timeout value in 
seconds. This is the amount of time 
Consperf will wait before it cancels a 
query.



Increasing Synchronization Performance

1-4 Oracle Database Mobile Server Troubleshooting and Tuning Guide

1.2.1.2 Deciphering the Performance Evaluation Files
There are two performance evaluations that come out of the Consperf utility:

■ Section 1.2.1.2.1, "Timing File"

■ Section 1.2.1.2.2, "Execution Plan File"

1.2.1.2.1 Timing File  The timing file contains the analysis of how the publication item 
performs with the data synchronization defaults against how it could perform if other 
options were chosen. The output of this file shows you the conclusions of the analysis 
and how the data synchronization defaults could be modified to perform better with 
your particular publication items.

The first section of the timing file provides you information on the configuration with 
which this analysis was executed. Thus, if you modify the configuration for other 
analysis, you can go back and compare each file to each other to easily see the 
differences in the output. 

Note: The results of this analysis may cause the data synchronization 
engine to modify the type of query template or logical 
delete/insert/update used with your publication item. To change it 
back to the defaults, you will have to rerun Consperf with CLEARTUNE 
set to YES. See Table 1–2 for a full description of parameter settings.

The following example shows the publication that is examined is the T_SAMPLE11 
publication. The version of the Oracle Database Mobile Server is 12.1.0.0.0. The user is 
S11U1. And the configuration is set to time out if the query takes longer that 1000 
milliseconds and change the defaults if the difference between the default and the 
other templates are greater than 20 seconds (20000 milliseconds). The command that 
authorizes the changes is when AUTOTUNE is set to true. If set to false, the analysis is 
provided, but nothing is modified. 

VERSION = 12.1.0.0.0 
OPTMIZER_MODE = null 
APPLICATION = null 
PUBLICATION = T_SAMPLE11 
CLIENTID = S11U1 
TIMEOUT = 1000 ms 
TOLERANCE = 20000 ms 
ITERATIONS = 2 

UPDATECOUNT 5 Integer for number 
of records

Specifies the number of records to 
mark as dirty during synchronization.

 MAXLOG 5000 Integer for number 
of records

Specifies the number of records to put 
in the log table. Simulates the 
transaction log

AUTOTUNE NO Yes or No Enables auto-tune.

CLEARTUNE NO Yes or No Clears existing auto-tune results. 

TOLERANCE 20 seconds Integer for seconds A template must be faster by this 
number of seconds before it replaces 
the default template.

Table 1–2 (Cont.) Consperf Parameters for Synchronization Timing Performance

Parameter
Default 
Value Allowed Values Description



Increasing Synchronization Performance

Improving Performance 1-5

AUTOTUNE_SUPPORT = true 

The next part of the Timing File lists the time in milliseconds each template type takes 
to complete with each publication item in the publication. There are three templates 
that data synchronization can use to "wrap" your SQL query. The default query 
template is SYNC_1. Since the tolerance is set to 20 seconds, then if either template 
SYNC_2 or SYNC_3 performs at least 20 seconds better than SYNC_1, then the template 
type will be modified for your publication item. You can set the TOLERANCE level to 
fewer seconds in the Consperf configuration. See Table 1–2 for a description of 
TOLERANCE.

Publication Item Name | NS | BS | SYNC_1 | SYNC_2 | SYNC_3 | AS | Total
 ----------------------------------------------------------------------- 
P_SAMPLE11-D          | <3> | <0> | <6>  | 10     | -1000  | <0> | 9 
P_SAMPLE11-M          | <3> | <0> | <5>  | 8      | -1000  | <0> | 8 

■ There are two publication items in the subscription. 

■ NS stands for Null Sync. Your application may be issuing a null synchronization. 
If so, this shows the time in milliseconds that it took to complete. The null 
synchronization is a tool to see if it is the data that is causing the performance hit 
or the application itself.

■ BS stands for Before Synchronization; AS stands for After Synchronization. You 
can provide callouts that are executed either before or after each synchronization 
for this application. This shows the time in milliseconds it takes to perform each 
task. In this example, there is no before or after synchronization callouts.

■ SYNC_1 is the default template. In combination with the publication items, it still is 
executing the fastest as compared to the other two options: SYNC_2 and SYNC_3 
with 6 and 5 milliseconds for each publication item respectively. Thus, these 
publication items will continue to use SYNC_1 template. Note that SYNC_3 has -1000 
as its time. That either means that the template was not appropriate to execute or 
that it timed out.

– SYNC_1 uses an outer-join for inserts, updates, and deletes

– SYNC_2 is a simple insert and update

– SYNC_3 uses the base view for insert and update. The base view is the first 
table in the select statement, as it is the primary key used to search for all 
records in the query.

■ The total is the total number of milliseconds to execute the entire publication item.

The second section is how the MGP performs with the templates it uses for deletes and 
inserts. It evaluates the default against other options, as follows:

■ Logical delete options:

■ MGP template for logical deletes using EXISTS: default for logical delete.

■ MGP template for logical deletes using correlated IN. 

■ MGP template for logical deletes using HASH_AJ. 

■ MGP template for logical deletes using IN. 

■ Logical insert options:

■ MGP template for logical inserts using EXISTS: default for logical insert.

■ MGP template for logical inserts using correlated IN. 

■ MGP template for logical inserts using IN. 



Increasing Synchronization Performance

1-6 Oracle Database Mobile Server Troubleshooting and Tuning Guide

■ Logical update options:

■ MGP template for logical updates using correlated IN: default for logical 
updates.

■ MGP template for logical updates using EXISTS. 

■ MGP template for logical updates using IN. 

■ MGP template for logical updates with multiple table dependencies. 

For example, the following evaluates how each publication item performs with its 
logical deletes:

MGP Output... 
Pub Item Name | LDEL_1 | LDEL_2 | LDEL_3 | LDEL_4
P_SAMPLE11-D  | <5>    | 3      | 3      | 3     
P_SAMPLE11-M  | <5>    | 3      | 5      | 4    

The LDEL_1 is the default and even though LDEL_2 , 3 and 4 are faster, they are not 20 
seconds faster, which is the tolerance level. So, the default for deletes is kept the same. 
If the difference in speed had been greater than the tolerance level, the Consperf utility 
would have modified the logical delete method in the repository for the publication 
item in future—if the autotune parameter was set to yes. 

The last section, Subscription Properties, describes the following:

■ Profiled: Has autotune been turned on and Consperf executed previously on this 
subscription?

■ Base View: True if this publication item uses more than one table.

■ How many records are there in the subscription?

■ How many records are dirty?

■ How many records have been flagged as dirty to simulate an actual run? Up to the 
number of records in the subscription or MAXLOG will be flagged as dirty, whichever 
is least.

1.2.1.2.2 Execution Plan File  To improve performance when accessing data on the local 
client database, view the execution plan file, which shows the performance of your 
SQL query execution on the back-end Oracle Database. To execute a SQL statement, 
Oracle might need to perform several steps. Each of these steps either physically 
retrieves rows of data from the back-end database or prepares them in some way for 
the user issuing the statement. The combination of the steps Oracle uses to execute a 
statement is called an execution plan, which includes an access path for each table that 
the statement accesses and an ordering of the tables (the join order) with the 
appropriate join method. The execution plan shows you exactly how Oracle database 
executes your SQL statement. 

The components of an execution plan include the following:

■ An ordering of the tables referenced by the statement.

■ An access method for each table mentioned in the statement.

■ A join method for tables affected by join operations in the statement.

The execution plan file shows how your publication items interact with the different 
logical delete, insert, and update templates. From this report, you can evaluate your 
SQL to see if you want to modify it in any way to speed up your query. Set the 
optimizer parameter to designate how the database is organized. If you set this 
parameter to a setting that the database is not set to, it still acts as if the database is set 



Increasing Synchronization Performance

Improving Performance 1-7

to this way to show you how it would execute. See Table 1–3 for all configuration 
parameters that relate to this search. 

Table 1–3  Consperf Parameters for Execution Performance Plan

Parameter Default 
Value

Allowed 
Values

Description 

GATHERSTATS NO Yes or No Gathers optimizer statistics on all mobile server 
objects. MGP compose must be disabled while 
Consperf analyzes objects. Consperf blocks this 
automatically, but the safest approach is to 
manually stop the MGP process before running 
Consperf with the GATHERSTATS option. If 
Consperf fails while gathering statistics, users 
must re-run CLEARSTATS before starting the MGP 
process again.

CLEARSTATS NO Yes or No Removes optimizer statistics on mobile server 
objects. 

SQLTRACE NO Yes or No Enables Oracle SQL trace. TKPROF can be used to 
analyze the resulting trace file.

1.2.2 Monitoring Synchronization Using SQL Scripts
If, instead of viewing MGP statistics within the Mobile Manager, you would rather 
execute SQL scripts to monitor mobile application status during synchronization, you 
may use any of the following SQL scripts to retrieve the desired information.

■ Section 1.2.2.1, "Synchronization Times for All Clients"

■ Section 1.2.2.2, "Failed Transactions for all Clients"

■ Section 1.2.2.3, "Completely Refreshed Publication Items for all Clients"

■ Section 1.2.2.4, "Publications Flagged for Complete Refresh for All Clients"

■ Section 1.2.2.5, "Clients and Publication where Subscription Parameters are Not 
Set"

■ Section 1.2.2.6, "Record Counts for Map-based Publication Item by Client"

■ Section 1.2.2.7, "Record Count for Map-based Publication Items by Store"

■ Section 1.2.2.8, "All Client Sequence Partitions and Sequence Values"

■ Section 1.2.2.9, "All Publication Item Indexes"

1.2.2.1 Synchronization Times for All Clients
Using the following script, you can check the latest successful synchronization times 
for all clients by retrieving such information from the all_clients table.

select client, lastrefresh_starttime, lastrefresh_endtime
from cv$all_clients
order by client
/

1.2.2.2 Failed Transactions for all Clients
Using the following script, you can retrieve a list of failed transactions for all clients 
from the all_errors table.

select client, transaction_id, item_name, message_text
from cv$all_errors



Increasing Synchronization Performance

1-8 Oracle Database Mobile Server Troubleshooting and Tuning Guide

where message_text is not null
order by client,transaction_id
/

1.2.2.3 Completely Refreshed Publication Items for all Clients
Using the following SQL script, you can retrieve a list of all publication items for all 
clients which were completely refreshed during the last synchronization process.

select clientid, publication_item
from c$complete_refresh_log
order by clientid, publication_item
/

1.2.2.4 Publications Flagged for Complete Refresh for All Clients
Using the following SQL script, you can retrieve a list of publications for all clients that 
are flagged for a complete refresh during the next synchronization process.

select clientid, template as publication
from c$all_subscriptions
where crr = 'Y'
/

1.2.2.5 Clients and Publication where Subscription Parameters are Not Set
Using the following SQL script, you can retrieve a list of clients and their publications 
where the subscription parameters have not been set.

select client, name as publication, param_name, param_value
from cv$all_subscription_params
where param_value is null
order by client, name
/

1.2.2.6 Record Counts for Map-based Publication Item by Client
Using the following script, you can retrieve record counts for all clients in queues for 
map-based publication items, that are grouped by clients.

select clid$$cs as client, count(*) as "RECORD COUNT"
from c$in_messages
group by clid$$cs
/

1.2.2.7 Record Count for Map-based Publication Items by Store
Using the following SQL script, you can retrieve record counts for all client in-queues 
for map-based publication items, that are grouped by store.

select clid$$cs as client, tranid$$ as transaction_id, store as item_name,
count(*) as "RECORD COUNT"
from c$in_messages
group by clid$$cs, tranid$$, store
/

1.2.2.8 All Client Sequence Partitions and Sequence Values
Using the following SQL script, you can retrieve a list of all client sequence partitions 
and current sequence values.

select clientid, name, curr_val, incr
from c$all_sequence_partitions



Increasing Synchronization Performance

Improving Performance 1-9

order by clientid, name
/

1.2.2.9 All Publication Item Indexes
Using the following SQL script, you can retrieve a list of all publication item indexes.

select publication as NAME, publication_item, conflict_rule as "INDEX_TYPE",
columns
from c$all_indexes
order by publication, publication_item
/

1.2.3 Create SQL Scripts With All Dependencies
When you create a SQL script in MDW or with the Consolidator APIs, you should 
include all dependent DDL statements in the same script in the order necessary. If you 
separate dependent DDL statements into separate scripts, Oracle Database Mobile 
Server may be executing them randomly, causing dependency errors and re-execution 
of each script. See Section 4.7 "Create and Load a Script into the Project" in the Oracle 
Database Mobile Server Developer's Guide for more information.

1.2.4 Configuration Parameters in the MOBILE.ORA that Affect Synchronization 
Performance

The following parameters in the [CONSOLIDATOR] section of the mobile.ora file are 
used for tuning synchronization: 

■ MAX_THREADS

The MAX_THREADS parameter is used by the MGP and controls the number of 
concurrent threads. As a rule, do not set this higher than 1.5 times the number of 
CPUs on the database machine. For example, if your system has four CPUs, theb 
you should not set it higher than six.

■ RESUME_MAXACTIVE and RESUME_MAX_WAIT

You can configure for maximum concurrent clients with the RESUME_MAXACTIVE 
and RESUME_MAX_WAIT parameters. This limits the maximum number of 
concurrently synchronizing clients to RESUME_MAXACTIVE; additional incoming 
clients wait RESUME_MAX_WAIT in minutes before timing out with an error. 
Maximum concurrent clients are configured without the resume feature with these 
parameters if you set RESUME_TIMEOUT=0.

For more details on the resume feature, see Section 4.7, "Resuming an Interrupted 
Synchronization" in the Oracle Database Mobile Server Administration and Deployment 
Guide.

■ COMPOSE_TIMEOUT

The COMPOSE_TIMEOUT parameter specifies in seconds the MGP timeout for the 
compose phase for each user.

■ CONNECTION_POOL 

The CONNECTION_POOL parameter enables pooling of database connections.

For full details on these and more parameters, see Section A.1.5, "CONSOLIDATOR" in 
the Oracle Database Mobile Server Administration and Deployment Guide.

Each synchronization request requires a number of system resources, such as creating 
a database connection, using memory, and so on. If you have too many requests 



Increasing Synchronization Performance

1-10 Oracle Database Mobile Server Troubleshooting and Tuning Guide

competing for the same resources, then the overall performance can be poor. Limiting 
the number of parallel requests with the MAX_THREADS and MAX_CONCURRENT parameters 
improve the average response time.

Set the MAX_THREADS and MAX_CONCURRENT parameters if you notice that the 
synchronization performance is not linear. For example, if twice the number of parallel 
requests results in a synchronization time that is five times longer for each client, then 
you probably have resource contention. The value depends on your environment and 
should be determined on a trial and error basis. 

1.2.5 Tuning Queries to Manage Synchronization Performance
You can increase synchronization performance by monitoring the performance of the 
SQL queries in your applications. The following sections provide details on how to 
tune your queries:

■ Section 1.2.5.1, "Avoid Using Non-Mergable Views"

■ Section 1.2.5.2, "Tune Queries With Consperf Utility"

■ Section 1.2.5.3, "Manage the Query Optimizer"

1.2.5.1 Avoid Using Non-Mergable Views
You should avoid using database query constructs that prevent a view from being 
mergable, as publication item queries that use non-mergable views do not perform 
well. Examples of such constructs are union, minus, and connect by. For more 
information on mergable views, see the Oracle Database documentation.

1.2.5.2 Tune Queries With Consperf Utility
Once you have defined your application, use the consperf utility to profile the 
performance of the publication item queries. The mobile server does not execute your 
publication item queries directly; instead the query is wrapped into a template query, 
which is executed by the Oracle Database. The template query may have an 
unexpected query execution plan, resulting in poor performance. The consperf utility 
generates an EXPLAIN PLAN execution plan for those template queries, allowing you 
to tune your publication item query for best performance. In addition, consperf 
generates timing information for the execution of all template queries, so that you can 
identify bottleneck queries. For more information on the consperf utility, see 
Section 1.2.1, "Analyzing Performance of Publications With the Consperf Utility".

1.2.5.3 Manage the Query Optimizer
You must make sure that the optimizer picks the correct execution path when you 
either are using the cost-based optimizer or you have set the optimizer settings to 
choose. The optimizer can pick the correct execution path only when all of the tables 
are properly analyzed and statistics have been gathered for these tables. 

The mobile server uses temporary tables during synchronization. Once a number of 
users have been created, and they have synchronized with the mobile server, run 
consperf with the gatherstats option to generate the statistics information for the 
temporary tables. For more information on the consperf utility, see Section 1.2.1, 
"Analyzing Performance of Publications With the Consperf Utility".



Increasing Synchronization Performance

Improving Performance 1-11

1.2.6 Synchronization Tablespace Layout
Tablespace layout across multiple disks can improve the performance of the mobile 
server data synchronization, as it reduces movement of the disk heads and improves 
I/O response time.

By default, the synchronization tablespace is SYNCSERVER, and is stored in the 
mobilexx.dbf file in the default location for the database under <ORACLE_HOME>, where 
xxx is a number between 1 and 25, and <ORACLE_HOME> is the root installation 
directory of the Oracle Database. The tablespace name, filename, and file location for 
the tablespace is defined in the <ORACLE_HOME>/Mobile/Server/admin/consolidator_
o8a.sql script file, which is executed during the mobile server installation process. 
Here <ORACLE_HOME> is the root installation directory or Database Mobile Server. 
So, if you want to modify the tablespace, perform the following BEFORE you install 
the mobile server; otherwise, the default tablespace is created.

If you want to customize the SYNCSERVER tablespace, for example, by using multiple 
data files spread across several disks, or by using specific storage parameters, then you 
can precreate the SYNCSERVER tablespace with the required settings. The installation 
process automatically detects that the tablespace exists and uses it. Refer to the Oracle 
Database documentation for full details on how to create a tablespace.

1.2.7 Shared Maps
It is very common for publications to contain publication items that are used 
specifically for lookup purposes. That is, a publication item that creates a read-only 
snapshot. The server may change these snapshots, but the client would never update 
them directly. Furthermore, many users often share the data in this type of snapshot. 
For example, there could be a publication item called zip_codes, which is subscribed 
to by all mobile users. 

The main function of Shared Maps is to improve scalability for this type of publication 
item by allowing users to share record state information and reduce the size of the 
resulting replication map tables. By default, if you have a non-updatable publication 
item, it defaults to using shared maps. 

Note: Shared Maps can also be used with updatable snapshots if the 
developer is willing to implement their own conflict detection and 
resolution logic; however, normally shared maps are only for 
non-updatable snapshots.

Shared maps shrink the size of map tables for large lookup publication items and 
reduce the MGP compose time. Lookup publication items contain read-only data that 
is not updatable on the clients and that is shared by multiple subscribed clients. When 
multiple users share the same data, their query subsetting parameters are usually 
identical. 

For example, a query could be the following: 

SELECT * FROM  WHERE EMP WHERE DEPTNO = :dept_id

In the preceding example, all users that share data from the same department have the 
same value for dept_id. The default sharing method is based on subscription 
parameter values.

In the following example, the query is:

SELECT * FROM WHERE EMP WHERE DEPTNO = ( SELECT DEPTNO FROM 



Increasing Synchronization Performance

1-12 Oracle Database Mobile Server Troubleshooting and Tuning Guide

         EMP WHERE EMPNO = :emp_id )

In this example, users from the same departments still share data. Their subsetting 
parameters are not equal, because each user has a unique emp_id. To support the 
sharing of data for these types of queries (as illustrated by the example), a grouping 
function can be specified. The grouping function returns a unique group id based on 
the client id.

There is also another possible use for shared maps. It is possible to use shared maps 
for shared updatable publication items. However, this type of usage requires 
implementation of a custom dml procedure that handles conflict resolution.

1.2.7.1 Performance Attributes
The performance of the MGP compose cycle is directly proportional to the following: 

NC * NPI 

where: 

■ NC  = number of clients

■ NPI = number of publication items that must be composed

With shared maps, the length of the MGP cycle is proportional to the following:

NC*(NPI - NSPI)  + NG*NSPI 

where:

■ NSPI = number of shared publication items

■ NG  = number of groups

Note: If NG = NC, then the MGP performance is similar in both cases. 
However, with fewer groups and more shared publication items, the 
MGP compose cycle becomes faster. In addition, map storage 
requirements are governed by these same factors. 

1.2.7.2 Shared Map Usage
To set up a publication item to be shared, use the AddPublicationItem API and enable 
the shared flag. It is also possible to toggle the shared property of a publication item 
once it is added to the publication with the SetPublicationItemMetadata API. Both 
the AddPublicationItem API and the SetPublicationItemMetadata API allow users 
to specify a PL/SQL grouping function. The function signature must be as follows:

(
CLIENT in VARCHAR2, 
PUBLICATION in VARCHAR2, 
ITEM in VARCHAR2  
) return VARCHAR2.

The returned value must uniquely identify the client's group. For example, if client A 
belongs to the group GroupA and client B belongs to the group GroupB, the group 
function F could return:

F ('A','SUBSCRIPTION','PI_NAME') = 'GroupA'
F ('B','SUBSCRIPTION','PI_NAME') = 'GroupB'



Increasing Synchronization Performance

Improving Performance 1-13

The implicit assumption of the grouping function is that all the members of the 
GroupA group share the same data, and that all the members of the GroupB group 
share the same data. The group function uniquely identifies a group of users with the 
same data for a particular PUBLICATION ITEM.

For the query example in Section 1.2.7, "Shared Maps", the grouping function could be:

Function get_emp_group_id ( 
clientid in varchar2, 
publication in varchar2, 
item in varchar2 
) return varchar2 is
group_val_id varchar2(30);
begin
select DEPTNO into group_val_id 
from EMP where EMPNO = clientid ;
return group_val_id;
end;

Note: This function assumes that EMPNO is the Consolidator Manager 
client id. If the group_fnc is not specified, the default grouping is 
based on subscription parameters.

1.2.7.3 Compatibility and Migration for Shared Maps
If you have been using a version prior to Oracle Database Mobile Server 12c, then you 
must migrate your existing mobile server schema with shared maps, as follows:

1. Run one cycle of MGP.

2. The clients must sync with the server to get the latest changes prepared by the 
MGP.

3. Stop all the Mobile Server instances that share the same repository, and also stop 
the MGP processes that run standalone. This automatically sets all the 
nonupdatable publication items to shared items. If any shared publication items 
need to use grouping functions or any publication items need to change their 
sharing attribute, execute custom code that calls the appropriate Consolidator 
Manager API. See the SetPublicationItemMetadata API in Section 1.2.7.2, 
"Shared Map Usage".

4. The ShrinkSharedMaps Consolidator Manager API must be called to set the clients 
to use shared map data and remove old redundant data from the maps.

5. Start the Web server and MGP.

1.2.8 Use Map Table Partitions to Streamline Users Who Subscribe to a Large Amount 
of Data

Sync Server database objects called map tables are used to maintain the state for each 
mobile client. If there are a large number of clients, and each client subscribes to a large 
amount of data, the map tables can become very large creating scalability issues. Using 
the following APIs, map tables can be partitioned by client id, making them more 
manageable.

The API allows you to create a map table partition, add additional partitions, drop one 
or all partitions, and merge map table partitions. Map table partitions can be 
monitored using the ALL_PARTITIONS database catalog view.



Note: This form of partitioning is not related to the partition 
functionality provided by back-end Oracle database, and is used 
exclusively by Oracle Database Mobile Server.

Increasing Synchronization Performance

1-14 Oracle Database Mobile Server Troubleshooting and Tuning Guide

1.2.8.1 Create a Map Table Partition
Creates a partition for the referenced publication item map table. If there is data in the 
map table, it is transferred to the partition being created. After the partition has been 
successfully created, the map table can be truncated to remove redundant data using 
the SQL command TRUNCATE TABLE.

Note: Records removed from the server through a truncate 
command will not be removed from the client unless a complete 
refresh is triggered. The truncate command is considered a DDL 
operation.  Consequently, the necessary DML triggers do not fire and 
therefore the operations are not logged for fast refresh.

Syntax
public static void partitionMap
   (String pub_item,
    int num_parts,
    String storage,
    String ind_storage) throws Throwable

The parameters of partitionMap are listed in Table 1–4.

Table 1–4  The partitionMap Parameters

Parameter Definition

pub_item The publication item whose map table is being partitioned.

num_parts The number of partitions.

storage A string specifying the storage parameters. This parameter 
requires the same syntax as the SQL command CREATE TABLE. 
See the Oracle SQL Reference for more information.

ind_storage A string specifying the storage parameters for indexes on the 
partition. This parameter requires the same syntax as the SQL 
command CREATE INDEX. See the Oracle SQL Reference for 
more information.

Example
consolidatorManager.partitionMap("P_SAMPLE1", 5, "tablespace mobileadmin",
 "initrans 10 pctfree 70");

1.2.8.2 Add Map Table Partitions
Adds a partition for the referenced publication item's map table. If there is data in the 
map table, it is transferred to the partition being created. After the partition has been 
successfully created, the map table can be truncated to remove redundant data using 
the SQL command TRUNCATE TABLE. 



Note: Records removed from the server through a truncate 
command will not be removed from the client unless a complete 
refresh is triggered. The truncate command is considered a DDL 
operation.  Consequently, the necessary DML triggers do not fire and 
therefore the operations are not logged for fast refresh.

Increasing Synchronization Performance

Improving Performance 1-15

Syntax
public static void addMapPartitions
   ( String pub_item,
    int num_parts,
    String storage,
    String ind_storage) throws Throwable

The parameters of addMapPartitions are listed in Table 1–5:

Table 1–5  The addMapPartitions Parameters

Parameter Definition

pub_item The publication item whose map table is being partitioned.

num_parts The number of partitions.

storage A string specifying the storage parameters. This parameter 
requires the same syntax as the SQL command CREATE TABLE. 

ind_storage A string specifying the storage parameters for indexes on the 
partition. This parameter requires the same syntax as the SQL 
command CREATE INDEX.

Example
consolidatorManager.addMapPartitions("P_SAMEPLE1",5,"tablespace 
 mobileadmin","initrans 10 pctfree 40");

Note: Map Partitions are created only for existing users. New users 
are placed in the original map table.

1.2.8.3 Drop a Map Table Partition
Drops the named partition. In the following example, the partition parameter is the 
name of the partition. Partition names must be retrieved by querying the ALL_
PARTITIONS table view CV$ALL_PARTITIONS since partitions are named by Data 
Synchronization. 

Syntax
public static void dropMapPartition( String partition) throws Throwable

Example
consolidatorManager.dropMapPartition("MAP101_1"); 

1.2.8.4 Drop All Map Table Partitions
Drops all partitions of the map table for the named publication item. 

Syntax
public static void dropAllMapPartitions( String pub_item) throws Throwable



Increasing Synchronization Performance

1-16 Oracle Database Mobile Server Troubleshooting and Tuning Guide

Example
consolidatorManager.dropAllMapPartitions("P_SAMPLE1");

1.2.8.5 Merge Map Table Partitions
Merges the data from one partition into another. Partition names must be retrieved by 
querying the ALL_PARTITIONS table view CV$ALL_PARTITIONS, since partitions are 
named by Data Synchronization.

Syntax
public static void mergeMapPartitions
   ( String from_partition,
    String to_partiton) throws Throwable

Example
consolidatorManager.mergeMapPartition(""MAP101_1", "MAP101_2"); 

1.2.9 Configuring Back-End Oracle Database to Enhance Synchronization Performance
You can configure the Oracle Database in such a way as to enchance your mobile 
server synchronization performance, as follows:

■ Section 1.2.9.1, "Physically Separate Map Tables and Map Indexes"

■ Section 1.2.9.2, "Database Parameter Tuning"

1.2.9.1 Physically Separate Map Tables and Map Indexes
During synchronization, map tables are used extensively. Map tables are internal 
tables, and have table names using the following pattern: CMP$pub_item_name. Each 
map table has four separate indexes. By default, both map table and indexes are 
created in the default tablespace SYNCSERVER.

You can improve performance if you move the map table indexes to a different disk 
than the map table itself. Create a separate tablespace (for example: MAPINDEXES) on a 
different disk and manually move all indexes. Because the process of moving the 
indexes requires you to drop and re-create the indexes, you should move the index 
before many users have synchronized. Otherwise recreating the indexes on the map 
tables may be very time consuming, as map tables grow with the number of users who 
have synchronized.

To move the indexes on a map table, do the following:

1. Identify all indexes on the map table (CMP$pub_item_name). There are three or four 
indexes. Move all of them.

2. For each index, record the type of index and column lists.

3. If the index is a primary key index, then remove the primary key constraint on the 
map table.

4. Drop the index.

5. Recreate the index using the same name, type and column list. Use the storage 
clause in the create index statement to specify the new tablespace. You may also 
specify different storage parameters. Refer to the Oracle database documentation 
for more information on how to create indexes and storage clause parameters. 

Note: Repeat step 3 through 5 for all other indexes on the map table.



Increasing Synchronization Performance

Improving Performance 1-17

1.2.9.2 Database Parameter Tuning
Tuning the database for the mobile server is similar to any Oracle database tuning that 
is required for query intensive applications. Configure the SGA to be as large as 
possible on your system to maximize the caching capabilities and avoid I/O wherever 
possible.

Tune your Oracle database with the following database parameters:

■ db_block_buffers

■ sort_area_size

■ log_buffers

Refer to the Oracle database tuning guide for more information on database tuning.

1.2.10 Priority-Based Replication
With priority-based replication, you can specify what rows in the snapshot are 
synchronized by setting the priority. 

There are two steps to enable this feature. These are described in the following 
sections:

1. Section 1.2.10.1, "Create Restricting Predicate in Publication Item"

2. Section 1.2.10.2, "Set Priority Flag in Mobile Sync API Before Initiating 
Synchronization"

1.2.10.1 Create Restricting Predicate in Publication Item
Create a Restricting Predicate expression in the publication item that is to be restricted 
when priority is requested. A Restricting Predicate is a conditional expression added 
to the SQL statement in the snapshot. It limits what records are sent to the client. 
Create the restricting predicate with either the addPublicationItem method or the 
MDW equivalent.

Note: You can only use fast refresh with a high priority restricting 
predicate. If you use any other type of refresh, the high priority 
restricting predicate is ignored.

High-priority replication combined with the selective synchronization 
feature provides a mechanism for minimizing the synchronization 
payload to the most relevant data.

For example, if you created a snapshot with the following statement:

select * from projects where urgency_level in (1,2,3,4)

The developer can set the Restricting Predicate with the addPublicationItem method . 
For example, you could create a Restricting Predicate with the urgency_level as 
follows:

consolidatorManager.addPublicationItem("T_SAMPLE11", "P_SAMPLE11-M",  
        null, null, "S", "urgency_level = 1", null);

This specifies what the priority synchronization should do when requested. To request 
the priority synchronization, set the high priority flag in the Mobile Sync APIs, as 
described in Section 1.2.10.2, "Set Priority Flag in Mobile Sync API Before Initiating 
Synchronization".



Increasing Synchronization Performance

1-18 Oracle Database Mobile Server Troubleshooting and Tuning Guide

1.2.10.2 Set Priority Flag in Mobile Sync API Before Initiating Synchronization
Once the publication item has the Restricting Predicate set, then when you want the 
priority restriction to occur for a synchronization, then you set the priority flag to 1 in 
the Mobile Sync API. 

In each of the Mobile Sync APIs, there is a priority flag in either the environment or 
options. Setting this flag to 1 means that only high priority tables are synchronized. 
The default for the priority flag is 0, which specifies that all tables synchronize. 

Note: The Mobile Sync API is documented in Chapter 3, "Managing 
Synchronization on the Mobile Client" in the Oracle Database Mobile 
Server Developer's Guide.

In our previous example, when you set the priority flag to 0 (the default), all projects 
with urgency_level 1,2,3,4 are replicated. However, if you set the priority flag to 1, then 
the Restricting Predicate is enabled for the synchronization. 

When the high priority flag is set, MGP appends (AND) the Restricting Predicate to the 
snapshot definitions when composing data for the client. In this example, the high 
priority statement would be transformed as follows:

SELECT * FROM projects where urgency_level in (1,2,3,4) AND urgency_level = 1;

In this case, only projects with urgency_level =1 are replicated to the client.

1.2.11 Caching Publication Item Queries
This feature allows complex publication item queries to be cached. This applies to 
queries that cannot be optimized by the Oracle query engine. By caching the query in a 
temporary table, the synchronization query template can join to the snapshot more 
efficiently.

Storing the data in a temporary table does result in additional overhead to MGP 
operation, and the decision to use it should only be made after first attempting to 
optimize the publication item query to perform well inside the synchronization query 
template. If the query cannot be optimized in this way, the caching method should be 
used.

The following example is a synchronization template used by the MGP during the 
compose phase to identify client records that are no longer valid, and should be 
deleted from the client:

UPDATE pub_item_map map
SET delete = true
WHERE client = <clientid>
AND NOT EXISTS (SELECT 'EXISTS' FROM
    (<publication item query>) snapshot
     WHERE map.pk = snapshot.pk);

In this example, when <publication item query> becomes too complex, because it 
contains multiple nested subqueries, unions, virtual columns, connect by clauses, and 
other complex functions, the query optimizer is unable to determine an acceptable 
plan. This can have a significant impact on performance during the MGP compose 
phase. Storing the publication item query in a temporary table, using the publication 
item query caching feature, flattens the query structure and enables the template to 
effectively join to it.



Increasing Synchronization Performance

Improving Performance 1-19

1.2.11.1 Enabling Publication Item Query Caching 
The following API enables publication item query caching. 

Syntax
public static void enablePublItemQueryCache(String name) 
      throws Throwable

The parameters for enablePublItemQueryCache are listed in Table 1–6:

Table 1–6  The enablePubItemQueryCache Parameters

Parameters Description

name A string specifying the name of the publication item.

Example
consolidatorManager.enablePubItemQueryCache("P_SAMPLE1");

If you are using an input string from the input parameter argv array, cast it to a 
String, as follows:

consolidatorManager.enablePubItemQueryCache( (String) argv[0]);

1.2.11.2 Disabling Publication Item Query Caching 
The following API disables publication item query caching. 

Syntax
public static void disablePubItemQueryCache(String name) 
      throws Throwable

The name parameter for disablePubItemQueryCache is listed in Table 1–7:

Table 1–7  The disablePubItemQueryCache Parameters

Parameters Description

name A string specifying the name of the publication item.

Example
consolidatorManager.disablePubItemQueryCache("P_SAMPLE1");

1.2.12 Architecture Design of Mobile Server and Oracle Database for Synchronization 
Performance

It is recommended that you execute the mobile server and the Oracle database on 
separate machines. If possible, use multi-CPU machines for both the mobile server and 
the Oracle database. 

1.2.13 Designing Application Tables and Indexes for Synchronization Performance
Your clients may perform a large number of insert and delete operations on snapshots, 
and then synchronize their data changes with the mobile server. If this is the case, then 
consider placing the application tables and the indexes on those tables on separate 
disks.



Integrating Oracle Database Mobile Server With the Oracle Real Application Clusters

1-20 Oracle Database Mobile Server Troubleshooting and Tuning Guide

1.3 Integrating Oracle Database Mobile Server With the Oracle Real 
Application Clusters

Oracle Real Application Clusters (Oracle RAC) enables a single database to run across 
multiple clustered nodes in a grid, pooling the processing resources of several 
machines. Oracle RAC enables you to cluster Oracle databases where the combined 
processing power of the multiple servers provides greater throughput and scalability 
than is available from a single server.

Oracle RAC is a unique technology that provides high availability and scalability for 
all application types. The Oracle RAC infrastructure is also a key component for 
implementing the Oracle enterprise grid computing architecture. Having multiple 
instances access a single database prevents the server from being a single point of 
failure. Oracle RAC enables you to combine smaller commodity servers into a cluster 
to create scalable environments that support mission critical business applications.

Note: For full details on Oracle RAC capabilities, limitations, 
installation and configuration requirements, see the Oracle Database 
documentation. 

You can use Oracle Database Mobile Server with a back-end Oracle RAC database. The 
mobile server repository is installed in the Oracle RAC database. Then, you can install 
and configure multiple mobile servers to access the repository in the Oracle RAC 
database to increase performance and availability. 

Note: Section 4.3.3, "Providing High Availability with a Farm of 
Mobile Servers" in the Oracle Database Mobile Server Installation Guide 
describes how you can install multiple mobile servers interacting with 
a single Oracle RAC database with a loadbalancer managing the 
incoming load.

Applications deployed on Oracle Database Mobile Server in an Oracle RAC 
configuration operate without any code modifications. The only impact is that during 
installation and configuration of Oracle Database Mobile Server and some of its tools, 
you need to provide an Oracle RAC URL instead of the regular JDBC URL. 

The JDBC URL for an Oracle RAC database can have more than one address in it for 
multiple Oracle databases in the cluster and follows this URL structure:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=
   (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
   (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
 )
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME)))

If you are using an Oracle RAC database, you will be asked to supply the JDBC URL 
for the Oracle RAC database anytime you need to connect to the back-end Oracle 
database. This includes the following:  

■ During the mobile server repository installation—which uses the Repository 
Wizard tool.

■ In the Mobile Database Workbench tool when connecting to the database.

■ In the Packaging Wizard tool when publishing an application to the database.



Maximizing JVM Performance By Managing Java Memory

Improving Performance 1-21

■ When providing the JDBC URL for the Mobile Manager, MSRDT and WSH tools. 

1.4 Maximizing JVM Performance By Managing Java Memory
You can maximize your JVM performance by modifying the amount of memory used 
by the three areas of Java memory. This is fully described in Section 2.4.1, 
"Troubleshooting An Out of Memory Error".



Maximizing JVM Performance By Managing Java Memory

1-22 Oracle Database Mobile Server Troubleshooting and Tuning Guide



2

Troubleshooting 2-1

2 Troubleshooting

The following sections describe how to troubleshoot the mobile server:

■ Section 2.1, "Troubleshooting Synchronization"

■ Section 2.2, "Troubleshooting the Mobile Server"

■ Section 2.3, "Troubleshooting the Mobile Server Repository"

■ Section 2.4, "Troubleshooting JVM Errors"

■ Section 2.5, "Troubleshooting Security"

■ Section 2.6, "Troubleshooting Device Manager"

2.1 Troubleshooting Synchronization
The following sections describe how to troubleshoot the synchronization process or 
what to do in the event of certain synchronization scenarios:

■ Section 2.1.1, "Synchronization Errors and Conflicts"

■ Section 2.1.2, "Situations Where the Client is Out of Sync that Triggers a Complete 
Refresh"

■ Section 2.1.3, "The "Inconsistent Datatypes" SQLException Received If Order is 
Not Correct in Query"

■ Section 2.1.4, "MGP Compose Postponed Due to Transaction in the In-Queue"

■ Section 2.1.5, "Avoiding the Server Busy Warning"

2.1.1 Synchronization Errors and Conflicts
The following sections describe details on how to resolve any synchronization errors 
or conflicts:

■ Section 2.1.1.1, "General Synchronization Errors and Conflicts"

■ Section 2.1.1.2, "Synchronization Error if Client Device Clock is Inaccurate"

■ Section 2.1.1.3, "Synchronization Error After Modifying Client Password"

■ Section 2.1.1.4, "Synchronization Error if Synchronized with a Large Number of 
Tables"



Troubleshooting Synchronization

2-2 Oracle Database Mobile Server Troubleshooting and Tuning Guide

2.1.1.1 General Synchronization Errors and Conflicts
With the mobile server, you can have the following errors when synchronizing: nullity 
violations, foreign key constraint violations, or the client updates a row at the same 
time that the server deletes it. 

The mobile server does not automatically resolve synchronization errors. Instead, the 
mobile server rolls back the corresponding transactions, and moves the transaction 
operations into the error queue. It is up to the administrator to view the error queue 
and determine if the correct action occurred. If not, the administrator must correct and 
re-execute the transaction. If it did execute correctly, then purge the transaction from 
the error queue. 

A mobile server synchronization conflict occurs if: 

■ Nullity violations.

■ Foreign key constraint violations.

■ The client and the server update the same row.

■ The client and server create rows with the same primary key values.

■ The client deletes the same row that the server updates.

■ The client updates a row at the same time that the server deletes it.

See Section 2.10, "Resolving Conflict Resolution with Winning Rules" in the Oracle 
Database Mobile Server Developer's Guide for more information on conflict resolution 
techniques.

2.1.1.2 Synchronization Error if Client Device Clock is Inaccurate
The client device clock must be accurate within the timezone set on the device before 
attempting to synchronize. An inaccurate time may result in the following exception 
during synchronization: CNS: 9026 "Wrong user name or password. Please enter 
correct value and reSync." 

2.1.1.3 Synchronization Error After Modifying Client Password
If you have an active client and change its password on the server, then the client 
cannot synchronize. Return the password back to its original value on the server and 
retry the synchronization.

2.1.1.4 Synchronization Error if Synchronized with a Large Number of Tables
Berkeley DB mobile client may fail to synchronize with error "out of memory" when a 
large number of tables need to be synchronized. 

To avoid this error, you can tune Berkeley DB using the parameters in the 
configuration file (DB_CONFIG) before doing synchronization.

2.1.2 Situations Where the Client is Out of Sync that Triggers a Complete Refresh
When a client is out of sync with the server, any outstanding uploaded transaction 
from the client is placed in the error queue and a complete refresh is triggered to 
re-initialize the client data with what is currently on the server. 

The following are a list of the situations—ordered from most to least likely—that can 
trigger a complete refresh for the client: 

■ Dropping and then republishing the application. 



Troubleshooting Synchronization

Troubleshooting 2-3

■ Synchronizing by the same mobile user from multiple devices on the same 
platform or from different platforms when the publications are not 
platform-specific. 

■ Receiving unexpected server apply phase conditions—such as constraint 
violations, unresolved conflicts, other database exceptions. 

■ Modifying the application—such as changing subsetting parameters, or adding or 
altering publication items. 

■ Requesting a force refresh from either the server admin or client. 

■ Two separate applications using the same backend store. 

■ Unexpected client apply conditions—such as deleting, moving or restoring the 
client database, database corruption, memory corruption, and other general 
system failures. 

■ Loss of transaction integrity between server and client. The server fails post 
processing after completing a download and disconnecting from the client. 

■ Data transport corruptions.

2.1.3 The "Inconsistent Datatypes" SQLException Received If Order is Not Correct in 
Query

If you are creating a fast refresh publication item on a table with a composite primary 
key, the snapshot query should list the primary key columns in the order that they are 
present in the table definition. This automatically happens during the column selection 
when MDW is used or when a SELECT * query is used. Note that the order of the 
primary key columns in the table definition may be different from those in the primary 
key constraint definition.

The following example demonstrates what is valid or invalid given the table definition 
for TAB1:

CREATE TABLE TAB1(
 ID1 NUMBER(10) NOT NULL,
 ID2 NUMBER NOT NULL,
 COL1 VARCHAR2(200),
 COL2 VARCHAR2(200),
 ID3 NUMBER(4) NOT NULL);
ALTER TABLE TAB1 ADD CONSTRAINT TAB1_PK PRIMARY KEY (ID3, ID2, ID1);

The following are valid snapshot queries:

SELECT * FROM TAB1
SELECT ID1,ID2,ID3,COL1,COL2 FROM TAB1
SELECT ID1,ID2,COL1,COL2,ID3 FROM TAB1

The following are invalid snapshot queries:

SELECT ID3,ID2,ID1,COL1,COL2 FROM TAB1
SELECT ID3,ID2,COL1,COL2 ID1 FROM TAB1

Define the table columns where the primary key columns appear before other 
columns. The order of the primary key columns in the table definition order must 
match the constraint definition in the snapshot query.



Troubleshooting the Mobile Server

2-4 Oracle Database Mobile Server Troubleshooting and Tuning Guide

2.1.4 MGP Compose Postponed Due to Transaction in the In-Queue
If the user synchronized and uploaded some more changes after the last apply cycle 
for a particular user; by default, the MGP must first apply these changes before it can 
compose. If this keeps happening, the compose could be postponed beyond what you 
would like. By default, the MGP tries to avoid a compose phase postponed due to a 
transaction in the in-queue by performing an apply for any unprocessed in-queue data 
before doing a new compose. However, if the MGP compose is postponed due to a 
transaction in the in-queue, you can modify the following parameters to avoid the 
error:

■ SKIP_INQ_CHK_BFR_COMPOSE: By default, this parameter is set to NO. Setting this 
parameter to YES, then a compose is performed for a client even if there is 
unprocessed data in the in-queue.

■ DO_APPLY_BFR_COMPOSE: By default, this parameter is set to YES. If set to YES, the 
unprocessed data in the in-queue is applied before a client compose. This 
parameter takes effect only if SKIP_INQ_CHK_BFR_COMPOSE is set to NO.

For most situations, preserving the default values for these two parameters avoids the 
occurrence of the MGP Compose postponed error. 

2.1.5 Avoiding the Server Busy Warning
The Server Busy warning can be thrown for one of the following reasons:

■ When the MGP is processing apply/compose for that user—To avoid MGP 
contention with sychronization, MGP should be scheduled to run when few clients 
are synchronizing. Alternatively, you could use queue-based synchronization, 
which does not use the MGP at all; thus, avoiding MGP contention with 
synchronizaiton. 

■ If a previous synchronization was interrupted for that user and Oracle Database 
Mobile Server rolls back the transaction—If the Server Busy warning is a result of 
a long rollback, then Oracle Database recommended tuning steps for rollback 
operation may reduce the Server Busy state for the client.

2.2 Troubleshooting the Mobile Server
The following sections detail how to troubleshoot the mobile server and its repository:

■ Section 2.2.1, "Running the Mobile Server With Tracing Enabled"

2.2.1 Running the Mobile Server With Tracing Enabled
If you experience any difficulty with the mobile server, you can enable tracing in the 
mobile server.

To enable tracing in the mobile server, set up your environment as described in 
Chapter 3, "Tracing and Logging". 

2.3 Troubleshooting the Mobile Server Repository
The following sections describe how to evaluate, validate and recover the mobile 
server repository:

■ Section 2.3.1, "Troubleshooting the Mobile Server Repository with the Mobile 
Server Repository Diagnostic Tool"

■ Section 2.3.2, "Inspecting Files in the Mobile Repository With the WSH Tool"



Troubleshooting the Mobile Server Repository

Troubleshooting 2-5

■ Section 2.3.3, "Modifying IP Address of Machine Where Mobile Repository Exists"

2.3.1 Troubleshooting the Mobile Server Repository with the Mobile Server Repository 
Diagnostic Tool

Customers may modify the mobile server repository in the back-end database and, 
without realizing it, violate some of the rules. The Mobile Server Repository 
Diagnostic Tool (MSRDT) provides a mechanism for the customer to analyze, validate, 
and debug the mobile server repository. 

The Mobile Server Repository Diagnosis Tool will automatically correct errors that it 
can and prints out all results of what was modified incorrectly or missing. 

Note: The output generated is best viewed if you set your column 
width to 80 or if you pipe it into a file, to view it with Word or 
WordPad. 

■ Section 2.3.1.1, "Use the Mobile Server Repository Diagnostic Tool to Validate Your 
Environment and the Repository"

■ Section 2.3.1.2, "Execute the Repository Diagnostics Tool"

2.3.1.1 Use the Mobile Server Repository Diagnostic Tool to Validate Your 
Environment and the Repository
You can use the Mobile Server Repository and Diagnostic Tool (MSRDT) to validate 
your environment and what is in the back-end mobile server repository. The following 
sections describe the validation that occurs:

■ Section 2.3.1.1.1, "Validate the Environment for the Mobile Server"

■ Section 2.3.1.1.2, "Validate Integrity of Mobile Server Tables and Data"

■ Section 2.3.1.1.3, "Validate the Structure and Contents of the Repository"

■ Section 2.3.1.1.4, "Validate Application Databases"

2.3.1.1.1 Validate the Environment for the Mobile Server  The MSRDT tool displays the 
system configuration environment for the host where the mobile server resides, as 
follows:

■ Consolidator version

■ Back-end Oracle database version

■ Definition of the Java library path

■ Definition of the Java CLASSPATH

■ Operating system architecture, type and version

■ Java VM vendor, version, name, home, and info (mode)

■ File encoding used

■ Path separator and file separator used

■ Country, time zone, and user language

■ Lists the mobile server administrators

■ Lists the contents/current configuration for the mobile.ora file



Troubleshooting the Mobile Server Repository

2-6 Oracle Database Mobile Server Troubleshooting and Tuning Guide

2.3.1.1.2 Validate Integrity of Mobile Server Tables and Data  When the mobile server and the 
repository are installed, certain tables, constraints, objects, and so on cannot be 
modified. The MSRDT diagnostic tool checks that these requirements are consistent as 
with what was installed. This includes the following:

■ Required tables exist

■ All columns within required tables exist

■ Required table attributes exist

■ Required constraints exist or have not been modified

■ Required sequences exist

■ Extra tables have not been added to mobile server schemas

■ Application files integrity check: If you have published an application to the 
server, then check if the folder exists and is not empty. Also, if sharing a repository 
among multiple mobile servers, ensures that the application is published on this 
mobile server, where this tool is executed. 

2.3.1.1.3 Validate the Structure and Contents of the Repository  If you are experiencing 
trouble with your repository, execute the MSRDT tool to determine if any of the 
following have occurred:

■ The mapping between primary keys for the map table and corresponding base 
table must be consistent.

■ Every map table must have a corresponding base table.

■ Identify the user with the most records in the map table.

■ Invalid indexes 

■ Consistency of the In Queue schema with the ( CPV ) view schema.

■ Check if the Error Queue and the In Queue have the same records; that is, both 
queues should not contain records with the same primary key, which consists of 
the CLIENTID, TRANID$$, and SEQNO$$.

■ The records in the In Queue master table have corresponding records in the In 
Queue detail table.

■ Any DML lock is held by any table in the C$ALL_LOGGED_TABLES.

■ Invalid triggers.

■ Every publication item is included in C$PUBITEM_PROPS.

■ Validate that all of the users subscribed to a publication also have all of the 
corresponding sequences assigned to the same publication.

■ Invalid sequence values.

■ Validate that every record in C$ALL_SEQUENCES corresponding C$WS_<ID> window 
sequence object, where <ID> is the values of ID column in C$ALL_SEQUENCES.

■ Validate that every window sequence has the same id as a record in the C$ALL_
SEQUENCES.

■ Look for any orphaned objects in the repository.

■ Verify that the mobile server repository owner is granted with sufficient privileges.

■ Validate the MGP properties: If MGP_SUSPEND(apply suspend) is false, then MGP_
RUN must be true. 



Troubleshooting the Mobile Server Repository

Troubleshooting 2-7

■ Reports on the most recent jobs and their status.

■ Check for any automatic synchronization notification sent to a non-existent user in 
C$DATA_NOTIFICATION.

■ Check for any automatic synchronization notification that has not been sent by the 
Device Manager for more than two days.

2.3.1.1.4 Validate Application Databases  You can specify that the application uses a 
database other than the one in which the mobile server repository resides for all 
application schema data. If any application databases are defined, then the MSRDT 
tool checks for the following in all of the defined application databases:

■ Check for consistency for the primary keys for both the map table and 
corresponding base table.

■ Check for any records that are in the In Queue master table, but not in the 
corresponding In-Queue detail table. 

■ Check for any tables in the C$ALL_LOGGED_TABLES that hold any DML locks.

■ Check for duplicate records in the Error Queue and the In Queue. 

■ Identify the user with the most records in the map table.

■ Verify that the In-Queue schema is consistent with the CPV view schema. 

■ Check for any invalid triggers and recompile any invalid triggers.

■ Check for any invalid application database connections.

■ Check for any application databases that are registered more than once. This 
shows up as duplicate records in the C$DB_INST table. 

■ If the publication is dropped from the main database, then the base tables for the 
publication must also be dropped in the application database. The MSRDT tool 
checks if the publication was dropped in both the main database and the 
application database. If the publication tables still exist in the application database, 
then the MSRDT tool removes the publication entries in C$ALL_PK_HINTS and C$EQ 
in the application database. 

■ Check for any records in the C$IN_MESSAGES and C$INQ tables in the application 
database for any dropped clients in the main database.  In this case, the MSRDT 
tool reports the records and moves the C$IN_MESSAGES records to the C$EQ table, 
and purges the C$IN_MESSAGES table. 

2.3.1.2 Execute the Repository Diagnostics Tool
You can use the Mobile Server Repository Diagnostics Tool (msrdt) to validate the 
repository and provide error reporting. It also performs some error recovery. 

The following is the usage and syntax for the msrdt tool:

msrdt -v <username>/<password>@<jdbc_url>

Where:

■ <username>/<password>: The mobile server repository administrator user name 
and password. 

■ <jdbc_url>: You can specify the JDBC URL of a single Oracle database or an 
Oracle RAC database, as follows:

■ The URL for a single Oracle database has the following structure: 
<host>:<port>:<SID>



Troubleshooting JVM Errors

2-8 Oracle Database Mobile Server Troubleshooting and Tuning Guide

■ The JDBC URL for an Oracle RAC database can have more than one address in 
it for multiple Oracle databases in the cluster and follows this URL structure:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=
   (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
   (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
 )
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME)))

Note: if you supply a Oracle RAC URL as the JDBC URL, then 
enclose it within two double-quotes as the operating system treats the 
equal sign (=) as a delimiter, which truncates the Oracle RAC URL and 
throws the syntax error: unexpected token ‘(‘. error

2.3.2 Inspecting Files in the Mobile Repository With the WSH Tool
You can use the mobile server shell utility (wsh) to inspect and modify the mobile 
server repository interactively. For full details, see Appendix B.2, "Running a Script 
File with the WSH Tool" in the Oracle Database Mobile Server Administration and 
Deployment Guide.

2.3.3 Modifying IP Address of Machine Where Mobile Repository Exists
During the installation, the machine name or IP address is provided by the user where 
the repository is created. If the IP address of the machine changes, then perform one of 
the two options:

■ If the user provided the machine name; then even after the IP change, the machine 
name will still work. 

■ If user provided the IP address—instead of machine name—then after changing 
the IP address of the repository machine, the user must change the ADMIN_JDBC_
URL and THIN_JDBC_URL parameters in the mobile.ora file on the mobile server.

2.4 Troubleshooting JVM Errors
This section focuses on how to debug the following Java error:

■ Section 2.4.1, "Troubleshooting An Out of Memory Error"

2.4.1 Troubleshooting An Out of Memory Error
When you are experiencing the OutOfMemory error, then you should have an 
understanding of JVM memory architecture when tuning mobile server performance.

The following may cause an OutOfMemory error:

■ A memory leak in the mobile server.

■ Not enough physical memory to handle your application.

■ In-appropriate allocation of the three memory areas that used by the JVM. See 
Section 2.4.1.1, "JVM Memory Settings" for a full description.

■ Memory being held by the mobile server. See Section 2.4.1.2, "Why is Memory Not 
Released?" for more information.

■ Understanding how threads are consuming your memory. See Section 2.4.1.3, 
"Thread Memory Consumption and Concurrency" for full details.



Troubleshooting JVM Errors

Troubleshooting 2-9

2.4.1.1 JVM Memory Settings
JVMs may have different implementations of memory management and garbage 
collection schemes. But at a higher level, they all arrange the memory in the following 
three areas:

■ Section 2.4.1.1.1, "Java Heap"—The Java heap is where the Java objects live. It is 
normally the largest of the three. 

■ Section 2.4.1.1.2, "Permanent Generation"—The memory where the classes are 
loaded. 

■ Section 2.4.1.1.3, "Native Space"—The memory used by native code, which 
includes JVM native code and application JNI calls.

■ Section 2.4.1.1.4, "Setting Java Options for Java Memory"—Setting options 
depending on your environment.

This section describes how to modify the allocation of memory to the JVM memory 
areas. 

Note: Memory should be allocated properly for the three areas. 
Otherwise, different kinds of OutOfMemory error may surface.

2.4.1.1.1 Java Heap  The Java heap is where Java objects live. It consists of both the 
young and tenured generations. The amount of Java heap memory that the JVM starts 
with is designated by the initial heap size option (-Xms) and the maximum heap size 
option (-Xmx). 

If you see from the stack trace that a Java method throws an OutOfMemory error, then 
you have exhausted your Java heap space.  

For example: 

java.lang.OutOfMemoryError: Java heap space

The default settings for the Java heap for a Oracle UNIX JVM is as follows: Xmx:64M 
Xms:4M. However, the default for the mobile server—if you start up the mobile server 
with the runmobileserver.bat executable—is set to Xmx:256M Xms:512M.

The size of the space reserved can be specified with the -Xmx option. The -Xms specifies 
the space that is immediately committed to the virtual machine. We recommend to 
allocate ¼ to ½ of the available physical memory to Java Heap. If you set the maximum 
Java Heap size to be large—such as, 512M—and you still receive this error, then there 
may be a leak in the Java code.

The amounts specified should be based on the available resources. At the minimum, 
you should set both values to at least 256 MB. Of course, the amount of memory you 
allocate depends on what you have available. 

Note: Set the Java heap memory size before starting the mobile 
server with the runmobileserver executable.

2.4.1.1.2 Permanent Generation  The permanent generation holds data needed by the 
JVM that describes objects which do not have an equivalence at the Java language 
level. For example, permanent generation is where the classes are loaded. It holds 
objects that describe classes and methods.



Troubleshooting JVM Errors

2-10 Oracle Database Mobile Server Troubleshooting and Tuning Guide

If a classloader method or a String intern method throws an OutOfMemory error in the 
stack trace, then you have run out of permanent generation space. 

For example:

java.lang.OutOfMemoryError: PermGen space at
java.lang.ClassLoader.defineClass1(Native Method) at
java.lang.ClassLoader.defineClass(ClassLoader.java:620)

The default for the permanent generation for a Oracle UNIX JVM is 64MB. To set a 
new initial size for the Oracle JVM, use the -XX:PermSize option when starting the 
virtual machine. To set the maximum permanent generation size use the 
-XX:MaxPermSize option.

2.4.1.1.3 Native Space  The native space is the memory used by native code, which 
includes JVM native code and application JNI calls. If a native method throws an 
OutOfMemory error or the JVM crashes with such an error, then you run out of native 
space. 

For example:

java.lang.OutOfMemoryError: requested 14892 bytes. Out of swap space?
java.lang.OutOfMemoryError: unable to create new native thread

The native space is the (Available physical memory) – (Java heap + Permanent 
generation). There is no way to set the native space, except to decrease the Java heap or 
permanent space. If you allocate too much memory for the Java heap, then the native 
code is left with not enough memory and may run out. If you have to increase the 
native memory, then decrease the -Xmx parameter to a reasonable value to leave 
enough memory for the native space. If you still get this error, the native code may 
have a memory leak.

2.4.1.1.4 Setting Java Options for Java Memory  Set the Java options when you start the 
Java servlet container. The following example sets the initial Java heap to 256M, the 
maximum Java heap to 512M, and the permanent generation memory to 64M:

–Xms=256m –Xmx=512m -XX:MaxPermSize=64m

For the mobile server, all modifications for the Java options must be specified on the 
command-line or in the runmobileserver.bat file.

By default, the MGP executes as a job in the Job Scheduler in the mobile server. Thus, 
the MGP and other mobile server components, such as the Sync Server, share the same 
memory space. This provides efficiency and manageability; however, if the MGP has a 
memory leak, then the mobile server is affected. In this case, perform the following:

1. Disable the MGP job.

2. Restart the mobile server.

3. Restart the MGP in a separate JVM with either the mgp.bat or, if using UNIX, the 
mgp shell script. This JVM is restarted periodically and may hide the memory leak 
issue.  

Note: Set the Java memory options for the MGP in the mgp.bat file.

With a larger Java heap size, the garbage collector collects less often and consumes less 
CPU time. Therefore, a larger heap size is desired for better performance. For the 
mobile server, most of the code is Java code; for the JDBC connection and Java mSync 



Troubleshooting Security

Troubleshooting 2-11

client, most of the code is in native code. So, setting the Java heap size larger, helps the 
efficiency and performance of the mobile server; however, if it is set too high, the JDBC 
connection and mSync client may have memory issues. 

2.4.1.2 Why is Memory Not Released?
You may expect the mobile server to release the free memory back to operating system 
after it has finished its work. However, the mobile server holds a large amount of 
memory even when it is idle. This may not be an indication of memory leak; instead, it 
may be for one or more of the following reasons:

■ If you set the -Xms option to a large number—such as, 1024 MB—then you should 
expect the mobile server process to use at least 1024 MB until the process is killed. 

■ For performance reasons, the mobile server caches metadata in Java heap memory. 

■ The garbage collector may not collect the objects right way when they are no 
longer referenced. In addition, the garbage collector keeps a large amount of free 
memory in the Java heap for future allocations, instead of returning them to the 
operating system. You can use Java options to adjust the free memory size; instead, 
view the mobile server total runtime Java heap size and free heap size in the 
Mobile Manager at Mobile Manager->Data Synchronization->Host.

2.4.1.3 Thread Memory Consumption and Concurrency
The Java heap and permanent generation together are called managed heap, since the 
garbage collector manages them. The native space can be divided into native heap and 
thread stack space. Each thread consumes memory, as follows:

■ Each thread created consumes about 1MB stack space, although it is JVM 
dependent. Take this memory into consideration if you execute multiple threads. 
For example, on a 32-bit x86 system, the (managed heap + native heap + thread 
stack size * number of threads) could not exceed 2 GB. On any system, ensure that 
the total JVM memory is less than the available physical memory size. 

■ Each thread allocates additional Java and native heap memory as it executes.

■ There is an overhead associated with multi-threading. Therefore, be careful when 
executing too many concurrent threads. If concurrency is set to larger than 20, then 
you are more likely decreasing the mobile server throughput—instead of 
increasing it.

You can configure for concurrency with the parameters described in Section 1.2.4, 
"Configuration Parameters in the MOBILE.ORA that Affect Synchronization 
Performance".

2.5 Troubleshooting Security
The following section describes how to troubleshoot security issues:

■ Section 2.5.1, "SSL Certificate Rejection for Client Authentication"

2.5.1 SSL Certificate Rejection for Client Authentication
If you are using a reverse proxy and have configured SSL between the client and the 
reverse proxy, you may receive the following error:

A certificate is required to complete client authentication.



Troubleshooting Device Manager

2-12 Oracle Database Mobile Server Troubleshooting and Tuning Guide

For all clients you can only use SSL authentication with a signed certificate. If you use 
a self-signed certificate, you must turn off SSL authentication by adding the following 
to the NETWORK section in the client devmgr.ini file:

DISABLE_SSL_CHECK=YES

This parameter tells the reverse proxy firewall to use SSL encryption for the 
communication from the client, but not to perform SSL authentication.

2.6 Troubleshooting Device Manager
If the environment of your device is incorrect, you may get the following error when 
you install mobile client using setup.exe or when you use the test publication 
functionality in Mobile Development Kit (MDK): 

"Insufficient information to proceed: error code: invalid platform: the thread is already 
in background processing mode."

This error is reported by the device manager. 

If you get this error when you install mobile client, you can do the following to clean 
up your environment: 

1. Set system environment variable PATH=%MOBILE_CLIENT_
HOME%\bin;%PATH%, where %MOBILE_CLIENT_HOME% is the directory 
where users install mobile client.

2. Clean all files in %MOBILE_CLIENT_HOME%, ensuring that it's a clean 
environment.

3. Restart the machine, which is used to clean the shared memory.

4. Try to install a mobile client from the scratch. It should succeed without the error if 
the environment is clean.

If you get this error when you test publication in MDK, you can do the following to 
clean up your environment:

1. Set system environment variable PATH=%MOBILE_HOME%\sdk\bin;%PATH%, 
where %MOBILE_HOME% is the directory where users install MDK.

2. Make sure no mobile client is installed on the same machine. 

3. Restart the machine, which is used to clean the shared memory.

4. Try to test publication from scratch. It should succeed without the error if the 
environment is clean.



3

Tracing and Logging 3-1

3 Tracing and Logging

You can enable tracing for the mobile server. In addition, you can view the log files 
from the underlying application server. For the mobile server, there are two main 
sections for tracing: the general tracing for mobile server components and specific 
tracing for data synchronization components. How to enable tracing for each part of 
the mobile server is described in the following sections:

■ Section 3.1, "General Tracing for the Mobile Server"

■ Section 3.2, "Data Synchronization Tracing"

3.1 General Tracing for the Mobile Server
To set general tracing for the mobile server, perform the following steps.

1. From the mobile server page, select "Administration".

2. Select "Trace Settings". This brings up the "Trace Settings" page, as shown in 
Figure 3–1, where you can choose to generate trace output, specify the trace output 
destination to the local console, file, or remote console (viewed by WSH). The "Trace 
Settings" page provides system filters to generate trace output to the required 
system level.

3. Configure the type of tracing you want and click "Apply".



Data Synchronization Tracing

3-2 Oracle Database Mobile Server Troubleshooting and Tuning Guide

Figure 3–1 General Trace Settings for Mobile Server

Table 3–1  Trace Settings Page Description

Field Description

Trace Output To generate trace output, select Yes.

Console You can print the messages to a console. If you are in a WebLogic environment, 
select File or Remote. 

File You can direct all messages to a local file. If you selected a file for trace output, 
then enter the name (including path), the maximum size of the file in MB, and 
the number of files allowed (pool size). For example, if you set the pool size to 
10, then when a trace file hits the maximum size in MB, then a new file is 
opened and the trace output is written to the new file. This continues until all 
10 files of the maximum size exist. At this point, the first file is deleted and a 
new file is started to contain the trace output. This enables you to manage the 
amount of disk space that the trace files can use.

To create a trace file for every user, select Yes for the Create Trace File for Every 
User box.

System Filter ■ HTTP Request—To generate HTTP output information as trace output, 
select this option. This includes general system information.

■ SQL Statements—To generate SQL queries as trace output, select this 
option. 

■ Java Methods—To generate all system.out output from the mobile server 
and Data Synchronization Java methods, select this option.

Note: The mobile server automatically filters exceptions and errors as 
trace output at the Mandatory level.

3.2 Data Synchronization Tracing
The administrator can turn on tracing for components involved in the synchronization 
phase, including MGP functions. 

1. From either the home page or the Administration page for the mobile server, select 
"Data Synchronization" in the "Components" section, as shown in Figure 3–2.



Data Synchronization Tracing

Tracing and Logging 3-3

Figure 3–2 Mobile Server Job Scheduler and Data Synchronization Components

2. Select "Administration" off the "Data Synchronization" home page.

3. Select "Trace Settings", which displays all five components for which you can 
enable tracing, as shown in Figure 3–3. For a description of each component, see 
Section 3.2.1, "Description of the Five Data Synchronization Components".

Figure 3–3 The Trace Components for the Data Synchronization

4. Select the component for which you want to enable tracing, which brings up the 
trace configuration screen, as shown in Figure 3–4.

Figure 3–4 Data Synchronization Component Trace Configuration

■ In the Filter section, select the required "Level" and "Type". To specify a trace 
filter for users, enter comma separated user names in the "Users" field.



Table 3–2  Data Synchronization Component Trace Level and Type

Filter Description

trace level, where 
each level includes 
the previous levels 
as well.

OFF: no tracing enabled.

MANDATORY: Mandatory messages only, such as program exceptions. 

WARNING: Warning messages. 

NORMAL: Normal messages of which the user must be informed.

INFO: Informational messages, such as synchronization timing, MGP 
apply, MGP compose, and MGP status.

CONFIG: Configuration messages, such as JDBC driver version.

FINEST: Developer level of tracing.

ALL: Logs messages for all trace levels.

trace type SQL: SQL-related messages only, such as SQL statements. 

TIMING: Timing data only. Note: This option is trace level sensitive. For 
MGP Cycle time and Synchronization time, use the Trace Level INFO 
option with the TIMING option on the MGP and SYNC components 
respectively. 

DATA: Data only. 

RESUME: Logs messages with Reliable Transport.

FUNCTION: Displays the program flow by logging methods such as Entry, 
Exit or Invoke. For Long methods, this option logs the method entry or 
exit; which is a simple invoke log. 

GENERAL: Logs messages that do not belong to any of the above listed 
trace types. Note: This type is trace level sensitive.

ALL: This option generates logs of all trace types.

Note: You can set these parameters within the mobile.ora file in the 
CONSOLIDATOR section. See Section A.1.5, "[CONSOLIDATOR]" in the 
Oracle Database Mobile Server Administration and Deployment Guide for 
more details on these parameters.

Data Synchronization Tracing

3-4 Oracle Database Mobile Server Troubleshooting and Tuning Guide

■ In the Destination section, select "Local Console" to receive the trace file to the 
same console as the General tracing is using. If the console is not open, then 
these messages are sent to the same place that the General tracing is directed. 
See what the Destination is configured to in Figure 3–1 to determine where 
these messages are directed. 

To send trace information to a file, select the "File" option. The file name is 
generated based upon the session id. You can configure the file size in MB and 
the files allowed (pool number). For example, if you set the pool size to 10, 
then when a trace file hits the maximum size in MB, then a new file is opened 
and the trace output is written to the new file. This continues until all 10 files 
of the maximum size exist. At this point, the first file is deleted and a new file 
is started to contain the trace output. This enables you to manage the amount 
of disk space that the trace files can use. 

5. To implement the modified values, click "OK". To retain existing values, click 
"Cancel".

To view trace files, navigate to the Data Synchronization page. Select "Administration". 
Select "Trace Files" and the "Trace Files" screen appears, as shown in Figure 3–5.



Data Synchronization Tracing

Tracing and Logging 3-5

Figure 3–5 Viewing Data Synchronization Trace Files

■ To view a trace file, select the trace file name or click the "Select" button next to the 
trace file name and click "View". 

Note: When you view the trace file online, it truncates the file to 
10,000 lines. To view the whole trace file, download the file and view 
it using any text editor.

■ To download or delete a trace file, click the "Select" button next to the trace file 
name and click either "Download" or "Delete".

■ If there are too many files to view on a page, you can search by entering the name 
of the trace file in the "Search" field and clicking "Go".

3.2.1 Description of the Five Data Synchronization Components
There are five components that you can turn on to describe what is happening in the 
synchronization process, as described in the following sections:

■ Section 3.2.1.1, "MGP"

■ Section 3.2.1.2, "MGPAPPLY"

■ Section 3.2.1.3, "MGPCOMPOSE"

■ Section 3.2.1.4, "SYNC"

■ Section 3.2.1.5, "GLOBAL"

3.2.1.1 MGP
You can trace the MGP process. However, if an MGP Cycle ID is not yet available, then 
tracing is enabled by the configuration of the GLOBAL component. If the trace 
destination is to be written to a file, then all of the generated logs are recorded in a log 
file named MGP_<cycle_id>.log.

3.2.1.2 MGPAPPLY
This refers to the APPLY phase in the MGP process. However, between the beginning of 
the APPLY phase till the availability of the MGP Client ID, tracing is enabled by the 
configuration of the component MGP. If tracing is sent to a file, then all messages are 
written to a file named MGPAPPLY_<client_id>_<cycle_id>.log.

3.2.1.3 MGPCOMPOSE
This refers to the COMPOSE phase in the MGP process. Similar to the MGPAPPLY phase 
where the Client ID is not yet available, tracing is enabled by the configuration of the 
component MGP. If tracing is sent to a file, then all messages are written to a file 
named MGPCOMPOSE_<client_id>_<cycle_id>.log.



Data Synchronization Tracing

3-6 Oracle Database Mobile Server Troubleshooting and Tuning Guide

3.2.1.4 SYNC
This refers to the server-side synchronization process. When a Sync session ID is not 
yet available, tracing is enabled by the configuration of the GLOBAL component. If the 
trace destination is set to file, then the messages are written to a file named SYNC_
<cycle_id>.log. When the Client ID becomes available, the file is renamed to SYNC_
<client_id>_<cycle_id>.log.

3.2.1.5 GLOBAL
This component logs tracing messages that are not specific to any of the above listed 
components. This component also includes logs that are generated during the 
execution of the ConsolidatorManager APIs. If the trace destination is set to file, then 
the messages are written to a file named GLOBAL_<file_number>.log.



4

Backup and Recovery 4-1

4 Backup and Recovery

Performing backup and recovery for Oracle Database Mobile Server is the same as 
what you would normally do for Oracle database applications. The following sections 
help you understand how to use the Oracle database backup and recovery methods 
for preserving your mobile server and mobile applications:

■ Section 4.1, "How Does Oracle Database Mobile Server Store its Information?"

■ Section 4.2, "Backing Up Oracle Database Mobile Server"

■ Section 4.3, "Oracle Database Mobile Server Backup Coordination Between Client 
and Server"

■ Section 4.4, "Oracle Database Mobile Server Recovery Issues"

4.1 How Does Oracle Database Mobile Server Store its Information?
Oracle Database Mobile Server uses the Oracle database to store information, as 
follows:

■ The mobile server itself is installed and configured as a database application. 
Thus, the mobile server stores its metadata and client state information within a 
database schema.

■ For each mobile application, the mobile server installs triggers and stores 
transaction data in a schema for that application. 

4.2 Backing Up Oracle Database Mobile Server
Since all of the data needed for a backup and recovery strategy exists in the database, 
you should use the Oracle database backup and recovery strategies discussed in the 
following books:

■ Oracle Backup Installation Guide

■ Oracle Database Recovery Manager Quick Start Guide

■ Oracle Database Backup and Recovery Basics

■ Oracle Backup Administrator's Guide 

■ Oracle Database Backup and Recovery Advanced User's Guide

Note: In the past, we recommended that you use export/import to 
perform a backup. This is not a recommended option anymore. Use 
the normal online Oracle database backup procedure.



Oracle Database Mobile Server Backup Coordination Between Client and Server

4-2 Oracle Database Mobile Server Troubleshooting and Tuning Guide

However, the following sections describe what to keep in mind when coming up with 
a backup and recovery strategy for your Oracle Database Mobile Server environment: 
Section 4.3, "Oracle Database Mobile Server Backup Coordination Between Client and 
Server" and Section 4.4, "Oracle Database Mobile Server Recovery Issues".

4.3 Oracle Database Mobile Server Backup Coordination Between Client 
and Server

When a client and a server synchronize with each other, the mobile server assigns the 
same "magic" number to both sides to indicate that the data is in-sync. If this number 
is different on both sides, the mobile server knows that the data is out of sync and is in 
an error condition. The following example details how this could effect your attempts 
for a clean recovery.

When you perform a backup, you may lose client data unless you plan accordingly. 
Figure 4–1 demonstrates the following scenario:

1. The client inserts record 1 and synchronizes the data to the server. The mobile 
server assigns the same magic number to both the client and the server to denote 
that they are in sync. In this example, the magic number on both the client and the 
server is 10.

2. The client inserts record 2. No synchronization is performed.

3. The backup is performed. Client record 1 is saved to the backup. The latest magic 
number on both the client and the server is 10.

4. The client inserts record 3 and synchronizes the data to the server. The mobile 
server assigns the same magic number to both the client and the server to denote 
that they are in sync. In this example, the magic number on both the client and the 
server is 20.

5. The client inserts record 4. No synchronization is performed.

6. A failure occurs and the last backup is used to recover the mobile server, the 
mobile applications and the application data. In this scenario, only record 1 is in 
the backup, so it will exist in the restored database.

7. The client synchronizes. Records 2 and 3 can be lost, because they are not in the 
backup. The msync client does not send them to the server, since they were 
already sent in step 4. However, the msync client does send record 4 to the server, 
since it is a new record that has never been synchronized with the database. After 
the synchronization, record 4 is stored in the error queue, not in the application 
tables. 



Oracle Database Mobile Server Backup Coordination Between Client and Server

Backup and Recovery 4-3

Figure 4–1 Lost Data With Backup and Recovery Strategy

client inserts record 1, syncs, magic number = 10

client inserts record 2

perform backup

client inserts record 3, syncs, magic number = 20

perform recovery

TOTAL ELAPSED TIME

client inserts record 4

client syncs

The mobile server checks the magic numbers on both the client and the server. It 
verifies the state of the data on the client to determine what action to take. When the 
client performs the next synchronization, if the magic numbers are not the same, then 
the following occurs:

1. The client checks if there are any new records—whether newly inserted, modified, 
or deleted—on the client. If so, then these records are sent to the server, which 
saves these records in the error queue. 

2. A full refresh of all of the subscribed data is sent to the client.

In our example, if you did nothing, the client would send record 4 to the server, which 
would end up in the error queue, and records 2 and 3 would be lost. To save records 2 
and 3, do the following:. 

1. On the server, retrieve and restore the last backup. 

2. On the mobile client that is out of sync, update any record that has been modified 
since the last synchronization. In our example, you would do any sort of update 
that makes the record seem to contain new information in records 2 and 3. For 
example, you could update the VARCHAR field with the same content.

3. Initiate a synchronization on the client. The Oracle Database Mobile Server 
software detects that the client database is out of sync and that some of the records 
have been modified. Thus, the following occurs: 

a. The modified records are updated in the restored database on the server and 
saved in the error queue. 

b. The server pushes a full refresh down to the client.

4. In order for you to reapply the modified records to the applications table, you 
must first modify the DML operation from Error to Update. The DBA must 
modify the record in the error queue for the base table, named CEQ$<base_table_
name>, changing the DML operation from Error (E) to Update (U) or Insert (I). 

5. Once updated to "Update", re-execute the command. Navigate to the E"rror 
Queue" screen in the Mobile Manager. Click on the modified record. Click 
"Execute". 



Note: For more information on the error queue and how to reapply 
the records, see Section 2.10.1 "Resolving Errors and Conflicts on the 
Mobile Server Using the Error Queue" in the Oracle Database Mobile 
Server Developer's Guide.

Oracle Database Mobile Server Recovery Issues

4-4 Oracle Database Mobile Server Troubleshooting and Tuning Guide

6. The next time that the MGP runs, the update is applied to the application table.

Thus, all information contained within records 2 and 3 will be restored from the 
device. 

4.4 Oracle Database Mobile Server Recovery Issues
When you perform a recovery, the state of both the mobile server and the mobile 
application schemas must be in-sync. If they are out-of-sync, severe problems may 
occur. Therefore, when you perform a backup and restoration for the mobile server 
and the mobile application schemas, each must be recovered to the same point in time. 
Use the Oracle database Point-in-Time Recovery strategy to ensure that both the 
mobile server schema and mobile application schemas are recovered to the same point 
in time.

The mobile application schemas usually reside on the same Oracle database as the 
mobile server. However, if you have used a database link to store the mobile 
application schemas on a separate Oracle database, then you must use a backup and 
restore strategy for distributed database systems.



Index-1 

Index

A
AddPublicationItem method

restricting predicate, 1-17
ADMIN_JDBC_URL parameter, 2-8
authentication

certificate rejection, 2-11

B
backup, 4-1

C
client

complete refresh, 2-2
out of sync, 2-2

complete refresh
reasons for, 2-2
triggered by out of sync, 2-2

compose
postponed error, 2-4

COMPOSE_TIMEOUT parameter, 1-9
concurrency

configuring, 1-9
connection

limit requests, 1-1
pool, 1-9
pooling, 1-1

CONNECTION_POOL parameter, 1-9
Consperf utility, 1-2

configuring, 1-3, 1-7
execution plan file, 1-6
EXPLAIN PLAN, 1-6
query optimizer, 1-10
timing file, 1-4
tuning queries, 1-10

D
Data Synchronization

tracing, 3-2
DDL

dependent statements, 1-9
DISABLE_SSL_CHECK parameter, 2-12

E
environment

troubleshoot, 2-5
validate, 2-5

exception
Server Busy, 2-4

execution plan
file

deciphering, 1-6
EXPLAIN PLAN, 1-6

H
heap size

definition, 2-9

I
inconsistent datatype

SQL exception, 2-3
in-queue

compose postponed, 2-4
IP address

modifying database server, 2-8

J
JDBC URL, 1-20
JVM

defining heap size, 2-9

M
maps

partititions, 1-13
shared, 1-11
table partition, 1-14

MAX_THREADS parameter, 1-9
memory

defining heap size, 2-9
MGP

compose postponed, 2-4
timeout, 1-9

mobile server
defining memory size, 2-9
general tracing, 3-1



Index-2

tracing, 3-1
MSRDT tool, 2-5

N
non-mergable views, 1-10

O
optimizer

performance, 1-10
Oracle RAC

using Oracle Database Mobile Server, 1-20
Oracle Real Application Clusters, see Oracle RAC
Oracle Support

retrieving database information, 2-5
OutOfMemory exception, 2-9

P
partition, 1-13
performance

analyzing synchronization, 1-2
configuring Consperf utility, 1-3
connection pooling, 1-1
Consperf utility, 1-2
execution plan file, 1-6
EXPLAIN PLAN, 1-6
limit connection requests, 1-1
query optimizer, 1-10
shared maps, 1-11
SQL queries, 1-10
streamlining large amount of data, 1-13
synchronization, 1-9
tablespace layout, 1-11
timing file, 1-4
using map table partitions, 1-13

pool
connection, 1-9

primary key
composite

query rule, 2-3
publication item

analyzing performance, 1-4
caching queries, 1-18
evaluating performance, 1-6
read-only

performance, 1-11
publications

performance, 1-2

Q
query

optimizer, 1-10
rule

composite primary key, 2-3

R
recovery, 4-1

repository
checking for errors, 2-5
IP address change, 2-8
troubleshoot, 2-5
validate, 2-5
validation, 2-5

restricting predicate, 1-17
RESUME_MAXACTIVE parameter, 1-9

S
script

dependent DDL statements, 1-9
Server Busy

exception, 2-4
shared maps, 1-11
SQL

exception
inconsistent datatypes, 2-3

EXPLAIN PLAN, 1-6
tuning queries, 1-10

subscriptions
profiling, 1-2

synchronization
analyzing performance, 1-2
map table partition

add, 1-14
create, 1-14
drop, 1-15
drop all, 1-15
merge, 1-16

monitor with SQL scripts, 1-7
performance, 1-13
performance tuning, 1-9
Server Busy exception, 2-4
tablespace layout, 1-11
timeout, 1-9
tracing, 3-2

T
tablespace

layout, 1-11
THIN_JDBC_URL parameter, 2-8
threads

configuring, 1-9
timeout

MGP, 1-9
synchronization, 1-9

timing file
deciphering, 1-4

tracing, 3-1
Data Synchronization, 3-2
mobile server, 3-1

synchronization, 3-2
transaction

compose postponed, 2-4
troubleshooting

database, 2-5
debugging mobile server, 2-4



Index-3 

repository, 2-5
truncate command, 1-14, 1-15

U
URL

using Oracle RAC, 1-20
user

large amounts of data, 1-13
using Oracle RAC, 1-20

V
validation

repository, 2-5
views

non-mergable, 1-10



Index-4


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Improving Performance
	1.1 Improving Connection Performance
	1.1.1 Using Connection Pooling for Applications
	1.1.2 Limit Application Connection Requests to the Database

	1.2 Increasing Synchronization Performance
	1.2.1 Analyzing Performance of Publications With the Consperf Utility
	1.2.1.1 Configuration for Data Synchronization
	1.2.1.2 Deciphering the Performance Evaluation Files
	1.2.1.2.1 Timing File
	1.2.1.2.2 Execution Plan File


	1.2.2 Monitoring Synchronization Using SQL Scripts
	1.2.2.1 Synchronization Times for All Clients
	1.2.2.2 Failed Transactions for all Clients
	1.2.2.3 Completely Refreshed Publication Items for all Clients
	1.2.2.4 Publications Flagged for Complete Refresh for All Clients
	1.2.2.5 Clients and Publication where Subscription Parameters are Not Set
	1.2.2.6 Record Counts for Map-based Publication Item by Client
	1.2.2.7 Record Count for Map-based Publication Items by Store
	1.2.2.8 All Client Sequence Partitions and Sequence Values
	1.2.2.9 All Publication Item Indexes

	1.2.3 Create SQL Scripts With All Dependencies
	1.2.4 Configuration Parameters in the MOBILE.ORA that Affect Synchronization Performance
	1.2.5 Tuning Queries to Manage Synchronization Performance
	1.2.5.1 Avoid Using Non-Mergable Views
	1.2.5.2 Tune Queries With Consperf Utility
	1.2.5.3 Manage the Query Optimizer

	1.2.6 Synchronization Tablespace Layout
	1.2.7 Shared Maps
	1.2.7.1 Performance Attributes
	1.2.7.2 Shared Map Usage
	1.2.7.3 Compatibility and Migration for Shared Maps

	1.2.8 Use Map Table Partitions to Streamline Users Who Subscribe to a Large Amount of Data
	1.2.8.1 Create a Map Table Partition
	1.2.8.2 Add Map Table Partitions
	1.2.8.3 Drop a Map Table Partition
	1.2.8.4 Drop All Map Table Partitions
	1.2.8.5 Merge Map Table Partitions

	1.2.9 Configuring Back-End Oracle Database to Enhance Synchronization Performance
	1.2.9.1 Physically Separate Map Tables and Map Indexes
	1.2.9.2 Database Parameter Tuning

	1.2.10 Priority-Based Replication
	1.2.10.1 Create Restricting Predicate in Publication Item
	1.2.10.2 Set Priority Flag in Mobile Sync API Before Initiating Synchronization

	1.2.11 Caching Publication Item Queries
	1.2.11.1 Enabling Publication Item Query Caching
	1.2.11.2 Disabling Publication Item Query Caching

	1.2.12 Architecture Design of Mobile Server and Oracle Database for Synchronization Performance
	1.2.13 Designing Application Tables and Indexes for Synchronization Performance

	1.3 Integrating Oracle Database Mobile Server With the Oracle Real Application Clusters
	1.4 Maximizing JVM Performance By Managing Java Memory

	2 Troubleshooting
	2.1 Troubleshooting Synchronization
	2.1.1 Synchronization Errors and Conflicts
	2.1.1.1 General Synchronization Errors and Conflicts
	2.1.1.2 Synchronization Error if Client Device Clock is Inaccurate
	2.1.1.3 Synchronization Error After Modifying Client Password
	2.1.1.4 Synchronization Error if Synchronized with a Large Number of Tables

	2.1.2 Situations Where the Client is Out of Sync that Triggers a Complete Refresh
	2.1.3 The "Inconsistent Datatypes" SQLException Received If Order is Not Correct in Query
	2.1.4 MGP Compose Postponed Due to Transaction in the In-Queue
	2.1.5 Avoiding the Server Busy Warning

	2.2 Troubleshooting the Mobile Server
	2.2.1 Running the Mobile Server With Tracing Enabled

	2.3 Troubleshooting the Mobile Server Repository
	2.3.1 Troubleshooting the Mobile Server Repository with the Mobile Server Repository Diagnostic Tool
	2.3.1.1 Use the Mobile Server Repository Diagnostic Tool to Validate Your Environment and the Repository
	2.3.1.1.1 Validate the Environment for the Mobile Server
	2.3.1.1.2 Validate Integrity of Mobile Server Tables and Data
	2.3.1.1.3 Validate the Structure and Contents of the Repository
	2.3.1.1.4 Validate Application Databases

	2.3.1.2 Execute the Repository Diagnostics Tool

	2.3.2 Inspecting Files in the Mobile Repository With the WSH Tool
	2.3.3 Modifying IP Address of Machine Where Mobile Repository Exists

	2.4 Troubleshooting JVM Errors
	2.4.1 Troubleshooting An Out of Memory Error
	2.4.1.1 JVM Memory Settings
	2.4.1.1.1 Java Heap
	2.4.1.1.2 Permanent Generation
	2.4.1.1.3 Native Space
	2.4.1.1.4 Setting Java Options for Java Memory

	2.4.1.2 Why is Memory Not Released?
	2.4.1.3 Thread Memory Consumption and Concurrency


	2.5 Troubleshooting Security
	2.5.1 SSL Certificate Rejection for Client Authentication

	2.6 Troubleshooting Device Manager

	3 Tracing and Logging
	3.1 General Tracing for the Mobile Server
	3.2 Data Synchronization Tracing
	3.2.1 Description of the Five Data Synchronization Components
	3.2.1.1 MGP
	3.2.1.2 MGPAPPLY
	3.2.1.3 MGPCOMPOSE
	3.2.1.4 SYNC
	3.2.1.5 GLOBAL



	4 Backup and Recovery
	4.1 How Does Oracle Database Mobile Server Store its Information?
	4.2 Backing Up Oracle Database Mobile Server
	4.3 Oracle Database Mobile Server Backup Coordination Between Client and Server
	4.4 Oracle Database Mobile Server Recovery Issues

	Index
	A
	B
	C
	D
	E
	H
	I
	J
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V


